
MICROSOFrG!>
WIN[)()WSa!>
COMB\llBLE
32-8il Application

TM

Version 4

The Six-Volume Documentation Collection
for Microsoft Visual C++ Version 4 for Win32®

Volume Two - A comprehensive guide to programming
using Microsoft Foundation (lass Library version 4 and Win32,

plus build ing OLE controls with Visual (++

_ Microsoft-Press
~---

Programming with MFC

Microsoft@ Visual C++TM
Development System for Windows@ 95 and Windows NTTM
Version 4

Microsoft Corporation

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 1995 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted
in any form or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Microsoft Visual C++ programmer's references I Microsoft Corporation.

-- 2nd ed.
p. cm.

Includes index.
v. 1. Microsoft Visual C++ user's guide -- v. 2. Programming with

MFC -- v. 3. Microsoft foundation class library reference, part 1 --
v. 4. Microsoft foundation class library reference, part 2 -- v.
5. Microsoft Visual C++ run-time library reference -- v.
6. Microsoft Visual C/C++ language reference.

ISBN 1-55615-915-3 (v. 1). -- ISBN 1-55615-921-8 (v. 2).
1-55615-922-6 (v. 3). -- ISBN 1-55615-923-4 (v. 4). -- ISBN
1-55615-924-2 (v. 5). -- ISBN 1-55615-925-0 (v. 6)

ISBN

1. C++ (Computer program language) 2. Microsoft Visual C++.
I. Microsoft Corporation.
QA76.73.C153M53 1995
005.13 '3--dc20

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QMQM 0 9 8 7 6 5

95-35604
CIP

Distributed to the book trade in Canada by Macmillan of Canada, a division of
Canada Publishing Corporation.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further
information about international editions, contact your local Microsoft Corporation office. Or
contact Microsoft Press International directly at fax (206) 936-7329.

Macintosh is a registered trademark of Apple Computer, Inc. dBASE, dBASE II, dBASE III, dBASE IV, and
Paradox are registered trademarks of Borland International, Inc. Btrieve is a registered trademark of Btrieve
Technologies, Inc. Intel is a registered trademark of Intel Corporation. FoxPro, Microsoft, Microsoft Press,
MS, MS-DOS, Visual Basic, Win32, Win32s, Windows, and XENIX are registered trademarks and Visual
C++, Visual FoxPro, and Windows NT are trademarks of Microsoft Corporation in the U.S. andlor other
countries. MIPS is a registered trademark of MIPS Computer Systems, Inc. Motorola is a registered trade
mark of Motorola, Inc. ORACLE is a registered trademark of Oracle Corporation. SYBASE is a registered
trademark of Sybase, Inc. Unicode is a trademark of Unicode, Inc. Paintbrush is a trademark of Wordstar
Atlanta Technology Center. UNIX is a registered trademark in the U.S. and other countries, licensed
exclusively through XlOpen Company, Ltd.

Acquisitions Editor: Eric Stroo
Project Editor: Brenda L. Matteson

Contents

Introduction xxi

Part 1 Overview of the MFC Library
Chapter 1 Using the Classes to Write Applications for Windows 3
The Framework 5

SDI and MDI 5
Documents, Views, and the Framework 5
App Wizard, Class Wizard, and the Resource Editors 7

Building on the Framework 9
How the Framework Calls Your Code 17

CWinApp: The Application Class 18
Special CWinApp Services 21
Document Templates 22

Document Template Creation 23
DocumentMew Creation 24

Relationships Among MFC Objects 24
Creating New Documents, Windows, and Views 25

Windows of Your Own with CWnd 28
Window Objects 29
Derived Window Classes 30
Creating Windows 31
Registering Window "Classes" 31
General Creation Sequence 32
Destroying Window Objects 32

Working with Window Objects 33
Device Contexts 33

Graphic Objects 34

iii

Contents

iv

Chapter 2 Working with Messages and Commands 37
Messages and Commands in the Framework 37

Messages 38
Message Handlers 38

Message Categories 38
Mapping Messages 40
U ser-Interface Objects and Command IDs 40
Command Targets 42

How the Framework Calls a Handler 42

Message Sending and Receiving 42
How Noncommand Messages Reach Their Handlers 43
Command Routing 43

How the Framework Searches Message Maps 46
Where to Find Message Maps 46
Derived Message Maps 47
Message-Map Ranges 49

Declaring Handler Functions 50

Standard Windows Messages 50
Commands and Control Notifications 51

How to Manage Commands and Messages with ClassWizard 52
How to Update User-Interface Objects 52

When Update Handlers Are Called 53
The ON_UPDATE_COMMAND_UI Macro 54

The CCmdUI Class 54

How to Display Command Information in the Status Bar 54

Chapter 3 Working with Frame Windows, Documents, and Views 57
Frame Windows 57

Window Classes 59

The Frame-Window Classes Created by AppWizard 59
U sing Frame Windows 59

Documents and Views 64
Document and View Classes Created by App Wizard 65
U sing Documents and Views 65
Special View Classes 76

Printing and Print Preview 77

Printing the Document 77
Previewing the Printed Document 78

Chapter 4 Working with Dialog Boxes, Controls, and Control Bars 79
Dialog Boxes 79

Dialog-Box Components in the Framework 80
Modal and Modeless Dialog Boxes 80
Property Sheets and Property Pages 81
Creating the Dialog Resource 81
Creating a Dialog Class with Class Wizard 82
Life Cycle of a Dialog Box 83
Dialog Data Exchange and Validation 85
Type-Safe Access to Controls in a Dialog Box 87
Mapping Windows Messages to Your Class 89
Common Dialog Classes 90

Controls 90
Controls and Dialog Boxes 92
Making and Using Controls 92

Control Bars 94
Toolbars -An Overview 95
Status Bars 96
Dialog Bars 97

Chapter 5 Working with OLE 99
Overview of OLE 100
Features of the OLE Classes 101
Requirements for Using the OLE Classes 102
Distributing Your OLE Application 102
Getting Started with the MFC OLE Classes 102

Chapter 6 Developing OLE Controls 105
Implementing an OLE Control 106
Installing OLE Control Classes and Tools 107
Getting Started with OLE Controls 108

Chapter 7 Working with Databases 109
When Should You Use the Database Classes? 110
What Are the Database Classes? 110
Which Classes: DAO or ODBC? 110
Installing MFC Database Support 111

Contents

v

Contents

Chapter 8 Using the General·Purpose Classes 113
CObject Services 113

Object Diagnostics 114
Run-Time Class Information 114
Object Persistence 115

The File Classes 116
The Collection Classes 117

Lists 117
Arrays 117
Maps 118

The CString Class 118
The CTime and CTimeSpan Classes 118
Diagnostic Services in MFC 119

Diagnostics for Memory 119
Diagnostic Output 120
Assertions 120

Handling Exceptions 120

Part 2 MFC Encyclopedia

vi

Using the Encyclopedia 125
Activation 127

Activation: Verbs 127
Administrator, ODBC 128
Application Framework 128
App Wizard 128

App Wizard: Files Created 131
App Wizard: Database Support 134
AppWizard: Database Options 137
AppWizard: Database Source Files and Resources 139
AppWizard: OLE Support 141
AppWizard: Creating an OLE Visual Editing Application 142

Asynchronous Access 144
Automation 144
Automation Clients 145

Automation Clients: Using Type Libraries 146
Automation Servers 147

Automation Servers: Object-Lifetime Issues 148
Binary Large Object 149

BLOB 149

Catalog Information 150

ClassWizard 150

ClassWizard: Special-Format Comment Sections 152

ClassWizard: Tips and Troubleshooting 155

ClassWizard: Database Support 158
Class Wizard: Creating a Recordset Class 160

Class Wizard: Binding Recordset Fields to Table Columns 163

Class Wizard: Creating a Database Form 165

Class Wizard: Mapping Form Controls to Recordset Fields 167
Class Wizard: Foreign Objects 169

Class Wizard: OLE Automation Support 170

ClassWizard: Adding Automation Properties and Methods 172

ClassWizard: Accessing Automation Servers 174

Client, OLE Automation 174

Clipboard 175

Clipboard: Using the Windows Clipboard 176

Clipboard: Copying and Pasting Data 178
Clipboard: Adding Other Formats 179

CObject Class 180

CObject Class: Deriving a Class from CObject 180

CObject Class: Specifying Levels of Functionality 182

CObject Class: Accessing Run-Time Class Information 184

CObject Class: Dynamic Object Creation 186

Collections 186

Collections: Choosing a Collection Class 188

Collections: Template-Based Classes 190
Collections: How to Make a Type-Safe Collection 193

Collections: Accessing All Members of a Collection 197

Collections: Deleting All Objects in a CObject Collection 199

Collections: Creating Stack and Queue Collections 202
Column 203

Commit 203

COMMON .RES Sample Resources 204

Connection Points 204

Connect String 207

Containers 207

Containers: Implementing a Container 208

Containers: Client Items 209

Contents

vii

Contents

viii

Containers: Client-Item Notifications 210

Containers: Client-Item States 211
Containers: Compound Files 212

Containers: User-Interface Issues 214

Containers: Advanced Features 215

Current Record 216

DAO and MFC 217

Data Access Objects (DAO) 221

DAO: Where Is 221

DAO: Writing a Database Application 225
DAO: Database Application Design Options 227

DAO: Steps in Writing MFC DAO Applications 229

DAO: Database Tasks 230

DAO: Creating, Opening, and Closing DAO Objects 232

DAO: Creating DAO Objects 233

DAO: Opening DAO Objects 234

DAO: Closing DAO Objects 236

DAO: Accessing Implicit MFC DAO Objects 237
DAO: General Performance Tips 238

DAO Collections 243

DAO: Obtaining Information About DAO Objects 245

DAO Database 248

DAO Database: Using Workspaces and Databases 251

DAO External: Working with External Data Sources 252

DAO External: Attaching External Tables 255

DAO External: Opening External Databases Directly 257

DAO External: Creating an External Table 258
DAO External: Refreshing and Removing Links 258

DAO External: Improving Performance with External Data Sources 259
DAO Queries· 261

DAO Queries: SQL for DAO 263

DAO Queries: Filtering and Parameterizing Queries 263

DAO Querydef 267

DAO Querydef: Using Querydefs 269

DAO Querydef: Action Queries and SQL Pass-Through Queries 273
DAO Record Field Exchange (DFX) 275

DAO Record Field Exchange: Using DFX 276

DAO Record Field Exchange: Working with the Wizard Code 277

DAO Record Field Exchange: Using the DFX Functions 281

DAO Record Field Exchange: How DFX Works 283

DAO Record Field Exchange: Double Buffering Records 288

DAO Recordset 290
DAO Recordset: Architecture 295

DAO Recordset: Creating Recordsets 297

DAO Recordset: Recordset Navigation 300

DAO Recordset: Recordset Operations 302
DAO Recordset: Bookmarks and Record Positions 305

DAO Recordset: Seeking and Finding 308

DAO Recordset: Binding Records Dynamically 311

DAO Recordset: Caching Multiple Records for Performance 314

DAO Tabledef 317

DAO Tabledef: Using Tabledefs 319

DAO Tabledef: Examining a Database Schema at Run Time 321

DAO Workspace 322
DAO Workspace: Explicitly Opening the Default Workspace 325

DAO Workspace: The Database Engine 326

DAO Workspace: Accessing Properties of the Database Engine 328

DAO Workspace: Managing Transactions 329
DAO Workspace: Opening a Separate Transaction Space 332

Database 334

Database Overview 334

Data Objects and Data Sources (OLE) 339
Data Objects and Data Sources: Creation and Destruction 340

Data Objects and Data Sources: Manipulation 342

Data Source (ODBC) 344

Data Source: Managing Connections (ODBC) 345
Data Source: Determining the Schema of the Data Source (ODBC) 347

Date and Time 348

Date and Time: General-Purpose Classes 348

Date and Time: SYSTEMTIME Support 350

Date and Time: OLE Automation Support 350

DBCS 353

DBMS 353

Debugging 353
Debugging OLE Applications 354

Debugging OLE Applications: Containers 355

Debugging OLE Applications: Servers 355

Debugging OLE Applications: Tools 356

Contents

ix

Contents

x

Diagnostics 357
Diagnostics: Debugging Features 358
Diagnostics: Dumping Object Contents 359
Diagnostics: The TRACE Macro 360

Diagnostics: The ASSERT Macro 361
Diagnostics: Checking Object Validity 362
Diagnostics: Detecting Memory Leaks 365
Diagnostics: Dumping All Objects 368
Diagnostics: Tracking Memory Allocations 371

Dialog Boxes in OLE 371

DocumentNiew Architecture 373
Drag and Drop (OLE) 373

Drag and Drop: Implementing a Drop Source 374

Drag and Drop: Implementing a Drop Target 374
Drag and Drop: Customizing 375

Driver Manager, ODBC 376
Driver, ODBC 376
Drop Source 376

Drop Target 376
Dynamic-Link Libraries (DLLs) 377

DLLs: Using the Shared AFXDLL Version ofMFC 379
DLLs: Building and Using an Extension DLL 380
DLLs: Building and Using the Static Link Version of the Regular DLL 382
DLLs: Building and Using the Shared Version of the Regular DLL 383

DLLs: Programming Tips 385
DLLs: Naming Conventions 387
DLLs: Redistribution 388

Dynaset 391

Embedded OLE Item 395
Events 395

Events: Adding Stock Events to an OLE Control 396
Events: Adding Custom Events to an OLE Control 398

Exceptions 402
Exceptions: Changes to Exception Macros in Version 3.0 404
Exceptions: Catching and Deleting Exceptions 406
Exceptions: Converting from MFC Exception Macros 407
Exceptions: Using MFC Macros and C++ Exceptions 410

Exceptions: Examining Exception Contents 412
Exceptions: Freeing Objects in Exceptions 412

Exceptions: Throwing Exceptions from Your Own Functions 415

Exceptions: Exceptions in Constructors 416

Exceptions: Database Exceptions 416
Exceptions: OLE Exceptions 419

Frequently Asked Questions (FAQ) About MFC 421

FAQ: Updating the Text of a Status-Bar Pane 421

FAQ: The User Interface Guidelines for Microsoft Windows 424

FAQ: Changing the Styles of a Window Created by MFC 424

FAQ: Background Processing in an MFC Application 426

FAQ: Programmatically Configuring an ODBC Data Source 428

FAQ: Programmatically Creating a Table in an ODBC Data Source 431

Field 433

Files 433

Find 436

Forms 436

Framework 436

Help 437

Help: Fl and SHIFT +Fl Help 441

Help: OLE Support for Help 442
Help: Message-Map Support 443

Help: The Help Project File 446

Help: The MAKEHM and MAKEHELP.BAT Tools 447

Help: CPropertySheet and CPropertyPage 450

Help: Authoring Help Topics 451

In-Place Activation 457

In-Place Editing 457

Library Versions 458
Linked OLE Item 460

Mail API 461

MAPI 461

MAPI Support in MFC 461

Managing the State Data of MFC Modules 463

MBCS 466

Memory Management 466

Memory Management: Frame Allocation 466
Memory Management: Heap Allocation 467

Memory Management: Allocation on the Frame and on the Heap 468

Memory Management: Resizable Memory Blocks 470

Menus and Resources 470

Contents

xi

Contents

xii

Menus and Resources: Container Additions 471

Menus and Resources: Server Additions 473

Menus and Resources: Menu Merging 475

Message Map 477

Message Map: Ranges of Messages 478

Methods 482

Methods: Adding Stock Methods to an OLE Control 483

Methods: Adding Custom Methods to an OLE Control 484

Methods: Returning Error Codes From a Method 486

MFC 486

MFC: Changes from MFC Versions 3.0 and 3.1 488
MFC: Windows 95 Support 490

MFC: Win32 Features in MFC 493

MFC: OLE Control Container Support 494

MFC: Data Access Objects (DAO) Support 495

MFC: OLE and Other Enhancements in MFC Version 4.0 495

MFC: Changes from MFC Versions 2.0 and 2.5 497

MFC: Changes from MFC Version 2.0 32-Bit Edition 499

MFC: Features No Longer Available 500
MFC: 32-Bit Programming Issues 501

MFC: Porting MFC Applications to 32-Bit 502

MFC: Porting Tips 504

MFC: Using Database Classes with Documents and Views 506
MFC: Using Database Classes Without Documents and Views 508

MFC: Using the MFC Source Files 512

Multithreading 516

Multithreading: Creating U ser-Interface Threads 517

Multithreading: Creating Worker Threads 518

Multithreading: How to Use the Synchronization Classes 520

Multithreading: Terminating Threads 522

Multithreading: Programming Tips 523
Multithreading: When to Use the Synchronization Classes 525

ODBC 527

ODBC: The ODBC Cursor Library 529

ODBC: Configuring an ODBC Data Source 531
ODBC: Calling ODBC API Functions Directly 531

ODBC Administrator 532

ODBC Driver List 533

ODBC and MFC 534

OLE Control Containers 538

OLE Control Containers: Using AppWizard to Create a Container Application
539

OLE Control Containers: Manually Enabling OLE Control Containment 540

OLE Control Containers: Inserting a Control into a Control Container
Application 540

OLE Control Containers: Connecting an OLE Control to a Member Variable 541

OLE Control Containers: Handling Events from an OLE Control 541

OLE Control Containers: Viewing and Modifying Control Properties 542

OLE Control Containers: Programming OLE Controls in an OLE Control
Container 543

OLE Control Containers: Using Controls in a Non-Dialog Container 547

OLE Controls 550

OLE Controls: Painting an OLE Control 554

OLE Controls: Property Pages 557
OLE Controls: Adding Another Custom Property Page 560

OLE Controls: Using Stock Property Pages 563

OLE Controls: Using Fonts in an OLE Control 565

OLE Controls: Using Pictures in an OLE Control 572
OLE Controls: Advanced Topics 576

OLE Controls: Distributing OLE Controls 580

OLE Controls: Licensing an OLE Control 582

OLE Controls: Localizing an OLE Control 588
OLE Controls: Serializing 592

OLE Controls: Subclassing a Windows Control 594

OLE Controls: Using Data Binding in an OLE Control 599

OLE Controls: Adding an OLE Control to an Existing CDK Project 602
OLE Controls: VBX Control Migration 606

OLE Controls: Converting a CDK Project to a Visual C++ Project 613

OLE ControlWizard 614

OLE ControlWizard: How ControlWizard Works 615
OLE ControlWizard: Files Created 619

OLE Overview 623

OLE Overview: Linking and Embedding 624

OLE Overview: Containers and Servers 625
OLE Overview: Implementation Strategies 626

OLE Overview: Microsoft Foundation Class Library Implementation 627

Porting 629

Print Preview 629

Contents

xiii

Contents

xiv

Printing 629

Printing: How Default Printing Is Done 630
Printing: Multipage Documents 631
Printing: Headers and Footers 636
Printing: Allocating ODI Resources 637
Printing: The Print Preview Architecture 638

Properties 640
Properties: Adding Stock Properties 640

Properties: Adding Custom Properties 643
Properties: Advanced Implementation 645
Properties: Accessing Ambient Properties 647

Property Sheets 649
Property Sheets: Exchanging Data 651
Property Sheets: Creating a Modeless Property Sheet 652

Property Sheets: Handling the Apply Button 653
Record 655

Record Field Exchange (RFX) 655
Record Field Exchange: Using RFX 656

Record Field Exchange: Working with the Wizard Code 657
Record Field Exchange: Using the RFX Functions 660
Record Field Exchange: How RFX Works 661

Recordset (ODBC) 666

Recordset: Architecture (ODBC) 668
Recordset: Declaring a Class for a Table (ODBC) 670

Recordset: Creating and Closing Recordsets (ODBC) 671
Recordset: Scrolling (ODBC) 673
Recordset: Filtering Records (ODBC) 675
Recordset: Sorting Records (ODBC) 677

Recordset: Parameterizing a Recordset (ODBC) 678
Recordset: Adding, Updating, and Deleting Records (ODBC) 682
Recordset: Adding Records in Bulk (ODBC) 686
Recordset: Locking Records (ODBC) 686
Recordset: Performing a Join (ODBC) 687
Recordset: Declaring a Class for a Predefined Query (ODBC) 691

Recordset: Requerying a Recordset (ODBC) 694
Recordset: Dynamically Binding Data Columns (ODBC) 695

Recordset: Working with Large Data Items (ODBC) 702
Recordset: Obtaining SUMs and Other Aggregate Results (ODBC) 703
Recordset: How Recordsets Select Records (ODBC) 705

Recordset: How Recordsets Update Records (ODBC) 708
Recordset: How AddNew, Edit, and Delete Work (ODBC) 710
Recordset: More About Updates (ODBC) 714

Record Views 718
Record Views: Supporting Navigation in a Record View 721
Record Views: Using a Record View 722
Record Views: Filling a List Box from a Second Recordset 724

Registration 725

Result Set 727
RFX 727
Rollback 728
Schema 729
Serialization (Object Persistence) 729

Serialization: Making a Serializable Class 730

Serialization: Serializing an Object 733
Serialization: Serialization vs. Database Input/Output 739

Servers 741
Servers: Implementing a Server 742

Servers: Implementing Server Documents 743
Servers: Implementing In-Place Frame Windows 744

Servers: Server Items 745
Servers: User-Interface Issues 747

Snapshot 747
SQL 748

SQL: Customizing Your Recordset's SQL Statement (ODBC) 750
SQL: SQL and C++ Data Types (ODBC) 754
SQL: Making Direct SQL Calls (ODBC) 755

Stored Procedure 756

Strings 756
Strings: Basic CString Operations 758
Strings: CString Semantics 760
Strings: CString Operations Relating to C-Style Strings 761
Strings: CString Exception Cleanup 763

Strings: CString Argument Passing 763
Strings: Unicode and Multibyte Character Set (MBCS) Support 765

Structured Query Language 767
Table 768
Test Container 768

Toolbars 770

Contents

xv

Contents

xvi

Toolbars: Fundamentals 771

Toolbars: Docking and Floating 774

Toolbars: Tool Tips 776

Toolbars: Working with the Toolbar Control 777

Toolbars: Using Your Old Toolbars 778

Tools for MFC Programming 778

Trackers 781
Trackers: Implementing Trackers in Your OLE Application 781

Transaction (ODBC) 785

Transaction: Performing a Transaction in a Recordset (ODBC) 786

Transaction: How Transactions Affect Updates (ODBC) 788
Type Library 789

Unicode 789

Verbs, OLE 790

Visual Editing 790

Windows Sockets in MFC: Overview 791

Windows Sockets: Background 793

Windows Sockets: Stream Sockets 795

Windows Sockets: Datagram Sockets 796

Windows Sockets: Using Sockets with Archives 797.

Windows Sockets: Sequence of Operations .799

Windows Sockets: Example of Sockets Using Archives 801

Windows Sockets: How Sockets with Archives Work 803
Windows Sockets: Using Class CAsyncSocket 806

Windows Sockets: Deriving from Socket Classes 808

Windows Sockets: Socket Notifications 809

Windows Sockets: Blocking 811
Windows Sockets: Byte Ordering 812

Windows Sockets: Converting Strings 816

Windows Sockets: Ports and Socket Addresses 816

Wizards 817

Index 819

Figures and Tables
Figures
Figure 1.1 Objects in a Running SDI Application 7
Figure 1.2 Sequence of Execution 18
Figure 1.3 The Message Loop 21

Figure 1.4 An MDI Application with Two Document Types 23
Figure 1.5 Sequence in Creating a Document 26
Figure 1.6 Sequence in Creating a Frame Window 27
Figure 1.7 Sequence in Creating a View 28
Figure 1.8 Window Object and Windows Window 29
Figure 2.1 Commands in the Framework 40
Figure 2.2 Command Updating in the Framework 41
Figure 2.3 A View Hierarchy 47
Figure 3.1 Frame Window and View 58
Figure 3.2 MDI Frame Windows and Children 61

Figure 3.3 Document and View 64
Figure 3.4 Multiple-View User Interfaces 74
Figure 4.1 Dialog Data Exchange 86
Figure 4.2 Bitmap Buttons 92

Figure 4.3 A Status Bar 96
Figure 4.4 A Dialog Bar 97
Figure 1. AppWizard's Database Options 135

Figure 1 DDX and Foreign Objects 159
Figure 1 Specifying Information for a New Class 162
Figure 2 Selecting a Data Source in Class Wizard 162
Figure 3 Selecting a Database Table in Class Wizard 162
Figure 1 Adding a Data Member to the Recordset 165
Figure 1 DDX for Foreign Objects 169
Figure 1 An Implemented Connection Point 205
Figure 2 A Connection Point Implemented with MFC 206
Figure 1 The OLE Events Tab 395
Figure 1 An MFC Status Bar 421

Figure 1 Preparing Help Files 441
Figure 1 The Main Contents Screen in PEN.RTF 453

Figure 2 The Pen Menu Topic in the PEN.RTF File 454
Figure 3 The Pen Widths and Thick Line Topics in the PEN.RTF File 455

Figure 1 State Data of a Single Module (Application) 463

Contents

xvii

Contents

xviii

Figure 2 State Data of Multiple Modules 464
Figure 1 The Add Method Dialog Box 485
Figure 1 Interaction Between an OLE Control Container and an OLE Control 550
Figure 2 Communication Between an OLE Control Container and an

OLE Control 551
Figure 3 Windows Message Processing in an OLE Control (When Active) 552
Figure 1 A Properties Dialog Box 558
Figure 1 Implementing Multiple Font Object Interfaces 570
Figure 1 Verification of a Licensed OLE Control During Development 583
Figure 2 Verification of a Licensed OLE Control During Execution 584
Figure 1 Conceptual Diagram of a Data Bound Control 599
Figure 2 The Data Binding Dialog Box 600
Figure 1 The Project Options Dialog Box 617
Figure 2 The Control Options Dialog Box 618
Figure 3 The Edit Names Dialog Box 618
Figure 1 The Printing Loop 633
Figure 1 Dialog Data Exchange and Record Field Exchange 719
Figure 1 CArchive, CSocketFile, and CSocket 804

Tables
Table 1.1 Where to Find More Information 4
Table 1.2 Sequence for Building an Application with the Framework 9
Table 1.3 Creating OLE Applications 13
Table 1.4 Creating OLE Controls 14
Table 1.5 Creating Database Applications 15
Table 1.7 Gaining Access to Other Objects in Your Application 25
Table 1.8 Classes for Windows GDI Objects 34
Table 2.1 Standard Command Route 44
Table 2.2 Message-Map Entry Macros 48
Table 3.1 New View Classes 69
Table 4.1 Dialog-Related Tasks 82
Table 4.2 Dialog Creation 83
Table 4.3 Commonly Overridden Member Functions of Class CDialog 89
Table 4.4 Common Dialog Classes 90
Table 4.5 Standard Control Window Classes 90
Table 4.6 Additional Control Classes 91
Table 1 Recordset Class Creation Summary 160
Table 1 Mapping Record View Controls to a Recordset 167
Table 1 Macros Used for Serialization and Run-Time Information 181

Table 1 Collection Template Classes 187
Table 2 Nontemplate Collection Classes 187
Table 1 Collection Shape Features 189
Table 2 Characteristics of MFC Collection Classes 189
Table 1 MFC Classes and Corresponding DAO Objects 218
Table 2 How MFC Manages DAO Objects Not Mapped to Classes 218
Table 1 Articles About Common Database Tasks 230
Table 2 Meaning of Create for DAO Objects 234
Table 1 Meaning of Open for DAO Objects 235
Table 1 Class Member Functions for Accessing Collections 246
Table 2 Classes for Obtaining Information About Collections 246
Table 3 Constants for Specifying the Levels of Information You Want 248
Table 1 QueryDef States and Their Meanings 272
Table 1 Using DFX: You and the Framework 276
Table 1 Data Types and DFX Functions 282
Table 1 Sequence of DFX Operations During Recordset Open 285
Table 2 Sequence of DFX Operations During Scrolling 285
Table 3 Sequence of DFX Operations During AddNew and Edit 287
Table 1 Characteristics of Recordset Types 291
Table 1 U sing Seek vs. Using Find 308
Table 2 The Find Family of Functions 310
Table 1 Workspace Member Functions for Database Engine Access 328
Table 1 Choosing Between MFC's DAO and ODBC Classes 336
Table 2 Further Reading About DAO and ODBC in MFC 338
Table 3 MFC Database Documentation 338
Table 1 AFXDLL Naming Convention 387
Table 2 Static Link Regular DLL Naming Conventions 388
Table 1 MFC/Other Files 389
Table 2 32-bit ODBC Files 389
Table 3 SQL Server ODBC Files 390
Table 1 Stock Events 397
Table 1 App Wizard-Supplied Help Files 439
Table 1 Help-Related Command IDs 444
Table 1 Preferred Resource ID Naming Conventions 448
Table 1 Library Naming Conventions 459
Table 2 Static Library Versions 459
Table 1 App Wizard Options for Documents and Views 509
Table 1 Functions to Override When Creating a User-Interface Thread 517
Table 1 Property Page Functions 560

Contents

xix

Contents

Table 1

Table 1

Table 1
Table 1

Table 2

Table 1

Table 1

Table 2

Table 3

Table 1

Table 1
Table 1

Table 1

Table 1

Table 1

Table 1

Table 1

Table 1

Table 1
Table 2

Table 1

Table 1

Table 2

xx

OLE Control Error Codes 578

Redistributable Files 582

Reflected Windows Messages 597
CView's Overridable Functions for Printing 632

Page Number Information Stored in CPrintInfo 634

Using RFX: You and the Framework 656

Sequence of RFX Operations During Recordset Open 663

Sequence of RFX Operations During Scrolling 663

Sequence of RFX Operations During AddNew and Edit 665

Recordset Read/Update Options 682

How and When You Can Affect a Recordset 705
Recordset Updating: You and the Framework 709

Working with a Record View: You and the Framework 720

Server Characteristics 741

Some Common SQL Keywords 749
The ipszSQL Parameter and the SQL String Constructed 752

ANSI SQL Data Types Mapped to C++ Data Types 754

Container Styles and State of the OLE Item 782

How CommitTrans Affects Updates 788

How Rollback Affects Transactions 789

Setting Up Communication Between a Server and a Client 800

Big- and Little-Endian Byte Ordering 813

Windows Sockets Byte-Order Conversion Functions 815

Introduction

This book contains information on programming with the Microsoft® Foundation
Class Library (MFC). The class library is a set of C++ classes that encapsulate the
functionality of applications written for the Microsoft Windows® operating system.
This version of MFC supports programming for Win32® platforms, including
Microsoft Windows NTTM and Windows 95.

Part 1, meant to be read sequentially, is an overview of the class library, designed to
help you understand the major components of an MFC application and how they
work together. Part 1 explains the following topics:

• The key components of an MFC application:

• An application object, which represents your application

• Document template objects, which create document, frame window, and view
objects

• Document objects, which store data and serialize it to persistent storage

• View objects, which display a document's data and manage the user's
interaction with the data

• Frame window objects, which contain views

• Thread objects, which let you program multiple threads of execution using
MFC classes

• Dialog boxes, controls, and control bars, such as toolbars and status bars.

• OLE visual editing and OLE Automation.

• OLE controls and the classes and tools used to develop them.

• Database support using Open Database Connectivity (ODBC) and Data Access
Objects (DAO).

• Useful general-purpose classes, such as strings, collections, exceptions, and
date/time objects.

Part 2, designed for random access, presents an encyclopedia-an alphabetical
collection of articles on programming with MFC. You can use these articles to follow
many different threads of information. For an overview of how the articles work with

xxi

Programming with MFC

each other, see the first article Using the Encyclopedia. Articles that begin

particularly important threads include:

• MFC

• OLE Overview

• Database Overview

• OLE Controls

Document Conventions

xxii

This book uses the following typographic conventions:

Example

STDIO.H

char, _setcolor, __ far

expression

[option]

#pragma pack {I I 2}

#include <io.h>

CL [option ...] file ...

while ()

{

Description

Uppercase letters indicate filenames, registers, and terms
used at the operating-system command level

Bold type indicates C and c++ keywords, operators, and
library routines. Within discussions of syntax, bold type
indicates that the text must be entered exactly as shown.

Many constants, functions, and keywords begin with either
a single or double underscore. These are required as part
of the name. For example, the compiler recognizes the
__ cplusplus manifest constant only when the leading
double underscore is included.

Words in italics indicate placeholders for information you
must supply, such as a filename. Italic type is also used
occasionally for emphasis in the text.

Items inside double square brackets are optional.

Braces and a vertical bar indicate a choice among two or
more items. You must choose one of these items unless
double square brackets ([]) surround the braces.

This font is used for examples, user input, program output,
and error messages in text.

Three dots (an ellipsis) following an item indicate that
more items having the same form may appear.

A column or row of three dots tells you that part of an
example program has been intentionally omitted.

Example

CTRL+ENTER

Description

Small capital letters are used to indicate the names of keys
on the keyboard. When you see a plus sign (+) between
two key names, you should hold down the first key while
pressing the second.

The carriage-return key, sometimes marked as a bent
arrow on the keyboard, is called ENTER.

"argument" Quotation marks enclose a new term the first time it is
defined in text.

"C string" Some C constructs, such as strings, require quotation
marks. Quotation marks required by the language have
the form " " and I I rather than " " and ' '.

Dynamic-Link Library (DLL) The first time an acronym is used, it is usually spelled
out.

Microsoft Specific ~ Some features documented in this book have special
usage constraints. A heading identifying the nature of
the exception, followed by an arrow, marks the
beginning of these exception features.

END Microsoft Specific END followed by the exception heading marks the end of
text about a feature which has a usage constraint.

Introduction

xxiii

PAR T

Overview of the MFC Library

Chapter 1 U sing the Classes to Write Applications for Windows 3

Chapter 2 Working with Messages and Commands 37

Chapter 3 Working with Frame Windows, Documents, and Views 57

Chapter 4 Working with Dialog Boxes, Controls, and Control Bars 79

Chapter 5 Working with OLE 99

Chapter 6 Developing OLE Controls 105

Chapter 7 Working with Databases 109

Chapter 8 U sing the General-Purpose Classes 113

C HAP T E R

U sing the Classes to Write
Applications for Windows

Taken together, the classes in the Microsoft Foundation Class Library (MFC) make
up an "application framework" - the framework on which you build an application
for Windows. At a very general level, the framework defines the skeleton of an
application and supplies standard user-interface implementations that can be placed
onto the skeleton. Your job as programmer is to fill in the rest of the skeleton-those
things that are specific to your application. You can get a head start by using
AppWizard to create the files for a very thorough starter application. You use the
Microsoft Visual C++TM resource editors to design your user-interface elements
visually, Class Wizard to connect those elements to code, and the class library to
implement your application-specific logic.

Version 3.0 and later of the MFC framework supports 32-bit programming for Win32
platforms, including Microsoft Windows 95 and Microsoft Windows NT version 3.51
and later. MFC Win32 support includes multithreading.

This chapter presents a broad overview of the application framework. It also explores
the major objects that make up your application and how they are created. Among the
topics covered in this chapter are the following:

• The framework

• Division of labor between the framework and your code

• The application class, which encapsulates application-level functionality

• How document templates create and manage documents and their associated views
and frame windows

• Class CWnd, the root base class of all windows

• Graphic objects, such as pens and brushes

Subsequent chapters continue the framework story, covering:

• Chapter 2, Working with Messages and Commands

• Chapter 3, Working with Frame Windows, Documents, and Views

• Chapter 4, Working with Dialog Boxes, Controls, and Control Bars

• Chapter 5, Working with OLE

3

Programming with MFC

4

Besides giving you a considerable head start in writing applications for Windows,
MFC also makes it much easier to write applications that specifically use OLE.
You can make your application an OLE Visual Editing container, an OLE Visual
Editing server, or both, and you can add OLE Automation so that other
applications can use objects from your application or even drive it remotely.

• Chapter 6, Developing OLE Controls

The OLE control development kit (CDK) is now fully integrated with the
framework. This chapter supplies an overview of OLE control development with
MFC.

• Chapter 7, Working with Databases

MFC also supplies a set of database classes that simplify writing data-access
applications. Using the database classes, you can connect to databases via an Open
Database Connectivity (ODBC) driver, select records from tables, and display
record information in an on-screen form.

• Chapter 8, Using the General-Purpose Classes

In addition, MFC is fully enabled for writing applications that use Unicode™ and
multibyte character sets (MBCS), specifically double-byte character sets (DBCS).

For a step-by-step tutorial in which you build an application with the framework, read
Tutorials, Chapters 2 through 11. The following table directs you to other documents:

Table 1.1 Where to Find More Information

Topic Book Chapters

Classes mentioned in this Class Library Reference Alphabetic reference
book

AppWizard Visual C++ User's Guide Chapter 1

ClassWizard and WizardBar Visual C++ User's Guide Chapter 14

Development environment Visual C++ User's Guide Chapters 1-22

Tutorials Tutorials Chapters 2-35

Diagnostics, exceptions Programming with MFC Part 2 (see Diagnostics and
(this book) Exceptions)

Macros and globals Class Library Reference Alphabetic reference

Resources Visual C++ User's Guide Chapters 5 -12

OLE programming Programming with MFC Chapter 5 and Part 2 (see
OLE Overview)

OLE controls programming Programming with MFC Chapter 6 and Part 2 (see
OLE Controls)

Database programming Programming with MFC Chapter 7 and Part 2 (see
(ODBC and DAO) Database Overview)

Chapter 1 Using the Classes to Write Applications for Windows

The Framework
Your work with the framework is based largely on a few major classes and several
Visual C++ tools. Some of the classes encapsulate a large portion of the Win32
application programming interface (API). Other classes encapsulate application
concepts such as documents, views, and the application itself. Still others encapsulate
OLE features and ODBC and DAO data-access functionality.

SDI andMDI
MFC makes it easy to work with both single document interface (SDI) and multiple
document interface (MDI) applications.

SDI applications allow only one open document frame window at a time. MDI
applications allow multiple document frame windows to be open in the same instance
of an application. An MDI application has a window within which mUltiple MDI
child windows, which are frame windows themselves, can be opened, each containing
a separate document. In some applications, the child windows can be of different
types, such as chart windows and spreadsheet windows. In that case, the menu bar
can change as MDI child windows of different types are activated.

Note Under Windows 95, applications will increasingly be SDI as the operating system
moves towards a "document-centered" view.

Documents, Views, and the Framework
At the heart of the framework are the concepts of document and view. A document is
a data object with which the user interacts in an editing session. It is created by the
New or Open command on the File menu and is typically saved in a file. A view is a
window object through which the user interacts with a document.

The key objects in a running application are:

• The document(s)

Your document class (derived from CDocument) specifies your application's data.

If you want OLE functionality in your application, derive your document class
from COleDocument or one of its derived classes, depending on the type of
functionality you need.

• The view(s)

Your view class (derived from CView) is the user's "window on the data." The
view class specifies how the user sees your document's data and interacts with it.
In some cases, you may want a document to have multiple views of the data.

If you need scrolling, derive from CScrollView. If your view has a user interface
that is laid out in a dialog-template resource, derive from CFormView. For simple
text data, use or derive from CEditView. For a form-based data-access

5

Programming with MFC

6

application, such as a data-entry program, derive from CRecordView (for ODBC)
or CDaoRecordView (for DAO). Also available are classes CTreeView,
CListView, and CRichEditView.

• The frame windows

Views are displayed inside "document frame windows." In an SDI application, the
document frame window is also the "main frame window" for the application. In
an MDI application, document windows are child windows displayed inside a
main frame window. Your derived main frame-window class specifies the styles
and other characteristics of the frame windows that contain your views. Derive
from CFrameWnd to customize the document frame window for SDI
applications. Derive from CMDIFrameWnd to customize the main frame window
for MDI applications. Also derive a class from CMDIChildWnd to customize
each of the distinct kinds of MDI document frame windows that your application
supports.

• The document template(s)

A document template orchestrates the creation of documents, views, and frame
windows. A particular document-template class, derived from class
CDocTemplate, creates and manages all open documents of one type.
Applications that support more than one type of document have multiple
document templates. Use class CSingleDocTemplate for SDI applications, or use
class CMultiDocTemplate for MDI applications.

• The application object

Your application class (derived from CWinApp) controls all of the objects above
and specifies application behavior such as initialization and cleanup. The
application's one and only application object creates and manages the document
templates for any document types the application supports.

• Thread objects

If your application creates separate threads of execution - for example, to perform
calculations in the background-you'll use classes derived from CWinThread.
CWinApp itself is derived from CWinThread and represents the primary thread
of execution (or the main process) in your application. You can also use MFC in
secondary threads.

In a running application, these objects cooperatively respond to user actions, bound
together by commands and other messages. A single application object manages one
or more document templates. Each document template creates and manages one or
more documents (depending on whether the application is SDI or MDI). The user
views and manipulates a document through a view contained inside a frame window.
Figure 1.1 shows the relationships among these objects for an SDI application.

Chapter 1 Using the Classes to Write Applications for Windows

Figure 1.1 Objects in a Running SOl Application

Arrows show directions
of communication flow.

Application Object

Main Frame Window

Toolbar

View

Status Bar

The rest of this chapter explains how the framework tools, App Wizard, Class Wizard,
WizardBar, and the resource editors, create these objects, how they work together,
and how you use them in your programming. Documents, views, and frame windows
are discussed in more detail in Chapter 3, Working with Frame Windows,
Documents, and Views.

App Wizard, Class Wizard, and the Resource Editors
Visual C++ includes two wizards and the WizardBar for use in MFC programming,
along with many integrated resource editors. For OLE controls programming, the
ControlWizard serves a purpose much like that of App Wizard. While you can write
MFC applications without most of these tools, the tools greatly simplify and speed
your work.

Use AppWizard to Create an MFC Application
Use AppWizard to create an MFC project in Visual C++-which can include OLE
and database support. Files in the project contain your application, document, view,
and frame-window classes; standard resources, including menus and an optional
toolbar; other required Windows files; and optional .RTF files containing standard
Windows Help topics.

Use ClassWizard to Manage Classes and Windows
Messages
Class Wizard helps you create handler functions for Windows messages and
commands; create and manage classes; create class member variables; create OLE
Automation methods and properties; create database classes; and more.

7

Programming with MFC

8

Tip ClassWizard also helps you to override virtual functions in the MFC classes. Select the
class and select the virtual function to override. The rest of the process is similar to message
handling, as described in the following paragraphs.

Applications running under Windows are "message driven." User actions and other
events that occur in the running program cause Windows to send messages to the
windows in the program. For example, if the user clicks the mouse in a window,
Windows sends a WM_LBUTTONDOWN message when the left mouse button is
pressed and a WM _ LBUTTONUP message when the button is released. Windows
also sends WM _ COMMAND messages when the user selects commands from the
menu bar.

In the framework, various objects-documents, views, frame windows, document
templates, the application object-can "handle" messages. Such an object provides a
"handler function" as one of its member functions, and the framework maps the
incoming message to its handler.

A large part of your programming task is choosing which messages to map to which
objects and then implementing that mapping. To do so, you use Class Wizard.

ClassWizard will create empty message-handler member functions, and you use the
source code editor to implement the body of the handler.

Quick access to frequently used features of ClassWizard are available at the top of
your source code files in the WizardBar, built into the frame window that displays
your source code file.

Use the Resource Editors to Create and Edit Resources
Use the Visual C++ resource editors to create and edit menus, dialog boxes, custom
controls, accelerator keys, bitmaps, icons, cursors, strings, and version resources.
ClassWizard works with the editors: for example, when you create a dialog-template
resource, you can run ClassWizard to connect the resource to a dialog class. As of
Visual C++ version 4.0, a toolbar editor makes creating toolbars much easier.

To help you even more, the Microsoft Foundation Class Library provides a. file called
COMMON.RES, which contains "clip art" resources that you can copy from
COMMON. RES and paste into your own resource file. COMMON. RES includes
toolbar buttons, common cursors, icons, and more. You can use, modify, and
redistribute these resources in your application. For more information about
COMMON.RES, see the article COMMON.RES Sample Resources.

For more information about the tools and how they work together, see the article
Tools for MFC Programming.

Chapter 1 Using the Classes to Write Applications for Windows

Building on the Framework
Your role in configuring an application with the framework is to supply the
application-specific source code and to connect the components by defining what
messages and commands they respond to. You use the C++ language and standard
C++ techniques to derive your own application-specific classes from those supplied
by the class library and to override and augment the base class's behavior.

Table 1.2 shows what you do in relation to what the framework does. Table 1.3 shows
your role and the framework's role in creating OLE applications. Table 1.4 shows
your role and the framework's role in creating OLE controls. Table 1.5 shows the
same kind of information for working with databases. For the most part, you can
follow these tables as a sequence of steps for creating an MFC application, although
some of the steps are alternative options. For example, most applications use one type
of view class from the several types dVailable.

Table 1.2 Sequence for Building an Application with the Framework

Task

Create a skeleton
application.

See what the framework and
App Wizard offer without
adding a line of your own
code.

You do

Run App Wizard. Specify the
options you want in the
options pages. Options
include making the
application an OLE server,
container, or both; adding
OLE Automation; and
making the application
database-aware.

Build the skeleton
application and run it in
Visual C++.

The framework does

App Wizard creates the files
for a skeleton application,
including source files for
your application, document,
view, and frame windows; a
resource file; a project file
(.MAK); and others-all
tailored to your
specifications.

The running skeleton
application derives many
standard File, Edit, View,
and Help menu commands
from the framework. For
MDI applications, you also
get a fully functional
Window menu, and the
framework manages creation,
arrangement, and destruction
of MDI child windows.

9

Programming with MFC

10

Table 1.2 Sequence for Building an Application with the Framework (cont.)

Task You do The framework does

Construct your application's
user interface.

Map menus to handler
functions.

Write your handler code.

Map toolbar buttons to
commands.

Test your handler functions.

Use the Visual C++ resource
editors to visually edit the a7

Create menus.

Define accelerators.

Create dialog boxes.

Create and edit bitmaps,
icons, and cursors.

Edit the toolbar created for
you by App Wizard.

Create and edit other
resources.

You can also test the dialog
boxes in the dialog editor.

Use Class Wizard or
WizardBar to connect menus
and accelerators to handler
functions in your code.

Use Class Wizard or the
Class View in the Project
Workspace window to jump
directly to the code in the
source code editor. Fill in the
code for your handler
functions.

Map each button on your
toolbar to a menu or
accelerator command by
assigning the button the
appropriate command ID.

Rebuild the program and use
the built-in debugging tools
to test that your handlers
work correctly.

The default resource file
created by AppWizard
supplies many of the
resources you need. Visual
C++ lets you edit existing
resources and add new
resources, easily and
visually.

Class Wizard or WizardBar
inserts message-map entries
and empty function templates
in the source files you
specify and manages many
manual coding tasks.

Class Wizard brings up the
editor, scrolls to the empty
function template, and
positions the cursor for you.

The framework controls the
drawing, enabling, disabling,
checking, and other visual
aspects of the toolbar
buttons.

You can step or trace through
the code to see how your
handlers are called. If you've
filled out the handler code,
the handlers carry out
commands. The framework
will automatically disable
menu items and toolbar
buttons that are not handled.

Chapter 1 Using the Classes to Write Applications for Windows

Table 1.2 Sequence for Building an Application with the Framework (cont.)

Task

Initialize, validate,
and retrieve dialog
box data.

Create additional
classes.

Add ready-to-use
components to your
application.

Implement your
document class.

Implement Open,
Save, and Save As
commands.

You do

Design dialog-template resources
with the dialog editor. Then use
ClassWizard to create a dialog
class and the code that handles
the dialog box.

You can also define how the
dialog box's controls are to be
initialized and validated. Use
Class Wizard to add member
variables to the dialog class and
map them to dialog controls.
Specify validation rules to be
applied to each control as the
user enters data. Provide your
own custom validations if you
wish.

Use Class Wizard to create
additional document, view, and
frame-window classes beyond
those created automatically by
App Wizard. You can create
additional database recordset
classes, dialog classes, and so
on.

Use Component Gallery to add a
variety of components.

Implement your application
specific document class(es). Add
member variables to hold data
structures. Add member
functions to provide an interface
to the data.

Write code for the document's
S e ria 1 i z e member function.

The framework does

The framework manages the
dialog box and facilitates
retrieving information entered by
the user.

The framework manages dialog
box initialization and validation.
If the user enters invalid
information, the framework
displays a message box and lets
the user reenter the data.

Class Wizard adds these classes
to your source files and helps you
define their connections to any
commands they handle.

These components are easy to
integrate into your application
and save you a great deal of
work.

The framework already knows
how to interact with document
data files. It can open and close
document files, read and write
the document's data, and handle
other user interfaces. You can
focus on how the document's
data is manipulated.

The framework displays dialog
boxes for the Open, Save, and
Save As commands on the File
menu. It writes and reads back a
document using the data format
specified in your Seri ali ze
member function.

11

Programming with MFC

12

Table 1.2 Sequence for Building an Application with the Framework (cont.)

Task You do The framework does

Implement your view class.

Enhance default printing.

Add scrolling.

Create form views.

Create database forms.

Create a simple text editor.

Implement one or more view
classes corresponding to your
documents. Implement the
view's member functions
that you mapped to the user
interface with Class Wizard.
A variety of CView-derived
classes are available,
including CListView and
CTreeView.

If you need to support
multipage printing, override
view member functions.

If you need to support
scrolling, derive your view
class(es) from CScroliView.

If you want to base your
views on dialog-template
resources, derive your view
class(es) from CFormView.

If you want a form-based
data-access application,
derive your view class from
CRecordView (for ODBC
programming) or
CDaoRecordView (for DAO
programming).

If you want your view to be a
simple text editor, derive
your view class (es) from
CEditView.

The framework manages
most of the relationship
between a document and its
view. The view's member
functions access the view's
document to render its image
on the screen or printed page
and to update the document's
data structures in response to
user editing commands.

The framework supports the
Print, Print Setup, and Print
Preview commands on the
File menu. You must tell it
how to break your document
into multiple pages.

The view automatically adds
scroll bars when the view
window becomes too small.

The view uses the dialog
template resource to display
controls. The user can tab
from control to control in the
view.

The view works like a form
view, but its controls are
connected to the fields of a
CRecordset or
CDaoRecordset object
representing a database
table. MFC moves data
between the controls and the
recordset for you.

The view provides editing
functions, Clipboard support,
and file input/output.

Chapter 1 Using the Classes to Write Applications for Windows

Table 1.2 Sequence for Building an Application with the Framework (cont.)

Task

Add splitter windows.

Build, test, and debug your
application.

You do

If you want to support
window splitting, add a
CSplitterWnd object to your
SDI frame window or MDI
child window and hook it up
in the window's
OnCreateClient member
function.

Use the facilities of Visual
c++ to build, test, and debug
your application.

The framework does

The framework supplies
splitter-box controls next to
the scroll bars and manages
splitting your view into
multiple panes. If the user
splits a window, the
framework creates and
attaches additional view
objects to the document.

Visual C++ lets you adjust
compile, link, and other
options. And it lets you
browse your source code and
class structure.

Table 1.3 shows your role and the framework's role in creating OLE applications.
These represent options available rather than a sequence of steps to perfonn.

Table 1.3 Creating OLE Applications

Task

Create an OLE server.

Create an OLE container
application from scratch.

Create an application that
supports OLE Automation
from scratch.

You do

Run App Wizard. Choose
OLE Full Server or OLE
Mini-server in the OLE
options.

(From an existing
application, emulate Step 7
in the Scribble tutorial.)

Run App Wizard. Choose
OLE Container in the OLE
options. In ClassWizard,
jump to the source code
editor. Fill in code for your
OLE handler functions.

Run App Wizard. Choose
Automation Support in the
OLE options. Use
Class Wizard to expose
methods and properties in
your application for
automation.

The framework does

The framework generates a
skeleton application with
OLE server capability
enabled. All of the OLE
capability can be transferred
to your existing application
with only slight modification.

The framework generates a
skeleton application that can
insert OLE objects created
by OLE server applications.

The framework generates a
skeleton application that can
be activated and automated
by other applications.

13

Programming with MFC

14

Table 1.4 shows your role and the framework's role in creating OLE controls.

Table 1.4 Creating OLE Controls

Task

Create an OLE control
framework.

See what the control
and OLE
ControlWizard offer
without adding a line of
your own code.

Implement the control's
methods and properties.

Construct the control's
property page(s).

Test the control's
events, methods, and
properties.

You do

Run a custom App Wizard,
called OLE ControlWizard, to
create your control. Specify the
options you want in the options
pages. Options include number
of controls in the project,
licensing, subclassing, and an
'About Box' method.

Build the OLE control and test
it with Test Container.

Implement your control-specific
methods and properties by
adding member functions to
provide an exposed interface to
the control's data. Add member
variables to hold data structures
and use event handlers to fire
events when you determine.

Use the Visual C++ resource
editors to visually edit the
control's property page
interface:

Create additional property
pages.

Create and edit bitmaps, icons,
and cursors.

You can also test the property
page(s) in the dialog editor.

Rebuild the control and use
Test Container to test that your
handlers work correctly.

The framework does

App Wizard creates the files for
an OLE control with basic
functionality, including source
files for your application,
control, and property page(s); a
resource file; a project file
(.MAK); and others-all
tailored to your specifications.

The running control has the
ability to be resized and moved.
It also has an About Box
method (if chosen) that can be
invoked.

The framework has already
defined a map to support the
control's events, properties, and
methods, leaving you to focus
on how the properties and
methods are implemented. The
default property page is
viewable and a default About
Box method is supplied.

The default resource file
created by App Wizard supplies
many of the resources you need.
Visual C++ lets you edit
existing resources and add new
resources, easily and visually.

You can invoke the control's
methods and manipulate its
properties through the property
page interface or through Test
Container. In addition, use Test
Container to track events fired
from the control and
notifications received by the
control's container.

Chapter 1 Using the Classes to Write Applications for Windows

Table 1.5 shows your role and the framework's role in writing database applications.

Table 1.5 Creating Database Applications

Task

Decide whether to use the
MFC DAO classes or the
MFC ODBC classes.

Create your skeleton
application with database
options.

Design your database
formes).

Create additional record
view and recordset classes as
needed.

Create recordset objects as
needed in your code. Use
each recordset to manipulate
records.

Or create an explicit
CDatabase or
CDaoDatabase object in
your code for each database
you want to open.

Voudo

See DAO or ODBC in
Programming with MFC. For
general information, see the
article Database Overview.

Run App Wizard. Select
options on the database
options page. If you choose
one of the options that
creates a record view, also
specify a data source and
table name(s) and/or query
name(s).

Use the Visual C++ dialog
editor to place controls on
the dialog template resources
for your record view classes.

Use Class Wizard to create
the classes and the dialog
editor to design the views.

Your recordsets are based on
the classes derived from
CRecordset or
CDaoRecordset with the
wizards. If you're using
DAO, you can also use
CDaoRecordset objects
without deriving a class of
your own.

Base your recordset objects
on the database objects.

The framework does

The framework supplies two
sets of database classes, one
based on Data Access
Objects (DAO) and the
Microsoft Jet database
engine, and the other based
onODBC.

App Wizard creates files and
specifies the necessary
includes. Depending on
whether you specify DAO or
ODBC and which other
options you specify, the files
can include a recordset class.

App Wizard creates an empty
dialog template resource for
you to fill in.

ClassWizard creates
additional files for your new
classes.

The framework uses record
field exchange (DFX for
DAO, RFX for ODBC) to
exchange data between the
database and your
recordset's field data
members. If you're using a
record view, dialog data
exchange (DDX) exchanges
data between the recordset
and the controls on the
record view.

The database object provides
an interface to the data
source.

15

Programming with MFC

Table 1.5 Creating Database Applications (cont.)

16

Task

In DAO, access a
"workspace. "

In DAO, work with tables
and perform data definition
language (DDL) tasks.

In DAO, work with stored
queries.

Bind data columns to your
recordset dynamically.

Voudo

Use a CDao Workspace
object to:

access DAO's default
workspace.

manage a separate
transaction space.

access the Microsoft Jet
database engine.

Use a CDaoTableDef object
to:

create a recordset.

add a table.

attach to an external data
source, such as ODBC.

examine table structure.

add or delete fields and
indexes and set other table
properties.

Use a CDaoQueryDef object
to:

create a recordset.

store a query.

execute an action query or an
SQL pass-through query.

InDAO, use a
CDaoRecordset object
directly to set or get field and
parameter values. See the
article DAO Recordset:
Binding Records
Dynamically. In ODBC, add
code to your derived
records.et class to manage the
binding. See the article
Recordset: Dynamically
Binding Data Columns
(ODBC).

The framework does

The workspace lets you
manage one or more open
databases in a single
transaction space.

Chapter 1 Using the Classes to Write Applications for Windows

Table 1.5 Creating Database Applications (cont.)

Task

Work with data in external
data sources, such as ODBC
data sources (for which you
need an ODBC driver, under
either ODBC or DAO). A
non-external data source is
one you can open directly
with the Microsoft Jet
database engine.

You do

In most cases with DAO, use
CDaoTableDef objects to
attach tables from the
external data source rather
than opening the data source
directly.

The framework does

As you can see, AppWizard, the Visual C++ resource editors, ClassWizard,
WizardBar and the framework do a lot of work for you and make managing your code
much easier. The bulk of your application-specific code is in your document and view
classes. For a tour of this process with real applications, see Tutorials:

• Chapters 2 through 11 show you how to use the basic MFC framework.

• Chapters 12 through 19 teach OLE programming techniques.

• Chapters 20 through 29 explain OLE control development.

• Chapters 30 through 33 explain OnBC database programming techniques.

• Chapter 34 explains nAO database programming.

• Chapter 35 explains how to obtain the Windows 95 logo.

While it is possible to do these tasks by hand or using other tools, your savings in
time, energy, and errors suggest that using the tools and framework is greatly to your
benefit.

How the Framework Calls Your Code
It is crucial to understand the relationship between your source code and the code in
the framework. When your application runs, most of the flow of control resides in the
framework's code. The framework manages the message loop that gets messages
from Windows as the user chooses commands and edits data in a view. Events that
the framework can handle by itself don't rely on your code at all. For example, the
framework knows how to close windows and how to exit the application in response
to user commands. As it handles these tasks, the framework uses message handlers
and C++ virtual functions to give you opportunities to respond to these events as well.
But your code is not in the driver's seat, the framework is.

Your code is called by the framework for application-specific events. For example,
when the user chooses a menu command, the framework routes the command along a
sequence of C++ objects: the current view and frame window, the document
associated with the view, the document's document template, and the application
object. If one of these objects can handle the command, it does so, calling the

17

Programming with MFC

appropriate message-handler function. For any given command, the code called may
be yours or it may be the framework's.

This arrangement is somewhat familiar to programmers experienced with traditional
programming for Windows or event-driven programming.

In the next few topics, you'll see what the framework does as it initializes and runs
the application and then cleans up as the application terminates. You'll also get a
clearer picture of where the code you write fits in.

CWinApp: The Application Class

18

The main application class encapsulates the initialization, running, and termination
of an application for Windows. An application built on the framework must have one
(and only one) object of a class derived from CWinApp. This object is constructed
before windows are created.

Note Your application class constitutes your application's primary thread of execution. Using
Win32 API functions, you can also create secondary threads of execution. These threads can
use the MFC library. For more information, see the article Multithreading.

Like any program for Windows, your framework application has a WinMain
function. In a framework application, however, you don't write WinMain. It is
supplied by the class library and is called when the application starts up. WinMain
performs standard services such as registering window classes. Then it calls member
functions of the application object to initialize and run the application.

To initialize the application, WinMain calls your application object's
I ni tAppl i cat i on and Initl nstance member functions. To run the application's
message loop, WinMain calls the Run member function. On termination, WinMain
calls the application object's Ex i tIn s tan c e member function. Figure 1.2 shows the
sequence of execution in a framework application.

Figure 1.2 Sequence of Execution

WinMain
calls

L.
calls

L.

Initlnstance

Run
calls

L. Exitlnstance

Standard function supplied by framework

Initializes current instance of the application

Runs the message loop and On Idle

Cleans up after the application

Chapter 1 Using the Classes to Write Applications for Windows

Note Names shown in bold type indicate elements supplied by the Microsoft Foundation
Class Library and Visual C++. Names shown in monos paced type indicate elements that you
create or override.

CWinApp and AppWizard
When it creates a skeleton application, App Wizard declares an application class
derived from CWinApp. App Wizard also generates an implementation file that
contains the following items:

• A message map for the application class

• An empty class constructor

• A variable that declares the one and only object of the class

• A standard implementation of your In; tIn s tan c e member function

The application class is placed in the project header and main source files. The
names of the class and files created are based on the project name you supply in
App Wizard. The easiest way to view the code for these classes is through the Class
View in the Project Workspace window.

The standard implementations and message map supplied are adequate for many
purposes, but you can modify them as needed. The most interesting of these
implementations is the In; tlnstance member function. Typically you will add code
to the skeletal implementation of In; tIn s tan c e.

Overridable CWinApp Member Functions
CWinApp provides several key overridable member functions:

• InitInstance

• Run

• ExitInstance

• Onldle

The only CWinApp member function that you must override is InitInstance.

Initlnstance Member Function
Windows allows you to run more than one copy, or "instance," of the same
application. WinMain calls InitInstance every time a new instance of the application
starts.

The standard In; tIn s tan c e implementation created by App Wizard performs the
following tasks:

• As its central action, creates the document templates that, in tum, create
documents, views, and frame windows. For a description of this process, see
Document Templates.

19

Programming with MFC

20

• Loads standard file options from an .INI file or the Windows registry, including
the names of the most recently used files.

• Registers one or more document templates.

• For an MDI application, creates a main frame window.

• Processes the command line to open a document specified on the command line or
to open a new, empty document.

You can add your own initialization code or modify the code written by the wizard.

Run Member Function
A framework application spends most of its time in the Run member function of class
CWinApp. After initialization, WinMain calls Run to process the message loop.

Run cycles through a message loop, checking the message queue for available
messages. If a message is available, Run dispatches it for action. If no messages are
available-often the case-Run calls Onldle to do any idle-time processing that you
or the framework may need done. If there are no messages and no idle processing to
do, the application waits until something happens. When the application terminates,
Run calls ExitInstance. Figure 1.3 shows the sequence of actions in the message
loop.

Message dispatching depends on the kind of message. For more information, see
Chapter 2, Working with Messages and Commands.

Exitlnstance Member Function
The ExitInstance member function of class CWinApp is called each time a copy of
your application terminates, usually as a result of the user quitting the application.
Override ExitInstance if you need special cleanup processing, such as freeing
graphics device interface (GDI) resources or deallocating memory used during
program execution. Cleanup of standard items such as documents and views,
however, is provided by the framework, with other overridable functions for doing
special cleanup specific to those objects.

Onldle Member Function
When no Windows messages are being processed, the framework calls the CWinApp
member function Onldle (described in the Class Library Reference). Override
Onldle to perform background tasks. The default version updates the state of user
interface objects such as toolbar buttons and performs cleanup of temporary objects
created by the framework in the course of its operations. Figure 1.3 illustrates how
the message loop calls Onldle when there are no messages in the queue.

Chapter 1 Using the Classes to Write Applications for Windows

Figure 1.3 The Message Loop

Idle
processing

Sleep until
message

>\(!..:....;:e...::....s ~I GeVTranslate/Dispatch

Special CWinApp Services
Besides running the message loop and giving you an opportunity to initialize the
application and clean up after it, CWinApp provides several other services.

Shell Registration
By default, AppWizard makes it possible for the user to open data files that your
application has created by double-clicking them in the Windows File Manager. If
your application is an MDI application and you specify an extension for the files your
application creates, App Wizard adds calls to the EnableShellOpen and
RegisterShellFileTypes member functions of CWinApp to the In; tInstance
override that it writes for you.

RegisterShellFileTypes registers your application's document types with File
Manager. The function adds entries to the registration database that Windows
maintains. The entries register each document type, associate a file extension with

21

Programming with MFC

the file type, specify a command line to open the application, and specify a dynamic
data exchange (DDE) command to open a document of that type.

EnableShellOpen completes the process by allowing your application to receive
DDE commands from File Manager to open the file chosen by the user.

This automatic registration support in CWinApp eliminates the need to ship an
.REG file with your application or to do special installation work.

File Manager Drag and Drop
Windows versions 3.1 and later allow the user to drag filenames from the file view
window in the File Manager and drop them into a window in your application. You
might, for example, allow the user to drag one or more filenames into an MDI
application's main window, where the application could retrieve the filenames and
open MDI child windows for those files.

To enable file drag and drop in your application, App Wizard writes a call to the
CWnd member function DragAcceptFiles for your main frame window in your
In; tIn s tan c e. You can remove that call if you do not want to implement the drag
and-drop feature.

Note You can also implement more general drag-and-drop capabilities-dragging data
between or within documents-using OLE. For information, see the article Drag and Drop
(OLE).

Keeping Track of the Most Recently Used Documents
As the user opens and closes files, the application object keeps track of the four most
recently used files. The names of these files are added to the File menu and updated
when they change. The framework stores these filenames in an .INI file with the
same name as your project and reads them from the file when your application starts
up. The In; tIn s ta n ce override that App Wizard creates for you includes a call to the
CWinApp member function LoadStdProfileSettings, which loads information from
the .INI file, including the most recently used filenames.

Document Templates

22

To manage the complex process of creating documents with their associated views
and frame windows, the framework uses two document template classes:
CSingleDocTemplate for SDI applications and CMultiDocTemplate for MDI
applications. A CSingleDocTemplate can create and store one document of one type
at a time. A CMultiDocTemplate keeps a list of many open documents of one type.

Some applications support multiple document types. For example, an application
might support text documents and graphics documents. In such an application, when
the user chooses the New command on the File menu, a dialog box shows a list of
possible new document types to open. For each supported document type, the

Chapter 1 Using the Classes to Write Applications for Windows

application uses a distinct document template object. Figure 1.4 illustrates the
configuration of an MDI application that supports two document types. The figure
shows several open documents.

Figure 1.4 An MOl Application with Two Document Types

Application Object
CMyApp

Doc Template B
CMultiDocTemplate

I Doc 1 I Open documents
CMyDocA CMyDocA CMyDocA CMyDocB

" I Instances of one~lass ~ance of a different class

Document templates are created and maintained by the application object. One of the
key tasks perfonned during your application's Ini tInstance function is to construct
one or more document templates of the appropriate kind. This feature is described in
Document Template Creation. The application object stores a pointer to each
document template in its template list and provides an interface for adding document
templates.

If you need to support two or more document types, you must add an extra call to
AddDocTemplate for each document type.

Document Template Creation
While creating a new document in response to a New or Open command from the
File menu, the document template also creates a new frame window through which to
view the document.

The document-template constructor specifies what types of documents, windows, and
views the template will be able to create. This is detennined by the arguments you
pass to the document-template constructor. The following code illustrates creation of
a CMultiDocTemplate for a sample application:

AddDocTemplate(new CMultiDocTemplate(IDR_SCRIBTYPE.
RUNTIME_CLASS(CScribDoc).
RUNTIME_CLASS(CMDIChildWnd).
RUNTIME_CLASS(CScribView))):

The pointer to a new CMultiDocTemplate object is used as an argument to
AddDocTemplate. Arguments to the CMultiDocTemplate constructor include the
resource ID associated with the document type's menus and accelerators, and three
uses of the RUNTIME CLASS macro. RUNTIME CLASS returns the - -
CRuntimeClass object for the C++ class named as its argument. The three

23

Programming with MFC

CRuntimeClass objects passed to the document-template constructor supply the
information needed to create new objects of the specified classes during the document
creation process. The example shows creation of a document template that creates
CScri bOac objects with CScri bVi ew objects attached. The views are framed by
standard MDI child frame windows.

DocumentNiew Creation
The framework supplies implementations of the New and Open commands (among
others) on the File menu. Creation of a new document and its associated view and
frame window is a cooperative effort among the application object, a document
template, the newly created document, and the newly created frame window. Table
1.6 summarizes which objects create what.

Table 1.6 Object Creators

Creator

Application object

Document template

Document template

Frame window

Creates

Document template

Document

Frame window

View

Relationships Among MFC Objects

24

To help put the document/view creation process in perspective, first consider a
running program: a document, the frame window used to contain the view, and the
view associated with the document.

• A document keeps a list of the views of that document and a pointer to the
document template that created the document.

• A view keeps a pointer to its document and is a child of its parent frame window.

• A document frame window keeps a pointer to its current active view.

• A document template keeps a list of its open documents.

• The application keeps a list of its document templates.

• Windows keeps track of all open windows so it can send messages to them.

Chapter 1 Using the Classes to Write Applications for Windows

These relationships are established during document/view creation. Table 1.7 shows
how objects in a running program can access other objects. Any object can obtain a
pointer to the application object by calling the global function AfxGetApp.

Table 1.7 Gaining Access to Other Objects in Your Application

From object

Document

View

Document frame window

MDI frame window

How to access other objects

Use GetFirstViewPosition and
GetNextView to access the document's view
list.

Call GetDocTemplate to get the document
template.

Call GetDocument to get the document.

Call GetParentFrame to get the frame
window.

Call GetActive View to get the current view.

Call GetActiveDocument to get the
document attached to the current view.

Call MDIGetActive to get the currently
active CMDIChildWnd.

Typically, a frame window has one view, but sometimes, as in splitter windows, the
same frame window contains multiple views. The frame window keeps a pointer to
the currently active view; the pointer is updated any time another view is activated.

Note A pointer to the main frame window is stored in the m_pMainWnd member variable of
the application object. A call to OnFileNew in your override of the Initlnstance member
function of CWinApp sets m_pMainWnd for you. If you don't call On FileNew, you must set
the variable's value in Initlnstance yourself. (SOl OLE server applications may not set the
variable if IEmbedding is on the command line.) Note that m_pMainWnd is now a member of
class CWinThread rather than CWinApp.

Creating New Documents, Windows, and Views
Figures 1.5, 1.6, and 1.7 give an overview of the creation process for documents,
views, and frame windows. Later chapters that focus on the participating objects
provide further details.

Upon completion of this process, the cooperating objects exist and store pointers to
each other. Figures 1.5, 1.6, and 1.7 show the sequence in which objects are created.
You can follow the sequence from figure to figure.

25

Programming with MFC

26

Figure 1.5 Sequence in Creating a Document

Application

IO_FILE_OPEN
command

CWinApp::
OnFileOpen

handler called

Get filename
from user

Use file extension
to select

document
tern late

CWinApp::
On FileNew

handler called
10 FILE NEW

command

Get document
type from user

• ---- Document template
selected at this point
(MOl or SOl)

Chapter 1 Using the Classes to Write Applications for Windows

Figure 1.6 Sequence in Creating a Frame Window

Document Template: OpenDocumentFile

Construct
document object:

CMyDoc

Construct frame
window object:
CMainFrame

Create Windows window
with CFrameWnd::Create

Frame { ,-_cr_e_at_e .,do_c_um_e_n---lt ,/'---------,----------'
frame '.

'. Handle WM_CREATE message.
CMa in Frame: : OnC rea te calls

CFrameWnd::OnCreateClient to

CMyDoc: :
OnNewDocument

called

create client area

CMyDoc: : /
OnOpenDocument

called

• ---- Document ready to use

CMyView::OnCreate
handles WM_CREATE

message

Document

27

Programming with MFC

Figure 1.7 Sequence in Creating a View

View

WM INITIALUPDATE
message sent to view

CMyView::
OnlnitialUpdate

handles message

Default
OnlnitialUpdate calls

CView::OnUpdate

• ---- View initialized

For information about how the framework initializes the new document, view, and
frame-window objects, see classes CDocument, CView, CFrameWnd,
CMDIFrameWnd, and CMDIChildWnd in the Class Library Reference. Also see
Technical Note 22 under MFC Technical Notes in Visual C++ Books Online, which
explains the creation and initialization processes further under its discussion of the
framework's standard commands for the New and Open items on the File menu.

Initializing Your Own Additions to These Classes
Figures 1.5, 1.6, and 1.7 also suggest the points at which you can override member
functions to initialize your application's objects. An override of OnlnitialUpdate in
your view class is the best place to initialize the view. The OnlnitialUpdate call
occurs immediately after the frame window is created and the view within the frame
window is attached to its document. For example, if your view is a scroll view
(derived from CScrollView rather than CView), you should set the view size based
on the document size in your On I nit i a 1 Update override. (This process is described in
the description of class CScroIlView.) You can override the CDocument member
functions OnNewDocument and OnOpenDocument to provide application-specific
initialization of the document. Typically, you must override both since a document
can be created in two ways.

In most cases, your override should call the base class version. For more information,
see the named member functions of classes CDocument, CView, CFrameWnd, and
CWinApp in the Class Library Reference.

Windows of Your Own with CWnd

28

Although the framework provides windows on your documents, you may at times
want to create your own windows, particularly child windows. Keeping in mind how
much the framework does for you, the present discussion focuses on windows in a
more general way, with particular emphasis on creating windows of your own. For

Chapter 1 Using the Classes to Write Applications for Windows

more information about the frame windows that the framework creates, see Chapter
3, Working with Frame Windows, Documents, and Views.

In MFC, all windows are ultimately derived from class CWnd. This includes dialog
boxes, controls, control bars, and views as well as frame windows and your own child
windows, as shown in the MFC hierarchy diagram in the Class Library Reference.

Window Objects
A C++ window object (whether for a frame window or some other kind of window) is
distinct from its corresponding Windows window (the HWND), but the two are
tightly linked. A good understanding of this relationship is crucial for effective
programming with MFC.

The window object is an object of the C++ CWnd class (or a derived class) that your
program creates directly. It comes and goes in response to your program's constructor
and destructor calls. The Windows window, on the other hand, is an opaque handle to
an internal Windows data structure that corresponds to a window and consumes
system resources when present. A Windows window is identified by a "window
handle" (HWND) and is created after the CWnd object is created by a call to the
Create member function of class CWnd. The window may be destroyed either by a
program call or by a user's action. The window handle is stored in the window
object's m_hWnd member variable. Figure 1.8 shows the relationship between the
C++ window object and the Windows window. Creating windows is discussed in
Creating Windows. Destroying windows is discussed in Destroying Window Objects.

Figure 1.8 Window Object and Windows Window

HWND D m_hWnd -+----.. ~ .

c++ Window object (CWnd) Windows window

CWnd and its derived classes provide constructors, destructors, and member
functions to initialize the object, create the underlying Windows structures, and
access the encapsulated HWND. CWnd also provides member functions that
encapsulate Windows APIs for sending messages, accessing the window's state,
converting coordinates, updating, scrolling, accessing the Clipboard, and many other
tasks. Most Windows window-management APIs that take an HWND argument are
encapsulated as member functions of CWnd. The names of the functions and their
parameters are preserved in the CWnd member function. For details about the
Windows APIs encapsulated by CWnd, see class CWnd in the Class Library
Reference.

The general literature on programming for Windows is a good resource for learning
how to use the CWnd member functions, which typically encapsulate the HWND

29

Programming with MFC

APIs. For example, see Charles Petzold's Programming Windows 3.1, third edition,
and Jeffrey Richter's Advanced Windows NT.

One of the primary purposes of CWnd is to provide an interface for handling
Windows messages, such as WM_PAINT or WM_MOUSEMOVE. Many of the
member functions of CWnd are handlers for standard messages-those beginning
with the identifier afx_msg and the prefix "On," such as OnPaint and
OnMouseMove. Chapter 2, Working with Messages and Commands, covers
messages and message handling in detail. The information there applies equally to
the framework's windows and those that you create yourself for special purposes.

Derived Window Classes

30

Although you can create windows directly from CWnd, or derive new window
classes from CWnd, most windows used in a framework program are instead created
from one of the CWnd-derived frame-window classes supplied by MFC:

CFrameWnd Used for SDI frame windows that frame a single document and its
view. The frame window is both the main frame window for the application and
the frame window for the current document.

CMDIFrameWnd Used as the main frame window for MDI applications. The main
frame window is a container for all MDI document windows and shares its menu
bar with them. An MDI frame window is a top-level window that appears on the
desktop.

CMDIChildWnd Used for individual documents opened in an MDI main frame
window. Each document and its view are framed by an MDI child frame window
contained by the MDI main frame window. An MDI child window looks much
like a typical frame window but is contained inside an MDI frame window instead
of sitting on the desktop. However, the MDI child window lacks a menu bar of its
own and must share the menu bar of the MDI frame window that contains it.

In addition to frame windows, several other major categories of windows are derived
fromCWnd:

Views Views are created using the CWnd-derived class CView (or one of its derived
classes). A view is attached to a document and acts as an intermediary between the
document and the user. A view is a child window (not an MDI child) that typically
fills the client area of an SDI frame window or an MDI child frame window (or
that portion of the client area not covered by a toolbar and/or a status bar).

Dialog Boxes Dialog boxes are created using the CWnd-derived class CDialog.

Forms Form views based on dialog-template resources, like dialog boxes, are
created using classes CFormView, CRecordView, or CDaoRecordView.

Controls Controls such as buttons, list boxes, and combo boxes are created using
other classes derived from CWnd.

Control Bars Child windows that contain controls. Examples include toolbars and
status bars.

Chapter 1 Using the Classes to Write Applications for Windows

Refer again to the MFC hierarchy diagram in the Class Library Reference. Views are
explained in Chapter 3, Working with Frame Windows, Documents, and Views.
Dialog boxes, controls, and control bars are explained in Chapter 4, Working with
Dialog Boxes, Controls, and Control Bars.

In addition to the window classes provided by the class library, you may need special
purpose child windows. To create such a window, write your own CWnd-derived
class and make it a child window of a frame or view. Bear in mind that the
framework manages the extent of the client area of a document frame window. Most
of the client area is managed by a view, but other windows, such as control bars or
your own custom windows, may share the space with the view. You may need to
interact with the mechanisms in classes CView and CControlBar for positioning
child windows in a frame window's client area.

Note As of MFC version 4.0, toolbars and status bars are based on the toolbar and status bar
controls supplied by Windows 95 or Windows NT 3.51. However, the older mechanisms are
preserved. See the article Toolbars: Using Your Old Toolbars.

Creating Windows discusses creation of window objects and the Windows windows
they manage.

Creating Windows
Most of the windows you need in a framework program are created automatically by
the framework. You have already seen how the framework creates the frame windows
associated with documents and views. But you can create your own windows-in
addition to the windows supplied by the framework-for special purposes.

Registering Window "Classes"
In a traditional program for Windows, you process all messages to a window in its
"window procedure" or "WndProc." A WndProc is associated with a window by
means of a "window class registration" process. The main window is registered in the
WinMain function, but other classes of windows can be registered anywhere in the
application. Registration depends on a structure that contains a pointer to the
WndProc function together with specifications for the cursor, background brush, and
so forth. The structure is passed as a parameter, along with the string name of the
class, in a prior call to the RegisterClass function. Thus a registration class can be
shared by multiple windows.

In contrast, most window class registration activity is done automatically in a
framework program. If you are using MFC, you typically derive a C++ window class
from an existing library class using the normal C++ syntax for class inheritance. The
framework still uses traditional "registration classes," and it provides several
standard ones, registered for you in the standard application initialization function.
You can register additional registration classes by calling the AfxRegisterWndClass
global function and then pass the registered class to the Create member function of

31

Programming with MFC

CWnd. As described here, the traditional "registration class" in Windows is not to be
confused with a C++ class.

For more information, see Technical Note 1 under MFC in Books Online.

General Creation Sequence
If you are creating a window of your own, such as a child window, this section
describes what you need to know. The framework uses much the same process to
create windows for your documents as that described earlier in the chapter.

All the window classes provided by MFC employ two-phase construction. That is,
during an invocation of the C++ new operator, the constructor allocates and
initializes a C++ object but does not create a corresponding Windows window. That is
done afterwards by calling the Create member function of the window object.

The Create member function makes the Windows window and stores its HWND in
the C++ object's public data member m_hWnd. Create gives complete flexibility
over the creation parameters. Before calling Create, you may want to register a
window class with AfxRegisterWndClass in order to set the icon and class styles for
the frame.

For frame windows, you can use the LoadFrame member function instead of Create.
LoadFrame makes the Windows window using fewer parameters. It gets many
default values from resources, including the frame's caption, icon, accelerator table,
and menu.

Note Your icon, accelerator table, and menu resources must have a common resource 10,
such as lOR_MAINFRAME.

Destroying Window Objects

32

Care must be taken with your own child windows to destroy the C++ window object
when the user is finished with the window. If these objects are not destroyed, your
application will not recover their memory. Fortunately, the framework manages
window destruction as well as creation for frame windows, views, and dialog boxes.
If you create additional windows, you are responsible for destroying them.

In the framework, when the user closes the frame window, the window's default
OnClose handler calls DestroyWindow. The last member function called when the
Windows window is destroyed is OnNcDestroy, which does some cleanup, calls the
Default member function to perform Windows cleanup, and lastly calls the virtual
member function PostNcDestroy. The CFrameWnd implementation of
PostNcDestroy deletes the C++ window object.

Do not use the C++ delete operator to destroy a frame window or view. Instead, call
the CWnd member function DestroyWindow. Frame windows, therefore, should be
allocated on the heap with operator new. Care must be taken when allocating frame

Chapter 1 Using the Classes to Write Applications for Windows

windows on the stack frame or globally. Other windows should be allocated on the
stack frame whenever possible.

If you need to circumvent the object-HWND relationship, MFC provides another
CWnd member function, Detach, which disconnects the C++ window object from
the Windows window. This prevents the destructor from destroying the Windows
window when the object is destroyed.

Working with Window Objects
Working with windows calls for two kinds of activity:

• Handling Windows messages

• Drawing in the window

To handle Windows messages in any window, including your own child Windows, use
Class Wizard to map the messages to your window class. Then write message-handler
member functions in your class. Chapter 2, Working with Messages and Commands,
details message handling.

Most drawing in a framework application occurs in the view, whose OnDraw member
function is called whenever the window's contents must be drawn. If your window is
a child of the view, you might delegate some of the view's drawing to your child
window by having OnDraw call one of your window's member functions.

In any case, you will need a device context for drawing.

Device Contexts
A device context is a Windows data structure that contains information about the
drawing attributes of a device such as a display or a printer. All drawing calls are
made through a device-context object, which encapsulates the Windows APIs for
drawing lines, shapes, and text. Device contexts allow device-independent drawing in
Windows. Device contexts can be used to draw to the screen, to the printer, or to a
metafile.

CPaintDC objects encapsulate the common idiom of Windows, calling the
BeginPaint function, then drawing in the device context, then calling the EndPaint
function. The CPaintDC constructor calls BeginPaint for you, and the destructor
calls EndPaint. The simplified process is to create the CDC object, draw, and destroy
the CDC object. In the framework, much of even this process is automated. In
particular, your OnDraw function is passed a CPaintDC already prepared (via
OnPrepareDC), and you simply draw into it. It is destroyed by the framework and
the underlying device context is released to Windows upon return from the call to
your 0 nOr a w function.

CClientDC objects encapsulate working with a device context that represents only
the client area of a window. The CClientDC constructor calls the GetDC function,

33

Programming with MFC

and the destructor calls the ReleaseDC function. CWindowDC objects encapsulate a
device context that represents the whole window, including its frame.

CMetaFileDC objects encapsulate drawing into a Windows metafile. In contrast to
the CPaintDC passed to OnDraw, you must in this case call OnPrepareDC yourself.
For more information about these classes, see the Class Library Reference.

Drawing is discussed in greater detail in Chapter 3, Working with Frame Windows,
Documents, and Views.

Although most drawing-and thus most device-context work-in a framework
program is done in the view's On Draw member function, as described in Chapter 3,
you can still use device-context objects for other purposes. For example, to provide
tracking feedback for mouse movement in a view, you need to draw directly into the
view without waiting for OnDraw to be called.

In such a case, you can use a CClientDC device-context object to draw directly into
the view. For more information about mouse drawing, see Interpreting User Input
Through a View in Chapter 3.

Graphic Objects

34

Windows provides a variety of drawing tools to use in device contexts. It provides
pens to draw lines, brushes to fill interiors, and fonts to draw text. MFC provides
graphic-object classes equivalent to the drawing tools in Windows. Table 1.8 shows
the available classes and the equivalent Windows ODI handle types.

The general literature on programming for the Windows ODI applies to the Microsoft
Foundation classes that encapsulate ODI graphic objects. This section explains the
use of these graphic-object classes:

Table 1.8 Classes for Windows GOI Objects

Class Windows handle type

CPen HPEN

CBrush HBRUSH

CFont HFONT

CBitmap HBITMAP

CPalette HPALETTE

CRgn HRGN

Each of the graphic-object classes in the class library has a constructor that allows
you to create graphic objects of that class, which you must then initialize with the
appropriate create function, such as CreatePen.

Chapter 1 Using the Classes to Write Applications for Windows

The following four steps are typically used when you need a graphic object for a
drawing operation:

1. Define a graphic object on the stack frame. Initialize the object with the type
specific create function, such as CreatePen. Alternatively, initialize the object in
the constructor. See the discussion of one-stage and two-stage creation below.

2. Select the object into the current device context, saving the old graphic object that
was selected before.

3. When done with the current graphic object, select the old graphic object back into
the device context to restore its state.

4. Allow the frame-allocated graphic object to be deleted automatically when the
scope is exited.

Note If you will be using a graphic object repeatedly, you can allocate it once and select it
into a device context each time it is needed. Be sure to delete such an object when you no
longer need it.

You have a choice between two techniques for creating graphic objects:

• One-stage construction: Construct and initialize the object in one stage, all with
the constructor.

• Two-stage construction: Construct and initialize the object in two separate stages.
The constructor creates the object and an initialization function initializes it.

Two-stage construction is always safer. In one-stage construction, the constructor
could throw an exception if you provide incorrect arguments or memory allocation
fails. That problem is avoided by two-stage construction, although you do have to
check for failure. In either case, destroying the object is the same process.

35

Programming with MFC

36

The following brief example shows both methods of constructing a pen object:

void CMyView::OnDraw(CDC* pDC)
{

}

CPen myPenl(PS_DOT, 5, RGB(0,0,0)); II One-stage
II Two-stage: first construct the pen
CPen myPen2;
II Then initialize it
if(myPen2.CreatePen(PS_DOT, 5, RGB(0,0,0)))

II Use the pen

After you create a drawing object, you must select it into the device context in place
of the default pen stored there:

void CMyView::OnDraw(CDC* pDC)
{

}

CPen penBlack; II Construct it, then initialize
if(newPen.CreatePen(PS_SOLID, 2, RGB(0,0,0)))
{

}

else
{

}

II Select it into the device context
II Save the old pen at the same time
CPen* pOldPen = pDC->SelectObject(&penBlack);

II Draw with the pen
pDC->MoveTo(...);
pDC->LineTo(...) ;

II Restore the old pen to the device context
pDC->SelectObject(pOldPen);

II Alert the user that resources are low

The graphic object returned by SelectObject is a "temporary" object. That is, it will
be deleted by the Onldle member function of class CWinApp the next time the
program gets idle time. As long as you use the object returned by SelectObject in a
single function without returning control to the main message loop, you will have no
problem.

CHAPTER 2

Working with Messages and
Commands

Chapter 1 introduced the major objects in a running framework application written
with the Microsoft Foundation Class Library (MFC). This chapter describes how
messages and commands are processed by the framework and how you connect them
to their handler functions using the Class Wizard tool. Topics covered include:

• Messages and commands

• Message categories

• How the framework calls a message handler

• Message maps

• Managing messages and commands with Class Wizard

• Dynamic update of user-interface objects

• Dynamic display of command information in the status bar

Messages and Commands in the
Framework

Applications written for Microsoft Windows are "message driven." In response to
events such as mouse clicks, keystrokes, window movements, and so on, Windows
sends messages to the proper window. Framework applications process Windows
messages like any other application for Windows. But the framework also provides
some enhancements that make processing messages easier, more maintainable, and
better encapsulated.

The following topics introduce the key terms used in the rest of the chapter to discuss
messages and commands:

• Messages

• Message handlers

• Message categories

37

Programming with MFC

• Windows messages and control-notification messages

• Command messages

• Message maps

• User-interface objects and command IDs

• Command targets

Messages
The message loop in the Run member function of class CWinApp retrieves queued
messages generated by various events. For example, when the user clicks the mouse,
Windows sends several mouse-related messages, such as WM _ LBUTTONDOWN
when the left mouse button is pressed and WM _ LBUTTONUP when the left mouse
button is released. The framework's implementation of the application message loop
dispatches the message to the appropriate window.

The important categories of messages are described in Message Categories.

Message Handlers
In MFC, a dedicated handler function processes each separate message. Message
handler functions are member functions of a class. This book uses the terms message
handler member function, message-handler function, message handler, and handler
interchangeably. Some kinds of message handlers are also called "command
handlers."

Writing message handlers accounts for a large proportion of your work in writing a
framework application. This chapter describes how the message-processing
mechanism works.

What does the handler for a message do? The answer is that it does whatever you
want done in response to that message. Class Wizard will create the handlers for you
and allow you to implement them. You can jump directly from ClassWizard to the
handler function's definition in your source files and fill in the handler's code using
the Visual C++ source code editor. Or you can create all of your handlers with
Class Wizard, then move to the editor to fill in all functions at once. For details on
using Class Wizard, see How to Manage Commands and Messages with Class Wizard.

You can use all of the facilities of Microsoft Visual C++ and MFC to write your
handlers. For a list of all classes, see About the Microsoft Foundation Classes in the
Class Library Reference.

Message Categories
What kinds of messages do you write handlers for? There are three main categories:

1. Windows messages

38

Chapter 2 Working with Messages and Commands

This includes primarily those messages beginning with the WM _ prefix, except
for WM_COMMAND. Windows messages are handled by windows and views.
These messages often have parameters that are used in determining how to handle
the message.

2. Control notifications

This includes WM _COMMAND notification messages from controls and other
child windows to their parent windows. For example, an edit control sends its
parent a WM_COMMAND message containing the EN_CHANGE control
notification code when the user has taken an action that may have altered text in
the edit control. The window's handler for the message responds to the
notification message in some appropriate way, such as retrieving the text in the
control.

The framework routes control-notification messages like other WM_ messages.
One exception, however, is the BN_ CLICKED control-notification message sent
by buttons when the user clicks them. This message is treated specially as a
command message and routed like other commands.

3. Command messages

This includes WM_ COMMAND notification messages from user-interface
objects: menus, toolbar buttons, and accelerator keys. The framework processes
commands differently from other messages, and they can be handled by more
kinds of objects, as explained below.

Windows Messages and Control·Notification Messages
Messages in categories 1 and 2-Windows messages and control notifications-are
handled by windows: objects of classes derived from class CWnd. This includes
CFrameWnd, CMDIFrameWnd, CMDIChildWnd, CView, CDialog, and your
own classes derived from these base classes. Such objects encapsulate an HWND, a
handle to a Windows window.

Command Messages
Messages in category 3-commands-can be handled by a wider variety of objects:
documents, document templates, and the application object itself in addition to
windows and views. When a command directly affects some particular object, it
makes sense to have that object handle the command. For example, the Open
command on the File menu is logically associated with the application: the
application opens a specified document upon receiving the command. So the handler
for the Open command is a member function of the application class. For more about
commands and how they are routed to objects, see How the Framework Calls a
Handler.

39

Programming with MFC

Mapping Messages
Each framework class that can receive messages or commands has its own "message
map." The framework uses message maps to connect messages and commands to
their handler functions. Any class derived from class CCmdTarget can have a
message map. Later topics of this chapter explain message maps in detail and
describe how to use them.

In spite of the name "message map," message maps handle both messages and
commands-all three categories of messages listed in Message Categories.

User-Interface Objects and Command IDs

40

Menu items, toolbar buttons, and accelerator keys are "user-interface objects" capable
of generating commands. Each such user-interface object has an ID. You associate a
user-interface object with a command by assigning the same ID to the object and the
command. As explained in Messages, commands are implemented as special
messages. Figure 2.1 shows how the framework manages commands. When a user
interface object generates a command, such as I D _E D I T _ C LEA R_A L L, one of the objects
in your application handles the command-in the figure, the document object's
OnEdi tCl ea rA 11 function is called via the document's message map.

Figure 2.1 Commands in the Framework

User-interface object selected

Command

Command-target message map
ON_COMMAND

Handler

Takes action

Figure 2.2 shows how MFC updates user-interface objects such as menu items and
toolbar buttons. Before a menu drops down, or during the idle loop in the case of
toolbar buttons, MFC routes an update command. In the figure, the document object
calls its update command handler, OnUpdateEd i tCl ea rA 11, to enable or disable the
user-interface object.

Chapter 2 Working with Messages and Commands

Figure 2.2 Command Updating in the Framework

Command IDs

Status of user-interface object noted

Command

Command-target message map
ON_UPDATE_COMMAND_UI

Handler

Takes action

A command is fully described by its command ID alone (encoded in the
WM_ COMMAND message). This ID is assigned to the user-interface object that
generates the command. Typically, IDs are named for the functionality of the user
interface object they are assigned to.

For example, a Clear All item in the Edit menu might be assigned an ID such as
ID _EDIT _ CLEAR_ALL. The class library predefines some IDs, particularly for
commands that the framework handles itself, such as ID _EDIT_CLEAR _ALL or
ID_FILE_OPEN. You will create other command IDs yourself.

When you create your own menus in the Visual C++ menu editor, it is a good idea to
follow the class library's naming convention as illustrated by ID_FILE_OPEN.
Standard Commands explains the standard commands defined by the class library.

Standard Commands
The framework defines many standard command messages. The IDs for these
commands typically take !he form:

ID _Source_Item

where Source is usually a menu name and Item is a menu item. For example, the
command ID for the New command on the File menu is ID_FILE_NEW. Standard
command IDs are shown in bold type in the documentation. Programmer-defined IDs
are shown in a font that is different from the surrounding text.

The following is a list of some of the most important commands supported:

File Menu Commands New, Open, Close, Save, Save As, Page Setup, Print Setup,
Print, Print Preview, Exit, and most-recently-used files.

Edit Menu Commands Clear, Clear All, Copy, Cut, Find, Paste, Repeat, Replace,
Select All, Undo, and Redo.

View Menu Commands Toolbar and Status Bar.

41

Programming with MFC

Window Menu Commands New, Arrange, Cascade, Tile Horizontal, Tile Vertical,
and Split.

Help Menu Commands Index, Using Help, and About.

OLE Commands (Edit Menu) Insert New Object, Edit Links, Paste Link, Paste
Special, and typename Object (verb commands).

The framework provides varying levels of support for these commands. Some
commands are supported only as defined command IDs, while others are supported
with thorough implementations. For example, the framework implements the Open
command on the File menu by creating a new document object, displaying an Open
dialog box, and opening and reading the file. In contrast, you must implement
commands on the Edit menu yourself, since commands like ID _EDIT_COPY
depend on the nature of the data you are copying.

For more information about the commands supported and the level of implementation
provided, see Technical Note 22 under MFC Technical Notes in Books Online. The
standard commands are defined in the file AFXRES.H.

Command Targets
Figure 2.1 shows the connection between a user-interface object, such as a menu
item, and the handler function that the framework calls to carry out the resulting
command when the object is clicked.

Windows sends messages that are not command messages directly to a window whose
handler for the message is then called. However, the framework routes commands to
a number of candidate objects-called "command targets" -one of which normally
invokes a handler for the command. The handler functions work the same way for
both commands and standard Windows messages, but the mechanism by which they
are called is different, as explained in How the Framework Calls a Handler.

How the Framework Calls a Handler
The following topics first examine how the framework routes commands, then
examine how other messages and control notifications are sent to windows:

• Message sending and receiving

• How noncommand messages reach their handlers

• Command routing

Message Sending and Receiving

42

Consider the sending part of the process and how the framework responds.

Most messages result from user interaction with the program. Commands are
generated by mouse clicks in menu items or toolbar buttons or by accelerator
keystrokes. The user also generates Windows messages by, for example, moving or

Chapter 2 Working with Messages and Commands

resizing a window. Other Windows messages are sent when events such as program
startup or termination occur, as windows get or lose the focus, and so on. Control
notification messages are generated by mouse clicks or other user interactions with a
control, such as a button or list-box control in a dialog box.

The Run member function of class CWinApp retrieves messages and dispatches
them to the appropriate window. Most command messages are sent to the main frame
window of the application. The WindowProc predefined by the class library gets the
messages and routes them differently, depending on the category of message received.

Now consider the receiving part of the process.

The initial receiver of a message must be a window object. Windows messages are
usually handled directly by that window object. Command messages, usually
originating in the application's main frame window, get routed to the command
target chain described in Command Routing.

Each object capable of receiving messages or commands has its own message map
that pairs a message or command with the name of its handler.

When a command-target object receives a message or command, it searches its
message map for a match. If it finds a handler for the message, it calls the handler.
For more information about how message maps are searched, see How the
Framework Searches Message Maps. Refer again to Figure 2.1.

How Noncommand Messages Reach Their Handlers
Unlike commands, standard Windows messages do not get routed through a chain of
command targets but are usually handled by the window to which Windows sends the
message. The window might be a main frame window, an MDI child window, a
standard control, a dialog box, a view, or some other kind of child window.

At run time, each Windows window is attached to a window object (derived directly
or indirectly from CWnd) that has its own associated message map and handler
functions. The framework uses the message map-as for a command-to map
incoming messages to handlers.

Command Routing
Your responsibility in working with commands is limited to making message-map
connections between commands and their handler functions, a task for which you use
ClassWizard. You must also write most command handlers.

All messages are usually sent to the main frame window, but command messages are
then routed to other objects. The framework routes commands through a standard
sequence of command-target objects, one of which is expected to have a handler for
the command. Each command-target object checks its message map to see if it can
handle the incoming message.

43

Programming with MFC

44

Different command-target classes check their own message maps at different times.
Typically, a class routes the command to certain other objects to give them first
chance at the command. If none of those objects handles the command, the original
class checks its own message map. Then, if it can't supply a handler itself, it may
route the command to yet more command targets. Table 2.1 shows how each of the
classes structures this sequence. The general order in which a command target routes
a command is:

1. To its currently active child command-target object.

2. To itself.

3. To other command targets.

How expensive is this routing mechanism? Compared to what your handler does in
response to a command, the cost of the routing is low. Bear in mind that the
framework generates commands only when the user interacts with a user-interface
object.

Table 2.1 Standard Command Route

When an object of this type
receives a command ...

MDI frame window
(CMDIFrameWnd)

Document frame window
(CFrameWnd,
CMDIChildWnd)

View

Document

Dialog box

It gives itself and other command-target objects a
chance to handle the command in this order:

1. Active CMDIChildWnd

2. This frame window

3. Application (CWinApp object)

1. Active view

2. This frame window

3. Application (CWinApp object)

1. This view

2. Document attached to the view

1. This document

2. Document template attached to the document

1. This dialog box

2. Window that owns the dialog box

3. Application (CWinApp object)

Where numbered entries in the second column of Table 2.1 mention other objects,
such as a document, see the corresponding item in the first column. For instance,
when you read in the second column that the view forwards a command to its
document, see the "Document" entry in the first column to follow the routing further.

Chapter 2 Working with Messages and Commands

An Example
To illustrate, consider a command message from a Clear All menu item in an MOl
application's Edit menu. Suppose the handler function for this command happens to
be a member function of the application's document class. Here's how that command
reaches its handler after the user chooses the menu item:

1. The main frame window receives the command message first.

2. The main MOl frame window gives the currently active MOl child window a
chance to handle the command.

3. The standard routing of an MOl child frame window gives its view a chance at the
command before checking its own message map.

4. The view checks its own message map first and, finding no handler, next routes
the command to its associated document.

5. The document checks its message map and finds a handler. This document
member function is called and the routing stops.

If the document did not have a handler, it would next route the command to its
document template. Then the command would return to the view and then the frame
window. Finally, the frame window would check its message map. If that check failed
as well, the command would be routed back to the main MOl frame window and then
to the application object-the ultimate destination of unhandled commands.

OnCmdMsg
To accomplish this routing of commands, each command target calls the
OnCmdMsg member function of the next command target in the sequence.
Command targets use OnCmdMsg to determine whether they can handle a command
and to route it to another command target if they cannot handle it.

Each command-target class may override the OnCmdMsg member function. The
overrides let each class route commands to a particular next target. A frame window,
for example, always routes commands to its current child window or view, as shown
in Table 2.1.

The default CCmdTarget implementation of OnCmdMsg uses the message map of
the command-target class to search for a handler function for each command message
it receives-in the same way that standard messages are searched. If it finds a match,
it calls the handler. Message-map searching is explained in How the Framework
Searches Message Maps.

Overriding the Standard Routing
In rare cases when you must implement some variation of the standard framework
routing, you can override it. The idea is to change the routing in one or more classes
by overriding OnCmdMsg in those classes. Do so:

• In the class that breaks the order to pass to a nondefault object.

45

Programming with MFC

• In the new nondefault object or in command targets it might in tum pass
commands to.

If you insert some new object into the routing, its class must be a command-target
class. In your overriding versions of OnCmdMsg, be sure to call the version that
you're overriding. See the OnCmdMsg member function of class CCmdTarget in
the Class Library Reference and the versions in such classes as CView and
CDocument in the supplied source code for examples.

How the Framework Searches Message
Maps

The framework searches the message-map table for matches with incoming
messages. Once you use ClassWizard to write a message-map entry for each message
you want a class to handle and to write the corresponding handlers, the framework
calls your handlers automatically. The following topics explain message-map
searching:

• Where to find message maps

• Derived message maps

Where to Find Message Maps

46

When you create a new skeleton application with App Wizard, App Wizard writes a
message map for each command-target class it creates for you. This includes your
derived application, document, view, and frame-window classes. Some of these
message maps already have App Wizard-supplied entries for certain messages and
predefined commands, and some are just placeholders for handlers that you will add.

A class's message map is located in the .CPP file for the class. Working with the
basic message maps that App Wizard creates, you use Class Wizard to add entries for
the messages and commands that each class will handle. A typical message map
might look like the following after you add some entries:

BEGIN_MESSAGE_MAP(CMyView. CView)
//{{AFX_MSG_MAP(CMyView)
ON_WM_MOUSEACTIVATE()
ON_COMMAND(ID_EDIT_CLEAR_ALL. OnEditClearAll)
ON_UPDATE_COMMAND_UI(ID_EDIT_CLEAR_ALL. OnUpdateEditClearAll)
ON_BN_CLICKED(ID_MY_BUTTON. OnMyButton)
/ /} }AFX_MSG_MAP

END_MESSAGE_MAP()

The message map consists of a collection of macros. Two macros,
BEGIN_MESSAGE_MAP and END_MESSAGE_MAP, bracket the message map.
Other macros, such as ON_COMMAND, fill in the message map's contents. These
macros are explained later in this chapter.

Chapter 2 Working with Messages and Commands

Note The message-map macros are not followed by semicolons.

The message map also includes comments of the form

//{{AFX_MSG_MAP(CMyView)
/ /} }AFX_MSG_MAP

that bracket many of the entries (but not necessarily all of them). ClassWizard uses
these special comments when it writes entries for you. All Class Wizard entries go
between the comment lines.

When you use ClassWizard to create a new class, it provides a message map for the
class. Alternatively, you can create a message map manually using the source code
editor.

Derived Message Maps
During message handling, checking a class's own message map is not the end of the
message-map story. What happens if class CMyVi ew (derived from CView) has no
matching entry for a message?

Keep in mind that CView, the base class of CMyVi ew, is derived in tum from CWnd.
Thus CMyVi ew is a CView and is a CWnd. Each of those classes has its own message
map. Figure 2.3 shows the hierarchical relationship of the classes, but keep in mind
that a CMyV i ew object is a single object that has the characteristics of all three classes.

Figure 2.3 A View Hierarchy

In the class library

CMyView

So if a message can't be matched in class CMyVi ew's message map, the framework
also searches the message map of its immediate base class. The
BEGIN_MESSAGE_MAP macro at the start of the message map specifies two class
names as its arguments:

BEGIN_MESSAGE_MAP(CMyView, CView)

47

Programming with MFC

48

The first argument names the class to which the message map belongs. The second
argument provides a connection with the immediate base class-CView here-so
the framework can search its message map, too.

The message handlers provided in a base class are thus inherited by the derived class.
This is very similar to normal virtual member functions without needing to make all
handler member functions virtual.

If no handler is found in any of the base-class message maps, default processing of
the message is performed. If the message is a command, the framework routes it to
the.next command target. If it is a standard Windows message, the message is passed
to the appropriate default window procedure.

To speed message-map matching, the framework caches recent matches on the
likelihood that it will receive the same message again. One consequence of this is that
the framework processes unhandled messages quite efficiently. Message maps are
also more space-efficient than implementations that use virtual functions.

Message-Map Structure
In your sour<re files, a message map consists of a sequence of predefined macros. The
macros inside the message map are called "entry macros." The entry macros used in
a message map depend upon the category of the message to be handled. The
following sample shows a message map with several common entries (given in the
same order as the items in Table 2.2: .

BEGIN_MESSAGE_MAP(CMyView, CView)
11{{AFX_MSG_MAP(CMyView)
ON_WM~MOUSEACTIVATE()

ON_COMMANDCID_EDIT_CLEAR_ALL, OnEditClearAll)
ON~UPDATE_COMMAND_UI(ID_EDIT_CLEAR_ALL, OnUpdateEditClearAll)
ON_BN_CLICKED(ID_MY_BUTTON, OnMyButton)
ON_MESSAGE(WM_MYMESSAGE, OnMyMessage)
ON_REGISTERED_MESSAGE(WM_FIND,OnFind)
I/} }AFX_MSG_MAP

END_MESSAGE_MAP()

Table 2.2 summarizes the various kinds of entries. Each entry consists of a macro
with zero or more arguments. The macros are predefined by the class library. For
examples of the macros, see the message map above.

Table 2.2 Message-Map Entry Macros

Message type Macro form

Predefined Windows ON_WM_XXXX
messages

Commands ON_COMMAND

Update commands ON_UPDATE_COMMAND_UI

Control notifications ON XXXX

Arguments

None

Command ID, Handler name

Command ID, Handler name

Control ID, Handler name

Chapter 2 Working with Messages and Commands

Table 2.2 Message-Map Entry Macros (cont.)

Message type

User-defined
message

Registered
Windows
message

A range of
command IDs

A range of
command IDs
for updating

A range of
control IDs

Macro form

ON MESSAGE

Arguments

User-defined message ID,
Handler name (see Technical
Note 6 under MFC
Technical Notes in Books
Online)

ON_REGISTERED_MESSAGE Registered message ID
variable, Handler name (see
Technical Npte 6 under
MFC Technical Notes in
Books Online)

ON_COMMAND _RANGE Start and end of a contiguous
range of command IDs. See
Message-Map Ranges.

ON_UPDATE _COMMAND _ UI _RANGE Start and end of a contiguous
range of command IDs. See
Message-Map Ranges.

ON_CONTROL _RANGE A control-notification code
and the start and end of a
contiguous range of
command IDs. See Message
Map Ranges.

N ames in the table with the notation XXX represent groups of messages whose
names are based on standard messag; names or contr~l-notification codes in
Windows. For example: ON_ WM_PAINT, ON_ WM_LBUTTONDOWN,
ON_EN _CHANGE, ON _ LB _ GETSEL. Even though the ON _ WM _XXX macros
take no arguments, the corresponding handler functions often do take arguments,
passed to them by the framework.

Message-Map Ranges
MFC also supports mapping ranges of messages to a single message-handler
function. You can map:

• Ranges of command IDs to:

• A command handler function.

• A command update handler function.

• A control-notification message for a range of control IDs to a message-handler
function.

Mapping a range of messages is useful in a variety of situations. For example, to
handle the "zoom" command in the MFC OLE sample HIERSVR, a range of menu
command IDs is mapped to a single handler function. You might also map a range of

49

Programming with MFC

command IDs to a single update handler function so that all of the commands are
either enabled or disabled together. (Update handlers are explained in How to Update
User-Interface Objects.)

Note ClassWizard does not support message-map ranges. You must write these message
map entries yourself.

For more information about message-map ranges, see the article Message Map:
Ranges of Messages.

Declaring Handler Functions
Certain rules and conventions govern the names of your message-handler functions.
These depend on the message category, as described in the following topics:

• Standard Windows messages

• Commands and control notifications

Standard Windows Messages

ID

Default handlers for standard Windows messages (WM _) are predefined in class
CWnd. The class library bases names for these handlers on the message name. For
example, the handler for the WM_PAINT message is declared in CWnd as:

afx_msg void OnPaint();

The afx _ msg keyword suggests the effect of the C++ virtual keyword by
distinguishing the handlers from other CWnd member functions. Note, however, that
these functions are not actually virtual; they are instead implemented through
message maps. Message maps depend solely on standard preprocessor macros, not on
any extensions to the C++ language. The afx _ msg keyword resolves to white space
after preprocessing.

To override a handler defined in a base class, simply use Class Wizard to define a
function with the same prototype in your derived class and to make a message-map
entry for the handler. Your handler "overrides" any handler of the same name in any
of your class's base classes.

In some cases, your handler should call the overridden handler in the base class so
the base class(es) and Windows can operate on the message. Where you call the base
class handler in your override depends on the circumstances. Sometimes you must
call the base-class handler first and sometimes last. Sometimes you call the base-class
handler conditionally, if you choose not to handle the message yourself. Sometimes
you should call the base~class handler, then conditionally execute your own handler
code, depending on the value or state returned by the base .. class handler.

Important It Is not safe to modify the arguments passed Into a handler If you Intend to pass
them to a base-clals handler. For example, you might be tempted to modify the nChar
argument of the OnCha r handler (to convert to uppercase, for example). This behavior Is fairly

Chapter 2 Working with Messages and Commands

obscure, but if you need to accomplish this effect, use the CWnd member function
SendMessage instead.

How do you determine the proper way to override a given message? ClassWizard
helps with this decision. When Class Wizard writes the skeleton of the handler
function for a given message-an OnCreate handler for WM_ CREATE, for
example-it sketches in the form of the recommended overridden member function.
The following example recommends that the handler first call the base-class handler
and proceed only on condition that it does not return -1.

int CMyView::OnCreate(LPCREATESTRUCT lpCreateStruct)
{

if (CView::OnCreate(lpCreateStruct) == -1)
return -1;

II TODO: Add your specialized creation code here
return 0;

By convention, the names of these handlers begin with the prefix "On." Some of
these handlers take no arguments, while others take several. Some also have a return
type other than void. The default handlers for all WM _ messages are documented in
the Class Library Reference as member functions of class CWnd whose names begin
with "On." The member function declarations in CWnd are prefixed with afx_msg.

Commands and Control Notifications
There are no default handlers for commands or control-notification messages.
Therefore, you are bound only by convention in naming your handlers for these
categories of messages. When you map the command or control notification to a
handler, ClassWizard proposes a name based on the command ID or control
notification code. You can accept the proposed name, change it, or replace it.

Convention suggests that you name handlers in both categories for the user-interface
object they represent. Thus a handler for the Cut command on the Edit menu might
be named

afx_msg void OnEditCut();

Because the Cut command is so commonly implemented in applications, the
framework predefines the command ID for the Cut command as ID _EDIT_CUT. For
a list of all predefined command IDs, see the file AFXRES.H. For more information,
see Standard Commands.

In addition, convention suggests a handler for the BN _ CLICKED notification
message from a button labeled "Use As Default" might be named

afx_msg void OnClickedUseAsDefault();

You might assign this command an ID of I DC_US E_AS_D E F AU L T since it is equivalent
to an application-specific user-interface object.

Both categories of messages take no arguments and return no value.

51

Programming with MFC

How to Manage Commands and Messages
with Class Wizard

Class Wizard is a tool is designed specifically to connect Windows messages and user
interface objects such as menus to their handlers.

The typical development scenarios are as follows:

• You determine that one of your classes must handle a certain Windows message,
so you run Class Wizard and make the connection.

• You create a menu or accelerator resource, then invoke ClassWizard to connect the
command associated with that object to a handler.

As you work with the framework, you'll find that Class Wizard greatly simplifies your
message-management tasks.

ClassWizard writes the following information to your source files:

• The appropriate message-map entry for the connection

• A declaration of the handler as a member function of the class

• An empty function template for you to fill in with the handler's code

For detailed information about using Class Wizard to connect messages to handlers,
see Chapter 14, Working with Classes, in the Visual C++ User's Guide. For
examples, see Chapter 7, Binding Visual Objects to Code Using WizardBar, and
Chapter 8, Adding a Dialog Box, in Tutorials.

Important Use ClassWizard to create and edit all message-map entries. If you add them
manually, you may not be able to edit them with ClassWizard later. If you add them outside the
bracketing comments, / / {{AFX_MSG_MAP(cl assname) and / /} }AFX_MSG_MAP,

ClassWizard cannot edit them at all. Note that by the same token ClassWizard will not touch
any entries you add outside the comments, so feel free to add messages outside the
comments if you do not want them to be modified. Some messages, such as message-map
ranges, must be added outside the comments.

How to Update User-Interface Objects

52

Typically, menu items and toolbar buttons have more than one state. For example, a
menu item is grayed (dimmed) if it is unavailable in the present context. Menu items
can also be checked or unchecked. A toolbar button can also be disabled if
unavailable, or it can be checked.

Who updates the state of these items as program conditions change? Logically, if a
menu item generates a command that is handled by, say, a document, it makes sense
to have the document update the menu item. The document probably contains the
information on which the update is based.

Chapter 2 Working with Messages and Commands

If a command has multiple user-interface objects (perhaps a menu item and a toolbar
button), both are routed to the same handler function. This encapsulates your user
interface update code for all of the equivalent user-interface objects in a single place.

The framework provides a convenient interface for automatically updating user
interface objects. You can choose to do the updating in some other way, but the
interface provided is efficient and easy to use.

The following topics explain the use of update handlers:

• When update handlers are called

• The ON UPDATE COMMAND UI macro - - -
• The CCmdUI class

When Update Handlers Are Called
Suppose the user clicks the mouse in the File menu, which generates a
WM_INITMENUPOPUP message. The framework's update mechanism collectively
updates all items on the File menu before the menu drops down so the user can see it.

To do this, the framework routes update commands for all menu items in the pop-up
menu along the standard command routing. Command targets on the routing have an
opportunity to update any menu items by matching the update command with an
appropriate message-map entry (of the form ON_UPDATE_COMMAND_UI) and
calling an "update handler" function. Thus, for a menu with six menu items, six
update commands are sent out. If an update handler exists for the command ID of the
menu item, it is called to do the updating. If not, the framework checks for the
existence of a handler for that command ID and enables or disables the menu item as
appropriate.

If the framework does not find an ON_UPDATE _COMMAND _ UI entry during
command routing, it automatically enables the user-interface object if there is an
ON_COMMAND entry somewhere with the same command ID. Otherwise, it
disables the user-interface object. Therefore, to ensure that a user-interface object is
enabled, supply a handler for the command the object generates or supply an update
handler for it. See Figure 2.2.

It is possible to disable the default disabling of user-interface objects. For more
information, see the m_bAutoMenuEnable member of class CFrameWnd in the
Class Library Reference.

Menu initialization is automatic in the framework, occurring when the application
receives a WM _ INITMENUPOPUP message. During the idle loop, the framework
searches the command routing for button update handlers in much the same way as it
does for menus.

53

Programming with MFC

Use ClassWizard to connect a user-interface object to a command-update handler in a
command-target object. It will automatically connect the user-interface object's ID to
the ON_UPDATE _ COMMAND _ UI macro and create a handler in the object that
will handle the update.

For example, the Scribble tutorial in Tutorials updates a Clear All command in its
Edit menu. In the tutorial, ClassWizard adds a message-map entry in the chosen
class, a function declaration for a command-update handler called
OnUpdateEdi tCl ea rA 11 in the class declaration, and an empty function template in
the class's implementation file. The function prototype looks like this:

afx_msg void OnUpdateEditClearAll(CCmdUI* pCmdUI);

Like all handlers, the function shows the afx _ msg keyword. Like all update handlers,
it takes one argument, a pointer to a CCmdUI object.

The CCmdUI Class
When it routes the update command to the handler, the framework passes the handler
a pointer to a CCmdUI object (or to an object of a CCmdUI-derived class). This
object represents the menu item or toolbar button or other user-interface object that
generated the command. The update handler calls member functions of the CCmdUl
structure through the pointer to update the user-interface object. For example, here is
an update handler for the Clear All menu item:

void CMyClass::OnUpdateToolsMyTool(CCmdUI* pCmdUI)
{

if(ToolAvailable())
pCmdUI-)Enable(TRUE);

This handler calls the Enable member function of an object with access to the menu
item. Enable makes the item available for use.

How to Display Command Information in
the Status Bar

54

When you run App Wizard to create the skeleton of your application, you can easily
support a toolbar and a status bar. A single option in App Wizard supports both.
When a status bar is present, the framework automatically gives helpful feedback as
the user of your application moves the mouse through items in the menus. The
framework automatically displays a prompt string in the status bar when the menu
item is being selected. For example, when the user drags the mouse over the Cut item
on the Edit menu, the framework might display "Cut the selection and put it on the
Clipboard" in the message area of the status bar. The prompt helps the user grasp the
menu item's purpose. This also works when the user clicks a toolbar button.

Chapter 2 Working with Messages and Commands

You can easily add to this status-bar help by defining prompt strings for the menu
items that you add to the program. To do so, provide the prompt strings when you
edit the properties of the menu item in the menu editor. The strings you define this
way are stored in your application's resource file; they have the same IDs as the
commands they explain.

By default, AppWizard adds the ID for a standard prompt, "Ready," which is
displayed when the program is waiting for new messages. If you specify the Context
Sensitive Help option in App Wizard, the ID for a help prompt, "For Help, press FI,"

is added to your application. This ID is AFX _IDS _ IDLEMESSAGE.

al

CHAPTER 3

Working with Frame Windows,
Documents, and Views

Previous chapters introduced the primary objects in an application built upon the
framework of the Microsoft Foundation Class Library (MFC) and showed how these
objects communicate via messages and commands.

This chapter takes you deeper into three of the most important objects in a framework
application:

• Frame windows, which contain and manage your views

• Documents, which define your application's data

• Views, which display your documents and manage user interaction with them

The chapter also explains how the framework manages printing and print preview
since printing functionality is intimately tied to the view.

One of the most important features of the framework is the division of labor among
frame windows, documents, and views. The document manages your data. The view
displays it and takes user input. And the frame window puts a frame around the view.
Code that defines and manipulates data resides in the document class. Code that
displays the data and interprets user input resides in the view class.

Frame Windows
When an application runs under Microsoft Windows, the user interacts with
documents displayed in frame windows. A document frame window has two major
components: the frame and the contents that it frames. A document frame window
can be a single document interface (SDI) frame window or a multiple document
interface (MDI) child window. Windows manages most of the user's interaction with
the frame window: moving and resizing the window, closing it, and minimizing and
maximizing it. You manage the contents inside the frame.

The framework uses frame windows to contain views. The two components-frame
and contents-are represented and managed by two different classes in MFC. A
frame-window class manages the frame, and a view class manages the contents. The

57

Programming with MFC

I.

view window is a child of the frame window. Drawing and other user interaction with
the document take place in the view's client area, not the frame window's client area.
The frame window provides a visible frame around a view, complete with a caption
bar and standard window controls such as a control menu, buttons to minimize and
maximize the window, and controls for resizing the window. The "contents" consist
of the window's client area, which is fully occupied by a child window - the view.
Figure 3.1 shows the relationship between a frame window and a view.

Figure 3.1 Frame Window and View

Frame
Window
Object

J
J
J

View
Object

(child window)

• t
Document

Object

- I-- Client area
Allocated to view
(a child window)

This chapter also discusses splitter windows. In a splitter window, the frame
window's client area is occupied by a splitter window, which in tum has mUltiple
child windows, called panes, which are views.

The following topics explain about frame windows:

• Window classes

• The frame-window classes created by AppWizard

• Managing child windows

• Managing the current view

• Managing menus, control bars, and accelerators

• Working with the File Manager

• Orchestrating other window actions

Chapter 3 Working with Frame Windows, Documents, and Views

Window Classes
Each application has one "main frame window," a desktop window that usually has
the application name in its caption. Each document usually has one "document frame
window." A document frame window contains at least one view, which presents the
document's data. For an SDI application, there is one frame window derived from
class CFrameWnd. This window is both the main frame window and the document
frame window. For an MDI application, the main frame window is derived from class
CMDIFrameWnd, and the document frame windows, which are MDI child
windows, are derived from class CMDIChildWnd.

These classes provide most of the frame-window functionality you need for your
applications. Under normal circumstances, the default behavior and appearance they
provide will suit your needs. If you need additional functionality, derive from these
classes.

The Frame-Window Classes Created by App Wizard
When you use App Wizard to create a skeleton application, in addition to application,
document, and view classes, AppWizard creates a derived frame-window class for
your application's main frame window. The class is called CMa; n Frame by default,
and the files that contain it are named MAINFRM.H and MAINFRM.CPP.

If your application is SDI, your CMa; n Frame class is derived from class CFrameWnd.
If your application is MDI, CMa; n Frame is derived from class CMDIFrameWnd. If
you choose to support a toolbar, the class also has member variables of type
CToolBar and CStatusBar and an OnCreate message-handler function to initialize
the two control bars.

If your application is MDI, AppWizard does not derive a new document frame
window class for you. Instead, it uses the default implementation in
CMDIChildWnd. Later on, if you need to customize your document frame window,
you can use ClassWizard to create a new document frame-window class.

These frame-window classes work as created, but to enhance their functionality, you
must add member variables and member functions. You may also want to have your
window classes handle other Windows messages.

U sing Frame Windows
The framework creates document frame windows-and their views and documents
-as part of its implementation of the New and Open commands on the File menu.
Because the framework does most of the frame-window work for you, you play only a
small role in creating, using, and destroying those windows. You can, however,
explicitly create your own frame windows and child windows for special purposes.

59

Programming with MFC

60

Creating Document Frame Windows
As you saw in DocumentNiew Creation, the CDocTemplate object orchestrates
creating the frame window, document, and view and connecting them all together.
Three CRuntimeClass arguments to the CDocTemplate constructor specify the
frame window, document, and view classes that the document template creates
dynamically in response to user commands such as the New command on the File
menu or the New Window command on an MDI Window menu. The document
template stores this information for later use when it creates a frame window for a
view and document.

In order for the RUNTIME_CLASS mechanism to work correctly, your derived
frame-window classes must be declared with the DECLARE DYNCREATE macro.
This is because the framework needs to create document frame windows using the
dynamic construction mechanism of class CObject. For details about
DECLARE _ DYNCREATE, see the article CObject Class: Deriving a Class from
CObject and the Macros and Globals section in the Class Library Reference.

When the user chooses a command that creates a document, the framework calls
upon the document template to create the document object, its view, and the frame
window that will display the view. Chapter 1, Using the Classes to Write Applications
for Windows, describes this creation process. When it creates the document frame
window, the document template creates an object of the appropriate class-a class
derived from CFrameWnd for an SDI application or from CMDIChildWnd for an
MDI application. The framework then calls the frame-window object's LoadFrame
member function to get creation information from resources and to create the
Windows window. The framework attaches the window handle to the frame-window
object. Then it creates the view as a child window of the document frame window.

Note You cannot create your own child windows or call any Windows API functions in the
constructor of a CWnd-derived object. This is because the HWND for the CWnd object has not
been created yet. Most Windows-specific initialization, such as adding child windows, must be
done in an OnCreate message handler.

Destroying Frame Windows
The framework manages window destruction as well as creation for those windows
associated with framework documents and views. If you create additional windows,
you are responsible for destroying them.

In the framework, when the user closes the frame window, the window's default
OnClose handler calls DestroyWindow. The last member function called when the
Windows window is destroyed is OnNcDestroy, which does some cleanup, calls the
Default member function to perform Windows cleanup, and lastly calls the virtual
member function PostNcDestroy. The CFrameWnd implementation of
PostNcDestroy deletes the C++ window object. You should never use the C++ delete
operator on a frame window. Use DestroyWindow instead.

Chapter 3 Working with Frame Windows, Documents, and Views

When the main window closes, the application closes. If there are modified unsaved
documents, the framework displays a message box to ask if the documents should be
saved and ensures that the appropriate documents are saved if necessary.

What Frame Windows Do
Besides simply framing a view, frame windows are responsible for numerous tasks
involved in coordinating the frame with its view and with the application.
CMDIFrameWnd and CMDIChildWnd inherit from CFrameWnd, so they have
CFrameWnd capabilities as well as new capabilities that they add. Examples of
child windows include views, controls such as buttons and list boxes, and control
bars, including toolbars, status bars, and dialog bars. The frame window is
responsible for managing the layout of its child windows. In the framework, a frame
window positions any control bars, views, and other child windows inside its client
area. The frame window also forwards commands to its views and can respond to
notification messages from control windows. Chapter 1, Using the Classes to Write
Applications for Windows, shows how commands are routed from the frame window
to its view and other command targets.

Managing Child Windows
MDI main frame windows (one per application) contain a special child window
called the MDICLIENT window. The MDICLIENT window manages the client
area of the main frame window, and itself has child windows: the document windows,
derived from CMDIChildWnd. Because the document windows are frame windows
themselves (MDI child windows), they can also have their own children. In all of
these cases, the parent window manages its child windows and forwards some
commands to them.

In an MDI frame window, the frame window manages the MDICLIENT window,
repositioning it in conjunction with control bars. The MDICLIENT window, in tum,
manages all MDI child frame windows. Figure 3.2 shows the relationship between an
MDI frame window, its MDICLIENT window, and its child document frame
windows.

Figure 3.2 MOl Frame Windows and Children

Frame window

I - f-- MDICLIENT window

f--- Document frame windows

61

Programming with MFC

62

An MDI frame window also works in conjunction with the current MDI child
window, if there is one. The MDI frame window delegates command messages to the
MDI child before it tries to handle them itself.

Managing the Current View
As part of the default implementation of frame windows, a frame window keeps track
of a currently active view. If the frame window contains more than one view, as for
example in a splitter window, the current view is the most recent view in use. The
active view is independent of the active window in Windows or the current input
focus.

When the active view changes, the framework notifies the current view by calling its
OnActivateView member function. You can tell whether the view is being activated
or deactivated by examining OnActivateView's bActivate parameter. By default,
On Activate View sets the focus to the current view on activation. You can override
On Activate View to perform any special processing when the view is deactivated or
reactivated. For example, you might want to provide special visual cues to distinguish
the active view from other, inactive views. For more information, see the
On Activate View member function of class CView in the Class Library Reference.

A frame window forwards commands to its current (active) view, as described in
Chapter 1, Using the Classes to Write Applications for Windows, as part of the
standard command routing.

Managing Menus, Control Bars, and Accelerators
The frame window manages updating user-interface objects, including menus, toolbar
buttons, and the status bar. It also manages sharing the menu bar in MDI
applications.

The frame window participates in updating user-interface items using the
ON_UPDATE _COMMAND _ UI mechanism described in How to Update User
Interface Objects. Buttons on toolbars and other control bars are updated during the
idle loop. Menu items in drop-down menus on the menu bar are updated just before
the menu drops down.

The frame window also positions the status bar within its client area and manages the
status bar's indicators. The frame window clears and updates the message area in the
status bar as needed and displays prompt strings as the user selects menu items or
toolbar buttons, as described in Chapter 2, in How to Display Command Information
in the Status Bar.

For MDI applications, the MDI frame window manages the menu bar and caption.
An MDI frame window owns one default menu that is used as the menu bar when
there are no active MDI child windows. When there are active children, the MDI
frame window's menu bar is taken over by the menu for the active MDI child
window. If an MDI application supports multiple document types, such as chart and

Chapter 3 Working with Frame Windows, Documents, and Views

worksheet documents, each type puts its own menus into the menu bar and changes
the main frame window's caption.

CMDIFrameWnd provides default implementations for the standard commands on
the Window menu that appears for MDI applications. In particular, the New Window
command (ID _ WINDOW _NEW) is implemented to create a new frame window and
view on the current document. You need to override these implementations only if
you need advanced customization.

Multiple MDI child windows of the same document type share menu resources. If
several MDI child windows are created by the same document template, they can all
use the same menu resource, saving on system resources in Windows.

Each frame window maintains an optional accelerator table that does keyboard
accelerator translation for you automatically. This mechanism makes it easy to define
accelerator keys (also called shortcut keys) that invoke menu commands.

Frame-Window Styles
The frame windows you get with the framework are suitable for most programs, but
you can gain additional flexibility by using the advanced functions
PreCreateWindow and AfxRegisterWindowClass. PreCreateWindow is a member
function of CWnd. AfxRegisterWindowClass is a global function documented in
Macros and Globals in the Class Library Reference.

If you apply the WS_HSCROLL and WS_ VSCROLL styles to the main frame
window, they are instead applied to the MDICLIENT window so users can scroll the
MDICLIENT area.

If the window's FWS_ADDTOTITLE style bit is set (which it is by default), the
view tells the frame window what title to display in the window's title bar based on
the view's document name.

Working with the File Manager
The frame window manages a relationship with the Windows File Manager.

By adding a few initializing calls in your override of the CWinApp member function
InitInstance, as described in Chapter 1, in CWinApp: The Application Class, you
can have your frame window indirectly open files dragged from the Windows File
Manager and dropped in the frame window. See File Manager Drag and Drop.

The frame window can also respond to dynamic data exchange (DDE) requests to
open files from the File Manager (if the file extension is registered or associated with
the application). See Shell Registration.

Orchestrating Other Window Actions
The frame window orchestrates semimodal states such as context-sensitive help and
print preview. The frart1ework~s role in managing contextwsensitive help is described

63

Programming with MFC

in the article Help. For a description of the frame window's role in print preview, see
Printing and Print Preview.

Documents and Views

64

The parts of the framework most visible both to the user and to you, the programmer,
are the document and view. Most of your work in developing an application with the
framework goes into writing your document and view classes. This section describes:

• The purposes of documents and views and how they interact in the framework.

• What you must do to implement them.

The CDocument class provides the basic functionality for programmer-defined
document classes. A document represents the unit of data that the user typically
opens with the Open command on the File menu and saves with the Save command
on the File menu.

The CView class provides the basic functionality for programmer-defined view
classes. A view is attached to a document and acts as an intermediary between the
document and the user: the view renders an image of the document on the screen and
interprets user input as operations upon the document. The view also renders the
image for both printing and print preview.

Figure 3.3 shows the relationship between a document and its view.

Figure 3.3 Document and View

Document

View

Part of document
currently visible

The document/view implementation in the class library separates the data itself from
its display and from user operations on the data. All changes to the data are managed
through the document class. The view calls this interface to access and update the
data.

Chapter 3 Working with Frame Windows, Documents, and Views

Documents, their associated views, and the frame windows that frame the views are
created by a document template, as described in DocumentNiew Creation. The
document template is responsible for creating and managing all documents of one
document type.

Document and View Classes Created by App Wizard
App Wizard gives you a head start on your program development by creating skeletal
document and view classes for you. You can then use ClassWizard to map commands
and messages to these classes and the Visual C++ source code editor to write their
member functions.

The document class created by AppWizard is derived from class CDocument. The
view class is derived from CView. The names that AppWizard gives these classes
and the files that contain them are based on the project name you supply in the
App Wizard dialog box. From App Wizard, you can use the Classes dialog box to alter
the default names.

Some applications might need more than one document class, view class, or frame
window class. For more information, see Multiple Document Types, Views, and
Frame Windows.

U sing Documents and Views
Working together, documents and views:

• Contain, manage, and display your application-specific data.

• Provide an interface for manipulating the data.

• Participate in writing and reading files.

• Participate in printing.

• Handle most of your application's commands and messages.

Managing Data
Documents contain and manage your application's data. To use the AppWizard
supplied document class, you must do the following:

• Derive a class from CDocument for each type of document.

• Add member variables to store each document's data.

• Override CDocument's Serialize member function in your document class.
Serialize writes and reads the document's data to and from disk.

You may also want to override other CDocument member functions. In particular,
you will often need to override OnNewDocument and OnOpenDocument to
initialize the document's data members and DeleteContents to destroy dynamically
allocated data. For information about overridable members, see class CDocument in
the Class Library Reference.

65

Programming with MFC

66

Document Data Variables
Implement your document's data as member variables of your document class. For
example, the Scribble tutorial program declares a data member of type CObList-a
linked list that stores pointers to CObject objects. This list is used to store arrays of
points that make up a freehand line drawing.

How you implement your document's member data depends on the nature of your
application. To help you out, MFC supplies a group of "collection classes" -arrays,
lists, and maps (dictionaries), including collections based on C++ templates-along
with classes that encapsulate a variety of common data types such as CString,
CRect, CPoint, CSize, and CTime. For more information about these classes, see
the Class Library Overview in the Class Library Reference.

When you define your document's member data, you will usually add member
functions to the document class to set and get data items and perform other useful
operations on them.

Your views access the document object by using the view's pointer to the document,
installed in the view at creation time. You can retrieve this pointer in a view's
member functions by calling the CView member function GetDocument. Be sure to
cast this pointer to your own document type. Then you can access public document
members through the pointer.

If frequent data transfer requires direct access, or you wish to use the nonpublic
members of the document class, you may want to make your view class a friend (in
C++ terms) of the document class.

Serializing Data to and from Files
The basic idea of persistence is that an object should be able to write its current state,
indicated by the values of its member variables, to persistent storage. Later, the object
can be re-created by reading, or "deserializing," the object's state from persistent
storage. A key point here is that the object itself is responsible for reading and
writing its own state. Thus, for a class to be persistent, it must implement the basic
serialization operations.

The framework provides a default implementation for saving documents to disk files
in response to the Save and Save As commands on the File menu and for loading
documents from disk files in response to the Open command. With very little work,
you can implement a document's ability to write and read its data to and from a file.
The main thing you must do is override CDocument's Serialize member function in
your document class.

AppWizard places a skeletal override of the CDocument member function Serialize
in the document class it creates for you. After you have implemented your
application's member variables, you can fill in your Seri ali ze override with code
that sends the data to an "archive object" connected to a file. A CArchive object is

Chapter 3 Working with Frame Windows, Documents, and Views

similar to the cin and cout input/output objects from the C++ iostream library.
However, CArchive writes and reads binary format, not formatted text.

The Document's Role
The framework responds automatically to the File menu's Open, Save, and Save As
commands by calling the document's Se ria 1 i ze member function if it is
implemented. An ID _ FILE _OPEN command, for example, calls a handler function
in the application object. During this process, the user sees and responds to the File
Open dialog box and the framework obtains the filename the user chooses. The
framework creates a CArchive object set up for loading data into the document and
passes the archive to Seri al i ze. The framework has already opened the file. The
code in your document's Seri ali ze member function reads the data in through the
archive, reconstructing data objects as needed. For more information about
serialization, see the article Serialization (Object Persistence).

The Data's Role
In general, class-type data should be able to serialize itself. That is, when you pass an
object to an archive, the object should know how to write itself to the archive and
how to read itself from the archive. MFC provides support for making classes
serializable in this way. If you design a class to define a data type and you intend to
serialize data of that type, design for serialization.

Bypassing the Archive Mechanism
As you have seen, the framework provides a default way to read and write data to and
from files. Serializing through an archive object suits the needs of a great many
applications. Such an application reads a file entirely into memory, lets the user
update the file, and then writes the updated version to disk again.

However, some applications operate on data very differently, and for these
applications serialization through an archive is not suitable. Examples include
database programs, programs that edit only parts of large files, programs that write
text-only files, and programs that share data files.

In these cases, you can override the Serialize member function of CDocument in a
different way to mediate file actions through a CFile object rather than a CArchive
object.

You can use the Open, Read, Write, Close, and Seek member functions of class
CFile to open a file, move the file pointer (seek) to a specific point in the file, read a
record (a specified number of bytes) at that point, let the user update the record, then
seek to the same point again and write the record back to the file. The framework will
open the file for you, and you can use the GetFile member function of class
CArchive to obtain a pointer to the CFile object. For even more sophisticated and
flexible use, you can override the OnOpenDocument and OnSaveDocument

67

Programming with MFC

68

member functions of class CWinApp. For more information, see class CFile in the
Class Library Reference.

In this scenario, your Se ri ali ze override does nothing, unless, for example, you
want to have it read and write a file header to keep it up to date when the document
closes.

For an example of such nonarchived processing, see the MFC Advanced Concepts
sample CHKBOOK.

Handling Commands in the Document
Your document class may also handle certain commands generated by menu items,
toolbar buttons, or accelerator keys. By default, CDocument handles the Save and
Save As commands on the File menu, using serialization. Other commands that
affect the data may also be handled by member functions of your document. For
example, in the Scribble tutorial program, class CScri bDoc provides a handler for the
Edit Clear All command, which deletes all of the data currently stored in the
document. Unlike views, documents cannot handle standard Windows messages.

Displaying Data in a View and Interacting with the User
The view's responsibilities are to display the document's data graphically to the user
and to accept and interpret user input as operations on the document. Your tasks in
writing your view class are to:

• Write your view class's OnDraw member function, which renders the document's
data.

• Connect appropriate Windows messages and user-interface objects such as menu
items to message-handler member functions in the view class.

• Implement those handlers to interpret user input.

In addition, you may need to override other CView member functions in your derived
view class. In particular, you may want to override OnInitialUpdate to perform
special initialization for the view and OnUpdate to do any special processing needed
just before the view redraws itself. For multipage documents, you also must override
OnPreparePrinting to initialize the Print dialog box with the number of pages to
print and other information. For more information on overriding CView member
functions, see class CView in the Class Library Reference.

The Microsoft Foundation Class Library also provides several derived view classes
for special purposes:

• CScrollView, which provides automatic scrolling and view scaling.

• CForm View, which provides a scrollable view useful for displaying a form made
up of dialog controls. A CFormView object is created from a dialog-template
resource.

Chapter 3 Working with Frame Windows, Documents, and Views

• CRecordView and CDaoRecordView, which are form views whose controls are
connected to the fields of a CRecordset or CDaoRecordset object, respectively,
representing a database table.

• CEditView, which provides a view with the characteristics of an editable-text
control with enhanced editing features. You can use a CEditView object to
implement a simple text editor. Note that as of MFC version 4.0, CEditView has a
new base class, called CCtrlView.

The following table shows CCtrlView and other new view classes:

Table 3.1 New View Classes

Class

CCtrIView

CDaoRecordView

CListView

CRichEditView

CTreeView

Description

Base class of CTreeView, CListView, CEditView, and
CRichEdit View. These classes let you use document/view
architecture with the indicated Windows common controls.

A form view that fills its controls from a CDaoRecordset
object. This class is analogous to CRecordView.

A view containing a CListCtrl object.

A view containing a CRichEditCtrl object. This class is
analogous to CEditView, but unlike CEditView,
CRichEdit View handles formatted text.

A view containing a CTreeCtrl object, for views that
resemble the Workspace window in Visual c++.

To take advantage of these special classes, derive your view classes from them. For
more information, see Scrolling and Scaling Views and Special View Classes. For
more information on the database classes, see Chapter 7, Working with Databases.

Drawing in a View
Nearly all drawing in your application occurs in the view's OnDraw member function,
which you must override in your view class. (The exception is mouse drawing,
discussed in Interpreting User Input Through a View.) Your OnDraw override:

1. Gets data by calling the document member functions you provide.

2. Displays the data by calling member functions of a device-context object that the
framework passes to 0 n D raw.

When a document's data changes in some way, the view must be redrawn to reflect
the changes. Typically, this happens when the user makes a change through a view on
the document. In this case, the view calls the document's U pdateAllViews member
function to notify all views on the same document to update themselves.
UpdateAllViews calls each view's OnUpdate member function. The default
implementation of OnUpdate invalidates the view's entire client area. You can

69

Programming with MFC

70

override it to invalidate only those regions of the client area that map to the modified
portions of the document.

The UpdateAIlViews member function of class CDocument and the OnUpdate
member function of class CView let you pass information describing what parts of
the document were modified. This "hint" mechanism lets you limit the area that the
view must redraw. OnUpdate takes two "hint" arguments. The first, IHint, of type
LPARAM, lets you pass any data you like, while the second, pHint, of type
CObject*, lets you pass a pointer to any object derived from CObject.

When a view becomes invalid, Windows sends it a WM _PAINT message. The view's
OnPaint handler function responds to the message by creating a device-context
object of class CPaintDC and calls your view's OnDraw member function. You do not
normally have to write an overriding OnPai nt handler function.

Recall from Chapter 1 that a device context is a Windows data structure that contains
information about the drawing attributes of a device such as a display or a printer. All
drawing calls are made through a device-context object. For drawing on the screen,
OnDraw is passed a CPaintDC object. For drawing on a printer, it is passed a CDC
object set up for the current printer.

Your code for drawing in the view first retrieves a pointer to the document, then
makes drawing calls through the device context. The following simple OnDraw
example illustrates the process:

void CMyView::OnDraw(CDC* pDC)
{

}

CMyDoc* pDoc = GetDocument();
CString s = pDoc->GetData(); II Returns a CString
CRect rect;

GetClientRect(&rect);
pDC->SetTextAlign(TA_BASELINE ITA_CENTER);
pDC->TextOut(rect.right I 2, rect.bottom I 2,

s, s.GetLength());

In this example, you would define the GetDa ta function as a member of your derived
document class.

The example prints whatever string it gets from the document, centered in the view.
If the OnDraw call is for screen drawing, the CDC object passed inpDC is a
CPaintDC whose constructor has already called BeginPaint. Calls to drawing
functions are made through the device-context pointer. For information about device
contexts and drawing calls, see class CDC in the Class Library Reference and
Working with Window Objects.

For more examples of how to write OnDraw, see the MFC Samples, which you can
access under Samples in Books Online.

Chapter 3 Working with Frame Windows, Documents, and Views

Interpreting User Input Through a View
Other member functions of the view handle and interpret all user input. You will
usually define message-handler member functions in your view class to process:

• Windows messages generated by mouse and keyboard actions.

• Commands from menus, toolbar buttons, and accelerator keys.

These message-handler member functions interpret the following actions as data
input, selection, or editing, including moving data to and from the Clipboard:

• Mouse movements and clicks, drags, and double-clicks

• Keystrokes

• Menu commands

Which Windows messages your view handles depends on your application's needs.

You saw earlier, in Messages and Commands in the Framework, how to assign menu
items and other user-interface objects to commands and how to bind the commands to
handler functions with ClassWizard. You have also seen how the framework routes
such commands and sends standard Windows messages to the objects that contain
handlers for them.

For example, your application might need to implement direct mouse drawing in the
view. The Scribble tutorial example shows how to handle the
WM_LBUTTONDOWN, WM_MOUSEMOVE, and WM_LBUTTONUP
messages respectively to begin, continue, and end the drawing of a line segment. On
the other hand, you might sometimes need to interpret a mouse click in your view as
a selection. Your view's OnLButtonDown handler function would determine whether
the user was drawing or selecting. If selecting, the handler would determine whether
the click was within the bounds of some object in the view and, if so, alter the display
to show the object as selected.

Your view might also handle certain menu commands, such as those from the Edit
menu to cut, copy, paste, or delete selected data using the Clipboard. Such a handler
would call some of the Clipboard-related member functions of class CWnd to
transfer a selected data item to or from the Clipboard.

Printing and the View
Your view also plays two important roles in printing its associated document.

The view:

• Uses the same OnDraw code to draw on the printer as to draw on the screen.

• Manages dividing the document into pages for printing.

For more information about printing and about the view's role in printing, see
Printing and Print Preview.

71

Programming with MFC

72

Scrolling and Scaling Views
MFC supports views that scroll and views that are automatically scaled to the size of
the frame window that displays them. Class CScrollView supports both kinds of
views.

For more information about scrolling and scaling, see class CScrollView in the Class
Library Reference. For a scrolling example, see Chapter 9, Enhancing Views, in
Tutorials.

Scrolling
Frequently the size of a document is greater than the size its view can display. This
may occur because the document's data increases or the user shrinks the window that
frames the view. In such cases, the view must support scrolling.

Any view can handle scroll-bar messages in its OnHScroll and OnVScroll member
functions. You can either implement scroll-bar message handling in these functions,
doing all the work yourself, or you can use the CScrollView class to handle scrolling
for you.

CScrollView does the following:

• Manages window and viewport sizes and mapping modes

• Scrolls automatically in response to scroll-bar messages

You can specify how much to scroll for a "page" (when the user clicks in a scroll-bar
shaft) and a "line" (when the user clicks in a scroll arrow). Plan these values to suit
the nature of your view. For example, you might want to scroll in 1-pixel increments
for a graphics view but in increments based on the line height in text documents.

Scaling
When you want the view to automatically fit the size of its frame window, you can use
CScrollView for scaling instead of scrolling. The logical view is stretched or shrunk
to fit the window's client area exactly. A scaled view has no scroll bars.

Multiple Document Types, Views, and Frame Windows
The standard relationship among a document, its view, and its frame window is
described in DocumentNiew Creation. Many applications support a single document
type (but possibly multiple open documents of that type) with a single view on the
document and only one frame window per document. But some applications may
need to alter one or more of those defaults.

Multiple Document Types
App Wizard creates a single document class for you. In some cases, though, you may
need to support more than one document type. For example, your application may
need worksheet·and chart documents. Each document type is represented by its own
document class and probably by its own view class as well. When the user chooses

Chapter 3 Working with Frame Windows, Documents, and Views

the File New command, the framework displays a dialog box that lists the supported
document types. Then it creates a document of the type that the user chooses. Each
document type is managed by its own document-template object.

To create extra document classes, use the Add Class button in the Class Wizard dialog
box. Choose CDocument as the Class Type to derive from and supply the requested
document information. Then implement the new class's data.

To let the framework know about your extra document class, you must add a second
call to AddDocTem plate in your application class's I nit Ins tan c e override. For
more information, see Document Templates.

Multiple Views
Many documents require only a single view, but it is possible to support more than
one view of a single document. To help you implement multiple views, a document
object keeps a list of its views, provides member functions for adding and removing
views, and supplies the UpdateAlIViews member function for letting multiple views
know when the document's data has changed.

MFC supports three common user interfaces requiring multiple views on the same
document. These models are:

• View objects of the same class, each in a separate MDI document frame window.

You might want to support creating a second frame window on a document. The
user could choose aNew Window command to open a ~econd frame with a ;view of
the same document and then use the two frames to view different portions of the
document simultaneously. The framework supports the New Window command on
the Window menu for MDI applications by duplicating the initial frame window
and view attached to the document.

• View objects of the same class in the same document frame window.

Splitter windows split the view space of a single document window into multiple
separate views of the document. The framework creates multiple view objects from
the same view class. For more information, see Splitter Windows.

• View objects of different classes in a single frame window.

In this model, a variation of the splitter window, multiple views share a single
frame window. The views are constructed from different classes, each view
providing a different way to view the same document. For example, one view
might show a word-processing document in normal mode while the other view
shows it in outline mode. A splitter c~ntrol allows the user to adjust the relative
sizes of the views.

Figure 3.4 shows the three user-interface models in the order presented above.

73

Programming with MFC

74

Figure 3.4 Multiple-View User Interfaces

Document D
--+__ View 1/Frame 1

a D View 2/Frame2

Document

t3= View1
b Splitter Bar

View 2

Document

c View 2 (Graphics)

The framework provides these models by implementing the New Window command
and by providing class CSplitterWnd, as discussed in Splitter Windows. You can
implement other models using these as your starting point. For sample programs that
illustrate different configurations of views, frame windows, and splitters, see MFC
Samples under Samples in Books Online.

For more information about UpdateAIIViews, see class CView in the Class Library
Reference and Chapter 9, Enhancing Views, in Tutorials.

Splitter Windows
In a splitter window, the window is, or can be, split into two or more scrollable panes.
A splitter control (or "split box") in the window frame next to the scroll bars allows
the user to adjust the relative sizes of the panes. Each pane is a view on the same
document. In "dynamic" splitters, the views are of the same class, as shown in Figure
3.4(b). In "static" splitters, the views can be of different classes. Splitter windows of
both kinds are supported by class CSplitterWnd.

Dynamic splitter windows, with views of the same class, allow the user to split a
window into multiple panes at will and then scroll different panes to see different

Chapter 3 Working with Frame Windows, Documents, and Views

parts of the document. The user can also un split the window to remove the additional
views. The splitter windows added to the Scribble application in Chapter 9 of
Tutorials are an example. That chapter describes the technique for creating dynamic
splitter windows. A dynamic splitter window is shown in Figure 3.4(b).

Static splitter windows, with views of different classes, start with the window split
into multiple panes, each with a different purpose. For example, in the Visual C++
bitmap editor, the image window shows two panes side by side. The left-hand pane
displays a life-sized image of the bitmap. The right-hand pane displays a zoomed or
magnified image of the same bitmap. The panes are separated by a "splitter bar" that
the user can drag to change the relative sizes of the panes. A static splitter window is
shown in Figure 3.4(c).

For more information, see class CSplitterWnd in the Class Library Reference and
MFC Samples under Samples in Books Online.

Initializing and Cleaning Up Documents and Views
Use the following guidelines for initializing and cleaning up after your documents
and views:

• The framework initializes documents and views; you initialize any data you add to
them.

• The framework cleans up as documents and views close; you must deallocate any
memory that you allocated on the heap from within the member functions of those
documents and views.

Note Recall that initialization for the whole application is best done in your override of the
Initlnstance member function of class CWinApp, and cleanup for the whole application is
best done in your override of the CWinApp member function Exitlnstance.

The life cycle of a document (and its frame window and view or views) in an MDI
application is as follows:

1. During dynamic creation, the document constructor is called.

2. For each new document, the document's OnNewDocument or OnOpenDocument
is called.

3. The user interacts with the document throughout its lifetime.

4. The framework calls DeleteContents to delete data specific to a document.

5. The document's destructor is called.

In an SDI application, step I is performed once, when the document is first created.
Then steps 2 through 4 are performed repeatedly each time a new document is
opened. The new document reuses the existing document object. Finally, step 5 is
performed when the application ends.

75

Programming with MFC

Initializing
Documents are created in two different ways, so your document class must support
both ways. First, the user can create a new, empty document with the File New
command. In that case, initialize the document in your override of the
OnNewDocument member function of class CDocument. Second, the user can use
the Open command on the File menu to create a new document whose contents are
read from a file. In that case, initialize the document in your override of the
OnOpenDocument member function of class CDocument. If both initializations are
the same, you can call a common member function from both overrides, or
OnOpenDocument can call OnNewDocument to initialize a clean document and
then finish the open operation.

Views are created after their documents are created. The best time to initialize a view
is after the framework has finished creating the document, frame window, and view.
You can initialize your view by overriding the OnlnitialUpdate member function of
CView. If you need to reinitialize or adjust anything each time the document
changes, you can override OnUpdate.

Cleaning Up
When a document is closing, the framework first calls its DeleteContents member
function. If you allocated any memory on the heap during the course of the
document's operation, DeleteContents is the best place to deallocate it.

Note You should not deallocate document data in the document's destructor. In the case of
an SDI application, the document object might be reused.

You can override a view's destructor to deallocate any memory you allocated on the
heap.

Special View Classes

76

Besides CScrollView, the Microsoft Foundation Class Library provides three other
classes derived from CView:

• CForm View, a view with attributes of a dialog box and a scrolling view. A
CFormView is created from a dialog-template resource. You can create the dialog
template resource with the Visual C++ dialog editor.

• CRecordView or CDaoRecordView, a form view whose controls are connected to
fields of a CRecordset or CDaoRecordset object that represents a database table.

• CEdit View, a view that uses the Windows edit control as a simple multiline text
editor. You can use a CEditView as the view on a document.

About CFormView
CFormView provides a view based on a dialog-template resource. You can use it to
create formlike views with edit boxes and other dialog controls. The user can scroll

Chapter 3 Working with Frame Windows, Documents, and Views

the fonn view and tab among its controls. Fonn views support scrolling using the
CScrollView functionality. For more infonnation, see class CFormView in the Class
Library Reference.

About CRecordView and CDaoRecordView
CRecordView provides database fonns for applications that use the MFC ODBC
classes. Similarly, CDaoRecordView provides database fonns for applications that
use the MFC DAO classes. You can use AppWizard or ClassWizard to create a fonn
whose controls exchange data directly with the fields data members of a CRecordset
or CDaoRecordset object. The recordset object selects data for a "current record" in
an associated table in a database. For more infonnation, see classes CRecordView,
CDaoRecordView, CRecordset, and CDaoRecordset in the Class Library
Reference and Chapter 7, Working with Databases.

About CEditView
CEditView provides the functionality of a CEdit control with enhanced editing
features: printing; find and replace; cut, copy, paste, clear, and undo commands; and
File Save and File Open commands. You can use a CEditView to implement a simple
text-editor view. See classes CEditView and CEdit in the Class Library Reference.

Printing and Print Preview
Microsoft Windows implements device-independent display. This means that the
same drawing calls, made through a device context passed to your view's OnDraw
member function, are used to draw on the screen and on other devices, such as
printers. You use the device context to call graphics device interface (ODI) functions,
and the device driver associated with the particular device translates the calls into
calls that the device can understand.

When your framework document prints, OnDraw receives a different kind of device
context object as its argument; instead of a CPaintDC object, it gets a CDC object
associated with the current printer. OnDraw makes exactly the same calls through the
device context as it does for rendering your document on the screen.

The framework also provides an implementation of the File Print Preview command
as described in Previewing the Printed Document.

The article Printing describes in detail the partnership between you and the
framework during printing and print preview. In particular, see Figure 1 in the
article. Chapter 10, Enhancing Printing, inTutorials provides an example.

Printing the Document
To print, the framework calls member functions of the view object to set up the Print
dialog box, allocate fonts and other resources needed, set the printer mode for a given
page, print a given page, and deallocate resources. Once the document as a whole is

77

Programming with MFC

set up, the process iteratively prints each page. When all pages have been printed, the
framework cleans up and deallocates resources. You can, and sometimes must,
override some view member functions to facilitate printing. For information, see class
CView in the Class Library Reference.

When the view's OnPrint member function is called, it must calculate what part of
the document image to draw for the given page number. Typically, OnPrint adjusts
the viewport origin or the clipping region of the device context to specify what should
be drawn. Then On Print calls the view's OnDraw member function to draw that
portion of the image.

Previewing the Printed Document

78

The framework also implements print-preview functionality and makes it easy for you
to use this functionality in your applications. Print preview shows a reduced image of
either one or two pages of the document as it would appear when printed. The
implementation also provides controls for printing the displayed page(s), moving to
the next or the previous page, toggling the display between one and two pages,
zooming the display in and out to view it at different sizes, and closing the display. If
the framework knows how long the document is, it can also display a scroll bar for
moving from page to page.

To implement print preview, instead of directly drawing an image on a device, the
framework must simulate the printer using the screen. To do this, MFC implements
the CPreviewDC class, which is used in conjunction with the implementation class
CPreviewView. All CDC objects contain two device contexts. In a CPreviewDC
object, the first device context represents the printer being simulated; the second
represents the screen on which output is actually displayed.

In response to a Print Preview command from the File menu, the framework creates a
CPreviewDC object. Then when your application performs an operation that sets a
characteristic of the printer device context, the framework performs a similar
operation on the screen device context. For example, if your application selects a font
for printing, the framework selects a font for screen display that simulates the printer
font. When your application sends output that would go to the printer, the framework
instead sends it to the screen.

The order and manner in which pages of a document are displayed are also different
for print preview. Instead of printing a range of pages from start to finish, print
preview displays one or two pages at a time and waits for a cue from the user b~fore it
displays different pages.

You are not required to do anything to provide print preview, other than to make sure
the Print Preview command is in the File menu for your application. However, if you
choose, you can modify the behavior of print preview in a number of ways. For more
information about making such modifications to print preview in your application,
see Technical Note 30 under MFC Technical Notes in Books Online.

CHAPTER 4

Working with Dialog Boxes,
Controls, and Control Bars

The previous chapter explained windows, particularly the frame windows used to
display views of documents. As you saw briefly in that chapter, class CWnd is the
base class of many other window classes besides the frame windows.

This chapter covers the following topics, including several additional categories of
window classes:

• Dialog boxes

• Control windows

• Control bars

Dialog boxes are used to retrieve input from the user. Inside a dialog box, the user
interacts with controls, such as buttons, list boxes, combo boxes, and edit boxes. You
can also place controls in a frame window, a view, or a control bar. Using "property
sheets," your MFC dialog boxes can also use the "tab dialog box" look used in many
dialog boxes in Microsoft Word, Excel, and Visual C++ itself.

A toolbar is a control bar that contains bitmapped buttons; these buttons can be
configured to appear and behave as pushbuttons, radio buttons, or check boxes. An
MFC toolbar can "dock" to any side of its parent window or float in its own mini
frame window. A toolbar can also "float" over the application's windows, and you
can change its size. A status bar is a control bar that contains text-output panes, or
"indicators." A dialog bar is a control bar based on a dialog-template resource; as in a
dialog box, the user can tab among the controls.

Dialog Boxes
Applications for Windows frequently communicate with the user through dialog
boxes. Class CDialog provides an interface for managing dialog boxes, the Visual
C++ dialog editor makes it easy to design dialog boxes and create their dialog
template resources, and Class Wizard simplifies the process of initializing and
validating the controls in a dialog box and of gathering the values entered by the user.

79

Programming with MFC

The following topics provide details about dialog boxes:

• Dialog components

• Modal and modeless dialog boxes

• Property sheets and property pages in a dialog box

• Creating a dialog resource template

• The life cycle of a dialog box

• Dialog data exchange and validation

• Type-safe access to controls in a dialog box

• Mapping Windows messages to your class

• Common dialog classes

Dialog-Box Components in the Framework
In the framework, a dialog box has two components:

• A dialog-template resource that specifies the dialog box's controls and their
placement.

The dialog resource stores a dialog template from which Windows creates the
dialog window and displays it. The template specifies the dialog box's
characteristics, including its size, location, style, and the types and positions of the
dialog box's controls. You will usually use a dialog template stored as a resource,
but you can also create your own template in memory.

• A dialog class, derived from CDialog, to provide a programmatic interface for
managing the dialog box.'

A dialog box is a window and will be attached to a Windows window when visible.
When the dialog window is created, the dialog-template resource is used as a
template for creating child window controls for the dialog box.

Modal and Modeless Dialog Boxes

80

You can use class CDialog to manage two kinds of dialog boxes:

• Modal dialog boxes, which require the user to respond before continuing the
program

• Modeless dialog boxes, which stay on the screen and are available for use at any
time but permit other user activities

The resource editing and Clas~ Wizard procedures for creating a dialog template are
the same for modal ancCmodeless dialog boxes.

Creating a dialog box for your program requires the following steps:

Chapter 4 Working with Dialog Boxes, Controls, and Control Bars

1. Use the dialog editor to design the dialog box and create its dialog-template
resource.

2. Use ClassWizard to create a dialog class.

3. Connect the dialog resource's controls to message handlers in the dialog class.

4. Use ClassWizard to add data members associated with the dialog box's controls
and to specify dialog data exchange and dialog data validations for the controls.

Property Sheets and Property Pages
An MFC dialog box can take on a "tab dialog" look by incorporating property sheets
and property pages. Called a "property sheet" in MFC, this kind of dialog box,
similar to many dialog boxes in Microsoft Word, Excel, and Visual C++, appears to
contain a stack of tabbed sheets, much like a stack of file folders seen from front to
back, or a group of cascaded windows. Controls on the front tab are visible; only the
labeled tab is visible on the rear tabs. Property sheets are particularly useful for
managing large numbers of properties or settings that fall fairly neatly into several
groups. Typically, one property sheet can simplify a user interface by replacing
several separate dialog boxes.

As of MFC version 4.0, property sheets and property pages are implemented using
the common controls that come with Windows 95 and Windows NT version 3.51 and
later.

Property sheets are implemented with classes CPropertySheet and CProperty Page
(described in the Class Library Reference). CPropertySheet defines the overall
dialog box, which can contain multiple "pages" based on CPropertyPage.

For information on creating ana wQrking with property sheets, see tile article
Property Sheets.

Creating the Dialog Resource
To design the dialog box and create the dialog resource, you use the Visual C++
dialog editor. In the dialog editor, you can:

• Adjust the size and location your dialog box will have when it appears.

• Drag various kinds of controls from a controls palette and drop them where you
want them in the dialog box.

• Position the controls with alignment buttons on the tool bar.

• Test your dialog box by simulating the appearance and behavior it will have in
your program. In Test mode, you can manipulate the dialog box's controls by
typing text in text boxes, clicking pushbuttons, and so on.

When you finish, your dialog-template resource is stored in your application's
resource script file. You can edit it later if needed. For a full description of how to
create and edit dialog resources, see Chapter 6, Using the Dialog Editor, in the Visual

81

Programming with MFC

c++ User's Guide. This technique is also used to create the dialog-template
resources for CForm View and CRecordView classes.

When the dialog box's appearance suits you, use ClassWizard to create a dialog class
and map its messages, as discussed in Creating a Dialog Class with Class Wizard.

Creating a Dialog Class with Class Wizard

82

Table 4.1 lists dialog-related tasks that ClassWizard helps you manage.

Table 4.1 Dialog-Related Tasks

Task

Create a new CDialog-derived class to
manage your dialog box.

Map Windows messages to your dialog
class.

Declare class member variables to
represent the controls in the dialog box.

Specify how data is to be exchanged
between the controls and the member
variables.

Specify validation rules for the member
variables.

Apply to ...

Each dialog box.

Each message you want handled.

Each control that yields a text or numeric
value you want to access from your program.

Each control you want to access from your
program.

Each control that yields a text or numeric
value, if desired.

Mapping dialog-class member variables to dialog-box controls and specifying data
exchange and validation are explained in Dialog Data Exchange and Validation.

Creating Your Dialog Class
For each dialog box in your program, create a new dialog class to work with the
dialog resource.

Chapter 14, Working with Classes, in the Visual C++ User's Guide explains how to
create a new dialog class. When you create a dialog class with Class Wizard,
ClassWizard writes the following items in the .R and .CPP files you specify:

In the .R file:

• A class declaration for the dialog class. The class is derived from CDialog.

In the .CPP file:

• A message map for the class.

• A standard constructor for the dialog box.

• An override of the DoDataExchange member function. Edit this function with
Class Wizard. It is used for dialog data exchange and validation capabilities as
described later in this chapter.

Chapter 4 Working with Dialog Boxes, Controls, and Control Bars

Life Cycle of a Dialog Box
During the life cycle of a dialog box, the user invokes the dialog box, typically inside
a command handler that creates and initializes the dialog object; the user interacts
with the dialog box; and the dialog box closes.

For modal dialog boxes, your handler gathers any data the user entered once the
dialog box closes. Since the dialog object exists after its dialog window has closed,
you can simply use the member variables of your dialog class to extract the data.

For modeless dialog boxes, you may often extract data from the dialog object while
the dialog box is still visible. At some point, the dialog object is destroyed; when this
happens depends on your code.

Creating and Displaying Dialog Boxes
Creating a dialog object is a two-phase operation. First, construct the dialog object.
Then create the dialog window. Modal and modeless dialog boxes differ somewhat in
the process used to create and display them. Table 4.2 lists how modal and modeless
dialog boxes are normally constructed and displayed.

Table 4.2 Dialog Creation

Dialog type How to create it

Modeless

Modal

Construct CDialog, then call Create member function.

Construct CDialog, then call DoModal member function.

Creating Modal Dialog Boxes
To create a modal dialog box, call either of the two public constructors declared in
CDialog and then call the dialog object's DoModal member function to display the
dialog box and manage interaction with it until the user chooses OK or Cancel. This
management by DoModal is what makes the dialog box "modal." For modal dialog
boxes, DoModalloads the dialog resource.

Creati ng Modeless Dialog Boxes
For a modeless dialog box, you must provide your own public constructor in your
dialog class. To create a modeless dialog box, call your public constructor and then
call the dialog object's Create member function to load the dialog resource. You can
call Create either during or after the constructor call. If the dialog resource has the
property WS _ VISIBLE, the dialog box appears immediately. If not, you must call its
ShowWindow member function.

Using a Dialog Template in Memory
Instead of using the methods given in Table 4.2, you can create either kind of dialog
box indirectly from a dialog template in memory. For more information, see class
CDialog in the Class Library Reference.

83

Programming with MFC

84

Setting the Dialog Box's Background Color
You can set the background color of your dialog boxes by calling the CWinApp
member function SetDialogBkColor in your In; tIn s tan c e override. The color you
set is used for all dialog boxes and message boxes.

Initializing the Dialog Box
After the dialog box and all of its controls are created but just before the dialog box
(of either type) appears on the screen, the dialog object's OnInitDialog member
function is called. For a modal dialog box, this occurs during the DoModal call. For
a modeless dialog box, OnInitDialog is called when Create is called. You typically
override OnInitDialog to initialize the dialog box's controls, such as setting the
initial text of an edit box. You must call the OnlnitDialog member function of the
base class, CDialog, from your On In; to; a 109 override.

Handling Windows Messages
Dialog boxes are windows, so they can handle Windows messages if you supply the
appropriate handler functions.

Retrieving Data from the Dialog Object
The framework provides an easy way to initialize the values of controls in a dialog
box and to retrieve values from the controls. The more laborious manual approach is
to call functions such as the SetDlgItemText and GetDlgItemText member functions
of class CWnd, which apply to control windows. With these functions, you access
each control individually to set or get its value, calling functions such as
SetWindowText and GetWindowText. The framework's approach automates both
initialization and retrieval.

Dialog data exchange (DDX) lets you exchange data between the controls in the
dialog box and member variables in the dialog object more easily. This exchange
works both ways. To initialize the controls in the dialog box, you can set the values of
data members in the dialog object, and the framework will transfer the values to the
controls before the dialog box is displayed. Then you can at any time update the
dialog data members with data entered by the user. At that point, you can use the data
by referring to the data member variables.

You can also arrange for the values of dialog controls to be validated automatically
with dialog data validation (DDV).

Use ClassWizard to add DDX and DDV capabilities to a dialog class. DDX and DDV
are explained in more detail in Dialog Data Exchange and Validation.

For a modal dialog box, you can retrieve any data the user entered when DoModal
returns IDOK but before the dialog object is destroyed. For a modeless dialog box,
you can retrieve data from the dialog object at any time by calling UpdateData with
the argument TRUE and then accessing dialog class member variables. This subject
is discussed in more detail in Dialog Data Exchange and Validation.

Chapter 4 Working with Dialog Boxes, Controls, and Control Bars

Closing the Dialog Box
A modal dialog box closes when the user chooses one of its buttons, typically the OK
button or the Cancel button. Choosing the OK or Cancel button causes Windows to
send the dialog object a BN_ CLICKED control-notification message with the
button's ID, either IDOK or IDCANCEL. CDialog provides default handler
functions for these messages: OnOK and OnCancel. The default handlers call the
EndDialog member function to close the dialog window. You can also call
EndDialog from your own code. For more information, see the EndDialog member
function of class CDialog in the Class Library Reference.

To arrange for closing and deleting a modeless dialog box, override PostNcDestroy
and invoke the delete operator on the this pointer. Destroying the Dialog Box
explains what happens next.

Destroying the Dialog Box
Modal dialog boxes are normally created on the stack frame and destroyed when the
function that created them ends. The dialog object's destructor is called when the
object goes out of scope.

Modeless dialog boxes are normally created and "owned" by a parent view or frame
window-the application's main frame window or a document frame window. The
default OnClose handler calls DestroyWindow, which destroys the dialog-box
window. If the dialog box stands alone, with no pointers to it or other special
ownership semantics, you should override PostNcDestroy to destroy the C++ dialog
object. You should also override OnCancel and call DestroyWindow from within it.
If not, the "owner" of the dialog box should destroy the C++ object when it is no
longer necessary.

Dialog Data Exchange and Validation
Dialog data exchange (DDX) is an easy way to initialize the controls in your dialog
box and to gather data input by the user. Dialog data validation (DDV) is an easy way
to validate data entry in a dialog box. To take advantage of DDX and DDV in your
dialog boxes, use Class Wizard to create the data members and set their data types and
specify validation rules. For additional information about DDX/DDV and for
examples, see Chapter 14, Working with Classes, in the Visual C++ User's Guide
and Chapter 8, Adding a Dialog Box, in Tutorials.

Data Exchange
If you use the DDX mechanism, you set the initial values of the dialog object's
member variables, typically in your OnInitDialog handler or the dialog constructor.
Immediately before the dialog is displayed, the framework's DDX mechanism
transfers the values of the member variables to the controls in the dialog box, where
they appear when the dialog box itself appears in response to DoModal or Create.
The default implementation of OnInitDialog in CDialog calls the UpdateData
member function of class CWnd to initialize the controls in the dialog box.

85

Programming with MFC

86

The same mechanism transfers values from the controls to the member variables
when the user clicks the OK button (or whenever you call the UpdateData member
function with the argument TRUE). The dialog data validation mechanism validates
any data items for which you specified validation rules.

Figure 4.1 illustrates dialog data exchange.

Figure 4.1 Dialog Data Exchange

Initialize variables in Initialize controls in
dialog constructor OnlnitDialog

Dialog box on screen

.. Member Variables Thin Pen Widlh: 0

Thick Pen Widlh: 0 Controls

I Defaull I I OK I I Cancel I- t-

Dialog Object

Retrieve values when Retrieve control values
they are updated with UpdateData

UpdateData works in both directions, as specified by the BOOL parameter passed to
it. To carry out the exchange, UpdateData sets up a CDataExchange object and calls
your dialog class's override of CDialog's DoDataExchange member function.
DoDataExchange takes an argument of type CDataExchange. The CDataExchange
object passed to UpdateData represents the context of the exchange, defining such
information as the direction of the exchange.

When you (or Class Wizard) override DoDataExchange, you specify a call to one
DDX function per data member (control). Each DDX function knows how to
exchange data in both directions based on the context supplied by the
CDataExchange argument passed to your DoDataExchange by UpdateData.

MFC provides many DDX functions for different kinds of exchange. The following
example shows a DoDataExchange override in which two DDX functions and one
DDV function are called:

Chapter 4 Working with Dialog Boxes, Controls, and Control Bars

void CMyDialog::DoDataExchange(CDataExchange* pDX)
{

CDialog::DoDataExchange(pDX); II Call base class version
11{{AFX_DATA_MAP(CMyDialog)
DDX_Check(pDX. IDC_MY_CHECKBOX. m_bVar);
DDX_Text(pDX. IDC_MY_TEXTBOX. m_strName);
DDV_MaxChars(pDX. IDC_MY_TEXTBOX. m_strName. 20);
II}}AFX_DATA_MAP

The DDX_ and DDV_Iines between the I I {{AFX_DATA_MAP and I/} }AFX_DATA_MAP
delimiters are a "data map." The sample DDX and DDV functions shown are for a
check-box control and an edit-box control, respectively.

If the user cancels a modal dialog box, the OnCancel member function tenninates
the dialog box and DoModal returns the value IDCANCEL. In that case, no data is
exchanged between the dialog box and the dialog object.

Data Validation
You can specify validation in addition to data exchange by calling DDV functions, as
shown in the example in Data Exchange. The DDV _ MaxChars call in the example
validates that the string entered in the text-box control is not longer than 20
characters. The DDV function typically alerts the user with a message box if the
validation fails and puts the focus on the offending control so the user can reenter the
data. A DDV function for a given control must be called immediately after the DDX
function for the same control.

You can also define your own custom DDX and DDV routines. For details on this
and other aspects of DDX and DDV, see Technical Note 26 under MFC Technical
Notes in Books Online.

Class Wizard will write all of the DDX and DDV calls in the data map for you. Do
not manually edit the lines in the data map between the delimiting comments.

Type-Safe Access to Controls in a Dialog Box
The controls in a dialog box can use the interfaces of MFC control classes such as
CListBox and CEdit. You can create a control object and attach it to a dialog
control. Then you can access the control through its class interface, calling member
functions to operate on the control, as shown below. The methods described here are
designed to give you type-safe access to a control. This is especially useful for
controls such as edit boxes and list boxes.

There are two approaches to making a connection between a control in a dialog box
and a C++ control member variable in a CDialog-derived class.

87

Programming with MFC

88

Without ClassWizard
The first approach uses an inline member function to cast the return type of class
CWnd's GetDlgltem member function to the appropriate C++ control type, as in
this example:

II Declared inline in class CMyDialog
CButton* GetMyCheckbox()
{

return (CButton*)GetDlgltem(ID_MYCHECKBOX);

You can then use this member function to access the control in a type-safe manner
with code similar to the following:

GetMyCheckbox()->SetState(TRUE);

With ClassWizard
However, there is a much easier way to accomplish the same effect if you are familiar
with the DDX features. You can use the Control property in ClassWizard.

Jfyou simply want access to a control's value, DDX provides it. If you want to do
more than access a control's value, use ClassWizard to add a member variable of the
appropriate class to your dialog class. Attach this member variable to the Control
property.

Member variables can have a Control property instead of a Value property. The Value
property refers to the type of data returned from the control, such as CString or into
The Control property enables direct access to the control through a data member
whose type is one of the control classes in MFC, such as CButton or CEdit.

Note For a given control, you can, if you wish, have multiple member variables with the Value
property and at most one member variable with the Control property. You can have only one
MFC object mapped to a control because multiple objects attached to a control, or any other
window, would lead to an ambiguity in the message map.

You can use this object to call any member functions for the control object. Such calls
affect the control in the dialog box. For example, for a check-box control represented
by a variable m_checkboxDefaul t, of type CButton, you could call:

m_checkboxDefault.SetState(TRUE);

Here the member variable m_checkboxDefaul t serves the same purpose as the
member function GetMyCheckbox shown earlier in the "Without ClassWizard"
discussion. If the check box is not an auto check box, you would still need a handler
in your dialog class for the BN_ CLICKED control-notification message when the
button is clicked.

For more infonnation about controls, see Controls.

Chapter 4 Working with Dialog Boxes, Controls, and Control Bars

Mapping Windows Messages to Your Class
If you need your dialog box to handle Windows messages, override the appropriate
handler functions. To do so, use ClassWizard to map the messages to the dialog class.
This writes a message-map entry for each message and adds the message-handler
member functions to the class. Use the Visual c++ source code editor to write code in
the message handlers. Chapter 2, Working with Messages and Commands, describes
message maps and message-handler functions in detail.

Commonly Overridden Member Functions
Table 4.3 lists the most likely member functions to override in your CDialog-derived
class.

Table 4.3 Commonly Overridden Member Functions of Class CDialog

Member function Message it responds to Purpose of the override

OnInitDialog WM INITDIALOG Initialize the dialog box's
controls.

On OK BN CLICKED for button Respond when the user clicks
IDOK the OK button.

OnCancel BN _CLICKED for button Respond when the user clicks
IDCANCEL the Cancel button.

OnlnitDialog, OnOK, and OnCancel are virtual functions. To override them, you
declare an overriding function in your derived dialog class using Class Wizard; in
these cases, ClassWizard will not add any message-map entries because they are not
necessary.

OnlnitDialog is called just before the dialog box is displayed. You must call the
default OnlnitDialog handler from your override-usually as the first action in the
handler. By default, OnlnitDialog returns TRUE to indicate that the focus should be
set to the first control in the dialog box.

OnOK is typically overridden for modeless but not modal dialog boxes. If you
override this handler for a modal dialog box, call the base class version from your
override-to ensure that EndDialog is called-or call EndDialog yourself.

OnCancel is usually overridden for modeless dialog boxes.

For more information about these member functions, see class CDialog in the Class
Library Reference and the discussion on Life Cycle of a Dialog Box.

Commonly Added Member Functions
If your dialog box contains pushbuttons other than OK or Cancel, you need to write
message-handler member functions in your dialog class to respond to the control
notification messages they generate. For an example, see Chapter 8, Adding a Dialog
Box, in Tutorials. You can also handle control-notification messages from other
controls in your dialog box.

89

Programming with MFC

Common Dialog Classes
In addition to class CDiaiog, MFC supplies several classes derived from CDiaiog
that encapsulate commonly used dialog boxes, as shown in Table 4.4. The dialog
boxes encapsulated are called the "common dialog boxes" and are part of the
Windows common dialog library (COMMDLG.DLL). The dialog-template resources
and code for these classes are provided in the Windows common dialog boxes that are
part of Windows versions 3.1 and later.

Table 4.4 Common Dialog Classes

Derived dialog class

CColorDialog

CFileDialog

CFindReplaceDialog

CFontDialog

CPrintDialog

Purpose

Lets user select colors.

Lets user select a filename to open or to save.

Lets user initiate a find or replace operation in a text file.

Lets user specify a font.

Lets user specify information for a print job.

For more information about the common dialog classes, see the individual class
names in the Class Library Reference. MFC also supplies a number of standard
dialog classes used for OLE. For information about these classes, see the base class,
COieDiaiog, in the Class Library Reference.

Three other classes in MFC have dialog-like characteristics. For information about
classes CFormView and CRecordView, see About CFormView and About
CRecordView and CDaoRecordView. For information about class CDiaiogBar, see
Control Bars.

Controls

90

MFC supplies a set of classes that correspond to the standard control windows
provided by Windows. These include buttons of several kinds, static- and editable
text controls, scroll bars, list boxes, and combo boxes. Table 4.5 lists the classes and
the corresponding standard controls. Additional Controls describes new kinds of
controls.

Table 4.5 Standard Control Window Classes

Class

CStatic

CButton

CListBox

CComboBox

CEdit

CScrollBar

Windows control

Static-text control

Button control: pushbutton, check box, radio button, or
group-box control

List-box control

Combo-box control

Edit control

Scroll-bar control

Chapter 4 Working with Dialog Boxes, Controls, and Control Bars

Each control class encapsulates a Windows control and provides a member-function
user interface to the underlying control. Using a control object's member functions,
you can get and set the value or state of the control and respond to various standard
messages sent by the control to its parent window (usually a dialog box). For
additional control classes, see Additional Controls.

You can create control objects in a window or dialog box. You can also use a control
class as an interface to a control created in a dialog box from a dialog-template
resource.

Additional Controls
In addition to the standard Windows controls, MFC provides several other control
classes. These provide buttons labeled with bitmaps instead of text, control bars, and
splitter-window controls. Splitter windows are discussed in Chapter 3, Working with
Frame Windows, Documents, and Views.

Table 4.6 lists the the additional classes and their purposes.

Table 4.6 Additional Control Classes

Class

CBitmapButton

CToolBar

CStatusBar

CDialogBar

Purpose

Button labeled with a bitmap instead of text

Toolbar arranged along a border of a frame window and
containing other controls

Status bar arranged along a border of a frame window and
containing panes, or indicators

Control bar created from a dialog-template resource and
arranged along a border of a frame window

Note VBX controls are not supported in 32-bit versions of Visual e+t.

Control bars, including toolbars, status bars, and dialog bars, are discussed in Control
Bars.

Bitmap Buttons
Class CBitmapButton allows you to have button controls labeled with bitmaps
instead of text. An object of this class stores four CBitmap objects that represent
various states of the button: up (active), down (pushed), focused, and disabled.
Bitmap buttons can be used in dialog boxes. For more information, see class
CBitmapButton in the Class Library Reference. Figure 4.2 shows bitmap buttons in
a dialog box.

91

Programming with MFC

Figure 4.2 Bitmap Buttons

Controls and Dialog Boxes
Normally the controls in a dialog box are created from the dialog template at the time
the dialog box is created. Use Class Wizard to manage the controls in your dialog box.
For details, see Dialog Data Exchange and Validation, Type-Safe Access to Controls
in a Dialog Box, and Mapping Windows Messages to Your Class.

Making and Using Controls

92

You make most controls for dialog boxes in the Visual C++ dialog editor. But you can
also create controls in any dialog box or window. The following topics explain how to
add controls to a dialog box:

• U sing the dialog editor.

• By hand.

• Deriving control classes from existing MFC control classes.

Using the Dialog Editor to Add Controls
When you create your dialog-template resource with the dialog editor, you drag
controls from a controls palette and drop them into the dialog box. This adds the
specifications for that control type to the dialog-template resource. When you
construct a dialog object and call its Create or DoModal member function, the
framework creates a Windows control and places it in the dialog window on screen.

Adding Controls By Hand
To create a control object yourself, you will usually embed the C++ control object in a
C++ dialog or frame-window object. Like many other objects in the framework,
controls require two-stage construction. You should call the control's Create member
function as part of creating the parent dialog box or frame window. For dialog boxes,
this is usually done in OnInitDialog, and for frame windows, in OnCreate.

The following example shows how you might declare a CEdit object in the class
declaration of a derived dialog class and then call the Create member function in
OnInitDialog. Because the CEdit object is declared as an embedded object, it is
automatically constructed when the dialog object is constructed, but it must still be
initialized with its own Create member function.

Chapter 4 Working with Dialog Boxes, Controls, and Control Bars

class CMyDialog public CDialog
{

protected:
CEdit m_edit; II Embedded edit object

public:
virtual BOOlOnlnitDialog();

} ;

The following 0 n I nit 0 i a log function sets up a rectangle, then calls Create to create
the Windows edit control and attach it to the uninitialized CEdit object.

BOOl CMyDialog::OnlnitDialog()
{

CDi al og: :OnlnitDi al og();
CRect rect(85. 110. 180. 210);

m_edit.Create(WS_CHIlD I WS_VISIBlE I WS_TABSTOP I
ES_AUTOHSCROll I WS_BORDER. recto this. ID_EXTRA_EDIT);

m_edit.SetFocus();
return FALSE;

After creating the edit object, you can also set the input focus to the control by calling
the SetFocus member function. Finally, you return 0 from OnlnitDialog to show that
you set the focus. If you return a nonzero value, the dialog manager sets the focus to
the first control item in the dialog item list. In most cases, you'll want to add controls
to your dialog boxes with the dialog editor.

Deriving Controls from a Standard Control
As with any CWnd-derived class, you can modify a control's behavior by deriving a
new class from an existing control class.

To create a derived control class, follow these steps:

1. Derive your class from an existing control class and optionally override the Create
member function so that it provides the necessary arguments to the base-class
Create function.

2. Use ClassWizard to provide message-handler member functions and message-map
entries to modify the control's behavior in response to specific Windows messages.

3. Provide new member functions to extend the functionality of the control
(optional).

U sing a derived control in a dialog box requires extra work. The types and positions
of controls in a dialog box are normally specified in a dialog-template resource. If you
create a derived control class, you cannot specify it in a dialog template since the
resource compiler knows nothing about your derived class. To place your derived
control in a dialog box, follow these steps:

1. Embed an object of the derived control class in the declaration of your derived
dialog class.

93

Programming with MFC

2. Override the OnlnitDialog member function in your dialog class to call the
SubclassDlgItem member function for the derived control.

SubclassDlgItem "dynamically subclasses" a control created from a dialog template.
When a control is dynamically subclassed, you hook into Windows, process some
messages within your own application, then pass the remaining messages on to
Windows. For more information, see the SubclassDlgItem member function of class
CWnd in the Class Library Reference. The following example shows how you might
write an override of OnlnitDialog to call SubclassDlgItem:

BOOl CMyOialog::OnlnitOialog()
{

COialog::OnlnitOialog();
m_wndMyBtn.SubclassOlgltem(IOC_MYBTN, this);
return TRUE;

Because the derived control is embedded in the dialog class, it will be constructed
when the dialog box is constructed, and it will be destroyed when the dialog box is
destroyed. Compare this code to the example in Adding Controls By Hand.

Control Bars

94

Control bars greatly enhance a program's usability by providing quick, one-step
command actions. Control bars include toolbars, status bars, and dialog bars. The
base class of all control bars is CControlBar.

• A toolbar is a control bar that displays a row of bitmapped buttons that activate
commands. Pressing a toolbar button is similar to choosing a menu item. The
buttons can act like pushbuttons, check boxes, or radio buttons. A toolbar is
usually aligned to the top of a frame window, but an MFC toolbar can also be
dragged and "docked" to any other side of its parent window, and it can be
"floated" -placed in a floating mini-frame window. When it is floating, the user
can resize the toolbar. A toolbar can also display "tool tips" as the user moves the
mouse over the toolbar's buttons. A tool tip is a tiny popup window that presents a
short description of the button's purpose.

• A status bar is a control bar with a row of text output panes, or "indicators." The
output panes are commonly used as message lines and as status indicators.
Examples include the command help-message lines that briefly explain the
selected menu or toolbar command and the indicators that indicate the status of
the SCROLL LOCK, NUM LOCK, and other keys. Status bars are usually aligned to the
bottom of a frame window.

• A dialog bar is a control bar with the functionality of a modeless dialog box.
Dialog bars are created from dialog templates and can contain any Windows
control. Dialog bars support tabbing among controls and can be aligned to the top,
bottom, left, or right side of a frame window.

Chapter 4 Working with Dialog Boxes, Controls, and Control Bars

The basic functionality of all three control-bar types is similar. The base class,
CControlBar, provides the functionality for positioning the control bar in its parent
frame window. Because a control bar is usually a child window of a parent frame
window, it is a "sibling" to the client view or MDI client of the frame window. A
control-bar object uses information about its parent window's client rectangle to
position itself. Then it alters the parent's remaining client-window rectangle so that
the client view or MDI client window fills the rest of the client window.

Note If a button on the control bar doesn't have a COMMAND or UPDATE_COMMAND_UI
handler, the button is automatically disabled by the framework.

As of MFC version 4.0, toolbars, status bars, and tool tips are implemented using
Windows 95 functionality instead of the previous implementation specific to MFC.

Toolbars - An Overview
Toolbars display a collection of easy-to-use buttons that represent commands.
App Wizard makes it easy to add a toolbar to your application. Moreover, the toolbar
can:

• Remain stationary along one side of its parent window.

• Be dragged and "docked" by the user on any side or sides of the parent window
you specify.

• Be "floated" in its own mini-frame window so the user can move it around to any
convenient position.

• Be resized while floating.

Note As of MFC version 4.0, toolbars and tool tips are implemented using Windows
95 functionality instead of the previous implementation specific to MFC. For more
information, see the article Toolbars.

For backward compatibility, MFC retains the older toolbar implementation in class
COldToolBar. The documentation for earlier versions ofMFC describe
COldToolBar under CToolBar.

MFC toolbars can also be made to display "tool tips" -tiny popup windows
containing a short text description of a toolbar button's purpose. As the user moves
the mouse over a toolbar button, the tool tip window pops up to offer a hint.

For more information about "dockable" toolbars, see the article Toolbars: Docking
and Floating. For more information about tool tips, see the article Toolbars: Tool
Tips. For additional information about how toolbars have been reimplemented using
the CToolBarCtrl class, and how that affects you, see the article Toolbars.

The buttons in a toolbar are analogous to the items in a menu. Both kinds of user
interface objects generate commands, which your program handles by providing
handler functions. Often toolbar buttons duplicate the functionality of menu

95

Programming with MFC

commands, providing an alternative user interface to the same functionality. Such
duplication is arranged by giving the button and the menu item the same ID.

Once constructed, a CToolBar object creates the toolbar image by loading a single
bitmap that contains one image for each button. App Wizard creates a standard
toolbar bitmap that you can customize with the Visual C++ toolbar editor.

You can make the buttons in a toolbar appear and behave as pushbuttons, check
boxes, or radio buttons.

For more information, see class CToolBar in the Class Library Reference. Also see
the articles Toolbars, Toolbars: Docking and Floating, Toolbars: Tool Tips, Status
Bars, Control Bars, Dialog Bars.

Status Bars

96

A CStatusBar object is a control bar with a row of text output panes, or "indicators."
The output panes commonly are used as message lines and as status indicators.
Examples include the menu help-message lines that briefly explain the selected menu
command and the indicators that show the status of the SCROLL LOCK, NUM LOCK, and
other keys.

As of MFC version 4.0, status bars are implemented using class CStatusBarCtrl,
which encapsulates a Windows 95 status bar control. For backward compatibility,
MFC retains the older status bar implementation in class COldStatusBar. The
documentation for earlier versions of MFC describe COldStatusBar under
CStatusBar.

CStatusBar::GetStatusBarCtrl, a member function new to MFC 4.0, allows you to
take advantage of the Windows common control's support for status bar
customization and additional functionality. CStatusBar member functions give you
most of the functionality of the Windows common controls; however, when you call
GetStatusBarCtrl, you can give your status bars even more of the characteristics of a
Windows 95 status bar. When you call GetStatusBarCtrl, it will return a reference
to a CStatusBarCtrl object. You can use that reference to manipulate the status bar
control.

Figure 4.3 shows a status bar that displays several indicators.

Figure 4.3 A Status Bar

I Save the active document

Like the toolbar, the status-bar object is embedded in its parent frame window and is
constructed automatically when the frame window is constructed. The status bar, like
all control bars, is destroyed automatically as well.

For an example of using a status bar, see the Scribble tutorial program in Tutorials.
For more information, see class CStatusBar in the Class Library Reference. Also see
the articles Toolbars, Dialog Bars, Control Bars.

Chapter 4 Working with Dialog Boxes, Controls, and Control Bars

Dialog Bars
Because it has the characteristics of a modeless dialog box, a CDialogBar object
provides a more powerful toolbar. There are several key differences between a toolbar
and a CDialogBar object. A CDialogBar object is created from a dialog-template
resource, which you can create with the Visual C++ dialog editor and which can
contain any kind of Windows control. The user can tab from control to control. And
you can specify an alignment style to align the dialog bar with any part of the parent
frame window or even to leave it in place if the parent is resized. Figure 4.4 shows a
dialog bar with a variety of controls.

Figure 4.4 A Dialog Bar

In other respects, working with a CDialogBar object is like working with a modeless
dialog box. Use the dialog editor to design and create the dialog resource.

One of the virtues of dialog bars is that they can include controls other than buttons.

While it is normal to derive your own dialog classes from CDialog, you do not
typically derive your own class for a dialog bar. Dialog bars are extensions to a main
window and any dialog-bar control-notification messages, such as BN_ CLICKED or
EN_CHANGE, will be sent to the parent of the dialog bar-the main window.

For more information about dialog bars, see class CDialogBar in the Class Library
Reference.

97

CHAPTER 5

Working with OLE

The OLE classes of the Microsoft Foundation Class Library (MFC) are a set of C++
classes that provide an object-oriented interface to the OLE application programming
interface (API). These OLE classes leverage the class library framework, making it
easy to use OLE with the remainder of the class library, although you can use
portions of the OLE classes without using all of the class library. With Visual C++
version 2.0, the OLE classes were ported to Win32.

The OLE classes add the following components to the class library:

• C++ classes that provide an object-oriented interface to the OLE API.

• Extensions to the document/view architecture to support OLE.

• Extensions to AppWizard for creating programs that use OLE.

• Extensions to ClassWizard for creating and editing automation classes.

• Sample programs that illustrate use of the classes and wizards.

• Online documentation that includes overview, tutorials, encyclopedia articles on
programming topics, and class reference materials.

In this chapter, you'll find information on:

• Overview of OLE

• Features of the OLE classes

• Requirements for using the OLE classes

• Distributing your application

• Getting started with the OLE classes

99

Programming with MFC

Overview of OLE

100

OLE is a technology that allows applications to transfer and share information.

A History of OLE
Originally, OLE was synonymous with the term "compound document" and "OLE"
was an acronym for the phrase "Object Linking and Embedding." OLE (version 1)
was a mechanism for applications that did not have specific knowledge about one
another to work together to create compound documents, embedding objects created
by one application within a document created by another application.

Today, OLE is much more. So much more, in fact, that OLE is no longer an
abbreviation; it is simply the name applied to this communication technology. In
addition to supporting compound documents, OLE supports automation and OLE
controls. There are also significant improvements to compound documents, now
sometimes called "OLE documents."

OLE Features
OLE is an extensible technology. It currently supports OLE documents, OLE
Automation, and OLE controls. Without adversely affecting any current features
supported by OLE, new features can seamlessly be added.

OLE documents support more than simply linking and embedding; for example, in
place activation (visual editing), drag-and-drop editing, and short-cut menus
(context-sensitive menus accessed by the right mouse button). For more information,
see the articles Servers, Containers, and Drag and Drop (OLE).

OLE Automation supports one application exposing objects to be programmatically
manipulated by another application. For example, Microsoft Excel can expose
spreadsheet and chart objects that can be manipulated by a program written using
Visual Basic or Visual C++. For more information, see the articles Automation
Servers and Automation Clients.

OLE and COM
OLE is built upon the Component Object Model (COM), which is a communications
protocol. COM describes manipulating interfaces, reporting status, and the use of the
Registry to resolve universally unique identifiers.

COM is built around interfaces. A COM interface is a specification for interaction
between COM objects. It is a list of semantically related functions (or methods) for
the COM object, each with a known parameter profile and a return type. Once an
interface is defined, it cannot change; any reference to the interface must conform to
that definition. If you use MFC to create your OLE applications, the application
framework will negotiate the OLE interfaces for you. You will only need to supply

Chapter 5 Working with OLE

application-specific functionality for methods provided by these interfaces. For more
information, see Interfaces in OLE 2 Programmer's Reference, Volume 1.

Many of the functions described in OLE interfaces return status code (SCODE)
values. An SCODE is a 32-bit value containing a severity flag, a facility code, and an
informational code. For more information, see Structure of OLE Error Codes in OLE
2 Programmer's Reference, Volume 1.

Each interface and each type of COM object is accessed by a universally unique
identifier (UUID). A UUID is a 128-bit value that is used to uniquely identify an
entity within COM/OLE. These are also known as globally unique identifiers
(GUIDs). Two of the most important kinds of UUIDs are interface identifiers (lIDs)
and class identifiers (CLSIDs).

OLE defines an interface identifier for each interface. The lID is used when
manipulating interfaces. For more information, see IUnknown::Querylnterface in
OLE 2 Programmer's Reference, Volume 1.

A class identifier is associated with each class (type) of OLE object (component). The
CLSID is used in creating objects of a given class. For more information, see The
CLSID Key and Subkeys in OLE 2 Programmer's Reference, Volume 1.

Features of the OLE Classes
The MFC OLE classes supply the following features:

• They are integrated with other parts of MFC.

• They encapsulate much of the complexity of the OLE API in a small set of C++
classes that provide a higher-level interface to OLE.

• They allow you to call OLE API functions directly wherever the OLE classes don't
meet your needs.

The OLE classes support containers, servers, drag and drop, automation, message
filters, compound files, and automatic registration. Explanations of these terms can
be found in the article OLE Overview. If you need access to other portions of the OLE
API, you can work with it directly. A number of tools and sample applications are
also available to help you test your OLE applications. For more information, see the
article Debugging OLE Applications: Tools.

Visual C++ combines key OLE components, including the required header files,
libraries, DLLs, tools, and documentation. A number of sample programs are also
included for testing your applications.

101

Programming with MFC

Requirements for Using the OLE Classes
This product assumes that you are familiar with C++. It is also helpful if you are
familiar with writing applications for Windows and know how to use the Microsoft
Foundation Class Library. Some understanding of OLE architecture will help, but is
not required; for any OLE information you do need, Visual C++ provides OLE
documentation in the WIN32 Software Development Kit (SDK). Additional
information about OLE is available in Kraig Brockschmidt's book Inside OLE 2
(Microsoft Press, 1994).

Distributing Your OLE Application
When you write an application with the OLE classes and distribute it to your
customers, you may also need to distribute some DLL components of the OLE SDK
-and MFC. Which DLLs are required depends on how you write your application
with the class library.

Distributable Components
Your Visual C++ license authorizes you to freely distribute the release mode OLE and
MFC DLLs that are needed to support an OLE application developed using Visual
C++. Both the license and the file \REDIS1\REDISTRB.WRI on the Visual C++ CD
ROM disc list the files that are redistributable. Should there be a discrepancy between
these two lists, assume that the list in REDISTRB.WRI is correct.

Getting Started with the MFC OLE Classes

102

The best place to begin reading about the OLE classes is the article OLE Overview.
OLE Overview introduces the classes and points to related articles about the
concepts, components, and procedures of the OLE classes. For information about how
the articles are structured and how to get the most from them, see the first article,
U sing the Encyclopedia.

For hands-on experience, see the three tutorials for the OLE classes:

• OLE Server Tutorial, which builds a new "Step 7" onto the Scribble
tutorial.presented in Chapters 2 through 11 in Tutorials. The server tutorial begins
in Chapter 12, Creating an OLE Server.

Note The OLE server tutorial is a continuation of the general MFC tutorial, called Scribble.
If you are familiar with MFC programming already, you can begin the server tutorial based
on the Scribble Step 6 files. See the tutorial for details.

• OLE Container Tutorial, which builds CONTAINER, an OLE container
application.

• OLE Automation Server Tutorial, which creates AUTOCLIK, an OLE automation
server, that is an application that can be driven by other applications.

Chapter 5 Working with OLE

The Class Library Overview of the Class Library Reference lists MFC classes by
category, including OLE classes, with brief descriptions designed to help you locate
the class you need.

Note The OLE documentation refers to embedded and linked items as "objects" and refers to
types of items as "classes." To avoid confusion with C++ terminology, the Visual C++ Class
Library Reference uses the term "item" to distinguish the OLE entity from the corresponding
C++ object, and the term "type" to distinguish the OLE category from the C++ class.

103

CHAPTER 6

Developing OLE Controls

The OLE control classes in the Microsoft Foundation Class Library (MFC) are a set
of C++ classes that you use, in combination with a specialized tool set, to develop
OLE controls. The OLE control classes create a framework that supports OLE
functionality, such as in-place activation, OLE automation, and drag and drop, to
create small, powerful custom controls that are also very portable. OLE controls are
used by specialized OLE control containers in current versions of Visual C++, Visual
Basic, and other products. For more information on fundamental OLE control
concepts, see the article OLE Controls.

OLE controls are reusable software components with features that make them an
attractive solution for unique problems such as monitoring a specific aspect of an
application or displaying data values as a pie chart. Important features include:

• Event firing

OLE controls notify a control container of important actions, such as mouse clicks
and data input, by firing events. OLE controls can implement stock events, such as
Click, or custom events unique to a control.

• OLE Automation

OLE controls support OLE Automation by implementing a set of methods and
properties. These methods and properties control the appearance and
characteristics of the control and are accessible to any OLE control container.

• Persistence

OLE controls can save the state of properties and methods to a stream or file. This
state can be used to initialize a new instance of the control or to restore the control
to its previous state.

• Portability between OLE control containers

OLE controls, because they incorporate OLE functionality, can usually be placed
into any OLE control container and work correctly.

105

Programming with MFC

In this chapter, you'll find information on:

• Implementing an OLE control

• Installing the OLE control classes and tools

• Getting started with OLE controls

Implementing an OLE Control

106

An OLE control is implemented as an OLE document object that supports visual
editing. OLE controls have capabilities beyond those of ordinary OLE objects, such as
the ability to fire events.

Frequently, OLE objects require substantial effort to implement. MFC provides a
large part of the required implementation for an OLE control-you need provide
only the implementation code for the control's interfaces and events. You determine:

• How the control is displayed and painted

You determine how the container draws your control when it is active (full
interaction with its container) or inactive (limited interaction with its container).
You also control the appearance when your control is printed or rendered into a
metafile.

• Control properties

A container can access a control's properties through the control's automation
interface. Your application defines what happens when these properties are
changed. You can also design a user interface, called a property page, to allow the
user to access your control's properties at run time.

• Control events

You can assign arguments to control events and define their names. You can also
determine when an event should be fired.

• Control methods

Methods are operations, such as Refresh and DoClick, that can be invoked by the
control's user. You define the arguments and return type for methods supported by
the control.

• Which property states of your control need to be persistent

Persistent properties allow the control's state to be saved to permanent storage.
OLE controls provide functions to serialize any type of control property.

Chapter 6 Developing OLE Controls

When you write an OLE control, your project produces an OLE control file, which is
a dynamic link library (DLL) with an .OCX extension. This file can contain the
implementation of one or more controls and, when registered and loaded, defines the
controls that can be accessed by the user. You can distribute OLE controls that you
develop to other developers and users. For more information, see the article OLE
Controls: Distributing OLE Controls.

Installing OLE Control Classes and Tools
When you install Visual C++, the MFC OLE control classes and retail and debug
OLE control run-time DLLs are automatically installed if OLE Controls are selected
in setup. To install the OLE control development tools, REGSVR32, and Test
Container during Setup, select the Tools button to enable the Details button. Choose
Details and check the OLE Development Tools checkbox. For more information on
Test Container, see the article Test Container.

By default, the OLE control classes and tools are installed in the following
subdirectories:

• BIN

Contains the executables for Test Container and REGSVR32.

• BIN\IDE

Contains the executable for ControlWizard.

• HELP

Contains the Help files for the OLE control development tools.

• MFC\INCLUDE

Contains the include files required to develop OLE controls.

• MFC\SRC

Contains the source code for specific OLE control classes in the class library.

• MFC\LIB

Contains the libraries required to develop OLE controls.

• SAMPLES\MFC\CONTROLS

Contains a set of OLE control samples.

107

Programming with MFC

Getting Started with OLE Controls

108

The best place to begin reading about OLE controls is the article OLE Controls. This
article introduces the OLE control classes and points to related articles about the
concepts, components, and procedures for developing OLE controls. For information
about how the articles are structured and how to get the most from them, see the first
article, Using the Encyclopedia.

For hands-on experience, see the Circle Tutorial in Tutorials. This tutorial describes
the typical development cycle of an OLE control. It includes steps on adding events,
methods and properties, property pages, and using fonts and pictures. The Circle
tutorial begins in Chapter 20.

CHAPTER 7

Working with Databases

The Microsoft Foundation Class Library (MFC) supplies two distinct sets of database
classes. These sets of classes are for:

• Programming with Data Access Objects (DAO).

• Programming with Open Database Connectivity (ODBC).

Database Class Components
Both sets of classes provide a high-level application programming interface (API) for
access to databases from C++ and Microsoft Windows. Although you can use the
database classes without some parts of the class library application framework, such
as documents and views, in most cases you'll probably want to take advantage of the
full class library.

The database classes add the following components to the class library:

• C++ database classes that supply a high-level API for accessing databases through
either DAO or ODBC.

• Extensions to AppWizard and ClassWizard for creating application-specific
database classes.

• Sample programs that illustrate use of the classes and the wizards.

• Online documentation that includes overviews, tutorials, encyclopedia articles on
programming topics, and class reference materials.

To locate these components, see the encyclopedia articles Database Overview, DAO
and MFC, and ODBC and MFC.

What This Database Chapter Contains
In this chapter, you'll find information on:

• When you might want to use a database with your application.

• What the MFC database classes are.

• Whether you should use the DAO classes or the ODBC classes.

109

Programming with MFC

• Information about installing either or both.

When Should You Use the Database Classes?
Many applications require data storage in a database, and many other applications
could benefit from using a database. A database gives you a flexible data repository
that can be accessed, in many cases, by multiple users and multiple applications.
Databases can store large amounts of data and provide fast access to the data for
queries and updates.

What Are the Database Classes?
Both sets of MFC database classes supply high-level abstractions that make database
programming easier. You could choose to use DAO or ODBC directly, but writing to
their APIs is considerably more complex and challenging than using the MFC
classes. This is especially true if you are writing small, relatively simple applications.
Ideally, you might wish for the ease of Microsoft Visual Basic or Microsoft Access
Basic without losing the power and flexibility of C++.

Both sets of MFC classes supply a database programming model very similar to the
model used in Microsoft Visual Basic and Microsoft Access Basic. You work with
familiar objects that encapsulate and simplify a great deal of the underlying
functionality, hiding much of the complexity (unless you need it, in which case you
can still use the APIs directly). For example, to create a simple form-based
application for viewing records or data entry, you use a database object to manage
your connection to a database management system (DBMS). And you use one or
more recordset objects to run queries and manage the resulting sets of records.

For more information, see the encyclopedia article Database Overview and its
companion articles DAO and MFC and ODBC and MFC. The article DAO: Writing
a Database Application might be useful as well, even if you are using the ODBC
classes.

Which Classes: DAO or ODBC?

110

Whether you use the DAO classes or the ODBC classes depends on your needs.
Generally speaking, the DAO classes provide more extensive support than the ODBC
classes, including the ability to manipulate the structure of your databases directly
from the MFC classes rather than calling the underlying implementation (DAO or
ODBC).

However, if you're working entirely with ODBC data sources, especially in
client/server situations, the ODBC classes might be more appropriate for your needs.

MFC still supports the ODBC classes, which are designed for a different set of needs,
but you can also access ODBC data sources via the DAO classes in addition to taking
advantage of the Microsoft Jet database engine. If you don't require the extra
functionality of the DAO classes, you can continue to use the ODBC classes.

Chapter 7 Working with Databases

The two sets of classes present a sufficiently similar interface that porting from one to
the other is relatively easy.

Note The MFC DAO classes and DAO require additional space on your hard disk.

For additional guidelines, see the encyclopedia article Database Overview.

Installing MFC Database Support
When you run Setup for Visual C++, you can choose to install database components
or not.

If you do choose database components, you can select any ODBC drivers you need.
Note that you might need ODBC drivers regardless of whether you plan to use DAO
or ODBC, if you are working with ODBC data sources. If you select any drivers, they
are installed on your hard disk, along with the ODBC driver manager and the ODBC
administrator program.

In addition, Setup installs necessary components from the DAO and ODBC software
development kits (SDKs).

ODBC Drivers Installed
If you select a Typical Installation, Setup installs the following ODBC drivers:

• Microsoft FoxPro

• Microsoft Access

• dBASE

• Microsoft SQL Server

If you select a Custom Installation, you can also install the following additional
ODBC drivers:

• Text files

• Paradox

• Microsoft Excel

See the article ODBC Driver List for a list of ODBC drivers included in this version
of Visual C++ and for information about obtaining additional drivers.

DAO SDK Components Installed
The following components of the DAO SDK are installed by default:

• Microsoft Jet (3.x MDB)

• Microsoft Jet (1.x, 2.x)

• All of the database formats listed under Databases You Can Access with DAO in
the article Database Overview

111

Programming with MFC

112

If you wish to install other DAO SDK components, such as the DAO SDK C++
classes, example files, or the Windows Help version of the DAO Help file, run
SETUP.EXE from the \DAOSDK directory of the Visual C++ CD-ROM disc.

ODBC SDK Components Installed
Visual C++ version 4.0 includes many key ODBC components, including the
required header files, libraries, DLLs, and tools. These include the ODBC
Administrator control panel application, which you use to configure ODBC data
sources, and the ODBC Driver Manager. Also included are ODBC drivers for many
popular DBMSs, as listed in ODBC Drivers Installed.

Visual C++ also includes the full ODBC SDK, which gives you additional
information and tools for writing and testing ODBC drivers.

CHAPTER 8

U sing the General-Purpose Classes

This chapter summarizes the use of the general-purpose classes in the Microsoft
Foundation Class Library (MFC). These classes provide useful services, including:

• Services provided by deriving your classes from class CObject

• File input/output with class CFile

• Collection classes for storing aggregate data

• Strings

• Time and date

• Diagnostic services

• Exception handling

CObject Services
The CObject base class provides the following services to objects of its derived
classes:

• Object diagnostics

• Run-time class information

• Object persistence

Some of these services are available only if you use certain macros in derived class
declarations and implementations. To make use of the services listed above and
explained in the following topics, you should seriously consider deriving most of your
nontrivial classes from CObject. Many of the MFC classes are so derived, including
almost all of the application architecture classes that make up the framework. (The
various categories of classes that make up the framework are listed in the MFC
hierarchy diagrams.)

113

Programming with MFC

Object Diagnostics
MFC provides many diagnostic features. Some object diagnostics include diagnostic
dump context and supplied by the CObject class. For global diagnostic features, see
Memory Diagnostics.

Diagnostic Dump Context
The CDumpContext class works in conjunction with the Dump member function of
the CObject class to provide formatted diagnostic printing of internal object data.
CDumpContext provides an insertion «<) operator that accepts, among other types,
CObject pointers; standard types, such as BYTE and WORD; and CString and
CTime objects.

A predefined CDumpContext object, afxDump, is available in the Debug version of
the Microsoft Foundation classes (#define_DEBUG is required in your source code).
The afxDump object allows you to send CDumpContext information to the debugger
output window or to a debug terminal. For more information about afxDump, see
Macros and Globals in the Class Library Reference, and Technical Note 12 under
MFC Technical Notes in Books Online.

Object Validity Checking
You override the base class AssertValid member function in your derived class to
perform a specific test of your object's internal consistency. Call the
ASSERT_VALID macro, passing it a pointer to any CObject, to call that object's
As s e rt Val i d function. The implementation of an As s e rt Val i d function usually
includes calls to the ASSERT macro. For more information about AssertValid, see
the article Diagnostics.

Run-Time Class Information

114

MFC offers the developer some optional features that make it possible to do run-time
type checking.

Note For related information on Run-Time Type Information support in the C++ language, see
Run-Time Type Information in the C++ Language Reference. However, MFC does not use the
C++ run-time type information (RTTI) mechanism.

If you derive a class from CObject and include one of three macros
(IMPLEMENT_DYNAMIC, IMPLEMENT _ DYNCREATE, or
IMPLEMENT_SERIAL), you can use member functions to:

• Access the class name at run time.

• Safely cast a generic CObject pointer to a derived class pointer.

Run-time class information is particularly valuable in the Debug environment
because it can be used to detect incorrect casts and to produce object dumps with class

Chapter 8 Using the General-Purpose Classes

names included. For more information, see the article CObject Class: Accessing Run
Time Class Information.

Note To access run-time type information, you must use the DECLARE_DYNAMIC,
DECLARE_DYNCREATE, or DECLARE_SERIAL macro in your class declaration, and you
must use the corresponding IMPLEMENT_DYNAMIC, IMPLEMENT_DYNCREATE, or
IMPLEMENT_SERIAL macro in your class implementation.

Run-time class information is, of course, available in the Release environment.
During serialization, the run-time class information is used to store the object's type
with the object data.

Run-time class testing is not meant to be a substitute for using virtual functions added
in a common base class. Use the run-time type information only when virtual
functions are not appropriate.

Object Persistence
Class CObject, in conjunction with class CArchive, supports "object persistence"
through a process called serialization. Object persistence allows you to save a
complex network of objects in a permanent binary form (usually disk storage) that
persists after those objects are deleted from memory. Later you can load the objects
from persistent storage and reconstruct them in memory. Loading and saving
serializable data is mediated by an "archive" object of class CArchive.

To create your own serializable CObject-derived class, you must use the
DECLARE_SERIAL macro in the class declaration, and you must use the
corresponding IMPLEMENT_SERIAL macro in the class implementation. If you
have added new data members in your derived class, you must override the base class
Serialize member function to store object data to the archive object and load object
data from it. Once you have a serializable class, you can serialize objects of that class
to and from a file via a CArchive object.

A CArchive object provides a type-safe buffering mechanism for writing or reading
serializable objects to or from a CFile object. Usually the CFile object represents a
disk file; however, it can be also be a memory file (CMemFile object), perhaps
representing the Clipboard. A given CArchive object either stores (writes, serializes)
data or loads (reads, de serializes) data, but never both. Thus two successively created
CArchive objects are required to serialize data to a file and then deserialize it back
from the file. The life of a CArchive object is limited to one pass-either writing an
object to a file or reading an object from a file.

When storing an object to a file, an archive attaches the CRuntimeClass name to the
object. Then, when another archive loads the object from a file, the archive uses the
CRuntimeClass name of the object to dynamically reconstruct the object in memory.
A given object may be referenced more than once as it is written to the file by the
storing archive. The loading archive, however, will reconstruct the object only once.
The details about how an archive attaches CRuntimeClass information to objects and

115

Programming with MFC

reconstructs objects, taking into account possible multiple references, are described in
Technical Note 2 under MFC Technical Notes in Books Online.

As you serialize data to an archive, the archive accumulates the data until its buffer is
full. When the buffer is full, the archive then writes its buffer to the CFile object
pointed to by the CArchive object. Similarly, as you read data from an archive, the
archive reads data from the file to its buffer, and then from the buffer to your
de serialized object. This buffering reduces the number of times a hard disk is
physically read, thus improving your application's performance.

There are two ways to create a CArchive object. The most common way, and the
easiest, is to let the framework create one for your document on behalf of the Save,
Save As, and Open commands on the File menu. The other way is to explicitly create
the CArchive object yourself.

To let the framework create the CArchive object for your document, simply
implement the document's Ser; al; ze function, which writes and reads to and from
the archive. You also have to implement Ser; al; ze for any CObject-derived objects
that the document's Ser; al; ze function in tum serializes directly or indirectly.

There are other occasions besides serializing a document via the framework when
you may need a CArchive object. For example, you might want to serialize data to
and from the Clipboard, represented by a CMemFile object. Or, you might want to
develop a user interface for saving files that is different from the one offered by the
framework. In this case, you can explicitly create a CArchive object. You do this the
same way the framework does. For more detailed information, see the articles Files
and Serialization (Object Persistence).

The File Classes

116

The CFile family of classes provides a C++ programming interface to files. The
CFile class itself gives access to low-level binary files, and the CStdioFile class gives
access to buffered "standard I/O" files. CStdioFile files are often processed in "text
mode," which means that newline characters are converted to carriage retum
linefeed pairs on output.

New CFile and its derived classes now make the filename available. See the
GetFileName member function.

CMemFile supports "in-memory files." The files behave like disk files except that
bytes are stored in RAM. An in-memory file is a useful means of transferring raw
bytes or serialized objects between independent processes.

Because CFile is the base class for all file classes, it provides a polymorphic
programming interface. If a CStdioFile file is opened, for example, its object pointer
can be used by the virtual Read and Write member functions defined for the CFile
class. The CDumpContext and CArchive classes, described previously, depend on
the CFile class for input and output. For more information, see the article Files.

Chapter 8 Using the General-Purpose Classes

The Collection Classes

Lists

MFC contains a number of ready-to-use lists, arrays, and maps that are referred to as
"collection classes." A collection is a very useful programming idiom for holding and
processing groups of class objects or groups of standard types. A collection object
appears as a single object. Class member functions can operate on all elements of the
collection.

MFC supplies two kinds of collection classes:

• Collection templates

• Nontemplate collections

The collection template classes are based on C++ templates, but the original
collection classes released with MFC version 1.0-not based on templates-are still
available.

Most collections can be archived or sent to a dump context. The Dump and Serialize
member functions for CObject pointer collections call the corresponding functions
for each of their elements. Some collections cannot be archived-for example,
pointer collections.

Note The collection classes CObArray, CObList, CMapStringToOb, and CMapWordToOb
accept CObject pointer elements and thus are useful for storing collections of objects of
CObject-derived classes. If such a collection is archived or sent to a diagnostic dump context,
then the element objects are automatically archived or dumped as well. For more about
collection classes, including details about which classes can be serialized and dumped, see
the article Collections: Choosing a Collection Class.

When you program with the application framework, the collection classes will be
especially useful for implementing data structures in your document class. For an
example, see the document implementation in the Scribble tutorial contained in
Tutorials.

In addition to "list" class templates, MFC supplies predefined list classes for CString
objects, CObject pointers, and void pointers. A list is an ordered grouping of
elements. New elements can be added at the head or tail of the list, or before or after
a specified element. The list can be traversed in forward or reverse sequence, and
elements can be retrieved or removed during the traversal.

Arrays
In addition to "array" class templates, MFC supplies predefined array classes for
bytes, words, doublewords, CString objects, CObject pointers, and void pointers. An
array implemented this way is a dynamically sized grouping of elements that is
directly accessible through a zero-based integer subscript. The subscript ([]) operator

117

Programming with MFC

can be used to set or retrieve array elements. If an element above the current array
bound is to be set, you can specify whether the array is to grow automatically. When
growing is not required, array collection access is as fast as standard C array access.

Maps
A "map" is a dictionary that maps keys to values. In addition to map class templates,
predefined map classes support CString objects, words, CObject pointers, and void
pointers. Consider the CMapWordToOb class as an example. A WORD variable is
used as a key to find the corresponding CObject pointer. Duplicate key values are not
allowed. A key-pointer pair can be inserted only if the key is not already contained in
the map. Key lookups are fast because they rely on a hashing technique.

The CString Class
The CString class supports dynamic character strings. CString objects can grow and
shrink automatically, and they can be serialized. Member functions and overloaded
operators add Basic-like string-processing capability. These features make CString
objects easier to use than C-style fixed-length character arrays. Conversion functions
allow CString objects to be used interchangeably with C-style strings. Thus a
CString object can be passed to a function that expects a pointer to a constant string
(const char*) parameter.

As of MFC version 4.0, CString uses reference counting for efficient return-by-value
and pass-by-value. For more information, see the article Strings.

CString is enabled for both multibyte character sets (MBCS, also known as double
byte character sets, DBCS) and Unicode. CString now also supplies functionality
similar to sprintf with the Format member function and supports reducing string
storage overhead with the FreeExtra member function.

Note Class CString is not derived from class CObject.

Like other Microsoft Foundation classes, the CString class allocates memory on the
heap. You must be sure that CString destructors are called at appropriate times to
free unneeded memory. There is no automatic "garbage collection" as there is in
Basic. For more information about CString, see the Class Library Reference and the
article Strings.

The CTime and CTimeSpan Classes

118

In addition to the CTime and CTimeSpan classes, which have been part of MFC
from version 1.0, as of version 4.0 you can also use class COleDateTime. You will
probably want to use the new class for most purposes.

The CTime class encapsulates the run-time time _ t data type. Thus it represents
absolute time values in the range 1970 to 2036, approximately. There are member

Chapter 8 Using the General-Purpose Classes

functions that convert a time value to years, months, days, hours, minutes, and
seconds. The class has overloaded insertion and extraction operators for archiving
and for diagnostic dumping. For Win32 support, there are also CTime constructors
based on the Win32 SYSTEMTIME and FILETIME structures. The
SYSTEMTIME-based constructor is the most convenient to use with Win32.

The CTimeSpan class extends time _ t by representing relative time values. When one
CTime object is subtracted from another one, the result is a CTimeSpan object. A
CTimeSpan object can be added to or subtracted from a CTime object. A
CTimeSpan value is limited to the range of ± 68 years, approximately. For more
information about CTime and CTimeSpan, see the Class Library Reference and the
article Date and Time.

Note Classes CTime and CTimeSpan are not derived from class CObject.

Diagnostic Services in MFC
The Microsoft Foundation Class Library provides diagnostic services that make it
easier to debug your programs. These services include macros and global functions
that allow you to trace your program's memory allocations, dump the contents of
objects during run time, and print debugging messages during run time. Most of
these services require the Debug version of the library and thus should not be used in
released applications. For a detailed description of the functions and macros
available, see the article Diagnostics and the overview of Macros and Globals in the
Class Library Reference.

Diagnostics for Memory
Many applications use the C++ new operator to allocate memory on the heap. MFC
provides a special Debug version of new that inserts extra control bytes in allocated
memory blocks. These control bytes, together with the run-time class information that
results from CObject derivation, allow you to analyze memory-allocation statistics
and detect memory-block bounds violations. A memory dump can include the source
filename and the line number of the allocated memory and, in the case of objects
from CObject-derived classes, the name of the class and the output from its Dump
function. For more information, see Memory Diagnostics in the article Diagnostics:
Detecting Memory Leaks.

Important As of MFC version 4.0, MFC uses the same debug heap as the C run-time library.
For more information, see Chapter 4, Debug Version of the C Run-Time Library in the Run
Time Library Reference.

Tip You can activate the debug version of new on a per-CPP file basis by #defining
DEBUG_NEW.

119

Programming with MFC

Diagnostic Output
Many programmers want diagnostic output statements in their programs, particularly
during the early stages of development. The TRACE statement acts like printf
except that the TRACE code is not generated by the compiler with the Release
version of the library. In the Windows environment, debugging output goes to the
debugger if it is present.

Important For important information on using TRACE, see the Macros and Globals section of
the Class Library Reference and Technical Note 7 under MFC Technical Notes in Books
Online.

You can use the afxDump dump context object for stream-style dumping of standard
types as well as MFC objects. If you use afxDump, be sure to bracket references with
#ifdef _DEBUG and #endif statements. For more information on afxDump, see the
article Diagnostics: Dumping Object Contents.

Assertions
In the Debug environment, the ASSERT macro evaluates a specified condition. If the
condition is false, the macro displays a message in a message box that gives the
source filename and the line humber and then terminates the program. In the Release
environment, the ASSERT statement has no effect.

VERIFY, a companion macro, evaluates the condition in both the Debug and
Release environments. It prints and terminates only in the Debug environment.

Classes derived from CObject, directly or indirectly, can also override the
AssertValid member function to test the internal validity of objects of the class. For
an example, see Object Validity Checking.

Note As of version 4.0, MFC uses the C run-time library for assertions, which
results in some changes to assertion message formatting. Assertion message boxes
now include the application (.EXE) name, the filename, and the line number.

Handling Exceptions

120

MFC uses c++ exceptions as proposed by the ANSI C++ standard. The MFC
exception macros used in previous versions of MFC are provided for backward
compatibility with existing MFC applications. You can choose to use either C++
exceptions or the original MFC exception mechanism. These macros allow you to
deal with abnormal conditions that are outside the program's control. Abnormal
conditions include low memory, I/O errors, and attempted use of an unsupported
feature. They do not include programming errors or normally expected conditions
such as an end-of-file condition. In general, you can consider an uncaught exception
to be a bug that remains in your program after shipping.

Chapter 8 Using the General-Purpose Classes

In most cases, you should use the C++ exception mechanism rather than MFC's
original macro-based mechanism. If you are programming for Windows NT, you
should use C++ exceptions instead of Windows NT structured exceptions (SEH).

Exception handling in MFC relies on "exception objects" and uses standard C++
exceptions. The process starts with the interruption of normal program execution in
response to a throw expression. Execution resumes at the appropriate catch
statement leading into code that presumably deals with the abnormal condition.
Exception objects can include standard C++ data types as well as objects of classes
derived from CException. CException-based exception objects differentiate the
various kinds of exceptions and are used for communication.

Note MFC now supports C++ exceptions and the try, catch, and throw keywords. For more
information, see the article Exceptions.

This exception-handling scheme eliminates the need for extensive error testing after
every library function call. If, for example, you enclose your entire program in an
exception-handling block, then you don't have to test for low memory after each
statement that contains the new operator.

If you don't provide try and catch exception-processing code in your classes,
exceptions will be caught in the Microsoft Foundation code. This results in
termination of the program through the global function AfxTerminate, which
normally calls the run-time function abort. However, if you use the
AfxSetTerminate function, the effect of AfxTerminate is changed. When
programming for Windows, it is important to remember that exceptions cannot cross
the boundary of a "callback." In other words, if an exception occurs within the scope
of a message or command handler, it must be caught there, before the next message is
processed. If you do not catch an exception, the CWinApp member function
ProcessWndProcException is called as a last resort. This function displays an error
message and then continues processing. You can customize the default handling of
uncaught exceptions by overriding CWinApp::ProcessWndProcException.

For exception-processing examples and a more detailed explanation of error
categories, see the article Exceptions. For a detailed description of the MFC-specific
functions and macros available, see the Macros and Globals section in the Class
Library Reference. For a general discussion of C++ exception handling, see
Chapter 7, C++ Exception Handling, in Programming Techniques.

121

Main Articles:
Using the Encyclopedia 125
App Wizard 128
ClassWizard 150
Clipboard 175
CObject Class 180
Collections 186
Database Overview 334
Date and Time 348
Debugging 353
Diagnostics 357
Dynamic-Link Libraries (DLLs) 377
Exceptions 402
Files 433
Help 437
Library Versions 458
Memory Management 466
Message Map 477
MFC 486
OLE Controls 550
OLE Overview 623
Printing 629
Property Sheets 649
Serialization (Object Persistence) 729
Strings 756
Toolbars 770
Tools for MFC Programming 778

PAR T 2

MFC Encyclopedia

U sing the Encyclopedia
The programming articles show you how to accomplish specific tasks and explain
important topics in more detail than is possible in the reference or the tutorial. The
articles are available both online and in print. Online, they are linked with the
reference and with each other, to make browsing easy and to let you find your own
path through the topics. In print, the articles are cross-referenced in the index.

This article explains:

• How the articles are structured

• What the articles contain

• Where to begin

How the Articles Are Structured
The enyclopedia is hierarchical, with the following structure:

• At the top level, there are main articles arranged in alphabetical order.

• Below most of the main articles are clusters of related "child" articles. Child
articles are arranged logically-following their main article-rather than
alphabetic all y.

The title of each child article begins with the name of its parent main article so you
can always find your way back. For example, the article Class Wizard: OLE Support
is a child article of a main Class Wizard article.

Articles also have the following helpful navigation features:

• Each main article usually ends with a list of its child articles.

Online, these are "jumps" for easy access to the articles.

• Most articles contain numerous cross-references to other articles and to related
information in the reference.

• Books Online provides scrollbars and browse buttons so you can easily read an
article or group of articles straight through.

What the Articles Contain
Article content is of two types:

• Architectural information

• Procedural information

Architectural articles explain how some part of the class library works. Each article
covers a conceptual topic, such as "how documents and views are created," "how

U sing the Encyclopedia

125

Using the Encyclopedia

OLE servers and containers interact," or "how database updates work." Conceptual
articles give you a foundation as you work out your own solution using the many
facilities of the Microsoft Foundation Class Library.

Procedural articles detail the steps for performing a task. Each article explains
starting conditions, steps to follow, and the results you can expect at the end.
Procedural articles mark out the "beaten path"-the common tasks that most
programmers will need to perform. Most such tasks are of a beginning or
intermediate level of difficulty.

Where to Begin
If you are primarily interested in:

This topiC ...

Database topics, including both Open
Database Connectivity (ODBC) and Data
Access Objects (DAO)

Debugging and diagnostics

MFC in general, 32-bit programming, or
porting to 32 bit

OLE topics

OLE controls

Windows Sockets programming

Begin with the article ...

Database Overview (under "D")

Debugging

MFC

OLE Overview

OLE Controls

Windows Sockets in MFC: Overview

For other MFC programming topics, look up the topic you are interested in. For
example, if you are interested in how to use Class Wizard, begin with the article titled
Class Wizard.

126

Activation
This article explains the role of "activation" in the visual editing of OLE items. After
a user has embedded an OLE item in a container document, it may need to be used.
To do this, the user double-clicks the item, which activates that item. The most
frequent activity for activation is editing. Many current OLE items, when activated
for editing, cause the menus and toolbars in the current frame window to change to
reflect those belonging to the server application that created this item. This behavior,
known as "in-place activation," allows the user to edit any embedded item in a
compound document without leaving the container document's window.

It is also possible to edit embedded OLE items in a separate window. This will
happen if either the container or server application does not support in-place
activation. In this case, when the user double-clicks an embedded item, the server
application is launched in a separate window and the embedded item appears as its
own document. The user edits the item in this window. When editing is complete, the
user closes the server application and returns to the container application.

As an alternative, the user can choose "open editing" with the <object> Open
command on the Edit menu. This opens the object in a separate window.

Note Editing embedded items in a separate window is standard behavior in version 1 of OLE,
and some OLE applications may support only this style of editing.

In-place activation promotes a "document-centric" approach to document creation.
The user can treat a compound document as a single entity, working on it without
switching between applications. However, in-place activation is used only for
embedded items, not for linked items: they must be edited in a separate window. This
is because a linked item is actually stored in a different place. The editing of a linked
item takes place within the actual context of the data, that is where the data is stored.
Editing a linked item in a separate window reminds the user that the data belongs to
another document.

See Also Containers, Servers

Activation: Verbs
This article explains the role primary and secondary verbs play in OLE activation.

Usually, double-clicking an embedded item allows the user to edit it. However, certain
items don't behave this way. For example, double-clicking an item created with the
Sound Recorder application does not open the server in a separate window; instead, it
plays the sound.

The reason for this behavior difference is that Sound Recorder items have a different
"primary verb." The primary verb is the action performed when the user double
clicks an OLE item. For most types of OLE items, the primary verb is Edit, which

Activation

127

Administrator, ODBC

launches the server that created the item. For some types of items, such as Sound
Recorder items, the primary verb is Play.

Many types of OLE items support only one verb, and Edit is the most common one.
However, some types of items support multiple verbs. For example, Sound Recorder
items support Edit as a secondary verb.

Another verb used frequently is Open. The Open verb is identical to Edit, except the
server application is launched in a separate window. This verb should be used when
either the container application or the server application does not support in-place
activation.

Any verbs other than the primary verb must be invoked through a submenu command
when the item is selected. This submenu contains all the verbs supported by the item
and is usually reached by the typename Object command on the Edit menu. For
information on the type name Object command, see the article Menus and Resources:
Container Additions.

The verbs a server application supports are listed in the Windows registration
database. If your server application is written with the Microsoft Foundation Class
Library, it will automatically register all verbs when the server is started. If not, you
should register them during the server application's initialization phase. For more
information, see the article Registration.

See Also Activation, Containers, Servers

Administrator, ODBC
See the articles Data Source: Managing Connections (ODBC) and ODBC
Administrator.

Application Framework
The Microsoft Foundation Class Library (MFC). For more information, see the article
MFC.

AppWizard

128

AppWizard lets you configure the skeleton of a new C++ application that uses the
Microsoft Foundation Class Library (MFC).

To run AppWizard, choose the New command from the File menu in Visual C++. In
the New dialog box, select the file type "Project Workspace." In the New Project
Workspace dialog box, choose MFC AppWizard (exe) in the Type box. (If you're
building an MFC extension DLL, choose MFC AppWizard (dll) instead.) You can
also use App Wizard to insert a new project within your project workspace. From the
Insert menu, choose Project. Then select one of the App Wizard types from the Insert
Project dialog box.

For general information about using App Wizard, see Chapter 1, Creating
Applications Using AppWizard in the Visual C++ User's Guide.

Custom AppWizards
As of Visual C++ version 4.0, you can build your own custom versions of
App Wizard. This lets you create wizards specialized to create the features you need.
For details, see Creating Custom App Wizards in Chapter 25 of the Visual C++
User's Guide.

AppWizard Features
AppWizard lets you configure the skeleton application with the following options:

• Specify a Visual C++ project name and directory.

• Specify a project type. You can create a project for an executable application
(.EXE) or for a dynamic link library (.DLL).

AppWizard supports the new DLL model in MFC, and you can create a regular
DLL or an MFC extension DLL. Your regular DLL can use MFC either statically
or shared. See the article Dynamic-Link Libraries (DLLs).

• Specify an application type: single document interface (SDI), multiple document
interface (MDI), or dialog-based. The dialog-based option lets you easily use a
dialog box as your application's user interface.

• Specify a language (locale) for your resources. The default is U.S. English.

New Feature
• Specify database options, either ODBC-based or DAO-based. You can:

• Specify minimal support by including the correct header files and link libraries,
or you can derive your view class from CRecordView (ODBC) or
CDaoRecordView (DAO) for a form-based application.

• Provide a user interface for opening and saving disk files in addition to
accessing a database from the same application.

• Specify a data source to connect to and which tables you want to access.

• Specify OLE options: your application can be a container, a mini-server, a full
server, or both a container and a server, and it can have OLE Automation support.

Tip To get an OLE in-proc server, choose OLE Automation support for your DLL project
(which must be a regular DLL; it can link statically or dynamically to MFC). Automating an
MFC extension DLL mainly provides only an .DDL file.

New Feature
• Specify support for OLE compound files.

New Feature
• Specify support for OLE controls. See the article OLE Control Containers:

Manually Enabling OLE Control Containment.

AppWizard

129

AppWizard

130

• Specify whether you want:

• A toolbar or a status bar. By default, the toolbar is an MFC "dockable" toolbar,
a new feature in MFC version 3.0.

• An About dialog box (in dialog-based applications).

• Support for printing and print preview.

• Support for context-sensitive help. This support has been updated for Windows
95.

• Support for 3D controls.

• Helpful source-file comments to guide where you add your own code.

New Feature
• Specify whether you want support for Windows Open System Architecture

(WOSA) components: MAPI or Windows Sockets. Windows Sockets and OLE
Automation are available in DLLs as well as executable applications.

• Specify which styles and captions you want for the main frame and child window.

• Specify document template strings.

• Specify whether you want splitter window support.

• Specify the number of files listed in the most-recently-used (MRU) file list on the
File menu.

• Specify whether you want to link with the MFC libraries statically or dynamically.
Linking dynamically with AFXDLL (MFC in a DLL) reduces the size of your
executable file and lets several applications share a single copy of MFC at run
time. By default, App Wizard provides the dynamic linking support.

• Specify the names of your application's classes and what class you derive your
view class from. New view classes are available, including CTreeView,
CListView, CRichEditView, and CDaoRecordView.

Tip To select CRichEditView, your application must be an OLE container. If you didn't
select the Container option, or Both Container and Server, on the OLE options page in
AppWizard, the wizard makes that change for you when you select CRichEditView as your
base view class.

For a description of the most commonly used App Wizard features, see Chapter 1,
Creating Applications Using AppWizard, in the Visual C++ User's Guide.

The following articles explain other aspects of using App Wizard, including database
and OLE support:

• App Wizard: Files Created

• App Wizard: Database Support

• AppWizard: OLE Support

App Wizard: Files Created
This article describes the files that App Wizard creates for you, depending on which
options you've chosen.

The article first describes the core files common to all AppWizard-created
applications and then describes files that are added when you select toolbar and Help
support. Topics include:

• File and class naming conventions

• Standard App Wizard files

• Precompiled header files

• Context-sensitive help files

• App Wizard files added by options

Tip You'll undoubtedly want to examine the source code files you created. To orient you,
AppWizard also creates a text file, README.TXT, in your new application directory. This file
explains the contents and uses of the other new files created by AppWizard for your
application, reflecting your option choices.

File and Class Naming Conventions
In the rest of this article, filenames and class names that AppWizard creates based on
the project name you supply are shown as:

PROJNAMExxx.eee

CProjnameXxx

where xxx is the word View, Doc, Set, and so on, and eee is the filename extension.
App Wizard no longer truncates the project name, so you get whatever you entered as
a project name in full. Support for long filenames in Windows 95 and Windows NT
eliminates the need for truncated names.

Standard AppWizard Files
The following categories of standard files created by App Wizard are described in this
article:

• Project files and makefiles

• Application source and header files

• Resource files

Other files created include:

• Precompiled header files

• Context-sensitive help files

• App Wizard files added by options

AppWizard

131

AppWizard

132

Project Files and Makefiles
PRJNAME.MAK This is the project file for your MFC project. It is also an

NMAKE-compatible file.

PRJNAME.CLW This file contains information used by ClassWizard to edit existing
classes or add new classes. Class Wizard also uses this file to store information
needed to create and edit message maps and dialog data maps, and to create
prototype member functions.

Application Source and Header Files
Depending on the type of application-single document, multiple document, or
dialog-based-AppWizard creates some of the following application source and
header files:

PRJNAME.H This is the main include file for the application. It contains all global
symbols and #include directives for other header files.

PRJNAME.CPP This file is the main application source file. It creates one object of
the class CPrjnameApp (which is derived from CWinApp) and overrides the
Initlnstance member function.

CPr j n ameApp : : I n it Ins ta n ce does several things. It registers document templates,
which serve as a connection between documents and views, creates a main frame
window, and creates an empty document (or opens a document if one is specified
as a command-line argument to the application).

IPFRAME.CPP, IPFRAME.H These files are created if the Mini-Server or Full
Server option is selected in AppWizard's OLE Options page (step 3 of 6). The files
derive and implement the in-place frame window class, named ClnPlaceFrame,
used when the server is in-place activated by an OLE container application.

MAINFRM.CPP, MAINFRM.H These files derive the CMainFrame class from
either CFrameWnd (for SDI applications) or CMDIFrameWnd (for MDI
applications). The CMainFrame class handles the creation of toolbat buttons and
the status bar, if the corresponding options are selected in AppWizard's
Application Options page (step 4 of 6).

CHILDFRM.CPP, CHILDFRM.H These files derive the CChiidFrame class from
CMDIChildWnd. The CChiidFrame class is used for MDI document frame
windows. These files are always created if you select the MDI option.

PROJNAMEDLG.CPP, PROJNAMEDLG.H These files are created if you choose a
dialog-based application. The files derive and implement the dialog class, named
CProjnameDl g, and include skeleton member functions to initialize a dialog and
perform dialog data exchange (DDX). Your About dialog class is also placed in
these files instead of in PROJNAME.CPP.

PROJNAMEDOC.CPP, PROJNAMEDOC.H These files derive and implement the
document class, named CProjnameDoc, and include skeleton member functions to

initialize a document, serialize (save and load) a document, and implement
debugging diagnostics.

PROJNAMEVIEW.CPP, PROJNAMEVIEW.H These files derive and implement the
view class, named CProjnameVi ew, that is used to display and print the document
data. The CProjnameVi ew class is derived from CEditView, CFormView,
CRecordView, CDaoRecordView, CTree View, CListView, CRichEditView,
CScrollView, or CView and has skeleton member functions to draw the view and
implement debugging diagnostics. If you have enabled support for printing,
message-map entries are added for print, print setup, and print preview command
messages. These entries call the corresponding member functions in the base view
class.

Resource Files
AppWizard creates a number of resource-related files. If the project is for a DLL, the
wizard also creates a .DEF file, which is available for your list of exports.

PROJNAME.RC, RESOURCE.H This is the resource file for the project and its
header file. The resource file contains the default menu definition and accelerator
and string tables for a generic MFC application. It also specifies a default About
box and an icon file (RES'PROJNAME.ICO). The resource file includes the file
AFXRES.RC for standard Microsoft Foundation class resources. If toolbar support
has been specified as an option, it also specifies the toolbar bitmap file
(RES\TOOLBAR.EPS).

RES\PROJNAME.ICO This is the icon file for the generic MFC application. This
icon appears when the application is minimized and is also used in the About box.

RES\TOOLBAR.BMP This bitmap file is used to create tiled images for the toolbar.
The initial toolbar and status bar are constructed in the CMainFrame class.

Precompiled Header Files
STDAFX.CPP, STDAFX.H These files are used to build a precompiled header file

PROJNAME.PCH and a precompiled types file STDAFX.OBJ.

Context-Sensitive Help Files
MAKEHELP.BAT This batch file can be used to build the Help file for your

application.

PROJNAME.HPJ This is the Help project file used by the help compiler to create
your application's help file.

HLMFXCORE.RTF This is the template help file for document-based (MDI/SDI)
applications.

HLP\AFXPRINT.RTF This file, created if printing support is selected (which it is by
default), describes the printing commands and dialog boxes.

AppWizard

133

AppWizard

HLWROJNAME.CNT This file provides the structure for the Contents window in
Windows Help.

Other .RTF files are created if you choose OLE or database options. See
README.TXT in your project directory for a description of these files.

AppWizard Files Added by Options
Most of the options you can choose in App Wizard use the standard files to implement
their features. This section describes additional nonstandard files created to support
certain options.

Note For information about the files created when you choose database options, see the
article AppWizard: Database Source Files and Resources. For information about the files
created when you choose OLE options, see the article describing the option. For example, for
files related to an OLE server application, see the articles on OLE servers.

PROJNAME.ODL This file is created if you have selected OLE Automation support.
You can use this file as input to the Make Type Library utility, which creates a
corresponding type library (.TLB) file.

PROJNAME.REG This file is created in two cases. (1) You have selected any OLE
server option or OLE Automation option. (2) You have selected a document file
extension (one of the options available in the Advanced Options dialog box). The
file demonstrates the kind of registration settings the framework will set for you.

RES\ITOOLBAR.BMP This file is created only if you have chosen any OLE server
support and have also chosen the Dockable Toolbar option. The file contains tiled
images for the toolbar when the server application is in-place activated inside a
container application. The file is similar to the standard RES\TOOLBAR.BMP
except that many nonserver commands are removed.

See Also AppWizard: Database Source Files and Resources

App Wizard: Database Support

134

When you set options for your new skeleton application in App Wizard, you can
specify database options in addition to the general AppWizard options. You can set
database options from AppWizard's Database Options page (step 2 of 6) for a
document-based application (MDI/SDI). This article explains the database options
you can set for:

• Open Database Connectivity (ODBC)

-or-

• Data Access Objects (DAO)

DAO support is new for MFC version 4.0. For information on both ODBC and DAO
support, see the article Database Overview.

Figure 1 shows the App Wizard Database options page.

Figure 1. AppWizard's Database Options

Important If you are using the MFC ODBC classes, or if you are using ODBC data sources
through DAO, you must have the Microsoft Open Database Connectivity (ODBC) software
installed on your machine with at least one configured data source and the appropriate ODBC
driver for that data source in order to use the database classes. Visual C++ Setup installs the
ODBC software, including the drivers you select.

If you want database support in your application, use the following procedure. The
procedure assumes you have read the introductory material on App Wizard in Chapter
1, Creating Applications Using AppWizard, in the Visual C++ User's Guide.

~ To create an application with database support

1 Create an MFC App Wizard project.

Tip You might want to consider creating a single document interface (SDI) application. A
data-entry application, for example, probably doesn't require more than one view of the
database.

2 On AppWizard's Database Options page (step 2 of 6), choose your database
support option. The options are described in the article App Wizard: Database
Options.

3 If you chose either A Database View, Without File Support or Both a Database
View and File Support in step 2 of this procedure, a Data Source button is enabled.
Choose Data Source.

-or-

If you chose Only Include Header Files, choose Next and continue with step 6 of
this procedure. You will have to create your recordset classes later with
Class Wizard.

4 In the Database Options dialog box, select either ODBC or DAO.

AppWizard

135

AppWizard

136

If you choose ODBC in step 4 of this procedure, complete your choices as
described in Choosing ODBC Options. If you choose DAO in step 4 of this
procedure, complete your choices as described in Choosing DAO Options.

5 After completing the actions described in step 4 of this procedure, choose Next
and complete your nondatabase App Wizard selections. When you finish, choose
the Finish button, then OK.

App Wizard creates files for your project.

Tip In the procedures Choosing DDSC Options and Choosing DAO Options, you can select
multiple tables in the Select Database Tables dialog box.

Choosing OOBC Options
Follow the steps listed here to complete your ODBC database selections in
AppWizard. Then return to step 5 in the procedure To Create An Application With
Database Support.

~ To complete your ODSC options

1 In the Database Options dialog box, after selecting ODBC, select an ODBC data
source from the drop-down list box, which contains the names of data sources
already registered on your machine through the ODBC Administrator tool
described in the article ODBC Administrator.

2 Select other available options in the Database Options dialog box.

Some options may not be available. For explanations of these options, click the
Help button in the dialog box.

3 Click OK.

4 In the Select Database Tables dialog box, select the names of one or more tables in
the data source whose columns you want to bind to your recordset.

For some ODBC drivers, queries can be used as the source, but the wizards don't
detect this.

5 Click OK.

6 Return to step 5 in the procedure To Create An Application With Database
Support.

Choosing OAO Options
Follow these steps to complete your DAO database selections in AppWizard. Then
return to step 5 in the procedure To Create An Application With Database Support.

~ To complete your DAO options

1 In the Database Options dialog box, after selecting DAO, click the Browse button
next to the edit control to display an Open dialog box.

2 In the Open dialog box, browse for a database file to open.

3 Select other available options in the Database Options dialog box.

Some options may not be available. For explanations of these options, click the
Help button in the dialQg box.

4 Click OK.

S In the Select Database Tables dialog box, select the names of one or more tables in
your chosen database whose columns you want to bind to your recordset.

6 Click OK.

7 Return to step 5 in the procedure To Create An Application With Database
Support.

See Also App Wizard: Database Options, App Wizard: Database Source Files and
Resources, Database Overview

App Wizard: Database' Options
This article describes the MFC database options available in App Wizard. These
options include:

• None

• Only include header files

• A database view, without file support

• Both a database view and file support

A record view-derived from class CRecordView (for ODBC) or class
CDaoRecordView (for DAO)-is aform view, based on a dialog template resource,
that uses dialog data exchange (DDX) to exchange data between the view's controls
and a CRecordset-derived object (for ODBC) or a CDaoRecordset-derived object
(for DAO). You can map the form's controls to data members of a recordset. For
more information about record views, see the article Record Views. For more
information about recordsets, see the article Recordset (ODBC) or the article DAO
Recordset.

No. Database Support
AppWizard defaults tothis option ("None" in the AppWizard dialog box) and adds
no database support to your application.

Only Include Header Files
Choose this option for the minimum database support. App Wizard adds an #include
directive for the header file that defines the database classes. The file AFXDB.H (for
ODBC) and the file AFXDAO.H (for DAO) are included in STDAFX.H.

Note that if you do choose a database view with AppWizard, you will only be given
the single #include that corresponds to your choice of ODBC or DAO. Your

AppWizard

137

AppWizard

138

application probably won't need access to both. When you don't choose a database
view, however, App Wizard can't anticipate which you prefer, so it provides both.

With this support, you can use any of the database classes, related macros and global
functions, and other items defined in the appropriate include file. AppWizard creates
no database-related classes for you except for a view class and a recordset class if you
choose one of the Database View options; you can create what you need later with
Class Wizard.

App Wizard no longer explicitly adds libraries to the link line. The libraries are
automatically included by special #pragma directives scattered throughout the MFC
header files. You don't need to worry about library names.

A Database View, Without File Support
Choose this option when you want an application with the following characteristics:

• A view class derived from CRecordView or CDaoRecordView rather than
CView.

This view class makes your application form-based. AppWizard creates an empty
dialog template resource to which you must later add dialog controls with the
Visual C++ dialog editor.

• A class derived from CRecordset or CDaoRecordset.

The record view class contains a pointer to a recordset object based on this class.
Record view controls are mapped to recordset field data members via dialog data
exchange (DDX).

• No disk-file user interface and serialization.

A database application usually manages data record-by-record, interacting with
the database, rather than managing whole data files.

• No document-related File-menu commands.

This option also creates a menu resource whose File menu lacks document-related
commands: New, Open, Save, and Save As. Without serialization, you probably
don't need these commands.

Note Choosing this option makes the application single document interface (SOl). Choosing
file support allows either SOl or MOl (multiple document interface).

This option creates a CDocument-derived class. In general, you'll use this class to
store a CRecordset object, or a pointer to one. For more information on how to use
this document class, see the article MFC: Using Database Classes Without
Documents and Views. The article discusses various document/view configurations,
including applications with no document or view.

For more information about the files and resources App Wizard creates under this
option, see the article App Wizard: Database Source Files and Resources.

Both a Database View and File Support
Choose this option when you want an application with the following characteristics:

• A view class derived from CRecordView or CDaoRecordView rather than
CView.

This view class makes your application form-based. App Wizard creates an empty
dialog template resource to which you must later add dialog controls with the
Visual C++ dialog editor.

• A class derived from CRecordset or CDaoRecordset.

The record view class contains a pointer to a recordset object based on this class.
Record view controls are mapped to recordset field data members via. dialog data
exchange (DDX).

• A disk-file interface in addition to a record view on the database.

This application opens a disk file in addition to a database. The disk file might
store, for example, "style sheet" information, so the user can configure, save, and
quickly restore alternative views of the database.

The document class that App Wizard creates under this option supports serialization,
and the application includes support for document-related commands on the File
menu: New, Open, Save, and Save As. For more information on how to use this
document class, see the article MFC: Using Database Classes Without Documents
and Views.

Note For the last two options, AppWizard binds all columns of the table(s) you select to the
recordset. If you don't want all the columns, you can remove some of them later with
ClassWizard. See the article ClassWizard: Binding Recordset Fields to Table Columns.

For more details about using App Wizard, see Chapter 1, Creating Applications Using
AppWizard, in the Visual C++ User's Guide.

The following article explains the files and resources that App Wizard creates,
depending on the database options you select:

• App Wizard: Database Source Files and Resources

See Also Class Wizard

App Wizard: Database Source Files and Resources
This article explains:

• The database-related classes and files that App Wizard creates.

• The resources that AppWizard creates.

This article applies to both the MFC ODBC classes and the MFC DAO classes.

AppWizard

139

AppWizard

140

For information about the files and resources that App Wizard creates besides those
for database options, see the article App Wizard: Files Created.

Database Classes and Files
The classes and files that App Wizard creates depend on which option you choose. For
details on the database options, see the article App Wizard: Database Options.

If you choose the None or Only include header files option, AppWizard creates no
special classes or files for database support.

If you choose the option A database view, without file support or the option Both a
database view and file support, App Wizard creates the following classes and files:

Classes Created by AppWizard
AppWizard creates application, frame-window, document, and view classes. The view
class is derived from CRecordView (for ODBC) or CDaoRecordView (for DAO). It
also creates a CRecordset-derived class (for ODBC) or a CDaoRecordset-derived
class (for DAO) associated with the record view class.

Class Names Assigned by AppWizard
AppWizard names the record view class and its associated record set class as follows:

Record View Class Name AppWizard names the record view class based on the
name of your Visual C++ project, denoted here by Projname. This name has the
form "CProjnameView". By default, the name ends in "View," but you can change
the default name offered. If you change the default class name offered, the class is
given the name you specify.

Recordset Class Name The recordset class is named "CProjnameSet" or the base
name you gave for the project with "Set" appended. By default, the name ends in
"Set", but you can change the default name offered. If you change the default class
name offered, the class is given the name you specify.

Filenames Created by AppWizard
As with other files created by App Wizard, the filenames for the record view class are
based on the name of your Visual C++ project. App Wizard writes the view class in
files PRJONAMEVIEW.H/.CPP. The wizard writes the recordset class in files
PROJNAMESET.H/.CPP. The project name is no longer truncated.

Database Resources
If you choose the A database view, without file Support option or the Both a database
view and file support option, App Wizard creates not only the classes described above
under Database Classes and Files, but also the following resources:

• A dialog template resource whose resource ID is IDD _PROJNAME_FORM,
where PROJNAME is based on your project name.

• A menu resource that includes commands for moving from record to record in the
record view. AppWizard also creates command-handler functions and user
interface update handlers in the CRecordView-derived or CDaoRecordView
derived class for these commands.

If you choose Both a database view and file support, the menu resource includes
document-related commands on the File menu: New, Open, Save, and Save As.

If you choose A database view, without file support, the document-related File
menu commands are omitted. General commands, such as Exit, remain on the
menu.

If the application is single document interface (SDI), the menu's resource ID is
IDR _MAINFRAME. For a multiple document interface (MDI) application,
AppWizard uses the document's menu resource, whose ID is
IDR_DOCNAMETYPE, where DOCNAME is the document's type string.

Note Choosing the option "A database view, without file support" makes the application
SOL Choosing file support allows either SOl or MOL

• A set of toolbar buttons for the navigational commands (if you choose the
Dockable Toolbar option as well as a Database Support option).

Important The dialog template resource that AppWizard creates contains only the static text
string "TODD: Place form controls on this dialog." You must use the Visual C++ dialog editor to
delete the string and add controls that will map to your recordset data members. See the
article ClassWizard: Creating a Database Form.

See Also Class Wizard

AppWizard: OLE Support
App Wizard supports the following OLE features:

• OLE visual editing

AppWizard creates an entire project, including implementation and header files,
that supports a variety of OLE visual editing application types. These types include
different styles of container applications such as visual editing container/servers
and simple container applications. You can also create visual editing mini-servers
and full-servers. For more information on OLE options, see the article
App Wizard: Creating an OLE Visual Editing Application.

• Ability to support Automation in your classes

Check the Automation support option if you want your application to have OLE
Automation support. This means that your document class is exposed as a
programmable object that can be used by any Automation client. You can also
expose other classes you create as OLE Automation programmable objects. For
more information on Automation, see the articles ClassWizard: OLE Automation
Support, Automation Clients, and Automation Servers.

AppWizard

141

AppWizard

For general information about using App Wizard, see Chapter 1, Creating
Applications Using AppWizard, in the Visual C++ User's Guide.

See Also OLE Overview

In the Class Library Reference: COleServerDoc, COleDocument,
COleServerItem, COleClientItem, COleIPFrame Wnd

App Wizard: Creating an OLE Visual Editing Application

142

This article explains:

• The purpose of the OLE Options page.

• The creation of an OLE visual editing application.

• Classes and resources created by App Wizard.

• Filenames suggested by App Wizard.

The OLE Options Page
AppWizard's OLE Options page (step 3 of 6) allows you to access the many features
of OLE that are implemented by the MFC OLE classes. These features include visual
editing, OLE Automation, OLE compound files, and OLE controls. You access these
features by choosing the visual editing options that your application will support,
creating an application of one of the following OLE visual editing types:

• Container

• Mini -Server

• Full-Server

• Both Container and Server

Creating an OLE Visual Editing Application
~ To create an OLE visual editing application

1 Create a new MFC App Wizard project and specify the project name, the project
path and drive, and the name of the subdirectory for project files.

-or-

Add a subproject to your existing project. To add a subproject, choose Project from
the Insert menu. Specify the name of the subproject. It will be created in a
subdirectory named for your subproject.

2 Use the AppWizard OLE Options page (step 3 of 6).

3 Choose the form of OLE visual editing you want in your application:

• None: Select if you do not want visual editing support. This is the default
setting.

• Container: Select if you want your application to visually contain OLE objects.
For more information on containers, see the article Containers.

• Mini-Server: Select if you want your application to be visually embedded inside
an OLE container. Note that mini-servers cannot run as stand-alone
applications, and only support embedded items. For more information on
servers, see the article Servers.

• Full-Server: Select if you want your application to be visually embedded inside
an OLE container. Full-servers are able to run as stand-alone applications, and
support both linked and embedded items. For more information on servers, see
the article "Servers."

• Both container and server: Select if you want your application to be both a
visual editing container and a server.

4 Repeatedly choose Next to move to the next AppWizard Options page and set
other options for your application.

S When you have finished setting options, choose Finish. This displays your choices.

6 Click OK to confirm your choices.

App Wizard creates files for your classes in the directory you specified and opens the
project. For more information, see Classes and Resources Created and Filenames
Suggested below.

Classes and Resources Created
AppWizard creates application, document, view, and frame-window classes. The
exact classes created will differ depending on which visual editing option you chose
from the OLE Options page.

All document-based (non-dialog based) applications created with AppWizard,
regardless of the type of OLE support, have an application class derived from
CWinApp, an About dialog class created from CDialog, a view class derived from
CView (or from one of its derived classes), and one or two frame-window classes. If
your application uses a multiple document interface, your frame-window classes are
derived from CMDIFrameWnd and CMDIChildWnd. If your application uses a
single document interface, your frame-window class is derived from CFrameWnd.

The class from which your application's document class is derived will vary
depending on the visual editing options you selected. For non-visual editing
applications, the class is derived from CDocument. For mini-, full-, and container
servers, the class is derived from COleServerDoc. For containers, the class is derived
from COleDocument.

In addition to the above-mentioned classes, servers will have two additional classes:
an in-place frame-window class derived from COleFrameWnd and a server item
class derived from COleServerltem.

Containers will have a container class derived from COleClientItem.

AppWizard

143

Asynchronous Access

Filenames Suggested
As with other files created by App Wizard, the suggested filenames for the document,
view~ frame window, server item, and container classes are based on the name of your
Visual C++ project. For example, AppWizard writes the view class in files
PROJNAMEVIEW.H/.CPP and the document class is found in files
PROJNAMEDOC.H/.CPP. AppWizard no loriger truncates long filenames. You can
change the suggested filenames if you like. For a complete description of the project
created by AppWizard, see the file README.TXT created by AppWizard with the
rest of your project, found in your project directory, and see the article App Wizard:
Files Created.

Asynchronous Access
See classes CDatabase and CRecordset in the Class Library Reference.

Automation

144

OLE Automation makes it possible for one application to manipulate objects
implemented in another application, or to "expose" objects so they can be
manipulated.

An "automation client" is an application that can manipulate exposed objects
belonging to another application. This is also called an "automation controller."

An "automation server" is an application that exposes programmable objects to other
applications. This is sometimes also called an "automation component."

The server application exposes OLE automation objects. These automation objects
have properties and methods as their external interface. Properties are named
attributes of the automation object. Properties are like the data members of a C++
class. Methods are functions that work on an automation object. Methods are like the
public member functions of a C++ class.

Note Properties can have member functions that access them. A Get/Set function pair
typically access a property of the object.

Passing Parameters in OLE Automation
One of the difficulties in creating automation methods is providing a uniform "safe"
mechanism to pass data between between automation servers and clients. OLE
automation uses the VARIANT type to pass data. The VARIANT type is a tagged
union. It has a data member for the value, this is an anonymous C++ union, and a
data member indicating the type of information stored in the union. The VARIANT
type supports a number of standard data types: 2- and 4-byte integers, 4- and 8-byte
floating point numbers, strings, and Boolean values. In addition, it supports the
HRESULT (OLE error codes), CURRENCY (a fixed-point numeric type), and

DATE (absolute date and time) types, as well as pointers to IUnknown and
IDispatch interfaces.

The VARIANT type is encapsulated in the COleVariant class. The supporting
CURRENCY and DATE classes are encapsulated in the COleCurrency and
COleDateTime classes.

See Also Automation Clients, Automation Servers

Automation Clients
OLE Automation makes it possible for your application to manipulate objects
implemented in another application, or to "expose" objects so they can be
manipulated. An "automation client" is an application that can manipulate exposed
objects belonging to another application. The application that exposes the objects is
called the "OLE Automation server." The client manipulates the server application's
objects by accessing those objects' properties and functions.

There are two types of OLE Automation clients:

• Clients that dynamically (at run time) acquire information about the properties
and operations of the server.

• Clients that possess static information (provided at compile time) that specifies the
properties and operations of the server.

Clients of the first kind acquire information about the server's methods and
properties by means of queries to the OLE system's IDispatch mechanism. Although
it is adequate to use for dynamic clients, IDispatch is difficult to use for static clients,
where the objects being driven must be known at compile time. For static bbund
clients, the Microsoft Foundation classes provide the COleDispatchDriver class
along with Class Wizard support.

Static bound clients use a "proxy class" that is statically linked with the client
application. This class provides a type-safe C++ encapsulation of the server
application's properties and operations.

The class COleDispatchDriver provides the principal support for the client side of
OLE Automation. Using ClassWizard, you create a class derived from
COleDispatchDriver.

You then specify the type-library file describing the properties and functions of the
server application's object. ClassWizard reads this file and creates the
COleDispatchDriver-derived class, with member functions that your application can
call to access the server application's objects in C++ in a type-safe manner.
Additional functionality inherited from COleDispatchDriver simplifies the process
of calling the proper OLE Automation server.

Automation Clients

145

Automation Clients

See Also Automation Clients: Using Type Libraries, AppWizard: OLE Support,
ClassWizard: OLE Automation Support, ClassWizard: Adding Automation
Properties and Methods

Automation Clients: Using Type Libraries

146

Automation clients must have information about server objects' properties and
methods if the clients are to manipulate the servers' objects. Properties have data
types; methods often return values and accept parameters. The client requires
information about the data types of all of these in order to statically bind to the server
object type.

This type information can be made known in several ways. The recommended way is
to create a "type library."

For information on Microsoft Object Description Language (ODL) and MkTypLib,
see Chapters 2 and 9 of OLE Programmer's Reference, Volume 2.

ClassWizard can read a type-library file and create a "dispatch class" derived from
COleDispatchDriver. An object of that class has properties and operations
duplicating those of the server object. Your application calls this object's properties
and operations, and functionality inherited from COleDispatchDriver routes these
calls to the OLE system, which in tum routes them to the server object.

ClassWizard automatically maintains this type-library file for you if you chose to
include OLE Automation when the project was created. As part of each build, the
.TLB file will be built with MkTypLib.

~ To create a dispatch class from a type-library (.TLB) file

1 In Class Wizard, click the Add Class button. The Add Class button appears on
each page of Class Wizard.

The Add Class menu appears.

2 From the Add Class menu, choose From An OLE TypeLib.

An Open dialog box appears.

3 Use the Open dialog box to select the . TLB file.

Tip Some type library information is stored in files with .Dll, .OCX, or .OlB file
extensions.

4 Click the OK button.

The Confirm Classes dialog box appears. The list box lists the external names of
the classes described in the type-library file. Other controls in the Confirm Classes
dialog box show the proposed names for the dispatch classes and for the header
and implementation files for those classes. As you select a class in the list box, the
Class Name box shows the name for the corresponding class.

You can use the Browse buttons to select other files, if you prefer to have the
header and implementation information written in existing files or in a directory
other than the project directory.

5 In the Confirm Classes dialog box, edit the names of the new dispatch classes and
their files.

6 Choose OK to close the Confirm Classes dialog box.

The Type Library Tool writes header and implementation code for your dispatch
class, using the class names and filenames you have supplied, and adds the .CPP
file to your project.

See Also Class Wizard: Adding Automation Properties and Methods

Automation Servers
OLE Automation makes it possible for your application to manipulate objects
implemented in another application, or to "expose" objects so they can be
manipulated. An automation server is an application that exposes programmable
objects to other applications, which are called "automation clients." Exposing
programmable objects enables clients to "automate" certain procedures by directly
accessing the objects and functionality the server makes available.

Exposing objects in this way is beneficial when applications provide functionality
that is useful for other applications. For example, a word processor might expose its
spell-checking functionality so that other programs can use it. Exposure of objects
thus enables vendors to improve their applications' functionality by using the "ready
made" functionality of other applications.

By exposing application functionality through a common, well-defined interface,
OLE Automation makes it possible to build applications in a single general
programming language like Microsoft Visual Basic instead of in diverse application
specific macro languages.

Support for Automation Servers
ClassWizard, AppWizard, and the framework all provide extensive support for
automation servers. They handle much of the overhead involved in making an
automation server, so you can focus your efforts on the functionality of your
application.

The framework's principal mechanism for supporting OLE Automation is the
dispatch map, a set of macros that expands into the declarations and calls needed to
expose methods and properties for OLE. A typical dispatch map looks like this:

Automation Servers

147

Automation Servers

BEGIN_DISPATCH_MAP(CMyServerDoc, COleServerDoc)
11{{AFX_DISPATCH_MAP(CMyServerDoc)
DISP_PROPERTY(CMyServerDoc, "Msg", m_strMsg, VT_BSTR)
DISP_FUNCTION(CMyServerDoc, "SetDirty", SetDirty, VT_EMPTY, VTS_I4)
II}}AFX_DISPATCH_MAP

END_DISPATCH_MAP()

ClassWizard assists in maintaining dispatch maps. When you add a new method or
property to a class, ClassWizard adds a corresponding DISP _FUNCTION or
DISP _PROPERTY macro with parameters indicating the class name, external and
internal names of the method or property, and data types.

ClassWizard also simplifies the declaration of OLE Automation classes and the
management of their properties and operations. When you use Class Wizard to add a
class to your project, you specify its base class. If the base class allows automation,
ClassWizard displays controls you use to specify whether the new class should
support OLE Automation, whether it is "OLE Createable" (that is, whether objects of
the class can be created on a request from an OLE client), and the external name for
the OLE client to use.

ClassWizard then creates a class declaration, including the appropriate macros for
the OLE features you have specified. Class Wizard also adds the skeleton code for
implementation of your class's member functions.

App Wizard simplifies the steps involved in getting your automation server
application off the ground. If you select Automation support in App Wizard's OLE
Options page, AppWizard adds to your application's Initlnstance function the calls
required to register your automation objects and run your application as an OLE
Automation server.

See Also AppWizard: OLE Support, Automation Clients, ClassWizard: OLE
Automation Support

In Tutorials: Chapter 16, Creating an OLE Automation Server

In the Class Library Reference: CCmdTarget, COleDispatchDriver

Automation Servers: Object-Lifetime Issues

148

When an automation client creates or activates an OLE item, the server passes the
client a pointer to that object. The client establishes a reference to the object through
a call to the OLE function IUnknown: :AddRef. This reference is in effect until the
client calls IUnknown::Release. (Client applications written with the Microsoft
Foundation Class Library's OLE classes need not make these calls; the framework
does so.) The OLE system and the server itself may establish references to the object.
A server should not destroy an object as long as external references to the object
remain in effect.

The framework maintains an internal count of the number of references to any server
object derived from CCmdTarget. This count is updated when an automation client
or other entity adds or releases a reference to the object.

When the reference count becomes 0, the framework calls the virtual function
CCmdTarget::OnFinaIRelease. The default implementation of this function calls
the delete operator to delete this object.

The Microsoft Foundation Class Library provides additional facilities for controlling
application behavior when external clients have references to the application's
objects. Besides maintaining a count of references to each object, servers also
maintain a global count of active objects. The global functions AfxOleLockApp and
AfxOleUnlockApp update the application's count of active objects. If this count is
nonzero, the application does not terminate when the user chooses Close from the
system menu or Exit from the File menu. Instead, the application's main window is
hidden (but not destroyed) until all pending client requests have been completed.
Typically, AfxOleLockApp and AfxOleUnlockApp are called in the constructors
and destructors, respectively, of classes that support OLE Automation.

Sometimes circumstances force the server to terminate while a client still has a
reference to an object. For example, a resource on which the server depends may
become unavailable, causing the server to encounter an error. Or the user may close a
server document that contains objects to which other applications have references.

See Also In the Class Library Reference: AfxOleLockApp, AfxOleUnlockApp,
AfxOleCanExitApp

In the OLE 2 Programmer's Reference, Volume 1: IUnknown::AddRef,
IUnknown: : Release

Binary Large Object
See the article Recordset: Working with Large Data Items (ODBC).

BLOB
See the article Recordset: Working with Large Data Items (ODBC).

BLOB

149

Catalog Information

Catalog Information
Information about the tables in a data source can include the names of tables and the
columns in them, table privileges, names of primary and foreign keys, information
about predefined queries or stored procedures, information about indexes on tables,
and statistics about tables.

See the article Data Source: Determining the Schema of the Data Source (ODBC).

See also information about the ODBC "catalog functions" in the ODBC SDK
Programmer's Reference and the MFC Database sample program CATALOG.

Note In the MFC DAO classes, you can get catalog information as follows: Use
CDaoDatabase: :GetTableDefCount and CDaoDatabase: :GetTableDeflnfo to enumerate the
tables in the database and obtain information for each table in a CDaoTableDeflnfo structure.
For more information, see the article DAO: Obtaining Information About DAO Objects.

Class Wizard

150

ClassWizard helps you create additional classes beyond those you create with
App Wizard. Class Wizard also lets you browse and edit your classes.

To run Class Wizard, choose the Class Wizard command from the View menu in
Visual C++.

Introducing Wizard Bar
In Visual C++ version 4.0, considerable ClassWizard functionality is available in the
new WizardBar that appears at the top of your source-code windows. For more
information about WizardBar, see Using WizardBar in Chapter 14 of the Visual C++
User's Guide.

ClassWizard Features
ClassWizard supports the following features:

New and Updated Features
• Support for creating and managing new classes derived from most of the MFC

classes.

For example, Class Wizard makes it easy to create classes for your owner-draw list
boxes and other controls.

Other categories of new base classes include new view classes and classes for
DAO database support. For a full list of classes you can derive from with
Class Wizard, see Classes Offered by Class Wizard in Chapter 14 of the Visual C++
User's Guide.

• The Add Class feature is easier to use. Class creation options include creating the
new class from scratch, from a file (formerly called importing a class), or from an
OLE type library (formerly on the OLE Automation tab). You can also include
your class in Component Gallery.

• Support for working with classes in mUltiple projects and in multiple directories.

• Support for using OLE controls (control containment). You can use ClassWizard
to:

• Map a member variable of your dialog class to an OLE control in the dialog
box. The procedure is the same as for mapping Windows controls.

• Handle events fired by an OLE control using member functions of the dialog
class for the dialog box that contains the control. The procedure is the same as
for mapping Windows messages and commands.

• Support for database access, using either Open Database Connectivity (ODBC) or
Data Access Objects (DAO). You can:

• Create classes derived from CRecordset (for ODBC) or CDaoRecordset (for
DAO).

• Specify a data source, tables, and columns for a recordset.

• Create database form classes derived from CRecordView (for ODBC) or
CDaoRecordView (for DAO).

• Map controls of a record view database form to the fields of a recordset object.

• Support for "reflected messages." For more information, see Message Reflection in
the article MFC: Changes from MFC Versions 3.0 and 3.l.

Existing Features
• Support for mapping dialog controls to class member variables.

This helps you enable dialog data exchange (DDX) and dialog data validation
(DDV) for the controls in your dialog boxes. DDX exchanges data between dialog
controls and their corresponding member variables in a dialog class. DDV
validates this data.

• Support for message maps. You can use ClassWizard to:

• Map Windows messages to message-handler functions in your classes.

• Map command messages from menu items, toolbar buttons, and accelerators to
handler functions in your classes.

• Map control-notification messages from dialog controls to your classes.

• Provide "update handlers" to enable or disable user-interface objects, such as
menus and toolbar buttons.

• Jump from ClassWizard to the handler function for a particular message or
command.

ClassWizard

151

Class Wizard

• Specify a "filter" that determines which categories of Windows messages
ClassWizard offers to map to handlers in your class.

• Support for OLE Automation. You can use ClassWizard to:

• Add classes that support OLE Automation.

• Add properties and methods to your classes that support OLE Automation.

• Create a C++ class for an existing OLE Automation object on your system,
such as Microsoft Excel.

• Support for developing OLE Controls. You can use ClassWizard to:

• Specify properties and methods for OLE Controls.

• Specify the events your OLE Control can fire.

For more information, see the article OLE Controls. The OLE Control
Development Kit (CDK) is now fully integrated with MFC.

• Support for overriding many MFC virtual member functions. You can use
Class Wizard to:

• Browse virtual functions provided by MFC and choose the ones you want to
override.

• Jump to the code for editing.

• Foreign classes.

Just as you can map dialog box controls to dialog class data members, you can
map window controls to data members of class CRecordset for ODBC or
CDaoRecordset for DAO (called a "foreign class" in this context). For more
information, see the article Class Wizard: Foreign Objects.

For More Information
For general information about using ClassWizard, see Chapter 14, Working with
Classes, in the Visual C++ User's.Guide.

The following articles describe ClassWizard tips and techniques:

• Class Wizard: Tips and Troubleshooting

• Class Wizard: Database Support

• ClassWizard: OLE Automation Support

See Also App Wizard

ClassWizard: Special-Format Comment Sections

152

This article explains where and how Class Wizard edits yoUr source files.

When you add a new class using ClassWizard, special-format comments are placed in
your code to mark the sections of the header and implementation files that
ClassWizard edits. ClassWizard never modifies code that is outside these commented
sections.

Message-Map Comments
For most classes, there are two related sections of code that ClassWizard edits: the
member-function definitions in the class header file and the message-map entries in
the class implementation file.

The ClassWizard comments in the header file look like this:

//{{AFX_MSG«classname»
afx_msg void OnAppAbout();

/ /} }AFX_MSG

The Class Wizard section in the implementation file is set off with comments that
look like this:

//{{AFX_MSG_MAP«classname»
ON_COMMAND(ID_APP_ABOUT, OnAppAbout)

/ /} }AFX_MSG_MAP

The notes in the Class Wizard section act as placeholders. Class Wizard removes the
note from any Chiss Wizard section in which it writes code.

Virtual Function Comments
As with message handlers, Class Wizard writes code to two locations when you use it
to override a virtual function in one of your classes.

The Class Wizard comments in the header file look like the following example for
virtual function overrides:

//{{AFX_VIRTUAl«classname»
virtual BOOl InitInstance();

//}}AFX_VIRTUAl

The ClassWizard section in the implementation file has no special comments. Virtual
function definitions in the .CPP file look like other function definitions.

Data Map Comments
For dialog boxes, form views, and record views, Class Wizard creates and edits three
other sections that are marked with special format comments:

• Member variable declarations in the class header file:

//{{AFX_DATA

• Member variable initialization in the class implementation file:

//{{AFX_DATA_INIT

Class Wizard

153

Class Wizard

154

• Data-exchange macros in the implementation file:

//{{AFX_DATA_MAP

Field Map Comments
For record field exchange, Class Wizard creates and edits three other sections that are
marked with special format comments:

• Member variable declarations in the class header file:

/ /{{AFX_FIELD

• Record exchange function calls in the implementation file:

//{{AFX_FIELD_MAP

• Member variable initializations in the class header file:

//{{AFX_FIELD_INIT

OLE Dispatch Map Comments
For OLE method dispatch, Class Wizard creates and edits four other sections that are
marked with special format comments:

• OLE events in the class header file:

/ / {{AFX_EVENT

• OLE events in the class implementation file:

//{{AFX_EVENT_MAP

• OLE Automation declarations in the class header file:

//{{AFX_DISP

• OLE Automation mapping in the class implementation file:

II{{AFX_DISP_MAP

For more information see Working with Dialog Box Data in Chapter 14 of the Visual
C++ User's Guide.

Class Wizard: Tips and Troubleshooting
This article summarizes key tips and troubleshooting advice for using Class Wizard
effectively. The following topics are covered:

• U sing Class Wizard tab dialogs

• Adding functions with Class Wizard

• Adding variables with Class Wizard

• Adding code from Class Wizard

• Importing classes from other projects

• Opening your .RC file

Using ClassWizard Tab Dialogs
ClassWizard has a "tab dialog" user interface: the ClassWizard dialog box contains
"tabs" that resemble the tabs on a group of file folders. Each tab's label shows what
kind of functionality you can edit on that tab. To select a tab, click its label. Use the
following tips:

• Use the Message Maps tab to browse the messages that a class can handle or to
create, edit, or delete the member functions mapped to the messages. Use the Edit
Code button to jump to a message handler function's code in the Visual C++
source code editor.

• Use the Member Variables tab to bind member variables to dialog, form view, or
record view controls. You can also bind record view member variables both to
record view controls and to the columns of a table in your data source.

• Use the OLE Automation tab to create and edit the OLE Automation capabilities
of your application. For example, you can create Automation properties and
methods.

• Use the OLE Events tab to specify actions that will cause your OLE control to fire
events. For example, you can specify that a mouse click on your control fires a
particular event that the control's container responds to with a handler. Note that
this tab is for OLE control developers. If you are using an OLE control in your
dialog box and want to handle events, use the Message Maps tab just as you would
for handling messages.

ClassWizard

155

Class Wizard

156

• Use the Class Info tab to browse and set general class options. You can set a class's
message filter to determine what messages Class Wizard offers to map to handlers
in your class. You can also view or set a "foreign object" associated with your
dialog form view or record view class. For information about foreign objects, see
the article ClassWizard: Foreign Objects.

Adding Functions with ClassWizard
ClassWizard lets you create handler functions and connect them to the menu items,
toolbar buttons, and accelerators whose commands they respond to. Use the following
tips:

• To connect a dialog box or other user-interface object to a menu command or
toolbar button with Class Wizard, you must first create the dialog box, menu entry,
or toolbar button and its object ID using the appropriate Visual C++ resource
editor.

• You can bind more than one user-interface object to a single function. You can
bind both a menu command and a toolbar button to a single function, for instance.
In this case, selecting either object in your application causes the same action.

• If you delete a member function in the Class Wizard dialog box, the declaration is
deleted from the class in the header file, and the message-map entry is deleted
from the implementation file. But you must delete the function code and any cross
references to the function manually. Use the browser to help you locate these
references.

• To add a function and edit its related code, you should make your selections in this
order on the Class Wizard Message Maps tab:

1. Select a project.

2. Select the project that contains the class you want to edit.

3. Select a class name.

4. Select an Object ID.

S. Select a Message.

You can then select an associated function to edit or delete, or click the Add
Function button to add a member function to the class.

By convention, the names of all message-handling functions begin with the prefix
On.

• Override virtual functions in much the same way, also on the Message Maps tab:

1. Select a class name.

2. In the Object IDs box, select the class name again.

3. In the Messages box, select a virtual function to override.

4. Choose Add Function.

Adding Variables with ClassWizard
Class Wizard lets you add member variables to some classes. For example, you can
add member variables to a dialog class to represent the dialog box's controls. Use the
following tips:

• Edit Variables is available in the ClassWizard dialog box only in classes with a
data map. This includes dialog, form view, and record view classes. Neither
ClassWizard nor AppWizard make changes to your code outside the data map.

• By convention, the names of all member variables begin with the prefix m_.

• By using ClassWizard to map a dialog control to a dialog-class member variable
with the Value property (the default), you can use dialog data exchange (DDX)
and dialog data validation (DDV). This eliminates the need to move data between
the control and the member variable yourself. It also allows you to specify
validation rules for the data. For more information about DDX and DDV, see
Dialog Data Exchange in Chapter 14 of the Visual C++ User's Guide and Dialog
Data Exchange and Validation in Chapter 1 of Programming with MFC.

• You can also map a dialog control to a dialog-class member variable with the
Control property. This creates a member variable of an appropriate class, such as
CEdit. You can then call the member functions of the control object through this
variable.

Adding Code from ClassWizard
After you've added a new member function in the ClassWizard dialog box, choose
Edit Code to add the implementation code for the function. A Visual C++ source code
editor window opens with the file containing the class for the member function. A
highlighted comment indicates where to add your code. Use the following tip:

• You can select a function in ClassWizard's Message Maps tab and then click Edit
Code to locate and examine code quickly.

Importing Classes from Other Projects
Classes you created for another programming project can sometimes be reused in new
projects. For information about how to "import" these classes into your new project so
that Class Wizard is aware of them, see Importing a Class in Chapter 14 of the Visual
C++ User's Guide. Also use the following tip:

• If you are importing several message-handling classes from another project, you
can save time by rebuilding the ClassWizard information file (project .CLW)
rather than importing each class separately in the Add Class dialog box. You can
completely rebuild the .CLW file by deleting the project's .CLW file and then
opening ClassWizard. Answer Yes when asked if you want to rebuild the .CLW
file. Then use the Select Source Files dialog box to provide Class Wizard with a list
of files in your project.

Class Wizard

157

Class Wizard

Note The.H and .CPP files for the classes you import must have special-format
comments, as described in the article ClassWizard: Special-Format Comment Sections.

Opening Your IRC File
Visual C++ lets you open resources in two ways. You can open individual resources
(in compiled form) in the Visual C++ resource editors. Or you can open the .RC file
to edit it directly as a text file. Use the following tip:

• To open the .RC file as text, choose the Open command on the File menu and
select the Open As option to Text.

Class Wizard: Database Support

158

You can use ClassWizard to work with two main database classes for Open Database
Connectivity (ODBC) or two main classes for Data Access Objects (DAO):

• CRecordset (for ODBC) or CDaoRecordset (for DAO) Represents a set of
records selected from a data source.

• CRecordView (for ODBC) or CDaoRecordView (for DAO) Supplies a database
form, based on a dialog resource template, whose controls map to the field data
members of an associated recordset object.

OOX and Foreign Object Support
When you create a record view class, you associate it with a particular CRecordset
derived or CDaoRecordset-derived class and map the record view's controls to field
data members of the recordset class.

This close association between a record view and a recordset takes advantage of
another feature you can use in Class Wizard: "foreign objects." Dialog data exchange
(DDX) lets you simplify data transfer between the controls in a dialog box or form
view and the data members in a corresponding class. With foreign objects, you can
exchange data between the controls and the data members of a separate object-in
this case, between the controls of a record view and the data members of a recordset.

When you specify the CRecordset-derived class or CDaoRecordset-derived class to
associate with a CRecordView-derived class or CDaoRecordView-derived class, you
can name an existing record set class or create a new one. Class Wizard adds a
member variable to the record view class named, by default, m ySet. The data type
of this variable is the recordset class. Figure 1 shows the relationships between a
record view on the screen, a record view object, and a recordset object. The recordset
is the foreign object. Class Wizard creates the record view and recordset classes and
maps record view controls to recordset data members via m _pSet.

Figure 1 DDX and Foreign Objects

CSectionForm C++
Record View object

Database Source Files
When you create a CRecordset/CDaoRecordset or

C++ Recordset object
(Foreign object)

CRecordView /CDaoRecordView class with Class Wizard, the wizard creates the
classes in the files you specify in the Add Class dialog box. The default filenames are
based on the class name you enter. You can modify the default names, place the
recordset and record view in the same files, or consolidate all recordsets in one set of
files.

Browsing and Editing Database Classes
You can also browse and edit existing classes with ClassWizard. When you edit an
existing recordset class, Class Wizard provides a dialog box that you can use to update
the table columns bound to the recordset if the table's schema has changed since you
created the class. You can also, with a little extra work, use this mechanism to specify
the columns of additional tables for a join of tables. For more information about joins
in ODBC, see the article Recordset: Performing a Join (ODBC). Performing a join
with DAO is similar.

The following articles explain the details of using Class Wizard's database support:

• Class Wizard: Creating a Recordset Class

• ClassWizard: Binding Recordset Fields to Table Columns

• Class Wizard: Creating a Database Form

• Class Wizard: Mapping Form Controls to Recordset Fields

• Class Wizard: Foreign Objects

See Also Class Wizard: Creating a Recordset Class, App Wizard, Database Overview

ClassWizard

159

Class Wizard

Class Wizard: Creating a Recordset Class

160

This article explains how to create a recordset class with Class Wizard.

You'll need a new CRecordset-derived class (for ODBC) or CDaoRecordset-derived
class (for DAO) for each table, join of tables, or predefined query you work with in
your program. Each recordset class specifies its own set of columns and may also
specify parameters. For information about the structure of your recordset class and its
uses, see the article Recordset: Architecture (ODBC) or DAO Recordset:
Architecture.

For information about mapping recordset field data members to columns in the table,
see the article Class Wizard: Binding Recordset Fields to Table Columns.

For information about using a CRecordset (ODBC) for a join of tables, see the article
Recordset: Performing a Join (ODBC). (Performing a join with DAO is similar.)

For information about using a CRecordset for a predefined query, see the article
Recordset: Declaring a Class for a Predefined Query (ODBC). For information about
predefined ("saved") queries in DAO, see the article DAO Querydef.

Table 1 shows the major steps in creating a recordset class.

Table 1 Recordset Class Creation Summary

To

Create the class

Select a data source and database table for
the class

Remove any column mappings you don't
want. By default, App Wizard and
Class Wizard bind all columns in the table
to recordset field data members

Optionally parameterize the underlying
SQL statements

Optionally use dialog data exchange
(DDX) to map recordset data members to
controls in a record view

Do this

Use the Add Class dialog box in
Class Wizard.

Select options in the Database Options dialog
box. These include a data source, possibly a
recordset type, and possibly some advanced
options. Then specify details about the data
source in the Select Database dialog box (for
ODBC) or the Open dialog box (for DAO).
Next, use the Select Database Tables dialog
box to select tables from those available on
the data source.

Select a column name on the Member
Variables tab and choose Delete Variable.

Manually add parameter data members, or, in
DAO, base your recordset on a parameterized
a querydef object.

See the article Record Views.

For more information about parameterizing your class, see the article Recordset:
Parameterizing a Recordset (ODBC) or the article DAO Queries: Filtering and
Parameterizing Queries. For information about using DDX between record view
controls and recordset data members, see the article Class Wizard: Mapping Form
Controls to Recordset Fields.

Creating the Recordset Class
You can add a new class derived from class CRecordset or CDaoRecordset in
ClassWizard's Add Class dialog box. This dialog box is available from any tab in
ClassWizard. (All figures follow the procedure below.)

~ To create the record set class

1 Run Class Wizard.

2 Choose the Add Class button to open the Add Class dialog box (Figure 1).

3 If you're using the MFC ODBC classes, select CRecordset as the base-class type
of the new class. If you're using the MFC DAO classes, select CDaoRecordset.

4 In the Create New Class dialog box, enter a name for the class and filenames for
its .R and .CPP files.

5 Choose the Create button.

The Database Options dialog box (Figure 2) opens.

6 Choose ODBC or DAO. Then select a data source:

• For ODBC, select from the drop-down list. Depending on what you choose, you
might need to make a further selection in an Open dialog box. If the data
source is on a server, you might be prompted to log in to the server .

• For DAO, click the browse button beside the DAO edit control. Then, in the
Open dialog box, navigate to the database file you want to use. (By default, the
dialog box displays only Microsoft Jet databases, .MDB, but you can open any
database that the Microsoft Jet database engine can read. For information, see
the article Database Overview.

7 Click OK.

a In the Select Database Tables dialog box (shown in Figure 3), select the name(s) of
the table(s) you want.

On ClassWizard's Member Variables tab, notice that ClassWizard binds all of the
table's columns to recordset field data members. For information about removing
bindings you don't want, see the article ClassWizard: Binding Recordset Fields to
Table Columns.

9 When you finish, choose OK to close ClassWizard. ClassWizard writes your class
files in the specified directory and adds them to your project.

ClassWizard

161

ClassWizard

162

Figure 1 Specifying Information for a New Class

Figure 2 Selecting a Data Source in ClassWizard

Figure 3 Selecting a Database Table in ClassWizard

See Also ClassWizard: Database Support, ClassWizard: Binding Recordset Fields to
Table Columns

ClassWizard: Binding Recordset Fields to Table
Columns

Both App Wizard and Class Wizard bind all columns of your selected tables to the
recordset. This article applies to both the MFC ODBC classes and the MFC DAO
classes. The article explains how to:

• Remove data members for any columns you don't want in the recordset.

If you want only a subset of the columns bound by the wizards, use Class Wizard to
remove the field data members for any columns you don't want.

• Select table columns and map them to recordset field data members.

If you subsequently remove any of the bindings the wizards made, you can later
rebind them with Class Wizard.

• Update columns in your recordset to reflect new columns in the table on the data
source.

This and related articles use the terms "column" and "field" interchangably when
referring to recordset fields.

Removing Columns from Your Recordset
You might sometimes need to remove columns from a recordset. Both AppWizard
and Class Wizard automatically bind all table columns to the recordset. If you want
only a subset of the columns, use the following procedure.

~ To remove a column from a record set

1 In Class Wizard, choose the Member Variables tab.

2 Select a member variable name in the Members column of the Column Names
box.

3 Choose Delete Variable.

The member variable is removed from your recordset class. (The column in the
data source to which the member variable was bound is not deleted.)

Warning Be careful not to remove any columns that are part of the table's primary key. In
some tables, the primary key is a single column; in others, it's composed of two or more
columns taken together. Removing these columns could damage your data on the data source.

Adding Columns to Your Recordset
Once you select a table, ClassWizard displays a list of all columns in the table. You
can remove column bindings, and you can later rebind columns whose bindings have
been removed. The following procedure explains how to bind an unbound column.

Class Wizard

163

Class Wizard

164

~ To add a column to the recordset
1 Create the recordset class and associate it with one or more database tables.

If you create the class with Class Wizard, follow the procedure To create the
recordset class in this article.

If you create the class with App Wizard, follow the procedure in the article
App Wizard: Database Support.

2 In Class Wizard, on the Member Variables tab, select the recordset class name in
the Class Name box if it is not already selected.

3 Select a column in the Column Names box.

4 Choose the Add Variable button to open the Add Member Variable dialog box.

5 Type a name for the recordset data member that will represent the selected
column.

Class Wizard supplies a standard data member prefix, m_, for the name. Append
the rest of the name to this prefix or type over it.

The variable's property and data type are already specified in the dialog box. The
property for these variables is always "Value." The data type is based on the data
type of the column on the data source.

6 Choose OK to close the Add Member Variable dialog box.

7 Choose OK to close ClassWizard.

Class Wizard writes your class files to the specified directory and adds them to your
project.

Tip Rather than binding columns to data members one at a time, you can choose the Bind All
button to bind all columns. ClassWizard gives the data members default names based on the
column names. Binding columns one at a time gives you more control over the columns bound
and how they're named, but Bind All is quick and easy.

Figure 1 shows the Member Variables tab with a data member added for one of the
available columns.

Figure 1 Adding a Data Member to the Recordset

Updating Your Recordset's Columns
Tables in a data source sometimes change-in particular, columns may be added to a
table. To bring your recordset class up to date with respect to these changes, use the
Update Columns button.

~ To update the columns in your recordset

1 On ClassWizard's Member Variables tab, select your recordset class.

2 Choose the Update Columns button.

Any new columns are shown in the list but not yet bound to recordset field data
members. To bind them, see the procedure To add a column to the recordset in
Adding Columns to Your Recordset.

When you use Update Columns, columns you've previously bound to recordset data
members are left alone; to unbind a column, delete its data member. Any columns in
the table that aren't bound to the recordset disappear from the refreshed recordset.

See Also Class Wizard: Creating a Database Form, Class Wizard: Creating a
Recordset Class, App Wizard

Class Wizard: Creating a Database Form
The Microsoft Foundation Class Library database classes supply class CRecordView
(for ODBC) and class CDaoRecordView (for DAO) for implementing database
forms with controls in which to display record fields. This article explains how to
create a record view class with Class Wizard and associate it with a recordset class.

Important To use the MFC database classes, you must have specified at least minimum
database support ("Only include header files") in AppWizard. If you didn't, open file STDAFX.H

Class Wizard

165

Class Wizard

166

and add an #include directive for AFXDS.H (if you're using the MFC ODSC classes) or
AFXDAO.H (if you're using the MFC DAO classes).

The purpose of a record view class is to provide a form view whose controls are
mapped directly to the field data members of a recordset object (and indirectly to the
corresponding columns in a table on the data source). Setting up this mapping
enables dialog data exchange (DDX) directly between the form's controls and the
recordset's field data members. This article explains how to make the association.

Tip The easiest way to use a record view as your application's main view is to do so when
you initially run AppWizard. See the article AppWizard: Database Support.

The following procedure begins the process.

~ To create a record view associated with a recordset

1 Create the recordset class.

See the article ClassWizard: Creating a Recordset Class.

2 Create a dialog-template resource.

See Chapter 6, Using the Dialog Editor, in the Visual C++ User's Guide.

In the Styles and More Styles property pages of your dialog template, set the
following properties, as you would for a CForm View object:

• In the Style box, select Child (WS_CHILD on).

• In the Border box, select None (WS _BORDER oft).

• Clear the Visible check box (WS _VISIBLE oft).

• Clear the Titlebar check box (WS _CAPTION oft).

Tip As you place controls on your dialog template, you can help ClassWizard be smarter. See
the tips in the article ClassWizard: Mapping Form Controls to Recordset Fields.

To continue from step 2, see the following procedure.

~ To create the record view class

1 Run ClassWizard with the Visual C++ dialog editor open on your dialog-template
resource.

2 In the Adding a Class dialog box, choose Create a New Class (unless you are
importing or using an existing class). For more information, see Adding a Class in
Chapter 14 of the Visual C++ User's Guide.

3 In the Create New Class dialog box, specify CRecordView (for ODBC) or
CDaoRecordView (for DAO) as the base class for the new class.

4 Enter a name for the class and filenames for its .R and .CPP files and select any
other options you need, such as OLE Automation.

S Choose the Create button.

6 In the Select a Recordset dialog box, select the recordset class you created in step 1
of the procedure To create a record view associated with a recordset.

-or-

Choose New to create a new recordset class. In this case, select a data source and
table for the recordset as prompted. Close the Select a Record Set dialog box. On
returning to the Member Variables tab, select your new recordset class.

7 Bind columns to recordset field data members. See the article Class Wizard:
Binding Recordset Fields to Table Columns.

Note If you next choose the Class Info tab, you'll see your recordset class listed in the
Foreign Class box. For more information about "foreign" classes, see the article
ClassWizard: Foreign Objects.

8 Choose OK to exit ClassWizard.

For information about binding your record view controls to the recordset, see the
article ClassWizard: Mapping Form Controls to Recordset Fields.

See Also Class Wizard: Database Support, Class Wizard: Creating a Recordset Class,
ClassWizard: Binding Recordset Fields to Table Columns

Class Wizard: Mapping Form Controls to Recordset
Fields

A database form based on class CRecordView (for the MFC ODBC classes) or
CDaoRecordView (for the MFC DAO classes) uses dialog data exchange (DDX) to
exchange data between the form's controls and the field data members of the form's
associated recordset object. This article explains how to use Class Wizard to set up the
DDX connection between the controls and the recordset.

This connection is different from the normal use of DDX, which connects the
controls in a dialog box directly to the data members of the associated dialog class.
DDX for a record view object is indirect. The connection goes from form controls
through the record view object to the field data members of the associated recordset
object. For more information, see the articles Record Views and ClassWizard:
Foreign Objects. Table 1 summarizes the mapping process.

Table 1 Mapping Record View Controls to a Recordset

To Do this

Specify the form control

Specify the record set data member to
connect it to

Select the record view class on Class Wizard's
Member Variables tab and select one of the
form's control IDs

Use the Add Variable dialog box to select a
record set data member indirectly

Class Wizard

167

Class Wizard

168

The following procedure assumes you have already followed the procedures in the
article Class Wizard: Creating a Database Form. Specifically, you've created a
CRecordset-derived or CDaoRecordset-derived class and added some field data
members to it, created a dialog-template resource, created a CRecordView-derived or
CDaoRecordView-derived class, and associated the record view class with the
recordset class. Your record view class is associated with the dialog-template
resource, to which you've added controls with the Visual C++ dialog editor.

~ To map the form controls to the recordset

1 Choose ClassWizard's Member Variables tab.

2 In the Class Name box, select the name of your record view class.

3 In the Control IDs box, select a control ID.

4 Choose the Add Variable button to name a variable associated with the control.

5 In the Add Member Variable dialog box, choose a variable name by selecting a
recordset data member in the Member Variable Name drop-down list box.

Important Use the drop-down list box to select a data member name from the associated
recordset (a foreign object). The names that appear are of the form
m_pSet- >m_recordsetVa rName. You can type the name instead, but selecting from
the drop-down list is faster and more accurate.

All variables of the recordset class appear in the box, not just variables of the
currently selected data type.

6 Choose OK to close the Add Member Variable dialog box.

7 Repeat steps 3 through 6 for each control in the record view that you want to map
to a recordset field data member.

8 Choose OK to close ClassWizard.

By selecting a name from the drop-down list, you specify a connection that passes
through the record view object to a field data member of its associated recordset
object.

Tip If you're running ClassWizard with the Visual C++ dialog editor open, the following
shortcut is available. Choose a control on the form; then press CTRL and double-click the
mouse. This opens ClassWizard's Add Member Variables dialog box, where you can bind a
recordset field data member to the control. (If you use this shortcut before a class has been
created for the dialog template, ClassWizard opens and displays its Add Class dialog box.)

If you follow a simple rule when placing controls on your record view form, ClassWizard is able
to preselect the most likely recordset member in the dialog box. The rule is to place the static
text label for the control ahead of the corresponding control in the tab order.

Tip You can use CTRL+Double-click for pushbuttons too. In these cases, ClassWizard creates
a message handler function for the BN_CLICKED notification message in your record view
class. You can edit its code to specify the button's action.

See Also Class Wizard: Foreign Objects

ClassWizard: Foreign Objects
ClassWizard extends dialog data exchange (DDX) by allowing you to map controls
on a form or dialog box indirectly to a "foreign object" -a CRecordset or
CDaoRecordset object. This article explains:

• What foreign objects are.

• How to use foreign objects.

Foreign Objects
The best way to understand foreign objects is to consider DDX for a dialog box or
form view and then see how it is extended. This discussion considers a form view,
based on class CForm View.

DDX maps the controls in a form view to data members of the CForm View-derived
class associated with the dialog-template resource. Controls in a form view
correspond one-to-one with form view class data members. Two entities are
connected: the form view on the screen and the form view class. (Dialog boxes work
this way too.)

DDX for foreign objects connects not two entities but three. Figure 1 shows this
connection, with a record view on screen at one end, a CRecordView class in the
middle, and a third object-the foreign object-at the other end: a CRecordset
object. (These could be a CDaoRecordView and a CDaoRecordset.)

Figure 1 DDX for Foreign Objects

CSectionForm C++
Record View object

C++ Recordset object
(Foreign object)

The record view class in Figure 1 contains a member variable, a pointer whose type
matches the class of the foreign object. The DDX mapping is from three record view

Class Wizard

169

ClassWizard

controls to members of the foreign object through the pointer, as illustrated by the
following DoDataExchange function:

void CSectionForm::DoDataExchange(CDataExchange* pOX)
{

}

CRecordView::DoDataExchange(pDX);
//{{AFX_DATA_MAP(CSectionForm)
DDX_FieldText(pDX. IDC_COURSE.

m_pSet->m_strCourseID. m_pSet);
DDX_FieldText(pDX. IDC_INSTRUCTOR.

m_pSet->m_strlnstructor. m_pSet);
DDX_FieldText(pDX. IDC_ROOMNO.

m_pSet->m_strRoomNo. m_pSet);
//}}AFX_DATA_MAP

Notice the indirect reference to recordset fields, through the m_pSet pointer to a
C Sec t ion s recordset object:

m_pSet->m_strCourseID

Also notice that m_pSet is repeated as the fourth argument in each DDX_FieldText
call.

ClassWizard and Foreign Objects
You set the foreign class and object on ClassWizard's Class Info tab. The Foreign
Class box names the class of the foreign object (CRecordset for ODBC or
CDaoRecordset for DAO). The Foreign Object box names the pointer variable that
points to an object of that class. (You can specify only one foreign object per class.)

If you select a class based on a dialog-template resource on ClassWizard's Member
Variables tab, Class Wizard locates the appropriate pointer variable in the class and
puts its type into the Foreign Class box. It also puts the variable name into the
Foreign Object box. You can change these values if you wish.

If you create a CRecordView or CDaoRecordView class with App Wizard and then
use ClassWizard to specify the DDX connections, ClassWizard automatically notes
the presence in the view class of a pointer to a CRecordset-derived or
CDaoRecordset-derived object. ClassWizard sets this as the value in the Foreign
Class box. It puts the name of the pointer variable into the Foreign Object box.

See Also ClassWizard: Mapping Form Controls to Recordset Fields

ClassWizard: OLE Automation Support

170

ClassWizard supports the following OLE Automation features:

• Add classes that support OLE Automation. This makes your application an OLE
Automation server. These classes will be exposed to OLE Automation clients such
as Microsoft Visual Basic or Microsoft Excel.

• Add methods and properties to your classes that support OLE Automation.

• Create a C++ class for another OLE Automation object on your system, such as
Microsoft Excel. This makes your application an OLE automation client.

You must call AfxOleInit in Initlnstance to initialize OLE for your application.

For more information, see the article ClassWizard: Accessing Automation Servers.

An OLE Automation class has a programming interface that other applications use to
manipulate objects that your application implements. This is referred to as a
"dispatch interface." For more information about dispatch interfaces, see the OLE
Programmer's Reference, Volume 2.

ClassWizard's Add Class button now allows you to create classes supporting OLE
Automation. Click this button on the OLE Automation tab to display a dialog box in
which you can choose to create a new class or import an existing class. The Create
New Class dialog box appears if you create a new class so you can specify the name
of your class, the base class, the filenames in which your class is implemented, and
and the dialog display resource for the base class, if necessary. You can also choose
whether your class supports OLE Automation, and whether to add the new class to
Component Gallery.

~ To add an OLE Automation class

1 Run Class Wizard from the View menu.

2 Click the Add Class button. The Add Class menu appears.

3 From the Add Class menu, select New. The Create New Class dialog box appears.

4 Type a name for the class.

5 Select a base class. Typically, new automation classes are derived from
CCmdTarget.

6 If you do not like the filenames specified by Class Wizard, click the Change button.
The Change Files dialog appears.

Enter new names for the .R and .CPP files. Alternately, you can use the Browse
buttons to select files. Then click OK to return to the Create New Class dialog box.

7 Choose the OLE Automation option to expose this class to OLE Automation
clients. If you choose Creatable By Type ID, you can specify a Type ID for this
automation object. The automation client will create an object of this class using
the Type ID.

a Set the Add Component To Gallery option if you want to add your new class to
Component Gallery after it is created.

9 When you have entered all the necessary information, click the Create button to
create the necessary code and add it to your project.

To continue defining the dispatch interface for your OLE Automation class, see the
article Class Wizard: Adding Automation Properties and Methods.

Class Wizard

171

Class Wizard

A class that is OLE Creatable allows other applications to create a stand-alone object
of the class, for example by using the Visual Basic function CreateObject, and to
incorporate that automation object into their application. In general, you should make
only your top-level classes, such as documents, creatable from other OLE
applications. Classes that are parts of these top-level classes are usually not OLE
Creatable and are instead accessed from a member function in the top-level class.

For example, consider a list document, which contains a list of items. It's a good idea
to make the top-level document class OLE Creatable, because this allows other
applications to create a list from nothing. You then add/enumerate the items in the
list, but you cannot create them as stand-alone objects because they depend on their
position inside the list. For this reason, only stand-alone objects should be OLE
Creatable. Note that if you selected Creatable By Type ID in AppWizard your
document class is OLE Creatable. In other words, it can be accessed by automation
clients.

Note OLE insertable items are made possible by class COleTemplateServer. When you
choose OLE support in AppWizard, a COleTemplateServer object manages your documents.
Such documents can be created by OLE Automation.

The following articles explain the details of using ClassWizard's OLE support:

• Class Wizard: Adding Automation Properties and Methods

• Class Wizard: Accessing Automation Servers

Class Wizard: Adding Automation Properties and
Methods

172

This article explains how to use Class Wizard to add OLE Automation properties and
methods to an OLE Automation class. Topics include:

• Adding a member variable property to your class

• Adding a Get/Set Methods property to your class

• Adding a method to your class

A class that supports OLE Automation exposes a set of functions (known as methods)
and properties-the dispatch interface-for use by other applications. ClassWizard
offers a simple, quick way to implement this ability in your classes.

Member-Variable Properties
Use member variable properties if you need to allocate storage for the values. The
most common case for member variables is when there is no user interface to be
updated when changes occur.

~ To add a member variable property to your OLE automation class

1 In ClassWizard, choose the OLE Automation tab.

2 Select a class name that supports OLE automation. Your document class supports
OLE automation if you checked the OLE automation check box in AppWizard.
Notice that the Add Property and Add Method buttons are unavailable for classes
that do not support OLE automation.

3 Click the Add Property button and supply the following information:

• External Name: Name that automation clients use to refer to this property.

• Type: Any of the choices found in the list box.

• Implementation: Choose Member Variable.

• Variable Name: Name of the C++ class data member.

Tip You can also supply the name of a notification function that is called when the variable
changes.

4 Click OK to close ClassWizard.

Get/Set Properties
Use Get/Set Methods properties if you are dealing with calculated properties. The
most common use of Get/Set properties is to reflect changes in a user interface for
calculated properties or items that are updated.

~ To add a Get/Set Methods property to your OLE automation class

1 In ClassWizard, choose the OLE Automation tab.

2 Select a class name that supports OLE automation. You can also select the name of
your document class if you checked the OLE Automation check box in
AppWizard. Notice that the Add Property and Add Method buttons are
unavailable for classes that do not support OLE automation.

3 Click the Add Property button and supply the following information:

• External Name: Name that automation clients use to refer to this property.

• Type: Any of the choices found in the list box.

• Implementation: Choose Get/Set Methods.

• Get Function: The name of the member function used to get the property value.

• Set Function: The name of the member function used to set the property value.
This function can include special processing for when the property value is
changed.

4 Add any method parameters you need, using the grid control:

• Double-click in the first empty row under the Name label to activate an edit
control; then enter the parameter name.

• Double-click the row under the Type label to activate a drop-down list; then
select the parameter's type.

Class Wizard

173

Client, OLE Automation

Continue this procedure until you have entered all the parameters you need. To
delete a parameter, delete its row by clicking once in the row and pressing the
DELETE key or the BACKSPACE key.

5 Choose OK to create the necessary code.

Tip To create a read-only property, delete the name of the Set Function.

~ To add a method to your OLE automation class

1 In ClassWizard, choose the OLE Automation tab.

2 Select a class name that supports OLE automation. You can also select the name of
your document class if you checked the OLE Automation check box in
AppWizard. Notice that the Add Property and Add Method buttons are
unavailable for classes that do not support OLE automation.

3 Open the Add Method dialog box and supply the following information:

• External Name: Name that automation clients use to refer to this method.

• Internal Name: Name of the C++ member function to add to the class.

• Return Type: Any choice found in the list box.

4 Add any method parameters you need, using the grid control:

• Double-click in the first empty row under the Name label to activate an edit
control; then enter the parameter name.

• Double-click the row under the Type label to activate a drop-down list; then
select the parameter's type.

Continue this procedure until you have entered all the parameters you need. To
delete a parameter, delete its row by clicking once in the row and pressing the
DELETE key or the BACKSPACE key.

5 Choose OK in the Add Method dialog box to create the member function.

See Also Class Wizard: Accessing Automation Servers

Class Wizard: Accessing Automation Servers
OLE automation allows other applications to expose objects and their interfaces to
your application. You can make use of this feature by writing automation clients in
C++, as well as in Visual Basic and other interpreted languages that support
automation.

For information and a procedure, see the article Automation Clients: Using Type
Libraries.

Client, OLE Automation
See the article Automation Clients.

174

Clipboard
The Clipboard is the standard Windows method of transferring data between a source
and a destination. It can also be very useful in OLE operations. With the advent of
OLE, there are two Clipboard mechanisms in Windows. The standard Windows
Clipboard API is still available, but it has been implemented by the OLE data transfer
mechanism. OLE uniform data transfer (UDT) supports Cut, Copy, and Paste with
the Clipboard and drag-and-drop. This article describes:

• When to use the OLE Clipboard mechanism and when to use the standard
Clipboard mechanism.

• U sing the OLE Clipboard mechanism.

The Clipboard is a system service shared by the entire Windows session, so it does
not have a handle or class of its own. You manage the Clipboard through member
functions of class CWnd.

For a brief introduction to the standard Windows Clipboard API, see the article
Clipboard: Using the Windows Clipboard.

When to Use Each Mechanism
Follow these guidelines in using the Clipboard:

• Use the OLE Clipboard mechanism now to enable new capabilities in the future.
While the standard Clipboard API will be maintained, the OLE mechanism is the
future of data transfer.

• Use the OLE Clipboard mechanism if you are writing an OLE application or you
want any of the OLE features, such as drag and drop.

• Use the OLE Clipboard mechanism if you are providing OLE formats.

Using the OLE Clipboard Mechanism
OLE uses standard formats and some OLE-specific formats for transferring data
through the Clipboard.

When you cut or copy data from an application, the data is stored on the Clipboard to
be used later in paste operations. This data is in a variety of formats. When a user
chooses to paste data from the Clipboard, the application can choose which of these
formats to use. The application should be written to choose the format that provides
the most information, unless the user specifically asks for a certain format, using
Paste Special. Before continuing, you may want to read the Data Objects and Data
Sources (OLE) family of articles. They describe the fundamentals of how data
transfers work, and how to implement them in your applications.

Windows defines a number of standard formats that can be used for transferring data
through the Clipboard. These include metafiles, text, bitmaps, and others. OLE
defines a number of OLE-specific formats, as well. It is a good idea for applications

Clipboard

175

Clipboard

that need more detail than given by these standard formats to register their own
custom Clipboard formats. Use the RegisterClipboardFormat function to do this.

For example, Microsoft Excel registers a custom format for spreadsheets. This format
carries much more information than, for example, a bitmap does. When this data is
pasted into an application that supports the spreadsheet format, all the formulas and
values from the spreadsheet are retained and can be updated if necessary. Microsoft
Excel also put data on the Clipboard in formats so that it can be pasted as an OLE
item. Any OLE document container can paste this information in as an embedded
item. This embedded item can be changed using Microsoft Excel. The Clipboard also
contains a simple bitmap of the image of the selected range on the spreadsheet. This
can also be pasted into OLE document containers or into bitmap editors, like Paint.
In the case of a bitmap, however, there is no way to manipuate the data as a
spreadsheet.

To retrieve the maximum amount of information from the Clipboard, applications
should check for these custom formats before pasting data from the Clipboard.

For example, to enable the Copy command, you might write a handler something like
the following:

void CMyView: :OnEditCopy()
{

II Create an OLE data source on the heap
COleDataSource* pData = new COleDataSource;
II
II Get the currently selected data
1/ ...
II For the appropriate data formats ...
pData-)CacheData(CF_?? hData);
1/
II The Clipboard now owns the allocated memory
II and will delete this data object
II when new data is put on the Clipboard
pData-)SetClipboard();

For more detailed information, see the following articles:

• Clipboard: Copying and Pasting Data

• Clipboard: Adding Other Formats

• Clipboard: Using the Windows Clipboard

See Also Clipboard: Copying and Pasting Data, OLE Overview, Data Objects and
Data Sources (OLE), Clipboard: Using the Windows Clipboard

Clipboard: Using the Windows Clipboard

176

This article describes how to use the standard Windows Clipboard API within your
MFC application.

Most applications for Windows support cutting or copying data to the Windows
Clipboard and pasting data from the Clipboard. The Clipboard data formats vary
among applications. The framework supports only a limited number of Clipboard
formats for a limited number of classes. You will normally implement the Clipboard
related commands-Cut, Copy, and Paste-on the Edit menu for your view. The
class library defines the command IDs for these commands: ID _EDIT_CUT,
ID _EDIT_COPY, and ID _EDIT_PASTE. Their message-line prompts are also
defined.

Chapter 2, Working with Messages and Commands, explains how to handle menu
commands in your application by mapping the menu command to a handler function.
As long as your application does not define handler functions for the Clipboard
commands on the Edit menu, they remain disabled. To write handler functions for the
Cut and Copy commands, implement selection in your application. To write a handler
function for the Paste command, query the Clipboard to see whether it contains data
in a format your application can accept. For example, to enable the Copy command,
you might write a handler something like the following:

void CMyView::OnEditCopy()
{

if (!OpenClipboard())
{

AfxMessageBox("Cannot open the Clipboard");
return;

II Remove the current Clipboard contents
if(EmptyClipboard())
{

}

II

AfxMessageBox("Cannot empty the Clipboard");
return;

II Get the currently selected data
II
II For the appropriate data formats ...
if (::SetClipboardData(CF_?? hData) == NULL
{

}

AfxMessageBox("Unable to set Clipboard d~ta");
CloseClipboard();
return;

I I ...
CloseClipboard();

The Cut, Copy, and Paste commands are only meaningful in certain contexts. The
Cut and Copy commands should be enabled only when something is selected, and the
Paste command only when something is in the Clipboard. You can provide this
behavior by defining update handler functions that enable or disable these commands
depending on the context. For more information, see How to Update User-Interface
Objects in Chapter 2.

Clipboard

177

Clipboard

The Microsoft Foundation Class Library does provide Clipboard support for text
editing with the CEdit and CEditView classes. The OLE classes also simplify
implementing Clipboard operations that involve OLE items. For more information on
the OLE classes, see Using the OLE Clipboard Mechanism in the article Clipboard.

Implementing other Edit menu commands, such as Undo (ID _EDIT_UNDO) and
Redo (ID _EDIT_REDO), is also left to you. If your application does not support
these commands, you can easily delete them from your resource file using the Visual
C++ resource editors.

See Also Clipboard: Copying and Pasting Data

Clipboard: Copying and Pasting Data

178

This article describes the minimum work necessary to implement copying to and
pasting from the Clipboard in your OLE application. It is recommended that you read
the Data Objects and Data Sources (OLE) family of articles before proceeding.

Before you can implement either copying or pasting, you must first provide functions
to handle the Copy, Cut, and Paste options on the Edit menu.

Copying Data
~ To copy data to the Clipboard

1 Determine whether the data to be copied is native data or is an embedded or linked
item.

• If the data is embedded or linked, obtain a pointer to the COleClientItem
object that has been selected.

• If the data is native and the application is a server, create a new object derived
from COleServerItem containing the selected data. Otherwise, create a
COleDataSource object for the data.

2 Call the selected item's CopyToClipboard member function.

3 If the user chose a Cut operation instead of a Copy operation, delete the selected
data from your application.

To see an example of this sequence, see the OnEditCut and OnEditCopy functions
in the MFC OLE sample programs OCLIENT and HIERSVR. Note that these
samples maintain a pointer to the currently selected data, so step 1 is already
complete.

Pasting Data
Pasting data is more complicated than copying it because you need to choose the
format to use in pasting the data into your application.

~ To paste data from the Clipboard

1 In your view class, implement OnEditPaste to handle users choosing the Paste
option from the Edit menu.

2 In the OnEditPaste function, create a COleDataObject object and call its
AttachClipboard member function to link this object to the data on the
Clipboard.

3 Call COleDataObject::IsDataAvaiiable to check whether a particular format is
available.

Alternately, you can use COleDataObject: :BeginEnumFormats to look for other
formats until you find one most suited to your application.

4 Perform the paste of the format.

For an example of how this works, see the implementation of the OnEditPaste
member functions in the view classes defined in the MFC OLE sample programs
OCLIENT and HIERSVR.

Tip The main benefit of separating the paste operation into its own function is that the same
paste code can be used when data is dropped in your application during a drag-and-drop
operation. As in OCLIENT and HIERSVR, your OnDrop function can also call Do Pasteltem ,
reusing the code written to implement Paste operations.

To handle the Paste Special option on the Edit menu, see the article Dialog Boxes in
OLE.

See Also Clipboard: Adding Other Formats, Data Objects and Data Sources:
Creation and Destruction, OLE Overview

Clipboard: Adding Other Formats
This article explains how to expand the list of supported formats, particularly for
OLE support. The article Clipboard: Copying and Pasting Data describes the
minimum implementation necessary to support copying and pasting from the
Clipboard. If this is all you implement, the only formats placed on the Clipboard are
CF _ METAFILEPICT, CF _ EMBEDSOURCE, CF _ OBJECTDESCRIPTOR, and
possibly CF _ LINKSOURCE. Most applications will need more formats on the
Clipboard than these three.

Registering Custom Formats
To create your own custom formats, follow the same procedure you would use when
registering any custom Clipboard format: pass the name of the format to the
RegisterClipboardFormat function and use its return value as the format ID.

Placing Formats on the Clipboard
To add more formats to those placed on the Clipboard, you must override the
OnGetClipboardData function in the class you derived from either COleClientItem

Clipboard

179

CObject Class

or COleServeritem (depending on whether the data to be copied is native). In this
function, you should use the following procedure.

~ To place formats on the Clipboard

1 Create a COleDataSource object.

2 Pass this data source to a function that adds your native data formats to the list of
supported formats by calling COleDataSource: :CacheGlobaIData.

3 Add standard formats by calling COleDataSource: :CacheGlobalData for each
standard format you want to support.

This technique is used in the MFC OLE sample program lllERSVR (examine the
OnGetClipboardData member function of the CServeritem class). The only
difference in this sample is that step three is not implemented because RIERSVR
supports no other standard formats.

See Also Data Objects and Data Sources: Manipulation

CObject Class
CObject is the root base class for most of the Microsoft Foundation Class Library
(MFC). The CObject class contains many useful features that you may want to
incorporate into your own program objects, including serialization support, run-time
class information, and object diagnostic output. If you derive your class from
CObject, your class can exploit these CObject features.

The cost of deriving your class from CObject is minimal. Your derived class will
have the overhead of four virtual functions and a single CRuntimeClass object.

The following articles explain how to derive a class from CObject and how to access
run-time class information using CObject:

• CObject Class: Deriving a Class from CObject

• CObject Class: Specifying Levels of Functionality

• CObject Class: Accessing Run-Time Class Information

• CObject Class: Dynamic Object Creation

See Also Files, Serialization (Object Persistence)

CObject Class: Deriving a Class from CObject

180

This article describes the minimum steps necessary to derive a class from CObject.
Other CObject Class articles describe the steps needed to take advantage of specific
CObject features, such as serialization and diagnostic debugging support.

In the discussions of CObject, the terms "interface file" and "implementation file"
are used frequently. The interface file (often called the header file, or .R file) contains
the class declaration and any other information needed to use the class. The

CObject Class

implementation file (or .CPP file) contains the class definition as well the code that
implements the class member functions. For example, for a class named CPerson,
you would typically create an interface file named PERSON.H and an
implementation file named PERSON.CPP. However, for some small classes that will
not be shared among applications, it is sometimes easier to combine the interface and
implementation into a single .CPP file.

You can choose from four levels of functionality when deriving a class from
CObject:

• Basic functionality: No support for run-time class information or serialization but
includes diagnostic memory management.

• Basic functionality plus support for run-time class information.

• Basic functionality plus support for run-time class information and dynamic
creation.

• Basic functionality plus support for run-time class information, dynamic creation,
and serialization.

Classes designed for reuse (those that will later serve as base classes) should at least
include run-time class support and serialization support, if any future serialization
need is anticipated.

You choose the level of functionality by using specific declaration and
implementation macros in the declaration and implementation of the classes you
derive from CObject.

Table 1 shows the relationship among the macros used to support serialization and
run-time information.

Table 1 Macros Used for Serialization and Run-Time Information

Macro used

Basic CObject functionality

DECLARE_DYNAMIC

DECLARE DYNCREATE

DECLARE SERIAL

CObject::lsKindOf

No
Yes

Yes

Yes

~ To use basic CObject functionality

CRuntimeClass::
CreateObject

No
No
Yes

Yes

CArchive: :operator»
CArchive: :operator«

No
No
No
Yes

• Use the normal C++ syntax to derive your class from CObject (or from a class
derived from CObject).

The following example shows the simplest case, the derivation of a class from
CObject:

181

CObject Class

class CPerson : public CObject
{

II add CPerson-specific members and functions ...

Normally, however, you may want to override some of CObject's member functions
to handle the specifics of your new class. For example, you may usually want to
override the Dump function of CObject to provide debugging output for the contents
of your class. For details on how to override Dump, see the article Diagnostics:
Dumping Object Contents. You may also want to override the AssertValid function
of CObject to provide customized testing to validate the consistency of the data
members of class objects. For a description of how to override AssertValid, see
Overriding the AssertValid Function in the article Diagnostics: Checking Object
Validity.

The article CObject Class: Specifying Levels of Functionality describes how to
specify other levels of functionality, including run-time class information, dynamic
object creation, and serialization.

CObject Class: Specifying Levels of Functionality

182

This article describes how to add the following levels of functionality to your
CObject-derived class:

• Run-time class information

• Dynamic creation support

• Serialization support

For a general description of CObject functionality, see the article CObject Class:
Deriving a Class from CObject.

~ To add run-time class information

CObject supports run-time class information through the IsKindOf function, which
allows you to determine if an object belongs to or is derived from a specified class.
For more detailed information, see the articles Files and Serialization (Object
Persistence). This capability is not supported directly by the C++ language. The
IsKindOf function permits you to do a type-safe cast down to a derived class.

Use the following steps to access run-time class information:

1. Derive your class from CObject, as described in the CObject Class: Deriving a
Class from CObject article.

2. Use the DECLARE_DYNAMIC macro in your class declaration, as shown here:

class CPerson : public CObject
{

DECLARE_DYNAMIC(CPerson)

II rest of class declaration follows ...
} ;

3. Use the IMPLEMENT_DYNAMIC macro in the implementation file (.CPP) of
your class. This macro takes as arguments the name of the class and its base class,
as follows:

IMPLEMENT_DYNAMIC(CPerson, CObject)

Note Always put IMPLEMENT_DYNAMIC in the implementation file (.CPP) for your class.
The IMPLEMENT_DYNAMIC macro should be evaluated only once during a compilation and
therefore should not be used in an interface file (.H) that could potentially be included in more
than one file.

~ To add dynamic creation support

CObject also supports dynamic creation, which is the process of creating an object of
a specific class at run time. The object is created by the CreateObject member
function of CRuntimeClass. Your document, view, and frame class should support
dynamic creation because the framework (through the CDocTemplate class) needs to
create them dynamically. Dynamic creation is not supported directly by the C++
language. To add dynamic creation, you must do the following:

1 Derive your class from CObject.

2 Use the DECLARE DYNCREATE macro in the class declaration.

3 Define a constructor with no arguments (a default constructor).

4 Use the IMPLEMENT _ DYNCREATE macro in the class implementation file.

~ To add serialization support

"Serialization" is the process of writing or reading the contents of an object to and
from a file. The Microsoft Foundation Class Library uses an object of the CArchive
class as an intermediary between the object to be serialized and the storage medium.
The CArchive object uses overloaded insertion «<) and extraction (») operators to
perform writing and reading operations.

The following steps are required to support serialization in your classes:

1 Derive your class from CObject.

2 Override the Serialize member function.

Note If you call Serialize directly, that is, you do not want to serialize the object through a
polymorphic pointer, omit steps 3 through 5.

3 Use the DECLARE SERIAL macro in the class declaration.

CObject Class

183

CObject Class

4 Define a constructor with no arguments (a default constructor).

5 Use the IMPLEMENT_SERIAL macro in the class implementation file.

Note A "polymorphic pointer" points to an object of a class (call it A) or to an object of any
class derived from A (say, B). To serialize through a polymorphic pointer, the framework must
determine the run-time class of the object it is serializing (B), since it might be an object of any
class derived from some base class (A).

For more details on how to enable serialization when you derive your class from
CObject, see the articles Files and Serialization (Object Persistence).

See Also CObject Class: Accessing Run-Time Class Information

CObject Class: Accessing Run-Time Class Information

184

This article explains how to access information about the class of an object at run
time.

Note MFC does not use the Run-Time Type Information (RTTI) support introduced in Visual
C++ 4.0. For more information about Rnl, see Run-Time Type Information in the C++
Language Reference. .

If you have derived your class from CObject and used the DECLARE_DYNAMIC
and IMPLEMENT_DYNAMIC, the DECLARE_DYNCREATE and
IMPLEMENT_DYNCREATE, or the DECLARE_SERIAL and
IMPLEMENT_SERIAL macros explained in the article, CObject Class: Deriving a
Class from CObject, the CObject class has the ability to determine the exact class of
an object at run time.

The ability to determine the class of an object at run time is most useful when extra
type checking of function arguments is needed and when you must write special
purpose code based on the class of an object. However, this practice is not usually
recommended because it duplicates the functionality of virtual functions.

The CObject member function IsKindOf can be used to determine if a particular
object belongs to a specified class or if it is derived from a specific class. The
argument to IsKindOf is a CRuntimeClass object, which you can get using the
RUNTIME CLASS macro with the name of the class. The use of the

. RUNTIME CLASS macro is shown in this article.

~ To use the RUNTIME_CLASS macro

• Use RUNTIME_CLASS with the name of the class, as shown here for the class
CObject:
CRuntimeClass* pClass = RUNTIME_CLASS(CObject);

You will rarely need to access the run-time class object directly. A more common use
is to pass the run-time class object to the IsKindOf function, as shown in the next

procedure. The IsKindOf function tests an object to see if it belongs to a particular
class.

~ To use the IsKindOf function

1 Make sure the class has run-time class support. That is, the class must have been
derived directly or indirectly from CObject and used the
DECLARE_DYNAMIC and IMPLEMENT_DYNAMIC, the
DECLARE_DYNCREATE and IMPLEMENT_DYNCREATE, or the
DECLARE_SERIAL and IMPLEMENT_SERIAL macros explained in the
article CObject Class: Deriving a Class from CObject.

2 Call the IsKindOf member function for objects of that class, using the
RUNTIME_CLASS macro to generate the CRuntimeClass argument, as shown
here:

II in .H file
class CPerson : public CObject
{

DECLARE_DYNAMIC(CPerson)
public:

CPerson(){};

II other declaration
} ;

II in .CPP file
IMPLEMENT_DYNAMIC(CPerson, CObject

CObject* pMyObject = new CPerson;

if(myObject->IsKindOf(RUNTIME_CLASS(CPerson))
{

Ilif IsKindOf is true, then cast is all right
CPerson* pmyPerson = (CPerson*) pmyObject;

Note IsKindOf returns TRUE if the object is a member of the specified class or of a class
derived from the specified class. IsKindOf does not support multiple inheritance or virtual
base classes, although you can use multiple inheritance for your derived Microsoft
Foundation classes if necessary.

One use of run-time class information is in the dynamic creation of objects. This
process is discussed in the article CObject Class: Dynamic Object Creation.

For more detailed information on serialization and run-time class information, see
the articles Files and Serialization (Object Persistence).

CObject Class

185

Collections

CObject Class: Dynamic Object Creation
This article explains how to create an object dynamically at run time. The procedure
uses run-time class information, as discussed in the article CObject Class: Accessing
Run-Time Class Information.

~ To dynamically create an object given its run-time class

• Use the following code to dynamically create an object by using the CreateObject
function of the CRuntimeClass. Note that on failure, CreateObject returns
NULL instead of raising an exception:

CRuntimeClass* pRuntimeClass = RUNTIME_CLASS(CMyClass);
CObject* pObject = pRuntimeClass->CreateObject();
ASSERT(pObject-)IsKindOf(RUNTIME_CLASS(CMyClass)));

Collections

186

This group of articles explains the MFC collection classes.

The Microsoft Foundation Class Library provides collection classes to manage groups
of objects. These classes are of two types:

• Collection classes created from C++ templates

• Collection classes not created from templates

Other topics covered in this article include:

• Collection shapes

• Further reading about collections

Tip The nontemplate collection classes have been provided by MFC beginning with MFC
version 1.0. If your code already uses these classes, you can continue to use them. If you write
new type-safe collection classes for your own data types, consider using the newer template
based classes.

Collection Shapes
A collection class is characterized by its "shape" and by the types of its elements. The
shape refers to the way the objects are organized and stored by the collection. MFC
provides three basic collection shapes: lists, arrays, and maps (also known as
dictionaries). You can pick the collection shape most suited to your particular
programming problem.

Each of the three provided collection shapes is described briefly below. Table 1 in the
article Collections: Choosing a Collection Class compares the features of the shapes
to help you decide which is best for your program.

• List

The list class provides an ordered, nonindexed list of elements, implemented as a
doubly linked list. A list has a "head" and a "tail," and adding or removing
elements from the head or tail, or inserting or deleting elements in the middle, is
very fast.

• Array

The array class provides a dynamically sized, ordered, and integer-indexed array
of objects .

• Map (also known as a dictionary)

A map is a collection that associates a key object with a value object.

The Template-Based Collection Classes
The easiest way to implement a type-safe collection that contains objects of any type
is to use one of the MFC template-based classes. For examples of these classes, see
the MFC Advanced Concepts sample COLLECT.

Table 1 lists the MFC template-based collection classes.

Table 1 Collection Template Classes

Collection contents Arrays

Collections of objects CArray
of any type

Collections of pointers CTypedPtr Array
to objects of any type

Lists

CList

CTypedPtrList

Maps

CMap

CTypedPtrMap

The Collection Classes Not Based on Templates
If your application already uses MFC nontemplate classes, you can continue to use
them, although for new collections you should consider using the template-based
classes. Table 2 lists the MFC collection classes not based on templates.

Table 2 Nontemplate Collection Classes

Arrays

CObArray

CByteArray

CDWordArray

CPtrArray

CStringArray

CWordArray

CUlntArray

Lists

CObList

CPtrList

CStringList

Maps

CMapPtrTo Word

CMapPtrToPtr

CMapStringToOb

CMapStringToPtr

CMapStringToString

CMapWordToOb

CMapWordToPtr

Table 2 in the article Collections: Choosing a Collection Class describes the MFC
collection classes in terms of their characteristics (other than shape):

Collections

187

Collections

• Whether the class uses C++ templates

• Whether the elements stored in the collection can be serialized

• Whether the elements stored in the collection can be dumped for diagnostics

• Whether the collection is type-safe

Further Reading About Collections
The following articles describe how to use the collection classes to make type-safe
collections and how to perform a number of other operations using collections:

• Collections: Choosing a Collection Class

• Collections: Template-Based Classes

• Collections: How to Make a Type-Safe Collection

• Collections: Accessing All Members of a Collection

• Collections: Deleting All Objects in a CObject Collection

• Collections: Creating Stack and Queue Collections

Collections: Choosing a Collection Class

188

This article contains detailed information designed to help you choose a collection
class for your particular application needs.

Your choice of a collection class depends on a number of factors, including:

• The features of the class shape: order, indexing, and performance, as shown in
Table I

• Whether the class uses C++ templates

• Whether the elements stored in the collection can be serialized

• Whether the elements stored in the collection can be dumped for diagnostics

• Whether the collection is type-safe

Table 1 summarizes the characteristics of the available collection shapes.

• Columns 2 and 3 describe each shape's ordering and access characteristics. In the
table, the term "ordered" means that the order in which items are inserted and
deleted determines their order in the collection; it does not mean the items are
sorted on their contents. The term "indexed" means that the items in the collection
can be retrieved by an integer index, much like items in a typical array.

• Columns 4 and 5 describe each shape's performance. In applications that require
many insertions into the collection, insertion speed might be especially important;
for other applications, lookup speed may b~ more important.

• Column 6 describes whether each shape allows duplicate elements.

Collections

Table 1 Collection Shape Features

Insert an Search for specified
Shape Ordered? Indexed? element element Duplicate elements?

List Yes No Fast Slow Yes

Array Yes By int Slow Slow Yes

Map No By key Fast Fast No (keys)
Yes (values)

Table 2 summarizes other important characteristics of specific MFC collection classes
as a guide to selection. Your choice may depend on whether the class is based on c++
templates, whether its elements can be serialized via MFC's document serialization
mechanism, whether its elements can be dumped via MFC's diagnostic dumping
mechanism, or whether the class is type-safe-that is, whether you can guarantee the
type of elements stored in and retrieved from a collection based on the class.

Table 2 Characteristics of MFC Collection Classes

Uses C++ Can be Can be Is
Class templates serialized dumped type-safe

CArray Yes Yes 1 Yes 1 No

CTypedPtr Array Yes Depends 2 Yes Yes

CByteArray No Yes Yes Yes 3

CDWordArray No Yes Yes Yes 3

CObArray No Yes Yes No

CPtrArray No No Yes No

CStringArray No Yes Yes Yes 3

CWordArray No Yes Yes Yes 3

CUlntArray No No Yes Yes 3

CList Yes Yes 1 Yes 1 No

CTypedPtrList Yes Depends 2 Yes Yes

CObList No Yes Yes No

CPtrList No No Yes No

CStringList No Yes Yes Yes 3

CMap Yes Yes 1 Yes 1 No

CTypedPtrMap Yes Depends 2 Yes Yes

CMapPtrTo Word No No Yes No

CMapPtrToPtr No No Yes No

CMapStringToOb No Yes Yes No

CMapStringToPtr No No Yes No

CMapStringToString No Yes Yes Yes 3

189

Collections

Table 2 Characteristics of MFC Collection Classes (cont.)

Uses C++ Can be
Class templates serialized

CMapWordToOb

CMap WordToPtr

No
No

Yes

No

Can be
dumped

Yes

Yes

Is
type-safe

No
No

1 To serialize, you must explicitly call the collection object's Serialize function; to dump, you must explicitly call its Dump function.
You cannot use the form ar « collObj to serialize or the form dmp « collObj to dump.

2 Serializability depends on the underlying collection type. For example, if a typed pointer array is based on CObArray, it is
serializable; if based on CPtrArray, it is not serializable. In general, the "Ptr" classes cannot be serialized.

3 If marked Yes in this column, a nontemplate collection class is type-safe provided you use it as intended. That is, for example, if you
store bytes in a CByteArray, the array is type-safe. But if you use it to store characters, its type safety is less certain.

See Also Collections: Template-Based Classes, Collections: How to Make a Type
Safe Collection, Collections: Accessing All Members of a Collection

Collections: Template-Based Classes

190

This article explains the type-safe template-based collection classes in MFC version
3.0 and later. Using these templates to create type-safe collections is more convenient
and provides better type safety than using the collection classes not based on
templates.

MFC predefines two categories of template-based collections:

• Simple array, list, and map classes

CArray, CList, CMap

• Arrays, lists, and maps of typed pointers

CTypedPtrArray, CTypedPtrList, CTypedPtrMap

The simple collection classes are all derived from class CObject, so they inherit the
serialization, dynamic creation, and other properties of CObject. The typed pointer
collection classes require you to specify the class you derive from - which must be
one of the nontemplate pointer collections predefined by MFC, such as CPtrList or
CPtrArray. Your new collection class inherits from the specified base class, and the
new class's member functions use encapsulated calls to the base class members to
enforce type safety.

For more information about Visual C++ templates, see Chapter 6, Templates, in
Programming Techniques.

Using Simple Array, List, and Map Templates
To use the simple collection templates, you ne"!d to know what kind of data you can
store in these collections and what parameters to use in your collection declarations.

Simple Array and List Usage
The simple array and list classes, CArray and CList, take two parameters: TYPE and
ARG _TYPE. These classes can store any data type, which you specify in the TYPE
parameter:

• Fundamental C++ data types, such as int, char, and float

• C++ structures and classes

• Other types that you define

For convenience and efficiency, you can use the ARG _ TYPE parameter to specify the
type of function arguments. Typically, you specify ARG _ TYPE as a reference to the
type you named in the TYPE parameter. For example:

CArray<int, int> myArray;
CList<CPerson, CPerson&> myList;

The first example declares an array collection, myArray, that contains ints. The
second example declares a list collection, my Lis t, that stores C Per son objects.
Certain member functions of the collection classes take arguments whose type is
specified by the ARG _ TYPE template parameter. For example, the Add member
function of class CArray takes an ARG _ TYPE argument:

CArray<CPerson, CPerson&> myArray;
CPerson person;
myArray->Add(person);

Simple Map Usage
The simple map class, CMap, takes four parameters: KEY, ARG _KEY, VALUE, and
ARG _VALUE. Like the array and list classes, the map classes can store any data type.
Unlike arrays and lists, which index and order the data they store, maps associate
keys and values: you access a value stored in a map by specifying the value's
associated key. The KEY parameter specifies the data type of the keys used to access
data stored in the map. If the type of KEY is a structure or class, the ARG _KEY
parameter is typically a reference to the type specified in KEY. The VALUE parameter
specifies the type of the items stored in the map. If the type of ARG _VALUE is a
structure or class, the ARG _ VALUE parameter is typically a reference to the type
specified in VALUE. For example:

CMap< int, int, MY_STRUCT, MY_STRUCT& > myMapl;
CMap< CString, LPCSTR, CPerson, CPerson& > myMap2;

The first example stores MY _STRUCT values, accesses them by int keys, and returns
accessed MY _STRUCT items by reference. The second example stores CPerson
values, accesses them by CString keys, and returns references to accessed items. This
example might represent a simple address book, in which you look up persons by last
name.

Because the KEY parameter is of type CString and the KEY _ TYP E parameter is of
type LPCSTR, the keys are stored in the map as items of type CString but are

Collections

191

Collections

192

referenced in functions such as SetAt through pointers of type LPCSTR. For
example:

CMap< CString. LPCSTR. CPerson. CPerson& > myMap2;
CPerson person;
LPCSTR lpstrName = "Jones";
myMap2->SetAt(lpstrName. person);

Using Typed·Pointer Collection Templates
To use the typed-pointer collection templates, you need to know what kinds of data
you can store in these collections and what parameters to use in your collection
declarations.

Typed-Pointer Array and List Usage
The typed-pointer array and list classes, CTypedPtr Array and CTypedPtrList, take
two parameters: BASE_CLASS and TYPE. These classes can store any data type,
which you specify in the TYPE parameter. They are derived from one of the
nontemplate collection classes that stores pointers; you specify this base class in
BASE_CLASS. For arrays, use either CObArray or CPtrArray. For lists, use either
CObList or CPtrList.

In effect, when you declare a collection based on, say CObList, the new class not
only inherits the members of its base class, but it also declares a number of additional
type-safe member functions and operators that provide type safety by encapsulating
calls to the base class members. These encapsulations manage all necessary type
conversion.

For example:

CTypedPtrArray<CObArray. CPerson*> myArray;
CTypedPtrList<CPtrList. MY_STRUCT*> myList;

The first example declares a typed-pointer array, myArray, derived from CObArray.
The array stores and returns pointers to CPerson objects (where CPerson is a class
derived from CObject). You can call any CObArray member function, or you can
call the new type-safe GetAt and ElementAt functions or use the type-safe []
operator.

The second example declares a typed-pointer list, my L ; s t, derived from CPtrList.
The list stores and returns pointers to MY _STRUCT objects. A class based on CPtrList
is used for storing pointers to objects not derived from CObject. CTypedPtrList has
a number of type-safe member functions: GetHead, GetTail, RemoveHead,
RemoveTail, GetNext, GetPrev, and GetAt.

Typed-Pointer Map Usage
The typed-pointer map class, CTypedPtrMall, takes three parameters:
BASE_CLASS, KEY, and VALUE. The BASE_CLASS parameter specifies the class
from which to derive the new class: CMapPtrToWord, CMapPtrToPtr,
CMapStringToPtr, CMapWordToPtr, CMapStringToOb, and so on. KEY is

analogous to KEY in CMap: it specifies the type of the key used for lookups. VALUE
is analogous to VALUE in CMap: it specifies the type of object stored in the map.

For example:

CTypedPtrMap<CMapPtrToPtr, CString, MY_STRUCT*> myPtrMap;
CTypedPtrMap<CMapStringToOb, CString, CMyObject*> myObjectMap;

The first example is a map based on CMapPtrToPtr-it uses CString keys mapped
to pointers to MY _STRUCT. You can look up a stored pointer by calling a type-safe
Lookup member function. You can use the [] operator to look up a stored pointer and
add it if not found. And you can iterate the map using the type-safe GetNextAssoc
function. You can also call other member functions of class CMapPtrToPtr.

The second example is a map based on CMapStringToOb-it uses string keys
mapped to stored pointers to CMyObj ect objects. You can use the same type-safe
members described in the previous paragraph, or you can call members of class
CMapStringToOb.

Note If you specify a class or struct type for the VALUE parameter, rather than a pointer or
reference to the type, the class or structure must have a copy constructor.

See Also Collections: How to Make a Type-Safe Collection

In the Class Library Reference: CArray, CList, CMap, CTypedPtrArray,
CTypedPtrList, CTypedPtrMap

Collections: How to Make a Type-Safe Collection
This article explains how to make type-safe collections for your own data types.
Topics include:

• U sing template-based classes for type-safety

• Implementing helper functions

• Using nontemplate collection classes

The Microsoft Foundation Class Library provides predefined type-safe collections
based on C++ templates. Because they are templates, these classes provide type safety
and ease of use without the type-casting and other extra work involved in using a
nontemplate class for this purpose. The MFC Advanced Concepts sample COLLECT
demonstrates the use of template-based collection classes in an MFC application. In
general, use these classes any time you write new collections code.

Using Template-Based Classes for Type-Safety
~ To use template-based classes

1 Declare a variable of the collection class type. For example:

CList<int, int> m_intList;

Collections

193

Collections

194

2 Call the member functions of the collection object. For example:

m_intList.AddTail(100);
m_intList.RemoveAll();

3 If necessary, implement the helper functions SerializeElements,
ConstructElements, and DestructElements. For information on implementing
these functions, see Implementing Helper Functions.

This example shows the declaration of a list of integers. The first parameter in step 1
is the type of data stored as elements of the list. The second parameter specifies how
the data is to be passed to and returned from member functions of the collection class,
such as Add and GetAt.

Implementing Helper Functions
The template-based collection classes CArray, CList, and CMap use six global
helper functions that you can customize as needed for your derived collection class.
For information on these helper functions, see Collection Class Helpers in the Class
Library Reference. Three of these helper functions are used in constructing,
destructing, and serializing collection elements; implementations of these functions
are necessary for most uses of the template-based collection classes.

Construction and Destruction
The helper functions ConstructElements and DestructElements are called by
members that respectively add and remove elements from a collection.

Helper·

ConstructElements

DestructElements

Called directly by

CArray: :SetSize
CArray: :InsertAt

CArray: :SetSize
CArray::RemoveAt
CList: : RemoveAIl
CMap::RemoveAll

Called indirectly by

CList: :AddHead
CList: : AddTail
CList: :InsertBefore
CList: :InsertAfter
CMap::operator []

CList: : RemoveHead
CList: : RemoveTail
CList: : RemoveAt
CMap::RemoveKey

You should override these functions if their default action is not suitable for your
collection class. The default implementation of ConstructElements sets to 0 the
memory that is allocated for new elements of the collection; no constructors are
called. The default implementation of DestructElements does nothing.

In general, overriding ConstructElements is necessary whenever the collection
stores objects that require a call to a constructor (or other initializing function), or
when the objects have members requiring such calls. Overriding DestructElements
is necessary when an object requires special action, such as the freeing of memory
allocated from the heap, when the object is destroyed.

For example, you might override ConstructElements for an array of CPerson objects
as follows:

CPerson : public CObject { ... };
CArray< CPerson, CPerson& > personArray;

void ConstructElements(CPerson* pNewPersons, int nCount
{

for (int i = 0; i < nCount; i++, pNewPersons++)
{

II call CPerson default constructor directly
new(pNewPersons)CPerson;

This override iterates through the new CPerson objects, calling each object's
constructor. The special new operator used here constructs a new CPerson object in
place rather than allocating memory from the heap.

Serializing Elements
The CArray, CList, and CMap classes call SerializeElements to store collection
elements to or read them from an archive.

The default implementation of the SerializeElements helper function does a bitwise
write from the objects to the archive, or a bitwise read from the archive to the objects,
depending on whether the objects are being stored in or retrieved from the archive.
Override SerializeElements if this action is not appropriate.

If your collection stores objects derived from CObject and you use the
IMPLEMENT_SERIAL macro in the implementation of the collection element
class, you can take advantage of the serialization functionality built into CArchive
and CObject:

CPerson : public CObject { ... };
CArray< CPerson, CPerson& > personArray;

void SerializeElements(CArchive& ar, CPerson* pNewPersons, int nCount)
{

}

for (int i = 0; i < nCount; i++, pNewPersons++
{

II Serialize each CPerson object
pNewPersons->Serialize(ar);

The overloaded insertion operators for CArchive call CObject: : Serialize (or an
override of that function) for each CPerson object.

Using Nontemplate Collection Classes
MFC also supports the collection classes introduced with MFC version 1.0. These
classes are not based on templates. They can be used to contain data of the supported

Collections

195

Collections

196

types CObject*, UINT, DWORD, and CString. You can use these predefined
collections (such as CObList) to hold collections of any objects derived from
CObject. MFC also provides other predefined collections to hold primitive types
such as UINT and void pointers (void*). In general, however, it is often useful to
define your own type-safe collections to hold objects of a more specific class and its
derivatives. Note that doing so with the collection classes not based on templates is
more work than using the template-based classes.

There are two ways to create type-safe collections with the nontemplate collections:

1. Use the nontemplate collections, with type casting if necessary. This is the easiest
approach.

2. Derive from and extend a nontemplate type-safe collection.

~ To use the nontemplate collections with type casting .

• Use one of the nontemplate classes, such as CWordArray, directly.

For example, you can create a CWordArray and add any 32-bit values to it, then
retrieve them. There is nothing more to do. You just use the predefined
functionality.

You can also use a predefined collection, such as CObList, to hold any objects
derived from CObject. A CObList collection is defined to hold pointers to
CObject. When you retrieve an object from the list, you may have to cast the
result to the proper type since the CObList functions return pointers to CObject.
For example, if you store CPerson objects in a CObList collection, you have to
cast a retrieved element to be a pointer to a C Per son object. The following
example uses a CObList collection to hold CPerson objects:

class CPerson : public CObject { ... };

CPerson* pl = new CPerson(...);
CObList myList;

myList.AddHead(pl); II No cast needed
CPerson* p2 = (CPerson*)myList.GetHead();

This technique of using a predefined collection type and casting as necessary may
be adequate for many of your collection needs. If you need further functionality or
more type safety, use a template-based class, or read the next procedure.

~ To derive and extend a nontemplate type-safe collection

• Derive your own collection class from one of the predefined nontemplate classes.

When you derive your class, you can add type-safe wrapper functions to provide a
type-safe interface to existing functions.

For example, if you derived a list from CObList to hold C Per son objects, you
might add the wrapper functions AddHeadPerson and GetHeadPerson, as
shown below.

class CPersonList : public CObList
{

public:

} ;

void AddHeadPerson(CPerson* person
{AddHead(person);}

canst CPerson* GetHeadPerson()
{return (CPerson*)GetHead();}

These wrapper functions provide a type-safe way to add and retrieve C Per son
objects from the derived list. You can see that for the GetHeadPerson function,
you are simply encapsulating the type casting.

You can also add new functionality by defining new functions that extend the
capabilities of the collection rather than just wrapping existing functionality in
type-safe wrappers. For example, the article Collections: Deleting All Objects in a
CObject Collection describes a function to delete all the objects contained in a list.
This function could be added to the derived class as a member function.

See Also Collections: Accessing All Members of a Collection, Technical Note 4

Collections: Accessing All Members of a Collection
The MFC array collection classes-both template-based and not-use indexes to
access their elements. The MFC list and map collection classes-both template
based and not-use an indicator of type POSITION to describe a given position
within the collection. To access one or more members of these collections, you first
initialize the position indicator and then repeatedly pass that position to the collection
and ask it to return the next element. The collection is not responsible for
maintaining state information about the progress of the iteration. That information is
kept in the position indicator. But, given a particular position, the collection is
responsible for returning the next element.

The following procedures show how to iterate over the three main types of collections
provided with MFC:

• Iterating an array

• Iterating a list

• Iterating a map

~ To iterate an array

• Use sequential index numbers with the GetAt member function:

Collections

197

Collections

198

CTypedPtrArray<CObArray. CPerson*> myArray;

fore int i = 0; i < myArray.GetSize();i++
{

CPerson* the Person = myAr ray. GetAt (i);

This example uses a typed pointer array that contains pointers to C Per son objects.
The array is derived from class CObArray, one of the nontemplate predefined
classes. GetAt returns a pointer to a C Per son object. For typed pointer collection
classes-arrays or lists-the first parameter specifies the base class; the second
parameter specifies the type to store.

The CTypedPtr Array class also overloads the [] operator so that you can use the
customary array-subscript syntax to access elements of an array. An alternative to
the statement in the body of the for loop above is

CPerson* thePerson = myArray[i];

This operator exists in both const and non-const versions. The const version,
which is invoked for const arrays, can appear only on the right side of an
assignment statement.

~ To iterate a list

• Use the member functions GetHeadPosition and GetNext to work your way
through the list:

CTypedPtrList<CObList. CPerson*> myList;

POSITION pos = myList.GetHeadPosition();
while(pos != NULL)
{

CPerson* thePerson myList.GetNext(pos);

This example uses a typed pointer list to contain pointers to C Per son objects. The
list declaration resembles the one for the array in the procedure "To iterate an
array" (above) but is derived from class CObList. GetNext returns a pointer to a
C Pe r s on object.

~ To iterate a map

• Use GetStartPosition to get to the beginning of the map and GetNextAssoc to
repeatedly get the next key and value from the map, as shown by the following
example:

CMap<CString. LPCTSTR. CPerson*. CPerson*> myMap;

POSITION pos = myMap.GetStartPosition();

while(pos 1- NULL)
{

CPerson* pPerson:
CString string:
II Get key (string) and value (pPerson)
myMap.GetNextAssoc(pos, string, pPerson):
II Use string and pPerson

This example uses a simple map template (rather than a typed pointer collection)
that uses CString keys and stores pointers to C Per son objects. When you use
access functions such as GetNextAssoc, the class provides pointers to CPerson
objects. If you use one of the nontemplate map collections instead, you must cast
the returned CObject pointer to a pointer to a CPerson.

Note For nontemplate maps, the compiler requires a reference to a CObject pointer in the
last parameter to GetNextAssoc. On input, you must cast your pointers to that type, as
shown in the next example.

The template solution is cleaner and provides better type safety. The nontemplate
code is more complicated, as you can see here:

CMapStringToOb myMap: II A nontemplate collection class

POSITION pos - myMap.GetStartPosition():
while(pos 1= NULL)
{

CPerson* pPerson:
CString string:
II Gets key (string) and value (pPerson)
myMap.GetNextAssoc(pos, string,

(CObject*&)pPerson):
ASSERT(pPerson->IsKindOf(

RUNTIME_CLASS(CPerson))):
II Use string and pPerson

See Also Collections: Deleting All Objects in a CObject Collection

Collections: Deleting All Objects in a CObject
Collection

This article explains how to delete all objects in a collection (without deleting the
collection object itself).

To delete all the objects in a collection of CObjects (or of objects derived from
CObject), you use one of the iteration techniques described in the article Collections:
Accessing All Members of a Collection to delete each object in turn.

Collections

199

Collections

200

Caution Objects in collections can be shared. That is, the collection keeps a pointer to the
object, but other parts of the program may also have pointers to the same object. You must be
careful not to delete an object that is shared until all the parts have finished using the object.

This article shows you how to delete the objects in:

• A list

• An array

• Amap

~ To delete all objects in a list of pOinters to CObject

1 Use GetHeadPosition and GetNext to iterate through the list.

2 Use the delete operator to delete each object as it is encountered in the iteration.

3 Call the RemoveAll function to remove all elements from the list after the objects
associated with those elements have been deleted.

The preceding technique deletes all objects in a list.

The following example shows how to delete all objects from a list of C Per son
objects. Each object in the list is a pointer to a C Per son object that was originally
allocated on the heap.

CTypedPtrList<CObList, CPerson*) myList;
POSITION pos = myList.GetHeadPosition();

whi 1 e(pos 1= NULL)
{

delete myList.GetNext(pos);

myList.RemoveAll();

The last function call, RemoveAll, is a list member function that removes all
elements from the list. The member function RemoveAt removes a single element.

Notice the difference between deleting an element's object and removing the element
itself. Removing an element from the list merely removes the list's reference to the
object. The object still exists in memory. When you delete an object, it ceases to exist
and its memory is reclaimed. Thus, it is important to remove an element immediately
after the element's object has been deleted so that the list won't try to access objects
that no longer exist.

~ To delete all elements in an array

1 Use GetSize and integer index values to iterate through the array.

2 Use the delete operator to delete each element as it is encountered in the iteration.

3 Call the RemoveAll function to remove all elements from the array after they have
been deleted.

The code for deleting all elements of an array is as follows:

CArray<CPerson*, CPerson*> myArray;

int i = 0;
while (i < myArray.GetSize())
{

delete myArray.GetAt(i++);

myArray.RemoveAll();

Like the list example above, you can call RemoveAII to remove all elements in an
array or RemoveAt to remove an individual element.

~ To delete all elements in a map

1 Use GetStartPosition and GetNextAssoc to iterate through the array.

2 Use the delete operator to delete the key and/or value for each map element as it is
encountered in the iteration.

3 Call the RemoveAII function to remove all elements from the map after they have
been deleted.

The code for deleting all elements of a CMap collection is as follows. Each
element in the map has a string as the key and a C Per son object (derived from
CObject) as the value.

CMap<CString, LPCSTR, CPerson*, CPerson*> myMap;
II ... Add some key-value elements ...
II Now delete the elements
POSITION pas = myMap.GetStartPosition();
while(pas != NULL)
{

}

CPerson* pPerson;
CString string;
II Gets key (string) and value (pPerson)
myMap.GetNextAssoc(pas, string, pPerson);
delete pPerson;

II RemoveAll deletes the keys
myMap.RemoveAll();

You can call RemoveAII to remove all elements in a map or RemoveKey to remove
an individual element with the specified key.

See Also Collections: Creating Stack and Queue Collections

Collections

201

Collections

Collections: Creating Stack and Queue Collections

202

This article explains how to create other data structures, such as stacks and queues,
from MFC list classes. The examples use classes derived from CList, but you can use
CList directly unless you need to add functionality.

Stacks
Because the standard list collection has both a head and a tail, it is easy to create a
derived list collection that mimics the behavior of a last-in-first-out stack. A stack is
like a stack of trays in a cafeteria. As trays are added to the stack, they go on top of
the stack. The last tray added is the first to be removed. The list collection member
functions AddHead and RemoveHead can be used to add and remove elements
specifically from the head of the list; thus the most recently added element is the first
to be removed.

~ To create a stack collection

• Derive a new list class from one of the existing MFC list classes and add more
member functions to support the functionality of stack operations.

The following example shows how to add member functions to push elements on
to the stack, peek at the top element of the stack, and pop the top element from the
stack:

class CTray : public CObject { ... };

class CStack : public CTypedPtrList< CObList, CTray* >
{

public:

} ;

II Add element to top of stack
void Push(CTray* newTray)

{ AddHead(newTray); }

II Peek at top element of stack
CTray* Peek()

{ return IsEmpty() ? NULL GetHead();}

II Pop top element off stack
CTray* Pop()

{ return RemoveHead(); }

Note that this approach exposes the underlying CObList class. The user can call any
CObList member function, whether it makes sense for a stack or not.

Queues
Because the standard list collection has both a head and a tail, it is also easy to create
a derived list collection that mimics the behavior of a first-in-first-out queue. A queue
is like a line of people in a cafeteria. The first person in line is the first to be served.

As more people come, they go to the end of the line to wait their tum. The list
collection member functions Add Tail and RemoveHead can be used to add and
remove elements specifically from the head or tail of the list; thus the most recently
added element is always the last to be removed.

~ To create a queue collection

• Derive a new list class from one of the predefined list classes provided with the
MFC Library and add more member functions to support the semantics of queue
operations.

The following example shows how you can append member functions to add an
element to the end of the queue and get the element from the front of the queue.

cl ass CPerson : publ i c CObj ect { ... }:

class CQueue : public CTypedPtrList< CObList. CPerson* >
{

public:
II Go to the end of the line
void AddToEnd(CPerson* newPerson

{ AddTail(newPerson); }

II Get first element in line
CPerson* GetFromFront()

II End of the queue

{ return IsEmpty() ? NULL RemoveHead():}
} :

Column
A column is a field in a table. For example, the first field in all the records in a table
constitutes a vertical column in the table.

If you're using the MFC ODBC classes, see the article Recordset (ODBC). If you're
using the MFC DAO classes, see the article DAO Workspace: Managing
Transactions.

Commit
Completing an update to the data source.

If you're using the MFC ODBC classes, see the article Transaction (ODBC). If you're
using the MFC DAO classes, see the article DAO Workspace: Managing
Transactions.

Commit

203

COMMON.RES Sample Resources

COMMON.RES Sample Resources
Visual C++ includes sample resources that you can use in your own application.
These include:

• A large number of icons that represent common business and data-processing
tasks.

• Several commonly used cursors that are not included as predefined Windows
resources.

• A selection of toolbar-button bitmaps.

These resources are located in a file called COMMON.RES in the MFC General
sample CLIPART on the Visual C++ CD-ROM. Additional sample resources can be
found in this directory.

~ To copy resources from COMMON. RES to your own resource script file

1 Use the Visual C++ File menu to open both your .RC file and COMMON.RES at
the same time.

2 Hold down the CTRL key and drag the resources you want from the
COMMON.RES resource browser window to the resource browser window of your
own application.

For more information about browsing and editing resources with Visual C++, see
Chapter 5, Working with Resources, in the Visual C++ User's Guide.

Connection Points

204

This article explains how to implement OLE connection points using CCmdTarget
and CConnectionPoint.

In the past, OLE's Component Object Model (COM) defined a general mechanism
(IUnknown::QueryInterface) that allowed objects to implement and expose
functionality in interfaces. However, a corresponding mechanism that allowed objects
to expose their capability to call specific interfaces was not defined. That is, COM
defined how incoming pointers to objects (pointers to that object's interfaces) were
handled, but it did not have an explicit model for outgoing interfaces (pointers the
object holds to other objects' interfaces). COM now has a model, called "connection
points," that supports this functionality.

A connection has two parts: the object calling the interface, called the "source," and
the object implementing the interface, called the "sink." A connection point is the
interface exposed by the source. By exposing a connection point, a source allows
sinks to establish connections to itself (the source). Through the connection point
mechanism (the IConnectionPoint interface), a pointer to the sink interface is passed

to the source object. This pointer provides the source with access to the sink's
implementation of a set of member functions. For example, to fire an event
implemented by the sink, the source can call the appropriate method of the sink's
implementation. Figure 1 demonstrates the connection point just described.

Figure 1 An Implemented Connection Point

IConnectionPoint interface ISampleSink interface

MFC implements this model in the CConnectionPoint and CCmdTarget classes.
Classes derived from CConnectionPoint implement the IConnectionPoint interface,
used to expose connection points to other OLE objects. Classes derived from
CCmdTarget implement the IConnectionPointContainer interface, which can
enumerate all of an object's available connection points or find a specific connection
point.

For each connection point implemented in your class, you must declare a "connection
part" that implements the connection point. If you implement one or more connection
points, you must also declare a single "connection map" in your class. A connection
map is a table of connection points supported by the OLE control.

The following examples demonstrate a simple connection map and one connection
point. The first example declares the connection map and point; the second example
implements the map and point. Note that CMyCl ass must be a CCmdTarget-derived
class. In the first example, code is inserted in the class declaration, under the
protected section:

class CMyClass : public CCmdTarget
{

protected:
II Connection point for ISample interface

BEGIN_CONNECTION_PART(CMyClass, SampleConnPt)
CONNECTION_IID(IID_ISampleSink)

END_CONNECTION_PART(SampleConnPt)

} ;

The BEGIN CONNECTION PART and END CONNECTION PART macros - - - -
declare an embedded class, XSamp 1 eConn Pt (derived from CConnectionPoint) that
implements this particular connection point. If you want to override any

Connection Points

205

Connection Points

206

CConnectionPoint member functions or add member functions of your own, declare
them between these two macros. For example, the CONNECTION_lID macro
overrides the CConnectionPoint::GetIID member function when placed between
these two macros.

In the second example, code is inserted in the control's implementation file (.CPP).
This code implements the connection map, which includes the connection point,
Samp 1 eConn Pt:

BEGIN_CONNECTION_MAP(CMyClass. CMyBaseClass)
CONNECTION_PART(CMyClass. IID_ISampleSink. SampleConnPt)

END_CONNECTION_MAP()

If your class has more than one connection point, insert additional
CONNECTION_PART macros between the BEGIN_CONNECTION_MAP and
END CONNECTION MAP macros. - -
Finally, add a call to EnableConnections in the class's constructor. For example:

CMyClass::CMyClass()
{

EnableConnections();

}

Once this code has been inserted, your CCmdTarget-derived class exposes a
connection point for the ISampleSink interface. Figure 2 illustrates this example.

Figure 2 A Connection Point Implemented with MFC

IConnectionPointContainer interface

IConnectionPoint interface

CMyClass is derived from CCmdTarget.
XSampleConnPt is derived from CConnectionPoint.

ISampleSink interface

Usually, connection points support "multicasting" - the ability to broadcast to mUltiple
sinks connected to the same interface. The following example fragment demonstrates
how to multicast by iterating through each sink on a connection point:

void CMyClass::CallSinkFunc()
{

const CPtrArray* pConnections - m_xSampleConnPt.GetConnections();
ASSERT(pConnections 1- NULL);

int cConnections - pConnections->GetSize();
ISampleSink* pSampleSink;
for (int i - 0; i < cConnections; i++)
{

pSampleSink - (ISampleSink*)(pConnect;ons->GetAt(;»;
ASSERT(pSampleSink 1- NULL);
pSampleSink->SinkFunc();

This example retrieves the current set of connections on the Sam p 1 e Con n P t
connection point with a call to CConnectionPoint: : GetConnections. It then iterates
through the connections and calls ISampleSink::SinkFunc on every active
connection.

Connect String
A string containing the necessary information to connect to an Open Database
Connectivity (ODBC) data source. Connect strings are used with ODBC data sources
whether you are working with MFC's ODBC classes, including CDatabase, or with
MFC's Data Access Object (DAO) classes, including CDaoDatabase.

See CDaoDatabase::Open, CDatabase::Open, and
CRecordset::GetDefauItConnect in the Class Library Reference.

Containers
A "container application" is an application that can incorporate embedded or linked
items into its own documents. The documents managed by a container application
must be able to store and display OLE document components as well as data created
by the application itself. A container application must also allow users to insert new
items or edit existing items. Chapters 13 through 15 in Tutorials take you through the
process of creating a container application. You should complete that tutorial before
reading this family of articles.

The following articles detail various issues you must address when writing container
applications:

• Containers: Implementing a Container

• Containers: Client Items

• Containers: Compound Files

Containers

207

Containers

• Containers: User-Interface Issues

• Containers: Advanced Features

See Also Servers, Activation, Menus and Resources

Containers: Implementing a Container

208

Chapters 13 through 15 in Tutorials describe the implementation of a simple visual
editing container, CONTAINER, explaining each step in detail. This article
summarizes the tutorial procedure and points you to other articles that provide more
detailed explanations of the various facets of implementing containers. It also lists
some optional OLE features you may want to implement and the articles describing
these features.

~ To prepare your CWinApp-derived class

1 Initialize the OLE libraries by calling AfxOlelnit in the Initlnstance member
function.

2 Call CDocTemplate::SetContainerlnfo in Initlnstance to assign the menu and
accelerator resources used when an embedded item is activated in-place. For more
information on this topic, see the Activation article.

These features are provided for you automatically when you use App Wizard to create
a container application. See the article App Wizard: OLE Support.

~ To prepare your view class

1 Keep track of selected items by maintaining a pointer, or list of pointers if you
support multiple selection, to the selected items. Your OnDraw function must
draw all OLE items.

2 Override IsSelected to check whether the item passed to it is currently selected.

3 Implement an OnlnsertObject message handler to display the Insert Object
dialog box.

4 Implement an OnSetFocus message handler to transfer focus from the view to an
in-place active OLE embedded item.

S Implement an OnSize message handler to inform an OLE embedded item that it
needs to change its rectangle to reflect the change in size of its containing view.

Because the implementation of these features varies dramatically from one
application to the next, App Wizard provides only a basic implementation. You will
likely have to customize these functions to get your application to function properly.
For a more detailed explanation and an example of this, see Chapter 15 of Tutorials
and the MFC Tutorial sample CONTAINER. For information about MFC samples,
see MFC Samples under Samples in Books Online.

~ To handle embedded and linked items

1 Derive a class from COleCIientltem. Objects of this class represent items that
have been embedded in or linked to your OLE document.

2 Override OnChange, OnChangeltemPosition, and OnGetltemPosition. These
functions handle sizing, positioning, and modifying embedded and linked items.

App Wizard will derive the class for you, but you will likely need to override
OnChange and the other functions listed with it in step 2 in the preceding procedure.
The skeleton implementations need to be customized for most applications, because
these functions are implemented differently from one application to the next. For
more information about this, see step 2 of the CONTAINER tutorial in Tutorials and
the MFC OLE sample DRA WCLL For information about MFC samples, see Samples
in Books Online.

You must add a number of items to the container application's menu structure to
support OLE. For more information on these, see the article Menus and Resources:
Container Additions.

You may also want to support some of the following features in your container
application:

• In-place activation when editing an embedded item.

For more information, see the article Activation.

• Creation of OLE items by dragging and dropping a selection from a server
application.

For more information, see the article Drag and Drop.

• Links to embedded objects or combination container/server applications.

For more information, see the article Containers: Advanced Features.

See Also Containers: Client Items

Containers: Client Items
This article explains what client items are and from what classes your application
should derive its client items.

"Client items" are data items belonging to another application that are either
contained in or referenced by a container application's document. Client items whose
data is contained within the document are "embedded;" those whose data is stored in
another location referenced by the container document are "linked."

The document class in an OLE application is derived from the class COleDocument
rather than CDocument. The COleDocument class inherits from CDocument all of
the functionality necessary for using the document/view architecture on which MFC
applications are based. COleDocument also defines an interface that treats a

Containers

209

Containers

document as a collection of CDocItem objects. Several COleDocument member
functions are provided for adding, retrieving, and deleting elements of that collection.

Every container application should derive at least one class from COleClientltem.
Objects of this class represent items, embedded or linked, in the OLE document.
These objects exist for the life of the document containing them, unless they are
deleted from the document.

CDocItem is the base class for COleClientItem and COleServerltem. Objects of
classes derived from these two act as intermediaries between the OLE item and the
client and server applications, respectively. Each time a new OLE item is added to the
document, the framework adds a new object of your client application's
COleClientItem-derived class to the document's collection of CDocItem objects.

See Also Containers: Compound Files, Containers: User-Interface Issues,
Containers: Advanced Features

In the Class Library Reference: COleClientItem, COleServerltem

Containers: Client-Item Notifications

210

This article discusses the overridable functions that the framework calls when server
applications modify items in your client application'S document.

COleClientItem defines several overridable functions that are called in response to
requests from the component application, which is also called the "server
application." These overridables usually act as notifications. They inform the
container application of various events, such as scrolling, activation, or a change of
position, and of changes that the user makes when editing or otherwise manipulating
the item.

The framework notifies your container application of changes through a call to
COleClientltem: :OnChange, an overridable function whose implementation is
required. This protected function receives two arguments. The first specifies the
reason the server changed the item:

Notification

OLE_CHANGED

OLE_SAVED

OLE CLOSED

OLE RENAMED

OLE CHANGED STATE - -

Meaning

The OLE item's appearance has changed.

The OLE item has been saved.

The OLE item has been closed.

The server document containing the OLE item has been
renamed.

The OLE item has changed from one state to another.

The OLE item's draw aspect has been changed by the
framework.

These values are from the OLE_NOTIFICATION enumeration, which is defined in
AFXOLE.H.

The second argument to this function specifies how the item has changed or what
state it has entered:

When first argument is

OLE SAVED or
OLE CLOSED

OLE CHANGED

OLE CHANGED STATE - -

Second argument

Is not used.

Specifies the aspect of the OLE item that has changed.

Describes the state being entered (emptyState,
loadedState, openState, activeS tate, or
active VIS tate).

For further information about the states a client item can assume, see the article
Containers: Client-Item States.

The framework calls COleClientItem::OnGetItemPosition when an item is being
activated for in-place editing. Implementation is required for applications that
support in-place editing. AppWizard provides a basic implementation, which assigns
the item's coordinates to the CRect object that is passed as an argument to
OnGetItemPosition.

If an OLE item's position or size changes during in-place editing, the container's
information about the item's position and clipping rectangles must be updated and
the server must receive information about the changes. The framework calls
COleClientItem::OnChangeltemPosition for this purpose. AppWizard provides an
override that calls the base class's function. You should edit the function AppWizard
writes for your COleClientItem-derived class so that the function updates any
information retained by your client-item object.

See Also Containers: Client-Item States

In the Class Library Reference: COleClientltem::OnChangeltemPosition

Containers: Client-Item States
This article explains the different states a client item passes through in its lifetime.

A client item passes through several states as it is created, activated, modified, and
saved. Each time the item's state changes, the framework calls
COleClientItem::OnChange with the OLE_CHANGED_STATE notification. The
second parameter is a value from the COleClientItem: :ltemState enumeration. It
can be one of the following:

• COleClientItem: :emptyState

• COleClientItem: :loadedState

• COleClientItem: :openState

• COleClientItem: : activeS tate

• COleClientItem: :activeUIState

Containers

211

Containers

In the "empty" state, a client item is not yet completely an item. Memory has been
allocated for it, but it has not yet been initialized with the OLE item's data. This is
the state a client item is in when it has been created through a call to new but has not
yet undergone the second step of the typical two-step creation.

In the second step, performed through a call to COleClientltem: :CreateFromFile or
another CreateFromxxxx function, the item is completely created. The OLE data
(from a file or some other source, such as the Clipboard) has been associated with the
COleClientltem-derived object. Now the item is in the "loaded" state.

When an item has been opened in the server's window rather than opened in place in
the container's document, it is in the "open" (or "fully open") state. In this state, a
cross-hatch usually is drawn over the representation of the item in the container's
window to indicate that the item is active elsewhere.

When an item has been activated in place, it passes, usually only briefly, through the
"active" state. It then enters the "UI active" state, in which the server has merged its
menus, toolbars, and other user-interface components with those of the container. The
presence of these user-interface components distinguishes the VI active state from the
active state. Otherwise, the active state resembles the VI active state. If the server
supports Undo, the server is required to retain the OLE item's undo-state information
until it reaches the loaded or open state.

See Also Activation, Containers: Client-Item Notifications, Trackers

In the Class Library Reference: CRectTracker

Containers: Compound Files

212

This article explains the components and implementation of compound files and the
advantages and disadvantages of using compound files in your OLE applications.

Compound files are an integral part of OLE. They are used to facilitate data transfer
and OLE document storage. Compound files are an implementation of the structured
storage model. Consistent interfaces exist that support serialization to a "storage," a
"stream," or a file object. Compound files are supported in the Microsoft Foundation
Class Library by the classes COleStreamFile and COleDocument.

Note Using a compound file does not imply that the information comes from an OLE
document or a compound document. Compound files are just one of the ways to store
compound documents, OLE documents, and other data.

Components of a Compound File
OLE's implementation of compound files uses three object types: stream objects,
storage objects, and ILockBytes objects. These objects are similar to the components
of a standard file system in the following manner:

• Stream objects, like files, store data of any type.

• Storage objects, like directories, can contain other storage and stream objects.

• LockBytes objects represent the interface between the storage objects and the
physical hardware. They determine how the actual bytes are written to whatever
storage device the LockBytes object is accessing, such as a hard drive or an area
of global memory. For more information about LockBytes objects and the
ILockBytes OLE interface, see Chapter 6 in the OLE 2 Programmer's Reference,
Volume 1.

Advantages and Disadvantages of Compound Files
Compound files provide benefits not available with earlier methods of file storage.
They include:

• Incremental file accessing

• File access modes

• Standardization of file structure

The potential disadvantages of compound files-large size and performance issues
relating to storage on floppy disks-should be considered when deciding whether to
use them in your application.

Incremental Access to Files
Incremental access to files is an automatic benefit of using compound files. Because a
compound file can be viewed as a "file system within a file," individual object types,
such as stream or storage, can be accessed without the need to load the entire file.
This can drastically decrease the time an application needs to access new objects for
editing by the user. Incremental updating, based on the same concept, offers similar
benefits. Instead of saving the entire file just to save the changes made to one object,
OLE saves only the stream or storage object edited by the user.

File Access Modes
Being able to determine when changes to objects in a compound file are committed to
disk is another benefit of using compound files. The mode in which files are
accessed, either transacted or direct, determines when changes are committed.

• Transacted mode uses a two-phase commit operation to make changes to objects in
a compound file, thereby keeping both the old and the new copies of the document
available until the user chooses to either save or undo the changes.

• Direct mode incorporates changes to the document as they are made, without the
ability to later undo them.

For more information on access modes, see the OLE 2 Programmer's Reference,
Volume 1.

Containers

213

Containers

Standardization
The standardized structure of compound files allows different OLE applications to
browse through compound files created by your OLE application with no knowledge
of the application that actually created the file.

Size and Performance Considerations
Due to the complexity of the compound file storage structure and the ability to save
data incrementally, files using this format tend to be larger than other files using
unstructured or "flat file" storage. If your application frequently loads and saves files,
using compound files can cause the file size to increase much more quickly. Because
compound files can get large, the access time for files stored on and loaded from
floppy disks can also be affected, resulting in slower access to files.

Another issue that affects performance is compound-file fragmentation. The size of a
compound file is determined by the difference between the first and last disk sectors
used by the file. A fragmented file can contain many areas of free space that do not
contain data, but are counted when calculating the size. During the lifetime of a
compound file, these areas are created by the insertion or deletion of storage objects.

Using Compound Files Format for Your Data
After creating an application that has a COleDocument-derived document class,
ensure that your main document constructor calls EnableCompoundFile. When
AppWizard creates OLE container applications, it inserts this call.

See Also Containers: User-Interface Issues

In the Class Library Reference: COleStreamFile, COleDocument

In the OLE 2 Programmer's Reference, Volume 1: IStream,·IStorage, ILockBytes

Containers: User-Interface Issues

214

You must add a number of features to a container application's user interface to
adequately manage linked and embedded items. These features involve changes to the
menu structure and to the events that the application handles. For detailed
information about them, see the following articles:

For information on

Menu additions for containers

Additional resources for
containers

Painting linked or embedded
items

New dialog boxes for
containers

See

Menus and Resources: Container Additions

Menus and Resources: Container Additions

Tutorials, Container Tutorial, Chapter 13

Dialog Boxes in OLE

See Also Containers: Advanced Features, Menus and Resources

Containers: Advanced Features
This article describes the steps necessary to incorporate optional advanced features
into existing container applications. These features are:

• An application that is both a container and a server

• An OLE link to an embedded object

Creating a Container/Server Application
A container/server application is an application that acts as both a container and a
server. Microsoft Word for Windows is an example of this. You can embed Word for
Windows documents in other applications, and you can also embed items in Word for
Windows documents. The process for modifying your container application to be both
a container and a full-server (you can't create a combination container/mini-server
application) is similar to the process for creating a full-server.

The article Servers: Implementing a Server lists a number of tasks required to
implement a server application. If you convert a container application to a
container/server application, you'll need to perform some of those same tasks, adding
code to the container. The following lists the important things to consider:

• The container code created by AppWizard already initializes the OLE subsystem.
You won't need to change or add anything for that support.

• Wherever the base class of a document class is COleDocument, change the base
class to COleServerDoc.

• Override COleClientItem::CanActivate to avoid editing items in place while the
server itself is being used to edit in place.

For example: the MFC OLE sample OCLIENT has embedded an item created by
your container/server application. You open the OCLIENT application and in
place edit the item created by your container/server application. While editing
your application's item, you decide you want to embed an item created by the MFC
OLE sample HIERSVR. To do this, you cannot use in-place activation. You must
fully open HIERSVR to activate this item. Because the Microsoft Foundation Class
Library does not support this OLE feature, overriding
COleClientItem::CanActivate allows you to check for this situation and prevent
a possible run-time error in your application.

If you are creating a new application and want it to function as a container/server
application, choose that option in the OLE Options dialog box in AppWizard and this
support will be created automatically. For more information, see the article
AppWizard: Creating an OLE Visual Editing Application. For information about
MFC samples, see Samples in Books Online.

Containers

215

Current Record

Links to Embedded Objects
The Links to Embedded Objects feature enables a user to create a document with an
OLE link to an embedded object inside your container application. For example,
create a document in a word processor containing an embedded spreadsheet. If your
application supports links to embedded objects, it could paste a link to the
spreadsheet contained in the word processor's document. This feature allows your
application to use the information contained in the spreadsheet without knowing
where the word processor originally got it.

~ To link to embedded objects in your application

1 Derive your document class from COleLinkingDoc instead of COleDocument.

2 Create an OLE class ID (CLSID) for your application by using the Class ID
Generator included with the OLE Development Tools.

3 Register the application with OLE.

4 Create a COleTemplateServer object as a member of your application class.

5 in your application class's InitInstance member function, do the following:

• Connect your COleTemplateServer object to your document templates by
calling the object's ConnectTemplate member function.

• Call the COleTemplateServer: : Register All member function to register all
class objects with the OLE system.

• Call COleTemplateServer::UpdateRegistry. The only parameter to
UpdateRegistry should be OAT_CONTAINER if the application is not
launched with the "/Embedded" switch. This registers the application as a
container that can support links to embedded objects.

If the application is launched with the "/Embedded" switch, it should not show
its main window, similar to a server application.

The MFC OLE sample OCLIENT implements this feature. For an example of how
this is done, see the InitInstance function in the OCLIENT.CPP file of this sample
application.

See Also Servers

Current Record

216

The current record is the record currently stored in the field data members of a
recordset.

If you're using the MFC ODBC classes, see the article Recordset (ODBC). If you're
using the MFC DAO classes, see the article DAO Recordset.

DAOandMFC
This article describes MFC's implementation of Microsoft Data Access Objects
(DAO). Topics covered include:

• How MFC Encapsulates DAO

• Mapping ofDAO objects to MFC classes

• Key differences between MFC and DAO

• Further reading about the MFC DAO classes

Note Whether you use the MFC DAO classes or the MFC ODSC classes depends on your
situation and your needs. For a discussion of the differences between the two and guidance on
choosing one, see the article Database Overview.

How MFC Encapsulates DAO
The MFC DAO classes treat DAO much as the MFC classes for programming
Windows treat the Windows API: MFC encapsulates, or "wraps," DAO functionality
in a number of classes that correspond closely to DAO objects. Class
CDaoWorkspace encapsulates the DAO workspace object, class CDaoRecordset
encapsulates the DAO recordset object, class CDaoDatabase encapsulates the DAO
database object, and so on.

MFC's encapsulation of DAO is thorough, but it is not completely one-for-one. Most
major DAO objects do correspond to an MFC class, and the classes supply generally
thorough access to the underlying DAO object's properties and methods. But some
DAO objects, including fields, indexes, parameters, and relations, do not. Instead, the
appropriate MFC class provides an interface, via member functions, through which
you can access, for example:

• The fields of a record set object

• The indexes or fields of a table

• The parameters of a querydef

• The relations defined between tables in a database

Mapping of DAO Objects to MFC Classes
The following tables show how DAO objects correspond to MFC objects. Table 1
shows the MFC classes and the DAO objects they encapsulate. Table 2 shows how
MFC deals with DAO objects that do not map directly to an MFC class.

DAOandMFC

217

DAOandMFC

218

Table 1 MFC Classes and Corresponding DAO Objects

Class DAO object Remarks

CDaoWorkspace Workspace Manages a transaction space and provides access to
the database engine.

CDaoDatabase Database Represents a connection to a database.

CDaoTableDef Tabledef Used to examine and manipulate the structure of a
table.

CDaoQueryDef Querydef Used to store queries in a database. You can create
recordsets from a querydef or use it to execute
action or SQL pass-through queries.

CDaoRecordset Recordset Used to manage a result set, a set of records based
on a table or selected by a query.

CDaoException Error MFC responds to all DAO errors by throwing
exceptions of this type.

CDaoFieldExchange None Manages exchange of data between a record in the
database and the field data members of a recordset.

Table 2 How MFC Manages DAO Objects Not Mapped to Classes

DAO object How MFC manages it

Field

Index

Parameter

Relation

Objects of classes CDaoTableDef and CDaoRecordset encapsulate fields and
supply member functions for adding them, deleting them, and examining them.

Objects of classes CDaoTableDef and CDaoRecordset encapsulate indexes
and supply member functions for managing them. Tabledefs can add, delete,
and examine indexes. Tabledefs and recordsets can set or get the currently
active index.

Objects of class CDaoQueryDef encapsulate parameters and supply member
functions for adding them, deleting them, examining them, and getting and
setting their values.

Objects of class CDaoDatabase encapsulate relations and supply member
functions for adding them, deleting them, and examining them.

DAO Objects Not Exposed in MFC
MFC and DAO do not supply abstractions for some objects used within Microsoft
Access: Application, Container, Control, Debug, Document, Form, Module, Report,
Screen, and Section. If you create a Microsoft Access database and manipulate it
from an MFC application, you can't access those objects through code.

MFC doesn't supply classes or interfaces to the DAO group and user objects -to
work with DAO security, you must write your own code.

MFC also doesn't encapsulate DAO property objects, except that the MFC DAO
classes do give you access to the properties of all exposed objects.

MFC does give you access to DAO's DB Engine object, through class
CDao Workspace.

Accessing the Unexposed DAO Objects
The unexposed objects listed above can be accessed in two ways:

Outside the MFC classes by using the non-MFC C++ classes provided in the DAO
SDK. The SDK is located in the DAOSDK directory on the Visual C++ CD-ROM.

Inside the MFC classes by calling DAO directly through a DAO interface pointer
supplied by one of the MFC classes. For information, see Technical Note 54.
Technical notes are available under MFC Technical Notes, under MFC in Books
Online.

Key Differences Between MFC and DAO
MFC's version of data access objects differs from the underlying structure of DAO in
some ways.

How MFC Accesses the Database Engine
DAO has a DBEngine object that represents the Microsoft Jet database engine. The
DB Engine object provides properties and methods you can use to configure the
database engine.

In MFC, there is no DB Engine object. Access to important properties of the database
engine is supplied via class CDao Workspace. To set or get these properties, call any
of the static member functions of CDaoWorkspace. For more information, see the
articles DAO Workspace: The Database Engine and DAO Workspace: Accessing
Properties of the Database Engine.

MFC Flattening of the DAO Object Hierarchy
Because MFC doesn't supply a class for every DAO object, the effect is that the DAO
object hierarchy is somewhat "flattened" in MFC. The main examples of this
flattening are:

• Putting access to the database engine in class CDaoWorkspace rather than in a
database engine class.

• Encapsulating DAO field, index, parameter, and relation objects inside the classes
that represent their owning objects. For example, access to fields is encapsulated
in classes CDaoTableDef and CDaoRecordset. For information, see Table 2, How
MFC Manages DAO Objects Not Mapped to Classes.

MFC and DAO Security
MFC does not encapsulate the DAO user and group objects in any way, which means
that MFC doesn't provide DAO's security functionality.

You can still use DAO security from your MFC applications, but you will have to call
DAO directly, using the m yDAOWorkspace data member of class
CDaoWorkspace. That member is a pointer to an OLE interface that gives access to
a DAO workspace object's methods and properties. For information about calling

DAOandMFC

219

DAOandMFC

220

DAO directly, see Technical Note 54. Technical notes are available under MFC
Technical Notes, under MFC in Books Online.

Tip The DAO Software Development Kit (SDK) supplies its own set of C++ classes (not
compatible with MFC) for working with DAO. You can use these classes, if you wish, by
installing the DAO SDK from the \DAOSDK directory on your Visual C++ CD-ROM. These
classes are also an additional source of examples for using DAO from C++.

MFC does allow password protection via various MFC classes. For example, when
you create a CDaoWorkspace object, you can specify a password to protect the
database(s) that the workspace contains. To use this functionality, a SYSTEM.MDA
file must be available to the database engine on the machine running your
application. If no SYSTEM.MDA file is available to the database engine, your
application cannot use any of the security features. For information about the
SYSTEM.MDA file, see the topic Permissions Property in DAO Help.

Further Reading About the MFC CAO Classes
To learn more about using the MFC DAO classes, see the following articles (in the
order recommended here):

• DAO: Writing a Database Application

• DAO: Database Tasks

• DAO: Creating, Opening, and Closing DAO Objects

• DAO Workspace

• DAO Database

• DAO Database: Using Workspaces and Databases

• DAO Recordset

• DAO Record Field Exchange (DFX)

• DAO Querydef

• DAO Tabledef

• DAO Workspace: Managing Transactions

• DAO Collections

• DAO External: Working with External Data Sources (primarily ODBC)

• DAO Workspace: The Database Engine

• App Wizard: Database Support

• Class Wizard: Database Support

• Exceptions: Database Exceptions

• Record Views

Tip From any of the MFC help topics in this documentation set, you can get to a topic called
DAO: Where Is ... , which helps you navigate online to the topics that you need. The topic is
always available via the See Also button in the topic window.

See Also DAO: Where Is ...

Data Access Objects (DAO)
Data Access Objects (DAO) provide a framework for using code to create and
manipulate databases. DAO supplies a hierarchical set of objects that use the
Microsoft Jet database engine to access data and database structure in:

• Microsoft Jet (.MDB) databases

• ODBC data sources, using an ODBC driver

• Installable ISAM databases, such as dBASE®, Paradox™, Microsoft FoxPro, and
Btrieve®, which the database engine can read directly

To begin learning about the DAO technology, see the topic Data Access Objects
Overview in DAO Help.

For information about the MFC classes that encapsulate DAO, begin with the articles
Database Overview and DAO and MFC.

Tip From any of the MFC help topics in this documentation set, you can get to a topic called
DAO: Where Is ... , which helps you navigate online to the topics that you need. The topic is
always available via the See Also button in the topic window.

See Also DAO: Where Is ...

DAD: Where Is ...
This article will help you locate topics of interest in the MFC DAO documentation
and in the DAO Help topics. The article, which is always available via the See Also
button in the topic window, is organized into the following categories:

• DAO Overviews

• DAO Objects

• Information By Topic

• Key DAO Help Topics

Documentation for the MFC DAO classes consists of two components:

• MFC-specific: MFC classes in the Class Library Reference and MFC encyclopedia
articles in Programming with MFC. The articles all begin with the "DAO" prefix.

• DAO-specific: Topics from the DAO Help files shipped with products such as
Microsoft Office. These topics have been incorporated into Visual C++ Books

DAO: Where Is ...

221

DAO: Where Is ...

222

Online, but note that they are oriented toward the Basic programming language.
They are included to provide DAO-specific details in areas where MFC neither
modifies nor adds to DAO functionality.

DAO Overviews
For overviews and general information about MFC DAO, see:

• Database Overview

• DAO andMFC

• Data Access Objects (DAO)

• DAO: Writing a Database Application

• DAO: Database Tasks

DAO Objects
Table 1 Where to find information about DAO objects

DAO Help topics MFC class MFC topics

Database Object CDaoDatabase DAO Database

Error Object CDaoException CDaoException

Querydef Object CDaoQueryDef DAO Querydef

Recordset Object CDaoRecordset DAO Recordset

Tabledef Object CDaoTableDef DAO Tabledef

Workspace Object CDao Workspace DAO Workspace

See Also DAO Database: Using Workspaces and Databases, DAO: Creating,
Opening, and Closing DAO Objects, DAO: Accessing Implicit MFC DAO Objects,
DAO External: Working with External Data Sources, DAO Queries, DAO Record
Field Exchange (DFX), Database Overview, DAO and MFC

Information By Topic
Table 2 Where to look for ...

Topic

Action queries

Adding records

Application design options

Attaching tables

Buffering records

Calling DAO directly

Location

DAO Querydef: Action Queries and SQL Pass-Through
Queries

DAO Recordset: Recordset Operations

DAO: Writing a Database Application

DAO External: Working with External Data Sources

DAO Record Field Exchange: Double Buffering
Records

Database Overview

Table 2 Where to look for ... (cont.)

Topic

CDaoXInfo structures

Closing DAO objects

Collections in DAO

Console applications and DAO

Creating DAO objects

DAO objects not mapped to
classes

DAOvs.ODBC

Data definition language (DDL)

Database engine (Jet)

Data types

DBMS targets

Default workspace

Definition of DAO

DLLs,DAOin

Document/view architecture

Documentation

Double buffering records

Engine initialization

External data sources, list

Filtering recordsets

Finding

Forms

How MFC encapsulates DAO

Installing DAO

IS AM databases, list

Jet database engine

Multithreading and DAO

Navigating in a recordset

ODBC data sources

ODBC drivers

Location

DAO Collections: Obtaining Information About DAO
Objects

DAO: Creating, Opening, and Closing DAO Objects

DAO Collections

DAO: Database Application Design Options

DAO: Creating, Opening, and Closing DAO Objects

DAOandMFC

Chapter 7, Working with Databases
Database Overview

Database Overview

DAO Workspace: The Database Engine

DFX Data Types in DAO Record Field Exchange: Using
the DFX Functions

DAO: Writing a Database Application
Database Overview

DAO Workspace: Explicitly Opening the Default
Workspace

Database Overview

DAO: Database Application Design Options

DAO: Writing a Database Application

Database Overview

DAO Record Field Exchange: Double Buffering
Records

DAO Workspace: The Database Engine

DAO: Working with External Data Sources

DAO Queries: Filtering and Parameterizing Queries

DAO Recordset: Recordset Navigation

Record Views

DAOandMFC

Chapter 7, Working with Databases

Database Overview

DAO Workspace: The Database Engine

DAO: Database Application Design Options

DAO Recordset: Recordset Navigation

DAO: Working with External Data Sources

ODBC Driver List

DAO: Where Is ...

223

DAO: Where Is ...

224

Table 2 Where to look for ... (cont.)

Topic

ODBCvs.DAO

OLE controls, DAO in

Opening DAO objects

Parameterizing queries

Pass-through queries

Performance

Programming model

Queries

Querydefs

Record Field Exchange (DFX)

Recordsets

Scrolling

Security

Seeking

SQL

Tabledefs

Task-oriented topics

Transactions

Updating data

Views ofDAO data

When to use database classes

Workspace, typical scenario

Writing a database application

Location

Chapter 7, Working with Databases
Database Overview

DAO: Database Application Design Options

DAO: Creating, Opening, and Closing DAO Objects

DAO Queries: Filtering and Parameterizing Queries

DAO Querydef: Action Queries and SQL Pass-Through
Queries

DAO External: Improving Performance with External
Data Sources

Database Overview

DAO Queries

DAO Querydef

DAO Record Field Exchange (DFX)

DAO Recordset

DAO Recordset: Recordset Navigation

DAOandMFC

DAO Recordset: Recordset Navigation

DAO Queries: SQL for DAO

DAO Tabledef

DAO: Database Tasks

DAO Workspace: Managing Transactions

DAO Recordset: Recordset Operations

DAO: Writing a Database Application

Chapter 7 , Working with Databases

DAO Database: Using Workspaces and Databases

DAO: Writing a Database Application

See Also DAO Database: Using Workspaces and Databases, DAO: Creating,
Opening, and Closing DAO Objects, DAO: Accessing Implicit MFC DAO Objects,
DAO External: Working with External Data Sources, DAO Queries, DAO Record
Field Exchange (DFX), Database Overview, DAO and MFC

Key DAO Help Topics
The following topics are part of DAO Help and are not MFC-specific:

• Data Access Object Hierarchy

• Data Access Objects and Collections Reference

• U sing Data Access

DAO: Writing a Database Application

• Trappable Data Access Errors

• Microsoft Jet Database Engine SQL Data Types

• SQL Reserved Words

• Equivalent ANSI SQL Data Types

• SQL Aggregate Functions

DAO: Writing a Database Application
This family of articles discusses writing database applications with the MFC DAO
classes. Other articles focus on various parts of the process; this article looks at using
DAO from an application design standpoint.

In This Article
This article considers:

• What is a database application?

• First steps in writing your MFC DAO application

• Data viewing choices

• Documents and views with DAO

• DBMS choices

More Articles on the Process
The following additional articles discuss parts of the design and development process
(in recommended reading order):

• DAO: Database Application Design Options

• DAO: Steps in Writing MFC DAO Applications

What Is a Database Application?
Of course, there is no one kind of database application. Such applications range from
simple data entry or data viewing applications to complex client/server applications
to applications of any sort that happen to use a database rather than disk-based files
for input/output. In any case, the MFC DAO classes supply abstractions that you can
use to accomplish your goals.

First Steps in Writing Your MFC DAO Application
To begin, you must make two fundamental decisions:

• How do you want to display data in your application: in a form, as a list, some
other way, or not at all.

• What database management system(s) (DBMSs) do you intend to target?

225

DAO: Writing a Database Application

226

Your decisions determine how your application fits into MFC's document/view
architecture and how appropriate the DAO classes are for your application. Your
answers also help determine the selections you make when you run App Wizard to
begin constructing your application.

Data Viewing Choices
MFC supplies varying degrees of support for different viewing choices:

• Displaying one record at a time in a form.

AppWizard will create a CDaoRecordView-derived class for you and connect it to
a CDaoRecordset based on a table you specify. This makes it easy to create simple
form-based applications.

• Displaying multiple records at a time.

While App Wizard doesn't give any special help for this option, you can fairly
easily hook a CDaoRecordset up to a CListView or CTreeView. For examples,
see the MFC Database sample DAOVIEW.

• You can also use multiple views of the data simultaneously, either in separate
windows or in panes of a splitter window.

Documents and Views with DAO
Do you need the MFC document/view architecture? The simplest architecture for
MFC applications is to manage your data within an MFC document object and
manage displaying that data separately in a view object. You aren't limited to this
structure, though -other options include:

• Using a view object but treating the document as an unused appendage.

You can make your data structures -mainly your CDaoDatabase and
CDaoRecordset objects-members of your CView-derived class rather than of a
CDocument-derived class. Database applications typically don't need MFC's
serialization mechanism, which is the primary feature of CDocument.

A particularly strong argument for using MFC's document/view architecture is the
ability to manage multiple views of your data through the document. CDocument
has an U pdateAIlViews member function that you can call to synchronize your
views as data displayed in them changes. This is as useful in database applications
as in any other kind of application.

• Drawing your data directly into the client area of a CFrameWnd-derived class.

You can handle Windows messages in the frame window and thus dispense with
the view and the document. If you use a view, you can't just strip the document
code from your application, but if you use neither view nor document, you can
remove (or ignore) both. In this case, you can store your CDaoDatabase and
CDaoRecordset objects in the frame window class.

• Basing your application on a dialog box.

DAO: Writing a Database Application

App Wizard supports this approach, and you can store your CDaoDatabase
object(s) as members of your CDialog-derived class.

For related information, see the articles MFC: Using Database Classes with
Documents and Views and MFC: Using Database Classes Without Documents and
Views

DBMS Choices
DAO is based on the Microsoft Jet database engine. This means DAO is optimally
suited for working with Microsoft Jet (.MDB) databases. DAO also supports
accessing external databases, including certain installable ISAM databases (which
the database engine can read directly) and ODBC data sources. This means you can
write DBMS-independent applications with DAO, targeting any data source that the
Microsoft Jet database engine can read directly or for which your users will have the
appropriate ODBC driver.

Note, however, that in general it is more efficient, with DAO, to attach ODBC data
source tables to a Microsoft Jet database than it is to access the external data source
directly. If your application is essentially targeted on an external data source such as
Microsoft SQL Server or Oracle, you might want to consider using the MFC ODBC
classes instead of DAO.

For related information, see the articles Database Overview and DAO External:
Working with External Data Sources.

See Also DAO: Where Is ... , DAO: Database Tasks, DAO: Database Application
Design Options, DAO: Steps in Writing MFC DAO Applications, MFC: Using
Database Classes with Documents and Views, MFC: Using Database Classes Without
Documents and Views.

DAO: Database Application Design Options
This article continues the discussion begun in the article DAO: Writing a Database
Application. The article DAO: Steps in Writing MFC DAO Applications completes
the discussion. Those articles discuss the decisions you need to make before you run
App Wizard and the steps involved in creating your starter application.

Topics covered include:

• Application design examples

• DAO in DLLs, multithreaded applications, and OLE controls

Application Design Examples
This article gives examples to suggest some of the ways you might organize your
application. Sample applications mentioned in the list are available under MFC
Samples, under Samples in Books Online.

Examples:

227

DAO: Writing a Database Application

228

• An application that uses a single form to view one record at a time.

This approach might be suitable for simple data entry or data viewing
applications.

Let App Wizard create the CDaoRecordView and CDaoRecordset classes for you.
Then design the form in the Visual C++ dialog editor.

In this scenario, a single CDaoRecordset object persists for a session, and it uses
an implicitly created CDaoDatabase object. The recordset, a data member of the
CDaoRecordView class called m ySet, contains all records in a table or all
records returned by a query. The view lets the user scroll through the records one
at a time.

For an example, see Step 1 of the MFC Database sample DAOENROL.

• A similar single-form application that displays one record at a time but also uses a
second recordset to fill a list box or combo box.

Let App Wizard create the CDaoRecordView and a CDaoRecordset to control
which record is currently displayed in the form's general controls.

Use Class Wizard to create a second CDaoRecordset based on the table or query
that fills the list or combo box.

For a view of how this works, see the MFC Database sample ENROLL for the
MFC ODBC classes. You'll have to translate some of the code, but the model is
the same in DAO, and most of the code is very similar as well.

Create additional recordsets to fill more list or combo boxes as needed.

• An application based on multiple forms.

Perhaps the forms appear in separate windows or as panes in a splitter window.
Let App Wizard create the first CDaoRecordView and CDaoRecordset. Then use
Class Wizard to add more of each.

• A bulk data processing application, where no view is required.

In AppWizard, select basic database support, without a view. A dialog-based
application might be appropriate for this need.

Use Class Wizard to create a CDaoRecordset class for each end of the migration.
Then write code to use one recordset for input and the other for output. Perform
any necessary data manipulation between the two recordsets. Note that you can use
the MFC DAO classes in console applications. For more information, see DAO in
DLLs, Multithreaded Applications, and OLE Controls.

• An application that displays multiple records at a time, perhaps in a CListView or
a CTree View.

Use AppWizard to specify the view class on which to base your application
specific view. You can also use multiple views, perhaps displayed as panes of a
splitter window.

For an example, see the MFC Database sample DAOVIEW.

DAO: Writing a Database Application

For information about splitter windows, see Chapter 9, Enhancing Views, in
Tutorials. For information about using multiple views in general, see Multiple
Document Types, Views, and Frame Windows in Chapter 3.

DAO in DLLs, Multithreaded Applications, and OLE
Controls
This topic discusses the MFC DAO classes with respect to support for using the MFC
DAO classes:

• In dynamic link libraries (DLLs)

• In OLE controls

• In multithreaded applications

• In console applications

• In applications built for Unicode or double-byte character systems (DBCS)

You can use the MFC DAO classes in any DLL. This means you can also use the
classes in OLE controls.

DAO itself is not multithreaded, so you can't use the MFC DAO classes in multiple
threads. Confine your DAO code to a single thread of execution.

Depending on what MFC functionality you call, you should be able to use the MFC
DAO classes in console applications as well. Make sure the application uses no
graphical user-interface elements. For example, if you're using an ODBC data source
and you supply incomplete connection information, ODBC attempts to display a
dialog box for the missing information. Avoid this situation in your console
applications.

The MFC DAO classes are fully enabled for Unicode and DBCS.

See Also DAO: Where Is ... , DAO: Database Tasks, DAO: Writing a Database
Application, DAO: Steps in Writing MFC DAO Applications, MFC: Using Database
Classes with Documents and Views, MFC: Using Database Classes Without
Documents and Views.

DAO: Steps in Writing MFC DAO Applications
This article continues the discussion begun in the articles DAO: Writing a Database
Application and DAO: Database Application Design Options. Those articles describe
application design choices. This article explains the steps you take to develop your
application.

Once you've made your initial design decisions, follow these general steps:

1. Run App Wizard to create a skeleton application.

229

DAO: Database Tasks

On the databases page, select the database options you want. It is at this stage that
you specify a CDaoRecordView if you want a form-based application.

When you open the Database Options dialog box, select DAO rather than ODBC.
The result is an application with the right include directives and libraries for using
the DAO classes. The wizard prompts you to specify the name of a Microsoft Jet
(.MDB) database.

2. If needed, add a CDaoDatabase object for each database your application can
open simultaneously.

If these objects need to persist for long periods, declare them as data members of
one of your classes - the document is a good choice - that point to
CDaoDatabase objects you create on the heap.

If they are to persist for long, create the objects with the new operator, perhaps in
your document's OnNewDocument member function or in a command-handler
function for a menu command.

3. Use your CDaoDatabase object(s) to create CDaoRecordset objects that represent
queries.

If you prefer to create your recordsets on the fly, you can omit the CDaoDatabase
object(s). MFC will implicitly create a CDaoDatabase object if you don't supply a
pointer to one in the recordset's Open call.

You can create your recordsets on the heap, or you can create them as local
variables in a function.

See Also DAO: Where Is ... , DAO Recordset, Record Views, DAO: Database Tasks,
DAO: Database Application Design Options, MFC: Using Database Classes with
Documents and Views, MFC: Using Database Classes Without Documents and Views

DAD: Database Tasks

230

This article points you to other articles about performing common database tasks.
Table 1 lists the tasks and articles.

Table 1 Articles About Common Database Tasks

For information about. ..

Applications Writing a database application

Accessing the database engine

Creating Objects Creating DAO objects

See ...

DAO: Writing a Database
Application

DAO Workspace: Accessing
Properties of the Database Engine
DAO Workspace: The Database
Engine

DAO: Creating, Opening, and
Closing DAO Objects

DAO: Database Tasks

Table 1 Articles About Common Database Tasks (cont.)

For information about ... See ...

Opening Objects Opening DAO objects DAO: Creating, Opening, and
Closing DAO Objects

Closing Objects Closing DAO objects DAO: Creating, Opening, and
Closing DAO Objects

Collections (DAO) Accessing collections DAO Collections

Obtaining information about DAO: Obtaining Information About
objects in collections DAO Objects

Databases Creating an .MDB database DAO Database

Examining the schema of a DAO Tabledef
database DAO Tabledef: Examining a

Database Schema at Run Time

Working with multiple databases DAO Workspace

ODBC Working with ODBC data DAO External: Working with
sources External Data Sources

Queries Selecting records DAO Queries
Recordsets DAO Recordset

DAO Recordset: Creating
Recordsets
DAO Queries: Filtering and
Parameterizing Queries

Binding records dynamically DAO Recordset: Binding Records
Dynamically

Updating records DAO Recordset: Recordset
Operations

Defining stored queries DAO Querydef

Navigating in a recordset DAO Recordset: Recordset
Navigation

Record Field Using DFX to exchange data DAO Record Field Exchange
Exchange between the database and a (DFX)

record set 's field data members

Moving data between a recordset Dialog Data Exchange and
and the controls on a form Validation

SQL Using SQL with DAO DAO Queries: SQL for DAO

Tables Adding or deleting a table DAO Tabledef: Using Tabledefs

Adding or deleting a table field DAO Tabledef: Using Tabledefs

Adding or deleting a table index DAO Tabledef: Using Tabledefs

Transactions Managing database transactions DAO Workspace: Managing
Transactions
DAO Workspace: Opening a
Separate Transaction Space

231

DAO: Creating, Opening, and Closing DAO Objects

See Also DAO: Where Is ...

DAO: Creating, Opening, and Closing
DAO Objects

232

This family of articles explains what it means to "open" or "create" an MFC DAO
object and what it means to "close" the object when you finish with it.

This article discusses how MFC objects are constructed and points to related general
articles. The following additional articles discuss the Create, Open, and Close
actions:

• DAO: Creating DAO Objects

• DAO: Opening DAO Objects

• DAO: Closing DAO Objects

Two-Stage Construction of MFC CAO Objects
As with most MFC objects, you use a two-stage process to create the MFC object and
put it into an open state.

Creating a New Object
~ To create a new MFC DAO object

1 Construct the object (on the stack; or on the heap, using the new operator).

2 Call the object's Create member function.

3 In some cases, then call the Append member function to add the object to the
appropriate DAO collection.

• Database objects are appended to the collection automatically upon creation.
CDaoDatabase has no Append member function.

• Workspace and querydef objects can be created as temporary objects. To learn
how to create a temporary object, see its class overview. Temporary objects are
not appended.

• Objects that you want to persist between database engine sessions should be
appended.

For details, see each class constructor in the Class Library Reference.

Opening an Existing Object
~ To construct and open an MFC DAO Object

1 Construct the object (on the stack; or on the heap, using the new operator).

2 Call the object's Open member function.

DAO: Creating, Opening, and Closing DAO Objects

Before you call Open, the object is typically uninitialized and unusable (for
exceptions, see CDaoWorkspace::Open). This example shows how to construct and
open a CDaoRecordset object:

II CDelinquentSet is derived from CDaoRecordset
II Construct the recordset using the default database
CDelinquentSet rsDelinquentAccts;

II Set the object's properties as needed. then ...
rsDelinquentAccts.Open(); II Using default parameters

Related Articles on Creating, Opening, and Closing
Objects '
For related information, see the following articles:

• DAO: Accessing Implicit MFC DAO Objects

• DAO Workspace: Explicitly Opening the Default Workspace

• DAO Workspace: Opening a Separate Transaction Space

• DAO Workspace: Accessing Properties of the Database Engine

See Also In the Class Library Reference: CDaoWorkspace::Open,
CDao Workspace: :Close, CDaoDatabase: :Open, CDaoDatabase: :Close,
CDaoTableDef: :Open, CDaoTableDef: : Close, CDaoQueryDef: :Open,
CDaoQueryDef: :Close, CDaoRecordset: :Open, CDaoRecordset: :Close,
CDaoDatabase: : Create, CDaoQueryDef: :Create, CDaoTableDef: :Create,
CDao Workspace: : Create

DAO: Creating DAO Objects
All of the MFC DAO classes, except CDaoRecordset, have member functions for
creating new objects. Creation means somewhat different things for different DAO
objects. Topics covered include:

• Create member functions

• Meaning of the Create aCtion for different DAO objects

Create Member Functions
The following objects have Create member functions:

• CDaoWorkspace::Create

• CDaoDatabase::Create

• CDaoQueryDef: :Create

• DaoTableDef::Create

233

DAO: Creating, Opening, and Closing DAO Objects

In addition, some objects supply member functions for creating subordinate objects,
as shown in Table 1. MFC does not supply classes for these subordinate objects;
instead, it supplies access to them through member functions of the appropriate
containing class.

Table 1 Creating DAO Objects without MFC Classes

Owning class Creation functions

CDaoDatabase

CDaoTableDef

CreateRelation

CreateField, Createlndex

Meaning of the Create Action for Different DAO Objects
The concept of "create" has different meanings for different MFC DAO objects, as
shown in Table 2.

Table 2 Meaning of Create for DAO Objects

Object

Database

Meaning

Creates a new Microsoft Jet database; that is, creates the .MDB file on disk.
This is the one object that is automatically appended to its collection upon
creation.

Querydef Creates a new DAD querydef object underlying the MFC querydef object. The
object is not saved in the database until you call CDaoQueryDef::Append.

Recordset No Create member function. Construct a recordset object (usually of a class
derived from CDaoRecordset using the MFC wizards) and call its Open
member function to run the query or open the table. This also creates a new
DAD recordset object underlying the MFC recordset object.

Tabledef Creates a new table in the specified database, and a DAO tabledef object to
represent it. You must then add fields and possibly indexes to complete the
table. The table is actually added to the database when you call
CDaoTableDef: :Append.

Workspace Creates a new DAD workspace object underlying the MFC workspace object.
The object is not appended to the Workspaces collection until you call
CDao Workspace: :Append.

See Also In the Class Library Reference: CDaoWorkspace::Open,
CDao Workspace: :Close, CDaoDatabase: :Open, CDaoDatabase: : Close,
CDaoTableDef: :Open, CDaoTableDef: :Close, CDaoQueryDef: :Open,
CDaoQueryDef: :Close, CDaoRecordset: :Open, CDaoRecordset: : Close,
CDaoDatabase: : Create, CDaoQueryDef: : Create, CDaoTableDef: :Create,
CDao Workspace: : Create

DAO: Opening DAO Objects

234

Opening a DAO object implies that there is an existing object to be placed in an open
state. This is distinct from creating a new object. In the typical case, the object to

DAO: Creating, Opening, and Closing DAO Objects

open is an element of the appropriate DAO collection, housed in some other DAO
object.

An Open call puts the object into an open state, ready to be used. After using an
object, you should explicitly close it.

Topics include:

• Open member functions

• Meaning of the Open action for different DAO objects

Open Member Functions
The following MFC DAO objects have Open member functions:

• CDaoDatabase: :Open

• CDaoRecordset: :Open

• CDaoQueryDef::Open

• CDaoTableDef::Open

• CDaoWorkspace::Open

Meaning of the Open Action for Different DAO Objects
The concept of "open" has somewhat different meanings for different MFC DAO
objects, as shown in Table 1. Typically, the object is already an element of a DAO
collection that belongs to some other object. For example, each database object has a
TableDefs collection that contains all tabledef objects in the database. The one object
for which Open has a radically different meaning is CDaoDatabase; opening the
object appends it to the Databases collection of a workspace object.

Table 1 Meaning of Open for DAO Objects

Object Meaning

Database Opens an existing database-usually a Microsoft Jet (.MDB) database.

Querydef Opens the specified existing querydef object in the QueryDefs collection of a
database.

Recordset Runs the query defined by the recordset's SQL statement or by an associated
querydef; or opens the specified tabledef via a table-type recordset.

Tabledef Opens the specified existing tabledef object in the TableDefs collection of a
database.

Workspace Opens the default workspace unless you give the name of a workspace
previously created with CDaoWorkspace::Create.

See Also In the Class Library Reference: CDaoWorkspace::Open,
CDao Workspace: :Close, CDaoDatabase: :Open, CDaoDatabase: :Close,
CDaoTableDef: :Open, CDaoTableDef: :Close, CDaoQueryDef: :Open,
CDaoQueryDef: :Close, CDaoRecordset: :Open, CDaoRecordset: :Close,

235

DAO: Creating, Opening, and Closing DAO Objects

CDaoDatabase: : Create, CDaoQueryDef: :Create, CDaoTableDef: :Create,
CDao Workspace: : Create

DAO: Closing DAO Objects

236

All MFC DAO objects have Close member functions. Calling Close typically closes
any subordinate objects, such as the active recordsets in a database object, before
closing the parent object. The following illustrates closing a database object:

II pdbAccounts ;s an open CDaoDatabase object
pdbAccounts->Close();

Note It is considered good practice to explicitly close your objects rather than relying on
containing objects to close them.

Meaning of the Close Action for Different DAO Objects
The concept of "close" is fairly similar for MFC DAO objects. Closing an object:

• Releases memory associated with the object, including buffers used to store
recordset data.

• Releases the underlying DAO object.

• Does not remove the object from any collection it belongs to. The exceptions are
the workspace and recordset objects, which don't persist between database engine
sessions.

What Happens When You Close Objects
For details about what happens when you close an MFC DAO object, see the Close
member function for that object's class:

• CDaoDatabase: :Close

• CDaoQueryDef::Close

• CDaoRecordset: :Close

• CDaoTableDef: :Close

• CDaoWorkspace::Close

Calling Close does not destroy the MFC object; you must do that separately.

Tip It's considered good programming practice to explicitly close your objects before they go
out of scope.

See Also In the Class Library Reference: CDaoWorkspace::Open,
CDao Workspace: :Close, CDaoDatabase: :Open, CDaoDatabase: :Close,
CDaoTableDef: :Open, CDaoTableDef: :Close, CDaoQueryDef: :Open,
CDaoQueryDef: :Close, CDaoRecordset: :Open, CDaoRecordset: :Close,
CDaoDatabase: : Create, CDaoQueryDef: : Create, CDaoTableDef: :Create,
CDao Workspace: : Create

DAO: Accessing Implicit MFC DAO Objects

DAO: Accessing Implicit MFC DAO
Objects

This article describes how to access the implicit MFC DAO objects that MFC creates
for you in certain situations. The classic example is the workspace object associated
with an existing CDaoDatabase or CDaoRecordset object. Normally you don't need
an explicit CDaoWorkspace object, so you let MFC implicitly provide one. For a
discussion, see the article DAO Database: Using Workspaces and Databases.

The Most Likely Case
In the most likely case-that you already have a CDaoDatabase or a
CDaoRecordset object associated with the workspace you want to access-you can
use data members of these objects to obtain a pointer to the implicit CDaoWorkspace
object that they belong to. There are two scenarios, based on whether you have a
database object or a recordset object to work from.

Scenario 1. One Level of Indirection
You have a CDaoDatabase object based on the workspace. Access the
CDaoDatabase object's my Workspace data member to obtain a CDaoWorkspace
pointer, like this:

II pdbAccounts is a pointer to a CDaoDatabase object
II for the Accounts database
CDaoWorkspace* pws = pdbAccounts->m_pWorkspcce;

Or you might simply use the implicit workspace to call a CDaoWorkspace member
function:

pdbAccounts->m_pWorkspace->BeginTrans();

Calling transaction functions in this way is a common situation.

Scenario 2. Two Levels of Indirection
You have a CDaoRecordset object indirectly based on the workspace (through a
CDaoDatabase). Follow these steps:

1. Access the CDaoRecordset object's m yDatabase data member to obtain a
CDaoDatabase pointer.

2. Then access the database object's my Workspace data member to obtain a
CDaoWorkspace pointer, like this:

II rsDelinquentAccts is an existing CDaoRecordset
II object based on the Accounts database
CDaoDatabase* pdbAccounts = rs.m_pDatabase;
CDaoWorkspace* pws = pdbAccounts->m_pWorkspace;

237

DAO: General Performance Tips

Or you might simply use the implicit workspace behind your recordset's implicit
database to call a CDaoWorkspace member function:

pdbAccounts->m_pWorkspace->CommitTrans();

Note This is the recommended method for accessing such functions because it doesn't
create a copy of a pointer to an implicit object. Copies of such pointers can be dangerous.

Uses for the Workspace Pointer
You can use the workspace pointer obtained in this indirect way to access the
Workspaces collection, access the Databases collection, access properties of the
database engine, and so on. Note that in most cases the workspace accessed this way
is DAO's default workspace.

Caution If you store a copy to one of these pointers, be careful not to use it after the original
object goes out of scope or is otherwise destroyed.

See Also DAO: Where Is ... , DAO: Creating, Opening, and Closing DAO Objects

DAO: General Performance Tips

238

This article offers tips for improving the performance of your MFC DAO
applications. Use these tips as your starting point, and benchmark your changes.
Keep in mind that these tips will often help, but there are no absolutes. Weigh
everything in the context of your database and your application. Topics covered
include:

• Best tip

• Recordsettypes

• Selecting records

• ODBC

• Caching and double buffering

• Opening databases

• Attached tables

• SQL

• Transactions

• Locating records

• Other tips

How you improve performance in a database application depends on what kind of
performance improvement you need. You might need some of the following kinds of
performance improvements more than others:

DAO: General Perfonnance Tips

• Better query speed

• Faster record location

• Faster scrolling through records

• Up-to-date record content in multi-user environments

• Better performance with external databases, especially ODBC data sources

Best Tip
The design of your data is usually a bigger factor in performance than the design of
your code:

• Use Microsoft Access to examine your database design, queries, and indexes. Run
your queries in Access and use the results to adjust your table and index designs
for better performance. Then save the queries in your database for use from your
code.

• Normalize your database schema to avoid storing multiple copies of your data.
Consult any standard database text, such as C.J. Date's Introduction to Database
Systems, 10th edition (Addison~Wesley, 1995), or consult the Microsoft Access
documentation.

Also:

• Store infrequently updated tables in your local Microsoft Jet (.MDB) database. If
the data doesn't change often, you can keep a local copy for queries and avoid
having to move the data across the network.

Recordset Types
• In general, use a table-type recordset rather than either a dynaset-type recordset or

a snapshot-type recordset if possible.

• For remote data, use snapshot-type recordsets rather than dynaset-type recordsets.
But beware of Memo fields, especially in ODBC data sources. If the data contains
Memo fields, use a dynaset-type recordset instead if you won't be retrieving all the
fields from all the rows. Dynaset-type recordsets are also better for OLE objects in
ODBC data sources.

• For ODBC data with OLE objects or Memo fields, use dynaset-type recordsets
instead of snapshot-type recordsets.

Selecting Records
• For dynaset-type record sets and snapshot-type recordsets, select only the fields you

need instead of all fields.

• For snapshot-type recordsets against ODBC data sources, use the dbForwardOnly
option in your recordsets if you'll be making a single pass through your data.

239

DAO: General Performance Tips

240

• For dynaset-type recordsets against ODBC data sources, cache multiple records.
See the article DAO Recordset: Caching Multiple Records for Performance.

• If you're adding records to a dynaset-type recordset, especially against an ODBC
data source, use the dbAppendOnly option.

• Requery recordsets rather than reopening them. Note that you lose this advantage
if you change filters or sorts before you requery.

• Parameterize queries instead of using dynamic SQL statements, especially against
ODBC data sources.

• Store queries instead of using dynamic SQL statements, especially on machines
with low memory.

• Refresh current field values by calling Move with a parameter of
AFX _MOVE_REFRESH instead of calling MoveNext and MovePrev. (Calling
Move with a parameter of 0 is equivalent.)

ODBC
• Attach ODBC tables to a local Microsoft Jet (.MDB) database rather than opening

the ODBC data source directly.

• Reduce your ODBC time outs for faster performance in failure cases.

• For ODBC data with OLE objects or Memo fields, use dynaset-type recordsets
instead of snapshot-type recordsets.

• For snapshot-type recordsets against ODBC data sources, use the dbForwardOnly
option in your recordsets.

• For dynaset-type recordsets against ODBC data sources, cache multiple records.
See the article DAO Recordset: Caching Multiple Records for Performance.

• With ODBC SQL statements that don't retrieve data, use pass-through queries
where possible. For related information, see the article DAO Querydef: Action
Queries and SQL Pass-Through Queries.

• Speed ODBC finds by downloading to a local indexed table and seeking. If you
will be making numerous finds in the data, copy it to a local Microsoft Jet
database table and use Seek to locate information.

• On ODBC data, use Find only on indexed fields; otherwise, open a new recordset
using an SQL statement with an appropriate WHERE clause.

For more information about working with ODBC data sources, see the articles
Database Overview and DAO External: Working with External Data Sources.

Caching and Double Buffering
• For best performance, tum off MFC's double-buffering mechanism. However, the

tradeoff is that you must write more code to update a field. For more information,
see the article DAO Record Field Exchange: Double Buffering Records.

DAO: General Performance Tips

• Cache multiple records when you are using an ODBC data source. See the article
DAO Recordset: Caching Multiple Records for Performance.

• Cache tabledef references if they will be used many times. Keep your
CDaoQueryDef objects open and reuse them rather than recreating them.

Opening Databases
• Open databases for exclusive use if you are the only user. Open databases read

only if all users will be read-only.

• Use the dbDenyWrite option if nobody else will be writing to the database.

• Retrieve data from ODBC databases by attaching to a Microsoft Jet (.MDB)
database instead of opening the ODBC database directly.

Attached Tables
• Attach ODBC tables to a local Microsoft Jet (.MDB) database rather than opening

the ODBC data source directly.

• Open attached Microsoft Jet tables as table-type recordsets by parsing the tabledef
connect string for the database name and then opening that database directly.

SQl
• With ODBC SQL statements that don't retrieve data, use pass-through queries

where possible. For related information, see the article DAO Querydef: Action
Queries and SQL Pass-Through Queries.

• Replace code loops that run a query again and again with the equivalent SQL
statements to run the query once for the whole loop. For example, rather than
doing 100 update calls, run one bulk query for all of the affected records.

• Replace repeated execution of the same dynamic SQL with a temporary query.
(This applies only if you are using a querydef pointer in CDaoRecordset::Open to
create your recordset.)

Transactions
• Always embed your MFC DAO code in transactions if you are performing

multiple updates. Balance transaction sizes against the likely available memory.
Don't try to do ten thousand large updates in a single transaction. Instead, break
the work into smaller lots of, say, 500 records.

locating Records
• Use Seek rather than Find. (Seek only works with table-type recordsets.)

• Return to a location in a recordset using bookmarks rather than Find. See the
article DAO Recordset: Bookmarks and Record Positions.

241

DAO: General Perfonnance Tips

242

• Speed ODBC fmds by downloading to a local indexed table and seeking. If you
will be making numerous finds in the data, copy it to a local Microsoft Jet
database table and use Seek to locate information.

• On ODBC data, use Find only on indexed fields; otherwise, open a new recordset.

Other Tips
• Use the power of Microsoft Jet queries to save writing and debugging code. For

example, the Microsoft Jet database engine allows you to update the results of join
queries and automatically distributes the changes to the underlying tables.

• Replace short Memo fields with long text fields.

• Replace floating-point numbers with integers.

DAO Collections
This article explains how to access the "collections" in which DAO keeps active
DAO objects at all levels of the DAO object hierarchy. The article also explains how
the collections are exposed in MFC. Topics covered include:

• DAO collections: definitions

• How MFC exposes DAO collections

• The default object in a collection

• How to access a collection

• The information you obtain about objects in a collection

• Contents of MFC'DAO information structures

• Primary, Secondary, and All information

• Information about collections in DAO

DAO Collections: Definition
In DAO, each object in the object hierarchy maintains one or more "collections" of
subordinate objects. For example, the Microsoft Jet database engine maintains a
collection of open workspaces. Each workspace object maintains a collection of open
databases (and other collections, related to security). And so on. For a list of the DAO
objects and the collections they house, see the topic Data Access Objects and
Collections Reference in DAO Help.

How MFC Exposes DAO Collections
In the MFC DAO classes, MFC doesn't maintain a collection (such as a CObArray)
of C++ objects parallel to the underlying DAO collection. Rather, MFC supplies
member functions and/or data members through which you can access the underlying
collection itself in DAO, where the DAO collections are stored. For example, class
CDaoWorkspace supplies the GetWorkspaceCount member function to determine
how many workspaces are in the database engine's Workspaces collection and the
GetWorkspaceInfo member function to examine information about any workspace
in the collection.

In general, the MFC DAO classes supply similar functions for all relevant DAO
collections. The one significant exception is the Recordsets collection of the database
object. MFC does not supply GetRecordsetCount and GetRecordsetInfo member
functions in class CDaoDatabase. When you work with recordsets, you always have
an explicit MFC CDaoRecordset object in your application. It's up to you to keep
track of which recordsets you have open.

DAO Collections

243

DAO Collections

244

The Default Object in a Collection
The first element in a DAO collection, at element 0, is the default element of the
collection. In particular, DAO's default workspace is element 0 in the Workspaces
collection. Collections are zero-based.

How to Access a Collection
The following procedure uses the TableDefs collection of a CDaoDatabase object to
illustrate the general process for accessing objects in a DAO collection.

~ To access the TableDefs collection (for example)

1 Construct a CDaoDatabase object, or get a pointer to one from a CDaoRecordset
object.

2 Call the object's Open member function unless you have obtained a database
pointer from a recordset.

3 Use the GetTableDefCount and GetTableDeflnfo member functions of the object
to determine how many tabledefs the collection contains and to loop through the
collection, obtaining information about each tabledef object.

For an example, see the LISTVIEW.CPP file in the MFC Database sample
DAOVIEW. For a procedure, see the article DAO: Obtaining Information About
DAO Objects.

The Information You Obtain About Objects in a Collection
To obtain information about the objects in a collection, you call a GetXlnfo member
function of the appropriate class. This function returns an object of one of the
CDaoXlnfo structures listed in Table 2 in the article DAO: Obtaining Information
About DAO Objects. In general, there is a CDaoXlnfo structure associated with each
DAO object. These structures are commonly referred to as the MFC DAO
"information structures."

Contents of MFC DAO Information Structures
A typical information structure looks something like this:

struct CDaoDatabaselnfo
{

} ;

CString m_strName;
BOOl m_bUpdatable;
BOOl m_bTransactions;
CString m_strVersion;
long m_1CollatingOrder;
short m_nQueryTimeout;
CString m_strConnect;

II Primary
II Primary
I I Primary
II Secondary
II Secondary
II Secondary
I I All

DAO: Obtaining Information About DAO Objects

For detailed descriptions of the structure members, see the individual structure in the
Class Library Reference. Structures are listed in Table 2 in the article DAD:
Obtaining Information About DAD Objects.

Primary, Secondary, and All Information
The notations "Primary," "Secondary," and "All" indicate which MFC DAD structure
members are filled when you call a function such as GetDatabaselnfo. You can
specify that you want just primary information, both primary and secondary
information, or all information. Some structures don't include anything under the All
designation.

Caution Using the Secondary and All options can be slow. In general, Primary is faster than
Secondary, and Secondary is faster than All. Don't use All unless you must.

For more information about using GetTableDefCount, GetTableDeflnfo, and
similar functions, see the article DAD: Obtaining Information About DAD Objects.

Information About Collections in DAO
For general information about the DAO collections, see the topic Data Access Objects
and Collections Reference in DAO Help.

See Also DAO: Where Is ... , DAO Collections: Obtaining Information About DAO
Objects

DAO: Obtaining Information About DAO
Objects

Objects of most of the MFC DAO classes contain "collections" of subordinate objects.
For example, a CDaoDatabase object contains collections of tabledefs, querydefs,
and relations. For an explanation of how these collections fit into the MFC
implementation, see the article DAO Collections.

The present article explains how to obtain information about the objects in a
collection. The example given uses the database object's QueryDefs collection, but
the same mechanism applies to other collections throughout the MFC
implementation of DAO.

Topics covered include:

• Functions for accessing DAO collections

• Information returned by the GetXInfo functions

• Example: Obtaining Information About Querydefs

• Constants for specifying the levels of information you want

245

DAO: Obtaining Information About DAO Objects

246

Functions for Accessing DAO Collections
Access the objects in a DAO collection through the GetXCount and GetXlnfo
member functions of the appropriate class, where X stands for Database, Field, Index,
Parameter, Query, Table, Relation, or Workspace. Table 1 lists the available
collection-access functions for each MFC class:

Table 1 Class Member Functions for Accessing Collections

Get information about a
Class Count objects in collection specified object

CDaoWorkspace GetDatabaseCount, GetDatabaselnfo,
GetWorkspaceCount GetWorkspacelnfo

CDaoDatabase GetTableDefCount, GetTableDeflnfo,
GetRelationCount, GetRelationlnfo,
GetQueryDefCount GetQueryDeflnfo

CDaoTableDef GetFieldCount, GetFieldlnfo,
GetIndexCount GetIndexInfo

CDaoQueryDef GetFieldCount, GetFieldlnfo,
GetParameterCount GetParameterlnfo

CDaoRecordset GetFieldCount, GetFieldlnfo,
GetIndexCount GetIndexInfo

Information Returned by the GetXlnfo Functions
In general, use GetXCount functions to determine the upper bound for looping
through a collection. On each iteration of the loop, call GetXlnfo functions to retrieve
the information. The GetXlnfo functions return a reference to an object of class
CDaoXlnfo, which you can examine. Each different CDaoXlnfo class (technically a
C++ structure) supplies different information. You pass an object of type CDaoXlnfo
in the second (xinfo) parameter.

Note DAD collections are zero-based. When you iterate a collection, begin with element O.

Table 2 lists the CDaoXlnfo classes; see the class for details about its members.

Table 2 Classes for Obtaining Information About Collections

Object Class (structure)

Database

Field

Index

Index Field (field that is part of an index
object)

Parameter

QueryDef

Relation

CDaoDatabaselnfo

CDaoFieldlnfo

CDaolndexInfo

CDaolndexFieldlnfo

CDaoParameterlnfo

CDaoQueryDeflnfo

CDaoRelationlnfo

DAO: Obtaining Infonnation About DAO Objects

Table 2 Classes for Obtaining Information About Collections (cont.)

Object Class (structure)

Relation Field (field that is part of a relation CDaoRelationFieldlnfo
object)

TableDef CDaoTableDet1nfo

Workspace CDao Workspacelnfo

One additional DAD object, the error object, is handled somewhat differently in
MFC, so you don't use the technique described in this article to work with error
objects. For information, see class CDaoException in the Class Library Reference.

Example: Obtaining Information About Querydefs
This example shows how to loop through the QueryDefs collection of a
CDaoDatabase object and obtain information about the QueryDefs in the collection.
The example searches the QueryDefs collection for a particular named query, called
"Senior Students" so it can then extract other information about the query-such as
its SQL string or query type.

II pDB is a pointer to a CDaoDatabase object
II Allocate a CDaoQueryDeflnfo object to
II receive the information
CDaoQueryDeflnfo queryinfo;
int nQueries ... pDB->GetQueryDefCount();
for (int i ... 0; i < nQueries; i++)
{

}

GetQueryDeflnfo(i. queryinfo);
if (queryinfo.m_strName ... "Senior Students"
{

II Get other information about the query
I I ...
brea k;

The code iterates through the collection, retrieving information about each object
until the desired named query is found. Note that DAD collections are zero-based.

Tip Some MFC DAO class functions use CDaoXlnfo structures for input parameters as well
as for output parameters. In those cases, you assign values to a CDaoXlnfo object, then pass
the object to the function.

Constants for Specifying the Levels of Information You
Want
The syntax of the GetQueryDef1nfo member function used in the example under
Example: Obtaining Information About Querydefs is:

247

DAO Database

void GetQueryDefInfo(int nlndex, CDaoQueryDefInfo& queryinfo, DWORD dwlnfoOptions =
AFX_DAO_PRIMARY_INFO);

In the example, the queryinfo parameter returns a reference to a CDaoQueryDefinfo
object. The example accepts the default value, AFX_DAO_PRIMARY_INFO, for
the dwlnfoOptions parameter, which specifies which information to return. Table 3
lists the options in this case.

Table 3 Constants for Specifying the Levels of Information You Want

Constant

AFX_DAO_SECONDARY_INFO

Meaning

Primary level of information; in the querydef
case, this includes Name and Type.

Primary information plus a secondary level of
information; in the querydef case, this would
include Date Created, Date of Last Update,
Returns Records, and Updatable.

Primary and secondary information plus
additional information: in the querydef case,
this would include SQL, Connect, and
ODBCTimeout.

The items listed in column 2 of Table 3 correspond to data members of the
appropriate CDaoXlnfo structure and, beneath that, to DAO properties.

Notice that the levels of information are cumulative: if you specify a higher level,
such as secondary or all, you get the lower levels as well. For details about what
information you can obtain for each collection type, see the appropriate GetXlnfo
functions. The functions are listed in Table 2.

Caution In many cases, the information obtained with the AFX_DAO_ALLJNFO option can
be time-consuming or otherwise costly to obtain. For example, getting a count of the records in
a recordset can be time-consuming. Use this option with care.

See Also DAO: Where Is ... , DAO Collections

DAD Database

248

This article explains the role of CDaoDatabase objects in your application. For task
oriented information ahout using "database" objects, see the article DAO Database:
Using Workspaces and Databases. For an understanding of the DAO database object
underlying each MFC CDaoDatabase object, see the following topics in DAO Help:

• Database Object

• Databases Collection

Topics covered in this article include:

• Database: Definition

• External databases

• Database collections

• Database roles

• Accessing database objects

• Database persistence

• Further reading about databases

Database: Definition
A DAO database object, represented in MFC by class CDaoDatabase, represents a
connection to a database through which you can operate on the data. You can have
one or more CDaoDatabase objects active at a time in a given "workspace,"
represented by a CDaoWorkspace object.

For information about database management systems (DBMSs) you can work with,
see Databases You Can Access with DAO in the article Database Overview.

External Databases
Besides using CDaoDatabase to work with Microsoft Jet (.MDB) databases, you can
also access "external" data sources, particularly Open Database Connectivity (ODBC)
data sources. For a list of external data sources, see the topic External Data Source:
Definition in the article DAO: Working with External Data Sources.

Database Collections
InDAO:

• Each workspace object contains a "collection" of open database objects, called the
Databases collection.

• Each DAO database objects contains collections of tabledefs, querydefs, recordsets,
and relations.

In MFC, access to a workspace's Databases collection is through member functions of
class CDaoWorkspace. Access to a database object's collections is through member
functions of class CDaoDatabase.

Note MFC exposes all of a database's collections via member functions except for the
Recordsets collection. In MFC, you always have an explicit CDaoRecordset object for each
recordset you create, and it is up to you to track these objects.

For more information about DAO collections in MFC, see the article DAO
Collections. For related information, see the topic Databases Collection in DAO
Help.

DAO Database

249

DAO Database

250

Database Roles
CDaoDatabase can play the following roles-it allows you to:

• Create new Microsoft Jet (.MDB) database files.

• Store tabledef objects that you can use to manipulate the structure of the database's
tables.

• Store querydef objects so you can reuse the queries they represent later.

• View and manipulate data in the database's tables.

• Work with data in local or remote databases.

• Work with the database's collections.

Accessing Database Objects
When you open a CDaoRecordset object without specifying an open CDaoDatabase
object, MFC implicitly creates a CDaoDatabase object, along with the
CDaoWorkspace that contains the database and the underlying DAO database
object. You can also create explicit CDaoDatabase objects.

See the article DAO: Accessing Implicit MFC DAO Objects for information on
accessing:

• The CDaoDatabase object associated with a CDaoRecordset object.

• The CDaoWorkspace object associated with a CDaoDatabase object.

Database Persistence
Database objects exist in memory for the life of a database engine session. When that
session terminates, the default workspace, the Workspaces collection, the Databases
collection in each open workspace, and the database objects in the Databases
collection(s) cease to exist (although the databases they represent do persist). These
software objects are not stored on disk or in a database. When you begin a new
database engine session and want to use the workspaces and databases you used in
the last session, you must recreate any explicit workspace objects you need, and
reopen any databases you were using in the workspace.

Tip Use a Windows registry entry to preserve a record of the workspaces and databases you
had open during a database engine session.

Further Reading About Databases
For more information about databases in MFC, see the following articles (in
recommended reading order):

• DAO Database: Using Workspaces and Databases

• DAO External: Working with External Data Sources

• DAO: Accessing Implicit MFC DAO Objects

• DAO Collections

• DAO Tabledef

• DAO Querydef

• DAO Recordset

See Also DAO: Where Is ... , DAO: Database Tasks

DAO Database: Using Workspaces and Databases
This article explains how to use CDaoWorkspace and CDaoDatabase objects.
Topics covered include:

• A typical workspace scenario

• Transactions in the typical scenario

• Beyond the typical scenario

A Typical Workspace Scenario
In the majority of data access applications, you work less at the workspace level than
at the database or even recordset level. It might seem the normal thing to construct an
explicit CDaoWorkspace object, then from it construct a CDaoDatabase object and
from that construct CDaoRecordset, CDaoQueryDef, and CDaoTableDef objects.
But the more typical approach is one of the following:

• Construct a CDaoDatabase object, perhaps stored in your CDocument-derived
class. Then from it construct the necessary recordsets and other objects. You're
likely to do this if you want to maintain a connection to a single database for the
life of your application, or at least the life of your document. For related
information, see the articles MFC: Using Database Classes with Documents and
Views, MFC: Using Database Classes Without Documents and Views, and DAO:
Writing a Database Application.

• Construct recordsets as needed, relying on MFC to create the necessary
CDaoDatabase and CDaoWorkspace objects behind the scenes. You're likely to
do this if you prefer to construct recordsets within the scope of a function, for
example to run a query based on a menu command.

Note This is inefficient if you are continually opening and closing the same database. In
that case, create an explicit CDaoDatabase object and use it for the life of your application.

Transactions in the Typical Scenario
The primary action taken on a workspace object that might be called typical is to use
the object for transactions against one or more databases. The transaction commands
in MFC are members of class CDaoWorkspace.

DAO Database

251

DAO External: Working with External Data Sources

To access transaction commands in the most typical case, you can use the implicit
workspace that MFC creates behind CDaoDatabase and CDaoRecordset objects
(one implicit workspace for multiple objects). To issue transaction commands, such
as BeginTrans, CommitTrans, or Rollback, you can choose to call those member
functions of CDaoWorkspace through the pointer stored in your CDaoRecordset or
CDaoDatabase object. For details about accessing such pointers, see the article
DAO: Accessing Implicit MFC DAO Objects.

For example, from a recordset object, you might call:

II prs is a pointer to an already opened
II CDaoRecordset object
prs->m_pDatabase->m_pWorkspace->BeginTrans();

Beyond the Typical Scenario
The typical scenario is not enough in some fairly rare cases. For a discussion of when
you might need an explicit CDaoWorkspace object, see the article DAO Workspace.

See Also DAO: Where Is ... , DAO Workspace: Managing Transactions, DAO
Workspace, DAO Database, DAO: Creating, Opening, and Closing DAO Objects

DAD External: Working with External Data
Sources

252

This article explains the best approaches to using the MFC DAO classes with
external data sources, primarily Open Database Connectivity (ODBC) data sources.

Topics include:

• External data source: definition

• External data sources you can use

• External data access choices

• Performance considerations with external data

• When you might need to open an external table directly

• Other articles about accessing external data

• For more information about accessing external data

External Data Source: Definition
Aside from working with a Microsoft Jet (.MDB) database on your local machine,
you can use the MFC DAO classes to access "external" data of several kinds.
External data includes data in the following circumstances-the data is in:

• An ODBC data source, either local or on a network server.

DAO External: Working with External Data Sources

• An ISAM database such as dBASE® or Microsoft FoxPro®, accessible through the
Microsoft Jet database engine, either locally or on a network server.

• A Microsoft Jet (.MDB) database, created directly with Microsoft Access or
created with DAO and stored either locally or on a network server, that contains
tables you want to attach to a primary Microsoft Jet database.

External Data Sources You Can Use
The discussion in this and related articles applies to the following external data
sources:

• Microsoft FoxPro®, versions 2.0, 2.5, and 2.6. Can import and export data to and
from version 3.0 but can't create objects.

• dBASE III®, dBASE IV ®, and dBASE 5.0®

• Paradox™, versions 3.x, 4.x, and 5.x

• Btrieve®, versions 5.1x and 6.0

• Databases using the Microsoft Jet database engine (Microsoft Access, Microsoft
Visual Basic, and Microsoft Visual C++), versions l.x, 2.x, and 3.0

• ODBC data sources, including but not limited to Microsoft SQL Server, SYBASE®
SQL Server, and ORACLE® Server. An ODBC data source is any DBMS for
which you have the appropriate ODBC driver. For Visual C++ versions 2.0 and
later, you need 32-bit ODBC drivers (except on Win32s, where you need 16-bit
ODBC drivers). See the article ODBC Driver List for a list of ODBC drivers
included in this version of Visual C++ and for information about obtaining
additional drivers.

• Microsoft Excel version 3.0, 4.0,5.0, and 7.0 worksheets

• Lotus® WKS, WKl, WK3, WK4 spreadsheets

• Text files

External Data Access Choices
The MFC DAO classes give you two choices for accessing tables stored in external
data sources. You can either:

• Attach the tables to a Microsoft Jet (.MDB) database

-or-

• Open the external database directly.

Attaching Tables
When you attach a table, it is treated in most respects-except that you can't modify
the table's schema or open a tabledef or table-type recordset on it-as if it were a
Microsoft Jet database table in the current database. The connection information to
the external data source is stored with the table definition, making it easy to open

253

DAO External: Working with External Data Sources

254

recordsets on the table. The data is still stored in the external data source, however.
For information on attaching tables, see the article DAO External: Attaching
External Tables.

Tip If you attach a table from within Microsoft Access, you can then use the table from MFG.

Opening External Databases Directly
When you open a table directly, you specify the connection information each time you
open the external database. This can involve communication overhead. For
information on opening tables directly, see the article DAO External: Opening
External Databases Directly.

Important In most cases, attaching a table is a faster method for accessing external data
than opening a table directly, especially when the table is in an DOBG data source. If possible,
it's best to consider attaching external tables rather than opening them directly. If you do open
a table in an DOBG data source directly, keep in mind that performance will be significantly
slower.

To attach or open a data source on a network, you must have access to the server and
share and to the external table as well as appropriate permissions for access to the
data, if applicable.

Performance Considerations with External Data
Keep in mind that external tables are not actually in your Microsoft Jet database.
Each time you view data in an external table, your program must retrieve records
from another file. This can take time, particularly if the table is an ODBC data
source.

ODBC performance is optimal if you attach tables instead of opening them directly,
and if you retrieve and view only the data you need. Restrict your queries to limit
results and avoid excessive scrolling through records. For more performance tips, see
the article DAO External: Improving Performance with External Data Sources.

For a discussion of why performance suffers with external data sources, particularly
ODBC data sources, see the topic Accessing External Databases with DAO in DAO
Help.

When You Might Need to Open an External Table Directly
Attaching external tables to a Microsoft Jet database is generally more efficient than
opening the external data source directly. However, there still might be circumstances
under which you would prefer to open the external database directly. Reasons:

• Non-ODBC external data sources give faster performance if you open them
directly. Only ODBC is slower when openetf directly .

• You need to enumerate the tables in the external data source to find out the
database structure at run time. Unless you know the table names, you can't attach
them.

DAO External: Working with External Data Sources

• You need to manipulate the table's structure. You can't modify the schema of an
attached table.

Other Articles About Accessing External Data
For more information, including procedures, see the following articles (in the
recommended reading order):

• DAO External: Attaching External Tables

• DAO External: Creating an External Table

• DAO External: Refreshing and Removing Links

• DAO External: Improving Performance with External Data Sources

For More Information About Accessing External Data
An additional source of information is the Advanced Topics book from the Microsoft
Access Developer's Toolkit. You'll need to translate Microsoft Access Basic examples
to MFC, but the chapter on Accessing External Data gives detailed advice on using
external data sources such as Microsoft FoxPro, dBASE, Paradox, and Btrieve.

For related information, see the topic Accessing External Databases with DAO in
DAOHelp.

For information about accessing specific external data sources, see the following
topics in DAO Help:

• Accessing Data in ODBC Databases with DAO

• Accessing Data in a Btrieve Database with DAO

• Accessing Data in a dBASE Database with DAO

• Accessing Data in a Microsoft Excel Worksheet or Workbook with DAO

• Accessing Data in a Microsoft FoxPro Database with DAO

• Accessing Data in a Lotus Spreadsheet with DAO

• Accessing Data in a Paradox Database with DAO

• Accessing Data in a Text Document with DAO

• Accessing Data on CD-ROM with DAO

See Also DAO: Where Is ...

DAO External: Attaching External Tables
This article explains how to attach a table from an external data source, such as an
ODBC data source, to your current Microsoft Jet (.MDB) database. Attaching
external tables is generally more efficient than opening them directly, as explained in
the article DAO External: Working with External Data Sources.

255

DAO External: Working with External Data Sources

256

Important In general, it is best for performance reasons to attach tables in DOSC data
sources rather than opening them directly. You can open non-OOSC external data sources
directly if you like.

Tip If you attach a table from within Microsoft Access, you can then use the table from MFC.

~ To attach an external table using the MFC DAO classes

1 Open your Microsoft Jet (.MDB) database-the one to which you'll attach the
external table:

Construct a CDaoDatabase object, or obtain a pointer to one (from an open
recordset object, for example) and call the object's Open member function.

2 Using the CDaoDatabase object, create a new CDaoTableDef object. Construct
the tabledef object, then call its Create member function.

In the Create call, you can specify the source table name and the connect string.
Or you can accept the defaults in Create and separately call SetConnect and
SetSourceTableName to specify the connect string and the name of the table as it
appears on the data source. The example following this procedure calls
SetConnect and SetSourceTableName.

3 Attach the external table by appending it to the CDaoDatabase object's TableDefs
collection.

Call the tabledef object's Append member function.

4 Use the attached table as if it were actually a table in the Microsoft Jet database.

You can do the following, among other things:

• Use the table to create a recordset.

• Examine fields and indexes in the table.

• Get or set validation conditions for the table.

The following example illustrates how to attach an external table:

II Construct the database and the tabledef
CDaoDatabase db;
CDaoTableDef td(&db);
td.Create("Preferred Customers", 0, "Customers", "ODBC:DSN-afx;UID-sa;PWD-Fred");

II Attach the tabledef to the external data source
td.Append();

1/ Use td ...

The parameters to create are the tabledef name, attributes, source table name, and
connect string.

DAO External: Working with External Data Sources

Your link to the attached table remains active unless you delete the tabledef object or
move the source table. If you move the source table, you can refresh the link using the
tabledef object's RefreshLink member function.

Note For the external indexed sequential access method (ISAM) databases, such as FoxPro
and dBASE, specify the full path to the directory in which the database files are located when a
database name is called for.

Tip Because a tabledef object name can be any valid Microsoft Access table name, you can
give the attached table a more descriptive name than is often allowed in the external data
source. For example, if you attach an external dBASE table named SLSDATA, you can rename
the attached table as "Sales Data 1995 (from dBASE)." The code in the previous example
provides an example of this.

See Also DAO: Where Is ... , DAO External: Working with External Data Sources,
DAO External: Opening External Databases Directly

DAO External: Opening External Databases Directly
This article explains how to open a table in an ODBC data source directly, rather
than by attaching the table to a Microsoft Jet (.MDB) database. For a general
discussion of external data sources, see the article DAO External: Working with
External Data Sources.

Important If you are working with an DDBC data source, it is recommended that you attach
the external table to your Microsoft Jet database instead of opening it directly as described in
this article. With an attached table from an DDBC data source, performance is significantly
better. For information about attaching tables, see the article DAD External: Attaching External
Tables.

~ To open an external table directly using the MFC DAO classes

1 Open the external data source.

Construct a CDaoDatabase object, or obtain a pointer to one (from an open
recordset object, for example) and call the object's Open member function. Supply
appropriate connection information for the data source.

2 Create a recordset for the external table.

Construct a CDaoRecordset object, basing the recordset on the CDaoDatabase
object for the external table.

3 Work with the recordset as you would with any recordset. But note that if you are
working with ODBC performance may not be as good as if you had attached the
table instead.

Note Creating the recordset requires that you supply the external table name. Usually, you'll
do this when you create your CDaoRecordset-derived class with either AppWizard or
ClassWizard. The external table name is a table name, not a filename, so you don't use the

257

DAO External: Working with External Data Sources

filename extension. This is true for all external data sources, such as dSASE and FoxPro, in
which tables are stored as individual disk files.

Important When you specify the recordset type (table-type, dynaset-type, or snapshot-type),
be aware that you can't use a table-type recordset with ODSe data sources.

For information about the preferred alternative to this procedure, see the article DAO
External: Attaching External Tables.

See Also DAO: Where Is ... , DAO External: Working with External Data Sources,
DAO External: Attaching External Tables

DAO External: Creating an External Table
This article explains how to create a new table, with the correct format, in an external
data source. For general information about external data sources, see the article DAO
External: Working with External Data Sources.

~ To create an external table

1 Open the external database directly.

Construct a CDaoDatabase object and call its Open member function. Pass the
appropriate connection information.

You can't manipulate the schema of an attached table, so you must open directly.

2 Create a tabledef for the new table.

Construct a CDaoTableDef object based on the CDaoDatabase object. Call the
tabledef object's Create member function, specifying connection information and
the name of the source table on which the tabledef is based.

As an alternative, you could accept the default parameter values in Create, then
call SetConnect and SetSourceTableName.

3 Add fields to the new table.

Call the tabledef object's CreateField member function. The new field is
automatically appended to the underlying DAO tabledef object's Fields collection.

4 Create the external data file by appending the tabledef object to the
CDaoDatabase object's TableDefs collection.

See Also DAO: Where Is ... , DAO External: Working with External Data Sources,
DAO External: Attaching External Tables, DAO External: Refreshing and Removing
Links

DAO External: Refreshing and Removing Links

258

This article explains how to refresh or remove a link to an attached table when the
table has moved. For background, see the article DAO External: Attaching External
Tables.

DAO External: Working with External Data Sources

~ To refresh a link

1 Reset the table's connection information-that is, change the path to the external
data source.

Call the SetConnect member function for the saved tabledef object representing
the attached table.

2 Call the tabledef object's RefreshLink member function.

~ To remove a link to an attached table

• In the CDaoDatabase object for your Microsoft Jet (.MDB) database, call the
DeleteTableDef member function. Specify the name of the external table (the
tabledef name).

Important When you delete an attached table, only the link is deleted. The external table
itself is unaffected.

See Also DAO: Where Is ... , DAO External: Working with External Data Sources,
DAO External: Attaching External Tables, DAO External: Creating an External
Table

DAO External: Improving Performance with External
Data Sources

This article explains some things you can do to improve performance when you
connect to external data sources, such as ODBC data sources. For general
information about external data sources, see the article DAO External: Working with
External Data Sources.

Improving Performance with ODBC Data Sources
If you're connecting to an ODBC data source, the following guidelines apply:

• Use attached tables instead of directly opened tables whenever possible.

See the article DAO External: Working with External Data Sources and the topic
Accessing External Databases with DAO in DAO Help.

Important This recommendation has the most significant impact on performance of all the
recommendations in this list.

• Retrieve and view only the data you need.

Use restricted queries to limit the number of records you retrieve, and select only
the columns you need. This requires transferring less data across the network.

Don't use dynaset-type recordsets if you're not updating the data.

Use forward-scrolling snapshot-type recordsets if you're only scrolling forward.
Don't scroll through records unnecessarily, and avoid jumping to the last record of
a large table.

259

DAO External: Working with External Data Sources

260

• Use caching.

In class CDaoRecordset, MFC supports caching a specified number of records.
Doing so takes longer initially, when the data is retrieved into the cache, but
moving through the records in the cache is faster than retrieving each record as it
is scrolled to.

• Tum off the double-buffering option in MFC CDaoRecordset objects.

This is a general way to improve performance that applies as well to working with
external data sources.

• For bulk operations, such as adding records in bulk, use an SQL pass-through
query. Call SetConnect for the CDaoDatabase representing your .MDB database.
Then call the database object's Execute member function, or create a recordset,
with the dbSQLPassThrough option set. For more information about pass
through queries, see the article DAO Querydef: Action Queries and SQL Pass
Through Queries. (You only need to set the connection information once, if you
are always performing your SQL pass-through queries through the same
connection.)

• Avoid using queries that cause processing to be done locally.

Don't use user-defined functions with remote column arguments. Use
heterogeneous joins (joins on tables in two databases) only on indexed columns,
and realize if you do this that some processing is done locally. When accessing
external data, the Microsoft Jet database engine processes data locally only when
the operation can't be performed by the external database. Query operations
performed locally include:

• WHERE clause restrictions on top of a query with a DISTINCT predicate.

• WHERE clauses containing operations that can't be processed remotely, such
as user-defined functions that involve remote columns. (Note that in this case
only the parts of the WHERE clause that can't be processed remotely will be
processed locally.)

• Joins between tables from different data sources.

Note Simply having joins between tables from different data sources doesn't mean that all
of the processing occurs locally. If restrictions are sent to the server, only relevant rows are
processed locally.

• Joins over aggregation or the DISTINCT predicate.

• Outer joins containing syntax not supported by the ODBC driver.

• DISTINCT predicates containing operations that can't be processed remotely.

• ORDER BY arguments (if the remote data source doesn't support them).

• ORDER BY or GROUP BY arguments containing operations that can't be
processed remotely.

• Multiple-level GROUP BY arguments, such as those used in reports with
multiple grouping levels.

• GROUP BY arguments on top of a query with a DISTINCT option.

• Cross-tab queries that have more than one aggregate or that have an ORDER
BY clause that matches the GROUP BY clause.

• TOP or TOP PERCENT predicate.

See Also DAO: Where Is ... , DAO External: Working with External Data Sources,
DAO External: Attaching External Tables

DAD Queries
This article explains what a query is and how to create and run one using the MFC
DAO classes. Topics include:

• Query: definition

• Querydefs and recordsets

• Creating a query with a querydef

• Creating a query with a recordset

Query: Definition
A query is a formalized instruction to a database to either return a set of records or
perform a specified action on a set of records as specified in the query. For example,
the following SQL query statement returns records:

SELECT [Company Name] FROM Publishers WHERE State = "NY"

You can create and run select, action, crosstab, parameter, and other queries using the
MFC DAO classes. Queries are expressed with Structured Query Language (SQL)
statements like the one shown above. The most common query type is the SELECT
query. For a list of other query types, see the topic Type Property in DAO Help, under
Settings and Return Values listed for querydef objects.

How to Write SQl Statements
For general information on writing SQL queries, see the following topics in DAO
Help:

• Querying a Database with SQL in Code

• Building SQL Statements in Code

Syntax of SQl Used with DAO
For a description of the SQL syntax used by DAO, see the topic Comparison of
Microsoft Jet Database Engine SQL and ANSI SQL in DAO Help. For SQL syntax
specific to your target database, see the documentation for your DBMS. For a list of
additional topics on SQL in DAO Help, see the article DAO Queries: SQL for DAO.

DAO Queries

261

DAOQueries

262

Querydefs and Recordsets
You can work with queries in two ways:

• Use a DAO querydef object-the corresponding MFC object is represented by
class CDaoQuery Def.

• Use a DAO recordset object-the corresponding MFC object is represented by
class CDaoRecordset.

A querydef is a query definition, which you can optionally save as a persistent object
in the database. A recordset is an object that represents and gives access to a set of
records returned by a query.

Creating a Query with a Querydef
Once you create a querydef object, based on CDaoQueryDef, you can do the
following with it:

• Save the querydef object in the database, which lets you run its query again later.

• Create parameters for the querydef, so you can run parameterized queries with it.

• Create a recordset based on the querydef.

• Use the querydef's Execute member function to directly execute a query that
doesn't return records, such as an action query or a SQL pass-through query.

~ To create a querydef

• See the detailed instructions in the article DAO Querydef: Using Querydefs.

Creating a Query with a Recordset
You can create a query with a recordset, represented by CDaoRecordset, in three
ways:

• First create or open a CDaoQueryDef object; then base a CDaoRecordset object
on it, using the version of CDaoRecordset::Open that takes a pointer to a
CDaoQueryDef object.

-or-

• First create or open a CDaoTableDef object, then base a CDaoRecordset object
on it, using the version of CDaoRecordset::Open that takes a pointer to a
CDaoTableDef object.

-or-

• Create a recordset, usually based on a class that you derive from CDaoRecordset
using App Wizard or Class Wizard, and open the recordset. No querydef is
required.

~ To create a recordset with or without a querydef or tabledef

• See the article DAO Recordset: Creating Recordsets.

You'll most likely base your recordsets on querydefs when you have a saved querydef
for a query that you run frequently, or when you have just created a querydef that you
plan to save in the database for later reuse. Or you'll base recordsets on tabledefs
when you have a tabledef and want to work with the data in the table that the tabledef
represents. Otherwise, you'll simply create a recordset (without a querydef) whenever
you need one.

For related information, see the following topics in DAO Help:

• QueryDef Object

• Recordset Object

• CreateQueryDef Method

See Also DAO: Where Is ... , DAO Querydef, DAO Recordset

DAO Queries: SQL for DAO
SQL stands for Structured Query Language, the industry standard way to
communicate with relational databases.

For information about SQL, see the topic SQL Property in DAO Help. For
information about the SQL syntax used by DAO, see the topic Comparison of
Microsoft Jet Database Engine SQL and ANSI SQL in DAO Help.

See Also DAO: Where Is ... , DAO Querydef, DAO Recordset, DAO Queries

DAOQueries

DAO Queries: Filtering and Parameterizing Queries
This article describes how to restrict the number of records that a query returns.
Topics covered include:

• Filtering recordsets

• Parameterizing queries

One of the great keys to good database performance is to restrict how many records
you select. In general, the more records you select, the greater the overhead and the
slower the performance. DAO and MFC let you "filter" the records that a query
selects, and you can specify filtering criteria at run time rather than design time. The
mechanism works as follows:

• You specify a filter for your query that restricts records using an SQL WHERE
clause. For example:

WHERE [State] = "NY"

263

DAOQueries

264

• Parameterizing specifies named parameters in the filter to which you can assign
values at run time, based on information you calculate or obtain from the end-user.
For example, the filter shown above looks like this with a named parameter:

WHERE [State] = [State Code]

State Code is the parameter name.

Filtering CAO Recordsets
Filtering records by any of the approaches described below relies on the SQL
WHERE clause. You can also use the HAVING clause if you are using GROUP
BY. For information about these keywords, see the following topics in DAO Help:

• WHERE Clause (SQL)

• HAVING Clause (SQL)

• GROUP BY Clause (SQL)

And see the topic SELECT Statement (SQL) in DAO Help.

The MFC DAO classes let you filter a recordset in two ways:

• You can (a) specify an SQL statement for your recordset that lacks a WHERE
clause, then (b) supply a value at run time to the m _strFilter data member of your
CDaoRecordset-derived class.

-or-

• You can specify an SQL statement that includes a WHERE clause. Then you
don't use m strFilter.

Tip These two approaches are equivalent in terms of performance. The only difference is
whether you build the WHERE clause in the SQl string you use to create the recordset or you
let MFC build the clause using a value you've supplied for m_strFilter.

Important You can't use m_strFilter (or its companion m_strSort, which specifies an SQl
ORDER BY clause for sorting) if you create your recordset from a CDaoTableDef or
CDaoQueryDef object.

Example with m _ strFilter
The following example shows filtering with m_strFilter (the first approach above):

II Filter records with m_strFilter but no parameter
II strStudentID is a value probably obtained from
II the user
rsEnrollmentSet.m_strFilter = "[Student 10] = « + strStudentID;
try
{

II Open the recordset using the filtered string
rsEnrollmentSet.Open();
I I ...

}

II

MFC appends the value of m _ strFilter to the recordset's SQL as long as there is not
already a WHERE clause in the SQL string.

Example with a Complete WHERE Clause
The following example shows filtering with a pre-specified WHERE clause (the
second approach above):

II Filter records with the SOL keyword WHERE
CString strSOL = rsEnrollmentSet.GetOefautlSOL() +

try
{

}

II

"WHERE [Student 10] = " + strStudentl0;

II Open the recordset using the filtered SOL string
rsEnrollmentSet.Open(dbOpenOynaset, strSOL);
II

The example calls GetDefaultSQL to obtain the SQL string defined for the
recordset's class at design time, using ClassWizard or AppWizard. Then it
concatenates a WHERE clause, part of which is based on run-time information in
st rStudent 1 O.

In either case, the result is a recordset that contains a smaller number of records
because of the filtering.

Note The filtering and sorting mechanisms described here are not available for table-type
recordsets. To filter or sort records in a table-type recordset, you must call DAO directly. Set
the Filter and Sort properties of the recordset. To specify which index (if any) is active for the
recordset, call CDaoRecordset::SetCurrentlndex. For information about calling DAO directly,
see Technical Note 54 under MFC Technical Notes, under MFC in Books Online.

Parameterizing DAO Queries
In situations where your application executes the same query repeatedly, it is more
efficient to create a stored querydef object that contains the SQL statement. Queries
stored in the database execute faster and can be used by anyone with access to the
database.

If your application needs to alter WHERE clause arguments in a query, you can also
add a PARAMETERS clause to your query that permits the Microsoft Jet database
engine to substitute values into the query at run time. Before running parameter
queries, your application must substitute values for each of the parameters as stored
in the Parameters collection of the querydef.

In general, parameterizing queries improves performance. The parameterized SQL
statement doesn't have to be recompiled each time you run the query.

DAOQueries

265

DAOQueries

266

~ To create a parameter query

1 Create a PARAMETERS clause string that includes a parameter name and data
type for each parameter. Don't use the field name alone as the parameter name,
because duplicating it may cause problems. You can include the field name within
the parameter name, however. The example calls the parameter "Student Ident"
rather than "Student ID", the name of the field.

If you are working with a database accessed by Microsoft Access, the parameter
name is used as a prompt string. Keep this in mind if you expect Microsoft Access
users to use this query.

Shown below is a typical PARAMETERS clause:

CString strParam - "PARAMETERS [Student IdentJ TEXT ";

The parameter name is enclosed in square brackets here because the name
contains a space. Otherwise the brackets are unnecessary.

2 Create a SELECT statement that retrieves the needed fields and incorporates the
named parameters into the WHERE clause. In the example below, the parameters
are used to filter the query to return only selected students. Note that the parameter
[Student Ident] is substituted by the database engine during execution of the query
at run time.

strSOL = strParam + "SELECT * FROM Enrollment WHERE
Enrollment.[Student IDJ = [Student Ident]";

3 Create a named querydef ("Find Enrollments") with your SQL statement.

CDaoOueryDef qd(m_dbStudentReg);
qd.Create("Find Enrollments", strSOL);
qd .Append();

4 Set the querydef parameters.

First, you need to gain access to the querydef. You can either use the querydef
object just created, or reference the stored querydef object from the QueryDefs
collection. The example shows using the querydef just created.

COleVariant varParamValue(strStudentlD);
qd.SetParamValue("[Student ID]", varParamValue);

5 Execute the procedure.

Because this query returns records, you need to create a recordset to capture the
result set.

CEnrollmentSet rsEnrollmentSet(&m_dbStudentReg);
rsEnrollmentSet.Open(&qd, dbOpenDynaset);

The parameter is defined as part of the SQL statement and becomes part of a
PARAMETERS clause. You set the value of the parameter, at run time, by calling
the querydef object's SetParam Value member function. This function takes:

• A parameter name, which must match the name you specified in the SQL string
("Student Ident" in the example).

• A COle Variant object that contains the value. COle Variant makes it easy to use
the VARIANT data type from OLE for a variety of different actual types. In the
example, the actual type is a string.

For more information and a different example (presented in the Basic language rather
than C++), see the topic Creating Parameter Queries with DAO in DAO Help.

In the Class Library Reference, see CDaoQueryDef and CDaoRecordset. In
particular, see CDaoQueryDef::SetParamValue and
CDaoQueryDef: : GetParam Value.

See Also DAO: Where Is ... , DAO Queries, DAO Querydef, DAO Recordset, DAO
Queries: SQL for DAO

DAO Querydef
This article describes "querydefs" and the key features of the MFC CDaoQueryDef
class. For task -oriented information, see the article DAO Querydef: Using Querydefs.
For an understanding of the DAO querydef object underlying each MFC
CDaoQueryDef object, see the topic QueryDef Object in DAO Help.

Topics covered include:

• Querydef: definition

• Querydef uses

• Querydef parameters

• Querydefs and DAO collections

• Further reading about querydefs

Querydef: Definition
A DAO querydef, represented in MFC by a CDaoQueryDef object, is a query
definition. The object defines the SQL statement for a query and provides operations
for executing the query, for saving it in the database for reuse, for parameterizing the
query, and more.

For information about specifying a query with SQL, see the article DAO Queries.

Saved queries are advantageous because you can keep frequently used queries,
especially complex ones, for easy reuse later. For information about saving querydefs
in a database, see the article DAO Querydef: Using Querydefs.

Tip If you are working with Microsoft Jet (.MOB) databases, the easiest way to create a
querydef is to do it in Microsoft Access. Open your target database, create querydefs, and
save them in the database. Then you can use the querydefs in your code.

DAO Querydef

267

DAO Querydef

268

Querydef Uses
Querydef objects have two primary uses, corresponding to two ways to run the query:

• Creating recordsets, which you then open to run the query.

• Directly executing queries that don't return records. These include action queries
and some SQL pass-through queries (those that return no records).

For information about these querydef uses, see the article DAO Querydef: Using
Querydefs. For information about action queries and SQL pass-through queries, see
the article DAO Querydef: Action Queries and SQL Pass-Through Queries.

QueryDef Parameters
Sometimes you'd like to be able to select records using information you've calculated
or obtained from your user at run time. Parameterized queries let you pass such
information at run time.

A query parameter is an element containing a value that you can change to affect the
results of the query. For example, a query returning data about an employee might
have a parameter for the employee's name. You can then use one querydef object to
find data about any employee by setting the parameter to a specific name before
running the query. This has two valuable effects:

• It can result in better execution speed, particUlarly on the second and subsequent
requeries.

• It lets you build a query at run time, based on information not available to you at
design time, such as information that you must obtain from the user or
information that you must calculate.

Important In OAD, the parameter names are exposed rather than only the positions as in
DOBC. While DOBC does allow named parameters, users of the MFC DOBC classes will be
more familiar with using positional parameters.

For more information about DAO parameters, see the following topics in DAO Help:

• Parameter Object, Parameters Collection Summary

• Creating Parameter Queries

• PARAMETERS Declaration (SQL)

For more information about using parameterized queries, see the article DAO
Queries: Filtering and Parameterizing Queries.

QueryDefs and DAO Collections
Each DAO database object maintains a QueryDefs collection-a collection of all
saved querydefs in the database. Each querydef object maintains two collections of its
own:

• Parameters All defined parameters for the query.

• Fields The fields in one or more tables that correspond to the parameters. For
example, an Employee Name field corresponds to an Employee Name parameter.

MFC objects don't store a representation of a DAO collection. Instead, MFC accesses
the collection through the underlying DAO object. For more information, see the
article DAO Collections.

MFC also doesn't provide a C++ class to represent every DAO object. In particular,
there is no MFC parameter object or field object. You work with a querydef's
parameters and fields through member functions of class CDaoQueryDef. For more
information, see the article DAO Queries: Filtering and Parameterizing Queries.

Further Reading About Querydefs
For more information about querydefs in MFC, see the following additional articles
(in the recommended reading order):

• DAO Queries

• DAO Querydef: Using Querydefs

• DAO Queries: Filtering and Parameterizing Queries

• DAO Querydef: Action Queries and SQL Pass-Through Queries

See Also DAO: Where Is ... , DAO Recordset

DAO Querydef: Using Querydefs
This article explains how to use CDaoQueryDef objects. Topics covered include:

• Creating a querydef

• Saving a querydef (in Microsoft Jet (.MDB) databases only)

• Opening a previously saved querydef

• U sing a temporary querydef

• Creating a recordset from a querydef

• Directly executing a query (an action query or an SQL pass-through query that
doesn't return records)

For a general understanding of querydefs and their uses, see the topic QueryDef
Object in DAO Help.

Creating a Querydef
Creating a querydef, whether you save it in the database or use it as a temporary
object, requires specifying the SQL statement that defines the query and setting any
needed properties of the querydef. If the querydef represents a parameterized query,

DAO Querydef

269

DAO Querydef

270

you also need to create the parameters and their corresponding fields and later set
their values.

Tip You can also set and get field values and parameter values (in a recordset) dynamically,
without using a querydef. See the article DAD Recordset: Binding Records Dynamically.

Creating a new MFC CDaoQueryDef object creates the underlying DAO querydef
object.

~ To create a querydef

1 Construct a CDaoQueryDef object.

2 Call the querydef object's Create member function.

In the Create call, pass a user-defined name for the querydef and a string that
contains the SQL statement on which the querydef is based. While you can define
the SQL string for a recordset with App Wizard or Class Wizard, you must write
the SQL string for a querydef yourself. (You usually use class CDaoQueryDef
directly rather than deriving your own querydef classes from it.)

3 Save the querydef object in the database by calling its Append member function,
unless you want to work with a temporary (unsaved) querydef. (See Using a
Temporary Querydef.)

4 Either create a recordset based on the querydef or call the querydef object's
Execute member function.

Close the querydef when you finish with it: call its Close member function. For more
information, see the detailed instructions under CDaoQueryDef::Create in the Class
Library Reference.

Querydef objects have several properties you can set-primarily for querydefs to be
used with ODBC data sources.

~ To set a querydef's properties (primarily for OOBC)

1 Create the querydef, using a CDaoQueryDef object, as described above.

2 Call any of the following member functions: SetConnect, SetODBCTimeout,
SetReturnsRecords, SetName, SetSQL.

3 Save the querydef in the QueryDefs collection by calling Append, unless you want
to use the querydef as a temporary object. (See Using a Temporary Querydef.)

4 Use the querydef.

You can use SetName and SetSQL for a querydefbased on any kind of database. You
can call these member functions at any time to rename the querydef object or to
respecify its SQL statement. SetReturnsRecords applies only to SQL pass-through
queries. The other functions apply only to ODBC data sources.

After creating a querydef, you will usually want to save it in the database by
appending it to the QueryDefs collection. See Saving a Querydef. The alternative is to

use the querydef as a temporary object. See Using a Temporary Querydef. You can't
use the querydef unless you correctly create it as a temporary querydef or you append
it to the collection.

Once created, use the querydef to create recordsets or to execute action queries or
SQL pass-through queries. For information about action queries and SQL pass
through queries, see the article DAO Querydef: Action Queries and SQL Pass
Through Queries.

Saving a Querydef
A saved querydef persists in its database (.MDB only), stored there along with the
database's tables and data. You can think of a saved query as a compiled SQL
statement-when you run the query, it executes faster than a standard new query
because the database engine doesn't have to compile the SQL statement before
executing it.

Tip The easiest way to create a querydef is to do it in Microsoft Access. Open your target
.MDB database, create querydefs, and save them in the database. Then you can use the
querydefs in your code.

~ To save a querydef

1 Create the querydef as described under Creating a Querydef.

2 Call CDaoQueryDef::Append for the object.

Appending the querydef object to the database's QueryDefs collection makes the
object persistent between database engine sessions; You can open and run the query,
or modify it, at any time. Other users of your database can use the querydef as well.

The alternative to saving a querydef is using it as a temporary object.

Opening a Previously Saved Querydef
Once you've saved a querydefin a database's QueryDefs collection, you can open it at
any time and run its query, either by creating a recordset or by calling Execute.

~ To open a saved querydef

1 Construct a CDaoQueryDef object.

2 Call its Open member function.

In the Open call, pass the user-defined name under which the querydef was
stored.

Using a Temporary Querydef
A temporary querydef object has the following characteristics:

• It is never appended to the QueryDefs collection in the database, unlike a saved
querydef.

DAO Querydef

271

DAO Querydef

272

• It is created by passing either NULL or an empty string for the querydef's name.

Note MFC differs from the underlying DAO implementation in the way querydefs are
appended to the collection. In DAO, a newly created querydef (provided you give it a name) is
automatically appended to the QueryDefs collection. In MFC, you must explicitly call Append.

Saved querydefs are accessible to other users of your database (who have the
appropriate permissions, if security is in effect). Temporary querydefs are not
accessible to other users. In some cases, you might want to create a querydef and use
it without storing it. For example, you might want to use querydef parameters but not
want to save the querydef for reuse.

Whether a querydef is temporary or not depends on what you pass in the IpszName
parameter to Create. Querydefs can be in one of the states listed in Table 1:

Table 1 QueryDef States and Their Meanings

State Meaning

Appended

Unappended

Temporary

You give the querydef a name when you create it. Then you call Append.

You give the querydef a name but you haven't called Append. The
querydef is unusable. This is not the same thing as a temporary querydef.

You pass NULL or an empty string ("") for the querydef name when you
create the querydef. You can't append a temporary querydef, because it has
no name. But you can use it to create recordsets or to call the Execute
member function.

~ To create a temporary querydef

1 Construct a CDaoQueryDef object.

2 Call its Create member function, passing NULL or an empty string ("").

3 Don't call CDaoQueryDef::Append.

You can still use a temporary querydef to create recordsets or to execute action
queries or SQL pass-through queries.

Creating a Recordset from a Querydef
The most common way to use a querydef is to base a recordset on it. The recordset
inherits the querydef's SQL statement.

~ To create a recordset from a querydef

1 Create a saved or temporary querydef as described in Creating a Querydef, or open
a previously saved querydef.

2 Construct a CDaoRecordset object.

3 Call the recordset object's Open member function, passing a pointer to your
querydef object.

DAO Querydef

Calling Open runs the query. For a more detailed discussion, see the article DAO
Recordset: Creating Recordsets.

You can create any number of recordsets from the same querydef object. They will all
have the same SQL statement unless you change the querydef's SQL statement
between creating recordsets.

For related information, see the article DAO Queries.

Executing a Querydef
Not all queries return records. Queries that don't return records include:

• Action queries, which update data or alter the database's structure.

• SQL pass-through queries, which pass the SQL statement to the back-end DBMS
without processing it in the Microsoft Jet database engine.

To execute such queries, you use a querydef rather than a recordset. For more
information about action queries and SQL pass-through queries, see the article DAO
Querydef: Action Queries and SQL Pass-Through Queries.

~ To directly execute a query that doesn't return records

1 Create a saved or temporary querydef as described in Creating a Querydef.

2 Call the querydef's Execute member function.

For more information about executing queries, see CDaoQueryDef: : Execute in the
Class Library Reference and the topic Execute Method in DAO Help.

See Also DAO: Where Is ... , DAO Querydef, DAO Recordset, DAO Queries, DAO
Querydef: Action Queries and SQL Pass-Through Queries

DAD Querydef: Action Queries and SQL Pass-Through
Queries

This article tells you where to find information about action queries and SQL pass
through queries.

For information about action queries, including a definition, see the following topics
inDAOHelp:

• Action Query

• Querying a Database with SQL in Code

For information about SQL pass-through queries, including a definition, see the
following topics in DAO Help:

• Using SQL PassThrough with DAO

• QueryDef Object

273

DAO Querydef

274

Quick SQl Pass-Through Queries
The fastest way to work with ODBC data sources is via attached tables. See the
article DAO External: Working with External Data Sources. For doing bulk
operations, the best, and often fastest, approach is to use an SQL pass-through query.
It's possible to do a quick pass-through query using a recordset and without having to
create a querydef, even a temporary one. This is also helpful if you're converting
existing code that uses the DB_SQLPASSTHROUGH option in many places.

DAO's Connect property for databases normally doesn't have a value for Microsoft
Jet (.MDB) databases. But you can assign an ODBC connect string to the property
and use the dbSQLPassthrough option in a recordset. This means you don't have to
open the ODBC data source directly to use SQL pass-through.

For example:

II pdb is a pointer to a CDaoDatabase object
II (an .MDB database)
II Set up the connect string
CString strConnect - "ODBC;DSN=ntstuff;UID-sa;PWD-Fred;APP-App
Name;WSID-MyComputer;DATABASE-pubs;TABLE-dbo.authors;";
pdb->SetConnect(strConnect);
II Use SOL pass-through in a recordset
II Set up the SOL and open the recordset
CString strSOL - "whatever";
CDaoRecordset rs(pdb);
try
{

}

/I

rs.Open(dbOpenSnapshot. strSOL. dbSOLPassThrough);
/I

See Also DAO: Where Is ... , DAO Querydef, DAO Querydef: Using Querydefs

In the Class Library Reference: CDaoQueryDef::Execute.

DAO Record Field Exchange (DFX)

DAO Record Field Exchange (DFX)
The MFC DAO database classes automate moving data between the data source and a
recordset using a mechanism called "DAO record field exchange" (DFX). DFX is
similar to dialog data exchange (DDX) and, at the interface level, almost identical to
record field exchange (RFX) for the MFC ODBC classes. If you understand RFX, you
will find DFX easy to use.

Note The MFC DAO database classes are distinct from the MFC database classes based on
ODSC. All DAO class names have the "CDao" prefix. Where the ODSC classes are based on
Open Database Connectivity (ODSC), the DAO classes are based on Data Access Objects
(DAO), which use the Microsoft Jet database engine. In general, the MFC DAO classes are
more capable than the MFC ODSC classes. For more information, see the article DAO and
MFC.

The Do Field Exchange Mechanism for DAO
Moving data between a data source and the field data members of a recordset requires
multiple calls to the recordset's DoFieldExchange function and considerable
interaction between the framework and DAO. The DFX mechanism is type-safe and
saves you the work of allocating storage and binding data to it. Sometimes, however,
there will be a performance penalty for this ease of use. (For more information about
DDX, see Chapter 14, Working with Classes, in the Visual C++ User's Guide.)

Derived Recordset Classes for DAO
DFX is mostly transparent to you. If you declare your recordset classes with
AppWizard or ClassWizard, DFX is built into them automatically. DAO recordset
classes are normally derived from the base class CDaoRecordset supplied by the
framework (but see Using CDaoRecordset Directly Instead of Deriving). AppWizard
lets you create an initial recordset class. Class Wizard lets you add other recordset
classes as you need them. You use Class Wizard to map recordset field data members
to table columns on the data source. For more information and examples, see the
article Class Wizard: Creating a Recordset Class.

You must manually add a small amount ofDFX code in two cases-when you want
to:

• Use parameterized queries. See the article DAO Queries: Filtering and
Parameterizing Queries.

• Perform joins-using one recordset for columns from two or more tables, joined
on a common field by a WHERE clause in the SQL statement such as:

WHERE Course.CourseID = Section.CourseID

275

DAO Record Field Exchange (DFX)

Using CDaoRecordset Directly Instead of Deriving
There is an alternative to using DFX (and derived CDaoRecordset classes). You can
use CDaoRecordset directly (without deriving from it) to bind a specified field in the
current record dynamically. For more information, see the article DAO Recordset:
Binding Records Dynamically.

More Information About DFX
If you need a more advanced understanding of DFX, see the article DAO Record
Field Exchange: How DFX Works.

The following articles explain the details of using recordset objects:

• DAO Record Field Exchange: Using DFX

• DAO Record Field Exchange: Working with the Wizard Code

• DAO Record Field Exchange: Using the DFX Functions

In the Class Library Reference, see classes CDaoRecordset and
CDaoFieldExchange.

See Also DAO: Where Is ... , DAO Recordset, ClassWizard: Creating a Recordset
Class, App Wizard: Database Support

DAO Record Field Exchange: Using DFX

276

This article explains what you do to use DFX in relation to what the framework does.
The related article, DAO Record Field Exchange: Working with the Wizard Code,
continues the discussion. That article introduces the main components of DFX and
explains the code that AppWizard and ClassWizard write to support DFX and how
you might want to modify the wizard code.

Note This article is about the DAD version of record field exchange. If you are using the MFC
DDSC classes rather than the MFC DAD classes, see the article Record Field Exchange:
Using RFX instead.

Writing calls to the DFX functions in your DoFieldExchange override is explained
in the article DAO Record Field Exchange: Using the DFX Functions.

Table 1 shows your role in relation to what the framework does for you.

Table 1 Using DFX: You and the Framework

You ...

Declare your recordset classes with
Class Wizard. Specify names and data
types of field data members.

The framework ...

ClassWizard derives a CDaoRecordset class and
writes a DoFieldExchange override for you,
including a DFX function call for each field data
member.

DAO Record Field Exchange (DFX)

Table 1 Using DFX: You and the Framework (cont.)

You ...

(Optional) Manually add any needed
parameter data members to the class.
Manually add a DFX function call to
DoFieldExchange for each parameter data
member, add a call to
CDaoFieldExchange::SetFieldType for
the group of parameters, and specify the
total number of parameters in m _ nParams.
(See DAO: Filtering and Parameterizing
Queries for an alternative way to
parameterize queries.)

Construct an object of your recordset class.
Then, before opening the object, set the
values of its parameter data members, if
any. (If you create your recordset from a
querydef object, you can specify parameters
in the querydef.)

Open a recordset object using
CDaoRecordset: :Open.

Scroll in the record set using
CDaoRecordset::Move or a menu or
toolbar command.

Add, update, and delete records.

The framework ...

For efficiency, the framework prebinds the
parameters, using DAO. When you pass
parameter values, the framework passes
them to the DAO data source. Only the
parameter values are sent for requeries,
unless the sort and/or filter strings have
changed.

Executes the recordset's query, binds
columns to field data members of the
recordset, and calls DoFieldExchange to
exchange data between the first selected
record and the recordset's field data
members.

Calls DoFieldExchange to transfer data to
the field data members from the new
current record.

Calls DoFieldExchange to transfer data to
the database.

In the Class Library Reference, see CDaoRecordset, CDaoFieldExchange, and,
under Macros and Globals, Record Field Exchange Functions.

See Also DAO: Where Is ... , DAO Record Field Exchange (DFX), DAO Record
Field Exchange: Working with the Wizard Code, DAO Record Field Exchange:
Using the DFX Functions, DAO Record Field Exchange: How DFX Works, DAO
Recordset

DAO Record Field Exchange: Working with the Wizard
Code

This article explains the code that AppWizard and ClassWizard write to support DFX
and how you might want to alter that code.

277

DAO Record Field Exchange (DFX)

278

Note This article is about the OAO version of record field exchange. If you are using the MFC
OOSC classes rather than the MFC OAO classes, see the article Record Field Exchange:
Working with the Wizard Code instead.

When you create a recordset class with ClassWizard (or with AppWizard), the wizard
writes the following DFX-related elements for you, based on the data source, table,
and column (field) choices you make in the wizard:

• Declarations of the recordset field data members

• An override of CDaoRecordset: :DoFieldExchange

• Initialization of recordset field data members in the recordset class constructor

The Field Data Member Declarations for DAO
The wizards write a recordset class declaration in an .R file that resembles the
following for a user-defined class called CSecti onSet:

class CSectionSet : public CDaoRecordset
{

public:
CSectionSet(CDaoDatabase* pDatabase = NULL);
DECLARE_DYNAMIC(CSectionSet)

II Field/Param Data
11{{AFX_FIELD(CSectionSet, CDaoRecordset)
CString m_CourseID;
CString m_SectionNo;
CString m_InstructorID;
CString m_RoomNo;
CString m_Schedule;
int m_Capacity;
I/} }AFX_FI ELD

I I Overri des
II ClassWizard generated virtual function overrides
11{{AFX_VIRTUAL(CSectionSet)
public:
virtual CString GetDefaultDBName();
virtual CString GetDefaultSQL();
virtual void DoFieldExchange(CDaoFieldExchange*

II Implementation
lIifdef _DEBUG

virtual void AssertValid() canst;
virtual void Dump(CDumpCantext& dc) const;

lIendif

} ;

pFX) ;

DAO Record Field Exchange (DFX)

Notice the following key features about the class above:

• Special "II{ {AFX_FIELD" comments that bracket the field data member
declarations. Class Wizard uses these to update your source file.

• The wizard overrides several CDaoRecordset virtual functions. The most
important of these is the DoFieldExchange member function.

Caution Never edit the code inside "//{{AFX" brackets. Always use ClassWizard. If you add
parameter data members or new field data members that you bind yourself, add them outside
the brackets.

The DoFieldExchange Override for DAO
DoFieldExchange is the heart of DFX. The framework calls DoFieldExchange any
time it needs to move data either from data source to recordset or from recordset to
data source. DoFieldExchange also supports obtaining information about field data
members through the IsFieldDirty and IsFieldNull member functions.

The following DoFieldExchange override is for a user-defined CSecti onSet class.
ClassWizard writes the function in the .CPP file for your recordset class.

void CSectionSet::DoFieldExchange(CDaoFieldExchange* pFX)
{

//{{AFX_FIELD_MAP(CSectionSet)
pFX->SetFieldType(CDaoFieldExchange::outputColumn);
DFX_Text(pFX, _T("CourseID"), m_CourseID);
DFX_Text(pFX, _T("SectionNo"), m_SectionNo);
DFX_Text(pFX. _T("InstructorID"), m_InstructorID);
DFX_TextCpFX. _T("RoomNo"). m_RoomNo);
DFX_Text(pFX. _T("Schedule"), m_Schedule);
DFX_Short (pFX, _T("Capacity"), m_Capacity);
//}}AFX_FIELD_MAP

Notice the following key features of the function:

• The special "II { {AFX_FIELD _MAP" comments. Class Wizard uses these to
update your source file. This section of the function is called the "field map."

• A call to CDaoFieldExchange::SetFieldType, through the pFX pointer. This call
specifies that all DFX function calls up to the end of DoFieldExchange or the
next call to SetFieldType are "output columns." See
CDaoFieldExchange::SetFieldType in the Class Library Reference for more
information.

• Several calls to the DFX _Text and DFX _Short global functions-one per field
data member. These calls specify the relationship between a column name on the
data source and a field data member. The DFX functions do the actual data
transfer. The class library supplies DFX functions for all of the common data

279

DAO Record Field Exchange (DFX)

280

types. For more information about DFX functions, see the article DAO Record
Field Exchange: Using the DFX Functions and, in the Class Library Reference
under Macros and Globals, Record Field Exchange Functions.

• The pFX pointer to a CDaoFieldExchange object that the framework passes when
it calls DoFieldExchange. The CDaoFieldExchange object specifies the
operation that DoFieldExchange is to perform, the direction of transfer, and other
context information.

• The use of the _ T macro for Unicode enabling. For more information, see the
article Strings: Unicode and Multibyte Character Set (MBCS) Support.

The Recordset Constructor for CAO
The recordset constructor that the wizards write contains two things related to DFX:

• An initialization for each field data member

• An initialization for the m _ nFields data member, which contains the number of
field data members

The constructor for the CSecti onSet recordset example looks like this:

CSectionSet::CSectionSet(CDaoDatabase* pdb)
: CDaoRecordset(pdb)

//{{AFX_FIELD_INIT(CSectionSet)
m_CourseID == _Hnn):
m_Secti onNo = _H nn) :
m_InstructorID = _H''''):
m_RoomNo = _T(nn):
m_ S c h e d u 1 e = _ H n n) :

m_Capacity == 0:
m_nFielps == 6:
//}}AFX~FIELD_INIT
m_nDefaultType = dbOpenDynaset:

m_bCheckCacheForDirtyFields = TRUE:

This code initializes all of the field data members that require initialization and
specifies how many field data members there are (in m_nFields). The code also sets
the values of two special recordset data members:

• m _ nDefaultType Set to the type of recordset you specify in the wizard. All
recordsets created from this class default to the type set here, but you can override
the default for any particular recordset object by specifying a new type when you
call CDaoRecordset::Open.

• m_bCheckCacheForDirtyFields If set to TRUE (the default), the recordset uses
a "double-buffering" mechanism to detect edits to fields by comparing them to a

DAO Record Field Exchange (DFX)

copy of the record. For more information, see the article DAO Record Field
Exchange: Double Buffering Records.

Note The code above is enabled for Unicode.

Important If you add any field data members manually, you must increment m_nFields. Do
so with another line of code outside the "//{{AFX_FIELDJNIT" brackets, such as:

m_nFields += 3;

This is the code for adding three new fields. If you add any parameter data members,
you must initialize the m _ nParams data member, which contains the number of
parameter data members. Put the m _ nParams initialization outside the brackets.

For more information about these special recordset data members, see the article
DAO Recordset: Architecture.

See Also DAO: Where Is ... , DAO Record Field Exchange (DFX), DAO Record
Field Exchange: Using DFX, DAO Record Field Exchange: Using the DFX
Functions, DAO Record Field Exchange: How DFX Works, DAO Recordset, DAO
Queries: Filtering and Parameterizing Queries

DAO Record Field Exchange: Using the DFX Functions
This article explains how to use the DFX function calls that make up the body of your
DoFieldExchange override.

Note This article is about the DAO version of record field exchange. If you are using the MFC
ODBC classes rather than the MFC DAO classes, see the article Record Field Exchange:
Using the RFX Functions instead.

The DFX global functions exchange data between columns (fields) on the data source
and field data members in your recordset. Normally you use ClassWizard to write the
DFX function calls in your recordset's DoFieldExchange member function. This
article describes the functions briefly and shows the data types for which DFX
functions are available. Technical Note 53 under MFC Technical Notes in Books
Online describes how to write your own DFX functions for additional data types.

DFX Function Syntax
Each DFX function takes three parameters (and some take an optional fourth or fifth
parameter) :

• A pointer to a CDaoFieldExchange object. You simply pass along the pFX pointer
passed to DoFieldExchange.

• The name of the column (field) as it appears in the data source. The names in your
SQL statement must match those in the DFX call. Advanced programmers might
want to qualify the column names, for example by adding aggregate functions or
other SQL modifications. For general guidelines, see the article Recordset:
Obtaining SUMs and Other Aggregate Results (ODBC) (the article is for the MFC

281

DAO Record Field Exchange (DFX)

282

ODBC classes, but the general principles it illustrates apply as well to DAO). You
can also add GROUP BY and other clauses to your SQL, either in the SQL
statement or in the DFX function calls. The column (field) name, and any
modifications to it, are used to build a query.

• The name of the corresponding field data member or parameter data member in
the recordset class.

• (Optional) In some of the functions, which handle variable-length data, your
specification of how much memory to preallocate for the data. For details, see
DFX_Binary, DFX_Text, and DFX_LongBinary.

• (Optional) A flag that specifies whether the field is to be double buffered. For
more information, see DoFieldExchange and the article DAO Record Field
Exchange: Double Buffering Records.

For more information, see Record Field Exchange Functions under Macros and
Globals in the Class Library Reference.

DFX Data Types
The class library supplies DFX functions for transferring many different data types
between the data source and your recordsets. Table 1 summarizes the DFX functions
by data type. In cases where you must write your own DFX function calls, select from
these functions by data type.

Table 1 Data Types and DFX Functions

DFX function C++ data type DAO data type

DFX_Binary CByteArray DAO BYTES

DFX Bool BOOL DAO_BOOL

DFX_Byte BYTE DAO BYTES

DFX_ Currency COleCurrency DAO_CURRENCY

DFX DateTime COleDateTime DAO_DATE

DFX Double double DAO_R8

DFX_Long long DAO 14

DFX _ LongBinary CByteArray or CLongBinary* DAO BYTES

DFX Short short DAO 12

DFX_Single float DAO R4

DFX Text CString* DAO CHAR

Note Mapping long binary objects, such as pictures or OLE objects, to CByteArray is now
preferred over mapping them to class CLongBinary. DFX_Text maps between CString and
DAO_WCHAR if the symbol_UNICODE is defined. CByteArray gives you easier control over
the contents of the long binary object.

DAO Record Field Exchange (DFX)

Note You can use DFX to bring data of a DAD type into a variable of a different type as long
as a conversion exists between the two. Take care, however, in cases such as converting a
string to a date. If the string doesn't parse to a correct date format, an error will result.

For information about the DAO data types in the third column of Table 1, see the
topic Type Property in DAO Help.

For more information about the DFX functions in the first column of Table 1, see
Record Field Exchange Functions under Macros and Globals in the Class Library
Reference. Also in the Class Library Reference see CDaoRecordset and
CDaoFieldExchange.

See Also DAO: Where Is ... , DAO Record Field Exchange (DFX), DAO Record
Field Exchange: Using DFX, DAO Record Field Exchange: Working with the
Wizard Code, DAO Record Field Exchange: Using the DFX Functions, DAO Record
Field Exchange: How DFX Works, DAO Queries: Filtering and Parameterizing
Queries, DAO Recordset

DAO Record Field Exchange: How DFX Works
This article explains the DFX process. This is a fairly advanced topic, covering:

• DFX and the recordset

• The DFX process

Note This article is about the DAD version of record field exchange. If you are using the MFC
DDSC classes rather than the MFC DAD classes, see the article Record Field Exchange: How
RFX Works instead.

DFX and the Recordset
The recordset object's field data members, taken together, constitute an "edit buffer"
that holds the selected columns of one record. When the recordset is first opened and
is about to read the first record, DFX binds (associates) each selected column to the
address of the appropriate field data member. When the recordset updates a record,
DFX calls DAO to send the appropriate commands to the database engine. DFX uses
its knowledge of the field data members to specify the columns (fields) in the data
source to write.

There are two ways of working with the edit buffer in a recordset:

• Use MFC's "double-buffering" mechanism.

By default, your recordsets keep a second copy of the edit buffer for most data
types (excluding the variable-length types, such as text and binary data). The copy
is used for comparison with the edit buffer, to detect changes. You can choose to
tum double buffering off, but keeping it turned on simplifies managing record
field updates, adding and deleting records, and so on. For more infonnation about

283

DAO Record Field Exchange (DFX)

284

double buffering, see the article DAO Record Field Exchange: Double Buffering
Records .

• Don't use double buffering; instead, manage all field activity yourself.

If you tum off the default double buffering, each time you edit a field you must call
SetFieldDirty and SetFieldNull (passing the parameter FALSE). That is, you
must take explicit actions so MFC does not have to compare the edit buffer with a
copy to detect your changes. For more information, see the article DAO Record
Field Exchange: Double Buffering Records.

If you have double buffering enabled (the default), the framework backs up the edit
buffer at certain stages so it can restore its contents if necessary. With double
buffering enabled, DFX backs up the edit buffer before adding a new record and
before editing an existing record. It restores the edit buffer in some cases-for
example, after an Update call following AddNew.

Besides exchanging data between the data source and the recordset' s field data
members, DFX manages binding parameters. When the recordset is opened, any
parameter data members are bound in the order of the named parameters in the SQL
statement that CDaoRecordset: :Open receives or constructs. For more information,
see the article DAO Queries: Filtering and Parameterizing Queries.

Your recordset class's override of DoFieldExchange does all the work, moving data
in both directions. Like dialog data exchange (DDX), DFX needs information about
the data members of your class. ClassWizard provides the necessary information by
writing a recordset-specific implementation of DoFieldExchange for you, based on
the field data member names and data types you specify with the wizard.

The DAO Record Field Exchange Process
This section describes the sequence of DFX events as a recordset object is opened and
as you scroll and add, update, and delete records. Table 1 in the article DAO Record
Field Exchange: Using DFX shows the process at a high level, illustrating operations
as a recordset is opened. Table 1 and Table 2 in this article show the process as DFX
processes a Move command in the recordset and as DFX manages an update. During
these processes, DoFieldExchange is called to perform many different operations.
The ill _ nOperation data member of the CDaoFieldExchange object determines
which operation is requested.

DFX: Initial Binding of Columns and Parameters
The following DFX activities occur, in the order shown, when you call a recordset
object's Open member function:

• If the recordset has parameter data members, the framework calls
DoFieldExchange to "bind" the parameters to named parameters in the
recordset's SQL statement.

DAO Record Field Exchange (DFX)

• The framework calls DoFieldExchange a second time to bind the columns to
corresponding field data members in the recordset. This establishes the recordset
object as an edit buffer containing the columns of the first record .

• The recordset opens either a table-type recordset or an SQL-based recordset
(dynaset or snapshot) and selects the first record. The record's columns are loaded
into the recordset's field data members.

Table 1 shows the sequence of DFX operations when you open a recordset.

Table 1 Sequence of DFX Operations During Recordset Open

Your operation

1. Open the recordset.

DFX: Scrolling

DoFieldExchange operation

2. Build an SQL statement.
DoFieldExchange might have a
querydef, a tabledef, or an SQL
statement handed to it. If not, MFC
builds the statement.

4. Bind parameter data member(s).

5. Bind field data member(s) to
column(s).

8. Fix up the data for C++.

Database operation

3. Open the querydef or tabledef, or
create a temporary querydef (using
either an SQL statement passed in
or one built by MFC) and open it.

6. Create the recordset.

7. DAO moves to the first record
and fills in the data.

When you scroll from one record to another, the framework calls DoFieldExchange
to replace the values previously stored in the field data members with values for the
new record.

Table 2 shows the sequence of DFX operations when the user moves from record to
record.

Table 2 Sequence of DFX Operations During Scrolling

Your operation

1. Call MoveNext or one
of the other Move
functions.

DoFieldExchange operation Database operation

2. DAO does the move and fills in the data.

3. Fix up the data for C++.

285

DAO Record Field Exchange (DFX)

286

DFX: Adding New Records and Editing Existing Records
If you add a new record, the recordset operates as an edit buffer to build up the
contents of the new record. As with adding records, editing records involves
changing the values of the recordset's field data members. From the DFX perspective,
the sequence is as follows:

1. If double buffering is on, your call to the recordset's AddNew or Edit member
function causes DFX to store the current edit buffer so it can be restored later.

2. If double buffering is on, AddNew or Edit prepares the fields in the edit buffer so
DFX can detect changed field data members. If double buffering is off for an Edit
call, the fields are not prepared for detection (in this case, it's up to you to manage
edits explicitly -see the article DAO Record Field Exchange: Double Buffering
Records). The fields of a record prepared for AddNew are set to null whether
double buffering is in effect or not.

Since a new record has no previous values to compare new ones with, AddNew
(with double buffering) sets the value of each field data member to a
PSEUDO_NULL value. Later, when you call Update, DFX compares each data
member's value with the PSEUDO_NULL value; if there's a difference, the data
member has been set. (PSEUDO_NULL is not the same thing as a record column
with a true Null value; nor is either the same as C++ NULL.)

Note MFC does not use a PSEUDO_NULL value for COleDateTime or COleCurrency
fields. Those data types have Nulls built in.

Unlike the Update call for AddNew, the Update call for Edit compares updated
values with previously stored values rather than using PSEUDO _NULL, if double
buffering is on. If double buffering is off, you must call SetFieldDirty after an edit
(and SetFieldNull if appropriate). The difference between Edit and AddNew is
that AddNew has no previous stored values for comparison.

3. You directly set the values of field data members whose values you want to edit or
that you want filled for a new record. (This can include calling SetFieldNull.)

4. If double buffering is on, your call to Update checks for changed field data
members, as described in step 2 (see Table 2). If none have changed, Update
returns O. If some field data members have changed, Update propagates the
changes to the database.

5. For AddNew, Update concludes by restoring the previously stored values of the
record that was current before the AddNew call. For Edit, the new, edited values
remain in place if double buffering is in effect.

Table 3 shows the sequence of DFX operations when you add a new record or edit an
existing record.

DAO Record Field Exchange (DFX)

Table 3 Sequence of DFX Operations During AddNew and Edit

Your operation

1. Call AddNew or
Edit.

4. Assign values to
recordset field data
members.

5. Call Update.

9. If double buffering is
off, you must refresh the
current record after
AddNew. Call Move
with the
AFX_MOVE_REFRE
SH parameter to restore
the record that was
previously current.

DoFieldExchange operation

2. Back up the edit buffer if double
buffering is on.

3. For AddNew, mark field data
members as "clean" and Null. For
Edit, call Edit in DAO.

6. Check for changed fields if
double buffering is on.

8. For AddNew, restore the edit
buffer to its backed-up contents if
double buffering is on. If it is off,
the values set for the new record
remain in the recordset data
members. For Edit, delete the
backup if double buffering is on.

DFX: Deleting Existing Records

Database operation

7. Progagate changes to the
database. Call Update in DAO.

When you delete a record, DFX sets all the fields to NULL as a reminder that the
record is deleted and you must move off it. You won't need any other DFX sequence
information.

In the Class Library Reference see CDaoFieldExchange,
CDaoRecordset: : DoFieldExchange, and, under Macros and Globals, Record Field
Exchange Functions.

287

DAO Record Field Exchange (DFX)

See Also DAO: Where Is ... , DAO Record Field Exchange (DFX), DAO Record
Field Exchange: Using DFX, DAO Record Field Exchange: Working with the
Wizard Code, DAO Record Field Exchange: Using the DFX Functions, ClassWizard

DAO Record Field Exchange: Double Buffering Records

288

This article explains the double buffering mechanism that MFC uses to detect
changes to the current record in a recordset. Topics covered include:

• Double buffering: definition

• U sing double buffering

• Effects of double buffering

In the DAO database classes, records are double buffered by default. For information
about turning double buffering off, see Using Double Buffering.

Double Buffering: Definition
In MFC's CDaoRecordset class, double buffering is a mechanism that simplifies
detecting when the current record in a recordset has changed. Using double buffering
with your DAO recordsets reduces the amount of work you have to do when adding
new records and editing existing records.

By default, your MFC DAO recordsets keep a second copy of the edit buffer (the field
data members of the recordset class, taken collectively; DAO Help calls the
corresponding buffer a "copy buffer"). As you make changes to the data members,
MFC compares them to the copy (the "double buffer") to detect the changes.

Note Not all fields are double buffered by default. Variable length fields, such as those
containing binary data, are not. But you can choose to double buffer them if you wish. Note
that this can affect performance if the binary data is large.

The alternative to double buffering - not keeping a copy of the data -requires you to
make additional function calls when you edit a field of the current record.

For example, suppose your user changes the name of her contact person at company
X. With double buffering, MFC detects the change for you. Without it, you must
accompany the change with a call to CDaoRecordset: :SetFieldDirty and a call to
SetFieldNull (with a parameter of FALSE). If a field is supposed to be Null, you
must explicitly call SetFieldNull. You must make these calls for every change to a
record field.

In general, you get better performance with double buffering off, but double buffering
is a considerable convenience when performance is not critical.

Using Double Buffering
Double buffering is the default for recordset fields of most data types, but not for the
variable-length data types, such as text and binary. Because data of those types is

DAO Record Field Exchange (DFX)

potentially very large, storing a second copy of the data is not a good default.
However, if you know your data will not be prohibitively large, you can tum double
buffering on for these types as well. You can also choose to tum double buffering off.
You can control double buffering for the whole recordset or on a field-by-field basis.

Overall double buffering is controlled by the
CDaoRecordset::m_bCheckCacheForDirtyFields data member. Field-by-field
double buffering is controlled by the dwBindOptions parameter to any of the DFX
functions (DFX_Text, DFX_Binary, DFX_Short, and so on).

~ To turn double buffering on or off for the whole recordset

• Set the value of m _ bCheckCacheForDirtyFields to
AFX_DAO_ENABLE_FIELD_CACHE (on) or
AFX_DAO_DISABLE_FIELD_CACHE (oft). A typical place to do this is in the
recordset constructor.

Note If this data member is TRUE (the default), double buffering is on for all field data
members except those of variable-length data type (binary, long binary, and text). If this data
member is FALSE, double buffering is off for all fields, regardless of data type.

~ To turn double buffering on or off for a specific field in the recordset

• In the DFX function call for the field, set the dwBindOptions parameter to TRUE
(on) or FALSE (oft).

DFX function calls are made in your recordset class's DoFieldExchange member
function. See the article DAO Record Field Exchange: Working with the Wizard
Code for a discussion of DoFieldExchange.

Possible values for dwBindOptions are:

• AFX_DAO_ENABLE_FIELD_CACHE (Default) Double buffering is on for
the field.

• AFX _ DAO _DISABLE_FIELD_CACHE Double buffering is off for the field.

In the following example, double buffering is on for the first field but explicitly
turned off for the second field.

void CSections::DoFieldExchange(CDaoFieldExchange* pFX)
{

}

//{{AFX_FIELD_MAP(CSections)
pFX->SetFieldType(CDaoFieldExchange::outputColumn);
DFX_Short(pFX, "Capacity", m_Capacity);
DFX_Short(pFX, "Enrollment", m_Enrollment,

AFX_DAO_DISABLE_FIELD_CACHE);

289

DAO Recordset

Effects of Double Buffering
If double buffering is on, as it is by default, record data is double buffered when:

• You call CDaoRecordset::Edit to edit the fields of the current record.

• You call CDaoRecordset::AddNew to add a new record to the recordset.

MFC copies the field data members of the recordset into a buffer (the "double
buffer"). Then it uses the copy to detect changes to the original field data members in
the recordset. For more discussion of how double buffering fits into the record
updating process, see the article DAO Record Field Exchange: How DFX Works.

Tip To improve performance you might sometimes prefer to turn double buffering off.
However, alternatives include:

• Creating queries that only return the fields and rows that you actually need.

• Specifying in your recordset only the fields that you will always use. Then you can
supplement those fields by calling CDaoRecordset::GetFieldValue at appropriate times to
retrieve the fields you need only occasionally. See the article DAO Recordset: Binding
Records Dynamically.

In the Class Library Reference, see
CDaoRecordset::m _ bCheckCacheForDirtyFields.

See Also DAO: Where Is ... , DAO Recordset, DAO Record Field Exchange (DFX),
DAO Record Field Exchange: Working with the Wizard Code

DAO Recordset

290

This article describes the key features of the MFC CDaoRecordset class. Additional
articles explain how to use recordsets. For task -oriented information, see the article
DAO Recordset: Creating Recordsets. For an understanding of the DAO recordset
object underlying each MFC CDaoRecordset object, see the topic Recordset Object
inDAO Help.

Topics covered include:

• DAO recordset: definition

• DAO recordset types

• Derived DAO recordset classes

• DAO recordset operations

• Recordsets and querydefs

• Recordsets and tabledefs

• Recordsets and DAO Collections

• DAO recordset performance features

• Further reading about DAO recordsets

DAO Recordset: Definition
A DAO recordset, represented in MFC by a CDaoRecordset object, represents the
records in a base table or the records that result from running a query. Recordsets are
the principal way in which you work with data using the MFC DAO classes. For a
description of the DAO recordset object underlying each CDaoRecordset object, see
the topic Recordset Object in DAO Help.

A recordset represents, simultaneously:

• All of the records in a table or query-a set of records.

• The current record in that set, whose fields fill the recordset's field data members,
if any. Scrolling to a different record in the set fills the recordset's field data
members with new values.

For information about recordset features and capabilities, including searching,
navigating, updating, bookmarking, and constraining which records are selected, see
class CDaoRecordset in the Class Library Reference. Also see the list of additional
recordset articles in Further Reading About DAO Recordsets.

DAO Recordset Types
You can create three kinds of CDaoRecordset objects:

• Table-type recordsets, representing a base table in a Microsoft Jet (.MDB) database

• Dynaset-type recordsets, which result from a query

• Snapshot-type recordsets, consisting of a static copy of a set of records

Table 1 summarizes the characteristics and purposes of the three recordset types.

Table 1 Characteristics of Recordset Types

Characteristic Table-Type Dynaset-Type

Based On

Updatable

Dynamic

Best Uses

Limitations

A base table

Yes

Yes

Working with a
single table (in a
non-ODBC
database).

Can use only with
.MDB databases
or IS AM tables
opened directly.

A query

Yes

Yes

Working with records,
possibly containing fields
from one or more tables.
Reflects changes by other
users and is updatable.

Doesn't reflect new
records that meet selection
criteria after the recordset
opens. See below.

Snapshot-Type

A query

No

No

Finding data or
preparing reports.
Reflects the state of the
data at the time of the
snapshot.

Not updatable. The
snapshot is not quite
instantaneous. See
below.

A table-type recordset is based directly on the table rather than on a query.

DAO Recordset

291

DAO Recordset

292

A "dynaset" is a recordset that reflects changes to the underlying records by other
users of the database or by other recordsets. As your application scrolls to a changed
record, a new copy is retrieved, bringing it up to date. This behavior is ideal for
situations in which it is important to be completely up to date.

Note A dynaset is a dynamic but fixed set of records. New records that meet the selection
criteria after the dynaset-type recordset has been created are not added to the recordset. This
includes records that other users add.

A "snapshot" reflects the state of the data at a particular moment, the moment the
snapshot is taken. This behavior is ideal for reporting.

Note Because it takes time to retrieve the records for a snapshot, the moment at which the
snapshot occurs is not instantaneous.

Derived DAO Recordset Classes
Normally, you work with recordsets by deriving your own application-specific
recordset classes from CDaoRecordset. You can create your recordset classes with
AppWizard or ClassWizard (or by writing the same code yourself). When you use
App Wizard or Class Wizard, the wizard prompts you to specify a database, a recordset
type, and a table name on which to base the recordset. The wizard then lets you
specify which columns to use in the recordset.

Recordset Features
The resulting recordset class has the following features:

• It contains a data member for each column (field) in the recordset.

• It has a member function you can use to get the name of the data source on which
the recordset is based.

• It has a member function you can use to get the SQL string on which the recordset
query is based. You indirectly define the SQL string with ClassWizard. The string
might contain a table name (for a table-type recordset that selects all fields in each
record) or an SQL SELECT statement.

• It has a member function, DoFieldExchange, that manages exchanging data
between the data source and the recordset's data members (in both directions).

For more information about these features, see the article DAO Recordset:
Architecture.

Binding Records Dynamically
You do not necessarily have to derive a recordset class. You can use CDaoRecordset
objects directly, employing the GetFieldValue member function to retrieve individual
columns (fields) of the current record immediately. For more information, see DAO
Recordset: Binding Records Dynamically.

For information about using recordsets, see the article DAO Recordset: Creating
Recordsets.

Recordsets and Querydefs
Besides constructing CDaoRecordset-based objects directly, you can create them
indirectly from a CDaoQueryDef object. A querydef is a predefined query usually
saved in a DAO database object's QueryDefs collection. Querydefs are a way to
prepare frequently-used or complex queries and store them in a database for reuse.
One version of the CDaoRecordset::Open member function is initialized by a
pointer to a CDaoQueryDef object.

Tip For convenience, you can use Microsoft Access to create querydefs. Then you can use
the querydefs in your MFC program.

For more information, see the articles DAO Recordset: Creating Recordsets and DAO
Querydef.

Recordsets and Tabledefs
As with querydefs, you can construct a recordset from a CDaoTableDef object. A
tabledef encapsulates the structure definition of a table. Tabledefs are saved in the
database object's TableDefs collection. A version of CDaoRecordset::Open is
initialized by a pointer to a CDaoTableDef object.

Tip For convenience, you can use Microsoft Access to create tabledefs. Then you can use
the tabledefs in your MFC program.

For more information, see the articles DAO Recordset: Creating Recordsets and DAO
Tabledef.

Recordsets and DAO Collections
DAO maintains a Recordsets collection, and each recordset maintains collections of
DAO field objects and Index objects.

The Recordsets Collection
In DAO, the DAO database object maintains a Recordsets collection containing all
active recordsets based on the database. When you open a DAO recordset it is
appended to the collection.

MFC chooses not to expose the DAO Recordsets collection. In MFC, you have an
explicit CDaoRecordset object in your program for each DAO recordset you create.
It's up to you to keep track of the recordsets you open.

The Fields and Indexes Collections
In DAO, a recordset object maintains a collection of the fields in the recordset and a
collection of the indexes in the underlying table.

DAO Recordset

293

DAO Recordset

294

MFC exposes each of these collections via member functions that let you get the
number of objects in the collection and examine information about any of the objects.
For more information about the GetFieldCount, GetFieldlnfo, GetlndexCount, and
Getlndexlnfo member functions of CDaoRecordset, see the articles DAO:
Obtaining Information About DAO Objects and DAO Collections.

DAO Recordset Performance Features
In MFC, you can:

• Cache multiple records from an ODBC data source in a configurable buffer.

It takes longer to fill the buffer, but having multiple records in memory speeds
searching and navigating in the recordset. Caching has no effect or benefit for
non-ODBC data sources. For more information, see the article DAO Recordset:
Caching Multiple Records.

• Use a double-buffering mechanism in which two copies are kept of the current
record. Use the second copy to test whether fields in the first copy have changed.

Double buffering saves you the work of calling member functions such as
SetFieldDirty or SetFieldNull for a field being edited. The trade-off is storing two
copies, which can be significant overhead for variable-length data types. For more
information, see the article DAO Record Field Exchange: Double Buffering
Records.

Further Reading About DAO Recordsets
For more information about recordsets, see the following articles. If you're new to
recordsets, you might want to read the articles in the order listed.

Basic Recordset Operations

• DAO Recordset: Creating Recordsets

• DAO Queries

• DAO Queries: Filtering and Parameterizing Queries

• DAO Recordset: Recordset Operations

• DAO Workspace: Managing Transactions

• DAO Record Field Exchange (DFX)

Navigating in Recordsets

• DAO Recordset: Recordset Navigation

• DAO Recordset: Bookmarks and Record Positions

• DAO Recordset: Seeking and Finding

Advanced Recordset Operations

• DAO Recordset: Caching Multiple Records for Performance

• DAO Recordset: Binding Records Dynamically

• DAO Record Field Exchange: Double Buffering Records

• DAO Tabledef: Examining a Database Schema at Run Time

See Also DAO: Where Is ... , DAO Querydef, DAO Tabledef, DAO Workspace

DAO Recordset: Architecture
This article apples to the MFC DAO classes. For ODBC recordsets, see the article
Recordset: Architecture (ODBC).

This article describes the data members that comprise the architecture of a recordset
object:

• Field data members

• Parameter data members

• m_nFields and m_nParams data members

A Sample DAO Recordset Class
When you use Class Wizard to declare a recordset class derived from
CDaoRecordset, the resulting class has the general structure shown in the following
simple class:

class CCourseSet : public CDaoRecordset
{

public:
CCourseSet(CDaoDatabase* pDatabase NULL);
DECLARE_DYNAMIC(CCourseSet)

II Field/Param Data
11{{AFX_FIELD(CCourseSet, CDaoRecordset)
CString m_CourseID;
CString m_CourseTitle;
I/} lAFX_FIELD
CString m_IDParam;

II Overrides
II ClassWizard generated virtual function overrides
11{{AFX_VIRTUAL(CCourseSet)
public:
virtual CString GetDefaultDBName();
virtual CString GetDefaultSQL();
virtual void DoFieldExchange(CDaoFieldExchange* pFX);
I/} lAFX_VIRTUAL

II Implementation
II

1 ;

DAO Recordset

295

DAO Recordset

296

Near the beginning of the class, ClassWizard writes a set of field data members inside
the I I{ {AFX_FI ELD delimiters. When you create the class with ClassWizard, you
must specify one or more field data members. If the class is parameterized, as the
sample class is (with the data member m_strIDParam), you must manually add
parameter data members. ClassWizard doesn't support adding parameters to a class.

DAO Field Data Members
The most important members of your recordset class are the field data members. For
each column you select from the data source, the class contains a data member of the
appropriate data type for that column. For example, the sample class shown at the
beginning of this article has two field data members, both of type CString, called
m_CourseID and m_CourseTi tl e.

When the recordset selects a set of records, the framework automatically "binds" the
columns of the current record (after the Open call, the first record is current) to the
field data members of the object. That is, the framework uses the appropriate field
data member as a buffer in which to store the contents of a record column (field).

As the user scrolls to a new record, the framework uses the field data members to
represent the current record. The framework refreshes the field data members,
replacing the previous record's values. The field data members are also used for
updating the current record and for adding new records. As part of the process of
updating a record, you specify the update values by assigning values directly to the
appropriate field data member(s).

DAO Parameter Data Members
If the class is "parameterized," it has one or more parameter data members. A
parameterized class lets you base a recordset query on information obtained or
calculated at run time. (For an alternative approach to parameterizing a recordset by
using a querydef, see the article DAO Queries: Filtering and Parameterizing
Queries.)

Note You must manually place these data members outside the / I { {A FX_F IE LD comment
brackets.

Typically, the parameter helps narrow the selection, as in the following example.
Based on the sample class at the beginning of this article, the recordset object might
execute the following SQL statement:

SELECT CourseID, CourseTitle FROM Course WHERE CourseID = [Course Ident]

The [C 0 U r s e Ide n t] is a named parameter whose value you supply at run time.
When you construct the recordset and set its m_s t rID Par a m data member to
"MATHIO! ", the effective SQL statement for the recordset becomes:

SELECT CourseID, CourseTitle FROM Course WHERE CourseID = MATH101

Note This is the "effective" SQl, but the actual SQl works more efficiently. In particular, it
does not do a simple text replacement.

The square brackets are only required if the column or parameter name contains
spaces.

By defining parameter data members, you tell the framework about parameters in the
SQL string. The framework binds the parameter, which lets DAO know where to get
values to substitute for the parameter name. In the example, the resulting recordset
contains only the record from the Course table with a CourselD column whose value
is "MATHIOI". All specified columns of this record are selected. You can specify as
many parameters (and named placeholders for them) as you need.

Note MFC does nothing itself with the parameters-in particular, it doesn't perform a text
substitution. Instead, MFC gives the parameter values to DAD, which uses them.

Important The name of a parameter is important. For details about this and more information
about parameters, see the article DAD Queries: Filtering and Parameterizing Queries.

Using m_nFields and m_nParams with DAO
When Class Wizard writes a constructor for your class, it also initializes the
m _ nFields data member, which specifies the number of field data members in the
class. If you add any parameters to your class, you must also add an initialization for
the m _ nParams data member, which specifies the number of parameter data
members. The framework uses these values to work with the data members.

For more information and examples, see the articles DAO Record Field Exchange
(DFX) and DAO Queries: Filtering and Parameterizing Queries. For related
information, see the following topics in DAO Help:

• Creating Parameter Queries with DAO

• PARAMETERS Declaration (DAO)

See Also DAO: Where Is ... , DAO Recordset, DAO Queries, DAO Querydef

DAD Recordset: Creating Recordsets
This article explains the process of creating recordset objects based either on class
CDaoRecordset itself or on a class derived from CDaoRecordset.

You can use recordset objects in two ways:

• Create recordsets directly from class CDaoRecordset and bind record fields
dynamically.

For information about why and how to bind records dynamically, see the article
DAO Recordset: Binding Records Dynamically.

DAO Recordset

297

DAO Recordset

298

• Use App Wizard or Class Wizard to derive your own custom recordset class from
CDaoRecordset and use DAO Record Field Exchange (DFX) to manage binding
record data to recordset class field data members.

For information about deriving recordset classes with the wizards, see the articles
App Wizard: Database Support and Class Wizard: Creating a Recordset Class.

For information about using DFX, see the article DAO Record Field Exchange
(DFX).

In either case, you can base your recordset objects on a query defmed by a
CDaoQueryDef object or a CDaoTableDef object, or you can specify the recordset
objects' SQL strings either at design time, when you create the class with a wizard, or
at run time, when you pass a string containing an SQL statement to the
CDaoRecordset: :Open member function.

If you base your recordset on:

• Aquerydef

The record set inherits the querydef's SQL string.

• A tabledef

The recordset (a table-type recordset) is based on the table. Creating a record set
from a tabledef is similar to creating one from a querydef. See the following
procedure for creating from a querydef.

• The SQL string specified at design time, in the wizard

The recordset uses the SQL string retrieved by calling its GetDefaultSQL
member function. The wizard codes the string as the value returned by this
function.

• An SQL string specified at run time, in the Open call

The SQL string passed to Open overrides the SQL defined at design time.

The following procedure shows how to use a querydef as the basis for a recordset.
Using a tabledef to create a recordset is similar.

~ To create a recordset from a querydef

1 Create the querydef, as described in Creating a Query with a Querydef, or use an
existing querydef object.

2 Construct a CDaoRecordset object.

3 Call the recordset object's Open member function, passing a pointer to the
querydef object.

Opening the recordset runs the query, using the SQL statement defined by the
querydef.

Note You can only create a dynaset-type or snapshot-type recordset from a querydef.

The following code shows the process of creating a recordset from a querydef:

II pdb is a pointer to an open CDaoDatabase object
try
{

}

II Construct the querydef
CDaoOueryDef qd(pdb);

II Set up the SOL string and create the querydef
CString strSOL =

_T("SELECT [Company Name] FROM Publishers WHERE State
qd.Create(_T("My Ouerydef»). strSOL);

II Construct a CDaoRecordset-derived object
II and open it based on the querydef
CPublisherSet rsPub(pdb);
rsPub.Open(&qd);

catch(CDaoException* e
/I ...

~ To create a recordset without a querydef

1 Construct a CDaoRecordset object.

• NY' »);

2 Call the recordset object's Open member function. Specify an SQL string, or rely
on the one that the wizard creates.

For an example in code, see the article DAO Recordset: Creating Recordsets.

The SQL statement for the recordset is one of the following:

• The default SQL string that you established when you created the recordset class
using AppWizard or Class Wizard. If you pass NULL for the lpszSQL parameter to
Open, the recordset uses the default SQL string. The recordset obtains the default
SQL string by calling its own GetDefaultSQL member function. The default SQL
string is coded as the value returned by that function rather than being stored in a
data member.

• An SQL string that you pass in your call to Open. This string overrides the default
SQL string defined in the recordset class.

In either case, your SQL string can consist of any of the following:

• A SELECT statement of the basic form:

SELECT column-list FROM table-list

• One or more tabledef and/or querydef names, separated by commas, which bases
the query on tables and/or queries. This list is usually based on choices you made
with one of the wizards. The query selects all columns (fields) in the
tables/queries, unless you modify it.

DAO Recordset

299

DAO Recordset

For details, see CDaoRecordset: :Open. For related information, see the topic
Recordset Object in DAO Help.

For information about SQL, see the topic SQL Property in DAO Help.

For information about the SQL syntax used by DAO, see the topic Comparison of
Microsoft Jet Database Engine SQL and ANSI SQL in DAO Help.

See Also DAO: Where Is ... , DAO Recordset, DAO Querydef, DAO Record Field
Exchange (DFX), DAO Queries: SQL for DAO, DAO Queries

DAO Recordset: Recordset Navigation

300

This article explains how to move (scroll) from record to record in a recordset. It also
tells you where to find more information about other recordset navigation
mechanisms, such as Seek, Find, and bookmarks.

Topics covered include:

• Other navigation techniques

• Scrolling in DAO recordsets

For more information, see the topic Positioning the Current Record Pointer with
DAO in DAO Help.

Other Navigation Techniques
Besides scrolling, discussed in Scrolling in DAO Recordsets, class CDaoRecordset
supplies five other ways to navigate to a particular record or to a particular place in a
recordset:

• Seek See Using Seek in the article DAO Recordset: Seeking and Finding.

• Find See Using Find in the article DAO Recordset: Seeking and Finding.

• SetBookmark See Bookmarks in MFC in the article DAO Recordset:
Bookmarks and Record Positions.

• SetPercentPosition See Absolute and Percent Positions in MFC in the article
DAO Recordset: Bookmarks and Record Positions.

• SetAbsolutePosition See Absolute and Percent Positions in MFC in the article
DAO Recordset: Bookmarks and Record Positions.

Scrolling in CAO Recordsets
Recordsets provide several member functions you can use to "scroll" or move from
one record to the next, previous, first, or last record, or move n records relative to the
current position. You can also test whether you have scrolled beyond the first or the
last record.

To determine whether scrolling is possible in your recordset, call the CanScroll
member function of class CDaoRecordset.

~ To scroll in DAO

• Forward one record: call the MoveNext member function.

• Backward one record: call the MovePrev member function.

• To the first record in the recordset: call the MoveFirst member function.

• To the last record in the recordset: call the MoveLast member function.

• N records relative to the current position: call the Move member function. Specify
the value of N, negative (for previous records) or positive (for later records), in
your call.

~ To test for the end or the beginning of the recordset in DAO

• Have you scrolled past the last record? Call the IsEOF member function.

• Have you scrolled past the first record (moving backward)? Call the IsBOF
member function.

For example, the following code uses IsBOF and IsEOF to detect the limits of a
recordset as the code scrolls through it in both directions.

II Open a snapshot; first record is current
CEnrollmentSet rsEnrollmentSet(NULL);
rsEnrollmentSet.Open();

II Deal with empty recordset
if(rsEnrollmentSet.lsEOF()

return FALSE;

II Scroll to the end of the snapshot
while (!rsEnrollmentSet.lsEOF())

rsEnrollmentSet.MoveNext();

II Past last record. so no record is current
II Move to the last record
rsEnrollmentSet.MoveLast();

II Scroll to beginning of the snapshot
while(!rsEnrollmentSet.lsBOF())

rsEnrollmentSet.MovePrev();

II Past first record. so no record is current
rsEnrollmentSet.MoveFirst();
II First record (if any) is current again

IsEOF returns a nonzero value if the recordset is positioned past the last record.
IsBOF returns a nonzero value if the recordset is positioned before the first record. In
either case, there is no current record to operate on. If you call MovePrev when
IsBOF is already true, or call MoveNext when IsEOF is already true, the framework
throws a CDaoException.

DAO Recordset

301

DAO Recordset

Tip In the general case, where records may be deleted by you or by other users (other
recordsets), check that both IsEOF and IsBOF return a nonzero value to detect an empty
recordset.

See Also DAO: Where Is ... , DAO Recordset, DAO Recordset: Seeking and Finding,
DAO Recordset: Bookmarks and Record Positions

DAO Recordset: Recordset Operations

302

This article discusses several key recordset operations, particularly those involving
updating records. Topics covered include:

• Adding new records

• Editing existing records

• Deleting records

• Requerying recordsets

For related information about using recordsets, see the following articles:

• DAO Queries

• DAO: Creating, Opening, and Closing DAO Objects

• DAO Recordset: Creating Recordsets

• DAO Recordset: Recordset Navigation

• DAO Recordset: Bookmarks and Record Positions

• DAO Recordset: Seeking and Finding

• DAO Recordset: Binding Records Dynamically

• DAO Recordset: Caching Multiple Records for Performance

• DAO Record Field Exchange (DFX)

Important Your ability to update records requires that you have update permission for your
database and that you have an updatable table-type or dynaset-type recordset. You can't
update snapshot-type recordsets with the MFC DAO classes.

Adding New Records in DAO
For general information about adding records in DAO, see the following topics in
DAOHelp:

• Populating Recordsets and Counting Records with DAO

• AddNew Method

• Update Method

For information about where the new record appears and other considerations, see
CDaoRecordset::AddNew. For information about the role of double buffering, see
the article DAO Record Field Exchange: How DFX Works.

~ To add a new record to a recordset

1 Determine whether your recordset is updatable.

Call the recordset's CanUpdate member function.

2 Call the recordset's AddNew member function.

The fields of the new recordset, represented by the recordset's edit buffer (the
recordset's data members), are initially all Null. AddNew prepares the MFC
recordset's edit buffer, which DAO calls the copy buffer. For more information
about the edit buffer with AddNew, see the article DAO Record Field Exchange:
How DFX Works.

3 Assign values to the new record's fields.

If you're using a CDaoRecordset-derived class with DFX, assign values to the
fields. If you have double buffering turned off, make the following two calls for
each field you assign a value to:

• SetFieldDirty

• SetFieldNuII with the parameter FALSE (meaning "not Null").

Or, if you explicitly want the field to be Null, call only SetFieldNuII, with the
parameter TRUE.

4 Complete the process by calling the recordset's Update member function.

Update adds the record. If no transaction is in effect, the change takes place
immediately. Otherwise, the change takes place when you call
CDao Workspace: :CommitTrans.

If you move to another record without calling Update, the change is lost. For more
information, see AddNew.

Editing Existing Records in DAO
For general information about editing records in DAO, see the following topics in
DAOHelp:

• Edit Method

• Update Method

If you have double buffering turned on, MFC maintains a copy of the edit buffer so it
can detect changes to the recordset fields for you. You don't have to call
SetFieldDirty and SetFieldNuII (passing FALSE) for each change. For more
information, see the article DAO Record Field Exchange: Double Buffering Records.

DAO Recordset

303

DAO Recordset

304

For details about what Edit does and about the role of double buffering, see
CDaoRecordset: :Edit and the article DAO Record Field Exchange: How DFX
Works.

~ To edit an existing record in a recordset

1 Determine whether your recordset is updatable.

Call the recordset's CanUpdate member function.

2 Move to the record you want to edit.

Use any of the recordset's navigation mechanisms that take you to a specific
record.

3 Call the recordset's Edit member function.

Edit prepares the recordset's edit buffer, which DAO calls the copy buffer. For
more information about the edit buffer with Edit, see the article DAO Record
Field Exchange: How DFX Works.

4 Assign values to the fields you want to change.

If you're using a CDaoRecordset-derived class with DFX, assign values to the
fields. To give a field the value Null, call SetFieldNull (passing TRUE). If you
have double buffering turned off, call SetFieldDirty and SetFieldNull (passing
FALSE) for each field you assign a value to.

5 Complete the process by calling the recordset's Update member function.

Update changes the record in the database. If no transaction is in effect, the
change takes place immediately. Otherwise, the change takes place when you call
CDaoWorkspace::CommitTrans.

If you move to another record without calling Update, the change is lost. For more
information, see Edit. For information about double buffering, see the article DAO
Record Field Exchange: Double Buffering Records.

Deleting Records in DAO
For general information about deleting records in DAO, see the topic Delete Method
inDAOHelp.

~ To delete a record from a recordset

1 Determine whether your recordset is updatable.

Call the recordset's CanUpdate member function.

2 Move to the record you want to edit.

Use any of the recordset's navigation mechanisms that take you to a specific
record.

3 Call the recordset' s Delete member function.

You don't call Update for a deletion.

4 Move to another record before you attempt any other recordset operations.

In table-type and dynaset-type recordset objects, Delete removes the current record
and makes it inaccessible. Although you can't edit or use the deleted record, it
remains current. Once you move to another record, however, you can't make the
deleted record current again. Subsequent references to a deleted record in a recordset
are invalid and cause an exception to be thrown. For more information, see Delete.
You can tell whether you're on a deleted record by calling IsDeleted.

Requerying in DAO
If you need to re-run a recordset query, perhaps with new parameter values each time,
you can do either of the following:

• Call Close to close the recordset, reset any parameters or other properties, and call
Open again.

• Reset any parameters or other properties, then call Requery.

The purpose of either approach to requerying the recordset is to "refresh" the
recordset by running its query again, perhaps with changed parameters or properties.
You can also requery to refresh results in a multi-user environment (multiple users or
recordsets modifying the same data). In general, Requery is somewhat more efficient
than Close and Open, but see the Important note below.

This description of the use and behavior of Requery is exactly as in DAO. But MFC
adds one feature: your ability to change the recordset's m_strFilter and/or m_strSort
data members before you either call Requery or call Open again. If you do change
either data member, MFC closes, then reopens the recordset.

Important If you change m_strFilter or m_strSort, you lose the performance benefit of
Requery. In this case, calling Requery performs no better than calling Close and Open.

For more information, see Requery in the Class Library Reference, and see the topic
Requery Method in DAO Help.

See Also DAO: Where Is ... , DAO Recordset

DAO Recordset: Bookmarks and Record Positions
This article explains MFC's interfaces to:

• The Bookmark property in DAO recordsets.

• The AbsolutePosition and PercentPosition properties in DAO recordsets.

For details about these properties in DAO, see the following topics in DAO Help:

• Bookmark Property

• AbsolutePosition Property

• PercentPosition Property

DAO Recordset

305

DAO Recordset

306

• Positioning the Current Record Pointer with DAO

Those DAO Help topics explain the fundamentals of the properties. This article
explains how MFC exposes them to you.

Bookmarks in MFC
Because records can be deleted from a recordset, you can't rely on the absolute
position of a record within the recordset. The reliable way to keep track of the
position of a particular record in your recordset is to use the record's bookmark.

Except for snapshot-type recordsets, each record has a unique bookmark from the
time the recordset is created. In MFC, class CDaoRecordset supplies member
functions for:

• Getting the bookmark of the current record, so you can save it in a variable.

• Moving quickly to a given record by specifying its bookmark, which you've saved
earlier in a variable.

You can check whether a recordset supports bookmarks by calling
CDaoRecordset: :CanBookmark.

For example, suppose you want to mark the current record so you can later return to
it easily. The following code does this:

II rs is a CDaoRecordset or
II CDaoRecordset-derived object

COleVariant varRecordToReturnTo;
varRecordToReturnTo = rs.GetBookmark();

11 ..• more code in which you move to other records
rs.GotoBookmark(varRecordToReturnTo);

There is no need to extract the underlying data type from the COle Variant object.
Simply get it with CDaoRecordset::GetBookmark and return to that bookmark
with CDaoRecordset: :SetBookmark.

Absolute and Percent Positions in MFC
Besides bookmarks (and Move, Seek, and Find), DAO provides two other ways to
position the current record in a recordset: percent positioning and absolute
positioning.

Note Neither absolute nor percent pOSitioning is recommended for moving the current record
to a specific record. Use a bookmark instead. See Bookmarks in MFC.

Neither percent positioning nor absolute positioning is available for table-type
recordsets.

Percent Positioning
You can set the current record to a position that follows a specified percentage of the
records in a recordset, and you can get the percentage position of the current record.
This is useful for setting scroll bars. That is, you can:

• Call CDaoRecordset::GetPercentPosition to determine the percentage position
of the current record-what percentage of the records precede the current record.

• Call CDaoRecordset::SetPercentPosition to make the record at a specified
percentage position in a recordset the current record. For example, you might
make the record at 50% the current record-halfway through the recordset.

Keep in mind the following guidelines:

• Percent positioning is approximate, and the exact record that is set can be affected
by deletion of records.

• If you call SetPercentPosition before the recordset is fully populated, the amount
of movement is relative to the number of populated records. Records are populated
as you move to them and they are retrieved from the database. You can determine
the number of populated records by calling GetRecordCount. You can populate
all records in the recordset by calling MoveLast (keep in mind that calling
MoveLast can be slow for dynaset-type and snapshot-type recordsets).

For related information, see the topic PercentPosition Property in DAO Help.

Absolute Positioning
You can set or get the record number of the current record in a recordset. That is, you
can:

• Call CDaoRecordset::GetAbsolutePosition to get the AbsolutePosition property
of the recordset, which contains the ordinal position (zero-based) of the current
record in a recordset.

• Call CDaoRecordset::SetAbsolutePosition to set the AbsolutePosition property.
This makes the record at that ordinal position in the recordset the current record.

Important The absolute position of a record is potentially unreliable. If the user can delete
records ahead of a position, the ordinal number of records following the deletion is decreased.
Bookmarks are a more reliable method of working with record positions. See Bookmarks in
MFC.

Keep in mind the following guideline:

• Setting a position greater than the number of populated records causes MFC to
throw an exception. Records are populated as you move to them and they are
retrieved from the database. You can determine the number of populated records
by calling GetRecordCount.

For related information, see the topic AbsolutePosition Property in DAO Help.

DAO Recordset

307

DAO Recordset

See Also DAO: Where Is ... , DAO Recordset, DAO Recordset: Recordset Navigation,
DAO Recordset: Seeking and Finding

DAO Recordset: Seeking and Finding

308

This article explains how to use the Seek and Find member functions of class
CDaoRecordset. Topics covered include:

• Using Seek

• Using Find

These two mechanisms for locating records that meet certain criteria are used in
different situations, as described in Table 1.

Table 1 Using Seek vs. Using Find

Criterion Seek

Use In

Limitations

Call Before Seek/Find

Call After Seek/Find

Indexed table-type
recordsets.

Can't use on attached tables,
but can use on installable
ISAM databases.

SetCurrentlndex

Check Seek or Find return
value

Find

Dynaset-type or snapshot
type recordsets.

Can't use on a forward-only
scrolling snapshot-type
record set. Use with ODBC
based recordsets can be
inefficient.

Check Seek or Find return
value

Seek and Find are not the only means of navigating in a recordset. You can also use:

• Move, MoveFirst, MoveLast, MoveNext, and MovePrev

• GetBookmark, SetBookmark

• GetAbsolutePosition, SetAbsolutePosition

• GetPercentPosition, SetPercentPosition

For more information, see each CDaoRecordset member function in the Class
Library Reference.

Using Seek
The CDaoRecordset: :Seek member function lets you search for a record in a table
type recordset based on a table index. Two versions of the function provide for
seeking based on:

• Up to three specified keys, each of which represents a field that makes up part of
the current index.

• An array of keys, for indexes with four or more fields. Each key represents one of
the fields. The array must contain at least one and no more than 13 keys.

In both versions, the search is based on a string containing a relational operator, such
as "=" or ">=", in the IpszComparison parameter and the COle Variant value
specified in the first key.

For example, suppose the comparison operator is "=" and the first key is the value
"Microsoft" (the first key being a Company Name field). Using the first version of
Seek, you would find the first record that has a Company Name of "Microsoft". The
found record becomes the current record. The following code illustrates how to use
Seek:

II rs is a table-type recordset
try
{

II Set current index for recordset and
II save current position.
rs.SetCurrentIndex(_T("PartNameIndex"));
COleVariant varCurrentPos = rs.GetBookmark();

II Find first record whose Part Name
II field is "Framis Lever".
if (rs.Seek(_T("="), _T("Framis Lever")))

II Return to the saved position
rs.GotoBookmark(varCurrentPos);

else
II Do something in response to Seek failure

catch(CDaoException* e
{

e-)Delete();

This code seeks the first record whose Part Name field (the first field in the
PartNamelndex index) is "Framis Lever" (whatever a framis lever is).

For more information, see the Seek and SetCurrentlndex member functions in the
Class Library Reference. For related information about the underlying DAO
functionality, see the following topics in DAO Help:

• Seek Method

• NoMatch Property

• Index Object

• Index Property

Using Find
The CDaoRecordset::Find member function and its relatives, FindNext, FindPrev,
FindFirst, and FindLast, let you search for a record in a dynaset-type or snapshot-

DAO Recordset

309

DAO Recordset

310

type recordset. The Find member functions search from a location and in a direction
as shown in Table 2:

Table 2 The Find Family of Functions

Find operation Begin at Search direction

FindFirst Beginning of recordset End of recordset

FindLast End of recordset Beginning of recordset

FindNext Current record End of recordset

FindPrev Current record Beginning of recordset

The basic Find function takes two parameters:

• The type of find: AFX_DAO_NEXT, AFX_DAO_PREV, AFX_DAO_FIRST,
or AFX DAO LAST. - -

• A filter-a string expression like the WHERE clause in an SQL statement
(without the keyword), that specifies the criterion for finding. The expression can
be compound, using AND, OR, and so on.

Find is a virtual function. This means you can, if necessary, override it to provide
your own implementation. The other Find functions are all based on Find, so they
use whatever functionality you provide in your override. You shouldn't normally need
to override Find, however.

For details not discussed here about the Find member functions, see the individual
functions, starting with Find. For related information about the underlying DAO
functionality, see the topic Positioning the Current Record Pointer with DAO in DAO
Help:

For example, suppose you have a dynaset-type recordset in which you want to find
the first record with a State code of "NY":

II rs is a dynaset-type recordset previously opened
CStri ng strCriteri a = _T("STATE = • NY"');
try
{

}

if (rs.FindFirst(strCriteria))
II Do something with the found record

rs.FindNext(strCriteria);
II

catch(CDaoException* e)
{

e-)Delete();
}

This code finds the first record that matches the criterion, then finds the next record
that matches the criterion.

See Also DAD: Where Is ... , DAD Recordset, DAD Recordset: Recordset Navigation,
DAD Recordset: Bookmarks and Record Positions

DAO Recordset: Binding Records Dynamically
This article explains how to use an object of class CDaoRecordset directly, without
deriving your own recordset class. Topics covered include:

• The Standard Case: Using a Derived Recordset Class

• Binding records dynamically instead

• Dynamically setting and getting parameter values

As the MFC Database sample DADVIEW shows, you can use dynamic binding to
work with database schema information not known at design time. For related
information on examining a database schema at run time, see the article DAD
Tabledef: Examining a Database Schema at Run Time.

The Standard Case: Using a Derived Recordset Class
For many applications, you will prefer to create, at design time, a CDaoRecordset
derived class. Using App Wizard or Class Wizard, you can design a class that
represents your table or query. You specify the database, the table, and the columns
(fields). This information is then encapsulated in the class's connection information,
its SQL string, and its data members. Records are statically bound to the recordset at
run time via the DoFieldExchange mechanism. For more information, see the article
DAD Recordset: Creating Recordsets.

The point is that to operate this way, you must know the database schema at design
time so you can specify which table to use and which fields to use from that table. In
many applications, this works well. If your database schema is relatively static and
users are not constantly adding or deleting tables and table fields, you can design in
this way.

Binding Records Dynamically Instead
If your database schema is relatively dynamic, or if you face a situation in which the
schema is unknown at design time, dynamic binding could be the answer.

For dynamic binding, you don't need a derived CDaoRecordset class. Instead, you
use CDaoRecordset directly. Here's the general process:

1. Construct a CDaoRecordset object.

2. Call its Open member function to connect to a specified database and run a query.

3. Navigate through the records, using the recordset's navigation member functions,
such as Move.

DAO Recordset

311

DAO Recordset

312

4. Call the recordset's GetFieldValue member function to retrieve, immediately, the
value of a specified field in the record. Or call Edit, then SetFieldValue, then
Update to set the field in the database.

Binding dynamically in this way is flexible. You don't have to know the database
schema at design time, and you can keep up with a changing schema. This
mechanism doesn't use the DoFieldExchange mechanism.

You may get better performance with dynamic binding than with static binding via
DAO record field exchange (DFX) if you don't need every field bound for every
record retrieved. However, for applications in which the database schema is
reasonably unchanging, binding via DFX is a good choice because DFX manages all
of the recordset' s fields for you, reducing the amount of code you must write to bind
fields.

The following example, borrowed from the MFC Database sample DAOVIEW,
illustrates dynamic binding. The code creates a table-type recordset, which is used to
scroll through all records in a table, getting the values of fields in the current record
and adding them to an MFC CListCtrl object.

II db is a pointer to a CDaoDatabase object.
II dbOpenTable specifies a tab1e-type recordset.
II CCrack is a custom class used to get the actual
II type from a COleVariant object.
II nRecord is used for positioning in the list control.

CDaoRecordset rs(&db):
int nRecord = 0:

II Open MFC DAO objects in a try block to catch
II security violations when opening tables
try
{

II Open the recordset, passing a table name
II for the Sal
rs.Open(dbOpenTable. strTableName):

II Move through records
while(!rs.IsEOF())
{

COleVariant var:
II Move through fields in current record
int nFields = rs.GetFieldCount():
for (i n t i =0 : i < n Fie 1 d s: i ++)
{

var = rs.GetFieldValue(i):
II Add field value to list control
m_ctllist.AddItem(nRecord.i,

CCrack::strVARIANT(var)):

nRecord++:
rs. MoveNext ():

}

catch(CDaoException* e)
{

}

II Do nothing--used for security violations
II when opening tables
e->Delete();

The key features in this example are:

• The direct use of CDaoRecordset rather than a class derived from
CDaoRecordset. The example therefore doesn't use the DAO record field
exchange (DFX) mechanism.

• The call to GetFieldValue, which returns a value of type COle Variant for a
specified field in the current record. The field is specified as the index of the field
in the recordset object's Fields collection.

Also of interest are:

• The user-defined class CCrack, which has members for extracting the actual data
type from a COleVariant object. See the files CRACK.H and CRACK.CPP in the
MFC Database sample DAOVIEW. CCrack is not an official MFC class.

• The use of an exception handler around the CDaoRecordset: :Open call and the
other recordset operations. Using a try/catch block is recommended, if only to
catch security violations when you try to open a table.

Note In addition to binding recordset fields dynamically, you can also bind query parameters
dynamically. If you base your CDaoRecordset on a CDaoQueryDef object that has
parameters defined, you can get or set the values of the parameters by calling
CDaoQueryDef::GetParamValue or CDaoQueryDef::SetParamValue. Set parameter values
for the querydef, then open a recordset based on the querydef. This mechanism doesn't use
DFX.

For other examples of dynamic binding, see the LISTVIEW.CPP file in the MFC
Database sample DAOVIEW, and see the MFC Database sample DAOCTL, which
illustrates a data-bound OLE control.

Dynamically Setting and Getting Parameter Values
If you create recordsets based on a querydef object, you can parameterize the
querydef, then use it to create a recordset:

1. Use the PARAMETERS clause in the querydef's SQL statement to establish the
parameters. For information, see the topics PARAMETERS Declaration (SQL)
and Creating Parameter Queries with DAO in DAO Help. See also the article
DAO Queries: Filtering and Parameterizing Queries.

DAO Recordset

313

DAO Recordset

2. Create the querydef based on that SQL statement. See the article DAO Querydef:
Using Querydefs.

3. Set the values of the parameters by calling CDaoQueryDef::SetParamValue for
each parameter.

4. Create and open a recordset based on the querydef. See the article DAO Recordset:
Creating Recordsets.

If you want to examine the value of a querydef's parameter, call
CDaoQueryDef: : GetParam Value.

See Also DAO: Where Is ... , DAO Recordset, DAO Tabledef: Examining a Database
Schema at Run Time

DAO Recordset: Caching Multiple Records for
Performance

314

This article discusses the mechanism by which you can use a configurable buffer to
cache multiple records in a recordset.

Note The recordset caching mechanism described here applies only to OOSC data sources.
It has no effect or benefit with non-OOSC databases.

Topics covered include:

• When should you use record caching?

• Configuring the record cache

• Filling the record cache

Normally, records are retrieved from the database one at a time. To improve the
performance of operations such as seeking and scrolling in recordsets based on
ODBC data sources, you can cause DAO to cache mUltiple records. When you request
a record, the database engine looks for it first in the cache. If the record is not in the
cache, the database engine gets the record from the server. This is marginally slower
at the time the cache is filled, but faster for operations that navigate through the
records later. Use of this mechanism is limited in several ways, however (besides its
limitation to ODBC); see When Should You Use Record Caching?

For an understanding of the DAO data caching mechanism that underlies MFC
CDaoRecordset objects, see the following topics in DAO Help:

• CacheSize, CacheS tart Properties

• FillCache Method

When Should You Use Record Caching?
Is record caching right for your application? This depends on several factors:

• Are you using a remote data source? Caching is really useful only for remote
data-ODBC data sources.

• Are you using dynaset-type recordsets? Caching is for use with these recordsets
only.

• What kind of performance do you need to optimize? If your application makes
intensive use of scrolling, seeking, finding, or other methods of positioning the
current record, you probably should cache records.

• Keep in mind that caching has storage overhead and that it can take extra time to
fill the cache. Records retrieved from the cache also don't reflect changes made by
other users in the database.

Configuring the Record Cache
To use MFC's record caching, you need to do two things:

• Set the record position at which the cache is to start.

Specify the first of the records to be cached by giving its bookmark in a call to
CDaoRecordset::SetCacheStart. You can obtain a record's bookmark by moving
to the record and calling CDaoRecordset::GetBookmark. GetBookmark returns
a COle Variant value that you can store in a variable. Use the variable in your
SetCacheStart call.

• Set the size of the cache, in records.

Call CDaoRecordset: :SetCacheSize to specify how many records are to be
cached.

How big should you make your cache? This depends on your needs and what you are
optimizing for. If you expect your users to perform long scrolls or seeks, moving
through many records at a time, you probably need a larger cache.

A typical case might be an application that, for example, displays 25 records at a
time. For such an application, a cache of 75 records might be a good choice. This
would allow quick response for both scrolling up and down and paging up and down.

Filling the Record Cache
DAO fills the cache as you request that records be retrieved from the data source. But
you can explicitly fill all or part of the cache at any time by calling
CDaoRecordset: :FiIlCache.

When you call FiIlCache, you can specify either or both of the following:

• The bookmark of the record at which you want to start filling the cache. If you
omit the [Bookmark parameter to FiIlCache, the cache is filled starting with the
record specified in DAO's CacheStart property. You can set that value with
CDaoRecordset: :SetCacheStart.

DAO Recordset

315

DAO Recordset

316

• The number of records you want to put into the cache. This can be less than the
cache size you specified with a call to CDaoRecordset: :SetCacheSize. If you
omit the ISize parameter to FilICache, the number of records defaults to DAO's
CacheSize property value, which you can set with SetCacheSize.

For more information, see the CDaoRecordset::FilICache member function in the
Class Library Reference. For information about the DAO caching mechanism, see
the following topics in DAO Help:

• CacheSize, CacheS tart Properties

• FillCache Method

See Also DAO: Where Is ... , DAO Recordset

DAO Tabledef
This article describes "tabledefs" and the key features of the MFC
CDaoTableDef class. Additional articles explain how to use tabledefs. For task
oriented information, see the article DAO Tabledef: Using Tabledefs. For an
understanding of the DAO tabledef object underlying each MFC CDaoTableDef
object, see the topic TableDef Object in DAO Help.

Topics covered include:

• Tabledef: definition

• Tabledef uses

• Tabledefs and DAO collections

• Further reading about tabledefs

Tabledef: Definition
A DAO tabledef, represented in MFC by a CDaoTableDef object, is an object
that defines the structure of a base table or an attached table.

A base table is a table in a Microsoft Jet (.MDB) database. You can manipulate
the structure of a base table using DAO objects or data definition language
(DDL) SQL statements, and you can use recordsets and action queries to modify
data in a base table.

An attached table is a table in another database linked to a Microsoft Jet (.MDB)
database. Data for attached tables remains in the external database where it may
be manipulated by other applications. You can't use the table-type recordset with
attached tables, and you can't modify the schema of attached tables, but you can
use dynaset-type and snapshot-type recordsets with attached tables.

Tabledef Uses
The main use for tabledef objects is to manipulate the structure of a table. You
can:

• Base a recordset on a tabledef. The recordset is a table-type recordset. See
CDaoRecordset::Open in the Class Library Reference.

• Examine the structure of local base tables, attached tables, and external tables.
The structure of a table includes its fields and indexes.

• Add or delete fields and indexes in local base tables and external tables that
you open directly rather than attaching.

• Set the connection information and the name of an attached table and refresh
the link to an attached table.

DAO Tabledef

317

DAO Tabledef

318

• Determine whether the data in table fields is editable.

• Get or set a table's validation conditions.

You can use tables as the basis for opening recordsets in two ways. You can:

• Open a recordset based on a CDaoTableDef pointer.

• Create a table-type recordset based on the table, usually by using AppWizard
or Class Wizard.

For a complete discussion of what you can do with tabledefs, see the topic
TableDef Object in DAO Help.

Tabledefs and DAO Collections
Each DAO database object maintains a TableDefs collection-a collection of all
saved table definitions in the database. The collection contains one tabledef for
each table in the database. Each tabledef object maintains two collections of its
own:

• Fields All of the fields in the table definition-one for each field in the
underlying table.

• Indexes All of the indexes defined for the table.

MFC objects don't store a representation of a DAO collection. Instead, MFC
accesses the collection through the underlying DAO object. For more
information, see the article DAO Collections.

MFC also doesn't provide a C++ class to represent every DAO object. In
particular, there is no MFC field object or index object. You work with a
tabledef's fields and indexes through member functions of class CDaoTableDef.

Further Reading About Tabledefs
For more information about tabledefs in MFC, see the following additional
articles (in the order recommended here):

General Tabledef Article

• DAO Tabledef: Using Tabledefs

• DAO Tabledef: Examining a Database Schema at Run Time

Tables in External Data Sources

• DAO External: Working with External Data Sources

• DAO External: Attaching External Tables

• DAO External: Opening External Databases Directly

• DAO External: Creating an External Table

• DAO External: Refreshing and Removing Links

• DAO External: Improving Performance with External Data Sources

See Also DAO: Where Is ... , DAO Querydef, DAO Recordset, DAO Database

DAD Tabledef: Using Tabledefs
This article explains how to use CDaoTableDef objects. Topics covered include:

• Creating a tabledef

• Opening an existing tabledef

• Creating a table-type recordset

Creati ng a Tabledef
Creating a tabledef creates a new table in the target database. You create the
tabledef and add fields (and possibly indexes) to it. The new table doesn't contain
any data until you either add records from Microsoft Access (for a Microsoft Jet
(.MDB) database) or create a recordset that adds records to the table.

Creating a new MFC CDaoTableDef object creates the underlying DAO tabledef
object.

~ To create a tabledef

1 Construct a CDaoTableDef object, supplying a pointer to the CDaoDatabase
object to which the tabledef will belong.

2 Call the tabledef object's Create member function.

3 Set any of the tabledef object's properties that you want. Call the SetAttributes,
SetConnect, SetName, SetSourceTableName, SetValidationRule, or
SetValidationText member functions.

4 Call the tabledef object's Append member function to save the tabledef in the
database's TableDefs collection. You can append before or after creating fields, as
described in the next step.

S Add fields to the tabledef by calling its CreateField member function for each
field. (You can't modify the schema of an attached table, so this step applies only
to local base tables and tables in external data sources that you open directly.)

6 Optionally add indexes to the tabledef by calling its Createlndex member function
for each index.

Tip The easiest way to create a tabledef is to create it in Microsoft Access. Open the
target database, create tables, and save them in the database. Then you can use the
tabledefs from your application's code.

DAO Tabledef

319

DAO Tabledef

320

Opening an Existing Tabledef
If you want to examine or manipulate the structure of an existing table, open an
MFC tabledef object based on the DAO tabledef object stored in the database's
TableDefs collection. Objects in the TableDefs collection are accessed by the
user-defined name specified when the tabledef was created and appended to the
collection.

~ To open a tabledef for an existing table

1 Construct a CDaoTableDef object, passing a pointer to the CDaoDatabase object
to which the tabledef belongs.

2 Call the tabledef object's Open member function, specifying the user-defined
name of the tabledef saved in the TableDefs collection. The name mayor may not
be the same as the name of the underlying source table.

For examples, see the MFC Database sample DAOVIEW.

The following code from the LISTVIEW.CPP file in DAOVIEW illustrates
opening a tabledef to get information about its fields and then add the field
information to a list control:

II db is an open CDaoDatabase object
II strTableName is the user-defined name of the tabledef to open
CDaoTableDef td(&db);
try
{

}

td.Open(strTableName);
short nFields = td.GetFieldCount();
for (s h 0 r t i =0; i < n Fie 1 d s; i ++)
{

td.GetFieldlnfo(i ,fieldlnfo);
m_ctlList.AddColumn(fieldlnfo.m_strName,i);

catch(CDaoException* e
{

}

II Do nothing. Used to catch security violations opening tables.
e-)Delete();

td.Close();

Creating a Table-Type Recordset
Unless a table is in an external data source, you can create table-type recordsets
based on the table, in two ways:

• Create a tabledef, then create a recordset from the tabledef.

• Create a recordset and specify dbOpenTable in the nOpenType parameter to
CDaoRecordset: :Open.

A table-type recordset represents a base table (a table in a Microsoft Jet (.MDB)
database) in code. You can't open a table-type recordset on an ODBC database or
on an attached table, but you can open one on an ISAM database opened directly,
such as a FoxPro, dBASE, Paradox, or Btrieve database.

You can use a table-type recordset to examine, add, change, or delete records in a
single base table. You can't use an SQL statement to filter or sort data as you can
with dynaset-type and snapshot-type recordsets. This means you get all records,
but table-type recordsets behave somewhat like dynaset-type recordsets in that
only the current record is loaded into memory. When you move to a new record,
it is loaded. Sorting is based on a predefined index. Table-type recordsets support
bi-directional scrolling.

For more information, see class CDaoRecordset in the Class Library Reference
and see the following topics in DAO Help:

• Recordset Object

• Table-Type Recordset Object

See Also DAO: Where Is ... , DAO Recordset, DAO External: Working with
External Data Sources, DAO External: Creating an External Table

DAO Tabledef: Examining a Database
Schema at Run Time

This article discusses how to examine the schema of a database-the structure of
the database, as defined by its tables and their fields and indexes-at run time.
While many applications are based on knowledge of the database schema at
design time, there are situations in which you might need to determine the
schema dynamically at run time:

• Your application is designed to work with arbitrary schemas.

See the MFC Database sample DAOVIEW for an example of this.

• The schema of your target database tends to change.

Perhaps users can add and delete tables and even alter the structure of tables
by adding or deleting fields and indexes.

How Dynamic Examination of the Schema Works
Dynamic examination of the schema is based on the use of DAO collections. A
DAO database object contains the following collections: TableDefs, QueryDefs,
Recordsets, and Relations. MFC exposes all of these via CDaoDatabase member
functions except for the Recordsets collection. For details about how MFC
exposes collections, see the articles DAO Collections and DAO Collections:
Obtaining Information About DAO Objects.

DAO Tabledef

321

DAO Workspace

An Example of Dynamic Schema Examination
The following illustration uses the TableDefs collection, but the principles
demonstrated apply equally to the other collections.

~ To enumerate the TableDefs collection for a CDaoDatabase object

1 Get the number of tabledef objects in the underlying DAO collection by calling
CDaoDatabase: : GetTableDefCount.

2 In a loop from 0 to the number of tabledefs, call
CDaoDatabase::GetTableDet1nfo for each object in the collection.

3 For each tabledef object, examine the CDaoTableDet1nfo object returned by
GetTableDet1nfo. From this object, you can get:

• The name of the tabledef object as well as the name of the ODBC source
table that the tabledef represents.

• Whether the table schema is updatable.

• Tabledef attributes.

• The date the tabledef object was created and the date it was last updated.

• The ODBC connection information for the table.

• The validation rule and validation text for the tabledef, if any.

• The number of records in the underlying table (obtaining this count might
take considerable time for a large table, and the count might be somewhat
unreliable).

The MFC Database sample DAOVIEW performs these steps and lists the table
names in a list control or a tree control. It then does the same thing for the fields
and indexes in the tables and for the other collections in the database: QueryDefs
and Relations.

See Also DAO: Where Is ... , DAO Recordset, DAO Recordset: Binding Records
Dynamically

DAD Workspace

322

This article explains the role of CDaoWorkspace objects in your application.
For task-oriented information about using workspaces, see the article DAO
Database: Using Workspaces and Databases. For an understanding of the DAO
workspace object underlying each MFC CDaoWorkspace object, see the topic
Workspace Object in DAO Help.

Topics covered include:

• Workspace: definition

• MFC workspaces are transaction spaces

• Database engine access

• Workspace collections

• Default workspace

• Workspace roles

• Accessing workspace objects

• Workspace persistence

• Further reading about workspaces

Workspace: Definition
A DAO workspace, represented in MFC by class CDaoWorkspace, manages a
session with the Microsoft Jet database engine. A workspace can contain one or
more open DAO database objects, represented in your program, explicitly or
implicitly, by CDaoDatabase objects. In DAO, workspaces manage a single
transaction space in which any transaction applies to all open databases and
recordsets. DAO workspaces also manage database security.

MFC Workspaces Are Transaction Spaces
In MFC, workspaces are primarily transaction spaces; MFC does not expose
DAO's security features, although you can program them yourself by directly
calling DAO. For more information, see Technical Note 54 under MFC
Technical Notes, under MFC in Books Online.

Database Engine Access
In DAO, a separate DB Engine object manages the properties of the single
instance of the Microsoft Jet database engine underlying multiple open
workspaces. In MFC, access to the database engine's properties is through static
member functions of class CDaoWorkspace. For more information, see the
article DAO Workspace: The Database Engine.

Workspace Collections
InDAO:

• The DB Engine object contains a "collection" of open workspace objects,
called the Workspaces collection.

• Each DAO workspace object in turn contains collections of open databases,
active users, and active user groups.

In MFC, access to both the DBEngine's Workspaces collection and any
workspace's Databases collection is through member functions of a
CDaoWorkspace object. MFC does not provide direct access to the Users
collection or the Groups collection, which are part of DAO's security support;
MFC does not expose DAO security features. For information about DAO
collections in MFC, see the article DAO Collections.

DAO Workspace

323

DAO Workspace

324

Default Workspace
In DAO, the first workspace in the Workspaces collection is called the default
workspace. By default, if you open databases, they exist within the default
workspace. In MFC, if you open a database object without specifying a
workspace, or open a recordset object without specifying a database object, MFC
implicitly uses DAO's underlying default workspace to manage transactions.

You seldom have to explicitly create a CDaoWorkspace object, but you can
create explicit CDaoWorkspace objects if you need an explicit object for any of
the activities described in Workspace Roles.

Information About Workspaces in CAO Help
For information about workspaces in DAO, see the topic Workspace Object in
DAO Help. For more information about workspaces in MFC, see the rest of this
article and the article DAO Database: Using Workspaces and Databases.

Workspace Roles
CDaoWorkspace can play the following roles:

• Provide explicit access to DAO's default workspace.

• Provide access to the Workspaces collection or the default workspace's
Databases collection.

• Provide a separate transaction space if you need to separate the transactions
on one database from those on another database.

• Provide access to the properties of the database engine.

Accessing Workspace Objects
MFC implicitly creates a CDaoWorkspace object, and its underlying DAO
workspace, when you:

• Construct a CDaoDatabase object without specifying the workspace.

• Construct a CDaoRecordset object without specifying the database.

See the article DAO: Accessing Implicit MFC DAO Objects for information on
accessing:

• The CDaoWorkspace object associated with a CDaoDatabase object

• The CDaoWorkspace object associated with the CDaoDatabase object
associated with a CDaoRecordset object

Workspace Persistence
Workspaces exist in memory for the life of a database engine session. When that
session terminates, the default workspace, the Workspaces collection, and the
Databases collections of any workspaces cease to exist (the actual databases do

persist). These software objects are not stored on disk or in a database. When you
begin a new database engine session and want to use the workspaces and
databases you used in the last session, you must recreate any explicit workspace
objects you need and reopen any databases you want associated with a
workspace.

Tip Use a Windows registry entry to preserve a record of the workspaces and databases
you had open during a database engine session.

Further Reading About Workspaces
For more information about workspaces in MFC see the following articles (in the
recommended order):

• DAO Database: Using Workspaces and Databases

• DAO Workspace: Explicitly Opening the Default Workspace

• DAO: Accessing Implicit MFC DAO Objects

• DAO Workspace: Opening a Separate Transaction Space

• DAO Workspace: Accessing Properties of the Database Engine

• DAO Collections

See Also DAO: Where Is ... , DAO Database: Using Workspaces and Databases,
DAO Workspace: The Database Engine, DAO Database, DAO: Creating,
Opening, and Closing DAO Objects

DAO Workspace: Explicitly Opening the
Default Workspace

Normally you don't need to refer explicitly to DAO's default workspace. MFC
uses it automatically when you open new databases, recordsets, tabledefs, and
querydefs. But sometimes you need explicit access to the default workspace-for
example, to access the Workspaces collection or to set database engine
properties. For that kind of access, you might need a CDaoWorkspace object.

The Most Likely Case
The most likely case is that you already have a CDaoDatabase object or a
CDaoRecordset object based on the default workspace (or on an additional
workspace). For those cases, see the article DAO: Accessing Implicit MFC DAO
Objects. Otherwise, if you don't have a database or recordset object handy, you
can still open the default workspace as follows:

~ To explicitly open the default workspace

1 Construct a CDaoWorkspace object.

DAO Workspace

325

DAO Workspace

2 Call the object's Open member function. Specify NULL for the IpszName
parameter.

3 Call other member functions or access data members.

Closing this CDaoWorkspace object has no effect on DAO's default workspace.
That workspace is terminated when the database engine session terminates. For
information on database engine termination, see the article DAO Workspace:
The Database Engine.

See Also DAO: Where Is ... , DAO: Accessing Implicit MFC DAO Objects,
DAO Workspace, DAO: Creating, Opening, and Closing DAO Objects

DAO Workspace: The Database Engine

326

MFC and DAO use the Microsoft Jet database engine, currently version 3.0, to
retrieve data from and store data in user and system databases. The Microsoft Jet
database engine is the data manager component on which various
implementations are built, such as the MFC DAO classes, Microsoft Access, and
Microsoft Visual Basic, and the Microsoft Desktop Database Drivers (currently
version 3.0).

This article explains how you interact with the database engine via MFC. Topics
covered include:

• Data sources you can access

• How MFC exposes the database engine

• Database engine collections

• Initializing and uninitializing the database engine

Data Sources You Can Access
While the database engine is best suited for working with Microsoft Jet (.MDB)
databases, you can access several IS AM databases and any database for which
you have an ODBC driver, including remote databases such as Microsoft SQL
Server or Oracle. For more information about these non-.MDB sources, see the
article DAO External: Working with External Data Sources.

How MFC Exposes the Database Engine
In DAO, the database engine is represented by a DB Engine object. This object
sits at the top of the DAO object hierarchy and contains all of the other objects,
such as workspaces and databases. For detailed information about this DAO
object, see the topic DBEngine Object in DAO Help. To view the DAO object
hierarchy, see the topic Data Access Object Hierarchy in DAO Help.

In MFC, the DB Engine object is not exposed directly via an MFC class. Instead,
all access to the underlying DAO database engine object is through a set of static
member functions in class CDaoWorkspace. These member functions provide

access to database engine properties that you can set or get to configure your
database sessions. You can access the database engine through any workspace
object, whether MFC creates the object implicitly or you create it explicitly. In
the majority of situations, you will not need to set these properties. You can rely
on the defaults instead.

Database Engine Collections
DAO's DB Engine object houses two important collections used with MFC:

• Workspaces

• Errors

The DB Engine's Workspaces Collection
The Workspaces collection contains all open DAO workspace objects that you
have explicitly appended to the collection. See the article DAO Collections:
Obtaining Information About DAO Objects for a discussion of how to use the
Workspaces collection.

The DBEngine's Errors Collection
The Errors collection contains one DAO error object for each error returned by
the most recent DAO operation. In most error situations, particularly when you
are working with a Microsoft Jet (.MDB) database, the collection contains one
object. If you are using an ODBC data source, it is likely that the collection
might contain more than one error object. In MFC, all DAO errors are translated
into thrown exceptions of type CDaoException. See class CDaoException and
the article Exceptions: Database Exceptions for a discussion of how to work with
MFC's DAO exceptions.

Initializing and Uninitializing the Database Engine
MFC loads a single instance of the DAO DB Engine object, housed in a DLL, per
application. Thus your database engine sessions are limited to your application.
Your workspaces are not available to other applications or users.

Initializing the Database Engine
MFC initializes the database engine, beginning your database engine session, the
first time your application creates or opens a workspace, either implicitly or
explicitly. For more information about explicit and implicit workspaces, see the
article DAO Workspace.

Un initializing the Database Engine
MFC uninitializes the database engine, ending your database engine session,
when your application terminates.

See Also DAO: Where Is ... , DAO Workspace, DAO Workspace: Accessing
Properties of the Database Engine

DAO Workspace

327

DAO Workspace

DAO Workspace: Accessing Properties of the
Database Engine

328

If you need to get or set any of the properties of the database engine behind your
workspaces, you'll need a CDaoWorkspace object whose static member
functions provide access to those properties.

~ To access properties of the database engine

1 Construct a CDaoWorkspace object, or use a pointer to one provided by a
CDaoRecordset or CDaoDatabase object.

2 Call any of the workspace's static member functions. You do not need to call Open
or Create to call these member functions.

Accessing Database Engine Properties
Table 1 describes the CDaoWorkspace member functions that relate to database
engine properties:

Table 1 Workspace Member Functions for Database Engine Access

·DAO property

Version

DefaultPassword

DefaultUser

LoginTimeout

IniPath

Member functions

GetVersion

SetDefaultPassword

SetDefaultUser

GetLoginTimeout,
SetLoginTimeout

GetIniPath, SetIniPath

Description

Get the version number of the Microsoft Jet
database file.

Specify the default password that the
database engine uses when you create new
workspaces without specifying a password.
Setting this property is optional. You can
instead require that new workspaces supply a
password.

Specify the default user name that the
database engine uses when you create new
workspaces without specifying a user name.
As with SetDefaultPassword, setting this
property is optional.

Specify the number of seconds to wait before
an ODBC connection attempt times out.
DAO sets a default, so setting this property is
optional.

Specify a Windows registry key under which
are stored application-specific options
relating to special settings for the database
engine. Setting this property is optional and
not often needed.

CDaoWorkspace also supplies member functions for compacting (or copying) a
Microsoft Jet (.MDB) database and for attempting to repair a corrupt .MDB

database file. See CDaoWorkspace::CompactDatabase and
CDao Workspace: :RepairDatabase.

More Information About These Properties
For more information, see the the DAO Help topics for the named properties in
Table 1. Topic names are of the form: "property name Property." For example, the
topic for the Version property is Version Property. See also the CDaoWorkspace
member functions listed and the article DAO Workspace: Accessing Properties of
the Database Engine.

See Also DAO: Where Is ... , DAO Workspace, DAO Workspace: The Database
Engine

DAO Workspace: Managing Transactions
This article explains the MFC facilities available for managing transactions and
refers you to additional information in DAO Help. For general transaction
information in DAO, see the topic BeginTrans, CommitTrans, Rollback Methods
in DAO Help.

Topics covered include:

• Transaction: defined

• Transaction spaces

• Transaction example

• Additional reading about transactions

Transaction: Defined
A transaction is a series of changes made to a database's data and/or schema.
Mark the beginning of a transaction by calling the BeginTrans member function
of class CDaoWorkspace. Commit the transaction using the CommitTrans
member function, or undo all your changes since BeginTrans using the
Rollback member function.

The key idea of transactions is that the operation is "atomic" -a group of related
smaller operations must all succeed for the whole operation to succeed. If one
small operation fails, the whole operation fails.

There is an implicit transaction while action queries are running. If a query
doesn't complete for any reason, it is automatically rolled back. Transactions are
optional and can be nested up to five levels. (This is in contrast to ODBC, which
does not permit nested transactions.) Transactions increase the speed of data
changing operations and enable changes to be reversed easily.

The "current transaction" consists of all changes made to a recordset object after
you last called the BeginTrans member function and before you call the
Rollback or CommitTrans member functions.

DAO Workspace

329

DAO Workspace

330

Transaction Spaces
The workspace object defines a transaction space. Transactions are global to the
workspace in which they occur. They affect all open databases, recordsets, and
querydefs in the same workspace. If you have several open recordsets and/or
databases in a workspace, each call to BeginTrans, CommitTrans, and
Rollback applies to all of the objects.

For example, suppose you have have called BeginTrans for a workspace and you
begin updates through two recordsets that belong to database objects in the same
workspace. If you call CommitTrans or RollBack in the workspace, the call
affects both recordsets, even if they are open on different databases.

If this transaction model is not what you need, you can open separate transaction
spaces by opening separate workspaces. Create a new CDaoWorkspace object
for each separate transaction space. For more information, see the article DAO
Workspace: Opening a Separate Transaction Space.

Transaction Example
The following example illustrates transactions by using two recordsets to delete a
student's enrollment from a school registration database. First it removes the
student from all classes in which the student is enrolled. Then it removes the
student's master record, after which, the student no longer exists in the database.

The Delete calls in both recordsets must succeed, so a transaction is required.

Important The example shown illustrates correct transaction procedure, but for the
illustrated case this is not the most efficient way to do the job. For details, see the
discussion in Efficiency Considerations for This Example.

The example assumes the existence of:

• m_dbStudentReg, a document data member that contains a CDaoDatabase
object already open on the database.

• m_rsStudentSet, a document data member that contains a recordset object
based on class CStudentSet, derived from CDaoRecordset. This recordset
returns all enrolled students.

• CEnroll mentSet, a second CDaoRecordset-derived class. This recordset, as
written by Class Wizard, returns all students enrolled in all classes. The
example code "filters" the recordset to return only the records representing
classes in which the specified student is enrolled.

The example modifies the default SQL string defined with Class Wizard before
opening the recordset. The modification filters the records with a student ID
passed in as a parameter.

BOOl CEnrollDoc::RemoveStudent(CString strStudent1D)
{

II Construct a recordset for courses student is in
CEnrollmentSet rsEnrollmentSet(&m_dbStudentReg);

II Define the SOL string for the recordset to
II Filter records with the SOL keyword WHERE
CString strSOl = rsEnrollmentSet.GetDefautlSOl() +

try
{

"WHERE [Student 10] = " + strStudent1D;

II Open the recordset using
II the modified SOL string
rsEnrollmentSet.Open(dbOpenDynaset, strSOl);

II Start the transaction
m_dbStudentReg.m_pWorkspace->BeginTrans();

II Remove the student from all classes the
II student is enrolled in
while (!rsEnrollmentSet.1sEOF())
{

}

rsEnrollmentSet.Delete();
rsEnrollmentSet.MoveNext();

II Delete the student's master record
m_rsStudentSet.Delete();

II Commit the transaction
m_dbStudentReg.m_pWorkspace->CommitTrans();

catch(CDaoException* e)
{

m_dbStudentReg.m_pWorkspace->Rollback();
AfxMessageBox("Failed to remove student.");
e->Delete();
return FALSE;

m_rsStudentSet.Close();

For information about the try/catch exception handling shown here, see the
article Exceptions: Database Exceptions and the CDaoException class.

Efficiency Considerations for This Example
The transaction example shown in Transaction Example shows you how to do
transactions. But in some cases, as in deleting records, transactions may not be
the efficient way to go. In fact, there are two more efficient approaches to
deleting the student record along with all related records for that student:

• Use cascade deletes

DAO Workspace

331

DAO Workspace

If the student registration database defines a relation between the STUDENT
and ENROLLMENT tables with the cascade delete attribute set, you can
delete a single student record in the STUDENT table and let cascade deletes
remove all related records in the ENROLLMENT table.

For information about cacade deletes, see the topic Relation Object in DAO
Help. Relations in MFC are discussed under class CDaoDatabase in the
Class Library Reference.

• Use a bulk query

A bulk query would delete all records in any tables you specify that contain
the student ID for the student you want to delete.

The query's SQL statement looks like this:

DELETE FROM STUDENT, ENROLLMENT WHERE STUDENT.StudentID =
ENROLLMENT.StudentID AND StudentID = strStudentID

The expression "STUDENT. Student I D = EN RO LLM ENT . Student I D"
"joins" the tables on the StudentlD field. The expression "StudentID =

s t r Stu den tID" finds those records in the join that have the particular
student ID in s t r Stu den tID. The SQL deletes those records.

Transactions do have their role to play, of course. The point is that you should
use the best approach for the particular task.

Additional Reading About Transactions
For more information about transactions, see the following topics in DAO Help:

• BeginTrans, CommitTrans, Rollback Methods

• Create Workspace Method

• BOF, EOF Properties

• IsolateODBCTrans Property

In the Class Library Reference, see: CDaoWorkspace, especially the
BeginTrans, CommitTrans, Rollback, and SetlsolateODBCTrans member
functions.

Also see CDaoRecordset, especially the AddNew, Edit, Update, Delete,
IsBOF, and IsEOF member functions.

See Also DAO: Where Is ... , DAO Recordset

DAO Workspace: Opening a Separate
Transaction Space

332

A workspace defines a single transaction space for all databases open within it.
This means that if you begin a transaction in a workspace, then update several

recordsets on several databases in the workspace, and then commit or roll back
the transaction, the commitment or rollback applies to all of the databases.

Sometimes, however, you need to separate one set of transactions-applying to
database A-from another set-applying to database B.

~ To open a separate transaction space

1 Construct a new CDaoWorkspace object.

2 Call the workspace object's Create member function. Specify a unique name in
the /pszName parameter to make this workspace distinct from the default
workspace or any other workspaces. Each workspace you create explicitly has a
different name.

3 Open one or more databases in the new workspace.

4 Run transactions on the new workspace.

Transactions on the new workspace will be distinct from those on other
workspaces. For related information about ODBC data sources, see the article
DAO External: Working with External Data Sources and see
CDao Workspace: :SetIsolateODBCTrans.

For a general discussion of using transactions, see the article DAO Workspace:
Managing Transactions. That article also leads you to topics in DAO Help.

See Also DAO: Where Is ... , DAO Workspace: Managing Transactions, DAO:
Creating, Opening, and Closing DAO Objects

DAO Workspace

333

Database

Database
For a general overview of the MFC database classes, see Chapter 7, Working with
Databases. That discussion covers both the Open Database Connectivity (ODBC)
classes and the newer Data Access Object (DAO) classes.

See Also Database Overview, Data Source (ODBC)

Database Overview

334

MFC supports two different kinds of database access:

• Access via Data Access Objects (DAO) and the Microsoft Jet database engine

• Access via Open Database Connectivity (ODBC) and an ODBC driver

Both of these supply abstractions that simplify working with databases, complete with
the speed, power, and flexibility of C++. Both integrate your data access work with
the MFC application framework.

This article explains the differences between DAO and ODBC and provides
information to help you choose which kind of data access to use. Topics include:

• What are DAO and ODBC?

• What Is the MFC database programming model?

• DAO or ODBC?

• Calling DAO or ODBC directly

• Database definition and manipulation

• More information about the DAO and ODBC classes

What Are OAO and OOBC?
DAO is familiar to database programmers using Microsoft Access Basic or Microsoft
Visual Basic. DAO uses the Microsoft Jet database engine to provide a set of data
access objects: database objects, tabledef and querydef objects, recordset objects, and
others. DAO is optimally useful for working with .MDB files like those created by
Microsoft Access, but you can also access ODBC data sources through DAO and the
Microsoft Jet database engine.

ODBC provides an application programming interface (API) which different database
vendors implement via ODBC drivers specific to a particular database management
system (DBMS). Your program uses this API to call the ODBC Driver Manager,
which passes the calls to the appropriate driver. The driver, in tum, interacts with the
DBMS using Structured Query Language (SQL).

Both DAO and ODBC give you the ability to write applications that are independent
of any particular DBMS.

What Is the MFC Database Programming Model?
MFC provides a database programming model that is very similar to the model used
in Microsoft Access Basic and Microsoft Visual Basic. The model is also very similar
whether you are using DAO or ODBC. While MFC's implementations of DAO and
ODBC are quite different underneath, the similar interfaces make it relatively easy to
port your applications from one to the other, particularly from ODBC to DAO. (For
infonnation about porting from ODBC to DAO, see Technical Note 55 under MFC
Technical Notes in Books Online.)

In the MFC programming model, using DAO or ODBC, you work with a database
object for each open database. The database object represents your connection to the
database. You make queries and updates via recordset objects. DAO provides
additional objects, for working with table structure, saving queries for reuse, and so
on, described later. MFC supplies classes for each of these objects: one set of classes
for DAO and another set for ODBC.

DAOorODBC?
Which set of MFC classes should you use? This depends on your needs:

• Use the ODBC classes if you are working strictly with ODBC data sources,
particularly in client/server situations, where the MFC ODBC classes provide
better perfonnance.

• Use the DAO classes if you are working primarily with Microsoft Jet (.MDB)
databases or with other database fonnats that the Microsoft Jet database engine
can read directly. For a list of these, see Databases You Can Access with DAO.

One reason for choosing the DAO classes is that they provide a richer data access
model, with support for Data Definition Language (DDL) as well as Data
Manipulation Language (DML). For details, see Database Definition and
Manipulation.

Note The introduction of OAO does not foretell the end of OOSC. As a major part of the
Microsoft Windows Open Standards Architecture (WQSA), OOSC is here for the long run. OAO
is optimized around the Microsoft Jet database engine, but you can still access OOSC and
other external data sources via that engine, and the distinct OOSC API and the MFC classes
based on it are still available and still have their role to play in your selection of database tools.

Since DAO also supports access via ODBC (through the Microsoft Jet database
engine), your primary reasons for choosing the DAO classes over the ODBC classes
are:

• Better perfonnance in some cases, particularly when using Microsoft Jet (.MDB)
databases.

Database Overview

335

Database Overview

336

• Compatibility with the ODBC classes and with Microsoft Access Basic and
Microsoft Visual Basic.

• DAO gives you access to validation rules.

• DAO lets you specify relations between tables.

Table 1 summarizes the key differences to help you choose:

Table 1 Choosing Between MFC's OAO and OOBC Classes

OAOClasses OOBC Classes

Access .MDB files Yes Yes

Access ODBC data sources Yes Yes

Available for 16 Bit No Yes

Available for 32 Bit Yes Yes

Database compaction Yes No

Database engine support Microsoft Jet database engine Target DBMS

DDL support Yes Only via direct ODBC calls

DML support Yes Yes

Nature of the MFC implementation "Wrapper" of DAO core functions Simplified abstraction rather than a
"wrapper" of the ODBC API

Optimal for .MDB files (Microsoft Access) Any DBMS for which you have a
driver, especially in client/server
situations

Transaction support Per "workspace" or, for ODBC data, Per database
per database

Keep in mind that the capabilities of ODBC drivers vary. See the ODBC
Programmer's Reference and the help file for your ODBC driver for more
information. For information about using ODBC via DAO, see the article DAO
External: Working with External Data Sources.

If you are working with ODBC databases rather than Microsoft Jet (.MDB) databases,
you might want to use the ODBC classes and avoid the overhead of DAO.

What Data Sources Can You Access with OAO and OOSC?
Both sets of MFC classes let you access a wide variety of data sources and make it
possible to write applications that are independent of the data source.

Databases You Can Access with DAO
Using DAO and the MFC DAO classes, you can access the following sources of data:

• Databases using the Microsoft Jet database engine, created with Microsoft Access
or Microsoft Visual Basic, versions 1.x, 2.x, and 3.0 of the database engine

• Installable ISAM databases, including:

• Microsoft FoxPro, versions 2.0, 2.5, and 2.6. Able to import/export data to and
from version 3.0, but can't create objects

• dBASE III, dBASE IV, and dBASE 5.0

• Paradox, versions 3.x, 4.x, and 5.x

• Open Database Connectivity (ODBC) databases, including but not limited to
Microsoft SQL Server, SYBASE® SQL Server, and ORACLE® Server. To access
an ODBC database, you must have an appropriate ODBC driver for the database
you wish to access. See the article ODBC Driver List for a list of ODBC drivers
included in this version of Visual C++ and for information about obtaining
additional drivers.

• Microsoft Excel, versions 3.0,4.0,5.0, and 7.0 worksheets

• Lotus WKS, WKl, WK3, and WK4 spreadsheets

• Text files

DAO is best used with databases that the Microsoft Jet database engine can read.
That includes all of the above except ODBC data sources. Best performance is with
Microsoft Jet (.MDB) databases. Attaching external tables, especially in ODBC data
sources, to an .MDB database is more efficient than opening the external database
directly via the MFC DAO classes without attaching. For more information on
external data sources, see the article DAO External: Working with External Data
Sources.

Databases You Can Access with ODBC
Using ODBC and the MFC ODBC classes, you can access any data source, local or
remote, for which the user of your application has an ODBC driver. Both 16-bit and
32-bit ODBC drivers are available for a wide range of data sources, including those
listed under Databases You Can Access with DAO. If you're working with a
Microsoft Jet (.MDB) database, it's more efficient to use the DAO classes than the
Microsoft Access ODBC driver.

Calling DAO or ODSC Directly
As usual in MFC, if you need finer control, you can call DAO or ODBC directly in
addition to accessing them through the classes. MFC attempts to simplify
programming for Windows, but it also stays out of your way if you need access to the
underlying APIs.

Database Definition and Manipulation
The MFC DAO classes support two kinds of access to databases:

• Data definition language (DDL) You can create and delete databases, create and
delete tables, define table fields and indexes, and take other actions that affect the
structure of your database.

Database Overview

337

Database Overview

338

• Data manipulation language (DML) You can run queries, add, delete, and edit
records, and otherwise manipulate the content of your database.

The MFC ODBC classes support only DML, but you can call ODBC API functions
directly to carry out DDL tasks.

More Information About the OAO and OOSC Classes
Because the implementations are quite different, the documentation for these sets of
classes is almost completely compartmentalized. MFC DAO documentaion is
separate from MFC ODBC documentation. Visual C++ also supplies both the DAO
and ODBC SDK documentation. Table 2 leads you to the next article you should read
if you're just beginning to study the MFC DAO classes or the MFC ODBC classes.

Table 2 Further Reading About DAO and ODBC in MFC

For more information about. ..

The MFC DAO classes

The MFC ODBC classes

See ...

DAOandMFC

ODBCandMFC

Tip From any topic in the MFC DAO documentation, you can click the See Also button in the
topic window. One topic always available in the See Also list is the topic DAO: Where Is ... ,
which helps you quickly locate the information you seek.

MFC Database Documentation
The MFC documentation for DAO and ODBC classes consists of the components
listed in Table 3.

Table 3 MFC Database Documentation

For documentation on ...

DAO database tutorial

ODBC database tutorial

Classes for both DAO and ODBC

Global functions and macros for both

Encyclopedia articles on programming with
the MFC DAO classes

Encyclopedia articles on programming with
the MFC ODBC classes

Technical notes for both

Sample applications

See ...

Chapter 34, Data Access Objects (DAO)
Tutorial, in Tutorials

Chapter 30, Creating a Database Application,
in Tutorials

The class name in the Class Library Reference

The function or macro name in the Class
Library Reference

The article DAO and MFC

The article ODBC and MFC

MFC Technical Notes, under MFC Technical
Notes in Books Online. See the Info Viewer in
the Project Workspace window.

MFC Samples, under Samples in Books
Online.

Data Objects and Data Sources (OLE)

MFC Documentation and DAO Documentation
Throughout the MFC documentation for the MFC DAO classes, you'll find links to
topics in the DAO SDK documentation, which is included in Books Online. Because
MFC essentially "wraps" DAO, the documentation strategy is to:

• Focus in the MFC documents on MFC and how it differs from the underlying
DAO implementation.

• Point you to the DAO SDK Help topics for the underlying details. These cross
references are always worded as "topic X in DAO Help."

A few things to keep in mind as you use this cross-connected documentation:

• The connections are one-way, from MFC to DAO SDK Help, but in Books Online
you can always use the Go Back button in the topic window to move from DAO
topics to MFC topics.

• MFC sometimes does things differently from the way DAO does them, and MFC
doesn't wrap all of DAO. For example, MFC doesn't supply objects for DAO's
security functionality. Differences are pointed out in the articles where relevant.

• Examples in the primary DAO SDK documentation supplied in Books Online are
written in the Basic programming language, not C++. (But the DAO SDK
supplies a set of C++ examples that don't use MFC.) You might have to do some
translating when you are browsing topics in DAO SDK Help via Books Online.
For guidance, see the examples that appear in these encyclopedia articles and the
MFC DAO sample applications, listed under Samples/MFC SampleslDatabases
(ODBC and DAO) in the Info Viewer in the Project Workspace window.

In Part 1 of Programming with MFC, see Chapter 7, Working with Databases, for
additional implementation about your DAO or ODBC installation.

MFC Documentation and ODBC Documentation
The MFC documentation for the MFC ODBC classes is organized differently. The
MFC ODBC classes supply a high-level abstraction that rests on ODBC rather than a
"wrapper" of the ODBC API. The two documentation sets are thus less intimately
connected than are the MFC and DAO documentation sets. The ODBC
documentation uses the C language, which is much closer to c++ than is Basic.

See Also DAO: Where Is ... , DAO and MFC, ODBC and MFC, Data Access Objects
(DAO),ODBC

Data Objects and Data Sources (OLE)
When you perform a data transfer, by using either the Clipboard or drag and drop,
the data has a source and a destination. One application provides the data for copying
and another application accepts it for pasting. Each side of the transfer needs to
perform different operations on the same data for the transfer to succeed. The

339

Data Objects and Data Sources (OLE)

Microsoft Foundation Class Library (MFC) provides two classes that represent each
side of this transfer:

• Data sources (as implemented by COleDataSource objects) represent the source
side of the data transfer. They are created by the source application when data is to
be copied to the Clipboard, or when data is provided for a drag-and-drop
operation.

• Data objects (as implemented by COleDataObject objects) represent the
destination side of the data transfer. They are created when the destination
application has data dropped into it, or when it is asked to perform a paste
operation from the Clipboard.

The following articles explain how to use data objects and data sources in your
applications. This information applies to both container and server applications,
because both may be called upon to copy and paste data.

• Data Objects and Data Sources: Creation and Destruction

• Data Objects and Data Sources: Manipulation

See Also Drag and Drop, Clipboard

In the Class Library Reference: COleDataObject, COleDataSource

Data Objects and Data Sources: Creation and
Destruction

340

As explained in the article Data Objects and Data Sources (OLE), data objects and
data sources represent both sides of a data transfer. This article explains when to
create and destroy these objects and sources to perform your data transfers properly.
Topics include:

• Creating data objects

• Destroying data objects

• Creating data sources

• Destroying data sources

Creating Data Objects
Data objects are used by the destination application -either the client or the server.
A data object in the destination application is one end of a connection between the
source application and the destination application. A data object in the destination
application is used to access and interact with the data in the data source.

There are two common situations where a data object is needed. The first is when
data is dropped in your application using drag and drop. The second is when Paste or
Paste Special is chosen from the Edit Menu.

Data Objects and Data Sources (OLE)

In a drag-and-drop situation, you do not need to create a data object. A pointer to an
existing data object will be passed to your OnDrop function. This data object is
created by the framework as part of the drag-and-drop operation and will also be
destroyed by it. This is not always the case when pasting is done by another method.
For more information, see Destroying Data Objects.

If the application is performing a paste or paste special operation, you should create a
COleDataObject object and call its AttachClipboard member function. This
associates the data object with the data on the Clipboard. You can then use this data
object in your paste function.

For an example of how this is done, see the DoPasteltem function in the
MAINVIEW.CPP file that is part of the MFC OLE sample OCLIENT. OCLIENT
implements a function that performs all paste operations and calls DoPasteltem from
its OnDrop, OnPaste, and OnPasteLink functions. Because OnDrop has a pointer
to a data object passed to it, it passes the pointer on to DoPasteltem. OnPaste and
OnPasteLink pass NULL for this parameter, telling DoPasteltem to create a data
object and attach it to the Clipboard. This scheme separates your paste code so you
only have to debug it in one place, but you can still use it for both kinds of paste
operations.

Destroying Data Objects
If you follow the scheme described in Creating Data Objects, destroying them is a
trivial aspect of data transfers. The data object that was created in your paste function
will be destroyed when your paste function returns.

If you follow another method of handling paste operations, make sure the data object
is destroyed after your paste operation is complete. Until the data object is destroyed,
it will be impossible for any application to successfully copy data to the Clipboard.

Creating Data Sources
Data sources are used by the source of the data transfer-which can be either the
client or the server side of the data transfer. A data source in the source application is
one end of a connection between the source application and the destination
application. A data object in the destination application is used to interact with the
data in the data source.

Data sources are created when an application needs to copy data to the Clipboard. A
typical scenario runs like this:

1. The user selects some data.

2. The user chooses Copy (or Cut) from the Edit menu or begins a drag-and-drop
operation.

3. Depending on the design of the program, the application creates either a
COleDataSource object or an object from a class derived from COleDataSource.

341

Data Objects and Data Sources (OLE)

4. The selected data is inserted into the data source by calling one of the functions in
the COleDataSource::CacheData or COleDataSource::DelayRenderData
groups.

5. The application calls the SetClipboard member function (or the DoDragDrop
member function if this is a drag-and-drop operation) belonging to the object
created in step 3.

6. If this is a Cut operation or DoDragDrop returns DROPEFFECT_MOVE, the
data selected in step 1 is deleted from the document.

This scenario is implemented by the MFC OLE samples OCLIENT and HIERSVR.
Look at the source for each application's CView-derived class for all but the
GetClipboardData and OnGetClipboardData functions. These two functions are in
either the COleClientltem or COleServerltem-derived class implementations.
These sample programs provide a good example of how to implement these concepts.

One other situation in which you might want to create a COleDataSource object
occurs if you are modifying the default behavior of adrag-and-drop operation. For
more information, see the Drag and Drop: Customizing article.

Destroying Data Sources
Data sources must be destroyed by the application currently responsible for them. In
situations where you hand the data source to OLE, such as calling
COleDataSource: : SetClipboard , you do not have to worry about destroying it
because it will be destroyed by OLE. If you do not hand your data source to OLE,
then you are responsible for destroying it, as with any typical C++ object.

See Also Data Objects and Data Sources: Manipulation

In the Class Library Reference: COleDataObject, COleDataSource

Data Objects and Data Sources: Manipulation

342

After a data object or data source has been created, you can perform a number of
common operations on the data, such as inserting and removing data, enumerating
the formats the data is in, and more. This article describes the techniques necessary to
complete the most common operations. Topics include:

• Inserting data into a data source

• Determining the formats available in a data object

• Retrieving data from a data object

Inserting Data into a Data Source
How data is inserted into a data source depends on whether the data is supplied
immediately or on demand, and in which medium it is supplied. The possibilities are
as follows:

Data Objects and Data Sources (OLE)

Supplying Data Immediately (Immediate Rendering)
• Call COleDataSource: :CacheGlobalData repeatedly for every Clipboard fonnat

in which you are supplying data. Pass the Clipboard fonnat to be used, a handle to
the memory containing the data and, optionally, a FORMATETC structure
describing the data.

-or-

• If you want to work directly with STGMEDIUM structures, you call
COleDataSource: :CacheData instead of COleDataSource: :CacheGlobalData
in the option above.

Supplying Data on Demand (Delayed Rendering)
This is an advanced topic.

• Call COleDataSource::DelayRenderData repeatedly for every Clipboard fonnat
in which you are supplying data. Pass the Clipboard fonnat to be used and,
optionally, a FORMATETC structure describing the data. When the data is
requested, the framework will call COleDataSource::OnRenderData, which you
must override.

-or-

• If you use a CFile object to supply the data, call
COleDataSource: : DelayRenderFileData instead of
COleDataSource::DelayRenderData in the option above. When the data is
requested, the framework will call COleDataSource: :OnRenderFileData, which
you must override.

Determining the Formats Available in a Data Object
Before an application allows the user to paste data into it, it needs to know if there
are fonnats on the Clipboard that it can handle. To do this, your application should
do the following:

1. Create a COleDataObject object and a FORMATETC structure.

2. Call the data object's AttachClipboard member function to associate the data
object with the data on the Clipboard.

3. Do one of the following:

• Call the data object's IsDataAvailable member function if there are only one or
two fonnats you need. This will save you time in cases where the data on the
Clipboard supports significantly more fonnats than your application.

-or-

• Call the data object's BeginEnumFormats member function to start
enumerating the fonnats available on the Clipboard. Then call GetNextFormat
until the Clipboard returns a fonnat your application supports or there are no
more fonnats.

343

Data Source (ODBC)

If you are using ON_UPDATE _COMMAND _ UI, you can now enable the Paste and,
possibly, Paste Special items on the Edit menu. To do this, call either
CMenu::EnableMenultem or CCmdUI::Enable. For more infonnation on what
container applications should do with menu items and when, see the Menus and
Resources: Container Additions article.

Retrieving Data from a Data ,Object
Once you have decided on a data fonnat, all that's left is to retrieve the data from the
data object. To do this, the user decides where he or she wants to put the data, and the
application calls the appropriate function. The data will be available in one of the
following mediums:

Medium

Global Memory (HGLOBAL)

File (CFile)

STGMEDIUM structure (IStorage)

Function to call

COleDataObject: : GetGlobalData

COleDataObject::GetFileData

COleDataObject: : GetData

Commonly, the medium will be specified along with its Clipboard fonnat. For
example, a CF _ EMBEDDEDSTRUCT object is always in an IStorage medium
which requires an STGMEDIUM structure; therefore, you would use GetData
because it is the only one of these functions that can accept an STGMEDIUM
structure.

For cases where the Clipboard fonnat is in an IStream or HGLOBAL medium, the
framework can provide a CFile pointer that references the data. The application can
then use file read to get the data much as it might import data from a file. Essentially,
this is the client-side interface to the OnRenderData and OnRenderFileData
routines in the data source.

The data can then be inserted into your document just as you would handle any other
data in the same fonnat.

See Also Clipboard, Drag and Drop

In the Class Library Reference: COleDataObject, COleDataSource

Data Source (ODBC)

344

This article applies to the MFC ODBC classes. For infonnation about the MFC DAO
classes, see the article Data Access Objects (DAO).

In database tenns, a data source is a specific set of data, the infonnation required to
access that data, and the location of the data source, which can be described using a
data-source name. To work with class CDatabase, the data source must be one that
you have configured through Open Database Connectivity (ODBC) Administrator.
Examples of data sources include a remote database running on Microsoft SQL

Server across a network, or a Microsoft Access file in a local directory. From your
application, you can access any data source for which you have an ODBC driver.

You can have one or more data sources active in your application at one time, each
represented by a CDatabase object. You can also have multiple simultaneous
connections to any data source. You can connect to remote as well as to local data
sources, depending on the drivers you have installed and the capabilities of your
ODBC drivers. For more information about data sources and ODBC Administrator,
see the articles ODBC and ODBC Administrator.

The following articles explain more about data sources:

• Data Source: Managing Connections (ODBC)

• Data Source: Determining the Schema of the Data Source (ODBC)

See Also In the Class Library Reference: CDatabase

Data Source: Managing Connections (ODBC)
This article applies to the MFC ODBC classes. For information about the MFC DAO
classes, see the article Data Access Objects (DAO).

This article explains:

• How to configure a data source.

• How a multiuser environment affects a data source and its recordsets.

• Why you generalize a connection string to a data source.

• How to connect to a data source.

• How to disconnect from a data source.

• How to reuse a CDatabase object.

Connecting to a data source means establishing communications with a DBMS in
order to access the data. When you connect to a data source from an application
through an ODBC driver, the driver makes the connection for you, either locally or
across a network.

You can connect to any data source for which you have an ODBC driver. Users of
your application must also have the same ODBC driver for their data source. For
more information about redistributing ODBC drivers, see Redistributing ODBC
Components to Your Customers in the article ODBC.

Configuring a Data Source
ODBC Administrator is used to configure your data sources. You can also use ODBC
Administrator after installation to add or remove data sources. When you create
applications, you can either direct your users to the ODBC Administrator to let them
add data sources, or you can build this functionality into your application by making
direct ODBC installation calls. For more information, see the Setup DLL Function

Data Source (ODBC)

345

Data Source (ODBC)

346

Reference chapter in the ODBC Programmer's Reference, the article ODBC
Administrator, and the online ODBC API Reference help system.

Working in a Multiuser Environment
If multiple users are connected to a data source, they can change data while you are
manipulating it in your recordsets. Similarly, your changes may affect other users'
recordsets. For more information about how your updates affect other users, and how
their updates affect you, see the articles Recordset: How Recordsets Update Records
(ODBC) and Transaction (ODBC).

Generalizing the Connection String
Class Wizard uses a default connection string to establish a connection to a data
source. You use this connection to view tables and columns while you are developing
your application. However, this default connection string may not be appropriate for
your users' connections to the data source through your application. For example,
their data source and the path to its location may be different from the one used in
developing your application. In that case, you should re-implement the
CRecordset: : GetDefaultConnect member function in a more generic fashion and
discard Class Wizard's implementation. For example, use one of the following
approaches:

• Register and manage the connect strings by using ODBC Administrator.

• Remove the data-source name completely. The framework supplies "ODBC" as the
data source and ODBC will display a dialog box asking for the data-source name,
and any other required connection information.

• Supply the data-source name only. ODBC will ask for the user ID and password, if
required. For example, before generalizing, the connection string looks like this:

CString CApplSet::GetOefaultConnect()
{

return "OOBC;OSN=afx;UIO=sa;PWO-Fred;";
}

To generalize it, rewrite GetDefaultConnect so that it returns one of the following
values:

II Most general case. User must select data source and
II supply user and password

return "OOBC;";
II User and password required

return "OOBC;OSN=mydb;";
II Password required

return "OOBC;OSN-mydb;UIO=sa;";
liOn most systems, will connect to server wlo any queries to user

return "OOBC;OSN=mydb;UIO=sa;PWO=Fred;";

Data Source (ODBC)

Connecting to a Specific Data Source
To connect to a specific data source, your data source must already have been
configured with ODBC Administrator.

~ To connect to a specific data source

1 Construct a CDatabase object.

2 Call its Open member function.

For more information about how to specify the data source if it is something other
than the one you specified with ClassWizard, see CDatabase::Open in the Class
Library Reference.

Disconnecting from a Data Source
You must close any open recordsets before calling the Close member function of
CDatabase. In recordsets associated with the CDatabase object you want to close,
any pending AddNew or Edit statements are canceled, and all pending transactions
are rolled back.

~ To disconnect from a data source

1 Call the CDatabase object's Close member function.

2 Destroy the object unless you want to reuse it.

Reusing a CDatabase Object
You can reuse a CDatabase object after disconnecting from it, whether you use it to
reconnect to the same data source or to connect to a different data source.

~ To reuse a CDatabase object

1 Close the object's original connection.

2 Instead of destroying the object, call its Open member function again.

See Also Data Source: Determining the Schema of the Data Source (ODBC)

In the Class Library Reference: CRecordset, CDatabase::Open, CDatabase::Close

Data Source: Determining the Schema of the Data
Source (ODBC)

This article applies to the MFC ODBC classes. For information about the MFC DAO
classes, see the article Data Access Objects (DAO).

To set up data members in your CRecordset objects, you need to know the schema of
the data source to which you are connecting. Determining the schema of a data
source involves obtaining a list of the tables in the data source, a list of the columns
in each table, the data type of each column, and the existence of any indexes.

347

Date and Time

~ 10 determine the schema of a data source

• See the MFC Database samples CATALOG and DYNABIND, which use the
ODBC API functions ::SQLTables and ::SQLColumns.

See Also Data Source (ODBC), Data Source: Managing Connections (ODBC)

Date and Time
This set of articles describe how to use MFC to support various ways of working with
dates and times.

Several different ways of working with dates and times are supported by MFC. These
include:

• General-purpose time classes. The CTime and CTimeSpan classes encapsulate
most of the functionality associated with the ANSI -standard time library, which is
declared in TIME.H.

• Support for system clock. With MFC version 3.0, support was added to CTime for
the Win32 SYSTEMTIME and FILE TIME data types.

• Support for the OLE Automation DATE data type. DATE supports date, time, and
date/time values. The COleDateTime and COleDateTimeSpan classes
encapsulate this functionality. They work with the COle Variant class using in
OLE Automation support.

For more information, see one or more of the following articles:

• Date and Time: General-Purpose Classes

• Date and Time: SYSTEMTIME Support

• Date and Time: OLE Automation Support

Date and Time: General-Purpose Classes

348

This article describes how to take advantage of the class library general-purpose
services related to date and time management. Procedures described include:

• Getting the current time

• Calculating elapsed time

• Formatting a string representation of a date/time

The CTime class provides a way to represent date and time information easily. The
CTimeSpan class represents elapsed time, such as the difference between two CTime
objects.

Note Clime objects can be used to represent dates between January 1, 1970, and February
5,2036. Clime objects have a resolution of 1 second. Clime is based on the time_t data
type, defined in the Run-Time Library Reference.

Current Time: General Purpose Classes
The following procedure shows how to create a CTime object and initialize it with
the current time.

~ To get the current time

1 Allocate a CTime object, as follows:

CTi me theTi me;

Note Uninitialized CTime objects are not initialized to a valid time.

2 Call the CTime: : GetCurrentTime function to get the current time from the
operating system. This function returns a CTime object that can be used to set the
value of CTime, as follows:

theTime = CTime::GetCurrentTime();

Since GetCurrentTime is a static member function from the CTime class, you
must qualify its name with the name of the class and the scope resolution operator
(::), CTime: :GetCurrentTime().

Of course, the two steps outlined previously could be combined into a single program
statement as follows:

CTime theTime = CTime: :GetCurrentTime();

Elapsed Time: General·Purpose Classes
The following procedure shows how to calculate the difference between two CTime
objects and get a CTimeSpan result.

~ To calculate elapsed time

• Use the CTime and CTimeSpan objects to calculate the elapsed time, as follows:

CTime startTime = CTime::GetCurrentTime();

II ... perform time-consuming task ...

CTime endTime = CTime::GetCurrentTime();

CTimeSpan elapsedTime = endTime - startTime;

Once you have calculated el apsedTi me, you can use the member functions of
CTimeSpan to extract the components of the elapsed-time value.

Formatting Time Values: General·Purpose Classes
~ To format a string representation of a time or elapsed time

• Use the Format member function from either the CTime or CTimeSpan classes
to create a character string representation of the time or eJapsed time, as shown by
the following example.

Date and Time

349

Date and Time

CTime t(1991. 3. 19. 22. 15. 0);
II 10:15PM March 19. 1991

CString s = t.Format("%A. %B %d. %Y");
II s == "Tuesday. March 19. 1991"

See Also Date and Time, Date and Time: SYSTEMTIME Support, Date and Time:
OLE Automation Support

In the Class Library Reference: CTime, CTimeSpan

Date and Time: SYSTEMTIME Support
The CTime class has constructors that accept system and file times from Win32. If
you use CTime objects for these purposes, you must modify their initialization
accordingly, as described in this article.

MFC still provides CTime constructors that take time arguments of the MS-DOS
style, but, with MFC version 3.0, the CTime class also supports a constructor that
takes a Win32 SYSTEMTIME structure and another that takes a Win32
FILETIME structure.

The new CTime constructors are:

• CTime(const SYSTEMTIME& sysTime);

• CTime(const FILETIME& lifeTime);

The lifeTime parameter is a reference to a Win32 FILE TIME structure, which
represents time as a 64-bit value, a more convenient format for internal storage than
a SYSTEM TIME structure and the format used by Win32 to represent the time of
file creation.

If your code contains a CTime object initialized with the system time, you should use
the SYSTEMTIME constructor in Win32.

You most likely will not use CTime FILETIME initialization directly. If you use a
CFile object to manipulate a file, CFile::GetStatus retrieves the file timestamp for
you via a CTime object initialized with a FILE TIME structure.

See Also Date and Time, Date and Time: OLE Automation Support, Date and Time:
General-Purpose Classes

Date and Time: OLE Automation Support

350

This article describes how to take advantage of the class library services related to
date and time management. Procedures described include:

• Getting the current time

• Calculating elapsed time

• Formatting a string representation of a date/time

The COleDateTime class provides a way to represent date and time information. It
provides finer granularity and a greater range than the CTime class. The
COleDateTimeSpan class represents elapsed time, such as the difference between
two COleDateTime objects.

The COleDateTime and COleDateTimeSpan classes are designed to be used with
the COle Variant class used in OLE Automation. However, these classes are indeed
general-purpose. They can be used wherever you want to manipulate date and time
values. The COleDateTime class has a greater range of values and finer granularity
than the CTime class. However, it requires more storage per object than CTime.
There are also some special considerations when working with the underlying DATE
type. See the following section, The DATE Type, for more details on the
implementation of DATE.

Note COleDateTime objects can be used to represent dates between January 1, 100, and
December 31, 9999. COleDateTime objects are floating point values, with an approximate
resolution of 1 millisecond. COleDateTime is based on the DATE data type, defined in the
OLE documentation. The actual implementation of DATE extends beyond these bounds. The
COleDateTime implementation imposes these bounds to facilitate working with the class.

The DATE Type
The DATE type is implemented using an 8-byte floating-point number. Days are
represented by whole number increments starting with 30 December 1899, midnight
as time zero. Hour values are expressed as the absolute value of the fractional part of
the number. The following table illustrates this.

Date and time

30 December 1899, midnight

1 January 1900, midnight

4 January 1900, midnight

4 January 1900,6 AM

4 January 1900, noon

4 January 1900,9 PM

Representation

0.00

2.00

5.00

5.25

5.50

5.875

So, the DATE date type, and also the COleDateTime class, represent dates and times
as a classic number line.

However, there are discontinuities for dates before 30 December 1899. See the
following table for an illustration.

Date and time

30 December 1899, midnight

29 December 1899, midnight

18 December 1899, midnight

18 December 1899, 6 AM

Representation

0.00

-1.00

-12.00

-12.25

Date and Time

351

Date and Time

352

Date and time

18 December 1899, noon

18 December 1899,6 PM

19 December 1899, midnight

Representation

-12.50

-12.75

-11.00

Current Time: OLE Automation Classes
The following procedure shows how to create a COleDateTime object and initialize
it with the current time.

~ To get the current time

1 Create a COleDateTime object.

2 Call GetCurrentTime.

COleDateTime timeNow;
timeNow = COleDateTime::GetCurrentTime();

Elapsed Time: OLE Automation Classes
This procedure shows how to calculate the difference between two CTime objects and
get a CTimeSpan result.

~ To calculate elapsed time
1 Create two COleDateTime objects.

2 Set one of the COleDateTime objects to the current time.

3 Perform some time-consuming task.

4 Set the other COleDateTime object to the current time.

S Take the difference between the two times.

COleDateTime timeStart, timeEnd;
timeStart = COleDateTime::GetCurrentTime();
II ... perform time-consuming task
timeEnd = COleDateTime::GetCurrentTime();
COleDateTimeSpan spanElapsed = timeEnd - timeStart;

Formatting Time: OLE Automation Classes
~ To format an time

• Use the Format member function of either COleDateTime or
COleDateTimeSpan to create a character string representing the time or elapsed
time.

COleDateTime time(70, 12, 18, 17, 30, 0);
II 18 December 1970, 5:30 PM
CString s = time.Format(VAR_DATEVAUEONLY);
II s contains the date formatted based on
II the current national language specifications
II (locale 10). The time portion is ignored for
II formatting purposes in this case.

See Also Date and Time, Date and Time: General-Purpose Classes, Date and Time:
SYSTEMTIME Support

In the Class Library Reference: COleDateTime, COleDateTimeSpan, COleVariant

DBCS
Double-byte character set encoding-a form of Multibyte Character Set (MBCS)
encoding in which characters are always either one or two bytes wide. MFC and
Visual C++ support both DBCS and Unicode applications.

For information on using DBCS with MFC, see Chapter 13 in Programming
Techniques.

DBMS
Database Management System.

If you're using,the MFC ODBC classes, see the article Data Source (ODBC). If
you're using the MFC DAO classes, see the article Data Access Objects (DAO).

Debugging
The Microsoft Foundation Class Library (MFC) and Visual C++ help you debug your
applications in a variety of ways. This article presents a few useful general debugging
techniques and refers you to other articles on related debugging topics.

For information about using the Visual C++ debugger, see Chapter 17, Using the
Debugger, in the Visual C++ User's Guide.

Following are several techniques for debugging your MFC application:

• Before you start a debugging session (or as soon as possible after you start),
arrange the debugger and the program you are debugging on the screen so that
neither overlaps the other. Otherwise, there may be situations in which the
debugger completely obscures the program being debugged.

• Tum on Multi-App Debugging from the TRACER application when you are
debugging an application and one or more DLLs. The Multi-App Debugging
option prefixes each trace statement with the name of the application that
generated it. TRACER can be found in the BIN directory, and an icon for it is
installed in the Microsoft Visual C++ program group with the name "MFC
Tracer."

• If you have trouble setting breakpoints with the debugger, you can hard-code them
into your application with the following statement:

DebugBreak():

Debugging

353

Debugging OLE Applications

which is platform independent. For MFC applications, you can also use:

AfxDebugBreak();

This does an

asm int 3

in Intel® versions and calls DebugBreak on other platforms. The advantage (on
Intel) is that you break in source code rather than in kernel code.

Be sure to remove these statements when building release-mode applications or
include them under #ifdef DEBUG.

• If you run into limitations with the Visual C++ debugger, you can always use
TRACE statements and the TRACER application. Activating the Multi-App
Debugging option in TRACER can be very useful in tracking the order of events.

Note For Win32s®, you use "remote debugging" -the debugger is hosted on Windows NT,
and the debuggee runs on another machine and is controlled through the serial port.

For additional information specific to MFC debugging, see the following articles:

• Diagnostics

• Debugging OLE Applications

Debugging OLE Applications

354

OLE applications perform a number of tasks outside of the programmer's direct
control. Communication between DLLs, usage counts on objects, and Clipboard
operations are just a few of the areas where you may encounter unexpected behavior.
Usually when this happens, your first step is to track down the source of the problem.
The difficulty with OLE applications is that it isn't always obvious how to debug a
particular problem. This series of articles describes techniques you can use to track
down problems, some of which are unique to OLE applications. It also introduces you
to the special tools and testing aids available to help you write solid OLE
applications.

Debugging OLE applications begins with the same general debugging techniques you
use in other kinds of applications. For more information, see the article Debugging.

Tip When you're debugging an OLE server and container, start up two instances of Visual
C++, load the server and container projects, set appropriate breakpoints in each, and debug.
When the container makes a call into the server that hits a breakpoint, the container will wait
until the server code returns (that is, until you finish debugging it). You can also trace into calls
that go across process boundaries. For more information on tracing into these calls, see
Debugging an OLE Application in Chapter 17 of the Visual C++ User's Guide.

For more detailed information on debugging containers and servers, and for
information on the tools available in Visual C++, see the following articles:

Debugging OLE Applications

• Debugging OLE Applications: Containers

• Debugging OLE Applications: Servers

• Debugging OLE Applications: Tools

Debugging OLE Applications: Containers
This article briefly discusses an issue unique to OLE container applications.
Debugging a container application is very similar to debugging a standard, non-OLE
MFC program, except when you attempt to debug an event that generates a callback
(such as dragging data over the container application). In this case, you must set a
breakpoint in the callback function.

Note The Visual C++ debugger supports stepping across and into OLE containers and
servers. This includes the ability to step across OLE Remote Procedure Calls (LRPC). For
more information, see Debugging an OLE Application in Chapter 17 of the Visual C++ User's
Guide.

See Also Debugging OLE Applications: Servers

Debugging OLE Applications: Servers
Debugging OLE server applications poses a unique set of problems that are not
always easy to solve. This article details debugging tasks that might not behave the
way you would expect when debugging a server application. Topics include:

• Starting to debug the server

• Debugging containers and servers simultaneously

• Debugging an SDI server

Starting to Debug the Server
If you do not have debugging information for your container application, or do not
need to see symbolic information for the container, starting to debug the server
application is a three-step process:

1. Start debugging the server as a normal application.

2. Set breakpoints as desired.

3. Start the container application from Program Manager or File Manager.

For information on viewing symbolic information for both the container and the
server, see Debugging Containers and Servers Simultaneously.

Debugging Containers and Servers Simultaneously
To debug both a container and a server at the same time, start a separate session of
Visual C++ for each. That is, run multiple instances of Visual C++, one for the

355

Debugging OLE Applications

container and one for the server. See the Tip in the article Debugging OLE
Applications.

Debugging an SDI Server
If you are debugging an SDI server application, you should set the Program
Arguments line of the Debug Options dialog box to "/Embedding" or "/Automation"
so the debugger can launch the server application as though it were launched from a
container. Starting the container from Program Manager or File Manager will then
cause the container to use the instance of the server started in the debugger.

See Also Debugging OLE Applications: Tools

Debugging OLE Applications: Tools

356

Visual C++ supplies several tools that can help you find problems in your OLE
applications. This article briefly summarizes the purpose of each tool. The tools
include:

• Test applications

• Viewers and Spy programs

• Installing OLE development tools

Test Applications
Test applications allow you to test various types of OLE applications against existing
OLE applications. Visual C++ and the OLE SDK provide a number of samples to use
for testing. These include:

Container and Server CL32TEST and SR32TEST are applications you can use to
test your OLE applications. Both CL32TEST and SR32TEST are full-featured
OLE applications and allow testing particular OLE API calls. This can be helpful
in reproducing a series of events, one call at a time.

Outline Series This series of applications shows how to convert a non-OLE
application to an OLE server and container.

Microsoft Foundation Class Samples The MFC OLE samples OCLIENT,
SUPERPAD, and HIERSVR, as well as the MFC Tutorials CONTAINER and
SCRIBBLE (Step 7), are also available to test your applications against. Full
source code for these samples is included. CONTAINER and SCRIBBLE are fully
explained in Tutorials.

The CL32TEST and SR32TEST tools are not installed on your hard disk. You can
find them in the BIN directory on the Visual C++ CD-ROM.

Viewers and Spy Programs
Viewers and spy programs allow you to examine objects and events on your computer
and in memory.

OLE2Viewer OLE2VW32 displays the OLE objects installed on your computer and
the interfaces they support. It also allows you to edit the registry and look at type
libraries.

IDataObject Viewer DOBJVIEW displays the list of data formats offered by OLE
data objects created by the Clipboard or drag-and-drop operations.

Running Object Table Viewer IROTVIEW displays information about OLE objects
currently existing in memory.

Docfile Viewer DFVIEW displays the contents of a small compound file. The
executable for DFVIEW is not on the Visual C++ CD-ROM. However, the source
files for the SDK OLE sample DFVIEW are on the Visual C++ CD-ROM. To use
DFVIEW, you must get the source code for this sample and build it.

Installing OLE Development Tools
Unless you installed the OLE development tools during the initial setup, thetools
such as OLE2VW32, DOBJVIEW, and IROTVIEW will not be available on your
system. You can install them after the initial installation by running the Setup
program again. Alternately, you can run them directly from the Visual C++ CD
ROM.

To install the OLE development tools on your system, use the Custom installation
option and select Tools from the VC++ Setup Menu. Then, select OLE Development
Tools from the Tools Menu. After the installation program runs, you can add the tool
icons to your VC++ program group using the instructions in your system
documentation.

Diagnostics
The Microsoft Foundation Class Library (MFC) contains many diagnostic features to
help debug your program during development. These features, especially those that
track memory allocations, will slow down your program. Others, such as assertion
testing, will cause your program to halt when erroneous conditions are encountered.

In a retail product, slow performance and program interruption are clearly
unacceptable. For this reason, MFC provides a method for turning the debugging and
diagnostic features on or off. When you are developing your program, you typically
build a Debug version of your program and link with the Debug version of MFC.
Once the program is completed and debugged, you build a Release version and link
with the Release version of MFC.

Note Before you can use many of the MFC diagnostic features, you must enable diagnostic
tracing by setting the afxTraceEnabled flag and customizing the afxTraceFlags to the level of
detail you would like to see in trace messages. The easiest way to make these settings is with
the TRACER.EXE utility.

Diagnostics

357

Diagnostics

Open the Microsoft Visual C++ program group and double-click the MFC Tracer icon. For more
information, see Technical Note 7 under MFC Technical Notes in Books Online.

The following articles describe the debugging and diagnostic features of the class
library:

• Diagnostics: Debugging Features

• Diagnostics: Detecting Memory Leaks

• Diagnostics: Dumping All Objects

• Diagnostics: Tracking Memory Allocations

Diagnostics: Debugging Features

358

The following features are included for all classes derived from CObject in the
Debug version of the Microsoft Foundation Class Library (MFC):

• Dump member function to dump object contents to debugging output

See the articles Diagnostics: Dumping Object Contents and Diagnostics: Dumping
All Objects.

• Trace output to print or display debugging output to evaluate argument validity

See the article Diagnostics: The TRACE Macro.

• Assertions and AssertValid member function

See the article Diagnostics: Checking Object Validity.

• Memory diagnostics to detect memory leaks

See the article Diagnostics: Detecting Memory Leaks.

• DEBUG_NEW macro to show where objects were allocated

See the article Diagnostics: Tracking Memory Allocations.

~ To enable the debugging features

1 Compile with the symbol_DEBUG defined. This is typically done by passing the
ID _DEBUG flag on the compiler command line. To accomplish this in Visual
C++, choose the Debug target in the Set Default Project Configuration box on the
Project toolbar. When you define the _DEBUG symbol, sections of code delimited
by#ifdef _DEBUG I #endif are compiled.

2 Link with the Debug versions of MFC. Setting the Debug option in Visual C++
ensures linking with the Debug libraries. The Debug versions of the library have a
"D" at the end of the library name. The Debug version of MFC is named
NAFXCWD.LIB, and the Release version (non-debug) is named NAFXCW.LIB.

Note Pragmas in the MFC header files will automatically link the correct version of MFC.
You don't need to explicitly specify the MFC library in Visual C++. Thus this step 2 is
informational only. For more information, see the article Library Versions.

Diagnostics: Dumping Object Contents
This article explains how to get a diagnostic dump of the contents of your objects.

When deriving a class from CObject, you have the option to override the Dump
member function and write a textual representation of the object's member variables
to a dump context which is similar to an I/O stream. Like an I/O stream, you can use
the insertion «<) operator to send data to a CDumpContext.

You do not have to override Dump when you derive a class from CObject. However,
if you use other diagnostic features for debugging, providing the capability for
dumping an object and viewing its contents is very helpful and highly recommended.

Note Before you can dump objects, you must enable diagnostic tracing so you can see the
results of your dump in the debugger. See the Note in the article Diagnostics.

~ To override the Dump member function

1 Call the base class version of Dump to dump the contents of a base class object.

2 Write a textual description and value for each member variable of your derived
class.

The declaration of the Dump function in the class declaration looks like:

class CPerson : public CObject
{

public:
1/i fdef _DEBUG

virtual void Dump(CDumpContext& dc) const;
1Iendif

} ;

CString m_firstName;
CString m_lastName;
II etc.

Note Since object dumping only makes sense when you are debugging your program, the
declaration of the Dump function is bracketed with an #ifdef _DEBUG / #endif block.

In the following example from an implementation file for the class CPerson, the Dump
function's first statement calls the Dump member function for its base class. It then
writes a short description of each member variable along with the member's value to
the diagnostic stream.

Diagnostics

359

Diagnostics

#ifdef _DEBUG
void CPerson::Dump(CDumpContext& dc) const
{

II call base class function first
CObject::Dump(dc);

II now do the stuff for our specific class
dc « "last name: " « m_lastName « "\n"

}

#endif

« "first name: " « m_firstName « "\n";

Note Again, notice that the definition of the Dump function is bracketed by #ifdef _DEBUG /
#endif directives. If you refer to afxDump in a program linked with the nondebug libraries, you
will get unresolved externals errors at link time.

~ To send Dump output to afxDump

• You must supply a CDumpContext argument to specify where the dump output
will go when you call the Dump function for an object. MFC supplies a predefined
CDumpContext object named afxDump that you will normally use for routine
object dumping. The following example shows how to use afxDump:

CPerson pMyPerson "" new CPerson;
II set some fields of the CPerson object ...
I I ...
II now dump the contents
IIi fdef _DEBUG
pMyPerson-)Dump(afxDump);
#endif

In Windows NT, afxDump output is sent to the debugger, if present. Otherwise,
you will not get any afxDump output.

Note afxDump is defined only in the Debug version of MFC.

See Also Diagnostics: The TRACE Macro

Diagnostics: The TRACE Macro

360

This article explains how to use the TRACE macro during development to print or
display debugging messages from a program. TRACE prints a string argument to
your debugger.

Note With 32-bit MFC, the only way to get debug output is via the debugger.

The TRACE macro can handle a variable number of arguments, similar to the way
printf operates. Following are examples of different ways to use TRACE macros:

int x =; 1;
int y "" 16;
float z = 32.0;
TRACE("This is a TRACE statement\n");

TRACE("The value of x is %d\n", x);

TRACE("x = %d and y - %d\n", x, y);

TRACE("x = %d and y = %x and z - %f\n", x, y, z);

The TRACE macro is active only in the Debug version of the class library. After a
program has been debugged, you can build a Release version to deactivate all
TRACE calls in the program.

Tip When debugging Unicode, the TRACEO, TRACE1, TRACE2, and TRACE3 macros are
easier to use because the _ T macro is not needed.

For important information on the TRACE macro, see Macros and Globals in the
Class Library Reference and Technical Note 7 under MFC Technical Notes in Books
Online.

See Also Diagnostics: The ASSERT Macro

Diagnostics: The ASSERT Macro
This article explains how to check assumptions made by your functions, using the
ASSERT macro.

Note As of MFC version 4.0, MFC uses the same assertion mechanisms as the C Run-time
Library. This means that the message format has changed somewhat.

For more information on C run-time library macros, see Using Macros for
Verification and Reporting, ASSERT, ASSERTE Macros, and _RPT, _RPTF Macros
in Chapter 4, Debug Version of the C Run-Time Library, in the Run-Time Library
Reference.

The most typical use of the ASSERT macro is to identify program errors during
development. The argument given to ASSERT should be chosen so that it holds true
only if the program is operating as intended. The macro evaluates the ASSERT
argument and, if the argument expression is false (0), alerts the user and halts
program execution. No action is taken if the argument is true (nonzero).

When an assertion fails, a message box appears with the following text:

assertion failed in file <name> in line <nurn>
Abort Retry Ignore

where <name> is the name of the source file and <nurn> is the line number of the
assertion that failed.

If you choose Abort, program execution terminates. If you choose Ignore, program
execution continues. It is possible to break into the debugger after an ASSERT by
choosing the Retry button. Neither Abort nor Ignore will activate a debugger, so they
provide no way to examine the call stack.

Diagnostics

361

Diagnostics

If you are running under the debugger and choose Retry, a call to AfxDebugBreak
embedded in the code causes a break into the debugger. At this point, you can
examine the call stack. In the Visual C++ debugger, you can do this by choosing the
Call Stack command on the Debug menu. If you have enabled "Just-in-Time
debugging" this will work even if the application is not being debugged. For more
information about Just-in-Time debugging, see Chapter 17, Using the Debugger, in
the Visual C++ User's Guide.

The following example shows how the ASSERT macro could be used to check the
validity of a function's return value:

int x = SomeFunc(y);
ASSERT(x)= 0); II Assertion fails if x is negative

ASSERT can also be used in combination with the IsKindOf function to provide
extra checking for function arguments, such as in the following example. (For a
discussion of the IsKindOf function, see the article CObject Class: Accessing Run
Time Class Information.)

ASSERT(pObjectl->IsKindOf(RUNTIME_CLASS(CPerson)));

The liberal use of assertions throughout your programs can catch errors during
development. A good rule of thumb is that you should write assertions for any
assumptions you make. For example, if you assume that an argument is not NULL,
use an assertion statement to check for that condition.

The ASSERT macro will catch program errors only when you are using the Debug
version of the Microsoft Foundation Class Library during development. It will be
turned off (and produce no code) when you build your program with the Release
version of the library.

Note The expression argument to ASSERT will not be evaluated in the Release version of
your program. If you want the expression to be evaluated in both debug and release
environments, use the VERIFY macro instead of ASSERT. In Debug versions, VERIFY is the
same as ASSERT. In release environments, VERIFY evaluates the expression argument but
does not check the result.

See Also Diagnostics: Checking Object Validity

Diagnostics: Checking Object Validity

362

This article explains how to check the internal consistency of the objects in your
application. Topics include:

• Using the ASSERT_VALID macro

• Overriding the AssertValid function

Using the ASSERT_VALID Macro
Use the ASSERT_VALID macro to perform a run-time check of an object's internal
consistency. The class of that object should override the AssertValid function of
CObject as described in Overriding the AssertValid Function. The
ASSERT_VALID macro is a more robust way of accomplishing:

pObject->AssertValid();

Like the ASSERT macro, ASSERT_VALID is turned on in the Debug version of
your program, but turned off in the Release version.

Overriding the AssertValid Function
The AssertValid member function is provided in CObject to allow run-time checks
of an object's internal state. AssertValid typically performs assertions on all the
object's member variables to see if they contain valid values. For example,
AssertValid can check that all pointer member variables are not NULL. If the object
is invalid, AssertValid halts the program.

Although you are not required to override AssertValid when you derive your class
from CObject, you can make your class safer and more reliable by doing so. The
following example shows how to declare the AssertValid function in the class
declaration:

class CPerson : public CObject
{

protected:
CString m_strName;
float m_salary;

public:
iIi fdef _DEBUG

virtual void AssertValid() const;
#endif

I I ...
} ;

II Override

When you override AssertVa 1 i d, first call AssertValid for the base class. Then use
the ASSERT macro to check the validity of the members unique to your derived
class, as shown by the following example:

iIi fdef _DEBUG
void CPerson::AssertValid()
{

II call inherited AssertValid first
CObject::AssertValid();

II check CPerson members ...
ASSERT(!m_strName.IsEmpty(»; II Must have a name
ASSERT(m_salary > 0); II Must have an income

}

ilendif

Diagnostics

363

Diagnostics

364

If any of the member variables of your class store objects, you can use the
ASSERT_VALID macro to test their internal validity (if their classes override
AssertValid). The following example shows how this is done.

Consider a class CMyData, which stores a CObList in one of its member variables.
The CObList variable, m_Data List, stores a collection of CPerson objects. An
abbreviated declaration of CMyData looks like this:

class CMyData : public CObject
{

1/ Constructor and other members
protected:

CObList* m_pDataList;
1/ Other declarations
public:

4/i fdef _DEBUG
virtual void AssertValid() const; // Override

41endif
/I Etc. . ..

} ;

The AssertValid override in CMyData looks like this:

4/i fdef _DEBUG
void CMyData::AssertValid()
{

1/ Call inherited AssertValid
CObject: :AssertVal id();
1/ Check validity of CMyData members
ASSERT_VALID(m_pDataList);
1/

}

41endif

CMyData uses the AssertValid mechanism to add validity tests for the objects stored
in its data member to the validity test of the CMyData object itself. The overriding
AssertValid of CMyData invokes the ASSERT_VALID macro for its own
m yDataList member variable.

The chain of validity testing might stop at this level, but in this case class CObList
overrides AssertValid too, and the ASSERT_VALID macro causes it to be called.
This override performs additional validity testing on the internal state of the list. If an
assertion failure occurs, diagnostic messages are printed, and the program halts.

Thus a validity test on a CMyData object leads to additional validity tests for the
internal states of the stored CObList list object. With a little more work, the validity
tests could include the CPerson objects stored in the list as well. You could derive a
class CPersonL i st from CObList and override AssertValid. In the override, you
would call CObject::AssertValid and then iterate through the list, calling
AssertVal i d on each CPerson object stored in the list. The CPerson class shown at
the beginning of this section already overrides AssertValid.

This is a powerful mechanism when you build for debugging, and when you
subsequently build for release, the mechanism is turned off automatically.

Users of an AssertVa 1; d function of a given class should be aware of the limitations
of this function. A triggered assertion indicates that the object is definitely bad and
execution will halt. However, a lack of assertion only indicates that no problem was
found, but the object isn't guaranteed to be good.

Diagnostics: Detecting Memory Leaks
This article explains the facilities that MFC provides for detecting memory leaks.
Topics include:

• Memory diagnostics

• Detecting a memory leak

• Dumping memory statistics

Note As of MFC version 4.0, MFC uses the same debug heap and memory allocator as the C
Run-Time Library. For more information, see Chapter 4, Debug Version of the C Run-Time
Library, in the Run-Time Library Reference.

A memory leak occurs when you allocate memory on the heap and never deallocate
that memory to make it available for reuse, or if you mistakenly use memory that has
already been allocated. This is a particular problem for programs that are intended to
run for extended periods. In a long-lived program, even a small incremental memory
leak can compound itself; eventually all available memory resources are exhausted
and the program crashes. Traditionally, memory leaks have been very hard to detect.

The Microsoft Foundation Class Library (MFC) provides classes and functions you
can use to detect memory leaks during development. Basically, these functions take a
snapshot of all memory blocks before and after a particular set of operations. You can
use these results to determine if all memory blocks allocated during the operation
have been deallocated.

Note MFC automatically dumps all leaked objects when your program exits.

The size or length of the operation you choose to bracket with these diagnostic
functions is arbitrary. It can be as small as a single program statement, or it can span
the entry and exit from the entire program. Either way, these functions allow you to
detect memory leaks and identify which memory blocks have not been deallocated
properly.

Memory Diagnostics
Before you can use the memory diagnostics facilities, you must enable diagnostic
tracing. See the Note at the end of the article Diagnostics as well as the rest of this
discussion.

Diagnostics

365

Diagnostics

~ To enable or disable memory diagnostics

• Call the global function AfxEnableMemoryTracking to enable or disable the
diagnostic memory allocator. Since memory diagnostics are on by default in the
Debug library, you will typically use this function to temporarily turn them off,
which increases program execution speed and reduces diagnostic output.

~ To select specific memory diagnostic features with afxMemDF

• If you want more precise control over the memory diagnostic features, you can
selectively tum individual memory diagnostic features on and off by setting the
value of the MFC global variable afxMemDF. This variable can have the
following values as specified by the enumerated type AfxMemDF:

Value Meaning

allocMemDF

delayFreeMemDF

checkAlwaysMemDF

Tum on diagnostic memory allocator (default).

Delay freeing memory when calling delete or free
until program exits. This will cause your program to
allocate the maximum possible amount of memory.

Call AfxCheckMemory every time memory is
allocated or freed.

These values can be used in combination by performing a logical-OR operation, as
shown here:

afxMemDF 1= delayFreeMemDF 1 checkAlwaysMemDF;

Detecting a Memory Leak
The following instructions and example show you how to detect a memory leak.

366

~ To detect a memory leak

1 Create a CMemoryState object and call the Checkpoint member function to get
the initial snapshot of memory.

2 After you perform the memory allocation and de allocation operations, create
another CMemoryState object and call Checkpoint for that object to get a current
snapshot of memory usage.

3 Create a third CMemoryState object, call the Difference member function, and
supply the previous two CMemoryState objects as arguments. The return value
for the Difference function will be nonzero if there is any difference between the
two specified memory states, indicating that some memory blocks have not been
deallocated.

The following example shows how to check for memory leaks:

II Declare the variables needed
Ifi fdef _DEBUG

CMemoryState oldMemState, newMemState. diffMemState;
oldMemState.Checkpoint();

Ifendi f

II do your memory allocations and deallocations ...
CString s - "This is a frame variable";
II the next object is a heap object
CPerson* p - new CPerson("Smith". "Alan". "581-0215");

#ifdef _DEBUG
newMemState.Checkpoint();
if(diffMemState.Difference(oldMemState. newMemState))
{

}

#endif

TRACE("Memory leaked!\n");

Notice that the memory-checking statements are bracketed by #ifdef _DEBUG /
#endif blocks so that they are only compiled in Debug versions of your program.

Dumping Memory Statistics
The CMemoryState member function Difference determines the difference between
two memory-state objects. It detects any objects that were not deallocated from the
heap between the beginning and end memory-state snapshots.

.. To dump memory statistics

• The following example (continuing the example from the previous section) shows
how to call DumpStatistics to get information about the objects that have not been
deallocated:

if(diffMemState.Difference(oldMemState. newMemState))
{

TRACE("Memory leaked!\n");
diffMemState.DumpStatistics();

A sample dump from the example above is shown here:

o bytes in 0 Free Blocks
22 bytes in 1 Object Blocks
45 bytes in 4 Non-Object Blocks
Largest number used: 67 bytes
Total allocations: 67 bytes

• The first line describes the number of blocks whose deallocation was delayed if
afxMemDF was set to delayFreeMemDF. For a description of afxMemDF,
see the procedure "To select specific memory diagnostic features with
afxMemDF" presented under Memory Diagnostics.

• The second line describes how many objects remain allocated on the heap.

• The third line describes how many non-object blocks (arrays or structures
allocated with new) were allocated on the heap and not deallocated.

Diagnostics

367

Diagnostics

• The fourth line gives the maximum memory used by your program at anyone
time.

• The last line lists the total amount of memory used by your program.

See Also Diagnostics: Dumping All Objects, Diagnostics: Tracking Memory
Allocations

In the Class Library Reference: AfxEnableMemoryTracking, CMemoryState

Diagnostics: Dumping All Objects

368

This article explains how to obtain a diagnostic dump of all objects in your program.
Topics include:

• Performing an object dump

• Interpreting an object dump

For information on dumping C run-time objects, see Using the Debug Heap and
_ CrtSetDbgFlag in Chapter 4, Debug Version of the C Run-Time Library, in the
Run-Time Library Reference.

DumpAllObjectsSince dumps out a description of all objects detected on the heap
that have not been deallocated. As the name implies, DumpAllObjectsSince dumps
all objects allocated since the last Checkpoint. However, if no Checkpoint has taken
place, all objects and non-objects currently in memory are dumped.

Note Before you can use MFC object dumping, you must enable diagnostic tracing. See the
Note in the article Diagnostics.

Performing an Object Dump
~ To dump aU objects

• Expanding on the example shown in Detecting a Memory Leak in the article
Diagnostics: Detecting Memory Leaks, the following code dumps all objects that
have not been deallocated when a memory leak is detected:

if(diffMemState.Difference(oldMemState. newMemState))
{

}

TRACE("Memory leaked!\n");
diffMemState.DumpAllObjectsSince();

A sample dump from the preceding example is shown here:

Dumping objects -)

{5} strcore.cpp(80) : non-object block at $00A7521A. 9 bytes long
{4} strcore.cpp(80) : non-object block at $00A751F8. 5 bytes long
{3} strcore.cpp(80) : non-object block at $00A751D6. 6 bytes long
{2} a CPerson at $51A4

Last Name: Smith
First Name: Alan
Phone #: 581-0215

{I} strcore.cpp(80) : non-object block at $00A7516E, 25 bytes long

The numbers in braces at the beginning of most lines specify the order in which
the objects were allocated. The most recently allocated object is displayed first.
You can use these ordering numbers to help identify allocated objects.

To set a breakpoint when a particular allocation occurs, first start your application in
the debugger. Set the global variable _ afxBreakAlloc to the number in braces
discussed earlier. This will set a conditional breakpoint in your application that will
trigger when the allocation you specify is being made. Looking at the call stack at
this point will tell you the path your program took to get to the specified allocation.

The C run-time library has a similar function, _ CrtSetBreakAlloc, that you can use
for C run-time allocations.

Interpreting an Object Dump
The preceding dump comes from the memory checkpoint example introduced in
Detecting a Memory Leak in the article Diagnostics: Detecting Memory Leaks.
Remember that there were only two explicit allocations in that program -one on the
frame and one on the heap:

II do your memory allocations and deal locations
CString s = "This is a frame variable":
II the next object is a heap object
CPerson* p = new CPerson("Smith", "Alan", "581-0215"):

Start with the CPerson object; its constructor takes three arguments that are pointers
to char. The constructor uses these arguments to initialize CString member variables
for the CPerson class. In the memory dump; you can see the CPerson object listed
along with three non-object blocks (3,4, and 5) that hold the characters for the
CString member variables. These memory blocks will be deleted when the destructor
for the CPerson object is invoked.

Block number 2 represents the CPerson object itself. After the CPerson address
listing, the contents of the object are displayed. This is a result of
DumpAIIObjectsSince calling the Dump member function for the CPerson object.

You can guess that block number 1 is associated with the CString frame variable
because of its sequence number and its size, which match the number of characters in
the frame CString variable. The allocations associated with frame variables are
automatically deallocated when the frame variable goes out of scope.

In general, you shouldn't worry about heap objects associated with frame variables
because they are automatically deallocated when the frame variables go out of scope.

Diagnostics

369

Diagnostics

370

In fact, you should position your calls to Checkpoint so that they are outside the
scope of frame variables to avoid clutter in your memory diagnostic dumps. For
example, place scope brackets around the previous allocation code, as shown here:

oldMemState.Checkpoint();
{

}

II do your memory allocations and deal locations
CString s - "This is a frame variable";
II the next object is a heap object
CPerson* p ~ new CPerson("Smith", "Alan", "581-0215");

newMemState.Checkpoint();

With the scope brackets in place, the memory dump for this example is as follows:

Dumping objects -)

{5} strcore.cpp(80) non-object block at $00A7521A, 9 bytes long
{4] strcore.cpp(80) non-object block at $00A751F8, 5 bytes long
{3} strcore.cpp(80) non-object block at $00A751D6, 6 bytes long
{2} a CPerson at $51A4

Last Name: Smith
First Name: Alan
Phone #: 581-0215

Notice that some allocations are objects (such as CPerson) and some are non-object
allocations. "Non-object allocations" are allocations for objects not derived from
CObject or allocations of primitive C types such as char, int, or long. If the
CObject-derived class allocates additional space, such as for internal buffers, those
objects will show both object and non-object allocations.

Notice that the memory block associated with the CString frame variable has been
deallocated automatically and does not show up as a memory leak. The automatic
deallocation associated with scoping rules takes care of most memory leaks associated
with frame variables.

For objects allocated on the heap, however, you must explicitly delete the object to
prevent a memory leak. To clean up the last memory leak in the previous example,
you can delete the CPerson object allocated on the heap, as follows:

II do your memory allocations and deal locations
CString s - hThis is a frame variable";
II the next object is a heap object
CPerson* p - new CPerson("Smith", "Alan", "581-0215");
delete p;

See Also Diagnostics: Detecting Memory Leaks

In the Run-Time Library Reference: _ CrtMemDumpAllObjectsSince

Diagnostics: Tracking Memory Allocations
The Microsoft Foundation Class Library (MFC) defines the macro DEBUG_NEW to
assist you in locating memory leaks. You can use DEBUG_NEW everywhere in your
program that you would ordinarily use the new operator.

Note As of MFC version 4.0, MFC uses the same debug heap and memory allocator as the C
Run-Time Library. For more information, see Chapter 4, Debug Version of the C Run-Time
Library, in the Run-Time Library Reference.

When you compile a Debug version of your program, DEBUG_NEW keeps track of
the filename and line number for each object that it allocates. Then, when you call
DumpAIlObjectsSince, as described in the article Diagnostics: Dumping All
Objects, each object allocated with DEBUG_NEW will be shown with the file and
line number where it was allocated, thus allowing you to pinpoint the sources of
memory leaks.

When you compile a Release version of your program, DEBUG_NEW resolves to a
simple new operation without the filename and line number information. Thus, you
pay no speed penalty in the Release version of your program.

~ To use DEBUG_NEW

• Define a macro in your source files that replaces new with DEBUG_NEW, as
shown here:

#define new DEBUG_NEW

Note While the framework uses DEBUG_NEW in debug builds, your code does not. You
must enable this feature as shown in this procedure.

You can then use new for all heap allocations. The preprocessor will substitute
DEBUG_NEW when compiling your code. In the Debug version of the library,
DEBUG_NEW will create debugging information for each heap block. In the
Release version, DEBUG_NEW will resolve to a standard memory allocation
without the extra debugging information.

Note You must place the #define statement after all statements that use the
IMPLEMENT_DYNCREATE or IMPLEMENT_SERIAL macros in your source module, or you
will get a compile-time error.

See Also Diagnostics: Detecting Memory Leaks

Dialog Boxes in OLE
While a user runs an OLE-enabled application, there are times when the application
needs information from the user in order to carry out the operation. The MFC OLE
classes provide a number of dialog boxes to gather the required information. This
article lists the tasks handled by the OLE dialog boxes and the classes needed to
display those dialog boxes. For full details on OLE dialog boxes and the structures

Dialog Boxes in OLE

371

Dialog Boxes in OLE

372

used to customize their behavior, see the Class Library Reference and see the User
Interface Dialog Help (OLE2UI.HLP) file included with the OLE SDK.

Insert Object This dialog box allows the user to insert newly created or existing
objects into the compound document. It also allows the user to choose to display
the item as an icon and enables the Change Icon command button. Display this
dialog box when the user chooses Insert Object from the Edit menu. Use the
COleInsertDialog class to display this dialog box.

Paste Special This dialog box allows the user to control the format used when
pasting data into a compound document. The user can choose the format of the
data, whether to embed or link the data, and whether to display it as an icon.
Display this dialog box when the user chooses Paste Special from the Edit menu.
Use the COlePasteSpecialDialog class to display this dialog box.

Change Icon This dialog box allows the user to select which icon is displayed to
represent the linked or embedded item. Display this dialog box when the user
chooses Change Icon from the Edit menu or chooses the Change Icon button in
either the Paste Special or Convert dialog boxes. Also display it when the user
opens the Insert Object dialog box and chooses Display as Icon. Use the
COleChangelconDialog class to display this dialog box.

Convert This dialog box allows the user to change the type of an embedded or
linked item. For example, if you have embedded a metafile in a compound
document and later want to use another application to modify the embedded
metafile, you can use the Convert dialog box. This dialog box is usually displayed
by choosing item type Object from the Edit menu and then, on the cascading
menu, choosing Convert. Use the COleConvertDialog class to display this dialog
box. For an example, run the MFC OLE sample OCLIENT.

Edit Links or Update Links The Edit Links dialog box allows the user to change
information about the source of a linked object. The Update Links dialog box
verifies the sources of all the linked items in the current dialog box and displays
the Edit Links dialog box if necessary. Display the Edit Links dialog box when the
user chooses Links from the Edit menu. The Update Links dialog box is usually
displayed when a compound document is first opened. Use either the
COleLinksDialog or the COleUpdateDialog class depending on which dialog
box you want to display.

Server Busy or Server Not Responding The Server Busy dialog box is displayed
when the user attempts to activate an item and the server is currently unable to
handle the request, usually because the server is in use by another user or task.
The Server Not Responding dialog box is displayed if the server does not respond
to the activation request at all. These dialog boxes are displayed via
COleMessageFilter, based on an implementation of the OLE interface
IMessageFilter, and the user can decide whether to attempt the activation request
again. Use the COleBusyDialog class to display this dialog box.

Drag and Drop (OLE)

DocumentNiew Architecture
For general information, see Chapter 1, Using the Classes to Write Applications for
Windows, and Chapter 3, Working with Frame Windows, Documents, and Views.

See Also MFC: Using Database Classes with Documents and Views, MFC: Using
Database Classes Without Documents and Views

Drag and Drop (OLE)
The drag-and-drop feature of OLE is primarily a shortcut for copying and pasting
data. When you use the Clipboard to copy or paste data, a number of steps are
required. You select the data, choose Cut or Copy from the Edit menu, move to the
destination file, window or application, place the cursor in the desired location, and
choose Paste from the Edit menu.

OLE drag and drop is different from File Manager's drag-and-drop mechanism,
which can only handle filenames and is designed specifically to pass filenames to
applications. OLE drag and drop is much more general. It allows you to drag and
drop any data that could also be placed on the Clipboard.

When you use OLE drag and drop, you remove two steps from the process. You select
the data from the source window (the "drop source"), drag it to the desired
destination (the "drop target"), and drop it by releasing the mouse button. The
operation eliminates the need for menus and is quicker than the copy/paste sequence.
The only requirement is that both the drop source and drop target must be open and
at least partially visible on the screen.

U sing OLE drag and drop, data can be transferred from one location to another
within a document, between different documents, or between applications. It can be
implemented in either a container or a server application, and any application can be
a drop source, a drop target, or both. If an application has both drop-source and drop
target support implemented, drag and drop is enabled between child windows, or
within one window. This feature can make your application much easier to use.

If you only want to use the drag-and-drop capabilities of OLE, see the article Drag
and Drop: Customizing. You can use the techniques explained in that article to make
non-OLE applications drop sources. The article Drag and Drop: Implementing a
Drop Target describes how to implement drop-target support for both OLE and non
OLE applications. It will also be helpful to to examine the MFC OLE samples
OCLIENT and HIERSVR.

If you have not read the Data Objects and Data Sources (OLE) family of articles, you
may want to do so now. These articles explain the fundamentals of data transfer, and
how to implement it in your applications.

For more information about drag and drop, see the following articles:

• Drag and Drop: Implementing a Drop Source

373

Drag and Drop (OLE)

• Drag and Drop: Implementing a Drop Target

• Drag and Drop: Customizing

See Also Data Objects and Data Sources (OLE)

Drag and Drop: Implementing a Drop Source
This article explains how to get your application to provide data to a drag-and-drop
operation.

Basic implementation of a drop source is relatively simple. The first step is to
determine what events begin a drag operation. Recommended user interface
guidelines define the beginning of a drag operation as the selection of data and a
WM _ LBUTTONDOWN event occurring on a point inside the selected data. The
MFC OLE samples OCLIENT and HIERSVR follow these guidelines.

If your application is a container and the selected data is a linked or an embedded
object of type COleClientltem, call its DoDragDrop member function. Otherwise,
construct a COleDataSource object, initialize it with the selection, and call the data
source object's DoDragDrop member function. If your application is a server, use
COleServerItem::DoDragDrop. For information about customizing standard drag
and-drop behavior, see the article Drag and Drop: Customizing.

If DoDragDrop returns DROPEFFECT_MOVE, you should delete the source data
from the source document immediately. No other return value from DoDragDrop has
any effect on a drop source.

See Also Drag and Drop: Implementing a Drop Target, Drag and Drop:
Customizing, Data Objects and Data Sources: Creation and Destruction, Data Objects
and Data Sources: Manipulation

In the Class Library Reference: COleDataSource::DoDragDrop,
COleClientltem: : DoDragDrop, CView: :OnDragLeave

Drag and Drop: Implementing a Drop Target

374

This article outlines how to make your application a drop target. Implementing a
drop target takes slightly more work than implementing a drop source, but it's still
relatively simple. These techniques also apply to non-OLE applications.

~ To implement a drop target

1 Add a member variable to each view in the application that you want to be a drop
target. This member variable must be of type COleDropTarget or a class derived
from it.

2 From your view class's function that handles the WM_ CREATE message
(typically OnCreate), call the new member variable's Register member function.
Revoke will be called automatically for you when your view is destroyed.

Drag and Drop (OLE)

3 Override the following functions. If you want the same behavior throughout your
application, override these functions in your view class. If you want to modify
behavior in isolated cases or want to enable dropping on non-CView windows;
override these functions in your COleDropTarget-derived class.

Override To allow

OnDragEnter

OnDragLeave

OnDragOver

Override

OnDrop

OnScrollBy

Drop operations to occur in the window. Called when the
cursor first enters the window.

Special behavior when the drag operation leaves the
specified window.

Drop operations to occur in the window. Called when the
cursor is being dragged across the window.

To allow

Handling of data being dropped into the specified
window.

Special behavior for when scrolling is necessary in the
target window.

See the MAINVIEW.CPP file that is part of the MFC OLE sample OCLIENT for an
example of how these functions work together.

See Also Drag and Drop: Implementing a Drop Source, Data Objects and Data
Sources: Creation and Destruction, Data Objects and Data Sources: Manipulation

In the Class Library Reference: COleDropTarget

Drag and Drop: Customizing
The default implementation of the drag-and-drop feature is sufficient for most
applications. However, some applications may require that this standard behavior be
changed. This article explains the steps necessary to change these defaults. In
addition, you can use this technique to establish applications that do not support
compound documents as drop sources.

If you are customizing standard OLE drag-and-drop behavior, or you have a non
OLE application, you must create a COleDataSource object to contain the data.
When the user starts a drag-and-drop operation, your code should call the
DoDragDrop function from this object instead of from other classes that support
drag-and-drop operations.

Optionally, you can create a COleDropSource object to control the drop and override
some of its functions depending on the type of behavior you want to change. This
drop-source object is then passed to COleDataSource: : DoDragDrop to change the
default behavior of these functions. These different options allow a great deal of
flexibility in how you support drag-and-drop operations in your application. For more
information about data sources, see the article Data Objects and Data Sources (OLE).

You can override the following functions to customize drag-and-drop operations:

375

Driver Manager, ODBC

Override

OnBeginDrag

GiveFeedback

QueryContinueDrag

To customize

How dragging is initiated after you call DoDragDrop.

Visual feedback, such as cursor appearance, for different drop
results.

The termination of a drag-and-drop operation. This function
enables you to check modifier key states during the drag
operation.

See Also Drag and Drop: Implementing a Drop Source

In the Class Library Reference: COleDropSource, COleDataSource

Driver Manager, ODBC
See the article ODBC.

Driver, ODBC
For information on drivers in general, see the article ODBC.

For a list of ODBC drivers included in this version of Visual C++ and for information
about obtaining additional drivers, see the article ODBC Driver List.

Drop Source
See the article Drag and Drop: Implementing a Drop Source.

Drop Target
See the article Drag and Drop: Implementing a Drop Target.

376

Dynamic-Link Libraries (DLLs)

Dynamic-Link Libraries (D LLs)
A "dynamic-link library" (DLL) is a binary file that acts as a shared library of
functions that can be used simultaneously by multiple applications. DLLs are used for
a variety of reasons, primarily for either:

• Sharing common code between different executable files.

-or-

• Breaking an application into separate components, thus allowing easy upgrades.

The Microsoft Foundation Class Library (MFC) supports three different DLL
development scenarios:

• Building a regular DLL that statically links MFC.

• Building a regular DLL that dynamically links MFC.

• Building an extension DDL. These always dynamically link MFC.

This article describes:

• Regular DLLs, Statically Linked

• Regular DLLs, Dynamically Linked

• Extension DLLs, Dynamically Linked

• Other DLL Topics

Note In Visual C++ version 4.0, the term "USRDLL" is obsolete. In earlier versions, USRDLL
described DLLs that used MFC internally, but typically export functions using the standard "C"
interface. USRDLLs could be used by either MFC or non-MFC applications. In version 4.0,
such DLLs are called "Regular DLLs." Regular DLLs, Statically Linked to MFC have the same
characteristics as the former USRDLL. .

Regular DLLs, Statically Linked
Use AppWizard to create a starting point for a Regular DLL that statically links
MFC. In MFC AppWizard (DLL) Step 1 of 1, select Regular DLL With MFC
Statically Linked. For more information on this type of DLL, see the article DLLs:
Building and Using the Static Link Version of the Regular DLL.

377

Dynamic-Link Libraries (DLLs)

378

If your DLL is statically linked to MFC, functions in your DLL can be called by any
Win32 application, as well as by programs that also use MFC. Before version 4.0 of
MFC, USRDLLs provided this type of functionality. Special variants of the MFC
static link libraries were used when building USRDLLs. These variants no longer
exist. To create your statically linked Regular DLL, use the standard MFC static link
libraries, which are named according to the convention described in the article DLLs:
Naming Conventions.

In Visual C++ version 4.0, you can now dynamically link your Regular DLL to a
shared MFC DLL. By dynamically linking to the MFC DLL, you can share the class
library between multiple executable files to save disk and memory usage. For more
information about this type of DLL, see the section Regular DLLs, Dynamically
Linked, also, see the article DLLs: Building and Using the Shared Version of the
Regular DLL.

Regular DLLs, Dynamically Linked
Use AppWizard to create a starting point for a Regular DLL that dynamically links
MFC. In MFC AppWizard (DLL) Step 1 of 1, select Regular DLL Using Shared
MFC DLL. For more information on this type of DLL, see the article DLLs: Building
and Using the Shared Version of the Regular DLL.

If your Regular DLL is dynamically linked to the shared MFC DLL, functions in your
DLL can be called by any Win32 application, as well as by programs that also use
MFC.

The MFC libraries needed to build this type of DLL follow the naming convention
described in the article DLLs: Naming Conventions.

If you are building a C++ extension to MFC and wish to put it in a DLL, you must
create an Extension DLL. For more information about Extension DLLs, see the
section Extension DLLs, Dynamically Linked and the article DLLs: Building and
Using an Extension DLL.

Extension DLLs, Dynamically Linked
Use AppWizard to create a starting point for an Extension DLL. In MFC AppWizard
(DLL) Step 1 of 1, select MFC Extension DLL (Using Shared MFC DLL). For more
information on this type of DLL, see the article DLLs: Building and Using an
Extension DLL.

Before version 4.0 of MFC, this type of DLL was called an AFXDLL. AFXDLL
refers to the _ AFXDLL preprocessor symbol that is defined when building the DLL.

By dynamically linking to the AFXDLL, your DLL can derive new custom classes
from MFC in the shared DLL, and then offer this "extended" version of MFC to
applications that call your DLL. A DLL built and used in this manner is called an
"Extension DLL." Note that functions in an Extension DLL can only be called by
MFC applications that also dynamically link to MFC. To create a DLL that

Dynamic-Link Libraries (DLLs)

dynamically links MFC and can be called by non-MFC applications, see the section
Regular DLLs, Dynamically Linked, and the article DLLs: Building and Using the
Shared Version of the Regular DLL.

The import libraries for the shared version of MFC are named according to the
convention described in the article DLLs: Naming Conventions. Visual c++ supplies
prebuilt versions of the MFC DLLs, plus a number of non-MFC DLLs that you can
use and distribute with your applications. These are documented in REDISTRB.WRI,
which is found in the REDIST directory on the Visual C++ CD-ROM.

Other Dll Topics
The remaining articles in this group explain how to build and use each version of the
MFC DLLs and how to follow the library naming convention:

• DLLs: Using the Shared AFXDLL Version ofMFC

• DLLs: Building and Using an Extension DLL

• DLLs: Building and Using the Static Link Version of the Regular DLL

• DLLs: Building and Using the Shared Version of the Regular DLL

• DLLs: Programming Tips

• DLLs: Naming Conventions

• DLLs: Redistribution

For more information, also see Creating DLLs for Win32 in Chapter 4 of
Programming Techniques, and Dynamic-Link Libraries in the Win32 SDK.

DLLs: Using the Shared AFXDLL Version of MFC
This article describes the AFXDLL shared version of MFC, and when and how to use
it in your applications. For additional information on using this shared DLL version
of MFC with your DLL, see the articles DLLs: Building and Using the Shared
Version of the Regular DLL and DLLs: Building and Using an Extension DLL.

The entire Microsoft Foundation Class Library (MFC) is provided in a set of
redistributable DLLs. This enables applications to access MFC functionality by
dynamically linking to these DLLs. This architecture is particularly useful in two
situations: sharing the class library between multiple executable files to save disk
space and memory usage and building MFC Extension DLLs.

If you are building an application that consists of multiple executable files, all of
which are written using MFC, you can save a significant amount of disk and memory
space by using this shared version of the class library. The only disadvantage is that
you must distribute the shared DLL MFCxO.DLL (or another similar file) with your
application. See the article DLLs: Naming Conventions for a complete list of MFC
DLLs.

Note Applications created with AppWizard will use this shared DLL version of MFC by default.

379

Dynamic-Link Libraries (DLLs)

If you are building an extension to MFC and wish to put it in a DLL, you must use
the AFXDLL version of the class library. See the article DLLs: Building and Using
an Extension DLL.

Using the Shared AFXDLL with Your Application
Any application that uses the shared AFXDLL version of MFC must be an MFC
application - the application must have a CWinApp-derived object.

In addition, you must choose Use MFC In A Shared DLL. AppWizard sets this option
for you if you choose Use MFC In A Shared DLL when creating an AppWizard
executable. You can change this option on the General tab in the Project Settings
dialog box.

Rebuilding the Shared AFXDLL
The AFXDLL version of MFC can be rebuilt. Normally this would be done only if
you modify the MFC source code, or if you need to build MFC with special compiler
options. For information on how to do this, see the README. TXT and MAKEFILE
files in the MF~RC directory. If you modify and rebuild the AFXDLL version of
MFC, you must rename the newly built DLL to something other than MFCxO.DLL to
reflect that it has been modified. Otherwise, applications that depend on this DLL
could stop functioning correctly.

For more information, also see Creating DLLs for Win32, in Chapter 4 of
Programming Techniques, and Dynamic-Link Libraries in the Win32 SDK.

See Also DLLs: Naming Conventions

DLLs: Building and Using an Extension DLL

380

An MFC Extension DLL is a DLL that typically implements reusable classes derived
from the existing Microsoft Foundation Class Library classes. Extension DLLs can
also be used for passing MFC-derived objects between the application and the DLL.
This article describes how to build and use these DLLs. Topics include:

• Building an extension DLL

• Exporting classes without using decorated names

• Exporting symbols by ordinal

• Calling an extension DLL from your application

An MFC extension DLL uses a shared version of MFC in the same wayan
application uses the shared AFXDLL version of MFC, as described in the article
DLLs: Using the Shared AFXDLL Version ofMFC, with a few additional
considerations:

• It does not have a CWinApp-derived object.

Dynamic-Link Libraries (DLLs)

• It calls AfxlnitExtensionModule in its DIIMain function. The return value of this
function should be checked. If a zero value is returned from
AfxlnitExtensionModule, return 0 from your DllMain function.

• It will create a CDynLinkLibrary object during initialization if the extension
DLL wishes to export CRuntimeClass objects or resources to the application.

For an example of a DLL that fulfills the basic requirements of an extension DLL, see
the MFC Advanced Concepts sample DLLHUSK. In particular, look at the
TESTDLL1.CPP and TESTDLL2.CPP files.

Building an Extension Dll
To create an Extension DLL, do the following:

• When creating a new project, choose MFC AppWizard (DLL) as your target type.

• In AppWizard, select Extension DLL (Using Shared MFC DLL).

In response, AppWizard sets the option Use MFC In A Shared DLL. You can change
this option on the General tab of the Project Settings dialog box.

When you create your extension DLL, you must also create a C++ header file (.R)
and a definitions file (.DEF) for the DLL so applications can access its contents.
There are two methods for creating these two files. The first method exports entire
classes without requiring decorated names for that class in the .DEF file. The second
method requires putting decorated names in a .DEF file. This latter method is more
efficient as you can export the symbols by ordinal. MFC uses this method.

Exporting Classes Without Using Decorated Names
In the header file for your DLL, add the AFX _EXT_CLASS keyword to the
declaration of your class as follows:

class AFX_EXT_CLASS CMyClass : public CDocument
{

II <body of class>
} ;

This allows you to export entire classes without placing the decorated names for all
that class's symbols in the .DEF file. This method is used by the MFC Advanced
Concepts sample DLLHUSK.

Exporting Symbols by Ordinal
This method requires that you place the decorated names for all external symbols in
your .DEF file. This is more efficient, but is useful if you want to export only a small
percentage of the symbols in the DLL.

To use this method, place the following code at the beginning and end of your header
file:

381

Dynamic-Link Libraries (DLLs)

#undef AFX_DATA
#define AFX_DATA AFX_EXT_DATA
II <body of your header file>
#undef AFX_DATA
#define AFX_DATA

These four lines ensure that your code will be compiled correctly for an extension
DLL. Leaving out these four lines may cause your DLL to either compile or link
incorrectly.

For information on how to export symbols from your extension DLL, see Creating
DLLs for Win32, in Chapter 4 of Programming Techniques.

Calling an Extension DLL from Your Application
Applications that use MFC Extension DLLs have the same restrictions as
applications that use the AFXDLL version of MFC: they must be an MFC application
containing a CWinApp-derived object.

To build an application that uses an MFC Extension DLL, you must choose Use MFC
In A Shared DLL. AppWizard sets this option for you if you choose Use MFC In A
Shared DLL when creating an AppWizard executable. You can change this option on
the General tab in the Project Settings dialog box.

After you have either run App Wizard or made the necessary change to your project,
add the import library for the Extension DLL to your list of libraries to link with in
the Object/Library Modules edit box on the Linker tab in the Project Settings dialog
box. Make sure you put the debug version of the import library in the debug settings
and the release version in the release settings.

The only other change you must make is to add the include file for the DLL to any
source files that use the DLL.

For more information, also see Dynamic-Link Libraries in the Win32 SDK.

See Also DLLs: Naming Conventions

DLLs: Building and Using the Static Link Version of the
RegularDLL

382

Note In Visual C++ version 4.0, the term "USRDLL" is obsolete. In earlier versions, USRDLL
described DLLs that used MFC internally, but typically exported functions using the standard
"C" interface. USRDLLs could be used by either MFC or non-MFC applications. In version 4.0,
such DLLs are called "Regular DLLs." Regular DLLs, statically linked to MFC have the same
characteristics as the former USRDLL.

This article explains how to build a DLL that Gtatically links MFC and how to use it
from your application.

Dynamic-Link Libraries (DLLs)

A Regular DLL can be called by any Win32 application. Symbols are usually
exported from a Regular DLL using the standard "C" interface. The declaration of a
function exported from a static link Regular DLL would look something like this:

extern "e" EXPORT YourExportedFunction();

Building a DLL Using the Static Link Regular DLL Version
ofMFC
To create a DLL that statically links to MFC, do the following:

• When creating a new project, choose MFC AppWizard (DLL) as your target type .

• In AppWizard, select Regular DLL With MFC Statically Linked.

In response, AppWizard sets the option Use MFC In A Static Library. You can
change this option on the General tab of the Project Settings dialog box.

A DLL that is statically linked to MFC cannot also dynamically link to the shared
MFCDLLs.

For more information about dynamically linking a DLL to the MFC, see the articles
DLLs: Building and Using the Shared Version of the Regular DLL and Extension
DLLs, Dynamically Linked.

Calling a DLL that is Statically Linked to the Static Link
Version of MFC
A DLL that is statically linked to MFC is dynamically bound to an application just
like any other DLL. You must add the import library of the DLL to the list of libraries
you link with the application. Or, you can dynamically link to the DLL by calling
LoadLibrary (see the Win32 SDK) from your application.

When you build your DLL, Visual C++ also builds an import library for you. This
library has the same base name as your DLL, but has the extension .LIB. When you
wish to implicitly link with your DLL, add the import library to the Object/Library
Modules edit box on the Linker tab in the Project Settings dialog box.

For more information, also see Creating DLLs for Win32, in Chapter 4 of
Programming Techniques, and Dynamic-Link Libraries in the Win32 SDK.

See Also DLLs: Naming Conventions

DLLs: Building and Using the Shared Version of the
Regular DLL

In Visual C++ version 4.0, you can now dynamically link your Regular DLL to a
shared version of MFC. In earlier versions of MFC, a DLL that dynamically linked
MFC had to be an Extension DLL and, therefore, could only be called by MFC

383

Dynamic-Link Libraries (DLLs)

184

applications. This article explains how to build a Regular DLL that dynamically links
to the shared MFC DLLs and how to use it from your application.

The entire Microsoft Foundation Class Library (MFC) is provided in a set of
redistributable DLLs. This enables applications to access MFC functionality by
dynamically linking to these DLLs. This architecture is particularly useful for sharing
the class library between multiple executable files to save disk space and minimize
memory usage.

If you are building an application that consists of multiple executable files, either
written using MFC or Win32, you can save a significant amount of disk and memory
space by using this shared version of the class library. The only disadvantage is that
you must distribute the shared DLLs MFCxO.DLL and MSVCRTxO.DLL (or similar
files) with your application. See the article DLLs: Naming Conventions for a
complete list of MFC DLL libraries.

If you intend to create extensions to MFC and offer them in your DLL, you must
create an Extension DLL. For more information about Extension DLLs, see DLLs:
Building and Using an Extension DLL.

Note The only difference between a DLL that statically links to MFC and one that dynamically
links to MFC in this fashion is that they use different versions of the MFC implementation.
They both still expose a "C" interface and can be called from any application, that is, either
MFC or non-MFC applications.

Building a Dll Using the Shared Regular Dll Version of
MFC
To create a Regular DLL that dynamically links to MFC, do the following:

• When creating a new project, choose MFC AppWizard (DLL) as your target type .

• In AppWizard, select Regular DLL Using MFC DLL.

In response, AppWizard sets the option Use MFC In A Shared DLL. You can change
this option on the General tab of the Project Settings dialog box.

Calling a Dll that is Dynamically linked to the Shared
Regular Dll Version of MFC
After you have either run App Wizard or made the necessary change to your project,
add the import library for the DLL to your list of libraries to link with in the
Object/Library Modules edit box on the Linker tab in the Project Settings dialog box.
Make sure you put the debug version of the import library in the debug settings and
the release version in the release settings. The only other change you must make is to
add the include file for the DLL to any source files that use the DLL.

For more information, also see Creating DLLs for Win32, in Chapter 4 of
Programming Techniques, and Dynamic-Link Libraries in the Win32 SDK.

Dynamic-Link Libraries (DLLs)

See Also DLLs: Naming Conventions, DLLs: Using the Shared AFXDLL Version of
MFC, DLLs: Building and Using an Extension DLL.

DLLs: Programming Tips
This article covers topics specific to writing and using DLLs with MFC. You should
read Chapter 4, Creating DLLs for Win32, in Programming Techniques before
reading this article. The topics in this article build on information in that chapter.
Topics include:

• Initialization and termination

• OLE and DLLs

• OLE automation in a DLL

• Multithreading and DLLs

• Passing object pointers between applications and extension DLLs

• DLL sample programs

Initialization and Termination
The only special initialization case that you should be aware of is that MFC
Extension DLLs need to do two things in their DIlMain function:

• Call AfxlnitExtensionModule and check the return value.

• Create a CDynLinkLibrary object if the DLL will be exporting CRuntimeClass
objects or has its own custom resources.

Note In Visual C++ version 4.0, the terminology "USRDLL" is obsolete. In version 4.0, create
a Regular DLL that statically links MFC to obtain the same functionality.

DLLs statically linked to MFC should perform their initialization and termination
tasks in the same location as an MFC application: in Initlnstance and Exitlnstance.

OLE and Dlls
OLE allows object servers to be completely implemented inside a DLL. This type of
server is called an "in-proc server." MFC does not completely support in-proc servers
for all the features of visual editing, mainly because OLE does not provide a way for a
server to hook into the container's main message loop. MFC requires access to the
container application's message loop to handle accelerator keys and idle-time
processing.

If you are writing an OLE Automation server and your server has no user interface,
you can make your server an in-proc server and put it completely into a DLL.

For more information, see the article Automation Servers.

385

Dynamic-Link Libraries (DLLs)

386

OLE Automation in a DLL
When you choose the OLE Automation option in App Wizard, the wizard provides
you with the following:

• A starter object description language (.ODL) file

• An include directive in the STDAFX.H file for AFXOLE.H

• An implementation of the DlIGetClassObject function, which calls the
AfxDlIGetClassObject function

• An implementation of the DlICanUnloadNow function, which calls the
AfxDlICanUnloadNow function

• An implementation of the DlIRegisterServer function, which calls the
COleObjectFactory:: U pdateRegistry All function

Multithreading and DLLs
Note In Visual C++ version 4.0, the terminology "USRDLL" is obsolete. In version 4.0, create
a Regular DLL that statically links MFC to obtain the same functionality.

A Regular DLL should keep track of multiple threads by calling TlsAlIoc and
TlsGetValue (see the Win32 SDK) in its InitInstance function. This method allows
the DLL to keep track of thread-specific data without worrying about what code was
executed before the DLL was loaded. For more information on thread local storage
(TLS) see Chapter 43, Processes and Threads, in the Win32 SDK.

Extension DLLs have another method available to handle multithreading in addition
to the Regular DLL method. The DLL can handle the DLL _THREAD_ATTACH
and DLL_THREAD_DETACH cases in its DlIMain function. These cases are
passed to DlIMain when threads attach and detach from the DLL. Calling: :TlsAlIoc
when a DLL is attaching allows the DLL to maintain TLS indices for every thread
attached to the DLL.

A sample initialization function that handles these cases is included in Section
50.2.5, Using Thread Local Storage in a Dynamic-Link Library, in the Win32 SDK.
(The sample actually names the function LibMain, but MFC requires that this
function be named DllMain.)

Passing Object Pointers Between Applications and
Extension DLLs
If you need to pass an MFC or MFC-derived object pointer to or from an MFC DLL,
the DLL should be an Extension DLL. The member functions associated with the
passed object exist in the module where the object was created. Since these functions
are properly exported when using the shared DLL version of MFC, you can freely
pass MFC or MFC-derived object pointers between an application and the Extension
DLLs it loads.

Dynamic-Link Libraries (DLLs)

DLL Sample Programs
Two MFC Advanced Concepts samples dealing with DLLs are included with Visual
C++:

DLLHUSK Demonstrates how to write, build, and use Extension DLLs.

DLLTRACE Demonstrates how to write, build, and use Regular DLLs.

Examining the source code and makefiles for these samples can give you pointers for
building your DLLs.

For more information, also see Creating DLLs for Win32, in Chapter 4 of
Programming Techniques, and Dynamic-Link Libraries in the Win32 SDK.

See Also Multithreading, OLE Overview, Dynamic-Link Libraries (DLLs).

DLLs: Naming Conventions
The DLLs and libraries included in MFC version 4.0 follow a structured naming
convention. This makes it easier to know which DLL or library you should be using
for which purpose. The naming convention for libraries is fully described in the
article Library Versions. This article describes the naming conventions for files
required to build and use DLLs with MFC version 4.0.

The AFXDLL version of MFC comes in a number of different forms. These forms are
named according to the convention MFC[OIDIN]xO[UHD].DLL (where x is the MFC
version number) as detailed in Table 1. The import libraries needed to build
applications or extension DLLs that use these DLLs have the same base name as the
DLL but have a .LIB extension.

Table 1 AFXDLL Naming Convention

DLL

MFCxO.DLL

MFCxOU.DLL

MFCxOD.DLL

MFCxOUD.DLL

MFCOxOD.DLL

MFCOxOUD.DLL

MFCDxOD.DLL

MFCDxOUD.DLL

MFCNxOD.DLL

MFCNxOUD.DLL

MFCSxO.LIB

MFCSxOD.LIB

Description

MFC DLL, ANSI Release version

MFC DLL, Unicode Release version

MFC DLL, ANSI Debug version

MFC DLL, Unicode Debug version

MFC DLL for OLE, ANSI Debug version

MFC DLL for OLE, Unicode Debug version

MFC DLL for database, ANSI Debug version

MFC DLL for database, Unicode Debug version

MFC DLL for network, ANSI Debug version

MFC DLL for network, Unicode Debug version

MFC DLL, statically linked code, Release version

MFC DLL, statically linked code, Debug version

387

Dynamic-Link Libraries (DLLs)

Note The OLE control DLLs OC[D]xO[U][D].DLL are gone. OLE control support is now
included in the MFC DLL listed in the table above.

Note The MFCSxO[D].LlB libraries are used in conjunction with the DLL versions of MFC.
These library files contain code that must be statically linked in the application or DLL.

If you are dynamically linking to the AFXDLL version of MFC, whether it is from an
application or from an extension DLL, you must include MFC40.DLL with your
product. If you require Unicode support in your application, include MFC40U.DLL
instead.

Note The MFC40.DLL and MFC40U.DLL Retail version of the DLLs contain OLE, database,
and network support in a single DLL. The Debug version maintains separate DLLs for these
functional areas.

Note In Visual C++ version 4.0, the terminology "USRDLL" is obsolete. In version 4.0, create
a Regular DLL that statically links MFC to obtain the same functionality.

If you are statically linking your DLL to MFC, you must link it with one of the static
MFC libraries. These versions are named according to the convention
[NIU]AFXCW[D].LIB as listed in Table 2.

Table 2 Static Link Regular Dll Naming Conventions

Dll

NAFXCW.LIB

NAFXCWD.LIB

UAFXCW.LIB

UAFXCWD.LIB

Description

MFC Static Link Library, Release version

MFC Static Link Library, Debug version

MFC Static Link Library with Unicode support, Release version

MFC Static Link Library with Unicode support, Debug version

Note In earlier version of MFC (before version 4.0), there were special DLL variants of the
libraries with names in the form [NIU]AFXDW[D].LlB. These variants no longer exist. Use the
versions listed in the table above.

For a list of DLLs included with Visual C++ version 4.0 that can be distributed with
your applications, see the file REDISTRB.WRI in the REDIST directory on the
Visual C++ CD.

See Also Library Versions

DLLs: Redistribution

388

Applications built with Microsoft Visual C++ may require a number of supporting
dynamic-link libraries (DLLs), depending on the way the application was built. The
conditions under which you mayor may not redistribute these files are described in
the separate License Agreement included in the Visual C++ product. This article
details the DLLs that must be redistributed with different types of applications. The
article covers:

Dynamic-Link Libraries (DLLs)

• Categories of redistributable files

• Version checking of redistributable files

• MFC/other DLL files

• ODBC files

All Visual C++ redistributable files are located in REDIST on the Visual c++ version
4.0 CD. These files are not installed by Visual C++ Setup in a separate directory on
your hard disk. However, depending on the setup options you choose, Visual C++
Setup may install some of these files in your Windows System directory. When you
redistribute any of these files, you should copy them from the CD to your own
distribution disk image, rather than from your hard disk, to make sure you are
redistributing the correct version of the files.

Categories of Redistributable Files
Redistributable files may be categorized as follows:

• MFC/Other DLL files

• ODBC Files

Tables 1 and 2 list the files and gives a brief description of each.

Table 1 MFC/Other Files

File

\ANSl\CTL3D32.DLL

CTL3D32.DLL

MFCxO.DLL

MFCxOU.DLL

MSYCRTxO.DLL

Table 2 32·bit ODBC Files

File

_BOOTSTP.EXE

MSSETUP.EX

_MSSETUP.EXE

CTL3D32.DLL

DS16GT.DLL

DS32GT.DLL

INSTCAT.SQL

MSYCRT40.DLL

MSYCRTlO.DLL

ODBC.INF

Description

3D controls support DLL for ANSI (use with Win32s)

3D controls support DLL

MFC core code (MBCS-enabled)

MFC core code (Unicode-enabled)

Shared DLL version of C-runtime

Description

Used by ODBC setup

Used by ODBC setup

ODBC setup (same as SETUP.EXE)

3D controls support (required by ODBC)

ODBC driver setup 16-bit generic thunk DLL

ODBC driver setup 32-bit generic thunk DLL

SQL server stored procedures

See Caution below

U sed by ODBC setup

File list for the ODBC installer

389

Dynamic-Link Libraries (DLLs)

390

Table 2 32·bit ODSC Files (cont.)

File

ODBC16GT.DLL

ODBC32GT.DLL

ODBC32.DLL

ODBCCP32.CPL

ODBCCP32.DLL

ODBCCR32.DLL

ODBCINST.HLP

ODBCINT.DLL

SETUP.EXE

SETUP.LST

Description

ODBC 16-bit generic thunk DLL 16-bit

ODBC 32-bit generic thunk DLL 32-bit

32-bit ODBC driver manager

32-bit ODBC control panel component

32-bit ODBC installer/administrator

32-bit ODBC cursor library

ODBC 2.0 help file

ODBC error messages and dialog boxes

ODBC setup (run after MSVC 4.0 setup)

ODBC setup (same as SETUP.EXE)

Caution MSVCRTxO.DLL has the same name in Win32s and Visual C++ 4.0 They are
different files and you must redistribute the proper matching file for the intended target (Win32
or Win32s).

In addition, you must also redistribute DLLs to support specific OBDC drivers. The
SQL Server drivers are listed in Table 3. See ODBCJET.HLP in the REDIST
directory for the supporting files for other ODBC data sources, such as .MDB and
.DBF files.

Table 3 SQl Server ODSC Files

File

CTL3D32.DLL

DBNMPNTW.DLL

DRVSSRVR.HLP

SQLSRV32.DLL

Description

3D controls support (required by ODBC)

32-bit SQL Server named-pipes network library

32-bit SQL Server driver help file

32-bit SQL Server ODBC driver file

Note There are separate components needed for Win32s. These are found in the
\WIN32S\ODBC and \WIN32S\REDIST directories.

Version Checking of Redistributable Files
Because other applications may redistribute earlier or later versions of the same files
as redistributed with your application, it is important that you install newer versions
of the files over older versions on your user's system, but not older versions over
newer versions. Typically, version checking is the responsibility of your setup
program. If you do not have a setup program for your main application, then your
application must manually check the version when installing the redistributable files
on your user's system.

The programmatic technique for version checking varies, depending on which
category of file you are redistributing. Briefly, the version checking techniques are as
follows:

• For the MFC DLLs, use the version checking APIs available as a standard part of
the Win32 API. For more information, see Chapter 80, File Installation Library, in
the Win32 SDK documentation .

• For the ODBC files, see Chapter 19, Installing ODBC Software, and Chapter 20,
Configuring Data Sources, in the ODBC Programmer's Reference.

MFC/Other OLL Files
You can link your application with the MFC library either statically or dynamically.
For information on dynamically linking your application to the MFC library, see the
article Dynamic-Link Libraries (DLLs).

If you dynamically link your application to the MFC library, you will, at a minimum,
need to redistribute MFCxO[U].DLL and MSYCRTxO.DLL, where x is the version
number. MFCxO[U].DLL includes all of the basic framework classes. All MFC DLLs
use the shared version of the C run-time library; thus MSYCRTxO.DLL is required. If
your application uses the MFC database classes, such as CRecordset and
CRecordView, you will need to redistribute ODBC and any ODBC drivers that your
application uses.

If you redistribute any of these MFC DLLs, be sure you distribute the retail version
rather than the debug version. Debug versions of the DLLs may not be redistributed.
(Debug versions of the MFC DLLs have a trailing "D" in their file names, such as in
MFCxOD.DLL).

If you modify MFC in any way, you must rename the modified MFC DLL so that it
will not conflict with the MFC DLL that might be installed by other MFC
applications on your user's system. This is not a recommended procedure. For more
information, see Technical Note 33 under MFC in Books Online.

OOBC Files
Use the ODBC Installer DLL to install the ODBC files on your user's system from
your application's setup program. The redistributable files include the ODBC Driver
Manager and the various ODBC drivers included in REDIST.

For information on using the ODBC Installer DLL, and other important information
about installing ODBC files, see Chapter 19, Installing ODBC Software, and Chapter
20, Configuring Data Sources, in the ODBC Programmer's Reference.

See Also Dynamic-Link Libraries (DLLs)

Dynaset
This article describes dynasets and discusses their availability.

Dynaset

391

Dynaset

392

Note This article applies to the MFC OOSC classes, including CRecordset. For information
about dynasets in the OAO classes, see class CDaoRecordset. With OAO, you can open
dynaset-type recordsets.

A "dynaset" is a recordset with dynamic properties. During its lifetime, a recordset
object in dynaset mode (usually called simply a "dynaset") stays synchronized with
the data source in the following way. In a multiuser environment, other users may
edit or delete records that are in your dynaset or add records to the table your dynaset
represents. Records your application adds to or deletes from the recordset are
reflected in your dynaset. Records that other users add to the table will not be
reflected in your dynaset until you rebuild the dynaset by calling its Requery member
function. When other users delete records, MFC code skips over the deletions in your
recordset. Other users' editing changes to existing records are reflected in your
dynaset as soon as you scroll to the affected record.

Similarly, edits you make to records in a dynaset are reflected in dynasets in use by
other users. Records you add are not reflected in other users' dynasets until they
requery their dynasets. Records you delete are marked as "deleted" in other users'
recordsets. If you have multiple connections to the same database (multiple
CDatabase objects), recordsets associated with those connections have the same
status as the recordsets of other users.

Dynasets are most valuable when data must be dynamic, as, for example, in an airline
reservation system.

Important To use dynasets, you must have an OOSC driver for your data source that
supports dynasets, and the OOSC cursor library must not be loaded. See Availability of
Oynasets.

To specify that a recordset is a dynaset, pass CRecordset: :dynaset as the first
parameter to the Open member function of your recordset object.

Note For updatable dynasets, your OOSC driver must support either positioned update
statements or the ::SQLSetPos OOSC API function. If both are supported, MFC uses
::SQLSetPos for efficiency.

Availability of Dynasets
The MFC database classes support dynasets if the following requirements are met:

• The ODBC cursor library DLL must not be in use for this data source.

If the cursor library is used, it masks some functionality of the underlying ODBC
driver that is necessary for dynaset support. If you want to use dynasets (and your
ODBC driver has the functionality required for dynasets, as described in the rest of
this section), you can cause MFC not to load the cursor library when you create a
CDatabase object. For more information, see the article ODBC and the Open
member function of class CDatabase.

In ODBC tenninology, dynasets and snapshots are referred to as "cursors." A
cursor is a mechanism used for keeping track of its position in a recordset. For
more infonnation about cursors, see the ODBC SDK Programmer's Reference.

• The ODBC driver for your data source must support keyset-driven cursors.

Keyset-driven cursors manage data from a table by getting and storing a set of
keys. The keys are used to obtain current data from the table when the user scrolls
onto a particular record. To detennine whether your driver provides this support,
call the ::SQLGetInfo ODBC API function with the SQL_SCROLL_OPTIONS
parameter.

If you try to open a dynaset without keyset support, you get a CDBException with
the return code value AFX _ SQL _ERROR _ DYNASET _NOT_SUPPORTED.

• The ODBC driver for your data source must support extended fetching.

"Extended fetching" is the ability to scroll backward as well as forward over the
resulting records of your SQL query. To detennine whether your driver supports
this ability, call the ::SQLGetFunctions ODBC API function with the
SQL _API _ SQLEXTENDEDFETCH parameter.

If you want updatable dynasets (or snapshots, for that matter), your ODBC driver
must also support either:

• The ::SQLSetPos ODBC API function.

-or-

• Positioned updates.

The ::SQLSetPos function allows MFC to update the data source without sending
SQL statements. If this support is available, MFC uses it in preference to making
updates via SQL. To detennine whether your driver supports ::SQLSetPos, call
::SQLGetInfo with the SQL_POS_OPERATIONS parameter.

Positioned updates use SQL syntax (of the fonn WHERE CURRENT OF <cursorname»
to identify a particular row in the table on the data source. To detennine whether your
driver supports positioned updates, call ::SQLGetInfo with the
SQL _POSITIONED_STATEMENTS parameter.

Generally, MFC dynasets (but not forward-only recordsets) require an ODBC driver
with level 2 API confonnance. If the driver for your data source confonns to the level
1 API set, you can still use both updatable and read-only snapshots and forward-only
recordsets, but not dynasets. However, a level 1 driver can support dynasets if it
supports extended fetching and keyset-driven cursors. For more infonnation about
ODBC confonnance levels, see the article ODBC.

Note If you want to use both snapshots and dynasets, you must base them on two different
CDatabase objects (two different connections).

Dynaset

393

Dynaset

394

Unlike snapshots, which use intermediate storage maintained by the ODBC cursor
library, dynasets fetch a record directly from the data source as soon as you scroll to
it. This keeps the records originally selected by the dynaset synchronized with the
data source.

See the article ODBC Driver List for a list of ODBC drivers included in this version
of Visual C++ and for information about obtaining additional drivers.

Embedded OLE Item
See the article Activation.

Events
OLE controls use events to notify a container that something has happened to the
control. Common examples of events include clicks on the control, data entered using
the keyboard, and changes in the control's state. When these actions occur, the
control fires an event, to alert the container.

MFC supports two kinds of events: stock and custom. Stock events are those events
that class COleControl handles automatically. For a complete list of stock events, see
the article Events: Adding Stock Events to an OLE Control. Custom events allow a
control the ability to notify the container when an action specific to that control
occurs. Some examples would be a change in the internal state of a control or receipt
of a certain window message.

For your control to properly fire events, your control class must map each event of the
control to a member function that should be called when the related event occurs.
This mapping mechanism (called an "event map") centralizes information about the
event and allows ClassWizard to easily access and manipulate the control's events.
This event map is declared by the following macro, located in the header (.R) file of
the control class declaration:

DECLARE_EVENT_MAP()

Figure 1 shows the OLE Events tab in ClassWizard. You use this tab to add custom
and stock events.

Figure 1 The OLE Events Tab

Events

395

Events

Once the event map has been declared, it must be defined in your control's
implementation (.CPP) file. The following lines of code define the event map,
allowing your control to fire specific events:

BEGIN_EVENT_MAP(CSampleCtrl, COleControl)
//{{AFX_EVENT_MAP(CSampleCtrl)

//llAFX_EVENT_MAP
END_EVENT_MAP()

If you use ControlWizard to create the project, it automatically adds these lines. If
you do not use ControlWizard, you must add these lines manually.

With Class Wizard, you can add stock events supported by class COleControl or
custom events that you define. For each new event, Class Wizard automatically adds
the proper entry to the control's event map and the control's .ODL file.

Note When an event is fired, a limit of 15 parameters can be passed to the recipient. This
limitation is due to the MFC implementation of the IDispatch interface.

Two other articles discuss events in detail:

• Events: Adding Stock Events to an OLE Control

• Events: Adding Custom Events to an OLE Control

See Also OLE Controls, Methods

In the Class Library Reference: COleControl

Events: Adding Stock Events to an OLE Control

396

Stock events differ from custom events in that they are automatically fired by class
COleControl. COleControl contains predefined member functions that fire events
resulting from common actions. Some common actions implemented by
COleControl include single- and double-clicks on the control, keyboard events, and
changes in the state of the mouse buttons. Event map entries for stock events are
always preceded by the EVENT_STOCK prefix.

Stock Events Supported by ClassWizard
The COleControl class provides nine stock events, listed in Table 1. You can specify
the events you want in your control in the OLE Events tab in Class Wizard.

Table 1 Stock Events

Event

Click

DblClick

Error

KeyDown

KeyPress

KeyUp

Firing function

void FireClick()

void FireDblClick()

void FireError(SCODE scode,
LPCSTR lpszDescription, UINT
nHeipID = 0)

void FireKeyDown(short nChar, short
nShijtState)

void FireKeyPress(short* pnChar)

void FireKeyUp(short nChar, short
nShijtState)

MouseDown void FireMouseDown(short nButton,
short nShijtState, float x, float y)

MouseMove void FireMouseMove(short nButton,
short nShijtState, float x, float y)

MouseUp void FireMouseUp(short nButton, short
nShijtState, float x, float y)

Events

Comments

Fired when the control captures the mouse, any
BUTTONUP (left, middle, or right) message is
received, and the button is released over the control.
The stock MouseDown and MouseUp events occur
before this event.

Event map entry: EVENT_STOCK _ CLICK()

Similar to Click but fired when a
BUTTONDBLCLK message is received.

Event map entry: EVENT_STOCK_DBLCLICK()

Fired when an error occurs within your OLE control
outside of the scope of a method call or property
access.

Event map entry: EVENT_STOCK_ERROR()

Fired when a WM_SYSKEYDOWN or
WM_KEYDOWN message is received.

Event map entry: EVENT_STOCK _ KEYDOWN()

Fired when a WM _CHAR message is received.

Event map entry: EVENT_STOCK _ KEYPRESS()

Fired when a WM _ SYSKEYUP or WM _ KEYUP
message is received.

Event map entry: EVENT_STOCK_KEYUP()

Fired if any BUTTONDOWN (left, middle, or
right) is received. The mouse is captured
immediately before this event is fired.

Event map entry:
EVENT_STOCK _MOUSEDOWN()

Fired when a WM_MOUSEMOVE message is
received.

Event map entry:
EVENT_STOCK_MOUSEMOVE()

Fired if any BUTTONUP (left, middle, or right) is
received. The mouse capture is released before this
event is fired.

Event map entry: EVENT_STOCK_MOUSEUP()

Adding a Stock Event Using ClassWizard
Adding stock events requires less work than adding custom events because the firing
of the actual event is handled automatically by the base class, COleControl. The
following procedure adds a stock event to a control that was developed using
ControlWizard. The event, called KeyPress, fires when a key is pressed and the

397

Events

control is active. This procedure can also be used to add other stock events. Simply
substitute the desired stock event name for KeyPress.

~ To add the KeyPress stock event using ClassWizard

1 Load your control's project.

2 From the View menu, choose Class Wizard.

3 Choose the OLE Events tab.

4 Choose the name of your control class from the Class Name box.

5 Choose the Add Event button.

6 From the External Name box, select KeyPress.

7 Choose OK.

a Choose OK again to confirm your choices and exit ClassWizard.

ClassWizard Changes for Stock Events
Because stock events are handled by the control's base class, ClassWizard does not
change your class declaration in any way; it simply adds the event to the control's
event map and makes an entry in its .ODL file. The following line is added to the
control's event map, located in the control class implementation (.CPP) file:

EVENT_STOCK_KEYPRESS()

Adding this code fires a KeyPress event when a WM _ CHAR message is received
and the control is active. The KeyPress event can be fired at other times by calling its
firing function (for example, Fi reKeyPress) from within the control code.

ClassWizard adds the following line of code to the control's .ODL file:

[id(DISPID_KEYPRESS)] void KeyPress(short* KeyAscii);

This line associates the KeyPress event with its standard dispatch ID and allows the
container to anticipate the Key Press event.

See Also OLE Controls, Methods

In the Class Library Reference: COleControl

Events: Adding Custom Events to an OLE Control

398

Custom events differ from stock events in that they are not automatically fired by
class COleControl. A custom event recognizes a certain action, determined by the
control developer, as an event. The event map entries for custom events are
represented by the EVENT _CUSTOM macro. The following section implements a
custom event for an OLE control project that was created using ControlWizard.

Events

Adding a Custom Event with ClassWizard
The following procedure adds a specific custom event, ClickIn. You can use this
procedure to add other custom events. Simply substitute your custom event name and
its parameters for the ClickIn event name and parameters.

~ To add the Clickln custom event using ClassWizard

1 Load your control's project.

2 From the View menu, choose Class Wizard.

3 Choose the OLE Events tab.

4 Choose the name of the control class from the Class Name box.

5 Choose the Add Event button.

Class Wizard displays the Add Event dialog box, as illustrated in Figure 1.

6 In the External Name box, type C 1 i c kIn.

7 In the Internal Name box, type the name of the event's firing function. For this
example, use the default value provided by ClassWizard (Fi reCl i ckln).

8 Add a parameter, called xCoord (type OLE_XPOS_PI XELS), using the grid
control.

9 Add a second parameter, called yCoord (type OLE_YPOS_PIXELS), using the grid
control.

10 Choose OK to close the Add Event box.

11 Choose OK again to confirm your choices and close ClassWizard.

ClassWizard Changes for Custom Events
When you add a custom event, Class Wizard makes changes to the control class .H,
.CPP, and .ODL files. The following code samples are specific to the ClickIn event.

The following lines are added to the header (.H) file of your control class:

void FireClickln(OLE_XPOS_PIXELS xCoord, OLE_YPOS_PIXELS yCoord)
{FireEvent(eventidClickln,EVENT_PARAM(VTS_XPOS_PIXELS VTS_YPOS_PIXELS), xCoord,

yCoord) ;}

This code declares an inline function called Fi reCl i ckln that calls
COleControl: :FireEvent with the ClickIn event and parameters you defined using
Class Wizard.

In addition, the following line is added to the event map for the control, located in the
implementation (.CPP) file of your control class:

EVENT_CUSTOM("Clickln", FireClickln, VTS_XPOS_PIXELS VTS_YPOS_PIXELS)

This code maps the event ClickIn to the inline function Fi reCl i ckln, passing the
parameters you defined using Class Wizard.

399

Events

400

Finally, the following line is added to your control's .ODL file:

[ide!)] void Clickln(OLE_XPOS_PIXELS xCoord. OLE_YPOS_PIXELS yCoord);

This line assigns the ClickIn event a specific ID number, taken from the event's
position in the Class Wizard event list. The entry in the event list allows a container to
anticipate the event. For example, it might provide handler code to be executed when
the event is fired.

Calling FireClickln
Now that you have added the ClickIn custom event using ClassWizard, you must
decide when this event is to be fIred. You do this by calling Fi reCl i ckln when the
appropriate action occurs. For this discussion, the control uses the InC i r c 1 e function
inside a WM _ LBUTTONDOWN message handler to fire the ClickIn event when a
user clicks inside a circular or elliptical region. The following procedure adds the
WM_LBUTTONDOWN handler.

~ To add a message handler with ClassWizard

1 Load your control's project.

2 From the View menu, choose Class Wizard.

3 Choose the Message Maps tab.

4 In the Object IDs box, select the control class name. In this case, CSampl eCtrl.

5 From the Messages box, select the message you would like to handle. For this
example, select WM_LBUTTONDOWN.

6 Choose the Add Function button to add the handler function to your application.

7 Choose the Edit Code button to jump to the location of the message handler, or the
OK button to confirm your choice.

The following code sample calls the InCircle function every time the left mouse
button is clicked within the control window. This sample can be found in the
WM_LBUTTONDOWN handler in Responding to Mouse Events in Chapter 24 of
Tutorials. For more information on this function, see Hit Testing, also in Chapter 24:

void CSampleCtrl ::OnLButtonDown(UINT nFlags. CPoint point)
{

if (InCircle(point»
FireClickln(point.x. point.y);

COl eCont ro 1 : : On LButtonDown (n Fl ags. poi nt) ;

Note When ClassWizard creates message handlers for mouse button actions, a call to the
same message handler of the base class is automatically added. Do not remove this call. If
your control uses any of the stock mouse messages, the message handlers in the base class
must be called to ensure that mouse capture is handled properly.

In the following example, the event fires only when the click occurs inside a circular
or elliptical region within the control. To achieve this behavior, you can place the
InC ire 1 e function, taken from Hit Testing of Tutorials, in your control's
implementation (.CPP) file:

Baal CSampleCtrl ::InCirele(CPoint& point)
{

}

CReet re;
GetClientReet(re);
II Determine radii
double a = (re.right - re.left) I 2;
double b = (re.bottom - re.top) I 2;

II Determine x, y
double x = point.x - (re.left + re.right) I 2;
double y = point.y - (re.top + re.bottom) I 2;

II Apply ellipse formula
return «x * x) I (a * a) + (y * y) I (b * b) <- 1);

You will also need to add the following declaration of the InC ire 1 e function to your
control's header (.H) file:

Baal InCirele(CPoint& point);

Custom Events with Stock Names
You can create custom events with the same name as stock events, however you can
not implement both in the same control. For example, you might want to create a
custom event called Click that does not fire when the stock event Click would
normally fire. You could then fire the Click event at any time by calling its firing
function.

The following procedure adds a custom Click event.

~ To add a custom event that uses a stock event name

1 Load your control's project.

2 From the View menu, choose Class Wizard.

3 Choose the OLE Events tab.

4 Choose the Add Event button.

S From the External Name box, select a stock event name. For this example, select
Click.

6 Under the Implementation group, select Custom.

7 Choose OK.

a Choose OK again to confirm your choices and exit ClassWizard.

9 Call Fir eel i c k at appropriate places in your code.

Events

401

Exceptions

See Also OLE Controls, Methods

In the Class Library Reference: COleControl

Exceptions

402

This article explains the exception-handling mechanisms available in MFC. Two
mechanisms are available:

• C++ exceptions, available in MFC version 3.0 and later

• The MFC exception macros, available in MFC versions 1.0 and later

If you're writing a new application using MFC, you should use the C++ mechanism.
You can use the macro-based mechanism if your existing application already uses
that mechanism extensively.

You can readily convert existing code to use C++ exceptions instead of the MFC
exception macros. Advantages of converting your code and guidelines for doing so
are described in the article Exceptions: Converting from MFC Exception Macros.

If you have already developed an application using the MFC exception macros, you
can continue using the MFC exception macros in your existing code, while using
C++ exceptions in your new code. The article Exceptions: Changes to Exception
Macros in Version 3.0 gives guidelines for doing so.

Note To enable C++ exception handling in your code, select Enable Exception Handling in
the C++ Language category of the C/C++ tab of the Project Settings dialog box, or use the IGX
compiler option. The default is IGX-, which disables exception handling.

This article covers the following topics:

• When to use exceptions

• MFC exception support

• Further reading about exceptions

When to Use Exceptions
Three categories of outcomes can occur when a function is called during program
execution: normal execution, erroneous execution, or abnormal execution. Each
category is described below.

• Normal execution

The function may execute normally and return. Some functions return a result
code to the caller, which indicates the outcome of the function. The possible result
codes are strictly defined· for the function and represent the range of possible
outcomes of the function. The result code can indicate success or failure or can
even indicate a particular type of failure that is within the normal range of
expectations. For example, a file-status function can return a code that indicates

that the file does not exist. Note that the term "error code" is not used since a
result code represents one of many expected outcomes.

• Erroneous execution

The caller makes some mistake in passing arguments to the function or calls the
function in an inappropriate context. This situation causes an error, and it should
be detected by an assertion during program development. (For more information
on assertions, see the article Diagnostics: The ASSERT Macro.)

• Abnormal execution

Abnormal execution includes situations where conditions outside the program's
control are influencing the outcome of the function, such as low memory or I/O
errors. Abnormal situations should be handled by catching and throwing
exceptions.

U sing exceptions is especially appropriate for the third category: abnormal execution.

MFC Exception Support
Whether you use the C++ exceptions directly or use the MFC exception macros, you
will use CException or CException-derived objects that may be thrown by the
framework or by your application.

MFC provides several predefined kinds of exceptions:

Exception class

CMemoryException

CFileException

CArchiveException

CNotSupportedException

CResourceException

CDaoException

CDBException

COleException

COleDispatchException

CUserException

Meaning

Out-of-memory

File exception

Archive/Serialization exception

Response to request for unsupported service

Windows resource allocation exception

Database exceptions (DAO classes)

Database exceptions (ODBC classes)

OLE exceptions

OLE dispatch (automation) exceptions

Exception that alerts the user with a message box, then
throws a generic CException

For a description of each MFC function and the exceptions that can possibly be
thrown by that function, see the Class Library Reference.

Note MFC supports both C++ exceptions and the MFC exception macros. MFC does not
directly support Windows NT structured exception handlers (SEH) as discussed in Chapter 8,
Structured Exception Handling in Programming Techniques.

Exceptions

403

Exceptions

Further Reading About Exceptions
The following articles explain using the class library for exception handing:

• Exceptions: Catching and Deleting Exceptions

• Exceptions: Examining Exception Contents

• Exceptions: Freeing Objects in Exceptions

• Exceptions: Throwing Exceptions from Your Own Functions

• Exceptions: Database Exceptions

• Exceptions: OLE Exceptions

The following articles compare the MFC exception macros and the C++ exception
keywords and explain how you can adapt your code:

• Exceptions: Changes to Exception Macros in Version 3.0

• Exceptions: Converting from MFC Exception Macros

• Exceptions: Using MFC Macros and C++ Exceptions

See Also In the Class Library Reference: CException

Exceptions: Changes to Exception Macros in Version 3.0

404

This is an advanced topic.

In MFC version 3.0 and later, the exception-handling macros have been changed to
use C++ exceptions. This article tells how those changes can affect the behavior of
existing code that uses the macros.

This article covers the following topics:

• Exception types and the CATCH macro

• Re-throwing exceptions

Exception Types and the CATCH Macro
In earlier versions of MFC, the CATCH macro uses MFC run-time type information
to determine an exception's type; the exception's type is determined, in other words,
at the catch site. With C++ exceptions, however, the exception's type is always
determined at the throw site by the type of the exception object that is thrown. This
will cause incompatibilities in the rare case in which the type of the pointer to the
thrown object differs from the type of the thrown object.

The following example illustrates the consequence of this difference between MFC
version 3.0 and earlier versions:

TRY
{

THROW((CException*) new CCustomException());

CATCH(CCustomException. e)
{

TRACE("MFC 2. x will land
}

AND_CATCH(CException. e
{

TRACE("MFC 3.0 wi 11 land
}

END_CATCH

here\n");

here\n");

This code behaves differently in version 3.0 because control always passes to the first
catch block with a matching exception-declaration. The result of the throw
expression

THROW«CException*)new CCustomException(»;

is thrown as a CException* even though it is constructed as a CCustomException.
The CATCH macro in MFC versions 2.5 and earlier uses CObject: :IsKindOf to test
the type at run time. Because the expression

e->IsKindOf(RUNTIME_CLASS(CException))

is true, the first catch block catches the exception. In version 3.0, which uses C++
exceptions to implement many of the exception-handling macros, the second catch
block matches the thrown CException.

Code like this is not common. It usually appears when an exception object is passed
to another function that accepts a generic CException*, performs "pre-throw"
processing, and finally throws the exception.

To work around this problem, move the throw expression from the function to the
calling code and throw an exception of the actual type known to the compiler at the
time the exception is generated.

Re-Throwing Exceptions
A catch block cannot throw the same exception pointer that it caught.

For example, this code was valid in previous versions, but will have unexpected
results with version 3.0:

TRY
{

II Do something to throw an exception.
}

CATCH(CSomeException. e)
{

THROW(e);
}

END_TRY

II Wrong. Use THROW_LAST() instead

Exceptions

405

Exceptions

Using THROW in the catch block causes the pointer e to be deleted, so that the outer
catch site will receive an invalid pointer. Use THROW_LAST to re-throw e.

See Also Exceptions: Catching and Deleting Exceptions

Exceptions: Catching and Deleting Exceptions

406

The following instructions and examples show you how to catch and delete
exceptions. For more information on the try, catch, and throw keywords, see
Chapter 7, C++ Exception Handling, in Programming Techniques.

Your exception handlers must delete exception objects they handle, because failure to
delete the exception causes a memory leak whenever that code catches an exception.

Your catch block must delete an exception when:

• The catch block throws a new exception.

Of course, you must not delete the exception if you throw the same exception
again:

catch(CException* e)
{

}

if (m_bThrowExceptionAgain)
throw; II Do not delete e

• Execution returns from within the catch block.

Note When deleting a CException, use the Delete member function to delete the exception.
Do not use the delete keyword, since it can fail if the exception is not on the heap.

~ To catch and delete exceptions

• Use the try keyword to set up a try block. Execute any program statements that
might throw an exception within a try block.

Use the catch keyword to set up a catch block. Place exception-handling code in a
catch block. The code in the catch block is executed only if the code within the
try block throws an exception of the type specified in the catch statement.

The following skeleton shows how try and catch blocks are normally arranged:

II Normal program statements

try
{

}
II Execute some code that might throw an exception.

catch(CException* e)
{

II Handle the exception here.
II "e" contains information about the exception.

e-)Oelete();

II Other normal program statements

When an exception is thrown, control passes to the first catch block whose
exception-declaration matches the type of the exception. You can selectively
handle different types of exceptions with sequential catch blocks as listed below:

try
{

II Execute some code that might throw an exception.

catch(CMemoryException* e)
{

II Handle the out-of-memory exception here.

catch(CFileException* e)
{

II Handle the file exceptions here.

catch(CException* e)
{

II Handle all other types of exceptions here.

See Also Exceptions: Converting from MFC Exception Macros

Exceptions

Exceptions: Converting from MFC Exception Macros
This is an advanced topic.

This article explains how to convert existing code written with Microsoft Foundation
Class macros-TRY, CATCH, THROW, and so on-to use the C++ exception
handling keywords try, catch, and throw. Topics include:

• Conversion advantages

• Converting code with exception macros to use C++ exceptions

Advantages of Converting
You probably do not need to convert existing code, although you should be aware of
differences between the macro implementations in MFC version 3.0 and the
implementations in earlier versions. These differences and subsequent changes in
code behavior are discussed in Exceptions: Changes to Exception Macros in Version
3.0.

The principal advantages of converting are:

407

Exceptions

408

• Code that uses the C++ exception-handling keywords compiles to a slightly
smaller .EXE or .DLL.

• The C++ exception-handling keywords are more versatile: they can handle
exceptions of any data type that can be copied (int, float, char, and so on),
whereas the macros handle exceptions only of class CException and classes
derived from it.

The major difference between the macros and the keywords is that code using the
macros "automatically" deletes a caught exception when the exception goes out of
scope. Code using the keywords does not, so you must explicitly delete a caught
exception. For more information, see the article Exceptions: Catching and Deleting
Exceptions.

Another difference is syntax. The syntax for macros and keywords differs in three
respects:

1. Macro arguments and exception declarations:

A CATCH macro invocation has the following syntax:

CATCH(exception_class, exception_objectyointer _name)

Notice the comma between the class name and the object pointer name.

The exception declaration for the catch keyword uses this syntax:

catch(exception_type exception._ name)

This exception declaration statement indicates the type of exception the catch
block handles.

2. Delimitation of catch blocks:

With the macros, the CATCH macro (with its arguments) begins the first catch
block; the AND_CATCH macro begins subsequent catch blocks; and the
END_CATCH macro terminates the sequence of catch blocks.

With the keywords, the catch keyword (with its exception declaration) begins each
catch block. There is no counterpart to the END_CATCH macro; the catch block
ends with its closing brace.

3. The throw expression:

The macros use THROW_LAST to re-throw the current exception. The throw
keyword, with no argument, has the same effect.

Doing the Conversion
~ To convert code using macros to use the C++ exception-handling keywords

1 Locate all occurrences of the MFC macros TRY, CATCH, AND_CATCH,
END_CATCH, THROW, and THROW_LAST.

2 Replace or delete all occurrences of the macros:

For this macro: Perform this action:

TRY Replace with try

CATCH Replace with catch

AND_CATCH Replace with catch

END_CATCH Delete

THROW Replace with throw

THROW_LAST Replace with throw

3 Modify the macro arguments so that they form valid exception declarations.

For example, change

CATCH(CException. e)

to

catch(CException* e)

4 Modify the code in the catch blocks so that it deletes exception objects as
necessary. For more information, see the article Exceptions: Catching and
Deleting Exceptions.

Here is an example of exception-handling code using MFC exception macros. Note
that because the code in the following example uses the macros, the exception e is
deleted automatically:

TRY
{

II Do something to throw an exception.

CATCH(CException. e)
{

if (m_bPassExceptionsUp)
THROW_LAST() ;

if (m_bReturnFromThisFunction)
return;

II Not necessary to delete the exception e.
}

END_CATCH

The code in the next example uses the C++ exception keywords, so the exception
must be explicitly deleted:

Exceptions

409

Exceptions

try
{

}
II 00 something to throw an exception.

catch(CException* e)
{

if (m_bPassExceptionsUp)
throw;

if (m_bThrowOifferentException)
{

e->Oelete();
throw new CMyOtherException;

if (m_bReturnFromThisFunction)
{

e->Oelete();
return;

}

e->Oelete();

See Also Exceptions: Using MFC Macros and C++ Exceptions

Exceptions: Using MFC Macros and C++ Exceptions

410

This article discusses considerations for writing code that uses both the MFC
exception-handling macros and the C++ exception-handling keywords.

This article covers the following topics:

• Mixing exception keywords and macros

• Try blocks inside catch blocks

Mixing Exception Keywords and Macros
You can mix MFC exception macros and C++ exception keywords in the same
program. But you cannot mix MFC macros with C++ exception keywords in the same
block because the macros delete exception objects automatically when they go out of
scope, whereas code using the exception-handling keywords does not. For more
information, see the article Exceptions: Catching and Deleting Exceptions.

The main difference between the macros and the keywords is that the macros
"automatically" delete a caught exception when the exception goes out of scope. Code
using the keywords does not do so; exceptions caught in a catch block must be
explicitly deleted. Mixing macros and C++ exception keywords can cause memory
leaks when an exception object is not deleted, or heap corruption when an exception
is deleted twice.

The following code, for example, invalidates the exception pointer:

TRY
{

}

TRY
{

II Do something to throw an exception.

CATCH(CException. e) II The "inner" catch block
{

}

throw: II Invalid attempt to throw exception
II to the outer catch block below.

END CATCH

CATCH(CException. e) II The "outer" catch block
{

II Pointer e is invalid because
II it was deleted in the inner catch block.

}

END CATCH

The problem occurs because e is deleted when execution passes out of the "inner"
CATCH block. Using the THROW_LAST macro instead of the THROW statement
will cause the "outer" CATCH block to receive a valid pointer:

TRY
{

}

TRY
{

II Do something to throw an exception.

CATCH(CException. e) II The "inner" catch block
{

THROW_LAST() II Throw exception to the outer catch block below.

CATCH(CException. e) II The "outer" catch block
{

}

II Pointer e is valid because
II THROW_LAST() was used.

END CATCH

Try Blocks Inside Catch Blocks
You cannot re-throw the current exception from within a try block that is inside a
CATCH block. The following example is invalid:

Exceptions

411

Exceptidns

TRY
{

II Do something to throw an exception.

CATCH(CException. e)
{

try
{

}

throw; II Wrong. Causes e (the exception
II being thrown) to be deleted.

}

END_CATCH

See Also Exceptions: Examining Exception Contents

Exceptions: Examining Exception Contents
Although a catch block's argument can be of almost any data type, the MFC
functions throw exceptions of types derived from the class CException. To catch an
exception thrown by an MFC function, then, you write a catch block whose argument
is a pointer to a CException object (or an object derived from CException, such as
CMemoryException). Depending on the exact type of the exception, you can
examine the data members of the exception object to gather information about the
specific cause of the exception.

For example, the CFileException type has the m _cause data member, which
contains an enumerated type that specifies the cause of the file exception. Some
examples of the possible return values are CFileException::flieNotFound and
CFileException: :readOniy.

The following example shows how to examine the contents of a CFileException.
Other exception types can be examined in a similar way.

try
{

II Do something to throw a file exception.
}

catch(CFileException* theException
{

if(theException->m_cause == CFileException::fileNotFound
TRACE("File not found\n");

theException->Delete();

See Also Exceptions: Freeing Objects in Exceptions, Exceptions: Catching and
Deleting Exceptions

Exceptions: Freeing Objects in Exceptions

412

This article explains the need and the method of freeing objects when an exception
occurs. Topics include:

• Handling the exception locally

• Throwing exceptions after destroying objects

Exceptions thrown by the framework or by your application interrupt normal
program flow. Thus, it is very important to keep close track of objects so that you can
properly dispose of them in case an exception is thrown.

There are two primary methods to do this.

• Handle exceptions locally using the try and catch keywords, then destroy all
objects with one statement.

• Destroy any object in the catch block before throwing the exception outside the
block for further handling.

These two approaches are illustrated below as solutions to the following problematic
example:

void SomeFunc()
{

II Problematic code

}

CPerson* myPerson = new CPerson;

II Do something that might throw an exception.
myPerson->SomeFunc();

II Now destroy the object before exiting.
delete myPerson;

As written above, myPerson will not be deleted if an exception is thrown by
SomeFunc. Execution jumps directly to the next outer exception handler, bypassing
the normal function exit and the code that deletes the object. The pointer to the object
goes out of scope when the exception leaves the function, and the memory occupied
by the object will never be recovered as long as the program is running. This is a
memory leak; it would be detected by using the memory diagnostics.

Handling the Exception Locally
The try/catch paradigm provides a defensive programming method for avoiding
memory leaks and ensuring that your objects are destroyed when exceptions occur.
For instance, the example shown earlier in this article could be rewritten as follows:

void SomeFunc()
{

CPerson* myPerson new CPerson;

try
{

II Do something that might throw an exception.
myPerson->SomeFunc();

catch(CException* e)

Exceptions

413

Exceptions

414

}

{

}

II Handle the exception locally
e->Delete();

II Now destroy the object before exiting.
delete myPerson;

This new example sets up an exception handler to catch the exception and handle it
locally. It then exits the function normally and destroys the object. The important
aspect of this example is that a context to catch the exception is established with the
try/catch blocks. Without a local exception frame, the function would never know
that an exception had been thrown and would not have the chance to exit normally
and destroy the object.

Throwing Exceptions After Destroying Objects
Another way to handle exceptions is to pass them on to the next outer exception
handling context. In your catch block, you can do some cleanup of your locally
allocated objects and then throw the exception on for further processing.

The throwing function mayor may not need to deallocate heap objects. If the function
always deallocates the heap object before returning in the normal case, then the
function should also deallocate the heap object before throwing the exception. On the
other hand, if the function does not normally deallocate the object before returning in
the normal case, then you must decided on a case-by-case basis whether the heap
object should be deallocated.

The following example shows how locally allocated objects can be cleaned up:

void SomeFunc()
{

}

CPerson* myPerson new CPerson;

try
{

II Do something that might throw an exception.
myPerson->SomeFunc();

catch(CException, e)
{

}

II Destroy the object before passing exception on.
delete myPerson;
II Throw the exception to the next handler.
throw;

liOn normal exits, destroy the object.
delete myPerson;

The exception mechanism automatically deallocates frame objects; the destructor of
the frame object is also called.

If you call functions that can throw exceptions, you can use try/catch blocks to make
sure that you catch the exceptions and have a chance to destroy any objects you have
created. In particular, be aware that many MFC functions can throw exceptions.

See Also Exceptions: Catching and Deleting Exceptions

Exceptions: Throwing Exceptions from Your Own
Functions

It is possible to use the MFC exception-handling paradigm solely to catch exceptions
thrown by functions in MFC or other libraries. In addition to catching exceptions
thrown by library code, you can throw exceptions from your own code if you are
writing functions that can encounter exceptional conditions.

When an exception is thrown, execution of the current function is aborted and jumps
directly to the catch block of the innermost exception frame. The exception
mechanism bypasses the normal exit path from a function. Therefore, you must be
sure to delete those memory blocks that would be deleted in a normal exit.

~ To throw an exception

• Use one of the MFC helper functions, such as AfxThrowMemoryException.
These functions throw a preallocated exception object of the appropriate type.

In the following example, a function tries to allocate two memory blocks and
throws an exception if either allocation fails:
{

char* pI == (char*)malloc(SIZE_FIRST);
if(pI == NULL)

AfxThrowMemoryException();
char* p2 = (char*)malloc(SIZE SECOND);
if(p2 =- NULL)
{

free(pI);
AfxThrowMemoryException();

II ... Do something with allocated blocks ...

II In normal exit, both blocks are deleted.
free(pI);
free(p2);

If the first allocation fails, you can simply throw the memory exception. If the first
allocation is successful but the second one fails, you must free the first allocation

Exceptions

415

Exceptions

block before throwing the exception. If both allocations succeed, then you can
proceed normally and free the blocks when exiting the function.

-or-

• Use a user-defined exception to indicate a problem condition. You can throw an
item of any type, even an entire class, as your exception.

This example attempts to playa sound through a wave device and throws an
exception if there is a failure.

#define WAVE_ERROR -5
{

II This Win32 API returns 0 if the sound cannot be played.
II Throw an integer constant if it fails.
if(sndPlaySound("SIREN.WAV". SND_ASYNC))

throw WAVE_ERROR;

Note MFC's default handling of exceptions applies only to pointers to CException objects
(and objects of CException-derived classes). The example above bypasses MFC's exception
mechanism.

See Also Exceptions: Exceptions in Constructors

Exceptions: Exceptions in Constructors
When throwing an exception in a constructor, clean up whatever objects and memory
allocations you have made prior to throwing the exception, as explained in
Exceptions: Throwing Exceptions from Your Own Functions.

Throwing an exception in a constructor is tricky, however, because the memory for
the object itself has already been allocated by the time the constructor is called. There
is no simple way to deallocate the memory occupied by the object from within the
constructor for that object. Thus, you will find that throwing an exception in a
constructor will result in the object remaining allocated. For a discussion of how to
detect objects in your program that have not been deallocated, see the article
Diagnostics: Detecting Memory Leaks.

If you are performing operations in your constructor that can fail, it might be a better
idea to put those operations into a separate initialization function rather than
throwing an exception in the constructor. That way, you can safely construct the
object and get a valid pointer to it. Then, you can call the initialization function for
the object. If the initialization function fails, you can delete the object directly.

See Also Exceptions: Freeing Objects in Exceptions

Exceptions: Database Exceptions

416

This article explains how to handle database exceptions. Most of the material in this
article applies whether you are working with the MFC classes for Open Database

Connectivity (ODBC) or the MFC classes for Data Access Objects (DAO). Material
specific to one or the other model is explicitly marked. Topics include:

• Approaches to exception handling

• A database exception-handling example

Approaches to Exception Handling
The approach is the same whether you are working with DAO or ODBC.

You should always write exception handlers to handle exceptional conditions.

The most pragmatic approach to catching database exceptions is to test your
application with exception scenarios. Determine the likely exceptions that might
occur for an operation in your code, and force the exception to occur. Then examine
the trace output to see what exception is thrown, or examine the returned error
information in the debugger. This lets you know which return codes you'll see for the
exception scenarios you are using.

Error Codes Used for OOBC Exceptions
In addition to return codes defined by the framework, which have names of the form
AFX_SQL_ERROR_XXX, some CDBExceptions are based on ODBC return
codes. The return codes for such exceptions have names of the form
SQL_ERROR_XXX.

The return codes-both framework-defined and ODBC-defined-that the database
classes can return are documented under the m nRetCode data member of class
CDBException. Additional information about return codes defined by ODBC is
available in the ODBC SDK Programmer's Reference.

Error Codes Used for OAO Exceptions
For DAO exceptions, more information is typically available. You can access error
information through three data members of a caught CDaoException object:

m _pErrorInfo contains a pointer to a CDaoErrorInfo object that encapsulates error
information in DAO's collection of error objects associated with the database.

m nAfxDaoError contains an extended error code from the MFC DAO classes.
These error codes, which have names of the form AFX_DAO_ERROR_XXX, are
documented under the data member in CDaoException.

m_scode contains an OLE SCODE from DAO, if applicable. You'll seldom need to
work with this error code, however. Usually more information is available in the
other two data members. See the data member for more about SCODE values.

Additional information about DAO errors, the DAO Error object type, and the DAO
Errors collection is available under class CDaoException and in the topics Trappable
Data Access Errors and Error Object, Errors Collection in DAO Help.

Exceptions

417

Exceptions

418

A Database Exception-Handling Example
The following example attempts to construct a CRecordset-derived object on the
heap with the new operator, and then open the recordset (for an ODBC data source).
For a similar example for the DAO classes, see DAO Exception Example below.

OOBC Exception Example
The Open member function could throw an exception (of type CDBException for the
ODBC classes), so this code brackets the Open call with a try block. The subsequent
catch block will catch a CDBException. You could examine the exception object
itself, called e, but in this case it's enough to know that the attempt to create a
recordset has failed. The catch block displays a message box and cleans up by
deleting the recordset object.

CRecordset* CSectionView::OnGetRecordset()
{

}

if (m_pSet 1= NULL
return m_pSet; II Recordset already allocated

m_pSet = new CSectionSet(NULL);
try
{

m_pSet ->Open ();
}

catch(CDBException* e)
{

AfxMessageBox(e->m_strError,
MB_ICONEXCLAMATION);

II Delete the incomplete recordset object
delete m_pSet;
m_pSet = NULL;
e->Delete();

return m_pSet;

OAO Exception Example
The DAO example is similar to the example for ODBC, but you can typically retrieve
more kinds of information. The following code also attempts to open a recordset. If
that attempt throws an exception, you can examine a data member of the exception
object for error information. As with the previous ODBC example, it's probably
enough to know that the attempt to create a recordset failed.

CDaoRecordset* CSectionView::OnGetRecordset()
{

if (m_pSet 1= NULL)
return m_pSet; II Recordset already allocated

m_pSet = new CSectionSet(NULL);
try
{

}

m_pSet->Open();

catch(CDaoException* e)
{

AfxMessageBox(
e->m_pErrorlnfo->m_strDescription.
MB_ICONEXCLAMATION);

II Delete the incomplete recordset object
delete m_pSet;
m_pSet - NULL;
e->Delete();

return m_pSet;

This code gets an error message string from the m _pErrorInfo member of the
exception object. MFC fills this member when it throws the exception.

For a discussion of the error information returned by a CDaoException object, see
classes CDaoException and CDaoErrorlnfo.

When you are working with Microsoft Jet (.MDB) databases, and in most cases when
you are working with ODBC, there will be only one error object. In the rare case
when you are using ODBC and there are multiple errors, you can loop through
DAO's Errors collection based on the number of errors returned by
CDaoException::GetErrorCount. Each time through the loop, call
CDaoException::GetErrorlnfo to refill the m_pErrorlnfo data member.

See Also Exceptions: OLE Exceptions

In the Class Library Reference: CDBException, CDaoException

Exceptions: OLE Exceptions
The techniques and facilities for handling exceptions in OLE are the same as those
for handling other exceptions. For further information on exception handling, see the
article Exceptions.

All exception objects are derived from the abstract base class CException. MFC
provides two classes for handling OLE exceptions:

• COleException For handling general OLE exceptions.

• COleDispatchException For generating and handling OLE dispatch
(automation) exceptions.

The difference between these two classes is the amount of information they provide
and where they are used. COleException has a public data member that contains the
OLE status code for the exception. COleDispatchException supplies more
information, including the following:

• An application-specific error code

Exceptions

419

Exceptions

420

• An error description, such as "Disk full"

• A help context that your application can use to provide additional information for
the user

• The name of your application's help file

• The name of the application that generated the exception

COleDispatchException provides more information so that it can be used with
products like Microsoft Visual Basic. The verbal error description can be used in a
message box or other notification; the help information can be used to help the user
respond to the conditions that caused the exception.

Two global functions correspond to the two OLE exception classes:
AfxThrowOleException and AfxThrowOleDispatchException. Use them to throw
general OLE exceptions and OLE dispatch exceptions, respectively.

See Also In the Class Library Reference: COleException, COleDispatchException

Frequently Asked Questions (FAQ) About MFC

Frequently Asked Questions (FAQ) About
MFC

This group of articles highlights questions that Microsoft Product Support Services
(PSS) has received frequently from users of MFC. Each question below is followed by
the title of an article that answers the question.

How do I update the text of a pane in a status bar? See FAQ: Updating the Text of a
Status-Bar Pane.

What are the user interface guidelines? See FAQ: The User Interface Guidelines for
Microsoft Windows.

How do I change the styles of a window that is created by the framework? See FAQ:
Changing the Styles of a Window Created by MFC.

How do I perform background processing in an MFC application? See FAQ:
Background Processing in an MFC Application.

How do I create an ODBC data source from my program? See FAQ:
Programmatically Configuring an ODBC Data Source.

How do I create a table in an ODBC data source? See FAQ: Programmatically
Creating a Table in an ODBC Data Source.

Note Future editions of the Visual C++ documentation will move some of these articles into
appropriate parts of the encyclopedia and add new FAQ articles.

FAQ: Updating the Text of a Status-Bar Pane
This article explains how to change the text that appears in one of the panes of an
MFC status bar. A status bar-a window object of class CStatusBar-contains
several "panes." Each pane is a rectangular area of the status bar that you can use to
display information. For example, many applications display the status of the CAPS

LOCK, NUM LOCK, and other keys in the rightmost panes. Applications also often
display informative text in the leftmost pane (pane 0), sometimes called the "message
pane." For example, the default MFC status bar uses the message pane to display a
string explaining the currently selected menu item or toolbar button. Figure 1 shows
a status bar from an App Wizard-created MFC application:

Figure 1 An MFC Status Bar

I Save the active document

By default, MFC does not enable a CStatusBar pane when it creates the pane. To
activate a pane, you must use the ON_ VPDATE _COMMAND_VI macro for each
pane on the status bar and update the panes. Because panes do not send

421

Frequently Asked Questions (FAQ) About MFC

422

WM_COMMAND messages (they aren't like toolbar buttons), you can't use
Class Wizard to create an update handler to activate a pane; you must type the code
manually.

For example, suppose one pane has 10_1 NO I CATO R_PAG E as its command identifier
and that it contains the current page number in a document. The following procedure
describes how to create a new pane in the status bar.

~ To make a new pane

1 Define the pane's command ID.

Open the Resource View in the Project Workspace window. Open the Symbol
Browser with the Resource Symbols command on the View menu, and click New.
Type a command ID name: for example, 10_1 NDICATOR_PAGE. Specify a value for
the ID, or accept the value suggested by the Symbol Browser. For example, for
ID_INDICATOR_PAGE, accept the default value. Close the Symbol Browser.

2 Define a default string to display in the pane.

With the Resource View open, double-click String Table in the window that lists
resource types for your application. With the String Table editor open, choose New
String from the Insert menu. In the String Properties window, select your pane's
command ID (for example, ID_INDICATOR_PAGE) and type a default string value,
such as "Page ". Close the string editor. (You need a default string to avoid a
compiler error.)

3 Add the pane to the indicators array.

In file MAINFRM.CPP, locate the indicators array. This array lists command IDs
for all of the status bar's indicators, in order from left to right. At the appropriate
point in the array, enter your pane's command ID, as shown here for
ID_INDICATOR_PAGE:

static UINT BASED_CODE indicators[] =
{

} ;

ID_SEPARATOR,
ID_INDICATOR_CAPS,
ID_INDICATOR_NUM,
ID_INDICATOR_SCRL,
ID_INDICATOR_PAGE,

II status line indicator

The recommended way to display text in a pane is to call the SetText member
function of class CCmdUI in an update handler function for the pane. For example,
you might want to set up an integer variable m_n P age that contains the current page
number and use SetText to set the pane's text to a string version of that number.

Note The SetText approach is recommended. It is possible to attack this task at a slightly
lower level by calling the CStatusBar member function SetPaneText. Even so, you still need
an update handler. Without such a handler for the pane, MFC automatically disables the pane,
erasing its content.

Frequently Asked Questions (FAQ) About MFC

The following procedure shows how to use an update handler function to display text
in a pane.

~ To make a pane display text

1 Add a command update handler for the command.

You can't use ClassWizard to write a handler for a status bar pane, so manually
add a prototype for the handler, as shown here for ID_INDICATOR_PAGE (in
MAINFRM.H):

afx_msg void OnUpdatePage(CCmdUI *pCmdUI);

In the appropriate .CPP file, add the handler's definition, as shown here for
ID_INDICATOR_PAGE (in MAINFRM.CPP):

void CMainFrame::OnUpdatePage(CCmdUI *pCmdUI)
{

pCmdUI->Enable();

In the appropriate message map, add the ON_UPDATE _COMMAND _ UI macro
(outside the "{ {AFX" comments), as shown here for ID_INDICATOR_PAGE (in
MAINFRM.CPP):

ON_UPDATE_COMMAND_UI(ID_INDICATOR_PAGE, OnUpdatePage)

2 Add code to the handler to display your text.

For I D_INDICATOR_PAGE, expand the OnUpdatePage handler from step 1 above,
adding the last three lines:

void CMainFrame::OnUpdatePage(CCmdUI *pCmdUI)
{

pCmdUI->Enable();
CString strPage;
strPage.Format("Page %d", m_nPage);
pCmdUI->SetText(strPage);

Once you define the value of the m_n Page member variable (of class CMa i nFrame), this
technique causes the page number to appear in the pane during idle processing in the
same manner that the application updates other indicators. If m_n Page changes, the
display changes during the next idle loop.

See Also In Chapter 2: How to Update User-Interface Objects

In the Class Library Reference: CStatusBar

423

Frequently Asked Questions (F AQ) About MFC

FAQ: The User Interface Guidelines for Microsoft
Windows

Most first-class applications for the Microsoft Windows operating system share a
familiar and consistent user interface. This improves the usability of the application
because the user is not forced to relearn common operations. For example, a user who
regularly prints documents from Microsoft Word intuitively looks for a Print option
on the File menu when confronted with the task of printing in an unfamiliar
application.

Microsoft suggests guidelines that help you use the standard Windows user interface
objects and environment in a consistent manner. The book The Windows Interface:
An Application Design Guide is available from Microsoft Press; it contains a chapter
on overall principles and methodology along with specific guidelines for keyboard
input, windows, menus, and so on.

The Microsoft Foundation Class Library (MFC), and especially the skeleton
applications created with App Wizard, provide a good starting point to develop an
application that conforms to the published guidelines. These tools ease the process of
developing an application that has the "look and feel" expected by experienced users
of the Windows environment.

MFC was designed to support the published user interface guidelines. Overriding the
default behavior in derived classes tends to be more difficult than working with the
default behavior of MFC. Adding to the default behavior is relatively simple.

FAQ: Changing the Styles of a Window Created by MFC

424

In its version of the WinMain function, MFC registers several standard window
classes for you. Because you don't normally edit MFC's WinMain, that function
gives you no opportunity to change the MFC default window styles. This article
explains how you can change the styles of such a preregistered window class in an
existing application.

Changing Styles in a New MFC Application
If you're using Visual C++ 2.0 or later, you can change the default window styles in
AppWizard when you create your application. In AppWizard's Advanced Options
dialog box, choose the Main Frame tab (to change styles for your main frame
window) or the MDI Child Frame tab (to change styles for MDI child windows). For
either window type, you can specify its frame thickness (thick or thin) and any of the
following:

• Whether the window has Minimize or Maximize controls .

• Whether the window appears initially minimized, maximized, or neither.

Frequently Asked Questions (FAQ) About MFC

For main frame windows, you can also specify whether the window has a System
Menu. For MDI child windows, you can specify whether the window supports splitter
panes.

Changing Styles in an Existing Application
If you're using a version of Visual C++ prior to version 2.0 or changing window
attributes in an existing application, follow the instructions in the rest of this article
instead.

To change the default window attributes used by a framework application created
with AppWizard, override the window's PreCreateWindow virtual member
function. PreCreate Window allows an application to access the creation process
normally managed internally by the CDocTemplate class. The framework calls
PreCreateWindow just prior to creating the window. By modifying the
CREATESTRUCT parameter to PreCreateWindow, your application can change
the attributes used to create the window.

The CTRLBARS sample application, provided with MFC version 3.0 and later,
demonstrates this technique for changing window attributes. Depending on what your
application changes in PreCreateWindow, it may be necessary to call the base class
implementation of the function. You can access the source code for the MFC General
sample CTRLBARS using Sample help.

The following discussion covers the SDI case and the MDI case.

The SOl Case
In a single document interface (SDI) application, the default window style in the
framework is a combination of the WS OVERLAPPED WINDOW and
FWS_ADDTOTITLE styles. FWS_ADDTOTITLE is an MFC-specific style that
instructs the framework to add the document title to the window's caption. To change
the window attributes in an SDI application, override the PreCreateWindow
function in your class derived from CFrameWnd (which AppWizard names
CMa in Frame). For example:

BOOl CMainFrame::PreCreateWindow(CREATESTRUCT& cs)
{

II Create a window without minimax buttons or sizable border
cs.style = WS_OVERlAPPED I WS_SYSMENU I WS_BORDER;

II Size the window to 1/3 screen size and center it
cs.cy = ::GetSystemMetrics(SM_CYSCREEN) I 3;
cs.cx = ::GetSystemMetrics(SM_CXSCREEN) I 3;
cs.y = ((cs.cy * 3) - cs.cy) I 2;
cs.x = ((cs.cx * 3) - cs.cx) I 2;

II Call the base-class version
return CFrameWnd: :PreCreateWindow(cs);

425

Frequently Asked Questions (FAQ) About MFC

This code creates a main frame window without Minimize and Maximize buttons and
without a sizable border. The window is initially centered on the screen.

The MOl Case
A little more work is required to change the window style of a child window in a
multiple document interface (MDI) application. By default, an MDI application
created with AppWizard uses the default CMDIChildWnd class defined in MFC. To
change the window style of an MDI child window, you must derive a new class from
CMDIChildWnd and replace all references to CMDIChildWnd in your project with
references to the new class. Most likely, the only reference to CMDIChildWnd in the
application is located in your application's Ini tInstance member function.

The default window style used in an MDI application is a combination of the
WS_CHILD, WS_OVERLAPPEDWINDOW, and FWS_ADDTOTITLE styles.
To change the window attributes of an MDI application's child windows, override the
PreCreateWindow function in your class derived from CMDIChildWnd. For
example:

BOOl CMyChildWnd::PreCreateWindow(CREATESTRUCT& cs)
{

II Create a child window without the maximize button
cs.style &= ~WS_MAXIMIZEBOX;

II Call the base-class version
return CMDIChildWnd::PreCreateWindow(cs);

This code creates MDI child windows without a maximize button.

See Also In the Class Library Reference: CWnd::PreCreateWindow

FAQ: Background Processing in an MFC Application

426

Many applications perform lengthy processing "in the background." Sometimes
performance considerations dictate using multithreading for such work. Threads
involve extra development overhead, so they are not recommended for simple tasks
like the idle-time work that MFC does in the Onldle function. This article focuses on
idle processing. For more information about multithreading, see the article
Multithreading.

Some kinds of background processing are appropriately done during intervals that the
user is not otherwise interacting with the application. In an application developed for
the Microsoft Windows operating system, an application can perform idle-time
processing by splitting a lengthy process into many small fragments. After processing
each fragment, the application yields execution control to Windows using a
PeekMessage loop.

This article explains two ways to do idle processing in your application:

• Using PeekMessage in MFC's main message loop

Frequently Asked Questions (FAQ) About MFC

• Embedding another PeekMessage loop somewhere else in the application

PeekMessage in the MFC Message Loop
In an application developed with MFC, the main message loop in the CWinThread
class contains a message loop that calls the PeekMessage member function. This
loop also calls the Onldle member function of CWinThread between messages. An
application can process messages in this idle time by overriding the Onldle function.

Note Run, PeekMessage, Onldle, and certain other member functions are now members of
class CWinThread rather than of class CWinApp. CWinApp is derived from CWinThread.

For more information about performing idle processing in the Onldle function, see
the documentation for Onldle in the Class Library Reference.

PeekMessage Elsewhere in Your Application
Another method for performing idle processing in an application involves embedding
a message loop in one of your functions. This message loop is very similar to MFC's
main message loop, found in the Run member function of class CWinThread. So
such a loop in an application developed with MFC must perform many of the same
functions as the main message loop. The following code fragment demonstrates
writing a message loop that is compatible with MFC:

while (bDoingBackgroundProcessing)
{

while (::PeekMessage(&msg. NULL. 0. 0. PM_NOREMOVE))
{

}

if (IPumpMessage())
{

}

bDoingBackgroundProcessing = FALSE;
::PostOuitMessage();
break;

II let MFC do its idle processing
LONG lIdle = 0;
while (AfxGetApp()->Onldle(lIdle++))

II Perform some background processing here
II using another call to Onldle

This code, embedded in some function, loops as long as there is idle processing to do.
Within that loop, a nested loop repeatedly calls PeekMessage. As long as that call
returns a nonzero value, the loop calls CWinThread: : Pump Message to perform
normal message translation and dispatching. Although PumpMessage is
undocumented, you can examine its source code in the THRDCORE.CPP file in
MFc\sRC relative to your Visual C++ installation.

427

Frequently Asked Questions (FAQ) About MFC

Once the inner loop ends, the outer loop performs idle processing with one or more
calls to Onldle. The first call is for MFC's purposes. You can make additional calls
to Onldle to do your own background work.

For more information about performing background processing in the Onldle
function, see Onldle in the Class Library Reference.

See Also In the Class Library Reference: CWinApp::Onldle

In the Win32 Programmer's Reference: ::PeekMessage

FAQ: Programmatically Configuring an ODBC Data
Source

428

This article explains how you can configure ODBC (Open Database Connectivity)
data source names programmatically. This gives you flexibility to access data without
forcing the user to explicitly use the ODBC Administrator or other programs to
specify the names of data sources.

Typically, a user runs the ODBC Administrator program to create a data source,
provided that the associated database management system (DBMS) supports this
operation.

When creating a Microsoft Access ODBC data source through the ODBC
Administrator program, you are given two choices: you can select an existing .MDB
file or you can create a new .MDB file. There is no programmatic way of creating the
.MDB file from your MFC ODBC application. Therefore, if your application requires
that you place data into a Microsoft Access data source (.MDB file), you most likely
will want to have an empty .MDB file that you can use or copy whenever you need it.

However, many DBMSs allow programmatic data source creation. Some data sources,
such as FoxPro, maintain a directory specification for databases. That is, a directory
is the data source and each table within the data source is stored in a separate file (in
the case of dBASE or FoxPro, each table is a .DBF file). Drivers for other ODBC
databases, such as Microsoft Access and SQL Server, require that some specific
criteria be satisfied before a data source can be established. For example, when using
the SQL Server ODBC driver you need to have established a SQL Server.

SQLConfigDataSource Example
The following example uses the ::SQLConfigDataSoorce ODBC API function to
create a new Excel data source called "New Excel Data Source":

SQLConfigDataSource(NULL,ODBC_ADD_DSN, "Excel Files (*.xls)",
"DSN-New Excel Data Source\0"
"Description-New Excel Data Source\0"
"FileType-Excel\0"
"DataDirectory-C:\\EXCELDIR\0"
"MaxScanRows=20\0");

Frequently Asked Questions (FAQ) About MFC

Note that the data source is actually a directory (C:\EXCELDIR); this directory must
exist. The Excel driver uses directories as its data sources, and files as the individual
tables (one table per .XLS file).

For additional information on creating tables, see the article FAQ: Programmatically
Creating a Table in an ODBC Data Source.

The information below discusses the parameters that need to be passed to the
::SQLConfigDataSource ODBC API function. To use ::SQLConfigDataSource,
you must include the ODBCINST.H header file and use the ODBCINST.LIB import
library. Also, ODBCCP32.DLL must be in the path at run time (or ODBCINST.DLL
for 16 bit).

You can create an ODBC data source name using the ODBC Administrator program
or a similar utility. However, sometimes it is desirable to create a data source name
directly from your application to obtain access without requiring the user to run a
separate utility.

The ODBC Administrator (typically installed in the Windows Control Panel) creates
a new data source by putting entries in the Windows registry (or, for 16 bit, in the
ODBC.INI file). The ODBC Driver Manager queries this file to obtain the required
information about the data source. It's important to know what information needs to
be placed in the registry because you'll need to supply it with the call to
: :SQLConfigDataSource.

Although this information could be written directly to the registry without using
::SQLConfigDataSource, any application that does so is relying on the current
technique that the Driver Manager uses to maintain its data. If a later revision to the
ODBC Driver Manager implements record keeping about data sources in a different
way, then any application that uses this technique would be broken. It is generally
advisable to use an API function when one is provided. For example, your code is
portable from 16 bit to 32 bit if you use the ::SQLConfigDataSource function, as the
function will correctly write to the ODBC.INI file or to the registry.

SQLConfigDataSource Parameters
The following explains the parameters of the ::SQLConfigDataSource function.
Much of the information is taken from the ODBC API Programmer's Reference
supplied with Visual C++ version 1.5 and later.

Function Prototype
BOOL SQLConfigDataSource(HWND hwndParent,UINT jRequest, LPCSTR IpszDriver, LPCSTR

IpszAttributes) ;

Parameters and Usage
hwndParent The window specified as the owner of any dialog boxes that either the
ODBC Driver Manager or the specific ODBC driver creates to obtain additional
information from the user about the new data source. If the IpszAttributes parameter

429

Frequently Asked Questions (FAQ) About MFC

430

doesn't supply enough information, a dialog box appears. The hwndParent parameter
may be NULL; see the ODBC Programmer's Reference for details.

lpszDriver The driver description. This is the name presented to users rather than
the physical driver name (the DLL).

lpszAttributes List of attributes in the form "keyname=value". These strings are
separated by null terminators with two consecutive null terminators at the end of the
list. These attributes are primarily default driver-specific entries, which go into the
registry for the new data source. One important key that is not mentioned in the
ODBC API reference for this function is "DSN" ("data source name"), which
specifies the name of the new data source. The rest of the entries are specific to the
driver for the new data source. Often it is not necessary to supply all of the entries
because the driver can prompt the user with dialog boxes for the new values. (Set
hwndParent to NULL to cause this.) You might want to explicitly supply default
values so that the user is not prompted.

~ To determine the description of a driver for the IpszOriver parameter using the ooac
Administrator program

1 Run the ODBC Administrator program.

2 Choose Add.

This will give you a list of installed drivers and their descriptions. It is this
description that you use as the lpszDriver parameter. Note that you use the entire
description - for example, "Excel Files (* .xls)" - including the file extension and
parentheses if they exist in the description.

As an alternative, you can examine the registry (or, for 16 bit, the file
ODBCINST.INI), which contains a list of all driver entries and descriptions under the
registry key "ODBC Drivers" (or the section [ODBC Drivers] in ODBCINST.INI).

One way to find the keynames and values for the lpszAttributes parameter is to
examine the ODBC.INI file for an already configured data source (perhaps one that
has been configured by the ODBC Administrator program):

~ To find keynames and values for the IpszAttributes parameter

1 Run the Windows registry editor (or, for 16 bit, open the ODBC.INI file).

2 Find the ODBC data sources information.

• For 32 bit, find the key
HKEY_CURRENT_USER\Software\ODBc\ODBC.INl\ODBC Data Sources in
the left-hand pane.

The right-hand pane lists entries of the form: "pub: REG_SZ:<data source
name>", where <data source name> is a data source that has already been
configured with the desired settings for the driver you intend to use. Select the
data source you want, for example SQL Server. The items following the string

Frequently Asked Questions (F AQ) About MFC

"pub:" are, in order, the keyname and value you want to use in your
IpszAttributes parameter.

-or-

• For 16 bit, find the section in the ODBC.INI file marked by [<data source
name>].

The lines following this line will be of the form "keyname=value". These are
exactly the entries you will want to use in your IpszAttributes parameter.

You might also want to examine the documentation for the specific driver you are
going to use. You can find useful information in the online help for the driver, which
you can access by running the ODBC Administrator. These help files are usually
placed in the WINDOWS\sYSTEM directory for Windows NT, Windows 3.1, or
Windows 95.

~ To obtain online help for your OOBC driver

1 Run ODBC Adminstrator.

2 Choose Add.

3 Select the driver name.

4 Choose OK.

When ODBC Administrator displays the information for creating a new data source
for that particular driver, select Help. This opens the help file for that particular
driver, which generally contains important information concerning the use of the
driver.

For related information, see the ODBC Programmer's Reference: Chapter 24,
Installer DLL Function Reference.

See Also FAQ: Programmatically Creating a Table in an ODBC Data Source

FAQ: Programmatically Creating a Table in an ODBC
Data Source

This article explains how to create a table for your data source, using the
ExecuteSQL member function of class CDatabase, passing the function a string that
contains a CREATE TABLE SQL statement.

For general information about ODBC data sources in MFC, see the article Data
Source (ODBC). The article FAQ: Programmatically Configuring an ODBC Data
Source describes creating data sources.

Once you have the data source established, you can easily create tables using the
ExecuteSQL member function and the CREATE TABLE SQL statement. For example,
if you had a CDatabase object called myDB, you could use the following MFC code to
create a table:

431

Frequently Asked Questions (FAQ) About MFC

432

myDB.ExecuteSQL("CREATE TABLE OFFICES (OfficeID TEXT(4)" ",
OfficeName TEXT(10))");

The code above creates a table called "OFFICES" in the Microsoft Access data source
connection maintained by myDB; the table contains two fields "OfficeID" and
"OfficeName." For more information about creating tables as well as primary keys
and indexes for them, see Appendix C in the ODBC Programmer's Reference.

Note The field types specified in the CREATE TABLE SQl statement may vary according to
the oose driver that you are using. For example, the Strieve® oose driver requires
"STRING" in place of the "TEXT" type shown in the CREATE TABLE statement above. The
Microsoft Query program (distributed with Visual C++ 1.5) is one way to discover what field
types are available for a data source. In MS Query, select File, choose Table_Definition, select
a table from a data source, and look at the type shown in the "Type" combo box. Appendix C in
the OOSC Programmer's Reference describes the supported SQl syntax. SQl syntax also
exists to create indexes.

See Also FAQ: Programmatically Configuring an ODBC Data Source, Data Source
(ODBC)

Field
A single item of data in a record, such as a phone number field in a customer record.

See the articles Recordset (ODBC) and DAO Recordset.

Files
In the Microsoft Foundation Class Library (MFC), class CFile handles normal file
I/O operations. This article explains how to open and close files as well as read and
write data to those files. It also discusses file status operations. For a description of
how to use the object-based serialization features of MFC as an alternative way of
reading and writing data in files, see the article Serialization (Object Persistence).

Note When you use MFC CDocument objects, the framework does much of the serialization
work for you. In particular, the framework creates and uses the CFile object. You only have to
write code in your override of the Serialize member function of class CDocument.

The CFile class provides an interface for general-purpose binary file operations. The
CStdioFile and CMemFile classes are derived from CFile to supply more specialized
file services.

This article covers the following topics:

• Opening files

• Reading and writing files

• Closing files

• Accessing file status

Opening Files
In MFC, the most common way to open a file is a two-stage process.

~ To open a file

1 Create the file object without specifying a path or permission flags.

You usually create a file object by declaring a CFile variable on the stack frame.

2 Call the Open member function for the file object, supplying a path and
permission flags.

The return value for Open will be nonzero if the file was opened successfully or 0
if the specified file could not be opened. The Open member function is prototyped
as follows:

virtual BOOl Open(lPCTSTR lpszFileName, UINT nOpenFlags,
CFileException* pError = NUll);

Files

433

Files

434

The open flags specify which permissions, such as read-only, you want for the file.
The possible flag values are defined as enumerated constants within the CFile
class, so they are qualified with "CFile::," as in CFile::modeRead. Use the
CFile: :modeCreate flag if you want to create the file.

The following example shows how to create a new file with read/write permission
(replacing any previous file with the same path):

char* pszFileName = "c:\\test\\myfile.dat";
CFil e myFil e;
CFileException fileException;

if (!myFile.Open(pszFileName, CFile::modeCreate I
CFile::modeReadWrite), &fileException)

TRACE("Can't open file Is, error = %u\n",
pszFileName, fileException.m_cause);

Note This example creates and opens a file. If there are problems, the Open call can return a
CFileException object in its last parameter, as shown here. The TRACE macro prints both the
filename and a code indicating the reason for failure. You can call the AfxThrowFileException
function if you require more detailed error reporting.

Reading and Writing Files
If you've used the C run-time library file-handling functions, MFC reading and
writing operations will appear familiar. This section describes reading directly from
and writing directly to a CFile object. You can also do buffered file I/O with the
CArchive class.

~ To read from and write to the file

• Use the Read and Write member functions to read and write data in the file.

-or-

• The Seek member function is also available for moving to a specific offset within
the file.

Read takes a pointer to a buffer and the number of bytes to read and returns the
actual number of bytes that were read. If the required number of bytes could not be
read because end-of-file (EOF) is reached, the actual number of bytes read is
returned. If any read error occurs, an exception is thrown. Write is similar to Read,
but the number of bytes written is not returned. If a write error occurs, including not
writing all the bytes specified, an exception is thrown. If you have a valid CFile
object, you can read from it or write to it as shown in the following example:

char szBuffer[256];
UINT nActual = 0;
CFil e myFil e;

myFile.Write(szBuffer, sizeof(szBuffer));
myFile.Seek(0, CFile::begin);
nActual = myFile.Read(szBuffer, sizeof(szBuffer));

Note You should normally carry out input/output operations within a try/catch exception
handling block. For more information, see the article Exceptions.

Closing Files
As usual in I/O operations, once you finish with a file, you must close it.

~ To close a file

• Use the Close member function. This function closes the file-system file and
flushes buffers if necessary.

If you allocated the CFile object on the frame (as in the examples shown earlier in
this article), the object will automatically be closed and then destroyed when it goes
out of scope. Note that deleting the CFile object does not delete the physical file in
the file system.

Accessing File Status
CFile also supports getting file status, including whether the file exists, creation and
modification dates and times, logical size, and path.

~ To get file status

• Use the CFile class to get and set information about a file. One useful application
is to use the CFile static member function GetStatus to determine if a file exists.
GetStatus returns 0 if the specified file does not exist.

Thus, you could use the result of GetStatus to determine whether to use the
CFile: :modeCreate flag when opening a file, as shown by the following example:

CFile theFile;
char* szFileName = "c:\\test\\myfile.dat";
BOOl bOpenOK;

CFileStatus status;
if(CFile::GetStatus(szFileName, status))
{

else
{

}

II Open the file without the Create flag
bOpenOK = theFile.Open(szFileName,

CFile::modeWrite);

II Open the file with the Create flag
bOpenOK = theFile.Open(szFileName,

CFile::modeCreate I CFile::modeWrite);

Files

435

Find

See Also Serialization (Object Persistence)

In the Class Library Reference: CFile

Find
Unlike the MFC DAO database classes, the MFC ODBC recordset class does not
have a Find member function. For information about how to find records in an
ODBC recordset, see the article Recordset: Scrolling (ODBC). For information about
finding records with DAO, see CDaoRecordset::Find.

Forms
For information about form-based data-access programs, see the article Record
Views.

For information about MFC support for form-based programs in general, see classes
CRecordView, CDaoRecordView, CDialog, and CFormView in the Class Library
Reference.

Framework

436

The Microsoft Foundation Class Library (MFC) is frequently referred to as "the
framework" or "application framework." For an introduction and general information
about the framework, see Part 1 of this book and the Scribble tutorial, Chapters 2
through 11 in Tutorials.

For further reading, see the article MFC.

See Also CObject Class, MFC: Using Database Classes with Documents and Views,
MFC: Using Database Classes Without Documents and Views

Help
This group of articles describes support provided by the Microsoft Foundation Class
Library (MFC) for context-senstive Windows Help for your applications.

Applications written for Windows usually provide context-sensitive Help, allowing
the user to get help on a particular window, dialog box, command, or toolbar button.
MFC makes it simple to add context-sensitive Help to your application.

The user can access Help in the following ways:

• Pressing the FI key

The user can press the FI key from an active window, dialog box, or message box,
or with a menu item or toolbar button selected, to invoke a Help topic relevant to
the selected item. For menu items, help is summoned for the item currently
highlighted.

Note You can define a key other than F1 for Help, but it is common among Windows
applications to use F1.

• Entering Help mode

From within an active application, the user can press SHIff +FI or click on the Help
toolbar button to put the application into "Help mode."

In Help mode, the mouse cursor changes to an arrow with a question mark. While
the application is in this mode, the user can click any window, dialog box,
message box, menu item, or toolbar button to summon help specific to the item.
Help mode ends when Help is displayed. Pressing ESC or switching away from the
application and back also ends Help mode.

• U sing the Help menu

Most applications provide help support through one or more menu items. For
instance, most Windows applications include a Help menu item that invokes the
application's Help file when chosen. Additional items on the Help menu might, for
example, display a Search dialog.

This article presents an overview of the MFC help subsystem, in the following topics:

• Components of Help

• Help-menu support

• More precise context-sensitivity

• Help support tools

• Authoring and compiling Help

The following additional articles explain MFC help support in more detail:

Help

437

Help

438

• Help: PI and SHIFT +PI Help

• Help: OLE Support for Help

• Help: Message-Map Support

• Help: The Help Project File

• Help: The MAKEHM and MAKEHELP.BAT Tools

• Help: CPropertySheet and CPropertyPage

• Help: Authoring Help Topics

For a detailed example, see Chapter 11 in Tutorials. For additional technical
information, see Technical Note 28 under MFC in Books Online.

Components of Help
The help subsystem in the MFC framework has the following components, many of
which are supplied by AppWizard when you choose its Context-Sensitive Help
option:

• A Help drop-down menu with several commands. For a new MDI application,
there are two copies of this menu: one for an application with no open documents
and one for each type of document that uses its own menu structure. App Wizard
supplies these menus.

• Several message-map entries in your CWinApp-derived application class. These
entries bind PI and SHIFT+PI commands to their respective command handlers.
App Wizard supplies these message-map entries.

• Message handlers for PI and SHIPT+PI. Class CWinApp supplies these handlers,
and AppWizard supplies the message-map entries for them.

• The CWinApp::WinHelp member function, which calls the Windows Help
program.

,
• Additional AppWizard support for help, including several help-related files. The

files include skeleton .RTF files that contain help entries for the common elements
of the Windows user interface, such as the File and Edit menus. You can edit these
files to revise the supplied text and add your own application-specific help
information.

• A mechanism and tool for mapping resource and command IDs in your
application to "help contexts" in Windows Help. The MAKEHM tool is introduced
in Using MAKEHM and MAKEHELP.BAT.

Help-Menu Support
The framework implements a Help Topics item in the Help menu. This item displays
the table of contents for Help.

For a description of this support and its effect on the message map in your application
class, see the article Help: Message-Map Support.

More Precise Context-Sensitivity
FI help and SHIFf +FI help are activated based on help context IDs. The standard help
implementation in the framework can obtain a help context from a window, dialog
box, message box, menu item, or toolbar button. If you need more precise control
over this mechanism, you can override parts of the mechanism.

For additional information, see Technical Note 28 under MFC in Books Online.

Help Support Tools
You will use three main tools to develop your application's Help system: AppWizard,
MAKEHM, and the Windows Help Compiler. You also need an editor, such as
Microsoft Word for Windows, that can edit rich text format (.RTF) files. You can use
the Visual C++ bitmap editor to create bitmaps to include in your Help files.

Note You can upgrade your Help Project files to a 4.0 format with the Windows 4.0 Help
compiler. This gives you access to the Windows 4.0 Help Workshop, a graphical help authoring
environment with many useful features. If you're planning on porting your applications to other
platforms, first ensure that those platforms have a compiler that's compatible with the 4.0 Help
Project file before upgrading.

Choosing the Help Option in AppWizard
AppWizard is your first tool for implementing context-sensitive Help. Check the
Context-Sensitive Help checkbox in AppWizard. AppWizard then provides the
message-map entries in your CWinApp-derived class that connect the whole help
mechanism, adds a menu item to the Help menu, and adds a button to the toolbar
resource that the user can press to invoke Help mode.

App Wizard also creates a set of skeletal starter files, as shown in Table 1.

Table 1 AppWizard-Supplied Help Files

File

MAKEHELP.BAT

HLP\<project>.HPJ

HLP\<project>.CNT

HLP*.BMP

HLP*.RTF

Description

A batch file that manages help ID mapping and calls the Help
Compiler.

A Windows Help project file that the Windows Help Compiler
uses.

A file containing the information needed to create the Help
Contents screen.

Various bitmap files used with the supplied Help files.

Help files in .RTF format that contain starter help for the
application components supplied by the framework.

The MAKEHELP.BAT file is in your project directory. The .BMP, .RTF, .CNT, and
Help project file (.HPJ) are in an HLP subdirectory that AppWizard creates in your
project directory.

Help

439

Help

440

You can edit these files as described in Authoring and Compiling Help to fill in
application-specific help information.

Using MAKEHM and MAKEHELP.BAT
Once you've created an AppWizard application with help support, you can build help
simply by choosing Build <project> from the Build menu in Developer Studio. This
runs MAKEHELP.BAT to compile the .HPJ file and create an .HLP file. (You can
also run MAKEHELP.BAT from the command line.)

The first thing that MAKEHELP.BAT does is call the MAKEHM tool. MAKEHM
reads your project's RESOURCE.H file and creates a help mapping (.HM) file. This
.HM file defines help-context IDs corresponding to the resource IDs in your
RESOURCE.H file, so that each dialog, menu item, or other resource has a help
context ID associated with it.

Your project's .HPJ file contains a statement in its [MAP] section that includes your
project's .HM file, as well as the standard .HM file included with MFC. The Help
Compiler uses the help-context IDs in these .HM files to determine which Help topic
is associated with each dialog, menu item, or other resource.

Whenever you add new resources to your project, you must add new Help topics for
those resources to your .RTF files and then recompile your Help file. For more
information, see Compiling Your Help Files.

After MAKEHELP.BAT runs the MAKEHM tool, it then calls the Windows Help
Compiler to create the .HLP file. The Help Compiler creates the .HLP file in your
application's main source code directory. If a WINDEBUG and/or WINREL
subdirectory already exists, the MAKEHELP.BAT tool also copies the .HLP file to
that subdirectory. This is useful because when you run either the Debug or Release
version of your application, it will expect to find the .HLP file in the same directory
as the debug or release executable file.

If you build a Debug or Release version of the application after you have already run
MAKEHELP.BAT, and you don't need or care to rebuild the .HLP file, copy the .HLP
file manually from the application source directory to the WINDEBUG or WINREL
subdirectory.

If you add new resources for which you wish to implement help contexts, run
MAKEHELP.BAT again by compiling the .HPJ from either the command line or
from within Developer Studio.

Authoring and Compiling Help
For details about authoring and compiling Windows Help, see the Help Compiler
User's Guide.

Figure 1 shows the general process for creating a Help system for your application.

Figure 1 Preparing Help Files

For an example of preparing Help files, see Chapter 11 in Tutorials.

See Also Help: FI and SHIFT +FI Help

Help: FI and SHIFT +FI Help
This article describes the two forms of context-sensitive Windows Help supported by
MFC.

FI Help opens help on a topic associated with the currently selected item in your
application. MFC supplies FI help for windows, dialog boxes, message boxes, menus,
and toolbar buttons.

SHIFT +FI Help invokes a special "Help mode" in which the cursor turns into a Help
cursor. The user can then select a visible object in the user interface, such as a menu
item, toolbar button, or window. This opens help on a topic that describes the selected
item.

F1 Help Support
The framework implements FI help for windows, dialog boxes, message boxes,
menus, and toolbar buttons. If the cursor is over a window, dialog box, or message
box when the user presses the FI key, the framework opens Windows Help for that
window. If a menu item is highlighted. the framework opens Windows Help for that

Help

441

Help

menu item. And if a toolbar button has been pressed (but the mouse not released yet),
the framework opens Windows Help for that toolbar button when the user presses Fl.

(With extra work, you can implement FI help for other things.)

When the user presses the FI key, the framework processes the keystroke as a help
request as follows, using a variation on the normal command routing. Pressing FI

causes a WM _ COMMAND message to be sent for the ID _HELP command. If the
application supports help, this command is mapped to the OnHelp message handler
of class CWinApp and is routed directly there. OnHelp uses the ID of the current
frame window or dialog box to determine the appropriate Help topic to display. If no
specific Help topic is found, OnHelp displays the default Help topic.

SHIFT +F1 Help Support
If the user presses SHIFT +FI or clicks on the Help toolbar button at any time that the
application is active, the framework puts the application into Help mode and changes
the cursor to a Help cursor (arrow + question mark). The next thing the user clicks
determines what help context the framework opens in Windows Help.

When the user presses SHIFT +FI or clicks on the Help toolbar button, the framework
routes the command ID _ CONTEXT_HELP through the normal command routing.
The command is mapped to the CWinApp member function OnContextHelp, which
captures the mouse, changes the cursor to a Help cursor, and puts the application into
Help mode. The Help cursor is maintained as long as the application is in Help mode
but reverts to a normal arrow cursor if it is not over the application that is in Help
mode. Activating a different application cancels Help mode in the original
application. While in Help mode, the application determines what object the user
clicks and calls the CWinApp member function WinHelp with the appropriate
context, determined from the object clicked upon. Once an object has been selected,
Help mode ends and the cursor is restored to the normal arrow.

Note For information about how context-sensitive Help is managed in OLE applications, see
the article Help: OLE Support for Help.

For more information, see Technical Note 28 under MFC Technical Notes in Books
Online.

See Also Help: Message-Map Support

Help: OLE Support for Help

442

This article describes the requirements for Help support in OLE visual editing
applications.

For SHIFT +FI support, some special coordination is required between OLE containers
and in-place active servers. When the user chooses to activate SHIFT +FI Help mode,
both applications need to enter the mode. Whichever application first gets the
message to enter the mode notifies the other application. Then either application is
prepared to respond when the user clicks the mouse on an item for which he or she

wants help. Likewise, when the user terminates Help mode, the application that gets
the message first notifies the other application. Note that MFC automatically handles
this notification process between the container and the in-place server.

Caution Neither the container nor the server can enter SHIFT +F1 help mode unless the other
application also supports the mode.

For FI help support, by contrast, whichever application gets the message when FI is
pressed handles the help request.

See Also Help: Message-Map Support

Help: Message-Map Support
AppWizard adds a new menu command to the two Help menus: Help Topics. Support
for this command and for FI and SHIFf +FI help is provided through the message map.
Topics covered in this article include:

• Help commands in the message map

• About the Help commands

• Completing your application's Help

Help Commands in the Message Map
To support the Help Topics menu item, FI help, and SHIFf+FI help, AppWizard adds
four entries to the message map for your CFrameWnd-derived or
CMDIFrameWnd-derived class. This message map is in the MainFrm.cpp file, and
the relevant message map entries are located below the / / G lob a 1 he 1 p
commands comment.

After you run AppWizard, choosing the Context-Sensitive Help option, the message
map for class CMai nFrame will look like the following for an MDI application:

II CMainFrame

BEGIN_MESSAGE_MAP(CMainFrame. CMDIFrameWnd)
11{{AFX_MSG_MAP(CMainFrame)

II NOTE - the ClassWizard will add and remove mapping macros here.
II DO NOT EDIT what you see in these blocks of generated code!
ON_WM_CREATE()
I/} lAFX_MSG_MAP
II Global help commands
ON_COMMAND(ID~HELP_FINDER. CMDIFrameWnd: :OnHelpFinder)
ON_COMMAND(ID_HELP. CMDIFrameWnd::OnHelp)
ON_COMMAND(ID_CONTEXT_HELP. CMDIFrameWnd::OnContextHelp)
ON_COMMAND(ID_DEFAULT_HELP. CMDIFrameWnd::OnHelpFinder)

END_MESSAGE_MAP()

Help

443

Help

444

For an SDI application, references to CMDIFrameWnd in this code are replaced by
references to CFrameWnd.

About the Help Commands
The four help-related message-map entries follow the / / Global hel p commands

comment Table 1 explains the purpose of each command ID used in these entries.

Table 1 Help-Related Command IDs

Command 10 Purpose

ID _HELP _FINDER Responds to the Help Topics item on the Help menu by
displaying the Windows Contents screen.

ID HELP Responds to Fl by displaying a specific topic in Windows
Help.

ID _CONTEXT_HELP Responds to SHIFT +Fl by putting the application into Help
mode.

ID _ DEFAULT_HELP U sed when a specific help context cannot be found.

Notice that all of these commands are mapped to member functions of class
CMDIFrameWnd (in the case of an MDI application); or to CFrameWnd (in the
case of an SDI application). Unlike most of the other commands you place into the
message map, these have handler functions predefined by the class library. Making
the message-map entry enables the command.

The application's accelerator table defines Fl for ID _HELP and SHIFT +Fl for
ID_CONTEXT_HELP. You can change the keys used for these help functions by
using Visual c++ to change the key values in the accelerator table.

When the user chooses a Help menu command (or uses one of the context-sensitive
Help techniques described in Fl Help Support and SHIFT +Fl Help Support in the
article Help: Fl and SHIFT+Fl Help), the framework calls the CWinApp::WinHeJp
member function. This action, in tum, starts the Windows Help program and passes
context information to it.

Completing Your Application's Help
Once you have used App Wizard to provide the generic help support, you can
complete the help for your application by doing the following:

1. Add application-specific user-interface elements.

Use Developer Studio to create your application's dialog boxes, menus, and other
resources.

2. Write application-specific Help topics.

Starting with the .RTF files supplied by App Wizard in your project's HLP
subdirectory, remove topics that don't apply to your application, edit the remaining
material, and add new topics for the menu commands, dialog boxes, toolbar

buttons, and so on, that you added to your program. Each Help topic requires a
help context ID; the help context is the same as the resource ID with an "H" added
to the beginning. For example, if your application's RESQURCE.H file contains
the resource ID ID_PEN_WIDTHS, write a topic with the help-context ID
HID_PEN_WIDTHS.

This mapping between the resource ID and the help-context ID is established by
the MAKEHM tool. Note that the .RTF file refers the context ID as a string, while
the application and the framework refer to the context ID as a number. The article
Help: Authoring Help Topics describes the process of mapping these IDs to Help
topics and writing the topics in your .RTF files.

3. Compile Help.

If you want to compile your application help from the command line instead of
from within Developer's Studio, the Windows Help Compiler and
MAKEHM.EXE must be in your path statement. To ensure that this is the case
(and to set other relevant environment variables for a specific build target) you
may want to run the VCVARS32 batch file. In general, it's a good idea to run
VCVARS32 prior to running build tools such as MAKEHELP from the command
line.

Note By default AppWizard generates the Help Project files in Windows 3.1 format. When
you use the VC++ tools to compile your Help Project, the result is a system compatible with
either Windows 3.1 or 4.0. If porting your applications to other environments is not an issue,
you can also easily convert your Help Project to the 4.0 format. For more information, see
Upgrading Your Help Project File to Windows 95.

~ To run VCVARS32.BAT

• At the command line, type:

VCVARS32 [target]

where target is one of the following: x86, m68k, mppc.

~ To compile your Help files from the command line

1 At the command line, change to the root directory of your Help Project.

App Wizard copies MAKEHELP.BAT to this directory by default.

2 Type MAKEHELP and press ENTER.

The MAKEHM tools creates a .HM file and the Windows Help compiler generates
your application help (.HLP) file.

~ To compile your Help files from within the Developer Studio

1 From the Build pane of the Project workspace, select your Help Project (.HPJ) file.
(You needn't open the file, but it must remain selected while you perform the next
step.)

2 From the Build menu, choose Compile.

Help

445

Help

This calls MAKEHELP.BAT, which in tum calls the following two programs:

• MAKEHM.EXE, a program that generates your context-sensitive topic IDs,
and

• Windows Help Compiler, which builds your .HLP file.

See Also Example Help Contexts

Help: The Help Project File

446

This article describes the Help Project (.HPJ) file that AppWizard creates for you.

The Help Project file provides information used by the Windows Help Compiler. You
can view the .HPJ file using the Microsoft Help Workshop (HCW.EXE); you can also
use a text editor. Following is the .HPJ file for the Scribble sample application. When
you create your project with AppWizard and choose the Context-Sensitive Help
option, your application's .HPJ file will look similar:

[OPTIONS]
CONTENTS=new_index
TITLE=Scribble Application Help
COMPRESS=true
WARNING=-2
REPORT=Yes
BMROOT= ..•.
ROOT- ..•.

[FILES]
afxcore.rtf
afxprint.rtf

[ALIAS]
HIDR_MAINFRAME = main index
HIDR_SCRIBBTYPE = HIDR_DOCITYPE
HIDD_ABOUTBOX = HID_APP_ABOUT

HID_HT_SIZE = HID_SC_SIZE
HID_HT_HSCROLL = scrollbars
HID_HT_VSCROLL = scrollbars
HID_HT_MINBUTTON = HID_SC_MINIMIZE
HID_HT_MAXBUTTON = HID_SC_MAXIMIZE
AFX_HIDP_INVALID_FILENAME = AFX_HIDP default
AFX_HIDP_FAILED_TO_OPEN_DOC = AFX_HIDP_default

[MAP]
#include <C:\MSDEV\MFC\include\afxhelp.hm>
#include <hlp\scribble.hm>

This file lists options used by the Windows Help Compiler, the topic files with the
.RTF extension to be used for the help build, bitmap files to be included in the build,
equivalencies between context strings, mapping files, and more.

Of particular interest is the [MAP] section, which in this example points to two
included files with the .HM (help mapping) extension.

Note Keep in mind when you name your .HPJ file that the name cannot contain spaces.
Including a space in the file name causes help to compile incorrectly.

The article Help: The MAKEHM and MAKEHELP.BAT Tools explains more about
help-context mapping. For more information about Windows Help project files, see
the Tools User's Guide for Microsoft Win32.

See Also Help: The MAKEHM and MAKEHELP.BAT Tools

Help: The MAKEHM and MAKEHELP.BAT Tools
This article describes the tools you use to map help context IDs in your application
which maps to Help topics in your Help file. Topics covered include:

• Help context IDs

• Preferred resource ID prefixes

• Example help contexts

• Running the tools

In Windows Help, a "help context" consists of a string and an ID number. The help
context string is what the help text author uses to identify Help topics. The help
context ID number is what the programmer associates with each resource. The
context strings and ID numbers are mapped together in the [MAP] section of the
.HPJ file. When your application calls Windows Help, Windows Help uses the context
ID your application passes to locate and display the Help topic denoted by that
context. At run time, the framework manages supplying the appropriate help context
ID.

To facilitate relating the windows, dialog boxes, and commands in your application to
Windows Help contexts, MFC provides the MAKEHM.EXE tool, which creates the
information used in the [MAP] section of the .HPJ file.

App Wizard creates a MAKEHELP.BAT file that you'll use, directly or indirectly, to
compile your help. MAKEHELP.BAT calls MAKEHM.EXE and then calls the
Windows Help Compiler.

Help Context IDs
When you use Visual C++ to create dialog-template resources, menu commands, and
the like, Visual C++ writes #define statements in a file named RESOURCE.H. For
example, there might be #define statements for such symbols as I DD_MY _DIALOG and
I D_PEN_WI DTHS.

Help

447

Help

448

The following illustrates the resource IDs that Visual C++ creates in your
RESOURCE.H file and the help context IDs that the MAKEHM tool creates. IDs in
RESOURCE.H like

#define IDD_MY_DIALOG 2000
#define ID_MY_COMMAND 150

would be translated by MAKEHM into

HIDD MY DIALOG
HID MY COMMAND

0x207d0
0x10096

Dialog-box IDs are translated to values beginning at Ox20000. Command and
resource IDs are translated to values beginning at OxlOOOO. That is, the framework
reserves specific ranges of values for different kinds of objects. For details, see the
contents of MAKEHELP.BAT and Technical Note 28 under MFC Technical Notes in
Books Online.

This format is compatible with the Help Compiler, which maps context IDs (the
numbers on the right side) to context strings (the symbols on the left). Use these
context strings in the .RTF Help files to identify topics.

For more information about how Visual C++ adds symbols to RESOURCE.H and
how you can view and manipulate them with the Visual C++ Symbol Browser, see
Browsing Through Symbols, in the Visual C++ User's Guide.

Preferred Resource 10 Prefixes
To facilitate using MAKEHELP.BAT and MAKEHM, observe the conventions in
specifying IDs for your resource objects, as shown in Table 1. It is important that
different kinds of resource objects have different ID prefixes.

Table 1 Preferred Resource 10 Naming Conventions

Predefined 10 Object

IDP

IDD

ID

IDR

IDW_

Message-box prompt

Dialog-box ID

Toolbar or menu command (IDM _ is okay too)

Frame-related resources

Control bar

For example, here's a call to the MAKEHM tool in the MAKEHELP.BAT file for the
Scribble tutorial application:

makehm IDD_.HIDD_.0x20000 resource.h » hlp\scribble.hm

MAKEHELP.BAT expects dialog resources to be named with IDD _ prefixes. The
corresponding help contexts will be named wi~h HIDD _ prefixes.

Note The Scribble tutorial teaches MFC programming techniques. See Tutorials.

Use the IDS_ prefix for normal string resources, and do not write Help topics for
them. For string resources used in message boxes, use the IDP _ prefix and write Help
topics for them so the user can get context-sensitive Help by pressing FI while the
message box is displayed.

Example Help Contexts
As your application grows, you'll define a number of new IDs (symbols). For
example, the following lists the RESOURCE.H file for the Scribble application after
Step 6 of the tutorial:

II{{NO_DEPENDENCIES}}
II Visual C++ generated include file.
II Used by SCRIBBLE.RC
II
#define IDD_ABOUTBOX 100
#define IDR_MAINFRAME 128
#define IDR_SCRIBBTYPE 129
#define IDD_PEN_WIDTHS 131
#define IDC_THIN_PEN_WIDTH 1000
#define IDC_THICK_PEN_WIDTH 1001
#define IDC_DEFAULT_PEN_WIDTHS 1002
#define ID_PEN_THICK_OR_THIN 32771
#define ID_PEN_WIDTHS 32772

Symbols defined for the Scribble tutorial include I DR_SCRI BBTYPE (Scribble's menus
and other application-specific resources), I DD_PEN_WI DTHS (a Pen Widths dialog box),
ID_PEN_THICK_OR_THIN (a Thick Line command), and so on. Notice that one Scribble
command, ID_EDIT_CLEAR_ALL, doesn't appear in RESOURCE.H because it's
predefined ID in the class library. App Wizard will already have generated a Help
topic for it in the .RTF files it created to get you started.

MAKEHM maps these symbols to Windows Help contexts when you run
MAKEHELP.BAT. The following excerpt from a MAKEHELP.BAT file for the
Scribble tutorial shows how MAKEHELP.BAT calls MAKEHM:

echo II Commands CID_* and IDM_*) »hlp\scribble.hm
makehm ID_,HID_,0x10000 IDM_,HIDM_,0x10000 resource.h »hlp\scribble.hm
echo. »hlp\scribble.hm
echo II Prompts CIDP_*) »hlp\scribble.hm
makehm IDP_,HIDP_,0x30000 resource.h »hlp\scribble.hm
echo. »hlp\scribble.hm
echo II Resources CIDR_*) »hlp\scribble.hm
makehm IDR_,HIDR_,0x20000 resource.h »hlp\scribble.hm

REM -- Make help for Project SCRIBBLE

start Iwait hcrtf -x "hlp\scribble.hpj"
echo.

Help

449

Help

After you run MAKEHELP.BAT, the SCRIBBLE.HM file looks like the following:

II MAKEHELP.BAT generated Help Map file. Used by SCRIBBLE.HPJ.

II Commands (10_* and IDM_*)
HID_PEN_THICK_OR_THIN 0x18003
HID_PEN_WIDTHS 0x18004

II Prompts (IDP_*)

II Resources (IDR_*)
HIDR_MAINFRAME
HIDR_SCRIBBTYPE

II Dialogs (100_*)
HIDD_ABOUTBOX
HIDD_PEN_WIDTHS

II Frame Controls (IDW_*)

0x20080
0x20081

0x20064
0x20083

This file contains help contexts for two commands, two resources (menus and other
application resources), and two dialog boxes.

Running the Tools
When you build the .HPJ file from within Developer Studio, or when you run
MAKEHELP.BAT from the command line, MAKEHELP.BAT calls the MAKEHM
tool to map the #define statements in RESOURCE.H to Windows Help strings in an
.HM file. The MAKEHM tool collects #define statements from RESOURCE.H and
uses the command-line parameters passed to MAKEHM to map defined symbols to
help strings in a .HM file. For the example IDs in the previous paragraph, it would
create help strings such as HIDD_MY_DIALOG and HID_PEN_WIDTHS. These context
strings are formed by prefixing an "H" to the symbol found in RESOURCE.H.
MAKEHM also maps the ID' s numeric value to a corresponding number for the help
context. An example is shown in Example Help Contexts.

When MAKEHELP.BAT runs the Windows Help Compiler, the compiler uses the
.HM files pointed to by the .HPJ file to set up the help contexts in your new Help file.
Once you finish compiling your .HLP file, you can use it from your application.

See Also Help: Authoring Help Topics

Help: CPropertySheet and CPropertyPage

450

Objects of class CPropertySheet represent property sheets, also called tab dialog
boxes. A property sheet consists of a CPropertySheet object and one or more
CPropertyPage objects. A property sheet is displayed by the framework as a window
with a set of tab indices, with which the user selects the current page, and an area for
the currently selected page.

Using Help
Help in CPropertySheet is supported by the FI key and the Help button only. The
Help button appears in the application framework by default. No intervention by the
user is necessary. When the user adds the help information for each of the pages
inside the property sheet, the help mechanism automatically displays the help for that
page when the Help button is clicked.

You can deactivate the Help button capability by modifying mysh in the property
sheet object as follows:

mySheet.m_psh->dwFlags &- -(PSH_HASHELP)

You can activate the Help button again with the following:

mySheet.m_psh->dwFlags 1= PSH_HASHELP

The m ysh flag in CPropertyPage determines if the Help button of the property
sheet (the parent of the property page) is enabled or disabled.

See Also In the Class Library Reference: CPropertyPage, CPropertySheet

Help: Authoring Help Topics
The framework manages navigation from application user interfaces to help contexts.
Implementing further navigation within the Help file is the domain of help authoring
rather than programming. The purpose of this article is to describe the general
process of authoring and editing Help topic files. Topics covered include:

• Editing the starter .RTF files

• Help topics in the .RTF file

• Topic examples

• Compiling and testing your Help file

Editing the Help topics for any application is too big a task to work through in just
one article; however a few examples will help you get started. The examples in this
article were edited with Microsoft Word for Windows, but you can use any
application that can edit rich text format (.RTF) files. To make the following
discussion concrete, the examples are drawn from the Scribble tutorial program,
presented in Chapters 2 through 12 of Tutorials. If you want to see how Help is
prepared for Scribble, look at Adding Context-Sensitive Help, in that book.

When you run App Wizard to start the Scribble tutorial, the wizard creates not only
source code files but also a set of files in rich text format (.RTF) containing starter
Help topics for many of the user-interface elements that Scribble will have, including
its menu commands. To complete a Help file for Scribble, follow the steps outlined in
this group of Help articles. Then edit the .RTF files to fill in help material that
AppWizard couldn't supply.

Help

451

Help

452

You can easily upgrade your Help project files to a 4.0 format with the Windows 4.0
Help compiler included with Visual C++ version 4.0. This gives you access to the
Windows 4.0 Help Workshop, a graphical help authoring environment with many
useful features. Before you port any of your applications to other platforms, you must
make sure that those platforms have a compiler that's compatible with the 4.0 Help
project file before upgrading.

The discussion in the rest of this article takes you through part of that process to
illustrate the techniques and to point out some guidelines and tips. Scribble is used
here merely as an example.

Editing the Starter .RTF Files
The .RTF files that AppWizard creates for an application-such as Scribble
contain starter Help topics for many elements of the Windows user interface. Some of
them are fairly complete, while others are skeletal and must be filled out.

If you want to customize the Help topics supplied by App Wizard, you must do the
following, using all of the .RTF files in your project's HLP subdirectory (for example,
\MYSCRIB\HLP):

• Globally replace the placeholder string "«YourApp»" in the .RTF files with the
name of the application: for example, replace "«YourApp»" with "Scribble".

• From the Help topics, remove any references to menu items absent in your
application. Add any additional menu items to the .CNT file, which contains the
information needed to create the Help Contents screen.

For example, file PEN.RTF contains a topic for the Edit Links command, which
Scribble doesn't support.

• Replace the directives in the Help topics with your own information. These
directives are bracketed by« and» symbols.

Notice that because the class library predefines ID_EDIT_CLEAR_ALL,
Scribble's file PEN . RTF already contains a Help topic for the Clear All command
added to the Edit menu in the Scribble tutorial. However, the skeletal directive for
such commands, "« Write application-specific help here. »," needs to be
replaced with a real description.

• Add topics for new commands and dialog boxes.

Examine the listing of RESOURCE.H in Example Help Contexts in the article
Help: The MAKEHM and MAKEHELP.BAT Tools. It lists the following Help
topics (as seen in Scribble):

• Two resource-related HIDs (HIDR _), for menus and related resources

• Two dialog-box HIDs (HIDD _), for the About and Pen Widths dialog boxes

• Two command HIDs (HID _), for the Thick Line and Pen Widths commands

In the Scribble tutorial, the Pen Widths dialog box is new, so new Help topics are
needed for the dialog box and for two new commands. (The About dialog box is
created by AppWizard, so it already has a topic in PEN.RTF.)

Help Topics in the .RTF File
Help topics in an .RTF file are separated by hard page breaks. Each topic has a name
and a "footnote" symbol (#).

The footnote symbol (#) identifies a context string in the .RTF file as a "jump" or a
"popup". When the user clicks on a hot-link to a context string, a jump takes the user
to another topic screen in the Help system, while a popup displays a small popup
window containing extra information.

Other possible footnote symbols identify keywords for searching (K) and topic names
($). For more information, see the Tools User's Guide in the Win32 SDK. If you're
using Word for Windows for .RTF files, you can examine the file PEN.RTF with
hidden text displayed.

Topic Examples
To illustrate the process of adding topics, this section shows the structure needed for a
user to jump from the main contents screen in Help to a screen showing general
information about the new Pen menu, and from there to screens that describe the
Scribble tutorial application's two Pen menu commands. These items are added to the
PEN.RTF file.

The Main Contents Screen
Figure 1 shows the Help topic for the main contents screen as it appears in Microsoft
Word for Windows (with hidden text displayed). The screen contains entries for six
menus: File, Edit, View, Pen, Window, and Help. The Pen menu is Scribble-specific,
so this jump has been added. The others are created by App Wizard.

Figure 1 The Main Contents Screen in PEN. RTF

[:
Scribble Help Index'!!

'!!
How To ••• ,!!

-+ «add your application-specific "how to" topics here»'!!
'!!
Commands'!!

-+ ~enu~fiJ.e.,!!
-+ ~men.u=e.dit'!!
-+ ~m.e.nu~vie.w'Il
-+ ~men.u=p.e.n'!!
-+ ~m.e.nu=v;ind.o.w'Il
-+ ~men.u=h.e.lp,!!

Footnotes

6 +
~

! !;Iooe I ~
I~#~ne-~-ID-de~-------------------------===~--~~

#rnenu"pen~

~ Een: managing1f

~LJ t+

Help

453

Help

454

Each of the menu names on this screen is a "hot spot" that links to another topic. By
clicking this hot spot, the user can jump to another screen in the Help system. If you
examine this screen in the PEN .RTF file using Word for Windows, you see that the
menu names-such as "Pen Menu"- are formatted with double underlining. (This
might be represented differently by another RTF editor.) Each menu name is followed
immediately by a context name formatted as hidden text. For the Pen menu, this text
reads "menu_pen."

The Pen Menu Screen
Figure 2 shows the text in PEN.RTF for a Help screen about the Pen Menu topic. The
upper part of the figure shows the text of the file; the lower part shows footnote text.
All formatting and hidden text are displayed.

Figure 2 The Pen Menu Topic in the PEN.RTF File

#K $ Pen menu command~
~
The Pen menu includes commands that let you toggle between a thin pen width and a thick pen
width and let you change the definitions of thin and thick.~
~
For more information, select the Pen menu command name.:~
~
E..en Displays a dialog box in which you can redefine the meanings of thick and thin. ~ ~
WidthsHID~
PEN}JIIIDTH
.s~

Ibi!;;h; Toggles the pen width between thick and thin.~
!.iMHJD=PE

Footnotes

#menu.,.penl[
~ E,en: managing1[

+~J l+

The topic screen begins with a hard page break. The next line shows the footnote
character, #, followed by the title to be displayed on the user's screen, "Pen menu
commands." The rest of the screen contains descriptive text and two more hot spots
for jumping to screens about the individual menu items.

The footnote text associated with the # footnote for the Pen menu is "menu_pen,"
which is the help context; jumps to this screen of the Help system must specifiy this
help context.

Setting up this screen requires entering the hard page break and the footnote, then
writing the text. In Word for Windows, for example, you use the Break command on
the Insert menu to enter a hard page break. Then you use the Footnote entry on the
Insert menu to specify a footnote with the special footnote character #.

Next, type the footnote text in the footnote window. Finally, type the descriptive text
and format the hot-links.

A hot-link consist of the two parts:

• Visible text, such as "Pen Widths," formatted as double underlined, to designate
how the hot-link looks onscreen.

• Hidden text, such as "pen_widths," to designate the help context of the destination
topic.

In the RTF files that AppWizard supplies, tables (as in Word for Windows) are used
to present groups of jumps, but help authors are not required to use tables.

A Screen for a Menu Item
Figure 3 shows a screen for the Pen Widths and Thick Line menu items.

Figure 3 The Pen Widths and Thick Line Topics in the PEN. RTF File

[0 .J.1 .J.2 J..3 J.4 .J.5 S +
I~~~~---------------------------------------~~~ #K $ Pen Widths command (Pen menum

~
The Pen Widths command displays a dialog box that lets you redefine the widths of thick and thin
pens.~

~
h #K .. fThi~k.Li~; .. ~~.;:;;;:;;~.~d."(P;~.;:;;;~~i;r w •• w.............. ... 1-"

~
The Thick Line command toggles between thin and thick widths of the pen. The default pen is
thin.~ t!:

Footnotes ~ ~

HID]EN_ WIDTHSII
Kpen: man.ging1f
$ Pen Widths commandll
HID]EN_THICK_OR_THINlI
K pen: man.ging1f
$ TbickLine commandll

L+

The screen is set up similarly to its parent screen for the Pen menu as a whole. Notice
the text used for the footnotes in the lower part of Figure 3.

Compiling and Testing Your Help File
Once your Help authoring is finished, you can compile your Help file. If you're trying
out the techniques described in these articles, perhaps by working through the
Scribble tutorial in Tutorials, and you've chosen to author the application's Help
files, use the following procedure to see the results.

~ To compile and test the application's Help

Use one of the following methods to compile Help:

• Run MAKEHELP.BAT from the command line.

-or-

• Compile the Help project (.HPJ) file from within Developer Studio.

~ To compile your Help files from the command line

1 At the command line, change to the root directory of your Help project.

App Wizard copies MAKEHELP.BAT to this directory by default.

Help

455

Help

456

2 Type MAKEHELP and press ENTER.

The Windows Help compiler generates your application Help (.HLP) file.

~ To compile your Help files from within Developer Studio

1 From the File View pane of the Project workspace window, select your Help project
(.HPJ) file. (You needn't open the file; but it must remain selected while you
perform the next step.)

2 From the Build menu, choose Compile.

This calls MAKEHELP.BAT, which in tum calls the Windows Help Compiler. As
the compiler runs, it prints a row of dots in the Visual C++ output window,
displaying any errors in the help build process.

See Also Help: The Help Project File, Help: The MAKEHM and MAKEHELP.BAT
Tools

In-Place Editing

In-Place Activation
See the article Servers: Implementing In-Place Frame Windows.

In-Place Editing
See the article Servers: Implementing In-Place Frame Windows.

457

Library Versions

Library Versions

458

This article provides information on available versions of the MFC. Topics covered
include:

• Automatic linking of MFC library version

• Library naming conventions

• AFXDLL versions

• Dynamic-Link Library (DLL) support

Automatic Linking of MFC Library Version
In versions of MFC prior to version 3.0 (prior to Visual C++ version 2.0), you had to
manually specify the correct version of the MFC library in the input list of libraries
for the linker. With MFC version 3.0 and later, it is no longer necessary to manually
specify the version of the MFC library. Instead, the MFC header files automatically
determine the correct version of the MFC library, based on values defined with
#define, such as _DEBUG or _UNICODE. The MFC header files add "/defaultlib"
directives instructing the linker to link in a specific version of the MFC library.

For example, the following code fragment from the AFX.H header file instructs the
linker to link in either the NAFXCWD.LIB or NAFXCW.LIB version of MFC,
depending on whether you are using the debug version of MFC:

#ifndef _UNICODE
Iii fdef _DEBUG

#pragma comment(lib. "nafxcwd.lib")
lie 1 se

#pragma comment(lib. "nafxcw.lib")
Ilendi f

#else
#ifdef _DEBUG

#pragma comment(lib. "uafxcwd.lib")
lie 1 se

#pragma comment(lib. "uafxcw.lib")
#endif

#endi f. ..

MFC header files also link in all required libraries, including MFC libraries, Win32
libraries, OLE libraries, OLE libraries built from samples, ODBC libraries, and so
on. The Win32 libraries include KERNEL32.LIB, USER32.LIB, and GDB2.LIB.

Library Naming Conventions
Object-code libraries for MFC use the following naming conventions. The library
names have the form

uAFXcWd.LIB

where the letters shown in italic lowercase are placeholders for specifiers whose
meanings are shown in Table 1:

Table 1 Library Naming Conventions

Specifier Values and meanings

u ANSI (N) or Unicode (U)

c Type of program to create: C=all

d Debug or Release: D=Debug; omit specifier for Release

The default is to build a debug Windows ANSI application for the Intel® platform:
NAFXCWD.LIB. All libraries-listed in Table 2-are included prebuilt in the
MFC\LIB directory on the Visual C++ CD-ROM.

Table 2 Static Library Versions

Library

NAFXCW.LIB

NAFXCWD.LIB

UAFXCW.LIB

UAFXCWD.LIB

Description

Release version

Debug version (default)

Release version with Unicode support

Debug version with Unicode support

Note If you need to build a library version, see the README.TXT file in \MFC\SRC directory.
This file describes using the supplied MAKEFILE with NMAKE.

AFXDLL Versions
Instead of building your application by statically linking to the MFC object-code
libraries, you can build your application to use one of the AFXDLL libraries-which
contain MFC in a DLL that multiple running applications can share. For a table of
AFXDLL names, see the article DLLs: Naming Conventions.

Note By default, AppWizard creates an AFXDLL project. To use static linking of MFC code
instead, set the Use MFC in a static library option in AppWizard.

Library Versions

459

Linked OLE Item

Dynamic-Link Library Support
The NAFXDWD.LIB and NAFXDW.LIB libraries create your project as a dynamic
link library, called a "Regular DLL," (formerly a "USRDLL") that can be used with
applications not built with the class library. Don't confuse this DLL support with
MFCxO.DLL and MFCxOD.DLL (known as AFXDLL), which contain the entire 32-
bit class library in a DLL. For more information, see the article Dynamic-Link
Libraries (DLLs). For a table ofDLL names, see the article DLLs: Naming
Conventions.

See Also Dynamic-Link Libraries (DLLs)

Linked OLE Item
See the article Activation.

460

MAPI Support in MFC

Mail API
See MAPI and MAPI Support in MFC.

MAPI
This article describes MAPI, the Microsoft Messaging Application Programming
Interface for client message application developers. MFC supplies support for a
subset of MAPI in class CDocument but does not encapsulate the entire API. For
more information, see MAPI Support in MFC.

MAPI is a set of functions that mail-enabled and mail-aware applications use to
create, manipulate, transfer, and store mail messages. It gives application developers
the tools to define the purpose and content of mail messages, and gives them
flexibility in their management of stored mail messages. MAPI also provides a
common interface that application developers can use to create mail-enabled and
mail-aware applications independent of the underlying messaging system.

Messaging clients provide a human interface for interaction with the Microsoft
Windows Messaging System (WMS). This interaction typically includes requesting
services from MAPI -compliant providers such as message stores and address books.

For more information about MAPI, see the following MAPI Software Development
Kit (SDK) documents: the Client Developer's Guide and the Provider Developer's
Guide.

See Also MAPI Support in MFC

In the Class Library Reference: CDocument::OnFileSendMail,
CDocument: :OnUpdateFileSendMail, COleDocument: :OnFileSendMaii

MAPI Support in MFC
MFC supplies support for a subset of the Microsoft Messaging Application Program
Interface (MAPI) in class CDocument. Specifically, CDocument has member
functions that determine whether mail support is present on the end-user's machine
and, if so, enable a Send Mail command whose standard command ID is
ID FILE SEND MAIL. The MFC handler function for this command allows the - - -
user to send a document via electronic mail.

Tip Although MFC does not encapsulate the entire MAPI function set, you can still call MAPI
functions directly, just as you can call Win32 API functions directly from MFC programs.

Providing the Send Mail command in your application is very easy. MFC provides
the implementation to package a document (that is, a CDocument-derived object) as
an attachment and send it as mail. This attachment is equivalent to a File Save

461

MAPI Support in MFC

462

command that saves (serializes) the document's contents to the mail message. This
implementation calls upon the mail client on the user's machine to give the user the
opportunity to address the mail and to add subject and message text to the mail
message. Users see their familiar mail application's user interface. This functionality
is supplied by two CDocument member functions: OnFiIeSendMaiI and
OnUpdateFiIeSendMaiI.

MAPI needs to read the file to send the attachment. If the application keeps its data
file open during an OnFileSendMaii function call, the file needs to be opened with a
share mode that allows multiple processes to access the file.

Note An overriding version of OnFileSendMaii for class COleDocument correctly handles
compound documents.

~ To implement a Send Mail command with MFC

1 Use the Visual c++ menu editor to add a menu item whose command ID is
ID FILE SEND MAIL. - - -
This command ID is provided by the framework in AFXRES.H. The command
can be added to any menu, but it is usually added to the File menu.

2 Manually add the following to your document's message map:

ON_COMMAND(ID_FILE_SEND_MAIL. OnFileSendMail)
ON_UPDATE_COMMAND_UI(ID_FILE_SEND_MAIL. OnUpdateFileSendMail)

Place the new lines outside of the special "II{ {AFX" comments.

Note This message map works for a document derived from either CDocument or
COleDocument-it picks up the correct base class in either case, even though the
message map is in your derived document class.

3 Build your application.

If mail support is available, MFC enables your menu item with
OnUpdateFiIeSendMaiI and subsequently processes the command with
OnFileSendMaii. If mail support is not available, MFC automatically removes your
menu item so the user will not see it.

Tip Rather than manually adding message map entries as described above, you can use
ClassWizard to add them, although the method is indirect. To use ClassWizard, add an
OnFi 1 eSendMai 1 command handler and an OnUpdateFi 1 eSendMai 1 command update
handler as you normally would. This gives you two empty handlers which effectively override
the OnFileSendMaii and OnUpdateFileSendMaii handlers in CDocument, which contain the
MAPI implementations. To use those implementations, call the base-class versions of
OnFileSendMaii and OnUpdateFileSendMaii in your new handlers. While this approach
works, manually adding the message map entries, as described in the procedure above, is
quicker and more direct.

Note also that AppWizard lets you select an option that adds MAPI support directly to your new
MFC application. If you use that option, you can skip steps 1 and 2 above.

Managing the State Data of MFC Modules

See Also MAPI

In the Class Library Reference: CDocument::OnFileSendMail,
CDocument: :OnUpdateFileSendMail, COleDocument: :OnFileSendMail

Managing the State Data of MFC Modules
This article discusses the state data of MFC modules and how this state is updated
when the flow of execution (the path code takes through an application when
executing) enters and leaves a module. Switching module states with the
AFX MANAGE STATE and METHOD PROLOGUE macros is also discussed. - - -
Note The term "module" here refers to an executable program, or to a DLL (or set of DLLs)
that operate independently of the rest of the application, but uses a shared copy of the MFC
DLL. An OLE control is a typical example of a module.

As shown in Figure 1, MFC has state data for each mocule used in an application.
Examples of this data include: Windows instance handles (used for loading
resources), pointers to the current CWinApp and CWinThread objects of an
application, OLE module reference counts, and a variety of maps that maintain the
connections between Windows object handles and corresponding instances of MFC
objects. However, when an application uses multiple modules, the state data of each
module is not application-wide. Rather, each module has its own private copy of the
MFC's state data.

Figure 1 State Data of a Single Module (Application).

r MFC application

Thread
object

m-PMOdUlestate-!

State data

A module's state data is contained in a structure, and is always via a pointer to that
structure. When the flow of execution enters a particular module (as shown in Figure
2), that module's state must be the "current" or "effective" state. Therefore, each
thread object has a pointer to the effective state structure of that application. Keeping
this pointer updated at all times is vital to managing the application's global state and

463

Managing the State Data of MFC Modules

464

maintaining the integrity of each module's state. Incorrect management of the global
state can lead to unpredictable application behaviour.

Figure 2 State Data of Multiple Modules

rMFC application

(scope of module 1)

Module 1

Thread
object

- - - - - - - - - - --+ State data
I
I
I
J (scope of module 2)

m_pModulestate= = - - - - - - - -

State data

Module 2

1--

I
I
'- --- State data

In other words, each module is responsible for correctly switching between module
states at all of its entry points. An "entry point" is any place where the flow of
execution can enter the module's code. Entry points include:

• Exported functions in a DLL

• Member functions of OLE/COM interfaces

• Window procedures

Exported DLL Function Entry Points
For exported functions of a DLL, use the AFX _MANAGE_STATE macro to
maintain the proper global state when switching from the DLL module to the calling
application's DLL.

When called, this macro sets pModuleState, a parameter of type
AFX_MODULE_STATE*, as the effective module state for the remainder of the
containing scope of the function. Upon leaving the scope containing the macro, the
previous effective module state is automatically restored.

This switching is achieved by constructing an instance of a class on the stack. In its
constructor, this class obtains a pointer to the current module state and stores it in a
member variable, and then sets pModuleState as the new effective module state. In its
destructor, this class restores the pointer stored in its member variable as the effective
module state.

Managing the State Data of MFC Modules

OLE/COM Interface Entry Points
For member functions of an OLE/COM interface, use the METHOD_PROLOGUE
macro to maintain the proper global state when calling methods of an exported
interface.

Typically, member functions of interfaces implemented by CCmdTarget-derived
objects already use this macro to provide automatic initialization of the pThis pointer.
For additional information, see Technical Note 38, MFC/OLE IUnknown
Implementation, under MFC Technical Notes in Books Online.

The portion of the macro concerned with managing the global state is equivalent to
the following expression:

AFX_MANAGE_STATE(pThis->m_pModuleState)

In this expression, m yModuleState is assumed to be a member variable of the
containing object. It is implemented by the CCmdTarget base class, and is initialized
to the appropriate value by COleObjectFactory, when the object is instantiated.

Window Procedure Entry Points
To protect MFC window procedures, a module static links with a special window
procedure implementation. The linkage occurs automatically when the module is
linked with MFC. This window procedure uses the AFX_MANAGE_STATE macro
to properly set the effective module state, then it calls AfxWndProc, which in tum
delegates to the WindowProc member function of the appropriate CWnd-derived
object.

465

MBCS

MBCS
Multibyte Character Set encoding. In Visual C++, MBCS support is limited to double
byte character set (DBCS) encoding. MFC supports both DBCS and Unicode.

For information about using DBCS with MFC, see Chapter 13, Developing for
International Markets, in Programming Techniques.

Memory Management
This group of articles describes how to take advantage of the general-purpose services
of the MFC related to memory management. Memory allocation can be divided into
two main categories: frame allocations and heap allocations.

One main difference between the two allocation techniques is that with frame
allocation you typically work with the actual memory block itself, whereas with heap
allocation you are always given a pointer to the memory block. Another major
difference between the two schemes is that frame objects are automatically deleted,
while heap objects must be explicitly deleted by the programmer.

The following articles describe how to use the capabilities of C and C++ to
accomplish memory allocations on the frame and on the heap:

• Memory Management: Frame Allocation

• Memory Management: Heap Allocation

• Memory Management: Memory Allocation on the Frame and on the Heap

• Memory Management: Resizable Memory Blocks

The third article above demonstrates MFC memory allocation techniques.

Memory Management: Frame Allocation

466

Allocation on the frame takes its name from the "stack frame" that is set up whenever
a function is called. The stack frame is an area of memory that temporarily holds the
arguments to the function as well as any variables that are defined local to the
function. Frame variables are often called "automatic" variables because the compiler
automatically allocates the space for them.

There are two key characteristics of frame allocations. First, when you define a local
variable, enough space is allocated on the stack frame to hold the entire variable,
even if it is a large array or data structure. Second, frame variables are automatically
deleted when they go out of scope:

Memory Management

void MyFunction()
{

II Local object created on the stack
CString strName;

II Object goes out of scope and is deleted as function ends

For local function variables, this scope transition happens when the function exits,
but the scope of a frame variable can be smaller than a function if nested braces are
used. This automatic deletion of frame variables is very important. In the case of
simple primitive types (such as int or byte), arrays, or data structures, the automatic
deletion simply reclaims the memory used by the variable. Since the variable has
gone out of scope, it cannot be accessed anyway. In the case of c++ objects, however,
the process of automatic deletion is a bit more complicated.

When an object is defined as a frame variable, its constructor is automatically
invoked at the point where the definition is encountered. When the object goes out of
scope, its destructor is automatically invoked before the memory for the object is
reclaimed. This automatic construction and destruction can be very handy, but you
must be aware of the automatic calls, especially to the destructor.

The key advantage of allocating objects on the frame is that they are automatically
deleted. When you allocate your objects on the frame, you don't have to worry about
forgotten objects causing memory leaks. (For details on memory leaks, see the article
Diagnostics: Detecting Memory Leaks.) A disadvantage of frame allocation is that
frame variables cannot be used outside their scope. Another factor in choosing frame
allocation versus heap allocation is that for large structures and objects, it is often
better to use the heap instead of the stack for storage since stack space is often
limited.

Memory Management: Heap Allocation
The heap is reserved for the memory allocation needs of the program. It is an area
apart from the program code and from the stack. Typical C programs use the
functions malloe and free to allocate and deallocate heap memory. The Debug
version of the provides modified versions of the C++ built-in operators new and
delete to allocate and deallocate objects in heap memory.

When you use new and delete instead of malloe and free, you are able to take
advantage of the class library's memory-management debugging enhancements,
which can be useful in detecting memory leaks. When you build your program with
the Release version of the, the standard versions of the new and delete operators
provide an efficient way to allocate and deallocate memory (the Release version of the
does not provide modified versions of these operators).

Note that the total size of objects allocated on the heap is limited only by your
system's available virtual memory.

467

Memory Management

Memory Management: Allocation on the Frame and on
the Heap

468

This article describes how MFC performs frame allocations and heap allocations for
each of the three typical kinds of memory allocations:

• An array of bytes

• A data structure

• Anobject

Allocation of an Array of Bytes
~ To allocate an array of bytes on the frame

• Define the array as shown by the following code. The array is automatically
deleted and its memory reclaimed when the array variable exits its scope.

{

}

canst int BUFF_SIZE = 128;

II Allocate on the frame
char myCharArray[BUFF_SIZE];
int myIntArray[BUFF_SIZE];
II Reclaimed when exiting scope

~ To allocate an array of bytes (or any primitive data type) on the heap

• Use the new operator with the array syntax shown in this example:

canst int BUFF_SIZE = 128;

II Allocate on the heap
char* myCharArray = new char[BUFF_SIZE];
int* myIntArray = new int[BUFF_SIZE];

~ To deallocate the arrays from the heap

• Use the delete operator as follows:

delete [] myCharArray;
delete [] myIntArray;

Allocation of a Data Structure
~ To allocate a data structure on the frame

• Define the structure variable as follows:

struct MyStructType { ... };
void SomeFunc(void)
{

II Frame allocation
MyStructType myStruct;

II Use the struct
myStruct.topScore = 297;

II Reclaimed when exiting scope

The memory occupied by the structure is reclaimed when it exits its scope.

~ To allocate data structures on the heap

• Use new to allocate data structures on the heap and delete to deallocate them, as
shown by the following examples:

II Heap allocation
MyStructType* myStruct = new MyStructType;

II Use the struct through the pointer ...
myStruct->topScore = 297;

delete myStruct;

Allocation of an Object
~ To allocate an object on the frame

• Declare the object as follows:
{

CPerson myPerson; II Automatic constructor call here

myPerson.SomeMemberFunction(); II Use the object

}

The destructor for the object is automatically invoked when the object exits its
scope.

~ To allocate an object on the heap

• Use the new operator, which returns a pointer to the object, to allocate objects on
the heap. Use the delete operator to delete them.

The following heap and frame examples assume that the CPerson constructor
takes no arguments.

Memory Management

469

Menus and Resources

II Automatic constructor call here
CPerson* myPerson = new CPerson;

myPerson-)SomeMemberFunction(); II Use the object

delete myPerson; II Destructor invoked during delete

If the argument for the C Per son constructor is a pointer to char, the statement for
frame allocation is:

CPerson myPerson("Joe Smith");

The statement for heap allocation is:

CPerson* MyPerson = new CPerson("Joe Smith");

Memory Management: Resizable Memory Blocks
The new and delete operators, described in the article Memory Management:
Allocation on the Frame and on the Heap, are good for allocating and de allocating
fixed-size memory blocks and objects. Occasionally, your application may need
resizable memory blocks. You must use the standard C run-time library functions
malloc, realloc, and free to manage resizable memory blocks on the heap.

Important Mixing the new and delete operators with the resizable memory-allocation
functions on the same memory block will result in corrupted memory in the Debug version of
the. You should not use realloc on a memory block allocated with new. Likewise, you should
not allocate a memory block with the new operator and delete it with free, or use the delete
operator on a block of memory allocated with malloc.

Menus and Resources

470

This group of articles explains the use of menus and resources in MFC OLE
document applications.

OLE visual editing places additional requirements on the menu and other resources
provided by OLE document applications because there are a number of modes in
which both container and server (component) applications can be started and used.
For example, a full-server application can run in any of these three modes:

• Stand-alone

• In place, for editing an item within the context of a container

• Open, for editing an item outside the context of its container, often in a separate
window

Menus and Resources

This requires three separate menu layouts, one for each possible mode of the
application. Accelerator tables are also necessary for each new mode. A container
application mayor may not support in-place activation; if it does, it needs a new
menu structure and associated accelerator tables.

In-place activation requires that the container and server applications must negotiate
for menu, toolbar, and status bar space. All resources must be designed with this in
mind. The article Menus and Resources: Menu Merging covers this topic in detail.

Because of these issues, OLE document applications created with App Wizard can
have up to four separate menus and accelerator table resources. These are used for the
following reasons:

Resource name

lOR MAINFRAME

IOR_ <project>TYPE

IOR_ <project>TYPE_SRVR_EMB

Use

Used in an MDI application if no file is open, or
in an SDI application regardless of open files.
This is the standard menu used in non-OLE
applications.

Used in an MDI application if files are open.
Used when an application is running stand-alone.
This is the standard menu used in non-OLE
applications.

Used by the server or container when an object is
open in place.

U sed by a server application if an object is
opened without using in-place activation.

Each of these resource names represents a menu and, usually, an accelerator table. A
similar scheme should be used in MFC applications that are not created with
AppWizard.

The following articles discuss topics related to containers, servers, and the menu
merging necessary to implement in-place activation:

• Menus and Resources: Container Additions

• Menus and Resources: Server Additions

• Menus and Resources: Menu Merging

Menus and Resources: Container Additions
This article explains the changes that need to be made to the menus and other
resources in a visual editing container application. In container applications, two
types of changes need to be made: modifications to existing resources to support OLE
visual editing and addition of new resources used for in-place activation. If you use
App Wizard to create your container application, these steps will be done for you, but
they may require some customization.

471

Menus and Resources

472

If you don't use App Wizard, you may want to look at OCLIENT.RC, the resource
script for the OCLIENT sample application, to see how these changes are
implemented. See the MFC OLE sample OCLIENT.

Topics covered in this article include:

• Container menu additions

• Accelerator table additions

• String table additions

Container Menu Additions
You must add a number of items to the Edit menu:

Item

Insert New Object. ..

Paste Link

OLE Verb

Links •.•

Purpose

Opens the OLE Insert Object dialog box to insert a linked or
embedded item into the document.

Pastes a link to the item on the Clipboard into the document.

Calls the selected item's primary verb. The text of this menu
item changes to reflect the primary verb of the selected item.

Opens the OLE Edit Links dialog box to change existing
linked items.

In addition to the changes listed in this article, your source file must include
AFXOLECL.RC, which is required for the implementation. Insert New Object is the
only required menu addition. Other items can be added, but these listed are the most
common.

You must create a new menu for your container application if you want to support in
place activation of contained items. This menu consists of the same File menu and
Window pop-up menus used when files are open, but it has two separators placed
between them. These separators are used to indicate where the server (component)
item (application) should place its menus when activated in place. For more
information on this menu-merging technique, see the article Menus and Resources:
Menu Merging.

Container Application Accelerator Table Additions
Small changes to a container application's accelerator table resources are necessary if
you are supporting in-place activation. The first change allows the user to press the
escape key (ESC) to cancel the in-place editing mode. Add the following entry to the
main accelerator table:

10 Key Type

VIRTKEY

Menus and Resources

The second change is to create a new accelerator table that corresponds to the new
menu resource created for in-place activation. This table has entries for the File and
Window menus in addition to the VK _ESCAPE entry above. The following example
is the accelerator table created for in-place activation in the MFC Container Tutorial:

10 Key Type

ID _FILE_NEW CTRL+N VIRTKEY

ID FILE OPEN CTRL+O VIRTKEY

ID_FILE_SAVE CTRL+S VIRTKEY

ID FILE PRINT CTRL+P VIRTKEY

ID NEXT PANE VK_P6 VIRTKEY - -
ID PREV PANE SHIFT + VK_P6 VIRTKEY - -
ID CANCEL EDIT CNTR VK_ESCAPE VIRTKEY - --

String Table Additions for Container Applications
Most of the changes to string tables for container applications correspond to the
additional menu items mentioned in Container Menu Additions. They supply the text
displayed in the status bar when each menu item is displayed. As an example, here
are the string-table entries AppWizard generates:

10

IDP _OLE _ INIT _FAILED

IDP FAILED TO CREATE - --

String

OLE initialization failed. Make sure that the OLE
libraries are the correct version.

Failed to create object. Make sure that the object is
entered in the system registry.

See Also Menus and Resources: Server Additions

Menus and Resources: Server Additions
This article explains the changes that need to be made to the menus and other
resources in a visual editing server (component) application. A server application
requires many additions to the menu structure and other resources because it can be
started in one of three modes: stand-alone, embedded, or in place. As described in the
Menus and Resources article, there are a maximum of four sets of menus. All four are
used for an MDI full-server application, while only three are used for a mini-server.
App Wizard will create the menu layout necessary for the type of server you want.
Some customization may be necessary.

If you don't use AppWizard, you may want to look at HIERSVR.RC, the resource
script for the MFC sample application HIERSVR, to see how these changes are
implemented.

473

Menus and Resources

474

Topics covered in this article include:

• Server menu additions

• Accelerator table additions

• String table additions

• Mini-Server additions

Server Menu Additions
Server (component) applications must have menu resources added to support OLE
visual editing. The menus used when the application is run in stand-alone mode do
not have to be changed, but you must add two new menu resources before building
the application; one to support in-place activation and one to support the server being
fully open. Both menu resources are used by full- and mini-server applications.

• To support in-place activation, you must create a menu resource that is very
similar to the menu resource used when run in stand-alone mode. The difference
in this menu is that the File and Window items (and any other menu items that
deal with the application, and not the data) are missing. The container application
will supply these menu items. For more information on, and an example of, this
menu-merging technique, see the article Menus and Resources: Menu Merging.

• To support fully open activation, you must create a menu resource nearly identical
to the menu resource used when run in stand-alone mode. The only modification
to this menu resource is that some items are reworded to reflect the fact that the
server is operating on an item embedded in a compound document. For example,
in Step 7 of the Scribble tutorial, when the application is open in-place, the Save
command on the File menu changes to Save Copy As.

In addition to the changes listed in this article, your resource file needs to include
AFXOLESY.RC, which is required for the implementation. This file is in the
MFC\INCLUDE subdirectory.

Server Application Accelerator Table Additions
Two new accelerator table resources must be added to server applications; they
correspond directly to the new menu resources described above. The first accelerator
table is used when the server application is activated in place. It consists of all the
entries in the view's accelerator table except those tied to the File and Window
menus.

The second table is nearly an exact copy of the view's accelerator table. Any
differences parallel changes made in the fully open menu mentioned in Server Menu
Additions.

For an example of these accelerator table changes, compare the
IDR_ HIERSVRTYPE _ SRVR_IP and IDR _ HIERSVRTYPE _SRVR _ EMB
accelerator tables with IDR MAINFRAME in the HIERSVR.RC file included in the

Menus and Resources

MFC OLE sample IllERSVR. The File and Window accelerators are missing from
the in-place table and exact copies of them are in the embedded table.

String Table Additions for Server Applications
Only one string table addition is necessary in a server application-a string to signify
that the OLE initialization failed. As an example, here is the string-table entry
App Wizard generates:

10

IDP OLE INIT FAILED - - -

Mini-Server Additions

String

OLE initialization failed. Make sure that the OLE
libraries are the correct version.

The same additions apply for mini-servers as those listed above for full-servers.
Because a mini-server can't be run in stand-alone mode, its main menu is much
smaller. The main menu created by AppWizard has only a File menu, containing only
the items Exit and About. Embedded and in-place menus and accelerators for mini
servers are exactly the same as those for full-servers.

See Also Menus and Resources: Menu Merging

Menus and Resources: Menu Merging
This article details the steps necessary for OLE document applications to handle
visual editing and in-place activation properly. In-place activation poses a challenge
for both container and server (component) applications. The user remains in the same
frame window (within the context of the container document), but is actually running
another application, the server. This requires coordination between the resources of
the container and server applications.

Topics covered in this article include:

• Menu layouts

• Toolbars and status bars

Menu Layouts
The first step is to coordinate menu layouts.

For more information, see Menu Creation in the Win32 SDK.

Container applications should create a new menu to be used only when embedded
items are activated in place. At the minimum, this menu should consist of the
following, in the order listed:

1. File menu identical to the one used when files are open. (Usually no other menu
items are placed before the next item.)

2. Two consecutive separators.

475

Menus and Resources

476

3. Window menu identical to the one used when files are open (only if the container
application in an MDI application). Some applications may have other menus,
such as an Options menu, that belong in this group that remains on the menu
when an embedded item is activated in place.

Note There may be other menus which affect the view of the container document, such as
Zoom. These "Container" menus appear between the two separators in this menu resource.

Server (component) applications should also create a new menu specifically for in
place activation. It should be like the menu used when files are open, but without
menu items, such as File and Window that manipulate the server document instead of
the data. Typically, this menu consists of the following:

1. Edit menu identical to the one used when files are open.

2. Separator.

3. Object editing menus, such as the Pen menu in the Scribble tutorial application.

4. Separator.

5. Help menu.

For an example, take a look at the layout of some sample in-place menus for a
container and a server. The details of each menu item have been removed to make the
example clearer. The container's in-place menu has the following entries:

IDR_CONTAINERTYPE_CNTR_IP MENU PRELOAD DISCARDABLE
BEGIN

END

POPUP "&File C1"
MENU ITEM SEPARATOR
POPUP "&Zoom C2"
MENU ITEM SEPARATOR
POPUP "&Options C3"
POPUP "&Window C3"

The consecutive separators indicate where the first part of the server's menu should
go. Now look at the server's in-place menu:

IDR_SERVERTYPE_SRVR_IP MENU PRELOAD DISCARDABLE
BEGIN

END

POPUP "&Edit S1"
MENU ITEM SEPARATOR
POPUP "&Format S2"
MENU ITEM SEPARATOR
POPUP "&Help S3"

The separators here indicate where the second group of container menu items should
go. The resulting menu structure when an object from this server is activated in place
inside this container looks like this:

BEGIN

END

POPUP "&Fil e C1"
POPUP "&Edit 51"
POPUP "&Zoom C2"
POPUP "&Format 52"
POPUP "&Options C3
POPUP "&Window C3"
POPUP "&Help 53"

As you can see, the separators have been replaced with the different groups of each
application's menu.

Accelerator tables associated with the in-place menu should also be supplied by the
server application. The container will incorporate them into its own accelerator
tables.

When an embedded item is activated in place, the framework loads the in-place
menu. It then asks the server application for its menu for in-place activation and
inserts it where the separators are. This is how the menus combine. You get menus
from the container for operating on the file and window placement, and you get
menus from the server for operating on the item.

Toolbars and Status Bars
Server applications should create a new toolbar and store its bitmap in a separate file.
AppWizard-generated applications store this bitmap in a file called
ITOOLBAR.BMP. The new toolbar replaces the container application's toolbar when
your server's item is activated in place, and should contain the same items as your
normal toolbar, but remove icons representing items on the File and Window menus.

This toolbar is loaded in your COleIPFrameWnd-derived class, created for you by
AppWizard. The status bar is handled by the container application. For more
information on the implementation of in-place frame windows, see the article
Servers: Implementing a Server.

See Also Activation, Servers, Containers

Message Map
The MFC uses a mechanism called the "message map" to route Windows messages
and commands to the windows, documents, views, and other objects in an MFC
application. Message maps map Windows messages; commands from menus, toolbar
buttons, and accelerators; and control-notification messages.

The standard Windows message loop is encapsulated in the Run member function of
class CWinApp. The message loop gets messages representing mouse clicks,
keystrokes, and other events from Windows and dispatches them to particular
windows or other "command targets." Each object derived from class CCmdTarget,

Message Map

477

Message Map

including objects derived from class CWnd, has a message map. This includes
windows, dialog boxes, documents, views, threads, and the application itself.

Message maps connect messages to message handler functions, or "handlers," in the
target object. For example, a WM _ LBUTTONDOWN message might be mapped to
an OnLButtonDown handler function in a view object. When the message is
received, the message map calls the handler function.

Message maps, command targets, message handlers, and other components of the
message-handling architecture of MFC are described in detail in Chapter 2, Working
with Messages and Commands.

See Also Message Map: Ranges of Messages

In the Class Library Reference: CCmdTarget

Message Map: Ranges of Messages

478

This article explains how to map a range of messages to a single message handler
function (instead of mapping one message to only one function).

There are times when you need to process more than one message or control
notification in exactly the same way. At such times, you might wish to map all of the
messages to a single handler function. Message-map ranges allow you to do this for a
contiguous range of messages:

• You can map ranges of command IDs to:

• A command handler function.

• A command update handler function.

• You can map control-notification messages for a range of control IDs to a message
handler function.

Topics covered in this article include:

• Writing the message-map entry

• Declaring the handler function

• Example for a range of command IDs

• Example for a range of control IDs

Important ClassWizard does not support message-map ranges, so you must write the
message-map entries and handler function declarations yourself, as described in this article.

Writing the Message-Map Entry
In the .CPP file, add your message-map entry, as shown in the following example:

BEGIN_MESSAGE_MAP(CMyApp, CWinApp)
11{{AFX_MSG_MAP(CMyApp)

ON_COMMAND_RANGE(ID_MYCMD_ONE, ID_MYCMD_TEN, OnDoSomething)
I/} }AFX_MSG_MAP

END_MESSAGE_MAP()

The message-map entry consists of the following items:

• The message-map range macro:

• ON COMMAND RANGE - -
• ON_UPDATE_COMMAND_UI_RANGE

• ON_CONTROL_RANGE

• Parameters to the macro:

The first two macros take three parameters:

• The command ID that starts the range

• The command ID that ends the range

• The name of the message handler function

The range of command IDs must be contiguous.

The third macro, ON_CONTROL_RANGE, takes an additional first parameter:
a control-notification message, such as EN_CHANGE.

Declaring the Handler Function
In the .H file, add your handler function declaration outside the / / {{AFX_MSG
comment brackets. The following code shows how this might look, as shown in the
next-to-Iast line below:

II Generated message-map functions
protected:

11{{AFX_MSG(CMyView)

/ /} } AFX_MSG
afx_msg void OnDoSomething(UINT nID);
DECLARE_MESSAGE_MAP()

Handler functions for single commands normally take no parameters. Handler
functions for message-map ranges require an extra parameter, nlD, of type UINT.
This parameter is the first parameter. The extra parameter accommodates the extra
command ID needed to specify which command the user actually chose.

Message Map

479

Message Map

480

Example for a Range of Command IDs
When might you use ranges? One example is in handling commands like the Zoom
command in the MFC OLE sample HIERSVR. This command zooms the view,
scaling it between 25% and 300% of its normal size. HIERSVR's view class uses a
range to handle the Zoom commands with a message-map entry resembling this:

ON_COMMAND_RANGE(ID_VIEW_ZOOM25. ID_VIEW_ZOOM300. OnZoom)

When you write the message-map entry, you specify:

• Two command IDs, beginning and ending a contiguous range.

Here they're ID_VIEW_ZOOM25 and ID_VIEW_ZOOM300.

• The name of the handler function for the commands.

Here it's OnZoom.

The function declaration would resemble this:

afx_msg void OnZoom(UINT nID);

The case of update handler functions is similar, and likely to be more widely useful.
It's quite common to write ON_UPDATE_COMMAND_UI handlers for a number
of commands and find yourself writing, or copying, the same code over and over. The
solution is to map a range of command IDs to one update handler function using the
ON UPDATE COMMAND UI RANGE macro. The command IDs must form a - - - -
contiguous range. For an example, see the OnUpdateZoom handler and its
ON_UPDATE _COMMAND _ UI _RANGE message-map entry in the HIERSVR
sample's view class.

Example for a Range of Control IDs
Another interesting case is mapping control-notification messages for a range of
control IDs to a single handler. Suppose the user can click any of 10 buttons. To map
all 10 buttons to one handler, your message-map entry would look like this:

ON_CONTROL_RANGE(BN_CLICKED. IDC_BUTTONI. IDC_BUTTON10. OnButtonClieked)

To write the ON_ CONTROL_RANGE macro in your message map, specify:

• A particular control-notification message.

Here it's BN CLICKED.

• The control ID values associated with the contiguous range of controls.

Here these are IDC_BUTTONI and I DC_BUTTON10.

• The name of the message handler function.

Here it's OnButtonCl i eked.

When you write the handler function," specify the extra UINT parameter, as shown in
the following:

void CMyDialog::OnButtonClieked(UINT nID)
{

int nButton = nID - IDC_BUTTON1;
ASSERT(nButton >= 0 && nButton < 10);
/ / ...

The OnButtonCl i eked handler for a single BN_ CLICKED message takes no
parameters. The same handler for a range of buttons takes one UINT. The extra
parameter allows for identifying the particular control responsible for generating the
BN _CLICKED message.

The code shown in the example is typical: converting the value passed to an int
within the message range and asserting that this is the case. Then you might take
some different action depending on which button was clicked.

Message Map

481

Methods

Methods

482

An OLE control fires events to communicate between itself and its control container.
A container can also communicate with a control by means of methods and
properties. Methods and properties provide an exported interface for use by other
applications, such as OLE Automation clients and OLE control containers. For more
information on OLE control properties, see the article Properties.

Methods are similar in usage and purpose to the member functions of a C++ class.
There are two types of methods your control can implement: stock and custom.
Similar to stock events, stock methods are those methods for which COleControl
provides an implementation. For more information on stock methods, see the article
Methods: Adding Stock Methods to an OLE Control. Custom methods, defined by the
developer, allow additional customization of the control. For more information, see
the article Methods: Adding Custom Methods to an OLE Control.

The Microsoft Foundation Class Library (MFC) implements a mechanism that allows
your control to support stock and custom methods. The first part is class
COleControl. Derived from CWnd, COleControl member functions support stock
methods that are common to all OLE controls. The second part of this mechanism is
the dispatch map. A dispatch map is similar to a message map; however, instead of
mapping a function to a Windows message ID, a dispatch map maps virtual member
functions to IDispatch IDS.

For a control to properly support various methods, its class must declare a dispatch
map. This is accomplished by the following line of code located in control class
header (.H) file:

DECLARE_DISPATCH_MAPC)

The main purpose of the dispatch map is to establish the relationship between the
method names used by an external caller (such as the container) and the member
functions of the control's class that implement the methods. Once the dispatch map
has been declared, it needs to be defined in the control's implementation (.CPP) file.
The following lines of code define the dispatch map:

BEGIN_DISPATCH_MAPCCSampleCtrl. COleControl)
11{{AFX_DISPATCH_MAPCCSampleCtrl)

II}}AFX_DISPATCH_MAP
END_DISPATCH_MAPC)

If ControlWizard was used to create the project, these lines were added automatically.
If ControlWizard was not used, you must add these lines manually. The two comment
lines allow ClassWizard to automatically insert macros into the dispatch map.

The following articles discuss Methods in detail:

• Methods: Adding Stock Methods to an OLE Control

• Methods: Adding Custom Methods to an OLE Control

• Methods: Returning Error Codes From a Method

Methods: Adding Stock Methods to an OLE Control
A stock method differs from a custom method in that it is already implemented by
class COleControl. For example, COleControl contains a predefined member
function supports the Refresh method for your control. The dispatch map entry for
this stock method is DISP STOCKFUNC REFRESH. - -
COleControl supports two stock methods: DoClick and Refresh. Refresh is invoked
by the control's user to immediately update the control's appearance; DoClick is
invoked to fire the control's Click event.

Method Dispatch Map Entry Comment

Fires a Click event.

Methods

DoClick

Refresh

DISP _STOCKPROP _DOCLICK()

DISP _STOCKPROP _REFRESH() Immediately updates the control's appearance.

Adding a Stock Method Using ClassWizard
Adding a stock method is simple using Class Wizard. The following procedure
demonstrates adding the Refresh method to a control created using ControlWizard.

• To add the stock Refresh method using ClassWizard

1 Load your control's project.

2 From the View menu, choose Class Wizard.

3 Choose the OLE Automation tab.

4 Choose the Add Method button.

S Choose the control class in the Class Name box.

6 In the External Name box, select Refresh.

7 Choose the OK button.

S Choose the OK button to confirm your choices and close ClassWizard.

ClassWizard Changes for Stock Methods
Because the stock Refresh method is supported by the control's base class,
ClassWizard does not change the control's class declaration in any way; it simply
adds an entry for the method to the control's dispatch map and to its .ODL file. The
following line is added to the control's dispatch map, located in its implementation
(.CPP) file:

DISP_STOCKFUNC_REFRESH()

This makes the Refresh method available to the control's users.

483

Methods

The following line is added to the control's .ODL file:

[id(DISPID_REFRESH)] void Refresh();

This line assigns the Refresh method a specific ID number.

Methods: Adding Custom Methods to an OLE Control

484

Custom methods differ from stock methods in that they are not already implemented
by COleControl. You must supply the implementation for each custom method you
add to your control.

An OLE control user can call a custom method at any time to perform control
specific actions. The dispatch map entry for custom methods is of the form
DISP FUNCTION.

Adding a Custom Method With ClassWizard
The following procedure demonstrates adding the custom method PtInCircle to an
OLE control's skeleton code. PtInCircle determines whether the coordinates passed to
the control are inside or outside the circle. This same procedure can also be used to
add other custom methods. Simply substitute your custom method name and its
parameters for the PtInCircle method name and parameters. (This example uses the
InC ire 1 e function from the article Events. For more information on this function,
see the article Events: Adding Custom Events to an OLE Control.)

~ To add the PtinCircle custom method using ClassWizard

1 Load the control's project.

2 From the View menu, choose Class Wizard.

3 Choose the OLE Automation tab.

4 Choose the control's class from the Class Name box.

5 Choose the Add Method button.

6 In the External Name box, type Pt I nCi rcl e.

7 In the Internal Name box, type the name of the method's internal function or use
the default value provided by ClassWizard (in this case, Pt I nC ire 1 e).

8 From the Return Type box, select BaaL for the method's return type.

9 Using the grid control, add a parameter, called xCoord (type OLE_XPOS_PIXELS).

10 Using the grid control, add a second parameter, called yCoord (type
o LE_ Y POS_P I X E LS).

11 Choose the OK button to close the Add Method dialog box.

12 Choose the OK button to confirm your choices and close ClassWizard.

Figure 1 shows the Add Method dialog box of Class Wizard.

Figure 1 The Add Method Dialog Box

ClassWizard Changes for Custom Methods
When you add a custom method, Class Wizard makes some changes to the control
class header (.H) and implementation (.CPP) files. The following line is added to the
dispatch map declaration in the control class header (.H) file:

afx_msg BOOl PtlnCircle(long xCoord, long yCoord);

This code declares a dispatch method handler called P tin C ire 1 e. This function can
be called by the control user using the external name PtInCircle.

The following line is added to the control's .ODL file:

[id(l)] boolean PtlnCircle(OlE_XPOS_PIXElS xCoord, OlE_YPOS_PIXElS yCoords);

This line assigns the PtInCircle method a specific ID number, taken from the
method's position in ClassWizard's methods and properties list. Because ClassWizard
was used to add the custom method, the entry for it was added automatically to the
project's .ODL file.

In addition, the following line,located in the implementation (.CPP) file of the control
class, is added to the control's dispatch map:

DISP_FUNCTION(CSampleCtrl. "PtlnCircle". PtlnCircle. VT_BOOl. VTS_I4 VTS_I4)

The DISP _FUNCTION macro maps the method PtInCircle to the control's handler
function, PtlnCi rcl e, declares the return type to be BOOL, and declares two
parameters of type short to be passed to P tIn C ire 1 e.

Finally, ClassWizard adds the stub function CSamp 1 eCt r 1 : : Pt i nCi rc 1 e to the
bottom of the control's implementation (. CPP) file. For P tin C ire 1 e to function as
stated previously, it must be modified as follows:

Methods

485

MFC

BOOl CSampleCtrl ::PtlnCircle(short xCoord, short yCoord)
{

return InCircle(CPoint(xCoord, yCoord));
}

Methods: Returning Error Codes From a Method
This article describes how to return error codes from an OLE control method.

To indicate that an error has occurred within a method, you should use the
COleControl::ThrowError member function, which takes an SCODE (status code)
as a parameter. You can use a predefined SCODE or define one of your own.

Note ThrowError is meant to be used only as a means of returning an error from within a
property's Get or Set function or an automation Method. These are the only times that the
appropriate exception handler will be present on the stack.

Helper functions exist for the most common predefined SCODEs, such as
COleControl: :SetNotSupported, COleControl: : GetNotSupported, and
COleControl: :SetNotPermitted.

For a list of predefined SCODEs and instructions on defining custom SCODEs, see
the section Handling Errors in Your OLE Control in OLE Controls: Advanced
Topics.

For more information on reporting exceptions in other areas of your code, see
COleControl::FireError and the section Handling Errors in Your OLE Control in
OLE Controls: Advanced Topics.

MFC

486

The Microsoft Foundation Class Library (MFC) is an "application framework" (often
called the "framework" in this documentation) for writing applications for Microsoft
Windows and other platforms that support the Win32 API. The framework is
implemented as a group of c++ classes, many of which represent common objects
such as documents, windows, dialog boxes, toolbars, and so on.

This article presents an overview of MFC, and lists articles describing various
components of MFC and MFC tools, and articles describing changes from previous
versions of MFC.

For an Overview of MFC
Part 1 of Programming with MFC presents an overview of MFC:

• Chapter 1, Using the Classes to Write Applications for Windows

• Chapter 2, Working with Messages and Commands

• Chapter 3, Working with Frame Windows, Documents, and Views

• Chapter 4, Working with Dialog Boxes, Controls, and Control Bars

• Chapter 5, Working with OLE

• Chapter 6, Developing OLE Controls

• Chapter 7, Working with Databases

• Chapter 8, Using the General-Purpose Classes

Encyclopedia Articles About Aspects of MFC
The following main articles explain specific areas in more detail. Some articles
describe how a component or feature of MFC works. Others describe how to carry out
a procedure in programming with MFC. Each of these articles is typically the "main"
article in a group of related "child" articles.

• AppWizard

• Class Wizard

• Clipboard

• CObject Class

• Collections

• COMMON. RES Sample Resources

• Database Overview

• Date and Time

• Debugging

• Diagnostics

• Dynamic-Link Libraries (DLLs)

• Exceptions

• Files

• Help

• Library Versions

• Memory Management

• Message Map

• Multithreading

• OLE Controls

• OLE Overview

• Printing

• Property Sheets

• Serialization (Object Persistence)

• Strings

MFC

487

MFC

• Toolbars

• Tools for MFC Programming

If MFC is new to you, begin with the overview. If you need information in a specific
area, refer to a related article. You can also access specific topics easily using the
search capabilities in Books Online.

Differences from Other Versions of MFC
For details about how this version of MFC has changed from previous versions, and
for information about porting your applications from previous versions of MFC to
this version, see the following articles:

• MFC: Changes from MFC Versions 3.0 and 3.1

• MFC: Changes from MFC Versions 2.0 and 2.5

• MFC: Changes from MFC Version 2.0 32-Bit Edition

• MFC: Features No Longer Available

• MFC: 32-Bit Programming Issues

• MFC: Porting MFC Applications to 32 Bit

• MFC: Porting Tips

• MFC: Using the MFC Source Files

MFC: Changes from MFC Versions 3.0 and 3.1

488

You may be upgrading to version 4.0 of the Microsoft Foundation Class Library from
either MFC version 3.0 or 3.1. Version 3.0 was released with Visual C++ version 2.0.
MFC version 3.1 was a subscription release with Visual C++ version 2.1.

Note The changes described here also apply to MFC version 3.2, released with Visual C++
version 2.2.

This and related articles cover the following topics:

• MFC: Windows 95 Support

• MFC: Win32 Features in MFC

• MFC: OLE Control Container Support

• MFC: Data Access Objects (DAO) Support

• MFC: OLE and Other Enhancements in MFC Version 4.0

Changes not covered in the related articles, but discussed in this article, include:

• New view classes

• Other new classes in version 4.0

• A new toolbar resource type

• Enhancements to CFile and CFileException

• Previously undocumented MFC functions now documented

New View Classes
MFC has added three new CView-derived classes:

• CListView A view based on a CListCtrl object. Simplifies use of the list control
with MFC's document-view architecture.

• CTree View A view based on a CTreeCtrl object. Simplifies use of the tree
control with MFC's document-view architecture.

• CRichEditView A view based on a CRichEditCtrl object. Simplifies creating
simple text editors with rich formatting.

The MFC database sample DAOVIEW illustrates CListView and CTreeView. The
MFC OLE sample WORDPAD illustrates CRichEditView. You can access the code
for these samples through Samples in Books Online.

Other New Classes in Version 4.0
Other new classes in MFC version 4.0 include:

• Classes for working with OLE VARIANT data: COleVariant, COleDateTime,
COleCurrency; see the article MFC: OLE and Other Enhancements in MFC
Version 4.0

• Encapsulation of the Windows wait cursor: CWaitCursor

• New common dialog box classes: CPageSetupDialog and COlePropertiesDialog;
see the article MFC: Windows 95 Support

• New Windows common control classes; see the article MFC: Windows 95 Support

• Synchronization classes for multithreaded programming: CSyncObject,
CSemaphore, CCriticalSection, CMutex, CEvent, CSingleLock, CMultiLock;
see the article MFC: Win32 Features in MFC

• New CListBox-derived classes: CCheckListBox and CDragListBox; see the
article MFC: Windows 95 Support

A New Toolbar Resource Type
MFC version 4.0 adds a new resource type, RT _ TOOLBAR. The Visual C++ toolbar
editor uses RT_TOOLBAR to edit toolbars directly. You can load toolbars more
easily now, using only a single call to CToolbar::LoadToolbar. For more
information, see the article Toolbars and Chapter 11, Using the Toolbar Editor, in the
Visual C++ User's Guide.

MFC

489

MFC

Enhancements to CFile and CFileException
Classes CFile and CFileException have been enhanced to make it easier to retrieve
human-readable error messages and to display error messages. The
GetErrorMessage and ReportError member functions allow you to provide error
messages to your users without knowing the specific type of CException.

Previously Undocumented MFC Functions Now
Documented
Over 100 previously undocumented class member functions have now been
documented in the Class Library Reference. These members formerly appeared below
the II Imp 1 ementat; on comment in their classes and so were not documented. The
purpose in choosing these member functions was to document "implementation"
APls that:

• Aren't likely to change in the future, based on a track record of several versions of
MFC.

• Are useful enough that you might want to call them (but often couldn't because
they were declared as implementation details, subject to change).

Check your favorite classes for new members.

See Also MFC, MFC: Changes from MFC Versions 2.0 and 2.5, MFC: Changes
from MFC Version 2.0 32-Bit Edition, MFC: Features No Longer Available

MFC: Windows 95 Support

490

This article describes how MFC version 4.0 supports programming for Windows 95.

The most important change is that MFC version 4.0 fully supports programming for
Microsoft Windows 95. Your MFC applications can run on either Windows 95 or
Windows NT version 3.51. Under each environment, your applications have the
appropriate visual look.

Here are the key features for Windows 95:

• New common control classes

• New implementations for control bar and property sheet classes

• Rich edit classes

• Other new controls

• New common dialogs

• Ability to easily customize the File Open dialog box

For tutorial information about many of these Windows 95 features, see Adding
Windows 95 Functionality in Tutorials.

New Common Control Classes
MFC supplies classes for new Win32 common controls, including the rich edit
control. These controls are available under Windows 95, Windows NT version 3.51
or later, and Win32s version 1.3. They supplement Windows common controls such
as list boxes, edit controls, and combo boxes. Most of the new control classes were
released in beta quality with MFC version 3.1; version 4.0 supplies them in finished
form and includes controls not released with version 3.1. Here are the controls:

CAnimateCtrl A window that displays successive frames of an Audio Video
Interleaved (A VI) clip during a lengthy operation.

CHeaderCtrl A resizable button that appears above a column of text, allowing the
user to display more or less information in the column.

CHotKeyCtrl A window that enables the user to create a hot key. A "hot key" is a
key combination that the user can press to perform an action quickly.

ClmageList A collection of images used to efficiently manage large sets of icons or
bitmaps.

CListCtrl A window that displays a collection of items each consisting of an icon
and a label.

CProgressCtrl (Also known as a "progress bar control.") A window that an
application can use to indicate the progress of a lengthy operation.

CRichEditCtrl A window in which the user can enter and edit text with character
and paragraph formatting. The control can include embedded OLE objects. See
Rich Edit Classes for related information.

CSliderCtrl (Also known as a "trackbar.") A window containing a slider and
optional tick marks that sends notification messages to indicate changes in its
position.

CSpinButtonCtrl (Also known as an "up-down control.") A pair of arrow buttons
that the user can click to increment or decrement a value, such as a scroll position
or a number displayed in a companion control.

CStatusBarCtrl A horizontal window in a parent window in which an application
can display various kinds of status information. This control resembles the MFC
CStatusBar class.

CTabCtrl Analogous to the dividers in a notebook or the labels in a file cabinet. By
using a tab control, an application can define multiple pages for the same area of a
window or dialog box. (See also MFC class CPropertySheet.)

CToolBarCtrl A window that contains one or more command-generating buttons.
This control resembles the MFC CToolBar class.

CToolTipCtrl A small pop-up window that displays a single line of text describing
the purpose of a toolbar button or other tool in an application.

CTreeCtrl (Also known as a "tree view control.") A window that displays a
hierarchical list of items, such as the headings in a document, the entries in an

MFC

491

MFC

492

index, or the files and directories on a disk. Each item consists of a label and an
optional bitmapped image, and each item can have a list of subitems associated
with it.

For additional programming infonnation about these classes, see Technical Note 60
under MFC in Books Online.

New Implementations for Control Bar and Property Sheet Classes
The following MFC classes have been reimplemented using some of the new
Windows common controls listed earlier in this article:

CToolBar Now uses the toolbar control represented by class CToolBarCtrl. Class
COldToolBar provides the previous implementation for backward compatibility
so that you can continue to use your customizations from the previous versions of
MFC. See the MFC sample DOCTOOL. You can access the source code under
Samples in Books Online.

Tool Tips Now uses the tooltip control represented by class CToolTipCtrl.

CStatusBar Now uses the status bar control represented by class CStatusBarCtrl.
Class COldStatusBar provides the previous implementation for backward
compatibility so that you can continue to use your customizations from the
previous version of MFC.

CPropertySheet and CPropertyPage Now use the Win32 property sheet API.

In addition, enhancements to class CControlBar, the base class for CToolBar,
CStatusBar, and CDialogBar, let your users resize toolbars in the same way you can
resize the toolbars in Visual C++ and many other Microsoft applications.

Rich Edit Classes
In addition to a class that encapsulates the rich edit text control, MFC supplies
related classes to complement the control and enhance its use for building text
editors. These new classes are listed below. The new classes integrate a rich edit
control with the MFC document/view architecture.

CRichEditDoc Maintains a list of OLE client items and works with a
CRichEditView.

CRichEditView Maintains the text and its fonnatting characteristics and works
with a CRichEditDoc.

CRichEditCntrltem Provides container-side access to the OLE client items stored
in a CRichEditDoc.

Other New Controls
Other new MFC classes provide specialized list box controls:

CDragListBox A list box control in which you can drag items to produce orderings
other than alphabetical.

CCheckListBox A list box control in which the strings are preceded by check
boxes. For an example, see the Custom Options dialog box in Visual C++ Setup.

New Common Dialogs
There are several new classes for common dialog boxes. OLE dialog boxes now use
the OLEDLG.DLL file supplied by the system. All common dialog classes are now
derived from CCommonDialog.

CPageSetupDialog Encapsulates the services provided by the Windows common
OLE Page Setup dialog box with additional support for setting and modifying
print margins. This class is designed to take the place of the Print Setup dialog
box.

COlePropertiesDialog Encapsulates the Windows common OLE Object Properties
dialog box. Common OLE Object Properties dialog boxes provide an easy way to
display and modify the properties of an OLE document item in a manner
consistent with Windows standards.

Ability to Easily Customize the File Open Dialog Box
Class CFileDialog includes new member functions for customizing the File Open
dialog box. For example, you can add your own controls to the dialog box.

See Also MFC, MFC: Changes from MFC Versions 2.0 and 2.5, MFC: Changes
from MFC Version 2.0 32-Bit Edition, MFC: Features No Longer Available

MFC: Win32 Features in MFC
New Win32 features in MFC version 4.0 include:

• Classes for the new Windows common controls on Windows 95, Windows NT
version 3.51, and Win32s version 1.3. See New Common Control Classes.

• Classes for new common dialogs. See New Common Dialogs.

• Win32 synchronization objects for multithreaded programming.

Win32 Synchronization Objects
Multithreaded programs often require synchronizing access to shared resources by
different concurrent threads. To manage synchronization, MFC supplies a new base
class, CSyncObject, and several derived objects that represent common
synchronization techniques.

CSyncObject Provides functionality common to the derived synchronization objects
in Win32. Support includes Lock and Unlock as virtual abstract operations that
derived classes override.

Classes derived from CSyncObject:

CSemaphore Represents a "semaphore" -a synchronization object that allows a
limited number of threads in one or more processes to access a resource. A

MFC

493

MFC

CSemaphore object maintains a count of the number of threads currently
accessing a specified resource.

CCriticalSection Represents a "critical section" -a synchronization object that
allows one thread at a time to access a resource or section of code.

CMutex Represents a "mutex" (for "mutually exclusive")-a synchronization
object that allows one thread mutually exclusive access to a resource.

CEvent Represents an "event" -a synchronization object that allows one thread to
notify another that an event has occurred. Events are useful when a thread needs
to know when to perform its task.

Other synchronization objects not derived from CSyncObject:

CSingleLock Represents the access control mechanism used in controlling access to
a resource in a multithreaded program. Used with CSemaphore, CMutex,
CCriticalSection, and CEvent objects.

CMultiLock Similar to CSingleLock, but used when there are mUltiple objects that
you could use at one time.

See Also MFC, MFC: Changes from MFC Versions 2.0 and 2.5, MFC: Changes
from MFC Version 2.0 32-Bit Edition, MFC: Features No Longer Available,
Multithreading

MFC: OLE Control Container Support

494

This article describes support in MFC version 4.0 for OLE control containers.

MFC now integrates the OLE Controls Development Kit (CDK) with the rest of MFC
and supplies complete OLE control container support.

With the OLE new controls container, you need not understand all the details of
using OLE container applications. Support is now based on the CWnd class, which
allows you to create both the container and the control sides. In MFC version 4.0, an
OLE control becomes a special kind of child window, with CWnd functions,
including CWnd::CreateControl, which dynamically creates an OLE control rather
than an ordinary window.

Other OLE controls support includes creation from a dialog template, preloaded OCX
files for better performance, and transparent keyboard translation in
IsDialogMessage.

The Visual C++ dialog editor supports placing OLE controls in a dialog template
resource.

OLE controls now use the same run-time library and debug heap as the core of MFC.

See Also MFC, MFC: Changes from MFC Versions 2.0 and 2.5, MFC: Changes
from MFC Version 2.0 32-Bit Edition, MFC: Features No Longer Available, OLE
Controls

MFC: Data Access Objects (DAO) Support
This article describes a new set of MFC classes for database programming.

MFC now supplies two different sets of classes for database programming. Besides
the existing classes based on Open Database Connectivity (ODBC), MFC supplies
classes based on Data Access Objects (DAO).

As an alternative to the MFC ODBC database classes, the MFC DAO classes use the
Microsoft Jet database engine to provide a set of data access objects: database objects,
tabledef and querydef objects, recordset objects, and others. You can use DAO for
working with .MDB files like those created by Microsoft Access. You can also access
a number of installable Indexed Sequential Access Methods (ISAMs) and ODBC data
sources through DAO.

Classes now available using DAO include:

CDaoDatabase Manages a connection to a database.

CDaoQueryDef Manages saving queries in a database for reuse.

CDaoRecordset Manages a result set, a set of records returned by a query.

CDaoTabledef Manages manipulating or viewing the structure of a table in a
database.

CDaoWorkspace Manages transactions and access to properties of the database
engine.

CDaoRecordView Lets you view the contents of a recordset in a CForm View-
derived object.

See Also MFC, MFC: Changes from MFC Versions 2.0 and 2.5, MFC: Changes
from MFC Version 2.0 32-Bit Edition, MFC: Features No Longer Available, Database
Overview

MFC: OLE and Other Enhancements in MFC Version
4.0

This article describes enhancements to MFC's OLE support in version 4.0 and other
MFC enhancements, including DLL improvements. Topics include:

• OLE enhancements in MFC version 4.0

• Other enhancements in MFC version 4.0

OLE Enhancements in MFC Version 4.0
• MFC version 4.0 no longer uses MFCANS32.DLL. Unicode™jANSI translation is

now done within MFC. Performance increases by a factor of lOin some cases.

• New classes provided as part of the OLE enhancements include:

MFC

495

MFC

496

• COleVariant Encapsulates the VARIANT data type from OLE. MFC uses
COle Variant to pass variable-type parameters in the OLE classes and in the
DAO database classes.

• COleDateTime Encapsulates a date and time value. COleDateTime has a
wider range of dates than CTime.

• COleCurrency Encapsulates a currency value.

• OLEDLG.DLL replaces MFCUIx32.DLL.

See the article OLE Overview for general information about using OLE.

Other Enhancements in MFC Version 4.0
New features include:

• MFCDLLs

• Better static linking support

• CString reference counting

• Integration of the CDK with MFC

• Message reflection

• Debug memory allocation

MFC Dlls
• MFC DLLs are tuned for a significant reduction in the working set. This results in

MFC applications that use less memory.

• The _ USRDLL option has been removed.

• A new DLL model is now available. Generic DLLs can use MFC DLLs, including
DLLs with "C" and MFC inproc servers.

See the article Dynamic-Link Libraries (DLLs).

Better Static Linking Support
• Static linking encourges simplified distributions instead of code sharing, and you

can now build an application that is fully statically linked.

• CWinApp::Enable3dControlsStatic is available, allowing you to efficiently use
statically linked dialog boxes and windows whose controls have a three
dimensional appearance.

CString Reference Counts
CString data is reference counted, reducing redundant copy-constructor calls for
enhanced efficiency in returning CString objects.

Integration of the CDK with MFC
Many features of the OLE Control Development Kit (CDK) are now available in core
MFC, including connection maps, custom "verbs" in message maps, and OLE
automation "type library" support. For information, see the article OLE Controls.

Message Reflection
Message reflection lets you handle messages for a control, such as
WM_CTLCOLOR, WM_COMMAND, and WM_NOTIFY, within the control
itself. This makes the control more self-contained and portable. The mechanism
works with Windows common controls as well as with OLE controls.

Message reflection lets you reuse your CWnd derived classes more readily. Message
reflection works via CWnd::OnChiidNotify, using special ON_XXX_REFLECT
message map entries such as ON_ CTLCOLOR _REFLECT and
ON CONTROL REFLECT. - -

Debug Memory Allocation
The MFC debug allocator has been moved to C-runtime, which fixes problems
associated with different allocators, and checks on malloc/free/realloc as a side
effect.

See Chapter 4, Debug Version of the C Run-Time Library, in the Run-Time Library
Reference.

See Also MFC, MFC: Changes from MFC Versions 2.0 and 2.5, MFC: Changes
from MFC Version 2.0 32-Bit Edition, MFC: Features No Longer Available

MFC: Changes from MFC Versions 2.0 and 2.5
You may be upgrading to version 3.0 of the Microsoft Foundation Class Library from
one of the previous 16-bit versions: either MFC version 2.0 or 2.5, which are part of
Visual C++ versions 1.0 and 1.5, respectively.

This article covers the following topics:

• Upgrading from MFC version 2.5

• Upgrading from MFC version 2.0

Upgrading from MFC Version 2.5
• Support for 32-bit programming.

MFC version 3.0 targets Win32 platforms, including Intel Win32s, Windows NT,
and Windows 95, as well as MIPS® Windows NT and the Macintosh®. The same
MFC code works for all of the different targets.

• Extended Win32 API coverage.

The coverage includes new GDI functionality such as Beziers and Paths and a
number of other Win32 "USER" APIs.

MFC

497

MFC

498

• Support for C++ exceptions.

MFC uses C++ exceptions. The MFC exception handling macros are also provided
for backward compatibility and compiler portability.

• Collection classes based on C++ templates.

These classes make it easier to derive your own type-safe collection classes.

• Support for creating property sheets, also referred to as "tab dialog boxes," in your
programs.

You can create property sheets containing tabs like those found in Microsoft Word
for Windows version 6.0 and Visual C++. This support is in classes
CPropertyPage and CPropertySheet.

• Support for creating "dockable" tool bars in your programs.

You can create toolbars that the user can drag to various parts of the main frame
window. API member functions for dockable toolbars are in classes CToolBar and
CFrameWnd.

• Support for "tool tips" like those in Microsoft Excel.

When the user moves the mouse over a toolbar button in your application, a small
box is shown on top of the button to describe the action that would be performed.

• Support for Unicode and Double-Byte Character Sets (DBCS).

Your applications can be more easily internationalized using Unicode or DBCS
strings.

• Support for 3D controls.

Simply call CWinApp: :Enable3dControls from your In i tIn s tan c e function to
get a three-dimensional appearance in your dialog boxes.

• Support for frame windows with thin caption bars, such as those used for Visual
C++ property windows.

See class CMiniFrameWnd in the Class Library Reference.

• Message-map support for ranges of command IDs and control IDs.

For example, you can map a range of command IDs to a single message handler.

• New CString member functions, such as Format, which resembles the sprintf
run-time function.

• Automatic linking of the correct version of the MFC library and any other
required libraries, such as the Win32 libraries, OLE libraries, or ODBC libraries.

Upgrading from MFC Version 2.0
If you're upgrading from version 2.0, you get the following support in addition to the
features listed under Upgrading from MFC Version 2.5:

• Support for OLE.

MFC OLE classes make it easier to write OLE visual editing servers and
containers and to implement OLE Automation in your applications. See Chapter
5, Working with OLE, and the article OLE Overview.

• Support for data access with Open Database Connectivity (ODBC).

MFC database classes help you manipulate data in databases for which you have
the appropriate 32-bit ODBC driver. See Chapter 7, Working with Databases, and
the article Database Overview.

To complete your picture of what's new in this version, also see the article MFC:
Changes from MFC Version 2.0 32-Bit Edition.

See Also Dynamic-Link Libraries (DLLs), MFC: 32-Bit Programming Issues,
Toolbars: Docking and Floating, Toolbars: Tool Tips, Strings: Unicode and Multibyte
Character Set (MBCS) Support, Property Sheets, Collections, Exceptions, Message
Map: Ranges of Messages

In Programming Techniques: Chapter 13, Developing for International Markets

MFC: Changes from MFC Version 2.0 32-Bit Edition
This article discusses changes in version 3.0 of the Microsoft Foundation Class
Library for users of the 32-bit version of MFC version 2.0 (sometimes called MFC
version 2.1), which is part of Visual C++ 1.0 32-Bit Edition. Changes include:

• Full support for writing multithreaded applications.

You can use MFC functionality in both the primary thread of execution and in
secondary threads.

• Support for OLE.

MFC OLE classes make it easier to write OLE servers and containers and to
implement OLE Automation in your applications. See Chapter 5, Working with
OLE, and the article OLE Overview.

• Support for data access with Open Database Connectivity (ODBC).

MFC database classes help you manipulate data in databases for which you have
the appropriate 32-bit ODBC driver. See Chapter 7, Working with Databases, and
the article Database Overview.

• Support for MFC packaged in a shared DLL, called AFXDLL.

To use AFXDLL, a set of DLLs that contains the entire 32-bit Microsoft
Foundation Class Library, use "/D _AFXDLL" in your compiler options and one of
the "MFC30" DLLs in your linker options.

Using AFXDLL results in smaller executable files than statically linking the class
library with your application. This is particularly useful if you have several
applications that run at the same time; they can share the DLL.

AFXDLL is the default when you create an MFC application with AppWizard.

MFC

499

MFC

• WIN32_LEAN_AND_MEAN.

To improve build times and reduce the size of your application's precompiled
header, MFC defines the symbol WIN32_LEAN_AND_MEAN. This definition
lists a group of less commonly used header files that MFC does not automatically
include through including AFXWIN .H.

To see the list of header files specifically excluded from MFC builds, look at the
definition of WIN32 _ LEAN_AND _MEAN in WINDOWS.H. If you need the
definitions provided by any of those files, you must explicitly include the
appropriate file yourself.

WIN32 _LEAN_AND _MEAN was not defined in MFC version 2.1, and all of the
extra headers were included.

For a more detailed accounting of these differences, see the article MFC: 32-Bit
Programming Issues. To complete your picture of what's new in this version, see the
article MFC: Changes from MFC Versions 2.0 and 2.5.

See Also MFC: Changes from MFC Versions 2.0 and 2.5, Multithreading, Dynamic
Link Libraries (DLLs), Library Versions, MFC: 32-Bit Programming Issues, OLE
Overview, Database Overview

MFC: Features No Longer Available

500

This article describes features of MFC that are not available in this Win32 version.
These include:

• VBX controls (not supported on 32-bit platforms).

• Microsoft Windows for Pen Computing classes (not supported under Windows
NT).

• The UnrealizeObject function has been deleted in Win32.

Since calls to CGdiObject::UnrealizeObject are common in programs written
for Windows version 3.x, yet are now unnecessary, this member function is
retained for backward compatibility. It now always returns a nonzero value,
without making an underlying Win32 function call. Calls to
CGdiObject::UnrealizeObject should not be made in new Win32 programs and
should be removed from existing programs eventually.

• The QueryAbort function has been deleted in Win32; the CDC::QueryAbort
member function has also been deleted.

If your program needs this functionality, you should create a member function that
calls your AbortProc callback function directly.

• The console library variants, NAFXCR.LIB and NAFXCRD.LIB, are no longer
available.

You should now link with NAFXCW.LIB or NAFXCWD.LIB with no loss in
capability or content from projects that previously used NAFXCR.LIB or
NAFXCRD.LIB.

See Also MFC: Changes from MFC Version 2.0 32-Bit Edition, MFC: Changes
from MFC Versions 2.0 and 2.5

MFC: 32-Bit Programming Issues
This article summarizes issues that arise when programming in the 32-bit
environment.

Version 3.0 and later of the Microsoft Foundation Class Library (MFC) uses the
Win32 application programming interface (API). Many of the Win32 API functions
are encapsulated in MFC class member functions. However, one of the fundamental
tenets of programming with MFC is that you can always make direct calls to the
Windows API.

Issues include:

• Applications created with the 32-bit version of MFC version 3.0 can run on
Windows NT, Windows version 3.1 (using Win32s), and other Win32 platforms.
To write portable applications, you must avoid using Win32 API functions that are
not supported on all of your target platforms.

(OLE applications on Windows NT require Windows NT version 3.5 or later.)

• Visual C++ version 2.0 cannot load and save executable (.EXE) files, compiled
resource script (.RES) files, or dynamic-link libraries, and it does not directly
support new Win32 resource types (the message table resource type or Unicode
strings in resources).

• Differences between the 16-bit versions of MFC and version 3.0 (32-bit) are:

• The packing of IParam and wParam in the CWnd members OnCommand and
OnParentNotify has changed from 16-bit MFC. For more information, see
Changing Message Handlers in the article MFC: Porting Tips.

• The CTime class has constructors that accept system and file times from
Win32. For more information, see the article Date and Time: SYSTEMTIME
Support.

• The class library provides new member functions that wrap many Win32 API
functions, including many Win32 GDI functions.

• Class CWinThread supports multithreaded programming. For more
information, see the article Multithreading.

• Most of the class library is enabled for Unicode and for Double-Byte Character
Set (DBCS) programming. The database classes are the exception. This
enabling means that many class member functions now take character and
string parameters of types based on type TCHAR. For more information, see
Chapter 13 in Programming Techniques.

MFC

501

MFC

• The 32-bit MFC static link and dynamic-link libraries are named differently from
the 16-bit libraries. See the article Library Versions.

Some features of the class library are no longer available in the 32-bit environment.
See the article MFC: Features No Longer Available.

See Also MFC: Porting MFC Applications to 32-Bit, MFC: Porting Tips

MFC: Porting MFC Applications to 32-Bit

502

This article describes how to port a 16-bit MFC application to 32-bit. For more
general information on writing 32-bit applications, see the article MFC: 32-Bit
Programming Issues.

Well-written MFC 2.0 and 2.5 applications that don't use 16-bit features (such as
VBX controls, inline assembler, 16-bit ints, or Win32 API functions) can usually be
migrated to Win32 with no changes.

This article describes:

• A porting procedure.

• General tips for porting to Win32.

Porting Procedure
The following procedure uses the same top-down approach advocated in Chapter 1,
Porting 16-Bit Code to 32-Bit Windows, of Programming Techniques.

~ To port a 16·bit framework application to 32 bits

1 Import your application files into a new Visual C++ project.

Simply open your old project. Projects created with Visual C++ versions 1.0 and
1.5 are converted automatically to version 2.0 format.

2 Remove VBX controls.

VBX controls are not supported in a 32-bit application. Thus, the CVBControl
class, the AfxRegisterVBEvent, AfxGetPict, AfxSetPict, and AfxReferencePict
global functions, and the ON _ VBXEVENT macro are unavailable with Win32. If
you use VBX controls in your application, you must replace them with standard
Windows controls, redesigning your application as necessary.

3 Remove Windows for Pens extensions.

The 32-bit version of MFC does not currently include the CHEdit and CBEdit
classes, which implement 16-bit extensions for Windows for Pens. Thus, if your
existing application supports pen extensions, it will not compile as a 32-bit
application. If you want to run with Win32, you will need to substitute another
form of user input, most likely keyboard input, for the pen class input.

4 Replace difficult-to-port code, such as assembly-language functions and MS-DOS
calls, with stubs.

Win32 is designed to be portable, and your applications should follow suit. If your
16-bit application makes calls to an assembly-language module, you should
rewrite it in C or C++ if possible. Otherwise, you will be faced with rewriting the
assembly-language portion for each hardware platform that can run Win32.

If you've used any MS-DOS services for file I/O, including those used by Windows
version 3.x, you will have to rewrite the code using the new Win32 file I/O set that
replaces these services. If you've used the CFile class for file I/O, you are shielded
from this change because CFile uses the new function calls even though its
member function interface remains unchanged.

If you need to write custom file I/O functions, see the Win32 Software
Development Kit documentation for more information.

S Build your application with Visual C++ version 2.0 and note any 32-bit related
problems.

6 Use the information in General Tips for Porting to Win32 to fix any problems.
Rebuild until the main body of your program is running correctly.

7 Implement each function you stubbed in step 4 with portable code until the entire
application runs correctly.

8 Remove MFC libraries from the link input list.

Let the MFC header files automatically link in the correct version of MFC, as
described in the article Library Versions.

Note If you want your application to support Unicode, follow the guidelines in Chapter 13,
Developing for International Markets, in Programming Techniques.

General Tips for Porting to Win32
Moving to 32 bits means changing from a 16-bit segmented architecture to a 32-bit
flat address space. What will this change in architecture mean when you port your
existing 16-bit application? Different memory models, near and far pointers, and the
limitations of 64K segments do not exist under Win32.

Certain fundamental Windows parameters also change in Win32:

• Handles to windows and to GDI objects such as pens, brushes, and menus are now
32 bits wide.

• System metrics have changed (screen dimensions and colors are now 32-bit
values), and thus many graphics and other functions have changed.

• A WPARAM is now 32 bits wide, which means that message packing and
window procedures change.

• The WinMain function parameters have changed (this is handled for you in the
CWinApp class).

MFC

503

MFe

For more general information about porting to Win32, see Chapter 1, Porting 16-Bit
Code to 32-Bit Windows, in Programming Techniques.

See Also MFC: 32-Bit Programming Issues, MFC: Porting Tips

MFC: Porting Tips

504

This article gives tips for porting your application from 16-bit to 32-bit.

Although most of the changes in Windows parameters are handled for you within the
framework, there are some changes you will have to make manually. They are
described in this article, which covers:

• Changing message handlers

• U sing the collection classes

The CTime class has also changed. See the article Date and Time: SYSTEMTIME
Support.

Changing Message Handlers
Window handles in the Win32 API are now 32-bit values; consequently, the
WPARAM type has been widened from 16 to 32 bits to accommodate this change.
This widening often necessitates repacking the values carried by the wParam and
lParam parameters.

A 16-bit application, written for Windows without using the framework, requires a
considerable amount of code rewriting to port successfully to 32-bit. Each window
procedure declaration must be modified, as well as the message-handling code within
the procedure.

The class library accommodates most of these changes internally. The framework
hides the window procedure from you, unpacks wParam and lParam, and passes the
properly unpacked values to you in message handlers. The only two instances that
require your attention are functions that override the CWnd::OnCommand and
CWnd::OnParentNotify message handlers, where the framework passes wParam or
lParam directly from Windows to you.

The framework also unpacks the wParam and lParam values associated with a
WM _COMMAND message to implement message-map entries. The framework
properly unpacks the values as appropriate for Windows version 3.x or Win32 with
no attention from you.

CWnd ::OnCommand Changes
If your application overrides OnCommand, check the code carefully and modify it so
that it unpacks wParam and lParam correctly. Your 16-bit override of OnCommand
may compile successfully, but will not execute correctly.

When the framework receives a WM _ COMMAND message, it calls the
CWnd::OnCommand member function with the following arguments:

virtual BOOL OnCommand(WPARAM wParam, LPARAM IParam);

A command ID, a control handle, and a notification message can be packed in
wParam and IParam, depending on the circumstances of the call.

You don't need to change the way you extract the command ID; it is packed the same
way in both environments. You can extract it this way:

UINT nID = LOWORD(wParam);

You extract the remaining two values in this way in the 16-bit framework:

HWND hWndCtrl = (HWND)LOWORD(lParam);
int nCode = HIWORD(lParam);

IIControl handl e
IINotification code

You extract them this way in the 32-bit framework:

HWND hWndCtrl = (HWND)lParam;
int nCode = HIWORD(wParam);

IIControl handl e
IINotification code

In both the 16-bit and 32-bit versions, if the OnCommand message is from an
accelerator, the value retrieved in nCo d e is 1. If the message is from a menu, the
value in nCode is O.

CWnd: :OnParentNotify Changes
As with OnCommand, carefully check any code in your application that overrides
OnParentNotify and modify it so that it unpacks values from IParam correctly. Your
16-bit override of OnParentNotify will compile successfully, but will not execute
correctly.

The framework calls the CWnd: :OnParentNotify member function with the
following arguments:

afx_msg void OnParentNotify(UINT message, LPARAM IParam);

The OnParentNotify member function is called for the parent of a child window in
two cases: when the mouse is clicked over a child window, and when a child window
is created or destroyed.

When the message parameter is equal to WM_CREATE or WM_DESTROY, the
framework's 16-bit packing of IParam puts the child window handle in the low-order
word and the identifier of the child window in the high-order word. For the 32-bit
framework, the child window handle has been widened and now takes up all of
IParam; the child window identifier is unavailable.

If your Win32 code in OnParentNotify requires the child ID, retrieve it like this:

CWnd* pChild = FromHandle((HWND)lParam);
int nID = pChild->GetDlgCtrlID();

In this example, FromHandle returns the CWnd object attached to the child window
handle. The GetDlgCtrlID member function returns the child window ID. You could
also retrieve the child ID by passing the child handle directly to the Windows

MFC

505

MFC

GetDlgCtrlID function, but the code above also retrieves a pointer to the child
CWnd object.

The pointer returned in pC h i 1 d is temporary and should not be stored for use beyond
the scope of OnParentNotify.

Using the Collection Classes
With Windows version 3.x, the CObArray class and all related array collection
classes are constrained by 16-bit memory models and must fit within a single 64K
segment.

With Win32, the number of elements that can fit within a framework array collection
is limited only by the amount of available memory. The maximum number of
collection elements is the largest possible value of a UINT, which is much larger than
a typical computer's memory. The increase in maximum collection size should have
little effect upon your code because a framework collection simply throws a
CMemoryException when it reaches its memory limit in both the 16-bit version and
the 32-bit version of the framework.

See Also MFC: 32-Bit Programming Issues, MFC: Porting MFC Applications to 32-
Bit, Date and Time: SYSTEMTIME Support

MFC: Using Database Classes with Documents and
Views

506

You can use the MFC database classes-DAO or ODBC-with or without the
document/view architecture. This article emphasizes working with documents and
views. It explains:

• How to write a form-based application using a CRecordView or
CDaoRecordView object as the main view on your document.

• How to use recordset objects in your documents and views.

• Other considerations.

For alternatives, see the article MFC: Using Database Classes Without Documents
and Views.

Writing a Form-Based Application
Many data-access applications are based on forms. The user interface is a form
containing controls in which the user examines, enters, or edits data. To make your
application form-based, use class CRecordView or CDaoRecordView. You can
specify CRecordView or CDaoRecordView for your view class when you run
AppWizard, or you can use ClassWizard later to create a CRecordView-derived or
CDaoRecordview-derived class.

In a form-based application, each record view object stores a pointer to a CRecordset
or CDaoRecordset object. The framework's record field exchange (RFX) mechanism
exchanges data between the recordset and the data source. The dialog data exchange
(DDX) mechanism exchanges data between the field data members of the recordset
object and the controls on the form. CRecordView or CDaoRecordView also
provides default command handler functions for navigating from record to record on
the form.

~ To create a form-based application with AppWizard

• See the article App Wizard: Database Support.

~ To add a database form to your application with ClassWizard

• See the article Class Wizard: Creating a Database Form.

For a full discussion of forms, see the article Record Views. For an example of an
application with multiple record views on a database, see the MFC tutorial sample
ENROLL, Step 4. The step is not covered in the tutorial, but you can examine the
code.

Using Recordsets in Documents and Views
Many simple form-based applications don't need "documents." If your application is
more complex, you'll probably want to use a document as a proxy for the database,
storing a CDatabase or CDaoDatabase object that connects to the data source.
Form-based applications usually store a pointer to a recordset object in the view.
Other kinds of database applications store recordsets and CDatabase or
CDaoDatabase objects in the document. Here are some possibilities for using
documents in database applications:

• If you're accessing a recordset in a local context, create CRecordset or
CDaoRecordset objects locally in member functions of the document or the view,
as needed.

Declare a recordset object as a local variable in a function. Pass NULL to the
constructor, which causes the framework to create and open a temporary
CDatabase or CDaoDatabase object for you. As an alternative, pass a pointer to a
CDatabase or CDaoDatabase object. Use the recordset within the function and let
it be destroyed automatically when the function exits.

When you pass NULL to a recordset constructor, the framework uses information
returned by the recordset's GetDefaultConnect member function to create a
CDatabase or CDaoDatabase object and open it. The wizards implement
GetDefaultConnect for you.

• If you're accessing a recordset during the lifetime of your document, embed one or
more CRecordset or CDaoRecordset objects in your document.

Construct the recordset objects either when you initialize the document or as
needed. You might write a function that returns a pointer to the recordset if it

MFC

507

MFe

already exists, or constructs and opens the recordset if it doesn't exist yet. Close,
delete, and re-create the recordset as needed, or call its Requery member function
to refresh the records.

• If you're accessing a data source during the lifetime of your document, embed a
CDatabase or CDaoDatabase object or store a pointer to a CDatabase or
CDaoDatabase object in it.

The CDatabase or CDaoDatabase object manages a connection to your data
source. The object is constructed automatically during document construction, and
you call its Open member function when you initialize the document. When you
construct recordset objects in document member functions, you pass a pointer to
the document's CDatabase or CDaoDatabase object. This associates each
recordset with its data source. The database object is usually destroyed when the
document closes. The recordset objects are typically destroyed when they exit the
scope of a function.

Other Factors
Form-based applications often do not have any use for the framework's document
serialization mechanism, so you might want to remove, disable, or replace the New
and Open commands on the File menu. See the article Serialization: Serialization vs.
Database Input/Output.

You might also want to make use of the many user-interface possibilities that the
framework can support. For example, you could use multiple CRecordView or
CDaoRecordView objects in a splitter window, open multiple recordsets in different
multiple document interface (MDI) child windows, and so on.

You might want to implement printing of whatever is in your view-whether it's a
form implemented with CRecordView or CDaoRecordView or something else. As
classes derived from CFormView, CRecordView and CDaoRecordView don't
support printing, but you can override the OnPrint member function. For more
information, see class CFormView, and see the MFC General sample VIEWEX.

You might not want to use documents and views at all. In that case, see the article
MFC: Using Database Classes Without Documents and Views.

See Also Serialization: Serialization vs. Database Input/Output

MFC: Using Database Classes Without Documents and
Views

508

Although in many cases you will want to use the framework's document/view
architecture in your database applications, sometimes you might not want to use
them. This article explains:

• When you don't need to use document/view functionality such as document
serialization.

• App Wizard options to support applications without serialization and without
document-related File menu commands such as New, Open, Save, and Save As.

• How to work with an application that uses a minimal document.

• How to structure an application with no document or view.

When You Don't Need Documents
For some applications, there is a distinct concept of a "document." These applications
typically load all or most of a file from storage into memory with a File Open
command. They write the updated file back to storage all at once with a File Save or
Save As command. What the user sees is a data file.

Some categories of applications, however, don't require a document. Database
applications operate in terms of "transactions." The application selects records from a
database and presents them to the user, often one at a time. What the user sees is
usually a single current record, which may be the only one in memory.

If your application doesn't require a document for storing data, you can dispense with
some or all of the framework's document/view architecture. How much you dispense
with depends on the approach you prefer. You might:

• Use a minimal document as a place to store a connection to your data source but
dispense with normal document features such as serialization. This is
advantageous especially when you want several views of the data and would like to
synchronize all of the views, updating them all at once and so on.

• Use a frame window, into which you draw directly, rather than using a view. Omit
the document. Store any data or data connections in the frame-window object.

AppWizard Options for Documents and Views
If you use App Wizard to create your application, all of the database options produce
applications with documents and views. Some of the options provide documents and
views without document functionality you won't need for your database application.
Table 1 shows the kinds of document/view support for each option.

Table 1 AppWizard Options for Documents and Views

Option View

None (no database support). Derived from
CView.

Only include header files. Derived from
CView.

Document

Full document support including
serialization and New, Open, Save,
and Save As commands on the File
menu.

Same. You can store CDatabase or
CDaoDatabase and/or CRecordset
or CDaoRecordset objects in your
document or your view.

MFC

509

MFC

510

Table 1 AppWizard Options for Documents and Views (cont.)

Option

A database view, without
file support.

Both a database view and
file support.

View

Derived from
CRecordView or
CDaoRecordView.

Derived from
CRecordView or
CDaoRecordView.

Document

Document does not support
serialization or the New, Open,
Save, and Save As commands. You
can use it to store your CRecordset
or CDaoRecordset and to
coordinate multiple views.

Full document support, including
serialization and document-related
File menu commands. Use
serialization for special purposes,
such as storing user profile
information.

For a discussion of using the AppWizard options "A database view, without file
support" and "Both a database view and file support," see Applications with Minimal
Documents.

For a discussion of writing applications with no document, see Applications with No
Document.

For a discussion of alternatives to serialization, and alternative uses for serialization,
see the article Serialization: Serialization vs. Database Input/Output.

Applications with Minimal Documents
AppWizard has two options that support form-based data-access applications. Each
option creates a CRecordView-or CDaoRecordView derived view class and a
document. They differ in what they leave out of the document.

A Document Without File Support
Select the AppWizard database option "A database view, without file support" if you
don't need document serialization. The document still serves the following useful
purposes:

• It's a convenient place to store a CRecordset or CDaoRecordset.

This usage parallels ordinary document concepts: the document "stores" the data
-Of, in this case, a set of records-and the view is a view of the document.

• If your application presents multiple views (such as multiple record views), a
document supports coordinating the views.

If multiple views show the same data, you can use the
CDocument::UpdateAIlViews member function to coordinate updates to all views
when any view changes the data.

You'll usually use this option for simple form-based applications such as the Enroll
tutorial application. App Wizard supports a convenient structure for such applications
automatically.

A Document with File Support
Select the AppWizard database option "Both a database view and file support" when
you have an alternative use for the document-related File menu commands and
document serialization. For the data-access portion of your program, you can use the
document in the same way as described in A Document Without File Support. You
can use the document's serialization capability, for example, to read and write a
serialized user profile document that stores the user's preferences or other useful
information. For more ideas, see the article Serialization: Serialization vs. Database
Input/Output.

App Wizard supports this option, but you must write the code that serializes the
document. Store the serialized information in document data members.

Applications with No Document
You might sometimes want to write an application that uses neither documents nor
views. Without documents, you store your data (such as a CRecordset or
CDaoRecordset object) in your frame-window class or your application class. Any
additional requirements depend on whether the application presents a user interface.

Database Support with a User Interface
If you have a user interface (other than, say, a console command-line interface), your
application draws directly into the frame window's client area rather than into a view.
Such an application doesn't use CRecordView, CDaoRecordView, CFormView, or
CDialog for its main user interface (but it will normally use CDialog for ordinary
dialogs).

Writing Applications Without Documents
Applications without documents resemble applications written with the Microsoft
Foundation Class Library version 1.0. AppWizard doesn't support creating this kind
of application, so you must write your own CWinApp-derived class and, if needed,
also create a CFrameWnd or CMDIFrameWnd class. Override
CWinApp::InitInstance and declare an application object as

CYourNameApp NEAR theApp;

The framework still supplies the message-map mechanism and many other features.

Database Support Separate from the User Interface
Some applications need either no user interface or only a minimal one. For example,
suppose you're writing:

• An intermediate data-access object that other applications (clients) call for special
processing of data between the application and the data source.

MFC

511

MFC

• An application that processes data without user intervention, such as an
application that moves data from one database format to another, or one that does
calculations and performs batch updates.

Because there is no document that owns the CRecordset or CDaoRecordset object,
you'll probably want to store it as an embedded data member in your CWinApp
derived application class. Alternatives include:

• Not keeping a permanent CRecordset or CDaoRecordset object at all. You can
pass NULL to your recordset class constructors. In that case, the framework
creates a temporary CDatabase or CDaoDatabase object using the information in
the recordset's GetDefaultConnect member function. This is the most likely
alternative approach.

• Making the CRecordset or CDaoRecordset object a global variable. This variable
should be a pointer to a recordset object that you create dynamically in your
CWinApp: :Initlnstance override. (This avoids attempting to construct the object
before the framework is initialized.)

• Using recordset objects as you would within the context of a document or a view.
Create recordsets in the member functions of your application or frame-window
objects.

See Also Serialization: Serialization vs. Database Input/Output

MFC: Using the MFC Source Files

512

Full source code is supplied with the Microsoft Foundation Class Library (MFC).
Header files (.H) are in the MFC\INCLUDE directory; implementation files (.CPP)
are in the MFc\sRC directory.

Note The MFC\SRC directory contains a makefile you can use with NMAKE to build MFC
library versions, including a browse version. A browse version of MFC is useful for tracing
through the calling structure of MFC itself. The file README.TXT in that directory explains
how to use this makefile.

This article explains the conventions that MFC uses to comment the various parts of
each class, what these comments mean, and what you should expect to find in each
section. Class Wizard and App Wizard use similar conventions for the classes they
create for you, and you will probably find these conventions useful for your own code.

You might be familiar with the public, protected, and private C++ keywords. When
looking at the MFC header files, you'll find that each class may have several of each
of these. For example, public member variables and functions might be under more
than one public keyword. This is because MFC separates member variables and
functions based on their use, not by the type of access allowed. MFC uses private
sparingly-even items considered implementation details are generally protected and
many times are public. Even though access to the implementation details is
discouraged, MFC leaves the decision to you.

In both the MFC source files and the files that App Wizard creates, you will find
comments like these within class declarations (usually in this order):

II Constructors
II Attributes
II Operations
II Overridables
II Implementation

Topics covered in this article include:

• An example of the comments

• The I I Implementation comment

• The I I Constructors comment

• The I I Attributes comment

• The I I Operations comment

• The IIOverridables comment

An Example of the Comments
The following partial listing of class CStdioFile uses most of the comments:

class CStdioFile : public CFile
{

DECLARE_DYNAMIC(CStdioFile)

public:
II Constructors

CStdioFile();

II Attributes
FILE* m_pStream;

II Operations

II stdio FILE

virtual void WriteString(LPCTSTR lpsz);

virtual LPTSTR ReadString(LPTSTR lpsz. UINT nMax);

II Implementation
public:

} ;

These comments consistently mark sections of the class declaration that contain
similar kinds of class members. Keep in mind that these are MFC conventions, not
hard and fast rules.

MFC

513

MFC

514

The II Implementation Comment
The most important section is the / / Impl ementati on section.

This section houses all implementation details. Both member variables and member
functions can appear in this section. Everything below this line could change in a
future release of MFC. Unless you can't avoid it, you should not rely on details below
the / / Impl ementati on line. In addition, members declared below the
implementation line are not documented, although some implementation is discussed
in technical notes. Overrides of virtual functions in the base class reside in this
section, regardless of which section the base class function is defined in, since the
fact that a function overrides the base class implementation is considered an
implementation detail. Typically these members are protected, but not always.

Notice from the CStdioFile listing under An Example of the Comments that
members declared below the / / Imp 1 erne n tat ion comment may be declared as
public, protected, or private. The point is that you should only use these members
with caution, because they might change in the future. Declaring a group of members
as public may be necessary for the class library implementation to work correctly.
However, this does not imply that you may safely use the members so declared.

Note You may find comments of the remaining types either above or below the / /
Impl ementati on comment. In either case, they describe the kinds of members declared
below them. If they occur below the / / Imp 1 erne n tat ion comment, you should assume
that the members might change in future versions of MFC.

The II Constructors Comment
This section declares constructors (in the C++ sense) as well as any initialization
functions required to really use the object. For example, CWnd::Create is in the
constructors section because before you use the CWnd object it must be "fully
constructed" by first calling the C++ constructor and then calling the Create
function. Typically these members are public.

CStdioFile has three constructors, one of which is shown in the listing under An
Example of the Comments.

The I I Attributes Comment
This section contains the public attributes (or properties) of the object. Typically these
are member variables, or Get/Set functions. The "Get" and "Set" functions mayor
may not be virtual. The "Get" functions are usually const, since in most cases they
don't have side effects. These members are normally public; protected and private
attributes are typically found in the implementation section.

In the sample listing from class CStdioFile, under An Example of the Comments, the
list includes one member variable, m yStream. Class CDC lists nearly 20 members
under this comment.

Note Large classes, such as CDC and CWnd, may have so many members that simply
listing all of the attributes in one group would not add much to clarity. In such cases, the class
library uses other comments as headings to further delineate the members. For example, CDC
uses / / 0 e vic e -Con t ext Fun c t ion s, / / 0 raw i n 9 Tool Fun c t ion s, / /
Ora win gAt t rib ute Fun c t ion s, and more. Groups that represent attributes will follow
the usual syntax described above. Many of the OLE classes have an implementation section
called / / Interface Maps.

The II Operations Comment
This section contains member functions that you can call on the object to make it do
things or perform actions (perform operations). These functions are typically non
const since they usually have side effects. They may be virtual or nonvirtual
depending on the needs of the class. Typically these members are public.

In the sample listing from class CStdioFile, under An Example of the Comments, the
list includes two member functions under this comment: ReadString and
WriteString.

As with attributes, operations may be further subdivided.

The II Overridables Comment
This section contains virtual functions that you can override in a derived class when
you need to modify the base class behavior. They are usually named starting with
"On", although it is not strictly necessary. Functions here are designed to be
overridden, and often implement or provide some sort of "callback" or "hook."
Typically these members are protected.

In MFC itself, pure virtual functions are always placed in this section. A pure virtual
function in C++ is one of the form:

virtual void OnDraw() = 0;

In the sample listing from class CStdioFile, under An Example of the Comments, the
list includes no overridables section. Class CDocnment, on the other hand, lists
approximately 10 overridable member functions.

In some classes, you may also see the comment / / Advanced Overri dabl es.
These are functions that only advanced programmers should attempt to override. You
will probably never need to override them.

Note The conventions described in this article also work well, in general, for OLE Automation
methods and properties. Automation methods are similar to MFC operations. Automation
properties are similar to MFC attributes. Automation events (supported for OLE controls) are
similar to MFC overridable member functions.

MFC

515

Multithreading

Multithreading

516

The Microsoft Foundation Class Library (MFC) provides support for multithreaded
applications. This article describes what processes and threads are, and MFC's
approach to multithreading.

A "process" is an executing instance of an application. For example, when you
double-click the Notepad icon, you start a process that runs Notepad.

A "thread" is a path of execution within a process. When you start Notepad, the
operating system creates a process and begins executing the primary thread of that
process. When this thread terminates, so does the process. This primary thread is
supplied to the operating system by the startup code in the form of a function address.
Usually, it is the address of the main or WinMain function that is supplied.

You can create additional threads in your application if you wish. You may want to do
this to handle background or maintenance tasks when you don't want the user to wait
for them to complete. All threads in MFC applications are represented by
CWinThread objects. In most situations, you don't even have to explicitly create
these objects; instead call the framework helper function AfxBeginThread, which
creates the CWinThread object for you.

MFC distinguishes two types of threads: user-interface threads and worker threads.
User-interface threads are commonly used to handle user input and respond to events
and messages generated by the user. Worker threads are commonly used to complete
tasks, such as recalculation, that do not require user input. The Win32 API does not
distinguish between types of threads; it just needs to know the thread's starting
address so it can begin to execute the thread. MFC handles user-interface threads
specially by supplying a message pump for events in the user interface. CWinApp is
an example of a user-interface thread object, as it derives from CWinThread and
handles events and messages generated by the user.

Special attention should be given to situations where more than one thread may
require access to the same object. The article Multithreading: Programming Tips
describes techniques you can use to get around problems that may arise in these
situations. The article Multithreading: How to Use the Synchronization Classes
describes how to use the classes that are available to synchronize access from
mUltiple threads to a single object.

Writing and debugging multithreaded programming is inherently a complicated and
tricky undertaking, as you must ensure that objects are not accessed by more than one
thread at a time. The articles in the Multithreading group do not teach the basics of
multithreaded programming, only how to use MFC in your multithreaded program.
The multithreaded MFC samples included in Visual C++ illustrate a few
multithreaded programming techniques and Win32 APIs not encompassed by MFC,
but are only intended to be a starting point.

For more information on how the operating system handles processes and threads,
see Chapter 43, Processes and Threads, in the Win32 Programmer's Reference,
Volume 2.

To gain an understanding of how to write a multithreaded program, you should refer
to a book such as Jeffrey Richter's Advanced Windows NT (Microsoft Press, 1994).

For more details on MFC multithreading support, see the following articles:

• Multithreading: Creating User-Interface Threads

• Multithreading: Creating Worker Threads

• Multithreading: How to Use the Synchronization Classes

• Multithreading: Terminating Threads

• Multithreading: Programming Tips

• Multithreading: When to Use the Synchronization Classes

Multithreading: Creating User-Interface Threads
A user-interface thread is commonly used to handle user input and respond to user
events independently of threads executing other portions of the application. The main
application thread (provided in your CWinApp-derived class) is already created and
started for you. This article describes the steps necessary to create additional user
interface threads.

The first thing you must do when creating a user-interface thread is derive a class
from CWinThread. You must declare and implement this class using the
DECLARE DYNCREATE and IMPLEMENT DYNCREATE macros. This class - -
must override some functions, and can override others. These functions and what
they should do are presented in Table 1.

Table 1 Functions to Override When Creating a User-Interface Thread

Function name

Exitlnstance

Initlnstance

OnIdle

Pre Translate Message

Purpose

Perfonn cleanup when thread tenninates. Usually
overridden.

Perfonn thread instance initialization. Must be
overridden.

Perfonn thread-specific idle-time processing. Not usually
overridden.

Filter messages before they are dispatched to
TranslateMessage and DispatchMessage. Not usually
overridden.

Multithreading

517

Multithreading

Table 1 Functions to Override When Creating a User-Interface Thread (cont.)

Function name Purpose

ProcessWndProcException Intercept unhandled exceptions thrown by the thread's
message and command handlers. Not usually overridden.

Run Controlling function for the thread. Contains the message
pump. Rarely overridden.

MFC provides two versions of AfxBeginThread through parameter overloading: one
for user-interface threads and the other for worker threads. To start your user
interface thread, call AfxBeginThread providing the following information:

• The RUNTIME_CLASS of the class you derived from CWinThread.

• (Optionally) The desired priority level. The default is normal priority. For more
information on the available priority levels, see: :SetThreadPriority in the Win32
Programmer's Reference, Volume 4.

• (Optionally) The desired stack size for the thread. The default is the same size
stack as the creating thread.

• (Optionally) CREATE_SUSPENDED if you want the thread to be created in a
suspended state. The default is 0, or start the thread normally.

• (Optionally) The desired security attributes. The default is the same access as the
parent thread. For more information on the format of this security information, see
SECURITY_ATTRIBUTES in the Win32 Programmer's Reference, Volume 5.

AfxBeginThread does most of the work for you. It creates a new object of your class,
initializes it with the information you supply, and calls
CWinThread::CreateThread to start executing the thread. Checks are made
throughout the procedure to make sure all objects are deallocated properly should any
part of the creation fail.

See Also Multithreading: Terminating Threads, Multithreading: Creating Worker
Threads

In the Class Library Reference: CWinThread

In the Win32 Programmer's Reference, Volume 2: Chapter 43, Processes and Threads

Multithreading: Creating Worker Threads

518

A worker thread is commonly used to handle background tasks that the user
shouldn't have to wait for to continue using your application. Tasks such as
recalculation and background printing are good examples of worker threads. This
article details the steps necessary to create a worker thread. Topics include:

• Starting the thread

• Implementing the controlling function

• Example

Creating a worker thread is a relatively simple task. Only two steps are required to
get your thread running: implementing the controlling function and starting the
thread. It is not necessary to derive a class from CWinThread. You can if you need a
special version of CWinThread, but it is not required for most simple worker
threads. You can use CWinThread without modification.

Starting the Thread
There are two overloaded versions of AfxBeginThread: one for user-interface
threads and one for worker threads. To begin execution of your worker thread, call
AfxBeginThread providing the following information:

• The address of the controlling function.

• The parameter to be passed to the controlling function.

• (Optionally) The desired priority of the thread. The default is normal priority. For
more information on the available priority levels, see: :SetThreadPriority in the
Win32 Programmer's Reference, Volume 4.

• (Optionally) The desired stack size for the thread. The default is the same size
stack as the creating thread.

• (Optionally) CREATE_SUSPENDED if you want the thread to be created in a
suspended state. The default is 0, or start the thread normally.

• (Optionally) The desired security attributes. The default is the same access as the
parent thread. For more information on the format of this security information, see
SECURITY_ATTRIBUTES in the Win32 Programmer's Reference, Volume 5.

AfxBeginThread creates and initializes a CWinThread object for you, starts it, and
returns its address so you can refer to it later. Checks are made throughout the
procedure to make sure all objects are deallocated properly should any part of the
creation fail.

Implementing the Controlling Function
The controlling function defines the thread. When this function is entered, the thread
starts, and when it exits, the thread terminates. This function should have the
following prototype:

UINT MyControllingFunction(LPVOID pParam);

The parameter is a single 32-bit value. The value the function receives in this
parameter is the value that was passed to the constructor when the thread object was
created. The controlling function can interpret this value in any manner it chooses. It
can be treated as a scalar value, or a pointer to a structure containing multiple
parameters, or it can be ignored. If the parameter refers to a structure, the structure
can be used not only to pass data from the caller to the thread, but also to pass data
back from the thread to the caller. If you use such a structure to pass data back to the
caller, the thread will need to notify the caller when the results are ready. For

Multithreading

519

Multithreading

information on communicating from the worker thread to the caller, see the article
Multithreading: Programming Tips.

When the function terminates, it should return a DWORD value indicating the
reason for termination. Typically, this exit code is 0 to indicate success with other
values indicating different types of errors. This is purely implementation dependent.
Some threads may maintain usage counts of objects, and return the current number of
uses of that object. To see how applications can retrieve this value, see the article
Multithreading: Terminating Threads.

There are some restrictions on what you can do in a multithreaded program written
with the Microsoft Foundation Class Library. For descriptions of these restrictions
and other tips on using threads, see the article Multithreading: Programming Tips.

Controlling Function Example
This example shows how to define a controlling function and use it from another
portion of the program.

DWORD MyThreadProc(LPVOID pParam)
{

CMyObject* pObject = (CMyObject*)pParam;

if (pObject == NULL II
!pObject->IsKindOf(RUNTIME_CLASS(CMyObject»)

return -1; II illegal parameter

II do something with 'pObject'

return 0; II thread completed successfully

II inside a different function in the program

pNewObject = new CMyObject;
AfxBeginThread(MyThreadProc, pNewObject);

See Also Multithreading: Creating User-Interface Threads, Multithreading:
Terminating Threads, Multithreading: Programming Tips

Multithreading: How to Use the Synchronization Classes

520

Synchronizing resource access between threads is a common problem when writing
multithreaded applications. Having two or more threads simultaneously access the
same data can lead to undesirable and unpredictable results. For example, one thread
could be updating the contents of a structure while another thread is reading the
contents of the same structure. It is unknown what data the reading thread will

receive; the old data, the newly written data, or possibly a mixture of both. MFC
provides a number of synchronization and synchronization access classes to aid in
solving this problem. This article explains the classes available and how to use them
to create thread-safe classes in a typical multithreaded application.

A typical multithreaded application has a class that represents a resource to be shared
among threads. A properly designed, fully thread-safe class does not require you to
call any synchronization functions. Everything is handled internally to the class,
allowing you to worry about how to best use the class, not about how it might get
corrupted. The best technique for creating a fully thread-safe class is to merge the
synchronization class into the resource class. Merging the synchronization classes
into the shared class is a straightforward process.

As an example, take an application that maintains a linked-list of accounts. This
application allows up to three accounts to be examined in separate windows, but only
one can be updated at any particular time. When an account is updated, the updated
data is sent over the network to a data archive.

This example application uses all three types of synchronization classes. Since it
allows up to three accounts to be examined at one time, it uses CSemaphore to limit
access to three view objects. When an attempt to view a fourth account occurs, the
application either waits until one of the first three windows closes or it fails. When an
account is updated, the application uses CCriticalSection to ensure that only one
account is updated at a time. After the update succeeds, it signals CEvent, which
releases a thread waiting for the event to be signaled. This thread sends the new data
to the data archive.

DeSigning a Thread-Safe Class
To make a class fully thread-safe, first add the appropriate synchronization class to
the shared classes as a data member. In the previous account-management example, a
CSemaphore data member would be added to the view class, a CCriticalSection
data member would be added to the linked-list class, and a CEvent data member
would be added to the data storage class.

Next, add synchronization calls to the appropriate member functions of each thread
safe class. This means that all member functions that modify the data in the class or
access a controlled resource should create either a CSingleLock or CMultiLock
object and call that object's Lock function. When the lock object goes out of scope
and is destroyed, Unlock is called for you by the object's destructor, releasing the
resource. Of course, you can call Unlock directly if you wish.

Designing your thread-safe class in this fashion allows it to be used in a
multithreaded application as easily as a non-thread-safe class, but with complete
safety. Encapsulating the synchronization object and synchronization access object
into the resource's class provides all the benefits of fully thread-safe programming
without the drawback of maintaining synchronization code.

Multithreading

521

Multithreading

The drawbacks to this approach are that the class will be slightly slower than the
same class without the synchronization objects added. Also, if there is a chance that
more than one thread may delete the object, the merged approach may not always
work. In this situation, it is better to maintain separate synchronization objects.

For example code that uses the synchronization classes, see the MFC sample
programs MTGDI and MUTEXES. These and other MFC sample programs can be
found under Samples in Books Online.

For information on determining which synchronization class to use in different
situations, see the article Multithreading: When to Use the Synchronization Classes.
For more information on synchronization, see Chapter 44, Synchronization, in the
Microsoft Win32 Programmer's Reference, Volume 2. For more information on
multithreading support in MFC, see the article Multithreading.

See Also Multithreading: When to Use the Synchronization Classes

Multithreading: Terminating Threads

522

Two normal situations cause a thread to terminate: the controlling function exits or
the thread should not be allowed to run to completion. If a word processor used a
thread for background printing, the controlling function would terminate normally if
printing completed successfully. Should the user wish to cancel the printing, however,
the background printing thread would have to be terminated prematurely. This article
explains both how to implement each situation and how to get the exit code of a
thread after it terminates.

Normal Thread Termination
For a worker thread, normal thread termination is simple: exit the controlling
function and return a value that signifies the reason for termination. You can use
either the AfxEndThread function or a return statement. Typically, 0 signifies
successful completion, but that is up to you.

For a user-interface thread, the process is just as simple: from within the user
interface thread, call ::PostQuitMessage in the Win32 Programmer's Reference,
Volume 4. The only parameter that ::PostQuitMessage takes is the exit code of the
thread. As for worker threads, 0 typically signifies successful completion.

Premature Thread Termination
Terminating a thread prematurely is almost as simple: call AfxEndThread from
within the thread. Pass the desired exit code as the only parameter. This stops
execution of the thread, deallocates the thread's stack, detaches all DLLs attached to
the thread, and deletes the thread object from memory.

AfxEndThread must be called from within the thread to be terminated. If you want
to terminate a thread from another thread, you must set up a communication method
between the two threads.

Retrieving the Exit Code of a Thread
To get the exit code of either the worker or the user-interface thread, call the
: : GetExitCodeThread function. For more information about this function, see the
Win32 Programmer's Reference, Volume 3. This function takes the handle to the
thread (stored in the m_hTh read data member of CWinThread objects) and the
address of a DWORD.

If the thread is still active, ::GetExitCodeThread will place STILL_ACTIVE in the
supplied DWORD address; otherwise, the exit code is placed in this address.

Retrieving the exit code of CWinThread objects takes an extra step. By default,
when a CWinThread thread terminates, the thread object is deleted. This means that
you cannot access the m_h Th rea d data member since the CWinThread object no
longer exists. To avoid this situation, do one of the following two things:

• Set the m_bAutoDel ete data member to FALSE. This allows the CWinThread
object to survive after the thread has been terminated. You can then access the
m_h T h rea d data member after the thread has been terminated. If you use this
technique, however, you are responsible for destroying the CWinThread object as
the framework will not automatically delete it for you. This is the preferred
method.

-or-

• Store the thread's handle separately. After the thread is created, copy its
m_hThread data member (using ::DuplicateHandle) to another variable and access
it through that variable. This way the object is deleted automatically upon
termination and you can still find out why the thread terminated. Be careful that
the thread does not terminate before you can duplicate the handle. The safest way
to do this is to pass CREATE_SUSPENDED to AfxBeginThread, store the
handle, and then resume the thread by calling ResumeThread.

Either method allows you to determine why a CWinThread object terminated.

See Also In the Class Library Reference: CWinThread, AfxEndThread

In the Run-Time Library Reference: _ endthreadex, _ beginthreadex

In the Win32 Programmer's Reference, Volume 3: ::GetExitCodeThread,
: : ExitThread

Multithreading: Programming Tips
Multithreaded applications require stricter care than single-threaded applications
when accessing data. Since there are multiple, independent paths of execution in use
simultaneously in multithreaded applications, either the algorithms, the data, or both
must be aware that data could be used by more than one thread at a time. This article
explains techniques for avoiding potential problems when programming
multithreaded applications with the Microsoft Foundation Class Library (MFC).

Multithreading

523

Multithreading

524

Accessing Objects from Multiple Threads
For size and performance reasons, MFC objects are not thread safe at the object level,
only at the class level. This means that you can have two separate threads
manipulating two different CString objects, but not two threads manipulating the
same CString object. If you absolutely must have multiple threads manipulating the
same object, protect such access with appropriate Win32 synchronization
mechanisms, such as critical sections. For more information on critical sections and
other related objects, see Chapter 44, Synchronization, in the Win32 Programmer's
Reference, Volume 2.

The class library uses critical sections internally to protect global data structures,
such as those used by the debug memory allocator.

Accessing MFC Objects from Non-MFC Threads
If you have a multithreaded application that creates a thread in a way other than
using a CWinThread object, you cannot access other MFC objects from that thread.
In other words, if you want to access any MFC object from a secondary thread, you
must create that thread with one of the methods described in the Multithreading:
Creating User-Interface Threads or Multithreading: Creating Worker Threads
articles. These methods are the only ones that allow the class library to initialize the
internal variables necessary to handle multithreaded applications.

Windows Handle Maps
As a general rule, a thread can only access MFC objects that it created. This is
because temporary and permanent Windows handle maps are kept in thread local
storage to ensure protection from simultaneous access from multiple threads. For
example, a worker thread cannot perform a calculation and then call a document's
UpdateAIlViews member function to have the windows that contain views on the
new data modified. This will have no effect at all, since the map from CWnd objects
to HWNDs is local to the primary thread. What this means is that one thread may
have a mapping from a Windows handle to a C++ object, but another thread may
map that same handle to a different C++ object. Changes made in one thread would
not be reflected in the other.

There are several ways around this problem. The first is to pass individual handles
(such as an HWND) rather than C++ objects to the worker thread. The worker thread
then adds these objects to its temporary map by calling the appropriate FromHandle
member function. You could also add the object to the thread's permanent map by
calling Attach, but this should only be done if you are guaranteed that the object will
exist longer than the thread.

Another method is to create new user-defined messages corresponding to the different
tasks your worker threads will be performing and post these messages to the
application's main window using ::PostMessage. This method of communication is

similar to two different applications conversing except that both threads are executing
in the same address space.

For more information on handle maps, see Technical Note 3 under MFC in Books
Online. For more information on thread local storage, see sections 43.1.7, Thread
Local Storage, and 43.2.4, Using Thread Local Storage, in the Win32 Programmer's
Reference, Volume 2.

Communicating Between Threads
MFC provides a number of classes that allow threads to synchronize access to objects
to maintain thread safety. Usage of these classes is described in the articles
Multithreading: How to Use the Synchronization Classes and Multithreading: When
to Use the Synchronization Classes. More information on these objects can be found
in Chapter 44, Synchronization, in the Win32 Programmer's Reference, Volume 2.

See Also In the Class Library Reference: CWinThread

Multithreading: When to Use the Synchronization
Classes

The six multithreaded classes provided with MFC fall into two categories:
synchronization objects (CSyncObject, CSemaphore, CMutex, CCriticalSection,
and CEvent) and synchronization access objects (CMuitiLock and CSingleLock).

Synchronization classes are used when access to a resource must be controlled to
ensure integrity of the resource. Synchronization access classes are used to gain
access to these controlled resources. This article describes when to use each class.

To determine which synchronization class you should use, ask the following series of
questions:

1. Does the application have to wait for something to happen before it can access the
resource (for example, data must be received from a communications port before it
can be written to a file)?

If yes, use CEvent.

2. Can more than one thread within the same application access this resource at one
time (for example, your application allows up to five windows with views on the
same document)?

If yes, use CSemaphore.

3. Can more than one application use this resource (for example, the resource is in a
DLL)?

If yes, use CMutex.

If no, use CCriticalSection.

Multithreading

525

Multithreading

526

CSyncObject is never used directly. It is the base class for the other four
synchronization classes.

As an example, take an application that maintains a linked-list of accounts. This
application allows up to three accounts to be examined in separate windows, but only
one can be updated at any particular time. When an account is updated, the updated
data is sent over the network to a data archive.

This example application uses all three types of synchronization classes. Since it
allows up to three accounts to be examined at one time, it uses CSemaphore to limit
access to three view objects. When an attempt to view a fourth account occurs, the
application either waits until one of the first three windows close or it fails. When an
account is updated, the application uses CCriticalSection to ensure that only one
account is updated at a time. After the update succeeds, it signals CEvent, which
releases a thread waiting for the event to be signaled. This thread sends the new data
to the data archive.

Choosing which synchronization access class to use is even simpler. If your
application is concerned with accessing a single controlled resource only, use
CSingleLock. If it needs access to anyone of a number of controlled resources, use
CMultiLock. In the earlier example, CSingleLock would have been used, as in each
case only one resource was needed at any particular time.

For example code that uses the synchronization classes, see the MFC sample
programs MTGDI and MUTEXES. These and other MFC sample programs can be
found under Samples in Books Online.

For information on how the synchronization classes are used, see the article
Multithreading: How to Use the Synchronization Classes. For more information on
synchronization, see Chapter 44, Synchronization, in the Microsoft Win32
Programmer's Reference, Volume 2. For more information on multithreading support
in MFC, see the article Multithreading.

See Also Multithreading: How to Use the Synchronization Classes

ODBC
In addition to an overview of Open Database Connectivity (ODBC), this article
explains:

• How ODBC works with the database classes.

• How ODBC drivers work with dynasets.

• What ODBC components you need to redistribute with your applications.

You will also want to read the related article ODBC: The ODBC Cursor Library.

Note ODSC data sources are accessible through the MFC ODSC classes, as described in
this article, or through the MFC Data Access Object (DAO) classes. For information about the
DAD classes, see the article Database Overview.

Note The MFC ODSC classes now support Unicode.

ODBC is a call-level interface that allows applications to access data in any database
for which there is an ODBC driver. Using ODBC, you can create database
applications with access to any database for which your end-user has an ODBC
driver. ODBC provides an API that allows your application to be independent of the
source database management system (DBMS).

ODBC is the database portion of the Microsoft Windows Open Services Architecture
(WOSA), an interface which allows Windows-based desktop applications to connect
to multiple computing environments without rewriting the application for each
platform.

The following are components of ODBC:

• ODBCAPI

A library of function calls, a set of error codes, and a standard Structured Query
Language (SQL) syntax for accessing data on DBMSs.

• ODBC Driver Manager

A dynamic-link library (ODBC32.DLL) that loads ODBC database drivers on
behalf of an application. This DLL is transparent to your application.

• ODBC database drivers

One or more DLLs that process ODBC function calls for specific DBMSs.

• ODBC Cursor Library

A dynamic-link library (ODBCCR32.DLL) that resides between the ODBC Driver
Manager and the drivers and handles scrolling through the data.

• ODBC Administrator

ODBC

527

ODBC

528

A tool used for configuring a DBMS to make it available as a data source for an
application.

An application achieves independence from DBMSs by working through an ODBC
driver written specifically for a DBMS rather than working directly with the DBMS.
The driver translates the calls into commands its DBMS can use, simplifying the
developer's work, and making it available for a wide range of data sources.

The database classes support any data source for which you have an ODBC driver.
This might, for example, include a relational database, an Indexed Sequential Access
Method (ISAM) database, a Microsoft Excel spreadsheet, or a text file. The ODBC
drivers manage the connections to the data source, and SQL is used to select records
from the database.

See the article ODBC Driver List for a list of ODBC drivers included in this version
of Visual C++ and for information about obtaining additional drivers.

Parts of the ODBC Software Development Kit (SDK) are included with this product.
For more information on ODBC, see the ODBC SDK Programmer's Reference, and
the ODBC API Reference Help system.

ODBC and the Database Classes
The MFC ODBC database classes encapsulate the ODBC API function calls you
would normally make yourself in the member functions of the CDatabase and
CRecordset classes. For example, the complex ODBC call sequences, binding of
returned records to storage locations, handling of error conditions, and other
operations are managed for you by the database classes. As a result, you use a
considerably simpler class interface to manipulate records through a recordset object.

Note ODSC data sources are accessible through the MFC ODSC classes, as described in
this article, or through the MFC Data Access Object (DAO) classes. For information about the
DAO classes, see the article Database Overview.

Although the database classes encapsulate ODBC functionality, they do not provide a
one-to-one mapping of ODBC API functions. The database classes provide a higher
level of abstraction, modeled after data-access objects found in Microsoft Access and
Microsoft Visual Basic. For more information, see What Is the MFC Database
Programming Model?

ODBC Driver Requirements for Dynasets
In the MFC ODBC database classes, dynasets are recordsets with dynamic properties
-they remain synchronized with the data source in certain ways. MFC dynasets (but
not forward-only recordsets) require an ODBC driver with Level 2 API conformance.
If the driver for your data source conforms to the Level 1 API set, you can still use
both up datable and read-only snapshots and forward-only recordsets, but not
dynasets. However, a Level 1 driver can support dynasets if it supports extended fetch
and keyset-driven cursors.

In ODBC terminology, dynasets and snapshots are referred to as "cursors." A cursor
is a mechanism used for keeping track of its position in a recordset. For more
information about driver requirements for dynasets, see the article Dynaset. For more
information about cursors, see the ODBC SDK Programmer's Reference.

Note For updatable recordsets, your ODSC driver must support either positioned update
statements or the ::SQLSetPos ODSC API function. If both are supported, MFC uses
::SQLSetPos for efficiency. Alternatively, for snapshots, you can use the cursor library, which
provides the required support for updatable snapshots (static cursors and positioned update
statements) .

Redistributing OOBC Components to Your Customers
If you incorporate the functionality of the ODBC Setup and ODBC Administrator
programs into your application, you must also distribute to your users the files which
run these programs. These ODBC files reside in the REDIST directory of the Visual
C++ version 4.0 CD-ROM. The REDISTRB.WRI file and the license agreement both
contain the list of ODBC files that you may redistribute.

Consult the documentation for any ODBC drivers you plan to ship. You'll need to
determine which DLLs and other files to ship.

In addition, you need to include one other file in most cases. The ODBCCR32.DLL is
the ODBC Cursor Library. This library gives Levell drivers the capability of forward
and backward scrolling. It also provides the capability of supporting snapshots. For
more information on the ODBC Cursor Library, see the article ODBC: The ODBC
Cursor Library.

The following articles provide more information on using ODBC with the database
classes:

• ODBC: The ODBC Cursor Library

• ODBC: Configuring an ODBC Data Source

• ODBC: Calling ODBC API Functions Directly

See Also ODBC Administrator

ODBC: The ODBC Cursor Library
This article describes the ODBC Cursor Library and explains how to use it. Topics
include:

• The Cursor Library and Levell ODBC drivers

• Positioned updates and timestamp columns

• U sing the Cursor Library

The ODBC Cursor Library is a dynamic-link library (DLL) that resides between the
ODBC Driver Manager and the driver. In ODBC terms, a driver maintains a "cursor"

ODBC

529

ODBC

530

to keep track of its position in the recordset. The cursor marks the position in the
recordset to which you have already scrolled - the current record.

The Cursor Library and Level 1 ODBC Drivers
The ODBC Cursor Library gives Levell drivers the following new capabilities:

• Forward and backward scrolling. Level 2 drivers don't need the cursor library
because they are already scrollable.

• Support for snapshots. The cursor library manages a buffer containing the
snapshot's records. This buffer reflects your program's deletions and edits to
records but not the additions, deletions, or edits of other users, so the snapshot is
only as current as the cursor library's buffer. The buffer also does not reflect your
own additions until you call Requery. Dynasets do not use the cursor library.

The cursor library will give you snapshots (static cursors) even if they are not
normally supported by your driver. If your driver already supports static cursors, you
don't need to load the cursor library to get snapshot support. If you do use the cursor
library, you can use only snapshots and forward-only recordsets. If your driver
supports dynasets (KEYSET_DRIVEN cursors) and you want to use them, you must
not use the cursor library. If you want to use both snapshots and dynasets, you must
base them on two different CDatabase objects (two different connections) unless your
driver supports both.

Positioned Updates and Timestamp Columns
Note ODBC data sources are accessible through the MFC ODBC classes, as described in
this article, or through the MFC Data Access Object (DAO) classes. For information about the
DAO classes, see the article Database Overview.

Note If your ODBC driver supports SQLSetPos, which MFC uses if available, this topiC does
not apply to you.

Most Levell drivers do not support positioned updates. Such drivers rely on the
cursor library to emulate the capabilities of Level 2 drivers in this regard. The cursor
library emulates positioned update support by doing a searched update on the
unchanging fields.

In some cases, a recordset may contain a timestamp column as one of those
unchanging fields. Two issues arise in using MFC recordsets with tables that contain
timestamp columns.

The first issue concerns updatable snapshots on tables with timestamp columns. If the
table to which your snapshot is bound contains a timestamp column, you should call
Requery after you call Edit and Update. If not, you may not be able to edit the same
record again. When you call Edit and then Update, the record is written to the data
source and the timestamp column is updated. If you don't call Requery, the
timestamp value for the record in your snapshot no longer matches the corresponding

timestamp on the data source. When you try to update the record again, the data
source may disallow the update because of the mismatch.

The second issue concerns limitations of class CTime when used with the RFX _Date
function to transfer time and date information to or from a table. Processing the
CTime object imposes some overhead in the form of extra intermediate processing
during the data transfer. The date range of CTime objects may also be too limiting
for some applications. A new version of the RFX _Date function takes an ODBC
TIMESTAMP _ STRUCT parameter instead of a CTime object. For more
information, see RFX _Date in Macros and Globals in the Class Library Reference.

Using the Cursor Library
When you connect to a data source-by calling CDatabase::Open-you can specify
whether to use the cursor library for the data source. If you will be creating snapshots
on that data source, specify TRUE for the bUseCursorLib parameter to Open (or
rely on the default value of TRUE). However, if your ODBC driver supports dynasets
and you want to open dynasets on the data source, the cursor library must not be used
(it masks some driver functionality needed for dynasets). In that case, specify FALSE
for the bUseCursorLib parameter.

ODBC: Configuring an ODBC Data Source
To use a data source with an application you've developed, you must use ODBC
Administrator to configure it. ODBC Administrator keeps track of available data
sources and their connection information in the Windows registry. You use ODBC
Administrator to add, modify, and delete data sources in the Data Sources dialog box,
and to add and delete ODBC drivers.

Note This information applies when you use MFC Data Access Object (DAO) classes for
ODSC access as well as when you use MFC ODSe classes.

ODBC Administrator is automatically installed with the Microsoft Foundation Class
Library database support. For more information about the ODBC Administrator
program, see the article ODBC Administrator and the online ODBC API Reference
help system.

Technical Note 48, available under MFC in Books Online, describes how to write
ODBC Setup and Administration programs for MFC database applications.

See Also ODBC: Calling ODBC API Functions Directly

ODBC: Calling ODBC API Functions Directly
Note ODSC data sources are accessible through the MFC ODSC classes, as described in
this article, or through the MFC Data Access Object (DAO) classes. For information about the
DAO classes, see the article Database Overview.

ODBC

531

ODBC Administrator

The database classes provide a simpler interface to a data source than does ODBC.
As a result, the classes don't encapsulate all of the ODBC API. For any functionality
that falls outside the abilities of the classes, you must call ODBC API functions
directly. For example, you must call the ODBC catalog functions (::SQLColumns,
::SQLProcedures, ::SQLTables, and others) directly. Samples of direct ODBC
function calls used with the classes can be found in the MFC Database sample
CATALOG.

To call an ODBC API function directly, you must take the same steps you'd take if
you were making the calls without the framework. You must:

• Allocate storage for any results the call returns.

• Pass an ODBC HDBC or HSTMT handle, depending on the parameter signature
of the function.

Member variables CDatabase::m hdbc and CRecordset::m hstmt are available - -
so that you do not need to allocate and initialize these yourself.

• Perhaps call additional ODBC functions to prepare for or follow up the main call.

• Deallocate storage when you finish.

For more information about these steps, see the ODBC SDK Programmer's
Reference.

In addition to these steps, you need to take extra steps to check function return values,
assure that your program isn't waiting for an asynchronous call to finish, and so on.
You can simplify these last steps by using the AFX_SQL_ASYNC and
AFX_SQL_SYNC macros. See Macros and Globals in the Class Library Reference
for information.

See Also ODBC

ODBC Administrator

532

ODBC Administrator is used to register and configure the data sources available to
you either locally or across a network. Class Wizard uses information supplied by
ODBC Administrator to create code in your applications that connects your users to
data sources.

Note This information applies to ODSC data sources set up for use with either the MFC
OOSC classes or the MFC Data Access Object (OAO) classes. To use an OOSC data source,
you must register and configure it.

You must use ODBC Administrator to add and remove data sources. Depending on
the ODBC driver, you can also create new data sources.

During Setup, you select the ODBC drivers you want to install. You can later install
additional drivers that ship with Visual C++ using the Visual C++ Setup program.

Note ODBC Administrator is installed during Setup. If you chose Custom Installation and did
not select any ODBC drivers in the "Database Options" dailog box, you need to run Setup
again to install the necessary files.

If you want to install ODBC drivers that do not ship with Visual C++, you must run
the setup program that accompanies the driver.

~ To install OOSC drivers that ship with Visual C++

Note This procedure assumes that you have already installed VC++ and are rerunning
Setup to add the ODBC drivers that ship with VC++.

1 Run Setup from your Visual C++ distribution CD.

This displays the opening dialog box in the Setup program.

2 Click Next on each dialog box until you reach the Installation Options dialog box.
Select the Custom radio button and click Next.

3 Clear all of the check boxes on the Microsoft Visual C++ Setup dialog box except
the Database Options check box. Click the Details push button to display the
Database Options dialog box.

4 Clear the Microsoft Data Access Objects check box, check the Microsoft ODBC
Drivers check box, and click the Details button.

This displays the Microsoft ODBC Drivers dialog box.

5 Select the drivers you want to install, then click OK twice.

6 Click Next on the remaining dialog boxes to begin the installation. Setup notifies
you when the installation is complete.

Once the drivers are installed, you can configure the data source using the ODBC
Administrator. You will find the ODBC icon in the Control Panel. For information
about configuring a data source with ODBC Administrator, see the ODBC SDK
Programmer's Reference.

See Also Data Source (ODBC)

ODBC Driver List
Visual C++ version 4.0 provides ODBC drivers for the following databases:

• SQL Server

• Microsoft Access

• Microsoft FoxPro

• Microsoft Excel

• dBASE

• Paradox

• Text files

ODBC Driver List

533

ODBCandMFC

For information about ODBC drivers available from Microsoft and other companies,
including the ODBC Driver Pack, contact Microsoft Customer Service. You can
reach Customer Service by calling 1-800-426-9400. Outside the United States and
Canada, please contact your local Microsoft Subsidiary.

ODBC andMFC

534

Important To use the MFC database classes for targeting a Win32 platform (such as
Windows NT), you must have the 32-bit OOBC driver for your data source. Some drivers are
included with Visual C++; others can be obtained from Microsoft and other vendors. For more
information, see the article OOBC Driver List.

This article introduces the main concepts of the Microsoft Foundation Class Library's
ODBC-based database classes and provides an overview of how the classes work
together. (For information about using the MFC DAO classes instead, see the article
DAO and MFC.) Topics covered in this article include:

• Connecting to a data source

• Selecting and manipulating records

• Displaying and manipulating data in a form

• Working with documents and views

• Access to ODBC and SQL

• Further reading about the MFC ODBC classes

The MFC database classes based on ODBC are designed to provide access to any
database for which an ODBC driver is available. Because the classes use ODBC, your
application can access data in many different data formats and different local/remote
configurations. You do not have to write special-case code to handle different
database management systems (DBMSs). As long as your users have an appropriate
32-bit ODBC driver for the data they wish to access, they can use your program to
manipulate data in tables stored there.

Connecting to a Data Source
An ODBC data source is a specific set of data, the information required to access that
data, and the location of the data source, which can be described using a data-source
name. From your program's point of view, the data source includes the data, the
DBMS, the network (if any), and ODBC.

To access data provided by a data source, your program must first establish a
connection to the data source. All data access is managed through that connection.

Data-source connections are encapsulated by class CDatabase. Once a CDatabase
object is connected to a data source, you can:

• Construct recordsets, which select records from tables or queries.

• Manage transaction, batching updates so all are "committed" to the data source at
once (or the whole transaction is "rolled back" so the data source is unchanged)
if the data source supports the required level of transactions.

• Directly execute Structured Query Language (SQL) statements.

When you finish working with a data-source connection, you close the CDatabase
object and either destroy it or reuse it for a new connection. For more information
about data-source connections, see the article Data Source (ODBC).

Selecting and Manipulating Records
Normally when you select records from a data source using an SQL SELECT
statement, you get a "result set"-a set of records from a table or a query. With the
database classes, you use a "recordset" object to select and access the result set. This
is an object of an application-specific class that you derive from class CRecordset.
When you define a recordset class, you specify the data source to associate it with, the
table to use, and the columns of the table. Either Class Wizard or App Wizard creates a
class with a connection to a specific data source. The wizards write the
GetDefaultSQL member function of class CRecordset to return the table name. For
more information on using the wizards to create recordset classes, see the articles
App Wizard: Database Support and Class Wizard: Database Support.

U sing a CRecordset object at run time, you can:

• Examine the data fields of the current record.

• Filter or sort the recordset.

• Customize the default SQL SELECT statement.

• Scroll through the selected records.

• Add, update, or delete records (if both the data source and the recordset are
updatable).

• Test whether the recordset allows requerying, and refresh the recordset's contents.

When you finish using the recordset object, you close and destroy it. For more
information about recordsets, see the article Recordset (ODBC).

Displaying and Manipulating Data in a Form
Many data-access applications select data and display it in fields in a form. The
database class CRecordView gives you a CForm View object directly connected to a
recordset object. The record view uses dialog data exchange (DDX) to move the
values of the fields of the current record from the recordset to the controls on the
form, and to move updated information back to the recordset. The recordset, in tum,
uses record field exchange (RFX) to move data between its field data members and
the corresponding columns in a table on the data source.

ODBCandMFC

535

ODBCandMFC

536

You can use AppWizard or ClassWizard to create the record view class and its
associated recordset class in conjunction.

The record view and its recordset are destroyed when you close the document. For
more information about record views, see the article Record Views. For more
information about RFX, see the article Record Field Exchange (RFX).

Working with Documents and Views
The Microsoft Foundation Class Library relies on a document/view architecture for
many of its features. Typically a document stores your data, and a view displays it
within the client area of a frame window and manages user interaction with the data.
The view communicates with the document to obtain and update the data. You can
use the database classes with the framework or without it.

For more information about using database classes in the framework, see the article
MFC: Using Database Classes with Documents and Views.

By default, AppWizard creates a skeleton application with no database support. But
you can select options to include minimal database support or more complete form
based support. For more information about App Wizard options, see the article
App Wizard: Database Support.

You can also use the database classes without using the full document/view
architecture. For more information, see the article MFC: Using Database Classes
Without Documents and Views.

Access to ODeC and SQL
Just as the Microsoft Foundation Class Library encapsulates many Windows API calls
but still lets you call any Windows API function directly, the database classes give
you the same flexibility with regard to the ODBC API. While the database classes
shield you from much of the complexity of ODBC, you can call ODBC API functions
directly from anywhere in your program.

Similarly, the database classes shield you from having to work much with SQL, but
you can use SQL directly if you wish. You can customize recordset objects by passing
a custom SQL statement (or setting portions of the default statement) when you open
the recordset. You can also make SQL calls directly using the ExecnteSQL member
function of class CDatabase.

Further Reading About the MFC ODeC Classes
The following articles further explain the concepts and techniques introduced in this
article:

• App Wizard: Database Support

• Class Wizard: Database Support

• Data Source (ODBC)

• Dynaset

• Exceptions: Database Exceptions

• MFC: Using Database Classes with Documents and Views

• MFC: Using Database Classes Without Documents and Views

• ODBC

• ODBC Administrator

• Record Field Exchange (RFX)

• Recordset (ODBC)

• Record Views

• Serialization: Serialization vs. Database Input/Output

• Snapshot

• SQL

• Transaction (ODBC)

A good place to begin your reading is with the article Recordset (ODBC).

In the Class Library Reference see CDatabase, CRecordset, CRecordView,
CFieldExchange, CDBException

In Tutorials see the ODBC-based database tutorial in Chapters 30 through 33.
Chapter 30 is titled Creating a Database Application.

See Also Database Overview

ODBCandMFC

537

OLE Control Containers

OLE Control Containers

538

An OLE control container is a container that fully supports OLE controls and can
incorporate them into its own windows or dialogs. An OLE control is a reusable
software element that you can use in many development projects. Controls allow your
application's user to access databases, monitor data, and make various selections
within your applications. For more information on OLE Controls, see the article OLE
Controls.

Control containers typically take two forms in a project:

• Dialogs and dialog-like windows such as form views, where an OLE control is
used somewhere in the dialog box.

• Windows in an application, where an OLE control is used in a toolbar, or other
location in the user window.

The OLE control container interacts with the control via exposed methods and
properties. These methods and properties, which can be accessed and modified by the
control container, are accessed through a wrapper class in the OLE control container
project. The embedded OLE control can also interact with the container by firing
events to notify the container that an action has occurred. The control container can
choose to act upon these notifications or not.

Additional articles discuss several topics, from creating an OLE control container
project to basic implementation issues related to OLE control containers built with
Visual C++ 4.0:

• OLE Control Containers: Using AppWizard to Create a Container Application

• OLE Control Containers: Manually Enabling OLE Control Containment

• OLE Control Container: Inserting a Control into a Control Container Application

• OLE Control Containers: Connecting an OLE Control to a Member Variable

• OLE Control Containers: Handling Events from an OLE Control

• OLE Control Containers: Viewing and Modifying Control Properties

• OLE Control Containers: Programming OLE Controls in an OLE Control
Container

• OLE Control Containers: Using Controls in a Non-Dialog Container

For more information about using OLE controls in a dialog box, see Using OLE
Controls in a Dialog Box in Chapter 6 of the Visual C++ User's Guide.

OLE Control Containers

For a list of articles that explain the details of developing OLE controls using Visual
C++ and the MFC OLE control classes, see OLE Controls. The articles are grouped
by functional categories.

See Also OLE Controls

OLE Control Containers: Using App Wizard to Create a
Container Application

You can use AppWizard to create a control container application that can support one
or more OLE controls. For more information on App Wizard, see the article
AppWizard.

~ To create an application with support for control containters

1 From the File menu, choose New.

The New dialog box appears.

2 Select Project Workspace and choose OK.

The New Workspace dialog box appears.

3 In the Project Name box, type a name for your container.

4 In the Type list box, make sure MFC App Wizard (exe) is selected.

5 If necessary, use the Location box to specify a different root directory for the your
project files.

6 In the platforms box, if any check boxes other than Win32 are selected, clear
them. OLE controls are not supported on Macintosh platforms.

7 Click the Create button.

AppWizard creates the project directory, and the MFC AppWizard-Step 1 dialog
box appears.

8 In Step 1, choose an application type. For this example, choose Dialog-based.

9 Click the Next button.

10 In Step 2, choose OLE Controls for the type of OLE support. (If you chose a
Single Document Interface (SDI) or Multiple Document Interface (MDI)
application type in Step 1, this will be Step 3.)

11 Click the Finish button to complete your project choices.

The New Project Information dialog box appears, summarizing the settings and
features App Wizard will generate for you when it creates your project.

12 Click the OK button in the New Project Information dialog box.

App Wizard creates all necessary files, and opens the project.

See Also App Wizard, Containers

539

OLE Control Containers

OLE Control Containers: Manually Enabling OLE
Control Containment

If you did not enable OLE control support when you used App Wizard to generate
your application, you will have to add this support manually. This article describes
the process for manually adding OLE control containment to an existing OLE
container application. If you know in advance that you want OLE control support in
your OLE container, see the article OLE Control Containers: Using AppWizard to
Create a Container Application. In addition, you can use the Component Gallery
OLE Control Containment component to automatically add control containment to
your application.

Note This article uses a dialog-based OLE control container project named Container and an
embedded control named Circ2 as examples in the procedures and code.

To support OLE controls, you must add one line of code to two of your project's files.

• Modify your main dialog's In it Ins ta n ce function (found in
CONTAINER.CPP) by making a call to AfxEnableControlContainer, as in the
following example:

II CContainerApp initialization

BOOl CContainerApp: :Initlnstance()
{

AfxEnableControlContainer();

• Add the following to your project's STDAFX.H header file:

#include <Afxdisp.h>

After you have completed these steps, rebuild your project by choosing Build from the
Build menu.

OLE Control Containers: Inserting a Control into a
Control Container Application

540

For information on this topic, see the section Inserting an OLE Control Into a Project,
in the article OLE Control Containers: Programming OLE Controls in an OLE
Control Container.

OLE Control Containers

OLE Control Containers: Connecting an OLE Control to
a Member Variable

For infonnation on this topic, see the section Adding a Member Variable to a Project,
in the article OLE Control Containers: Programming OLE Controls in an OLE
Control Container.

OLE Control Containers: Handling Events from an OLE
Control

This article discusses using Class Wizard to install event handlers for OLE controls in
an OLE control container. The event handlers are used to receive notifications (from
the control) of certain events and perfonn some action in response.

Note This article uses a dialog-based OLE control container project named Container and an
embedded control named Circ2 as examples in the procedures and code.

U sing the Message Maps tab in Class Wizard, you can create a map of events that can
occur in your OLE control container application. This map, called an "event sink
map," is created and maintained by ClassWizard when you add event handlers to the
control container class. Each event handler, implemented with an event map entry,
maps a specific event to a container event handler member function. This event
handler function is called when the specified event is fired by the OLE control object.

For more infonnation on event sink maps, see Event Sink Maps in the Class Library
Reference.

~ To create a event handler function

1 From the View menu, choose Class Wizard.

2 Choose the Message Maps tab.

3 In the Class Name box, select the dialog box class that contains the OLE control.
For this example, use CContainerDlg.

4 In the Object IDs box, select the control ID of the embedded OLE control. For this
example, use IDC_CIRC2CTRLI.

The Messages box displays a list of events that can be fired by the embedded OLE
control. Any member function shown in bold already has handler functions
assigned to it.

5 Select the message you want the application to handle. For this example, select
ClickIn.

6 Click the Add Function button.

A suggested name for the handler function appears in the Member Functions box.
For this example, use the suggested name.

541

OLE Control Containers

7 Click OK to close the Add Function dialog box.

8 Click the Edit Code button to jump to the event handler code in the
implementation (. CPP) file of C Con t a i n e r 0 1 9 or Close to close Class Wizard.

Event Handler Modifications to the Project
When you use ClassWizard to add event handlers, an event sink map is declared and
defined in your project. The following statements are added to the control .CPP file
the first time an event handler is added. This code declares an event sink map for the
dialog box class (in this case, CConta i ne rDl g):

BEGIN_EVENTSINK_MAP(CContainerDlg. CDialog)
11{{AFX_EVENTSINK_MAP(CContainerDlg)
II}}AFX_EVENTSINK_MAP

END_EVENTSINK_MAP()

As you use ClassWizard to add events, an event map entry (ON_EVENT) is added to
the event sink map and an event handler function is added to the container's
implementation (.CPP) file.

The following example declares an event handler, called 0 n C 1 i c kIn C ire 2 C t r 1 , for
the Cire2 control's ClickIn event:

BEGIN_EVENTSINK_MAP(CContainerDlg. CDialog)
11{{AFX_EVENTSINK_MAP(CContainerDlg)
ON_EVENT(CContainerDlg. IDC_CIRC2CTRLI. 1 1*

Cl i ckln *1. OnCl i ckInCi rc2ctrl. VTS_I4 VTS_I4)
II}}AFX_EVENTSINK_MAP

END_EVENTSINK_MAP()

In addition, the following template is added to the C Con t a i n e r 0 1 9 class
implementation (.CPP) file for the event handler member function:

void CContainerDlg::OnClicklnCirc2ctrll()
{

II TODO: Add your control notification handler code here

}

For more information on event sink macros, see Event Sink Maps in the Class
Library Reference.

OLE Control Containers: Viewing and Modifying
Control Properties

542

When you insert an OLE control into a project it is useful to view and change the
properties supported by the OLE control. This article discusses how to use the Visual
C++ resource editor to do this.

If your OLE container application uses embedded controls, you can view and modify
the control's properties while in the resource editor. You can also use the resource
editor to set property values during design time. The resource editor then

OLE Control Containers

automatically saves these values in the project's resource file. Any instance of the
control will then have its properties initialized to these values.

This procedure assumes that you have used Component Gallery to insert a control
into your project. For information on this topic, see the section Inserting an OLE
Control Into a Project, in the article OLE Control Containers: Programming OLE
Controls in an OLE Control Container.

The first step in viewing the control's properties is to add an instance of the control to
the project's dialog template.

~ To add a control to the dialog template

1 In the Project Workspace window, load your OLE control container project into the
developer environment. For this example, use the Container project.

2 Click the Resource View button in the Project Workspace window.

3 Open the Dialog folder.

4 Open your main dialog box template.

S From the Controls toolbar, choose the control icon.

6 Click a spot within the dialog box area to insert the control.

Once you have added the control to the dialog box, double-click on the control to
bring up the control Properties dialog box. Use this dialog box to modify and test new
properties immediately.

OLE Control Containers: Programming OLE Controls in
an OLE Control Container

This article describes the process for accessing the exposed methods and properties of
embedded OLE controls. Basically, you will follow these steps:

1. Insert an OLE control into the OLE container project using Component Gallery.

2. Define a member variable (or other form of access) of the same type as the OLE
control wrapper class.

3. Program the OLE control using predefined member functions of the wrapper class.

For this discussion, a dialog-based project (named Container), with OLE control
support, was created with App Wizard and the Circ2 sample control, Circ2, will be
added to the resulting project.

Inserting an OLE Control into the OLE Container Project
Before you can access an OLE control from an OLE container application, you must
use Component Gallery to add the OLE control to the container application.

543

OLE Control Containers

544

~ To add an OLE control to the OLE container project

1 From the Insert menu, choose Component.

The Component Gallery dialog box appears.

2 Select the OLE Controls tab.

3 Select the control you want by clicking the OLE control icon in the Component
Gallery window.

4 Click the Insert button.

The Confirm Classes dialog box appears. This dialog box lists the class (or
classes) that will be generated for each inserted control. It also lists the class
name, header, and implementation files; which can be modified. (In the case of
Container and Circ2, only one class is generated.)

5 Click the OK button to accept the class generated by Component Gallery.

6 Click the Close button to close Component Gallery

An icon representing each control installed appears on the dialog editor Controls
toolbar.

Once you complete this procedure, the class generated by Component Gallery,
referred to as a wrapper class, is added to your project. This class (in this example,
CCi rc2) is used as an interface between the control container, Container, and the
embedded control, Circ2.

Once the Circ2 control is inserted in to the project, insert an instance of the Cire2
control into the application's main dialog box.

~ To add the Circ2 control to the dialog template

1 Load the OLE control container project into Developer Studio. For this example,
use the Container project.

2 Click the Resource View button in the Project Workspace window.

3 Open the Dialog folder.

4 Double-click the main dialog box template. For this example, use
IDD_CONTAlNER_DIALOG.

5 Choose the Circ2 control icon from the Controls toolbar.

6 Click a spot within the dialog box to insert the Circ2 control.

7 From the File menu, choose Save All to save all modifications to the dialog box
template.

Modifications to the project
To enable the Container application to access the Circ2 control, Component Gallery
automatically adds the the wrapper class (CC i rc2) implementation file (.CPP) to the
Container project and the wrapper class header (.R) file to the dialog box
implementation file:

OLE Control Containers

11{{AFX_INCLUDES(CContainerDlg)
tfinclude "circ2.h"
II}}AFX_INCLUDES
II ContainerDlg.cpp : implementation file
II

The Wrapper Class Header (.H) File
To get and set properties (and invoke methods) for the Circ2 control, the C C ire 2
wrapper class provides a declaration of all exposed methods and properties. In the
example, these declarations are found in CIRC2.H. The following sample is the
portion of class CC i rc2 that defines the exposed interfaces of the OLE control:

class CCirc2 : public CWnd
{

II Attributes
public:

OLE_COLOR GetBackColor();
void SetBackColor(OLE_COLOR);
BOOL GetCircleShape();
void SetCircleShape(BOOL);
short GetCircleOffset();
void SetCircleOffset(short);
unsigned long GetFlashColor();
void SetFlashColor(unsigned long);
BSTR GetCaption();
void SetCaption(LPCTSTR);
LPFONTDISP GetFont();
void SetFont(LPFONTDISP);
OLE_COLOR GetForeColor();
void SetForeColor(OLE_COLOR);
CString GetNote();
void SetNote(LPCTSTR);

II Operations
public:

void AboutBox();
} ;

These functions can then be called from other of the application's procedures using
normal C++ syntax. For more information on using this member function set to
access the control's methods and properties, see the section Programming the OLE
Control.

Adding a Member Variable to a Project
Now that the OLE control has been added to the project and embedded in a dialog
box container, it can be accessed by other parts of the project. The easiest way to
access the control is to create a member variable of the dialog class,
ceo n t a i n e r D 1 g, that is of the same type as the wrapper class added to the project
by Component Gallery. You can then use the member variable to access the embedded
control at any time.

545

OLE Control Containers

546

Note This is not the only way to access an embedded control from within a container class,
but for the purposes of this article it is sufficient.

~ Adding a member variable to the dialog class

1 Load your OLE container project. (For this example, use Container.)

2 From the View menu, choose Class Wizard.

3 Choose the Member Variables tab.

4 From the Class Name drop-down list box, select the main dialog class. For this
example, use CContainerDlg.

5 From the Control IDs drop-down list box, select the control ID of the embedded
OLE control. For this example, use IDC_CIRC2CTRLl.

6 Click the Add Variable button.

The Add Member Variable dialog box appears.

7 In the Member Variable edit box enter a name.

For this example, use m_circ2ctl.

8 From the Category drop-down list box, select Control.

The Type edit box automatically contains the name of the control wrapper class.

Note Additional entries in the Category drop-down list box are for exposed properties of
the OLE control.

9 Click OK to close the Add Member Variables dialog box.

10 Click OK to accept your choices and exit Class Wizard.

Member Variable Modifications to the Project
When Class Wizard adds the m_ c ire 2 c t 1 member variable to the project, it also
adds the following lines to the the header file (.R) of the CContai nerDl 9 class:

class CContainerDlg : public CDialog
{

II Construction
public:

CContainerDlg(CWnd* pParent = NULL); II standard constructor

II Dialog Data
11{{AFX_DATA(CContainerDlg)

} ;

enum { IDD = IDD_CONTAINER_DIALOG };
CCirc2 m_circ2ctl;
I/} }AFX_DATA

In addition, ClassWizard adds a DDX_Control call to the CContai nerDl g's
implementation of DoDataExchange:

DDX_Control(pDX. IDC_CIRC2CTRLI. m_circ2ctl);

OLE Control Containers

Programming the OLE Control
At this point, you have inserted the OLE control into your dialog template and
created a member variable for it. You can now use common c++ syntax to access the
properties and methods of the embedded control.

As noted (in The Wrapper Class Header (.H) File), the header file (.H) for the
C C ire 2 wrapper class, in this case CIRC2.H, contains a listing of member functions
that you can use to get and set any exposed property value. Member functions for
exposed methods are also available.

A common place to modify the control's properties is in the a n I nit D i a log member
function of the main dialog class. This function is called just before the dialog box
appears and is used to initialize its contents, including any of its controls.

The following code example uses the m_ c ire 2 c t 1 member variable to modify the
Caption and CircleShape properties of the embedded Circ2 control:

BOOl CContainerDlg::OnlnitDialog()
{

}

CDialog::OnlnitDialog();

II Add "About ... " menu item to system menu.

II IDM_ABOUTBOX must be in the system command range.
ASSERT«IDM_ABOUTBOX & 0xFFF0) == IDM_ABOUTBOX);
ASSERT(IDM_ABOUTBOX < 0xF000);

CMenu* pSysMenu = GetSystemMenu(FAlSE);
CString strAboutMenu;
strAboutMenu.loadString(IDS_ABOUTBOX);
if (!strAboutMenu.lsEmpty(»
{

pSysMenu->AppendMenu(MF_SEPARATOR);
pSysMenu->AppendMenu(MF_STRING. IDM_ABOUTBOX. strAboutMenu);

m_ c i r c 2 c t 1 . Set Cap t ion (_ T("c i r c 2 Con t r 0 1 ")) ;
if(!m_circ2ctl.GetCircleShape(»

m_ci rc2ct 1 . SetCi rcl eSha pe <TRUE) ;

return TRUE; II return TRUE unless you set the focus to a control

OLE Control Containers: Using Controls in a Non
Dialog Container

In some applications, such as an SDI or MDI appplication, you will want to embed a
control in a window of the application. The Create member function of the wrapper
class, inserted by Component Gallery, can create an instance of the control
dynamically, without the need of a dialog box.

547

OLE Control Containers

548

The Create member function has the following parameters:

IpszWindowName A pointer to the text to be displayed in the control's Text or
Caption property (if any).

dwStyle Windows styles. For a complete list, see CWnd::CreateControl.

reet Specifies the control's size and position.

pParentWnd Specifies the control's parent window, usually a CDialog. It must not
be NULL.

nlD Specifies the control ID and can be used by the container to refer to the control.

One example of using this function to dynamically create an OLE control would be in
a form view of an SDI application. You could then create an instance of the control in
the WM _ CREATE handler of the application.

For this example, CMyV; ew is the main view class, CC; rc2 is the wrapper class, and
CIRC2.H is the header (.H) file of the wrapper class.

Implementing this feature is a four-step process:

1. Insert CIRC2.H in CMYVIEW.H, just before the C My V; ew class definition:

tfinclude "circ2.h"

2. Add a member variable (of type CC; rc2) to the protected section of the CMyV; ew
class definition located in CMYVIEW.H:

class CMyView : public CView
{

protected:

CCirc2 m_myCtl;

} ;

3. Add a WM_CREATE message handler to class CMyVi ew.

4. In the handler function, CMyVi ew: : OnCreate, make a call to the control's
C rea t e function using the this pointer as the parent window:

int CMyView::OnCreate(LPCREATESTRUCT lpCreateStruct)
{

if (MyView::OnCreate(lpCreateStruct) == -1)
return -1:

II ****** Add your code below this line ********** II

m_myCtl.Create(NULL. WS_VISIBLE.
CRect(50.50.100.100). this. 0):

m_myCtl.SetCaption(_TC"Control created")):

II ****** Add your code above this line ********** II

return 0:

Rebuild the project. A eirc2 control will be created dynamically whenever the
application's view is created.

OLE Control Containers

549

OLE Controls

OLE Controls

550

An OLE control is a reusable software component that supports a wide variety of
OLE functionality and can be customized to fit many software needs. These controls
can be developed for many uses, such as database access, data monitoring, or
graphing. Besides their portability, OLE controls support features previously not
available to custom controls, such as compatibility with existing OLE containers and
the ability to integrate their menus with the OLE container menus. In addition, an
OLE control fully supports OLE Automation, which allows the control to expose
writable properties and a set of methods that can be called by the control user.

An OLE control is implemented as an in-process server (typically a small object) that
can be used in any OLE container. Note that the full functionality of an OLE control
is available only when used within an OLE container designed to be aware of OLE
controls. Currently, Microsoft FoxPro 3.0, Microsoft Access 2.0, Microsoft Visual
Basic 4.0, and OLE containers built with MFC in Visual C++ version 4.0 fully
support OLE controls. This container type, hereafter referred to as a control
container, is able to operate an OLE control by using the control's properties and
methods, and receives notifications from the OLE control in the form of events.
Figure 1 demonstrates this interaction.

Figure 1 Interaction Between an OLE Control Container and an OLE Control

Get or set properties.
Call methods.

Fire events.

Basic Components of an OLE control
An OLE control uses several programmatic elements to interact efficiently with a
control container and with the user. These are class COleControl, a set of event
firing functions, and a dispatch map.

Every OLE control object you develop inherits a powerful set of features from its
MFC base class, COleControl. These features include OLE document object
functionality, in-place activation, and OLE Automation logic. COleControl also
provides the control object with the same functionality as an MFC window object,
plus the ability to fire events.

Because the control class derives from COleControl, it inherits the capability to send
messages, called "events," to the control container when certain conditions are met.
Events are used to notify the control container when something important happens in

the control. You can send additional information about an event to the control
container by attaching parameters to the event. For more information about OLE
control events, see the article Events.

The final element is a dispatch map, which is used to expose a set of functions (called
methods) and attributes (called properties) to the control user. Properties allow the
control container or the control user to manipulate the control in various ways. The
user can change the appearance of the control, change certain values of the control,
or make requests of the control, such as accessing a specific piece of data that the
control maintains. This interface is determined by the control developer and is
defined using ClassWizard. For more information on OLE control methods and
properties, see the articles Methods and Properties.

Interaction Between Controls and OLE Control Containers
When a control is used within a control container, it uses two mechanisms to
communicate: it exposes properties and methods, and it fires events. Figure 2
demonstrates how these two mechanisms are implemented.

Figure 2 Communication Between an OLE Control Container and an OLE Control

-:----- OLE interface

Calls to member
functions

Figure 2 also illustrates how other OLE interfaces (besides automation and events)
are handled by controls.

All of a control's communication with the container is performed by COleControl.
To handle some of the container's requests, COleControl will call member functions
that are implemented in the control class. All methods and some properties are
handled in this way. Your control's class can also initiate communication with the
container by calling member functions of COleControl. Events are fired in this
manner.

Active and Inactive States of an OLE control
During execution, a control is always in one of two states: active or inactive. When
inactive, the control does not have an active window visible on the screen and,
therefore, has limited capabilities. For example, the control cannot respond to mouse
clicks or keystrokes. However, the control container is still able to notify the control
in certain cases, such as when a request is made for painting.

OLE Controls

551

OLE Controls

552

When a control becomes active, it is able to interact fully with the control container,
the user, and Windows. Figure 3 demonstrates the paths of communication between
the OLE control, the control container, and the operating system.

Figure 3 Windows Message Processing in an OLE Control (When Active)

Serial ization

Calls to
member
functions

The ability to serialize data, sometimes referred to as persistence, allows the control
to write the value of its properties to persistent storage. Controls can then be re
created by reading the object's state from the storage.

Note that a control is not responsible for obtaining access to the storage medium.
Instead, the control's container is responsible for providing the control with a storage
medium to use at the appropriate times. For more information on serialization, see
the article OLE Controls: Serializing.

Further Reading
The articles listed below explain the details of developing OLE controls using Visual
C++ and the MFC OLE control classes. The articles are listed in functional
categories.

Articles about the OLE control development process

• OLE ControlWizard

• OLE Control Wizard: How Control Wizard Works

• OLE ControlWizard: Files Created

Articles about events, methods, and properties of OLE controls

• Events

• Events: Adding Stock Events to an OLE Control

OLE Controls

• Events: Adding Custom Events to an OLE Control

• Methods

• Methods: Adding Stock Methods to an OLE Control

• Methods: Adding Custom Methods to an OLE Control

• Methods: Returning Error Codes From a Method

• Properties

• Properties: Adding Stock Properties

• Properties: Adding Custom Properties

• Properties: Advanced Implementation

• Properties: Accessing Ambient Properties

Articles about user-interface aspects of OLE controls

• OLE Controls: Painting an OLE Control

• OLE Controls: Property Pages

• OLE Controls: Adding Another Custom Property Page

• OLE Controls: Using Stock Property Pages

• OLE Controls: Using Fonts in an OLE Control

• OLE Controls: Using Pictures in an OLE Control

Articles about advanced topics of OLE controls

• OLE Controls: Advanced Topics

• OLE Controls: Distributing OLE Controls

• OLE Controls: Licensing an OLE Control

• OLE Controls: Localizing an OLE Control

• OLE Controls: Serializing

• OLE Controls: Subclassing a Windows Control

Other articles regarding OLE controls

• OLE Controls: Using Data Binding in an OLE Control

• OLE Controls: Adding an OLE Control to an Existing CDK Project

• OLE Controls: VBX Control Migration

• OLE Controls: Converting a CDK Project to a Visual C++ Project

See Also Chapter 5, Developing OLE Controls; Test Container

553

OLE Controls

OLE Controls: Painting an OLE Control

554

This article describes the OLE control painting process and how you can alter paint
code to optimize the process.

Examples in this article are from a control created by ControlWizard with default
settings. For more information on creating a skeleton control application using
ControlWizard, see the article OLE ControlWizard.

The following topics are covered:

• The overall process for painting a control and the code created by ControlWizard
to support painting

• How to optimize the painting process

• How to paint your control using metafiles

The Painting Process of an OLE Control
When OLE controls are initially displayed or are redrawn, they follow a painting
process similar to other applications developed using MFC, with one important
distinction: OLE controls can be in an active or an inactive state.

An active control is represented in an OLE control container by a child window. Like
other windows, it is responsible for painting itself when a WM_ PAINT message is
received. The control's base class, COleControl, handles this message in its OnPaint
function. This default implementation calls the On D raw function of your control.

An inactive control is painted differently. When the control is inactive, its window is
either invisible or nonexistent, so it can not receive a paint message. Instead, the
control container directly calls the anD raw function of the control. This differs from
an active control's painting process in that the OnPaint member function is never
called.

As discussed in the preceding paragraphs, how an OLE control is updated depends
on the state of the control. However, because the framework calls the OnDraw member
function in both cases, you add the majority of your painting code in this member
function.

The OnDraw member function handles control painting. When a control is inactive,
the control container calls anD raw, passing the device context of the control container
and the coordinates of the rectangular area occupied by the control.

The rectangle passed by the framework to the OnDraw member function contains the
area occupied by the control. If the control is active, the upper-left comer is (0, 0) and
the device context passed is for the child window that contains the control. If the
control is inactive, the upper-left coordinate is not necessarily (0, 0) and the device
context passed is for the control container containing the control.

OLE Controls

Note It is important that your modifications to On Draw do not depend on the rectangle's upper
left point being equal to (0, 0) and that you draw only inside the rectangle passed to OnDraw.
Unexpected results can occur if you draw beyond the rectangle's area.

The default implementation provided by ControlWizard in the control
implementation file (.CPP), shown below, paints the rectangle with a white brush and
fills the ellipse with the current background color.

void CSampleCtrl ::OnDraw(CDC* pde, eonst CReet& reBounds, eonst CReet& relnvalid
{

pde->FillReet(reBounds,
CBrush::FromHandle«HBRUSH)GetStoekObjeet(WHITE_BRUSH)));

pde->Ellipse(reBounds);

Note When painting a control, you should not make assumptions about the state of the
device context that is passed as the pdc parameter to the OnDraw function. Occasionally the
device context is supplied by the container application and will not necessarily be initialized to
the default state. In particular, you should explicitly select the pens, brushes, colors, fonts, and
other resources that your drawing code depends upon.

Optimizing Your Paint Code
Once the control is successfully painting itself, the next step is to optimize the On Draw
function.

The default implementation of OLE control painting simply paints the entire control
area. This is sufficient for simple controls, but in many cases repainting the control
would be faster if only the portion that needed updating was repainted, instead of the
entire control.

The 0 n D raw function provides an easy method of optimization by passing reI n val i d,
the rectangular area of the control that needs redrawing. Use this area, usually
smaller than the entire control area, to speed up the painting process.

Painting Your Control Using Metafiles
In most cases the pde parameter to the OnDraw function points to a screen device
context (DC). However, when printing images of the control or during a print
preview session, the DC received for rendering is a special type called a "metafile
DC". Unlike a screen DC, which immediately handles requests sent to it, a metafile
DC stores requests to be played back at a later time. Some container applications,
such as Microsoft Access 2.0, may also choose to render the control image using a
metafile DC when in design mode.

Drawing requests can be made by the container through two interface functions:
IViewObject::Draw (this function can also be called for non-metafile drawing) and
IDataObject: : GetData. When a metafile DC is passed as one of the parameters, the
MFC framework makes a call to COleControl::OnDrawMetafile. Because this is a

555

OLE Controls

556

virtual member function, override this function in the control class to do any special
processing. The default behavior calls COleControl::OnDraw.

To make sure the control can be drawn in both screen and metafile device contexts,
you must use only member functions that are supported in both a screen and a
metafile DC. Be aware that the coordinate system may not be measured in pixels.

Because the default implementation of OnDrawMetafile calls the control's OnDraw
function, use only member functions that are suitable for both a metafile and a screen
device context, unless you override OnDrawMetafile. The following lists the subset
of CDC member functions that can be used in both a metafile and a screen device
context. For more information on these functions, see class CDC in the Class Library
Reference.

Arc Pie SetMapMode

Chord Polygon SetMapperFlags

Ellipse Polyline SetPixel

Escape PolyPolygon SetPolyFiIlMode

BitBlt RealizePalette SetROP2

ExcludeClipRect RestoreDC SetStretchBItMode

ExtTextOut RoundRect SetTextColor

FloodFiII SaveDC SetTextJ ustitication

IntersectClipRect Scale ViewportExt SetViewportExt

LineTo Scale WindowExt SetViewportOrg

MoveTo SelectClipRgn SetWindowExt

OffsetClipRgn SelectObject SetWindowOrg

OffsetViewportOrg SelectPalette StretchBIt

OffsetWindowOrg SetBkColor TextOut

PatBlt SetBkMode

In addition to CDC member functions, there are several other functions that are
compatible in a metafile DC. These include CPalette: :AnimatePalette,
CFont: :CreateFontlndirect, and three member functions of CBrush:
CreateBrushlndirect, CreateDIBPatternBrush, and CreatePatternBrush.

Another point to consider when using a metafile DC is that the coordinate system
may not be measured in pixels. For this reason, all your drawing code should be
adjusted to fit in the rectangle passed to OnDraw in the reBounds parameter. This
prevents accidental painting outside the control because reBounds represents the size
of the control's window.

Once you have implemented metafile rendering for the control, use Test Container to
test the metafile.

~ To test the control's metafile using Test Container

1 From the Tools menu, choose OLE Control Test Container.

2 From the Test Container Edit menu, choose Insert OLE Control.

3 In the Insert OLE Control dialog box, select the desired control and choose OK.

The control will appear in Test container.

4 From the Edit menu, choose Draw Metafile.

A separate window appears in which the metafile is displayed. You can change the
size of this window to see how scaling affects the control's metafile. You can close
this window at any time.

See Also In the Circle Sample tutorial of Tutorials: Painting the Control

OLE Controls: Property Pages
Property pages allow an OLE control user to view and change OLE control
properties. These properties are accessed by invoking a control properties dialog box,
which contains one or more property pages that provide a customized, graphical
interface for viewing and editing the control properties.

OLE control property pages are displayed in two ways:

• When the control's "Properties" verb (OLEIVERB _PROPERTIES) is invoked,
the control opens a modal property dialog box that contains the control's property
pages.

• The container can display its own modeless dialog box that shows the property
pages of the selected control.

The properties dialog box (illustrated in Figure 1) consists of an area for displaying
the current property page, tabs for switching between property pages, and a collection
of buttons that perform common tasks such as closing the property page dialog,
canceling any changes made, or immediately applying any changes to the OLE
control.

OLE Controls

557

OLE Controls

558

Figure 1 A Properties Dialog Box

This article covers basic topics related to using property pages in an OLE control.
These include:

• Implementing the default property page for an OLE control

• Adding controls to a property page

• Customizing the DoDataExchange function

For more information on using property pages in an OLE control, see the following
articles:

• OLE Controls: Adding Another Custom Property Page

• OLE Controls: Using Stock Property Pages

For more information on using property sheets in an MFC application other than an
OLE control, see the article Property Sheets.

Implementing the Default Property Page
If you use ControlWizard to create your control project, ControlWizard provides a
default property page class for the control derived from COlePropertyPage. Initially,
this property page is blank, but you can add any dialog box control or set of controls
to it. Because ControlWizard only creates one property page class by default,
additional property page classes (also derived from COlePropertyPage) must be
created using Class Wizard. For more information on this procedure, see OLE
Controls: Adding Another Custom Property Page.

Implementing a property page (in this case, the default) is a three step process:

~ To implement a property page

1 Add a CPropertyPage-derived class to the control project. If the project was
created using ControlWizard (as in this case), the default property page class
already exists.

2 Use the dialog editor to add any controls to the property page template.

3 Customize the DoDataExchange function of the control to exchange values between
the property page control and the OLE control.

For example purposes, the following procedures use a simple control (named
"Sample"). Sample was created using ControlWizard and contains only the stock
Caption property.

Adding Controls to a Property Page
~ To add controls to a property page

1 Open the project's .RC file icon to load your project's resources.

2 Double-click the Dialog directory icon.

3 Open the IDD _PROPPAGE_SAMPLE dialog box.

ControlWizard appends the name of the project to the end of the dialog ID. In this
case, Sample.

4 Click the desired control on the Control Palette and drag and drop it into the
dialog box area.

For this example, a text label control "Caption :" and an edit box control with an
IDC_CAPTION identifier are sufficient.

5 Click the Save button on the Toolbar to save your changes.

Now that the user interface has been modified, you need to link the edit box with the
Caption property. This is done in the following section by editing the
CSamp 1 ePropPage: : DoData Excha nge function.

Customizing the DoDataExchange Function
Your property page Do D a t a Ex c han 9 e function allows you to link property page values
with the actual values of properties in the control. To establish links, you must map
the appropriate property page fields to their respective control properties.

These mappings are implemented using the property page DDP _ functions. The
DDP functions work in a manner similar to the DDX functions used in standard - -
MFC dialogs, with one exception. In addition to the reference to a member variable,
DDP _ functions take the name of the control property. The following is a typical
entry in the DoD a t a Ex c han 9 e function for a property page.

DDP_Text(pDX, IDC_CAPTION, m_caption, _T("Caption"»;

This function associates the property page's m_capti on member variable with the
Caption property of the control.

Once you have the property page control inserted, you need to establish a link
between the property page control, I DC_CAPT ION, and the actual control property,
Caption.

OLE Controls

559

OLE Controls

For more information on this procedure, see Linking Controls with Properties in
Chapter 27 of Tutorials.

DDP functions are available for other dialog control types, such as check boxes, radio
buttons, and list boxes. Table 1 lists the entire set of property page DDP _ functions
and their purposes:

Table 1 Property Page Functions

Function Name

DDP _ CBlndex

DDP _ CBString

DDP _ CBStringExact

DDP_Check

DDP _ LBlndex

DDP _ LBString

DDP _LBStringExact

DDP_Radio

DDP_Text

Use this function to link ...

The selected string's index in a combo box with a control
property.

The selected string in a combo box with a control property.
The selected string can begin with the same letters as the
property's value but need not match it fully.

The selected string in a combo box with a control property.
The selected string and the property's string value must match
exactly.

A check box with a control property.

The selected string's index in a list box with a control
property.

The selected string in a list box with a control property. The
selected string can begin with the same letters as the
property's value but need not match it fully.

The selected string in a list box with a control property. The
selected string and the property's string value must match
exactly.

A radio button with a control property.

Text with a control property.

See Also In the Class Library Reference: COlePropertyPage

OLE Controls: Adding Another Custom Property Page

560

Ocasionally, an OLE control will have more properties than can reasonably fit on one
property page. In this case, you can add property pages to the OLE control to display
these properties.

This article discusses adding new property pages to an OLE control that already has
at least one property page. For more information on adding stock property pages
(font, picture, or color), see the article OLE Controls: Using Stock Property Pages.

The following procedures use a sample OLE control framework created by
ControlWizard. Therefore, the class names and identifiers are unique only to this
example.

For more information on using property pages in an OLE control, see the following
articles:

• OLE Controls: Property Pages

• OLE Controls: Using Stock Property Pages

Note It is strongly recommended that new property pages adhere to the size standard for
OLE control property pages. The stock picture and color property pages measure 250x62
dialog units (DLUs). The standard font property page is 250x110 DLUs. The default property
page created by ControlWizard uses the 250x62 DLU standard.

~ To create another property page

1 Load the workspace of the control project you want to add a property page to.

2 From the Project Workspace window, double-click on the .RC file icon to open the
project's resource file.

3 From the Insert menu, choose Resource.

4 Double-click on the dialog resource type to create a new dialog resource.

This example uses IDD_PROPPAGE_NEWPAGE.

5 Delete the OK and Cancel button controls.

6 From the Dialog Properties dialog box, select the Styles tab.

7 From the Style box, select Child.

8 From the Border box, select None.

Make sure that the Titlebar and Visible options are not checked.

9 Save the project's .RC file.

10 Open Class Wizard.

11 In the Class Name box, type a name for the new dialog class.

In this example, CAddtl PropPage.

12 Type in the names for your implementation and header files, or accept the default
names.

13 From the Class Type box, select COlePropertyPage.

14 From the ClassResources box, select IDD _PROPPAGE_NEWPAGE.

15 Click Create to create the class.

16 Choose OK to close ClassWizard.

To allow the control's users access to this new property page, make the following
changes to the control's property page IDs macro section (found in the control
implementation file):

BEGIN_PROPPAGEIDS(CSampleCtrl. 2)
PROPPAGEID(CMyPropPage::guid)

PROPPAGEID(CAddtlPropPage::guid)

END_PROPPAGEIDSCCSampleCtrl)

OLE Controls

561

OLE Controls

562

Note that you must increase the second parameter of the BEGIN_PROPPAGEIDS
macro (the property page count) from 1 to 2.

You must also modify the control implementation file (.CPP) file to include the
header (.R) file of the new property page class.

The next step involves creating two new string resources that will provide a type
name and a caption for the new property page.

~ To add new string resources to a property page

1 Load the workspace of the control project you wish to add a property page to.

2 From the Project Workspace window, double-click on the .RC file icon to open the
project's resource file.

3 Select an existing entry in the string table.

4 From the Resource menu, choose New String.

5 Enter a new string ID in the ID edit box.

For example purposes, we've used IDS_SAMPLE_ADDPAGE for the type name
of the new property page.

6 Type a new string in the Caption box. For example, "Additional Property Page."

7 Repeat steps 4 and 5 using IDS_SAMPLE_ADDPPG_CAPTION for the ID and
"Additional Property Page" for the caption.

S In the .CPP file of your new property page class (in this example,
CAddtl PropPage) modify the
CAddt 1 PropPage: : CAddtl PropPageFactory: : UpdateRegi stry so that
IDS_SAMPLE_ADDPAGE is passed by AfxOleRegisterPropertyPageClass, as
in the following example:

BOOl CAddtlPropPage::CAddtlPropPageFactory::UpdateRegistry(BOOl
bRegister)

}

if (bRegister)

else

return AfxOleRegisterPropertyPageClass(AfxGetlnstanceHandle().
m_clsid. IDS_SAMPlE_ADDPAGE);

return AfxOleUnregisterClass(m_clsid, NUll);

9 Modify the constructor of CAddtl PropPage so that
IDS_SAMPLE_ADDPPG_CAPTION is passed to the COlePropertyPage
constructor, as follows:

CAddtlPropPage::CAddtlPropPage() :
II ****** Add your code below this line ********** II

COlePropertyPage(IDD. IDS_SAMPLE_ADDPPG_CAPTION)
II ****** Add your code above this line ********** II
{

11{{AFX_DATA_INIT(CAddtlPropPage)
II NOTE: ClassWizard will add member initialization here
II DO NOT EDIT what you see in these blocks of generated code
IIJJAFX_DATA_INIT

J

After you have made the necessary modifications rebuild your project and use Test
Container to test the new property page. For more information on testing an OLE
control with Test Container, see Test Container.

OLE Controls: Using Stock Property Pages
This article discusses the stock property pages available for OLE controls and how to
use them.

For more information on using property pages in an OLE control, see the following
articles:

• OLE Controls: Property Pages

• OLE Controls: Adding Another Custom Property Page

MFC provides three stock property pages for use with OLE controls:
CLSID _ CColorPropPage, CLSID _ CFontPropPage, and
CLSID _ CPicturePropPage. These pages display a user interface for stock color,
font, and picture properties, respectively.

To incorporate these property pages into a control, add their IDs to the code that
initializes the control's array of property page IDs. In the following example, this
code, located in the control implementation file (.CPP), initializes the array to
contain all three stock property pages and the default property page (named
CMyPropPage in this example):

BEGIN_PROPPAGEIDS(CSampl eCtrl. 4)
PROPPAGEID(CMyPropPage::guid)
PROPPAGEID(CLSID_CFontPropPage
PROPPAGEID(CLSID_CColorPropPage)
PROPPAGEID(CLSID_CPicturePropPage

END_PROPPAGEIDS(CSampleCtrl)

Note that the count of property pages, in the BEGIN_PROPPAGEIDS macro, is 4.
This represents the number of property pages supported by the OLE control.

OLE Controls

563

OLE Controls

564

After these modifications have been made, rebuild your project. Your control now has
property pages for the font, picture, and color properties.

Note If the control stock property pages cannot be accessed, it may be because the MFC
DLL (MFCxO.DLL) has not been properly registered with the current operating system. This
usually results from installing Visual C++ under an operating system different from the one
currently running.

If your stock property pages are not visible (see Note above), register the DLL by
running REGSVR32.EXE from the command line with the path name to the DLL.
For example, REGSVR32 C:\WINDOW~YSTEM\MFCxO.DLL, for Windows and
REGSVR32 C:\N'J\SYSTEM32\MFCxO.DLL, for NT.

See Also Properties: Adding Stock Properties

OLE Controls: Using Fonts in an OLE Control

OLE Controls: Using Fonts in an OLE Control
If your OLE control displays text, you can allow the control user to change the text
appearance by changing a font property. Font properties are implemented as font
objects and can be one of two types: stock or custom. Stock Font properties are
preimplemented font properties that you can add using Class Wizard. Custom Font
properties are not preimplemented and the control developer determines the
property's behavior and usage.

This article covers the following topics:

• Using the stock Font property

• U sing custom font properties in your control

Using the Stock Font Property
Stock Font properties are preimplemented by the class COleControl. In addition, a
standard Font property page is also available, allowing the user to change various
attributes of the font object, such as its name, size, and style.

Access the font object through the GetFont, SetFont, and InternalGetFont functions
of COleControl. The control user will access the font object via the Get Font and
Set Font functions in the same manner as any other Get/Set property. When access to
the font object is required from within a control, use the InternalGetFont function.

As discussed in Properties, adding stock properties is easy with ClassWizard's OLE
Automation page. You choose the Font property, and ClassWizard automatically
inserts the stock Font entry into the control's dispatch map.

~ To add the stock Font property using ClassWizard

1 With your control project open, open Class Wizard by choosing Class Wizard from
the View menu.

2 Choose the OLE Automation tab.

3 Click the Add Property button.

4 In the External Name box, select Font.

S Click the OK button.

6 Click the OK button to confirm your choices and close ClassWizard.

ClassWizard adds the following line to the control's dispatch map, located in the
control class implementation file:

DISP_STOCKPROP_FONT()

In addition, ClassWizard adds the following line to the control.ODL file:

[id(DISPID_FONT), bindable] IFontDisp* Font;

565

OLE Controls: Using Fonts in an OLE Control

566

The stock Caption property is an example of a text property that can be drawn using
the stock Font property information. Adding the stock Caption property to the control
uses steps similar to those used for the stock Font property.

~ To add the stock Caption property using ClassWizard

1 With your control project open, open Class Wizard by choosing Class Wizard from
the View menu.

2 Choose the OLE Automation tab.

3 Click the Add Property button.

4 In the External Name box, select Caption.

S Click the OK button.

6 Click the OK button to confirm your choices and close ClassWizard.

ClassWizard adds the following line to the control's dispatch map, located in the
control class implementation file:

DISP_STOCKPROP_CAPTION()

Modifying the OnDraw Function
The default implementation of OnDraw uses the Windows system font for all text
displayed in the control. This means that you must modify the OnDraw code by
selecting the font object into the device context. To do this, call
COleControl::SelectStockFont and pass the control's device context, as shown in
the following example:

void CSampleCtrl: :OnDraw(CDC* pde, eonst CReet& reBounds, eonst CReet& reInvalid)
{

CFont* pOldFont;
TEXTMETRIC tm;

eonst CString& strCaptinn = InternalGetText();

pOldFont = SeleetStockFont(pde);
pde->FillReet(reBounds, CBrush::FromHandle(

(HBRUSH)GetStoekObjeet(WHITE_BRUSH)));
pde->Ellipse(reBounds);
pde-)GetTextMetries(&tm);
pde-)SetTextAlign(TA_CENTER ITA_TOP);
pde-)ExtTextOut«reBounds.left + reBounds.right) / 2,

(reBounds.top + reBounds.bottom - tm.tmHeight) / 2,
ETa_CLIPPED, rcBounds, strCaption, strCaption.GetLength(),
NULL) ;

pde-)SeleetObject(pOldFont);

Once the OnDraw function has been modified to use the font object, any text within the
control is displayed with characteristics from the control's stock Font property.

OLE Controls: Using Fonts in an OLE Control

Using Custom Font Properties in Your Control
In addition to the stock Font property, the OLE control can have custom Font
properties. To add a custom font property you must:

• Use ClassWizard to implement the custom Font property

• Process standard font change notifications

• Implement a new Font notification interface

Implementing a Custom Font Property
To implement a custom Font property, you use ClassWizard to add the property and
then make some modifications to the code. The following sections describe how to
add the custom Headi ngFont property to the Sample control.

Adding a Custom Font Property
• To add a custom font property
1 With your control project open, open Class Wizard by choosing Class Wizard from

the View menu.

2 Open Class Wizard.

3 Choose the OLE Automation tab.

4 Click the Add Property button.

5 In the External Name box, type a name for the property. For this example, use
HeadingFont.

6 From the Implementation box, select Get/Set Methods.

7 From the Return Type box, select LPFONTDISP for the property's type.

S Click the OK button.

9 Click the OK button to confirm your choices and close ClassWizard.

Class Wizard will create the code to add the He a din 9 F 0 n t custom property to the
CSampl eCtrl class and the SAMPLE.ODL file. Since Headi ngFont is a Get/Set
property type, ClassWizard modifies the CSampl eCtrl class's dispatch map to include
a DISP _PROPERTY_EX macro entry:

BEGIN_DISPATCH_MAP(CSampleCtrl. COleControl)
JJ{{AFX_DISPATCH_MAP(CSampleCtrl)
DISP_PROPERTY_EX(CSampleCtrl. "HeadingFont". GetHeadingFont.

SetHeadingFont. VT_DISPATCH)
//}}AFX_DISPATCH_MAP
END_DISPATCH_MAP()

The DISP _PROPERTY_EX macro associates the Headi ngFont property name with
its corresponding CSampl eCtrl class Get and Set methods, GetHeadi ngFont and
SetHeadingFont. The type of the property value is also specified; in this case,
VT_DISPATCH.

567

OLE Controls: Using Fonts in an OLE Control

568

Class Wizard also adds a declaration in the control header file (.R) for the
GetHeadi ngFont and SetHeadi ngFont functions and adds their function templates in
the control implementation file (.CPP):

LPDISPATCH CSampleCtrl ::GetHeadingFont()
{

}

II TODD: Add your property handler here
return NULL;

void CSampleCtrl ::SetHeadingFont(LPDISPATCH newValue)
{

}

II TODO: Add your property handler here
SetModifiedFlag();

Finally, ClassWizard modifies the control.ODL file by adding an entry for the
Headi ngFont property:

[id(1)] IDispatch* HeadingFont;

Modifications to the Control Code
Now that you have added the Headi ngFont property to the control, you must make
some changes to the control header and implementation files to fully support the new
property.

In the control header file (.R), add the following declaration of a protected member
variable:

protected:

CFontHolder m_fontHeading;

In the control implementation file (.CPP), do the following:

• Initialize m_fontHeadi ng in the control constructor.

CSampleCtrl ::CSampleCtrl() : m_fontHeading(&m_xFontNotification
{

II [... body of constructor ...]
}

• Declare a static FONTDESC structure containing default attributes of the font.

static const FONTDESC _fontdescHeading =
{ sizeof(FONTDESC), OLESTR("MS Sans Serif"), FONTSIZE(12),

FW_BOLD,
ANSI_CHARSET, FALSE, FALSE, FALSE };

• In the control DoPropExchange member function, add a call to the PX_Font
function. This provides initialization and persistence for your custom Font
property.

OLE Controls: Using Fonts in an OLE Control

void CSampleCtrl ::DoPropExchangeCCPropExchange* pPX)
{

COleControl ::DoPropExchangeCpPX);

II [... other PX_ function calls ...]
PX_FontCpPX. _TC"HeadingFont"). m_fontHeading. &_fontdescHeading);

• Finish implementing the control GetHeadi ngFont member function.

LPFONTDISP CSampleCtrl ::GetHeadingFontC)
{

return m_fontHeading.GetFontDispatchC);
}

• Finish implementing the control SetHeadi ngFont member function.

void CSampleControl ::SetHeadingFontC LPFONTDISP newValue)
{

m_fontHeading.lnitializeFontC &_fontdescHeading. newValue);
OnFontChangedC); Iinotify any changes
SetModifiedFlagC);

• Modify the control OnDraw member function to define a variable to hold the
previously selected font.

CFont* pOldHeadingFont;

• Modify the control OnDraw member function to select the custom font into the
device context by adding the following line wherever the font is to be used.

pOldHeadingFont = SelectFontObjectCpdc. m_fontHeading);

• Modify the control On Draw member function to select the previous font back into
the device context by adding the following line after the font has been used.

pdc->SelectObjectCpOldHeadingFont);

After the custom Font property has been implemented, the standard Font property
page should be implemented, allowing control users to change the control's current
font. To add the property page ID for the standard Font property page, insert the
following line after the BEGIN_PROPPAGEIDS macro:

PROPPAGEIDCCLSID_CFontPropPage)

You must also increment the count parameter of your BEGIN_PROPPAGEIDS
macro by one. The following line illustrates this:

BEGIN_PROPPAGEIDSCCSampleCtrl. 2)

569

OLE Controls: Using Fonts in an OLE Control

570

After these changes have been made, rebuild the entire project to incorporate the
additional functionality.

Processing Font Notifications
In most cases the control needs to know when the characteristics of the font object
have been modified. Each font object is capable of providing notifications when it
changes by calling a member function of the IFontNotification interface,
implemented by COleControl.

If the control uses the stock Font property, its notifications are handled by the
OnFontChanged member function of COleControl. When you add custom font
properties, you can have them use the same implementation. In the example in the
previous section, this was accomplished by passing &m _ xFontNotification when
initializing the m _fontHeading member variable.

Figure 1 Implementing Multiple Font Object Interfaces

I FontNotification

I FontNotification (secondary interface)

The solid lines in Figure 1 show that both font objects are using the same
implementation of IFontNotification. This could cause problems if you wanted to
distinguish which font changed.

One way to distinguish between the control's font object notifications is to create a
separate implementation of the IFontNotification interface for each font object in the
control. This technique allows you to optimize your drawing code by updating only
the string, or strings, that use the recently modified font. The following sections
demonstrate the steps necessary to implement separate notification interfaces for a
second Font property. The second font property is assumed to be the Head; ngFont

property that was added in the previous section.

Implementing a New Font Notification Interface
To distinguish between the notifications of two or more fonts, a new notification
interface must be implemented for each font used in the control. The following
sections describe how to implement a new font notification interface by modifying the
control header and implementation files.

OLE Controls: Using Fonts in an OLE Control

Additions to the Header File
In the control header file (.R), add the following lines to the class declaration:

protected:
BEGIN_INTERFACE_PART(HeadingFontNotify. IPropertyNotifySink)
INIT_INTERFACE_PART(CSampleCtrl. HeadingFontNotify)

STDMETHOD(OnRequestEdit)(DISPID);
STDMETHOD(OnChanged)(DISPID);

END_INTERFACE_PART(HeadingFontNotify)

This creates an implementation of the IPropertyNotifySink interface called
Headi ngFontNot i fy. This new interface contains a method called OnChanged.

Additions to the Implementation File
In the code that initializes the heading font (in the control constructor), change
&m_xFontNotification to &m_xHeadingFontNotify. Then add the following code:

STDMETHODIMP_(ULONG) CSampleCtrl ::XHeadingFontNotify::AddRef(
{

}

METHOD_MANAGE_STATE(CSampleCtrl. HeadingFontNotify)
return 1;

STDMETHODIMP_(ULONG) CSampleCtrl ::XHeadingFontNotify::Release(
{

METHOD_MANAGE_STATE(CSampleCtrl. HeadingFontNotify)
return 0;

STDMETHODIMP CSampleCtrl ::XHeadingFontNotify::Querylnterface(REFIID iid.
LPVOID FAR* ppvObj)

METHOD_MANAGE_STATE(CSampleCtrl. HeadingFontNotify
if(IsEqualIID(iid. IID_IUnknown) I I

}

IsEqualIID(iid. IID_IPropertyNotifySink))

*ppvObj= this;
AddRef();
return NOERROR;

return ResultFromScode(E_NOINTERFACE);

STDMETHODIMP CSampleCtrl ::XHeadingFontNotify::OnChanged(DISPID)
{

METHOD_MANAGE_STATE(CSampleCtrl. HeadingFontNotify)
pThis->InvalidateControl();
return NOERROR;

STDMETHODIMP CSampleCtrl ::XHeadingFontNotify::OnRequestEdit(DISPID)
{

return NOERROR;

571

OLE Controls: Using Pictures in an OLE Control

The AddRef and Rel ease methods in the IPropertyNotifySink interface keep track of
the reference count for the OLE control object. When the control obtains access to
interface pointer, the control calls AddRef to increment the reference count. When the
control is finished with the pointer, it calls Re 1 e as e, in much the same way that
GlobalFree might be called to free a global memory block. When the reference count
for this interface goes to zero, the interface implementation can be freed. In this
example, the Querylnterface function returns a pointer to a IPropertyNotifySink
interface on a particular object. This function allows an OLE control to query an
object to determine what interfaces it supports.

After these changes have been made to your project, you should rebuild the project
and use Test Container to test the interface.

See Also OLE Controls: Using Pictures in an OLE Control, OLE Controls: Using
Stock Property Pages

OLE Controls: Using Pictures in an OLE Control

572

This article describes the common Picture type and how to implement it in your OLE
control. Topics include:

• Overview of custom Picture properties

• Implementing a custom Picture property in your OLE control

Overview of Custom Picture Properties
A Picture type is one of a group of types common to all OLE controls. The Picture
type handles metafiles, bitmaps, or icons and allows the user to specify a picture to be
displayed in an OLE control. Custom Picture properties are implemented using a
picture object and Get/Set functions that allow the control user access to the Picture
property. Control users access the custom Picture property using the stock Picture
property page.

In addition to the standard Picture type, Font and Color types are also available. For
more information on using the standard Font type in your OLE control, see the article
OLE Controls: Using Fonts in an OLE Control.

The OLE control classes provide several components you can use to implement the
Picture property within the control. These components include:

• The CPictureHolder class.

This class provides easy access to the picture object and functionality for the item
displayed by the custom Picture property.

• Support for properties of type LPPICTUREDISP, implemented with Get/Set
functions.

Using ClassWizard you can quickly add a custom property, or properties, that
supports the Picture type. For more information on adding OLE control properties
with Class Wizard, see the article Properties.

OLE Controls: Using Pictures in an OLE Control

• A property page that manipulates a control's Picture property or properties.

This property page is part of a group of stock property pages available to OLE
controls. For more information on OLE control property pages, see the article
OLE Controls: Using Stock Property Pages

Implementing a Custom Picture Property in Your OLE
Control
When you have completed the steps outlined in this section, the control can display
pictures chosen by its user. The user can change the displayed picture using a
property page that shows the current picture and has a Browse button that allows the
user to the select different pictures.

A custom Picture property is implemented using a process similar to that used for
implementing other properties, the main difference being that the custom property
must support a Picture type. Because the item of the Picture property must be drawn
by the OLE control, a number of additions and modifications must be made to the
property before it can be fully implemented.

To implement a custom Picture property, you must do the following:

• Add code to your control project.

A standard Picture property page ID, a data member of type CPictureHolder, and
a custom property of type LPPICTUREDISP with a Get/Set implementation must
be added.

• Modify several functions in your control class.

These modifications will be made to several functions that are responsible for the
drawing of your OLE control.

Additions to Your Control Project
To add the property page ID for the standard Picture property page, insert the
following line after the BEGIN _ PROPPAGEIDS macro in the control
implementation file (.CPP):

PROPPAGEID(CLSID_CPicturePropPage)

You must also increment the count parameter of your BEGIN_PROPPAGEIDS
macro by one. The following line illustrates this:

BEGIN_PROPPAGEIDS(CSampleCtrl. 2)

To add the CPictureHolder data member to the control class, insert the following
line under the protected section of the control class declaration in the control header
file (.R):

CPictureHolder

It is not necessary to name your data member m_pi c; any name will suffice.

573

OLE Controls: Using Pictures in an OLE Control

574

Next, add a custom property that supports a Picture type:

~ To add a custom picture property using ClassWizard

1 With your control project open, open Class Wizard by choosing Class Wizard from
the View menu.

2 Choose the OLE Automation tab.

3 Click the Add Property button.

4 In the External Name box, type the property name. For example purposes,
Control Pi cture is used in this procedure.

S Under Implementation, select Get/Set Methods.

6 From the Return Type box, select LPPICTUREDISP for the property type.

7 Type unique names for your Get and Set Functions or accept the default names. (In
this example, the default names, GetControl Pi cture and SetControl Pi cture, are
used.)

8 Click the OK button to close the Add Property dialog box.

9 Click the OK button to confirm your choices and close ClassWizard.

Class Wizard adds the following code between the dispatch map comments in the
control header (.R) file:

afx_msg LPPICTUREDISP GetControlPicture();
afx_msg void SetControlPicture(LPPICTUREOISP newValue);

In addition, the following code was inserted in the dispatch map of the control
implementation (.CPP) file:

DISP_PROPERTY_EX(CSampleCtrl, "Control Picture", GetControlPicture, SetControlPicture,
VT_PICTURE)

Class Wizard also adds the following two stub functions in the control implementation
file:

LPPICTUREDISP CSampl eCtrl : : GetControl Pi cture ()
{

II TOOO: Add your property handler here

return NULL;

void CSampleCtrl ::SetControlPicture(LPPICTUREOISP newValue)
{

II TOOO: Add your property handler here

SetModifiedFlag();

Note Your control class and function names might differ from the example above.

OLE Controls: Using Pictures in an OLE Control

Modifications to Your Control Project
Once you have made the necessary additions to your control project, you need to
modify several functions that affect the rendering of your OLE control. These
functions, OnResetState, OnDraw, and the Get/Set functions of a custom Picture
property, are located in the control implementation file. (Note that in this example the
control class is called CSampl eCtrl, the CPictureHolder data member is called
m_pi c, and the custom picture property name is Control Pi cture.)

In the control OnResetState function, add the following optional line after the call to
COleControl: :OnResetState:

m_pic.CreateEmpty();

This sets the control's picture to a blank picture.

You need to make a call to CPictureHolder::Render, in the control On Draw function,
to draw the picture properly. Modify your function to resemble the following
example:

void CSampleCtrl ::OnDraw(
CDC* pdc, const CRect& rcBounds, const CRect& rclnvalid)

{

II ****** Add your code below this line ********** II
m_pic.Render(pdc, rcBounds, rcBounds);

In the Get function of the control's custom picture property, add the following line:

return m_pic.GetPictureDispatch();

In the Set function of the control's custom Picture property, add the following lines:

m_pic.SetPictureDispatch(newValue);
InvalidateControl();

Note Your class and function names might differ from the example above.

After you complete the modifications, rebuild your project to incorporate the new
functionality of the custom Picture property and use Test Container to test the new
property.

See Also OLE Controls: Using Fonts in an OLE Control, OLE Controls: Property
Pages

575

OLE Controls: Advanced Topics

OLE Controls: Advanced Topics

576

This article covers advanced topics related to developing OLE controls. These
include:

• Using database classes in OLE controls

• Implementing a parameterized property

• Handling errors in your OLE control

• Handling special keys in the control

Using Database Classes in OLE Controls
Because the OLE control classes are part of the class library, you can apply the same
procedures and rules for using database classes in a standard MFC application to
developing OLE controls that use the MFC database classes.

For a general overview of the MFC database classes, see Chapter 7, Working with
Databases and the following, Database Overview. The article introduces both the
MFC ODBC and the MFC DAO classes.

Implementing a Parameterized Property
A parameterized property (sometimes called an property array) is a method for
exposing a homogeneous collection of values as a single property of the control. For
example, you can use a parameterized property to expose an array or a dictionary as a
property. In Visual Basic, such a property is accessed using array notation:

x = obj.ArrayProp(2. 3)
obj.ArrayProp(2. 3) = 7

, gets element of 2D array
, sets element of 2D array

Use the OLE Automation tab of Class Wizard to implement a parameterized property.
Class Wizard implements the property by adding a pair of Get/Set functions that allow
the control user to access the property using the above notation or in the standard
fashion.

Similar to methods and properties, parameterized properties also have a limit to the
number of parameters allowed. In the case of parameterized properties, the limit is 15
parameters (with one parameter reserved for storing the property value).

The following procedure adds a parameterized property, called Array, which can be
accessed as a two-dimensional array of integers.

~ To add a parameterized property using ClassWizard

1 Load your control project.

2 From the Browse menu, choose Class Wizard.

3 Choose the OLE Automation tab.

OLE Controls: Advanced Topics

4 Click the Add Property button.

S In the External Name box, type Array.

6 Under Implementation, select Get/Set Methods.

7 From the Type box, select short for the property's type.

S In the Get Function and Set Function boxes type unique names for your Get and
Set Functions or accept the default names.

9 Using the grid control, add a parameter, called row (type short).

10 Using the grid control, add a second parameter, called column (type short).

11 Click the OK button to confirm your choices and close Class Wizard.

Changes Made by ClassWizard
When you add a custom property, Class Wizard makes changes to the control class
header (.R) and the implementation (.CPP) files.

The following lines are added to the control class .R file:

afx_msg short GetArray(short row. short column);
afx_msg void SetArray(short row. short column. short nNewValue);

This code declares two functions called GetArray and SetArray that allow the user to
request a specific row and column when accessing the property.

In addition, Class Wizard adds the following lines the control dispatch map , located
in the control class implementation (.CPP) file:

DISP_PROPERTY_PARAM(CSampleCtrl. "Array". GetArray. SetArray. VT_I2.
VTS_I2 VTS_I2)

Finally, the implementations of the GetArray and SetAr ray functions are added to
the end of the .CPP file. In most cases, you will modify the Get function to return the
value of the property. The Set function will usually contain code that should execute,
either before or after the property changes.

For this property to be useful, you could declare a two-dimensional array member
variable in the control class, of type short, to store values for the parameterized
property. You could then modify the Get function to return the value stored at the
proper row and column, as indicated by the parameters, and modify the Set function
to update the value referenced by the row and column parameters.

Handling Errors in Your OLE Control
If error conditions occur in the control, you may need to report the error to the control
container. There are two methods for reporting errors, depending on the situation in
which the error occurs. If the error occurs within a property's Get or Set function, or
within the implementation of an OLE Automation method, the control should call
COleControl::ThrowError, which signals the control user that an error has
occurred. If the error occurs at any other time, the control should call
COleControl::FireError, which fires a stock Error event.

577

OLE Controls: Advanced Topics

578

To indicate the kind of error that has occurred, the control must pass an error code to
ThrowError or FireError. An error code is an OLE status code, which has a 32-bit
value. When possible, choose an error code from the standard set of codes defined in
the OLECTL.H header file. Table 1 summarizes these codes.

Table 1 OLE Control Error Codes

Error

CTL_E_ILLEGALFUNCTIONCALL

CTL E OVERFLOW

CTL E OUTOFMEMORY

CTL _ E _ DIVISIONBYZERO

CTL_E _ OUTOFSTRINGSPACE

CTL_ E _ OUTOFSTACKSPACE

CTL_E_BADFILENAMEORNUMBER

CTL _E_FILENOTFOUND

CTL _ E _ BADFILEMODE

CTL _ E _FILEALREADYOPEN

CTL_ E _DEVICEIOERROR

CTL _E_FILEALREADYEXISTS

CTL E BADRECORDLENGTH

CTL_E _ DISKFULL

CTL_E_BADRECORDNUMBER

CTL E BADFILENAME

CTL E TOOMANYFILES

CTL E DEVICEUNA V AILABLE

CTL_E_PERMISSIONDENIED

CTL _E_DISKNOTREADY

CTL E PATHFILEACCESSERROR

CTL E PATHNOTFOUND

CTL_E_INVALIDPATTERNSTRING

CTL_E _INV ALIDUSEOFNULL

CTL E INV ALIDFILEFORMAT

CTL_E_INVALIDPROPERTYVALUE

CTL_E _INV ALIDPROPERTYARRAYINDEX

CTL _E_SETNOTSUPPORTEDATRUNTIME

CTL E SETNOTSUPPORTED

CTL_E_NEEDPROPERTYARRAYINDEX

CTL_E_SETNOTPERMITTED

CTL _ E _ GETNOTSUPPORTEDATRUNTIME

Description

Illegal function call

Overflow

Out of memory

Division by zero

Out of string space

Out of stack space

Bad file name or number

File not found

Bad file mode

File already open

Device I/O error

File already exists

Bad record length

Disk full

Bad record number

Bad file name

Too many files

Device unavailable

Permission denied

Disk not ready

Path/file access error

Path not found

Invalid pattern string

Invalid use of NULL

Invalid file format

Invalid property value

Invalid property array index

Set not supported at run time

Set not supported (read-only property)

Need property array index

Set not permitted

Get not supported at run time

OLE Controls: Advanced Topics

Table 1 OLE Control Error Codes (cont.)

Error

CTL_E_GETNOTSUPPORTED

CTL_E_PROPERTYNOTFOUND

CTL _ E _ INV ALIDCLIPBOARDFORMAT

CTL_E_INVALIDPICTURE

CTL _E _PRINTERERROR

CTL _ E _ CANTSA VEFILETOTEMP

CTL _E _SEARCHTEXTNOTFOUND

CTL _ E _ REPLACEMENTSTOOLONG

Description

Get not supported (write-only property)

Property not found

Invalid clipboard fonnat

Invalid picture

Printer error

Can't save file to TEMP

Search text not found

Replacements too long

If necessary, use the CUSTOM_CTL_SCODE macro to define a custom error code
for a condition that is not covered by one of the standard codes. The parameter for
this macro should be an integer between 1000 and 32767, inclusive. For example:

#define MYCTl_E_SPECIAlERROR CUSTOM_CTl_SCODE(1000)

If you are creating an OLE control to replace an existing VBX control, define your
OLE control error codes with the same numeric values the VBX control uses to
ensure that the error codes are compatible.

Handling Special Keys in Your Control
In some cases you may want to handle certain keystroke combinations in a special
way; for example, insert a new line when the ENTER key is pressed in a multiline text
box control or move between a group of edit controls when a directional key ID
pressed.

If the base class of your OLE control is COleControl, you can override
CWnd::PreTranslateMessage to handle messages before the container receives
them. When using this technique, always return TRUE if you handle the message in
your override of PreTranslateMessage.

The following code example demonstrates a possible way of handling any messages
related to the directional keys.

BOOl CSampleControl ::PreTranslateMessage(lPMSG lpmsg)
{

BOOl bHandleNow = FALSE;

switch (lpmsg->message)
{

case WM_KEYDOWN:
switch (lpmsg->wParam)
{

case VK_UP:
case VK_DOWN:
case VK_lEFT:

579

OLE Controls: Distributing OLE Controls

}

case VK_RIGHT:
bHandleNow = TRUE;
break;

}

if (bHandleNow)
OnKeyDown(lpmsg->wParam, LOWORD(lpmsg

->lParam), HIWORD(lpmsg->lParam»;
break;

return bHandleNow;

For more information on handling keyboard interfaces for an OLE control, see the
Keyboard Interface topic of the OLE Control Architecture Specification, which is
found only in Books Online.

OLE Controls: Distributing OLE Controls

580

This article discusses several issues related to redistributing OLE controls:

• ANSI or Unicode control versions

• Installing the control and its components

• Registering the OLE control

• List of redistributable files

ANSI or Unicode Control Versions
You must decide whether to ship an ANSI or Unicode version of the control, or both.
This decision is based on portability factors inherent in ANSI and Unicode character
sets.

ANSI controls, which work on all Win32 operating systems, allow for maximum
portability between the various Win32 operating systems. Unicode controls work on
only Windows NT (version 3.51 or later), but not on Windows 95. If portability is
your primary concern, you should ship ANSI controls. If your controls will run only
on Windows NT, you can ship Unicode controls. You could also choose to ship both
and have your application install the version most appropriate for the user's operating
system.

Installing OLE Controls and Redistributable Dlls
The setup program you provide with your OLE controls should create a special
subdirectory of the Windows directory and install the controls' .OCX files in it.

Tip Use the Windows GetWindowsDirectory API in your setup program to obtain the name
of the Windows directory.

You may want to derive the subdirectory name from the name of your company or product.

OLE Controls: Distributing OLE Controls

The setup program must install the necessary redistributable DLL files in the
Windows system directory. If any of the DLLs are already present on the user's
machine, the setup program should compare their versions with the versions you are
installing. Only reinstall a file if its version number is higher than the file already
installed.

Because OLE controls can be used only in OLE container applications, there is no
need to distribute the full set of OLE DLLs with your controls. You can assume that
the containing application (or the operating system itself) has the standard OLE
DLLs installed.

Registering Controls
Before a control can be used, appropriate entries must be created for it in the
Windows registration database. Some OLE control containers provide a menu item
for users to register new controls, but this feature may not be available in all
containers. Therefore, you may want your setup program to register the controls when
they are installed. Visual C++ includes a redistributable program, REGSVR32.EXE,
which can be used to register controls. Just pass the complete path and filename of
the control .OCX file as an argument to REGSVR32. The MFC OLE Controls
sample REGSVR provides the source code for REGSVR32.EXE. This sample
illustrates one method for performing the registration task and can be used as a guide
to writing your own registration routine.

If you prefer, you can write your setup program to register the control directly instead.

Use the LoadLibrary Windows API to load the control DLL. Next, use
GetProcAddress to obtain the address of the "DllRegisterServer" function. Finally,
call the DllRegisterServer function. The following code sample demonstrates one
possible method, where h Lib stores the handle of the control library, and
1 p D 11 En try Poi n t stores the address of the "DllRegisterServer" function.

HINSTANCE hLib = LoadLibrary(pszDllName):

if (hLib < (HINSTANCE)HINSTANCE_ERROR)
{

DisplayMessage(IDS_LOADLIBFAILED, pszDllName): Ilunable to load DLL
iReturn = FAIL_LOAD: Ilunable to load DLL

}

II Find the entry point.
(FARPROC&)lpDllEntryPoint = GetProcAddress(hLib,

_T("DllRegisterServer"):
if (lpDllEntryPoint != NULL)
(*lpDllEntryPoint)():

else
Ilunable to locate entry point

The advantage of registering the control directly is that you don't need to invoke and
load a separate process (namely, REGSVR32), lessening installation time. In

581

OLE Controls: Licensing an OLE Control

addition, because registration is an internal process, the setup program can handle
errors and unforeseen situations better than an external process can.

Note Before your setup program installs an OLE control, it should call Olelnitialize. When
your setup program is finished, call OleUnitialize. This ensures that the OLE system DLLs are
in the proper state for registering an OLE control.

When you install and register a control, you should also register OLEPR032.DLL.
Use the same procedure for registering this DLL as you did for your .OCX file.
Perform this registration step only if you need to install OLEPR032.DLL. If the DLL
is installed already, you should assume that it has been registered.

If your control uses one of the stock property pages, you should also register
MFCxO.DLL. Unlike OLEPR032.DLL, you should always register this DLL, even if
it is already installed.

List of Redistributable Files
This section lists the files you may redistribute with your OLE control. The
conditions under which you mayor may not redistribute these files are described in
the License Agreement included in the product. Visual C++ Setup may install some
of these files on your development machine, depending on the options you chose
during Setup. When you redistribute any of these files, you should copy them from
the Visual C++ CD to your distribution medium. This ensures that you are
redistributing the correct version of the files. Table 1 lists files that must be
redistributed with your OLE control.

Table 1 Redistributable Files

File

MFCxO.DLL

MFCxOU.DLL

MSVCRTxO.DLL

OLEPR032.DLL

REGSVR32.EXE

Description

MFC DLL (ANSI)

MFC DLL (Unicode)

C run-time libraries

OLE property frame and standard types support

Control registration utility

OLE Controls: Licensing an OLE Control

582

Licensing support, an optional feature of OLE controls, allows you to control who is
able to use or distribute the control.

This article discusses the following topics:

• Overview of OLE control licensing

• Creating a licensed control

• Licensing support

• Customizing the licensing of an OLE control

OLE Controls: Licensing an OLE Control

OLE controls that implement licensing allow you, as the control developer, to
determine how other people will use the OLE control. You provide the control
purchaser with the control and .LIe file, with the agreement that the purchaser may
distribute the control, but not the .LIe file, with an application that uses the control.
This prevents users of that application from writing new applications that use the
control, without first licensing the control from you.

Overview of OLE Control Licensing
To provide licensing support for OLE controls, the COleObjectFactory class
provides an implementation for several functions in the ICIassFactory2 interface:
IClassFactory2: : RequestLicKey , IClassFactory2: : GetLicInfo, and
IClassFactory2::CreatelnstanceLic. When the container application developer
makes a request to create an instance of the control, a call to GetLicInfo is made to
verify that the control .LIe file is present. If the control is licensed, an instance of the
control can be created and placed in the container. After the developer has finished
constructing the container application, another function call, this time to
RequestLicKey, is made. This function returns a license key (a simple character
string) to the container application. The returned key is then embedded in the
application.

Figure 1 demonstrates the license verification of an OLE control that will be used
during the development of a container application. As mentioned previously, the
container application developer must have the proper .LIe file installed on the
development machine to create an instance of the control.

Figure 1 Verification of a Licensed OLE Control During Development

The next process, shown in Figure 2, occurs when the end-user nms the container
application.

When the application is started, an instance of the control usually needs to be created.
The container accomplishes this by making a call to CreateInstanceLic, passing the
embedded license key as a parameter. A string comparison is then made between the
embedded license key and the control's own copy of the license key. If the match is
successful, an instance of the control is created and the application continues to
execute normally. Note that the .LIe file need not be present on the control user's
machine.

583

OLE Controls: Licensing an OLE Control

584

Figure 2 Verification of a Licensed OLE Control During Execution

Control licensing consists of two basic components: (1) specific code in the control
implementation DLL and (2) the license file. The code is composed of two (or
possibly three) function calls and a character string, hereafter referred to as a "license
string", containing a copyright notice. These calls and the license string are found in
the control implementation (.CPP) file. The license file, generated by ControlWizard,
is a text file with a copyright statement. It is named using the project name with an
.LIC extension, for example SAMPLE.LIC. A licensed control must be accompanied
by the license file if design-time use is needed.

Creating a Licensed Control
When you use ControlWizard to create the control framework, it is easy to include
licensing support. When the Enforce License option is selected, ControlWizard adds
code to the control class to support licensing. The code consists of functions that use
a key and license file for license verification. These functions also can be modified to
customize the control licensing. For more information on license customization, see
Customizing the Licensing of an OLE Control later in this article.

~ To add support for licensing with ControlWizard

1 From the File menu, choose New.

The New dialog box appears.

2 In the New box, select Project Workspace.

The New box allows selection of various file types.

3 Click OK.

The New Workspace dialog box appears.

4 In the Name box, type a project name.

A directory for the new project is added to the currently specified workspace
directory structure. ControlWizard uses the name that you specify in the Project
Name box to derive default names for most of the files and classes it creates for the
control project.

5 In the Type list box, select OLE ControlWizard

6 In the first dialog box, choose Yes for License Validation.

7 Select any other options for your project.

OLE Controls: Licensing an OLE Control

8 Choose Finish to confirm your project choices.

The New Project Information dialog box appears.

9 Click OK to have ControlWizard generate the OLE control framework.

ControlWizard now generates an OLE control framework that includes basic
licensing support. For a detailed explanation of the licensing code, see the next topic,
Licensing Support.

Licensing Support
When you use ControlWizard to add licensing support to an OLE control,
ControlWizard adds code that declares and implements the licensing capability is
added to the control header and implementation files. This code is composed of a
VerifyUserLicense member function and a GetLicenseKey member function, which
override the default implementations found in COleObjectFactory . These functions
retrieve and verify the control license.

Note A third member function, VerifyLicenseKey is not generated by ControlWizard, but can
be overidden to customize the license key verification behavior.

These member functions are:

• VerifyUserLicense

Verifies that the control allows design-time usage by checking the system for the
presence of the control license file. This function is called by the framework as
part of processing IClassFactory2: : GetLicInfo and
I ClassFactory: :CreatelnstanceLic.

• GetLicenseKey

Requests a unique key from the control DLL. This key is embedded in the
container application and used later, in conjunction with VerifyLicenseKey, to
create an instance of the control. This function is called by the framework as part
of processing IClassFactory2: : RequestLicKey .

• VerifyLicenseKey

Verifies that the embedded key and the control's unique key are the same. This
allows the container to create an instance of the control for its use. This function is
called by the framework as part of processing
IClassFactory2::CreatelnstanceLic and can be overridden to provide customized
verification of the license key. The default implementation performs a string
comparison. For more information, see Customizing the Licensing of an OLE
Control, later in this article.

Header File Modifications
ControlWizard places the following code in the control header file. In this example,
two member functions of CSampl eCtrl 's object factory are declared, one that verifies

585

OLE Controls: Licensing an OLE Control

586

the presence of the control .LIC file and another that retrieves the license key to be
used in the application containing the control:

BEGIN_OlEFACTORY(CSampleCtrl) // Class factory and guid
virtual Baal VerifyUserlicense();
virtual Baal GetlicenseKey(DWORD, BSTR FAR*);

END_OLEFACTORY(CSampleCtrl)

Implementation File Modifications
ControlWizard places the following two statements in the control implementation file
to declare the license filename and license string:

static const TCHAR BASED_CODE _szlicFileName[] =

_T("license.lic");

static const WCHAR BASED_CODE _szlicString[] =

l"Copyright (c) 1995 ";

Note If you modify szLicString in any way, you must also modify the first line in the control
.L1e file or licensing will not function properly.

ControlWizard places the following code in the control implementation file to define
the control class' Veri fyUserl i cense and Getl i censeKey functions:

///
// ClicenseCtrl ::ClicenseCtrlFactory::VerifyUserlicense
// Checks for existence of a user license

BOOl CLicenseCtrl: :CLicenseCtrl Factory: :VerifyUserlicense()
{

return AfxVerifylicFile(AfxGetInstanceHandle(),
_szlicFileName, _szlicString);
}

///
// ClicenseCtrl ::ClicenseCtrlFactory::GetlicenseKey -
// Returns a runtime licensing key

BOOl ClicenseCtrl ::ClicenseCtrlFactory::GetlicenseKey(DWORD dwReserved,
BSTR FAR* pbstrKey)

if (pbstrKey == NUll)
return FALSE;

*pbstrKey = SysAllocString(_szlicString);
return (*pbstrKey 1- NUll);

OLE Controls: Licensing an OLE Control

Finally, ControlWizard modifies the control project .ODL file. The licensed keyword
is added to the class information section of the control, as in the following example:

[uuid(A728C248-BD2C-IICE-88F9-00AA00339DC7).
version(1.0). helpstring("Sample OLE Custom Control
module"). control]
library SAMPLELib

Customizing the Licensing of an OLE Control
Because VerifyUserLicense, GetLicenseKey, and VerifyLicenseKey are declared
as virtual member functions of the control factory class, you can customize the
control's licensing behavior.

For example, you can provide several levels of licensing for the control by overriding
the VerifyUserLicense and/or VerifyLicenseKey member functions. Inside this
function you could adjust which properties and/or methods are exposed to the user
according to the license level you detected.

You can also add code to the VerifyLicenseKey function that provides a customized
method forinforming the user that control creation has failed. For instance, in your
VerifyLicenseKey member function you could display a message box stating that the
control failed to initialize and why.

Note Another way to customize OLE control license verification, is to check the registration
database for a specific registry key, instead of calling AfxVerifyLicFile. For an example of the
default implementation, see the Implementation File Modifications section of this article.

See Also OLE ControlWizard

587

OLE Controls: Localizing an OLE Control

OLE Controls: Localizing an OLE Control

588

This article discusses procedures for localizing OLE control interfaces.

If you want to adapt an OLE control to an international market, you may want to
localize the control. Windows supports several languages in addition to the default
English, including German, French, and Swedish. This can present problems for the
control if its interface is in English only.

In general, OLE controls should always base their locale on the ambient LocaleID
property. There are three ways to do this:

• Load resources, always on demand, based on the current value of the ambient
LocaleID property. The MFC OLE Controls sample LOCALIZE uses this strategy.

• Load resources when the first control is instanced, based on the ambient LocaleID
property, and use these resources for all other instances. This article demonstrates
this strategy.

Note This will not work correctly in some cases, if future instances have different locales.

• Use the OnAmbientChanged notification function to dynamically load the proper
resources for the container's locale.

Note This will work for the control, but the run-time DLL will not dynamically update its
own resources when the ambient LocalelD property changes. In addition, run-time DLLs for
OLE controls use the thread locale to determine the locale for its resources.

The rest of this article describes two localizing strategies. The first strategy localizes
the control's programmability interface (names of properties, methods, and events).
The second strategy localizes the control's user interface, using the container's
ambient LocaleID property. For a demonstration of control localization, see the MFC
OLE Controls sample LOCALIZE.

Localizing the Control's Programmability Interface
When localizing the control's programmability interface (the interface used by
programmers writing applications that use your control), you must create a modified
version of the control .ODL file (a script for building the control type library) for
each language you intend to support. This is the only place you need to localize the
control property names.

When you develop a localized control, you should include the locale ID as an
attribute at the type library level. For example, if you want to provide a type library
with French localized property names, make a copy of your SAMPLE.ODL file, and
call it SAMPLEFR.ODL. Add a locale ID attribute to the file (the locale ID for
French is Ox040c), similar to the following:

OLE Controls: Localizing an OLE Control

[uuid(xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx), version(1.0), lcid(0x040c)
library Sample

Change the property names in SAMPLEFR.ODL to their French equivalents, and
then use MKTYPLIB.EXE to produce the French type library, SAMPLEFR.TLB.

To create multiple localized type libraries you can add any localized .ODL files to the
project and they will be built automatically.

~ To add an .OOL file to your OLE control project

1 From the Insert menu, choose Source Files.

The Insert Project Files dialog box appears.

2 If necessary, select the drive and directory to view.

3 Add each file using one of the following methods:

• Select the .ODL file in the File Name list and choose Add.

-or-

• Double-click the the .ODL file in the File Name list.

4 Close the Insert Project Files dialog box when you have added all necessary .ODL
files.

Because the files have been added to the project they will be built when the rest of the
project is built. The localized type libraries are located in the current OLE control
project directory.

Within your code, the internal property names (usually in English) are always used
and are never localized. This includes the control dispatch map, the property
exchange functions, and your property page data exchange code.

Only one type library (.TLB) file may be bound into the resources of the control
implementation (.OCX) file. This is usually the version with the standardized
(typically, English) names. To ship a localized version of your control you need to
ship the .OCX (which has already been bound to the default .TLB version) and the
.TLB for the appropriate locale. This means that only the .OCX is needed for English
versions, since the correct .TLB has already been bound to it. For other locales, the
localized type library also must be shipped with the .OCX.

To ensure that clients of your control can find the localized type library, register your
locale-specific .TLB file(s) under the TypeLib section of the Windows system registry.
The third parameter (normally optional) of the AfxOleRegisterTypeLib function is
provided for this purpose. The following example registers a French type library for
an OLE control:

589

OLE Controls: Localizing an OLE Control

590

STDAPI DllRegisterServer(void)
{

if (!AfxOleRegisterTypeLib(AfxGetInstanceHandle(), _tlid»
return ResultFromScode(SELFREG_E_TYPELIB);

AfxOleRegisterTypeLib(AfxGetInstanceHandle(), _tlid,
_T("samplefr.tlb"»

if (!COleObjectFactoryEx::UpdateRegistryAll(TRUE»
return ResultFromScode(SELFREG_E_CLASS);

return NOERROR;

When your control is registered, the AfxOleRegisterTypeLib function automatically
looks for the specified. TLB file in the same directory as the control and registers it in
the Windows registration database. If the . TLB file isn't found, the function has no
effect.

Localizing the Control's User Interface
To localize a control's user interface, place all of the control's user-visible resources
(such as property pages and error messages) into language-specific resource DLLs.
You then can use the container's ambient LocaleID property to select the appropriate
DLL for the user's locale.

The following code example demonstrates one approach to locate and load the
resource DLL for a specific locale. This member function, called
GetLoca 1 i zedResourceHandl e for this example, can be a member function of your
OLE control class:

HINSTANCE CSampleCtrl ::GetLocalizedResourceHandle(LCID lcid)
{

LPCTSTR lpszResDll;
HINSTANCE hResHandle = NULL;
LANGID lang = LANGIDFROMLCID(lcid);
switch (PRIMARYLANGID(lang»
{

case LANG_ENGLISH:
lpszResDll = "myctlen.dll";
break;

case LANG_FRENCH:
lpszResDll = "myctlfr.dll";
break;

case LANG_GERMAN:
lpszResDll = "myctlde.dll";
break;

case 0:
default :

lpszResDll NULL;

OLE Controls: Localizing an OLE Control

if (1 pszResDll !- NULL)
hResHandle = LoadLibrary(lpszResDll):

4/i fndef _WI N32
if(hResHandle <- HINSTANCE_ERROR)

hResHandle - NULL:
41endif

return hResHandle:

Note that the sublanguage ID could be checked in each case of the switch statement,
to provide more specialized localization (for example, local dialects of German). For
a demonstration of this function, see the GetResourceHandl e function in the MFC
OLE Controls sample LOCALIZE.

When the control first loads itself into a container, it can call
COleControl::AmbientLocaleID to retrieve the locale ID. The control can then pass
the returned locale ID value to the GetLocal i zedResourceHandl e function, which
loads the proper resource library. The control should pass the resulting handle, if any,
to AfxSetResourceHandle:

m_hResDll = GetLocalizedResourceHandle(AmbientLocaleID()):
if (m_hResDll !- NULL)

AfxSetResourceHandle(m_hResDll):

Place the code sample above into a member function of the control, such as an
override of COleControl: :OnSetClientSite. In addition, m_h Re s D L L should be a
member variable of the control class.

You can use similar logic for localizing a control's property page. To localize the
property page, add code similar to the following sample to your property page's
implementation file (in an override of COlePropertyPage::OnSetPageSite):

LPPROPERTYPAGESITE pSite:
LCID lcid == 0:
if«pSite == GetPageSite(» != NULL)

pSite-)GetLocaleID(&lcid):
HINSTANCE hResource == GetLocalizedResourceHandle(lcid);
HINSTANCE hResourceSave == NULL:

if (hResource != NULL)
{

hResourceSave == AfxGetResourceHandle():
AfxSetResourceHandle(hResource):

II Load dialog template and caption string.
COlePropertyPage::OnSetPageSite():

if (hResource != NULL)
AfxSetResourceHandle(hResourceSave):

591

OLE Controls: Serializing

OLE Controls: Serializing

592

This article discusses how to serialize an OLE control. Serialization is the process of
reading from or writing to a persistent storage medium, such as a disk file. The
Microsoft Foundation Class Library (MFC) provides built-in support for serialization
in class CObject. COleControl extends this support to OLE controls through the use
of a property exchange mechanism

Serialization for OLE controls is implemented by overriding
COleControl::DoPropExchange. This function, called during the loading and
saving of the control object, stores all properties implemented with a member variable
or a member variable with change notification.

The following topics cover the main issues related to serializing an OLE control:

• Implementing DoPropExchange to serialize your control object

• Customizing the serialization process

• Implementing version support

Implementing the DoPropExchange Function
When you use ControlWizard to generate the control project, several default handler
functions are automatically added to the control class, including the default
implementation of COleControl: : DoPropExchange. The following example shows
the code added to classes created with ControlWizard:

void CSampleCtrl ::DoPropExchange(CPropExchange* pPX)
{

ExchangeVersion(pPX, MAKELONG(_wVerMinor, _wVerMajor));
COleControl ::DoPropExchange(pPX);

II TODO: Call PX_ functions for each persistent custom property.

If you want to make a property persistent, modify DoPropExchange by adding a call to
the property exchange function. The following example demonstrates the
serialization of a custom boolean CircleShape property:

void CSampleCtrl ::DoPropExchange(CPropExchange* pPX)
{

ExchangeVersion(pPX, MAKELONG(_wVerMinor, _wVerMajor));
COleControl ::DoPropExchange(pPX);

PX_Bool(pPX, "CircleShape", m_bCircleShape, TRUE);

The following table lists the possible property exchange functions you can use to
serialize the control's properties:

OLE Controls: Serializing

Property Exchange
Functions

PX_Blob()

PX_Bool()

PX_Color()

PX _ Currency()

PX _ Double()

PX_Font()

PX_Float()

PX_IUnknown()

PX_Long()

PX _ Picture()

PX_Short()

PX _ String()

PX_ULong()

PX _ UShort()

Purpose

Serializes a type Binary Large Object (BLOB) data property.

Serializes a type Boolean property.

Serializes a type color property.

Serializes a type CY (currency) property.

Serializes a type double property.

Serializes a Font type property.

Serializes a type float property.

Serializes a property of type LPUNKNOWN.

Serializes a type long property.

Serializes a type Picture property.

Serializes a type short property.

Serializes a type CString property.

Serializes a type ULONG property.

Serializes a type USHORT property.

For more information on these property exchange functions, see Persistence of OLE
Controls in the Class Library Reference.

Customizing the Default Behavior of DoPropExchange
The default implementation of DoPropertyExchange (as shown in the previous
topic) makes a call to base class COleControl. This serializes the set of properties
automatically supported by COleControl, which uses more storage space than
serializing only the custom properties of the control. Removing this call allows your
object to serialize only those properties you consider important. Any stock property
states the control has implemented will not be serialized when saving or loading the
control object unless you explicitly add PX _ calls for them.

Implementing Version Support
Version support enables a revised OLE control to add new persistent properties, and
still be able to detect and load the persistent state created by an earlier version of the
control. To make a control's version available as part of the its persistent data, call
COleControl::ExchangeVersion in the control's DoPropExchange function. This call
is automatically inserted if the OLE control was created using ControlWizard. It can
be removed if version support is not desired. However, the cost in control size is very
small (4 bytes) for the added flexibility that version support provides.

If the control was not created with ControlWizard, add a call to
COleControl::ExchangeVersion by inserting the following line at the beginning of
your DoPropExchange function (before the call to COleControl::DoPropExchange):

593

OLE Controls: Subc1assing a Windows Control

void CSampleCtrl ::DoPropExchange(CPropExchange* pPX)
{

ExchangeVersion(pPX, MAKELONG(_wVerMinor, _wVerMajor»;
COleControl ::DoPropExchange(pPX);

You can use any DWORD as the version number. Projects generated by
ControlWizard use _ wVerMinor and _ wVerMajor as the default. These are global
constants defined in the implementation file of the project's OLE control class.
Within the remainder of your DoPropExchange function, you can call
CPropExchange::GetVersion at any time to retrieve the version you are saving or
retrieving.

In the following example, version 1 of this sample control has only a "ReleaseDate"
property. Version 2 adds an "OriginaIDate" property. If the control is instructed to
load the persistent state from the old version, it initializes the member variable for
the new property to a default value.

void CSampleCtrl ::DoPropExchange(CPropExchange* pPX)
{

ExchangeVersion(pPX, MAKELONG(_wVerMinor, _wVerMajor»;
COleControl ::DoPropExchange(pPX);
PX_Long(pPX, "ReleaseDate", m_releaseDate);
if (pPX->GetVersion() >= MAKELONG(0, 2»
{

}

else
{

PX_Long(pPX, "OriginalDate", m_originalDate);

if (pPX->IsLoading(»
m_originalDate = 0;

By default, a control "converts" old data to the latest format. For example, if version
2 of a control loads data that was saved by version 1, it will write the version 2 format
when it is saved again. If you want the control to save data in the format last read,
pass FALSE as a third parameter when calling ExchangeVersion. This third
parameter is optional and is TRUE by default.

OLE Controls: Subclassing a Windows Control

594

This article describes the process for subclassing a common Windows control to
create an OLE control. Subclassing an existing Windows control is a quick way to
develop an OLE control. The new control will have the abilities of the subclassed
Windows control, such as painting and responding to mouse clicks. The MFC OLE
Controls sample BUTTON is an example of subclassing a Windows control.

To subclass a Windows control, complete the following tasks:

OLE Controls: Subc1assing a Windows Control

• Override the IsSubclassedControl and PreCreate Window member functions of
COleControl.

• Modify the OnDraw member function.

• Handle any OLE control messages (OCM) reflected to the control.

Note Much of this work is done for you by ControlWizard if you select the Subclass Windows
Control option in the Control Options dialog box.

Overriding IsSubclassedControl and PreCreateWindow
To override PreCreateWindow and IsSubclassedControl, add the following lines of
code to the protected section of the control class declaration:

BOOl PreCreateWindow(CREATESTRUCT& cs);
BOOl IsSubclassedControl();

In the control implementation file (.CPP), add the following lines of code to
implement the two overridden functions:

BOOl CSampleCtrl ::PreCreateWindow(CREATESTRUCT& cs)
{

cs.lpszClass = _T("BUTTON");
return COleControl ::PreCreateWindow(cs);

BOOl CSampleCtrl ::IsSubclassedControl(
{

return TRUE;

Notice that, in this example, the Windows button control is specified in
PreCreate Window. However, any of the standard Windows controls can be
subclassed. For more information on standard Windows controls, see Controls.

When subclassing a Windows control, you may want to specify particular window
style (WS _) or extended window style (WS _ EX _) flags to be used in creating the
control's window. You can set values for these parameters in the PreCreateWindow
member function by modifying the cs.style and the cs.dwExStyle structure fields.
Modifications to these fields should be made using an OR operation, to preserve the
default flags that are set by class COleControl. For example, if the control is
subclassing the BUTTON control and you want the control to appear as a checkbox,
insert the following line of code into the implementation of
CSampl eCtrl : : PreCreateWi ndow, before the return statement:

cs.style 1= BS_CHECKBOX;

This operation adds the BS _CHECKBOX style flag, while leaving the default style
flag (WS _ CHILD) of class COleControl intact.

595

OLE Controls: Subc1assing a Windows Control

596

Modifying the OnDraw Member Function
If you want your subclassed control to keep the same appearance as the corresponding
Windows control, the OnDraw member function for the control should contain only a
call to the DoSuperclassPaint member function, as in the following example:

void CSampleCtrl ::OnDraw(CDC* pde, eonst CReet& reBounds,
eonst CReet& relnvalid)

DoSuperclassPaint(pdc, reBounds);
}

The DoSuperclassPaint member function, implemented by COleControl, uses the
window procedure of the Windows control to draw the control in the specified device
context, within the bounding rectangle. This makes the control visible even when it is
not active.

Note The DoSuperclassPaint member function will work only with those control types that
allow a device context to be passed as the wParam of a WM_PAINT message, such as
SCROLLBAR and BUTTON. For controls that do not support this behavior, you will have to
provide your own code to properly display an inactive control.

Handling Reflected Window Messages
Windows controls typically send certain window messages to their parent window.
Some of these messages, such as WM _COMMAND, provide notification of an
action by the user. Others, such as WM _ CTLCOLOR, are used to obtain
information from the parent window. An OLE control usually communicates with the
parent window by other means. Notifications are communicated by firing events, and
information about the control container is obtained by accessing the container's
ambient properties. Because these communication techniques exist, OLE control
containers are not expected to process any window messages sent by the control.

To prevent the container from receiving the window messages sent by a subclassed
Windows control, COleControl creates an extra window to serve as the control's
parent. This extra window, called a "reflector", is created only for an OLE control
that subclasses a Windows control and has the same size and position as the control
window. The reflector window intercepts certain window messages and sends them
back to the control. The control, in its window procedure, can then process these
reflected messages by taking actions appropriate for an OLE control (for example,
firing an event).

Table 1 shows the messages that are intercepted and the corresponding messages that
the reflector window sends:

OLE Controls: Subclassing a Windows Control

Table 1 Reflected Windows Messages

Message sent by control

WM_COMMAND

WM_CTLCOLOR

WM_DRAWITEM

WM MEASUREITEM

WM _ DELETEITEM

WM_ VKEYTOITEM

WM CHARTOITEM

WM_COMPAREITEM

WM_HSCROLL

WM_VSCROLL

WM_NOTIFY

WM_PARENTNOTIFY

Message reflected to control

OCM COMMAND

OCM_CTLCOLOR

OCM DRA WITEM

OCM MEASUREITEM

OCM _DELETEITEM

OCM_ VKEYTOITEM

OCM _ CHAR TO ITEM

OCM_COMPAREITEM

OCM_HSCROLL

OCM VSCROLL

OCM_NOTIFY

OCM _PARENTNOTIFY

Note If the control runs on a Win32 system, there are several types of WM_ CTLCOLOR
messages it may receive instead of WM_CTLCOLOR. For more information, see
WM_CTLCOLORBTN, WM_ CTLCOLORDLG, WM_CTLCOLOREDIT,
WM_ CTLCOLORLISTBOX, WM _ CTLCOLORMSGBOX, WM_ CTLCOLORSCROLLBAR,
WM_ CTLCOLORSTATIC.

An OLE control container may be designed to perform message reflection itself,
eliminating the need for COleControl to create the reflector window and reducing
the run-time overhead for a subclassed Windows control. COleControl detects
whether the container supports this capability by checking for a MessageReflect
ambient property with a value of TRUE.

To handle a reflected window message, you need to add an entry to the control
message map and implement a handler function. Because reflected messages are not
part of the standard set of messages defined by Windows, Class Wizard does not
support adding such message handlers. However, it is not difficult to add a handler
manually.

To add a message handler for a reflected window message manually do the following:

• In the control class .H file, declare a handler function. The function should have a
return type ofLRESULT and two parameters, with types WPARAM and
LPARAM, respectively. For example:

cl ass CSampl eCtrl : publ i c COl eContro1
{

protected:
LRESULT OnOcmCommand(WPARAM wParam. LPARAM 1Param);

}

597

OLE Controls: Subclassing a Windows Control

598

• In the control class .CPP file, add an ON_MESSAGE entry to the message map.
The parameters of this entry should be the message identifier and the name of the
handler function. For example:

BEGIN_MESSAGE_MAP(CSampleCtrl, COleControl)
11{{AFX_MSG_MAP(CSampleCtrl)

ON_MESSAGE(OCM_COMMAND, OnOcmCommand)

I/} lAFX_MSG_MAP
END_MESSAGE_MAP()

• Also in the .CPP file, implement the OnOcmCommand member function to
process the reflected message. The wParam and IParam parameters are the same
as those of the original window message.

For an example of how reflected messages are processed, refer to the MFC OLE
Controls sample BUTTON. It demonstrates an OnOcmCommand handler that
detects the BN _CLICKED notification code and responds by firing a Click event.

OLE Controls: Using Data Binding in an OLE Control

OLE Controls: Using Data Binding in an OLE Control
One of the more powerful uses of OLE controls is "data binding," which allows a
property of the control to "bind" with a specific field in a database. When this control
property is modified by the control user, the control notifies the database that the
value has changed and requests that the record field be updated. The database then
notifies the control of the success or failure of the request.

This article covers the control side of your task. Implementing the data binding
interactions with the database is the responsibility of the control container. How you
manage the database interactions in your container is beyond the scope of this
documentation. How you prepare the control for data binding is explained in the rest
of this article.

This article covers the following topics:

• How data binding works

• Defining a bindable property

How Data Binding Works
Data binding allows a database entry, such as a record field, to be linked to a property
of an OLE control. This control is typically used in a form view and provides a visual
interface to the current record state. Figure 1 shows a conceptual representation of
this linkage. In this example, the OLE control is an edit box which has bound its Text
property to the Name field of a record. When modifications are made to the control's
Text property, these changes are communicated to the database.

Figure 1 Conceptual Diagram of a Data Bound Control

Container (form)

Table in database

When an OLE control property is bound, the developer must make sure that the
control is able to send notifications to the database when the property changes. The

599

OLE Controls: Using Data Binding in an OLE Control

600

notification is sent to an interface provided by the control container, which processes
it and returns the database's response to the control.

The COleControl class provides two member functions that make data binding an
easy process to implement. The first function, BoundPropertyRequestEdit is used to
request permission to change the property value. BoundPropertyChanged, the
second function, is called after the property value has been successfully changed.

Defining a Bindable Property
If the control was created using ControlWizard, data binding is automatically
enabled. Once you have successfully compiled your OLE control, you can use
Class Wizard to incorporate data binding. Class Wizard allows you to choose which
properties to make bindable and provides several options of binding.

Binding option Description

Sends OnRequestEdit The property requests permission from the database before
modifying the value.

Visible to the End User The container displays the property in a property binding
dialog.

Default Bindable Property Makes the bindable property the control container's default
choice.

The following procedure demonstrates adding a text property to an existing control
that subclasses an edit box. This property can then be bound to a record field. Figure
2 shows the Data Binding dialog box.

Figure 2 The Data Binding Dialog Box

~ To add a bound property using ClassWizard

1 Load your control project.

2 From the Browse menu, choose Class Wizard.

3 Choose the OLE Automation tab.

4 Click the Add Property button.

OLE Controls: Using Data Binding in an OLE Control

5 In the External Name box, type the external name of the property. For this
example, use RecordName.

6 Under Implementation, select Get/Set Methods.

Note Data binding is not supported for properties implemented as member variables.

7 From the Return Type box, select the property's type. For this example, select
BSTR.

8 Type unique names for your Get and Set Functions or accept the default names.

9 Click the OK button to confirm your choices and close the Add Property dialog
box.

10 Click the Data Binding button.

11 Set the Bindable Property check box.

12 Set any other data binding options you desire.

Click the OK button to confirm your choices and close the Data Binding dialog
box.

13 Click the OK button to confirm your choices and close ClassWizard.

After completing this process you will have a property called RecordName that can be
bound to a string-valued field in a database.

Code Changes Related to Data Bound Property
Implementing a bound property requires code changes in some of the control project
files.

The following code is added to the control declaration file (.H) between the dispatch
map comments:

afx_msg BSTR GetRecordName();
afx_msg void SetRecordName(LPCTSTR lpszNewValue);

In addition, changes will be made to the control implementation file. The following
sample shows what would be added if you followed the example in the procedure:

BSTR CSampleCtrl ::GetRecordName()
{

CString strResult;
II TODD: Add your property handler here

return strResult.AllocSysString();
}

void CSampleCtrl ::SetRecordName(LPCTSTR lpszNewValue)
{

II TODD: Add your property handler here

SetModifiedFlag();
}

601

OLE Controls: Adding an OLE Control to an Existing CDK Project

To fully implement the control data binding you have to modify the GetRecordName
and SetRecordName functions. For example, in the SetRecordName function, you
would make a call to BoundPropertyRequestEdit to obtain permission to change the
value of the bound property. If it was successful, you would save the new value and
handle any other actions needed before notifying the container that the property has
changed. This notification would be done by calling BoundPropertyChanged. The
following code sample demonstrates this:

void CSampleCtrl ::SetRecordName(LPCTSTR lpszNewValue
{

if(!BoundPropertyRequestEdit(dispidRecordName)
SetNotPermitted();

IITODO: Actually set property value.

}

BoundPropertyChanged(dispidRecordName);
SetModifiedFlag();

OLE Controls: Adding an OLE Control to an Existing
CDK Project

602

This article provides step-by-step instructions for combining two existing OLE
control projects into an existing OLE Custom Control Developer's Kit (CDK) project.
For clarity, the first control project is named Projl; the second is named Proj2. After
you have successfully completed this procedure, you will need to follow the steps
detailed in the article OLE Controls: Converting a CDK Project to a Visual C++
Project to use this project with Visual C++ 4.0.

To protect the original code from becoming corrupted, you should work with the two
controls in a separate directory. For example purposes, we've named the directory
COMBINED. It is also recommended that you use Developer Studio for modifying
and saving project files.

To successfully add an OLE control to an existing CDK project, you must:

• Collect all relevant .R, .CPP, .PPG, and .RC files.

• Combine both .ODL files into one .ODL file.

• Modify the PROJ2.MAK makefile.

• Combine the resources of both controls.

• Build the resultant project.

Collecting Implementation Files
The Proji and Proj2 directories both contain files that you can simply copy to the
COMBINED directory with no changes. These files are used mainly to initialize the
DLL and provide basic implementation of the control classes. You should copy the
following files into the COMBINED directory:

OLE Controls: Adding an OLE Control to an Existing CDK Project

• STDAFX.H, STDAFX.CPP

• PROJ2.RC, RESOURCE.H

• PROJ2CTL.BMP, PROJ2.1CO

• PROJl.H

• PROJ2.H, PROJ2.CPP

• PROJICTL.H, PROJICTL.CPP

• PROJIPPG.H, PROJIPPG.CPP

• PROJ2CTL.H, PROJ2CTL.CPP

• PROJ2PPG.H, PROJ2PPG.CPP

• PROJ2.DEF

There are two other files, used as templates, that must be copied to the COMBINED
directory:

• PROJ2.MAK

In a following section, this makefile will be modified to include the necessary files
fromPROJl.

• PROJ2.0DL

This file will eventually contain both the Projl and Proj2 OLE control interfaces.

Merging the .OOL Files
Because there are two controls in the project, you will have to merge PROJl.ODL
into PROJ2.0DL. The .ODL file contains definitions for interfaces, so you need copy
only those interfaces unique to Projl and insert them into the PROJ2.0DL file.

~ To merge PROJ1.0DL with PROJ2.0DL

1 From the PROn .ODL file, copy the lines that are in the same position as the lines
indicated in the following .ODL file:

II
II Type Library for Projl.DLL
II

#include <otldisp.h>
[uuid(A7A91CE8-B974-101A-8077-00AA00339DC7), version(1.0),

helpstring("PROJl OLE Control module")]
library Projl
{

importlib("stdole.tlb");
importlib("stdtype.tlb");

II ****** Copy code below this line ********** II
[uuid(A7A91CE6-B974-101A-8077-00AA00339DC7),

helpstring("Dispatch interface for PRO.ll Control")
dispinterface IProjlCtrl
{

603

OLE Controls: Adding an OLE Control to an Existing CDK Project

604

} ;

properties:
11{{AFX_ODL_PROP(CProjlCtrl)
II}}AFX_ODL_PROP

methods:
11{{AFX_ODL_METHOD(CProjlCtrl)
II}}AFX_ODL_METHOD

[uuid(A7A91CE7-B974-101A-8077-00AA00339DC7),
helpstring("Event interface for PROJl Control")

dispinterface IProjlCtrlEvents
{

} ;

properties:
II Event interface has no properties

methods:
11{{AFX_ODL_EVENT(CProjlCtrl)

II}}AFX_ODL_EVENT

II ****** Copy code above this line ********** II
II Class information for CProjlCtrl

} ;

[uuid(003256C3-AA78-11CE-8C98-00AA00339DC7),
helpstring("Projl Control"), control]

coclass Projl
{

} ;

[default] dispinterface _DProjl;
[default, source] dispinterface

_DProjlEvents;

2 Paste the code that you copied in the example above into PROJ2.0DL, just prior to
the last closing brace.

Modifying the Proj2 Makefile
Now that you have moved the needed files from Proji to the COMBINED directory
you need to incorporate them into the Proj2 makefile.

Note If PROJ2.MAK is an external makefile you will need to edit it directly to add the new
files from Proj1.

.. To incorporate Proj1 files into the Proj2 makefile

1 From the File menu, choose Open.

The Open dialog box appears.

2 Select the drive and directory containing the project workspace that you want to
open.

OLE Controls: Adding an OLE Control to an Existing CDK Project

For this example select the COMBINED directory and choose the Proj2 project.

3 From the Insert menu, choose Files.

4 From the Insert Project Files dialog box, select PROJ1CTL.CPP.

S Click the Add button.

6 Repeat Steps 3 and 4 for PROJ1PPG.CPP.

7 Choose Close to save changes to the makefile and to close the Insert Project Files
dialog box.

Combining the Resources of Both Controls
The last modification required before building the project is to add the resources from
PROJ1.RC to PROJ2.RC. This is easily done because you can drag and drop
resources from one project into another.

~ To add resources from Proj1 to Proj2

1 From the File menu, choose Open.

The Open dialog box appears.

2 Select the drive and directory containing the project workspace that you want to
open.

For this example select the COMBINED directory and choose the Proj2 project.

3 Double-click the .RC file icon to open PROJ2's resources.

4 From the File menu, choose Open.

S Select PROJ1.RC from the PROn directory.

6 Click OK to close the Open dialog box.

7 Drag and drop the bitmap, icon, string resources, and property pages from Projl
into Proj2. Be sure to hold down the CTRL key so the resources are copied and not
moved.

For an example of a similar procedure, see Adding Help to Scribble After the Fact
in Chapter 11 of Tutorials.

8 After you have added the resources, save the changes by choosing the Save toolbar
button.

Building the New Project
After completing the preceding steps, you can build the new project as you would any
OLE control project. Once the project has been successfully built, register the
controls. You can then use Test Container, or another container application, to test
your OLE control. For more information on this procedure, see the article Test
Container.

605

OLE Controls: VBX Control Migration

Please note that the .CLW file for Proj2 needs to be rebuilt to include the new classes
added from the PROn project.

~ To rebuild your .CLW file

1 From the File menu, choose Open.

The Open dialog box appears.

2 Select the drive and directory containing the project workspace that you want to
open.

For this example select the COMBINED directory and choose the Proj2 project.

3 Double-click the .RC file icon to open the control resources.

4 Click the Class Wizard button on the App Studio toolbar.

A dialog box will appear, stating that your project's .CLW file does not exist.

S Choose Yes to select the source files to be used.

6 Click OK to select all files in the project and rebuild the .CLW file.

ClassWizard will now open with all classes from Proj2loaded and accessible.

OLE Controls: VBX Control Migration

606

VBX control migration was only available through the VBX template tool, a part of
the ControlWizard found in version l.x of the CDK. Because this tool was removed
from the ControlWizard shipped with Visual C++ 4.0, migrating existing VBX
controls demands version l.x of the CDK. The only option for VBX migration using
VC ++ 4.0 is to create a framework from ControlWizard and manually port the entire
code base of the VBX control into the OLE control framework.

As stated above, developers with existing VBX controls can use the VBX template
tool, found in the CDK ControlWizard, to convert existing VBX controls to the OLE
control format.

The VBX template tool helps you migrate your VBX custom control to an OLE
control. The template tool uses model information in the. VBX file and creates a
Visual C++ project file, as well as source code files for creating the OLE control.
These files can be compiled and linked to produce a working framework for the OLE
control.

Once this framework is built and tested, the next step is to take code from your VBX
source files and place it in the appropriate areas of the generated OLE source files.
The transplanted code will probably require some degree of modification to work in
the new source code files.

This article explains:

• Preparing your. VBX source code files for conversion

• U sing the VBX template tool

OLE Controls: VBX Control Migration

• What gets converted

• Building and testing the framework of your OLE control

• Where to go from here

If you want to port your OLE control framework to Visual C++ 4.0, see the article
OLE Controls: Converting a CDK Project to a Visual C++ Project.

Preparing the vex Custom Control
For the VBX template tool to properly translate the VBX control, you must expose
the VBX control model information to the template builder, using the
VBGetModellnfo function. If your VBX source code does not already define this
function, first define a MODELINFO structure containing a specific Visual Basic
version number, and a NULL-terminated array of MODEL structures. The MFC
OLE Controls sample CIRC3 defines the MODELINFO structure as follows:

LPMODEL modellistCircle[] -
{

&modelCircle.
NULL
} ;

Note Remember to NULL-terminate the array of model pOinters.

MODELINFO modelinfoCircle -
{

VB_VERSION. II VB version being used
modellistCircle II MODEL list
} ;

Note If your . VBX file provides different models to support earlier versions, you should create
similar MODELINFO structures to point to those models. The CIRC3 custom control, for
example, also defines Model i nfoCi rcl e_VBl and Model; nfoCi rcl e_VB2 structures.

Once you have defined the MODELINFO structure(s), you can define the
VBGetModellnfo function, as an export, in your source code. The MFC OLE
Controls sample CIRC3 defines the function:

LPMODELINFO FAR PASCAL _export VBGetModelInfo
(

)

{

}

USHORT usVers;on

if (usVers;on <- VB100_VERSION)
return &modelinfoCircle_Vbl;

if (usVersion <- VB200_VERSION)
return &modelinfoCircle_Vb2;

else
return &modelinfoCircle;

607

OLE Controls: VBX Control Migration

608

Once this function is defined, rebuild your VBX control before using the template
tool.

Running the vex Template Tool
After your VBX control has been built with the VBGetModelInfo function, as
described in the previous topic, you are ready to run the VBX template tool.

As mentioned before, you must be using the ControlWizard that shipped with version
1.x of the CDK. The template tool is not available with Visual c++ 4.0.

If you only need to use the ControlWizard shipped with version 1.x of the CDK, you
can copy two files from the distribution CD. These two files, CTLWZLIB.DLL and
MFCCTLWZ.EXE, can be found in the MSVCCDK directory of the Visual C++
Version 1.52 CD.

~ To run the vex template tool

1 Start ControlWizard by running MFCCTLWZ.EXE from the DOS command
prompt, File Manager, or Windows Explorer.

2 When the ControlWizard dialog box appears, change to the desired drive and
directory and enter a project name. ControlWizard automatically creates a new
subdirectory with the same name as the project.

3 Click the Control Options button. When the Control Options dialog box appears,
choose the Use VBX Control as Template check box.

4 Click the Select VBX Control button.

S When the Use VBX Control as Template dialog box appears, enter the .VBX file
name, including the drive and directory path. Alternatively, you can use the
Browse button to locate and select your. VBX file. All control names defined in
the . VBX file are displayed in the control name drop down list. Select the desired
control name from the drop down list.

Note If you select a .VBX file that does not properly export the model information (as
described in the Note in Preparing the VBX Custom Control), Visual C++ may crash at this
pOint.

6 Click OK twice to close the Use VBX Control as Template dialog box and the
Control Options dialog box. Click OK from ControlWizard to prepare to create the
template.

7 When the New Control Information dialog appears, a summary of the generated
files is displayed. Click the Create button to create all the files for the OLE
control.

8 When the VBX template tool is finished, your project directory should contain the
following files (the files listed here assume the VBX example control,
CIRC3.VBX, was used as the project):

• CIRC3.CLW

OLE Controls: VBX Control Migration

• CIRC3.CPP

• CIRC332.DEF

• CIRC3.DEF

• CIRC3.H

• CIRC3.ICO

• CIRC3.MAK

• CIRC332.MAK

• MAKEFILE

• CIRC3.0DL

• CIRC3.RC

• CIRC3.RC2

• CIRC3CTL.BMP

• CIRC3CTL.CPP

• CIRC3CTL.H

• CIRC3PPG.CPP

• CIRC3PPG.H

• README. TXT

• RESOURCE.H

• STDAFX.CPP

• STDAFX.H

In addition, a subdirectory for the Type library file is created. If you are using the 16-
bit version of the CDK, it is called TLB16. If you are using the 32-bit version of the
CDK, it is called OBJDU.

The README.TXT file contains a summary description of each file created by the
VBX template tool. These files are all that is required to build a complete working
framework of the new OLE control.

What Gets Converted
The template generated by the VBX template tool is similar to the "blank" template
that is generated when you use ControlWizard to create a new control, with the
following differences:

Stock Properties and Events
ControlWizard converts most of the standard properties and events in your. VBX to
fully implemented stock properties and events in the template's source code.

Stock properties supported by the VBX template tool include:

609

OLE Controls: VBX Control Migration

610

• BorderStyle

• Enabled

• Font

• Caption

• Text

• ForeColor

• BackColor

• hWnd

Stock events supported by the VBX template tool include:

• Click

• DblClick

• KeyDown

• KeyPress

• KeyUp

• MouseDown

• MouseMove

• MouseUp

Note A number properties not mentioned above that were formerly "standard" in the .VBX
Control model are automatically supported by OLE as standard "extender" properties (e.g.,
Left, Top, Height, Width); therefore these properties are not needed in an OLE control ,and are
not converted by the VBX template tool.

Currently Unimplemented Properties and Events
Stock properties of the VBX model not supported:

• DragIcon

• DragMode

• MouseCursor

• MousePointer

Stock events of the VBX model not supported:

• DragDrop

• DragOver

• LinkOpen

• LinkClose

• LinkError

OLE Controls: VBX Control Migration

• LinkN otify

Custom Properties and Events
Custom properties and events in your VBX are provided in the template as stub
functions. In order to make these properties and events functional, you must port the
implementation code from your VBX source files into the appropriate files in the new
control template. These places are indicated by similar comments in the template's
source code files:

II TOOO: Initialize your control's instance data here.

Building and Testing the OLE Control Framework
After ControlWizard generates the basic framework for your VBX control, you
should build and test the control to familiarize yourself with OLE control behavior.
The following sections describe this process and demonstrate how to use Test
Container to test your new OLE control.

Creating the Type Library for the OLE Control
Note that the following information only applies if you are using the 16-bit version of
Visual C++. If you are using the 32-bit version of Visual C++, the type library is
automatically generated by the control makefile.

Before you can compile and link the control template, you must create a type library,
used by control containers that use your control. This will be based on the
information contained in the Object Description Library (.ODL) file created by the
porting tool.

~ To create the type library

1 Load the project make file that you generated by running the VBX template tool.

2 From the Tools menu, choose Make TypeLib. MKTYPLIB.EXE creates a type
library based on the .ODL file in the project. After building successfully,
MKTYPLIB automatically adds the resulting *. TLB file to your project. The
information in this .TLB file will be built into your .DLL as a resource.

Compiling, Linking, and Registering the OLE Control Framework
Note that the following information only applies if you are using the 16-bit version of
Visual C++.

After creating the Type Library, you can build the framework control by choosing
Build from the Visual C++ Project menu.

When the project has built successfully, you must register the new control before you
can test it. Choose Register Control from the Tools menu. A message box appears,
indicating that the control was successfully registered.

611

OLE Controls: VBX Control Migration

612

Testing the OLE Control Framework
For procedures on testing your OLE control framework, see the article Test
Container.

Where to Go From Here
When you are satisfied that the control framework is working properly, the next step
is to port the implementation of your OLE control's custom properties and events
from your VBX source code to the new control's source code files. To do this, use
ClassWizard and the implementation guidelines in the OLE Controls articles.
Remember to back up your files frequently and to use Test Container to test each new
block of code as you go.

Once the VBX control is ported to a CDK project you could port the CDK project to
Visaul C++ 4.0 by following the steps given in the article OLE Controls: Converting
a CDK Project to a Visual C++ Project.

See Also OLE Controls: Converting a CDK Project to a Visual C++ Project

OLE Controls: Converting a CDK Project to a Visual C++ Project

OLE Controls: Converting a CDK Project to a Visual
C++ Project

This article discusses converting existing OLE Custom Control Developer's Kit
(CDK) projects (versions 1.0 and 1.1) to Visual C++ 4.0 projects. Because the support
for OLE controls has been fully integrated into MFC, there are several changes that
need to be made to an existing project before the control can be successfully built.

In summary, the necessary changes are:

• Remove all references to the OCS30 libraries.

• Remove RESIDENTNAME from the module definition (.DEF) file.

• Delete the contents of the project's output directories and TLB 16 directory.

For demonstration purposes, this article converts a project named SAMPLE32.

~ To remove all references to the OCS30 libraries

1 In Visual C++, open the control's 32-bit project file, in this case,
SAMPLE32.MAK.

2 From the Build menu, choose the Settings command.

The Project Settings dialog box will appear.

3 Choose the Link tab.

4 Select the first target in the Settings For list box. In this case, Win32 ANSI Debug
(SAMPLE.OCX).

5 In the Object/Library Modules text box, delete any library name of the form
"OCS30*.LIB." For example, when the Win32 ANSI Debug target is selected,
delete the library name "OCS30D.LIB."

6 Repeat steps 4 and 5 for each target in the Settings For list box.

7 Click the OK button to accept the changes and dismiss the dialog.

~ To remove RESIDENTNAME from the module definition file

1 In Visual C++, open the control's 32-bit module definition file, in this case,
SAMPLE32.DEF.

2 Delete each occurrence of the string RES! DENTNAME from the file. There are
typically four occurrences of this string.

For example, the following line of code:

DllCanUnloadNow @1 RESIDENTNAME

should be changed to:

DllCanUnloadNow @1

613

OLE Controls: Converting a CDK Project to a Visual C++ Project

3 From the File menu, choose Save.

The final step is to remove any existing directories and project files from earlier
builds.This ensures a clean build with the new project settings.

~ To delete the contents of the project's output directories and the TLB16 subdirectory

• From the DOS command prompt, File Manager, or Windows Explorer delete the
directories named "TLB16", "OBJ32", "OBJD32", "OBJU32" and "OBJDU32"
from the project directory.

ANSI/Unicode Changes
One of the changes that occurred between the original release of the CDK and its
integration into VC ++ 4.0, was the removal of the MFCANS32 DLL. This DLL was
responsible for the ANSI/Unicode translation layer used for Unicode-based OLE
interfaces with an ANSI-targeted control. If your control supported licensing, it was
affected by this change.

In order for your control to function properly, you will need to make some code
changes to the control implementation (.CPP) files.

• If your control supports licensing, change the declaration of the license string,
found in the control implementation (.CPP) file, to the following:

static const OLECHAR BASED_CODE _szLicString[] =
OLESTR("Licensed Control Copyright (c) 1994-1995 My Corporation");

• Every direct call to the OLE API that passes a string as a parameter must first
convert the string, by making a call to MultiByteToWideChar, and then passing
the result to the SysAllocString function. The following example first translates a
string constant and then calls the function SysAllocString directly:

char szMyString[] = "Licensed Control Copyright (c) 1994-1995 My
Corporation"; //a multi-byte string

BSTR strWide; //wide string passed to OLE function
WCHAR szwMyWideString[80];
MultiByteToWideChar(CP_ACP, 0, szMyString, _tcslen(szMyString),
szwMyWideString, 80);

strWide = SysAllocString(szwMyWideString);

See Also OLE Controls, OLE ControlWizard

OLE ControlWizard

614

OLE ControlWizard (hereafter referred to as ControlWizard) is a custom App Wizard
that can be used to create the framework of an OLE control project.

You use ControlWizard to create a set of starter files for an OLE control. This set
includes all the files necessary to build the control, including source and header files,
resource files, a module-definition file, a project file, an object description language

OLE ControlWizard: How ControlWizard Works

file, and so on. Starter files generated by ControlWizard are compatible with
ClassWizard, and you can then use ClassWizard to define the control's events,
properties, and methods, some of which have been already implemented in MFC.

Creating a project with ControlWizard provides a large amount of built-in
functionality. This includes code to draw the control, serialize data, and define
dispatch, event, and message maps that you expand later in the development cycle.

To further investigate ControlWizard use and capabilities, you can create and build a
simple OLE control, similar to the MFC OLE Controls sample CIRCLE, found in
Chapter 20, Creating the Circle Control, in Tutorials.

The following articles provide additional information about ControlWizard:

• OLE ControlWizard: How ControlWizard Works

• OLE ControlWizard: Files Created

OLE ControlWizard: How ControlWizard Works
ControlWizard is launched from either the New Workspace dialog box or the Insert
Project dialog box. Once started, ControlWizard displays a series of dialog boxes
listing options for OLE control features. You select options by cycling through the
dialog boxes, forwards or backwards. You can change the options at any time before
you create the control.

When the user finishes running ControlWizard, the New Project Information dialog
box displays information about the control to be created, such as its name, the names
of the control classes, the names of the files that make up the project, and the
control's features. Once you are satisfied with the proposed project, click the OK
button to create the project files. For more information about the project files, see the
article OLE ControlWizard: Files Created.

When ControlWizard finishes creating an OLE control project, it automatically opens
in the development environment.

~ To create a new project and an OLE control

1 Start Visual C++.

2 From the File menu, choose New.

The New dialog box appears.

3 In the New box, select Project Workspace.

The New box allows selection of various file types.

4 Click OK.

The New Workspace dialog box appears.

5 In the Name box, type a project name.

615

OLE ControlWizard: How ControlWizard Works

616

A directory for the new project is added to the currently specified workspace
directory structure. ControlWizard uses the name that you specify in the Project
N arne box to derive default names for most of the files and classes it creates for the
control project.

6 In the Type list box, select OLE ControlWizard

7 Specify the target Platforms for this project.

Use the list box provided to select any of the available platforms.

Note Win32 is the default platform. To select other platforms, the associated cross
development edition of Visual C++ must be installed.

8 In the Location box, specify the path of a new workspace. A workspace will be
created if you specify one that does not exist.

-or-

Use the Browse button to select a drive and a directory.

9 Choose Create.

Microsoft Developer Studio creates a workspace and/or inserts a project into a
workspace. With the workspace structure created, ControlWizard displays the
various options of the control project. For more information on projects and
workspaces, see Chapter 2, Working with Projects, in the Visual C++ User's
Guide.

Project Options
The following options are available in the Project Options dialog box, the first dialog
box ControlWizard displays:

Number of Controls ControlWizard can generate up to 99 separate controls per
project. Each control has a control class and a property page class. For more
information about these control classes, see Control Options.

License Validation ControlWizard inserts several functions and generates a separate
.LIC file that supports licensing for the control. For more information on
licensing, see OLE Controls: Licensing an OLE Control.

Generate Source Comments ControlWizard inserts comments in the source and
header files that guide you in writing your control. The comments indicate where
you need to add your own code. This option is enabled by default.

Context Sensitive Help ControlWizard generates a set of help files that are used to
provide context-sensitive Help. Help support requires using the Help compiler,
which is provided with Visual C++.

Figure 1 shows the Project Options dialog box.

OLE ControlWizard: How ControlWizard Works

Figure 1 The Project Options Dialog Box

Control Options
The Control Options dialog box, the second displayed by ControlWizard, allows you
to specify certain options for each control in your project. Use the Control Name
drop-down list box to choose the control whose options you wish to modify. For more
information on the Edit Names button, see Edit Names Dialog Box in this article.

Activates when visible Indicates to the control container that the control prefers to
be activated automatically when it is visible. The container is not required to
support this request.

Invisible at runtime Indicates to the control container that it should be invisible
when the container is operating in "run time" mode. When the container is in
"design time" mode, the control will be visible. Some containers may ignore the
Invisible at runtime option. In such containers, the control will be visible at all
times.

Available in "Insert Object" dialog Enabling this option, disabled by default, makes
the control appear in the Insert Object dialog of every OLE container application.
Since some OLE containers are not "control-aware," they may not provide a way
to activate controls with the mouse. Therefore, this option also adds an "Edit" verb
to the control's set of available verbs.

If you initially create the control with this option disabled, and later decide to
enable it in your code, remember to also add an Edit verb in the control message
map. The Edit verb entry should look like this:

ON_OLEVERB(AFX_IDS_VERB_EDIT, OnEdit)

Has an "About" box Creates a standard About box for the control.

Acts as a simple frame control Allows the control to behave as a simple frame. For
more information, see New MiscStatus Bits and "Simple Frame" Containment of
Controls in Books Online and COleControl::EnableSimpleFrame in Class
Library Reference.

617

OLE ControlWizard: How ControlWizard Works

618

Subclassing a Windows control Use this drop-down combo box to subclass common
Windows controls, such as buttons, scrollbars, and edit controls.

Figure 2 shows the Control Options dialog box.

Figure 2 The Control Options Dialog Box

Edit Names Dialog Box
ControlWizard uses the project name you specify in the Project Name dialog box to
name the control's classes and files. The Edit Names dialog box, accessed by clicking
the Edit Names button in the Control Options dialog box, allows you to modify some
of the assigned names. Names you can change include the Short name (base name of
the class), the Type name (the name exposed to the control user), and the Type ID
(the ID of the OLE control class).

The following discussion assumes that the project name is PROJNAME.

Note Modifying the short name of the control class will automatically updates the values of
the edit boxes for various parts of a selected class.

Below the Short Name edit box there are two groups of edit box controls: Control and
Property Page.

Control
This is the main control class. You can change the values for class name, header file,
implementation file, type name, and Type ID.

Property Page
This is the control property page class. The property page allows the control user to
view and modify the control's properties. You can change the values for class name,
header file, implementation file, type name, and Type ID.

Figure 3 shows the Edit Names dialog box.

OLE ControlWizard: Files Created

Figure 3 The Edit Names Dialog Box

Toolbar Bitmap Support
When you use ControlWizard to generate the framework for the control, it creates a
default bitmap as part of the project. Containers take this image and place it as a
button in a toolbox (for example, Visual Basic's toolbox) or toolbar. When you have
finished developing your control, you should use the Visual C++ resource editor to
modify this bitmap to more accurately represent the control's purpose. See
Modifying The Control Bitmap in Chapter 20 of Tutorials for instructions on
modifying the toolbar bitmap.

Note Unlike VBX controls, the OLE control bitmap shouldn't include borders, beveled edges,
or margins around the edge. The bitmap should also have a light-gray background, which is
the standard for toolbox bitmaps.

OLE ControlWizard: Files Created
ControlWizard creates a core set of files for every control. Additional files are created
if context-sensitive Help or license validation options are checked in the Project
Options dialog. This article first describes the core files every control must have, and
then describes additional files that implement other project options.

ControlWizard uses the project name you specified in the Name box to derive
filenames and class names. In the following descriptions, where the full project name
is used in the filename, PROJNAME is used as a placeholder for the name you
specified.

Note The name substitutions indicated in these filenames might not apply if you have used
the Edit Names dialog box to alter any of them.

Standard ControlWizard Files
This section describes the categories of standard files created by ControlWizard,
grouped by function. ControlWizard also creates a file named README.TXT

619

OLE ControlWizard: Files Created

620

(located in the parent directory of the control project) that describes each file in your
project using the actual filenames created by ControlWizard.

Project and Makefiles
PROJNAME.MAK This is the project file used within the development

environment. It is also compatible with NMAKE, which is shipped with Visual
C++.

PROJNAME.CLW This file is used by ClassWizard to store information about the
classes in your project

PROJNAME.ODL This file contains the Object Description Language source code
for the control type library. This file is used by Visual C++ to generate a type
library. The generated library exposes the control's interface to other OLE
Automation clients.

Resource and Module-Definition Files
PROJNAME.RC, RESOURCE.H This is the resource file for the project and its

header file. The resource file contains a bitmap for use in a palette or toolbar, a
dialog box used by the property page, and a default" About" box.

PROJNAME.lCO This is the icon file for the generic OLE control. This icon is used
in the About box.

PROJNAMECTL.BMP This file is used to represent your OLE control in a toolbar
or palette. This bitmap is included in the project's resource file.

PROJNAME.DEF This is the module-definition file for the project. It provides the
name and description of the control, as well as the size of the run-time heap.

Control Source and Header Files
PROJNAME.H This is the main include file for the OLE control DLL. It derives the

CPrjnameApp class from CWinApp and declares an InitInstance member
function.

PROJNAME.CPP This file creates an instance of CProjNameApp. The member
function CProj NameApp: : Ini tlnstance registers the control's object factory with
OLE by calling COleObjectFactory::RegisterAlI and makes a call to
AfxOLEControlInit. In addition, the member function
CProj NameApp: : Exi tlnstance is used to unload the control from memory with a
call to AfxOleControlTerm.

This file also registers and unregisters the control in the Windows registration
database by implementing the DlIRegisterServer and DIlUnregisterServer
functions.

PROJNAMECTL.H, PROJNAMECTL.CPP These files declare and implement the
CProjnameCtrl class. CProjnameCtrl is derived from COleControl, and skeleton
implementation of some member functions are defined that initialize, draw, and

OLE ControlWizard: Files Created

serialize (load and save) the control. Message, event, and dispatch maps are also
defined.

PROJNAMEPPG.H, PROJNAMEPPG.CPP These files declare and implement the
CProj namePropPage class. CProj namePropPage is derived from
COlePropertyPage and a skeleton member function, DoDataExchange, is
provided to implement data exchange and validation.

Precompiled Header and Types Files
STDAFX.H, STDAFX.CPP These files are used to build a precompiled header

(PCH) file named STDAFX.PCH and a precompiled types (PCT) file named
STDAFX.OBJ.

Files Added By Options
Help support provides a number of files that implement context-sensitive Help. These
files are contained in the parent directory and HLP subdirectory of the project.
License validation provides a .LIC file contained in the top-level directory of the
project.

Help Option
MAKEHELP.BAT This batch file (located in the parent directory) is used to create

the help file PROJNAME.HLP for your OLE control.

PROJNAME.HPJ This file (located in the parent directory) is the Help project file
used by the Help compiler to create your OLE control's Help file.

PROJNAME.RTF This Help file (located in the HLP subdirectory) contains template
topics that you can edit and information on customizing your .HPJ file.

BULLET.BMP This bitmap is used by standard Help file topics to represent bulleted
lists.

License Option
PROJNAME.LIC This is the user license file. This file must be present in the same

directory as the control DLL to allow an instance of the control to be created in a
design-time environment. Typically, you will distribute this file with your control,
but your customers will not distribute it.

For more information on providing licensing support for your control, see the article
OLE Controls: Licensing an OLE Control.

Now that you are familiar with the files created by ControlWizard, several articles
discuss important topics that you can use to enhance the usability and performance of
your OLE control.

• The Events articles discusses stock and custom events, including how events are
implemented and how to add events using Class Wizard.

621

OLE ControlWizard: Files Created

622

• The Methods and Properties articles discuss stock and custom properties and
methods. These articles explain how properties and methods are implemented
using MFC and how to use Class Wizard to add stock and custom properties and
methods.

OLE Overview
OLE is a mechanism that allows users to create and edit documents containing items
or "objects" created by mUltiple applications.

Note OLE was originally an acronym for Object Linking and Embedding. However, it is now
referred to simply as OLE.

OLE documents, historically called "compound documents," seamlessly integrate
various types of data, or "components." Sound clips, spreadsheets, and bitmaps are
typical examples of components found in OLE documents. Supporting OLE in your
application allows your users to use OLE documents without worrying about
switching between the different applications; OLE does the switching for you.

You use a "container application" to create compound documents and a "server
application" or "component application" to create the items within the container
document. Any application you write can be a container, a server, or both.

OLE incorporates many different concepts that all work toward the goal of seamless
interaction between applications. These areas include the following:

Linking and Embedding Linking and Embedding are the two methods for storing
items inside a OLE document that were created in another application. For general
information on the differences between the two, see the article OLE Overview:
Linking and Embedding article. For more detailed information, see the articles
Containers and Servers.

In-Place Activation Activating an embedded item in the context of the container
document is called "in-place activation" or "visual editing." The container
application's interface changes to incorporate the features of the component
application that created the embedded item. Linked items are never activated "in
place" because the actual data for the item is contained in a separate file, out of the
context of the application containing the link. For more information on in-place
activation, see the article Activation.

Note Linking and embedding and in-place activation provide the main features of OLE visual
editing.

Automation OLE Automation allows one application to drive another application.
The driving application is known as an "automation client" or "automation
controller," and the application being driven is known as an "automation server"
or "automation component." For more information on automation, see the articles
Automation Clients and Automation Servers.

Compound Files Compound files provide a standard file format that simplifies
structured storing of compound documents for OLE applications. Within a
compound file, "storages" have many features of directories and "streams" have

OLE Overview

623

OLE Overview

many features of files. This technology is also called "structured storage." For
more information on compound files, see the article Containers: Compound Files.

Uniform Data Transfer Uniform Data Transfer (UDT) is a set of interfaces that
allow data to be sent and received ina standard fashion, regardless of the actual
method chosen to transfer the data. UDT forms the basis for data transfers by drag
and drop. UDT now serves as the basis for existing Windows data transfer, such as
the Clipboard and dynamic data exchange (DDE). For more information on UDT,
see the article Data Objects and Data Sources (OLE).

Drag and Drop Drag and drop is an easy-to-use, direct-manipulation technique to
transfer data between applications, between windows within an application, or
even within a single window in an application. The data to be transferred is simply
selected and dragged to the desired destination. For more information on drag and
drop, see the article Drag and Drop.

Component Object Model The Component Object Model (COM) provides the
infrastructure used when OLE objects communicate with each other. The MFC
OLE classes simplify COM for the programmer. For more information about
COM, see Chapter 1 in the OLE 2 Programmer's Reference, Volume 1.

Some of the more important general OLE topics are covered in the following articles:

• OLE Overview: Linking and Embedding

• OLE Overview: Containers and Servers

• OLE Overview: Implementation Strategies

• OLE Overview: Microsoft Foundation Class Library Implementation

For information about handling context-sensitive Help in OLE applications, see the
article Help: OLE Support for Help.

For general OLE information not found in the above articles, see the OLE 2
Programmer's Reference, Volume 1. Another good source of information is Kraig
Brockschmidt's book Inside OLE 2 (Microsoft Press, 1994).

OLE Overview: Linking and Embedding

624

This article defines the OLE terms "linking" and "embedding."

Using the Paste command in a container application can create an "embedded
component" or "embedded item." The source data for an embedded item is stored as
part of the OLE document that contains it. In this way, a document file for a word
processor document can contain not only text, but also bitmaps, graphs, formulas, or
any other type of data.

OLE provides another way to incorporate data from another application: creating a
"linked component" or "linked item" or simply "link." The steps for creating a linked
item are similar to those for creating an embedded item, except that you use the Paste

Link command instead of the Paste command. Unlike an embedded component, a
linked component stores a path to the original data, which is often in a separate file.

For example, if you are working in a word processor document and create a linked
item to some spreadsheet cells, the data for the linked item is stored in the original
spreadsheet document. The word processor document contains only the information
specifying where the item can be found; that is, it contains a link to the original
spreadsheet document. When you double-click the cells, the spreadsheet application
is launched and the original spreadsheet document is loaded from where it was
stored.

Every OLE item, whether embedded or linked, has a type associated with it based on
the application that created it. For example, a Microsoft Paintbrush item is one type
of item, while a Microsoft Excel item is another type. However, some applications
can create more than one item type; for example, Microsoft Excel can create
worksheet items, chart items, and macro sheet items. Each of these items can be
uniquely identified by the system using a "Class Identifier" or CLSID.

For more information on the kind of data stored in embedded and linked items, see
the OLE 2 Programmer's Reference, Volume 1.

See Also OLE Overview: Containers and Servers, Containers: Client Items, Servers:
Server Items

OLE Overview: Containers and Servers
This article explains and defines container and server applications.

A "container application" is an application that can incorporate embedded or linked
items into its own documents. The documents managed by a container application
must be able to store and display OLE document components as well as the data
created by the application itself. A container application must also allow users to
insert new items or edit existing items by activating server applications when
necessary. The user-interface requirements of a container application are listed in the
article Containers: User-Interface Issues.

A "server application" or "component application" is an application that can create
OLE document components for use by container applications. Server applications
usually support copying their data to the Clipboard or drag and drop so that a
container application can insert the data as an embedded or linked item. An
application can be both a container and a server.

Most servers are stand-alone applications or "full-servers"; they can either be run as
stand-alone applications or can be launched by a container application. A "mini
server" is a special type of server application that can be launched only by a
container; it cannot be run as a stand-alone application. Microsoft Draw and
Microsoft Graph servers are examples of mini-servers.

OLE Overview

625

OLE Overview

Containers and servers do not communicate directly. Instead, they communicate
through the OLE system DLLs. These DLLs provide functions that containers and
servers call, and the containers and servers provide callback functions that the DLLs
call.

U sing this means of communication, a container doesn't need to know the
implementation details of the server application. It allows a container to accept items
created by any server without having to define the types of servers with which it can
work. As a result, the user of a container application can take advantage of future
applications and data formats. As long as these new applications are OLE servers, a
compound document will be able to incorporate items created by those applications.

See Also OLE Overview: Microsoft Foundation Class Library Implementation,
Containers, Servers, Containers: Client Items, Servers: Server Items

OLE Overview: Implementation Strategies

626

Depending on your application, there are four possible implementation strategies for
adding OLE support:

• You are writing a new application.

This situation usually requires the least work. You simply run AppWizard and
select OLE options to create a skeleton application. For information on the OLE
options in AppWizard and what they do, see the article AppWizard: OLE Support.

• You have a program written with the Microsoft Foundation Class Library version
2.0 or higher that does not support OLE.

Create a new application with App Wizard as above, then copy and paste the code
from the new application into your existing application. This will work for servers,
containers, or automated applications. See the MFC Tutorial sample, SCRIBBLE,
Step 7 for an example of this strategy.

• You have a Microsoft Foundation Class Library program that implements OLE
version 1.0 support.

See Technical Note 41 under MFC in Books Online for this conversion strategy.

• You have an application that was not written using the Microsoft Foundation
classes and that mayor may not have implemented OLE support.

This situation requires the most work. One approach is to create a new
application, as in the first strategy, then copy and paste your existing code into it.
If your existing code is written in C, you may need to modify it so it can compile
as C++ code. If your C code calls the Windows API, you do not have to change it
to use the Microsoft Foundation classes. This approach likely will require some
restructuring of your program to support the document/view architecture used by
versions 2.0 and higher of the Microsoft Foundation classes. For more information
on this architecture, see Technical Note 25 under MFC in Books Online.

OLE Overview

Once you have decided on a strategy, you should either read the Containers or Servers
family of articles (depending on the type of application you are writing), or examine
the sample programs, or both. The MFC OLE samples OCLIENT and HIERSVR
show how to implement the various aspects of containers and servers, respectively. At
various points throughout this encyclopedia, you will be referred to certain functions
in these samples as examples of the techniques being discussed. The sample
programs may be found under Samples in Books Online.

See Also Containers: Implementing a Container, Servers: Implementing a Server,
AppWizard: OLE Support

OLE Overview: Microsoft Foundation Class Library
Implementation

Because of the size and complexity of the raw OLE API, calling it directly to write
OLE applications can be very time-consuming. The goal of the Microsoft Foundation
Class Library implementation of OLE is to reduce the amount of work you have to do
to write full-featured, OLE-capable applications.

This article explains the parts of the OLE API that have not been implemented inside
MFC. The discussion also explains how what is implemented maps to the OLE 2
SDK.

Portions of OLE Not Implemented by the Class Library
There are a few interfaces and features of OLE not directly provided by MFC. If you
want to use these features, you can call the OLE API directly.

IMoniker Interface The IMoniker interface is implemented by the class library (for
example, the COleServerItem class), but is not exposed to the programmer. For
more information about this interface, see Chapter 8 in the OLE 2 Programmer's
Reference, Volume 1.

IUnknown and IMarshal Interfaces The IUnknown interface is implemented by the
class library, but is not exposed to the programmer. The IMarshal interface is not
implemented by the class library, but is used internally. OLE Automation servers
built using the class library already have marshalling capabilities built in. For
more information about these interfaces, see Chapter 5 in the OLE 2
Programmer's Reference, Volume 1.

Docfiles (Compound Files) Compound files are partially supported by the class
library. None of the functions that directly manipulate compound files beyond
creation are supported. MFC uses class COleFileStream to support manpulation
of streams with standard file functions. For more information, see the article
Containers: Compound Files.

In-Process Servers and Object Handlers In-process servers and object handlers
allow implementing visual editing data or full component object model (COM)
objects in a DLL. To do this, you can implement your DLL by calling the OLE

627

OLE Overview

628

API directly. However, if you are writing an OLE Automation server and your
server has no user interface, you can use App Wizard to make your server an in
process server and put it completely into a DLL. For more information about these
topics, see the article Automation Servers and see Chapters 1 and 5 in the OLE 2
Programmer's Reference, Volume 1.

Tip The easiest way to implement an OLE Automation server is to place it in a DLL. MFC
supports this approach.

For detailed information on how the Microsoft Foundation OLE classes implement
OLE interfaces, see Technical Notes 38, 39, and 40 under MFC in Books Online.

See Also OLE Overview: Implementation Strategies, OLE Overview

Porting
See the articles MFC: Porting MFC Applications to 32-Bit and MFC: Porting Tips.

Additional information is available in the following locations:

• In Programming Techniques: Chapter 1, Porting 16-Bit Code to 32-Bit Windows.

• Under MFC in Books Online: Technical Note 19, Updating Existing MFC
Applications to MFC 3.0. This note describes migration to MFC version 2.0 and
above.

• In the MFC Migration Guide. The MFC Migration Guide, which documents the
MFC Migration Kit, describes how to migrate applications written for Windows in
C to C++, using MFC. The MFC Migration Guide and the MFC Migration Kit are
available in the MFCKIT directory on the Visual C++ CD-ROM disc. The MFC
Migration Guide is not available in Books Online.

• Under Key Visual C++ Topics/programming Topics/porting in the Info View pane
of the Microsoft Developer Studio Workspace window.

Print Preview
See the article Printing.

See Also Printing: The Print Preview Architecture

Printing
This group of articles explains how printing is implemented in the Microsoft
Foundation Class Library (MFC) and how to take advantage of the printing
architecture already built into the framework. The articles also explain how MFC
supports easy implementation of print preview functionality and how you can use and
modify that functionality.

Microsoft Windows implements device-independent display. In MFC, this means that
the same drawing calls, in the anD raw member function of your view class, are
responsible for drawing on the display and on other devices, such as printers. For
print preview, the target device is a simulated printer output to the display.

Your Role in Printing vs. the Framework's Role
Your view class has the following responsibilities:

• Inform the framework how many pages are in the document.

• When asked to print a specified page, draw that portion of the document.

Printing

629

Printing

• Allocate and deallocate any fonts or other graphics device interface (GDI)
resources needed for printing.

• If necessary, send any escape codes needed to change the printer mode before
printing a given page; for example, to change the printing orientation on a per
page basis.

The framework's responsibilities are as follows:

• Display the Print dialog box.

• Create a CDC object for the printer.

• Call the StartDoc and EndDoc member functions of the CDC object.

• Repeatedly call the StartPage member function of the CDC object, inform the
view class which page should be printed, and call the EndPage member function
of the CDC object.

• Call overridable functions in the view at the appropriate times.

The following articles discuss how the framework supports printing and print
preview:

• Printing: How Default Printing Is Done

• Printing: Multipage Documents

• Printing: Headers and Footers

• Printing: Allocating GDI Resources

• Printing: The Print Preview Architecture

See Also In Tutorials: Chapter 10, Enhancing Printing

Printing: How Default Printing Is Done

630

This article explains the default printing process in Windows in terms of the MFC
framework.

In MFC applications, the view class has a member function named OnDraw which
contains all the drawing code. OnDraw takes a pointer to a CDC object as a parameter.
That CDC object represents the device context to receive the image produced by
OnDraw. When the window displaying the document receives a WM_PAINT
message, the framework calls OnDraw and passes it a device context for the screen (a
CPaintDC object, to be specific). Accordingly, OnDraw's output goes to the screen.

In programming for Windows, sending output to the printer is very similar to sending
output to the screen. This is because the Windows graphics device interface (GDI) is
hardware-independent; you can use the same GDI functions for screen display or for
printing simply by using the appropriate device context. If the CDC object that
OnDraw receives represents the printer, OnDraw's output goes to the printer.

This explains how MFC applications can perform simple printing without requiring
extra effort on your part. The framework takes care of displaying the Print dialog box
and creating a device context for the printer. When the user selects the Print
command.from the File menu, the view passes this device context to OnDraw, which
draws the document on the printer.

However, there are some significant differences between printing and screen display.
When you print, you have to divide the document into distinct pages and display
them one at a time, rather than display whatever portion is visible in a window. As a
corollary, you have to be aware of the size of the paper (whether it's letter size, legal
size, or an envelope). You may want to print in different orientations, such as
landscape or portrait mode. The Microsoft Foundation Class Library can't predict
how your application will handle these issues, so it provides a protocol for you to add
these capabilities.

That protocol is described in the article Printing: Multipage Documents.

See Also In the Class Library Reference: CDC

Printing: Multipage Documents
This article describes the Windows printing protocol and explains how to print
documents that contain more than one page. The article covers the following topics:

• Printing protocol

• Overriding view class functions

• Pagination

• Printer pages vs. document pages

• Print-time pagination

The Printing Protocol
To print a multipage document, the framework and view interact in the following
manner. First the framework displays the Print dialog box, creates a device context
for the printer, and calls the StartDoc member function of the CDC object. Then, for
each page of the document, the framework calls the StartPage member function of
the CDC object, instructs the view object to print the page, and then calls the
EndPage member function. If the printer mode must be changed before starting a
particular page, the view object sends the appropriate escape code by calling the
Escape member function of the CDC object. When the entire document has been
printed, the framework calls the EndDoc member function.

Overriding View Class Functions
The CView class defines several member functions that are called by the framework
during printing. By overriding these functions in your view class, you provide the

Printing

631

Printing

632

connections between the framework's printing logic and your view class's printing
logic. Table 1 lists these member functions.

Table 1 CView's Ove(ridable Functions for Printing

Name

OnPreparePrinting

OnBeginPrinting

OnPrepareDC

OnPrint

OnEndPrinting

Reason for overriding

To insert values in the Print dialog box, especially the length of
the document

To allocate fonts or other GDI resources

To adjust attributes of the device context for a given page, or to
do print-time pagination

To print a given page

To deallocate GDI resources

You can do printing-related processing in other functions as well, but these functions
are the ones that drive the printing process.

Figure 1 illustrates the steps involved in the printing process and shows where each
of CView's printing member functions are called. The rest of this article explains
most of these steps in more detail. Additional parts of the printing process are
described in the article Printing: Allocating ODI Resources.

Figure 1 The Printing Loop

Functions called by the framework Recommended actions when overriding

(

Set length of document, if known.
CMyView::OnPreparePrinting -------/ Call DoPreparePrinting to display

~ dialog box and create DC.

(
Set length of document based on DC,

CMyView::OnBeginPrinting --------1 if not set already. Allocate GDI resources.

~
CDC::StartDoc

~ [Change viewport origin or other DC
CMyView::OnPrepareDC --------/ attributes. If length of document not

~ specified, check for end of document.

CDC::StartPage

~
(

Print headers, footers, etc.
CMyView::OnPrint ----------/ Print specified page; call OnDraw if

~ application is WYSIWYG.

CDC::EndPage

~
CDC::EndDoc

~
CMyView::OnEndPrinting -------I(Deallocate GDI resources.

Pagination
The framework stores much of the information about a print job in a CPrintInfo
structure. Several of the values in CPrintInfo pertain to pagination; these values are
accessible as shown in Table 2.

Printing

633

Printing

634

Table 2 Page Number Information Stored in CPrintlnfo

Member variable or
function name(s)

GetMinPage / SetMinPage

GetMaxPage / SetMaxPage

GetFromPage

GetToPage

m_nCurPage

Page number referenced

First page of document

Last page of document

First page to be printed

Last page to be printed

Page currently being printing

Page numbers start at 1; that is, the first page is numbered 1, not O. For more
information about these and other members of CPrintlnfo, see the Class Library
Reference.

At the beginning of the printing process, the framework calls the view's
OnPreparePrinting member function, passing a pointer to a CPrintlnfo structure.
App Wizard provides an implementation of OnPreparePrinting that calls
DoPreparePrinting, another member function of CView. DoPreparePrinting is the
function that displays the Print dialog box and creates a printer device context.

At this point the application doesn't know how many pages are in the document; it
uses the default values 1 and OxFFFF for the numbers of the first and last page of the
document. If you know how many pages your document has, override
OnPreparePrinting and call SetMaxPage for the CPrintlnfo structure before you
send it to DoPreparePrinting; this lets you specify the length of your document.

DoPreparePrinting then displays the Print dialog box; when it returns, the
CPrintlnfo structure contains the values specified by the user. If the user wishes to
print only a selected range of pages, he or she can specify the starting and ending
page numbers in the Print dialog box; the framework retrieves these values using the
GetFromPage and GetToPage functions. If the user doesn't specify a page range, the
framework calls GetMinPage and GetMaxPage and uses the values returned to print
the entire document.

For each page of a document to be printed, the framework calls two member
functions in your view class, OnPrepareDC and OnPrint, and passes each function
two parameters: a pointer to a CDC object and a pointer to a CPrintlnfo structure.
Each time the framework calls OnPrepareDC and OnPrint, it passes a different
value in the m _ nCurPage member of the CPrintlnfo structure. In this way the
framework tells the view which page should be printed.

The OnPrepareDC member function is also used for screen display; it makes
adjustments to the device context before drawing takes place. OnPrepareDC serves a
similar role in printing, but there are a couple of differences: first, the CDC object
represents a printer device context instead of a screen device context, and second, a
CPrintlnfo object is passed as a second parameter. (This parameter is NULL when
OnPrepareDC is called for screen display.) Override OnPrepareDC to make

adjustments to the device context based on which page is being printed; for example,
you can move the viewport origin and the clipping region to ensure that the
appropriate portion of the document gets printed.

The OnPrint member function performs the actual printing of the page. The article
Printing: How Default Printing Is Done shows how the framework calls OnDraw
with a printer device context to perform printing. More precisely, the framework calls
OnPrint with a CPrintInfo structure and a device context, and OnPrint passes the
device context to OnDraw. Override OnPrint to perform any rendering that should
be done only during printing and not for screen display; for example, to print headers
or footers (see the article Printing: Headers and Footers for more information). Then
call OnDraw from the override of OnDraw to do the rendering common to both
screen display and printing.

The fact that OnDraw does the rendering for both screen display and printing means
that your application is WYSIWYG: "What you see is what you get." However,
suppose you aren't writing a WYSIWYG application. For example, consider a text
editor that uses a bold font for printing but displays control codes to indicate bold text
on the screen. In such a situation, you use OnDraw strictly for screen display. When
you override OnPrint, substitute the call to OnDraw with a call to a separate
drawing function. That function draws the document the way it appears on paper,
using the attributes that you don't display on the screen.

Printer Pages vs. Document Pages
When you refer to page numbers, it's sometimes necessary to distinguish between the
printer's concept of a page and a document's concept of a page. From the point of
view of the printer, a page is one sheet of paper. However, one sheet of paper doesn't
necessarily equal one page of the document. For example, if you're printing a
newsletter, where the sheets are to be folded, one sheet of paper might contain both
the first and last pages of the document, side by side. Similarly, if you're printing a
spreadsheet, the document doesn't consist of pages at all; instead, one sheet of paper
might contain rows 1 through 20, columns 6 through 10.

All the page numbers in the CPrintInfo structure refer to printer pages. The
framework calls OnPrepareDC and OnPrint once for each sheet of paper that will
pass through the printer. When you override the OnPreparePrinting function to
specify the length of the document, you must use printer pages. If there is a one-to
one correspondence (that is, one printer page equals one document page), then this is
easy. If, on the other hand, document pages and printer pages do not directly
correspond, you must translate between them. For example, consider printing a
spreadsheet. When overriding OnPreparePrinting, you must calculate how many
sheets of paper will be required to print the entire spreadsheet and then use that value
when calling the SetMaxPage member function of CPrintInfo. Similarly, when
overriding OnPrepareDC, you must translate m _ nCurPage into the range of rows
and columns that will appear on that particular sheet and then adjust the viewport
origin accordingly.

Printing

635

Printing

Print-Time Pagination
In some situations, your view class may not know in advance how long the document
is until it has actually been printed. For example, suppose your application isn't
WYSIWYG, so a document's length on the screen doesn't correspond to its length
when printed.

This causes a problem when you override OnPreparePrinting for your view class:
you can't pass a value to the SetMaxPage function of the CPrintlnfo structure,
because you don't know the length of a document. If the user doesn't specify a page
number to stop at using the Print dialog box, the framework doesn't know when to
stop the print loop. The only way to determine when to stop the print loop is to print
out the document and see when it ends; your view class must check for the end of the
document while it is being printed, and then inform the framework when the end is
reached.

The framework relies on your view class's OnPrepareDC function to tell it when to
stop. After each call to OnPrepareDC, the framework checks a member of the
CPrintlnfo structure called m _ bContinuePrinting. Its default value is TRUE; as
long as it remains so, the framework continues the print loop. If it is set to FALSE,
the framework stops. To perform print-time pagination, override OnPrepareDC to
check whether the end of the document has been reached, and set
m _ bContinuePrinting to FALSE when it has.

The default implementation of OnPrepareDC sets m _ bContinuePrinting to FALSE
if the current page is greater than 1. This means that if the length of the document
wasn't specified, the framework assumes the document is one page long. One
consequence of this is that you must be careful if you call the base class version of
OnPrepareDC; do not assume that m _ bContinuePrinting will be TRUE after
calling the base class version.

See Also Printing: Headers and Footers, Printing: Allocating GDI Resources

In the Class Library Reference: CView, CDC

Printing: Headers and Footers

636

This article explains how to add headers and footers to a printed document.

When you look at a document on the screen, the name of the document and your
current location in the document are commonly displayed in a title bar and a status
bar. When looking at a printed copy of a document, it's useful to have the name and
page number shown in a header or footer. This is a common way in which even
WYSIWYG programs differ in how they perform printing and screen display.

The OnPrint member function is the appropriate place to print headers or footers
because it is called for each page, and because it is called only for printing, not for
screen display. You can define a separate function to print a header or footer, and pass
it the printer device context from OnPrint. You may need to adjust the window

origin or extent before calling OnDraw to avoid having the body of the page overlap
the header or footer. You might also have to modify OnDraw because the amount of
the document that fits on the page could be reduced.

One way to compensate for the area taken by the header or footer is to use the
m _rectDraw member of CPrintInfo. Each time a page is printed, this member is
initialized with the usable area of the page. If you print a header or footer before
printing the body of the page, you can reduce the size of the rectangle stored in
m _rectDraw to account for the area taken by the header or footer. Then OnPrint can
refer to m _rectDraw to find out how much area remains for printing the body of the
page.

You cannot print a header, or anything else, from OnPrepareDC, because it is called
before the StartPage member function of CDC has been called. At that point, the
printer device context is considered to be at a page boundary. You can perform
printing only from the OnPrint member function.

See Also Printing: Multipage Documents, Printing: Allocating GDI Resources

Printing: Allocating GDI Resources
This article explains how to allocate and deallocate the Windows graphics device
interface (GDI) objects needed for printing.

Suppose you need to use certain fonts, pens, or other GDI objects for printing, but not
for screen display. Because of the memory they require, it's inefficient to allocate
these objects when the application starts up. When the application isn't printing a
document, that memory might be needed for other purposes. It's better to allocate
them when printing begins, and then delete them when printing ends.

To allocate these GDI objects, override the OnBeginPrinting member function. This
function is well suited to this purpose for two reasons: the framework calls this
function once at the beginning of each print job and, unlike OnPreparePrinting, this
function has access to the CDC object representing the printer device driver. You can
store these objects for use during the print job by defining member variables in your
view class that point to GDI objects (for example, CFont * members, and so on).

To use the GDI objects you've created, select them into the printer device context in
the OnPrint member function. If you need different GDI objects for different pages of
the document, you can examine the m _nCurPage member of the CPrintInfo
structure and select the GDI object accordingly. If you need a GDI object for several
consecutive pages, Windows requires that you select it into the device context each
time OnPrint is called.

To deallocate these GDI objects, override the On End Printing member function. The
framework calls this function at the end of each print job, giving you the opportunity
to deallocate printing-specific GDI objects before the application returns to other
tasks.

Printing

637

Printing

See Also Printing: How Default Printing Is Done

Printing: The Print Preview Architecture

638

This article explains how the MFC framework implements print preview
functionality. Topics covered include:

• The print preview process

• Modifying print preview

Print preview is somewhat different from screen display and printing because, instead
of directly drawing an image on a device, the application must simulate the printer
using the screen. To accommodate this, the Microsoft Foundation Class Library
defines a special class derived from CDC, called CPreviewDC. All CDC objects
contain two device contexts, but usually they are identical. In a CPreviewDC object,
they are different: the first represents the printer being simulated, and the second
represents the screen on which output is actually displayed.

The Print Preview Process
When the user selects the Print Preview command from the File menu, the
framework creates a CPreviewDC object. Whenever your application performs an
operation that sets a characteristic of the printer device context, the framework also
performs a similar operation on the screen device context. For example, if your
application selects a font for printing, the framework selects a font for screen display
that simulates the printer font. Whenever your application would send output to the
printer, the framework instead sends the output to the screen.

Print preview also differs from printing in the order that each draws the pages of a
document. During printing, the framework continues a print loop until a certain
range of pages has been rendered. During print preview, one or two pages are
displayed at any time, and then the application waits; no further pages are displayed
until the user responds. During print preview, the application must also respond to
WM_PAINT messages, just as it does during ordinary screen display.

The OnPreparePrinting function is called when preview mode is invoked, just as it
is at the beginning of a print job. The CPrintlnfo structure passed to the function
contains several members whose values you can set to adjust certain characteristics of
the print preview operation. For example, you can set the m _ nNumPreviewPages
member to specify whether you want to preview the document in one-page or two
page mode.

Modifying Print Preview
You can modify the behavior and appearance of print preview in a number of ways
rather easily. For example, you can, among other things:

• Cause the print preview window to display a scroll bar for easy access to any page
of the document.

• Cause print preview to maintain the user's position in the document by beginning
its display at the current page.

• Cause different initialization to be performed for print preview and printing.

• Cause print preview to display page numbers in your own formats.

If you know how long the document is and call SetMaxPage with the appropriate
value, the framework can use this information in preview mode as well as during
printing. Once the framework knows the length of the document, it can provide the
preview window with a scroll bar, allowing the user to page back and forth through
the document in preview mode. If you haven't set the length of the document, the
framework cannot position the scroll box to indicate the current position, so the
framework doesn't add a scroll bar. In this case, the user must use the Next Page and
Previous Page buttons on the preview window's control bar to page through the
document.

For print preview, you may find it useful to assign a value to the m _ nCllrPage
member of CPrintInfo, even though you would never do so for ordinary printing.
During ordinary printing, this member carries information from the framework to
your view class; this is how the framework tells the view which page should be
printed.

By contrast, when print preview mode is started, the m _ nCllrPage member carries
information in the opposite direction: from the view to the framework. The
framework uses the value of this member to determine which page should be
previewed first. The default value of this member is 1, so the first page of the
document is displayed initially. You can override OnPreparePrinting to set this
member to the number of the page being viewed at the time the Print Preview
command was invoked. This way, the application maintains the user's current
position when moving from normal display mode to print preview mode.

Sometimes you may want OnPreparePrinting to perform different initialization
depending on whether it is called for a print job or for print preview. You can
determine this by examining the m _ bPreview member variable in the CPrintInfo
structure; this member is set to TRUE when print preview is invoked.

The CPrintInfo structure also contains a member named m _strPageDesc, which is
used to format the strings displayed at the bottom of the screen in single-page and
multiple-page modes. By default these strings are of the form "Page n" and "Pages n -
m," but you can modify m_strPageDesc from within OnPreparePrinting and set the
strings to something more elaborate. See CPrintInfo in the Class Library Reference
for more information.

See Also Printing

In the Class Library Reference: CView, CDC

Printing

639

Properties

Properties
An OLE control fires events to communicate with its control container. The
container, in return, uses methods and properties to communicate with the control.
Methods and properties are similar in use and purpose, respectively, to member
functions and member variables of a C++ class. Properties are data members, of the
OLE control, which are exposed to any container. Properties provide an interface for
applications that contain OLE controls, such as OLE Automation clients and OLE
control containers.

For more information on OLE control methods, see the article Methods.

OLE controls can implement both stock and custom methods and properties. Class
COleControl provides an implementation for stock properties. (For a complete list of
stock properties, see the article Properties: Adding Stock Properties.) Custom
properties, defined by the developer, add specialized capabilities to an OLE control.
For more information, see Properties: Adding Custom Properties.

Both custom and stock properties, like methods, are supported by a mechanism that
consists of a dispatch map that handles properties and methods and existing member
functions of the COleControl class. In addition, these properties can have parameters
that the developer uses to pass extra information to the control.

The following articles discuss OLE control properties in more detail:

• Properties: Adding Stock Properties

• Properties: Adding Custom Properties

• Properties: Advanced Implementation

• Properties: Accessing Ambient Properties

Properties: Adding Stock Properties

640

Stock properties differ from custom properties in that they are already implemented
by the class COleControl. COleControl contains predefined member functions that
support common properties for the control. Some common properties include the
control's caption and the foreground and background colors. For information on
other stock properties, see Stock Properties Supported by Class Wizard later in this
article. The dispatch map entries for stock properties are always prefixed by
DISP STOCKPROP.

This article describes how to to add a stock property (in this case, Caption) to an OLE
control using Class Wizard and explains the resulting code modifications. Topics
include:

• U sing Class Wizard to add a stock property

• Class Wizard changes for stock properties

• Stock properties supported by Class Wizard

• Stock properties and notification

• Color properties

Note Visual Basic custom (VBX) controls typically have properties such as Top, Left, Width,
Height, Align, Tag, Name, Tablndex, TabStop, and Parent. OLE control containers, however,
are responsible for implementing these control properties and therefore OLE controls should
not support these properties.

Using ClassWizard to Add a Stock Property
Adding stock properties requires less code than adding custom properties because
support for the property is automatically handled by COleControl. The following
procedure demonstrates adding the stock Caption property to an OLE control
framework. This same procedure can also be used to add other stock properties.
Simply substitute the desired stock property name for Caption.

~ To add the stock Caption property using ClassWizard

1 Load your control's project.

2 From the View menu, choose Class Wizard.

3 Choose the OLE Automation tab.

4 Choose the control's class from the Class name combo box.

5 Choose the Add Property button.

6 In the External Name box, select Caption.

Note that in the Implementation group, Stock is automatically selected.

7 Choose the OK button to close the Add Property dialog box.

8 Choose the OK button to confirm your choices and close Class Wizard.

ClassWizard Changes for Stock Properties
Because COleControl supports stock properties, Class Wizard does not change the
class declaration in any way; it simply adds the property to the dispatch map.
Class Wizard adds the following line to the dispatch map of the control, which is
located in the implementation (.CPP) file:

DISP_STOCKPROP_CAPTION()

The following line is added to your control's Object Description (.ODL) file:

[id(DISPID_CAPTION). bindable. requestedit] BSTR Caption;

This line assigns the Caption property a specific ID. Notice that the property is
bindable and will request permission from the database before modifying the value.

Properties

641

Properties

642

This makes the Caption property available to users of your control. To use the value
of a stock property, access a member variable or member function of the
COleControl base class. For more information on these member variables and
member functions, see Stock Properties Supported by Class Wizard.

Stock Properties Supported by ClassWizard
The COleControl class provides nine stock properties. You can specify the properties
you want in the control in the OLE Automation tab of the MFC Class Wizard dialog
box.

Property Dispatch map entry

Appearance DISP _STOCKPROP _APPEARANCE()

BackColor DISP _STOCKPROP _ BACKCOLOR()

BorderStyle DISP _STOCKPROP _BORDERSTYLE()

Caption DISP _STOCKPROP _ CAPTION()

Enabled DISP _STOCKPROP _ENABLED()

Font DISP _STOCKPROP _FONT()

ForeColor DISP _STOCKPROP _FORECOLOR()

hWnd DISP _STOCKPROP _HWND()

Text DISP _STOCKPROP _TEXT()

Stock Properties and Notification

How to access value

Value accessible as m _ sAppearance.

Value accessible by calling GetBackColor.

Value accessible as m _ sBorderStyle.

Value accessible by calling InternalGetText.

Value accessible as m bEnabled.

See the article OLE Controls: Using Fonts in an
OLE Control for usage.

Value accessible by calling GetForeColor.

Value accessible as m _ h Wnd.

Value accessible by calling InternalGetText.
This property is the same as Caption, except for
the property name.

Most of the stock properties have notification functions that can be overridden. For
example, whenever the BackColor property is changed, the OnBackColorChanged
function (a member function of the control class) is called. The default
implementation (in COleControl) calls InvalidateControl. Override this function if
you want to take additional actions in response to this situation.

Color Properties
You can use the stock ForeColor and BackColor properties, or your own custom
color properties, when painting the control. To use a color property, call the
COleControl::TranslateColor member function. The parameters of this function are
the value of the color property and an optional palette handle. The return value is a
COLORREF value that can be passed to GDI functions, such as SetTextColor and
CreateSolidBrush.

The color values for the stock ForeColor and BackColor properties are accessed by
calling either the GetForeColor or the GetBackColor function, respectively.

The following example demonstrates using these two color properties when painting
a control. It initializes a temporary COLORREF variable and a CBrush object with

calls to TranslateColor: one using the ForeColor property and the other using the
BackColor property. A temporary CBrush object is then used to paint the control's
rectangle, and the text color is set using the ForeColor property.

CBrush bkBrush(TranslateColorCGetBaekColorC»);
COLORREF elrFore = TranslateColorCGetForeColorC»;
pde->FillReetC reBounds. &bkbrush);
pde->SetTextColor(elrFore);
pde->DrawTextC InternalGetTextC). -1. reBounds. DT_SINGLELINE DT_CENTER

DT_VCENTER);

See Also Properties, Methods

In the Class Library Reference: COleControl

Properties: Adding Custom Properties
Custom properties differ from stock properties in that they are not already
implemented by the COleControI class. A custom property is used to expose a
certain state or appearance of an OLE control to a programmer using the control.

This article describes how to add a custom property to the OLE control using
ClassWizard and explains the resulting code modifications. Topics include:

• U sing Class Wizard to add a custom property

• Class Wizard changes for custom properties

Custom properties come in four varieties of implementation: Member Variable,
Member Variable with Notification, Get/Set Methods, and Parameterized.

• Member Variable Implementation

This implementation represents the property's state as a member variable in the
control class. Use the Member Variable implementation when it is not important to
know when the property value changes. Of the three types, this implementation
creates the least amount of support code for the property. The dispatch map entry
macro for member variable implementation is DISP _PROPERTY. For a detailed
example of this implementation, see Chapter 24, Adding Special Effects, in
Tutorials.

• Member Variable with Notification Implementation

This implementation consists of a member variable and a notification function
created by ClassWizard. The notification function is automatically called by the
framework after the property value changes. Use the Member Variable with
Notification implementation when you need to be notified after a property value
has changed. This implementation creates some overhead because it requires a
function call. The dispatch map entry macro for this implementation is
DISP _PROPERTY_NOTIFY. For a detailed example of this implementation,
see Chapter 22, Adding a Custom Notification Property, in Tutorials.

• Get/Set Methods Implementation

Properties

643

Properties

644

This implementation consists of a pair of member functions in the control class.
The Get/Set Methods implementation automatically calls the Get member function
when the control's user requests the current value of the property and the Set
member function when the control's user requests that the property be changed.
Use this implementation when you need to compute the value of a property during
run time, validate a value passed by the control's user before changing the actual
property, or implement a read- or write-only property type. The dispatch map entry
macro for this implementation is DISP _PROPERTY_EX. The following section,
Using Class Wizard to Add a Custom Property, uses the CircleOffset custom
property to demonstrate this implementation.

• Parameterized Implementation

Parameterized implementation is supported by Class Wizard. A parameterized
property (sometimes called a property array) can be used to access a set of values
through a single property of your control. The dispatch map entry macro for this
implementation is DISP _PROPERTY _ PARAM. For more information on
implementing this type, see Implementing a Parameterized Property in the article
OLE Controls: Advanced Topics.

Using ClassWizard to Add a Custom Property
The following procedure demonstrates adding a custom property, CircleOffset, which
uses the Get/Set Methods implementation. The Circle Offset custom property allows
the control's user to offset the circle from the center of the control's bounding
rectangle. The procedure for adding custom properties with an implementation other
than Get/Set Methods is very similar.

This same procedure can also be used to add other custom properties you desire.
Simply substitute your custom property name for the CircleOffset property name and
parameters.

~ To add the CircleOffset custom property using ClassWizard

1 Load your control's project.

2 From the View menu, choose Class Wizard.

3 Choose the OLE Automation tab.

4 Choose the control's class from the Class name combo box.

5 Choose the Add Property button.

6 In the External Name box, type CircleOffset.

7 Under Implementation, select Get/Set Methods.

8 From the Type box, select short for the property's type.

9 Type unique names for your Get and Set Functions, or accept the default names.

10 Choose the OK button to close the Add Property dialog box.

11 Choose the OK button to confirm your choices and close ClassWizard.

ClassWizard Changes for Custom Properties
When you add the CircleOffset custom property, Class Wizard makes changes to the
header (.H) and the implementation (.CPP) files of the control class.

The following lines are added to the .H file to declare two functions called
GetCi rcl eOffset and SetCi rcl eOffset:

afx_msg short GetCircleOffset();
afx_msg void SetCircleOffset(short nNewValue);

The following line is added to your control's .ODL file:

[id(l)] short CircleOffset;

This line assigns the Circle Offset property a specific ID number, taken from the
method's position in the methods and properties list of ClassWizard.

In addition, the following line is added to the dispatch map (in the .CPP file of the
control class) to map the Circle Offset property to the control's two handler functions:

OISP_PROPERTY_EX(CSampleCtrl,"CircleOffset",
GetCircleOffset, SetCircleOffset, VT_I2)

Finally, the implementations of the GetCi rcl eOffset and SetCi rcl eOffset
functions are added to the end of the control's .CPP file. In most cases, you will
modify the Get function to return the value of the property. The Set function will
usually contain code that should be executed either before or after the property
changes.

void CFooCtrl ::SetCircleOffset(short nNewValue)
{

II TOOO: Add your property handler here
SetModifiedFlag();

Note that ClassWizard automatically adds a call, to SetModifiedFlag, to the body of
the Set function. Calling this function marks the control as modified. If a control has
been modified, its new state will be saved when the container is saved. This function
should be called whenever a property, saved as part of the control's persistent state,
changes value.

For a detailed implementation of the Circle Offset property, see Chapter 23, Adding a
Custom Get/Set Property, in Tutorials.

See Also Properties, Methods

In the Class Library Reference: COleControl

Properties: Advanced Implementation
This article describes topics related to implementing advanced properties in an OLE
control:

Properties

645

Properties

646

• Read-only and write-only properties

• Returning error codes from a property

Read-only and Write-only Properties
ClassWizard provides a quick and easy method to implement read-only or write-only
properties for the control.

~ To implement a read-only or write-only property

1 Load the control project.

2 From the View menu, choose Class Wizard.

3 Choose the OLE Automation tab.

4 Choose the control's class from the Class name combo box.

5 Choose the Add Property button.

6 In the External Name box, type the name of your property.

7 Under Implementation, select Get/Set Methods.

8 From the Type box, select the proper type for the property.

9 If you want a read-only property, clear the Set function name specified by
Class Wizard. If you want a write-only property, clear the Get function name.

10 Choose the OK button to close the Add Property dialog box.

11 Choose the OK button to confirm your choices and close ClassWizard.

When you do this, ClassWizard inserts the function SetNotSupported or
GetNotSupported in the dispatch map entry in place of a normal Set or Get function.

If you want to change an existing property to be read- or write-only, you can edit the
dispatch map manually and remove the unnecessary Set or Get function from the
control class.

If you want a property to be conditionally read-only or write-only (for example, only
when your control is operating in a particular mode), you can provide the Set or Get
function, as normal, and call the SetNotSupported or GetNotSupported function
where appropriate. For example:

void CSampleCtrl ::SetMyProperty(short propVal)
{

if (m_bReadOnlyMode) II some control-specific state
SetNotSupported ();

else
m_ipropVal = propVal; II set property as normal

This code sample calls SetNotSupported if the m_bReadOnlyMode data member is
TRUE. If FALSE, then the property is set to the new value.

Returning Error Codes From a Property
To indicate that an error has occurred while attempting to get or set a property, use
the COleControl::ThrowError function, which takes an SCODE (status code) as a
parameter. You can use a predefined SCODE or define one of your own. For a list of
predefined SCODEs and instructions for defining custom SCODEs, see Handling
Errors in Your OLE Control in the article OLE Controls: Advanced Topics.

Helper functions exist for the most common predefined SCODEs, such as
COleControl: : SetNotSupported , COleControl: : GetNotSupported , and
COleControl::SetNotPermitted.

Note ThrowError is meant to be used only as a means of returning an error from within a
property's Get or Set function or an automation method. These are the only times that the
appropriate exception handler will be present on the stack.

For more information on reporting exceptions in other areas of the code, see
COleControl::FireError and the section Handling Errors in Your OLE Control in
the article OLE Controls: Advanced Topics.

See Also Properties, Methods

In the Class Library Reference: COleControl

Properties: Accessing Ambient Properties
This article discusses how an OLE control can access the ambient properties of its
control container.

A control can obtain information about its container by accessing the container's
"ambient properties." These properties expose visual characteristics, such as the
container's background color, the current font used by the container, and operational
characteristics, such as whether the container is currently in "user" mode or
"designer" mode. A control can use ambient properties to tailor its appearance and
behavior to the particular container in which it is embedded. However, a control
should never assume that its container will support any particular ambient property.
In fact, some containers may not support any ambient properties at all. In the absence
of an ambient property, a control should assume a reasonable default value.

To access an ambient property, make a call to COleControl::GetAmbientProperty.
This function expects the dispatch ID for the ambient property as the first parameter
(the file OLECTL.H defines dispatch IDs for the standard set of ambient properties).

The parameters of the GetAmbientProperty function are the dispatch ID, a variant
tag indicating the expected property type, and a pointer to memory where the value
should be returned. The type of data to which this pointer refers will vary depending
on the variant tag. The function returns TRUE if the container supports the property,
otherwise it returns FALSE.

Properties

647

Properties

648

The following code example obtains the value of the ambient property called
"U serMode." If the property is not supported by the container, a default value of
TRUE is assumed:

BOOl bUserMode;
if(!GetAmbientProperty(DISPID_AMBIENT_USERMODE,

VT_BOOl, &bUserMode))
bUserMode = TRUE;

For your convenience, COleControl supplies helper functions that access many of
the commonly used ambient properties and return appropriate defaults when the
properties are not available. These helper functions are as follows:

• COleControl: : AmbientBackColor

• AmbientDisplayName

• AmbientFont

Note Caller must call Release() on the returned font.

• AmbientForeColor

• AmbientLocaleID

• AmbientScaleUnits

• AmbientTextAlign

• AmbientUserMode

• AmbientUIDead

• AmbientShowHatching

• AmbientShowGrabHandles

If the value of an ambient property changes (through some action of the container),
the OnAmbientPropertyChanged member function of the control is called. Override
this member function to handle such a notification. The parameter for
OnAmbientPropertyChanged is the dispatch ID of the affected ambient property.
The value of this dispatch ID may be DISPID_UNKNOWN, which indicates that
one or more ambient properties have changed, but information about which
properties were affected is unavailable.

Property Sheets
The Microsoft Foundation Class Library (MFC) contains support for property sheets,
also known as "tab dialog boxes." This article explains how and when to use property
sheets in your MFC applications. Topics include:

• U sing property sheets in your application

• Adding controls to a property sheet

A property sheet is a special kind of dialog box that is generally used to modify the
attributes of some external object, such as the current selection in a view. The
property sheet has three main parts: the containing dialog box, one or more property
pages shown one at a time, and a tab at the top of each page that the user clicks to
select that page. Property sheets are useful for situations where you have a number of
similar groups of settings or options to change. An example of a property sheet is the
Project Settings dialog box in Microsoft Developer Studio. In this case, there are a
number of different groups of options that need to be set. The property sheet allows a
large amount of information to be grouped in an easily understood fashion.

Using Property Sheets in Your Application
To use a property sheet in your application, complete the following steps:

1. Create a dialog template resource for each property page. Keep in mind that the
user may be switching from one page to another, so layout each page as
consistently as possible.

The dialog templates for all pages do not have to be the same size. The framework
uses the size of the largest page to determine how much space to allocate in the
property sheet for the property pages.

When you create the dialog template resource for a property page, you must
specify the following styles in the Dialog Properties property sheet:

• Set the Caption edit box on the General page to the text you wish to appear in
the tab for this page.

• Set the Style list box on the Styles page to Child.

• Set the Border list box on the Styles page to Thin.

• Ensure that the Titlebar check box on the Styles page is checked.

• Ensure that the Disabled check box on the More Styles page is checked.

2. Use ClassWizard to create a CPropertyPage-derived class corresponding to each
property page dialog template. To do this, choose Class Wizard from the View
menu while the focus is on a particular property page dialog box. Choose
CProperty Page as the base class in Class Wizard.

Property Sheets

649

Property Sheets

650

3. Using ClassWizard, create member variables to hold the values for this property
page. The process for adding member variables to a property page is exactly the
same as adding member variables to a dialog box, since a property page is a
specialized dialog box.

4. Construct a CPropertySheet object in your source code. Usually, you construct the
CPropertySheet object in the handler for the command that displays the property
sheet. This object represents the entire property sheet. If you create a modal
property sheet with the DoModal function, the framework supplies three
pushbuttons by default: OK, Cancel, and Apply. The framework creates no
pushbuttons for modeless property sheets created with the Create function. You do
not need to derive a class from CPropertySheet unless you want to either add
other controls (such as a preview window) or display a modeless property sheet.
This step is necessary for modeless property sheets since they do not contain any
default controls that could be used to close the property sheet.

5. For each page to be added to the property sheet, do the following:

• Construct one object for each CPropertyPage-derived class that you created
using Class Wizard earlier in this process.

• Call CPropertySheet: :AddPage for each page.

Typically, the object that creates the CPropertySheet also creates the
CPropertyPage objects in this step. However, if you implement a
CPropertySheet-derived class, you can embed the CPropertyPage objects in the
CPropertySheet object and call AddPage for each page from the
CPropertySheet-derived class constructor. AddPage adds the CPropertyPage
object to the property sheet's list of pages but does not actually create the window
for that page. Therefore, it is not necessary to wait until creation of the property
sheet window to call AddPage; you can call AddPage from the property sheet's
constructor.

6. Call CPropertySheet: : DoModal or Create to display the property sheet. Call
DoModal to create a property sheet as a modal dialog box. Call Create to create
the property sheet as a modeless dialog box.

7. Exchange data between property pages and the owner of the property sheet. This is
explained in the article Property Sheets: Exchanging Data.

For an example of how to use property sheets, see the MFC General sample
PROPDLG.

Adding Controls to a Property Sheet
By default, a property sheet allocates window area for the property pages, the tab
index, and the OK, Cancel, and Apply buttons. (A modeless property sheet does not
have the OK, Cancel, and Apply buttons.) You can add other controls to the property
sheet. For example, you can add a preview window to the right of the property page
area, to show the user what the current settings would look like if applied to an
external object.

You can add controls to the property sheet dialog in the OnCreate handler.
Accommodating additional controls usually requires expanding the size of the
property sheet dialog. After calling the base class CPropertySheet::OnCreate, call
GetWindowRect to get the width and height of the currently allocated property sheet
window, expand the rectangle's dimensions, and call MoveWindow to change the
size of the property sheet window.

For more information on property sheets, see the following articles:

• Property Sheets: Exchanging Data

• Property Sheets: Creating a Modeless Property Sheet

• Property Sheets: Handling the Apply Button

See Also In the Class Library Reference: CPropertyPage, CPropertySheet

Property Sheets: Exchanging Data
As with most dialog boxes, the exchange of data between the property sheet and the
application is one of the most important functions of the property sheet. This article
describes how to accomplish this task.

Exchanging data with a property sheet is actually a matter of exchanging data with
the individual property pages of the property sheet. The procedure for exchanging
data with a property page is the same as for exchanging data with a dialog box, since
a CPropertyPage object is just a specialized CDialog object. The procedure takes
advantage of the framework's dialog data exchange (DDX) facility, which exchanges
data between controls in a dialog box and member variables of the dialog box object.

The important difference between exchanging data with a property sheet and with a
normal dialog box is that the property sheet has multiple pages, so you must
exchange data with all the pages in the property sheet. For more information on
DDX, see Dialog Data Exchange and Validation in Chapter 4.

Property Sheets

651

Property Sheets

The following example illustrates exchanging data between a view and two pages of a
property sheet:

void CMyView::DoModalPropertySheet()
{

CPropertySheet propsheet;
CMyFirstPage pageFirst; II derived from CPropertyPage
CMySecondPage pageSecond; II derived from CPropertyPage

II Move member data from the view (or from the currently
II selected object in the view, for example).
pageFirst.m_nMemberl = m_nMemberl;
pageFirst.m_nMember2 = m_nMember2;

pageSecond.m_strMember3 = m_strMember3;
pageSecond.m_strMember4 = m_strMember4;

propsheet.AddPage(&pageFirst);
propsheet.AddPage(&pageSecond);

if (propsheeet.DoModal() == lDOK)
{

}

m_nMemberl pageFirst.m_nMemberl;
m_nMember2 pageFirst.m_nMember2;
m_nMember3 pageSecond.m_strMemberl;
m_nMember4 = pageSecond.m_strMember2;
GetDocument()-)SetModifiedFlag();
GetDocument()-)UpdateAllViews(NULL);

See Also Property Sheets

Property Sheets: Creating a Modeless Property Sheet

652

Normally, the property sheets you create will be modal. When using a modal property
sheet, the user must close the property sheet before using any other part of the
application. This article describes methods you can use to create a modeless property
sheet that allows the user to keep the property sheet open while using other parts of
the application.

To display a property sheet as a modeless dialog box instead of as a modal dialog box,
call CPropertySheet: : Create instead of DoModal. However, there are some extra
tasks that you must implement to support a modeless property sheet.

One of the additional tasks is exchanging data between the property sheet and the
external object it is modifying when the property sheet is open. This is generally the
same task as for standard modeless dialog boxes. Part of this task is implementing a
channel of communication between the modeless property sheet and the external
object to which the property settings apply. This implementation is far easier if you
derive a class from CPropertySheet for your modeless property sheet. This article
assumes you have done so.

One method for communicating between the modeless property sheet and the external
object (the current selection in a view, for example) is to define a pointer from the
property sheet to the external object. Define a function (called something like
SetMyExternal Object) in the CPropertySheet-derived class to change the pointer
whenever the focus changes from one external object to another. The
Set My Ext ern a lab j e c t function needs to reset the settings for each property page to
reflect the newly selected external object. To accomplish this, the
SetMyExternal Object function must be able to access the CPropertyPage objects
belonging to the CPropertySheet class.

The most convenient way to provide access to property pages within a property sheet
is to embed the CPropertyPage objects in the CPropertySheet-derived object.
Embedding CPropertyPage objects in the CPropertySheet-derived object differs
from the typical design for modal dialog boxes, where the owner of the property sheet
creates the CPropertyPage objects and passes them to the property sheet via
CPropertySheet: :AddPage.

There are many user-interface alternatives for determining when the settings of the
modeless property sheet should be applied to an external object. One alternative is to
apply the settings of the current property page whenever the user changes any value.
Another alternative is to provide an Apply button, which allows the user to
accumulate changes in the property pages before committing them to the external
object. For information on ways to handle the Apply button, see the article Property
Sheets: Handling the Apply Button.

See Also Property Sheets, Property Sheets: Exchanging Data, Life Cycle of a Dialog
Box (in Chapter 4)

Property Sheets: Handling the Apply Button
Property sheets have a capability that standard dialog boxes do not: they allow the
user to apply changes they have made before closing the property sheet. This is done
using the Apply button. This article discusses methods you can use to properly
implement this feature.

Modal dialog boxes usually apply the settings to an external object when the user
clicks OK to close the dialog box. The same is true for a property sheet: when the
user clicks OK, the new settings in the property sheet take effect.

However, you may want to allow the user to save settings without having to close the
property sheet dialog box. This is the function of the Apply button. The Apply button
applies the current settings in all of the property pages to the external object, as
opposed to applying only the current settings of the currently active page.

By default, the Apply button is always disabled. You must write code to enable the
Apply button at the appropriate times, and you must write code to implement the
effect of Apply, as explained below.

Property Sheets

653

Property Sheets

654

If you do not wish to offer the Apply functionality to the user, it is not necessary to
remove the Apply button. You can leave it disabled, as will be common among
applications that use standard property sheet support available in future versions of
Windows.

To report a page as being modified and enable the Apply button, call
CPropertyPage::SetModified(TRUE). If any of the pages report being modified,
the Apply button will remain enabled, regardless of whether the currently active page
has been modified.

You should call CPropertyPage::SetModified whenever the user changes any
settings in the page. One way to detect when a user changes a setting in the page is to
implement change notification handlers for each of the controls in the property page,
such as EN_CHANGE or BN_CLICKED.

To implement the effect of the Apply button, the property sheet must tell its owner, or
some other external object in the application, to apply the current settings in the
property pages. At the same time, the property sheet should disable the Apply button
by calling CPropertyPage::SetModified(FALSE) for all pages that applied their
modifications to the external object.

For an example of this process, see the MFC General sample PROPDLG.

See Also Property Sheets

Record Field Exchange (RFX)

Record
A record is a collection of data about a single entity, such as an account or a
customer, stored in a table (a "row" of the table). A record consists of a group of
contiguous columns (sometimes called fields) that contain data of various types. A set
of records selected from a data source-often called a "result set" in database terms
-is called a "recordset" in MFC. See the articles Recordset (ODBC)or DAO
Recordset for more details.

Record Field Exchange (RFX)
The MFC database classes automate moving data between the data source and a
record set using a mechanism called "record field exchange" (RFX). RFX is similar to
dialog data exchange (DDX). Moving data between a data source and the field data
members of a recordset requires multiple calls to the recordset's DoFieldExchange
function and considerable interaction between the framework and ODBC. The RFX
mechanism is type-safe and saves you the work of calling ODBC functions such as
::SQLBindCol. (For more information about DDX, see Chapter 14, Working with
Classes, in the Visual C++ User's Guide.)

RFX is mostly transparent to you. If you declare your recordset classes with
AppWizard or ClassWizard, RFX is built into them automatically. All recordset
classes are derived from the base class CRecordset supplied by the framework.
App Wizard lets you create an initial record set class. Class Wizard lets you add other
recordset classes as you need them. You use Class Wizard to map recordset field data
members to table columns on the data source. For more information and examples,
see the article Class Wizard: Creating a Recordset Class.

You must manually add a small amount ofRFX code in three cases-when you want
to:

• Use parameterized queries. See the article Recordset: Parameterizing a Recordset
(ODBC).

• Perform joins-using one recordset for columns from two or more tables. See the
article Recordset: Performing a Join (ODBC).

• Bind data columns dynamically. This is less common than parameterization. See
the article Recordset: Dynamically Binding Data Columns (ODBC).

If you need a more advanced understanding of RFX, see the article Record Field
Exchange: How RFX Works.

The following articles explain the details of using recordset objects:

• Record Field Exchange: Using RFX

• Record Field Exchange: Using the RFX Functions

655

Record Field Exchange (RFX)

• Record Field Exchange: How RFX Works

See Also Recordset (ODBC), ClassWizard: Creating a Recordset Class, AppWizard:
Database Support

In the Class Library Reference: CRecordset

Record Field Exchange: Using RFX

656

This article explains what you do to use RFX in relation to what the framework does.
The related article, Record Field Exchange: Working with the Wizard Code,
continues the discussion. That article introduces the main components of RFX and
explains the code that App Wizard and Class Wizard write to support RFX and how
you might want to modify the wizard code.

Writing calls to the RFX functions in your DoFieldExchange override is explained in
the article Record Field Exchange: Using the RFX Functions.

Table 1 shows your role in. relation to what the framework does for you.

Table 1 Using RFX: You and the Framework

You ...

Declare your recordset classes with
Class Wizard. Specify names and data
types of field data members.

(Optional) Manually add any needed
parameter data members to the class.
Manually add an RFX function call to
DoFieldExchange for each parameter
data member, add a call to
CFieldExchange::SetFieldType for
the group of parameters, and specify the
total number of parameters in
m _ nParams. See Recordset:
Parameterizing a Recordset (ODBC).

(Optional) Manually bind additional
columns to field data members.
Manually increment m _ nFields. See
Recordset: Dynamically Binding Data
Columns (ODBC).

The framework ...

Class Wizard derives a CRecordset class and
writes a DoFieldExchange override for you,
including an RFX function call for each field
data member.

Record Field Exchange (RFX)

Table 1 Using RFX: You and the Framework (cont.)

You ...

Construct an object of your recordset
class. Before using the object, set the
values of its parameter data members, if
any.

Open a recordset object using
CRecordset::Open.

Scroll in the recordset using
CRecordset::Move or a menu or
toolbar command.

Add, update, and delete records.

The framework ...

For efficiency, the framework prebinds the
parameters, using ODBC. When you pass
parameter values, the framework passes them to
the data source. Only the parameter values are
sent for requeries, unless the sort and/or filter
strings have changed.

Executes the recordset' s query, binds columns
to field data members of the recordset, and calls
DoFieldExchange to exchange data between
the first selected record and the recordset' s field
data members.

Calls DoFieldExchange to transfer data to the
field data members from the new current
record.

Calls DoFieldExchange to transfer data to the
data source.

See Also Record Field Exchange: How RFX Works, Recordset: Obtaining SUMs
and Other Aggregate Results (ODBC)

In the Class Library Reference: CRecordset, CFieldExchange, Macros and Globals

Record Field Exchange: Working with the Wizard Code
This article explains the code that App Wizard and Class Wizard write to support RFX
and how you might want to alter that code.

When you create a recordset class with ClassWizard (or with AppWizard), the wizard
writes the following RFX-related elements for you, based on the data source, table,
and column choices you make in the wizard:

• Declarations of the recordset field data members in the recordset class.

• An override of CRecordset: : DoFieldExchange.

• Initialization of recordset field data members in the recordset class constructor.

The Field Data Member Declarations
The wizards write a recordset class declaration in an .H file that resembles the
following for class C Sec t ion s :

657

Record Field Exchange (RFX)

658

class CSections public CRecordset
{

public:
CSections(CDatabase* pDatabase);
CSections::~CSections();

II Field/Param Data
11{{AFX_FIELD(CSections, CRecordset)
CString m_strCourseID;
CString m_strInstructorID;
CString m_strRoomNo;
CString m_strSchedule;
CString m_strSectionNo;
I/} }AFX_FI ELD

II Implementation
protected:

} ;

virtual CString GetDefaultConnect(); II Default connection string
virtual CString GetDefaultSOL(); II Default SOL for Recordset
virtual void DoFieldExchange(CFieldExchange* pFX); II RFX support
DECLARE_DYNAMIC(CSections)

Notice the following key features about the class above:

• Special "II{ {AFX_FIELD" comments that bracket the field data member
declarations. Class Wizard uses these to update your source file.

• The wizard overrides the DoFieldExchange member function of class
CRecordset.

Caution Never edit the code inside "//{{AFX" brackets. Always use ClassWizard. If you add
parameter data members or new field data members that you bind yourself, add them outside
the brackets.

The DoFieldExchange Override
DoFieldExchange is the heart of RFX. The framework calls DoFieldExchange any
time it needs to move data either from data source to recordset or from recordset to
data source. DoFieldExchange also supports obtaining infonnation about field data
members through the IsFieldDirty and IsFieldNull member functions.

The following DoFieldExchange override is for the CSecti ons class. ClassWizard
writes the function in the .CPP file for your recordset class.

void CSections::DoFieldExchange(CFieldExchange* pFX)
{

11{{AFX_FIELD_MAP(CSections)
pFX->SetFieldType(CFieldExchange::outputColumn);
RFX_Text(pFX, "CourseID", m_strCourseID);
RFX_Text(pFX, "InstructorID", m_strInstructorID);
RFX_Text(pFX, "RoomNo", m_strRoomNo);

Record Field Exchange (RFX)

RFX_Text(pFX, "Schedule", m_strSchedule);
RFX_Text(pFX, "SectionNo", m_strSectionNo);
//}}AFX_FIELD_MAP

Notice the following key features of the function:

• The special "II { {AFX_FIELD _MAP" comments. Class Wizard uses these to
update your source file. This section of the function is called the "field map."

• A call to CFieldExchange: :SetFieldType, through the pFX pointer. This call
specifies that all RFX function calls up to the end of DoFieldExchange or the next
call to SetFieldType are "output columns." See CFieldExchange::SetFieldType
in the Class Library Reference for more information.

• Several calls to the RFX_Text global function-one per field data member (all of
which are CString variables in the example). These calls specify the relationship
between a column name on the data source and a field data member. The RFX
functions do the actual data transfer. The class library supplies RFX functions for
all of the common data types. For more information about RFX functions, see the
article Record Field Exchange: Using the RFX Functions.

Note The order of the columns in your result set must match the order of the RFX function
calls in DoFi el dExchange.

• The pFX pointer to a CFieldExchange object that the framework passes when it
calls DoFieldExchange. The CFieldExchange object specifies the operation that
DoFieldExchange is to perform, the direction of transfer, and other context
information.

The Recordset Constructor
The recordset constructor that the wizards write contains two things related to RFX:

• An initialization for each field data member.

• An initialization for the m _ nFields data member, which contains the number of
field data members.

The constructor for the CSect ions recordset example looks like this:

CSections::CSections(CDatabase* pdb)
: CRecordset(pdb)

//{{AFX_FIELD_INIT(CSections)
m_strCourseID = "";

m_strlnstructorID =

m_strRoomNo = '''';

m_strSchedule = "";

m_strSectionNo = "";
m_nFields = 5;
//}}AFX_FIELD_INIT

"n. ,

659

Record Field Exchange (RFX)

Important If you add any field data members manually, as you might if you bind new columns
dynamically, you must increment m_nFields. Do so with another line of code outside the
"//{{AFX_FIELD-'NIT" brackets:

m_nFields +== 3;

This is the code for adding three new fields. If you add any parameter data members, you must
initialize the m_nParams data member, which contains the number of parameter data
members. Put the m_nParams initialization outside the brackets.

See Also Record Field Exchange: Using the RFX Functions

Record Field Exchange: Using the RFX Functions

660

This article explains how to use the RFX function calls that make up the body of your
DoFieldExchange override.

The RFX global functions exchange data between columns on the data source and
field data members in your recordset. Normally you use ClassWizard to write the
RFX function calls in your recordset's DoFieldExchange member function. This
article describes the functions briefly and shows the data types for which RFX
functions are available. Technical Note 43 under MFC in Books Online describes
how to write your own RFX functions for additional data types.

RFX Function Syntax
Each RFX function takes three parameters (and some take an optional fourth or fifth
parameter) :

• A pointer to a CFieldExchange object. You simply pass along the pFX pointer
passed to DoFieldExchange.

• The name of the column as it appears on the data source.

• The name of the corresponding field data member or parameter data member in
the recordset class.

• (Optional) In some of the functions, the maximum length of the string or array
being transferred. This defaults to 255 bytes, but you might want to change it. The
maximum size is based on the maximum size of a CString object-INT_MAX
(2,147,483,647) bytes-but you will probably encounter driver limits before that
size.

• (Optional) In the RFX_Text function, you sometimes use a fifth parameter to
specify the data type of a column.

For more information, see the RFX functions under Macros and Globals in the Class
Library Reference. For an example of when you might make special use of the
parameters, see the article Recordset: Obtaining SUMs and Other Aggregate Results
(ODBC).

Record Field Exchange (RFX)

RFX Data Types
The class library supplies RFX functions for transferring many different data types
between the data source and your recordsets. The following list summarizes the RFX
functions by data type. In cases where you must write your own RFX function calls,
select from these functions by data type.

Function Data Type

RFX_Bool BOOL

RFX_Byte BYTE

RFX_Binary CByteArray

RFX_Double double

RFX_Single float

RFX_Int int

RFX_Long long

RFX _LongBinary CLongBinary

RFX_Text CString

RFX_Date CTime

For more information, see the RFX function documentation under Macros and
Globals in the Class Library Reference. For information about how C++ data types
map to SQL data types, see Table 1 in the article SQL: SQL and C++ Data Types
(ODBC).

See Also Record Field Exchange: How RFX Works, Recordset: Parameterizing a
Recordset (ODBC), Recordset: Dynamically Binding Data Columns (ODBC),
Recordset: Obtaining SUMs and Other Aggregate Results (ODBC)

In the Class Library Reference: CRecordset, CFieldExchange

Record Field Exchange: How RFX Works
This article explains the RFX process. This is a fairly advanced topic, covering:

• RFX and the recordset

• The RFX process

RFX and the Recordset
The recordset object's field data members, taken together, constitute an "edit buffer"
that holds the selected columns of one record. When the recordset is first opened and
is about to read the first record, RFX binds (associates) each selected column to the
address of the appropriate field data member. When the recordset updates a record,
RFX calls ODBC API functions to send an SQL UPDATE or INSERT statement to
the driver. RFX uses its knowledge of the field data members to specify the columns
to write.

661

Record Field Exchange (RFX)

662

The framework backs up the edit buffer at certain stages so it can restore its contents
if necessary. RFX backs up the edit buffer before adding a new record and before
editing an existing record. It restores the edit buffer in some cases-for example,
after an Update call following AddNew, but not if you abandon a newly changed edit
buffer by, for example, moving to another record before calling Update.

Besides exchanging data between the data source and the recordset' s field data
members, RFX manages binding parameters. When the recordset is opened, any
parameter data members are bound in the order of the "?" placeholders in the SQL
statement that CRecordset::Open constructs. For more information, see the article
Recordset: Parameterizing a Recordset (ODBC).

Your recordset class's override of DoFieldExchange does all the work, moving data
in both directions. Like dialog data exchange (DDX), RFX needs information about
the data members of your class. ClassWizard provides the necessary information by
writing a recordset-specific implementation of DoFieldExchange for you, based on
the field data member names and data types you specify with the wizard.

The Record Field Exchange Process
This section describes the sequence of RFX events as a recordset object is opened and
as you add, update, and delete records. Table I in the article Record Field Exchange:
Using RFX shows the process at a high level, illustrating operations as a recordset is
opened. Table 1 and Table 2 in this article show the process as RFX processes a
Move command in the recordset and as RFX manages an update. During these
processes, DoFieldExchange is called to perform many different operations. The
m _ nOperation data member of the CFieldExchange object determines which
operation is requested. You might find it helpful to read the articles Recordset: How
Recordsets Select Records (ODBC) and Recordset: How Recordsets Update Records
(ODBC) before you read this material.

RFX: Initial Binding of Columns and Parameters
The following RFX activities occur, in the order shown, when you call a recordset
object's Open member function:

• If the recordset has parameter data members, the framework calls
DoFieldExchange to "bind" the parameters to parameter placeholders in the
recordset's SQL statement string. A data type-dependent representation of the
value of the parameter is used for each placeholder found in the SELECT
statement. This occurs after the SQL statement is "prepared" but before it is
executed. (For information about statement preparation, see the ::SQLPrepare
function in the ODBC Programmer's Reference.)

• The framework calls DoFieldExchange a second time to bind the values of
selected columns to corresponding field data members in the recordset. This
establishes the recordset object as an edit buffer containing the columns of the first
record.

Record Field Exchange (RFX)

• The recordset executes the SQL statement and the data source selects the first
record. The record's columns are loaded into the recordset's field data members.

Table 1 shows the sequence of RFX operations when you open a recordset.

Table 1 Sequence of RFX Operations During Recordset Open

Your operation

1. Open record set.

DoFieldExchange operation

2. Build an SQL statement.

4. Bind parameter data member(s).

5. Bind field data member(s) to
column(s).

7. Fix up the data for C++.

Database/Sal operation

3. Send the SQL.

6. ODBC does the move and fills
in the data.

Recordsets use ODBC's "prepared execution" to allow for fast requerying with the
same SQL statement. For more information about prepared execution, see the ODBC
SDK Programmer's Reference.

RFX: Scrolling
When you scroll from one record to another, the framework calls DoFieldExchange
to replace the values previously stored in the field data members with values for the
new record.

Table 2 shows the sequence of RFX operations when the user moves from record to
record.

Table 2 Sequence of RFX Operations During Scrolling

Your operation

1. Call MoveNext or one
of the other Move
functions.

DoFieldExchange operation

3. Fix up the data for C++.

Database/Sal operation

2. ODBC does the move and fills
in the data.

RFX: Adding New Records and Editing Existing Records
If you add a new record, the recordset operates as an edit buffer to build up the
contents of the new record. As with adding records, editing records involves
changing the values of the recordset's field data members. From the RFX perspective,
the sequence is as follows:

663

Record Field Exchange (RFX)

664

1. Your call to the recordset's AddNew or Edit member function causes RFX to store
the current edit buffer so it can be restored later.

2. AddNew or Edit prepares the fields in the edit buffer so RFX can detect changed
field data members.

Since a new record has no previous values to compare new ones with, AddNew
sets the value of each field data member to a PSEUDO_NULL value. Later, when
you call Update, RFX compares each data member's value with the
PSEUDO_NULL value; if there's a difference, the data member has been set.
(PSEUDO_NULL is not the same thing as a record column with a true Null
value; nor is either the same as C++ NULL.)

Unlike the Update call for AddNew, the Update call for Edit compares updated
values with previously stored values rather than using PSEUDO_NULL. The
difference is that AddNew has no previous stored values for comparison.

3. You directly set the values of field data members whose values you want to edit or
that you want filled for a new record. (This can include calling SetFieldNull.)

4. Your call to Update checks for changed field data members, as described in step 2
(see Table 2). If none have changed, Update returns O. If some field data members
have changed, Update prepares and executes an SQL INSERT statement that
contains values for all updated fields in the record.

S. For AddNew, Update concludes by restoring the previously stored values of the
record that was current before the AddNew call. For Edit, the new, edited values
remain in place.

Table 3 shows the sequence of RFX operations when you add a new record or edit an
existing record.

Record Field Exchange (RFX)

Table 3 Sequence of RFX Operations During Add New and Edit

Your operation

1. Call AddNew or
Edit.

4. Assign values to
recordset field data
members.

5. Call Update.

DoFieldExchange operation

2. Back up the edit buffer.

3. For AddNew, mark field data
members as "clean" and Null.

6. Check for changed fields.

7. Build SQL INSERT statement
for AddNew or UPDATE
statement for Edit.

9. For AddNew, restore the edit
buffer to its backed-up contents. For
Edit, delete the backup.

RFX: Deleting Existing Records

Database/SQl operation

8. Send the SQL.

When you delete a record, RFX sets all the fields to NULL as a reminder that the
record is deleted and you must move off it. You won't need any other RFX sequence
information.

See Also Class Wizard

In the Class Library Reference: CFieldExchange, CRecordset::DoFieldExchange,
Macros and Globals

665

Recordset (ODBC)

Recordset (ODBC)

666

This article applies to the MFC ODBC classes. For DAO recordsets, see the article
DAO Recordset.

A CRecordset object represents a set of records selected from a data source. The
records can be from:

• A table

• A query

• A stored procedure that accesses one or more tables

An example of a recordset based on a table is "all customers," which accesses a
Customer table. An example of a query is "all invoices for Joe Smith." An example of
a recordset based on a stored procedure (sometimes called a predefined query) is "all
of the delinquent accounts," which invokes a stored procedure in the back-end
database. A recordset can join two or more tables from the same data source, but not
from different data sources.

Note Some OOSC drivers support "views" of the database. A view in this sense is a query
originally created with the SQl CREATE VIEW statement. AppWizard and ClassWizard don't
currently support views, but it is possible to code this support yourself.

Recordset Capabilities
All recordset objects share the following capabilities:

• If the data source is not read-only, you can specify that your recordset be
updatable, appendable, or read-only. If the recordset is updatable, you can choose
either pessimistic or optimistic locking methods, provided the driver supplies the
appropriate locking support. If the data source is read-only, the recordset will be
read-only.

• You can call member functions to scroll through the selected records.

• You can filter the records to constrain which records are selected from those
available.

• You can sort the records in ascending or descending order, based on one or more
columns.

• You can parameterize the recordset in order to qualify the recordset selection at
run time.

Snapshots and Dynasets
There are two principal kinds of recordsets: snapshots and dynasets, both supported
by class CRecordset. Each shares the common characteristics of all recordsets, but

each also extends the common functionality in its own specialized way. Snapshots
provide a static view of the data and are useful for reports and other situations in
which you want a view of the data as it existed at a particular time. Dynasets provide
a dynamic view of the data and are necessary if you want records to reflect updates
made by other users or via other recordsets in your own application (without having
to "requery" or "refresh" the recordset, except that you must requery to see records
added by other users). Both can be updatable or read-only.

CRecordset also allows for a third kind of recordset, a "forward-only recordset." If
you do both of the following

• Pass the option CRecordset::forwardOnly as the nOpenType parameter of the
Open member function

• Pass CRecordset: : read Only as the dwOptions parameter to Open

you get a recordset that doesn't allow updates or backward scrolling. Use this kind of
recordset for less program overhead when you don't need backward scrolling. For
example, you might use a forward-only recordset to migrate data from one data
source to another, where you only need to move through the data in a forward
direction.

Important For information about ODBC driver requirements for dynaset support, see
the article ODBC. For a list of ODBC drivers included in this version of Visual c++
and for information about obtaining additional drivers, see the article ODBC Driver
List.

Your Recordsets
For every distinct table, view, or stored procedure you wish to access, you must define
a class derived from CRecordset, normally with the help of ClassWizard. (The
exception is a database join, in which one recordset represents columns from two or
more tables.) When you declare a recordset class with Class Wizard, you also enable
the record field exchange (RFX) mechanism. RFX simplifies transfer of data from the
data source into your recordset and from your recordset to the data source, much as
the dialog data exchange (DDX) mechanism does.

A recordset object gives you access to all the selected records. You scroll through the
multiple selected records using CRecordset member functions, such as MoveNext
and MovePrev. At the same time, a recordset object represents only one of the
selected records, the "current record." You can examine the fields of the current
record by declaring recordset class member variables that correspond to columns of
the table or of the records that result from the database query. Class Wizard helps you
declare these recordset class data members. You update a record by scrolling to it
making it the current record-and changing the values of these data members. For
details about recordset data members, see the article Recordset: Architecture
(ODBC).

Recordset (ODBC)

667

Recordset (ODBC)

The articles listed below explain the details of using recordset objects. The articles
are listed in functional categories and a natural browse order to permit sequential
reading.

Articles about the mechanics of opening, reading, and closing recordsets

• Recordset: Architecture (ODBC)

• Recordset: Declaring a Class for a Table (ODBC)

• Recordset: Creating and Closing Recordsets (ODBC)

• Recordset: Scrolling (ODBC)

• Recordset: Filtering Records (ODBC)

• Recordset: Sorting Records (ODBC)

• Recordset: Parameterizing a Recordset (ODBC)

Articles about the mechanics of modifying recordsets

• Recordset: Adding, Updating, and Deleting Records (ODBC)

• Recordset: Locking Records (ODBC)

• Recordset: Requerying a Recordset (ODBC)

Articles about somewhat more advanced techniques

• Recordset: Performing a Join (ODBC)

• Recordset: Declaring a Class for a Predefined Query (ODBC)

• Recordset: Dynamically Binding Data Columns (ODBC)

• Recordset: Working with Large Data Items (ODBC)

• Recordset: Obtaining SUMs and Other Aggregate Results (ODBC)

Articles about how recordsets work

• Recordset: How Recordsets Select Records (ODBC)

• Recordset: How Recordsets Update Records (ODBC)

See Also Recordset: Declaring a Class for a Table (ODBC), ClassWizard: Creating a
Recordset Class, Record Field Exchange (RFX), Transaction (ODBC)

Recordset: Architecture (ODBC)

668

This article applies to the MFC ODBC classes. For DAO recordsets, see the article
DAO Recordset.

This article describes the data members that comprise the architecture of a recordset
object:

• Field data members

• Parameter data members

• m nFields and m nParams data members - -

A Sample Class
When you use Class Wizard to declare a recordset class derived from CRecordset, the
resulting class has the general structure shown in the following simple class:

class CCourse : CRecordset
{

} ;

//{{AFX_FIELD(CCourse, CRecordset)
CString m_strCourseID;
CString m_strCourseTitle;
/ /} }AFX_FI ELD
CString m_strIDParam;

At the beginning of the class, ClassWizard writes a set of field data members. When
you create the class with Class Wizard, you must specify one or more field data
members. If the class is parameterized, as the sample class is (with the data member
m_strIDParam), you must manually add parameter data members. ClassWizard
doesn't support adding parameters to a class.

Field Data Members
The most important members of your recordset class are the field data members. For
each column you select from the data source, the class contains a data member of the
appropriate data type for that column. For example, the sample class shown at the
beginning of this article has two field data members, both of type CString, called
m_s trCou rse I D and m_s trCou rseTi t 1 e.

When the recordset selects a set of records, the framework automatically "binds" the
columns of the current record (after the Open call, the first record is current) to the
field data members of the object. That is, the framework uses the appropriate field
data member as a buffer in which to store the contents of a record column.

As the user scrolls to a new record, the framework uses the field data members to
represent the current record. The framework refreshes the field data members,
replacing the previous record's values. The field data members are also used for
updating the current record and for adding new records. As part of the process of
updating a record, you specify the update values by assigning values directly to the
appropriate field data member(s).

Parameter Data Members
If the class is "parameterized," it has one or more parameter data members. A
parameterized class lets you base a recordset query on information obtained or
calculated at run time.

Recordset (ODBC)

669

Recordset (ODBC)

Note You must manually place these data members outside the "//{{AFX_FIELO" comment
brackets.

Typically, the parameter helps narrow the selection, as in the following example.
Based on the sample class at the beginning of this article, the recordset object might
execute the following SQL statement:

SELECT CourseID. CourseTitle FROM Course WHERE CourseID = ?

The "?" is a placeholder for a parameter value that you supply at run time. When you
construct the recordset and set its m_strIDPa ram data member to "MATHIOI", the
effective SQL statement for the recordset becomes:

SELECT CourseID. CourseTitle FROM Course WHERE CourseID = MATH101

By defining parameter data members, you tell the framework about parameters in the
SQL string. The framework binds the parameter, which lets ODBC know where to
get values to substitute for the placeholder. In the example, the resulting recordset
contains only the record from the Course table with a CourseID column whose value
is "MATHIOI". All specified columns of this record are selected. You can specify as
many parameters (and placeholders) as you need.

Note MFC does nothing itself with the parameters-in particular, it doesn't perform a text
substitution. Instead, MFC tells OOBC where to get the parameter; OOBC retrieves the data
and performs the necessary parameterization.

Important The order of parameters is important. For details about this and more information
about parameters, see the article Recordset: Parameterizing a Recordset (OOBC).

Using m_nFields and m_nParams
When Class Wizard writes a constructor for your class, it also initializes the
m _ nFields data member, which specifies the number of field data members in the
class. If you add any parameters to your class, you must also add an initialization for
the m _ nParams data member, which specifies the number of parameter data
members. The framework uses these values to work with the data members.

For more information and examples, see the article Record Field Exchange: Using
RFX.

See Also Recordset: Declaring a Class for a Table (ODBC), Record Field Exchange

Recordset: Declaring a Class for a Table (ODBC)

670

This article applies to the MFC ODBC classes. For DAO recordsets, see the article
DAO Recordset.

The most common recordset class opens a single table. To declare a recordset class
for a single table, use Class Wizard. In Class Wizard, choose each column you want by

naming a corresponding recordset field data member. See the article Class Wizard:
Creating a Recordset Class.

Other uses for recordsets include:

• Joining two or more tables.

• Containing the results of a predefined query.

See Also Recordset: Creating and Closing Recordsets (ODBC), Recordset:
Declaring a Class for a Predefined Query (ODBC), Recordset: Performing a Join
(ODBC)

Recordset (ODBC)

Recordset: Creating and Closing Recordsets (ODBC)
This article applies to the MFC ODBC classes. For DAO recordsets, see the article
DAO Recordset.

To use a recordset, you must construct a recordset object, then call its Open member
function to run the recordset's query and select records. When you finish with the
recordset, you must close and destroy the object.

This article explains:

• When and how to create a recordset object.

• When and how you can qualify the recordset's behavior by parameterizing,
filtering, sorting, or locking it.

• When and how to close a recordset object.

Creating Recordsets at Run Time
Before you can create recordset objects in your program, you must write application
specific recordset classes. For more information on this preliminary step, see the
article Class Wizard: Creating a Recordset Class.

Open a dynaset or snapshot object when you need to select records from a data
source. The type of object to create depends on what you need to do with the data in
your application and on what your ODBC driver supports. For more information, see
the articles Dynaset and Snapshot.

~ To open a record set

1 Construct an object of your CRecordset-derived class.

You can construct the object on the heap or on the stack frame of a function.

2 Optionally modify the default recordset behavior. For the available options, see
Setting Recordset Options.

3 Call the object's Open member function.

671

Recordset (ODBC)

672

In the constructor, pass a pointer to a CDatabase object, or pass NULL to use a
temporary database object that the framework will construct and open based on the
connection string returned by the GetDefaultConnect member function. The
CDatabase object mayor may not already be connected to a data source.

The call to Open uses SQL to select records from the data source. The first record
selected (if any) is the "current record." The values of this record's fields are stored in
the recordset object's field data members. If any records were selected, both the
IsBOF and IsEOF member functions return O.

In your Open call, you can:

• Specify whether the recordset is a dynaset or snapshot. Recordsets open as
snapshots by default. Or you can specify a forward-only recordset, which allows
only forward scrolling, one record at a time.

By default, a recordset uses the default type stored in the CRecordset data
member m _ nDefaultType. App Wizard or Class Wizard writes code to initialize
m _ nDefaultType to the recordset type you choose in the wizard. Rather than
accepting this default, you can substitute another recordset type.

• Specify a string to replace the default SQL SELECT statement that the recordset
constructs.

• Specify whether the recordset is read-only or append-only. Recordsets allow full
updating by default, but you can limit that to adding new records only or you can
disallow all updates.

The following example shows how to open a read-only snapshot object, of class
CStudentSet, an application-specific class:

II Construct the snapshot object
CStudentSet rsStudent(NULL);
II Set options if desired, then open the recordset
if(!rsStudent.Open(CRecordset::snapshot, NULL, CRecordset::readOnly»

return FALSE;
II Use the snapshot to operate on its records ...

After you call Open, use the member functions and data members of the object to
work with the records. In some cases, you may want to "requery" or "refresh" the
recordset to include changes that have occurred on the data source. See the article
Recordset: Requerying a Recordset (ODBC).

Tip The connect string you use during development might not be the same connect string that
your eventual users need. For ideas about generalizing your application in this regard, see the
article Data Source: Managing Connections (ODBC).

Setting Recordset Options
After you construct your recordset object but before you call Open to select records,
you may want to set some options to control the recordset's behavior. For all
recordsets, you can:

• Specify a filter to constrain record selection.

• Specify a sort order for the records.

• Specify parameters so you can select records using information obtained or
calculated at run time.

You can also set the following option if conditions are right:

• If the recordset is updatable and supports locking options, specify the locking
method used for updates.

Important To affect record selection, you must set these options before you call the Open
member function.

Closing a Recordset
When you finish with your recordset, you must dispose of it and deallocate its
memory.

~ To close a recordset

1 Call its Close member function.

2 Destroy the recordset object.

If you declared it on the stack frame of a function, the object is destroyed
automatically when the object goes out of scope. Otherwise, use the delete
operator.

Close frees the recordset's HSTMT handle. It doesn't destroy the C++ object.

See Also Recordset: Scrolling (ODBC), Recordset: Adding, Updating, and Deleting
Records (ODBC), Dynaset, Snapshot

Recordset: Scrolling (ODBC)
This article applies to the MFC ODBC classes. For DAO recordsets, see the article
DAO Recordset.

After you select records, you need to access each record to display it or to use it for
calculations, report writing, and so on. Scrolling lets you move from record to record
within your recordset.

This article explains:

• How to scroll from one record to another in a recordset.

Recordset (ODBC)

673

Recordset (ODBC)

674

• Under what circumstances scrolling is and is not supported.

Scrolling from One Record to Another
Recordsets provide several member functions you can use to "scroll" or move from
one record to the next, previous, first, or last record, or move n records relative to the
current position. You can also test whether you have scrolled beyond the first or the
last record.

To determine whether scrolling is possible in your recordset, call the CanScroll
member function of class CRecordset.

~ To scroll

• Forward one record: call the MoveNext member function.

• Backward one record: call the MovePrev member function.

• To the first record in the recordset: call the MoveFirst member function.

• To the last record in the recordset: call the MoveLast member function.

• N records relative to the current position: call the Move member function.

~ To test for the end or the beginning of the recordset

• Have you scrolled past the last record? Call the IsEOF member function.

• Have you scrolled past the first record (moving backward)? Call the IsBOF
member function.

For example, the following code uses IsBOF and IsEOF to detect the limits of a
recordset as the code scrolls through it in both directions.

II Open a snapshot; first record is current
CEnrollmentSet rsEnrollmentSet(NULL);
rsEnrollmentSet.Open();
II Deal with empty recordset
if(rsEnrollmentSet.IsEOF()

return FALSE;
II Scroll to the end of the snapshot
while (!rsEnrollmentSet.lsEOF())

rsEnrollmentSet.MoveNext();
II Past last record. so no record is current
II Move to the last record
rsEnrollmentSet.MoveLast();
II Scroll to beginning of the snapshot
while(!rsEnrollmentSet.lsBOF())

rsEnrollmentSet.MovePrev();
II Past first record. so no record is current
rsEnrollmentSet.MoveFirst();
II First record (if any) is current again

IsEOF returns a nonzero value if the recordset is positioned past the last record.
IsBOF returns a nonzero value if the recordset is positioned past the first record

(before all records). In either case, there is no current record to operate on. If you call
MovePrev when IsBOF is already true, or call MoveNext when IsEOF is already
true, the framework throws a CDBException.

Tip In the general case, where records may be deleted by you or by other users (other
recordsets), check that both IsEOF and IsBOF return a nonzero value to detect an empty
recordset.

When Scrolling Is Supported
As originally designed, SQL provided only forward scrolling, but ODBC extends
scrolling capabilities. The available level of support for scrolling depends on the
ODBC driver(s) your application will work with, your driver's ODBC API
conformance level, and whether the ODBC Cursor Library is loaded into memory.
For more information, see the articles ODBC and ODBC: The ODBC Cursor Library.

Tip You can control whether the cursor library is used. See the bUseCursorUb parameter to
CDatabase: :Open.

Note Unlike Microsoft Access and Microsoft Visual Basic, the MFC database classes don't
provide a set of Find functions for locating the next (or previous) record that meets specified
criteria.

See Also Recordset: Filtering Records (ODBC)

Recordset: Filtering Records (ODBC)
This article applies to the MFC ODBC classes. For DAO recordsets, see the article
DAO Recordset.

This article explains how to "filter" a recordset so that it selects only a particular
subset of the available records. For example, you might want to select only the class
sections for a particular course, such as MATHIOI. A filter is a "search condition"
defined by the contents of an SQL WHERE clause. When the framework appends it
to the recordset's SQL statement, the WHERE clause constrains the selection.

You must establish a recordset object's filter after you construct the object but before
you call its Open member function (or before you call the Requery member function
for an existing recordset object whose Open member function has been called
previously).

~ To specify a filter for a recordset object

1 Construct a new recordset object (or prepare to call Requery for an existing
object).

2 Set the value of the object's m _strFilter data member.

The filter is a null-terminated string. It contains the contents of the SQL WHERE
clause but not the keyword WHERE. For example, use

Recordset (ODBC)

675

Recordset (ODBC)

676

m_pSet->m_strFilter = "CourseID = 'MATH101"';

not

m_pSet->m_strFilter = "WHERE CourseID = 'MATH101"';

Note The literal string "MATH 1 01" is shown with single quotation marks above. In the
DOBC Sal specification, single quotes are used to denote a character string literal. Check
your DOBC driver documentation for the quoting requirements of your DBMS in this
situation. This syntax is also discussed further near the end of this article.

3 Set any other options you need, such as sort order, locking mode, or parameters.
Specifying a parameter is especially useful. For information on parameterizing
your filter, see the article Recordset: Parameterizing a Recordset (ODBC).

4 Call Open for the new object (or Requery for a previously opened object).

Tip Using parameters in your filter is potentially the most efficient method for retrieving
records.

Tip Recordset filters are useful for joining tables and for using parameters based on
information obtained or calculated at run time.

The recordset selects only those records that meet the search condition you specified.
For example, to specify the course filter described above (assuming a variable
strCourseID currently set, for instance, to "MATHlOl"), do the following:

II Using the recordset pointed to by m_pSet
II Set the filter
m_pSet->m_strFilter = "CourseID = " + strCourseID;
II Run the query with the filter in place
if(m_pSet->Open(snapshot, NULL, CRecordset::readOnly))

II Use the recordset

The recordset contains records for all class sections for MATHlOl.

Notice how the filter string was set in the example above, using a string variable.
This is the typical usage. But suppose you wanted to specify the literal value 100 for
the course ID. The following code shows how to set the filter string correctly with a
literal value:

m_strFilter = "StudentID = '100'''; II correct

Note the use of single quote characters; if you set the filter string directly, the filter
string is not:

m_strFilter = "StudentID = 100"; II incorrrect for some drivers

The quoting shown above conforms to the ODBC specification, but some DBMSs
may require other quote characters. For more information, see the article SQL:
Customizing Your Recordset's SQL Statement (ODBC).

Note If you choose to override the recordset's default Sal string by passing your own Sal
string to Open, you should not set a filter if your custom string has a WHERE clause. For more
information about overriding the default Sal, see the article Sal: Customizing Your
Recordset's Sal Statement (ODBC).

See Also Recordset: Sorting Records (ODBC), Recordset: How Recordsets Select
Records (ODBC), Recordset: Parameterizing a Recordset (ODBC), Recordset: How
Recordsets Update Records (ODBC), Recordset: Locking Records (ODBC)

Recordset: Sorting Records (ODBC)
This article applies to the MFC ODBC classes. For DAO recordsets, see the article
DAO Recordset.

This article explains how to sort your recordset. You can specify one or more columns
on which to base the sort, and you can specify ascending or descending order (ASC
or DESC; ASC is the default) for each specified column. For example, if you specify
two columns, the records are sorted first on the first column named, then on the
second column named. An SQL ORDER BY clause defines a sort. When the
framework appends the ORDER BY clause to the recordset's SQL query, the clause
controls the selection's ordering.

You must establish a recordset's sort order after you construct the object but before
you call its Open member function (or before you call the Requery member function
for an existing recordset object whose Open member function has been called
previously).

~ To specify a sort order for a record set object

1 Construct a new recordset object (or prepare to call Requery for an existing one).

2 Set the value of the object's m _strSort data member.

The sort is a null-terminated string. It contains the contents of the ORDER BY
clause but not the keyword ORDER BY. For example, use:

recordset. m_strSort = "LastName DESC. Fi rstName DESC";

not

recordset.m_strSort = "ORDER BY LastName DESC. FirstName DESC";

3 Set any other options you need, such as a filter, locking mode, or parameters.

4 Call Open for the new object (or Requery for an existing object).

The selected records are ordered as specified. For example, to sort a set of student
records in descending order by last name, then first name, do the following:

Recordset (ODBC)

677

Recordset (ODBC)

II Construct the recordset
CStudentSet rsStudent(NULL);
II Set the sort
rsStudent. m_st rSort = "LastName DESC, Fi rstName DESC";
II Run the query with the sort in place
rsStudent. Open ();

The recordset contains all of the student records, sorted in descending order (Z to A)
by last name, then by first name.

Note If you choose to override the recordset's default Sal string by passing your own Sal
string to Open, do not set a sort if your custom string has an ORDER BY clause.

See Also Recordset: Parameterizing a Recordset (ODBC), Recordset: Filtering
Records (ODBC)

Recordset: Parameterizing a Recordset (ODBC)

678

This article applies to the MFC ODBC classes. For DAO recordsets, see the article
DAO Recordset.

Sometimes you'd like to be able to select records at run time, using information
you've calculated or obtained from your end-user. Recordset parameters let you
accomplish that goal.

This article explains:

• The purpose of a parameterized recordset.

• When and why you might want to parameterize a recordset.

• How to declare parameter data members in your recordset class.

• How to pass parameter information to a recordset object at run time.

Parameterized Recordsets
A parameterized recordset lets you pass parameter information at run time. This has
two valuable effects:

• It may result in better execution speed.

• It lets you build a query at run time, based on information not available to you at
design time, such as information obtained from your user or calculated at run
time.

When you call Open to run the query, the recordset uses the parameter information to
complete its SQl SELECT statement. You can parameterize any recordset.

When to Use Parameters
Typical uses for parameters include:

• Passing run-time arguments to a predefined query.

To pass parameters to a stored procedure, you must specify a complete custom
ODBC CALL statement-with parameter placeholders-when you call Open,
overriding the recordset's default SQL statement. See CRecordset::Open in the
Class Library Reference and the articles SQL: Customizing Your Recordset's SQL
Statement (ODBC) and Recordset: Declaring a Class for a Predefined Query
(ODBC).

• Efficiently performing numerous requeries with different parameter information.

For example, each time your end-user looks up information for a particular student
in the student registration database, you can specify the student's name or ID as a
parameter obtained from the user. Then, when you call your recordset's Requery
member function, the query selects only that student's record.

Your recordset's filter string, stored in m_strFilter, might look like this:

"StudentID = ?"

Suppose you obtain the student ID in the variable strInputID. When you set a
parameter to strInputI D (for example, the student ID 100) the value of the
variable is bound to the parameter placeholder represented by the "?" in the filter
string.

Assign the parameter value as follows:

strInputID = "100";

m_strParam = strInputID;

Note that you would not want to set up a filter string this way:

m_strFilter = "StudentID = 100"; II 100 is incorrectly quoted
II for some drivers

For a discussion of how to use quotes correctly for filter strings, see the article
Recordset: Filtering Records (ODBC).

The parameter value is different each time you requery the recordset for a new
student ID.

Tip Using a parameter is more efficient than simply a filter. For a parameterized recordset,
the database must process an Sal SELECT statement only once. For a filtered recordset
without parameters, the SELECT statement must be processed each time you Requery
with a new filter value.

For more information about filters, see the article Recordset: Filtering Records
(ODBC).

Parameterizing Your Recordset Class
Before you create your recordset class, determine what parameters you need, what
their data types are, and how the recordset will use them.

Recordset (ODBC)

679

Recordset (ODBC)

680

~ To parameterize a recordset class

1 Run Class Wizard and create the class. See the article Class Wizard: Creating a
Recordset Class.

2 Specify field data members for the recordset's columns.

3 After Class Wizard writes the class to a file in your project, go to the .H file and
manually add one or more parameter data members to the class declaration. The
addition might look something like the following example, part of a snapshot class
designed to answer the query "Which students are in the senior class?"

class CStudentSet : public CRecordset
{

II Field/Param Data
11{{AFX_FIELD(CStudentSet. CRecordset)
CString m_strFirstName;
CString m_strLastName;
CString m_strStudentID;
CString m_strGradYear;
I/} }AFX_FI ELD
CString m_strGradYrParam:

} ;

ClassWizard writes field data members inside the "/I{ {AFX_FIELD" comment
brackets. You add your parameter data members outside the comment brackets.
The convention is to append the word "Param" to each name.

4 Modify the DoFieldExchange member function definition in the .CPP file. Add
an RFX function call for each parameter data member you added to the class. For
information on writing your RFX functions, see the article Record Field
Exchange: How RFX Works. Precede the RFX calls for the parameters with a
single call to

pFX->SetFieldType(CFieldExchange::param):
II RFX calls for parameter data members

5 In the constructor of your recordset class, increment the count of parameters,
m nParams.

For information, see The Recordset Constructor in the article Record Field
Exchange: Working with the Wizard Code.

6 When you write the code that creates a recordset object of this class, place a"?"
(question mark) symbol in each place in your SQL statement string(s) where a
parameter is to be replaced.

At run time, "?" placeholders are filled, in order, by the parameter values you pass.
The first parameter data member set after the SetFieldType call replaces the first
"?" in the SQL string, the second parameter data member replaces the second "?",
and so on.

Important Parameter order is important: the order of RFX calls for parameters in your
OoFi e 1 dExchange function must match the order of the parameter placeholders in your Sal
string.

Tip The most likely string to work with is the string you specify (if any) for the class's
m_strFilter data member, but some ODBe drivers may allow parameters in other Sal
clauses.

Passing Parameter Values at Run Time
You must specify parameter values before you call Open (for a new recordset object)
or Requery (for an existing one).

~ To pass parameter values to a recordset object at run time

1 Construct the recordset object.

2 Prepare a string or strings, such as the m_strFilter string, containing the SQL
statement, or partes) of it. Put "?" placeholders where the parameter information is
to go.

3 Assign a run-time parameter value to each parameter data member of the object.

4 Call the Open member function (or Requery, for an existing recordset).

For example, suppose you want to specify a filter string for your recordset using
information obtained at run time. Assume you have constructed a recordset of class
CStudentSet earlier-called rsStudents-and now want to requery it for a
particular kind of student information.

II Set up a filter string with parameter placeholders
rsStudents.m_strFilter 0= "GradYear <= ?";
II Obtain or calculate parameter values to pass--simply assigned here
CString strGradYear = GetCurrentAcademicYear();
II Assign the values to parameter data members
rsStudents.m_strGradYrParam 0= strGradYear;
II Run the query
if(!rsStudents.Requery())

return FALSE;

The recordset contains records for those students whose records meet the conditions
specified by the filter, which was constructed from run-time parameters. In this case,
the recordset contains records for all senior students.

Note If needed, you can set the value of a parameter data member to Null, using
SetFieldNuli. You can likewise check whether a parameter data member is Null, using
IsFieldNuli.

See Also Recordset: Adding, Updating, and Deleting Records (ODBC), Recordset:
Filtering Records (ODBC), Recordset: How Recordsets Select Records (ODBC)

Recordset (ODBC)

681

Recordset (ODBC)

Recordset: Adding, Updating, and Deleting Records
(ODBC)

682

This article applies to the MFC ODBC classes. For DAO recordsets, see the article
DAO Recordset.

Note You can now add records in bulk more efficiently. For information, see the
article Recordset: Adding Records in Bulk (ODBC).

Updatable snapshots and dynasets allow you to add, edit (update), and delete records.
This article explains:

• How to determine whether your recordset is updatable.

• How to add a new record.

• How to edit an existing record.

• How to delete a record.

For more information about how updates are carried out and how your updates appear
to other users, see the article Recordset: How Recordsets Update Records (ODBC).
Normally, when you add, edit, or delete a record, the recordset changes the data
source immediately. You can instead batch groups of related updates into
"transactions." If a transaction is in progress, the update doesn't become final until
you "commit" the transaction. This allows you to "take back" or "roll back" the
changes. For information about transactions, see the article Transaction (ODBC).

Table 1 summarizes the options available for recordsets with different update
characteristics.

Table 1 Recordset Read/Update Options

Type Read Edit records Delete records Add new (append)

read-only y N N N

append-only Y N N y

fully updatable y y y y

Determining Whether Your Recordset is Updatable
A recordset object is updatable if the data source is updatable, and you opened the
recordset as updatable. Its updatability also depends on the SQL statement you use,
the capabilities of your ODBC driver, and whether the ODBC Cursor Library is in
memory or not. You can't update a read-only recordset or data source.

~ To determine whether your recordset is updatable

• Call the recordset object's CanUpdate member function.

CanUpdate returns a nonzero value if the recordset is updatable.

By default, recordsets are fully up datable (you can perform AddNew, Edit, and
Delete operations). But you can also use the appendOnly option to open updatable
recordsets. A recordset opened this way allows only the addition of new records with
AddNew. You can't edit or delete existing records. You can test whether a recordset
is open only for appending by calling the CanAppend member function.
CanAppend returns a nonzero value if the recordset is either fully updatable or open
only for appending.

The following code shows how you might use CanUpdate for a recordset object
called rsStudentSet:

if (! rsStudentSet. Open ())
return FALSE;

if(! rsStudentSet. CanUpdate())
{

AfxMessageBox("Unable to update the Student recordset.");
return;

Caution When you prepare to update a recordset by calling Update, take care that your
recordset includes all columns making up the primary key of the table (or all of the columns of
any unique index on the table). In some cases, the framework can use only the columns
selected in your recordset to identify which record in your table to update. Without all the
necessary columns, multiple records may be updated in the table, possibly damaging the
referential integrity of the table. In this case, the framework will throw exceptions when you call
Update.

Adding a Record to a Recordset
You can add new records to a recordset if its CanAppend member function returns a
nonzero value.

~ To add a new record to a recordset

1 Make sure the recordset is appendable.

2 Call the recordset object's AddNew member function.

AddNew prepares the recordset to act as an edit buffer. All field data members are
set to the special value Null and marked as unchanged so only changed ("dirty")
values will be written to the data source when you call Update.

3 Set the values of the new record's field data members.

Assign values to the field data members. Those you don't assign will not be
written to the data source.

4 Call the recordset object's Update member function.

Update completes the addition by writing the new record to the data source. For
what happens if you fail to call Update, see the article Recordset: How Recordsets
Update Records (ODBC).

Recordset (ODBC)

683

Recordset (ODBC)

684

For information about how adding records works and about when added records are
visible in your recordset, see the article Recordset: How AddNew, Edit, and Delete
Work (ODBC).

The following example shows how to add a new record:

i f(! rsStudent. Open ())
return FALSE;

if(! rsStudent. CanAppend())
return FALSE;

rsStudent.AddNew();
II no field values were set

rsStudent.m_strName = strName;
rsStudent.m_strCity = strCity;
rsStudent.m_strStreet = strStreet;
i f(! rsStudent. Update())
{

}

AfxMessageBox("Record not added; no field values were set.");
return FALSE;

For additional information, see Adding a Record in the article Recordset: How
AddNew, Edit, and Delete Work.

Tip To cancel an Add New or Edit call, simply make another call to Add New or Edit or call
Move with the AFX_MOVE_REFRESH parameter. Data members will be reset to their
previous values and you will still be in Edit or Add mode.

Editing a Record in a Recordset
You can edit existing records if your recordset's CanUpdate member function returns
a nonzero value.

~ To edit an existing record in a recordset

1 Make sure the recordset is updatable.

2 Scroll to the record you want to update.

3 Call the recordset object's Edit member function.

Edit prepares the recordset to act as an edit buffer. All field data members are
marked so that the recordset can tell later whether they were changed. The new
values for changed field data members are written to the data source when you call
Update.

4 Set the values of the new record's field data members.

Assign values to the field data members. Those you don't assign values will
remain unchanged.

5 Call the recordset object's Update member function.

Update completes the edit by writing the changed record to the data source. For
what happens if you fail to call Update, see the article Recordset: How Recordsets
Update Records (ODBC).

After you edit a record, the edited record remains the current record.

The following example shows an Edit operation. It assumes the user has moved to a
record he or she wants to edit.

rsStudent. Edit();
rsStudent.m_strStreet - strNewStreet;
rsStudent.m_strCity - strNewCity;
rsStudent.m_strState = strNewState;
rsStudent.m_strPostalCode - strNewPostalCode;
i f(! rsStudent. Update())
{

}

AfxMessageBox("Record not updated; no field values were set.");
return FALSE;

For more information, see Editing an Existing Record in the article Recordset: How
AddNew, Edit, and Delete Work.

Tip To cancel an Add New or Edit call, simply make another call to AddNew or Edit or call
Move with the AFX_MOVE_REFRESH parameter. Data members will be reset to their
previous values and you will still be in Edit or Add mode.

Deleting a Record from a Recordset
You can delete records if your recordset's CanUpdate member function returns a
nonzero value.

~ To delete a record

1 Make sure the recordset is updatable.

2 Scroll to the record you want to update.

3 Call the recordset object's Delete member function.

Delete immediately marks the record as deleted, both in the recordset and on the
data source.

Unlike AddNew and Edit, Delete has no corresponding Update call.

4 Scroll to another record.

Important After a Delete call, there is no current record and IsDeleted returns a nonzero
value. An error occurs if you call Delete again, or another update operation, before you
scroll to another record. Once you have scrolled off the record, MFC will skip over that
record the next time you scroll to it.

The following example shows a Delete operation. It assumes the user has moved to a
record he or she wants to delete. After Delete is called, it's important to move to a
new record.

rsStudent.Oelete();
rsStudent.MoveNext();

Recordset (ODBC)

685

Recordset (ODBC)

For more information about the effects of the AddNew, Edit, and Delete member
functions, see the article Recordset: How Recordsets Update Records (ODBC).

See Also Recordset: Locking Records (ODBC)

Recordset: Adding Records in Bulk (ODBC)
This article applies to the MFC ODBC classes. For DAO recordsets, see the article
DAO Recordset.

The MFC CRecordset class has a new optimization (in both 16- and 32-bit versions)
that improves efficiency when you're adding new records in bulk to a table.

A new option for the dwOptions parameter to the CRecordset: :Open member
function, optimizeBuIkAdd, improves performance when you're adding multiple
records consecutively without calling Requery or Close. Only those fields that are
"dirty" prior to the first Update call are marked as "dirty" for subsequent
AddNew/Update calls.

If you are using the database classes to take advantage of the: :SQLSetPos ODBC
API function for adding, editing, and deleting records, this optimization is
unnecessary.

If the ODBC Cursor Library is loaded or the ODBC driver doesn't support adding,
editing, and deleting via ::SQLSetPos, this optimization should improve bulk add
performance. To tum on this optimization, set the dwOptions parameter in the Open
call for your recordset to :

appendOnly I optimizeBulkAdd

See Also Recordset: Adding, Updating, and Deleting Records (ODBC), Recordset:
Locking Records (ODBC)

Recordset: Locking Records (ODBC)

686

This article applies to the MFC ODBC classes. For DAO recordsets, see the article
DAO Recordset.

This article explains:

• The kinds of record locking available .

• How to lock records in your recordset during updates.

When you use a recordset to update a record on the data source, your application can
lock the record so no other user can update the record at the same time. The state of a
record updated by two users at "the same time" is undefined unless the system can
guarantee that two users can't update a record simultaneously.

Record-Locking Modes
The database classes provide two record-locking modes:

• Optimistic locking (the default)

• Pessimistic locking

Updating a record occurs in three steps:

1. You begin the operation by calling the Edit member function.

2. You change the appropriate fields of the current record.

3. You end the operation-and normally commit the update-by calling the Update
member function.

Optimistic locking locks the record on the data source only during the Update call. If
you use optimistic locking in a multiuser environment, the application should handle
an Update failure condition. Pessimistic locking locks the record as soon as you call
Edit and doesn't release it until you call Update (failures are indicated via the
CDBException mechanism, not by a value of FALSE returned by Update).
Pessimistic locking has a potential performance penalty for other users, since
concurrent access to the same record may have to wait until completion of your
application's Update process.

Locking Records in Your Recordset
If you want to change a recordset object's locking mode from the default, you must
change the mode before you call Edit.

.. To change the current locking mode for your recordset

• Call the SetLockingMode member function, specifying either
CRecordset::pessimistic or CRecordset::optimistic.

The new locking mode remains in effect until you change it again or the recordset is
closed.

Note Relatively few ODSe drivers currently support pessimistic locking.

See Also Recordset: Performing a Join (ODBC), Recordset: Adding, Updating, and
Deleting Records (ODBC)

Recordset: Performing a Join (ODBC)
This article applies to the MFC ODBC classes. For DAO recordsets, see the article
DAO Recordset.

This article explains:

• What a join is.

• How to perform a join of mUltiple tables.

Recordset (ODBC)

687

Recordset (ODBC)

688

What a Join Is
The join operation-a common data-access task-lets you work with data from more
than one table using a single recordset object. Joining two or more tables yields a
recordset that can contain columns from each table, but appears as a single table to
your application. Sometimes the join uses all columns from all tables, but sometimes
the SQL SELECT clause in a join uses only some of the columns from each table.
The database classes support read-only joins but not updatable joins.

The key to a join operation is one or more columns that the tables have in common.
For example, suppose there is a "CourseID" column in both the Course table and the
Section table for an application such as the ENROLL tutorial. In the Course table, the
CourseID column contains a unique ID value for each possible course. In the Section
table, the CourseID column probably doesn't contain unique values, since each course
usually has more than one section.

To select records containing columns from joined tables, you need the following
items:

• A table list containing the names of all tables being joined.

• A column list containing the names of all participating columns. Columns with
the same name but from different tables are qualified by the table name.

• A filter (SQL WHERE clause) that specifies the column(s) on which the tables
are joined. This filter takes the form "Table 1.KeyCol = Table2.KeyCol" and
actually accomplishes the join. For the ENROLL example above, the filter is:

Course.CourseID = Section.CourseID

Performing the Join
The following procedure shows a join of two tables but can apply to joins of any
number of tables (all on the same data source). The procedure involves first binding
columns from mUltiple tables with Class Wizard, then directly modifying source code
to complete the join.

Binding the Table Columns
~ To bind columns from both tables to a single recordset

1 Use ClassWizard to create a recordset class for the join. In ClassWizard choose
Data Sources to open the Data Sources dialog box and bind columns from the first
table to recordset field data members.

See the article ClassWizard: Creating a Recordset Class.

2 Choose ClassWizard's Update Columns button to open the Data Sources dialog
box a second time.

3 Select a data source and choose OK to close the Data Sources dialog box.

4 In the Tables dialog box, select the name of the second table and choose OK to
close the dialog box.

5 Bind columns from the second table to additional recordset field data members.

If any column names from the second table duplicate column names from the first
table, be sure to give the corresponding recordset field data members unique
names. For example, if you're joining Instructor and Section tables, each table
might contain a column named RoomNo; you might bind one column to
m_strInstrOffi ce and the other to m_strCl assRoom.

6 Close Class Wizard.

Modifying the Source Files
Once you create the recordset class with Class Wizard, you must customize two parts
of the class code. First, edit the class's table list, then qualify any columns with the
same name but from different tables. You'll need to edit the calls in your
OoFi el dExchange override to insert table names.

For example, the student registration database for the MFC Tutorial sample ENROLL
contains Instructor and Section tables. The Instructor table contains the following
columns:

• InstructorID

• Name

• RoomNo (the instructor's office)

The Section table contains the following columns:

• InstructorID

• Schedule

• RoomNo (where the class is held)

• SectionNo

• CourseID

• Capacity (maximum size of the section)

~ To modify the recordset's table list

• Rewrite the recordset's GetOefaul tSQL member function to return a string
containing a comma-delimited list of table names.

For example, if your CJoi nSet recordset joins a Course table to a Section table, you
should rewrite your GetOefaul tSQL function to look something like this:

CString CJoinSet::GetOefaultSQL()
{

return "SECTION, INSTRUCTOR";

Recordset (ODBC)

689

Recordset (ODBC)

690

Tip As an alternative, you can pass a string containing a comma-delimited list of table names
in the /pszSQL parameter when you call the recordset's Open member function. The string has
the same form as the string returned in the example above.

~ To qualify columns with the same name from different tables

• Edit the RFX function calls in the recordset's DoFieldExchange member function.

For each duplicate column name, edit the second parameter in the RFX call to
prefix a table name to the column name already there. Separate the table name and
the column name with a period.

For example, because CJoi nSet binds a RoomNo column from each table, you must
modify the two RFX calls for these columns as shown in the following code:

void CJoinSet::DoFieldExchange(CFieldExchange* pFX)
{

11{{AFX_FIELD_MAP(CJoinSet)
SetFieldType(pFX. CFieldExchange::outputColumn);
RFX_Text(pFX. "Section.RoomNo". m_strClassRoom);
RFX_Text(pFX. "Instructor.RoomNo". m_strlnstructorOffice);
I I ...
II}}AFX_FIELD_MAP

In the second parameter of each RFX function call above, the name RoomNo is
prefixed by the table name. The two items are separated by a period.

Setting the Join Conditions with a Filter
When you construct a CJoi nSet object in your program, set its filter to specify which
columns constitute the join. Then call the recordset's Open member function as
shown in the following example, which joins the Instructor and Section tables on
their common InstructorID column:

CJoinSet ssJoin(NULL);
ssJoin.m_strFilter = "Instructor.lnstructorID = Section.lnstructorID";
if(!ssJoin.Open())

return FALSE; II recordset could not be opened

The filter supplies the connection between two columns that makes it possible to view
two tables as if they were one.

You can join more than two tables in the same way by equating multiple pairs of
columns, each pair joined by the SQL keyword AND.

See Also Recordset: Declaring a Class for a Predefined Query (ODBC), Recordset:
Declaring a Class for a Table (ODBC), Recordset: Requerying a Recordset (ODBC)

Recordset (ODBC)

Recordset: Declaring a Class for a Predefined Query
(ODBC)

This article applies to the MFC ODBC classes. For DAO recordsets, see the article
DAO Recordset.

This article explains how to create a recordset class for a predefined query
(sometimes called a "stored procedure," as in Microsoft SQL Server).

Some database management systems (DBMSs) allow you to create a predefined query
and call it from your programs like a function. The query has a name, mayor may
not take parameters, and mayor may not return records. The procedure in this article
describes how to call a predefined query that returns records (and perhaps takes
parameters).

The database classes don't support updating predefined queries. The difference
between a snapshot predefined query and a dynaset predefined query is not
updatability but whether changes made by other users (or other recordsets in your
program) are visible in your recordset.

Tip You don't need a record set to call a predefined query that doesn't return records. Prepare
the Sal statement as described below, but execute it by calling the CDatabase member
function ExecuteSQL.

You can create a single recordset class to manage calling a predefined query, but you
must do some of the work yourself. ClassWizard doesn't support creating a class
specifically for this purpose.

~ To create a class for calling a predefined query (stored procedure)

1 Use Class Wizard to create a recordset class for the table that contributes the most
columns returned by the query. This gives you a head start.

2 Manually add field data members for any columns of any tables that the query
returns but that Class Wizard didn't create for you. Add them outside the
"II{ {AFX_FIELD" comments.

For example, if the query returns three columns each from two additional tables,
add six field data members (of the appropriate data types) to the class.

3 Manually add RFX function calls in the DoFi el dExchange member function of the
class, one corresponding to the data type of each added field data member.

Add these function calls outside the "II{ {AFX_FIELD_MAP" comments.
Immediately before these RFX calls, call SetFieldType, as shown here:

pFX->SetFieldType(CFieldExchange::outputColumn);

Note You must know the data types and the order of columns returned in the result set.
The order of RFX function calls in DoFi el dExchange must match the order of result set
columns.

691

Recordset (ODBC)

692

4 Manually add initializations for the new field data members in the recordset class
constructor.

You must also increment the initialization value for the m nFields data member.
Class Wizard writes the initialization, but it only covers the field data members it
adds for you. Put the increment statement outside the comment brackets. For
example:

m_nFields += 6;
11{{AFX_FIELD(CDelinquents. CRecordset)

Some data types shouldn't be initialized here-for example, CLongBinary or
byte arrays.

5 If the query takes parameters, add a parameter data member for each parameter,
an RFX function call for each, and an initialization for each.

6 You must increment m_nParams for each added parameter, as you did m_nFields
for added fields in step 4 above. See the article Recordset: Parameterizing a
Recordset (ODBC) for details.

7 Manually write an SQL statement string with the following form:

{CALL proc-name [(? [. ?] ...)]}

where CALL is an ODBC keyword, proc-name is the name of the query as it is
known on the data source, and the "?" items are placeholders for the parameter
values you supply to the record set at run time (if any). The following example
prepares a placeholder for one parameter:

CString mySOL == "{CALL Del inquent_Accts (?)}";

8 In the code that opens the recordset, first set the values of the recordset's
parameter data members, then call the Open member function, passing your SQL
string for the lpszSQL parameter. Or, instead, replace the string returned by the
GetDefaul tSOL member function in your class.

The following examples illustrate the procedure for calling a predefined query,
named Del i nquent_Accts, which takes one parameter for a sales district number.
This query returns three columns: Acct_No, L_Name, Phone. All columns are from the
Customers table.

The recordset below specifies field data members for the columns the query returns
and a parameter for the sales district number requested at run time.

class COelinquents : public CRecordset
{

II Field/Param Data
11{{AFX_FIELO(COelinquents, CRecordset)
LONG m_1Acct_No;

} ;

CString m_strL_Name;
CString m_strPhone;
I/} }AFX_FIELO
LONG m_10istParam;
I I ...

This class declaration is as Class Wizard writes it, except for the m_ 1 0 i s t Par a m
member added manually outside the "II{ {AFX_FIELD" comment. Other members
below the comments aren't shown here.

The next example shows the initializations for the data members in the
COel i nquents constructor. You add the two lines outside the comment brackets.

COelinquents::COelinquents(COatabase* pdb)
: CRecordset(pdb)

11{{AFX_FIELO_INIT(COelinquents)
m_1Acct_No = 0;
m_strL_Name = "";

m_strPhone = "";

m_nFields = 3;
II}}AFX_FIELO_INIT
m_nParams = 1;
m_10istParam = 0;

Note the initializations for m _nFields and m _ nParams. Class Wizard initializes
m _ nFields; you initialize m _ nParams.

The next example shows the RFX functions in COel i nquents: : OoFi el dExchange:

void COelinquents::OoFieldExchange(CFieldExchange* pFX)
{

11{{AFX_FIELO_MAP(COelinquents)
pFX-)SetFieldType(CFieldExchange::outputColumn);
RFX_Long(pFX, "Acct_No", m_1Acct_No);
RFX_Text(pFX, "L_Name", m_strL_Name);
RFX_Text(pFX, "Phone", m_strPhone);

II}}AFX_FIELO_MAP
pFX-)SetFieldType(CFieldExchange::param);
RFX_Long(pFX, HOist_NoH, m_10istParam);

}

Besides making the RFX calls for the three returned columns, this code manages
binding the parameter you pass at run time. The parameter is keyed to the Oi st_No
(district number) column.

Recordset (ODBC)

693

Recordset (ODBC)

The next example shows how to set up the SQL string and how to use it to open the
recordset.

II Construct a CDelinquents recordset object
CDelinquents rsDel(NULL);
CString strSOL = "{CALL Delinquent_Accts (?)}"
II Specify a parameter value (obtained earlier from the user)
rsDel .m_1DistParam = lDistrict;
II Open the recordset and run the query
if(rsDel.Open(CRecordset::snapshot. strSOL))

II Use the recordset ...

This code constructs a snapshot, passes it a parameter obtained earlier from the user,
and calls the predefined query. When the query runs, it returns records for the
specified sales district. Each record contains columns for the account number,
customer's last name, and customer's phone number.

Tip You might want to handle a return value (output parameter) from a stored procedure. The
MFC database classes don't support output parameters, but see the ::SQLProcedures
example code in the ODBC Programmer's Reference for information.

See Also Recordset: Requerying a Recordset (ODBC), Recordset: Declaring a Class
for a Table (ODBC), Recordset: Performing a Join (ODBC)

Recordset: Requerying a Recordset (ODBC)

694

This article applies to the MFC ODBC classes. For DAO recordsets, see the article
DAO Recordset.

This article explains how you can use a recordset object to "requery" -refresh-itself
from the database, and when you might want to do that with the Requery member
function.

The principal reasons for requerying a recordset are to:

• Bring the recordset up to date with respect to records added by you or by other
users and records deleted by other users (those you delete are already reflected in
the recordset).

• Refresh the recordset based on changing parameter values.

Bringing the Recordset Up to Date
Frequently you will want to requery your recordset object to bring it up to date. In a
multiuser database environment, other users can make changes to the data during the
life of your recordset. For more information about when your recordset reflects
changes made by other users and when other users' recordsets reflect your changes,
see the articles Recordset: How Recordsets Update Records (ODBC) and Dynaset.

Requerying Based on New Parameters
Another frequent-and equally important-use of Requery is to select a new set of
records based on changing parameter values. For example, Step 2 in the ENROLL
tutorial application illustrates using a combo box in a record view to select from a list
of all available college courses. When the user selects a different course from the
combo box, ENROLL requeries a Section table to select only those class sections for
the course the user chose in the combo box. See the
CSect i onForm: : OnSel endokCourseL i st member function in Requerying the
CSectionSet Recordset in Tutorials.

Tip Query speed is probably significantly faster if you call Requery with changing parameter
values than if you call Open again.

Requerying Dynasets vs. Snapshots
Because dynasets are meant to present a set of records with dynamic, up-to-date data,
you'll want to requery dynasets often if you want to reflect other users' additions.
Snapshots, on the other hand, are useful because you can safely rely on their static
contents while you prepare reports, calculate totals, and so on. Still, you may
sometimes want to requery a snapshot as well. In a multiuser environment, snapshot
data may lose synchronization with the data source as other users change the
database.

~ To requery a recordset object

• Call the Requery member function of the object.

Alternatively, you can simply close and reopen the original recordset. In either case,
the new recordset represents the current state of the data source.

For an example, see the article Record Views: Filling a List Box from a Second
Recordset.

Tip To optimize Requery performance, avoid changing the recordset's filter or sort. Change
only the parameter value before calling Requery.

If the Requery call fails, you can retry the call; otherwise, your application should
terminate gracefully. A call to Requery or Open might fail for any of a number of
reasons. Perhaps a network error occurs; or, during the call, after the existing data is
released but before the new data is obtained, another user might get exclusive access;
or the table on which your recordset depends could be deleted.

See Also Recordset: Dynamically Binding Data Columns (ODBC), Recordset:
Creating and Closing Recordsets (ODBC)

Recordset (ODBC)

Recordset: Dynamically Binding Data Columns (ODBC)
This article applies to the MFC ODBC classes. For DAO recordsets, see the article
DAO Recordset.

695

Recordset (ODBC)

696

Recordsets manage binding table columns that you specify at design time, but there
are cases when you may want to bind columns that were unknown to you at design
time. This article explains:

• When you might want to bind columns dynamically to a recordset.

• How to bind columns dynamically at run time.

When You Might Bind Columns Dynamically
At design time, Class Wizard creates recordset classes based on the known tables and
columns on your data source. Databases can change between when you design them
and later when your application uses those tables and columns at run time. You or
another user might add or drop a table or add or drop columns from a table that your
application's recordset relies upon. This probably isn't a concern for all data-access
applications, but if it is for yours, how can you cope with changes in the database
schema, other than by redesigning and recompiling? The purpose of this article is to
answer that question.

This article describes the most common case in which you might bind columns
dynamically-having begun with a recordset based on a known database schema,
you want to handle additional columns at run time. The article further assumes that
the additional columns map to CString field data members, the most common case,
although suggestions are supplied to help you manage other data types.

With a small amount of extra code, you can:

• Determine what columns are available at run time.

• Bind additional columns to your recordset dynamically, at run time.

Your record set still contains data members for the columns you knew about at design
time. It also contains a small amount of extra code that dynamically determines
whether any new columns have been added to your target table and, if so, binds these
new columns to dynamically allocated storage (rather than to recordset data
members).

This article doesn't cover other dynamic binding cases, such as dropped tables or
columns. For those, you'll need to use ODBC API calls more directly. See the ODBC
Programmer's Reference.

Example code for this article comes from the MFC Database samples DYNABIND
and CATALOG.

How to Bind Columns Dynamically
To bind columns dynamically in a case like that of the DYNABIND example, you
must know (or be able to determine) the names of the additional columns. You must
also allocate storage for the additional field data members, specify their names and
their types, and specify the number of columns you're adding.

The following discussion mentions two different recordsets. The first is the "main
recordset" that selects records from the target table. The second is a special "column
recordset" used to get information about the columns in your target table.

The General Process
At the most general level, you follow these steps:

1. Construct your main recordset object.

Optionally, pass a pointer to an open CDatabase object, or be able to supply
connection information to the column recordset in some other way.

2. Take steps to add columns dynamically.

See the process described in Adding the Columns below.

3. Open your main recordset.

The recordset selects records and uses record field exchange (RFX) to bind both
the "static" columns (those mapped to recordset field data members) and the
dynamic columns (mapped to extra storage that you allocate).

Adding the Columns
Dynamically binding added columns at run time requires the following steps:

1. Determine at run time what columns are in the target table. Extract from that
information a list of the columns that have been added to the table since your
recordset class was designed.

A good approach is to use a "column recordset" class designed to query the data
source for column information for the target table-such as column name, data
type, and so on. The MFC Database sample CATALOG provides a recordset class
called CCol umns that you can use to build a list of the new columns' names.

2. Provide storage for the new field data members. Your main recordset class doesn't
have field data members for unknown columns, so you must provide a place to
store the names, result values, and possibly data type information (if the columns
are of different data types).

One approach is to build one or more dynamic lists: one for the new columns'
names, another for their result values, and a third for their data types (if
necessary). These lists, particularly the value list, provide the information and the
necessary storage for binding. Figure 1 illustrates building the lists.

Recordset (ODBC)

697

Recordset (ODBC)

698

Figure 1 Building Lists of Columns to Bind Dynamically

Name Age Address Phone I) List 1: columns in the table
List 2 to make List 3. on the data source
Compare Ust t with f

1
Name Age Address I) List 2: columns already

in the recordset
Use List 3 to pass

column names to RFX
functions. -(I Phone) List 3: columns to add dynamically

Use List 4 to store
values for the current

record. -(I 555·1212) List 4: values for dynamic columns

3. Add an RFX function call in your main recordset's DoF; el dExchange function
for each added column. These RFX calls do the work of fetching a record,
including the additional columns, and binding the columns to recordset data
members or to your dynamically supplied storage for them.

One approach is to add a loop to your main recordset's Do F; e 1 d Ex c han 9 e
function that loops through your list of new columns, calling the appropriate RFX
function for each column in the list. On each RFX call, pass a column name from
the column name list and a storage location in the corresponding member of the
result value list.

Lists of Columns
The four lists you need to work with are named as follows throughout this article:

Current-Table-Columns (List 1 in Figure 1) A list of the columns currently in the
table on the data source. This list mayor may not match the list of columns
currently bound in your recordset.

Bound-Recordset-Columns (List 2 in Figure 1) A list of the columns bound in your
recordset (usually set up with ClassWizard). These columns already have RFX
statements in your Do Fie 1 d Ex c han 9 e function.

Columns-To-Bind-Dynamically (List 3 in Figure 1) A list of columns in the table but
not in your recordset. These are the columns you want to bind dynamically.

Dynamic-Column-Values (List 4 in Figure 1) A list containing storage for the values
retrieved from the columns you bind dynamically. Elements of this list correspond
to those in Columns-to-Bind-Dynamically, one to one.

Building Your Lists
With a general strategy in mind, you can tum to the details. The procedures in the
rest of this article show you how to build the lists shown in Lists of Columns. The
procedures guide you through:

• Determining the columns in your table at run time

• Determining the names of columns not in your recordset

• Providing dynamic storage for columns newly added to the table

• Dynamically adding RFX calls for new columns

Determining the Columns in Your Table at Run Time
First, build Current-Table-Columns (as in Figure 1): a list of the columns in the table
on the data source.

~ To determine the columns in a table at run time (Current-Table-Columns)

1 Borrow the files COLUMNST.R/.CPP from the MFC Database sample
CATALOG. Add the .CPP file to your project and include the.R file as needed.

2 At run time, construct a "column recordset" object of class CCol umn, passing a
pointer to an open CDatabase object.

3 Before you call Open, set one or more of the column recordset's parameters. The
following table describes what these parameters specify.

Parameter

m_strQualifierParam

m_strOwnerParam

m_strTableNameParam

m_strColumnNameParam

Description

Identifies the database containing the table
for ODBC. You usually don't need to
specify this value.

Identifies the person who created the target
table.

Identifies the target table by name.

Identifies a specific column by name.

In most cases, you need only the table name, although some data sources might
require the owner name as well, and others might require even more information.
In addition to table name, use the column name parameter if you need information
for only a single column in the table. For information about these parameters, see
::SQLColumns in the ODBC SDK Programmer's Reference.

4 Call Open for the column recordset.

The recordset returns a record for each column in the specified table (unless you
specify m _strColumnNameParam).

5 Construct Current-Table-Columns, a collection object that can hold CString
objects.

For example, you might use a CStringList.

6 Scroll through the object's records, loading column names into Current-Table
Columns as you go.

This procedure results in a collection object that contains the names of all columns in
a specified table. For example, Figure 1 shows Current-Table-Columns (List 1) with
four elements. The last element is "Phone." For descriptions of the lists, see Lists of
Columns.

Recordset (ODBC)

699

Recordset (ODBC)

700

Determining Which Table Columns Are Not in Your Recordset
Next, build a list (Bound-Recordset-Columns, as in List 2 in Figure 1) that contains a
list of the columns already bound in your main recordset. Then build a list (Columns
to-Bind-Dynamically, derived from Current-Table-Columns and Bound-Recordset
Columns) that contains column names that are in the table on the data source but not
in your main recordset.

~ To determine the names of columns not in the recordset (Columns-to-Bind
Dynamically)

1 Build a list (Bound-Recordset-Columns) of the columns already bound in your
main record set.

One approach is to create Bound-Recordset-Columns at design time. You can
visually examine the RFX function calls in the recordset's DaF; el dExchange
function to get these names. Then set up your list as an array initialized with the
names.

For example, Figure 1 shows Bound-Recordset-Columns (List 2) with three
elements. Bound-Recordset-Columns is missing the Phone column shown in
Current-Table-Columns (List 1).

2 Compare Current-Table-Columns and Bound-Recordset-Columns to build a list
(Columns-to-Bind-Dynamically) of the columns not already bound in your main
recordset.

One approach is to loop through your list of columns in the table at run time
(Current-Table-Columns) and your list of columns already bound in your recordset
(Bound-Recordset-Columns) in parallel. Into Columns-to-Bind-Dynamically put
any names in Current-Table-Columns that don't appear in Bound-Recordset
Columns.

For example, Figure 1 shows Columns-to-Bind-Dynamically (List 3) with one
element: the Phone column found in Current-Table-Columns (List 1) but not in
Bound-Recordset-Columns (List 2).

3 Build a list of Dynamic-Column-Values (as in List 4 in Figure 1) in which to store
the data values corresponding to each column name stored in your list of columns
to bind dynamically (Columns-to-Bind-Dynamically).

The elements of this list play the role of new recordset field data members. They
are the storage locations to which the dynamic columns are bound. For
descriptions of the lists, see Lists of Columns.

Providing Storage for the New Columns
Next, set up storage locations for the columns to be bound dynamically. The idea is to
provide a list element in which to store each column's value. These storage locations
parallel the recordset member variables, which store the normally bound columns.

~ To provide dynamic storage for new columns (Dynamic-Column-Values)

• Build Dynamic-Column-Values, parallel to Columns-to-Bind-Dynamically, to
contain the value of the data in each column.

For example, Figure 1 shows Dynamic-Column-Values (List 4) with one element:
a CString object containing the actual phone number for the current record: "555-
1212".

In the most common case, Dynamic-Column-Values has elements of type CString.
If you're dealing with columns of varying data types, you'll need a list that can
contain elements of a variety of types.

The result of the preceding procedures is two main lists: Columns-to-Bind
Dynamically containing the names of columns and Dynamic-Column-Values
containing the values in the columns for the current record.

Tip If the new columns aren't all of the same data type, you might want an extra parallel list
containing items that somehow define the type of each corresponding element in the column
list. (You can use the values AFX_RFX_BOOL, AFX_RFX_BVTE, and so on, for this if you
wish. These constants are defined in AFXDB.H.) Choose a list type based on how you
represent the column data types.

Adding RFX Calls to Bind the Columns
Finally, arrange for the dynamic binding to occur by placing RFX calls for the new
columns in your OoF; el dExchange function.

~ To dynamically add RFX calls for new columns

• In your main recordset's Do F; e 1 d Ex c han 9 e member function, add code that
loops through your list of new columns (Columns-to-Bind-Dynamically). In each
loop, extract a column name from Columns-to-Bind-Dynamically and a result
value for the column from Dynamic-Column-Values. Pass these items to an RFX
function call appropriate to the data type of the column. For descriptions of the
lists, see Lists of Columns.

In the common case, in your RFX _Text function calls you extract CString objects
from the lists, as in the following lines of code, where Columns-to-Bind-Dynamically
is a CStringList called m_l ; s t N a me and Dynamic-Column-Values is a CStringList
called m_l i s t Val u e:

RFX_Text(pFX,
m_listName.GetNext(posName),
m_listValue.GetNext(posValue));

For an example of such a loop added to DoF; el dExchange, see
CSect; ons:: OoFi el dExchange in the file SECTIONS.CPP in the MFC Database
sample DYNABIND. For more information about RFX functions, see Macros and
Globals in the Class Library Reference.

Recordset (ODBC)

701

Recordset (ODBC)

Tip If the new columns are of different data types, use a switch statement in your loop to call
the appropriate RFX function for each type.

When the framework calls DoFi el dExchange during the Open process to bind
columns to the recordset, the RFX calls for the static columns bind those columns.
Then your loop repeatedly calls RFX functions for the dynamic columns.

See the complete source code in the MFC Database sample DYNABIND.

See Also Recordset: Working with Large Data Items (ODBC)

Recordset: Working with Large Data Items (ODBC)

702

This article applies to both the MFC ODBC classes and the MFC DAO classes.

Note If you're using the MFC DAD classes, manage your large data items with class
CByteArray rather than class CLongBinary.

Suppose your database can store large pieces of data, such as bitmaps (employee
photographs, maps, pictures of products, OLE objects, and so on). This kind of data
is often referred to as a Binary Large Object (or BLOB) because:

• Each field value is large.

• Unlike numbers and other simple data types, it has no predictable size.

• The data is formless from the perspective of your program.

This article explains what support the database classes provide for working with such
objects.

Managing Large Objects
Recordsets have two ways to solve the special difficulty of managing binary large
objects. You can use class CByteArray, or you can use class CLongBinary. In
general, CByteArray is the preferred way to manage large binary data.

CByteArray requires more overhead than CLongBinary but is more capable, as
described in The CByteArray Class, following. CLongBinary is described briefly in
The CLongBinary Class later in this chapter.

For detailed information about using CByteArray to work with large data items, see
Technical Note 45.

The CByteArray Class
CByteArray is one of the MFC collection classes. A CByteArray object stores a
dynamic array of bytes-the array can grow if needed. The class provides fast access
by index, as with built-in C++ arrays. CByteArray objects can be serialized and
dumped for diagnostic purposes. The class supplies member functions for getting and
setting specified bytes, inserting and appending bytes, and removing one byte or all
bytes. These facilities make parsing the binary data easier. For example, if the binary

Recordset (ODBC)

object is an OLE object, you might have to work through some header bytes to reach
the actual object.

Using CByteArray in Recordsets
By giving a field data member of your recordset the type CByteArray, you provide a
fixed base from which RFX can manage the transfer of such an object between your
recordset and the data source and through which you can manipulate the data inside
the object. RFX needs a specific site for retrieved data, and you need a way to access
the underlying data.

For detailed information about using CByteArray to work with large data items, see
Technical Note 45.

The CLongBinary Class
A CLongBinary object is a simple shell around an HGLOBAL handle to a block of
storage allocated on the heap. When it binds a table column containing a binary large
object, RFX allocates the HGLOBAL handle when it needs to transfer the data to the
recordset and stores the handle in the CLongBinary field of the recordset.

In tum, you use the HGLOBAL handle, m_hData, to work with the data itself,
operating on it as you would on any handle data. This is where CByteArray adds
capabilities.

Caution CLongBinary objects can't be used as parameters in function calls. In addition,
their implementation, which calls ::SQLGetData, necessarily slows scrolling performance for a
scrollable snapshot. This may also be true when you use an ::SQLGetData call yourself to
retrieve dynamic schema columns.

See Also Recordset: Obtaining SUMs and Other Aggregate Results (ODBC), Record
Field Exchange

Recordset: Obtaining SUMs and Other Aggregate
Results (ODBC)

This article applies to the MFC ODBC classes. For DAO recordsets, see the article
DAO Recordset.

This article explains how to obtain aggregate results using the following SQL
keywords:

• SUM Calculates the total of the values in a column with a numeric data type.

• MIN Extracts the smallest value in a column with a numeric data type.

• MAX Extracts the largest value in a column with a numeric data type.

• AVG Calculates an average value of all the values in a column with a numeric
data type.

703

Recordset (ODBC)

704

• COUNT Counts the number of records in a column of any data type.

You use these SQL functions to obtain statistical information about the records in a
data source rather than to extract records from the data source. The recordset that is
created usually consists of a single record (if all columns are aggregates) that
contains a value. (There might be more than one record if you used a GROUP BY
clause.) This value is the result of the calculation or extraction performed by the SQL
function.

Tip To add an Sal GROUP BY clause (and possibly a HAVING clause) to your Sal
statement, append it to the end of m_strFilter. For example:
m_strFilter = "sales> 10 GROUP BY SALESPERSON_IO";

You can limit the number of records you use to obtain aggregate results by filtering
and sorting the columns.

Caution Some aggregation operators return a different data type from the column(s) over
which they are aggregating.

• SUM and AVG may return the next larger data type (for example, calling with iot
returns LONG or double).

• COUNT usually returns LONG regardless of target column type.

• MAX and MIN return the same data type as the columns they calculate.

For example, ClassWizard creates long m_l Sa 1 es to accommodate a Sales column, but
you'll need to replace this with a doub 1 em_db 1 SumSa 1 es data member to accommodate the
aggregate result. See the example that follows.

~ To obtain an aggregate result for a recordset

1 Create a recordset containing the column(s) from which you want to obtain
aggregate results.

2 Modify the DoFieldExchange function for the recordset. Replace the string
representing the column name (the second argument of the RFX function call(s))
with a string representing the aggregation function on the column. For example,
replace

RFX_LongCpFX. "Sales". m_1Sales);

with

RFX_OoubleCpFX. "SumCSales)". m_dblSumSales)

3 Open the recordset. The result of the aggregation operation will be left in
m_dblSumSales.

Note ClassWizard actually assigns data member names without Hungarian prefixes. For
example, the wizard would produce m_Sa 1 es for a Sales column, rather than the m_l Sa 1 es
name used earlier for illustration.

If you're using a CRecordView class to view the data, you'll have to change the
DDX function call to display the new data member value; in this case, changing it
from

DDX_FieldText(pDX, IDC_SUMSALES, m_pSet->m_1Sales, m_pSet);

to

DDX_FieldText(pDX, IDC_SUMSALES, m_pSet->m_dblSumSales, m_pSet);

See Also Recordset: How Recordsets Select Records (ODBC)

Recordset (ODBC)

Recordset: How Recordsets Select Records (ODBC)
This article applies to the MFC ODBC classes. For DAO recordsets, see the article
DAO Recordset.

This article explains:

• Your role and your options in selecting records.

• How a recordset constructs its SQL statement and selects records.

• What you can do to customize the selection.

Recordsets select records from a data source through an ODBC driver by sending
SQL statements to the driver. The SQL sent depends on how you design and open
your recordset class.

Your Options in Selecting Records
Table 1 shows your options in selecting records.

Table 1 How and When You Can Affect a Recordset

When you ...

Declare your recordset class with
Class Wizard ...

Complete your record set class
implementation ...

You can ...

Specify which table to select from.

Specify which columns to include.

See ClassWizard: Creating a Recordset Class.

Override member functions such as OnSetOptions
(advanced) to set application-specific options or to
change defaults. Specify parameter data members if
you want a parameterized recordset.

705

Recordset (ODBC)

706

Table 1 How and When You Can Affect a Recordset (cont.)

When you ...

Construct a record set object
(before you call Open) and
then ...

Run the recordset's query by
calling Open ...

Call Requery to requery the
recordset with the latest values
on the data source ...

You can ...

Specify a search condition (possibly compound) for use
in a WHERE clause that filters the records. See
Recordset: Filtering Records (ODBC).

Specify a sort order for use in an ORDER BY clause
that sorts the records. See Recordset: Sorting Records
(ODBC).

Specify parameter values for any parameters you added
to the class. See Recordset: Parameterizing a
Recordset (ODBC).

Specify a custom SQL string to replace the default
SQL string set up by ClassWizard. See
CRecordset::Open in the Class Library Reference
and SQL: Customizing Your Recordset's SQL
Statement (ODBC).

Specify new parameters, filter, or sort. See Recordset:
Requerying a Recordset (ODBC).

How a Recordset Constructs Its SQl Statement
When you call a recordset object's Open member function, Open constructs an SQL
statement using some or all of the following ingredients:

• The IpszSQL parameter passed to Open. If not NULL, this parameter specifies a
custom SQL string, or part of one. The framework parses the string. If the string is
an SQL SELECT statement or an ODBC CALL statement, the framework uses
the string as the recordset's SQL statement. If the string does not begin with
"SELECT" or "{ CALL", the framework uses what's supplied to construct an SQL
FROM clause.

• The string returned by GetDefaultSQL. By default, this is the name of the table
you specified for the recordset in Class Wizard, but you can change what the
function returns. The framework calls GetDefaultSQL-ifthe string doesn't
begin with "SELECT" or "{ CALL", it is assumed to be a table name, which is
used to construct an SQL string.

• The field data members of the recordset, which are to be bound to specific columns
of the table. The framework binds record columns to the addresses of these
members, using them as buffers. The framework determines the correlation of
field data members to table columns from the RFX function calls in the recordset's
DoFieldExchange member function.

• The filter for the record set, if any, contained in the m_strFilter data member. The
framework uses this string to construct an SQL WHERE clause.

• The sort order for the recordset, if any, contained in the m _ strSort data member.
The framework uses this string to construct an SQL ORDER BY clause.

Tip To use the Sal GROUP BY clause (and possibly the HAVING clause), append the
clause(s) to the end of your filter string.

• The values of any parameter data members you specify for the class. You set
parameter values just before you call Open or Requery. The framework binds the
parameter values to "?" placeholders in the SQL string. At compile time, you
specify the string with placeholders; at run time, the framework fills in the details
based on the parameter values you pass.

Open constructs an SQL SELECT statement from these ingredients. See
Customizing the Selection for details about how the framework uses the ingredients.

After constructing the statement, Open sends the SQL to the ODBC Driver Manager
(and the ODBC Cursor Library if it is in memory), which sends it on to the ODBC
driver for the specific DBMS. The driver communicates with the DBMS to carry out
the selection on the data source and fetches the first record. The framework loads the
record into the field data members of the recordset.

You can use a combination of these techniques to open tables and to construct a query
based on a join of multiple tables. With additional customization, you can call
predefined queries (stored procedures), select table columns not known at design time
and bind them to recordset fields, or perform most other data-access tasks. Tasks you
can't accomplish by customizing recordsets can still be accomplished by calling
ODBC API functions or directly executing SQL statements with
CDatabase: :ExecuteSQL.

Customizing the Selection
Besides supplying a filter, a sort order, or parameters, you can take the following
actions to customize your recordset's selection:

• Pass a custom SQL string in IpszSQL when you call Open for the recordset.
Anything you pass in IpsqSQL takes precedence over what the GetDefaultSQL
member function returns.

See the article SQL: Customizing Your Recordset's SQL Statement (ODBC). That
article describes the kinds of SQL statements (or partial statements) you can pass
to Open and what the framework does with them.

Note If the custom string you pass does not begin with "SELECT" or "{CAll", MFC
assumes it contains a table name. This also applies to the next bulleted item below.

• Alter the string that ClassWizard writes in your recordset's GetDefaultSQL
member function. Edit the function's code to change what it returns. By default,
ClassWizard writes a GetDefaultSQL function that returns a single table name.

You can have GetDefaultSQL return any of the items that you can pass in the
IpszSQL parameter to Open. If you don't pass a custom SQL string in IpszSQL,

Recordset (ODBC)

707

Recordset (ODBC)

the framework uses the string that GetDefaultSQL returns. At a minimum,
GetDefaultSQL must return a single table name. But you can have it return
multiple table names, a full SELECT statement, an ODBC CALL statement, and
so on. For a list of what you can pass to IpszSQL-or have GetDefaultSQL return
-see the article SQL: Customizing Your Recordset's SQL Statement (ODBC).

If you're performing a join of two or more tables, rewrite GetDefaultSQL to
customize the table list used in the SQL FROM clause. See the article Recordset:
Performing a Join (ODBC).

• Manually bind additional field data members, perhaps based on information you
obtain about the schema of your data source at run time. You add field data
members to the recordset class, RFX function calls for them to the
DoFieldExchange member function, and initializations of the data members in
the class constructor.

See the article Recordset: Dynamically Binding Data Columns (ODBC).

• Override recordset member functions, such as OnSetOptions, to set application-specific
options or to override defaults.

If you want to base the recordset on a complex SQL statement, you'll need to use
some combination of these customization techniques. For example, perhaps you want
to use SQL clauses and keywords not directly supported by recordsets, or perhaps
you're joining multiple tables.

See Also Recordset: How Recordsets Update Records (ODBC), ODBC, SQL,
Recordset: Filtering Records (ODBC), Recordset: Sorting Records (ODBC),
Recordset: Locking Records (ODBC)

Recordset: How Recordsets Update Records (ODBC)

708

This article applies to the MFC ODBC classes. For DAO recordsets, see the article
DAO Recordset.

Besides their ability to select records from a data source, recordsets can (optionally)
update or delete the selected records or add new records. Three factors determine a
recordset's updatability: whether the connected data source is updatable, the options
you specify when you create a recordset object, and the SQL that is created.

Note The Sal upon which your CRecordset object is based can affect your recordset's
updatability. For example, if your Sal contains a join or a GROUP BY clause, MFC sets the
updatability to FALSE.

This article explains:

• Your role in recordset updating and what the framework does for you.

• The recordset as an "edit buffer" and the differences between dynasets and
snapshots.

The article Recordset: How AddNew, Edit, and Delete Work (ODBC) describes the
actions of these functions from the point of view of the recordset.

The article Recordset: More About Updates (ODBC) completes the recordset update
story by explaining how transactions affect updates, how closing a recordset or
scrolling affects updates in progress, and how your updates interact with the updates
of other users.

Your Role in Recordset Updating
Table 1 shows your role in using recordsets to add, edit, or delete records, along with
what the framework does for you.

Table 1 Recordset Updating: You and the Framework

You ...

Detennine whether the data
source is updatable (or
appendable).

Open an updatable recordset (of
any type).

Detennine whether the recordset
is updatable by calling
CRecordset update functions
such as CanUpdate or
CanAppend.

Call recordset member functions
to add, edit, and delete records.

Optionally, use transactions to
control the update process.

The framework ...

Supplies CDatabase member functions for testing the
data source's updatability or appendability.

Manages the mechanics of exchanging data between
your recordset object and the data source.

Supplies CDatabase member functions to support
transactions.

For more information about transactions, see the article Transaction (ODBC).

The Edit Buffer
Taken collectively, the field data members of a recordset serve as an "edit buffer" that
contains one record - the current record. Update operations use this buffer to operate
on the current record.

• When you add a record, the edit buffer is used to build a new record. When you
finish adding the record, the record that was previously current becomes current
again .

• When you update (edit) a record, the edit buffer is used to set the field data
members of the recordset to new values. When you finish updating, the updated
record is still current.

Records~t (ODBC)

709

Recordset (ODBC)

When you call AddNew or Edit, the current record is stored so it can be restored
later as needed. When you call Delete, the current record is not stored but is marked
as deleted, and you must scroll to another record.

Note The edit buffer plays no role in record deletion. When you delete the current record, the
record is marked as deleted, and the recordset is "not on a record" until you scroll to a different
record.

Dynasets and Snapshots
Dynasets refresh a record's contents as you scroll to the record. Snapshots are static
representations of the records, so a record's contents are not refreshed unless you call
Requery. To use all the functionality of dynasets, you must be working with an
ODBC driver that conforms to the correct level of ODBC API support. For more
information, see the articles ODBC and Dynaset.

See Also Recordset: How AddNew, Edit, and Delete Work (ODBC)

Recordset: How AddNew, Edit, and Delete Work
(ODBC)

710

This article applies to the MFC ODBC classes. For DAO recordsets, see the article
DAO Recordset.

This article explains how the AddNew, Edit, and Delete member functions of class
CRecordset work. Topics covered include:

• How adding records works

• Visibility of added records

• How editing records works

• How deleting records works

As a supplement, you might want to read the article Record Field Exchange: How
RFX Works, which describes the corresponding role of RFX in update operations.

Adding a Record
Adding a new record to a recordset involves calling the recordset's AddNew member
function, setting the values of the new record's field data members, and calling the
Update member function to write the record to the data source.

As a precondition for calling AddNew, the recordset must not have been opened as
read-only. The CanUpdate and CanAppend member functions let you determine
these conditions.

When you call AddNew:

1. The record in the edit buffer is stored, so its contents can be restored if the
operation is canceled.

2. The field data members are flagged so it will be possible to detect changes in them
later. The field data members are also marked "clean" (unchanged) and set to a
Null.

After you call AddNew, the edit buffer represents a new, empty record, ready to be
filled in with values. To do this, you manually set the values by assigning to them.
Instead of specifying an actual data value for a field, you can call SetFieldNuIl to
specify the value Null.

To commit your changes, you call Update.

When you call Update for the new record:

• If your ODBC driver supports the ::SQLSetPos ODBC API function, MFC uses
the function to add the record on the data source. With ::SQLSetPos, MFC can
add a record more efficiently because it doesn't have to construct and process an
SQL statement.

~r-

• If ::SQLSetPos can't be used, MFC does the following:

1. If no changes are detected, Update does nothing and returns O.

2. If there are changes, Update constructs an SQL INSERT statement. The columns
represented by all dirty field data members are listed in the INSERT statement. To
force a column to be included, call the SetFieldDirty member function:

SetFieldDirty(&m_dataMember, TRUE);

3. Update commits the new record-the INSERT statement is executed and the
record is committed to the table on the data source (and the recordset, if not a
snapshot) unless a transaction is in progress (see How Transactions Affect
Updates in the article Recordset: More About Updates).

4. The stored record is restored to the edit buffer. The record that was current before
the AddNew call is current again regardless of whether the INSERT statement
was successfully executed.

Tip For complete control of a new record, take the following approach: (a) set the values of
any fields that will have values; (b) explicitly set any fields that will remain Null by calling
SetFieldNull with a pointer to the field and the parameter TRUE (the default). If you want to
ensure that a field is not written to the data source, call SetFieldDirty with a pointer to the field
and the parameter FALSE, and do not modify the field's value. To determine whether a field is
allowed to be Null, call1sFieldNuliable.

Tip Advanced: To detect when record set data members change value, MFC uses a
PSEUDO_NULL value appropriate to each data type that you can store in a recordset. If you
must explicitly set a field to the PSEUDO_NULL value and the field happens already to be

Recordset (ODBC)

711

Recordset (ODBC)

712

marked Null, you must also call SetFieldNull, passing the address of the field in the first
parameter and FALSE in the second parameter.

Visibility of Added Records
When is an added record visible to your recordset? Added records sometimes show up
and sometimes aren't visible, depending on two things:

• \Vhat your driver is capable of

• What the framework can take advantage of

If your ODBC driver supports the: :SQLSetPos ODBC API function, MFC uses the
function to add records. With ::SQLSetPos, added records are visible to any
updatable MFC recordset. Without support for the function, added records are not
visible, and you must call Requery to see them. Using ::SQLSetPos is also more
efficient.

Editing an EXisting Record
Editing an existing record in a recordset involves scrolling to the record, calling the
recordset's Edit member function, setting the values of the new record's field data
members, and calling the Update member function to write the changed record to the
data source.

As a precondition for calling Edit, the recordset must be updatable and on a record.
The CanUpdate and IsDeleted member functions let you determine these conditions.
The current record also must not already have been deleted, and there must be
records in the recordset (both IsBOF and IsEOF return 0).

When you call Edit, the record in the edit buffer (the current record) is stored. The
stored record's values are later used to detect whether any fields have changed.

After you call Edit, the edit buffer still represents the current record but is now ready
to accept changes to the field data members. To change the record, you manually set
the values of any field data members you want to edit. Instead of specifying an actual
data value for a field, you can call SetFieldNull to specify the value Null.To commit
your changes, you call Update.

Tip To get out of Add New or Edit mode, call Move with the parameter
AFX_MOVE_REFRESH.

As a precondition for calling Update, the recordset must not be empty and the
current record must not have been deleted. IsBOF, IsEOF, and IsDeleted should all
return O.

When you call Update for the edited record:

• If your ODBC driver supports the ::SQLSetPos ODBC API function, MFC uses
the function to update the record on the data source. With ::SQLSetPos, the driver
compares your edit buffer with the corresponding record on the server, updating

the record on the server if the two are different. With ::SQLSetPos, MFC can
update a record more efficiently because it doesn't have to construct and process
an SQL statement.

-or-

• If ::SQLSetPos can't be used, MFC does the following:

1. If there have been no changes, Update does nothing and returns O.

2. If there are changes, Update constructs an SQL UPDATE statement. The columns
listed in the UPDATE statement are based on the field data members that have
changed.

3. Update commits the changes-executes the UPDATE statement-and the record
is changed on the data source, but not committed if a transaction is in progress
(see the article Transaction: Performing a Transaction in a Recordset (ODBC) for
details about how the transaction affects the update). ODBC keeps a copy of the
record, which also changes.

4. Unlike the process for AddNew, the Edit process does not restore the stored
record. The edited record remains in place as the current record.

Caution When you prepare to update a recordset by calling Update, take care that your
recordset includes all columns making up the primary key of the table (or all of the columns of
any unique index on the table, or enough columns to uniquely identify the row). In some cases,
the framework can use only the columns selected in your recordset to identify which record in
your table to update. Without all the necessary columns, multiple records may be updated in
the table. In this case, the framework will throw exceptions when you call Update.

Tip If you call AddNew or Edit after having called either function previously but before you
call Update, the edit buffer is refreshed with the stored record, replacing the new or edited
record in progress. This behavior gives you a way to abort an AddNew or Edit and begin a
new one: if you determine that the record-in-progress is faulty, simply call Edit or Add New
again.

Deleting a Record
Deleting a record from a recordset involves scrolling to the record and calling the
recordset's Delete member function. Unlike Add New and Edit, Delete does not
require a matching call to Update.

As a precondition for calling Delete, the recordset must be updatable and it must be
on a record. The CanUpdate, IsBOF, IsEOF, and IsDeleted member functions let
you determine these conditions.

When you call Delete:

Recordset (ODBC)

713

Recordset (ODBC)

• If your ODBC driver supports the ::SQLSetPos ODBC API function, MFC uses
the function to delete the record on the data source. Using ::SQLSetPos is usually
more efficient than using SQL.

-or-

• If ::SQLSetPos can't be used, MFC does the following:

1. The current record in the edit buffer is not backed up as in AddN ew and Edit.

2. Delete constructs an SQL DELETE statement that will remove the record.

The current record in the edit buffer is not stored as in AddNew and Edit.

3. Delete commits the deletion-executes the DELETE statement. The record is
marked deleted on the data source and, if the record is a snapshot, in ODBC.

4. The deleted record's values are still in the field data members of the recordset, but
the field data members are marked Null and the recordset's IsDeleted member
function will return a nonzero value.

Important After deleting a record, you should scroll to another record to refill the edit buffer
with the new record's data. It's an error to call Delete again, or to call Edit.

For information about the SQL statements used in update operations, see the article
SQL.

See Also Recordset: More About Updates (ODBC), Record Field Exchange

Recordset: More About Updates (ODBC)

714

This article applies to the MFC ODBC classes. For DAO recordsets, see the article
DAO Recordset.

This article explains:

• How other operations, such as transactions, affect updates.

• Your updates and those of other users.

• More about the Update and Delete member functions.

How Other Operations Affect Updates
Your updates are affected by transactions in effect at the time of the update, by
closing the recordset before completing a transaction, and by scrolling before
completing a transaction.

How Transactions Affect Updates
Beyond understanding how AddNew, Edit, and Delete work, it's important to
understand how the BeginTrans, CommitTrans, and Rollback member functions of
CDatabase work with the update functions of CRecordset.

By default, calls to AddNew and Edit affect the data source immediately when you
call Update. Delete calls take effect immediately. But you can establish a transaction
and execute a batch of such calls. The updates are not permanent until you commit
them. If you change your mind, you can roll back the transaction instead of
committing it.

Tip The MFC transaction model is, by design, rather restrictive. If it is too restrictive for your
application, see Technical Note 47 under MFC in Books Online.

For more information about transactions, see the article Transaction (ODBC).

How Closing the Recordset Affects Updates
If you close a recordset, or its associated CDatabase object, with a transaction in
progress (you haven't called CommitTrans or Rollback), the transaction is rolled
back automatically. How Rollback Affects Transactions in the article Transaction:
How Transactions Affects Updates (ODBC) describes the effect this has on AddNew,
Edit, or Delete operations in progress.

How Scrolling Affects Updates
When you scroll in a recordset, the edit buffer is filled with each new current record
(the previous record is not stored first). Scrolling skips over records previously
deleted. If you scroll after an AddNew or Edit call without calling Update,
CommitTrans, or Rollback first, any changes are lost (with no warning to you) as a
new record is brought into the edit buffer. The edit buffer is filled with the record
scrolled to, the stored record is freed, and no change occurs on the data source. This
applies to both Add New and Edit.

Your Updates and the Updates of Other Users
When you use a recordset to update data, your updates affect other users. Similarly,
the updates of other users during the lifetime of your recordset affect you.

In a multiuser environment, other users can open recordsets that contain some of the
same records you have selected in your recordset. Changes to a record before you
retrieve it are reflected in your recordset. Dynasets retrieve a record each time you
scroll to it, so dynasets reflect changes each time you scroll to a record. Snapshots
retrieve a record the first time you scroll to it, so snapshots reflect only those changes
that occur before you scroll to the record initially.

Records added by other users after you open the recordset don't show up in your
recordset unless you requery. If your recordset is a dynaset, edits to existing records
by other users do show up in your dynaset when you scroll to the affected record. If
your recordset is a snapshot, edits don't show up until you requery the snapshot. If
you want to see records added or deleted by other users in your snapshot, or records
added by other users in your dynaset, call Requery to rebuild the recordset. (Note
that the deletions of other users show up in your dynaset.) You may also call Requery
to see records you add, but not to see your deletions.

Recordset (ODBC)

715

Recordset (ODBC)

716

Tip To force caching of an entire snapshot at once, call MoveLast immediately after you
open the snapshot. Then call MoveFirst to begin working with the records. MoveLast is
equivalent to scrolling over all the records, but it retrieves them all at once. Note, however, that
this can lower performance and may not be required for some drivers.

The effects of your updates on other users are similar to their effects on you.

More About Update and Delete
This section provides additional information to help you work with Update and
Delete.

Update Success and Failure
If Update succeeds, the AddNew or Edit mode ends. To begin an AddNew or Edit
mode again, call AddNew or Edit.

If Update fails (returns FALSE or throws an exception), you remain in AddNew or
Edit mode, depending on which function you called last. You can then do one of the
following:

• Modify a field data member and try the Update again.

• Call AddNew to reset the field data members to Null, set the values of the field
data members, then call Update again.

• Call Edit to reload the values that were in the recordset before the first call to
AddNew or Edit, then set the values of the field data members, then call Update
again. After a successful Update call (except after an AddNew call), the field data
members retain their new values.

• Call Move (including Move with a parameter of AFX_MOVE_REFRESH, or 0),
which flushes any changes and ends any AddNew or Edit mode in effect.

Update and Delete
This section applies to both Update and Delete.

On an Update or Delete operation, one and only one record should be updated. That
record is the current record, which corresponds to the data values in the fields of the
recordset. If for some reason no records are affected or more than one record is
affected, an exception is thrown containing one of the following RETCODE values:

• AFX_SQL_ERROR_NO_ROWS_AFFECTED

• AFX_SQL_ERROR_MULTIPLE_ROWS_AFFECTED

When these exceptions are thrown, you remain in the AddNew or Edit state you
were in when you called Update or Delete. Here are the most common scenarios in
which you would see these exceptions. You're most likely to see:

• AFX_SQL_ERROR_NO_ROWS_AFFECTED when you're using optimistic
locking mode and another user has modified the record in a way that prevents the
framework from identifying the correct record to update or delete.

• AFX_SQL_ERROR_MULTIPLE_ROWS_AFFECTED when the table you're
updating has no primary key or unique index, and you don't have enough columns
in the recordset to uniquely identify a table row.

See Also Recordset: How Recordsets Select Records (ODBC), Record Field
Exchange, Transaction (ODBC), SQL, Exceptions: Database Exceptions

Recordset (ODBC)

717

Record Views

Record Views

718

To support fonn-based data-access applications, the class library provides class
CRecordView and class CDaoRecordView. A "record view" is a fonn view object
whose controls are mapped directly to the field data members of a recordset object
(and indirectly to the corresponding columns in a query result or table on the data
source). Like their base class CFormView, CRecordView and CDaoRecordView
are based on a dialog template resource.

The material in this group of articles applies to both the ODBC-based and the DAO
based classes. Use CRecordView for ODBC and CDaoRecordView for DAO.

Topics covered in this article include:

• Uses for database fonns

• Features of class record view classes

• Data exchange for record views

• Your role in working with a record view

• Designing and creating a record view

Form Uses
Fonns are useful for a variety of data-access tasks:

• Data entry

• Read-only examination of data

• Updating data

Features of Record View Classes
You can do fonn-based data-access programming with class CFormView, but
CRecordView and CDaoRecordView are generally better classes to derive from. In
addition to their CForm View features, CRecordView and CDaoRecordView:

• Provide dialog data exchange (DDX) between the fonn controls and the associated
recordset object.

• Handle Move First, Move Next, Move Previous, and Move Last commands for
navigating through the records in the associated recordset object.

• Update changes to the current record when the user moves to another record.

For more infonnation about navigation, see the article Record Views: Supporting
Navigation in a Record View.

Data Exchange for Record Views
When you use ClassWizard to map the controls in a record view's dialog template
resource to the fields of a recordset, the framework manages exchanging data in both
directions-from recordset to controls and from controls to recordset. Using the
DDX mechanism means you don't have to write the code to transfer data back and
forth yourself. Make a few connections in ClassWizard and you're done.

DDX for record views works in conjunction with:

• RFX for recordsets of class CRecordset (ODBC)

• DFX for recordsets of class CDaoRecordset (DAO)

Although they differ in implementation, at the interface level RFX and DFX are very
similar data exchange mechanisms. The DAO version, DFX, is modeled closely on
the earlier ODBC version, RFX. If you know how to use RFX, you know how to use
DFX.

RFX and DFX move data between the current record of the data source and the field
data members of a recordset object. DDX moves the data from the field data members
to the controls in the form. This combination fills the form controls initially and as
the user moves from record to record. It can also move updated data back to the
recordset and then the data source.

Figure 1 shows the relationship between DDX and RFX (or DFX) for record views.

Figure 1 Dialog Data Exchange and Record Field Exchange

r- R dV' ecor lew

r- Controls on form:
IDC_NAME, IDC_ROOM

I I Name m_Name Name
DDX

I I Room m_RoomNo
RFX

RoomNo

Recordset J Table on dat a source J
Field data members - Columns in table -

For more information about DDX, see Chapter 14, Working with Classes, in the
Visual C++ User's Guide. For more information about RFX, see the article Record
Field Exchange (RFX). For more information about DFX, see the article DAO
Record Field Exchange (DFX).

Record Views

719

Record Views

720

Your Role in Working with a Record View
Table 1 shows what you typically must do to work with a record view and what the
framework does for you.

Table 1 Working with a Record View: You and the Framework

You ...

Use the Visual C++ dialog editor to
design the fonn.

Use Class Wizard to create classes
derived from CRecordView and
CRecordset or from
CDaoRecordView and
CDaoRecordset.

The framework ...

The dialog editor makes it easy to create a dialog
template resource with controls.

Class Wizard writes the classes for you.

Use ClassWizard to map record Provides DDX between the controls and the
view controls to recordset field data recordset fields.
members.

[Optional] Write code to fill list
boxes or combo boxes or other
controls with data from a second
recordset.

[Optional] Write code for any
special validations.

[Optional] Write code to add or
delete records.

Provides default command handlers for Move First,
Move Last, Move Next, and Move Previous
commands from menus or toolbar buttons.

Updates changes to the data source.

Form-based programming is only one approach to working with a database. For
information on applications using some other user interface, or no user interface, see
the articles MFC: Using Database Classes with Documents and Views and MFC:
Using Database Classes Without Documents and Views. For alternative approaches to
displaying database records, see classes CListView and CTreeView as well as the
MFC Database sample DAOVIEW.

Designing and Creating a Record View
You can create your record view class with either AppWizard or ClassWizard. If you
use App Wizard, the wizard creates the record view class and a dialog template
resource for it (without controls). You must use the Visual C++ dialog editor to add
controls to the dialog template resource. On the other hand, if you use Class Wizard,
you must first create the dialog template resource in the dialog editor, then open
Class Wizard and create the record view class.

This information applies to both CRecordView and CDaoRecordView.

~ To create your record view with AppWizard

• See the article App Wizard: Database Support.

~ To design your form

• See Chapter 6, Using the Dialog Editor, in the Visual c++ User's Guide.

~ To create your record view class with ClassWizard

• See the article Class Wizard: Creating a Database Form.

Tip For an example of an application with multiple record views on a database, see the
ENROLL tutorial application, Step 4. The step is described in MFC Tutorial sample ENROLL.

The following articles explain additional details of using record views:

• Record Views: Supporting Navigation in a Record View

• Record Views: Using a Record View

• Record Views: Filling a List Box from a Second Recordset

See Also Record Views: Supporting Navigation in a Record View, AppWizard:
Database Support, Class Wizard: Creating a Database Form, Class Wizard: Mapping
Form Controls to Recordset Fields, Recordset (ODBC)

Record Views

Record Views: Supporting Navigation in a Record View
This article explains how to support movement from record to record in your record
view. The article covers:

• Command handling for record scrolling commands.

• User-interface update handlers for scrolling commands.

The information in this article applies to both CRecordView (ODBC) and
CDaoRecordView (DAO).

Command Handlers for Record Scrolling
Classes CRecordView and CDaoRecordView provide default command handling
for the following standard commands:

• ID RECORD MOVE FIRST - - -
• ID RECORD MOVE LAST - - -
• ID_RECORD_MOVE_NEXT

• ID RECORD MOVE PREY - - -
The OnMove member function of classes CRecordView and CDaoRecordView
provides default command handling for all four commands, which move from record

721

Record Views

to record. As these commands are issued, RFX (or DFX) loads the new record into
the recordset's fields and DDX moves the values into the record form's controls. (For
information about RFX, see the article Record Field Exchange (RFX).) For
information about DFX, see the article DAO Record Field Exchange (DFX).

Important Be sure to use these standard command IDs for any user-interface objects
associated with the standard record navigation commands.

User-Interface Updating for Record Views
CRecordView and CDaoRecordView also provide default user-interface update
handlers for the navigation commands. These handlers automate enabling and
disabling the user-interface objects-menu items and toolbar buttons. AppWizard
supplies standard menus and, if you choose the App Wizard "Dockable Toolbar"
option, a set of toolbar buttons for the commands. If you create a record view class
with ClassWizard, you may want to add similar user-interface objects to your
application.

~ To create menu resources with the menu editor

• U sing the information in Chapter 7, Using the Menu Editor, in the Visual C++
User's Guide, create your own menu with the same four commands.

~ To create toolbar buttons with the graphics editor

• Using the information in Chapter 11, Using the Toolbar Editor, in the Visual C++
User's Guide, edit the toolbar resource to add toolbar buttons for your record
navigation commands.

For an example of these steps, see Chapter 10, Constructing the User Interface, in
Tutorials.

See Also Record Views: Using a Record View

Record Views: Using a Record View

722

This article explains how you might commonly customize the default code for record
views that the wizard writes for you. Typically, you'll want to constrain the record
selection with a filter or parameters, perhaps sort the records, or customize the SQL
statement.

This information applies both to CRecordView (ODBC) and CDaoRecordView
(DAO).

Using CRecordView or CDaoRecordView is much the same as using CFormView.
The basic approach is to use the record view to display and perhaps update the
records of a single recordset. Beyond that, you might want to use other recordsets as
well, as discussed in the article Record Views: Filling a List Box from a Second
Recordset.

Record View Code Created by AppWizard
ClassWizard (or AppWizard) overrides the view's OnlnitiaIUpdate and
OnGetRecordset member functions. After the framework creates the frame window,
document, and view, it calls On I ni t i a 1 Update to initialize the view.
a n I nit i a 1 Up d ate obtains a pointer to the recordset from the document. A call to the
base class CView::OnlnitiaIUpdate function opens the recordset. The following
code shows this process for a CRecordView - the code for a CDaoRecordView is
similar:

void CSectionForm::OnlnitialUpdate()
{

}

m_pSet = &GetDocument()->m_sectionSet;
CRecordView::OnlnitialUpdate();

When the recordset opens, it selects records. CRecordset: :Open or
CDaoRecordset::Open makes the first record the current record, and DDX moves
data from the recordset's field data members to the corresponding form controls in
the view. For more information about RFX, see the article Record Field Exchange
(RFX). For more information about DFX, see the article DAO Record Field
Exchange (DFX). For more information about DDX, see Chapter 14, Working with
Classes, in the Visual C++ User's Guide. For details of the document/view creation
process, see Chapter 1, Using the Classes to Write Applications for Windows, in this
book.

Important You should give your end users the capability to "refresh" the record view controls
from the recordset. Without this capability, if a user changes a control's value to an illegal
value, he or she could be permanently stuck on the current record. To refresh the controls, you
call the CWnd member function UpdateData with a parameter of FALSE. For an example, see
Step 3 in the ENROLL tutorial-look at the OnRecordAdd member function in file
SECTFORM.CPP. The tutorial begins in Chapter 30, Creating a Database Application, in
Tutorials.

Changes You Might Make to the Default Code
ClassWizard writes a recordset class for you that simply selects all records in a single
table. You'll often want to modify that behavior in one or more of the following ways:

• Set a filter and/or a sort order for the recordset. Do this in Onlniti al Update after
the recordset object is constructed but before its Open member function is called.
See the articles Recordset: Filtering Records (ODBC) and Recordset: Sorting
Records (ODBC) for details. For DAO, see the article DAO Queries: Filtering and
Parameterizing Queries. For an example, see the On I nit i a 1 Upda te member
function in the file SECTFORM.CPP in the MFC Tutorial sample ENROLL, Step
2.

Record Views

723

Record Views

• Parameterize the recordset. Specify the actual run-time parameter value after the
filter. See the article Recordset: Parameterizing a Recordset (ODBC) or DAO
Queries: Filtering and Parameterizing Queries for details.

• Pass a customized SQL string to the Open member function. For a discussion of
what you can accomplish with this technique:

• For ODBC, see the article SQL: Customizing Your Recordset's SQL Statement
(ODBC).

• For DAO, see the article DAO Queries.

See Also Record Views: Filling a List Box from a Second Recordset

Record Views: Filling a List Box from a Second
Recordset

724

By default, a record view is associated with a single record set object, whose fields are
mapped to the record view's controls. Sometimes you will want to put a list box or
combo box control in your record view and fill it with values from a second recordset
object. The user can use the list box to select a new category of information to display
in the record view. This article explains how and when to do that.

Tip Be aware that filling a combo box or list box from a data source might be slow. Take
precautions against trying to fill a control from a recordset with a large number of records.

For example, the ENROLL tutorial in Tutorials uses a CRecordView, CSecti onForm,
to display information about sections of college courses. (For DAO tutorial purposes,
follow the ODBC ENROLL tutorial except for Step 1.) ENROLL binds the form's
controls to the field data members of a recordset of class CSecti onSet.
CSect ion Fo rm's combo box control is filled from a second recordset of class
ceo u r s e Set that contains a record for each course offered at the school. When the
user selects a new course in the combo box, the record view requeries the
CSect i onSet recordset to get the sections for the selected course. See the MFC
Tutorial sample ENROLL. Step 2 adds the combo box.

The model for this article, then, consists of a primary recordset that fills the controls
of your form, while a secondary recordset fills a list box or combo box. Selecting a
string from the list box causes your program to requery the primary recordset based
on what was selected. The procedure below uses a combo box but applies equally to a
list box.

~ To fill a list box or combo box from a second record set

1 Create the recordset object (CRecordset for ODBC, CDaoRecordset for DAO).

2 Obtain a pointer to the CComboBox object for the combo box control.

3 Empty the combo box of any previous contents.

4 Move through all records in the recordset, calling CComboBox: :AddString for
each string from the current record you want to add to the combo box.

5 Initialize the selection in the combo box.

The code in the Onlniti al Update member function of class CSecti onForm in the
MFC Tutorial sample ENROLL illustrates the procedure. The following excerpt
shows how the combo box is filled by extracting a course ID value from each record
in the recordset pointed to by pCourses. (The code for DAO is quite similar.)

void CSectionForm::OnlnitialUpdate()
{

}

II

II Fill the combo box with all of the courses
CENROLLDoc* pDoc = GetDocument();
if (!pDoc->m_courseSet.Open(»

return;

II

m_ctlCourseList.ResetContent();
if (pDoc->m_courseSet.IsOpen(»
{

}

while (!pDoc->m_courseSet.IsEOF()
{

}

m_ctlCourseList.AddString(
pDoc->m_courseSet.m_CourseID);

pDoc->m_courseSet.MoveNext();

m_ctlCourseList.SetCurSel(0);

This function uses a second recordset, m_courseSet, which contains a record for each
course offered, and a CComboBox control, m_ctl CourseL i st, which is stored in the
record view class.

The function gets m_courseSet from the document and opens it. Then it empties
m_ctl CourseL i st and scrolls through m_courseSet. For each record, the function
calls the combo box's AddString member function to add the course ID value from
the record. Finally, the code sets the combo box's selection.

Registration
When a user wants to insert an OLE item into an application, OLE presents a list of
object types to choose from. OLE gets this list from the system registration database,
which contains information provided by all server applications. When a server
registers itself, the entries it puts into the system registration database describe each
type of object it supplies, file extensions, and the path to itself, among other
information.

Registration

725

Registration

726

The framework and the OLE system DLLs use this registry to determine what types
of OLE items are available on the system. The OLE system DLLs also use this
registry to determine how to launch a server application when a linked or embedded
object is activated.

This article describes what each server application needs to do when it is installed
and each time it is executed.

For detailed information about the system registration database and the format of the
.REG files used to update it, see the OLE 2 Programmer's Reference, Volume 1.

Server Installation
When you first install your server application, it should register all the types of OLE
items that it supports. You can also have the server update the system registration
database every time it executes as a stand-alone application. This keeps the
registration database up-to-date if the server's executable file is moved.

Note MFC applications generated by AppWizard automatically register themselves when they
are run as stand-alone applications.

If you want to register your application during installation, use the REGEDIT.EXE
program. (In Windows 95, REGEDIT is in the Windows directory. In Windows NT, it
is in the Windows System32 directory.) If you include a setup program with your
application, you should have the setup program run "REGEDIT /S appname.REG".
(The /S flag indicates "silent" operation; that is, do not display the dialog box
reporting successful completion of the command.) Otherwise, instruct the user to run
REGEDIT manually.

Important The REG file created by AppWizard does not include the complete path for the
executable. Your installation program must either modify the .REG file to include the complete
path to the executable or modify the PATH environment variable to include the installation
directory.

REGEDIT merges the contents of the .REG text file into the registration database. To
actually verify the database or to repair it, use the registry editor. Exercise care to
avoid deleting essential OLE entries. (In Windows 95, the registry editor is
REGEDIT.EXE. In Windows NT, it is REGEDT32.EXE.)

Server Initialization
When you create a server application with App Wizard, the wizard completes all
initialization tasks for you automatically. This section describes what you must do if
you write a server application manually.

When a server application is launched by a container application, the OLE system
DLLs add the "/Embedding" option to the server's command line. A server
application's behavior differs depending on whether it was launched by a container,
so the first thing an application should do when it begins execution is check for the

"/Embedding" or "-Embedding" option on the command line. If this switch exists,
you should load a different set of resources that show the server as being either in
place active or fully open. For more information, see the article Menus and
Resources: Server Additions.

Your server application should also call its CWinApp::RunEmbedded function to
parse the command line. If it returns a nonzero value, the application should not
show its window because it has been run from a container application, not as a stand
alone application. This function updates the server's entry in the system registration
database and calls the Register All member function for you, performing instance
registration.

When your server application is starting, you must ensure that it can perform
instance registration. Instance registration does not add an entry to the registration
database. Instead, it informs the OLE system DLLs that the server is active and ready
to receive requests from containers. Perform instance registration of the server by
calling the ConnectTemplate member function defined by COleTemplateServer.
This connects the CDocTemplate object to the COleTemplateServer object.

The ConnectTemplate function takes three parameters: the server's CLSID, a
pointer to the CDocTemplate object, and a flag indicating whether the server
supports multiple instances. A mini-server must be able to support mUltiple instances;
that is, it must be possible for multiple instances of the server to run simultaneously,
one for each container. Consequently, you should pass TRUE for this flag when
launching a mini-server.

If you are writing a mini-server, by definition it will always be launched by a
container. You should still parse the command line to check for the "/Embedding"
option. The absence of this option on the command line means that the user has tried
to launch the mini-server as a stand-alone application. If this occurs, you should
register the server with the system registration database and then display a message
box informing the user to launch the mini -server from a container application.

See Also Servers

In the Class Library Reference: CWinApp::RunAutomated,
CWinApp: :RunEmbedded, COleTemplateServer

Result Set
If you're using the MFC ODBC classes, see the article Recordset (ODBC). If you're
using the MFC DAO classes, see the article DAO: Recordset.

RFX
If you're using the MFC ODBC classes, see the article Record Field Exchange
(RFX). The MFC DAO classes have a similar mechanism called DFX. See the article
DAO Record Field Exchange (DFX).

RFX

727

Rollback

Rollback

728

If you're using the MFC ODBC classes, see the article Transaction (ODBC). If you're
using the MFC DAO classes, see the article DAO Workspace: Managing
Transactions.

Serialization (Object Persistence)

Schema
A database schema describes the current structure of the tables and database views in
the database. In general, ClassWizard assumes that the schema for the table(s)
accessed by a recordset will not change, but the database classes can deal with some
schema changes, such as adding, reordering, or deleting unbound columns. If a table
changes, you can "refresh" your recordset for the table using ClassWizard's Update
Columns button and then recompile your application.

You can also supplement the code ClassWizard produces to deal with a database
whose schema is not entirely known at compile time. For more information, see the
article Recordset: Dynamically Binding Data Columns (ODBC).

To determine schema information with the MFC DAO classes, see the article DAO
Tabledef: Examining a Database Schema at Run Time.

See Also SQL, Recordset (ODBC), ClassWizard

Serialization (Object Persistence)
This article explains the serialization mechanism provided in the Microsoft
Foundation Class Library (MFC) to allow objects to persist between runs of your
program.

"Serialization" is the process of writing or reading an object to or from a persistent
storage medium, such as a disk file. MFC supplies built-in support for serialization in
the class CObject. Thus, all classes derived from CObject can take advantage of
CObject's serialization protocol.

The basic idea of serialization is that an object should be able to write its current
state, usually indicated by the value of its member variables, to persistent storage.
Later, the object can be re-created by reading, or deserializing, the object's state from
the storage. Serialization handles all the details of object pointers and circular
references to objects that are used when you serialize an object. A key point is that the
object itself is responsible for reading and writing its own state. Thus, for a class to be
serializable, it must implement the basic serialization operations. As shown in the
Serialization group of articles, it is easy to add this functionality to a class.

MFC uses an object of the CArchive class as an intermediary between the object to
be serialized and the storage medium. This object is always associated with a CFile
object, from which it obtains the necessary information for serialization, including
the filename and whether the requested operation is a read or write. The object that
performs a serialization operation can use the CArchive object without regard to the
nature of the storage medium.

729

Serialization (Object Persistence)

A CArchive object uses overloaded insertion «<) and extraction (») operators to
perform writing and reading operations. For more information, see Storing and
Loading CObjects via an Archive in the article Serialization: Serializing an Object.

Note Do not confuse the CArchive class with general-purpose iostream classes, which are
for formatted text only. The CArchive class is for binary-format serialized objects.

The following articles cover the two main tasks required for serialization:

• Serialization: Making a Serializable Class

• Serialization: Serializing an Object

The article Serialization: Serialization vs. Database Input/Output is part of the group
of articles on database topics. The article describes when serialization is an
appropriate input/output technique in database applications.

Serialization: Making a Serializable Class

730

Five main steps are required to make a class serializable. They are listed below and
explained in the following sections:

1. Deriving your class from CObject (or from some class derived from CObject).

2. Using the DECLARE_SERIAL macro in the class declaration.

3. Overriding the Serialize member function.

4. Defining a constructor that takes no arguments.

5. Using the IMPLEMENT_SERIAL macro in the implementation file for your
class.

If you call Serialize directly rather than through the » and « operators of
CArchive, the last three steps are not required for serialization.

Deriving Your Class from CObject and Using the
DECLARE SERIAL Macro
The basic serialization protocol and functionality are defined in the CObject class.
By deriving your class from CObject (or from a class derived from CObject), as
shown in the following declaration of class CPerson, you gain access to the
serialization protocol and functionality of CObject.

The DECLARE_SERIAL macro is required in the declaration of classes that will
support serialization, as shown here:

class CPerson : public CObject
{

DECLARE_SERIAL(CPerson)
II rest of declaration follows ...

} ;

Serialization (Object Persistence)

Overriding the Serialize Member Function
The Serialize member function, which is defined in the CObject class, is responsible
for actually serializing the data necessary to capture an object's current state. The
Serialize function has a CArchive argument that it uses to read and write the object
data. The CArchive object has a member function, IsStoring, which indicates
whether Serialize is storing (writing data) or loading (reading data). Using the
results of IsStoring as a guide, you either insert your object's data in the CArchive
object with the insertion operator «<) or extract data with the extraction operator
(»).

Consider a class that is derived from CObject and has two new member variables, of
types CString and WORD. The following class declaration fragment shows the new
member variables and the declaration for the overridden Serialize member function:

class CPerson : public CObject
{

public:

} ;

DECLARE_SERIAL(CPerson,)
II empty constructor is necessary
CPerson () {};

CString m_name;
WORD m_number;

void Serialize(CArchive& archive);

II rest of class declaration

~ To override the Serialize member function

1 Call your base class version of Serialize to make sure that the inherited portion of
the object is serialized.

2 Insert or extract the member variables specific to your class.

The insertion and extraction operators interact with the archive class to read and
write the data. The following example shows how to implement Serialize for the
CPerson class declared above:

void CPerson::Serialize(CArchive& archive
{

}

II call base class function first
II base class is CObject in this case
CObject::Serialize(archive);

II now do the stuff for our specific class
if(archive.lsStoring())

archive « m_name « m_number;
else

archive » m_name » m_number;

731

Serialization (Object Persistence)

732

You can also use the CArchive::Read and CArchive::Write member functions to
read and write large amounts of untyped data.

Defining a Constructor with No Arguments
MFC requires a default constructor when it re-creates your objects as they are
de serialized (loaded from disk). The de serialization process will fill in all member
variables with the values required to re-create the object.

This constructor can be declared public, protected, or private. If you make it protected
or private, you ensure that it will only be used by the serialization functions. The
constructor must put the object in a state that allows it to be safely deleted if
necessary.

Note If you forget to define a constructor with no arguments in a class that uses the
DECLARE_SERIAL and IMPLEMENT_SERIAL macros, you will get a "no default constructor
available" compiler warning on the line where the IMPLEMENT_SERIAL macro is used.

USing the IMPLEMENT_SERIAL Macro in the
Implementation File
The IMPLEMENT SERIAL macro is used to define the various functions needed
when you derive a serializable class from CObject. You use this macro in the
implementation file (.CPP) for your class. The first two arguments to the macro are
the name of the class and the name of its immediate base class.

The third argument to this macro is a schema number. The schema number is
essentially a version number for objects of the class. Use an integer greater than or
equal to 0 for the schema number. (Don't confuse this schema number with database
terminology.)

The MFC serialization code checks the schema number when reading objects into
memory. If the schema number of the object on disk does not match the schema
number of the class in memory, the library will throw a CArchiveException,
preventing your program from reading an incorrect version of the object.

If you want your Seri al i ze member function to be able to read multiple versions
that is, files written with different versions of the application-you can use the value
VERSIONABLE _SCHEMA as an argument to the DECLARE_SERIAL macro.
For usage information and an example, see the GetObjectSchema member function
of class CArchive.

The following example shows how to use IMPLEMENT_SERIAL for a class,
CPerson, that is derived from CObject:

IMPLEMENT_SERIAL(CPerson, CObject, 1)

Once you have a serializable class, you can serialize objects of the class, as discussed
in the article Serialization: Serializing an Object.

Serialization (Object Persistence)

See Also In the Class Library Reference: CArchive

Serialization: Serializing an Object
The article Serialization: Making a Serializable Class shows how to make a class
serializable. Once you have a serializable class, you can serialize objects of that class
to and from a file via a CArchive object. This article explains:

• What a CArchive object is.

• Two ways to create a CArchive.

• How to use the CArchive« and» operators.

• Storing and loading CObjects via an archive.

You can let the framework create the archive for your serializable document or
explicitly create the CArchive object yourself. You can transfer data between a file
and your serializable object by using the« and» operators for CArchive or, in
some cases, by calling the S e r; ali z e function of a CObject-derived class.

What Is a CArchive Object
A CArchive object provides a type-safe buffering mechanism for writing or reading
serializable objects to or from a CFile object. Usually the CFile object represents a
disk file; however, it can also be a memory file (CSharedFile object), perhaps
representing the Clipboard.

A given CArchive object either stores (writes, serializes) data or loads (reads,
deserializes) data, but never both. The life of a CArchive object is limited to one pass
through writing objects to a file or reading objects from a file. Thus, two successively
created CArchive objects are required to serialize data to a file and then deserialize it
back from the file.

When an archive stores objects to a file, the archive attaches the CRuntimeClass
name to the objects. Then, when another archive loads objects from a file to memory,
the CObject-derived objects are dynamically reconstructed based on the
CRuntimeClass of the objects. A given object may be referenced more than once as it
is written to the file by the storing archive. The loading archive, however, will
reconstruct the object only once. The details about how an archive attaches
CRuntimeClass information to objects and reconstructs objects, taking into account
possible multiple references, are described in Technical Note 2 under MFC in Books
Online.

As data is serialized to an archive, the archive accumulates the data until its buffer is
full. Then the archive writes its buffer to the CFile object pointed to by the CArchive
object. Similarly, as you read data from an archive, it reads data from the file to its
buffer and then from the buffer to your deserialized object. This buffering reduces the
number of times a hard disk is physically read, thus improving your application's
performance.

733

Serialization (Object Persistence)

734

Two Ways to Create a CArchive Object
There are two ways to create a CArchive object:

• Implicit creation of a CArchive object via the framework

• Explicit creation of a CArchive object

Implicit Creation of a CArchive Object via the Framework
The most common, and easiest, way is to let the framework create a CArchive object
for your document on behalf of the Save, Save As, and Open commands on the File
menu.

Here is what the framework does when the user of your application issues the Save
As command from the File menu:

1. Presents the Save As dialog box and gets the filename from the user.

2. Opens the file named by the user as a CFile object.

3. Creates a CArchive object that points to this CFile object. In creating the
CArchive object, the framework sets the mode to "store" (write, serialize), as
opposed to "load" (read, deserialize).

4. Calls the Ser; ali ze function defined in your CDocument-derived class, passing it
a reference to the CArchive object.

Your document's Ser; ali ze function then writes data to the CArchive object, as
explained shortly. Upon return from your Ser; ali ze function, the framework
destroys the CArchive object and then the CFile object.

Thus, if you let the framework create the CArchive object for your document, all you
have to do is implement the document's Ser; ali ze function that writes and reads to
and from the archive. You also have to implement Ser; ali ze for any CObject
derived objects that the document's Ser; ali ze function in tum serializes directly or
indirectly.

Explicit Creation of a CArchive Object
Besides serializing a document via the framework, there are other occasions when
you may need a CArchive object. For example, you might want to serialize data to
and from the Clipboard, represented by a CSharedFile object. Or, you may want to
use a user interface for saving a file that is different from the one offered by the
framework. In this case, you can explicitly create a CArchive object. You do this the
same way the framework does, using the following procedure.

~ To explicitly create a CArchive object

1 Construct a CFile object or an object derived from CFile.

2 Pass the CFile object to the constructor for CArchive, as shown in the following
example:

Serialization (Object Persistence)

CFile theFile;
theFile.Open(... , CFile: :modeWrite);
CArchive archive(&theFile, CArchive::store);

The second argument to the CArchive constructor is an enumerated value that
specifies whether the archive will be used for storing or loading data to or from the
file. The Seri ali ze function of an object checks this state by calling the IsStoring
function for the archive object.

When you are finished storing or loading data to or from the CArchive object, close
it. Although the CArchive (and CFile) objects will automatically close the archive
(and file), it is good practice to explicitly do so since it makes recovery from errors
easier. For more information about error handling, see the article Exceptions:
Catching and Deleting Exceptions.

~ To close the CArchive object

• The following example illustrates how to close the CArchive object:

archive.Close();
theFile.Close();

Using the CArchive « and » Operators
CArchive provides «and» operators for writing and reading simple data types as
well as CObjects to and from a file.

~ To store an object in a file via an archive

• The following example shows how to store an object in a file via an archive:

CArchive ar(&theFile, CArchive::store);
WORD wEmployeeID;

ar « wEmployeeID;

~ To load an object from a value previously stored in a file

• The following example shows how to load an object from a value previously stored
in a file:

CArchive ar(&theFile, CArchive::load);
WORD wEmployeeID;

ar » wEmployeeID;

Usually, you store and load data to and from a file via an archive in the Se ri ali ze
functions of CObject-derived classes, which you must have declared with the
DECLARE_SERIALIZE macro. A reference to a CArchive object is passed to your
Seri ali ze function. You call the IsLoading function of the CArchive object to
determine whether the Seri al i ze function has been called to load data from the file
or store data to the file.

735

Serialization (Object Persistence)

736

The Seri al i ze function of a serializable CObject-derived class typically has the
following form:

void CPerson::Serialize(CArchive& ar)
{

CObject::Serialize(ar):
if (ar.IsStoring())
{

II TODO: add storing code here
}

else
{

Ii TODO: add loading code here
}

The above code template is exactly the same as the one App Wizard creates for the
Seri ali ze function of the document (a class derived from CDocument). This code
template helps you write code that is easier to review, because the storing code and
the loading code should always be parallel, as in the following example:

void CPerson:Serialize(CArchive& a r)
{

if (ar.IsStoring())
{

ar « m_strName;
ar « m_wAge;

else
{

ar » m_strName;
ar » m_wAge;

The library defines « and » operators for CArchive as the first operand and the
following data types and class types as the second operand:

CObject* SIZE and CSize float

WORD CString POINT and CPoint

DWORD BYTE RECT and CRect

double LONG CTime and CTimeSpan

Note Storing and loading CObjects via an archive requires extra consideration. For more
information see Storing and Loading CObjects via an Archive below.

The CArchive « and » operators always return a reference to the CArchive object,
which is the first operand. This enables you to chain the operators, as illustrated in
the following example:

Serialization (Object Persistence)

BYTE bSomeByte;
WORD wSomeWord;
DWORD wSomeDoubleWord;

ar « bSomeByte « wSomeWord « wSomeDoubleWord;

Storing and Loading CObjects via an Archive
Storing and loading CObjects via an archive requires extra consideration. In certain
cases, you should call the S e ria 1 i z e function of the object, where the CArchive
object is a parameter of the Seri al i ze call, as opposed to using the« or» operator
of the CArchive. The important fact to keep in mind is that the CArchive »
operator constructs the CObject in memory based on CRuntimeClass information
previously written to the file by the storing archive.

Therefore, whether you use the CArchive « and » operators, versus calling
Seri al i ze, depends on whether you need the loading archive to dynamically
reconstruct the object based on previously stored CRuntimeClass information. Use
the Seri al i ze function in the following cases:

• When deserializing the object, you know the exact class of the object beforehand.

• When deserializing the object, you already have memory allocated for it.

Caution If you load the object using the Se ria 1 i ze function, you must also store the object
using the Seri al i ze function. Don't store using the CArchive« operator and then load
using the Se ri ali ze function, or store using the Seri ali ze function and then load using
CArchive » operator.

The following example illustrates the cases:

class CMyObject : public CObject
{

II ... Member functions
CMyObj ect () ;
virtual void Serialize(CArchive& ar);

II Implementation
protected:

DECLARE_SERIAL(CMyObject)
} ;

class COtherObject : public CObject
{

II ... Member functions
COtherObject();
virtual void Serialize(CArchive& ar);

737

Serialization (Object Persistence)

738

II Implementation
protected:

DECLARE_SERIAL(COtherObject)
} ;

class CCompoundObject : public CObject
{

II ... Member functions
CCompoundObject();
virtual void Serialize(CArchive& ar);

II Implementation
protected:

CMyObject m_myob; II Embedded object
COtherObject* m_pOther; II Object allocated in constructor
CObject* m_pObDyn; II Dynamically allocated object
11 .. Other member data and implementation

DECLARE_SERIAL(CCompoundObject)
} ;

CCompoundObject::CCompoundObject()
{

m_pOther new COtherObject; II Exact type known and object already
Iiallocated.

m_pObDyn NULL; II Will be allocated in another member function
II if needed. could be a derived class object.

void CCompundObject::Serialize(CArchive& ar)
{

}

CObject::Serialize(ar);
m_myob.Serialize(ar);
m_pOther->Serialize(ar);

II Always call base class Serialize.
II Call Serialize on embedded member.

II Call Serialize on objects of known
exact type.

II Serialize dynamic members and other raw data
if (ar.IsStoring())
{

ar
/I

}

el se
{

ar

}

« m_pObDyn;
Store other members

» m_pObDyn; II Polymorphic reconstruction of persistent
II object
Ilload other members

In summary, if your serializable class defines an embedded CObject as a member,
you should not use the CArchive « and» operators for that object, but should call
the Seri al i ze function instead. Also, if your serializable class defines a pointer to a

Serialization (Object Persistence)

CObject (or an object derived from CObject) as a member, but constructs this other
object in its own constructor, you should also call Ser; ali ze.

See Also In the Class Library Reference: CArchive

Serialization: Serialization vs. Database Input/Output
This article explains when to use document objects and serialization for file-based
input/output (I/O) and when other I/O techniques are appropriate-because the
application reads and writes data on a per-transaction basis, as in database
applications. If you don't use serialization, you also won't need the File Open, Save,
and Save As commands. Topics covered include:

• Deciding how your application will handle input/output

• Handling the File menu in database applications

Deciding How to Handle Input/Output
Whether you use file-based I/O or not depends on how you respond to the questions
in the following decision tree, which begins with the question:

Does the primary data in your application reside in a disk file?

1. Yes, the primary data resides in a disk file.

Does the application read the whole file into memory on File Open and write the
whole file back to disk on File Save?

2. Yes-this is the default MFC document case.

Use CDocument serialization.

3. No-this is typically the case of transaction-based updating of the file.

The MFC Advanced Concepts sample CHKBOOK is an example of this case.
You update the file on a per-transaction basis and don't need CDocument
serialization.

4. No, the primary data doesn't reside in a disk file.

Does the data reside in an ODBC data source?

5. Yes, the data resides in an ODBC data source.

Use MFC's database support. The standard MFC implementation for this case
includes a CDocument object that stores a CDatabase object, as discussed in
the article Database Overview. The application might also read and write an
auxiliary file-the purpose of the App Wizard "both a database view and file
support" option. In this case, you'd use serialization for the auxiliary file.

6. No, the data doesn't reside in an ODBC data source.

Examples of this case: the data resides in a non-ODBC DBMS; the data is read
via some other mechanism, such as OLE or DDE.

739

Serialization (Object Persistence)

740

In such cases, you won't use serialization, and your application won't have
Open and Save menu items. You might still want to use a CDocument as a
"home base," just as an MFC ODBC application uses the document to store
CRecordset objects. But you won't use the framework's default File Open/Save
document serialization.

To support the Open, Save, and Save As commands on the File menu, the framework
provides document serialization. Serialization reads and writes data, including
objects derived from class CObject, to permanent storage, normally a disk file.
Serialization is easy to use and serves many of your needs, but it may be
inappropriate in many data-access applications. Data-access applications typically
update data on a "per-transaction" basis. They update the records affected by the
transaction rather than reading and writing a whole data file at once.

For general information about serialization, see the article Serialization (Object
Persistence). For information on MFC sample programs, such as CHKBOOK, see
Samples in Books Online.

The File Menu in an MFC Database Application
If you create an MFC database application and don't use serialization, how should
you interpret the Open, Close, Save, and Save As commands on the File menu?
While there are no style guidelines for this question, here are a few suggestions:

• Eliminate the File menu's Open command entirely.

• Interpret the Open command as "open database" and show the user a list of data
sources your application recognizes.

• Interpret the Open command as, perhaps, "open profile." Retain Open for opening
a serialized file, but use the file to store a serialized document containing "user
profile" information, such as the user's preferences, including his or her login ID
(optionally excluding the password) and the data source he or she most recently
worked with.

AppWizard supports creating an application with no document-related File menu
commands. Select the "A database view, without file support" option on the database
options page.

To interpret a File menu command in a special way, you must override one or more
command handlers, mostly in your CWinApp-derived class. For example, if you
completely override OnFileOpen (which implements the ID_FILE_OPEN
command) to mean "open database":

• Don't call the base class version of OnFileOpen, since you're completely
replacing the framework's default implementation of the command.

• Use the handler instead to display a dialog box listing data sources. You can
display such a dialog by calling CDatabase: :Open with the parameter NULL.

This opens an ODBC dialog box that displays all available data sources on the
user's machine .

• Because database applications typically don't save a whole document, you'll
probably want to remove the Save and Save As implementations unless you use a
serialized document to store profile information. Otherwise, you might implement
the Save command as, for example, "commit transaction." See Technical Note 22
under MFC in Books Online for more information about overriding these
commands.

Servers
A "server application" (or component application) creates OLE items (or
components) for use by container applications. A "visual editing server application"
also supports visual editing or in-place activation. Another form of OLE server is an
automation server. Some server applications only support the creation of embedded
items; others support the creation of both embedded and linked items. Some support
linking only, although this is rare. All server applications must support activation by
container applications when the user wants to edit an item. An application can be
both a container and a server; that is, it can both incorporate data into its documents,
and create data that can be incorporated as items into other applications' documents.

A "mini-server" is a special type of server application that can only be launched by a
container. Microsoft Draw and Microsoft Graph are examples of mini-servers. A
mini-server does not store documents as files on disk; instead, it reads its documents
from and writes them to items in documents belonging to containers. As a result, a
mini-server only supports embedding, not linking.

A "full-server" can be run either as a stand-alone application or launched by a
container application. A full-server can store documents as files on disk. It can
support embedding only, both embedding and linking, or only linking. The user of a
container application can create an embedded item by choosing the Cut or Copy
command in the server and the Paste command in the container. A linked item is
created by choosing the Copy command in the server and the Paste Link command in
the container. Alternately, the user can create an embedded or linked item using the
Insert Object dialog box.

Table 1 summarizes characteristics of different types of servers:

Table 1 Server Characteristics

Type of server
Supports multiple
instances

Mini-server Yes

SDI full-server

MDI full-server

Yes

No (not required)

Items per document

1 (if linking is supported, 1 or more)

Documents per
instance

1 (if linking is supported, 1 or more) 0 or more

Servers

741

Servers

A server application should support multiple containers simultaneously, in the event
that more than one container wants to edit an embedded or linked item. If the server
is an SDI application (or a mini-server with a dialog box interface), multiple
instances of the server must be able to run simultaneously. This allows a separate
instance of the application to handle each container request.

If the server is an MDI application, it can simply create a new MDI child window
each time a container needs to edit an item. In this way, a single instance of the
application can support mUltiple containers.

Your server application must tell the OLE system DLLs what to do if one instance of
the server is already running when another container requests its services: whether it
should launch a new instance of the server or direct all containers' requests to one
instance of the server.

For more details on servers, see the following articles:

• Servers: Implementing a Server

• Servers: Implementing Server Documents

• Servers: Implementing In-Place Frame Windows

• Servers: Server Items

• Servers: User-Interface Issues

See Also Containers, Containers: Advanced Features, Menus and Resources,
Registration, Automation Servers

Servers: Implementing a Server

742

This article explains the code App Wizard creates for a visual editing server
application. If you are not using App Wizard, this article lists the areas where you
must write code to implement a server application.

If you are using App Wizard to create a new server application, App Wizard provides a
significant amount of server-specific code for you. If you are adding visual editing
server functionality to an existing application, you must duplicate the code that
App Wizard would have provided before adding the rest of the necessary server code.

The server code that AppWizard provides falls into several categories:

• Defining server resources:

• The menu resource used when the server is editing an embedded item in its
own window.

• The menu and toolbar resources used when the server is active in place.

For more information on these resources, see the article Menus and Resources:
Server Additions.

• Defining an item class derived from COleServerItem. For further details on
server items, see the article Servers: Server Items.

• Changing the base class of the document class. to COleServerDoc. For further
details, see the article Servers: Implementing Server Documents.

• Defining a frame-window class derived from COleIPFrameWnd. For further
details, see the article Servers: Implementing In-Place Frame Windows.

• Creating an entry for the server application in the Windows registration database
and registering the new instance of the server with the OLE system. For
information on this topic, see the article Registration.

• Initializing and launching the server application. For information on this topic,
see the article Registration.

For more information, see COleServerItem, COleServerDoc, and
COleIPFrameWnd in the Class Library Reference.

See Also Containers, Menus and Resources, Registration

Servers: Implementing Server Documents
This article explains the steps you must take to successfully implement a server
document if you did not specify the OLE Server option in AppWizard.

~ To define a server document class

1 Derive your document class from COleServerDoc instead of CDocument.

2 Create a server item class derived from COleServerItem.

3 Implement the OnGetEmbeddedItem member function of your server document
class.

OnGetEmbeddedItem is called when the user of a container application creates
or edits an embedded item. It should return an item representing the entire
document. This should be an object of your COleServerItem-derived class.

4 Override the Serialize member function to serialize the contents of the document.
You do not need to serialize the list of server items unless you are using them to
represent the native data in your document. For more information, see
Implementing Server Items in the article Servers: Server Items.

When a server document is created, the framework automatically registers the
document with the OLE system DLLs. This allows the DLLs to identify the server
documents.

For more information, see COleServerItem and COleServerDoc in the Class
Library Reference.

See Also Servers: Server Items, Servers: Implementing a Server, Servers:
Implementing In-Place Frame Windows

Servers

743

Servers

Servers: Implementing In-Place Frame Windows

744

This article explains what you must do to implement in-place frame windows in your
visual editing server application if you do not use App Wizard to create your server
application. In place of following the procedure outlined in this article, you could use
an existing in-place frame-window class from either an AppWizard-generated
application or a sample provided with Visual C++.

~ To declare an in-place frame-window class

1 Derive an in-place frame-window class from COleIPFrameWnd .

• Use the DECLARE_DYNCREATE macro in your class header file.

• Use the IMPLEMENT _ DYNCREATE macro in your class implementation
(.CPP) file. This allows objects of this class to be created by the framework.

2 Declare a COleResizeBar member in the frame-window class. This is needed if
you want to support in-place resizing in server applications.

Declare an OnCreate message handler (using ClassWizard); call Create for your
COleResizeBar member, if you've defined it.

3 If you have a toolbar, declare a CToolBar member in the frame-window class.

Override the OnCreateControlBars member function to create a toolbar when the
server is active in place. For example:

BOOl CInPlaceFrame::OnCreateControlBars
(CWnd* pWndFrame. CWnd* pWndDoc)

{

}

II create tool bar on client's frame window
if (!m_wndToolBar.Create(pWndFrame) I I

!m_wndToolBar.loadToolBar(IDR_PROJ_SRVR_IP))

T RA C E (" Fail edt 0 c rea t e tool bar \ n ") ;
return FALSE;

II set this window as owner. so messages are
II delivered to proper app
m_wndToolBar.SetOwner(this);

II enable docking for the toolbar
m_wndToolBar.EnableDocking(CBRS_AlIGN_ANY);
pWndFrame->EnableDocking(CBRS_AlIGN_ANY);
pWndFrame->DockControlBar(&m_wndToolBar);

II enable tooltips for the toolbar
m_wndToolBar.SetBarStyle(CBRS_TOOlTIPS I

CBRS_FlYBY I m_wndToolBar.GetBarStyle());

return TRUE:

See the discussion of this code following step 5.

4 Include the header file for this in-place frame-window class in your main .CPP
file.

S In Initlnstance for your application class, call the SetServerlnfo function of the
document template object to specify the resources and in-place frame window to be
used in open and in-place editing.

The series of function calls in the if statement creates the toolbar from the resources
the server provided. At this point, the toolbar is part of the container's window
hierarchy. Because this toolbar is derived from CToolBar, it will pass its messages to
its owner, the container application's frame window, unless you change the owner.
That is why the call to SetOwner is necessary. This call changes the window where
commands are sent to be the server's in-place frame window, causing the messages to
be passed to the server. This allows the server to react to operations on the toolbar
that it provides.

The ID for the toolbar bitmap should be the same as the other in-place resources
defined in your server application. See the article Menus and Resources: Server
Additions for details.

For more information, see the COleIPFrameWnd, COleResizeBar, and
CDocTemplate::SetServerInfo entries in the Class Library Reference.

See Also Servers: Implementing a Server, Servers: Implementing Server
Documents, Servers: Server Items

Servers: Server Items
When a container launches a server so that a user can edit an embedded or linked
OLE item, the server application creates a "server item." The server item, which is an
object of a class derived from COleServerltem, provides an interface between the
server document and the container application.

The COleServerItem class defines several overridable member functions that are
called by OLE, usually in response to requests from the container. Server items can
represent part of the server document or the entire document. When an OLE item is
embedded in the container document, the server item represents the entire server
document. When the OLE item is linked, the server item can represent a part of the
server document or the whole document, depending on whether the link is to a part or
to the whole.

In the HIERSVR sample, for example, the server-item class, CServerltem, has a
member that is a pointer to an object of the class CServerNode. The CServerNode
object is a node in the HIERSVR application's document, which is a tree. When the
CServerNode object is the root node, the CServerltem object represents the whole
document. When the CServerNode object is a child node, the CServerltem object
represents a part of the document. See the MFC OLE sample HIERSVR for an
example of this interaction.

Servers

745

Servers

746

Implementing Server Items
If you use AppWizard to produce "starter" code for your application, all you have to
do to include server items in your starter code is to choose one of the server options
from the OLE Options page. If you're adding server items to an existing application,
perform the following steps:

~ To implement a server item

1 Derive a class from COleServerltem.

2 In your derived class, override the OnDraw member function.

The framework calls OnDraw to render the OLE item into a metafile; the
container application uses this metafile to render the item. Your application's view
class also has an OnDraw member function, which is used to render the item
when the server application is active.

3 Implement an override of OnGetEmbeddedltem for your server-document class.
For further information, see the article Servers: Implementing Server Documents
and the MFC OLE sample HIERSVR in Books Online.

4 Implement your server-item class's OnGetExtent member function. The
framework calls this function to retrieve the size of the item; the default
implementation does nothing.

A Tip for Server-Item Architecture
As noted in Implementing Server Items, server applications must be able to render
items both in the server's view and in a metafile used by the container application. In
the Microsoft Foundation Class Library's application architecture, the view class's
OnDraw member function renders the item when it is being edited (see
CView::OnDraw in the Class Library Reference); the server item's OnDraw
renders the item into a metafile in all other cases (see COleServerItem::OnDraw).

You can avoid duplication of code by writing helper functions in your server
document class and calling them from the OnDraw functions in your view and
server-item classes. The MFC OLE sample HIERSVR uses this strategy: the
functions CServerView::OnDraw and CServerltem::OnDraw both call
CServerDoc: :DrawTree to render the item.

The view and the item both have OnDraw member functions because they draw
under different conditions. The view must take into account such factors as zooming,
selection size and extent, clipping, and user-interface elements such as scroll bars.
The server item, on the other hand, always draws the entire OLE object.

For more information, see the CView: :OnDraw, COleServerItem,
COleServerltem: :OnDraw, and COleServerDoc: :OnGetEmbeddedItem entries
in the Class Library Reference.

Servers: User-Interface Issues
A server application has a number of features that must be added to the user interface
to supply OLE items to container applications. For further information on the menus
and additional resources that need to be added to a server application, see the article
Menus and Resources: Server Additions.

See Also Menus and Resources

Snapshot
A snapshot is a recordset that reflects a static view of the data as it existed at the time
the snapshot was created. Once you open the snapshot and move to all the records,
the set of records it contains and their values don't change until you rebuild the
snapshot by calling Requery.

Note This article applies to the MFC OOSC classes. If you're using the MFC OAO classes
instead of the MFC OOSC classes, see CDaoRecordset::Open for a description of snapshot
type recordsets. Also see the article OAO Recordset: Creating Recordsets.

You can create updatable or read-only snapshots with the database classes. Unlike a
dynaset, an updatable snapshot doesn't reflect changes to record values made by other
users but does reflect updates and deletions made by your program. Records added to
a snapshot don't become visible to the snapshot until you call Requery.

Tip A snapshot is an OOSC "static cursor." Static cursors don't actually get a row of data until
you scroll to that record. To ensure that all records are immediately retrieved, you can scroll to
the end of your recordset, then scroll to the first record you're interested in. Note, however, that
scrolling to the end entails extra overhead and can lower performance.

Snapshots are most valuable when you need the data to remain fixed during your
operations, as when you're generating a report or performing calculations. Even so,
the data source can diverge considerably from your snapshot, so you may want to
rebuild it from time to time.

Snapshot support is based on the ODBC Cursor Library, which provides static cursors
and positioned updates (needed for updatability) for any Levell driver. The cursor
library DLL must be loaded in memory for this support. By default, the cursor library
is loaded when you construct a CDatabase object and call its Open member function.
(If you are using dynasets instead of snapshots, you'll want to cause the cursor library
not to be loaded.)

Snapshots are available only if the ODBC Cursor Library was loaded when the
CDatabase object was constructed or the ODBC driver you're using supports static
cursors.

Important For some OOSC drivers, snapshots (static cursors) may not be updatable. Check
your driver documentation for cursor types supported and the concurrency types they support.

Snapshot

747

SQL

To guarantee updatable snapshots, make sure you load the cursor library into memory when
you create a CDatabase object. See the article ODBC: The ODBC Cursor Library.

Note If you want to use both snapshots and dynasets, you must base them on two different
CDatabase objects (two different connections).

For more information about the properties snapshots share with all recordsets, see the
article Recordset (ODBC). For more information about ODBC and snapshots,
including the ODBC Cursor Library, see the article ODBC.

SQL

748

Structured Query Language (SQL) is a way to communicate with a relational
database that lets you define, query, modify, and control the data. Using SQL syntax,
you can construct a statement that extracts records according to criteria you specify.

Note This information applies to the MFC ODBC classes. If you're working with the MFC
DAO classes, see the topic Comparison of Microsoft Jet Database Engine Sal and ANSI Sal
in DAO Help.

SQL statements begin with a keyword "verb" such as CREATE or SELECT. It is a
very powerful language; a single statement can affect an entire table.

Many versions of SQL exist, each developed with a particular DBMS in mind. The
MFC database classes recognize a set of SQL statements that corresponds to the
X/Open and SQL Access Group Common Applications Environment (CAE) SQL
draft specification (1991). For details on the syntax of these statements, see Appendix
C in the ODBC SDK Programmer's Reference.

This article explains:

• The relationship between ODBC and SQL.

• The most common SQL keywords used by the database classes.

• How the database classes use SQL.

Open Database Connectivity (ODBC)
The database classes are implemented with ODBC, which uses SQL in a call-level
interface rather than embedding SQL commands in the code. ODBC uses SQL to
communicate with a data source through ODBC drivers. These drivers interpret the
SQL and translate it, if necessary, for use with a particular database format, such as
Microsoft Access. For more information about how ODBC uses SQL, see the article
ODBC and the ODBC SDK Programmer's Reference.

The Database Classes
The database classes are designed to let you manipulate and update data in an
existing data source. Class Wizard and the database classes construct most of the SQL
statements for you.

The database classes use a portion of SQL known as the Data Manipulation
Language (DML). These commands let you work with all or part of the data source,
add new records, edit records, and delete records. Table 1 lists the most common SQL
keywords and the ways the database classes use them.

Table 1 Some Common SQl Keywords

SQl keyword ClassWizard and database classes use it ...

SELECT

WHERE

ORDER BY

INSERT

DELETE

UPDATE

To identify which tables and columns in the data source are to be
used.

To apply a filter which narrows the selection.

To apply a sort order to the recordset.

To add new records to a recordset.

To delete records from a recordset.

To modify the fields of a record.

In addition, the database classes recognize ODBC CALL statements, which you can
use to call a predefined query (or stored procedure) on some data sources. The ODBC
database driver interprets these statements and substitutes the command appropriate
for each DBMS.

Note Not all DBMSs support CALL statements.

If the classes cannot recognize a user-supplied statement in CRecordset::Open, it is
interpreted as a table name.

For an explanation of how the framework constructs SQL statements, see the articles
Recordset: How Recordsets Select Records (ODBC) and SQL: Customizing Your
Recordset's SQL Statement (ODBC).

SQL databases use data types similar to those used in C and C++. For a discussion of
these similarities, see the article SQL: SQL and C++ Data Types (ODBC).

You can find more information about SQL, including a list of supported SQL
statements, data types, SQL core grammar, and a reading list of recommended
publications about SQL, in the ODBC SDK Programmer's Reference.

How the Database Classes Use SQl
The recordsets you derive from the database classes use ODBC to communicate with
a data source, and ODBC retrieves records from the data source by sending SQL
statements. This article explains the relationship between the database classes and
SQL.

SQL

749

SQL

A recordset constructs an SQL statement by building up the pieces of an SQL
statement into a CString. The string is constructed as a SELECT statement, which
returns a set of records.

When the recordset calls ODBC to send an SQL statement to the data source, the
ODBC Driver Manager passes the statement to the ODBC driver, and the driver
sends it to the underlying DBMS. The DBMS returns a result set of records, and the
ODBC driver returns the records to the application. The database classes let your
program access the result set in a type-safe c++ class derived from CRecordset.

The following articles provide more information about how the database classes use
SQL:

• SQL: Customizing Your Recordset's SQL Statement (ODBC)

• SQL: SQL and C++ Data Types (ODBC)

• SQL: Making Direct SQL Calls (ODBC)

See Also ODBC

SQL: Customizing Your Recordset's SQL Statement
(ODBC)

750

Note This information applies to the MFC ODBC classes. If you're working with the MFC
DAO classes, see the topic Comparison of Microsoft Jet Database Engine Sal and ANSI Sal
in DAO Help.

This article explains:

• How the framework constructs an SQL statement.

• How to override the SQL statement.

SQl Statement Construction
Your recordset bases record selection primarily on an SQL SELECT statement.
When you declare your class with Class Wizard, the wizard writes an overriding
version of the GetDefaultSQ L member function that looks something like this (for a
record set class called CAuthors).

CString CAuthors::GetDefaultSQL()
{

return "AUTHORS";
}

By default, this override returns the table name you specified with ClassWizard-in
the example, the table name is "AUTHORS." When you later call the recordset's
Open member function, Open constructs a final SELECT statement of the form:

SELECT rfx-field-list FROM table-name [WHERE m_strFilter]
[ORDER BY m_strSort]

where tabl e- name is obtained by calling GetDefaultSQL and rfx -fi el d -1 i st is
obtained from the RFX function calls in DoFieldExchange. This is what you get for
a SELECT statement unless you replace it with an overriding version at run time,
although you can also modify the default statement with parameters or a filter.

Important If you specify a column name that contains (or could contain) spaces, you must
enclose the name in square brackets. For example, the name "First Name" should be "[First
Name]".

To override the default SELECT statement, pass a string containing a complete
SELECT statement when you call Open. Instead of constructing its own default
string, the recordset uses the string you supply. If your replacement statement
contains a WHERE clause, don't specify a filter in m_strFilter because you would
then have two filter statements. If your replacement statement contains an ORDER
BY clause, don't specify a sort in m_strSort so that you will not have two sort
statements.

Caution In the ENROLL tutorial application, filter strings typically use a parameter
placeholder, "?", rather than assigning a specific literal value, such as "MATH1 01", at compile
time. If you do use literal strings in your filters (or other parts of the SOL statement), you may
have to "quote" such strings with a DBMS-specific "literal prefix" and "literal suffix" character (or
characters). For example, the code in the ENROLL tutorial uses a single quote character to
bracket the value assigned as the filter, "MATH 1 01". You may also encounter special syntactic
requirements for operations such as outer jOins, depending on your DBMS. Use ODBe
functions to obtain this information from your driver for the DBMS. For example, call
::SQLGetTypelnfo for a particular data type, such as SQL_ VARCHAR, to request the
LITERAL_PREFIX and LITERAL_SUFFIX characters. If you are writing database-independent
code, see Appendix e in the ODBe Programmer's Reference for detailed syntax information.

A recordset object "constructs" the SQL statement that it uses to select records unless
you pass a custom SQL statement. How this is done depends mainly on the value you
pass in the /pszSQL parameter of the Open member function.

The general form of an SQL SELECT statement is:

SELECT [ALL I DISTINCT] column-list FROM table-list
[WHERE search-condition][ORDER BY column-list [ASC I DESC]]

One way to add the DISTINCT keyword to your recordset's SQL statement is to
embed the keyword in the first RFX function call in DoFieldExchange. For example:

RFX_Text(pFX. "DISTINCT CourseID". m_strCourseID);

SQL

751

SQL

752

Warning Use this technique only with a recordset opened as read-only.

Overriding the SQl Statement
Table 1 shows the possibilities for the IpszSQL parameter to Open. The cases in the
table are explained following the table.

Table 1 The /pszSQL Parameter and the SQl String Constructed

Case

2

3*

4*

5*

What you pass in /pszSQL

NULL

A table name

A complete SELECT statement but
without a WHERE or ORDER BY
clause

A complete SELECT statement
with a WHERE and/or ORDER
BY clause

A call to a stored procedure

The resulting SELECT statement

SELECT rfx-field-list FROM table-name

CRecordset: :Open calls GetDefauItSQL
to get the table name. The resulting string is
one of Cases 2 through 5, depending on
what GetDefauItSQL returns.

SELECT rfx-field-list FROM table-name

The field list is taken from the RFX
statements in DoFieldExchange. If
m _ strFiIter and m _ strSort are not empty,
adds the WHERE and/or ORDER BY
clauses.

As passed. If m _ strFilter and m _ strSort
are not empty, adds the WHERE and/or
ORDER BY clauses.

As passed. m_strFilter and/or m_strSort
must remain empty, or two filter and/or sort
statements will be produced.

As passed.

* m _ nFields must be less than or equal to the number of columns specified in the SELECT statement. The
data type of each column specified in the SELECT statement must be the same as the data type of the
corresponding RFX output column.

Case 1 IpszSQL = NULL
The recordset selection depends on what GetDefaultSQL returns when
CRecordset::Open calls it. Cases 2 through 5 describe the possible strings.

Case 2 IpszSQL = a Table Name
The recordset uses record field exchange (RFX) to build the column list from the
column names provided in the RFX function calls in the recordset class's override of
DoFieldExchange. If you used ClassWizard to declare your recordset class, this case
has the same result as Case 1 (provided that you pass the same table name you
specified in Class Wizard). If you don't use ClassWizard to write your class, this is the
simplest way to construct the SQL statement.

The following example constructs an SQL statement that selects records from the
MFC tutorial sample ENROLL. When the framework calls the GetDefaultSQL
member function, the function returns the name of the table, SEC T ION.

CString CEnrollSet::GetDefaultSQL()
{

return "SECTION";
}

To obtain the names of the columns for the SQL SELECT statement, the framework
calls the DoFieldExchange member function.

void CEnrollSet::DoFieldExchange(CFieldExchange* pFX)
{

}

pFX->SetFieldType(CFieldExchange::outputColumn);
//{{AFX_FIELD_MAP(CEnrollSet)
RFX_Text(pFX, "CourseID", m_strCourseID);
RFX_Text(pFX, "InstructorID", m_strlnstructorID);
RFX_Text(pFX, "RoomNo", m_strRoomNo);
RFX_Text(pFX, "Schedule", m_strSchedule);
RFX_Text(pFX, "SectionNo", m_strSectionNo);
//}}AFX_FIELD_MAP

When complete, the SQL statement looks like this:

SELECT CourseID, InstructorID, RoomNo, Schedule, SectionNo
FROM SECTION

Case 3 JpszSQL = a SELECT/FROM Statement
You specify the column list by hand rather than relying on RFX to construct it
automatically. You might want to do this when:

• You want to specify the DISTINCT keyword following SELECT.

Your column list should match the column names and types in the same order as
they are listed in DoFieldExchange.

• You have reason to manually retrieve column values using the ODBC function
: :SQLGetData rather than relying on RFX to bind and retrieve columns for you.

You might, for example, want to accommodate new columns a customer of your
application added to the database tables after the application was distributed. You
need to add these extra field data members not known at the time you declared the
class with Class Wizard.

Your column list should match the column names and types in the same order as
they are listed in DoFieldExchange, followed by the names of the manually bound
columns. The MFC Database sample CATALOG provides classes called CTable
and CColumn which you can use to retrieve column information from the data
source. For more information, see the article Recordset: Dynamically Binding
Data Columns (ODBC) and CATALOG in Books Online.

• You want to join tables by specifying multiple tables in the FROM clause.

SQL

753

SQL

For information and an example, see the article Recordset: Performing a Join
(ODBC).

Case 4 JpszSQL = SELECT/FROM Plus WHERE and/or ORDER BY
You specify everything: the column list (based on the RFX calls in
DoFieldExchange), the table list, and the contents of a WHERE and/or an ORDER
BY clause. If you specify your WHERE and/or ORDER BY clauses this way, be
sure not to use m_strFilter and/or m_strSort.

Case 5 JpszSQL = a Stored Procedure Call
If you need to call a predefined query (such as a stored procedure in a Microsoft SQL
Server database), you must write a CALL statement in the string you pass to
lpszSQL. ClassWizard doesn't support declaring a recordset class for calling a
predefined query. Not all predefined queries return records.

If a predefined query doesn't return records, you can use the CDatabase member
function ExecuteSQL directly. For a predefined query that does return records, you
must also manually write the RFX calls in DoFieldExchange for any columns the
procedure returns. The RFX calls must be in the same order, and return the same
types, as the predefined query. For more information, see the article Recordset:
Declaring a Class for a Predefined Query (ODBC).

See Also SQL: SQL and C++ Data Types (ODBC), SQL: Making Direct SQL Calls
(ODBC)

SQL: SQL and C++ Data Types (ODBC)

754

Note This information applies to the MFC ODBC classes. If you're working with the MFC
DAO classes, see the topic Comparison of Microsoft Jet Database Engine Sal and ANSI Sal
in DAO Help.

Table 1 maps ANSI SQL data types to C++ data types. This augments the C language
information given in Appendix D of the ODBC SDK Programmer's Reference.
ClassWizard manages most data-type mapping for you. If you don't use ClassWizard,
you can use the mapping information to help you write the field exchange code
manually.

Table 1 ANSI SQl Data Types Mapped to C++ Data Types

ANSI SQl data type C++ data type

CHAR CString

DECIMAL CString 1

SMALLINT int

REAL float

INTEGER long

FLOAT double

Table 1 ANSI SQl Data Types Mapped to C++ Data Types (cont.)

ANSI SQl data type C++ data type

DOUBLE double

NUMERIC CString 1

VARCHAR CString

LONGVARCHAR CLongBinary, CString 2

BIT BOOL

TINYINT BYTE

BIGINT CString 1

BINARY CByteArray

VARBINARY CByteArray

LONGV ARBINARY CLongBinary, CByteArray 3

DATE CTime, CString

TIME CTime, CString

TIMESTAMP CTime, CString

1 ANSI DECIMAL and NUMERIC map to CString because SQL _ C _CHAR is the default ODBC
transfer type.

2 Character data beyond 255 characters is truncated by default when mapped to CString. You can extend
the truncation length by explicitly setting the nM axLength argument of RFX _Text.

3 Binary data beyond 255 characters is truncated by default when mapped to CByteArray. You can
extend the truncation length by explicitly setting the nMaxLength argument of RFX _Binary.

See Also SQL: Making Direct SQL Calls (ODBC)

SQL: Making Direct SQL Calls (ODBC)
Note This information applies to the MFC ODSC classes. If you're working with the MFC
DAO classes, see the topic Comparison of Microsoft Jet Database Engine Sal and ANSI Sal
in DAO Help.

This article explains:

• When to use direct SQL calls.

• How you make direct SQL calls to the data source.

When to Call SQl Directly
To create new tables, drop tables, alter existing tables, create indexes, and perform
other SQL functions which change the data source schema, you must issue an SQL
statement directly to the data source using Database Definition Language (DDL).
When you use Class Wizard to create a recordset for a table - at design time - you
can choose which columns of the table to represent in the recordset. This doesn't
allow for columns you or another user of the data source add to the table later, after
your program has been compiled. The database classes don't support DDL directly,

SQL

755

Stored Procedure

but you can still write code to bind a new column to your recordset dynamically, at
run time. For information on how to do this binding, see the article Recordset:
Dynamically Binding Data Columns (ODBC).

You can use the DBMS itself to alter the schema, or another tool which lets you
perform DDL functions.

You can also use ODBC function calls for sending SQL statements, such as calling a
predefined query (stored procedure) that doesn't return records.

Making Direct SQl Function Calls
You can directly execute an SQL call using a CDatabase object. Set up your SQL
statement string (usually in a CString) and pass it to the ExecuteSQL member
function of your CDatabase object. If you use ODBC function calls to send an SQL
statement that normally returns records, the records are ignored. For more
information, see the member function CDatabase::ExecuteSQL of class CDatabase
in the Class Library Reference.

See Also In the Class Library Reference: CDatabase::ExecuteSQL

Stored Procedure
A predefined query stored in a data source and activated by an ODBC CALL
statement.

If you're using the MFC ODBC classes, see the articles Recordset: Declaring a Class
for a Table (ODBC) and SQL: Making Direct SQL Calls (ODBC). If you're using the
MFC DAO classes, see the article DAO Querydef: Using QueryDefs.

Strings

756

This article describes the general-pupose services that the class library provides
related to string manipulation. Topics covered in this article include:

• Unicode and MBCS provide portability

• CStrings and const char pointers

• CString reference counting

The CString class provides support for manipulating strings. It is intended to replace
and extend the functionality normally provided by the C run-time library string
package. The CString class supplies member functions and operators for simplified
string handling, similar to those found in Basic. The class also provides constructors
and operators for constructing, assigning, and comparing CStrings and standard
C++ string data types. Because CString is not derived from CObject, you can use
CString objects independently of most of the Microsoft Foundation Class Library
(MFC).

CString objects follow "value semantics." A CString object represents a unique
value. Think of a CString as an actual string, not as a pointer to a string.

A CString object represents a sequence of a variable number of characters. CString
objects can be thought of as arrays of characters.

Unicode and MBCS Provide Portability
With MFC version 3.0 and later, MFC, including CString, is enabled for both
Unicode and Multibyte Character Sets (MBCS). This support makes it easier for you
to write portable applications that you can build for either Unicode or ANSI
characters. To enable this portability, each character in a CString object is of type
TCHAR, which is defined as wchar _ t if you define the symbol _UNICODE when
you build your application, or as char if not. A wchar _ t character is 16 bits wide.
(Unicode is available only under Windows NT.) MBCS is enabled if you build with
the symbol_ MBCS defined. MFC itself is built with either the _ MBCS symbol (for
the NAFX libraries) or the _UNICODE symbol (for the UAFX libraries) defined.

Note The CString examples in this and the accompanying articles on strings show literal
strings properly formatted for Unicode portability, using the _ T macro, which translates the
literal string to the form
L"literal string"

which the compiler treats as a Unicode string. For example, the following code:

CString strName = _TC"Name");

is translated as a Unicode string if _UNICODE is defined or as an ANSI string if not. For more
information, see the article Strings: Unicode and Multibyte Character Set (MBCS) Support.

A CString object can store up to INT_MAX (2,147,483,647) characters. The
TCHAR data type is used to get or set individual characters inside a CString object.
Unlike character arrays, the CString class has a built-in memory allocation
capability. This allows CString objects to automatically grow as needed (that is, you
don't have to worry about growing a CString object to fit longer strings).

CStrings and const char Pointers
A CString object also can act like a literal C-style string (an LPCTSTR, which is
the same as const char* if not under Unicode). The LPCTSTR conversion operator
allows CString objects to be freely substituted for character pointers in function calls.
The CString(LPCTSTR lpsz) constructor allows character pointers to be
substituted for CString objects.

No attempt is made to fold CString objects. If you make two CString objects
containing Chi cago, for example, the characters in Chi cago are stored in two places.
(This may not be true of future versions of MFC, so you should not depend on it.)

Strings

757

Strings

Tips Use the GetBuffer and ReleaseBuffer member functions when you need to directly
access a CString as a nonconstant pointer to a character (LPTSTR instead of a const
character pointer, LPCTSTR).

Use the AllocSysString and SetSysString member functions to allocate and set BSTR
objects used in OLE Automation.

Where possible, allocate CString objects on the frame rather than on the heap. This saves
memory and simplifies parameter passing.

The CString class is not implemented as a Microsoft Foundation Class Library
collection class, although CString objects can certainly be stored as elements in
collections.

CString Reference Counting
As of MFC version 4.0, when CString objects are copied, MFC increments a
reference count rather than copying the data. This makes passing parameters by value
and returning CString objects by value more efficient. These operations cause the
copy constructor to be called, sometimes more than once. Incrementing a reference
count reduces that overhead for these common operations and makes using CString a
more attractive option.

As each copy is destroyed, the reference count in the original object is decremented.
The original CString object is not destroyed until its reference count is reduced to
zero.

You can use the CString member functions LockBuffer and UnlockBuffer to
disable or enable reference counting.

Further Reading About Strings
The following articles provide more information about CString:

• Strings: Basic CString Operations

• Strings: CString Semantics

• Strings: CString Operations Relating to C-Style Strings

• Strings: CString Exception Cleanup

• Strings: CString Argument Passing

• Strings: Unicode and Multibyte Character Set (MBCS) Support

See Also In the Class Library Reference: CString

Strings: Basic CString Operations
This article explains basic CString operations, including:

• Creating CString objects from standard C literal strings

758

• Accessing individual characters in a CString

• Concatenating two CString objects

• Comparing CString objects

The CString class provides member functions and overloaded operators that
duplicate and, in some cases, surpass the string services of the C run-time libraries
(for example, strcat). This article describes some of the main operations of the
CString class.

Creating CString Objects from Standard C Literal Strings
You can assign C-style literal strings to a CString just as you can assign one CString
object to another:

• Assign the value of a C literal string to a CString object:

CString myString == "This is a test";

• Assign the value of one CString to another CString object:

CString oldString = "This is a test";
CString newString = oldString;

The contents of a CString object are copied when one CString object is assigned
to another. Thus, the two strings do not share a reference to the actual characters
that make up the string. For more information on using CString objects as values,
see the article Strings: CString Semantics.

Tip To write your application so that it can be compiled for Unicode or for ANSI, code literal
strings using the _ T macro. For more information, see the article Strings: Unicode and
Multibyte Character Set (MBCS) Support.

Accessing Individual Characters in a CString
You can access individual characters within a CString object with the GetAt and
SetAt member functions. You can also use the array element, or subscript, operator (
[]) instead of GetAt to get individual characters (this is similar to accessing array
elements by index, as in standard C-style strings). Index values for CString
characters are zero-based.

Concatenating Two CString Objects
To concatenate two CString objects, use the concatenation operators (+ or +=) as
follows:

CString s1 == "This ";
s1 += "is a ";
CString s2 - "test";

IICascading concatenation

CString message - s1 + "big" + s2;
lIMes sage contains "This is a big test".

Strings

759

Strings

At least one of the arguments to the concatenation operators (+ or +=)- must be a
CString object, but you can use a constant character string (such as "bi g") or a char
(such as 'x') for the other argument.

Comparing CString Objects
The Compare member function and the == operator for CString are equivalent.
Compare, operator==, and CompareNoCase are MBCS- and Unicode-aware;
CompareNoCase is also case insensitive. The Collate member function of CString
is locale-sensitive and is often slower than Compare. Collate should be used only
where it is necessary to abide by the sorting rules as specified by the current locale.

The following list shows the available CString comparison functions and their
equivalent UnicodelMBCS-portable functions in the C run-time library:

CString function

Compare

CompareNoCase

Collate

MBCS function

_mhscmp

_mhsicmp

strcoll

Unicode function

wcscmp

_wcsicmp

wcscoll

The CString class overrides the relational operators «, <=, >=, >, ==, and !=).You
can compare two CStrings using these operators, as shown here:

CString s1("Tom");
CString s2("Jerry");
if(s1 < s2)

Strings: CString Semantics

760

Even though CString objects are dynamically growable objects, they act like built-in
primitive types and simple classes. Each CString object represents a unique value.
CString objects should be thought of as the actual strings rather than as pointers to
strings.

The most obvious consequence of using CString objects as values is that the string
contents are copied when you assign one CString to another. Thus, even though two
CString objects may represent the same sequence of characters, they do not share
those characters. Each CString has its own copy of the character data. When you
modify one CString object, the copied CString object is not modified, as shown by
the following example:

CString s1, s2;
s1 = s2 = "hi there";

if(s1==s2)

s1.MakeUpper();
if(s2[0] == 'h'

II TRUE - they are equal

II Does not modify s2
II TRUE - s2 is still "hi there"

Notice in the example that the two CString objects are considered to be "equal"
because they represent the same character string. The CString class overloads the
equality operator (==) to compare two CString objects based on their value (contents)
rather than their identity (address).

Strings

Strings: CString Operations Relating to C-Style Strings
It is often useful to manipulate the contents of a CString object as if it were a C-style
null-terminated string. This article covers the following topics:

• Converting to C-style null-terminated strings

• Working with standard run-time library string functions

• Modifying CString contents directly

• Using CString objects with variable argument functions

• Specifying CString formal parameters

Converting to C-Style Null-Terminated Strings
Consider the following two cases:

• In the simplest case, you can cast a CString object to be an LPCTSTR. The
LPCTSTR type conversion operator returns a pointer to a read-only C-style null
terminated string from a CString object.

The pointer returned by LPCTSTR points into the data area used by the CString.
If the CString goes out of scope and is automatically deleted or something else
changes the contents of the CString, the LPCTSTR pointer will no longer be
valid. Treat the string to which the pointer points as being temporary.

• You can use CString functions, such as SetAt, to modify individual characters in
the string object. However, if you need a copy of a CString object's characters that
you can modify directly, use strcpy (or the UnicodelMBCS-portable _tcscpy) to
copy the CString object into a separate buffer where the characters can be safely
modified, as shown by the following example:

CString theString("This is a test");
LPCTSTR lpsz = new TCHAR[theString.GetLength()+l];
strcpy(lpsz. theString);
II ... modify lpsz as much as you want

Note The second argument to strcpy (or the Unicode/MBCS-portable _tcscpy) is either a
const wchar_t* (Unicode) or a const char* (ANSI). The example above passes a CString
for this argument. The C++ compiler automatically applies the conversion function defined
for the CString class that converts a CString to an LPCTSTR. The ability to define casting
operations from one type to another is one of the most useful features of C++.

761

Strings

762

Working with Standard Run-Time Library String Functions
In most situations, you should be able to find CString member functions to perform
any string operation for which you might consider using the standard C run-time
library string functions, such as strcmp (or the UnicodelMBCS-portable _ tcscmp).

If you need to use the C run-time string functions, you can use the techniques
described in Converting to C-Style Null-Terminated Strings to copy the CString
object to an equivalent C-style string buffer, perform your operations on the buffer,
and then assign the resulting C-style string back to a CString object.

Modifying CString Contents Directly
In most situations, you should use CString member functions to modify the contents
of a CString object or to convert the CString to a C-style character string.

However, there are certain situations, such as working with operating-system
functions that require a character buffer, where it is advantageous to directly modify
the CString contents.

The GetBuffer and ReleaseBuffer member functions allow you to gain access to the
internal character buffer of a CString object and modify it directly. The following
steps show how to use these functions for this purpose:

1. Call GetBuffer for a CString object, specifying the length of the buffer you
require.

2. Use the pointer returned by GetBuffer to write characters directly into the
CString object.

3. Call ReleaseBuffer for the CString object to update all the internal CString state
information (such as the length of the string). After modifying a CString object's
contents directly, you must call ReleaseBuffer before calling any other CString
member functions.

Using CString Objects with Variable Argument Functions
Some C functions take a variable number of arguments. A notable example is printf.
Because of the way this kind of function is declared, the compiler cannot be sure of
the type of the arguments and cannot determine which conversion operation to
perform on the argument. Therefore, it is essential that you use an explicit type cast
when passing a CString object to a function that takes a variable number of
arguments.

~ To use a CString object in a variable argument function

• Explicitly cast the CString to an LPCTSTR string, as shown here:

CString kindOfFruit - "bananas":
int howmany = 25:
printf("You have %d %s\n". howmany. (LPCTSTR)kindOfFruit):

Specifying CString Formal Parameters
For most functions that need a string argument, it is best to specify the formal
parameter in the function prototype as a const pointer to a character (LPCTSTR)
instead of a CString. When a formal parameter is specified as a const pointer to a
character, you can pass either a pointer to a TCHAR array, a literal string ["hi
there"], or a CString object. The CString object will be automatically converted to
an LPCTSTR. Any place you can use an LPCTSTR, you can also use a CString
object.

You can also specify a formal parameter as a constant string reference (that is, const
CString&) if the argument will not be modified. Drop the const modifier if the string
will be modified by the function. If a default null value is desired, initialize it to the
null string [""], as shown below:

void AddCustomer(const CString& name,
const CString& address,
const CString& comment = "");

For most function results, you can simply return a CString object by value.

See Also Strings: CString Argument Passing

In the Class Library Reference: CString

Strings: CString Exception Cleanup
In previous versions of MFC, it was important that you clean up CString objects after
use. With MFC version 3.0 and later, explicit cleanup is no longer necessary.

Under the C++ exception handling mechanism that MFC now uses, you don't have to
worry about cleanup after an exception. For a description of how C++ "unwinds" the
stack after an exception is caught, see Chapter 7, C++ Exception Handling, in
Programming Techniques. Even if you use the MFC TRY jCATCH macros instead of
the C++ keywords try and catch, MFC uses the C++ exception mechanism
underneath, so you still don't need to clean up explicitly.

See Also Exceptions

Strings: CString Argument Passing
This article explains how to pass CString objects to functions and how to return
CString objects from functions.

Argument-Passing Conventions
When you define a class interface, you must determine the argument-passing
convention for your member functions. There are some standard rules for passing and
returning CString objects. If you follow the rules described in Strings as Function
Inputs and Strings as Function Outputs, you will have efficient, correct code.

Strings

763

Strings

764

Strings as Function Inputs
If a string is an input to a function, in most cases it is best to declare the string
function parameter as LPCTSTR. Convert to a CString object as necessary within
the function using constructors and assignment operators. If the string contents are to
be changed by a function, declare the parameter as a nonconstant CString reference
(CString&).

Strings as Function Outputs
Normally you can return CString objects from functions since CString objects follow
value semantics like primitive types. To return a read-only string, use a constant
CString reference (const CString&). The following example illustrates the use of
CString parameters and return types:

class CName : public CObject
{

private:
CString m_firstName;
char m_middlelnit;
CString m_lastName;

public:

} ;

CName() {}
void SetData(LPCTSTR fn, canst char mi, LPCTSTR ln)
{

m_firstName = fn;
m_middlelnit = mi;
m_lastName = In;

void GetData(CString& cfn, char mi, CString& cln)
{

cfn = m_firstName;
mi = m_middlelnit;
cln = m_lastName;

CString GetLastName()
{

return m_lastName;

CName name;
CString last, first;
TCHAR middle;
name. SetData ("John", 'Q', "Publ i c");
ASSERT(name. GetLastName() == "Publ i c");
name.GetData(first, middle, last);
ASSERT((fi rst == "John") && (1 ast == "Publ i c"));

Strings

Strings: Unicode and Multibyte Character Set (MBCS)
Support

Some international markets use languages, such as Japanese and Chinese, with large
character sets. To support programming for these markets, the Microsoft Foundation
Class Library (MFC) is enabled for two different approaches to handling large
character sets:

• Unicode

• Multibyte Character Sets (MBCS)

MFC Support for Unicode Strings
The entire class library (except the database classes) is conditionally enabled for
Unicode characters and strings. In particular, class CString is Unicode-enabled.

CString is based on the TCHAR data type. If the symbol_UNICODE is defined for
a build of your program, TCHAR is defined as type wchar_t, a 16-bit character
encoding type; otherwise, it is defined as char, the normal8-bit character encoding.
Under Unicode, then, CStrings are composed of 16-bit characters. Without Unicode,
they are composed of characters of type char.

To complete the Unicode picture for your application, you must also:

• Use the _T macro to conditionally code literal strings to be portable to Unicode.

• When you pass strings, pay attention to whether function arguments require a
length in characters or a length in bytes. The difference is important if you're
using Unicode strings.

• Use portable versions of the C run-time string-handling functions.

• Use the following data types for characters and character pointers:

TCHAR Where you would use char.

LPTSTR Where you would use char*.

LPCTSTR Where you would use const char*. CString provides the
operator LPCTSTR to convert between CString and LPCTSTR.

CString also supplies Unicode-aware constructors, assignment operators, and
comparison operators.

For more information on Unicode programming, see Chapter 13, Developing for
International Markets, in Programming Techniques. The Run-Time Library Reference
defines portable versions of all of its string-handling functions. See the category
Internationalization in Chapter 1 of that book.

765

Strings

766

MFC Support for MBCS Strings
The class library is also enabled for multibyte character sets (except for the database
classes)-specifically for double-byte character sets (DBCS).

Note The version of OOBC shipped with Visual C++ version 2.0 is not MBCS enabled.
Subsequent versions of OOBC will be MBCS enabled (specifically OBCS enabled).

Under this scheme, a character can be either one or two bytes wide. If it is two bytes
wide, its first byte is a special "lead byte," chosen from a particular range depending
on which code page is in use. Taken together, the lead and "trail bytes" specify a
unique character encoding.

If the symbol _ MBCS is defined for a build of your program, type TCHAR, on
which CString is based, maps to char. It's up to you to determine which bytes in a
CString are lead bytes and which are trail bytes. The C run-time library supplies
functions to help you determine this.

Under DBCS, a given string can contain all single-byte ANSI characters, all double
byte characters, or a mixture of the two. These possibilities require special care in
parsing strings, including CString objects.

Note Unicode string serialization in MFC can read both Unicode and MBCS strings
regardless of which version of the application you are running. Because of this, your data files
are portable between Unicode and MBCS versions of your program.

CString member functions use special "generic text" versions of the C run-time
functions they call, or they use Unicode-aware functions such as Istrlen or Istrcpy.
Thus, for example, if a CString function would normally call strcmp, it calls the
corresponding generic-text function _ tcscmp instead. Depending on how the symbols
_ MBCS and _UNICODE are defined, _ tcscmp maps as follows:

_MBCS defined _ mbscmp

_UNICODE defined wcscmp

Neither symbol defined strcmp

Note _MBCS and _UNICODE are mutually exclusive symbols.

Generic-text function mappings for all of the run-time string-handling routines are
detailed in the Run-Time Library Reference. See the category Internationalization.

Similarly, CString member functions are implemented using "generic" data type
mappings. To enable both MBCS and Unicode, MFC uses TCHAR for char,
LPTSTR for char*, and LPCTSTR for const char*. These result in the correct
mappings for either MBCS or Unicode.

For more information about MFC support for MBCS (DBCS), see Chapter 13,
Developing for International Markets, in Programming Techniques.

Structured Query Language

Structured Query Language
See the article SQL.

767

Table

Table
A table is the fundamental structure of a relational database management system. It is
typically a data structure composed of records (rows) and fields (columns) with data
stored in each cell formed by the record and field intersection.

A table in a database for which there is an ODBC driver can be accessed via a
CRecordset object. The recordset object can select some or all of the records, and
some or all of the columns.

See Also Record, Recordset (ODBC)

Test Container

768

The Test Container application, shipped with Visual C++, is an OLE control
container for testing OLE controls. Test Container allows the control developer to test
the control's functionality by changing its properties, invoking its methods, and firing
its events. In addition, Test Container can display logs of data-binding notifications
and also provides facilities for testing an OLE control's persistence functionality: you
can save properties to a stream or to substorage, reload them, and examine the stored
stream data. For more information on using Test Container, see the Test Container
help.

This article discusses how to:

• Test your OLE control using Test Container and the integrated debugger

• Test the events, methods, and properties of an OLE control

Testing Your OLE Control Using Test Container
Because OLE controls are implemented as system DLLs, they cannot be run as stand
alone applications. In order to interact with the control (in this case debug it), a
calling application is needed. The Test Container application can fill this role. The
integrated debugger will use Test Container as the test harness for the OLE control.
Once Test Container is running you can begin the debugging process for your control.

Note In addition to Test Container, Microsoft FoxPro® 3.0, Microsoft Access, Microsoft Visual
BasiC® 4.0, and OLE containers built with the MFC class library in Visual C++ version 4.0 fully
support OLE controls.

~ To test your control using the integrated debugger

1 Load your control's project.

2 Ensure that the OLE control has been built as a debug version with symbolic
debugging information.

3 From the Build menu, choose Settings.

The Project Settings dialog box appears.

4 Select the Debug tab.

5 Type the name of the executable program which calls the OLE control DLL in
your project in the Executable for debug session box.

For this example, the Test Container application TSTCON32.EXE (shipped with
Visual C++) will be used. It is found in the BIN directory of your installation.

6 Choose OK.

The information is now stored with your project.

After completing this procedure, Test Container automatically starts when you begin
a debugging session of your control. Begin a debugging session by choosing the Go
command from the Debug submenu of the Build menu (or press FS).

When you first start debugging your control, a message box appears stating that no
debug information is available for the Test Container. You can safely ignore this by
choosing the OK button. You can now step through your code, set breakpoints, or
perform other debugging techniques.

Testing the Events, Methods, and Properties of an OLE
Control
Once an OLE control has been successfully compiled and linked, you can
immediately test the functionality of the OLE control using the Test Container.

~ To test your OLE control

1 From the Tools menu of Visual C++, choose OLE Control Test Container.

2 From the Edit menu of Test Container, choose Insert OLE Control.

3 In the Insert OLE Control dialog box, select the desired control and choose OK.
The control will appear in the control container.

Note If your control is not listed in the Insert OLE Control dialog box, make sure you have
registered it with the Register Controls command from the File menu of Test Container.

At this point you can test your control's properties or events.

~ To test properties

1 From the Edit menu, choose the xxxx Control Object command, where xxxx
represents your control's name.

2 Modify the value of a property on the property page.

3 Click the Apply button to apply the new value to the xxxx control.

The property now contains the new value.

Test Container

769

Toolbars

~ To test events

1 From the View menu, choose the Event Log command.

2 Perform an action that causes the control to fire an event.

The event will appear in the Event Log window.

After you have finished testing your control, close the Test Container by choosing the
Close command on the File menu, or double-click the system menu button.

See Also OLE Controls

Toolbars

770

The toolbar family of articles describes MFC toolbars and how to create and use
them. This article gives an overview of the features available. Topics covered include:

• Toolbar: definition

• Docking and floating toolbars

• Tool tips

• The CToolBar class

• Further reading about toolbars

Toolbar: Definition
A toolbar is a form of control bar-a child window that can contain buttons, edit
boxes, check boxes, or other kinds of Windows controls. Some kinds of control bars,
such as dialog bars, can contain a wide variety of controls, but a toolbar contains a
row of button images. These buttons can behave like pushbuttons, check boxes, or
radio buttons.

Docking and Floating Toolbars
Toolbars are usually aligned to the top of a frame window, but a toolbar in an
application created with the Microsoft Foundation Class Library (MFC) can, if you
choose, be "docked" to any side (or sides) of its parent window that you specify. MFC
toolbars can also be made to "float" in draggable "mini-frame windows," and users
can now resize floating toolbars. You can also create a floating palette that cannot be
docked. See the article Toolbars: Docking and Floating.

Tool Tips
You can also have your toolbars show "tool tips" as the user moves the mouse over
the toolbar buttons. A tool tip is a small popup window that appears near a toolbar
button to explain its purpose to the user.

The CToolBar Class
You manage your application's toolbars via class CToolBar. As of MFC version 4.0,
CToolBar has been reimplemented to use the toolbar common control available
under Windows 95 and Windows NT version 3.51 or later.

This reimplementation results in less MFC code for toolbars, because MFC makes
use of operating system support. The reimplementation also improves capability. You
can use CToolBar member functions to manipulate toolbars, or you can obtain a
reference to the underlying CToolBarCtrl object and call its member functions for
toolbar customization and additional functionality.

Tip If you have invested heavily in the older MFC implementation of CToolBar, that support
is still available. See the article Toolbars: Using Your Old Toolbars.

Also see the MFC General sample DOCKTOOL.

For Further Reading About Toolbars
For information about docking and floating toolbars and about tool tips, see the
following articles:

• Toolbars: Fundamentals

• Toolbars: Docking and Floating

• Toolbars: Tool Tips

• Toolbars: Working with the Toolbar Control

• Toolbars: Using Your Old Toolbars

In the Class Library Reference, see classes CToolBar, CControlBar, and
CToolBarCtrl.

For example code, see the MFC General sample DOCKTOOL in Books Online.

See Also Toolbars: Fundamentals, Toolbars: Docking and Floating, Toolbars: Tool
Tips, Toolbars: Working with the Toolbar Control, Toolbars: Using Your Old
Toolbars

Toolbars: Fundamentals
This article describes the fundamental MFC implementation that lets you add a
default toolbar to your application by selecting an option in App Wizard. Topics
covered include:

• The App Wizard Toolbar Option

• The Toolbar in Code

• Editing the Toolbar Resource

• Multiple Toolbars

Toolbars

771

Toolbars

772

The AppWizard Toolbar Option
To get a single toolbar with default buttons, select the Dockable Toolbar option on the
App Wizard Step 4 of 6 page. This adds code to your application that:

• Creates the toolbar object.

• Manages the toolbar, including its ability to dock or to float.

The Toolbar in Code
The toolbar object is a CToolBar object declared as a data member of your
application's CMainFrame class. In other words, the toolbar object is embedded in
the main frame window object. This means that MFC creates the toolbar when it
creates the frame window and destroys the toolbar when it destroys the frame
window. The following partial class declaration, for a mUltiple document interface
(MDI) application, shows data members for an embedded toolbar and an embedded
status bar. It also shows the override of the OnCreate member function.

class CMainFrame : public CMDIFrameWnd
{

II

II Implementation
I I ...

protected: II control bar embedded members
CStatusBar m_wndStatusBar;
CToolBar m_wndToolBar;

II Generated message map functions
protected:

} ;

11{{AFX_MSG(CMainFrame)
afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);

II NOTE - the ClassWizard will add and remove member functions here.
II DO NOT EDIT what you see in these blocks of
II generated code!

I/} }AFX_MSG
DECLARE_MESSAGE_MAP()

Toolbar creation occurs in CMainFrame: :OnCreate. MFC calls OnCreate after
creating the Windows window for the frame but before the frame window becomes
visible. The default OnCreate that AppWizard generates does the following toolbar
tasks:

1. Calls the CToolBar object's Create member function to create the underlying
CToolBarCtrl object.

2. Calls LoadToolBar to load the toolbar resource information.

3. Calls functions to enable docking, floating, and tool tips. For details about these
calls, see the article Toolbars: Docking and Floating.

Note The MFG General sample DOGKTOOL includes illustrations of both old and new MFG
toolbars. The toolbars that use COldToolbar require calls in step 2 to LoadBitmap (rather
than LoadToolBar) and to SetButtons. The new toolbars require calls to LoadToolBar.
Samples are available under MFG, under Samples in Books Online.

The docking, floating, and tool tips calls are optional. You can remove those lines
from OnCreate if you prefer. The result is a toolbar that remains fixed, unable to
float or redock and unable to display tool tips.

Editing the Toolbar Resource
The default toolbar you get with AppWizard is based on an RT_TOOLBAR custom
resource, introduced in MFC version 4.0. You can edit this resource with the Visual
C++ toolbar editor. The editor lets you easily add, delete, and rearrange buttons. It
contains a graphical editor for the buttons that is very similar to the general graphics
editor in Visual C++. If you edited toolbars in previous versions of Visual C++, you'll
find the task much easier now.

To connect a toolbar button to a command, you give the button a command ID, such
as I D_MYCOMMAND. Specify the command ID in the button's property page in the
toolbar editor. Then use Class Wizard to create a handler function for the command.

New CToolBar member functions work with the RT TOOLBAR resource.
LoadToolBar now takes the place of LoadBitmap to load the bitmap of the toolbar
button images, and SetButtons to set the button styles and connect buttons with
bitmap images.

For details about the Visual C++ toolbar editor, see Chapter 11, Using the Toolbar
Editor, in the Visual C++ User's Guide.

Multiple Toolbars
App Wizard gives you one toolbar. If you want more, you need to model your code for
the additional toolbars on the code for the first one.

If you want to display a toolbar as the result of a command, you'll need to:

• Create a new toolbar resource with the toolbar editor and load it in OnCreate with
the LoadToolbar member function.

• Embed a new CToolBar object in your main frame window class.

• Make the appropriate function calls in OnCreate to dock or float the toolbar, set
its styles, and so on.

See Also Toolbars, Toolbars: Docking and Floating, Toolbars: Tool Tips, Toolbars:
Working with the Toolbar Control, Toolbars: Using Your Old Toolbars

Toolbars

773

Toolbars

Toolbars: Docking and Floating

774

The Microsoft Foundation Class Library supports dockable toolbars. A dockable
toolbar can be attached, or "docked," to any side of its parent window, or it can be
"floated" in its own mini-frame window. This article explains how to use dockable
toolbars in your applications.

If you use App Wizard to generate the skeleton of your application, you are asked to
choose whether you want dockable toolbars. By default, App Wizard generates the
code that performs the three actions necessary to place a dockable toolbar in your
application:

• Enable docking for the frame window.

• Enable docking for the toolbar.

• Dock the toolbar to the frame window.

If any of these steps are missing, your application will display a standard toolbar. The
last two steps must be performed for each dockable toolbar in your application.

Other topics covered in this article include:

• Floating the toolbar

• Dynamically resizing the toolbar

• Setting wrap positions for a fixed-style toolbar

See the MFC General sample DOCKTOOL for examples.

Enabling Docking in a Frame Window
To dock toolbars to a frame window, the frame window (or destination) must be
enabled to allow docking. This is done using the CFrameWnd::EnableDocking
function, which takes one DWORD parameter that is a set of style bits indicating
which side of the frame window accepts docking. If a toolbar is about to be docked
and there are multiple sides that it could be docked to, the sides indicated in the
parameter passed to EnableDocking are used in the following order: top, bottom,
left, right. If you want to be able to dock control bars anywhere, pass
CBRS_ALIGN_ANY to EnableDocking.

Enabling Docking for a Toolbar
After you have prepared the destination for docking, you must prepare the toolbar (or
source) in a similar fashion. Call CControlBar: : EnableDocking for each toolbar
you want to dock, specifying the destination sides to which the toolbar should dock. If
none of the sides specified in the call to CControIBar::EnableDocking match the
sides enabled for docking in the frame window, the toolbar cannot dock-it will
float. Once it has been floated, it remains a floating toolbar, unable to dock to the
frame window.

If the effect you want is a permanently floating palette, call EnableDocking with a
parameter of O. Then call CFrameWnd::FloatControIBar. The toolbar remains
floating, permanently unable to dock anywhere.

Docking the Toolbar
To actually dock the toolbar to the frame window, you must call
CFrameWnd::DockControIBar. This is normally called by the framework when the
user attempts to drop the toolbar on a side of the frame window that allows docking.

In addition, you can call this function at any time to dock control bars to the frame
window. This is normally done during initialization. More than one toolbar can be
docked to a particular side of the frame window.

Floating the Toolbar
Detaching a dockable toolbar from the frame window is called "floating" the toolbar.
Call CFrameWnd::FloatControIBar to do this. Specify the toolbar to be floated, the
point where it should be placed, and an alignment style that determines whether the
floating toolbar is horizontal or vertical.

This function is normally called when a user drags a toolbar off its docked location
and drops it in a location where docking is not enabled. This can be anywhere inside
or outside the frame window. As with DockControlBar, this function can also be
called during initialization.

The MFC implementation of dockable toolbars does not provide some of the extended
features found in some applications that support dockable toolbars. Features such as
customizable toolbars are not provided.

Dynamically Resizing the Toolbar
As of Visual C++ version 4.0, you can make it possible for users of your application
to resize floating toolbars dynamically. Typically, a toolbar has a long, linear shape,
displayed horizontally. But you can change the toolbar's orientation and its shape.
For example, when the user docks a toolbar against one of the vertical sides of the
frame window, the shape changes to a vertical layout. It's also possible to reshape the
toolbar into a rectangle with mUltiple rows of buttons.

You can:

• Specify dynamic sizing as a toolbar characteristic.

• Specify fixed sizing as a toolbar characteristic.

To provide this support, there are two new toolbar styles for use in your calls to the
CTooIBar::Create member function. They are

• CBRS_SIZE_DYNAMIC Control bar is dynamic.

• CBRS SIZE FIXED Control bar is fixed. - -

Toolbars

775

Toolbars

The size dynamic style lets your user resize the toolbar while it is floating, but not
while it is docked. The toolbar "wraps" where needed to change shape as the user
drags its edges.

The size fixed style preserves the wrap states of a toolbar, fixing the position of the
buttons in each column. Your application's user can't change the shape of the toolbar.
The toolbar wraps at designated places, such as the locations of separators between
the buttons. It maintains this shape whether the toolbar is docked or floating. The
effect is a fixed palette with multiple columns of buttons.

You can also use CTooIBar::GetButtonStyle to return a state and style for buttons
on your toolbars. A button's style determines how the button appears and how it
responds to user input; the state tells whether the button is in a wrapped state.

Setting Wrap Positions for a Fixed-Style Toolbar
For a toolbar with the size fixed style, you need to designate toolbar button indexes at
which the toolbar will wrap. The following code shows how to do this in your main
frame window's OnCreate override:

II Get the style of the first button separator
UINT nStyle = m_wndToolBar-)GetButtonStyle(3);
II Augment the state for wrapping
nStyle 1= TBBS_WRAPPED;
m_wndToolBar-)SetButtonStyle(3. nStyle);

II Do the same for other wrap locations

II Set the bar style to size fixed
m_wndToolBar-)SetBarStyle(m_wndToolBar-)GetBarStyle()

CBRS_TOOLTIPS 1 CBRS_FLYBY 1 CBRS_SIZE_FIXED);

II Call dockinglfloating functions as needed ...

The MFC General sample DOCKTOOL shows how to use member functions of
classes CControlBar and CToolBar to manage dynamic layout of a toolbar. See the
file EDITBAR.CPP in DOCKTOOL.

See Also Toolbars: Fundamentals, Toolbars, Toolbars: Tool Tips, Toolbars: Working
with the Toolbar Control, Toolbars: Using Your Old Toolbars

Toolbars: Tool Tips

776

Tool tips are the tiny popup windows that present short descriptions of a toolbar
button's purpose when you position the mouse over a button for a period of time.
When you create an application with App Wizard that has a toolbar, tool tip support is
provided for you. This article explains both the tool tip support created by App Wizard
and how to add tool tip support to your application.

Activating Tool Tips
To activate tool tips in your application, you must do two things:

• Add the CBRS _ TOOLTIPS style to the other styles (such as WS _CHILD,
WS_ VISIBLE, and other CBRS_ styles) passed as the dwStyl e parameter to the
CTooIBar::Create function or in SetBarStyle.

• As described in the procedure below, append the toolbar tip text, separated by a
newline character ('\n'), to the string resource containing the command-line
prompt for the toolbar command. The string resource shares the ID of the toolbar
button.

~ To add the tool tip text

1 While you are editing the toolbar in the toolbar editor, open the Toolbar Button
Properties window for a given button.

2 In the Prompt box, specify the text you want to appear in the tool tip for that
button.

Note Setting the text as a button property in the toolbar editor replaces the former procedure,
in which you had to open and edit the string resource.

If a control bar with tool tips enabled has child controls placed on it, the control bar
will display a tool tip for every child control on the control bar as long as it meets the
following criteria:

• The ID of the control is not -1.

• The string-table entry with the same ID as the child control in the resource file has
a tool tip string.

Fly By Status Bar Updates
A feature related to tool tips is "fly by" status bar updating. By default, the message
on the status bar only describes a particular toolbar button when the button is
activated. By including CBRS_FLYBY in your list of styles passed to
CTooIBar::Create, you can have these messages updated when the mouse cursor
passes over the toolbar without actually activating the button.

See Also Toolbars: Fundamentals, Toolbars: Docking and Floating, Toolbars,
Toolbars: Working with the Toolbar Control, Toolbars: Using Your Old Toolbars

Toolbars: Working with the Toolbar Control
This article explains how you can access the CToolBarCtrl object underlying a
CToolBar for greater control over your toolbars. This is an advanced topic.

~ To access the toolbar common control underlying your CToolBar object

• Call CTooIBar::GetTooIBarCtrl.

Toolbars

777

Tools for MFC Programming

GetToolBarCtrl returns a reference to a CToolBarCtrl object. You can use the
reference to call member functions of the toolbar control class.

Caution While calling CToolBarCtrl Get functions is safe, use caution if you call the Set
functions. This is an advanced topic. Normally you shouldn't need to access the underlying
toolbar control.

For general information about using Windows common controls, see Common
Controls in the Windows 95 SDK Programmer's Reference.

For more information about CToolBarCtrl, see CToolBarCtrl: Handling Tool Tip
Notifications and CToolBarCtrl: Handling Customization Notifications.

See Also Toolbars: Fundamentals, Toolbars: Docking and Floating, Toolbars: Tool
Tips, Toolbars, Toolbars: Using Your Old Toolbars

Toolbars: Using Your Old Toolbars
If you have used previous versions of Visual C++ to create customized toolbars, the
new implementation of class CToolBar could cause you problems.

So that you don't have to give up your old toolbars to use the new functionality, the
old implementation is still supported. The older implementation of class CToolBar is
now available in class COldToolBar.

~ To use the older implementation

1 Replace occurrences of "CToolBar" in your code with "COldToolBar".

2 As documentation for COldToolBar, see the documentation for CToolBar in a
version of MFC earlier than version 4.0.

As demonstrated in the MFC General sample DOCKTOOL, you can use old-style
toolbars alongside new toolbars in your application. However, you can't edit old-style
toolbars with the toolbar resource editor.

The older implementation of class CToolBar is now available in the OLDBARS
sample program. For information on how to use that code in your own application,
see the sample abstract for OLD BARS.

The DOCKTOOL sample does not use the old-style toolbars, only the new-style
toolbars.

See Also Toolbars: Fundamentals, Toolbars: Docking and Floating, Toolbars: Tool
Tips, Toolbars: Working with the Toolbar Control, Toolbars

Tools for MFC Programming

778

Visual C++ supplies a number of tools that help you build applications for Windows
using the Microsoft Foundation Class Library (MFC). These tools include:

Tools for MFC Programming

• AppWizard

• Resource editors

• Class Wizard

• New tools, including Class View, a toolbar editor, the WizardBar, and Component
Gallery

The final topic in this article, Using the Tools To Create an Application, highlights
the roles of these tools in combination. Other articles explore the details of each
wizard. The Visual C++ User's Guide details the resource editors in Chapters 5
through 13.

AppWizard Creates Skeleton Code
App Wizard creates the starter files for a new application. The starter files consist of
C++ source files, resource files, header files, and a project file. They include the code
necessary to implement basic features for applications for Windows. These basic
features include such things as window management, a basic menu structure, and
basic menu commands. They also include skeleton code for features that you need to
implement for your specific application. In the course of developing your application,
you add the code required to flesh out the skeleton fully. For instance, you need to add
code that loads a file for your application properly, or saves a document in the
appropriate file format on disk. App Wizard marks these locations in the source files
it creates as "II TODO" comments.

Resource Editors Create Resources
Visual C++ has a number of integrated editors for various kinds of Windows
resources. These include menus, dialogs, string tables, accelerator tables, version
resources, and graphical objects, such as icons, cursors, and bitmaps.

AppWizard creates an .RC file containing basic resources: standard menus, an About
dialog box, a string table containing predefined strings, and so on. Other files contain
a default icon, a version resource, and, if you choose the option to include an initial
toolbar, a bitmap containing images for toolbar buttons.

As you program, you'll usually need to add more menus, additional dialog boxes,
new strings and accelerators, and so on. Typically, you invoke the appropriate editor
to create or edit these resources. In some cases, such as menus, toolbar buttons, and
dialog boxes, you first create the resource, specifying its ID, then use ClassWizard to
connect the resource to code.

ClassWizard Fills Out Implementation Details
Class Wizard allows you to create new classes or member functions and variables to
implement the details of your application's operation. It also works with the resource
editors to implement user-interface objects, such as dialog boxes, in your application.

779

Tools for MFC Programming

780

You use the resource editors to create these user-interface objects. You then use
ClassWizard to generate functions and message maps for each user-interface object.
For example, you might use the dialog editor to create an edit control in a dialog box.
Later, in Class Wizard, you can create a class member function to handle input to the
edit box and the member variables to validate and store the entered information. You
can also use Class Wizard to connect a menu command or a toolbar button to the
dialog box to display it.

Using the Tools To Create an Application
The development phase of any Windows-based application typically includes a
number of passes, involving editing source and resource files, building the project,
and testing and debugging. Because these activities are iterative and interwoven
during a normal development cycle, they don't follow one another in a strict
sequential order.

The following steps, nonetheless, describe the general procedure for beginning
application development using AppWizard, ClassWizard, and the Visual C++
resource editors.

~ To use the tools together

1 Choose the File New command and select Project Workspace and then select the
MFC AppWizard project type. Use AppWizard to select the location for your
project and the characteristics of your project.

2 Use ClassWizard to create classes, member functions, and member variables for
the skeleton code in your application. Class Wizard also displays the locations in
the source files where you need to add code specific to your implementation.

3 Use the Visual C++ resource editors to create resources for your application.

4 Use Class Wizard to create the classes and member functions to handle those
resources.

5 Build the application with the Build command on the Build menu.

New Tools in Visual C++ version 4.0
With Visual C++ version 4.0, the following new tools are available to make your
MFC programming easier:

Class View pane in the Project Workspace window Switch from BuildView to
Class View to Info View. In Class View, view your project in terms of classes, not
files. In BuildView, view your project in terms of familiar files. In Info View, view
the documentation, now compatible with the Microsoft Developer Network and
completely integrated with the IDE.

WizardBar At the top of your source code windows in the Visual C++ source code
editor, the WizardBar makes it easy to bind Windows message and commands to
handlers, to open the include file for a source module, and to navigate to code.

Toolbar Editor and RT _ TOOLBAR resource type Support now includes a new
toolbar resource type and a new version of class CToolBar based on the toolbar
control available in Windows 95 and Windows NT version 3.51. Visual C++
supplies a toolbar editor in the IDE. Creating dockable, floating toolbars is easier
than ever.

Component Gallery Store reusable components-our own or from third-party
vendors. Add them to your projects almost seamlessly.

See Also App Wizard, Class Wizard

Trackers
The CRectTracker class provides a user interface between rectangular items in your
application and your user by providing a variety of display styles. These styles
include: solid, hatched, or dashed borders; a hatched pattern that covers the item; and
resize handles that can be located on the outside or inside of a border. Trackers are
often used in conjunction with OLE items, that is, objects derived from
COleClientltem. The tracker rectangles give visual cues on the current status of the
item.

The MFC OLE sample OCLIENT demonstrates a common interface using trackers
and OLE client items from the viewpoint of a container application. For a
demonstration of the different styles and abilities of a tracker object, see the MFC
general sample TRACKER.

For more information on implementing trackers in your OLE application, see the
following article:

• Trackers: Implementing Trackers in Your OLE Application

See Also Trackers: Implementing Trackers in Your OLE Application

In the Class Library Reference: COleClientltem, CRectTracker

Trackers: Implementing Trackers in Your OLE
Application

Trackers provide a graphical interface to enable users to interact with OLE client
items. By using different tracker styles, OLE client items can be displayed with
hatched borders, resize handles, or a variety of other visual effects. This article
describes:

• Tracking and how to implement it in your code.

• The rubber-band effect and trackers.

The article also covers the use of styles with trackers.

Trackers

781

Trackers

782

This article makes several references to the MFC OLE sample OCLIENT. This
sample is described in the Samples documentation.

How to Implement Tracking in Your Code
To track an OLE item, you must handle certain events related to the item, such as
clicking the item or updating the view of the document. In all cases, it is sufficient to
declare a temporary CRectTracker object and manipulate the item by means of this
object.

When a user selects an item or inserts an object with a menu command, you must
initialize the tracker with the proper styles to represent the state of the OLE item.
Table 1 outlines the convention used by the OCLIENT sample. For more information
on these styles, see CRectTracker in the Class Library Reference.

Table 1 Container Styles and State of the OLE Item

Style displayed State of OLE item

Dotted border

Solid border

Resize handles

Hatched border

Hatching pattern overlays item

Item is linked

Item is embedded in your document

Item is currently selected

Item is currently in-place active

Item's server is open

You can handle this initialization easily using a procedure that checks the state of the
OLE item and sets the appropriate styles. The SetupTracker function found in the
OCLIENT sample demonstrates tracker initialization. The parameters for this
function are the address of the tracker, pTracker; a pointer to the client item that is
related to the tracker, pltem; and a pointer to a rectangle, pTrueRect. For a more
complete example of this function, see the MFC OLE sample OCLIENT.

The SetupTracker code example below presents a single function; lines of the
function are interspersed with discussion of the function's features:

void CMainView::SetupTracker(CRectTracker* pTracker,
CRectltem* pltem, CRect* pTrueRect)

{

The tracker is initialized by setting the minimum size and clearing the style of the
tracker.

pTracker-)m_sizeMin.cx = 8;
pTracker-)m_sizeMin.cy = 8;

pTracker-)m_nStyle = 0;

The following code sample checks to see whether the item is currently selected and
whether the item is linked to the document or embedded in it. Resize handles located
on the inside of the border are added to the style, indicating that the item is currently
selected. If the item is linked to your document, the dotted border style is used. A
solid border is used if the item is embedded.

if (pItem == m_pSelection)
pTracker->m_nStyle 1= CRectTracker::resizelnside;

if (pItem->GetType() == OT_LINK)
pTracker->m_nStyle 1= CRectTracker::dottedLine;

else
pTracker->m_nStyle 1= CRectTracker: :solidLine;

The following code overlays the item with a hatched pattern if the item is currently
open.

if (pItem->GetltemState() ==
COleClientltem::openState II
pItem->GetltemState() ==
COleClientltem::activeUIState)

pTracker->m_nStyle 1= CRectTracker::hatchlnside;

You can then call this function whenever the tracker has to be displayed. For
example, call this function from the OnDraw function of your view class. This
updates the tracker's appearance whenever the view is repainted. For a complete
example, see the CMainView::OnDraw function of the MFC OLE sample
OCLIENT.

Events will occur in your application that require tracker code, such as resizing,
moving, or hit detecting. These actions usually indicate that an attempt is being made
to grab or move the item. In these cases you will need to decide what was grabbed: a
resize handle or a portion of the border between resize handles. The
OnLButtonDown message handler is a good place to test the position of the mouse
in relation to the item. Make a call to CRectTracker: : HitTest. If the test returns
something besides CRectTracker::hitOutside, the item is being resized or moved.
Therefore, you should make a call to the Track member function. See the
CMainView::OnLButtonDown function located in the MFC OLE sample
OCLIENT for a complete example.

The CRectTracker class provides several different cursor shapes used to indicate
whether a move, resize, or drag operation is taking place. To handle this event, check
to see whether the item currently under the mouse is selected. If it is, make a call to
CRectTracker::SetCursor, or call the default handler. The following example is
from the MFC OLE sample OCLIENT:

Trackers

783

Trackers

784

BOOl CMainView::OnSetCursor(CWnd* pWnd. UINT nHitTest.
UINT message)

if (pWnd
{

this && m_pSelection != NUll

}

II give the tracker for the selection a chance
CRectTracker tracker;
SetupTracker(&tracker. m_pSelection);
if (tracker.SetCursor(this. nHitTest »

return TRUE;

return CScrollView::OnSetCursor(pWnd.
nHitTest. message);

Rubber-Banding and Trackers
Another feature supplied with trackers is the "rubber-band" selection, which allows a
user to select multiple OLE items by dragging a sizing rectangle around the items to
be selected. When the user releases the left mouse button, items within the region
selected by the user are selected and can be manipulated by the user. For instance, the
user might drag or drop the selection into another container application.

Implementing this feature requires some additional code in your application's
WM LBUTTONDOWN handler function.

The following code sample implements rubber-band selection and additional features
and is taken from the WM LBUTTONDOWN handler function of MFC General
sample TRACKER.

if (pDoc->m_tracker.HitTest(point) < 0)
{

II just to demonstrate CRectTracker::TrackRubberBand
CRectTracker tracker;
if (tracker.TrackRubberBand(this. point.

pDoc->m_bAllowlnvert»

MessageBeep(0); II beep indicates TRUE

II see if rubber band intersects with the doc's tracker
CRect rectT;
II so intersect rect works
tracker.m_rect.NormalizeRect();
if (rectT.lntersectRect(tracker.m_rect.

pDoc->m_tracker.m_rect»
{

II if so. put resize handles on it (i .e. select it)
if (pDoc->m_tracker.m_nStyle &

CRectTracker::resizelnside)

II swap from resize inside to resize outside for effect
pDoc->m_tracker.m_nStyle &=
~CRectTracker::resizelnside;

pDoc->m_tracker.m_nStyle 1=
CRectTracker::resizeOutside;

else
{

II just use inside resize handles on first time
pDoc->m_tracker.m_nStyle &=

-CRectTracker: :resizeOutside;
pDoc->m_tracker.m_nStyle 1=

CRectTracker::resizelnside;

pDoc->SetModifiedFlag();
pDoc->UpdateAllViews(NULL.

(LPARAM)(LPCRECT)rectSave);
pDoc->UpdateAllViews(NULL);

If you want to allow reversible orientation of the tracker during rubber-banding, you
should call CRectTracker::TrackRubberBand with the third parameter set to
TRUE. Remember that allowing reversible orientation will sometimes cause
CRectTracker::m_rect to become inverted. This can be corrected by a call to
CRect::NormalizeRect.

See Also Containers: Client Items, Drag and Drop: Customizing

In the Class Library Reference: CRectTracker

Transaction (ODBC)
A transaction is a way to "batch" a series of updates to a data source so that all are
committed at once, or none are committed if you roll back the transaction. If you do
not use a transaction, changes to the data source are committed automatically rather
than committed on demand.

Note This article applies to the MFC OOSC classes. If you're working with the MFC OAO
classes, see the article OAO Workspace: Managing Transactions.

Note Not all OOSC database drivers support transactions to the level required by the
database classes. Call the CanTransact member function of your CDatabase or CRecordset
object to determine whether your driver supports transactions for a given database.
Can Transact tells you whether transaction support on the data source is sufficient for the
database classes; it does not tell you whether the data source provides full transaction support.
For more information about required transaction levels and the MFC transaction model, see
Technical Note 47 under MFC in Books Online.

Calls to the AddNew and Edit member functions of a CRecordset object affect the
data source immediately when you call Update. Delete calls also take effect
immediately. In contrast, you can use a transaction consisting of mUltiple calls to

Transaction (ODBC)

785

Transaction (ODBC)

AddNew, Edit, Update, and Delete, which are performed but not committed until
you call CommitTrans explicitly. By establishing a transaction, you can execute a
series of such calls while retaining the ability to roll them back. If a critical resource
is unavailable or some other condition prevents the entire transaction from being
completed, you can roll back the transaction instead of committing it. In that case,
none of the changes belonging to the transaction affect the data source.

Note Besides affecting your recordset, transactions affect Sal statements that you execute
directly as long as you use the ODBC HOBC associated with your COatabase object or an
ODSC HSTMT based on that HOBC.

Transactions are particularly useful when you have multiple records that must be
simultaneously updated. In this case, you want to avoid a half-completed transaction,
such as might happen if an exception were thrown before the last update was made.
Grouping such updates into a transaction allows a recovery (rollback) from the
changes, and returns the records to the pretransaction state. For example, if a bank
transfers money from account A to account B, both the withdrawal from A and the
deposit to B must succeed to process the funds correctly, or the whole transaction
must fail.

In the database classes, you perform transactions through CDatabase objects. A
CDatabase object represents a connection to a data source, and one or more
recordsets associated with that CDatabase object operate on tables of the database
through recordset member functions.

Note Only one level of transactions is supported; you cannot nest transactions, nor can a
transaction span multiple database objects.

Note The MFC transaction model, which is recordset-centered, requires that the cursor be
preserved on commit and on rollback. If this requirement is too restrictive for your application,
see Technical Note 47 under MFC in Sooks Online.

The following articles provide more information about how transactions are
performed:

• Transaction: Performing a Transaction in a Recordset (ODBC)

• Transaction: How Transactions Affect Updates (ODBC)

See Also In the Class Library Reference: CDatabase, CRecordset

Transaction: Performing a Transaction in a Recordset
(ODBC)

This article explains how to perform a transaction in a recordset.

Note Only one level of transactions is supported; you cannot nest transactions.

786

~ To perform a transaction in a record set

1 Call the CDatabase object's BeginTrans member function.

2 Call the AddNew/Update, Edit/Update, and Delete member functions of one or
more recordset objects of the same database as many times as needed. See the
article Recordset: Adding, Updating, and Deleting Records (ODBC).

3 Finally, call the CDatabase object's CommitTrans member function. Or, if an
error occurs in one of the updates, or you decide to cancel the changes, call its
Rollback member function.

The following example uses two recordsets to delete a student's enrollment from a
school registration database, removing the student from all classes in which the
student is enrolled. The Delete calls in both recordsets must succeed, so a transaction
is required. The example assumes the existence of m_dbStudentReg, a member
variable of type CDatabase already connected to the data source, and the recordset
classes CEnrollmentSet and CStudentSet. The strStudentID function contains a
value obtained from the user.

BOOl CEnrollDoc::RemoveStudent(CString strStudentID)
{

II remove student from all the classes student is enrolled in
CEnrollmentSet rsEnrollmentSet(&m_dbStudentReg);
rsEnrollmentSet.m_strFilter = "StudentID = " + strStudentID;
if (!rsEnrollmentSet.Open(CRecordset: :dynaset))

return FALSE;
CStudentSet rsStudentSet(&m_dbStudentReg);
rsStudentSet.m_strFilter = "StudentID = " + strStudentID;
if (!rsStudentSet.Open(CRecordset::dynaset))

return FALSE;
if (!m_dbStudentReg.BeginTrans(»

return FALSE;
TRY
{

while (!rsEnrollmentSet.IsEOF(»
{

rsEnrollmentSet.Delete();
rsEnrollmentSet.MoveNext();

II delete the student record
rsStudentSet.Delete();

m_dbStudentReg.CommitTrans();
}

CATCH_AlLee)
{

m_dbStudentReg.Rollback();
return FALSE;

return TRUE;

Transaction (ODBC)

787

Transaction (ODBC)

Warning Calling 8eginTrans again without calling CommitTrans or Rollback is an error.

See Also Transaction: How Transactions Affect Updates (ODBC)

In the Class Library Reference: CDatabase, CRecordset

Transaction: How Transactions Affect Updates (ODBC)

788

Updates to the data source are managed during transactions through the use of an
"edit buffer" (the same method used outside of transactions). The field data members
of a recordset collectively serve as an edit buffer that contains the current record,
which the recordset backs up temporarily during an AddNew or Edit. During a
Delete operation, the current record is not backed up within a transaction. For more
information about the edit buffer and how updates store the current record, see the
article Recordset: How Recordsets Update Records (ODBC).

During transactions, AddNew, Edit, and Delete operations can be committed or
rolled back. The effects of CommitTrans and Rollback may cause the current record
to not be restored to the edit buffer. To make sure that the current record is properly
restored, it is important to understand how the CommitTrans and Rollback member
functions of CDatabase work with the update functions of CRecordset.

How CommitTrans Affects Updates
Table 1 explains the effects of CommitTrans on transactions.

Table 1 How CommitTrans Affects Updates

Operation

AddNew and Update, then
CommitTrans

AddNew (without Update), then
CommitTrans

Edit and Update, then
CommitTrans

Edit (without Update), then
CommitTrans

Delete then CommitTrans

Status of data source

New record added to data source.

New record is lost. Record not added to data
source.

Edits committed to data source;

Edits to the record are lost. Record remains
unchanged on the data source.

Records deleted from data source.

How Rollback Affects Transactions
Table 2 explains the effects of Rollback on transactions.

Table 2 How Rollback Affects Transactions

Operation Status of current record You must also:

AddNewand Content of the current record is
Update, then stored temporarily to make room
Rollback for new record. New record is

entered into edit buffer. After
Update is called, the current
record is restored to the edit
buffer.

AddNew Content of the current record is Call AddNew again to restore
(without stored temporarily to make room the edit buffer to an empty, new
Update), then for new record. Edit buffer record. Or call Move(O) to
Rollback contains new record. restore the old values to the edit

buffer.

Edit and Update, An unedited version of the Dynaset: Scroll off the current
then Rollback current record is stored record then back to restore the

temporarily. Edits are made to unedited version of the record to
the content of the edit buffer. the edit buffer.
After Update is called, the Snapshot: Call Requery to
unedited version of the record is refresh the recordset from the
still temporarily stored. data source.

Edit (without An unedited version of the Call Edit again to restore the
Update), then current record is stored unedited version of the record to
Rollback temporarily. Edits are made to the edit buffer.

the content of the edit buffer.

Delete then Content of the current record is Call Requery to restore the
Rollback deleted. content of the current record

from the data source.

See Also Transaction (ODBC), Transaction: Perfonning a Transaction in a
Recordset (ODBC)

In the Class Library Reference: CDatabase, CRecordset

Type Library
See the article Automation Clients: Using Type Libraries.

Unicode
On Windows NT platfonns, MFC supports the Unicode standard for encoding wide
characters.

For infonnation on using Unicode with MFC, see Chapter 13, Developing for
International Markets, in Programming Techniques.

Unicode

Status of data source

Addition to data
source made by
Update is reversed.

Because Update was
not called, there were
no changes made to
the data source.

Changes to data
source made by
Update are reversed.

Because Update was
not called, there were
no changes made to
the data source.

Deletion of data from
data source is
reversed.

789

Verbs, OLE

Verbs, OLE
See the article Activation: Verbs.

Visual Editing
See the article Servers: Implementing In-Place Frame Windows.

790

Windows Sockets in MFC: Overview

Windows Sockets in MFC: Overview
MFC supplies two models for writing network communications programs with
Windows Sockets, embodied in two MFC classes. This article describes these models
and further details MFC sockets support. A "socket" is an endpoint of communication
-an object through which your application communicates with other Windows
Sockets applications across a network.

This article describes:

• Sockets programming models.

• MFC socket samples and Windows Sockets DLLs.

• Windows sockets articles.

For background information on Windows Sockets, including a detailed explanation of
the socket concept, see the article Windows Sockets: Background.

Sockets Programming Models
The two MFC Windows Sockets programming models are supported by the following
classes:

• CAsyncSocket

This class encapsulates the Windows Sockets API. CAsyncSocket is for
programmers who know network programming and want the flexibility of
programming directly to the sockets API but also want the convenience of callback
functions for notification of network events. Other than packaging sockets in
object-oriented form for use in C++, the only additional abstraction this class
supplies is converting certain socket-related Windows messages into callbacks.
(See the article Windows Sockets: Socket Notifications.)

• CSocket

This class, derived from CAsyncSocket, supplies a higher-level abstraction for
working with sockets via an MFC CArchive object. Using a socket with an
archive greatly resembles using MFC's file serialization protocol. This makes it
easier to use than the CAsyncSocket model. CSocket inherits many member
functions from CAsyncSocket that encapsulate Windows Sockets APIs; you will
have to use some of these functions and understand sockets programming
generally. But CSocket manages many aspects of the communication that you
would have to do yourself using either the raw API or class CAsyncSocket. Most
important, CSocket provides blocking (with background processing of Windows
messages), which is essential to the synchronous operation of CArchive.

791

Windows Sockets in MFC: Overview

792

Creating and using CSocket and CAsyncSocket objects is described in the articles
Windows Sockets: Using Sockets with Archives and Windows Sockets: Using Class
CAsyncSocket.

MFC Socket Samples and Windows Sockets DLLs
Visual C++ supplies the CHATTER and CHATSRVR sample applications to illustrate
the client/server model, which is the most common model. CHATTER is the client;
CHATSRVR is the server. These samples make good templates for writing your own
clients and servers. You can access the source code for the MFC Advanced Concepts
samples CHATTER and CHATSRVR under Samples in Books Online.

The Microsoft Windows NT operating system supplies the Windows Sockets dynamic
link libraries (DLLs). Visual C++ supplies the appropriate header files and libraries
and the Windows Sockets specification. The specification is available in Books
Online under Win32.

Note Under Windows NT, Windows Sockets support for 16-bit applications is based on
WINSOCK.DLL. For 32-bit applications, the support is in WSOCK32.DLL. The APls provided
are identical except that the 32-bit versions have parameters widened to 32 bits. Under Win32,
thread safety is supplied.

Class Wizard does not support creating classes derived from the MFC Windows
Sockets classes.

Windows Sockets Articles
For detailed information about Windows Sockets and their implementation in MFC,
see the following articles:

• Windows Sockets: Background

• Windows Sockets: Stream Sockets

• Windows Sockets: Datagram Sockets

• Windows Sockets: Using Sockets with Archives

• Windows Sockets: Sequence of Operations

• Windows Sockets: Example of Sockets Using Archives

• Windows Sockets: How Sockets with Archives Work

• Windows Sockets: Using Class CAsyncSocket

• Windows Sockets: Deriving from Socket Classes

• Windows Sockets: Socket Notifications

• Windows Sockets: Blocking

• Windows Sockets: Byte Ordering

• Windows Sockets: Converting Strings

Windows Sockets in MFC: Overview

• Windows Sockets: Ports and Socket Addresses

See Also In the Class Library Reference: CAsyncSocket, CSocket, CArchive

Samples: CHATTER, CHATSRVR

Windows Sockets: Background
This article explains the nature and purpose of Windows Sockets. The article also:

• Defines the term "socket."

• Describes the SOCKET handle data type.

• Describes uses for sockets.

The Windows Sockets specification defines a binary-compatible network
programming interface for Microsoft Windows. Windows Sockets are based on the
UNIX® sockets implementation in the Berkeley Software Distribution (BSD, release
4.3) from the University of California at Berkeley. The specification includes both
BSD-style socket routines and extensions specific to Windows. Using Windows
Sockets permits your application to communicate across any network that conforms
to the Windows Sockets API. On Win32, Windows Sockets provide for thread safety.

Many network software vendors support Windows Sockets under network protocols
including Transmission Control Protocol/Internet Protocol (TCP/IP), Xerox®
Network System (XNS), Digital Equipment Corporation's DECNet™ protocol,
Novell® Corporation's Internet Packet Exchange/Sequenced Packed Exchange
(IPX/SPX), and others. Although the present Windows Sockets specification defines
the sockets abstraction for TCP/IP, any network protocol can comply with Windows
Sockets by supplying its own version of the dynamic link library (DLL) that
implements Windows Sockets. Examples of commercial applications written with
Windows Sockets include X Window servers, terminal emulators, and electronic mail
systems.

Note Keep in mind that the purpose of Windows Sockets is to abstract away the underlying
network so you don't have to be knowledgeable about that network and so your application can
run on any network that supports sockets. Consequently, this documentation doesn't discuss
the details of network protocols.

The Microsoft Foundation Class Library (MFC) supports programming with the
Windows Sockets API by supplying two classes. One of these classes, CSocket,
provides a high level of abstraction to simplify your network communications
programming. For more information about MFC socket support, see Windows
Sockets in MFC: Overview.

The Windows Sockets specification, Windows Sockets: An Open Interface for
Network Computing Under Microsoft Windows, now at version 1.1, was developed as
an open networking standard by a large group of individuals and corporations in the
TCP/IP community and is freely available for use. The sockets programming model

793

Windows Sockets in MFC: Overview

794

supports one "communication domain" currently, using the Internet Protocol Suite.
The specification is available in Books Online under Win32.

Tip Because sockets use the Internet Protocol Suite, they are the preferred route for
applications that support Internet communications on the "information highway."

Definition of a Socket
A socket is a communication endpoint-an object through which a Windows Sockets
application sends or receives packets of data across a network. A socket has a type
and is associated with a running process, and it may have a name. Currently, sockets
generally exchange data only with other sockets in the same "communication
domain," which uses the Internet Protocol Suite.

Both kinds of sockets are bi-directional: they are data flows that can be
communicated in both directions simultaneously (full-duplex).

Two socket types are available:

• Stream sockets

Stream sockets provide for a data flow without record boundaries-a stream of
bytes. Streams are guaranteed to be delivered and to be correctly sequenced and
unduplicated.

• Datagram sockets

Datagram sockets support a record-oriented data flow that is not guaranteed to be
delivered and may not be sequenced as sent or unduplicated.

"Sequenced" means that packets are delivered in the order sent. "Unduplicated"
means that you get a particular packet only once.

Note Under some network protocols, such as XNS, streams can be record-oriented-streams
of records rather than streams of bytes. Under the more common TCP/IP protocol, however,
streams are byte streams. Windows Sockets provides a level of abstraction independent of the
underlying protocol.

For information about these types and which kind of socket to use in which
situations, see the articles Windows Sockets: Stream Sockets and Windows Sockets:
Datagram Sockets.

The SOCKET Data Type
Each MFC socket object encapsulates a handle to a Windows Sockets object. The data
type of this handle is SOCKET. A SOCKET handle is analogous to the HWND for
a window. MFC socket classes provide operations on the encapsulated handle.

The SOCKET data type is described in detail in Books Online under Win32. See the
topic Socket Data Type and Error Values under Windows Sockets.

Windows Sockets in MFC: Overview

Uses for Sockets
Sockets are highly useful in at least three communications contexts:

• Client/Server models

• Peer-to-peer scenarios, such as chat applications

• Making remote procedure calls (RPC) by having the receiving application
interpret a message as a function call

Tip The ideal case for using MFC sockets is when you're writing both ends of the
communication: using MFC at both ends. For more information on this topic, including how to
manage the case when you're communicating with non-MFC applications, see the article
Windows Sockets: Byte Ordering.

For more information, see Windows Sockets Specification: ntohs, ntohl, htons,
htonl.

See Also Windows Sockets in MFC: Overview, Windows Sockets: Using Sockets
with Archives, Windows Sockets: Example of Sockets Using Archives, Windows
Sockets: Using Class CAsyncSocket, Windows Sockets: Stream Sockets, Windows
Sockets: Datagram Sockets

Samples: CHATTER, CHATSRVR

Windows Sockets: Stream Sockets
This article describes stream sockets, one of the two Windows Socket types available.
(The other type is the datagram socket.)

Stream sockets provide for a data flow without record boundaries-a stream of bytes
that can be bi-directional (the application is full-duplex: it can both transmit and
receive through the socket). Streams can be relied upon to deliver sequenced,
unduplicated data. ("Sequenced" means that packets are delivered in the order sent.
"Unduplicated" means that you get a particular packet only once.) Receipt of stream
messages is guaranteed, and streams are well-suited to handling large amounts of
data.

The network transport layer may break up or group data into packets of reasonable
size. The CSocket class will handle the packing and unpacking for you.

Streams are based on explicit connections: socket A requests a connection to socket
B; socket B accepts or rejects the connection request.

A telephone call provides a good analogy for a stream: under normal circumstances,
the receiving party hears what you say in the order that you say it, without
duplication or loss. Stream sockets are appropriate, for example, for implementations
such as the File Transfer Protocol (FTP), which facilitates transferring ASCII or
binary files of arbitrary size.

795

Windows Sockets in MFC: Overview

Stream sockets are preferable to datagram sockets when the data must be guaranteed
to arrive and when data size is large. For more information about stream sockets, see
the Windows Sockets specification. The specification is available in Books Online
under Win32.

The MFC Advanced Concepts samples CHATTER and CHATSRVR use stream
sockets. These samples might have been designed to use a datagram socket for
broadcasting to all receiving sockets on the network. The present design is superior
because (a) the broadcast model is subject to network flood (or "storm") problems, (b)
the client-server model adopted subsequently is more efficient, (c) the stream model
supplies reliable data transfer, where the datagram model does not, and (d) the final
model takes advantage of the ability to communicate between Unicode and ANSI
socket applications that class CArchive lends to class CSocket.

Important If you use class CSocket, you must use a stream. An MFC assertion fails if you
specify the socket type as SOCK_DGRAM.

For source code and information about MFC samples, see MFC Samples under
Samples in Books Online.

See Also Windows Sockets: Datagram Sockets, Windows Sockets: Background

Samples: CHATTER, CHATSRVR

Windows Sockets: Datagram Sockets

796

This article describes datagram sockets, one of the two Wmdows Socket types
available. (The other type is the stream socket.)

Datagram sockets support a bi-directional data flow that is not guaranteed to be
sequenced or unduplicated. Datagrams also are not guaranteed to be reliable; they can
fail to arrive. Datagram data may arrive out of order and possibly duplicated, but
record boundaries in the data are preserved, as long as the records are smaller than
the receiver's internal size limit. You are responsible for managing sequencing and
reliability. (Reliability tends to be good on local area networks (LANs) but less so on
wide area networks (WANs), such as the Internet.)

Datagrams are "connectionless" -no explicit connection is established; you send a
datagram message to a specified socket and you can receive messages from a
specified socket.

An example of a datagram socket is an application that keeps system clocks on the
network synchronized. This illustrates an additional capability of datagram sockets in
at least some settings: broadcasting messages to a large number of network addresses.

Datagram sockets are better than stream sockets for record-oriented data. For more
information about datagram sockets, see the Windows Sockets specification. The
specification is available in Books Online under Win32.

See Also Windows Sockets: Stream Sockets, Windows Sockets: Background

Windows Sockets in MFC: Overview

Windows Sockets: Using Sockets with Archives
This article describes the Csocket programming model. Class CSocket supplies
socket support at a higher level of abstraction than does class CAsyncSocket.
CSocket uses a version of the MFC serialization protocol to pass data to and from a
socket object via an MFC CArchive object. CSocket provides blocking (while
managing background processing of Windows messages) and gives you access to
CArchive, which manages many aspects of the communication that you would have
to do yourself using either the raw API or class CAsyncSocket.

Tip You can use class CSocket by itself, as a more convenient version of CAsyncSocket,
but the simplest programming model is to use CSocket with a CArchive object.

For additional information about how the implementation of sockets with archives
works, see the article Windows Sockets: How Sockets with Archives Work. For
example code, see the articles Windows Sockets: Sequence of Operations and
Windows Sockets: Example of Sockets Using Archives. For information about some
of the functionality you can gain by deriving your own classes from the sockets
classes, see the article Windows Sockets: Deriving from Socket Classes.

Caution If you are writing an MFC client program to communicate with established (non
MFC) servers, don't send C++ objects via the archive. Unless the server is an MFC application
that understands the kinds of objects you want to send, it won't be able to receive and
deserialize your objects. For related material on the subject of communicating with non-MFC
applications, also see the article Windows Sockets: Byte Ordering.

The CSocket Programming Model
U sing a CSocket object involves creating and associating together several MFC class
objects. In the procedure below, each step is taken by both the server socket and the
client socket, except for step 3, in which each socket type requires a different action.

Tip At run time, the server application usually starts first in order to be ready and "listening"
when the client application seeks a connection. If the server is not ready when the client tries
to connect, you typically require the user application to try connecting again later.

~ To set up communication between a server socket and a client socket

1 Construct a CSocket object.

2 Use the object to create the underlying SOCKET handle.

For a CSocket client object, you should normally use the default parameters to
Create, unless you need a datagram socket. For a CSocket server object, you must
specify a port in the Create call.

Note CArchive doesn't work with datagram sockets. If you want to use CSocket for a
datagram socket, you must use the class as you would CAsyncSocket-without an
archive. Because datagrams are unreliable (not guaranteed to arrive and may be repeated

797

Windows Sockets in MFC: Overview

798

or out of sequence), they aren't compatible with serialization via an archive. You expect a
serialization operation to complete reliably and in sequence. If you try to use CSocket with
a CArchive object for a datagram, an MFC assertion fails.

3 If the socket is a client, call CAsyncSocket: :Connect to connect the socket object
to a server socket.

~r-

If the socket is a server, call CAsyncSocket: :Listen to begin listening for connect
attempts from a client. Upon receiving a connection request, accept it by calling
CAsyncSocket: : Accept.

Note The Accept member function takes a reference to a new, empty CSocket object as
its parameter. You must construct this object before you call Accept. Keep in mind that if
this socket object goes out of scope, the connection closes. Do not call Create for this new
socket object.

4 Create a CSocketFile object, associating the CSocket object with it.

5 Create a CArchive object for either loading (receiving) or storing (sending) data.
The archive is associated with the CSocketFile object.

Keep in mind that CArchive doesn't work with datagram sockets.

6 Use the CArchive object to pass data between the client and server sockets.

Keep in mind that a CArchive object moves data in one direction only: either for
loading (receiving) or storing (sending). In some cases, you'll use two CArchive
objects, one for sending data, the other for receiving acknowledgements.

After accepting a connection and setting up the archive, you can perform such
tasks as validating passwords.

7 Destroy the archive, socket file, and socket objects.

Note Class CArchive supplies the IsBufferEmpty member function specifically for use with
class CSocket. If the buffer contains multiple data messages, for example, you need to loop
until all of them are read and the buffer is cleared. Otherwise, your next notification that there
is data to be received may be indefinitely delayed. Use IsBufferEmpty to assure that you
retrieve all data. For examples of using IsBufferEmpty, see the CHATSRVR sample
application. For source code and information about MFC samples, see MFC Samples under
Samples in Books Online.

The article Windows Sockets: Sequence of Operations iIlustrates both sides of this
process with example code.

See Also Windows Sockets: Example of Sockets Using Archives, Windows Sockets:
Stream Sockets, Windows Sockets: Datagram Sockets

In the Class Library Reference: CSocket, CAsyncSocket, CSocketFile, CArchive,
CSocket: :Create

Samples: CHATTER, CHATSRVR

Windows Sockets in MFC: Overview

Windows Sockets: Sequence of Operations
This article illustrates, side by side, the sequence of operations for a server socket and
a client socket. Because the sockets use CArchive objects, they are necessarily stream
sockets.

Sequence of Operations for a Stream Socket
Communication
Up to the point of constructing a CSocketFile object, the following sequence is
accurate (with a few parameter differences) for both CAsyncSocket and CSocket.
From that point on, the sequence is strictly for CSocket. Table 1 illustrates the
sequence of operations for setting up communication between a client and a server.

Table 1 Setting Up Communication Between a Server and a Client

Server Client

II construct a socket

CSocket sockSrvr;

II create the SOCKET

sockSrvr.Create(nPort) ;1,2

II start listening

sockSrvr.Listen();

II construct a new, empty socket

CSocket sockRecv;

II accept connection

sockSrvr .Accept(sockRecv); 5

II construct file object

CSocketFile file(&sockRecv);

II construct an archive

CArchive arln(&file,
CArchive: :load);

-or-

CArchive arOut(&file,
CArchive::store);

-or Both-

II construct a socket

CSocket sockCient;

II create the SOCKET

sockCl ient.Create();2

II seek a connection

sockClient.Connect(strAddr,
n Port) ; 3,4

II construct file object

CSocketFile file(&sockClient);

II construct an archive

CArchive arln(&file,
CArchi ve: : load) ;

-or-

CArchive arOut(&file,
CArchive::store);

-or Both-

799

Windows Sockets in MFC: Overview

800

Table 1 Setting Up Communication Between a Server and a Client (cont.)

Server Client

II use the archive to pass data:

arln » dwValue;

-0£-

arOut « dwValue;6

II use the archive to pass data:

arln » dwValue;

-0£-

arOut « dwValue;6

1 Where nPort is a port number. See Windows Sockets: Ports and Socket Addresses for details about
ports.

2 The server must always specify a port so clients can connect. The Create call sometimes also specifies
an address. On the client side, use the default parameters, which ask MFC to use any available port.

3 Where nPort is a port number and strAddr is a machine address or an Internet Protocol (IP) address.

4 Machine addresses can take several forms: "ftp.microsoft.com", "ucsd.edu". IP addresses use the
"dotted number" form "127.54.67.32". The Connect function checks to see if the address is a dotted
number (although it doesn't check to ensure the number is a valid machine on the network). If not,
Connect assumes a machine name of one of the other forms.

5 When you call Accept on the server side, you pass a reference to a new socket object. You must
construct this object fIrst, but do not call Create for it. Keep in mind that if this socket object goes out of
scope, the connection closes. MFC connects the new object to a SOCKET handle. You can construct
the socket on the stack, as shown, or on the heap.

6 The archive and the socket file are closed when they go out of scope. The socket object's destructor also
calls the Close member function for the socket object when the object goes out of scope or is deleted.

Additional Notes About the Sequence
The sequence of calls shown in Table 1 is for a stream socket. Datagram sockets,
which are connectionless, don't require the CAsyncSocket: :Connect, Listen, and
Accept calls (although you can optionally use Connect). Instead, if you're using class
CAsyncSocket, datagram sockets use the CAsyncSocket: :SendTo and ReceiveFrom
member functions. (If you use Connect with a datagram socket, you use Send and
Receive.) Because CArchive doesn't work with datagrams, don't use CSocket with
an archive if the socket is a datagram.

CSocketFile doesn't support all of CFile's functionality; CFile members such as
Seek, which make no sense for a socket communication, are unavailable. Because of
this, some default MFC Serialize functions aren't compatible with CSocketFile. This
is particularly true of the CEditView class. You should not try to serialize
CEditView data through a CArchive object attached to a CSocketFile object using
CEditView::SerializeRaw; use CEditView::Serialize instead (not documented).
The SerializeRaw function expects the file object to have functions, such as Seek,
that CSocketFile does not support.

See Also Windows Sockets: Using Sockets with Archives, Windows Sockets: Using
Class CAsyncSocket, Windows Sockets: Ports and Socket Addresses, Windows
Sockets: Stream Sockets, Windows Sockets: Datagram Sockets

Windows Sockets in MFC: Overview

In the Class Library Reference: CSocket, CAsyncSocket::Create,
CAsyncSocket: :Listen, CAsyncSocket: :Connect, CAsyncSocket: :Accept,
CAsyncSocket: :Close, CSocketFile, CEdit View: :SerializeRaw

Samples: CHATTER, CHATSRVR

Windows Sockets: Example of Sockets Using Archives
This article presents an example of using class CSocket. The example employs
CArchive objects to serialize data via a socket. Note that this is not document
serialization to or from a file.

The following example illustrates how you use the archive to send and receive data
via CSocket objects. The example is designed so that two instances of the application
(on the same machine or on different machines on the network) exchange data. One
instance sends data, which the other instance receives and acknowledges. Either
application can initiate an exchange-either can act as server or as client to the other
application. The following function is defined in the application's view class:

void CBlabberView::PacketSerialize(long nPackets, CArchive& arData,
CArchive& arAck)

if (arData.IsStoring())
{

}

CString strText;

for(int p = 0; p < nPackets; p++)
{

BYTE bValue = (BYTE)(rand()%256);
WORD nCopies = (WORD)(rand()%32000);

II send header information
arData « bValue « nCopies;
for(int c = 0; c < nCopies; c++)
{

II send data
arData « bValue;

Text.Format("Received Packet %d of %d
(Value=%d,Copies=%d)",p,nPackets,(int)bValue,nCopies);

II send receipt string
arData « strText;
arData.Flush();

II receive acknowledgment
arAck » strText;
II display it
DisplayMessage(strText);

801

Windows Sockets in MFC: Overview

802

else
{

}

CString strText;
BYTE bCheck;
WORD nCopies;

for(int p = 0; p < nPackets; p++)
{

}

II receive header information
arData » bCheck » nCopies;
for(int c = 0; c < nCopies; c++)
{

II receive data
arData » bValue;
if (nCheck 1= bValue)

AfxMessageBox("Packet Failure");

II receive receipt string and display it
arData » strText;
DisplayMessage(strText);

Text.Format("Sent Packet %d of %d
(Value=%d,Copies=%d)",p,nPackets,(int)bValue,nCopies);

II send acknowledgment
arAck « strText;
arAck.Flush();

The most important thing about this example is that its structure parallels that of an
MFC Serialize function. The PacketSeri al i ze member function consists of an if
statement with an else clause. The function receives two CArchive references as
parameters: arData and arAck. If the arData archive object is set for storing
(sending), the if branch executes; otherwise, if arData is set for loading (receiving)
the function takes the else branch. For more information about serialization in MFC,
see the article Serialization.

Note The arAck archive object is assumed to be the opposite of arData. If arData is for
sending, arAck receives, and vice versa.

For sending, the example function loops for a specified number of times, each time
generating some random data for demonstration purposes. Your application would
obtain real data from some source, such as a file. The arData archive's insertion
operator «<) is used to send a stream of three consecutive chunks of data:

• A "header" that specifies the nature of the data (in this case, the value of the
bVal ue variable and how many copies will be sent).

Both items are generated randomly for this example.

Windows Sockets in MFC: Overview

• The specified number of copies of the data.

The inner for loop sends b Val u e the specified number of times .

• A string called strText that the receiver displays to its user.

For receiving, the function operates similarly, except that it uses the archive's
extraction operator (») to get data from the archive. The receiving application
verifies the data it receives, displays the final "Received" message, then sends back a
message that says "Sent" for the sending application to display.

Don't be confused by the word "Received" in the message sent in the strText
variable. In this communications model, it's for display at the other end of the
communication, so it specifies to the receiving user that a certain number of packets
of data have been received. The receiver replies with a similar string that says "Sent"
- for display on the original sender's screen. Receipt of both strings indicates that
successful communication has occurred.

Caution If you are writing an MFC client program to communicate with established (non
MFC) servers, don't send C++ objects via the archive. Unless the server is an MFC application
that understands the kinds of objects you want to send, it won't be able to receive and
deserialize your objects. An example in the article Windows Sockets: Byte Ordering shows a
communication of this type.

For more information, see Windows Sockets Specification: htonl, htons, ntohl, ntohs

See Also Serialization, Windows Sockets: Deriving from Socket Classes, Windows
Sockets: How Sockets with Archives Work, Windows Sockets in MFC: Overview,
Windows Sockets: Background

In the Class Library Reference: CSocket, CArchive, CArchive::IsStoring,
CArchive: :operator«, CArchive: :operator», CString: :Format,
CArchive: :Flush, CObject:: Serialize

Samples: CHATTER, CHATSRVR

Windows Sockets: How Sockets with Archives Work
This article explains how a CSocket object, a CSocketFile object, and a CArchive
object are combined to simplify sending and receiving data via a Windows socket.

The article Windows Sockets: Example of Sockets Using Archives presents the
PacketSeri al i ze function. The archive object in the PacketSeri al i ze example
works much like an archive object passed to an MFC Serialize function. The
essential difference is that for sockets, the archive is attached not to a standard CFile
object (typically associated with a disk file) but to a CSocketFile object. Rather than
connecting to a disk file, the CSocketFile object connects to a CSocket object.

A CArchive object manages a buffer. When the buffer of a storing (sending) archive
is full, an associated CFile object writes out the buffer's contents. Flushing the buffer

803

Windows Sockets in MFC: Overview

804

of an archive attached to a socket is equivalent to sending a message. When the buffer
of a loading (receiving) archive is full, the CFile object stops reading until the buffer
is available again.

Class CSocketFile derives from CFile, but it doesn't support CFile member
functions such as the positioning functions (Seek, GetLength, SetLength, and so
on), the locking functions (LockRange, UnlockRange), or the GetPosition function.
All the CSocketFile object must do is write or read sequences of bytes to or from the
associated CSocket object. Because a file is not involved, operations such as Seek
and GetPosition make no sense. CSocketFile is derived from CFile, so it would
normally inherit all of these member functions. To prevent this, the unsupported
CFile member functions are overridden in CSocketFile to throw a
CNotSupportedException.

The CSocketFile object calls member functions of its CSocket object to send or
receive data.

Figure 1 shows the relationships among these objects on both sides of the
communication.

Figure 1 CArchive, CSocketFile, and CSocket

Client

CArchive CSocketFile CSocket

Sending Data

CArchive CSocketFile CSocket

Receiving Data

Server

CSocket CSocketFile CArchive

Receiving Data

CSocket CSocketFile CArchive

Sending Data

Windows Sockets in MFC: Overview

The purpose of this apparent complexity is to shield you from the necessity of
managing the details of the socket yourself. You simply create the socket, the file, and
the archive, then begin sending or receiving data by inserting it to the archive or
extracting it from the archive. CArchive, CSocketFile, and CSocket manage the
details behind the scenes.

A CSocket object is actually a two-state object: sometimes asynchronous (the usual
state) and sometimes synchronous. In its asynchronous state, a socket can receive
asynchronous notifications from the framework. But during an operation such as
receiving or sending data the socket becomes synchronous. This means the socket
will receive no further asynchronous notifications until the synchronous operation has
completed. Because it switches modes, you can, for example, do something like the
following:

CMySocket::OnReceiveC
{

}

II
ar » str;
II

If CSocket were not implemented as a two-state object, it might be possible to receive
additional notifications for the same kind of event while you were processing a
previous notification. For example, you might get an OnRecei ve notification while
processing an OnRecei ve. In the code fragment above, extracting str from the
archive might lead to recursion. By switching states, CSocket prevents recursion by
preventing additional notifications. The general rule is: no notifications within
notifications.

The CHATTER and CHATSRVR sample applications illustrate such usage. For
source code and information about MFC samples, see MFC Samples under Samples
in Books Online.

Note A CSocketFile can also be used as a (limited) file without a CArchive object. By
default, the CSocketFile constructor's bArchiveCompatible parameter is TRUE. This specifies
that the file object is for use with an archive. To use the file object without an archive, pass
FALSE in the bArchiveCompatible parameter.

In its "archive compatible" mode, a CSocketFile object provides better performance and
reduces the danger of a "deadlock." A deadlock occurs when both the sending and receiving
sockets are waiting on each other, or waiting for a common resource. This situation might
occur if the CArchive object worked with the CSocketFile the way it does with a CFile object.
With CFile, the archive can assume that if it receives fewer bytes than it requested, the end of
file has been reached. With CSocketFile, however, data is message based; the buffer can
contain multiple messages, so receiving fewer than the number of bytes requested does not
imply end of file. The application doesn't block in this case as it might with CFile, and it can
continue reading messages from the buffer until the buffer is empty. The IsBufferEmpty
function in CArchive is useful for monitoring the state of the archive's buffer in such a case.

805

Windows Sockets in MFC: Overview

See Also Windows Sockets: Using Sockets with Archives, Windows Sockets:
Example of Sockets Using Archives

In the Class Library Reference: CSocket, CSocketFile, CArchive,
CObject: : Serialize, CFile, CNotSupportedException, CArchive: :IsBufferEmpty

Samples: CHATTER, CHATSRVR

Windows Sockets: Using Class CAsyncSocket

806

This article explains how to use class CAsyncSocket. Be aware that this class
encapsulates the Windows Sockets API at a very low level. CAsyncSocket is for use
by programmers who know network communications in detail but want the
convenience of callbacks for notification of network events. Based on this
assumption, this article provides only basic instruction. You should probably consider
using CAsyncSocket if you want Windows Sockets' ease of dealing with multiple
network protocols in an MFC application but don't want to sacrifice flexibility. You
might also feel that you can get better efficiency by programming the
communications more directly yourself than you could using the more general
alternative model of class CSocket.

CAsyncSocket is documented in the Class Library Reference. Visual C++ also
supplies the Windows Sockets specification, located in Books Online under Win32.
The details are left to you. Visual C++ does not supply a sample application for
CAsyncSocket.

If you aren't highly knowledgeable about network communications and want a simple
solution that shields you from most of the details, use class CSocket with a CArchive
object. See the article Windows Sockets: Using Sockets with Archives.

This article covers:

• Creating and using a CAsyncSocket object.

• Your responsibilities with CAsyncSocket.

Creating and Using a CAsyncSocket Object
~ To use CAsyncSocket

1 Construct a CAsyncSocket object and use the object to create the underlying
SOCKET handle.

Creation of a socket follows the MFC pattern of two-stage construction.

For example:

CAsyncSocket sock;
sock.Create(); II Use the default parameters

-or-

Windows Sockets in MFC: Overview

CAsyncSocket* pSocket = new CAsyncSocket;
int nPort = 27;
pSocket->Create(nPort. SOCK_DGRAM);

The first constructor above creates a CAsyncSocket object on the stack. The
second constructor creates a CAsyncSocket on the heap. The first Create call
above uses the default parameters to create a stream socket. The second Create
call creates a datagram socket with a specified port and address. (You can use
either Create version with either construction method.)

The parameters to Create are:

• A "port": a short integer.

For a server socket, you must specify a port. For a client socket, you'll typically
accept the default value for this parameter, which lets Windows Sockets select a
port.

• A socket type: SOCK_STREAM (the default) or SOCK_DGRAM.

• A socket "address," such as "ftp.microsoft.com" or "128.56.22.8".

This is your Internet Protocol (IP) address on the network. You'll probably
always rely on the default value for this parameter.

The terms "port" and "socket address" are explained in the article Windows
Sockets: Ports and Socket Addresses.

2 If the socket is a client, connect the socket object to a server socket, using
CAsyncSocket: : Connect.

-or-

If the socket is a server, set the socket to begin listening (with
CAsyncSocket::Listen) for connect attempts from a client. Upon receiving a
connection request, accept it with CAsyncSocket: : Accept.

After accepting a connection, you can perform such tasks as validating passwords.

Note The Accept member function takes a reference to a new, empty CSocket object as
its parameter. You must construct this object before you call Accept. Keep in mind that if
this socket object goes out of scope, the connection closes. Do not call Create for this new
socket object. For an example, see the article Windows Sockets: Sequence of Operations.

3 Carry out communications with other sockets by calling the CAsyncSocket
object's member functions that encapsulate the Windows Sockets API functions.

See the Windows Sockets specification and class CAsyncSocket in the Class
Library Reference.

4 Destroy the CAsyncSocket object.

If you created the socket object on the stack, its destructor is called when the
containing function goes out of scope. If you created the socket object on the heap,
using the new operator, you are responsible for using the delete operator to
destroy the object.

807

Windows Sockets in MFC: Overview

The destructor calls the object's Close member function before destroying the
object.

For an example of this sequence in code (actually for a CSocket object), see the
article Windows Sockets: Sequence of Operations.

Your Responsibilities with CAsyncSocket
When you create an object of class CAsyncSocket, the object encapsulates a
Windows SOCKET handle and supplies operations on that handle. When you use
CAsyncSocket, you must deal with all of the issues you might face if using the API
directly. For example:

• "Blocking" scenarios

• Byte order differences between the sending and receiving machines

• Converting between Unicode and multibyte character set (MBCS) strings

For definitions of these terms and additional information, see the articles Windows
Sockets: Blocking, Windows Sockets: Byte Ordering, Windows Sockets: Converting
Strings.

Despite these issues, class CAsycnSocket may be the right choice for you if your
application requires all the flexibility and control you can get. If not, you should
consider using class CSocket instead. CSocket hides a lot of detail from you: it
pumps Windows messages during blocking calls and gives you access to CArchive,
which manages byte order differences and string conversion for you.

See Also Windows Sockets: Background, Windows Sockets: Using Sockets with
Archives, Windows Sockets: Blocking, Windows Sockets: Byte Ordering, Windows
Sockets: Converting Strings, Windows Sockets: Sequence of Operations, Windows
Sockets: Ports and Socket Addresses, Windows Sockets: Stream Sockets, Windows
Sockets: Datagram Sockets

In the Class Library Reference: CAsyncSocket, CAsyncSocket::Create,
CAsyncSocket: :Connect, CAsyncSocket: :Listen, CAsyncSocket: :Accept

Samples: CHATTER, CHATSRVR

Windows Sockets: Deriving from Socket Classes

808

This article describes some of the functionality you can gain by deriving your own
class from one of the socket classes.

You can derive your own socket classes from either CAsyncSocket or CSocket to
add your own functionality. In particular, these classes supply a number of virtual
member functions that you can override. These functions include OnReceive,
OnSend, OnAccept, OnConnect, and OnClose. You can override the functions in
your derived socket class to take advantage of the notifications they provide when
network events occur. The framework calls these notification callback functions to

Windows Sockets in MFC: Overview

notify you of important socket events, such as the receipt of data that you can begin
reading. For more information about notification functions, see Windows Sockets:
Socket Notifications. For an illustration of overriding the notification functions, see
the CHATTER and CHATSRVR sample applications. For source code and
information about MFC samples, see MFC Samples under Samples in Books Online.

Additionally, class CSocket supplies the OnMessagePending member function (an
advanced overridable). MFC calls this function while the socket is pumping
Windows-based messages. You can override OnMessagePending to look for
particular messages from Windows and respond to them.

The default version of OnMessagePending supplied in class CSocket examines the
message queue for WM_PAINT messages while waiting for a blocking call to
complete. It dispatches paint messages in order to improve display quality. Aside
from doing something useful, this illustrates one way you might override the function
yourself. As another example, consider using OnMessagePending for the following
task. Suppose you display a modeless dialog box while waiting for a network
transaction to complete. The dialog box contains a Cancel button that the user can
use to cancel blocking transactions that take too long. Your OnMessagePendi ng

override might pump messages related to this modeless dialog box.

In your OnMessagePendi ng override, return either TRUE or the return from a call to
the base-class version of OnMessagePending. Call the base-class version if it
performs work that you still want done.

See Also Windows Sockets: Socket Notifications, Windows Sockets: Using Sockets
with Archives, Windows Sockets: Using Class CAsyncSocket, Windows Sockets:
Blocking, Windows Sockets: Byte Ordering, Windows Sockets: Converting Strings

In the Class Library Reference: CAsyncSocket, CSocket,
CAsyncSocket: :OnReceive, CAsyncSocket: :OnSend, CAsyncSocket: :OnAccept,
CAsyncSocket: :OnConnect, CAsyncSocket: :OnClose,
CSocket: :OnMessagePending

Samples: CHATTER, CHATSRVR

Windows Sockets: Socket Notifications
This article describes the notification functions in the socket classes. These member
functions are callback functions that the framework calls to notify your socket object
of important events. The notification functions are:

• OnReceive: Notifies this socket that there is data in the buffer for it to retrieve by
calling Receive.

• OnSend: Notifies this socket that it can now send data by calling Send.

• On Accept: Notifies this listening socket that it can accept pending connection
requests by calling Accept.

809

Windows Sockets in MFC: Overview

810

• OnConnect: Notifies this connecting socket that its connection attempt
completed: perhaps successfully or perhaps in error.

• OnClose: Notifies this socket that the socket it is connected to has closed.

Note An additional notification function is OnOutOfBandData. This notification tells the
receiving socket that the sending socket has "out-of-band" data to send. Out-of-band data is a
logically independent channel associated with each pair of connected stream sockets. The out
of-band channel is typically used to send "urgent" data. MFC supports out-of-band data.
Advanced users working with class CAsyncSocket might need to use the out-of-band
channel, but users of class CSocket are discouraged from using it. The easier way is to create
a second socket for passing such data. For more information about out-of-band data, see the
Windows Sockets specification, available in Books Online under Win32.

If you derive from class CAsyncSocket, you must override the notification functions
for those network events of interest to your application. If you derive a class from
class CSocket, it's your choice whether to override the notification functions of
interest. You can also use CSocket itself, in which case the notification functions
default to doing nothing.

These functions are overridable callback functions. CAsyncSocket and CSocket
convert messages to notifications, but you must implement how the notification
functions respond if you wish to use them. The notification functions are called at the
time your socket is notified of an event of interest, such as the presence of data to be
read.

MFC calls the notification functions to let you customize your socket's behavior at the
time it is notified. For example, you might call Receive from your OnReceive
notification function. That is, on being notified that there is data to read, you call
Receive to read it. This approach isn't necessary, but it is a valid scenario. As an
alternative, you might use your notification function to track progress, print TRACE
messages, and so on.

You can take advantage of these notifications by overriding the notification functions
in a derived socket class and providing an implementation. For an example
implementation, see the notification function overrides in the MFC Advanced
Concepts samples CHATTER and CHATSRVR.

During an operation such as receiving or sending data, a CSocket object becomes
synchronous. During the synchronous state, any notifications meant for other sockets
are queued while the current socket waits for the notification it wants. (For example,
during a Receive call, the socket wants a notification to read.) Once the socket
completes its synchronous operation and becomes asynchronous again, other sockets
can begin receiving the queued notifications.

Important In CSocket, the OnSend and OnConnect notification functions are never called.
To send data, you simply call Send, which won't return until all the data has been sent. The
use of the notification to complete this task is an MFC implementation detail for CSocket. For
connections, you simply call Connect, which will return when the connection is completed

Windows Sockets in MFC: Overview

(either successfully or in error). How connection notifications are handled is also an MFC
implementation detail.

For details about each notification function see the function under class
CAsyncSocket in the Class Library Reference. For source code and information
about MFC samples, see MFC Samples under Samples in Books Online.

See Also Windows Sockets: Using Class CAsyncSocket, Windows Sockets: Deriving
from Socket Classes, Windows Sockets: How Sockets with Archives Work, Windows
Sockets: Blocking, Windows Sockets: Byte Ordering, Windows Sockets: Converting
Strings

In the Class Library Reference: CAsyncSocket::OnReceive,
CAsyncSocket: :OnSend, CAsyncSocket: :OnAccept, CAsyncSocket: :OnConnect,
CAsyncSocket: :OnClose, CAsyncSocket: :OnOutOfBandData, CSocket,
CAsyncSocket

Samples: CHATTER, CHATSRVR

Windows Sockets: Blocking
This article and two companion articles explain several issues in Windows Sockets
programming. This article covers blocking. The other issues are covered in the
articles: Windows Sockets: Byte Ordering and Windows Sockets: Converting Strings.

If you use or derive from class CAsyncSocket, you will need to manage these issues
yourself. If you use or derive from class CSocket, MFC manages them for you.

Blocking
A socket can be in "blocking mode" or "nonblocking mode." The functions of sockets
in blocking (or synchronous) mode do not return until they can complete their action.
This is called blocking because the socket whose function was called can't do
anything-is blocked-until the call returns. A call to the Receive member
function, for example, might take an arbitrarily long time to complete as it waits for
the sending application to send (this is if you are using CSocket, or using
CAsyncSocket with blocking). If a CAsyncSocket object is in nonblocking mode
(operating asynchronously), the call returns immediately and the current error code,
retrievable with the GetLastError member function, is WSAEWOULDBLOCK,
indicating that the call would have blocked had it not returned immediately because
of the mode. (CSocket never returns WSAEWOULDBLOCK. The class manages
blocking for you.)

The behavior of sockets is different under Windows 95 and Windows NT than under
Windows 3.1 (16 bit). Unlike Windows 3.1, both Windows 95 and Windows NT use
preemptive multitasking and provide multithreading. Under these 32-bit operating
systems, you can put your sockets in separate worker threads. A socket in a thread
can block without interfering with other activities in your application and without

811

Windows Sockets in MFC: Overview

spending compute time on the blocking. For information on multithreaded
programming, see the article Multithreading.

Note In multithreaded applications, you can use the blocking nature of CSocket to simplify
your program's design without affecting the responsiveness of the user interface. By handling
user interactions in the main thread and CSocket processing in alternate threads, you can
separate these logical operations. In an application that is not multithreaded, these two
activities must be combined and handled as a single thread, which usually means using
CAsyncSocket so you can handle communications requests on demand, or overriding
CSocket::OnMessagePending to handle user actions during lengthy synchronous activity.

The rest of this discussion is for programmers targeting Windows 3.1.

Normally, if you're using CAsyncSocket, you should avoid using blocking operations
and operate asynchronously instead. In asynchronous operations, from the point at
which you receive a WSAEWOULDBLOCK error code after calling Receive, for
example, you wait until your OnReceive member function is called to notify you that
you can read again. Asynchronous calls are made by calling back your socket's
appropriate callback notification function, such as OnReceive.

Under Windows, blocking calls are considered bad practice. By default,
CAsyncSocket supports asynchronous calls, and you must manage the blocking
yourself using callback notifications. Class CSocket, on the other hand, is
synchronous. It pumps Windows messages and manages blocking for you.

For more information about blocking, see the Windows Sockets specification. For
more information about "On" functions, see the articles Windows Sockets: Socket
Notifications and Windows Sockets: Deriving from Socket Classes.

See Also Windows Sockets: Using Class CAsyncSocket, Windows Sockets:
Converting Strings, Windows Sockets: Using Sockets with Archives, Windows
Sockets: Background, Windows Sockets: Stream Sockets, Wmdows Sockets:
Datagram Sockets

In the Class Library Reference: CAsyncSocket, CSocket,
CAsyncSocket: :OnReceive, CAsyncSocket: :OnSend

Samples: CHATTER, CHATSRVR

Windows Sockets: Byte Ordering

812

This article and two companion articles explain several issues in Windows Sockets
programming. This article covers byte ordering. The other issues are covered in the
articles: Windows Sockets: Blocking and Windows Sockets: Converting Strings.

If you use or derive from class CAsyncSocket, you will need to manage these issues
yourself. If you use or derive from class CSocket, MFC manages them for you.

Windows Sockets in MFC: Overview

Byte Ordering
Different machine architectures sometimes store data using different byte orders. For
example, Intel-based machines store data in the reverse order of Macintosh
(Motorola) machines. Intel's byte order, called "little-Endian," is also the reverse of
the network standard "big-Endian" order. Table 1 explains these terms.

Table 1 Big- and Little-Endian Byte Ordering

Byte ordering

Big-Endian

Little-Endian

Meaning

The most significant byte is on the left end of a word.

The most significant byte is on the right end of a word.

Typically, you don't have to worry about byte-order conversion for data that you send
and receive over the network, but there are situations in which you must convert byte
orders.

When You Must Convert Byte Orders
You need to convert byte orders in the following situations:

• You're passing information that needs to be interpreted by the network, as opposed
to the data you're sending to another machine. For example, you might pass ports
and addresses, which the network must understand.

• The server application with which you're communicating is not an MFC
application (and you don't have source code for it). This calls for byte order
conversions if the two machines don't share the same byte ordering.

When You Don't Have to Convert Byte Orders
You can avoid the work of converting byte orders in the following situations:

• The machines on both ends can agree not to swap bytes, and both machines use
the same byte order.

• The server you're communicating with is an MFC application.

• You have source code for the server you're communicating with, so you can tell
explicitly whether you must convert byte orders or not.

• You can port the server to MFC.

This is fairly easy to do, and the result is usually smaller, faster code. For
information, see the MFC Migration Kit, which is included with Visual C++.

Working with CAsyncSocket, you must manage any necessary byte-order
conversions yourself. Windows Sockets standardizes the "big -Endian" byte-order
model and provides functions to convert between this order and others. CArchive,
however, which you use with CSocket, uses the opposite ("little-Endian") order-but
CArchive takes care of the details of byte-order conversions for you. By using this
standard ordering in your applications, or using Windows Sockets byte-order
conversion functions, you can make your code more portable.

813

Windows Sockets in MFC: Overview

814

The ideal case for using MFC sockets is when you're writing both ends of the
communication: using MFC at both ends. If you're writing an application that will
communicate with non-MFC applications, such as an FTP server, you'll probably
need to manage byte-swapping yourself before you pass data to the archive object,
using the Windows Sockets conversion routines, ntohs, ntohl, htons, and htonl. An
example of these functions used in communicating with a non-MFC application
appears later in this article.

Note When the other end of the communication is not an MFC application, you also must
avoid streaming C++ objects derived from CObject into your archive because the receiver will
not be able to handle them. See the Caution in the article Windows Sockets: Using Sockets
with Archives.

For more information about byte orders, see the Windows Sockets specification,
available in Books Online under Win32.

A Byte-Order Conversion Example
The following example shows a serialization function for a CSocket object that uses
an archive. It also illustrates using the byte-order conversion functions in the
Windows Sockets API.

This example presents a scenario in which you are writing a client that communicates
with a non-MFC server application for which you have no access to the source code.
In this scenario, you must assume that the non-MFC server uses standard network
byte order. In contrast, your MFC client application uses a CArchive object with a
CSocket object, and CArchive uses "little-Endian" byte order, the opposite of the
network standard.

Suppose the non-MFC server with which you plan to communicate has an established
protocol for a message packet like the following:

struct Message
{

} ;

long MagicNumber;
unsigned short Command;
short Paraml;
long Param2;

In MFC terms, this would be expressed as follows:

struct Message
{

} ;

long m_1MagicNumber;
short m_nCommand;
short m_nParaml;
long m_1Param2;

void Serialize(CArchive& ar);

Windows Sockets in MFC: Overview

In C++, a struct is essentially the same thing as a class. The Message structure can
have member functions, such as the S e ria 1 i z e member function declared above. The
S e ria 1 i z e member function might look like this:

void Message::Serialize(CArchive& ar)
{

if (ar.IsStoring(»
{

}

else
{

}

ar «
ar «
ar «
ar «

(DWORD)htonl(m_1MagicNumber);
(WORD)htons(m_nCommand):
(WORD)htons(m_nParaml):
(DWORD)htonl(m_1Param2):

WORD w:
DWORD dw:
ar » dw;
m_1MagicNumber - ntohl«long)dw):
ar » w :
m_nCommand = ntohs«short)w):
ar » w:
m_nParaml = ntohs«short)w):
ar » dw:
m_1Param2 - ntohl«long)dw):

This example calls for byte-order conversions of data because there is a clear
mismatch between the byte ordering of the non-MFC server application on one end
and the CArchive used in your MFC client application on the other end. The
example illustrates several of the byte-order conversion functions that Windows
Sockets supplies. Table 2 describes these functions.

Table 2 Windows Sockets Byte-Order Conversion Functions

Function

ntohs

ntohl

htons

htonl

Purpose

Convert a 16-bit quantity from network byte order to host byte order
(Big-Endian to Little-Endian).

Convert a 32-bit quantity from network byte order to host byte order
(Big-Endian to Little-Endian).

Convert a 16-bit quantity from host byte order to network byte order
(Little-Endian to Big-Endian).

Convert a 32-bit quantity from host byte order to network byte order
(Little-Endian to Big-Endian).

Another point of this example is that when the socket application on the other end of
the communication is a non-MFC application, you must avoid doing something like
the following:

ar « pMsg:

815

Windows Sockets in MFC: Overview

where pMsg is a pointer to a C++ object derived from class CObject. This will send
extra MFC information associated with objects and the server won't understand it, as
it would if it were an MFC application.

See Also Wmdows Sockets: Using Class CAsyncSocket, Windows Sockets:
Blocking, Windows Sockets: Converting Strings, Windows Sockets: Using Sockets
with Archives, Windows Sockets: Background, Windows Sockets: Stream Sockets,
Windows Sockets: Datagram Sockets

In the Class Library Reference: CAsyncSocket, CSocket

Samples: CHATTER, CHATSRVR

Windows Sockets: Converting Strings
This article and two companion articles explain several issues in Windows Sockets
programming. This article covers converting strings. The other issues are covered in
the articles: Windows Sockets: Blocking and Windows Sockets: Byte Ordering.

If you use or derive from class CAsyncSocket, you will need to manage these issues
yourself. If you use or derive from class CSocket, MFC manages them for you.

Converting Strings
If you communicate between applications that use strings stored in different wide
character formats, such as Unicode or multibyte character sets (MBCS), or between
one of these and an application using ANSI character strings, you must manage the
conversions yourself under CAsyncSocket. The CArchive object used with a
CSocket object manages this conversion for you via the capabilities of class CString.
For more information, see the Windows Sockets specification, located in Books
Online under Win32.

See Also Windows Sockets: Using Class CAsyncSocket, Windows Sockets:
Blocking, Windows Sockets: Byte Ordering, Windows Sockets: Using Sockets with
Archives, Windows Sockets: Background, Windows Sockets: Stream Sockets,
Windows Sockets: Datagram Sockets

In the Class Library Reference: CAsyncSocket, CSocket

Samples: CHATTER, CHATSRVR

Windows Sockets: Ports and Socket Addresses

816

This article explains the terms "port" and "address" as used with Windows Sockets.

Port
A port identifies a unique process for which a service can be provided. In the present
context, a port is associated with an application that supports Windows Sockets. The
idea is to identify each Windows Sockets application uniquely so you can have more
than one Windows Sockets application running on a machine at the same time.

Certain ports are reserved for common services, such as FTP. You should avoid using
those ports unless you are providing that kind of service. The Windows Sockets
specification details these reserved ports. The file WINSOCK.H also lists them.

To let the Windows Sockets DLL select a usable port for you, pass ° as the port value.
MFC selects a port value greater than 1,024 decimal. You can retrieve the port value
that MFC selected by calling the CAsyncSocket::GetSockName member function.

Socket Address
Each socket object is associated with an Internet Protocol (IP) address on the
network. Typically, the address is a machine name, such as "ftp.microsoft.com", or a
dotted number, such as "128.56.22.8".

When you seek to create a socket, you typically don't need to specify your own
address.

Important It's possible that your machine has multiple network cards (or your application
might someday run on such a machine), each representing a different network. If so, you might
need to give an address to specify which network card the socket will use. This is certain to be
an advanced usage and a possible portability issue.

See Also Windows Sockets: Using Class CAsyncSocket, Windows Sockets: Using
Sockets with Archives, Windows Sockets: How Sockets with Archives Work,
Windows Sockets: Stream Sockets, Windows Sockets: Datagram Sockets

In the Class Library Reference: CAsyncSocket::GetSockName

Samples: CHATTER, CHATSRVR

Wizards
See the articles App Wizard and Class Wizard.

Wizards

817

32-bit issues See Programming, 32-bit issues
3D controls

A

in static DLLs 496
MFC support 498

Abnormal execution, exception 402
About box option 617
Absolute position, DAO Recordsets 305
Accelerator keys, as source of commands 40
Accelerator table

and frame windows 63
editing with Visual C++ 444
Fl key, defined for ID _HELP command 444
SHIFr+Fl keys, defined for ID_CONTEXT_HELP

command 444
Accelerators and frame windows, managing 62
Activate when visible option 617
Active states

client items 212
described 551-552

Add Class dialog box, Class Wizard 161
Add Member Variables dialog box

Control property 88
shortcut 168
Value property 164

AddDocTemplate member function, CWinApp class,
example 23

Adding
dynamic creation 183
records

DAO Record Field Exchange 286
DAO 302
in bulk (ODBC) 686
Record Field Exchange 663
recordset 683

run-time class information 182
serialization support 183
stock properties 640
Tabledef fields 319

AddNew, tip 711

Index

AddRef method 572
AddString member function, CComboBox 724
Advanced Windows NT, book 29
AFX_DAO_DISABLE_FIELD _CACHE option, double

buffering records 289
AFX_DAO_ENABLE_FIELD _CACHE option, double

buffering records 289
AFX_DATA, ClassWizard 153
AFX_DATA_INIT 153
AFX_DATA_MAP, ClassWizard 153
AFX_DISP, ClassWizard 154
AFX_DISP _MAP, ClassWizard 154
AFX_EVENT, ClassWizard 154
AFXY:VENT_MAP, ClassWizard 154
AFX_FIELD, ClassWizard 154
AFX_FIELD _INIT, Class Wizard 154
AFX_FIELD_MAP, ClassWizard 154
AFX_MOVE_REFRESH parameter, recordset 684
AFX_MSG, ClassWizard 50,153
AFX_MSG_MAP, ClassWizard 153
AFX_MSG_MAP delimiter 47,52
AFX_ VIRTUAL, ClassWizard 153
AfxBeginThread

function 518-519
required arguments 518
two versions 518

AfxCheckMemory function 366
AFXCORE.RTF file 453
AFXDAO.H file 165
AFXDB.H file 165
AFXDLL

as App Wizard default 460
common usage 379
described 460
files to distribute 388
MFC in DLLs 460
naming conventions 387
now called Extension DLL 378
rebuilding 380
restrictions 380
support introduced 499
Unicode support 388

819

Index

820

AFXDLL (continued)
using 380
when to rebuild 380

afxDump
debugging 359
described 114, 120
example 360
output destinations 360
sending output to 360
using 360

AfxEnableControlContainer, using 540
AfxEnableMemoryTracking, memory diagnostics 366
AfxEndThread, using 522
AfxGetApp function 25
AfxInitExtensionModule, using in Extension

DLLs 381
afxMemDF variable

memory diagnostics 366
possible values, table of 366

AfxOleRegisterTypeLib, registering localized type
libraries 589

AfxRegisterWindowClass function and frame window
styles 63

AfxRegisterWndClass function 31-32
AFXRES.H, standard commands 42
AfxSetTerminate function 121
AfxTerminate function 121
Aggregate results, recordset 703
Allocating memory, changes 497
AllocSysString member function, CString class 758
Ambient properties

accessing 647-648
described 647

AmbientBackColor member function, COleControl
class 648

AmbientDisplayGrabHandles member function,
COleControl class 648

AmbientDisplayHatching member function,
COleControl class 648

AmbientFont member function, COleControl class 648
AmbientForeColor member function, COleControl

class 648
AmbientLocaleID member function, COleControl

class 648
AmbientScaleUnits member function, COleControl

class 648
AmbientTextAlign member function, COleControl

class 648

AmbientUIDead member function, COleControl
class 648

AmbientUserMode member function, COleControl
class 648

AND_CATCH macro
described 404
using 407

Appendability, recordset 683
Application class

See also CWinApp class
primary thread of execution 18

Application data
and CDocument 65
and documents 65
and serializing 66
displaying in views 68

Application framework
See also MFC
and application-specific code 17-18
described 3,436
functionality provided 9
introduced 486
message handling 37
support for predefined commands 42

Application objects, obtaining pointers to 25
Applications, creating DAO 229
AppWizard

and CDocument 65
and creating documents and views 65
andCView 65
and CWinApp class 19
and file support 511
and serializing 66
as MFC programming tool 779
container application support 208
creating

frame windows 59
message maps 46
OLE control containers 539

DAO Record Field Exchange 278
database classes 536
default uses AFXDLL 460
described 7
document/view options 509
form-based applications 506
help project file, created by 446
HLP subdirectory 439
Record Field Exchange 657
record views 723

AppWizard (continued)
Serialize function written by 736
tips 166
Toolbars option 772
using with DAO 229

Archive mechanism, bypassing 67
Archives

example of sockets using 801
how sockets with work 803
using sockets with 797

ARG_KEYparameter 191
ARG_TYPE parameter 191
Array classes

described 117
features 187
templates 117

Array collections 190
Arrays

described 117
elements, deleting 200
frame allocation 468
heap allocation 468
heap deallocation 468
iteration of 197

Articles
See also Encyclopedia
MFC 487
OLE classes 624

ASSERT macro
See also ASSERT_VALID macro; VERIFY macro
behavior 361
described 120, 361
detecting erroneous execution 403
evaluation of argument 362
example 362
IsKindOf member function, example 362
output destination

described 361
Windows 361

ASSERT_VALID macro
AssertValid member function 363
described 363
example 364
testing validity of subordinate objects 364
when active 363
when to use 364

Assertions
testing program assumptions 362
using 362

AssertValid member function
ASSERT_VALID macro 363
CObject class 114
CObject class, overriding 363
declaring override of, example 363
limitations of 365
overriding 363
use

described 363
example 363

Index

Assumptions, program, tested by ASSERT macro 362
Attached table, defined 317
Authoring help See Context-sensitive help
Automatic linking, MFC library version 458
Automation servers in DLLs, OLE 628

8
bActivate parameter and active view 62
Base class handler, when to call 51
Base table, defined 317
BASE_CLASS parameter 192
BEGIN_DISPATCH_MAP macro 482
BEGIN_EVENT _MAP macro 395
BEGIN_EVENTSINK_MAP, macro 542
BEGIN_MESSAGE_MAP macro 46, 48
BEGIN_PROPPAGEIDS macro 561
BeginPaint function 33
Binary file operations, CFile class 433
Binary Large Object, recordset 702
Bind All button, ClassWizard 164
Binding columns

Class Wizard 163
DAO Record Field Exchange 283-284
edit buffer 283,661
Record Field Exchange 661-662

Binding parameters
DAO Record Field Exchange 284
described 284,662
Record Field Exchange 662

Binding records dynamically, DAO
described 292
recordset 311

Bitmaps, samples provided 204
BLOB, recordset 702
Blocking Windows Sockets 811
.BMP files 439

821

Index

822

BN_CLICKED
message 168
notification 85

Bookmarks, DAO recordset 305-306
BoundPropertyChanged member function 599
BoundPropertyRequestEdit member function 599
Browse version of MFC, building 512
Browser for MFC library, building 512
BSC file for MFC library, building 512
BSTR data type and CString class 758
Buffering data, class CArchive 733
Building versions of the class library 458
Bulk adding of records (ODBC) 686
Bulk queries, DAO 332
bUseCursorLib parameter, cursor library 531
Buttons, toolbar 95
Byte ordering, Windows Sockets 812
Byte orders

c

conversion example 814
converting 813

C run-time functions, CString functions, comparison
to 760

Caching multiple records, performance
limited to ODBC 294
record set 294

Calculating elapsed time, procedure 349,352
Callback functions, debugging 355
CanAppend function, Recordset 683
CanUp date function, Recordset 682
Caption custom property, adding to property page 559
CArchive

constructor, arguments to 735
data types usable with 736
loading from, example 735
operators

chaining 736
data types defined for 736
extraction 730
insertion 730
using 735

storing to, example 735
used for binary data only 730
used in Serialize member function 735
vs. iostream classes 730
who creates an archive 733

CArchive class
described 115
insertion operator 195
object persistence 115
serialization 729
uses other than serializing documents 734

CArchive object
and CFile object 733
created by framework

example 734
Save, Save As, Open commands 734

creating yourself 734
CRuntimeClass of stored objects 733
defined 733
dynamic reconstruction of loaded objects 733
for loading 733
for storing 733
in framework, your role 734
lifetime 733
loading data, multiple references to objects
storing/loading CObjects 737
uses 733

CArchiveException exception handler 403
Cascade deletes, transactions 331
CAsyncSocket class

programmer's responsibilities with 808
Windows Sockets programming model 791
Windows Sockets using 806

Catalog information
columns 150
described 150
foreign keys 150
indexes 150
predefined queries 150
primary keys 150
statistics 150
stored procedures 150
table privileges 150
tables 150

CATALOG sample 697
Catch blocks 410
Catch keyword 408
CATCH macro 121,404-408,412-415
CBitmapButton class 91
CBRS_ALIGN_ANY style 774
CBRS_FL YBY, common usage 777
CBRS_SIZE_DYNAMIC style, Toolbars 775
CBRS_SIZE_FIXED style, Toolbars 775
CBRS_TOOLTIPS style 777

CBrush class
CreateBrushIndirect member function 556
CreateDIBPattemBrush member function 556
CreatePattemBrush member function 556

CButton class 90
CCheckListBox 492
CClientDC class 33
CCmdTarget class member functions, OnCmdMsg 45
CCmdUI structure

described 54
member functions, Enable 54

CColorDialog class 90
CComboBox class

AddString member function 724
using 90, 724

CControlBar class 94
CDaoFieldExchange

DAO Record Field Exchange 280
field exchange context 280

CDaoRecordset
ClassWizard 158
removing columns 163

CDaoRecordView
and CForm View 166
ClassWizard 158
dialog data exchange 719

CDaoWorkspace class, DAO 322
CDatabase

data source connections
described 345
reusing CDatabase object 347

direct SQL calls 756
ExecuteSQL function 691
transaction support 785-788
transactions 787
valid data sources 344

CDataExchange class 86
CDC class, printing with 630-631, 637
CDialog class

and Class Wizard 82
component of dialog box 80
deleting object 85
member functions

Create 83, 92
DoDataExchange 86
DoModal 84, 87, 92
EndDialog 85,89
OnCancel 85, 87, 89
OnInitDialog 85,89,92-93

Index

CDialog class (continued)
member functions (continued)

OnOK 85,89
SetFocus 92
SubclassDlgItem 93-94
UpdateData 84, 86

MFC derived dialog classes 90
CDialogBar class 91, 97
CDK, integration with MFC 497
CDocItem class, Client items 209
CDocTemplate class and creating fame windows 60
CDocument class

and application data 65
and App Wizard 65
and Class Wizard 65
and print preview 77
and printing 77
default command routing 44
described 5, 64
member functions

DeleteContents 65
OnNewDocument 28
OnOpenDocument 28
UpdateAllViews 69

relationship with view 64
CDragListBox 492
CDumpContext class

described 114
use 360

CEdit class 90
CEditView class 69, 76
CException class

and CATCH macro 404--405
deletion of objects 408-409
described 121

CFieldExchange
field exchange context 659
Record Field Exchange 659

CFile class
and bypassing serialization 67
binary file operations 433
described 115-116
enhancements in MFC 4.0 490
files and serialization 433
polymorphic file interface 116

CFile object, used by CArchive object 733
CFileDialog class 90
CFileException 434
CFileException exception handler 403

823

Index

824

CFindReplace class 90
CFont class, CreateFontIndirect member function 556
CFontDialog class 90
CForm View class

and CRecordView 718
described 68, 76

CFrameWnd class
and CMainFrame 59
and frame window 59
and frame window creation 60
default command routing 44
described 6,30
member functions, LoadFrame 32

Chaining operators, CArchive, example 736
Changes in MFC 4.0, CToolBar class 771
Checkpoint member function, CMemoryState class,

memory leaks, detecting 366
Child windows

creating
described 28
in CWnd constructor 60
in OnCreate handler 60

managed by frame window 61
message handling and frame window 62

Class CRecordView, form-based applications 718
Class Info dialog page, ClassWizard 170
Class reference, OLE classes 102
Classes

collection, described 117
control, creating derived 93
CString described 118
CWinApp 444
general-purpose 113
new in MFC 4.0 489
recordset 667
reusable 181
Rich edit 492
special collection, compatibility 117

Class Wizard
Add Class dialog box

described 161
figure 161

Add Member Variables dialog
Control property 88
Value property 164

adding a parameterized properties 576
adding bound properties 600
adding code 157

Class Wizard (continued)
adding columns

described 163
figure 165

adding custom events 398-401
adding custom font properties 567
adding custom methods 484
adding custom properties 644
adding event handlers 541
adding event sink maps 541
adding member functions 156
adding member variables 157, 545
adding message handler 400, 401
adding methods and properties 172
adding OLE properties 172
adding stock events 396-398
adding stock methods 483
adding stock properties 641
adding the stock Caption property 566
adding the stock Font property 565
AFX_DATA 153
AFX_DATA_INIT 153
AFX_DATA_MAP 153
AFX_DISP 154
AFX_DISP _MAP 154
AFX_EVENT 154
AFX_EVENT_MAP 154
AFX_FIELD 154
AFX_FIELD _INIT 154
AFX_FIELD_MAP 154
AFX_MSG 153
AFX_MSG_MAP 153
AFX_ VIRTUAL 153
and .CPP files 82
and .H files 82
and CDocument 65
and creating documents and views 65
and CView 65
and Hungarian notation 705
andODBC 749
as MFC programming tool, overview 779
Bind All button 164
binding columns

default 163
described 163

CDaoRecordset class, creating 160
Class Info dialog page 170
Class Info tab 156
code it supplies 52

Class Wizard (continued)
code modifications

event handlers 542
member variables 546
OLE control insertion 544

command binding 52
comment brackets 512
comments

data maps 153
described 152-155
field maps 154
message maps 153
OLE dispatch maps 154
virtual functions 153

connecting
multiple objects to single functions 156
objects to commands 156

Control property 88
creating

dialog class with 82
property page classes 649

CRecordset class, creating 160-161
DAO Record Field Exchange 278
data binding options 600
database forms 165
database support

adding after the fact 165
AFXDB.H file 165
browsing classes 159
CDaoRecordset 158
CDaoRecordView 158
classes supplied 158
creating recordset classes 160
CRecordset 158
CRecordView 158
editing classes 159
filenames 159
record view DDX 158
SQL Data Sources dialog 159

defining message handlers 38
deleting member functions 156
described 7-8, 150
dialog data exchange CDDX)

for record views 158
m_pSet member variable 158
using 157

editing message maps 43, 52
event support 396
EVENT_CUSTOM prefix 398, 399

ClassWizard (continued)
features

database 151
described 150
OLE 151

files changed by 641, 645
foreign classes 152
foreign objects

Class Info dialog page 170
defined 169
described 152, 158, 169
diagram 159
m_pSet pointer 170

form-based applications 506
general information about 152
Get/Set methods

adding 173
adding OLE properties 173

importing classes from other projects 157
m_pSet pointer, Class Info dialog page 170
mapping controls to recordsets

described 167
procedure 168

mapping dialog box controls to member
variables 157

mapping dialog class member variables 82
mapping form controls to

cTRL+Double-click option 168
order of controls 168
shortcut 168

mapping Windows messages 82
Member Variable N arne, drop-down list 168
member variable properties

adding 172
described 172

member variables
adding to property pages 650
tab 155

Member Variables dialog page
described 161
figure 165

message handlers 46
Messsage Maps tab 155
methods, adding 174
methods and properties, adding

described 172
member variable properties 172

Index

825

Index

826

Class Wizard (continued)
new features

classes in multiple directories 151
classes in multiple projects 151
easier Add Class feature 151
reflected message support 151

OLE Automation
and MS Excel 170
and Visual Basic 170
described 170
features 170

OLE Automation class
adding 171
adding methods and properties 172
defined 171
dispatch interface 171
example 172
methods and properties 171
OLE creatable 172

OLE Automation client 174
OLE Automation tab 155
OLE Events tab 155
opening resource files as text 158
overriding virtual functions 156
predefined queries 691
procedures, adding OLE properties 173
ranges of messages 478
Read Type Library button 174
Record Field Exchange 657
record view and recordset 158
record views

creating 166
described 165, 723
dialog template resource 166

removing columns
caution 163
described 163

running 150
source code comments 512
SQL Data Sources dialog figure 161
support for read- and write-only properties 646
support for stock events 396
support for stock properties 642
Tables dialog figure 161
tips 164, 166, 168
typical scenarios for using 52
Update Columns button

behavior 165
described 165

Class Wizard (continued)
updating columns 165
user interface

Class Info tab, described 156
described 155
Member Variables tab, described 155
Message Maps tab, described 155
OLE Automation tab, described 155
OLE Events tab, described 155

virtual functions, overriding 8
what ClassWizard modifies 152
what it modifies 153, 155

Cleanup
application, in ExitInstance function 75
documents 75
views 75

Client items
active states 212
and in-place editing 211
CDocItem class 209
client item states 211
COleClientltem class 210
COleDocument class 209
containers 209
CreateFromFile function 212
empty states 212
fully open states 212
ItemState enumeration 211
loaded states 212
notifications

activation 210
change of position 210
described 210
listed 210
OLE_NOTIFICATION enumeration 210
scrolling 210
user changes 210

OLE_NOTIFICATION enumeration 210
OnChange function 210,211
OnChangeItemPosition function 211
OnGetItemPosition function 211
open states 212
overridable functions 210
states 211

Clipboard
adding formats to, referral to sample 180
adding more formats on the Clipboard 179
and views 71
as file object 733

Clipboard (continued)
commands

implementing copy 178
implementing cut, copy and paste 177
implementing paste 179
when cut, copy and paste are meaningful 177

copy command
example 176-177
implementing 178
referral to sample 178

copying data
cut vs. copy 178
native data vs. contained items 178
procedure 178

custom Clipboard formats 176
cut command, referral to sample 178
determining available formats 343
implementing cut, copy and paste commands 177
OLE clipboard support

how to use 175
when to use 175

OLE data formats 175
paste command

implementing 179
referral to sample 179

pasting data
described 179
procedure 179
tip 179

placing formats on, procedure 180
registering custom formats 179
standard Clipboard formats 175
two mechanisms

described 175
when to use 175

using 177
using with OLE 175
Windows Clipboard data formats 177
Windows Clipboard support, using 177

CListBox class 90
CLongBinary class

caution 703
Recordset 702

Close member function
and bypassing serializing 67
CFile class 435

Index

Closing
DAO objects 232
files 435
recordsets 673

CLSID_CColorPropPage, using 563
CLSID _ CFontPropPage

implementation of 569
using 563

CLSID _ CPicturePropPage
adding 573
using 563

.CLW files 620
CMainFrame class 59
CMapStringToOb class, compatibility 117
CMapWordToOb class, compatibility 117
CMDIChildWnd class

and frame window creation 60
and frame windows 59
default command routing 44
described 6, 30

CMDIFrame Wnd class
and CMainFrame 59
and frame windows 59
and ID_ WINDOW_NEW 63
and New Window command 63
default command routing 44
described 6, 30

CMemFile class 116, 733
CMemoryException exception handler 403
CMetaFileDC 34
CMultiDocTemplate class

described 6, 22
example 23

CNotSupportException exception handler 403
CObArray class, compatibility 117
CObject class

basic functionality, using 181
compatibility with special collection classes 117
deriving classes from

cost 180
described 180
functionality, levels of 181
overhead 180

described 180
diagnostic dump context 114
dynamic creation, adding 183
dynamic reconstruction of 737
functionality, levels of 181
implementation files 180

827

Index

828

CObject class (continued)
interface files 180
IsKindOf function, using 182, 185
levels of functionality

macros 181
specifying 181

macros
DECLARE_DYNAMIC 182
DECLARE_DYNCREATE 184
DECLARE_SERIAL 185
IMPLEMENT_DYNAMIC 183, 185
IMPLEMENT_DYNCREATE 183
IMPLEMENT_SERIAL 184
RUNTIME_CLASS 184, 185

member functions, Assert Valid 114
object diagnostics 114
object persistence 115
run-time class information

accessing 184
adding 182

serialization
cases 737
described 116, 183, 729
example 737

storing/loading via CArchive 737
validity checking 114

CObject collection, deleting all objects 199
CObList class, compatibility 117
Code modifications

ClassWizard, OLE control insertion 544
event handlers 542

COleClientltem class, Client itetms 210
COleControl class

AmbientBackColor member function 648
AmbientDisplayGrabHandles member function 648
AmbientDisplayHatching member function 648
AmbientFont member function 648
AmbientForeColor member function 648
AmbientLocaleID member function 648
AmbientScaleUnits member function 648
AmbientTextAlign member function 648
AmbientUIDead member function 648
AmbientUserMode member function 648
and methods 482
and serialization 592
BoundPropertyChanged member function 599
BoundPropertyRequestEdit member function 599
described 551
DoPropExchange member function 592-594

COleControl class (continued)
DoSuperClassPaint member function 596
error-related member functions 577
event support 396
Exchange Version member function 593
FireEvent member function 399
GetAmbientProperty member function 647-648
OnAmbientPropertyChanged member function 648
OnDraw member function 554-556
OnDrawMetafile member function 555-556
OnPaint member function 554
SetModifiedFlag function 645
support for stock methods 483
ThrowError member function 486,647
TranslateColor member function 642

COleDocument class, Client items 209
COlePropertiesDialog 493
COleResizeBar, use in server applications 744
Collate member function, CString class 760
Collection classes

and C++ templates 117
archiving 117
arrays described 117
choosing 188
compared 189-190
ConstructElements 194
described 117, 186-187, 193, 196-202
DestructElements 194
dumping 117
example 699
lists described 117
maps described 118
nontemplate (listed) 187
SerializeElements helper function 195
serializing elements 195
shapes

access characteristics 188
compared 188
duplicate elements 188
listed 188
ordering characteristics 188
performance 188

template-based
described 190
typed pointer 190, 192

templates
described 193
(list) 187
parameters 191

Collection classes (continued)
type-safe 190
using 190

Collections
array elements, deleting 200
arrays, iteration of 197
CObject class 199
DAO

described 243
TableDef 318
workspace 323

deriving and extending 197
lists

deleting objects in 200
iteration of 198

map elements, deleting 201
maps, iteration of 198
members, accessing 197-202
objects sharable in 199
predefined, using 196
queue, creating 202
shapes

features (table) 186
(list) 186

stacks, creating 202
type-safe, described 193

Columns
adding 163
catalog information about 150
defined 203
removing 163
updating 165

Columns (recordset), formatting names 751
Combining OLE controls

collecting implementation files 602
combining resources of 605
described 602
merging .ODL files 603
modification of makefile 604
rebuilding .CLW file 606

Combo boxes, filling from recordsets 724
Command binding 52
Command handlers

See also Message handlers
defined 38

Command IDs
defined in RESOURCE.H file 447
example 41
help related, table 444

Index

Command IDs (continued)
naming conventions 41
purpose of 41
ranges of messages, example 479
toolbars 773

Command line processing 20
Command prompt strings, displaying 54
Command routing

default 44
described 43
example 45
OnCmdMsg member function 45
overhead 44
overriding the default 45

Command targets
described 42
handling commands 43
message maps, when searched 44
routing of commands to 42, 44

Command update handlers, ranges of messages 480
Commands

accelerator 39
and user-interface objects 40
described 37-39
Edit menu, listed 41
File menu, listed 41
generation of 42
handling

described 43
in CDocument 68
in document 68

Help menu, listed 42
help-related, table 444
ID_CONTEXT_HELP 444
ID_DEFAULT_HELP 444
ID_HELP 444
ID_HELP _INDEX 444
ID_HELP_USING 444
identical to command IDs 41
IDs 41
illustrated 40
menu 39
message handlers

described 51
example 51

message maps
described 43
entries 48

OLE, listed 42

829

Index

830

Commands (continued)

predefined
ID conventions 41
listed 41
support, Technical Note 22 42

routing 43
standard

AFXRES.H 42
ID conventions 41
listed 41

toolbar 39
unhandled 45
View menu, listed 41
Window menu, listed 42

COMMDLG.DLL and MFC dialog classes 90
Comment brackets, ClassWizard 512
Comment delimiters, message maps 47
Comments

described 153, 155
used by ClassWizard 152

Commit, defined 203
Common controls, new classes 490
Common dialog box classes 90
Common dialogs, new

COlePropertiesDialog 493
CPageSetupDialog 493

COMMON.RES
copying to resource script files 204
described 204,8
using 204

Compare member function, CString class 760
CompareN oCase member function, CString class 760
Compatibility with special collection classes 117
Compiler, Help See Windows Help Compiler
Component Gallery, inserting OLE controls 543
Compound files

advantages and disadvantages 213
defined 212
enabling 214
file access modes

described 213
Direct mode 213
Transacted mode 213

file fragmentation 214
incremental access 213
size and performance considerations 214
standardization 214

Concatenation operators 759
Configuring data souces (ODBC) 345,531,533

Confirm Classes dialog box
creation of wrapper class 544
description of 543
usage of 543

Connect strings
defined 207
tip 672

Connecting to data sources (ODBC), procedure 347
Connection maps, OLE controls 497
Connection Points 204
Console applications with DAO 229
ConstructElements helper function, collection

classes 194
Construction, recordset 671
Constructors

defining 732
exceptions in 416
frame allocation 467

Container applications
App Wizard support 208
common additional features 209
communication with servers 626
defined 207, 625
deriving from CWinApp 208
displaying Insert Object dialog box 208
handling embedded and linked items,

procedure 209
informing embedded items of size changes 208
preparing the view class 208
required capabilities 207
requirements 625
setting focus to embedded items 208
verifying selections 208

Container support, OLE controls 494
Container/Server applications

described 215
implementing 215
nested activation

availability 215
described 215

Containers
client item states

described 211
ItemState enumeration 211

client items
and document class 209
CDocItem class 209
COleDocument class 209
defined 209

Containers (continued)
client items (continued)

embedded 209
linked 209

user interface issues 214
Context, help See Help context
Context-sensitive Help

See also Help project files; HM file; RESOURCE.H
file

AFXCORE.RTF file 453
and AppWizard 439
authoring Help

described 450-452
example 453
terminology 453

bitmaps 439
described 437
discussed 437
Fl key and ID _HELP command 444
footnotes 453
help screens 453
HM file, example 449
hot spots 453
jumps 453
member functions, predefined by framework 444
message map entries for, example 443
options, tools 447
popups 453
RESOURCE.H file, example 449
.RTF files

creating with AppWizard 439
format 453
starter help topics 452

SHIFf+Fl help, described 437
SHIFf+Fl keys and ID_CONTEXT_HELP

command 444
starter files 439
table of command IDs 444
user access 437

Context-Sensitive Help option 616
Control bars

and frame windows 61
and MDICLIENT window 61
described 30, 94
implementation, new 492
managing, and frame windows 62
new implementation 492
positioning in parent windows 95

Control containers
accessing embedded controls 543
communication with OLE control 552
creation using AppWizard 539
description of 538
interaction with controls 538
manually enabling 540
types of 538

Index

Control Development Kit, integration with MFC 497
Control IDs, ranges of messages, example 480
Control notifications

described 38
message handlers

described 51
example 51

message map entry 48
Control Options dialog box 617
Control project

files created by ControlWizard 619-621
specifying name and location 615

Control property, ClassWizard 88
Controlling function

defined 519
example 520
parameter interpretation 519
passing data to and from threads 519
passing structures 519
use of parameters 519

Controls
CCheckListBox 492
CDragListBox 492
common See Common controls
described 30
handling messages themselves 497
mapping to recordsets 167
new

CCheckListBox 492
CDragListBox 492

Controls dialog box 618
ControlWizard

About box option 617
Activate when visible option 617
Context-Sensitive Help option 616
Control Options dialog box 617
creating licensed controls 584
creating project with 614
DoPropExchange member function 592
Edit Names dialog box 618
files created by 619-621

831

Index

832

ControlWizard (continued)
Generate Source Comments option 616
handler functions created by 592
Invisible at runtime option 617
License Validation option 616
Number of Controls option 616
online help 621
Project Options dialog box 616
running 615
Show in Insert Object dialog option 617
Simple Frame option 617
Subclass Windows control option 618
toolbar bitmap support 619
Use VBX control as Template option 608,618

Conventions
MFC source code

implementation details 512
Public/private/protected 512

Converting
byte orders

described 813
example 814

strings, Windows Sockets 816
Copy command, implementing 177
Copying data, Clipboard 178
CPageSetupDialog 493
CPaintDC class

and view drawing 70
described 33
role in printing 630

CPalette class, Animatepalette member function 556
CPreviewDC class

described 77
print preview 638

CPreviewView class 77
CPrintDialog class 90
CPrintlnfo structure 633-634
CPropertyPage class 81
CPropertySheet class

described 81
when to derive from 650

CPropExchange class, GetVersion member
function 594

Create function, OLE controls 547
Create member function

CDialog class 83, 92
CWnd class 29,31-32

CreateControl, using 547
CreateFromFile function, Client items 212

CreatePen member function, CPen class, example 36
Creating

DAO objects 232
DAO Tabledefs 319
data objects (OLE) 340
data sources (OLE) 341-342
dialog boxes with Class Wizard 82
documents 60
frame windows 60
queue collections 202
stack collections 202
table-type recordsets 320
Tabledef indexes 319
toolbars 96
views 60
windows 32

Creation, dynamic 181
Creation sequence

documents 25
frame windows 25
views 25

CRecordset
adding records 785
and ODBC drivers 750
ClassWizard 158
deleting records 785
described 768
editing records 785
removing columns 163
transaction support 785
updating records 785

CRecordView
and CFonnView 166,718
ClassWizard 158
dialog data exchange 719
features 718
fonns 718

CRectTracker class, Tracker 781-782
CResourceException exception handler 403
CRuntimeClass

and archive objects 115
and creating frame window 60

CScrollBar class 90
CScrollView class

and view scrolling 72
described 68

CSingleDocTemplate class 6, 22
CSocket programming model 797
CSplitterWnd 74

CStatic class 90
CStatusBar class

and CMainFrame 59
described 91
indicator panes 96
member functions, SetIndicators 96

CStdioFile class 116
CString class

See also Strings
ability to grow 757
allocating on frame rather than heap 758
AllocSysString member function 758
argument passing 763
articles about 758
as actual strings, not pointers 757
as arrays of characters 757
as function inputs 764
as function outputs 764
assigning C literal strings to 759
assigning one CString to another 759
assignment semantics 759, 760
basic operations 758
BSTR data type 758
C run-time functions, portability mappings to 766
cleanup after exception 763
Collate member function 760
Compare member function 760
CompareNoCase member function 760
comparison functions, equivalent portable C run-

time functions 760
concatenating strings

argument requirements 760
described 759

const char pointers 757
contents, modifying 762
conversion to/from character pointer 757
converting to C-style null-terminated strings

described 761
LPCTSTR operator 761

copy overhead 758
copy semantics 760
creating from standard C strings 759
DBCS support

C run-time functions 766
explained 757, 766
lead bytes 766
_MBCS symbol 766
mixed DBCS and ANSI characters 766
parsing requirements 766

Index

CString class (continued)
DBCS support (continued)

portability 757
TCHAR data type 766
trail bytes 766

described 118
direct access to contents

GetBuffer member function 758
ReleaseBuffer member function 758

efficiency, reference counting 758
equality of CString objects 761
exception

and C++ exceptions 763
cleanup after 763
no longer necessary to clean up 763

folding 757
formal parameters, specifying 763
functionality similar to Basic 756
GetAt member function 759
GetBuffer member function 758
identity of two CString objects 757
independence from rest of MFC 756
index values zero-based 759
international support 765
LPCTSTR data type 757
LPCTSTR operator, validity of pointer 761
maximum size 757
MBCS enabled 757
MBCS support, actually DBCS 766
_MBCS symbol 766
member functions, comparison to C run-time

functions 760
modifiable copy of contents, strcpy function 761
not implemented as collection class 758
operator == 760
operator [] 759
passing CString objects as parameters 763
portability

DBCS 765
described 757, 761
MBCS 765
_T macro 757
Unicode 765

portable implementation 766
reference counting 496, 758
relational operators, <, <=, >, >=, ==, != 760
SetAt member function 759
SetBuffer member function 758
SetSysString member function 758

833

Index

834

CString class (continued)
storage of, in collections 758
string manipulation 756, 758, 760, 762-763
substituting character pointers for 757
_T macro 757
TCHAR data type, DBCS support 766
the C run-time library 756
type TCHAR 757
Unicode enabled 757
Unicode support

const char* type 765
constructors, operators 765
described 765
LPCTSTR data type 765
LPTSTR data type 765
portable C run-time functions 765
serialization portable for DBCS and

Unicode 766
steps required 765
_ T macro 765
TCHAR data type 765
wchact data type 765

using value semantics 757
CString objects

as actual strings 760
operations 761-762
with variable argument functions, using 762

CTime
range 119
SYSTEMTIME support 118
time_ttype 119
timestamp columns 531

CTime class
date and time management 348-350
described 118

CTimeSpan class
described 118
elapsed date and time values 348,350

CToolBar class
and CMainFrame 59
bitmaps for buttons 96
changes in MFC 4.0 771
described 91
toolbars 771

cTRL+Double-click, tip 168

CTypedPtrArray class
described 192
member functions

ElementAt 192
GetAt 192
operator [] 192

operator 198
CTypedPtrList class 192
CTypedPtrMap class

described 193
GetNextAssoc member function 193
member functions, GetNextAssoc 193

Current record
and the edit buffer 788
defined 216
recordset 667
scrolling 667

Cursor library
bUseCursorLib parameter 531
controlling cursor library loading 531
controlling whether used 675
ODBC

and Level 1 drivers 530
defined 529
dynasets 530
explained 529
redistributing 529
snapshots 530

using 531
Cursors

database, defined 393
defined 528
key set-driven, dynaset 393
samples provided 204

Custom Clipboard formats, checking for 176
Custom events

adding 398-401
described 395
stock names for 401

Custom Font property
described 567
modification to control code 568
notification of changes 570

Custom formats, registering Clipboard 179
Custom methods

adding 484
compared to stock methods 484

Custom Picture property
adding with ClassWizard 574
described 572
modification of

control code 575
Get function 575
OnDraw 575
OnResetState 575
Set function 575

Custom properties
compared to stock properties 643
described 640
member variable

described 643
with get/set methods 643
with notification 643

overview 643
parameterized member variable 644
types of 643

Custom verbs, OLE controls 497
CUSTOM_ CTL_SCODE, using 579
Customizing File Open dialog 493
Cut command, implementing 177
CView class

accessing documents 66
App Wizard 65
Class Wizard 65
default command routing 44
described 5,57,64
displaying data 68
drawing 69
frame windows 57
member functions

OnDraw 33-34
OnInitialUpdate 28
OnPrepareDC 33

print preview 77
printing 71, 77
printing with 630-632
relationship with documents 64
scaling 72
scrolling 72
user input 71

CWinApp class
and AppWizard 19
described 6,18,444
handler functions, help related 444
help handler functions 444

CWinApp class (continued)
member functions

DragAcceptFiles 22
EnableShellOpen 22
ExitInstance 20
LoadStdProfileSettings 22
OnContextHelp 442
OnHelp 442
OnHelpIndex 442
OnIdle 20, 36
Process WndProcException 121
RegisterShellFileTypes 21
Run 20,38,43
WinHelp 438,442

overridable member functions 19
special services 21

CWindowDC class 33
CWinThread objects, retrieving exit code 523
CWndclass

andHWND 29
described 28-29
member functions

Create 29-32
Default 32
DestroyWindow 32
Detach 33
GetDlgltem 88
OnClose 32
OnNcDestroy 32
PostNcDestroy 32
SendMessage 50

CWnd constructor

D

calling Windows APIs 60
creating child windows 60

DAO
absolute position, recordset 306-307
accessible data sources

described 326
ISAMs 326
MS Jet (.MDB) 326
ODBC 326

accessing collections
described 244
functions for 246

accessing TableDefs collection 244
action queries 273

Index

835

Index

836

DAO (continued)
adding records 302
AFX_DAO_ALL_INFO 247
AFX_DAO_FIRST, finding recordsets 310
AFX_DAO-LAST, finding recordsets 310
AFX_DAO_NEXT, finding recordsets 310
AFX_DAO_PREV, finding recordsets 310
AFX_DAO_PRIMARY_INFO 247
AFX_DAO_SECONDARY_INFO 247
all infonnation 247·
and ODBC, caching multiple records 314
Application object 218
application steps 229
AppWizard 229
articles about 220
attaching external tables

described 253,255,258
example 256
ISAM databases 257
life of link 257
perfonnance 254
perfonnance tips 259
procedure 256
table names 257
uses 256

attaching vs. opening directly 253
base table, defined 317
binding records dynamically

described 292
recordset 292, 311
retrieving individual columns 292
using CDaoRecordset directly 292

bookmarking recordset records 305
bookmarks, example 306
Btrieve 253
buffering, double

described 288
Switch to control 280

bulk queries 332
C++ classes, non-MFC 111
caching multiple records

cache size 315
configuring caches 315
example 315
filling caches 315
how DAO uses cache 314
limitation to ODBC 314
rationale 314

DAO (continued)
caching mUltiple records (continued)

recordset 314
when to cache 314

calling DAO directly 337
cascade deletes 331
CDaoDatabase objects 230, 248
CDaoRecordset, binding records dynamically 292
CDaoRecordset class 290
CDaoRecordset objects 230
CDaoWorkspace class 322
CDaoXInfo structures

AFX_DAO_ALL_INFO 247
AFX_DAO_PRIMARY_INFO 247
AFX_DAO_SECONDARY_INFO 247
all infonnation 245
as input parameters 247
contents 244
cost of obtaining infonnation 248
cumulative levels of infonnation 248
described 244
example 244
levels of infonnation, cumulative 248
primary infonnation 245
secondary infonnation 245

choosing DBMSs 227
Close member function

described 236
effect on collections 236
releasing DAO objects 236
releasing memory 236
results of 236

closing DAO objects
described 232, 236
results of 236

collections
accessing 244
adding to 234
database engine 327
default object in 244
defined 243
described 243,249
errors 327
Fields collection, of recordset 293
functions for accessing 246
GetXCount functions 246
GetXInfo functions 246
how MFC exposes collections 243
how MFC treats collections 269

DAO (continued)
collections (continued)

Indexes collection, of recordset 293
information in 245-246
information obtained from 244
obtaining information 245
Recordsets collection 249,293
TableDef 318
workspace 323, 327

console applications with DAO 229
construction, 2-stage

described 232
object creation 232
object opening 232

Container object 218
Control object 218
Create action, meaning of 234
Create member functions 233
CreateField member function 234
CreateIndex member function 234
CreateRelation member function 234
creating applications 229
creating DAO objects 232-233
creating external tables 258
creating querydefs 262
creating recordsets

described 297
from QueryDefs 298

creating Tabledef indexes 319
creating Tabledefs 319
DAO objects, accessing implicit 237
DAO or ODBC 110
Data definition language (DDL) support 337
data sources accessible

described 326
ISAMs 326
MS Jet (.MDB) 326
ODBC 326

data sources you can access 336
database applications

CDaoDatabase objects 230
CDaoRecordset objects 230
defined 225
design options 227
steps in writing 229
View options 226

database engine
access to 219
collections 327

DAO (continued)
database engine (continued)

described 227,323,326
how MFC exposes 326
initializing 327
properties, accessing 328
uninitializing 327

Database objects
accessing 250
and workspaces 249
Databases collection 249
defined 249
described 248
explicit creation of 250
external databases 249
implicit creation of 250
ODBC data sources 249
persistence of 250
querydefs collection 249
Recordsets collection 249
Relations collection 249
roles of 250
TableDefs collection 249
using 251

database objects, using 251
Database options in App Wizard 229
database overview 334
database support 495
databases, accessing

described 221
implicit 237

dBASE 253
DBCS and DAO 229
DBEngine object 218, 323, 326
DBMS choices 227
DBMS-independent applications 227
Debug object 218
default objects in collections 244
default recordset type 280
default workspace

described 324
opening explicitly 325

defined 221,334
deletes, cascade 331
deleting records

described 302
recordset 304

Index

837

Index

838

DAO (continued)
derived recordset classes

AppWizard role 292
ClassWizard role 292
described 275,292
role of wizards 292

design options
database applications 227
examples 227

DFX
altering wizard code 277
AppWizard 275
binding, dynamic 276
buffering, double 288
CDaoRecordset, using directly 276
Class Wizard 275
data type conversions 282
derived recordset classes 275
described 275
double buffering 288
dynamic binding 276
joins 275
Long binary objects 282
MFC's role and your role 276
open sequence, recordset 285
recordset open sequence 285
recordsets, binding dynamically 276
scrolling, role in 285
scrolling sequence 285
sequence, recordset opening 285
sequence, scrolling 285
using CDaoRecordset directly 276
wizard code, altering 277
wizard code, working with 277
wizard role in 275

DFX functions
double buffering 282
memory, preallocating 282

differences in MFC 219
directly executing queries 268
DLLs with DAO 229
Document object 218
DoFieldExchange mechanism

described 275
type safety 275

double buffering
and edit buffer 288
defined 288
described 288

DAO (continued)
double buffering (continued)

master switch, meaning of settings 289
Switch to control 280

double buffering records
AFX_DAO_DISABLE_FIELD_CACHE

option 289
AFX_DAO_ENABLE_FIELD_CACHE

option 289
controlling field by field 288
controlling for whole recordset 289
defaults 288
dwBindOptions parameter to DFX

functions 289
effects 290
example, field-by-field control 289
example without double buffering 288
fields not buffered by default 288
Large data types 288
m_bCheckCacheForDirtyFields data

member 289
not using double buffering 288
performance implications 288
performance tips 290
procedure for controlling 289
turning on or off 289
using 288
using SetFieldDirty 288
using SetFieldNull 288
variable-length fields 288
when data is double buffered 290

dynaset-type recordsets, using 239
editing existing recordset records 303
editing records 302
engine, database

described 227
how MFC exposes 326

error codes 417
Errors collection 327
examining Tabledef schema 321
example class, recordset 295
examples

accessing implicit workspace 237
accessing tabledefs collection 244
attaching external tables 256
binding records dynamically 312
bookmarking records 306
constructing recordsets 233
creating recordsets from QueryDefs 299

DAO (continued)
examples (continued)

data migration, no view 228
database application design 227
examining database schema 322
field-by-field control, double buffering

records 289
Form with list box 228
form-based applications 228
GetDefaultSQL 265
implicit workspaces, accessing 237
joins 332
list or tree view 228
multiple forms 228
obtaining information about querydefs 247
opening recordsets 233
opening Tabledefs 320
Quick SQL pass-through queries, 274
transactions 330
using databases 251
using m_strFilter 264
using transactions 251
using WHERE clause 265
using workspaces 251

Excel 253
exceptions, example 418
exchanging data in recordsets 275
executing queries directly 273
exposing DAO collections in MFC 243
external data sources

attaching 253,255
Btrieve 253
creating external tables 258
dBASE 253
defined 252
described 252
Excel 253
FoxPro 253
ISAMs 252
Jet databases 253
list of 253
Lotus 253
MS Access Advanced Topics book 255
MS Access Developer's Toolkit 255
MS Jet databases 252
ODBC 252
opening directly 254,257
ORACLE Server 253
Paradox 253

DAO (continued)
external data sources (continued)

performance tips 259
refreshing links 258
removing links 258
SQL Server 253
SYBASE SQL Server 253
text files 253

external tables, attaching 255
field exchange mechanism 275
Fields collection, recordset 293
filtering queries

and table-type recordsets 265
described 263
example using WHERE clause 265
GetDefaultSQL example 265

filtering recordsets
described 264
example with m_strFilter 264
GROUP BY clause 264
HAVING clause 264
limits on m_strFilter and m_strSort 264
m_strFilter 264
mechanisms, performance with 264
two MFC mechanisms 264
WHERE clause 264

finding
records in recordsets 300
recordsets 308

Form object 218
FoxPro 253
functions for accessing collections 246
GetXInfo functions, information from 246
Group object 218
Implicit CDaoDatabase, accessing 237
Implicit CDaoWorkspace, accessing 237
Implicit DAO objects, accessing 237
Implicit workspace, accessing 324
in console applications 229
in DBCS applications 229
in DLLs 229
in multithreaded applications 229
in OLE controls 229
in Unicode applications 229
Indexes collection, recordset 293
information

about objects, obtaining 245
by topic 222-224
from collections 244

Index

839

Index

840

DAO (continued)
information structures

all information 245
Caution, using Secondary or All

infonnation 245
cost of obtaining infonnation 248
cumulative levels of infonnation 248
described 244
example 244
levels of infonnation, cumulative 248
primary infonnation 245
secondary infonnation 245

installable ISAMs 227
installed ODBC drivers 111
installing database support 111
installing ODBC drivers 111
ISAM databases 227
Jet database engine 227
Jet databases 253
joins

described 275, 332
example 332
WHERE clause 275

key DAO Help topics 224
list of database tasks 230
Long binary objects 282
Lotus 253
m_bCheckCacheForDirtyFields data member

double buffering records 289
meaning of settings 289

m_bCheckCachesForDirtyFields member 280
m_nDefaultType member 280
mapping DAO to MFC 217
MBCS and DAO 229
member functions

Close 236
Create 233
CreateField 234
Create Index 234
Create Relation 234
creating subordinate objects with 234
Open 235

MFC, exposing collections 243
MFC database documentation 338
MFC document/view architecture

described 226
dialog-based applications 226
unused document 226
unused document/view 226

DAO (continued)
MFC documentation

described 221
vs. DAO SDK documentation 221

MFC encapsulation of
described 217
extent of 217
fields 217
indexes 217
parameters 217
relations 217

Module object 218
moving to record set records 300
MS Access, creating querydefs easily 267
MS Excel 253
MS FoxPro databases 253
MS Jet database engine, role of 227
MS Jet engine versions installed 111
MS SQL Server 253
multithreaded applications with DAO 229
navigating in recordsets 300
non-MFC C++ classes 111
objects

closing 232,236
creating 232-233
list of articles about 222
opening 232,234
persistence of 250

objects not exposed in MFC
accessing 219
described 218

obtaining infonnation
about DAO objects 245
about querydefs 247
from a collection 244

ODBC data sources
described 227,252-253
perfonnance tips 259

ODBC drivers
32-bit 253
installed 111
installing 111

ODBC or DAO 110
OLE controls with DAO 229
Open action, meaning of 235
Open member functions 235
open state of objects 234
opening DAO objects 232, 234
opening default workspace explicitly 325

DAO (continued)
opening external databases directly

decribed 254,257
enumerating tables in external databases 254
manipulating table structure 254
non-ODBC sources 254
performance 254
procedure 257
table-type recordsets not available 258
tables names 257
when you should 254

or ODBC, database 110
ORACLE Server 253
overview articles on 222
Paradox 253
parameter names, recordset 297
parameters

building queries at run time 268
defined 268
example 268
improved speed 268
named rather than positional 268
queries based on calculations 268
queries based on user input 268
results of 268

parameters, querydef 268
PARAMETERS clause 265
paramterizing queries

described 263,265
PARAMETERS clause 265
performance 265
procedure 266
setting parameter values 266

pass-through queries
described 273
quick 274

Percent position, recordset 306-307
performance

attached tables 241
attaching external tables 254
best tip 239
bookmarks 241
caching 240
caveat 238
design of data 239
double buffering 240
external databases 238
features, recordset 294
finding records 241

Index

DAO (continued)
performance (continued)

floating point numbers 242
kinds of 238
locating records 238,241
memo data 242
normalizing databases 239
ODBC 238, 240
opening databases 241
optimal for ODBC 254
parameterizing queries 265
query speed 238
recordset types to use 239
scrolling 238
selecting records 239
SQL 241
tips 238
transactions 241
up-to-date content 238
using Find 241
using MS Access to improve data design 239
using Seek 241
using the MS Jet database engine to save coding

work 242
with ODBC data 240

performance tips
avoiding jumps to last record 259
avoiding local processing 260
avoiding scrolling 259
buffering, double 260
bulk operations 260
caching records 260
double buffering 260
external data sources 259
forward scrolling 259
ODBC data sources 259
retrieving only essential data 259
using dynasets 259

permissions, updating records 302
persistence, workspace 324
primary information 247
Programming model

described 335
similarity to MS Access 335
similarity to MS Visual Basic 335

Property object 218
queries

action queries 273
creating with querydefs 262

841

Index

842

DAO (continued)
queries (continued)

creating with recordsets 262
defined 261
defining 267
described 261
direct execution 268
example, in SQL 261
executing 273
filtering 263
parameterizing 263-264
pass-through 273
querydef 262
Quick SQL pass-through queries, example 274
recordset, creating 262
recordset, creating from tabledef 262
recordset, creating with 262
recordsets 262
restricting selections 263
SQL 261,263
SQL, syntax 261
SQL, writing 261
stored 267
types 261
using querydefs 263
using tabledefs 263

querydefs
accessing querydef fields and parameters 269
action queries 273
advantages 267
Append member function 270
appended state, described 272
appending 270-271
collections 268
Create member function 270
creating 262, 269-270
creating easily 267
creating recordsets 268, 272, 298
creating with MS Access 267
defined 267
described 267
directly executing 273
directly executing queries 268
dynamically setting/getting field values 270
dynamically setting/getting parameter

values 270
executing 273
field values, setting/getting dynamically 270
Fields collection 268

DAO (continued)
querydefs (continued)

infonnation about 247
member functions, described 270
multiple recordsets from 273
ODBC 270
opening 271
opening saved 271
parameter values, setting/getting

dynamically 270
parameters 268
Parameters collection 268
pass-through queries 273
persistent 271
previously saved, opening 271
properties, setting 270
QueryDefs collection 268,271
quick SQL pass-through queries 274
recordset types creatable from 298
recordsets, creating 272
recordsets, multiple 273
saving 271
setting properties 270
setting/getting field values dynamically 270
setting/getting parameter values

dynamically 270
specifying SQL 269
SQL pass-through queries, executing 273
SQL pass-through queries, quick 274
SQL pass-through query, executing 273
states, listed 272
stored, opening 271
storing 271
temporary 269
temporary, accessibility of 272
temporary, characteristics of 271
temporary, defined 271
temporary state, described 272
unappended state, described 272
using 268-269

quick SQL pass-through queries 274
record positions, recordsets 305
recordset type, default 280
recordsets

See also Caching multiple records
absolute position 305-307
adding records 302
AddNew member function 302
AFX_DAO_FIRST 310

DAO (continued)
recordsets (continued)

AFX_DAO_LAST 310
ABCDAO_NEXT 310
AFX_DAO_PREV 310
based on 291
basing on querydefs 298
basing on tabledefs 298
best uses for 291
binding parameters dynamically 313
binding records, in derived classes 311
binding records dynamically 292,311-312
bookmarking records 305-306
bookmarks 305-306
caching mUltiple records 314
CanScroll member function 300
CanUpdate member function 304
CDaoRecordset class 290
characteristics of types 291
class features 292
Close/Open vs. Requery 305
collections, in DAO 293
creating 297
creating from querydefs 272, 298
creating without QueryDefs 299
DAO collections 293
data members 280, 292, 295-296
defined 291
Delete member function 304
deleting records 302,304-305
derived classes 275
derived recordset classes 292, 297
described 290
DoFieldDynamic binding 292
DoFieldExchange member function 292
dynamic or not 291
dynamically binding records 311
dynamically setting/getting parameter

values 311
dynaset-type 291-292
Edit member function 303
editing records 302-303
editing records, and SetFieldDirty 303
editing records, and SetFieldNull 303
editing records, cautions 304
editing records, procedure 304
editing records, with double buffering 303
example, class 295
example, creating recordset from querydef 299

Index

DAO (continued)
recordsets (continued)

features, class 292
Fields collection 293
filtering 264
Find, example 310
Find, filtering 310
Find, limitations 308
Find, overriding 310
Find, uses 308
Find, using 309
Find family of functions 310
Find member function 310
Find vs. Seek 308
FindFirst member function 310
finding 308
finding records 300
FindLast member function 310
FindNext member function 310
FindPrev member function 310
Indexes collection 293
inherited SQL from querydef 272
limitations of 291
m_bCheckCacheForDirtyFields member 280
m_nDefaultType member 280
Move functions 301
moving to records 300
nature of SQL strings 299
navigating 300
operations 302
parameter names 297
Percent position 305-307
performance features 294,314
popUlating recordsets 302
QueryDefs 293
QueryDefs, types creatable from 298
record positions 305
recordset types creatable from querydef 298
Recordsets collection 293
refreshing recordsets 305
Requery, in MFC 305
Requery, changing m_strFilter 305
Requery, changing m_strSort 305
Requery in multi-user environments 305
Requery member function 305
Requery vs. Close/Open 305
requerying 305
running with new parameters 305
scrolling 300

843

Index

844

DAO (continued)
recordsets (continued)

scrolling functions 301
Seek,comparisons 308
Seek, example 308
Seek, keys 308
Seek, limitations 308
Seek, uses 308
Seek, using 308
Seek vs. Find 308
seeking 308
seen as current record in result sets 291
seen as rsesult sets 291
setting/getting parameters dynamically 311,313
snapshot-type 291-292
source of SQL 298
special data members 280
SQL, inherited from querydef 272
SQL strings, nature of 299
table of type characteristics 291
table-type 291
tabledefs 293
two faces of 291
types 239, 291
updatability 291, 304
Update member function 302-304
Update permissions 302
updating records 302-303
using CDaoRecordset directly 297
ways to use 297
what recordsets represent 291
when to use dynaset-type 239
when to use snapshot-type 239
when to use table-type 239

refreshing external links 259
Recordsets collection

not exposed in MFC 249
not wrapped in MFC 293

removing external links 259
Report object 218
requerying recordsets 305
saved queries 267
schema, database

and collections 321
examining 321
examining, example 322
example, examining 322
information available 322

Screen object 218

DAO (continued)
scrolling in recordsets 300
SDK classes 220
SDK components installed 111
secondary information 247
Section object 218
security

described 219
providing in MFC 219
SYSTEM.MDA file 220
via DAO SDK 220

seeking recordsets 308
SetParam Value member function 266
setting parameter values

described 266
SetParam Value member function 266

snapshot-type recordsets, when to use 239
SQL

information about 263
pass-through queries 273-274
strings 299
syntax 263,300

SQL Server 253
stored queries 267
syntax, SQL 300
table-type recordsets

and base table 321
limitations 321
uses 239,321

Tabledefs
adding fields 319
attached table, defined 317
attributes, setting 319
base table, defined 317
collections 318
creating 319
creating indexes 319
creating table-type recordsets 320
creating with MS Access 319
defined 317
examining database schema 321
fields, adding 319
fields collection 318
indexes, creating 319
indexes collection 318
opening existing 320
schema, examining 321
setting attributes 319
using 317, 319

DAO (continued)
Tables, attaching external 253
tasks

cross references to 230
listed 230

temporary querydefs
accessibility of 272
appending to collections 272
creating recordsets 272
described 271
names 272

text files 253
transaction spaces

described 330
separate, opening 330,332
workspace 330

transactions
bulk queries 332
cascade deletes 331
defined 329
described 329
example 330
in typical scenario 251
managing 329
using implicit Workspace objects 252
workspace 323

two-stage construction 232
Unicode and DAO 229
updating records

described 302
permissions 302

User object 218
variable-length fields, double buffering records 288
View options

described 226
multiple records simultaneously 226
mUltiple views 226
one record at a time 226

vs. ODBC, choosing 335
when data is double buffered 290
WHERE clause, joins 275
which DBMS 227
wizard code, working with 277
workspace

access to database engine 323,326
as transaction space 323
collections 323
database engine access 323,326
DB Engine object 323, 326

Index

DAO (continued)
workspace (continued)

default 324-325
defined 323
described 322
engine, database, access to 323,326
implicit, accessing 237, 324
Jet database engine 323,326
managing transactions 252,329
MS Jet database engine 323,326
opening separate transaction spaces 330,332
persistence 324
roles 324
transaction, defined 329
transaction spaces 330
transactions 323
transactions, managing 329

Workspace objects
typical scenario 251
using 251

Workspace pointer
obtaining 237
uses 238

Workspaces collection 327
writing database applications 225,229

DAO Record Field Exchange (DFX)
See also DFX functions
adding records 286
AddNew calls, sequence of DFX operations 286
AppWizard 278
binding columns 283-284
binding parameters 284
CDaoFieldExchange 280
Class Wizard 278
comment brackets 279,281
common data types 279
data types

described 282
in DFX functions 282

deleting records 287
described 275
DFX and DDX 275
DFX functions 279
DoFieldExchange function 275,279
double buffering 283
dynamically binding columns 275
edit buffer 283
Edit calls,sequence of DFX operations 286
editing records 286

845

Index

846

DAO Record Field Exchange (DFX) (continued)
field data members 278
field map 279
joins 275
m_nFields data member 281
m_nParams data member 281
parameterized recordsets 275
process 283, 284
recordset example 278
recordsets

edit buffer 283
field data members 283

sequence 284
SetFieldType function 279
SQL 283
the framework's role 276
updating records 286
when to use 275
wizard-created elements 278
your role 276

DAO SDK Documentation 339
Data

application
and CDocument 65
and documents 65
and serializing 66

displaying in views 68
Data access objects See DAO
Data binding

described 599
key concepts 599
options provided by Class Wizard 600
Set function modification, example 601

Data definition language (DDL) 755
Data manipulation language (DML) 749
Datamaps 87
Data objects (OLE)

available media 344
defined 340
retrieving data 344
role, described 340
using in Paste operations 341
using with drag and drop 341
when to create 340
when to destroy 341

Data sources (ODBC)
adding tables 755
altering tables 755
configuring 344-345,531,533

Data sources (ODBC) (continued)
connections

and CDatabase 534
CDatabase object 345
defined 345
described 534
ODBC drivers 345
reusing CDatabase object 347

creating indexes 755
defined 344,534
determining schema 347
direct SQL calls 755
dropping tables 755
generalizing connection strings

approaches 346
described 346
example 346

installation calls 345
multiuser environment 346
transactions 785

Data sources (OLE)
and data objects 341
defined 340
determining available formats 343
inserting data 342
role, described 341
when to create 341-342
when to destroy 342

Data structures
See also Collection classes
frame allocation 468
heap allocation 469

Data transfer, defjned 339
Data types

andSQL 754
DAO Record Field Exchange 282
mapping 754
Record Field Exchange 661
SQL and C++ 749

Data validation (DDV) dialog box 87
Database applications

and documents 507
defined 225
serialization 510
with file support 511
with minimal user interface 511
with serialization 511

Database applications (continued)
without documents

described 508,511
writing 511

writing 225
Database classes

AppWizard 536
DBMS 353
document/view architecture 506
documents 506
MFC

defined 110
restrictiveness of model, alternatives 715

ODBC
described 748-749
drivers supported 528

ODBCAPI531
snapshots 747
SQL 748-749
SQL keywords 749
transaction support 786
without documents 508

Database classes (ODBC)
and documents 536
andODBC 536
andSQL 536

Database engine, DAO
See also DAO, database engine
access to 219
described 323, 326
MFC, exposing with 326

Database overview 334
Database schema, examining 321
Databases

See also DAO; Exceptions
AppWizard

document options 509
options 509
view options 509

calling ODBC or DAO directly 337
CDaoRecordset class 507
CDaoRecordView class 506
choosing DAO vs. ODBC 335
client/server 110
components of MFC database classes 109
connecting to data sources 347
CRecordset class 507
CRecordView class 506

Databases (continued)
cursor library

bUseCursorLib parameter 531
using 531

DAO, defined 334
DAO or ODBC 110, 335
data access objects (DAO) 495
data sources you can access 336
determining the schema 348
disconnecting from data sources 347
document or view stores

CDaoRecordset 507
CDatabase 508
CRecordset 507

document/view architecture 506, 508
documents

as proxies for CDatabase objects 507
not needed 509
usage 507

exceptions
approaches to handling 416
described 416-417

form-based applications 506
installed ODBC drivers 111
installing

database support 111
ODBC drivers 111

MFC
components 109
described 109
when to use 110

MFC classes, components 1 09
MFC database classes

choosing between DAO and ODBC 110
DAO or ODBC 110
ODBC or DAO 110
programming model 110

Index

similarity to MS Access and Visual Basic 110
using 110
when to use 110

MFC database documentation 338
MFC support, overview 109
minimal documents 509-510
multiple CRecordset objects 508
multiple CRecordView objects 508
no file support 740
ODBC drivers

installed 111
installing 111

847

Index

848

Databases (continued)
ODBC or DAO 110
ODBC setup and administration programs, ODBC,

defined 334
programming model

similarity to MS Access 335
similarity to MS Visual Basic 335

writing 531
overriding OnPrint for forms 508
positioned updates 529-530
record field exchange (RFX) 507
restrictiveness of MFC model, alternatives 715
SQLSetPos API function 529-530
static cursors 529
support 4
timestamp columns

and CTime 531
and Requery 530
described 530
issues 530

updatability requirements 529
using serialization 508, 739
with documents/views 506
with file support 511
with serialization 511
without documents 507, 511
without documents/views 508
without file support 510
without serialization 510

Databases (DAO)
exceptions, example 418
overview 534

Databases (ODBC)
exceptions, example 417
return codes 417

Datagram sockets 796
Date and time

calculating elapsed time 349,352
formatting time strings 349,352
getting the current time 349,352

Date management
described 348, 350
SYSTEMTIME structure handling 349

DBCS
and CString class 757
applications with DAO 229
defined 353
support 4

DB Engine object, DAO 323, 326

DBMS
and ODBC drivers 750
Data Manipulation Language (DML) 756
described 353

DDE requests, and File Manager 63
DDP _ functions

table of 560
usage of 559

DDV (dialog data validation) 87
DDX See Dialog data exchange (DDX)
DDX_Field functions, foreign objects 169
Debug libraries, linking with for debug builds 358
Debug memory allocation, changes 497
Debug options, setting 358
Debug output, 32-bit 360
_DEBUG symbol. 358
DEBUG_NEW macro

and new operator 371
described 119,371

Debugging
32-bit debug output 360
afxDump 359
arranging debugger and debuggee 353
ASSERT macro 361
callback functions 355
container application, tip 355
containers and servers simultaneously 355
DEBUG_NEW macro 371
debugger obscuring debug gee 353
described 769
diagnostics 357-371
features

enabling 358
overview 358

hard-coding breakpoints 353
memory leaks, snapshots for locating 365
multiple applications 353
OLE applications 354
OLE controls 768
output

described 361
destinations 360
under Windows 361

remote 354
server applications

setting program arguments 356
special tips for SDI servers 356
starting the server 355

testing tools 356

Debugging (continued)
TRACE macro 360
using TRACER 353-354
viewers and spy programs 357

DECLARE_DISPATCH_MAP macro 482
DECLARE_DYNAMIC macro

described 114, 182-185
run-time class information 115

DECLARE_DYNCREATE macro 114
DECLARE_EVENT _MAP macro 395
DECLARE_SERIAL macro 114, 730
Default member function

and destroying frame windows 60
CWnd class 32

Default workspace 324
Delayed rendering, defined 343
delete operator

advantages 467
and window classes 32
described 467

DeleteContents member function
and document cleanup 76
CDocument class 65

Deletes, cascade transaction 331
Deleting

array elements 200
exception objects 408-410
list objects 200
map elements 201
objects in a CObject collection 199
records

DAO 302
DAO Record Field Exchange 287
Record Field Exchange 665
recordset 685

Deriving from CObject
basic functionality, described 181
overhead for classes derived 180
support for

dynamic creation 181
run-time class information 181
serialization 181

Deserialization See Serialization
Desktop window 59
Destroying

frame windows 60
recordsets 673
window objects 32

DestroyWindow member function, CWnd class
and destroying frame windows 60
described 32

DestructElements helper function, collection
classes 194

Destruction
data object (OLE) 341
data source (OLE) 342

Detach member function, CWnd class 33
Determining the schema (ODBC) 348
Development strategies

modifying
MFC 2.0 OLE 1 applications 626

Index

MFC 2.0 or higher non-OLE applications 626
non-MFC applications 626

writing new OLE applications 626
Device contexts

and view drawing 70
described 33, 555

DFX See DAO Record Field Exchange (DFX)
DFX functions

CDaoFieldExchange 281
DAO Record Field Exchange 279
DoFieldExchange function 281
field data members 282
parameters 281
syntax 281
writing custom functions 281

Diagnostic services
assertions 120
memory diagnostics 119
output 120
requirements 119

Diagnostics
debugging, features of 357-371
dump context 114
enabling debugging features 358
memory

afxMemDF values 366
allocation tracking, effects on program 357
enabling or disabling 366
leaks, detecting 365
table of afxMemDF values 366

support provided by CObject class 114
turning features on and off 357

Dialog bars
as modeless dialog boxes 97
compared with toolbars 97

849

Index

850

Dialog bars (continued)
deriving classes 97
described 79,94,97

Dialog box controls
corresponding classes 90
creating 92

Dialog boxes
access to controls 87
Change Icon

defined 372
when to use 372

characteristics specified by template 80
closing 85
components 80
Convert

defined 372
when to use 372

Create member function 83
creating

and displaying 83
described 80

data exchange (DDX) 85
data map 87
data validation (DDV) 87
DDV 87
DDX 87
default command routing 44
described 30, 79
dialog data exchange (DDX) 85
Edit Links

defined 372
when to use 372

exchanging data with dialog objects 84
handling Windows messages 84
initializing 84
Insert Object

defmed 372
when to use 372

inserting an OLE control 544
life cycle 83
modal

creating 83
destroying 85
life cycle 83
vs. modeless 80, 83

modeless
creating 83
destroying 85
life cycle 83

Dialog boxes (continued)
OLE 371
Paste Special

defined 372
when to use 372

Server Busy
defined 372
when to use 372

setting background color 84
testing 81
Update Links

defined 372
when to use 372

validation (DDV) 87
Dialog data exchange (DDX)

and CDaoRecordView 719
and CRecordView 719
and record field exchange 719
data map 87
described 84, 85
for record views 167
foreign objects 169
form-based applications 507
forms 719
record field exchange, diagram 719
Technical note 87

Dialog editor
creating dialog boxes 81
creating property pages 649

Dialog objects, exchanging data with dialog boxes 84
described 166
styles 166

Dialog templates, used in memory 83
Dialog-bar buttons, updating 52
Dialog-template resource

components of dialog boxes 80
record views

Dialogs, common
described 493
new 493

Difference member function, CMemoryState class,
detecting memory leaks 366

Direct calls
toDAO 337
toODBC 337

Disabling memory diagnostics 366
Disconnecting from data sources 347
DISP _FUNCTION macro 484-485
DISP YROPERTY macro 643

DISP _PROPERTY _EX macro 643, 645
DISP _PROPERTY _NOTIFY macro 643
DISP _STOCKPROP macro 640
DISP _STOCKPROP _BACKCOLOR property 642
DISP _STOCKPROP _BORDERSTYLE property 642
DISP _STOCKPROP _CAPTION macro 641
DISP _STOCKPROP _CAPTION property 642
DISP _STOCKPROP _DOCLICK macro 483
DISP _STOCKPROP _ENABLED property 642
DISP _STOCKPROP _FONT property 642
DISP _STOCKPROP _FORECOLOR property 642
DISP _STOCKPROP _HWND property 642
DISP _STOCKPROP _REFRESH macro 483
DISP _STOCKPROP _TEXT property 642
Dispatch interface, OLE Automation class 171
Dispatch map

compared to custom methods 483
custom method entry 485
declaring 482
defining 482
described 482
entry

for custom methods 484
for custom properties 645
for stock methods 483
for stock properties 640-641

Distributing applications See Distribution
Distribution

applications 102
DLLs 379
OLE components 102

DLLs (Dynamic-link libraries)
AFXDLL

common usage 379
files to distribute 388
naming conventions 387
rebuilding 380
restrictions 380
using 380
when to rebuild 380

common usage 377
defined 377
different types 377
dynamically linking to MFC, restrictions 378
exporting classes

using decorated names 382
using ordinals 382
without using decorated names 381

Index

DLLs (Dynamic-link libraries) (continued)
extension

building 381
common usage 380
compared to AFXDLLs 381
creating the header and definitions files 381
defined 378,379,380
exporting classes 381
naming conventions 379
restrictions 379
sample 381
use of AfxInitExtensionModule 381
using the import library 382

generic 496
import libraries

creating 383
using 382
using in a Shared Version of the Regular

DLL 384
using in a Static Link Version of the Regular

DLL 383
using in a USRDLL 383

initializing
AFXDLLs 385
Static Link Version of the Regular DLL 385
USRDLLs 385

MFC
3D controls in static 496
MFCUIx32.DLL replaced 495
new DLL model 496
OLEDLG.DLL 495
regular DLLs 460
USRDLL obsolete 496

Microsoft Foundation Class Library support 377
multithreading restrictions 386
naming conventions

AFXDLL 387
described 387
Static Link Version of the Regular DLL 388
USRDLL 388

passing object pointers 387
redistribution 379
RegularDLL

dynamically linked 378
restrictions 378

samples 387
Shared Version of the Regular DLL

common usage 384
defined 384

851

Index

852

DLLs (Dynamic-link libraries) (continued)
Shared Version of the Regular DLL (continued)

restrictions 378, 384
using the import library 384

Static Link Version of the Regular DLL
common usage 382
defined 377, 382
files to distribute 389
naming conventions 388
restrictions 378, 383
using the import library 383

statically linking to the Regular DLL 377
tuning for reduced working set 496
Unicode support 388
use of AfxInitExtensionModule 385
using MFC USRDLL 460
using OLE in DLLs 385
USRDLL

common usage 382
defined 382
files to distribute 389
naming conventions 388
restrictions 383
using the import library 383

Windows Sockets 792
withDAO 229

Dockable toolbars
creating with App Wizard 774
defined 774
described 79
docking toolbars 775
enabling toolbars for docking 774
floating toolbars 775
MFC support for 775
restoring settings 775
when toolbars cannot dock 774

DOCKTOOL 771
Document frame windows 6
Document templates

creating
described 19, 23
example 23

described 6,22
list of 24
multiple document types, supporting 23
New command 23
Open command 23
registering 20

Document templates (continued)
relationship to other classes 24
storage of pointers to 23

Document/view architecture
alternatives 509
and database classes

alternatives 509
described 506

database 506
described 373
in database applications 508
not using 508

Document/view options, AppWizard 509
Documentation

DAOSDK 339
MFC 4
MFC database classes 338
ODBCSDK 339
OLE classes 102

Documents
application data 65
as database proxies 507
CDocTemplate class 60
cleanup 75
creating

described 24, 60
illustrated 25

CRuntimeClass 60
database applications

models for use 507
role in 507

database classes 506
default command routing 44
described 5,57
destructor 76
form-based applications 508
implementing data, useful classes for 66
initializing 28, 75
life cycle 75
minimal 509-510
multiple 72
print preview 77
printing 77
relationship to other classes 24
relationship with view 64
serialization 67
views

described 63-64
function 65

Documents (continued)
views (continued)

separation of data and display 64
windows, division of labor 57

without serialization 510
DoDataExchange function, customizing for property

pages 559
DoDataExchange member function

CDialog class 86
foreign objects 169

DoFieldExchange function
DAO Record Field Exchange 275,279
described 281,284,660,662,753
DFX functions 281
example 279, 658, 753
initialization 280,659
m_nFields data member 280, 659
overriding 279,658
pFX pointer 280, 659
Record Field Exchange 655,658
recordset constructor 280, 659
RFX functions 660

DoModal member function, CDialog class 84, 87, 92
DoPreparePrinting member function, CView class

described 634
printing 634

DoPropExchange member function
COleControl class 592-594
ControlWizard 592

DoSuperClassPaint member function 596
Double buffering

DAO Record Field Exchange 283
performance, recordset 294

Double buffering records
AFX_DAO_DISABLE_FIELD_CACHE option 289
AFX_DAO_ENABLE_FIELD_CACHE option 289
controlling when used 289
m_bCheckCacheForDirtyFields data member 289
Master switch 289

Double-Byte Character Sets defined 353
Drag and drop

calling DoDragDrop 374-375
customizing behavior

functions to override 375
overview 375

defmed 373
differences from File Manager 373
dragging between windows 373
features 373

Index

Drag and drop (continued)
general implementations 22
how to use 373
implementing drop sources 374
implementing drop targets

functions to override 375
procedure 374
registering the target window 374

implementing in non-OLE applications 375
initiating drag operations 374
move operations

handling 374
how your application knows a move has

occurred 374
when to delete data 374

possible uses 373
support, provided by CWinApp class 22
using data objects in 341
when to create COleDataSource objects 375

DragAcceptFiles member function, CWnd class 22
Drawing

classes See GDI classes
in views 69
mouse, directly with 71

Drivers
ODBC

32-bit, availability 534
described 533

Dump context 114
Dump member function

action, described 359
bracketing with #ifdef/#endif 359
CObject class 359-360
declaration, example of 359
example 359
overriding 359
uses, described 359

DumpAllObjectsSince member function 368
Dumping

memory statistics 367
object contents 359
objects

described 368
example 368
interpreting 369-370

DYNABIND sample 696
Dynamic

binding 729, 753, 755
construction of objects 733

853

Index

854

Dynamic (continued)
creation 181
reconstruction of CObjects 737
subc1assing 94

Dynamic-link libraries See DLLs
Dynamically binding columns

DAO Record Field Exchange 275
Record Field Exchange 655
record sets 695
tips 701-702

Dynamically resizing toolbars 775
Dynaset-type recordset 291
Dynasets

E

availability 393
behavior 392
creating 671
CRecordset class 392
cursor library 530
defined 392
driver requirements 392
extended fetching 393
keyset-driven cursors 393,530
ODBC Cursor Library 392-393
ODBC driver level 394
ODBC drivers 528, 747
other users 392
positioned updates 393
recordsets 666
snapshots

described 747
simultaneously 394

specifying recordset as 392
SQLSetPos API 393
updatability

described 393
requirements 393

uses
described 392
example 392

vs. snapshots 394,666

Edit
recordsets 712
tips 712-713

Edit buffer
and the current record 788
backups 284,662

Edit buffer (continued)
binding columns 283,661
described 283,661,788
recordsets 709

Edit menu commands, list 41
Edit verb 617
Editing

accelerator tables, with Visual C++ 444
records

DAO 302
DAO Record Field Exchange 286
Record Field Exchange 663

Editor, toolbar 773
ElementAt member function, CTypedtrArray class 192
Embedded items

defined 624
handling, Container application 209
usage 624

Embedded objects, serialization of 738
Embedded OLE controls, accessing 547
Empty recordsets (DAO), detecting 302,675
Empty states, client items 212
Enable member function, CCmdUI class 54
EnableShellOpen member function, CWinApp

class 22
Enabling

exception handling 402
memory diagnostics 366

Encapsulation of DAO 217
Encyclopedia

architectural articles 125
article contents 125
article structure 125
article titles 125
browsing 125
conceptual articles 125
cross references 125
database classes 125
hypertext jumps 125
navigation features 125
OLE 102
procedural articles 126
where to begin reading 126

END _DISPATCH_MAP macro 482
END_EVENT_MAP macro 395
END _EVENTSINK_MAP macro 542
END _MESSAGE_MAP macro 46
EndDialog member function, CDialog class 85, 89
EndDoc member function, printing 631

EndPage member function, printing 631
EndPaint function 33
Engine, DAO database, how MFC exposes 326
Enhancements in MFC 4.0, CFile 490
Entry macros, message maps 48
Error codes

table of 578-579
using 486,578,647

Errors, handling for OLE controls 577
Errors collection, DAO 327
Event handler, adding with ClassWizard 541
Event sink maps, adding with ClassWizard 541
EVENT_CUSTOM macro 398-399
EVENT_STOCK_CLICK event 396
EVENT_STOCK_DBLCLICK event 396
EVENT_STOCK_ERROR event 396
EVENT _STOCK_KEYDOWN event 396
EVENT _STOCK_KEYPRESS event 396
EVENT _STOCK_KEYPRESS macro 398
EVENT _STOCK_KEYUP event 396
EVENT_STOCK_MOUSEDOWN event 396
EVENT_STOCK_MOUSEMOVE event 396
EVENT_STOCK_MOUSEUP event 396
Events

custom 398-401
custom with stock names 401
described 551
map 395
overview 395
stock 396-398

Examining database schemas 321
Examples

examining database schema 322
opening DAO Tabledefs 320
setting wrap postions for fixed-style toolbar 776
transactions 330

Exception handlers
defined 403
predefined 403

Exception handling
described 120
enabling 402

Exceptions
See also Database exceptions
advantages of converting to C++ exceptions 407
AND_CATCH macro 404
C++, and MFC 120
C++ exceptions 120
CATCH macro 404,406,412-415

Index

Exceptions (continued)
catching 406-407
cleanup after, CString class 763
constructors, in 416
converting macros to C++ exceptions 407-408
database

approaches to handling 416
described 416
error codes for DAO 417

described 402
differences between macros and C++

keywords 408,410
in class library functions 403
macros, converting to C++ exceptions 407-408
mixing macros and C++ keywords 410
nested try blocks and catch blocks 411
objects, freeing

described 412
example 413
handling locally 413
throwing after destroying 414

opening a file, CFileException 434
possible causes 120
similarity to ANSI proposals 403
testing 417
THROW macro 405
THROW_LAST macro 405
throwing

described 403
from your own functions 414
procedure 415

thrown by class library 403
TRY macro 404,406,412-414
when to provide handlers 403
when to use 402

Exchange Version member function, COleControl
class 593

ExecuteSQL function, CDatabase
described 691
predefined queries 754
stored procedure calls 754

Exit code
preserving terminated CWinThread objects 523
retrieving

from active threads 523
from terminated threads 523
from user-interface threads 523
from worker threads 523

855

Index

856

ExitInstance member function, CWinApp class
application cleanup 75
called by WinMain 18
described 20

Extension DLLs
building 381
calling from an application 382
common usage 380
compared to AFXDLLs 381
creating header and definition files 381
defined 378-380
described 460
exporting classes

described 381
using decorated names 382
using ordinals 382
without using decorated names 381

multithreading restrictions 386
naming conventions 379
restrictions 379
samples 381,387
using 382
using AfxInitExtensionModule 381
using the import library 382

Extraction operator, class CArchive 735

F
F1 Help

described 441
OLE applications 443

Fl key, accelerator, defined for ID_HELP
command 444

Features
ClassWizard 150
discontinued, MFC 500
new

Class Wizard 150
MFC 497-499

Field map
DAO Record Field Exchange (DFX) 279

Fields
binding 284,662
data members

binding 284, 662
DAO Record Field Exchange 278
Record Field Exchange 657

defined 433
Fields (DAO), mapping to MFC 218

File access modes, compound files 213
File classes 116
File fragmentation, compound files 214
File Manager

and DDE requests 63
and frame window 63
drag and drop support

CWinApp class 22
differences from OLE 373

File menu
and data sources 740
and serialization 740
commands, listed 41
menu options 740
overriding handlers 740

File New command
creating frame windows 59
described 60
document initialization 76
MDI applications 72

File Open command
creating frame windows 59
document initialization 76
serializing 67

File Open dialog box, customizing 493
File Save

handled by documents 68
serializing 66

File Save As
handled by documents 68
serializing 66

Files
AFXCORE.RTF file 453
.BMP 620-621
closing 435
.CLW 620
created by ControlWizard 620-621
.DEF 620
getting file status, example 435
Help project (HPJ) 446
HM file, context-senstive help 447
.HPJ 621
HPJ, help project 446
implementation 732
.MAK 620
MAKEHELP.BAT 447,621
MAKEHM.EXE 447
modified by ClassWizard 485
object used as Clipboard 733

Files (continued)
.ODL 398-399, 620
opening

described 433
example 434
exceptions 434

PROJHELP.LIC 621
.RC 620
reading

example 434
from 434

.RTF 621
serialization, described 729
status, getting 435
writing to 434

FILETIME structure, using with CTime class 350
Filtering

queries See DAO
recordsets 675
tip 676

Filters and joins 688
Find functions, recordset 675
FireError member function, using 577
Floating

described 399
toolbar palettes 775
toolbars 775

Fly by status bar See Tool tips
Font custom property, implementing 567
Font object

distinguishing between interfaces of 570
implementing seperate interfaces of 570

header file modifications 571
implementation file modifications 571

Font property type, using 565
Footnote symbols, help 453
Foreign class, ClassWizard 152
Foreign keys 150
Foreign objects

ClassWizard 152, 158, 169
DDX_Field functions 169
defined 169
diagram 169
dialog data exchange 169
DoDataExchange function 169

Form-based applications
App Wizard 506
CDaoRecordView 506
ClassWizard 506

Form-based applications (continued)
CRecordView 506, 718
database classes 506
databases 506
described 718
dialog data exchange (DDX) 507
documents 508
record field exchange (RFX) 507
recordsets 507
writing 506

Formats
adding more on the Clipboard 179
custom Clipboard

described 176
registering 179

standard Clipboard 175
Formatting time strings 349,352
Forms

class CRecordView 718
creating 720
database, overview (ODBC) 535
described 436
designing 720
dialog data exchange 719
mUltiple 721
overriding OnPrint for forms 508
your role 720

Forward only recordsets
capabilities 667
defined 667

Foundation class library
See also MFC
CArchive 729
CFile 433
CObject 729
debug version, features 358
diagnostics 357-362,365-371
exceptions 402-403,412-415

Index

files and serialization 433-435, 730-732
general-purpose classes 349,466,468-470, 758-

763
structured exception handling 403

Foundation classes
collections 186, 193, 196-202
CString 756-763
CTime 348-350
CTimeSpan 348, 350
debugging, DEBUG_NEW macro 371
described 180-185

857

Index

858

Foundation classes (continued)
exception handling 403
files

closing 435
opening 433
reading from 434
status, getting 435
writing to 434

macros
AND_CATCH 404
ASSERT 361
CATCH 404,406,412-415
DEBUG_NEW 371
DECLARE_SERIAL 730
IMPLEMENT_SERIAL 732
THROW 405
THROW_LAST 405
TRACE 360
TRY 404,406,412-414

serialization 729-732
Frame allocation

advantage 467
described 466-469
disadvantages 467
examples

array of bytes 468
object 469
structure 468

memory leaks 467
types 468

Frame windows
active view 62
CDocTemplate class 60
child message routing 62
control bars 61
creating

described 60
illustrated 25

creation sequence 25
CRuntimeClass 60
current view 62
default command routing 44
described 6, 57
destroying 60
document

creating 60
described 59

dynamic construction 60
File Manager 63

Frame windows (continued)
function 61
FWS_ADDTOTITLE style 63
initializing 28
main

described 59
how set 25

managing child windows 61
MDICLIENT window 61
relationship to other classes 24
RUNTIME_CLASS 60
second on documents 73
styles 63
WS_HSCROLL WS_ VSCROLL styles 63

Framework
See also MFC
calling code 17
command implementations

Open command 734
Save As command 734
Save command 734

database classes 506
database support without documents 508
described 436
introduced 486
without documents 508
your role, described 9

Free function 467
Full-server

applications
defined 741
restrictions 741

defined 625
Fully open state, Client items 212
Functions

newly documented 490
previously documented 490
undocumented 490

FWS_ADDTOTITLE and Frame windows 63

G
Garbage collection, not provided by MFC 118
GDI classes

listed 34
using 35

GDI resources, for printing 637

General-purpose classes
CObject class derivation 113
described 113
usage requirements 113

Generate Source Comments option 616
Get/Set methods, adding, ClassWizard 173
GetAmbientProperty member function, COleControl

class 647-648
GetAt member function

CString class 759
CTypedPtrArray class 192

GetBuffer member function, CString class 758, 762
GetData member function, and view drawing 70
GetDC function 33
GetDefaultConnect, generalizing connection

strings 346
GetDefaultSQL function

described 706
example 750, 752-753
recordsets 706

GetDlgltem member function, CWnd class 88
GetFile member function, and bypassing serializing 67
GetFont function, using 565
GetLicenseKey function 585
GetNotSupported function 646
Getting the current time 349, 352
GetVersion member function, CPropExchange

class 594
Graphic objects See GDI classes
GROUP BY clause, SQL, how to use in recordsets 704

H
Handler functions

base class handler, when to call 51
described 8
modifying arguments to, danger of 50
rules and conventions 50
tip 168
toolbars 773

Handlers
See also Message handlers
exception, defined 403

HAVING clause, SQL, how to use in recordsets 704

Headers
automatic linking of MFC

described 458
example 458

precompiled reduced size,
WIN32_LEAN_AND _MEAN option 500

Headers and footers See Page headers and footers
HeadingFont property

adding of 567
modification to control code 568

Heap allocation
arrays

de allocating 468
of bytes 468

data structures 469
deallocation, example 468
described 467
examples

array of bytes 468
object 469
structure 469

objects 469
types 468

Heaps
deallocating document memory 75
deallocating view memory 75

Help
and [MAP] section 447
authoring 440
context

components of 447
creating 440
defined 447
described 439
help project file 447
in framework 447
in Scribble 449
purpose of 447
used by help author 447
used by programmer 447

context-sensitive
context IDs and program IDs 445
in OLE applications 442
MAKEHM, example 448
message maps 443
OLE applications 442-443
SHIFf+Fl Help, OLE applications 442
WinHelp member function 444

files, .HLP 450

Index

859

Index

860

Help (continued)
map (.HM) file, creating with

MAKEHELP.BAT 444
mapping file See HM files
menu commands, listed 42
option for generating files 616
project files

See also Context-sensitive help
App Wizard, created by 446
contents, described 447
described 439,446
example 446
[MAP] section 441, 447
purposes of 447

SHIFf+Fl, described 437
subsystem of framework

AppWizard support 438
commands implemented by framework 438
components 438
creating help map (.HM) file 444
Fl help 441
files created by App Wizard 451
Help menu 438
MAKEHM.EXE tool 438
message handlers for 438
message-map entries for 438
running MAKEHELP.BAT 444

support See Context-sensitive help
topics, starter 452

Help Compiler, Windows See Windows Help
Compiler; Context-sensitive help

Help mode See SHIFf +Fl

Helper functions, collection classes 194
HIERSVR sample, ranges of messages 479
.HLP file See Help file
HLP subdirectory 439
.HM files

contents, described 450
context-sensitive help, introduced 447
creating with MAKEHELP.BAT 440
example 449

.HPJ files
See also Help Project files
described 439-440

Hungarian notation, and ClassWizard 705
HWND and CWnd class 29

IClassFactory2, licensing functions 583
Icons, samples provided 204
ID_CONTEXT_HELP command 442,444
ID_DEFAULT_HELP command 444
ID_PILE_OPEN command, and serializing 67
ID _HELP command 442, 444
ID _HELP _INDEX command 444
ID_HELP _USING command 444
ID _ resource IDs 448
ID _WINDOW _NEW and CMDIFrame Wnd class 63
IDD _ resource IDs 448
Idle-loop processing 20
IDP _ resource IDs 448
IDR_ resource IDs 448
IDW _ resource IDs 448
IFontNotification, using 570
Immediate rendering, defined 342
IMPLEMENT_DYNAMIC Macro 114, 183-185
IMPLEMENT_DYNAMIC MacroCOBJCV 183
IMPLEMENT_DYNCREA TE macro 114
IMPLEMENT_SERIAL macro 114,195,732
Implementation

file
defined 180
described 180

source file comments, MFC 514
Implementing read- and write-only properties 646
Implicit workspaces, accessing 324
Import Libraries, using in extension DLLs 382
In-place editing, client items 211
In-place frame window class

procedure for defining 744
redirecting messages 745
setting owner of the window 745

In-proc server, MFC support for 385
Inactive state 551, 554
Incremental access, compound files 213
Indexes (DAO), mapping to MFC 218
InitApplication member function, CWinApp class,

called by WinMain 18
Initialization, application, in InitInstance function 75
Initialization issues, server applications 726
Initializing

documents 28, 75
frame windows 28
views 28,75

InitInstance member function
application initialization 75
tasks performed 19

Initlnstance member function, CWinApp class
and App Wizard 19
called by WinMain 18

Insertion operator, CArchive, using 735
Inside OLE 2, book 101
Installation

database support 111
issues, server applications 726
OLE tools 357

Interface files
defined 180
described 180

InternalGetFont function, using 565
Internet, Windows Sockets 794
Interpreting

dumped objects 369
memory statistics 367

Invisible at runtime option 617
IPropertyNotifySink, implementing 570
ISAM and ODBC drivers 528
IsKindOf member function

CObject class 182
described 185
using 185
with ASSERT macro, example 362

IsStoring member function 735
IsSubclassedControl function, overriding for subclassed

controls 595
Item type, defined 625
ItemState enumeration, client items 211
Iteration, collection classes 197

J
Joining tables 687
Joins

See also Recordsets
DAO 275,332
DAO Record Field Exchange 275
described 688
recordsets 671,687
tip 690

K
Key

foreign 150
primary 150

KEY parameter 191-192
Keyset-driven cursors, dynasets 393,530

L
Large data objects, recordsets 702
Leaks, memory 467
Libraries

building 459
debug 358
prebuilt (MFC) available on CD 459
static (MFC), list of 459
versions of class library, building 458

.LIC files 584
License validation option 584,616
Licensing

customization of 587
described 582
functions supporting 583, 585
key components of 584
key concepts 583
modification of

header file 585
implementation file 586

Linked items
advantages 624
defined 624
example 625
handling, Container application 209
usage 624

Linking
improvements in static 496
to embedded objects 216

List boxes, filling from recordsets 724
List classes

described 117
features 187
templates 117

List collections 190
Lists

described 117
iteration of 198
objects, deleting 200

LoadBitmap member function, Toolbars 773

Index

861

Index

862

Loaded state, client items 212
LoadFrame member function

and frame window creation 60
CFrame Wnd Class 32

Loading
CObjects via CArchive 737
data with a CArchive 733

LoadStdProfileSettings member function, CWinApp
class 22

LoadToolBar member function, toolbars 773
LocaleID, using 588
Localization

control's programmability interface 588
control's user interface, example 590
customizing MkTypLib command 589
described 588
example of 588
multiple type libraries 589
overview of strategies 588
property pages, example 591
registering of localized type libraries 589
shipping with localized type libraries 589
using the ambient LOCALEID property 588

LockBytes object, defined 212
Locking modes, recordset

default 686
described 686
optimistic 686
pessimistic 686

Locking records, recordset 686
LPCTSTR data type, and CString class 757
LPCTSTR operator

converting CStrings to C-style null-terminated
strings 761

validity of pointer 761
IpszSQL parameter 706

M
m_bCheckCacheForDirtyFields data member, double

buffering records 289
m_bContinuePrinting

CPrintInfo structure 636
data member, printing 636

m_bPreview data member, CPrintInfo structure 639
mJIThread, multithreading 523
m_nCurPage data member

CPrintInfo structure 633, 634
printing 634

m_nCurPage member, CPrintInfo structure, and print
preview 639

m_nFields data member, DoFieldExchange
function 280, 659

m_nNumPreview _pages member, CPrintInfo structure,
described 638

m_nParams data member, DAO Record Field
Exchange 281

m_nParams data member, Record Field Exchange 660
m_pMainFrame member variable

how set 25
purpose of 25

m_rectDraw member, CPrintInfo structure 637
m_strColumnNameParam 699
m_strOwnerParam 699
m_strQualifierParam 699
m_strTableNameParam 699
Macros

AND_CATCH 404,407
ASSERT 361
CATCH 404,406,412-415
DEBUG_NEW 371
DECLARE_DYNAMIC 182,184-185
DECLARE_SERIAL 730
IMPLEMENT_DYNAMIC 183-185
IMPLEMENT_SERIAL 732
RUNTIME_CLASS 184-185
THROW 405
THROW_LAST 405
TRACE 360
TRY 404,406,412-414

Main frame windows 6, 59
MAINFRM.CPP 59
MAINFRM.H 59
.MAK files 620
MAKEHELP.BAT file

adding resources 440
and MAKEHM tool 447
described 439-440,447,621
mapping #defines to help strings 450
running from MS-DOS 450
what it does 450

MAKEHMtool
described 438-440
example 448
introduced 447
MAKEHELP.BAT 447
mapping #defines to help strings 449, 450

malloc function 467

Managing
accelerators and frame windows 62
active views and frame windows 62
control bars and frame windows 62
current views and frame windows 62
MDI menu bars and frame windows 62
menus and frame windows 62
status bars and frame windows 62
toolbar buttons and frame windows 62

Manipulating
records (ODBC) 535
strings 756, 758, 760, 762-763

Map classes
described 118, 187
templates 118

Map collections 190
MAP section, help project file 447
Mapping

DAO to MFC 217
dialog class member variables with ClassWizard 82
Windows messages with ClassWizard 82

Maps
described 118
elements, deleting 201
iteration of 198

MBCS
and CString class 757
support provided 4, 466

MBCS applications with DAO 229
_MBCS

mutually exclusive with _UNICODE 766
symbol 766

MDI applications
CMainFrame 59
described 5
document templates, illustrated 22
frame windows 57,59, 72
managing child windows 61
multiple views 73
window classes 30

MDI menu bars and frame windows, managing 62
MDICLIENT windows

control bars 61
managing child windows 61
WS_HSCROLL and WS_ VSCROLL styles 63

Member functions
CFile class

Close 435
Open 433

Member functions (continued)
CFile class (continued)

Read 434
Seek 434
Write 434

CMemoryState class
Checkpoint 366
Difference 366

CObject class
AssertValid 363
Dump 359-360
Serialize 731

CString class
GetBuffer 762
ReleaseBuffer 762

OnContextHelp, CWinApp class 444
OnHelpIndex, CWinApp class 444
OnHelpUsing, CWinApp class 444

Member variable properties
adding, Class Wizard 172
Class Wizard 172
custom 643

Member variables
adding with Class Wizard 545
code modifications, Class Wizard 546
parameterized 644
with get/set methods custom properties 643
with notification custom properties 643

Member Variables dialog page, Class Wizard 161
Memory

allocation
debugging, changes 497
resizable blocks, mixing new/delete,

malloc/free 470
resizable memory blocks 470
types 468

blocks, resizable 470
detecting leaks

Checkpoint member function 366
Difference member function 366
example 366
what to bracket 365

diagnostic services 119
diagnostics, enabling or disabling 366
file 733
leaks

automatic dumps in MFC 365
DEBUG_NEW macro 371
defined 365

Index

863

Index

864

Memory (continued)
leaks (continued)

detecting 365-369,467
effects of, described 365
example 413
snapshots for debugging 365

management
advantages of new and delete 467
characteristics of frame allocation 466
described 466,468,469
frame allocation 466
frame and heap categories 466
heap allocation 467

statistics
dumping 367
interpreting 367

Menu items
and views 68
updating 52

Menu merging, overview 475
Menu resources, and MDI child windows 63
Menus

and frame windows, managing 62
as source of commands 40
Edit menu commands 41
File menu commands 41
Help menu commands 42
View menu commands 41
Window menu commands 42

Menus and resources (OLE)
container modifications

accelerator table modifications 472
additional changes 472
menu resource changes 472
overview 471
preparing for menu merging 472
string table modifications 473
supporting contained items 472

in-place activation support 471
menu merging

container menu layout 475
example 476
overview 475
preparing menu resources 475
server menu layout 476
toolbar and status bar merging 477

mini-server specific changes 475
new resources for in-place activation 471
OLE modifications, overview 470

Menus and resources (OLE) (continued)
server modifications

accelerator table additions 474
additional changes 473-474
preparing for menu merging 474
string table additions 474
supporting fully open activation 474
supporting in-place activation 474

Message handlers
calling 42
defined 38
described 8, 30
for commands

described 51
example 51

for control notifications
described 51
example 51

for Windows messages
described 50
example 51
naming conventions 51

function of 38
mapping ranges of messages to 478
overriding 50
tools for creating 38

Message loops
illustrated 20
messages 38
processing 20

Message maps
and commands 40, 43
caching messages 48
classes containing 40
comment delimiters 47
context-sensitive Help

entries, example 443
table 444

creating manually 47
derived 47
described 40,43,477
editing manually 52
efficiency 48
entry macros 48
example 46
for commands 48
for control notifications 48
for registered Windows messages 48
for update commands 48

Message maps (continued)
for user-defined messages 48
for Windows messages 48
Help, context-sensitive 443
how searched 46
location 46
managing with ClassWizard 52
mapping multiple messages to handlers 49
messages 43
overhead 48
range macros, list 478
ranges of control IDs 49
ranges of messages

ClassWizard support 50, 478
described 49
examples 49,478-480
explained 478
extra parameter required 479
handler functions 479
macro parameters 479
mapped to single handler 478
message-map entries 478
range macros 478
ranges of command IDs 478
ranges of control IDs 478
update handler for 478

searching base class's map 47
syntax 47
types of entries 48

Message reflection 497
Message-driven programming 37
Message-map macros

parameters to 479
ranges of messages 478

MessageReflect ambient property 597
Messages

categories 38
ClassWizard writing 52
commands 38
control notification 38
described 37
how generated 42-43
managing with ClassWizard 52
message loop 38
message maps 43
reflecting 497
windows 38
windows, and views 68

Metafiles, painting with 555-556

Methods
accessing embedded OLE controls 547
adding Class Wizard 174
adding custom 484
adding stock 483
and properties, adding App Wizard 172
described 482
embedded OLE control 545
maximum number of parameters 482

MFC
SeealsoDAO
32-bit platfonn support, listed 497
3D control support 498
automatic linking of, example 458
browse version, building 512
calling your code 17
changes since previous 32-bit edition 499
classes, MFC database, when to use 110
container support for OLE controls 494
DAO

database engine 326
database support 495

database
DAO or ODBC 110
described 109
ODBC or DAO 110

database classes
defined 110
programming model 110

Index

similarity to MS Access and Visual Basic 110
database overview 334
described 436
differences from other versions

list of articles 488
MFC version 2.0 497
MFC version 2.0 32-Bit Edition 499
MFC version 2.5 497
MFC version 3.0 488, 490, 493-495
MFC version 3.1 488, 490, 493-495

document/view architecture, DAO 226
documentation 4
encapsulation of DAO 217
features no longer available

console library variants 500
described 500
Query Abort function 500
UnrealizeObject function 500
VBX controls 500
Windows for Pen classes 500

865

Index

866

MFC (continued)
general-purpose classes 113
headers, automatic linking of

described 458
example 458

inDLLS
AFXDLL 460
extension DLLs 460

introduced 486
library versions

AFXDLL, described 458
automatic linking 458
automatic linking, libraries linked 458
building 459
defaultlib directives 458
libraries linked 458
makefile 512

main Encyclopedia articles, listed 487
MFC database classes, when to use 110
MFC database documentation 338
new features 498-499
object code libraries

defaults 459
naming conventions 459
prebuilt available on CD 459

objects
accessing, from other objects 25
creating 24
relationships between 24

OLE control container support 494
OLE enhancements in MFC 4.0 495
overview information, sources 486
programming tools

AppWizard 778
ClassWizard 778
using together 780
Visual C++ resource editors 778

services provided by classes 113
Socket samples 792
source code

location 512
makefile 512

source code comments
II advanced overridables 515
I I attributes 514
I I constructors 514
I I implementation 514
II operations 515
II overridables 515

MFC (continued)
source code comments (continued)

ClassWizard 512
conventions of 512
example 513
pure virtual functions 515
typical order 513

static libraries, listed 459
static linking improvements 496
thread synchronization 493
upgrading

from 16-bit to 32-bit 497
from MFC version 2.0 497
from MFC version 2.5 497
from MFC version 3.0 488, 490, 493-495
from MFC version 3.1 488, 490, 493-495

using the source files 512
version 2.0 (Visual C++ 1.0)

new features since 498
upgrading 497

version 2.0 32-bit, changes since 499
version 2.5 (Visual C++ 1.5)

new features since 497
upgrading 488,490,493-495,497

when to use MFC database classes 110
Win32 features 493
Windows 95 support 490
Windows Sockets in 791
your role, described 9

MFC4.0
CFile enhancements 490
CFileException enhancements 490
common controls, new 490
controls, new common 490
functions

previously documented 490
undocumented 490

new classes 489
new common controls 490
previously undocumented functions 490
toolbar resources 489
undocumented functions 490

MFC database
DAO, defined 334
Database models supported

DAO 334
ODBC 334

ODBC
Defined 334

MFCNS32.DLL 495
Microsoft Excel, and ODBC drivers 528
Microsoft Foundation Class Library

See also MFC
introduced 486
overview 3
versions of 458

Microsoft Foundation Classes, Object Linking and
Embedding (OLE) 627

Microsoft Word for Windows 451
Mini-frame windows, support 498
Mini-server application

defined 741
restrictions 741

MODELINFO structure 607
Modifying

MFC 2.0 OLE 1 applications, development
strategy 626

MFC 2.0 or higher non-OLE applications,
development strategy 626

non-MFC applications, development strategy 626
Most recently used file list See MRU file list
Moving to records, DAO recordsets 300
MRU file list

CWinApp support 22
tracking recently used documents 22

Multibyte Character Sets See MBCS, DBCS
Multiple document interface

See also MDI applications
CMainFrame 59
frame windows 57,59, 72
managing child windows 61

Multiple OLE controls 602
Multiple toolbars 773
Multiple views

sample application 507
tip 721

Multithreading
accessing data

from multiple threads 524
from non-MFC threads 524

accessing objects
created in other threads 524
from multiple threads 516, 524

adding another thread's object to your thread's
handle map 524

Multithreading (continued)
AfxBeginThread

function of 518-519
required arguments 518
two versions 518

CCriticalSection 493
CEvent 493
changing

priority levels 518-519
security attributes 518-519
stack size 518-519

CMultiLock 493
CMutex 493
communicating between threads

compared to communicating between
applications 524

Index

interthread communication mechanisms 525
mutexes, semaphores, and critical sections 525
using user defined messages 524

controlling function
defined 519
example 520

creating
additional threads, reasons for 516
suspended threads 518-519

critical sections
described 493
MFC's use of 524

CSemaphore 493
CSingleLock 493
data protection with multiple threads

issues 524
techniques 524

described 6
events 493
exit code 520
Extension DLL issues 386
initialization, sample 386
learning basics of multithreaded programming 516
m_bAutoDelete, common usage 523
MFC thread safety 524
mutexes 493
mutexes, semaphores, and critical sections, MFC

support for 525
normal thread termination 522
passing data to and from worker threads 519
premature thread termination 522
process defined 516
purpose of CWinThread 516

867

Index

868

Multithreading (continued)

N

retrieving the exit code of threads 523
semaphores 493
starting worker threads 519
Static Link Version of the Regular DLL issues 386
supplying primary thread to the operating

system 516
support 3
synchronization objects 493
synchronizing threads 493
terminating threads

described 522
example 522
from another thread 522
when 522

Thread Local Storage (TLS)
andDLLs 386
MFC's use of 524

threads, defined 516
tracking multiple threads

in Extension DLLs 386
in the Static Link Version of the Regular

DLL 386
in USRDLLs 386

user-interface threads
common usage 516-517
creating the class 517
defined 516
deriving from CWinThread 517
required overrides 517
using 517

using AfxBeginThread 516
using AfxEndThread 522
USRDLL issues 386
Windows handle maps and TLS 524
withDAO 229
worker threads

calling AfxBeginThread 519
common usage 516, 518
defined 516,518
exit code 520
when to derive from CWinThread 519

NAFXCW.LIB
described 459
no longer available 500

NAFXCWD.LIB
described 459
no longer available 500

Naming conventions
command IDs 41
described 358
message handlers for Windows messages 51
object code libraries, MFC 459

Navigation (scrolling), record views 721
New classes in MFC 4.0 489
New command, document templates 23
New features

ClassWizard 150
MFC 497-499

new operator, c++
advantages 467
debug version 119
debug version, on per-file basis 119
DEBUG_NEWmacro 371
described 371,467
window classes 32

New Window command
and CMDIFrameWnd class 63
and multiple views 73
described 60

NMAKE.EXE 620
Number of Controls option 616

o
Object code libraries

MFC, naming conventions 459
prebuilt (MFC) available on CD 459

Object Description Language 620
Object diagnostics 114
Object Linking and Embedding See OLE
Object persistence

CArchive class 115
support provided by CObject class 115

Objects
afxDump 360
C++, type identification 114
class CObject 180
dump, interpreting 369-370
dumping

context 359
described 368
example 368
interpreting dump 369

Objects (continued)
frame allocation 469
heap allocation 469
persistence, described 729

ODBC
adding records in bulk 686
API, defined 527
asynchronous calls 532
benefits 534
CALL statements 749
Calling ODBC directly 337
catalog functions 531
Continued support for 335
cursor library

redistributing 529
using 531

DAO or ODBC 110
Data definition language (DDL) support 337
data sources you can access 336
database classes 528,536, 748-749
Database overview 334
defined 334,527
direct API calls 531
direct SQL calls 755
drivers

adding drivers 533
availability 534
data source connections 345
data sources 527, 750
defined 527
described 768
dynasets 528
independence of applications 528
installing 111
levels 528
list of 533
predefined query 749
redistributing 345
snapshots 528
transaction support 785

error codes 417
exceptions, example 417
function calls 756
HDBC handle 532, 786
HSTMT handle 532, 786
installed ODBC drivers 111
installing database support 111
installing drivers 111
MFC database documentation 338

ODBC (continued)
Microsoft Access 528
not being phased out 335
ODBC drivers, installed 111
ODBC or DAO 110
ODBC setup and administration programs,

writing 531
predefined queries 754
programming model

described 335
similarity to MS Access 335
similarity to MS Visual Basic 335

record selection, manual binding 753
SDK components installed 112
Software Development Kit (SDK) 528
SQL 748
Visual Basic 528
vs. DAO, choosing 335

Reasons 335
When you might prefer ODBC 336

ODBC Administrator
adding data sources 532
adding drivers 533
configuring data sources 344-345,531,533
defined 527
described 532
Microsoft Foundation Classes 531
redistributing files 529
removing data sources 532

ODBC Cursor Library
defined 527,529
dynaset 530
scrolling 530
snapshot 530

ODBC Driver Catalog 534
ODBC Driver Fulfillment Kit (32-bit) 534
ODBC Driver Manager

defined 527
ODBC drivers 750

ODBC or DAO databases 110
ODBC SDK Documentation 339
.ODL (MS Object Description Language) files

described 620
merging of 603
new control events 398-399

OLE
32-bit, requires Windows NT 3.5 501
advantages 623
App Wizard container application support 208

Index

869

Index

870

OLE (continued)
automation, defined 623
automation server, in DLLs 628
Change Icon dialog box 372
classes

and Microsoft Foundation Classes 101
and the framework 99
assumptions 101
class reference 102
components 99
described 99
documentation 99, 102
features, described 101
ported to Win32 99
programming articles 102
requirements 10 1
sample programs 99
tutorial 102
wizard extensions 99

client item notifications
activation 210
defined 210
listed 210
scrolling 210

client item states
active states 212
CreateFromFile function 212
described 211
empty states 212
loaded states 212
open states 212

client items
and document class 209
and in-place editing 211
CDocItem class 209
COleClientltem class 210
COleDocument class 209
defined 209
notifications, defined 210
OnChange function 210
OnGetltemPosition function 211

Clipboard support
determining available formats 343
how to use 175
when to use 175

commands, listed 42
component object model (COM), defined 624

OLE (continued)
compound files

advantages and disadvantages 213
defined 212, 623
enabling 214
file access modes 213
fragmentation 214
incremental access 213
performance considerations 214
standardization 214
using 627

container
defined 207
deriving from CWinApp 208
described 204
requirements 207

container applications
additional resource modifications 472
App Wizard support 208
communication with servers 626
debugging tips 354-355
defined 623, 625
displaying Insert Object dialog box 208
informing embedded items of size changes 208
menu modifications 472
menus and resources 471
preparing the view class 208
requirements 625
setting focus to embedded items 208
user interface issues 214
verifying selections 208

container/server applications
described 215
implementing 215
nested activation, availability 215

Convert dialog box 372
data objects

available media 344
defined 340
operations 342
retrieving data from 344
role 340
using in paste operations 341
using with drag and drop 341
when to create 340
when to destroy 341

data sources
defined 340
determining available formats 343

OLE (continued)
data sources (continued)

operations 342
referral to sample 342
role 341
when to create 341-342
when to destroy 342

data transfer, defined 339,355,624
debugging

described 354
remote procedure calls 355
servers and containers simultaneously 354
testing tools 356
viewers and spy programs 357

defined 623
delayed rendering, defined 343
described 99
development strategy 626
dialog boxes

Change Icon 372
Convert 372
Edit Links 372
Insert Object 372
Paste Special 372
Server Busy 372
Server Not Responding 372
Update Links 372

distributable components, location 102
drag and drop

calling DoDragDrop 374
COleDataSource objects, when to create 375
customizing behavior 375
defined 373, 624
differences from File Manager 373
dragging between windows 373
features 373
how to use 373
implementing drop targets 374
initiating drag operations 374
move operation handling 374
possible uses 373

drop sources, implementing 374
drop targets

functions to override 375
implementing 374
registering the target window 374

Edit Links dialog box 372
embedded items, defined 624
embedding, defined 623

OLE (continued)
Encyclopedia articles 102
enhancements in MFC 4.0

COleCurrency class 495
COleDateTime class 495
COle Variant class 495
described 495
MFCANS32.DLL obsolete 495

full-server applications, defined 625, 741
IMarshal, using 627
immediate rendering, defined 342
IMoniker, using 627
in-place activation

defined 623
menus and resources 471

in-place frame window class
redirecting messages 745
setting owner of the window 745

in-proc server, MFC support for 385
Insert Object dialog box 372
item type, defined 625
IUnknown, using 627
knowledge required 101
linked items

advantages 624
defined 624
example 625
usage 624

linking
defined 623
to embedded objects 216

LockBytes object, defined 212
menu merging

container menu layout 475
example 476
overview 475
preparing menu resources 475
server menu layout 476
toolbar and status bar merging 477

menus and resources
accelerator table modifications 472
container modifications 471
in-place activation 471
new resources 471
overview 470
server modifications 473-474
string table modifications 473
supporting contained items 472

Index

871

Index

872

OLE (continued)
menus and resources . (continued)

supporting fully open activation, server 474
supporting in-place activation, server 474

MFC coverage 627
mini-server applications, defined 625, 741
nested activation, availability 215
notifications, defined 210
overview 623
paste command, when to enable/disable 344
paste operations

example 341
implementing 341

Paste Special dialog box 372
rendering

delayed 343
immediate 342

server applications
accelerator table modifications 474
additional resource modifications 474
AppWizard generated code 742
changing owner of in-place frame window 745
communication with containers 626
comparing types of servers 741
debugging 355
debugging tip 354
defined 623,625, 741
full-server vs. mini-server 625
in-place frame window class, defining 744
menu modifications 473
menus and resources 473
mini-server resource modifications 475
redirecting messages from in-place frame

window 745
requirements 625, 742
requirements, MDI 742
SDI application, debugging 356
setting owner of toolbar 745
string table modifications 474
using C01eResizeBar 744

Server Busy dialog box 372
server documents, defining 743
server items

App Wizard generated support 746
architecture, tip 746
defined 745
implementing 746
purpose 745

OLE (continued)
server items (continued)

use of COleServerItem class 745
user interface changes 747

Server Not Responding dialog box 372
storage 623
storage objects 212
stream 623
stream objects 212
support 4
tutorials 102
Uniform data transfer (UDT) 624
Update Links dialog box 372
use in DLLs 385

OLE applications
debugging 354
Fi Help 443
Help, context-sensitive 442
SHIFf +Fi Help 442

OLE Automation
ClassWizard 170
client, Class Wizard 174
servers, MFC support in DLLs 386

OLE Automation class
adding 171
Class Wizard 171
dispatch interface 171

OLE control
control class name 618
property page class name 618
testing 768, 769

OLE control containers
accessing embedded controls 543
accessing OLE controls 545,547
creating from existing applications 540
creation using AppWizard 539
description of 538
interaction with controls 538
manually enabling 540
modifying control properties 542
support 494
types of 538
wrapper class 545

OLE controls
accessing from containers 547
adding bound properties 600
adding custom events 398-401
adding custom methods 484
adding OLE controls to projects 602

OLE controls (continued)
adding Picture property pages 573
adding property pages 560
adding stock events 396-398
adding stock methods 483
and Visual Basic 105
and Visual C++ 105
as member variables 545
basic components 550
building 614
communication with containers 552
connection maps 497
connection points 204
containers for 538
converting from VBXs 606
Create function 547
creating containers for 539
creating licensed versions 584
custom Font property 567
custom Picture property of 572
Customer verbs 497
customization of licensing 587
data binding 599
described 106
dynamically creating 547
error codes 578
error handling 577
exposing interfaces to control container 543
font objects, accessing 565
getting started 107
implementing custom Font properties 567
implementing default property page of 558
inserting into dialog boxes 544
integration with MFC 497
interaction with container 551
licensing of 582
localization of 588
localizing exposed interface 588
localizing property pages, example 591
localizing the user interface

described 590
example of 590

modifying properties 542
painting 554-556
parameterized properties 576
Picture property type 572
properties 640

Index

OLE controls (continued)
property pages

adding controls to 559
customizing DoDataExchange function 559
described 557
linking Caption custom property 559

rebuilding resource file of 606
registering localized type libraries 589
registration 620
serialization 552
shipping with localized type libraries 589
states 551,554
stock property pages 563
type library support 497
using Component Gallery 543
withDAO 229
wrapper class 545

OLE custom controls directories 107
OLE SDK 101
OLE_NOTIFICATION enumeration, Client items 210
OLEDLG.DLL 495
ON_COMMAND macro 48
ON_COMMAND_RANGE macro

example 479
introduced 478

ON_COMMAND_UPDATE_UI_RANGE macro
described 480
introduced 478

ON_CONTROL_RANGE macro
example 480
introduced 478

ON_EVENT macro 542
ON_MESSAGE macro 48
ON_REGISTERED_MESSAGE macro 48
ON_UPDATE_COMMAND_UI macro 48,53-54
ON_ WM_xxxx macro 48
ON_xxxx macro 48
OnActivate View member function, and active view 62
OnAmbientPropertyChanged member function

COleControl class 648
OnBeginPrinting member function, CView class 637
OnCancel member function, CDialog class 85, 87, 89
OnChange function, Client items 210-211
OnChangeItemPosition function, Client items 211
OnClose member function, and destroying frame

windows 60
OnClose member function, CWnd class 32

873

Index

874

OnCmdMsg member function, CCmdTarget class
described 45
overriding 45

OnContextHelp member function, class
CVVllv\pp 442,444

OnCreate handler, creating child windows in 60
OnCreate member function

and CMainFrame 59
too1bars 772

OnDraw function
modification for subclassing 596
modification of 575

OnDraw member function
and view drawing 69-70
COleControl class 554-556
CView class

described 33-34
printing with 630-631, 635

modification of 566
printing 629

OnDrawMetafile member function, COleControl
class 555

One-stage construction 35
OnEndPrinting member function

CView class 637
described 632

OnFontChanged, using 570
OnGetItemPosition function, Client items 211
OnGetRecordset function, record views 723
OnHelp member function, class CVVinApp 442, 444
OnHelpIndex member function, class CVVinApp 442,

444
OnHelpUsing member function, class CVVinApp 444
OnHScroll member function, and view scrolling 72
OnIdle member function, CVVinApp class 20, 36
OnInitDialog member function, CDialog class 85,89,

92-93
OnInitialUpdate function, record views 723
OnInitialUpdate member function

and view initialization 76
CView class 28
described 68

Online help
described 437
user access 437

OnMessagePending member function
VVindows Sockets 809

OnNcDestroy member function, CVVnd class,
destroying frame windows 32, 60

OnNewDocument member function, CDocument class,
document initialization 28, 76

OnOK member function, CDialog class 85, 89
OnOpenDocument member function

and bypassing serializing 67
and document initialization 76
CDocument class 28

OnPaint member function, COleControl class 554
OnPrepareDC member function, CView class

described 33
printing with 634, 636-637

OnPreparePrinting member function, CView class
and print preview 638
described 68, 634

OnPrint, overriding for database forms 508
OnPrint member function, CView class

described 632-635
printing 636

OnResetState function, modification of 575
OnSaveDocument member function and bypassing

serializing 67
OnUpdate member function

and view drawing 69
and view initialization 76
described 68, 70

On VScroll member function and view scrolling 72
Open, failure 695
Open command

document templates 23
framework, implementation 734

Open dialog box, customizing 493
Open member function

bypassing serializing 67
CFile class 433

Open state, client items 212
Opening

DAO objects 232
existing Tabledefs 320
files 433

Operator ==, CString class 760
Operator []

CString class 759
CTypedPtrArray class 192

Operators
CArchive

chaining, example 736
using 735

new 371

Options
debug, setting 358
recordset 671,673

Output, debugging
described 361
destinations 360
under Windows 361

Overhead, deriving classes from 180
Overriding

Dump function 359
message handlers 50
Serialize member function, example 731

Overview of MFC support, database 109
Overview, database 334
Overview, database (DAO) 534

p
Page headers and footers

described 636
printing 637

Page numbering See Pagination
Pages, printer vs. document 635
Pagination

at print-time 636
described 633-635

Painting OLE controls 554-556
Palette, floating toolbar 775
Parameter, recordset, defined 678
Parameterized member variable 644
Parameterized properties

described 576
limit for number of parameters 576
using Class Wizard to add

changes made by 577
described 576

Parameterized recordsets
DAO Record Field Exchange 275
Record Field Exchange 655

Parameterizing
queries See DAO
recordsets 678
tips 679, 681

Parameters
ARG_KEY 191
ARG_TYPE 191
BASE_CLASS 192
binding 284, 662
CString, specifying 763

Parameters (continued)
DAO, mapping to MFC 218
KEY 191-192
querydef 268
recordset, what MFC does with 297,670
TYPE 191-192
VALUE 192

Paste command, implementing 177
Paste menu item, enable/disable 344
Paste operations

example 341
implementing 341
using data objects in 341

Pasting data, Clipboard 179
Pen, controls for, no longer available 500
Percent position, DAO recordsets 305
Performance

DAO
See also DAO, performance
recordsets 294
tips 238

double buffering, recordsets 294
Persistence

described 729
support by CObject class 115

Picture property type
described 572
usage of 572

Polymorphic file interface, CFile 116
Portability, CString class 757
Porting

See also Porting 16-bit MFC; Porting to 32-bit
MFC

references for 629
Porting 16-bit MFC

16-bit features to avoid 502
adding Unicode support 503
address space changes 503
changed GDI and window handles 503
changed system metrics 503
changed Windows parameters 503
changes in message packing 503-504
converting your old project 502
CWnd 504-505
fixing 32-bit problems 503
issues 502
no more segments 503
porting tips 503-504
procedure 502

Index

875

Index

876

Porting 16-bit MFC (continued)
reimplementing stubbed functions 503
removing MFC libraries from link list 503
removing VBX controls 502
removing Windows for Pens extensions 502
replacing assembly language 502
replacing MS-DOS calls 502
WinMain parameters 503

Porting to 32-bit MFC 502
Ports, Windows Sockets 816
Positioned updates

and MFC database classes 529
dynaset 393

PostNcDestroy member function
and destroying frame windows 60
CWnd class 32

Pragma comment, example 458
Prebuilt libraries (MFC) available on CD 459
Precompiled headers, reduced size,

WIN32_LEAN_AND_MEAN option 500
PreCreate Window function, overriding for subclassed

controls 595
PreCreate Window member function and frame window

styles 63
Predefined collections, using 196
Predefined queries

and the database classes 754
Class Wizard 691
described 749
record selection 754
recordsets 671, 691
tip 691

Primary key
caution 163
described 150

Print loop, printing 636
Print preview

CPreviewDC class 638
CView 77
described 638-639
documents 77
modifying the process 638
process 638

Printing
CDC class 631
default capabilities 630-631
described 629,-632
device independence of 629
differences between printing and displaying 631

Printing (continued)
document of unknown length 636
documents 77
DoPreparePrinting member function 634
EndDoc member function 631
EndPage member function 631
headers and footers 636-637
information in CPrintInfo structure 634
m_bContinuePrinting data member 636
m_tiCurPage data member 634
MFC's role in 629
multipage documents 631
OnDraw member function 629
OnPrint member function 636
orientations

landscape 631
portrait 631

overridable view member functions
described 632
OnBeginPrinting 632
OnEndPrinting 632
OnPrepareDC 632
OnPreparePrinting 632
OnPrint 632

overview 629
pages

described 631
printer vs. document 635

pagination
at print time 636
described 633-635

paper sizes 631
print loops, stopping 636
process overview 629
record views 508
SetMaxPage member function 634
StartDoc member function 631
StartPage member function 631
terminating print jobs 636
views 71,77
Windows printing protocol 631
with GDI resources 637
your role in 629

Procedures
authoring help 452
calculating elapsed time 349,352
catching exceptions 406

Procedures (continued)
closing

CArchive object 735
file 435

connecting to a data source (ODBC) 347
defining constructor with no arguments 732
deleting all

elements in map objects 20 I
elements in array objects 200
objects in CObLists 200

deriving and extending collections 196
deriving from CObject

basic functionality 181
described 730
dynamic creation support 183
run-time class information 181
serialization support 183

detecting memory leaks 366
determining the schema (ODBC) 348
disconnecting from a data source 347
dumping

all objects 368
memory statistics 367

dynamically creating objects given run-time
class 186

enabling debugging features 358
enabling/disabling memory diagnostics 365
explicitly creating a CArchive object 734
formatting time strings 349,352
getting file status 435
getting the current time 349,352
iterating

array objects 197
list objects 198
map objects 198

loading objects from values previously stored in
archives 735

making serializable classes 730
opening, file 433
overriding

Dump member function 359
Serialize member function 731

selecting, memory diagnostics with afxMemDF 366
sending Dump output to afxDump 360
storing an object in a file via an archive 735
throwing exceptions 415
using

DEBUG_NEW macro 371
DECLARE_SERIAL macro 730

Procedures (continued)
using (continued)

IMPLEMENT_SERIAL macro 732
IsKindOffunction 185
predefined collection classes 196
RUNTIME_CLASS macro 184

Processes, defined 516
Process WndProcException member function,

CWinApp class 121
Program execution

abnormal execution
defined 403
described 402
examples 403

erroneous execution 403
normal execution 402
outcomes 402

Programming
32-bit issues

32-bit libraries named differently 502
32-bit OLE requires Windows NT 3.5 501
32-bit programming support 3
CTime constructor changes 501
differences from 16-bit 501
MBCS (DBCS) enabling 501
multithreading 501
new Win32 APIs wrapped 501
new Win32 resource types 501
OnCommand function 501
OnParentNotify function 501
packing oflParam and wParam 501
platform portability 501
some features no longer available 502
TCHAR data type 501
Unicode enabling 501
Visual C++ file limitations 501

articles, OLE classes 102
models

CSocket 797
database, described 335
Windows Sockets 791

tools, MFC 778
Programming Windows 3.1, book 29
Project files 620
Project files, Help See Help project files
Project Options dialog box

described 616
setting debug option 358

Projects, setting debug option 358

Index

877

Index

878

PROJHELP.LIC file 621
Prompt strings, displaying 54
Properties

accessing embedded OLE controls 547
and methods

adding a bound property using Class Wizard 600
advanced implementation 646
described 551
linking to property pages, customizing 559
localization of 588
returning error codes 486,647

described 640
embedded OLE control 545
read-only and write-only 646
types of 640
viewing/modifying OLE control 542

Property exchange functions 592
Property page constructor, modifications to 562
Property pages

accessing multiple pages from within the property
sheet 653

adding 560
adding controls to 559
adding the stock Picture property page 573
Apply button

activating 654
disabling 654
implementing its effects 654

building 557
calling SetModified 654
creating 561,649
creating new resource strings 562
creating the class in ClassWizard 649
customizing DoDataExchange function 559
DDP _ functions, customizing 559
described 81
detecting changes 654
dimension specifications 561
implementing default 558
member variables, adding with ClassWizard 650
modification of BEGINYROPP AGEIDS 561
modifying constructor 562
modifying settings

activating Apply button 654
reporting changes 654

modifying UpdateRegistry 562
required settings in dialog editor 649
sizing each page 649
stock Color page 563

Property pages (continued)
stock Font page 563
stock Picture page 563
tasks to perform for each page 650
usage of stock pages 563
when to create the object 650

Property sheets
accessing property pages 653
adding controls

reasons 651
techniques 651
where to implement 651

Apply button
common usage 653
default behavior 653
not supporting 654
purpose 653
uses 653
using 654

common usage 649
CPropertySheet, when to derive from 650
creating

modeless 652
property page classes in Class Wizard 649
property pages 649

default behavior 651
described 81,649
displaying modal property sheets 650
exchanging data

described 651
difference from dialog box 651
example 652

external objects
communicating with 653
defined 652
determining when to apply changes 653
handling changes in 653

implementing the CPropertySheet object 650
modeless

additional tasks 652
creating 652

property page objects, when to create 650
size of the property sheet, how the framework

determines 649
tasks to perform for each property page 650
using in your application 649

Public/private/protected, source code, MFC
conventions 512

PX_Blob function 592

PX_Bool function 592
PX_Currency function 592
PX_Double function 592
PX_Float function 592
PX_Font function 592
PX_IUnknown function 592
PX_Long function 592
PX_Picture function 592
PX_Short function 592
PX_String function 592

Q
Queries 666
Query Abort function, no longer available 500
Queue collections, creating 202

R
Ranges of control IDs, message maps 49
Ranges of messages

Class Wizard support for 50
command update handlers 480
examples

range of command IDs 479
range of control IDs 480

handler functions
described 479
extra parameter required 479

message maps
described 49
example 49

message-map macros
described 478
parameters to 479

Read member function
and bypassing serializing 67
class CFile 434

Read Type Library button, Class Wizard 174
Read-only properties 646
Reading files, example 434
Record Field Exchange (DFX), dialog data exchange

described 719
diagram 719

Record Field Exchange (RFX)
See also RFX functions
adding records 663
AddNew calls, sequence of RFX operations 664
AppWizard 657

Record Field Exchange (RFX) (continued)
binding columns 661-662
binding parameters 662
CFieldExchange 659
ClassWizard 657
comment brackets 658-660
common data types 659
data types

described 661
in RFX functions 661

deleting records 665
described 655
dialog data exchange

described 719
diagram 719

DoFieldExchange function 655,658
dynamically binding columns 655
edit buffer 661
Edit calls,sequence of RFX operations 664
editing records 663
field data members 657
form-based applications 507
m_nFields data member 660
m_nParams data member 660
parameterized recordsets 655
process 661-662
record selection 752
record sets

edit buffer 661
example 657
field data members 661

RFX and DDX 655
RFX functions 659
sequence 662
SetFieldType function 659
SQL 661
the framework's role 656
updating records 663
when to use 655
wizard-created elements 657
your role 656

Record views
and form-based applications 718
App Wizard 723
ClassWizard 165, 723
creating 720
customizing

described 722
SQL strings 724

Index

879

Index

880

Record views (continued)
default code, changing 723
defined 718
described 718
designing 720
dialog data exchange 167
dialog template resoUrce

described 166
styles 166

features 718
filtering the recordset 723
in splitter window 508
list boxes, filling

example 724
procedure 724

moving among records 721
multiple 508, 721
navigation (scrolling) 721
OnGetRecordset function 723
OnlnitialUpdate function 723
overriding member functions 722
parameterizing the recordset 724
printing 508
recordset

and combo boxes 724
and list boxes 724
opening 123
using a second 724

refreshing
caution 723
example 723
UpdateData member function 723

scrolling
command handlers 721
command IDs 721
described 721
OnMove function 721

tip 166
user interface updating

described 722
update handlers 722

using 718, 722
your role 720

Records
adding in bulk (ODBC) 686
defined 655

Records (ODBC)
manipulating 535
selecting 535

Recordsets
adding columns 163
adding records

described 683
example 684
visibility of 684

AddNew
and Update 711
caution 713
edit buffer 711
how it works 710
preconditions 710

AddNew calls, cancelling 684
AFX_MOVE_REFRESH parameter, to Move

function 684
aggregate results

and filter 704
and sort 704
AVa 703
caution 704
COUNT 703
described 703
MAX 703
MIN 703
procedure 704
SUM 703

and Cursor Library 675
and snapshots 747
andSQL 750
appendability

CanAppend function 683
described 683
determining 683

architecture 668
Binary large objects

CLongBinary class 702
described 702
support for 702

binding columns 163
BLOB 702
caching multiple records, performance 294
CanAppend function 683
CanUpdate function

described 682
example 683

capabilities 666
classes

creating 671
declaring 670

Recordsets (continued)
classes (continued)

described 667
example 669
for a table 670

Class Wizard
described 667
table 670

CLongBinary class
caution 703
described 702
HGLOBAL 703
structure 703

closing
and updates 715
described 673

columns
formatting names 751
unknown at design time 695

constructing SQL statements
customizing 707
described 706
IpszSQL parameter 706

construction
CDatabase object 672
connection string 672
described 671-672
GetDefaultConnect function 672

creating 297, 671
current record 667
DAO 290
database schema 729
default behavior, modifying 671
defined 291, 666
Delete

affecting multiple records 716
and scrolling 713-714
edit buffer 713
exceptions 716
how it works 713
preconditions 713

deleting records
caution 685
described 685
example 685
procedure 685

described 666
destroying 673
detecting empty recordsets 675

Recordsets (continued)
determining updatability 682
double buffering, performance 294
dynamically binding columns

described 695
determining table columns 699
DYNABIND sample 696
dynamic RFX calls 701
general process 697
main steps 697
most cornmon case 696
providing storage 701
requirements 696
sample program 696
when to 696

dynaset-type 291
dynasets 666
Edit

and Update 712
edit buffer 712
how it works 712
preconditions 712

edit buffers
and Delete 710
described 709
storing 710

Edit calls, canceling 684
editing records

described 684
example 685
procedure 684
state after edit 685

empty, detecting 675
Encyclopedia articles 668
example 666
field data members

assigning to 669
binding columns to 669
current record 669
defined 669
example 669

filtering
character string literals 676, 751
DBMS quoting requirements 676
described 675, 751
efficiency of using parameters 676
example 676
GROUP BY clause 704
HAVING clause 704

Index

881

Index

882

Recordsets (continued)
filtering (continued)

m_strFilter member 675
procedure 675
quoting requirements 751
SQL WHERE clause 675

find functions, not supported 675
form-based applications 507
forward only 667
GetDefaultSQL function 706
GROUP BY clause, using in recordsets 704
HA VING clause, using in recordsets 704
HSTMT, freeing 673
IsBOF member function, usage 674
joins

and filters 688, 690
binding columns 688
described 671,687,753
modifying table lists 689
multiple tables 690
procedure 688
qualifying column names 690
requirements 688
source code modifications 689
Update Columns button 688

kinds 666
large data objects 702
locking modes

changing 687
described 686

locking, pessimistic, availability in drivers 687
locking records

described 686
locking modes 686
reasons 686

m_nFields data member
defined 670
example 670
initializing 670

m_nParams data member
defined 670
example 670
initializing 670

mapping form controls to 167
models of use 512
moving N records from current record 674
multiuser environment 346
objects, creating 671

Recordsets (continued)
opening

described 672
example 672
options 672
procedure 671

options
described 671
setting 673
updating 682

parameter data members
defined 669
example 669
SQL 670
uses 669

parameterized 669
parameterizing

at run time 678
described 678
effects 678
example 679, 681
execution speed 678
predefined queries 678
procedure 679
uses 678
when to use 678

parameters
binding 670
efficiency of using 676
Null 681
passing 681
placeholders 670
what MFC does with them 670

performance
caching multiple records 294
double buffering 294

predefined queries
Class Wizard 691
declaring a class 691
described 671, 691
example 692
not updatable 691
parameters 692
procedure 691
SQL statement 692
support for 691
your role 691

Recordsets (continued)
record selection

described 749-750
manual binding 753
using ODBC 753

removing columns
caution 163
described 163

requerying
and parameters 695
and roll backs 694
bringing up to date 694
described 694
dynasets 694-695
failure 695
procedures 695
reasons 694
snapshots 695

scrolling
described 673
example 674
IsBOF 674
IsEOF 674
testing end/beginning 674
when supported 673,675

second on views
and combo boxes 724
and list boxes 724

selecting records
described 705
function 705
options 705

snapshot-type 291,666
sorting

described 677, 751
example 677
m_strSort 677
procedure 677
SQL ORDER BY clause 677

source of SQL
inherited from querydef 298
supplied at design time with wizard 298

SQL statements
construction 751
overriding 751
possible effect on updatability 708

SQL strings
inherited from querydef 298
supplied at design time with wizard 298

Recordsets (continued)
table-type 291

creating 320
uses 321

tables, Class Wizard 670
tip 164
types, characteristics of 291
updatability, effect of SQL statement 708
update

affecting multiple records 716
exceptions 716
success and failure 716

updating
AddNew 710
and closing recordsets 715
and scrolling 715
and transactions 714
caution 683
dynasets 710
edit buffer 709
how it works 708
locking records 686
options 682
other users' updates 715
snapshot 710
your role 709

uses 671
views (queries), support 666
your changes vs. other users' changes

calling Requery 715
described 715
visibility 715

Recordsets (DAO)
architecture 295
classes, example 295
detecting empty Recordsets (DAO) 302
empty, detecting 302
field data members

assigning to 296
binding columns to 296
current record 296
defined 296
example 296

IsBOF member function, usage 301
m_nFields data member

defined 297
example 297
initializing 297

Index

883

Index

884

Recordsets (DAO) (continued)
m_nParams data member

defined 297
example 297
initializing 297

moving N records from current record 301
parameter data members

defined 296
example 296
SQL 296
uses 296

parameterized 296
parameters

binding 297
named 296
what MFC does with them 297

scrolling
example 301
IsBOF 301
IsEOF 301
testing end/beginning 301

Redistribution, DLLs 379
Reference counting

CString 496, 758
strings 496

Reflected Windows message
adding message handlers for 597
table of 597

Reflector window 596
REGEDIT

installing servers with 726
usage 726

RegisterClass function 31
Registered Windows Messages, message map entry 48
Registering

custom Clipboard formats 179
window classes 31

RegisterShellFileTypes member function, CWinApp
class 21

Registration, defined 725
Registry

adding new applications to 726
usage 726
verifying contents 726

ReguiarDLL
described 377-378
formerly, USRDLL 377
restrictions 378
restrictions on statically linked 378

Relational databases
and ODBC drivers 528
andSQL 748

Relations (DAO), mapping to MFC 218
Release method 572
ReleaseBuffer member function, class CString 762
ReleaseDC function 33
Remote debugging 354
Rendering data, immediate vs. delayed 342
Requerying

failures 695
recordsets 694
tips 695

Requirements, server application 741
Resizing toolbars dynamically 775
Resource editors

described 8
modifying the properties of controls 542
Visual C++, as MFC programming tool 779

Resource IDs
conventions 32, 448
described 447

RESOURCE.H file
and predefined IDs 449
#define statements in 447
described 440
example 449
mapping #defines to help strings 450
symbols defined in 449

Resources
menu and MDI child windows 63
sample 8
samples provided 204
toolbar 489, 773
using the samples in your application 204

Restrictions
AFXDLL 380
extension DLL 379
Shared Version of the Regular DLL 384

Result sets, database See Recordsets
Retrieving data from OLE data objects 344
Reusability, class 181
RFX

See also Record Field Exchange (RFX);
Recordsets

order of function calls and result set columns 659
RFX functions

and SQL 751
CFieldExchange 660

RFX functions (continued)
DoFieldExchange function 660
example 750
field data members 660
parameters 660
Record Field Exchange 659
syntax 660
writing custom functions 660

Rich edit classes
client itemws 492
documents 492
views 492

Rollback See Transactions
Routing commands

command targets 44
described 43

Rows (database) See Records
RT_TOOLBAR resource, toolbars 773
.RTF files

discussed 439
for online help 438
format of 453
in Word for Windows 451

Rubber banding, tracker 784
Run member function, CWinApp class

called by WinMain 18
described 20,38,43

Run-time class information
DECLARE_DYNAMIC macro 115
described 181, 184
in Release version 115
IsKindOf function 182, 185
RUNTIME_CLASS macro 185
vs. virtual functions 115

Run-time type identification, support by CObject
class 114

RUNTIME_CLASS macro
and frame windows 60
described 184-185
example 23

s
Sample applications, Windows Sockets 796
Samples

SQLCols 347
SQLTable 347
Toolbars 771

Save As command, framework, implementation of 734

Index

Save command, framework, implementation of 734
Scaling

CView class 72
views 72

Schema
database

defined 321
examining 321

defined 729
determining 347

Scribble, help contexts in 449
Scrolling

current record 667
CView class 72
DAO recordsets 300
described 72
record views 721
recordsets 673
views 72

SDI applications
and CMainFrame 59
and frame windows 57, 59
described 5
window classes 30

SDK classes, DAO 220
Security, DAO 219
Seek member function

and bypassing serializing 67
class CFile 434

Selecting records
ODBC, described 535
recordset 705

SelectObject member function, CDC class,
example 36

SelectStockFont function, using 566
SendMessage member function, CWnd class 50
Serialization

collections 195
constructors, defining 732
customizing 593
described 115-116,592, 729, 740
documents 67
in database applications 508-511, 739-740
object persistence, form of 115
of classes, requirements 730-732
of embedded objects 738
Serialize function vs. archive operators,

caution 737
Serialize member function, overriding 731

885

Index

886

Serialization (continued)
support

adding 183
described 181

the File menu, approaches 740
through pointers 738
transactions 740
when to use, decision tree for 739
with « and »operators 733
with Serialize member function 733

Serialize member function
as written by AppWizard 736
bypassing serializing 67
CDocument 65
described 66
example 736
loading CObjects with, need for symmetry 737
of CObjects, when to use 737
overriding 731
typical form of 736

SerializeElements helper function, collection
classes 195

Serializing
and App Wizard 66
bypassing serialization 67
CObjects, example 737
described 66

Server applications
AppWizard generated code, overview 742
changing owner of in-place frame window 745
communication with containers 626
comparing types of servers 741
defined 625, 741
defining

in-place frame window class 744
server document class 743

full-server
defined 625, 741
vs. mini-server 625

initialization issues
command line 726
described 726
/Embedding option 726
informing OLE about multiple instances 727
instance registration 727
mini-server 727
parsing command line 727

installation issues 726
MDI application, requirements 742

Server applications (continued)
mini-server, defined 625, 741
redirecting messages from in-place frame

window 745
required capabilities 741, 742
requirements 625
SDI application requirements 742
setting owner of toobar 745
user interface changes 747
using COleResizeBar 744

Server documents
procedure for defining 743
registration 743

SetAt member function, CString class 759
SetBuffer member function, CString class 758
SetButtons member function, toolbars 773
SetFieldType function

DAO Record Field Exchange 279
Record Field Exchange 659

SetFocus member function, CDialog class 92
SetFont function, using 565
Setlndicators member function, CScrollBar class 96
SetMaxPage member function, printing 634
SetModifiedFlag member function, COleControl

class 645
SetNotSupported function 646
SetSysString member function, CString class 758
Setting Tabledef attributes 319
SetupTracker function, Tracker 782
Shapes, collection classes 186-187
Shared Version of the Regular DLL

building 384
calling from applications 384
common usage 384
defined 378, 384
restrictions 378, 384
using 384
using the import library 384

Sharing objects in a collection 199
Shell registration, performed by CWinApp class 21
SHIFf +Fl help

described 437,442
help mode 437
OLE applications 442

SHIFf+Fl keys, accelerator, defined for
ID _CONTEXT_HELP command 444

Shortcut, Add Member Variables dialog 168
Show in Insert Object dialog option 617
Simple Frame option 617

Single document interface (SDI)
and CMainFrame 59
and frame window 57, 59
applications See SDI applications

Size and performance considerations, compound
files 214

Snapshot-type recordset 291
Snapshots

and dynasets, simultaneously 394, 748
and ODBC drivers 747
as static cursor 747
availability, and ODBC Cursor Library 747
caching entire snapshot at once, forcing 716
creating 671
cursor library 530
defined 747
recordsets 666
updatability, and ODBC Cursor Library 747
uses 747
vs. dynasets 666

Socket addresses, Windows Sockets 816-817
Socket classes, deriving Windows Sockets from 808
SOCKET data type, Windows Sockets 794
Socket notifications 809
Sockets

defined 794
uses for 795

Sorting recordsets 677
Source code, MFC

comment sections 512
comments in 512
public/private/protected, conventions 512

Source file comments, MFC
// advanced overridables 515
// attributes

described 514
subdivisions of 515

/ / constructors 514
/ / implementation

described 514
other comments in relation to 514

/ / operations 515
//overridables 515
for OLE Automation methods and properties 515
pure virtual functions 515

specification, Windows Sockets 793
Splitter windows

described 74
dynamic 73-74

Splitter windows (continued)

record views 508
static 73, 75

SQL
and CString 750
andODBC 748
and the database classes 748-749
C++ data types 749, 754
columns, formatting names 751
core grammar 749
DAO Record Field Exchange 283
Data Manipulation Language (DML) 749
data types 749
database classes (ODBC) 536
defined 748
described 748, 767
direct calls 755-756
draft specification 748
GROUP BY clause, using in recordsets 704
HAVING clause, using in recordsets 704
keywords 749
predefined queries 754, 756
Record Field Exchange 661
RFX functions 752
statements

constructing 706, 749-750, 753
customizing 749
described 751
DISTINCT 751,753
manual binding 754
ORDER BY 751, 754
overriding 751-752
SELECT 750-751, 753
WHERE 751, 754

syntax 748
SQLCols, determining schema 347
SQLSetPos API function and MFC database

classes 529
SQLTable, determining schema 347
Stack collections, creating 202
Standard commands, AFXRES.H 42
Standardization, compound files 214
StartDoc member function, printing 631
StartPage member function, printing 631
Static cursors

and MFC database classes 529
snapshot

behavior of 747
described 747

Index

887

Index

888

Static libraries (MFC), list of 459
Static Link Regular DLL Version of MFC, sample 387
Static Link Version of the Regular DLL

building 383
calling from applications 383
common usage 382
defined 377,382
exporting functions 383
files to distribute 389
multithreading restrictions 386
naming conventions 388
restrictions 383
using 383
using the import library 383

Static linking
described 496
in MFC, improvements 496

Statistics, memory
dumping 367
interpreting 367

Status bar control, and CStatusBar 492
Status bars

and frame windows, managing 62
described 79,94
displaying information in 54
Implementation, new 492
New implementation 492

Status codes 486, 647
Status-bar panes, updating 52
stderr stream, destiIlation of debugging output 360
Stock Caption property, adding of 566
Stock events

adding 396-398
ClassWizard support 396
described 395

Stock Font property
accessing of 565
adding of 565
modifying OnDraw 566
notification of changes 570

Stock methods, adding 483
Stock properties

adding 640
BackColor 642
color 642
ForeColor 642
notifications 642
supported by ClassWizard 642

Storage objects, defmed 212

Stored procedure calls 754, 756
Stored procedures 666
Storing

CObjects via CArchive 737
data with a CArchive 733

Stream objects, defined 212
Stream sockets 795
String functions, standard C library, working with 762
String tables, adding entries to 562
Strings

See also CString class
basic operations 758-760
converting Windows Sockets 816
DBCS support 118
manipulation of 756, 758, 760, 762-763
MBCS support 118
null-terminated, converting to C style 761
reference counting 496
support provided by CString class 118
Unicode support 118

Structured exception handling and Foundation class
library 403

Structured Query Language(SQL) See SQL
Styles

CBRS_ALIGN_ANY 774
CBRS_SIZE_DYNAMIC 775
CBRS_SIZE_FIXED 775
CBRS_TOOLTIPS 777
dialog, record views 166

Subclass Windows control option 618
SubclassDlgltem member function, CDialog class 93-

94
Subclassing

dynamic 94
handling reflected Windows messages 596
MessageReflect ambient property 597
modification of

implementation file 595
OnDraw function 596
PreCreate Window function 595

overriding PreCreate Window and
IsSubclassedControl 595

specifying Window styles 595
Symbols

browser, Visual c++ 447
defined in RESOURCE.H file 447
mapping to help strings 450
symbol browser, Visual C++ 447
viewing and manipulating 447

Synchronizing threads 493
Syntax, message maps 47
System Registration Database 726
SYSTEM.MDA file 220
SYSTEMTIME

T

structure, use with CTime class 350
support, CTime 118

_T macro, portable character strings 757
Tab dialog box See Property Sheets
Table-type recordsets

creating 320
described 291
uses 321

Tabledefs
adding fields 319
attributes, setting 319
creating a Tabledef index 319
DAO

collections 318
creating 319
creating table-type recordset 320
opening existing 320
schema, examining 321
setting attributes 319
using 317, 319

defined 317
opening existing 320
setting attributes 319
using 317

TableDefs collection, DAO 318
Tables

catalog information about 150
database, defined 768
decribed 666
privileges 150
recordset class, declaring 670
schema 729

Tabs, ClassWizard
class info 155
member variables 155
message maps 155
OLE Automation 155
OLE events 155

Tasks, DAO application 230

TCHAR data type
16-bit characters 757
and CString class 757
CString class, DBCS support 766
DBCS support, CString class 766
portability 757
Unicode support, CString class 765
wide character support 757

Template-based collection classes 190
Templates

array classes 117
collection classes 117, 187, 193
dialog resource 80
list classes 117
map classes 118
parameters 191

Test Container
debugging 768-769
testing metafile 557

Thin-caption-bar windows support 498
Thread synchronization 493
Threads

See also Multithreading
defined 516
termination 522

Three-D control support, MFC 498
Throw expression 408
THROW macro 121,405
THROW_LAST macro 405
ThrowError member function

COleControl class 486, 647
using 577

Throwing exceptions, procedure 415
Time

elapsed
calculating 349, 352
string representation, formatting 349

management 348-349
setting current 349,352

Time and date
calculating elapsed time 349,352
formatting a time string 349,352

Index

Time managment, FILETIME structure, handling 350
Time managment, SYSTEMTIME structure,

handling 350
time_t type, CTime 119

889

Index

890

Timestamp columns
See also Databases
CTime 531
TIMESTAMP _STRUCT 531

Tips
adding button handlers 168
adding member variables 168
AddNew 711
AppWizard 166
ClassWizard 164, 166, 168
connection string 672
cTRL+Double-click 168
dynamically binding columns 701-702
Edit 712-713
filtering and joins 676
joins, modifying the table list 690
multiple views 721
parameterizing 679, 681
predefined query 691
record views

described 166
dialog control order 166

recordsets 164
requerying

described 695
optimizing 695

Title and frame windows 63
TI...S See Thread local
Tool tips

activating tool tips in the toolbar 777
adding tool tip text to the string table 777
defined 770, 776
fly by status bar updating 777
implementing 777
toolbar 95
when tool tips are displayed 777

Toolbar bitmaps, ControlWizard support 619
Toolbar controls

availability 771
CToolBar 492

Toolbar editor 773
Toolbar resources

described 773
types 489

Toolbars
AppWizard code 772
App Wizard option 772
availability of toolbar controls 771
bitmaps 96

Toolbars (continued)
buttons

and command updates 53
connecting commands to 773
creating 722
described 95
documents 57
getting style of 776
managing 62
updating 52, 53

CBRS_ALIGN_ANY style 774
CBRS_SIZE_DYNAMIC style 775
CBRS_SIZE_FIXED style 775
CBRS_ TOOL TIPS style 777
CControlBar 770
CMainFrame class 772
code created by App Wizard 772
Command IDs 773
commands, connecting buttons to 773
common behavior 770
connecting buttons to commands 773
creating

described 96, 772
In OnCreate function 772
non-docking toolbars 774

CToolBar class 771
CToolBarCtrl

accessing 777
caution for SET functions 777
using 777

defined 770
described 79,94-95,770
dockable 79
docking

defined 774
described 95, 775
enabling the frame window for docking 774
enabling the toolbar for docking 774
where the toolbar docks 774

DOCKTOOL sample
illustrated techniques 773
new-style toolbars 773
old-style toolbars 773

dragging 95
dynamic resizing 775
dynamic sizing 776
editing toolbar resources 773
embedding toolbars in frame window class 772

Toolbars (continued)
examples

fixed sizing 776
frame window class with toolbar 772
toolbars embedded in frame window class 772

fixed sizing
described 776
example 776
setting wrap positions 776

floating
defined 774
described 95, 775

floating palettes 775
Frame window class, toolbar embedded in 772
fundamental techniques 771
getting styles of buttons 776
handler functions 773
LoadBitmap member function 773
LoadToolBar member function 773
MFC support for 775
mUltiple 773
new implementation 492
new-style toolbars, DOCKTOOL sample 773
old tool bars

defined 778
described 778
Implementation prior to MFC 4.0 778
using 778

old-style toolbars, DOCKTOOL sample 773
OnCreate member function 772
palettes, floating 775
reimplementation

benefits 771
CToolBarCtrl 771
customizing toolbars 771

resizing dynamically
CBRS_SIZEJ)YNAMIC style 775
CBRS_SIZE_FIXED style 775
described 775

resource editing 773
restoring settings 775
RT_TOOLBAR resource 773
samples

described 771
DOCKTOOL 771

SetButtons member function 773
setting owner during in-place activation 745
source of commands 40
styles, getting button 776

Toolbars (continued)
substitutes for menu commands 95
tool tips

See also Tool tips
activating 777
CBRS_TOOLTIPS style 777
defined 770
described 95
setting text 777
text 777

toolbar controls 777
toolbar resources, editing 773
underlying toolbar controls 777
wrapping 776

Tools, MFC programming 778
TRACE macro

arguments, examples 360
described 120,360
output destination for 360
when active 361

TRACER, use in debugging 353
Tracker

and COleClientItem 781
CRectTracker class

cursor shapes 783
described 782
display styles 781
rubber banding 784

defined 781
display styles

described 781
hatched borders 781
resize handles 781
rubber band effect 781

handling events for 782
implementing 781-782
initializing

described 782
sample styles 782
SetupTracker function 782

rubber banding
described 784
TrackRubberBand function 785

SetupTracker function
described 782
events requiring trackers 783
example 782
when to call 783

Index

891

Index

892

Transaction spaces
DAO 330
separate, opening 330,332
workspace 323

Transactions
and serialization 740
and updates 714
beginning 787
cascade deletes 331
committing

described 785, 787
effect on updates 788

cursor preservation required 786
DAO 329
defined 329, 785
deletes, cascade 331
example 330
nesting 786
performing

described 786
example 787

restrictiveness of MFC model, alternatives 715,
786

rolling back
described 785, 787
effect on updates 788

simultaneous updates 786
updating records 788
workspace 323

TranslateColor member function; COleControl
class 642

Try blocks 410
TRY macro 404,406,412-414
TRY jCATCH block, skeleton example 406
TSTCON32.EXE 769
Tutorials, OLE

Automation 102
classes 102
Container 102
Server 102

Two-phase construction 32, 35
Type identification, support provided by CObject

class 114
Type library, localization of 589
TYPE parameter 191-192
Type-save collections 190
Typed-pointer collection class templates 190, 192

u
UAFXCW.LIB 459
UAFXCWD.LIB 459
UAFXDW.LIB 459
UAFXDWD.LIB 459
Undocumented functions 490
Unicode

and CString class 757
availability only on Windows NT 757
CString class

described 765
TCHAR data type 765
wchar_t data type 765

programming 765
support 4
TCHAR data type, CString class 765
_UNICODE symbol 765
wchar_t data type, CString class 765

Unicode applications, with DAO 229
_UNICODE

mutually exclusive with _MBCS 766
symbol 765

UnrealizeObject function, no longer available 500
Updatability

CanUpdate function 682
determining, for a recordset 682
of dynasets, requirements 393

Update Columns button, ClassWizard 165
Update commands, message map entry 48
Update handlers

described 53
example 54
ranges of messages 480
record views 722
when called 53

UpdateAllViews member function
and view drawing 69
described 70

UpdateData member function, CDialog class 84, 86
UpdateRegistry member function, modifications to 562
Updating

records
DAO 302
Record Field Exchange 286, 663

toolbar buttons 53
user-interface objects

described 52
who updates 52

Upgrading from previous MFC versions 488, 490,
493-495,497

User interacting with views 68
User interface changes, server applications 747
User-defined messages, message map entries 48
User-interface objects, updating 52
User-interface threads

calling PostQuitMessage 522
changing

priority levels 518
security attributes 518
stack sizes 518

common usage 517
creating suspended threads 518
creating the class 517
defined 516
deriving from CWinThread 517
required overrides 517
retrieving the exit code of threads 523
terminating normally 522
terminating prematurely 522
using 517

Uses for Tabledefs 317
USRDLL

v

applications as DLLs 460
building 383
calling from applications 383
common usage 382
defined 382
described 496
exporting functions 383
files to distribute 389
multithreading restrictions 386
naming conventions 388
now Regular DLL 377
restrictions 383
sample 387
using 383
using the import library 383

Validity checking, support provided by CObject
class 114

VALUE parameter 192
Value property, Add Member Variable dialog 164
VBGetModelInfo function, using 607

VBX control conversion
control framework

building and testing 611
creating type library 611

custom properties and events 611
described 606
exporting model information 607
MODELINFO structure 607
running the VBX template tool 608
stock events supported 610
stock properties and events 609
stock properties supported 609
unsupported properties and events 610
unsupported VBX events 610
what gets converted 609

VBX controls
conversion of 606
no longer available 500
not supported 91
preparing for conversion 607

VERIFY macro
alternative to ASSERT 362
described 120,362

VerifyLicenseKey function 585
VerifyUserLicense function 585
Versioning support 593
View menu commands, listed 41
View options, DAO 226
Views

accessing document 66
active, and frame windows 62
CDocTemplate class 60
cleanup 75
creating 24-25,60
creation sequence 25
CRuntimeClass 60
current, and frame windows 62
default command routing 44
described 5,30,57
displaying data 68
documents 63-64
drawing 69
frame windows 57
FWS_ADDTOTITLE style 63
initializing 28, 75
interacting with user 68

Index

893

Index

894

Views (continued)
multiple

and MDI applications 73
described 73,510, 721
sample application 507

print preview 77
printing 71, 77
printing with 630-632
relationship to other classes 24
relationship with documents 64
scaling 72
scrolling 72
user input 71

Views (database), SQL CREATE VIEW statement,
defined 666

Visual C++
accelerator tables, editing 444
and RESOURCE.H file 447
Symbol Browser 447

Visual C++ 1.0, MFC version 2.0, upgrading from 497
Visual C++ 1.5, MFC version 2.5, upgrading from 497
Visual C++ 2.0, upgrading from earlier MFC

versions 497
Visual C++ 4.0, upgrading from earlier MFC

versions 488, 490, 493-495

w
wchar_t data type, Unicode support, CString class 765
Win32

and OLE classes 99
synchronization objects 493
thread synchronization 493

Win32 features in MFC 4.0 493
WIN32_LEAN_AND_MEAN 500
WINDEBUG directory and Help files 440
Window classes

derived 30
described 6,29-31
types of message handled 39

Window menu commands, listed 42
Window messages, message map entry 48
Window objects

creating 32
destroying 32
using 33

Window titles and frame windows 63
WindowProc 43

Windows
creating your own

described 31
sequence 32

mini-frame, support 498
thin caption bar, support 498

Windows, C++, vs. Windows windows 29
Windows 95

Customizing File Open dialog 493
support 490

Windows common controls, new classes 490
Windows for Pen controls, no longer available 500
Windows Help 447
Windows Help Compiler

described 447, 450
.HM files 447

Windows messages
and ClassWizard 82
and documents 68
and views 68
described 38
handling with CWnd 30
mapping to classes 89
message handlers

described 50
example 51

overview 8
Windows Sockets

and C++ objects 803
background 793
blocking 811
byte ordering 812
converting strings 816
Datagram sockets 796
deriving from socket classes 808
DLLs 792
example using archives 801
how sockets with archives work 803
inMFC 791
Internet 794
OnMessagePending member function 809
ports and socket addresses 816
programming models, CAsyncSocket class 791
sample applications 796
samples 792
sequence of operations 799
socket addresses 817
SOCKET data type 794
socket notifications 809

Windows Sockets (continued)
specification 793
Stream sockets 795
using class CAsyncSocket 806
using with Archives 797

Windows Sockets programming models, CSocket
class 791

WinHelp member function
CWinApp class 438, 442
Help, context-sensitive 444

WinMain function
location 18
Windows programming 18

WINREL directory and Help files 440
WM_INITPOPUP message and command updates 53
WM_PAINT and view drawing 70
WndProc 31
Word for Windows 451
Worker threads

calling AfxBeginThread 519
changing priority levels 519
changing security attributes 519
changing stack sizes 519
common usage 518
controlling function

defined 519
example 520
use of parameters 519

creating 519
creating suspended threads 519
defined 516,518
exit code, typical usage 520
implementing the controlling function 519
retrieving the exit code of threads 523
starting 519
terminating

normally 522
prematurely 522

when to derive from CWinThread 519
Workspace

accessing 324
as transaction space 323
collections 323
DAO

accessing Workspace object 324
as transaction space 323
collections 323
database engine 323, 326
defined 323

Workspace (continued)
DAO (continued)

described 322
engine, database 323,326
Jet database engine 323,326
MS Jet database engine 323,326
roles 324

default
described 324
opening explicitly 325

defined 323
implicit, accessing 324
managing transactions 329
persistence 324
transactions, managing 329

Workspaces collection, DAO 327
WOSA defined 527
Wrapper classes

accessing OLE controls 547
Create function 547
description of 544-545
representation of OLE controls 543

Write member function
and bypassing serializing 67
CFile class 434

Write-only properties 646
Writing new OLE applications, development

strategy 626
WS_HSCROLL and frame windows 63
WS_ VSCROLL and frame windows 63
_wVerMajor global constant 594
_wVerMinor global constant 594

Index

895

Contributors to Programming with MFC

Gail Brown, Editor

Ted Chiang, Writer

Frank Crockett, Writer

Sam Dawson, Index Editor

Mike Eddy, Production

David Adam Edelstein, Art Director

Jocelyn Garner, Writer

Kate Harper, Proofreader

Dan Jinguji, Writer

Paul Johns, Writer

Eric Landes, Writer

Sibyl Lundy, Writer

Robert Reynolds, Illustrator

Chuck Sphar, Writer

INSIIE OLE is a unified and extensible environment of object
based services with the overall purpose of enabling rich
integration between components. As Microsoft's object
technology, it represents major innovations in object-based
programming, making it possible to create applications
and software components with unprecedented capabilities.
But with this power come additional complexity and new
programming paradigms.

INSIDE OLE provides both a clear tutorial and a strong set
of example programs, giving you the tools to incorporate
OLE into your own development projects. Written by a
member of the Microsoft® OLE team, this book truly gives

ISBN 1-55615-843-2,1232 pages, $49.95 ($67.95 Canada) you the insider's perspective on the power of OLE for
creating the next generation of innovative software.

INSIDE OLE provides detailed coverage and reference material on:

• OLE and obiect fundamentals: Objects and interfaces,
connectable objects, custom components and the Component
Object Model, and Local/Remote Transparency

• Storage and naming technologies: Structured storage
and compound files, persistent objects, and naming and binding

• Data transfer, viewing, and caching: Uniform Data
Transfer, viewable objects, data caching, OLE Clipboard, and
OLE Drag and Drop

• OLE Automation and OLE Properties: Automation
controllers; property pages, changes, and persistence

• OLE Documents: OLE Documents and embedding containers,
OLE Documents and local embedding servers, in-process object
handlers and servers, linking containers, and in-place activation
(visual editing) for containers and objects

• OLE Controls and the future of OLE: OLE Controls, future
enhancements, and component software

If you're interested in ful1y exploring and understanding OLE and component software, there's
no better source than INSIDE OLE.

Microsoft Press® books are available wherever quality books are sold and through CompuServe's Electronic Mall-GO MSP.
Call 1-800-MSPRESS for more information or to place a credit card order. * Please refer to BBK when placing your order. Prices subject to change.

*In Canada, contact Macmillan Canada, Attn: Microsoft Press Dept., 164 Commander Blvd., Agincourt, Ontario, Canada MIS 3C7, or call 1-800-667-1115.
Outside the U.S. and Canada, write to International Coordinator, Microsoft Press, One Microsoft Way, Redmond, WA 98052-6399, or fax +1-206-936-7329.

Visual Basic wizard Bruce McKinney
shows how to blast through the so
called limits of Visual Basic and reach
the powerful object-oriented
development tool that lurks within.

The result is applications with better performance and more functionality.

HARDCORE VISUAL BASIC provides developers and programmers with detailed
coverage of such topics as:

• Exploring the Spirit of Basic - Language purification, the Basic Hungarian
naming convention, efficient code versus correct code, and Basic wrappers for
un-Basic hacks

• Taking Control of Windows - Calling the Windows API, understanding C in
Basic, and mastering messages and processes

• Programming Objects, Basic Style - Classes and objects, the form class,
collecting objects, and creating new controls by delegating to classes

• Painting Pictures - The Basic way of drawing, painting, and animating

• Reusing Code - Modular packages for sorting, shuffling, searching, and parsing;
reusable Search, Replace, About, and Color Select forms; classes for editing,
animating, managing the keyboard, handling menus, and sharing memory between
programs

• Programming in Different Environments - Code for MS-DOS®, Windows 3.1,
Windows 95, Windows NT"', and OLE

If you want to push Visual Basic to the max, HARDCORE VISUAL BASIC is your
guide-it's essential for any serious Visual Basic programmer's library.

Microsoft Press® books are available wherever quality books are sold and through CompuServe's
Electronic Mall-GO MSP. Call 1-800-MSPRESS for more information or to place a credit card

order.' Please refer to BBK when placing your order. Prices subject to change.
*In Canada, contact Macmillan Canada, Attn: Microsoft Press Dept., 164 Commander Blvd.,

Agincourt, Ontario, Canada M1 S 3C7, or call 1-800-667-1115. Outside the u.s. and Canada,
write to International Coordinator, Microsoft Press, One Microsoft Way, Redmond, WA

98052-6399, or fax + 1-206-936-7329.

ISBN 1-55615-891-2
950 pages, with one CD-ROM
$45.00 ($59.95 Canada)

The Microsoft® Visual
C++™ development
system offers an

exciting new way to
create Windows®-based applications.

Now you can combine the power of object-
oriented programming with the efficiency of the C

language. The application framework approach in Visual C++-centering on the
Microsoft Foundation Class Library--enables programmers to simplify and
streamline the process of creating robust, professional applications for Windows.

INSIDE VISUAL C++ takes you one step at a time through the process of creating
real-world applications for Windows-the Visual C++ way. Using ample source
code examples, this book explores MFC, App Studio, and the product's nifty
"wizards"-AppWizard and ClassWizard-in action. The book also provides a
good explanation of application framework theory, along with tips for exploiting
hidden features of the MFC library.

Microsoft Press® books are available wherever quality books are sold and through CompuServe's Electronic Mall-GO MSP.
Call1-800-MSPRESS for more information or to place a credit card order. * Please refer to BBK when placing your order. Prices subject to change.

'In Canada, contact Macmillan Canada, Attn: Microsoft Press Dept., 164 Commander Blvd., Agincourt, Ontario, Canada MIS 3C7, or call 1-800-667-1115.
Outside the U.S. and Canada, write to International Coordinator, Microsoft Press, One Microsoft Way, Redmond, WA 98052-6399, or fax +1-206-936-7329.

Microsoft Press

DEBUGGING fHE·_"-·-"--
DEVELOPMENT PROCESS ".~"

In this eagerly awaited companion to the award winning, bestselling Writing Solid Code, Steve
Maguire describes the sometimes controversial but always effective practices that enable his
software teams at Microsoft to develop high-quality software-on schedule.

With the refreshing candor reviewers admired in Writing Solid Code, Maguire talks about what
did and what didn't work at Microsoft and tells you:

• How to energize software teams to work effectively

• How to deliver on schedule and without overwork

• How to pull twice the value out of everything you do

• How to get your team going on a creative roll

If you're part of a development team, this book is for you. Once you've read it, you'll want to
give it to your manager, your peers, and your friends.

More Ways to Smooth Software Development
with the Programming Practices Series

from Microsoft Press

Code Complete
Steve McConnell

ISBN 1-55615-484-4
880 pages

$35.00 ($44.95 Canada)

Debugging the
Development Process

Steve Maguire
ISBN 1-55615-650-2

216 pages
$24.95 ($32.95 Canada)

Writing Solid Code
Steve Maguire

ISBN 1-55615-551-4
288 pages

$24.95 ($32.95 Canada)

Microsoft Press~ books are available wherever quality books are sold and through CompuServe's Electronic Mall-GO MSP.
Call1·800·MSPRESS for more information or to place a credit card order. * Please refer to BBK when placing your order. Prices subject to change.

*In Canada, contact Macmillan Canada, Attn: Microsoft Press Dept., 164 Commander Blvd., Agincourt, Ontario, Canada MIS 3C7, or call1-8oo-667-lllS.
Outside the U.S. and Canada, write to International Coordinator, Microsoft Press, One Microsoft Way, Redmond, WA 98052-6399 or fax +(206) 936-7329.

Microsoft Press

Programming Techniques

Microsoft® Visual C++TM

Development System for Windows® 95 and Windows NTTM
Version 4

Microsoft Corporation

Infonnation in this document is subject to change without notice. Companies, names, and data used in examples herein are fictitious unless
otherwise noted. No part of this document may be reproduced or transmitted in any fonn or by any means, electronic or mechanical, for any
purpose, without the express written permission of Microsoft Corporation.

© 1995 Microsoft Corporation. All rights reserved.

Microsoft, MS, MS-DOS, XENIX, Windows, Win32, Win32s, and CodeView are registered trademarks and Visual C++ and Windows NT are
trademarks of Microsoft Corporation in the USA and other countries.

IDM is a registered trademark of International Business Machines Corporation.
Intel is a registered trademark and i486 is a trademark of Intel Corporation.
MIPS is a registered trademark of MIPS Computer Systems, Inc.

ISBN 1-55615-921-8

Introduction xi
Development Strategies for Win32 xi
U sing this Manual xii

Chapter 1 Porting 16·Bit Code to 32·Bit Windows 1
Overview of 32-Bit Programming 1
Using PORTTOOL to Automate Porting 2

Porting Applications 2
Revising the Window Procedure Declaration 3
Removing Near and Far Type Declarations 4

U sing Proper Data Types 4
Handling 32-Bit Messages 4
Adjusting Calls to API Functions 7
Revising the WinMain Function 13

Special Considerations for Advanced Applications 14

Revising Advanced API Calls 14
Solving Problems Due to C Coding Techniques 16

Summary of API and Message Differences 17

Chapter 2 Handling Messages with Portable Macros 23
U sing Message Crackers 23

Overview of Message Crackers 23
Declaring Message-Handler Prototypes 25

Calling the Message Handler 25
Writing the Message Handler 26
Putting it Together: An Example 26
Handling Special Cases of Messages 28

Writing Message Crackers for User-Defined Messages 28

Adapting Message Crackers for Special Cases 30
Dialog Procedures 30
Window Subclassing 30

Window Instance Data 32

Contents

iii

Contents

iv

U sing Control Message Functions 35

Chapter 3 WINDOWS.H and STRICT Type Checking 41
New Types and Macros 41

General Data Types 41
Utility Macros 42
New Handle Types 42

Using STRICT to Improve Type Checking 43
Enabling STRICT Type Checking 44
Making Your Application STRICT Compliant 44
Using STRICT Type Checking 46
Accessing the New COMSTAT Structure 47
Interpreting Error Messages Affected by STRICT 47

Chapter 4 Creating Dlls for Win32 49
Overview of Differences 49
Run-Time Library Behavior 50
The DllMain Function 51
The dllimport and dllexport Attributes 53

The __ declspec Keyword 53
Exporting Symbols 54
Importing Symbols 55
Exporting C++ Functions 56
Importing and Exporting Inline Functions 56

Building the DLL 56
Using Visual C++ to Build DLLs 56
The /LD Option 57
Multithread Support and 1M Options 57

Special Issues with DLLs 58
Mutual Imports 58
DLL Loading and Thread-Local Storage 59

Chapter 5 Creating Multithread Applications for Win32 61
Multithread Programs 61
Library Support 62

The Multithread C Libraries: LIBCMT.LIB and MSVCRT.LIB 62
Alternatives to LIBCMT.LIB and MSVCRT.LIB 62
The Multithread Libraries Compile Option 63

Include Files 63
C Run-Time Library Functions for Thread Control 64

Sample Multithread C Program 65
Writing a Multithread Program 68

Sharing Common Resources 68
Thread Stacks 69

Compiling and Linking 70
Avoiding Problem Areas 71
Thread Local Storage (TLS) 71

API Implementation 71
Compiler Implementation 72
Rules and Limitations for TLS 72

For Further Information 74

Chapter 6 Templates 75
What Are Templates? 75
Working with Function Templates 76

Function Template Instantiation 76
Function Template Overrides 77

Working with Class Templates 77
Members of Template Classes 77
Constructors and Destructors 78
Class Template Instantiation 78
Angle Bracket Placement 78

When Should You Use Templates? 79
Templates vs. Macros 79
Templates vs. Void Pointers 80
Collection Classes 80
Smart Pointers 81

Chapter 7 C++ Exception Handling 83
Exception Handling Overview 83

Exception Handling Syntax 84
Type-Safe Exception Handling 85

How It Works 85
C++ Exceptions 86
Unhandled Exceptions 89
Order of Handlers 90
Mixing C and C++ Exceptions 91
Exception Handling Overhead 94

Contents

v

Contents

vi

Chapter 8 Structured Exception Handling 97
Overview of Structured Exception Handling 97

How Structured Exception Handling Works 97
Exception Handlers and Termination Handlers 98

Writing an Exception Handler 98

Syntax of Exception Handlers 99
Writing an Exception Filter 100
Raising Software Exceptions 102

Hardware Exceptions 103

Restrictions on Exception Handlers 104
Writing a Termination Handler 104

Syntax of Termination Handlers 105

Cleaning up Resources 106
Timing of Exception Handling: A Summary 106
Restrictions on Termination Handlers 107

U sing Structured Exception Handling with C++ 108

Chapter 9 Using Calling Conventions 109
Argument Passing and Naming Conventions 109

__ cdec1 110

__ stdcall 110

__ fastcall 111

thiscall 111
Obsolete Calling Conventions 111

Calling Example: Function Prototype and Call 112
Results 112

Naked Function Calls 113
Syntax 114

Rules and Limitations for Naked Functions 115

Naked Function Example 115
Floating Point Coprocessor 116

Chapter 10 Using the Inline Assembler 117
Advantages of Inline Assembly 117
The __ asm Keyword 117

Using Assembly Language in __ asm Blocks 118
Instruction Set 118
MASM Expressions 119

Data Directives and Operators 119

EVEN and ALIGN Directives 119
MASM Macro Directives 119
Segment References 119
Type and Variable Sizes 119
Assembly-Language Comments 120
The _emit Pseudoinstruction 120
Debugging and Listings 120

Using C or C++ in __ asm Blocks 121

U sing Operators 121
Using C or C++ Symbols 122
Accessing C or C++ Data 122
Writing Functions 123

U sing and Preserving Registers 124
Jumping to Labels 125
Calling C Functions 126
Calling C++ Functions 127
Defining __ asm Blocks as C Macros 127

Optimizing 128

Chapter 11 Programming with Mixed Languages 129
Overview of Mixed-Language Issues 129

Adjusting Calling Conventions 130
Adjusting Naming Conventions 131
Passing By Value or By Reference 133

C Calls to Fortran 134
Fortran Calls to C 135
Building the Mixed-Language Program 136
Mixed-Language Programming with C++ 136
Handling Data Types 137

Numeric Data Types 137
Pointers (Address Variables) 138
Declaring and Indexing Arrays 138
Character Strings 140
Structures, COMPLEX, and LOGICAL Types 142
Common Blocks 143

Chapter 12 Advanced Profiling 145
Combining PROFILE Sessions 145

U sing the Profile Dialog Box Merge Option 146
Using Batch Files 146

Contents

vii

Contents

Reusing .PBT and .PBI Files 147

Profiling Dynamic-Link Libraries 147

Profiling Multiple .DLL and .EXE Files 147

Program Statistics vs. Module Statistics 148

Profiling Inlined Code 148

Function Profiling for Inlined Functions 148

Line Profiling for Inlined Functions 148

Profiling Win32 Console Applications 149

Profiling Multithreaded Applications 149

Profiling on a "Quiet" Computer 149

Miscellaneous Profiler Restrictions 149

Chapter 13 Developing for International Markets 151
Unicode and MBCS 151

International Enabling 152

Internationalization Strategies 153

Locales and Code Pages 154

Benefits of Character Set Portability 155

Support for Unicode 155

Support for Using wmain 156

Unicode Programming Summary 157

Support for Multibyte Character Sets (MBCS) 158

MBCS Support in Visual C++ 159

MBCS Programming Tips 160

Generic-Text Mappings in TCHAR.H 164

Using TCHAR.H Data Types with _MBCS Code 167

For More Information 168

Index 169

Figures and Tables

viii

Figures
1.1

2.1

4.1

8.1

9.1

9.2

Parameter Sizes 5

Passing Parameters to Message Handlers with Message Crackers 24

Linking Two DLLs with Mutual Imports 59

Order of Termination-Handler Execution 106

The __ cdecl calling convention 112

The __ stdcall and thiscall calling conventions 113

9.3 The __ fastcall calling convention 113

12.1 Combining PROFILE Sessions 145
12.2 Profile dialog box 146

Tables
1.1 Changes to the Window Procedure Declaration 3
1.2 Windows Messages Affected by Porting 5
1.3 DDE Messages Affected by Porting 7
1.4 API and Message Implementation Changes for Win32 17
2.1 Control Message API Functions 36
11.1 Language Equivalents for Calls to Routines 129
11.2 C and Fortran Calling Conventions 130
11.3 Specifying Calling Conventions 131
11.4 Naming Conventions in C, Fortran, and C++ 132
11.5 C/C++ and Fortran Defaults for Passing Parameters 134
11.6 Equivalent Fortran, MASM, and C/C++ Numeric Data Types 137
11.7 Equivalent Array Declarations 139
13.1 Portable Data Types in MFC 156
13.2 Preprocessor Directives for Generic-Text Mappings 165
13. 3 Generic-Text Data Type Mappings 166

Contents

ix

Introduction

The Windows® 95 and Windows NTTM operating systems provide many new
challenges for programmers. You may need to port Windows 3.x applications,
or want to explore new areas of functionality provided by Windows 95 and
Windows NT.

Visual C++TM is designed to make these new features easy to use. The product
includes language elements that support areas of functionality such as templates,
exception handling, DLLs, and multithread applications.

Programming Techniques is a guide to these advanced language features. Most are
directly relevant to services provided by Windows 95 and Windows NT, or are at least
different from Windows 3.x. Therefore, most of the chapters in this manual deal with
porting or use of advanced features for Windows 95 and Windows NT.

Development Strategies for Win32
Windows 95 and Windows NT are complete operating systems, not just graphical
user interfaces (OUI), so you can use either one to run simple console applications. In
fact, you can use any technique described in this manual without writing for a
graphical user interface, as long as no OUI objects are involved. The rest of this
section describes how to approach development when porting a traditional program
for Windows®, which does involve OUI objects such as window handles, window
procedures, and messages.

You can begin using Visual C++ without using new areas of functionality. Instead,
you can concentrate on adapting code for Windows 3.x to compile and run correctly
with Windows 95 or Windows NT. (Chapters 1- 4 contain information on porting
issues for applications written for Windows and the new programming model for
DLLs.) However, you may want to start using new features that are most useful to
your application. For example, you can use threads if your application has many
operations that would be best handled as background tasks.

Note The term Win32® is used in this manual to refer to the common feature-set and
architecture of the Win32 API. Certain features are not supported by some implementations of
the Win32 API (such as multithread operations not supported by Win32s®).

xi

Introduction

Using this Manual

xii

To understand the basic use of Visual C++, you should refer to other manuals in this
documentation set. Despite its name, Programming Techniques does not attempt to
teach the basics of C, C++, or programming in Windows. Instead, it covers advanced
topics.

However, the first few chapters may be immediately useful if you port existing
applications from Windows 3.x. The order of information in the manual reflects the
different ways you can use it. The following table suggests which chapters you should
turn to for various topics.

To do this

Port 16-bit applications to Win32®

Create a 32-bit DLL

Create a multithread application

Use new language features of Visual C++

Learn about advanced topics, such as new calling conventions,
programming with assembly language or mixed languages,
advanced profiling, and developing for international markets

Refer to chapters

1-3

4

5

6-8

9-13

Note For information on Microsoft product support, see "Using Microsoft Support Services" in
the PSS.HLP file.

CHAPTER 1

Porting 16-Bit Code
to 32-Bit Windows

This chapter describes how to create a 32-bit version of an application written for
Windows 3.x in C, and how to make the code portable between versions of Windows.
Portable code can be recompiled as a 16-bit application or a 32-bit application.

Overview of 32-Bit Programming
The 32-bit API was designed to minimize the impact on existing code so that 16-bit
applications could be adapted as easily as possible. However, some changes were
mandated by the larger address space. Pointers are all 32 bits wide and no longer near
or far, and your code cannot make assumptions based on segmented memory.

Items which have increased to 32 bits include:

• Window handles

• Handles to other objects, such as pens, brushes, and menus

• Graphics coordinates

These size differences are generally resolved in WINDOWS.H or by the C language, but
some changes to source code are necessary. Because the different sizes can change the
way information is packed in some message parameters, you must rewrite code that
handles these messages. The larger size of graphics coordinates also affects a number of
function calls.

Some source code changes are required because Win32 uses higher-level mechanisms
for certain operations, such as MS-DOS calls. With these mechanisms, the 32-bit API is
adaptable to many platforms, and it supports powerful new features such as mUltiple
threads of execution.

Although Windows 3.x and Win32 were designed to be as compatible as possible, you
may need to carefully review large amounts of source code. Where do you start? The
top-down approach is recommended:

Programming Techniques

1. Compile the application for 32 bits, and note the compiler-generated errors.

2. Replace complex procedures that are difficult to port, and procedures written in
assembly language, with stub procedures (which do nothing except return).

3. Fix errors in the main portion of the application, using the techniques described in
this chapter.

4. Individually fill each stub procedure with portable code after the main portion of the
application compiles and runs correctly.

Using PORTTOOL to Automate Porting
You can use the PORTTOOL utility (PORTTOOL.EXE) to port applications more
easily. This utility finds locations in your code, such as references to certain API
functions and messages, that are likely to need revision.

Use the following steps to start using the PORTTOOL utility:

1. Run PORTTOOL and load a Windows 3.x source file.

2. From the Search menu, select the SearchAPI option to search for problematic API
functions and messages.

When a problem is found, a dialog box is displayed specifying the message or function
and suggesting what change is needed. Although the porting tool is not intended to
replace your primary editor, it does have basic editing capabilities (such as Cut, Paste,
and Search).

PORTTOOL uses settings in the file PORT.lNI to determine what items to look for. This
file is based on the "Summary of API and Message Differences" table on page 17.

Note The source code for the PORTIOOl utility is in the following directory:
\MSDEv\SAMPlES\SDK\SDKTOOlS\PORTTOOL. You can examine this code to better
understand how PORTTOOl works, or modify it and rebuild it for your own needs. An executable
file version of the PORTTOOl utility is included in the \MSDEv\BIN directory.

Porting Applications

2

The following sections describe general areas of code you need to modify when porting
a 16-bit application to Win32. These areas include the following:

• Window procedure declarations

• Near and far type declarations

• Data types

• Messages

• Calls to API functions

• WinMain function

Chapter 1 Porting 16-Bit Code to 32-Bit Windows

If your application uses advanced techniques, such as manipulating the WIN.lNI file,
focus, and mouse capture, you may need to consult the section "Special Considerations
for Advanced Applications" on page 14.

Revising the Window Procedure Declaration
To port a Windows 3.x application, you must revise the declaration of the window
procedure. The following is a declaration of a window procedure for a Windows 3.x
application.

LONG FAR PASCAL MainWndProc(HWND hWnd,
unsigned message,
WORD wParam,
LONG lParam)

To revise the declaration for Win32, replace the data types used in Windows 3.x as
shown in Table 1.1. The following code can be compiled as a 32-bit application, but it
can still be used to compile 16-bit applications as before:

LRESULT CALLBACK MainWndProc(HWND hWnd,
UINT message,
WPARAM wParam,
LPARAM lParam)

Table 1.1 summarizes the changes to the declaration noted in the previous example.

Table 1.1 Changes to the Window Procedure Declaration

Windows 3.x Win32 (portable code) Reason for changing

FAR PASCAL

unsigned

WORD

LONG

CALLBACK

UINT

WPARAM

LPARAM

CALLBACK is guaranteed to use
whatever calling convention is appropriate
for windows and dialog procedures.

Meaning is the same, but UINT guarantees
portability for future platforms.

WORD is always 16 bits. The WPARAM
type grows to 32 bits.

Meaning is the same, but LPARAM
guarantees portability for future platforms.

A significant difference between the Windows 3.x declaration and the portable version
involves the wParam parameter, which grows to 32 bits under Win32. Therefore,
replacing the WORD type with WPARAM is critical. The WPARAM type varies with
the operating system, as does UINT: these types are 16 bits wide under Windows 3.x
and 32 bits wide under Win32.

The other changes shown in Table 1.1 are recommended for code clarity and portability.
For example, WPARAM and LPARAM are automatically defined to be the correct
types for message parameters, and CALLBACK will always be the correct declaration
for window procedures.

3

Programming Techniques

A 32-bit wParam message parameter combined with the addresses and handles that
grow to 32 bits, means that some messages must be repacked, as described in "Handling
32-Bit Messages" below.

Removing Near and Far Type Declarations
Win32 does not distinguish between near and far addresses. Because the types NEAR
and FAR are defined in WINDEEH, they are automatically handled by the include file,
which redefines them as empty strings for Win32. Thus, NEAR and FAR are ignored.
A convenient solution is to use the ID command-line option to replace the keywords by
empty strings. For example:

ID_near= ID_far= ID __ near= ID __ far=

U sing Proper Data Types
Windows 3.x source code often uses the type WORD interchangeably with types such as
HWND and HANDLE; For example, the type cast (WORD) might be used to cast a
data type to a handle:

hWnd = (WORD) SendMessage(hWnd, WM_GETMDIACTIVATE, 0, 0);

This code compiles Windows 3.x applications correctly because both the WORD type
and handles are 16 bits. But the code produces errors when compiled for Win32 because
handles (such as HWND types) grow to 32 bits while the WORD type is still 16 bits.

Examine each occurrence of WORD casts and data definitions in your code, and revise
as follows:

• If a variable or expression is to hold a handle, replace WORD with HWND, HPEN,
HINSTANCE, or another handle type.

• If a variable or expression is a graphics coordinate or some other integer value that
grows from 16 to 32 bits, replace WORD with UINT, and short with into

• Continue to use the WORD type only if the data type needs to be 16 bits for all
versions of Windows (usually because it is a function argument or structure member).

In the portable version of the previous example, the (WORD) cast is replaced by
(HWND):

hWnd = (HWND) SendMessage(hWnd, WM_GETMDIACTIVATE, 0, 0);

In general, it is best to use the most specific type possible. Avoid using a generic handle
type such as HANDLE, and use a more specific type such as HPEN. You should also
define specific types for application-specific objects you create.

Handling 32-Bit Messages

4

Handles grow to 32 bits under Win32, so they can no longer be combined with other
information and still fit into a 32-bit parameter (lParam). The handle now occupies all

Chapter 1 Porting 16-Bit Code to 32-Bit Windows

of IParam, so information formerly in the high or low word of IParam must now move
to wParam.

Because the wParam message parameter also grows to 32 bits, it can hold the
information that can no longer be held in IP aram.

Figure 1.1 illustrates how the parameter sizes change, and how information is repacked
for WM_COMMAND, one of the messages affected.

Figure 1.1 Parameter Sizes

wParam IParam

WM_COMMAND, Win 3.x

WM_COMMAND, Win32

Extracting Data from Messages with Portable Code
The cleanest way to handle a repacked message is to revise your code so that it extracts
needed information and stores it in local variables. This localizes message-packing
issues to a few lines of your code.

For example, you can use the following code to handle the WM_COMMAND message:

case WM_COMMAND:
id = LOWORD(wParam);
hwndChild = (HWND)(UINT)lParam;
cmd = HIWORD(wParam);

Summary of Windows Messages Affected
Use Table 1.2 to reference the packing of Windows messages affected by porting.

Except for WM_CTLCOLOR, each message in Table 1.2 lists both 16-bit Windows
packing and Win32 packing for messages.

Table 1.2 Windows Messages Affected by Porting

Message Windows wParam IParam

WM_ACTIV ATE 16-bit state fMinimized, hwnd
Win32 state, fMinimized hwnd (32 bits)

WM_CHARTOITEM 16-bit char pos, hwnd
Win32 char, pos hwnd (32 bits)

WM_COMMAND 16-bit id hwnd,cmd
Win32 id, cmd hwnd (32 bits)

5

Programming Techniques

6

Table 1.2 Windows Messages Affected by Porting (continued)

Message Windows wParam IParam

WM_CTLCOLOR 16-bit hdc hwnd, type

WM_CTLCOLORtype 1 Win32 hdc (32 bits) hwnd (32 bits)

WM_MENUSELECT 16-bit cmd flags, hMenu
Win32 cmd, flags hMenu (32 bits)

WM_MDIACTIV ATE 16-bit fActivate hwndDeactivate,
hwndActivate

Win32 hwndActivate hwndDeactivate
(32 bits) (32 bits)

WM_MDISETMENU 16-bit 0 hMenuFrame,
hMenu Window

Win32 hMenuFrame hMenuWindow
(32 bits) (32 bits)

WM_MENUCHAR 16-bit char hMenu, !Menu
Win32 char, !Menu hMenu (32 bits)

WM_PARENTNOTIFY 16-bit msg id, hwndChild
Win32 msg, id hwndChild

(32 bits)

WM_ VKEYTOITEM 16-bit code item, hwnd
Win32 code, item hwnd (32 bits)

EM_GETSEL 16-bit 0 0
(returns wStart, wEnd) Win32 o or IpdwStart o orlpdwEnd

EM_LINES CROLL 16-bit 0 nLines Vert,
nLinesHorz

Win32 mLinesHorz nLinesVert
(32 bits) (32 bits)

EM_SETSEL 16-bit 0 wStart, wEnd
Win32 wStart (32 bits) wEnd (32 bits)

WM_HSCROLL, 16-bit code pos,hwnd
WM_VSCROLL Win32 code,pos hwnd (32 bits)

1 Under Win32, WM_ CTLCOLOR is replaced by a series of messages, each corresponding to a different
type. To write portable code, use #ifdef statements to handle this difference.

Chapter 1 Porting 16-Bit Code to 32-Bit Windows

Summary of DOE Messages Affected
DDE messages are packed differently for Win32 and Windows 3.x., as shown in
Table 1.3.

Table 1.3 DDE Messages Affected by Porting

Message

WM_DDE_ACK
(posted fonn only)

Windows

16-bit

Win32

16-bit

Win32

16-bit

Win32

16-bit

Win32

wParam

hwnd

hwnd (32 bits)

hwnd

hwnd (32 bits)

hwnd

hwnd (32 bits)

hwnd

hwnd (32 bits)

IParam

wStatus, altern or wStatus,
hCommands

hDDEAck (see following
paragraph)

hOptions, altern

hDDEAdvise (see
following paragraph)

hData, altern

hDDEData (see following
paragraph)

hData, altern

hDDEPoke (see following
paragraph)

Because of storage limitations, some of the information is stored in a structure, which is
accessed through the handle in [Paramo You can use the following API functions to
extract information from these structures: PackDDEIParam, UnPackDDEIParam, and
FreeDDEIParam.

For information on how to use these structures and API functions, consult the Win32
API reference.

Adjusting Calls to API Functions
Most of your source code is not affected by differences between the APIs of Windows 3.x
and Win32. The underlying definitions in WINDOWS.H automatically adjust data to
the correct size. But you may need to revise code if you call API functions in any of the
following categories:

• Graphics functions

• Functions accessing "extra" window data

• MS-DOS system calls

• Far-pointer functions

• Functions getting list and combo box contents

7

Programming Techniques

8

Graphics Functions
Most of the Windows 3.x API functions that must be replaced return packed x- and y
coordinates.

In Windows 3.x, the x- and y-coordinates are 16 bits each and are packed into the 32-bit
(DWORD) function return value, the largest valid size. In Win32, the coordinates are
32 bits each, totaling 64 bits, and are thus too large to fit into a single return value.
Each Windows 3.x function is replaced by a Win32 function with the same name, but
with an Ex suffix added. The Ex functions pass the x- and y-coordinates using an
additional parameter instead of a return value. Both Win32 and Windows 3.x support
these new functions.

The problematic graphics functions fall into two groups. The first group, functions that
set coordinates, are shown in the following table with the Win32 versions.

Windows 3.x function Portable version of function

MoveTo MoveToEx

OffsetViewportOrg OffsetViewportOrgEx

OffsetWindowOrg OffsetWindowOrgEx

Scale ViewportExt Scale ViewportExtEx

Scale WindowExt Scale WindowExtEx

SetBitmapDimension SetBitmapDimensionEx

SetMetaFileBits SetMetaFileBitsEx

Set ViewportExt Set ViewportExtEx

SetWindowExt SetWindowExtEx

SetWindowOrg SetWindowOrgEx

Each of the functions in the first column returns a value, although application code
frequently ignores it. However, even if you do not care about the return value, you must
replace the old function call with the new form. The old functions are not supported
under Win32.

Each Ex function includes an additional parameter that points to a location to receive
data. After the function call, this data provides the same information as the
corresponding function's return value. If you do not need this information, you can pass
NULL to this parameter.

Under Windows 3.x, a call to the MoveTo function can be written as follows:

MoveTo(hDC, x, y);

In the portable version supported by both versions of Windows, the call to MoveTo is
rewritten as follows. Note that the information returned by MoveTo under Windows 3.x
is still ignored:

MoveToEx(hDC, x, y, NULL);

Chapter 1 Porting 16-Bit Code to 32-Bit Windows

As a general rule, pass NULL as the last parameter unless you need to use the x- and y
coordinates returned by the Windows 3.x version. In the latter case, use the procedure
outlined in the next few paragraphs for the Get functions.

The second group consists of functions in which the application code normally does use
the return value. They are listed in the following table.

Windows 3.x function Portable version of function

GetAspectRatioFilter GetAspectRatioFilter Ex

GetBitmapDimension GetBitmapDimensionEx

GetBrushOrg GetBrushOrgEx

GetCurrentPosition GetCurrentPositionEx

GetTextExtent GetTextExtentPoint

GetTextExtentEx GetTextExtentExPoint

GetViewportExt GetViewportExtEx

GetViewportOrg GetViewportOrgEx

GetWindowExt GetWindowExtEx

GetWindowOrg GetWindowOrgEx

The GetTextExtent function uses the Point suffix because there is already a Windows
3.1 extended function GetTextExtentEx. Therefore, the Point suffix is added to the
functions GetTextExtent and GetTextExtentEx, to name the portable versions for
each.

As with the first group of functions, each Ex (and Point) version adds an additional
parameter: a pointer to a POINT or SIZE structure to receive x- and y-coordinates.
Because this structure is always the appropriate size for the environment, you can write
portable code by:

• Declaring a local variable of type POINT or SIZE, as appropriate.

• Passing a pointer to this structure as the last parameter to the function.

• Calling the function. The function responds by filling the structure with the
appropriate information.

For example, the Windows 3.x version call to GetTextExtent extracts the x- and y
coordinates from a DWORD return value (stored in a temporary variable, dwXY):

DWORD dwXY;

dwXY = GetTextExtent(hDC. szLabell. strlen(szLabell));
rect.left = 0; rect.bottom = 0;
rect.right = LOWORD(dwXY);
rect.top = HIWORD(dwXY);
InvertRect(hDC. &rect);

The portable version passes a pointer to a temporary SIZE structure, and then it extracts
data from the structure:

9

Programming Techniques

10

SIZE sizeRect;

GetTextExtentPoint(hOC, szLabell, strlen(szLabell), &sizeRect);
rect.left = 0; rect.bottom = 0;
rect.right = sizeRect.cx;
rect.top = sizeRect.cy;
InvertRect(hOC, &r~ct);

Functions That Access the Extra Window Data
The functions described in this section manipulate the "extra" data area of a window
structure. This structure can contain system information and user-defined data. You
specify the size of this data area by using the cbClsExtra and cb WndExtra members of
the WNDCLASS structure when you register the window class.

The following Windows 3.x functions get or set 16 bits during each call:
GetClassWord, GetWindowWord, SetClassWord, and SetWindowWord.

In Win32, each of these system-information items grows to 32 bits. Therefore, in
Win32, you would use the following functions which access 32 bits at a time:
GetClassLong, GetWindowLong, SetClassLong, and SetWindowLong.

Each of these functions takes two parameters: a window handle and an offset into the
data area. These offsets differ depending on whether you are compiling for Windows 3.x
orWin32.

The index values specifying these offsets correspond to each other as follows:

Windows3.x

GCW_CURSOR

GCW_HBRBACKGROUND

GCW_HICON

GWW _HINSTANCE

GWW_HWNDPARENT

GWW_ID

GWW_USERDATA

Win32 (nonportable)

GCL_CURSOR

GCL_HBRBACKGROUND

GCL_HICON

GWL_HINSTANCE

GWL_HWNDPARENT

GWL_ID

GWL_USERDATA

In the case of GWW _ HWNDPARENT, you can avoid calls to GetWindowLong and
GetWindowWord, and instead use a single call to a new API function, GetParent.
This API function returns a handle of the appropriate size. The following example
illustrates a call to GetParent that has the same results as the #ifdef statements shown
in the previous example:

hwndParent = GetParent(hWnd);

Remember that offsets may change for private data that you store in the window
structure. You should review this code carefully and recalculate offsets for Win32,
noting that some data types, such as handles, increase in size.

Chapter 1 Porting 16-Bit Code to 32-Bit Windows

Porting MS·DOS System Calls
The DOS3Call API function in Windows 3.x must be called from assembly language. It
is typically used to perform file I/O. In Win32, you should replace assembly language
code that calls DOS3Call with the appropriate Win32 file I/O calls. Other (non-file)
INT 21H functions should be replaced with the portable Windows API call as shown in
the following table.

INT 21 H subfunction MS-DOS operation Win32 API equivalent

OEH Select Disk SetCurrentDirectory

19H Get Current Disk GetCurrentDirectory

2AH Get Date GetDateAndTime

2BH Set Date SetDateAndTime

2CH Get Time GetDateAndTime

2DH Set Time SetDateAndTime

36H Get Disk Free Space GetDiskFreeSpace

39H Create Directory CreateDirectory

3AH Remove Directory RemoveDirectory

3BH Set Current Directory SetCurrentDirectory

3CH Create Handle CreateFile

3DH Open Handle CreateFile

3EH Close Handle CloseHandle

3FH Read Handle ReadFile

40H Write Handle WriteFile

41H Delete File DeleteFile

42H Move File Pointer SetFilePointer

43H Get File Attributes GetAttributesFile

43H Set File Attributes SetAttributesFile

47H Get Current Directory GetCurrentDirectory

4EH Find First File FindFirstFile

4FH Find Next File FindNextFile

56H Change Directory Entry MoveFile

57H Get Daterrime of File GetDateAndTimeFile

57H Set Daterrime of File SetDataAndTimeFile

59H Get Extended Error GetLastError

5AH Create Unique File GetTempFileName

5BH Create New File CreateFile

5CH Lock LockFile

5CH Unlock UnlockFile

67H Set Handle Count SetHandleCount

11

Programming Techniques

12

File Operations
You may need to increase the size of fixed-length buffers for filenames and environment
strings. Windows 95 and Windows NT support filenames of up to 256 characters, rather
than the 8.3 format supported by MS-DOS. You can make code more portable by
allocating longer buffers or by using dynamic memory allocation. If you want to
conserve memory under Windows 3.x, you can use #ifdef statements to allocate buffers
of the proper length for the environment. You can also use macros such as
_MAX_PATH and _MAX_FNAME, defined in STDLIB.H.

Windows 95 and Windows NT require stricter use of file open and close operations than
Windows 3.x. There are some combinations of open and close functions (for example,
mixing _open with _Iclose) that may work in code for Windows 3.x, but require
revision to work correctly with Windows 95 and Windows NT.

You may also need to make changes in low-level file I/O. In porting Windows 3.x code,
some developers change from using the Windows API file I/O functions (such as Jopen
and _Iread) to using the C run-time low-level I/O functions (such as _open and _read).
All versions of the Windows API support only binary mode, not text mode, but the C
run-time calls use text mode by default. Therefore, when changing from the Windows
file I/O to the C run-time versions, open files in binary mode by doing one of the
following:

• Link with BINMODE.OBJ, which changes the default mode for all file-open
operations.

• Open the individual files with _O_BINARY flag set.

• Use setmode to change an open file to _O_BINARY.

Far-Pointer Functions
Windows 3.x provides functions for memory and file manipulation using far pointers,
which have the form _fxxxx. In Win32, these functions are replaced by similarly-named
functions of the form xxxx, because there is no need for far pointers in Win32. (The _f
prefix is dropped from the name.)

The WINDOWSX.H file defines the _fxxxx function names so that in Win32, the _fxxxx
function names are equated to corresponding functions that are still supported. This
means that as long as you include WINDOWSX.H, you don't have to rewrite calls to
these functions. Some of the definitions are:

#define _fmemcpy
#define _fstrcpy
#define _fstrcmp
#define _fstrcat

memcpy
strcpy
strcmp
strcat

Chapter 1 Porting 16-Bit Code to 32-Bit Windows

Functions Getting List and Combo Box Contents
The Win32 API contains two new functions, shown in the following table, that provide
an improved means of extracting list and combo box contents. In each case, you use the
portable version of the function to specify a buffer size for a string that receives the
information.

Windows 3.x function

DlgDirSelect

DlgDirSelectComboBox

Portable version of the function

DlgDirSelectEx

DlgDirSelectComboBoxEx

For example, Windows 3.x code might contain the following function call:

DlgDirSelect(hDlg, lpString, nIDListBox);

This line of code should be replaced by the following call to DlgDirSelectEx:

DlgDirSelectEx(hDlg, lpString, strlen(lpString), nIDListBox);

Revising the WinMain Function
You need to revise the WinMain function if either of the following is true:

• Your application needs to know when another instance of the application is running,
or

• You need to access the command line.

Otherwise, the code in this function generally needs no change.

The parameter list for WinMain is the same for Win32 and Windows 3.x:

int PASCAL WinMain(hlnstance, hPrevlnstance, lpCmdLine, nCmdShow)

Note that under Win32, the hPrevlnstance parameter is always passed NULL (see the
next section, "Initializing Instances"). As with 16-bit Windows 3.x, the IpCmdLine
parameter points to a string containing the entire command line.

Initializing Instances
The hPrevlnstance parameter is always passed NULL in Win32. This causes each
instance of an application to act as though it were the only instance running. The
application must register the window class, and it cannot access data used by other
instances, except through standard interprocess communication techniques such as
shared memory or DDE. Calls to GetInstanceData must be replaced with these
techniques.

Before registering a window class, source code for Windows 3.x normally tests
hPrevlnstance to see whether another instance of the application is already running.
This code needs no change, because under Win32, it will always register the window
class.

13

Programming Techniques

Some applications must know whether other instances are running. Sometimes this is
because data sharing is required. More frequently, it is because only one instance of the
application should run at a time. Examples of this latter case include Control Panel and
Task Manager.

Applications cannot use hPrevlnstance to test for previous instances under Win32. An
alternative method must be used, such as creating a unique named pipe, creating or
testing for a named semaphore, broadcasting a unique message, or calling
FindWindow.

Special Considerations for Advanced
Applications

Additional revisions may sometimes be necessary for applications that use advanced
API calls or coding tricks. If your application is fairly complex, you should scan this
section to make sure that you don't need to make additional changes.

Revising Advanced API Calls

14

Applications may need further revision if they use API calls dealing with any of the
following: accessing .IN! files, setting focus and active window, capturing the mouse,
and sharing graphical objects.

Profile Strings and .lNI Files
Although Windows 95, Windows NT, and Win32s are all examples of Win32, Windows
95 and Windows NT have some features not present in Win32s.

Windows 3.x applications can access .INI files directly. In Windows 95 and Windows
NT, however, such code doesn't work because the information in .INI files is replaced
by a registration database. This database offers some advantages, including security
controls that prevent an application from corrupting system information, error logging,
remote software updating, and remote administration of workstation software.

You can write portable code by using the profile API supported by Windows 3.x and all
versions of Win32, including Windows 95 and Windows NT. Call the GetProfileString
and WriteProfileString API functions instead of accessing .INI files directly. These
functions use whichever underlying mechanism (.INI file or registration database) is
supported by the environment you are compiling for.

Focus, Mouse Capture, and Localized Input
Windows 95 and Windows NT differ from Windows 3.x in that each thread of execution
has its own message pump. This change affects window focus and mouse capture.

Chapter 1 Porting 16-Bit Code to 32-Bit Windows

Window Focus
In Win32, each thread of execution can set or get the focus only to windows created by
the current thread. This prevents applications from interfering with each other. One
application's delay in responding cannot cause other applications to suspend their
response to user actions, as often happens in Windows 3.x.

Consequently, the following API functions work differently under Win32:

GetActiveWindow(VOID)

GetCapture(VOID)

GetFocus(VOID)

ReleaseCapture(VOID)

SetActive Window(HWND)

SetCapture(HWND)

SetFocus(HWND)

The Get functions in the preceding list can now return NULL, which could not happen
in Windows 3.x. Therefore, it's important to test the return value of GetFocus before
using it. Instead of returning the window handle of another thread, the function returns
NULL. For example, you call GetFocus and another thread has the focus. Note that it's
possible for a call to GetFocus to return NULL even though an earlier call to SetFocus
successfully set the focus. Similar considerations apply to GetCapture and
GetActive Window.

The Set functions can only specify a window created by the current thread. If you
attempt to pass a window handle created by another thread, the call to the Set function
fails.

Mouse Capture
Mouse capture is also affected by the Windows 95 and Windows NT localized input
queues. If the mouse is captured on mouse down, the window capturing the mouse
receives mouse input until the mouse button is released, as in Windows 3.x. But if the
mouse is captured while the mouse button is up, the window receives mouse input only
as long as the mouse is over that window or another window created by the same thread.

Shared Graphical Objects
Win32 applications run in separate address spaces. Graphical objects are specific to the
application and cannot be manipulated by other processes as in Windows 3.x. A handle
to a bitmap passed to another process cannot be used because the original process
retains ownership.

Each process should create its own pens and brushes. A cooperative process may access
the bitmap data in shared memory (by way of standard interprocess communications)
and create its own copy of the bitmap. Bitmap alterations must be communicated
between the cooperative processes by way of interprocess communication, such as DDE.

Win32 adds an explicit ownership transfer API function for graphical objects to
explicitly allow cooperative applications to share graphical objects.

15

Programming Techniques

Solving Problems Due to C Coding Techniques

16

Some portability problems can be caused by coding techniques that do not translate
successfully to other memory models and processors. You can avoid these problems by
not using segmented memory. The header files will then handle standard pointers and
manage memory correctly.

Memory and Pointers
To be portable, source code must avoid any techniques that rely on the 16-bit
segment:offset address structure, because all pointers are 32 bits in size under Win32
and use flat rather than segmented memory.

This difference in pointer structure is usually not a problem unless the code uses
HIWORD, LOWORD, or similar macros to manipulate portions of the pointer.

For example, in Windows 3.x, memory is allocated to align on a segment boundary,
which makes memory allocation functions return a pointer with an offset of OxOOOO.
The following code exploits this fact to run successfully under Windows 3.x:

ptr2 = ptrl = malloc(); II ptr2 = xxxx:0000
LOWORD(ptr2) = index * elementsize; II Place offset of array element

II into ptr2 low word

Such code does not work properly under Win32. But standard pointer constructs, such
as the following, always result in portable code:

ptrl = malloc();
ptr2 = &ptrl[i] ;

II Set ptrl to start of memory block
II Place offset of array element

Here are some other guidelines for dealing with pointers:

• All pointers, including those that access the local heap, are 32 bits under Win32.

• Addresses never wrap, as they can with the low word in segmented addressing. For
example, in Windows 3.x, an address can wrap from 1000:FFFF to 1000:0000.

• Structures that hold near pointers in Windows 3.x must be revised because all
pointers are 32 bits in Win32. This may affect code that uses constants to access
structure members, and it may also affect alignment.

Structure Alignment
Applications should generally align structure members at addresses that are "natural"
for the data type and the processor involved. For example, a 4-byte data member should
have an address that is a mUltiple of four.

This principle is especially important when you write code for porting to mUltiple
processors. A misaligned 4-byte data member, which is on an address that is not a
multiple of four, causes a performance penalty with an 80386 processor and a hardware
exception with a MIPS® RISe processor. In the latter case, although the system handles
the exception, the performance penalty is significantly greater.

The following guidelines ensure proper alignment for processors targeted by Win32:

Chapter 1 Porting 16-Bit Code to 32-Bit Windows

Type

char

short (16-bit)

int and long (32-bit)

float

double

structures

unions

Alignment

Align on byte boundaries

Align on even byte boundaries

Align on 32-bit boundaries

Align on 32-bit boundaries

Align on 64-bit boundaries

Largest alignment requirement of any member

Alignment requirement of the first member

The compiler automatically aligns data in accordance with these requirements, inserting
padding in structures up to the limit (default pack size) specified by the /Zp option or
#pragma pack. For example, /Zp2 permits up to 1 byte of padding, /Zp4 permits up to
3 bytes of padding, and so on. The default pack size for Windows 3.x is 2, whereas the
default for Win32 is 8. As a consequence:

• If you have specified a packing limit with /Zp or #pragma pack, you may not get the
proper alignment (the default value) for Win32.

• The different default setting for Win32 can impact your source code by changing the
offsets of some structure members. Examine your code closely to see whether you
have hard-coded these offsets, or whether your code makes assumptions based on a
certain default pack size.

Ranges and Promotions
Occurrences of int, unsigned, and unsigned int indicate potential portability problems
because size and range are not constant. Data that would not exceed its range in Win32
could exceed range in Windows 3.x. Sign extension also works differently, so exercise
caution in performing bitwise manipulation of this data.

Source code that relies on wrapping often presents portability problems and should be
avoided. For example, a loop should not rely on an unsigned variable wrapping at
65535 (the maximum value in Windows 3.x) back down to O.

Summary of API and Message Differences
Table 1.4 provides a complete list of API calls and messages that require
implementation changes for Win32.

Table 1.4 API and Message Implementation Changes for Win32

API/Message Support Comments

AccessResource

AddFontResource

AllocDSToCSAlias

Dropped

Enhanced

Dropped

No Win32 API equivalent (resource API in
progress)

Must use string, not handle, for filename

No Win32 API equivalent

17

Programming Techniques

Table 1.4 API and Message Implementation Changes for Win32 (continued)

API/Message Support Comments

AllocResource Dropped No Win32 API equivalent (resource API in
progress)

AllocSelector Dropped No Win32 API equivalent

ChangeSelector Dropped No Win32 API equivalent

CloseComm Dropped Replaced by CloseFile

CloseSound Dropped Replaced by multimedia sound support

Count VoiceNotes Dropped Replaced by multimedia sound support

DeviceCapabilities Dropped Replaced by portable
DeviceCapabilitiesEx

DeviceMode Dropped Replaced by portable DeviceModeEx

DlgDirSelect Dropped Replaced by portable DlgDirSelectEx

DlgDirSelectComboBox Dropped Replaced by portable
DlgDirSelectComboBoxEx

DOS3Call Dropped Replaced by named, portable Win32 API

ExtDeviceMode Dropped Replaced by portable ExtDeviceModeEx

FlushComm Dropped Replaced by PurgeComm

FreeSelector Dropped No Win32 API equivalent

GetAspectRatioFilter Dropped Replaced by portable
GetAspectRatioFilterEx

GetBitmapDimension Dropped Replaced by portable
GetBitmapDimensionEx

GetBrushOrg Dropped Replaced by portable GetBrushOrgEx

GetClassWord Enhanced Use GetClassLong for values that grow to
32 bits in Win32

GetCodeHandle Dropped No Win32 API equivalent

GetCodelnfo Dropped No Win32 API equivalent

GetCommError Dropped Replaced by GetCommState

GetCurrentPDB Dropped No Win32 API equivalent

GetCurrentPosition Dropped Replaced by portable
GetCurrentPositionEx

GetEnvironment Dropped No Win32 API equivalent

GetlnstanceData Dropped No equivalent; use alternative supported
IPC mechanism

GetKBCodePage Dropped No Win32 API equivalent

GetMetaFileBits Dropped Replaced by portable GetMetaFileBitsEx

GetModuleUsage Enhanced Always returns 1 on Win32

GetTempDrive Dropped Not applicable to Win32

18

Chapter 1 Porting 16-Bit Code to 32-Bit Windows

Table 1.4 API and Message Implementation Changes for Win32 (continued)

API/Message Support Comments

GetTextExtent Dropped Replaced by portable GetTextExtentPoint

GetTextExtentEx Dropped Replaced by portable
GetTextExtentExPoint

GetThresholdEvent Dropped Replaced by multimedia sound support

GetThresholdStatus Dropped Replaced by multimedia sound support

GetViewportExt Dropped Replaced by portable GetViewportExtEx

GetViewportOrg Dropped Replaced by portable GetViewportOrgEx

GetWindowExt Dropped Replaced by portable GetWindowExtEx

GetWindowOrg Dropped Replaced by portable GetWindowOrgEx

GetWindowWord Enhanced Use GetWindowLong for values that grow
to 32 bits on Win32

GlobalDosAlloc Dropped No Win32 API equivalent

GlobalDosFree Dropped No Win32 API equivalent

GlobalPageLock Dropped No Win32 API equivalent

GlobalPageUnlock Dropped No Win32 API equivalent

LimitEMSPages Dropped No Win32 API equivalent

LocalNotify Dropped No Win32 equivalent

MoveTo Dropped Replaced by portable MoveToEx

NetBIOSCall Dropped Replaced by named, portable Win32 API

OffsetViewportOrg Dropped Replaced by portable
OffsetViewportOrgEx

OffsetWindowOrg Dropped Replaced by portable
OffsetWindowOrgEx

OpenComm Dropped Replaced by OpenFile

Open Sound Dropped Replaced by multimedia sound support

Prof Clear Dropped Replaced by Win32 profile-string API

ProfFinish Dropped Replaced by Win32 profile-string API

ProfFlush Dropped Replaced by Win32 profile-string API

ProflnsChk Dropped Replaced by Win32 profile-string API

ProfSampRate Dropped Replaced by Win32 profile-string API

ProfSetup Dropped Replaced by Win32 profile-string API

ProfStart Dropped Replaced by Win32 profile-string API

ProfStop Dropped Replaced by Win32 profile-string API

ReadComm Dropped Replaced by ReadFile

RemoveFontResource Enhanced Must use string, not handle, for filename

19

Programming Techniques

Table 1.4 API and Message Implementation Changes for Win32 (continued)

API/Message Support Comments

Scale ViewportExt Dropped Replaced by portable Scale ViewportExtEx

Scale WindowExt Dropped Replaced by portable Scale WindowExtEx

SetBitmapDimension Dropped Replaced by portable
SetBitmapDimensionEx

SetClass Word Enhanced Use SetClassLong for values that grow to
32 bits on Win32

SetCommEventMask Dropped Replaced by SetCommMask

SetEnvironment Dropped No Win32 API equivalent

SetMetaFileBits Dropped Replaced by portable SetMetaFileBitsEx

SetResourceHandler Dropped No Win32 API equivalent (resource API in
progress)

SetSoundNoise Dropped Replaced by multimedia sound support

Set ViewportExt Dropped Replaced by portable SetViewportExtEx

SetViewportOrg Dropped Replaced by portable SetViewportOrgEx

SetVoiceAccent Dropped Replaced by multimedia sound support

Set VoiceEnvelope Dropped Replaced by multimedia sound support

SetVoiceNote Dropped Replaced by multimedia sound support

SetVoiceQueueSize Dropped Replaced by multimedia sound support

SetVoiceSound Dropped Replaced by multimedia sound support

Set Voice Threshold Dropped Replaced by multimedia sound support

SetWindowExt Dropped Replaced by portable SetWindowExtEx

SetWindowOrg Dropped Replaced by portable SetWindowOrgEx

SetWindowWord Enhanced Use SetWindowLong for values that grow
to 32 bits on Win32

StartSound Dropped Replaced by multimedia sound support

StopSound Dropped Replaced by multimedia sound support

SwitchStackBack Dropped No Win32 API equivalent

SwitchStackTo Dropped No Win32 API equivalent

SyncAIIVoices Dropped Replaced by multimedia sound support

UngetCommChar Dropped No Win32 equivalent

Validate Code Segments Dropped No Win32 API equivalent

ValidateFreeSpaces Dropped No Win32 API equivalent

WaitSoundState Dropped Replaced by multimedia sound support

WriteComm Dropped Replaced by WriteFile

EM_GETSEL Enhanced wParam/IParam packing changed

EM_LINES CROLL Enhanced wParam/IParam packing changed

20

Chapter 1 Porting 16-Bit Code to 32-Bit Windows

Table 1.4 API and Message Implementation Changes for Win32 (continued)

API/Message Support Comments

EM_SETSEL Enhanced wParam/IParam packing changed

WM_ACTIV A TE Enhanced wParam/IParam packing changed

WM_CHANGECBCHAIN Enhanced wParam/IParam packing changed

WM_CHARTOITEM Enhanced wParam/IParam packing changed

WM_COMMAND Enhanced wParam/IParam packing changed

WM_CTLCOLOR Replaced Replaced by WM_CTLCOLORtype
messages; wParam/IParam packing changed

WM_DDE_ACK Enhanced wParam/IParam packing changed

WM_DDE_ADVISE Enhanced wParam/IParam packing changed

WM_DDE_DATA Enhanced wParam/IParam packing changed

WM_DDE_EXECUTE Enhanced wParam/IParam packing changed

WM_DDE_POKE Enhanced wParam/IParam packing changed

WM_HSCROLL Enhanced wParam/IParam packing changed

WM_MDIACTIV ATE Enhanced wParam/IParam packing changed

WM_MDISETMENU Enhanced wParam/IParam packing changed

WM_MENUCHAR Enhanced wParam/IParam packing changed

WM_MENUSELECT Enhanced wParam/IParam packing changed

WM_PARENTNOTIFY Enhanced wParam/IParam packing changed

WM_ VKEYTOITEM Enhanced wParam/IParam packing changed

WM_VSCROLL Enhanced wParam/IParam packing changed

(WORD) 16-bit Check if incorrect cast of 32-bit value;
WORD is unsigned 16-bit int

GCW_CURSOR Dropped Replaced by GetlSetClassCursor

GCW_HBRBACKGROUN Dropped Replaced by GetlSetClassBrBackground
D

GCW_HICON Dropped Replaced by GetlSetClassIcon

GWW _HINSTANCE Dropped Replaced by GWL_HINST ANCE

GWW_HWNDPARENT Dropped Replaced by GWL_HWNDP ARENT

GWW_ID Dropped Replaced by GWL_ID

GWW_USERDATA Dropped Replaced by GWL_USERDATA

HIWORD 16-bit Check ifHIWORD target is 16-bit or 32-bit

LOWORD 16-bit Check if LOWORD target is 16-bit or 32-bit

WndProc Widened Define Window procedures: WndProc
(HWND hwnd, UINT msg, UINT wParam,
UINT lParam)

21

Programming Techniques

Table 1.4 API and Message Implementation Changes for Win32 (continued)

API/Message Support Comments

wndproc Widened Define Window procedures: WndProc
(HWND hwnd, UINT msg, UINT
wParam, UINT IParam)

DCB Enhanced Changes to bit fields and additional
structure members

MAKEPOINT Dropped Replaced by LONG2POINT

22

CHAPTER 2

Handling Messages with
Portable Macros

Instead of taking the case-by-case approach shown in Chapter 1, "Porting 16-Bit
Code to 32-Bit Windows," you can use message-cracking macros to write message
handlers similar to those you would write when using Microsoft Foundation Classes.
These message handlers use the same parameter list regardless of operating system,
thereby solving message-packing issues. This chapter describes these and other
macros defined in WINDOWSX.H (or WINDOWSX.H16 in the case of 16-bit
applications) .

U sing Message Crackers
Message crackers are a set of macros that extract useful information from the
wParam and IParam parameters of a message and hide the details of how information
is packed.

U sing message crackers initially requires that you revise some of your code. Message
crackers also have a minor impact on performance by involving an additional
function call. However, they offer the following advantages:

• Portability. Message crackers free you from packing issues and guarantee proper
extraction of information, regardless of which environment you're compiling for.

• Readability. With message crackers, you can understand source code because
message parameters are translated into data with meaningful names.

• Ease of use. In addition to decoding wParam and IParam, message crackers place
message-handling code in separate functions. Instead of a long switch statement,
you have a separate handler for each message.

Overview of Message Crackers
You use message crackers in your code by writing a separate message handler
function for each message. Then you use a macro to call each of those functions from
within your window procedure.

23

Programming Techniques

24

Use of message crackers for all messages is recommended, but you can optionally
combine code that uses message crackers for some messages with code that responds
directly to other messages.

Note To use message crackers, make sure you include the file WINDOWSX.H (or
WINDOWSX.H16, in the case of 16-bit applications).

Suppose you have a message, WM_ TH I S. The code to handle this message would look
like this:

LRESULT CALLBACK My_WndProc(HWND hwnd, UINT msg, UINT wParam, LONG lParam

switch(msg) {
case WM_THIS:

II Place code to handle message here

To use message crackers, write a message handler, then call it from the switch
statement. Suppose that there are two pieces of information contained in the WM_ TH I S
message: thisH de and thisData. Message crackers unpack this information from
wParam and IParam, and pass it as parameters to your message handler,
MyWnd_OnThi s, as depicted in Figure 2.1.

Figure 2.1 Passing Parameters to Message Handlers with Message Crackers

Note that the parameters to MyWnd_OnThi s (after hwnd, which is always the first
parameter) consist of information directly usable by your code: thisHde and thisData.
The macro HANDLE_WM_THIS translates wParam and IParam into thisHde and
thisData as it makes the function call.

The following general steps summarize how to use message crackers:

• Declare a prototype for each message-handling function.

• In the window procedure, call the message handler. Use either a message decoder
(such as HANDLE_ WM_CREATE) or the HANDLE_MSG macro.

• Write the message handler. Use a message forwarder such as
FORWARD_ WM_CREATE to call the default message procedure.

Chapter 2 Handling Messages with Portable Macros

Declaring Message-Handler Prototypes
To use message crackers, first declare a prototype for the message handling function
("message handler" for short). Although you can give your message handlers any
name you want, a recommended convention is:

WndClass _ OnMsg

in which WndClass is the name of the window class, and Msg is the name of the
message in mixed case, with the "WM" dropped. For example, the following code
contains prototypes for functions handling WM_CREATE, WM_PAINT, and
WM_MOUSEMOVE:

BOOl MyWnd_OnCreate(HWND hwnd. CREATESTRUCT FAR* lpCreateStruct);
void MyWnd_OnPaint(HWND hwnd);
void MyWnd_OnMouseMove(HWND hwnd. int x. int y. UINT keyFlags);

The first parameter to each function is always hwnd, which is a handle to the window
that received the message. The rest of the parameters vary; each message handler has
its own customized parameter list. To declare the appropriate parameters for a
message, see the corresponding definitions in WINDOWSX.H.

Calling the Message Handler
In your window procedure, you call a message handler by using a message-decoder
macro such as HANDLE_ WM_CREATE or HANDLE_ WM_PAINT. The general
form for using these macros is:

case msg:
return HANDLE _ msg (hwnd, wParam, IP aram, handler);

You should always return the value of the macro, even if no return value is expected
and the corresponding message handler has void return type.

For example, you could place the following macros in your code:

switch(msg) {
case WM_CREATE:

return HANDlE_WM_CREATE(hwnd. wParam. lParam. MyWnd_OnCreate);
case WM_PAINT:

return HANDlE_WM_PAINT(hwnd. wParam. lParam. MyWnd_OnPaint);
case WM_MOUSEMOVE:

return HANDlE_WM_MOUSEMOVE(hwnd. wParam. lParam.
MyWnd_OnMouseMove);

Alternatively, you can use the generic HANDLE_MSG macro, which generates the
same code as the previous example, but saves space:

switch (msg) {
HANDlE_MSG(hwnd. WM_CREATE. MyWnd_OnCreate);

25

Programming Techniques

HANDlE_MSG(hwnd. WM_PAINT. MyWnd_OnPaint);
HANDlE_MSG(hwnd. WM_MOUSEMOVE. MyWnd_OnMouseMove);

HANDLE_MSG assumes that you use the names wParam and lParam in the window
procedure parameter list. You cannot use this macro if you have given these
parameters other names.

Writing the Message Handler
In the message-handling function, you respond to the message using parameters that
have been translated from wParam and lParam and passed to the function. In the
following example, IpCreateStruct is an example of a parameter translated from
wParam and lParam:

BOOl MyCls_OnCreate(HWND hwnd. CREATESTRUCT FAR* lpCreateStruct)
{

II Place message-handling code here

return FORWARD_WM_CREATE(hwnd. lpCreateStruct. DefWindowProc);

Message-handling code often finishes by calling DefWindowProc or some other
default message procedure. You make this function call by using a "message
forwarder," which uses the following form:

return FORWARD _ msg(parmlist, defaultMsgProc);

The parmlist is the same list of parameters in the message handler, and
defaultMsgProc is the default message procedure, typically DefWindowProc. The
message forwarder repacks the information in the parameter list into the appropriate
wParamjlParam format (depending on target environment) and forwards the message
to the default message procedure.

Putting it Together: An Example

26

In the following example, several message handlers are used in a window procedure
to show where the various prototypes and macros fit into the code.

The header file, MYAPP.H, consists of function prototypes, including prototypes for
the message handlers. Note how each message handler has its own parameter list,
which is customized to represent the information packed in the corresponding
message:

/I MYAPP.H

II Window procedure prototype

lRESUlT CAllBACK MyWnd_WndProc(HWND hwnd. UINT msg. WPARAM wParam. lPARAM lParam);

Chapter 2 Handling Messages with Portable Macros

II Default message handler

#define MyWnd_DefProc DefWindowProc

II MyWnd class message handler functions. declared in a .h file:
II
void MyWnd_OnMouseMove(HWND hwnd. int x. int y. UINT keyFlags);
void MyWnd_OnLButtonDown(HWND hwnd. BOOL fDoubleClick. int x. int y. UINT keyFlags);
void MyWnd_OnLButtonUp(HWND hwnd. int x. int y. UINT keyFlags);

The rest of the code in this example is in MYAPP.C, which contains the window
procedure and the individual message handlers. With message crackers, the function
of the window procedure is principally to route each message to the appropriate
handler.

Both the WM_LBUTTONDOWN and WM_LBUTTONDBLCLK messages map to
the MyWnd_On LButtonDown procedure. This mapping is one of the special cases of
message handling described in the next section.

II MYAPP.C --

II MyWnd window procedure implementation.
II
LRESULT CALLBACK MyWnd_WndProc(HWND hwnd. UINT msg. WPARAM wParam. LPARAM Param)
{

switch (msg)
{

HANDLE_MSG(hwnd. WM_MOUSEMOVE.MyWnd_OnMouseMove);
HANDLE_MSG(hwnd. WM_LBUTTONDOWN. MyWnd_OnLButtonDown);
HANDLE_MSG(hwnd. WM_LBUTTONDBLCLK. MyWnd_OnLButtonDown);
HANDLE_MSG(hwnd. WM_LBUTTONUP. MyWnd_OnLButtonUp);

default:
return MyWnd_DefProc(hwnd. msg. wParam. lParam);

}

II Message handler function implementations:
II
void MyWnd_OnMouseMove(HWND hwnd. int x. int y. UINT keyFlags)
{

return FORWARD_WM_MOUSEMOVE(hwnd. x. y. keyFlags. MyWnd_DefProc);

void MyWnd_OnLButtonDown(HWND hwnd. BOOL fDoubleClick. int x. int y. UINT keyFlags)
{

return FORWARD_WM_LBUTTONDOWN(hwnd. fDoubleClick. x. y. keyFlags. MyWnd_DefProc);

27

Programming Techniques

void MyWnd_OnLButtonUp(HWND hwnd. int x. int y. UINT keyFlags)
{

return FORWARD_WM_LBUTTONUP(hwnd. x. y. keyFlags. MyWnd_DefProc);
}

Note that the symbol MyWnd_DefProc is defined to represent DefWindowProc to
make code more reusable. This approach assumes you have a similar definition in
each application. For example, in an MDI child control procedure, you would have
this definition:

#define MyWnd_DefProc DefMDIChildProc

If you then copied your message handler to the MDI procedure, you would only need
to change the prefix in MyWnd_DefProc to make the copied code work correctly.
Conversely, if your code used the explicit call to DefWindowProc, it could create a
bug that would be difficult to find when copied to the MDI code.

Handling Special Cases of Messages
As a general rule, there is one set of message crackers for each message: a message
decoder and a message forwarder. Another rule is that each message handler you
write should return the same value that your code would normally return for that
message. The following messages present exceptions to these rules.

Message handler

OnCreate,
OnNCCreate

OnKey

OnLButtonDown,
OnRButtonDown

OnChar

Comment

BOOL return type: returns TRUE if there are no errors. If
FALSE is returned, a window will not be created.

Handles both key up and key down messages. The extra
parameter /Down indicates whether the key is down or up.

Handles both click (button down) and double-click messages. The
extra parameter /DoubleC lick indicates whether the message
received is a double-click message.

This handler is passed only by character, and not the virtual key
or key flags information.

Writing Message Crackers for
User-Defined Messages

28

You can use message crackers with window messages that you define, but you must
write your own macros. The easiest way to do this is to copy and modify existing
macros from WINDOWSX.H.

Chapter 2 Handling Messages with Portable Macros

To understand how to write these macros, consider some of the message crackers
defined in WINDOWSX.H:

1* BOOl Cls_OnCreate(HWND hwnd, CREATESTRUCT FAR* lpCreateStruct) *1

#define HANDlE_WM_CREATE(hwnd, wParam, lParam, fn) \
«fn)(hwnd, (CREATESTRUCT FAR*)lParam) ? 0L : (LRESUlT)-lL)

#define FORWARD_WM_CREATE(hwnd, lpCreateStruct, fn) \
(BOOl)(DWORD)(fn)(hwnd, WM_CREATE, 0, (lPARAM)lpCreateStruct)

The message decoder (HANDLE_msg) should be defined as a function call, (fn),
followed by hwnd and other parameters derived from wParam and lParam. The
message forwarder (FORWARD _ msg) performs the reverse operation on the
parameters, putting information back together to restore wParam and lParam before
making the function call (fn). Each of these macros must cast the return value so that
the correct type is returned.

When calling the message crackers you write, be careful about variable message
values. If your message value is a constant (such as WM_USER+I00), you can use
HANDLE_MSG with the message in a switch statement. However, if the message is
registered with RegisterWindowMessage, it assigns a number at run time. In this
situation, you can't use HANDLE_MSG, because variables cannot be used as case
values. You must handle the message separately, in an if statement:

II In MyWnd class initialization code:
II
UINT WM_NEWMESSAGE= 0;

WM_NEWMESSAGE= RegisterWindowMessage("WM_NEWMESSAGE");

II In MyWnd_WndProc(): window procedure:
II
lRESULT CALLBACK MyWnd_WndProcCHWND hwnd, WORD msg, WPARAM wParam,

lPARAM lParam)

if Cmsg == WM_NEWMESSAGE)
HANDlE_WM_NEWMESSAGEChwnd, wParam, lParam, MyWnd_OnNewMessage);

switch Cmsg)
{

HANDlE_MSGChwnd, WM_MOUSEMOVE, MyWnd_OnMouseMove);

29

Programming Techniques

Adapting Message Crackers for
Special Cases

Generally, you can use message crackers with all types of application code. However,
certain situations require modifications in coding style.

The next few sections show how to adapt message-cracker coding techniques for
dialog procedures, window subclassing, and window instance data.

Dialog Procedures
Dialog procedures return a BOOL value to indicate whether the message was
processed. (Window procedures, in contrast, return a LONG value rather than a
BOOL.) Therefore, to adapt a message cracker to dialog-procedure code, you must
call the message handler and cast the value to BOOL.

Because you have to insert the (BOOL) cast, you can't use HANDLE_MSG. You
must invoke the message-decoder macro explicitly. Here's an example that shows
how you would use message crackers in a dialog procedure:

BOOl MyDlg_OnlnitDialog(HWND hwndDlg. HWND hwndFocus. lPARAM lParam);
void MyDlg_OnCommand(HWND hwnd. int id. HWND hwndCtl. UINT codeNotify);

BOOl CAllBACK MyDlg_DlgProc(HWND hwndDlg. UINT msg. WPARAM wParam. lPARAM lParam)
{

}

switch (msg)
{

II
II Since HANDlE_WM_INITDIAlOG returns an lRESUlT.
II we must cast it to a BOOl before returning.
II
case WM_INITDIAlOG:

return (BOOl)HANDlE_WM_INITDIAlOG(hwndDlg. wParam. lParam. MyDlg_OnlnitDialog);

case WM_COMMAND:
HANDlE_WM_COMMAND(hwndDlg, wParam. lParam, MyDlg_OnCommand);
return TRUE;
break;

default:
return FALSE;

}

Window Subclassing

30

When you use message crackers with a subclassed window procedure, the strategy
described earlier for using message forwarders does not work. Recall that this
strategy involves the following macro call:

Chapter 2 Handling Messages with Portable Macros

return FORWARD_msg(parmlist, defaultMsgProc);

This use of a message forwarder (FORWARD _msg) calls defaultMsgProc directly.
But in a subc1assed window procedure, you must call the window procedure of the
superc1ass by using the API function CallWindowProc. The problem is that
FORWARD_msg calls defaultMsgProc with four parameters, but CallWindowProc
needs five parameters.

The solution is to write an intermediate procedure. For example, the intermediate
procedure could be named test_DefProc:

FORWARD_WM_CHAR(hwnd. ch. cRepeat. test_DefProc);

The test_DefProc function calls CallWindowProc and prepends the address of the
superc1ass function (in this case, test_l pfnwpDefProc) to the parameter list:

LRESULT test_DefProc(HWND hwnd. UINT msg. WPARAM wParam. LPARAM lParam)
{

return CallWindowProc(test_lpfnwpDefProc. hwnd. msg. wParam.
lParam);
}

You need to write one such procedure for each subc1assed window in your
application. Each time you use a message forwarder, you give this intermediate
procedure as the function address instead of DefWindowProc. The following
example code shows the complete context:

II Global variable that holds the previous window proc address of
II the subclassed window:
II
WNDPROC test_lpfnwpDefProc NULL;

II Code fragment to subclass a window and store previous wndproc value:
II
void Subclasstest(HWND hwndtest)
{

extern HINSTANCE g_hinsttest; II Global application instance handle

II SubclassWindow() is a macro API that calls SetWindowLong()
II as appropriate to change the window proc of hwndtest.
II
test_lpfnwpDefProc = SubclassWindow(hwndtest.

(WNDPROC)MakeProclnstance((FARPROC)test_WndProc. g_hinsttest));

II Default message handler function
II
II This function invokes the superclasses' window procedure. It
II must be declared with the same signature as any window proc.
II so it can be used with the FORWARD_WM_* macros.
II

31

Programming Techniques

LRESULT test_DefProc(HWND hwnd. UINT msg. WPARAM wParam. LPARAM lParam)
{

return CallWindowProc(test_lpfnwpDefProc. hwnd. msg. wParam. lParam);
}

II test window procedure. Everything here is the same as in the
II normal non-subclassed case: the differences are encapsulated in
II test_DefProc.
/I
LRESULT CALLBACK test_WndProc(HWND hwnd. UINT msg. WPARAM wParam. LPARAM lParam)
{

switch (msg)
{

default:
II
II Be sure to call test_DefProc(). NOT DefWindowProc()!
II
return test_DefProc(hwnd. msg. wParam. lParam);

II Message handlers
II
void test_OnChar(HWND hwnd. UINT ch. int cRepeat)
{

if (ch == testvalue)
{

else
{

}

II handle it here

II Forward the message on to test_DefProc
II
FORWARD_WM_CHAR(hwnd. ch. cRepeat. test_DefProc);

Window Instance Data

32

It is common for a window to keep user-declared state variables (or "instance data")
in a separate data structure allocated by the application. You associate this data
structure with its corresponding window by storing a pointer to the structure in a
specially named window property or in a window word (allocated by setting the
cb WndExtra field of the WNDCLASS structure when the class is registered).

You can adapt message crackers to work with this use of instance data. Place the
hwnd of the window in the first member of the structure. Then, in the message
decoders (HANDLE_msg macros), pass the address of the structure instead of the
hwnd. The message handler now gets a pointer to the structure instead of the hwnd,

Chapter 2 Handling Messages with Portable Macros

but it can access the hwnd through indirection. You may need to rewrite some of the
message handler to make it use indirection to access the window handle.

The following example illustrates this technique:

II Window instance data structure. Must include window handle field.
II
typedef struct _test
{

HWND hwnd;
int otherStuff;

test;

/I
II
II
II

"test" window class was registered with cbWndExtra - sizeof(test*). so we
can use a window word to store back pointer. Window properties can also
be used.

II
II
II
II

These macros get and set the pointer to the instance data corresponding to the
window. Use GetWindowWord or GetWindowLong as appropriate based on the default
size of data pointers.

lli fdef _WIN32
#define test_GetPtr(hwnd)
#define test_Setptr(hwnd. ptest)
lIe 1 se
#define test_GetPtr(hwnd)
#define test_SetPtr(hwnd. ptest)
#endif

II Default message handler

(test*)GetWindowlong«hwnd). 0)
(test*)SetWindowlong«hwnd). 0. (lONG)(ptest»

(test*)GetWindowWord«hwnd). 0)
(test*)SetWindowWord«hwnd). 0. (WORD)(ptest»

#define test_DefProc DefWindowProc

II Message handler functions. declared with a test* as their first argument.
II rather than an HWND. Other than that. their signature is identical to
II that shown in WINDOWSX.H.
II
BOOl test_OnCreate(test* ptest. CREATESTRUCT FAR* lpcs);
void test_OnPaint(test* ptest);
II
II Code to register the test window class:
II
BOOl test_Init(HINSTANCE hinst)
{

WNDClASS cls;

cls.hCursor
cls.hlcon
cls.lpszMenuName
cls.hlnstance
cls.lpszClassName
cls.hbrBackground
cls.lpfnWndProc
cls.style

hinst;
"test";

test_WndProc;
CS_DBlCLKS;

33

Programming Techniques

34

cls.cbWndExtra
cls.cbClsExtra

sizeof(test*); II room for instance data ptr
0;

return RegisterClass(&cls);

II The window proc for class "test". This demonstrates how instance data is
II attached to a window and passed to the message handler functions.
/!
LRESULT CALLBACK test_WndProc(HWND hwnd. UINT msg. WPARAM wParam. LPARAM lParam)
{

test* ptest = test_GetPtr(hwnd);

if (ptest == NULL)
{

II If we're creating the window. try to allocate it.
II

}

if (msg == WM_NCCREATE)
{

II Create the instance data structure. set up the hwnd backpointer
II field. and associate it with the window.
II
ptest = (test*)LocalAlloc(LMEM_FIXED I LMEM_ZEROINIT. sizeof(test));

II If an error occurred. return 0L to fail the CreateWindow call.
II This will cause CreateWindow() to return NULL.
II
if (ptest == NULL)

return 0L;
ptest->hwnd = hwnd;
test_SetPtr(hwnd. ptest);

II NOTE: the rest of the test structure should be initialized
II inside Template_OnCreate() (or Template_OnNCCreate()). Further
II creation data may be accessed through the CREATESTRUCT FAR* parameter.
II
}

else
{

II It turns out WM_NCCREATE is NOT necessarily the first message
II received by a top-level window (WM_GETMINMAXINFO is).
II Pass messages that precede WM_NCCREATE on through to
II test_DefProc
II
return test_DefProc(hwnd. msg. wParam. lParam);
}

if (msg == WM_NCDESTROY)
{

LocalFree«HLOCAL)ptest);
ptest = NULL;
test_SetPtr(hwnd. NULL);

Chapter 2 Handling Messages with Portable Macros

}

switch (msg)
{

HANOLE_MSG(ptest, WM_CREATE, test_OnCreate):
HANDLE_MSG(ptest, WM_PAINT, test_OnPaint):

default:
return test_DefProc(hwnd, msg, wParam, lParam):

}

Using Control Message Functions
The role of the control message API functions is the opposite of message crackers:
instead of handling messages sent to your window, they send messages to other
windows (controls).

Each of the control message functions packs parameters into the appropriate
wParam/lParam format and then calls SendMessage. These functions offer the same
portability advantages as message crackers; they free you from having to know how
the current operating system packs wParam and IParam.

The function calls also improve code readability and support better type checking.
When used with the STRICT enhancements, the control message functions help
prevent incorrect passing of message parameters.

To see how the control message functions work, first look at the following source
code, which makes two calls to SendMessage to print all the lines in an edit control:

void PrintLines(HWNO hwndEdit, WHND hwndOisplay)
{

i nt 1 i ne:
int lineLast - (int)SendMessage(hwndEdit, EM_GETLINECOUNT, 0, 0L):

for (line = 0: line < lineLast; line++)
{

int cch;
char ach[80];

*«LPINT)ach) - sizeof(ach);
cch - (int)SendMessage(hwndEdit, EM_GETLINE,

line, (LONG)(LPSTR)ach);

PrintlnWindow(ach, hwndDisplay);

The following source code uses two control message functions, Edit_ GetLineCount
and Edit _ GetLine, to perform the same task. This version of the code is shorter,
easier to read, doesn't generate compiler warnings, and doesn't have any nonportable
casts:

35

Programming Techniques

36

void PrintLines(HWNO hwndEdit, WHNO hwndOisplay)
{

int line;
int lineLast - Edit_GetLineCount(hwndEdit);

for (line - 0; line < lineLast; line++)
{

int cch;
char ach[80];

cch - Edit_GetLine(hwndEdit, line, ach, sizeof(ach»;

PrintlnWindow(ach, hwndOisplay);
}

The control message API functions are listed in Table 2.1. For more information,
refer to the macro definitions in WINDOWSX.H and the documentation for the
corresponding window message.

Table 2.1 Control Message API Functions

Control group

Static Text Controls:

Button Controls:

Edit Controls:

Functions

Static _ Enable(hwnd, /Enable)

Static_ GetIcon(hwnd, hIcan)

. Static_ GetText(hwnd, lpch, cchMax)

Static _ GetTextLength(hwnd)

Static _ SetIcon(hwnd, hI can)

Static_SetText(hwnd,lpsz)

Button _ Enable(hwnd, /Enable)

Button _ GetCheck(hwnd)

Button _ GetState(hwnd)

Button_ GetText(hwnd, lpch, cchMax)

Button _ GetTextLength(hwnd)

Button _ SetCheck(hwnd, check)

Button _ SetState(hwnd, state)

Button_SetStyle(hwnd, style,jRedraw)

Button _ SetText(hwnd, lpsz)

Edit_ CanUndo(hwnd)

Edit _ EmptyUndoButTer(hwnd)

Edit _ Enable(hwnd, /Enable)

Edit_FmtLines(hwnd,jAddEOL)

Chapter 2 Handling Messages with Portable Macros

Table 2.1 Control Message API Functions (continued)

Control group

Edit Controls:

Scroll Bar Controls:

List Box Controls:

Functions

Edit_ GetFirstVisible(hwnd)

Edit _ GetHandle(hwnd)

Edit_ GetLine(hwnd, line, lpch, cchMax)

Edit _ GetLineCount(hwnd)

Edit _ GetModify(hwnd)

Edit _ GetRect(hwnd, lprc)

Edit_ GetSel(hwnd)

Edit_ GetText(hwnd, lpch, cchMax)

Edit _ GetTextLength(hwnd)

Edit _ LimitText(hwnd, cchMax)

Edit _ LineFromChar(hwnd, ich)

Edit _ Linelndex(hwnd, line)

Edit _ LineLength(hwnd, line)

Edit _ ReplaceSel(hwnd, IpszReplace)

Edit_Scroll(hwnd, dv, dh)

Edit_SetHandle(hwnd, h)

Edit _ SetModify(hwnd, fM odified)

Edit _ SetPasswordChar(hwnd, ch)

Edit _ SetRect(hwnd, lprc)

Edit_SetRectNoPaint(hwnd,lprc)

Edit_SetSel(hwnd, ichStart, ichEnd)

Edit_SetTabStops(hwnd, cTabs, IpTabs)

Edit _ SetText(hwnd, lpsz)

Edit _ SetWordBreak(hwnd, lpfn W ordBreak)

Edit_Undo(hwnd)

ScroIlBar_Enable(hwnd,flags)

ScrollBar _ GetPos(hwnd)

ScrollBar _ GetRange(hwnd, IpposMin, IpposMax)

ScrollBar _ SetPos(hwnd, pos, /Redraw)

ScrollBar _ SetRange(hwnd, posM in, posM ax, /Redraw)

ScrollBar _ Show(hwnd, fShow)

ListBox _ AddFile(hwnd, IpszFilename)

ListBox _ AddItemData(hwnd, data)

ListBox _ AddString(hwnd, lpsz)

ListBox _ DeleteString(hwnd, index)

37

Programming Techniques

Table 2.1 Control Message API Functions (continued)

Control group

List Box Controls:

Combo Box Controls:

38

Functions

ListBox_Dir(hwnd, attrs, IpszFileSpec)

ListBox _ Enable(hwnd, jEnable)

ListBox_FindltemData(hwnd, indexStart, data)

ListBox _ FindString(hwnd, indexStart, IpszFind)

ListBox _ GetAnchorlndex(hwnd)

ListBox _ GetCaretlndex(hwnd)

ListBox _ GetCount(hwnd)

ListBox _ GetCurSel(hwnd)

ListBox _ GetHorizontalExtent(hwnd)

ListBox _ GetltemData(hwnd, index)

ListBox _ GetltemHeight(hwnd, index)1

ListBox _ GetltemRect(hwnd, index, lprc)

ListBox _ GetSel(hwnd, index)

ListBox _ GetSeICount(hwnd)

ListBox _ GetSelltems(hwnd, cItems, lplndices)

ListBox _ GetText(hwnd, index, IpszBuJfer)

ListBox_GetTextLen(hwnd, index)

ListBox _ GetToplndex(hwnd)

ListBox_InsertltemData(hwnd, lpsz, index)

ListBox_InsertString(hwnd, lpsz, index)

ListBox _ ResetContent(hwnd)

ListBox _ SelectltemData(hwnd, indexStart, data)

ListBox _ SelectString(hwnd, indexStart, IpszFind)

ListBox _ SelltemRange(hwnd, /Select, first, last)

ListBox _ SetAnchorlndex(hwnd, index)

ListBox _ SetCaretlndex(hwnd, index)

ListBox_SetColumn Width(hwnd, cxColumn)

ListBox _ SetCurSel(hwnd, index)

ListBox _ SetHorizontalExtent(hwnd, cxExtent)

ListBox _ SetltemData(hwnd, index, data)

ListBox _ SetltemHeight(hwnd, index, cy)1

ListBox_SetSel(hwnd,/Select, index)

ListBox j'etTabStops(hwnd, cTabs, IpTabs)

ListBox _ SetToplndex(hwnd, indexTop)

ComboBox _ AddltemData(hwnd, data)

ComboBox _ AddString(hwnd, lpsz)

Chapter 2 Handling Messages with Portable Macros

Table 2.1 Control Message API Functions (continued)

Control group

Combo Box Controls:

Functions

ComboBox _ DeleteString(hwnd, index)

ComboBox_Dir(hwnd, aftrs, IpszFileSpee)

ComboBox _Enable(hwnd, fEnable)

ComboBox _ FindItemData(hwnd, indexStart, data)

ComboBox _ FindString(hwnd, indexStart, IpszFind)

ComboBox _ GetCount(hwnd)

ComboBox _ GetCurSel(hwnd)

ComboBox _ GetDroppedControIRect(hwnd, lpre)!

ComboBox _ GetDroppedState(hwnd)!

ComboBox _ GetEditSel(hwnd)

ComboBox _ GetExtendedUI(hwnd)!

ComboBox _ GetItemData(hwnd, index)

ComboBox _ GetItemHeight(hwnd)

ComboBox _ GetLBText(hwnd, index, IpszBufJer)

ComboBox _ GetLBTextLen(hwnd, index)

ComboBox_GetText(hwnd, lpch, cehMax)

ComboBox _ GetTextLength(hwnd)

ComboBox_InsertItemData(hwnd, index, data)

ComboBox_InsertString(hwnd, index, lpsz)

ComboBox _ LimitText(hwnd, cehLimit)

ComboBox _ ResetContent(hwnd)

ComboBox_SelectltemData(hwnd, indexStart, data)

ComboBox _ SelectString(hwnd, indexStart, IpszSeleet)

ComboBox_SetCurSel(hwnd, index)

ComboBox _ SetEditSel(hwnd, iehStart, iehEnd)

ComboBox _ SetExtendedUI(hwnd, flags)!

ComboBox _ SetltemData(hwnd, index, data)

ComboBox _ SetltemHeight(hwnd, cyltem)!

ComboBox_SetText(hwnd,lpsz)

ComboBox _ ShowDropdown(hwnd, jShow)

! Supported only for Win32, not for Windows 3.x. These APls are not available if you define the symbol
WINVER as equal to Ox0300, on the command line or with a #define statement.

39

CHAPTER 3

WINDOWS.H and STRICT
Type Checking

The WINDOWS.H file contains definitions, macros, and structures to help you write
source code that is portable between versions of Microsoft Windows. Some of the
WINDOWS.H features are enabled when you define the STRICT symbol in the
Project Settings dialog box, on the command line, or in a makefile. This chapter
explains the advantages of STRICT features and how using them affects the writing
of code.

New Types and Macros
Chapter 1, "Porting 16-Bit Code to 32-Bit Windows," introduced some new standard
types for programming in Windows. The old types, such as FAR PASCAL for
declaring window procedures, may work in existing code but are not guaranteed to
work in all future versions of Windows. Therefore, you should convert your code to
use the new standards wherever appropriate.

General Data Types
The following table summarizes the new standard types defined in WINDOWS.H.
These types are polymorphic (they can contain different kinds of data) and are
generally useful throughout applications. Other new types, handles, and function
pointers also are introduced in following sections.

Typedef

WINAPI

CALLBACK

LPCSTR

Description

Use in place of FAR PASCAL in API declarations. If
you are writing a DLL with exported API entry points,
you can use this for your own APIs.

Use in place of FAR PASCAL in application callback
routines such as window procedures and dialog
procedures.

Same as LPSTR, except used for read-only string
pointers. Defined as (const char FAR*).

41

Programming Techniques

Typedef

DINT

LRESDLT

LPARAM

WPARAM

LPVOID

Description

Portable unsigned integer type whose size is determined
by host environment (32 bits for Windows NT and
Windows 95). Synonym for unsigned into Used in place
of WORD except in the rare cases where a 16-bit
unsigned quantity is desired even on 32-bit platforms.

Type used for return value of window procedures.

Type used for declaration of IParam, the fourth
parameter of a windows procedure.

Type used for declaration of wParam, the third parameter
of a windows procedure (a polymorphic data type).

Generic pointer type, equivalent to (void *). Should be
used instead of LPSTR.

Utility Macros
WINDOWS.H provides a series of utility macros that are useful for working with the
types listed in the previous section, "General Data Types." The utility macros listed in
the following table help create and extract data from these types. The
FIELD OFFSET macro is particularly useful when you need to give the numeric
offset of a structure member as an argument.

Utility

MAKELPARAM(low, high)

MAKELRESDLT(low, high)

MAKELP(sel, off)

SELECTOROF(lp)

OFFSETOF(lp)

FIELDOFFSET(type, field)

Description

Combines two 16-bit quantities into an LPARAM.

Combines two 16-bit quantities into an LRESDL T.

Combines a selector and an offset into a FAR VOID*
pointer. Useful only for Windows 3.x.

Extracts the selector part of a far pointer. Returns a
DINT. Useful only for Windows 3.x.

Extracts the offset part of a far pointer. Returns a DINT.
Useful only for Windows 3.x.

Calculates the offset of a member of a data structure.
The type is the type of structure, andfield is the name of
the structure member or field.

New Handle Types

42

In addition to the existing Windows handle types such as HWND, HDC, HBRUSH,
and so on, WINDOWS.H defines the following new handle types. They are
particularly important if STRICT type checking is enabled, but you can use them
even if you do not define STRICT.

Chapter 3 WINDOWS.H and STRICT Type Checking

Handle

HINSTANCE

HMODULE

HBITMAP

HLOCAL

HGLOBAL

HTASK

HFILE

HRSRC

HGDIOBJ

HMETAFILE

HDWP

HACCEL

HDRVR

Description

Instance handle type

Module handle type

Bitmap handle type

Local handle type

Global handle type

Task handle type

File handle type

Resource handle type

Generic GDI object handle type (except HMETAFILE)

Metafile handle type

DeferWindowPos() handle

Accelerator table handle

Driver handle

Using STRICT to Improve Type Checking
When you define the STRICT symbol, you enable features that require more care in
declaring and using types. This helps you write more portable code. This extra care
will also reduce your debugging time. Enabling STRICT redefines certain data types
so that the compiler won't permit assignment from one type to another without an
explicit cast. This is especially helpful with Windows code. Errors in passing data
types are reported at compile time instead of causing fatal errors at run time.

When STRICT is defined, WINDOWS.H type definitions change as follows:

• Specific handle types are defined to be mutually exclusive; for example, you won't
be able to pass an HWND where an HDC type argument is required. Without
STRICT, all handles are defined as integers, so the compiler doesn't prevent you
from using one type of handle where another type is expected.

• All callback function types (dialog procedures, window procedures, and hook
procedures) are defined with full prototypes. This prevents you from declaring
callback functions with incorrect parameter lists.

• Parameter and return value types that should use a generic pointer are declared
correctly as LPVOID instead of as LPSTR or another pointer type.

• The COMSTAT structure is declared according to the ANSI standard.

43

Programming Techniques

Enabling STRICT Type Checking
To enable STRICT type checking, define the symbol name "STRICT." Open the
Project Settings dialog box, select the C/C++ tab, select General in the Category box,
and type STRICT in the Preprocessor Definitions box. You can also specify this
definition on the command line or in a makefile by giving /DSTRICT as a compiler
option.

To define STRICT on a file-by-file basis (supported by C but not C++ as explained in
the note that follows), insert a #define statement before including WINDOWS.H in
files where you want to enable STRICT:

1idefi ne STRICT
#include WINDOWS.H

For best results, you should also set the warning level for error messages to at least
/W3. This is always advisable with applications for Windows, because a coding
practice that causes a warning (for example, passing the wrong number of
parameters) usually causes a fatal error at run time if it is not corrected.

Note If you are writing a C++ application, you don't have the option of applying STRICT to
only some of your source files. Because of the way C++ "type-safe linking" works, mixing
STRICT and non-STRICT source files in your application can cause linking errors.

Making Your Application STRICT Compliant

44

Some source code that in the past compiled successfully might produce error
messages when you enable STRICT type checking. The following sections describe
the minimal requirements for making your code compile when STRICT is enabled.
Additional steps are recommended, especially if you want to produce portable code.
These are covered in the section "Using STRICT Type Checking" on page 46.

General Requirements
The principal requirement is that you must declare correct handle types and function
pointers instead of relying on more general types such as unsigned int and
FARPROC. You cannot use one handle type where another is expected. This also
means that you may have to change function declarations and use more type casts.

For best results, the generic HANDLE type should be used only when necessary.
Consult "New Types and Macros" on page 41 for a list of new specific handle types.

Using Function Pointers
Always declare function pointers with the proper function type (such as DLGPROC
or WNDPROC) rather than FARPROC. You'll need to cast function pointers to and
from the proper function type when using MakeProcInstance, FreeProcInstance,
and other functions that take or return a FARPROC, as shown in the following code:

Chapter 3 WINDOWS.H and STRICT Type Checking

BOOl CAllBACK DlgProc(HWND hwnd. UINT msg. WPARAM wParam.
lPARAM 1 Param);

DlGPROC lpfnDlg;

lpfnDlg = (DlGPROC)MakeProclnstance«FARPROC)DlgProc. hinst);

FreeProclnstance«FARPROC)lpfnDlg);

Declaring Functions Within Your Application
Make sure all application functions are declared. Placing all function declarations in
an include file is recommended because you can easily scan your declarations and
look for parameter and return types that should be changed.

If you use the /Zg compiler option to create header files for your functions, remember
that you'll get different results depending on whether you have enabled STRICT type
checking. With STRICT disabled, all handle types generate the same base type
(unsigned short in Windows 3.x). With STRICT enabled, they generate base types
such as HWND __ near * or HDC __ near *. To avoid conflict, you need to recreate
the header file each time you disable, enable STRICT, or edit the header file to use
the types HWND, HDC, HANDLE, and so on, instead of the base types.

Any API function declarations that you copied from WINDOWS.H into your source
code may have changed, and your local declaration may be out of date. Remove your
local declaration.

Functions That Require Casts
Some API functions have generic return types or parameters. For example, a function
like Send Message returns data that may be any number of types, depending on the
context. When you see any of these functions in your source code, make sure that you
use the correct type cast and that it is as specific as possible.

The following table summarizes these functions.

API Function

LocalLock

GlobalLock

GetWindowWord

GetWindowLong

SetWindowWord

SetWindowLong

SendMessage

DefWindowProc

SendDlgItemMsg

Comment

Cast result to the proper kind of data pointer.

Cast result to the proper kind of data pointer.

Cast result to appropriate data type.

Cast result to appropriate data type.

Cast argument as it is passed to function.

Cast argument as it is passed to function.

Cast result to appropriate data type; cast to UINT before
casting to a handle type.

See comment for SendMessage.

See comment for SendMessage.

When you call SendMessage, DetwindowProc, or SendDIgItemMessage, you
should first cast the result to type UINT. You need to take similar steps for any API

45

Programming Techniques

function that returns LRESULT or LONG, where the result contains a handle. This
is necessary for writing portable code because the size of a handle is either 16 bits or
32 bits, depending on the version of Windows. The (UINT) cast ensures proper
conversion. The following code shows an example in which SendMessage returns a
handle to a brush:

HBRUSH hbr;

hbr = (HBRUSH)(UINT)SendMessage(hwnd, WM_CTLCOLOR, ... , ...);

The CreateWindow Function
The Create Window and Create WindowEx hmenu parameter is sometimes used to
pass an integer control ID. In this case, you must cast this to an HMENU type:

HWND hwnd;
i nt i d;

hwnd = CreateWindow("Button", "Ok", BS_PUSHBUTTON,
x, y, ex, ey, hwndParent,
(HMENU)id, II Cast required here
hinst,
NU Ll) ;

U sing STRICT Type Checking

46

To get the most benefit from STRICT type checking, there are additional guidelines
you should follow. Your code will be more portable in future versions of Windows if
you make the following changes:

Change

HANDLE

WORD

WORD

LONG

To

A specific handle such as HINSTANCE, HMODULE, HGLOBAL,
HLOCAL, and so on

IDNT, except where you want a 16-bit value even when the platform is
32 bits

WPARAM, where wParam is declared

LPARAM or LRESULT as appropriate

Anytime you need an integer data type, you should declare it as UINT except where a
16-bit value is specifically required (as in a structure or parameter). Even if a variable
never exceeds the range of a 16-bit integer, it can be more efficiently handled by the
processor if it is 32 bits.

The types WPARAM, LPARAM, LRESULT, and void * are "polymorphic data
types." They hold different kinds of data at different times, even when STRICT type
checking is enabled. To get the benefit of type checking, you should cast values of
these types as soon as possible. Note that message crackers (as well as the Microsoft
Foundation Classes) automatically recast wParam and IParam for you in a portable
way.

Chapter 3 WINDOWS.H and STRICT Type Checking

Take special care to distinguish HMODULE and HINSTANCE types. Even with
STRICT enabled, they are defined as the same base type. Most kernel module
management functions use HINSTANCE types, but there are a few API functions
that return or accept only HMODULE types.

Accessing the New COMSTAT Structure
The Windows 3.x declaration of the COMSTAT structure is not compatible with
ANSI standards. WINDOWS.H now defines the COMSTAT structure, for
compatibility with ANSI compilers, so that the /W 4 option does not issue warnings.

To support backward compatibility of source code, WINDOWS.H does not use the
new structure definition unless the version of Windows (as indicated by WINVER) is
3.x or later, or if STRICT is defined. When you enable STRICT, the presumption is
that you are trying to write portable code. Therefore, WINDOWS.H uses the new
COMSTAT structure for all versions of Windows if STRICT is enabled.

The new structure definition replaces the bit fields with flags which access bits in a
single field, named status, as shown in the following table. Each flag turns on a
different bit.

Windows 3.x field name

fCtsHold

tDsrHold

fEof

fRIsdHold

ITxim

fXoftHold

fXoffSent

Flag accessing the status field

CSTF _CTSHOLD

CSTF _DSRHOLD

CSTF_EOF

CSTF _RLSDHOLD

CSTF_TXIM

CSTF _XOFFHOLD

CSTF _XOFFSENT

If your code accesses any of these status fields, you need to change your code as
appropriate. For example, suppose you have the following code written for Windows
3.x:

if (comstat.fEof II fCondition)
comstat.fCtsHold = TRUE;
comstat.fTxim = FALSE;

This code should be replaced by code that accesses individual bits of the status field
by using flags. Note the use of bitwise operators:

if «comstat.status & CSTF_EOF) II fCondition)
comstat.status 1= CSTF_CTSHOLD;
comstat.status &= ~CSTF_TXIM;

Interpreting Error Messages Affected by STRICT
Enabling STRICT type checking may affect the kind of error messages you receive.
With STRICT enabled, all handle types are defined as pointer types. When you

47

Programming Techniques

48

incorrectly use these types (for example, passing an int where an HDC is expected),
you will get warning messages referring to errors in pointer indirection.

STRICT also requires that FARPROC function pointers be recast as more specific
function pointer types such as DLGPROC. However, MakeProcInstance and
FreeProcInstance still work with the FARPROC type. If you do not cast between
FARPROC and the appropriate function pointer type, the compiler will warn about
an error in function parameter lists.

Note that using MakeProcInstance is useful for portability, if you want to use the
same source to compile for Windows 3.x. Under Win32, however,
MakeProcInstance performs no operation, but returns the function name.

CHAPTER 4

Creating DLLs for Win32

Microsoft Visual C++ offers full support for creating dynamic-link libraries (DLLs)
as well as applications. Technically, a DLL is an executable file, but it usually
functions as a library for applications. Multiple applications can access the contents
of a single copy of a DLL in memory.

The compiler supports placement of data symbols and C++ objects in DLLs and in
functions. The compiler's run-time library initializes global C++ objects as needed.

The compiler, run-time library, and Microsoft Foundation Class Library (MFC)
support DLL creation in other important ways as well. If you are porting DLL source
code written for Windows 3.x, you may need to revise it as described in this chapter.
If you are building a DLL using MFC, read the article "Dynamic Link Libraries
(DLLs)" in Programming with the Microsoft Foundation Class Library after reading
this chapter. It contains information specific to building DLLs with MFC.

This chapter covers the following topics:

• Overview of differences

• Run-time library behavior

• The DIlMain function

• The dllexport and dllimport attributes

• Exporting C++ functions

• Building the DLL

• Special issues with DLLs

Overview of Differences
If you have built 16-bit DLLs for Windows 3.x, you should find that building DLLs
for Windows 95 and Windows NT is more convenient. The compiler offers more
direct support, which can save you several steps in DLL creation. The specific
differences are:

49

Programming Techniques

• There is no separate startup module. The DLL startup sequence is handled directly
by C/C++ run-time library code linked into your DLL.

• The run-time library code initializes any static non-local c++ objects by calling
the appropriate constructors. (Each process gets its own copy of all the DLL's
static data, including objects.)

• Other initialization and termination are handled through the single user-defined
function, DIlMain. You can write or choose not to include this function.

You import and export symbols directly in your source code. Using the dllexport
attribute (similar to __ export in Windows 3.x) saves you from having to use a
separate module-definition file. Using dllimport improves efficiency and enables you
to import data and objects as well as code.

• The timing of calls to routines registered with atexit can differ.

The most fundamental difference is that code from the C/C++ run-time library is
linked into your DLL (or linked at run time if you are using the DLL version of the
run-time library), which minimizes some coding problems. The run-time library code
calls the constructors and destructors as appropriate for static, non-local C++ objects
in the DLL.

The run-time code also calls the user-defined DIlMain function for both initialization
and termination, so that you have an opportunity to allocate or release additional
resources, as needed. These calls are made in four situations: process attach, process
detach, thread attach, and thread detach. If you don't need initialization or
termination, you can omit DIlMain from source code.

The rest of this chapter describes how to build a DLL, and how to write a DIlMain
function and use the dllexport and dllimport attributes.

Run-Time Library Behavior

50

As explained in the previous section, the C/C++ run-time library code performs the
DLL startup sequence, eliminating the need for a separate module; it also calls
constructors and destructors as appropriate for global C++ objects.

For example, in the following DLL source code, Equus and Suga r are two static, non
local objects of class CHorse, defined in HORSES.H. There is no function in source
code that contains calls to a constructor function for C H 0 r s e or to the destructor
function, because these objects are defined outside of any function. Therefore, calls to
these constructors and destructors must be performed by the run-time code. (The run
time library code for applications also performs this function.)

Chapter 4 Creating DLLs for Win32

Iii ncl ude "horses. h"

CHorse Equus(ARABIAN. MALE);
CHorse Sugar(THOROUGHBRED. FEMALE);

BOOl WINAPI DllMain (HANDLE hInst.
UlONG ul_reason_for_call.
lPVOID lpReserved)

Each time a new process attempts to use the DLL, the operating system creates a
separate copy of the DLL's data: this is called process attach. The run-time library
code for the DLL calls the constructors for all the global objects, if any, and then calls
your DIIMain function with process attach selected. The opposite situation is process
detach: the run-time library code calls DlIMain with process detach selected and then
calls a list of termination functions including atexit functions, destructors for the
global objects, and destructors for the static objects. Note that the order of events in
process attach is the reverse of that in process detach.

The run-time library code is also called during thread attach and thread detach
(explained later in this chapter), but the run-time code does no initialization or
termination on its own.

The DIIMain Function
Unlike Windows 3.x DLLs, Windows 95 and Windows NT call one function,
DIIMain, for both initialization and termination. It also makes calls on both a per
process and per-thread basis, so several initialization calls can be made if a process is
multithreaded. The function is optional; if you don't provide it in source code, the
compiler links its own version, which does nothing but return TRUE.

If you are building a DLL with MFC, DIIMain may need to perform additional tasks.
For more information, see the article "DLLs: Initialization and Termination" in
Programming with the Microsoft Foundation Class Library.

DlIMain uses the WINAPI convention and three parameters. The following code
shows the first line in a DIIMain definition:

BOOl WINAPI DllMain (HANDLE hInst.
UlONG ul_reason_for_call.
lPVOID lpReserved)

The function returns TRUE (1) to indicate success. If, during per-process
initialization, the function returns zero, the system cancels the process.

The ul_reason Jor _call parameter indicates the reason DlIMain was called:
initialization or termination, for a process or a thread. The following table describes
the meaning of the four possible values.

51

Programming Techniques

52

DLL_PROCESS _ATTACH

DLL PROCESS DETACH - -

Description

A new process is attempting to access the DLL; one
thread is assumed.

A new thread of an existing process is attempting to
access the DLL; this call is made beginning with the
second thread of a process attaching to the DLL.

A process is detaching from the DLL.

One of the additional threads (not the first thread)
of a process is detaching from the DLL.

The lpReserved parameter is reserved for the system's use and should not be
manipulated by your source code.

Windows 3.x DLL initialization functions are passed the following information:

• The DLL's instance handle

• The DLL's data segment CDS)

• The heap size specified in the DLL's .DEF file

• The command line

Win32 DLL initialization functions are passed the following information:

• The hM odule parameter, a module handle.

• The ul_reason Jor _call parameter, an enumerated type that indicates which of
four reasons the Lib Main procedure is being called: process attach, thread attach,
thread detach, or process detach.

• The lpReserved parameter, which is unused.

The following code presents a basic skeleton showing what the definition of DllMain
might look like:

BOOl APIENTRY D11Main(HANDLE hModu1e.

{

}

DWORD u1_reason_for_ca11.
lPVOID 1pReserved)

switch (u1_reason_for _ca 11) {
case Dll_PROCESS_ATTACH:

return TRUE;

Chapter 4 Creating DLLs for Win32

The Win32 module handle has the same purpose as the Windows 3.x instance handle.
Otherwise, Win32 DLL initialization functions do not include the parameters for
Windows 3.x initialization, as described in the following table.

Parameter Comment

DLL data segment

Size ofDLL's local heap

Pointer to command line

Not needed in Win32; memory model is flat, not
segmented.

All calls to local memory management functions operate
on the default heap.

The command line can be obtained through a call to the
GetCommandLine API function.

The dllimport and dllexport Attributes
The DLL model for Win32 is different from that for Windows 3.x. To write the most
efficient DLL code and to make the transition as smooth as possible, use the
dllexport and dllimport import attributes.

As you write a DLL, you can use dllexport to declare that a symbol (function, data,
or object) is being exported to applications and other DLLs. The compiler produces
the most efficient code as a result, and you no longer need a module-definition
(.DEF) file to export your symbols.

When you create header files for use with your DLLs, you should include dllimport
declarations for each symbol, so applications properly declare each DLL symbol to be
used. The DLL users still need an import library, but use of dllimport produces more
efficient code. Also, dllimport must be used to import data items and objects.

Because they are attributes and not keywords, dllexport and dllimport must be used
in conjunction with the __ declspec keyword. The following procedure is
recommended:

1. Use the __ declspec keyword, along with dllexport and dllimport, to define
import and export macros for your source code.

2. Use these macros you've defined to declare symbols as export or import.

For more information on dllexport and dllimport, see "The dllexport and dllimport
Attributes" in Appendix B of the C++ Language Reference.

The __ declspec Keyword
The Visual C++ language (including C source modules) uses the __ declspec
keyword to extend storage class attributes. Storage class determines how a given
symbol is accessed by the compiler. For example, static, a storage class attribute in
standard C/C++, specifies that a variable is not stored on the stack.

This version of Visual C++ defines four extended storage class attributes: dllexport,
dllimport, thread, and naked. These are not supported directly as keywords. Instead,

53

Programming Techniques

these Microsoft-specific extended class storage attributes are used with __ declspec to
reduce the number of reserved words. This chapter introduces the dllexport and
dllimport attributes. Chapter 5 discusses the thread attribute, and Chapter 9
discusses the naked attribute.

The syntax for using __ declspec is:

__ declspec(attribute) variable-declaration

For example, the following definition exports an integer, using dllexport as the
attribute:

__ declspec(dllexport) int SumInterest - 0;

Exporting Symbols

54

The use of dllexport (when used with __ declspec as explained in the previous
section) replaces the __ export keyword supported in Windows 3.x. To port DLL
source code, you should replace each instance of __ export. The dllexport attribute
eliminates the need for a .DEF file.

To export symbols, the recommended approach is to define a macro for
__ declspec(dllexport) and then use the macro with each symbol:

#define DllExport __ declspec(dllexport)

Dl 1 Export
Dl 1 Export
DllExport

int i - 10;
int j;
void func();

II Definition. because initialized
II Definition. because of DllExport
II Declaration

With uninitialized data, dllexport causes the statement to be a definition unless it is
combined with extern, in which case it is a declaration. The difference is important:
a definition tells the compiler to create a symbol; a declaration informs the compiler
that the symbol is created somewhere else. Thus, in the previous example, j is
defined rather than declared, because of DIIExport. The nature of the other two
statements is already clear from syntax.

When you combine the extern keyword with dllexport, it tells the compiler that the
symbol is defined and exported by the DLL, but not necessarily in this source-code
module. For example, the following is a data declaration, not definition:

extern DllExport j; II Symbol j is declared

It should be clear that exporting a symbol is inconsistent with automatic ("stack" or
"local") storage class. Therefore, the following code produces an error, because it
attempts to export a symbol Sum defined on the stack:

void func()
{

b Dll Export i nt Sum; II Error: cannot export local variable

Chapter 4 Creating DLLs for Win32

However, the following code compiles correctly because Sum is only declared, not
defined, within the function. This code enables Sum to be used within the scope of
func, but the code does not create it:

void func()
{

extern DllExport int Sum; II Ok. because extern means Sum
II is defined in another
II module of this DLL.

Importing Symbols
A program that uses public symbols defined by a DLL is said to import them.
Windows 3.x required only the use of an import library, normally supplied by the
DLL author, to handle the mechanics of importing. In Win32, the DLL user must still
link with the import library, but needs to use dllimport as well.

As a DLL author, you should accommodate this requirement by using dllimport in
the header files you supply. If you don't, DLL users can still access DLL functions,
but their code will be less efficient, and they will not have access to DLL public data
symbols and objects.

To import symbols, the recommended approach is to define a macro for
__ declspec(dllimport) and then use the macro to declare each imported symbol:

#define Dlllmport __ declspec(dllimport)

Dlllmport
Dlllmport

i nt j;
voi d func () ;

The dllimport attribute must be used in a declaration, not a definition, because you
obviously cannot define a new symbol and at the same time import it from another
program. You also cannot declare an imported symbol as static, which implies that
the symbol is defined in the current module.

Dlllmport

void func()
{

i nt j = 2; II Error: initialization implies definition

static Dlllmport int i; II Error: static

It is valid to give the same symbol both the dllexport and dllimport attributes. This
could happen if you are sharing header files between different programs. Otherwise,
it should not happen. When both attributes are used, the dllexport attribute takes
precedence:

Dlllmport
DllExport

int
int

i ;
i ; II Warning issued. but dllexport takes

II precedence

If you are compiling your program as a C language module, you cannot use the
address of an imported symbol to initialize a global or static variable. However, in

55

Programming Techniques

C++, you can use the address of an imported symbol to initialize any variable
or object.

Exporting C++ Functions
If you have functions in a DLL written in C++ that you want to access from a C
language module, you will probably want to declare these functions with C linkage
instead of C++ linkage. Unless otherwise specified, the C++ compiler uses C++ type
safe naming (also known as name decoration) and C++ calling conventions, which
can be difficult to call from C.

To specify C linkage, specify extern "C" for your function declarations, for example:

extern "C"_decl spec (dll export) i nt MyFunc(long pa rml) ;

For more information on linkage specification, see "Linkage Specifications" in
Chapter 6 of the C++ Language Reference.

Importing and Exporting Inline Functions
Imported functions can be defined as inline. The effect is roughly the same as
defining a standard function inline; calls to the function are expanded into inline
code, much like a macro. This is principally useful as a way of supporting C++
classes in a DLL that may inline some of their member functions for efficiency.

One feature of an imported inline function is that in C++, you can take its address.
The compiler returns the address of the copy of the inline function residing in the
DLL. Another feature of imported inline functions is that unlike global imported
data, you can initialize static local data of the imported function.

You should exercise care when providing imported inline functions, because they can
create the possibility of version conflicts. An inline function gets expanded into the
application code; therefore, if you later rewrite the function, it does not get updated
unless the application itself is recompiled. (Normally, DLL functions can be updated
without rebuilding the applications that use them.)

Building the DLL
There are two categories of compiler options you should know about when you build
a DLL. The /LD option causes the compiler to build a DLL instead of an application.
You can select it automatically by using the Visual C++ environment to build a DLL,
or by specifying /LD on the command line. The other options that can affect building
of a DLL are /MD, /MT, and /ML, which select run-time library type.

Using Visual C++ to Build DLLs

56

To build a DLL from within the Visual C++ environment, make sure that you select
"Dynamic-link library" as the initial project type when you create a new project

Chapter 4 Creating DLLs for Win32

workspace. Visual C++ uses a dialog box to offer a choice of project types when you
choose Workspace from the New dialog box (File menu).

To debug a DLL, you must run an application that calls your DLL. Choose the
Settings command from the Build menu. In the Project Settings dialog box, select the
Debug tab. In the Executable For Debug Session box, specify which application to
run while debugging.

The /LD Option
The Visual C++ environment automatically sets the /LD option when you choose
"Dynamic-link library" as the project type. You can also specify /LD directly when
using the command line to invoke the compiler.

When the /LD option is specified, the compiler passes the -DLL option to the linker,
causing a DLL to be built. The compiler also does the following:

• Looks for the DIlMain function in the source code.

• Links with DLL startup code that performs some initialization for you.

• Produces an import library to be linked to applications that call your DLL.

• Interprets /Fe as naming a DLL rather than an EXE file; the default program
name becomes basename.DLL instead of basename.EXE.

• Changes default for C run-time library support, as explained in the next section.

Multithread Support and 1M Options
The /MD, /ML, and /MT options determine whether the program being built has
single-thread support, multithread support, or uses a dynamic-link version of the run
time library (MSVCRT40.DLL). The following table shows the purpose of each
option.

Option

/MD

/ML
/MT

Links to

MSVCRT40.DLL, a dynamic-link library that is multithread aware

Single-thread-aware library (default for applications)

Multithread-aware library (default for DLLs)

It is usually best to use the /MD or /MT option when building a DLL. These options
support multithread applications. When you specify /ML, your DLL will work
reliably only when called by single-thread applications. A multithread application
that calls a DLL without multithread awareness is likely to fail. Therefore, don't
specify /ML unless you know that it will be used only by single-thread applications.

The compiler chooses /MT by default when you build a DLL.

Note that deciding whether to use MSVCRT40.DLL and whether to build an
application or DLL are largely independent choices. You could, for example, choose
to build an application that uses the DLL version of the run-time library (JMD);

57

Programming Techniques

conversely, you could build a DLL that is statically linked to the C run-time library
(/MT or /ML).

Special Issues with DLLs
The following sections discuss issues that occur occasionally in special situations:
mutual DLL imports and the effect of dynamic loading on thread-local storage. You
can write a simple DLL without worrying about these issues. However, if you use any
of these features, it is helpful to be aware of the issues.

Mutual Imports

58

Exporting or importing to another executable file presents complications when the
imports are mutual (or "circular"). For example, two DLLs import symbols from each
other, similar to mutually-recursive functions.

The problem with mutually-importing executable files (usually DLLs) is that neither
can be built without building the other first. Each build process requires, as input, an
import library produced by the other build process.

The solution is to use the LIB utility with the /DEF option, which produces an import
library without building the executable file. Using this utility, you can build all the
import libraries you need, no matter how many DLLs are involved or how
complicated the dependencies are.

The general solution is:

I. Take each DLL in tum. (Any order is feasible, although some orders are more
optimal.) If all the needed import libraries exist and are current, run LINK to build
the executable file (DLL). This produces an import library. Otherwise, run LIB to
produce an import library.

Running LIB with the /DEF option produces an additional file with an .EXP
extension. The .EXP file must be used later to build the executable file.

2. After using either LINK or LIB to build all the import libraries, go back and run
LINK to build any executable files that were not built in the previous step. Note
that the corresponding .EXP file must be specified on the LINK line.

If you had run the LIB utility earlier to produce an import library for DLLI, LIB
produced the file DLLl.EXP as well. You must use DLL1.EXP as input to LINK
when building DLL1.DLL.

Figure 4.1 illustrates a solution for two mutually-importing DLLs, DLLI and DLL2.
The first step is to run LIB, with the /DEF option set, on DLLI. This step produces
DLLl.LIB, an import library, and DLL1.EXP. The import library is used to build
DLL2, which in tum produces an import library for DLL2's symbols. The final step
builds DLLI, by using DLLI.EXP and DLL2.LIB as input. Note that an .EXP file for
DLL2 is not necessary, because LIB was not used to build DLL2's import library.

Chapter 4 Creating DLLs for Win32

Figure 4.1 Linking Two DLLs with Mutual Imports

For more information on the LIB utility and the /DEF option, see Chapter 30, "LID
Reference," in the Visual C++ User's Guide.

DLL Loading and Thread-Local Storage
An executable file loads a DLL in one of two ways: statically or dynamically. The
exported contents of a DLL are always dynamically bound, regardless of how it is
loaded. Furthermore, these mechanisms are not mutually exclusive, as one
application can statically load a DLL and another can attach to it dynamically. A
statically-loaded DLL is "static" only in the sense that an application sets up imports
to it at build time.

• Static loading is the standard mechanism, invoked when a program is built with
import libraries referring to the DLL. When the application builder is relatively
sure that a particular DLL will be used, this method is most efficient because
symbols can be accessed with the dllimport attribute .

• Dynamic loading attaches to a DLL specified at run time. This mechanism uses
LoadLibrary and other API functions such as GetProcAddress, bypassing use of
imports. Use this technique when you don't know at build time whether a DLL
will be accessed. This way the DLL is not initialized until it is accessed.

If a DLL declares static-extent data as __ declspec(thread), it can cause a protection
fault if dynamically loaded. After the DLL is loaded with LoadLibrary, it causes
system failure whenever the code references this data. (Static-extent data includes
both global and local static items.)

59

Programming Techniques

60

Therefore, when you create a DLL, you should either avoid this use of thread-local
storage, or inform DLL users about potential pitfalls, in case they attempt dynamic
loading.

CHAPTER 5

Creating Multithread Applications
forWin32

Microsoft Visual C++ provides support for creating multithread applications with
32-bit versions of Microsoft Windows: Windows NT and Windows 95. You should
consider using more than one thread if your application needs to manage mUltiple
activities, such as simultaneous keyboard and mouse input. One thread can process
keyboard input while a second thread filters mouse activities. A third thread can
update the display screen based on data from the mouse and keyboard threads. At the
same time, other threads can access disk files or get data from a communications
port.

With Visual C++, there are two ways to program with mUltiple threads: use the
Microsoft Foundation Class library (MFC) or the C run-time library and the Win32
API. For information on creating multithread applications with MFC, read the
"Multithreading" articles in Programming with the Microsoft Foundation Class
Library after reading this chapter.

This chapter explains the features in Visual C++ that support the creation of
multithread programs.

Note Win32s does not support multithreading. Calls to the Win32 APls and C run-time library
functions mentioned in this chapter will return an error.

Multithread Programs
A thread is basically a path of execution through a program. It is also the smallest
unit of execution that Win32 schedules. A thread consists of a stack, the state of the
CPU registers, and an entry in the execution list of the system scheduler. Each thread
shares all of the process's resources.

A process consists of one or more threads and the code, data, and other resources of a
program in memory. Typical program resources are open files, semaphores, and
dynamically allocated memory. A program executes when the system scheduler gives
one of its threads execution control. The scheduler determines which threads should
run and when they should run. Threads of lower priority may have to wait while

61

Programming Techniques

higher priority threads complete their tasks. On multiprocessor machines, the
scheduler can move individual threads to different processors to "balance" the CPU
load.

Each thread in a process operates independently. Unless you make them visible to
each other, the threads execute individually and are unaware of the of other threads in
a process. Threads sharing common resources, however, must coordinate their work
by using semaphores or another method of interprocess communication. See "Writing
a Multithread Program" on page 68 for more information about synchronizing
threads.

Library Support
If one thread is suspended by the Win32 scheduler while executing the printf
function, one of the program's other threads might start executing. If the second
thread also calls printf, data might be corrupted. To avoid this, access to static data
used by the function must be restricted to one thread at a time.

You do not need to serialize access to stack-based (automatic) variables because each
thread has a different stack. Therefore, a function that uses only automatic (stack)
variables is reentrant. The standard C run-time libraries, such as LIBCE, have a
limited number of reentrant functions. A multithread program needing to use C run
time library functions that are normally not reentrant should be built with the
multithread library LIBCMT.LIB.

The Multithread C Libraries: LIBCMT.LIB and
MSVCRT.LIB

The support library LIBCMT.LIB is a reentrant library for creating multithread
programs. The MSVCRT.LIB library, which calls code in the shared
MSVCRT40.DLL, is also reentrant. When your application calls functions in these
libraries, the following rules may apply:

All library calls must use the C L_cdecl) calling convention; programs compiled
using other calling conventions (such as __ fastcall or __ stdcall) must use the
standard include files for the run-time library functions they call.

• Variables passed to library functions must be passed by value or cast to a pointer.

Programs built with LIBCMT.LIB do not share C run-time library code or data with
any dynamic-link libraries they call.

Alternatives to LIBCMT.LIB and MSVCRT.LIB

62

If you build a multithread program without using LIBCMT.LIB, you must do the
following:

• Use the standard C libraries and limit library calls to the set of reentrant functions.

Chapter 5 Creating Multithread Applications for Win32

v

• Use the Win32 API thread management functions, such as CreateThread.

• Provide your own synchronization for functions that are not reentrant by using
Win32 services such as semaphores and the EnterCriticalSection and
LeaveCriticalSection functions.

Warning The multithread library LlBCMT.LlB includes the _beginthread and _endthread
functions. The _beginthread function performs initialization without which many C run-time
functions will fail. You must use _beginthread instead of CreateThread in C programs built
with LlBCMT.LlB if you intend to call C run-time functions.

The Multithread Libraries Compile Option
To build a multithread application that uses the C run-time libraries, you must tell the
compiler to use a special version of the libraries (LIBCMT.LIB). To select these
libraries, first choose Settings from the Visual c++ Build menu, then choose the
CjC++ tab in the Project Settings dialog box. Select Code Generation from the
Category drop-down list box. From the Use Run-Time Library drop-down box, select
Multithreaded. Choose OK to return to editing.

From the command line, the Multithread Library compiler option (IMT) is the best
way to build a multithread program with LIBCMT.LIB. This option, which is
automatically set when you specify a multithreaded application when creating a new
project, embeds the LIBCMT library name in the object file.

Include Files
The Microsoft Visual C++ include files contain conditional sections for multithread
applications using LIBCMT.LIB. To compile your application with the appropriate
definitions, you can:

• Compile with the Multithread Library compiler option described in the previous
section.

• Define the symbolic con~tant _ MT in your source file or on the command line
with the /D option.

Standard include files declare C run-time library functions as they are implemented
in the libraries. If you used the Maximum Optimization (fOx) or Register Calling
Convention (fGr) option, the compiler assumes that all functions should be called
using the register calling convention. The run-time library functions were compiled
using the C calling convention, and the declarations in the standard include files tell
the compiler to generate correct external references to these functions.

See "Compiling and Linking" on page 70 for examples of how to use the _ MT
constant.

63

Programming Techniques

C Run-Time Library Functions for Thread Control

v

64

All Win32 programs have at least one thread. Any thread can create additional
threads. A thread can complete its work quickly and then terminate, or it can stay
active for the life of the program.

The LIBCMT and MSVCRT C run-time libraries provide two functions for thread
creation and termination: the _ beginthread and _ endthread functions.

The _ begin thread function creates a new thread and returns a thread identifier if the
operation is successful. The thread terminates automatically if it completes execution,
or it can terminate itself with a call to endthread.

Warning If you are going to call C run-time routines from a program built with LlBCMILlB,
you must start your threads with the _beginthread function. Do not use the Win32 functions
ExitThread and CreateThread. Using SuspendThread can lead to a deadlock when more
than one thread is blocked waiting for the suspended thread to complete its access to a C run
time data structure.

The _beginthread Function
The _ beginthread function creates a new thread. A thread shares the code and data
segments of a process with other threads in the process, but has its own unique
register values, stack space, and current instruction address. The system gives CPU
time to each thread, so that all threads in a process can execute concurrently. You can
find a complete description of _ beginthread and its arguments in the Run-Time
Library Reference.

The _ beginthread function is similar to the CreateThread function in the Win32
API but has these differences:

• The _ beginthread function lets you pass multiple arguments to the thread.

• The _ beginthread function initializes certain C run-time library variables. This is
important only if you use the C run-time library in your threads.

• CreateThread provides control over security attributes. You can use this function
to start a thread in a suspended state.

The _ beginthread function returns a handle to the new thread if successful or -1 if
there was an error.

The endthread Function
The _ endthread function terminates a thread created by _ beginthread. Threads
terminate automatically when they finish. The _ endthread function is useful for
conditional termination from within a thread. A thread dedicated to communications
processing, for example, can quit if it is unable to get control of the communications
port. You can find a complete description of _endthread in the Run-Time Library
Reference.

Chapter 5 Creating Multithread Applications for Win32

Sample Multithread C Program
BOUNCE.C is a sample multithread program that creates a new thread each time the
letter 'a' or 'A' is entered at the keyboard. Each thread bounces a "happy face" of a
different color around the screen. Up to 32 threads can be created. The program's
normal termination occurs when 'q' or 'Q' is entered. See "Compiling and Linking"
on page 70 for details on compiling and linking BOUNCE.C.

/* Bounce - Creates a new thread each time the letter 'a' is typed.
* Each thread bounces a happy face of a different color around the screen.
* All threads are terminated when the letter 'a' is entered.
*
* This program requires the multithread library. For example. compile
* with the following command line:
* CL /MT BOUNCE.C
*/

#include <windows.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <conio.h>
#include <process.h>

#define MAX_THREADS 32

/* getrandom returns a random number between min and max. which must be in
* integer range.
*/

#define getrandom(min. max) «rand() % (int)«(max) + 1) - (min») + (min»

/* Thread 1: main */ void main(void);
void KbdFunc(void);
void BounceProc(char * MyID);
void ClearScreen(void);

/* Keyboard input. thread dispatch */
/* Threads 2 to n: display */
/* Screen clear */

void ShutDown(void); /* Program shutdown */
void WriteTitle(int ThreadNum); /* Display title bar information */

HANDLE hConsoleOut;
HANDLE hRunMutex;
HANDLE hScreenMutex;

/* Handle to the console */
/* "Keep Running" mutex */
/* "Screen update" mutex */

int ThreadNr; /* Number of threads started
CONSOLE_SCREEN_BUFFER_INFO csbilnfo; /* Console information */

void main() /* Thread One */
{

/* Get display screen information & clear the screen.*/
hConsoleOut = GetStdHandle(STD_OUTPUT_HANDLE);
GetConsoleScreenBufferlnfo(hConsoleOut. &csbilnfo);
ClearScreen();
WriteTitle(0);

*/

65

Programming Techniques

66

}

/* Create the mutexes and reset thread count. */
hScreenMutex = CreateMutex(NULL. FALSE. NULL);
hRunMutex = CreateMutex(NULL. TRUE. NULL);
ThreadNr = 0;

/* Cleared */
/* Set */

/* Start waiting for keyboard input to dispatch threads or exit. */
KbdFunc();

/* All threads done. Clean up handles. */
CloseHandle(hScreenMutex);
CloseHandle(hRunMutex);
CloseHandle(hConsoleOut);

void ShutDown(void)
{

/* Shut down threads */

}

while ThreadNr > 0)
{

}

/* Tell thread to die and record its death. */
ReleaseMutex(hRunMutex);
ThreadNr--;

/* Clean up display when done */
WaitForSingleObject(hScreenMutex. INFINITE);
ClearScreen();

void KbdFunc(void)
{

/* Dispatch and count threads. */

}

int

do
{

KeyInfo;

KeyInfo = _getch();
if(tolower(KeyInfo
{

ThreadNr++;

'a' && ThreadNr < MAX THREADS

_beginthread(BounceProc. 0. &ThreadNr);
WriteTitle(ThreadNr);

}

while(tolower(KeyInfo) != 'q');

ShutDown();

void BounceProc(char *MyID)
{

char
WORD
char
COORD
COORD
DWORD

MyCell. 01 dCell ;
MyAttrib. OldAttrib;
BlankCell = 0x20;
Coords. Delta;
Old = {0,0};
Dummy;

Chapter 5 Creating Multithread Applications for Win32

1* Generate update increments and initial display coordinates. *1
srand((unsigned) *MyID * 3);
Coords.X - getrandom(0. csbiInfo.dwSize.X - 1);
Coords.Y - getrandom(0. csbiInfo.dwSize.Y - 1);
Delta.X - getrandom(-3. 3);
Delta.Y - getrandom(-3. 3);

1* Set up "happy face" & generate color attribute from thread number.*1
if (*My I D > 16)

MyCell - 0x01; 1* outline face *1
else

MyCell - 0x02;
MyAttrib - *MyID & 0x0F;

1* solid face *1
1* force black background *1

do
{

1* Wait for display to be available. then lock it. *1
WaitForSingleObject(hScreenMutex. INFINITE);

1* If we still occupy the old screen position. blank it out. *1
ReadConsoleOutputCharacter(hConsoleOut. &OldCell. 1. Old. &Dummy);
ReadConsoleOutputAttribute(hConsoleOut. &OldAttrib. 1. Old. &Dummy);
if « 01 dCell -- MyCell) && (01 dAttri b -- MyAttri b»

WriteConsoleOutputCharacter(hConsoleOut. &BlankCell. 1. Old. &Dummy);

1* Draw new face, then clear screen lock *1
WriteConsoleOutputCharacter(hConsoleOut, &MyCell, 1, Coords, &Dummy);
WriteConsoleOutputAttribute(hConsoleOut, &MyAttrib, 1. Coords, &Dummy);
ReleaseMutex(hScreenMutex);

1* Increment the coordinates for next placement of the block. *1
Old.X - Coords.X;
Old.Y = Coords.Y;
Coords.X +- Delta.X;
Coords.Y +- Delta.Y;

1* If we are about to go off the screen, reverse direction *1
if(Coords.X < 0 II Coords.X >- csbiInfo.dwSize.X)
{

Delta.X - -Delta.X;
Beep(400. 50);

; f(Coords. Y < 0 II Coords. Y > csbiInfo. dwS; ze. Y)
{

}

Delta.Y - -Delta.Y;
Beep(600. 50);

1* Repeat while RunMutex is still taken. *1
while (WaitForSingleObject(hRunMutex, 75L =- WAIT_TIMEOUT);

67

Programming Techniques

void WriteTitle(int ThreadNum
{

char NThreadMsg[80];

sprintf(NThreadMsg, "Threads running: %02d. Press 'A' to start a thread,'O' to
quit.", ThreadNum);

SetConsoleTitle(NThreadMsg);
}

void ClearScreen(void
{

DWORD dummy;
COORD Home - { 0, 0 };
FillConsoleOutputCharacter(hConsoleOut, , , csbiInfo.dwSize.X *

csbiInfo.dwSize.Y, Home, &dummy);
}

Writing a Multithread Program
When you write a program with multiple threads, you must coordinate their behavior
and use of the program's resources. You must also make sure that each thread
receives its own stack.

Sharing Common Resources

68

Each thread has its own stack and its own copy of the CPU registers. Other resources,
such as files, static data, and heap memory, are shared by all threads in the process.
Threads using these common resources must be synchronized. Win32 provides
several ways to synchronize resources, including semaphores, critical sections,
events, and mutexes.

When multiple threads are accessing static data, your program must provide for
possible resource conflicts. Consider a program where one thread updates a static
data structure containing x,y coordinates for items to be displayed by another thread.
If the update thread alters the x coordinate and is preempted before it can change the
y coordinate, the display thread may be scheduled before the y coordinate is updated.
The item would be displayed at the wrong location. You can avoid this problem by
using semaphores to control access to the structure.

A mutex (short for mutual exclusion) is a way of communicating among threads or
processes that are executing asynchronously of one another. This communication is
usually used to coordinate the activities of multiple threads or processes, typically by
controlling access to a shared resource by "locking" and "unlocking" the resource. To
solve this x,y coordinate update problem, the update thread would set a mutex
indicating that the data structure is in use before performing the update. It would
clear the mutex after both coordinates had been processed. The display thread must
wait for the mutex to be clear before updating the display. This process of waiting for
a mutex is often called "blocking" on a mutex because the process is blocked and
cannot continue until the mutex clears.

Chapter 5 Creating Multithread Applications for Win32

The BOUNCE.C program shown in the previous section uses a mutex named
ScreenMutex to coordinate screen updates. Each time one of the display threads is
ready to write to the screen, it calls WaitForSingleObject with the handle to
ScreenMutex and constant INFINITE to indicate that the WaitForSingleObject call
should block on the mutex and not time out. If ScreenMutex is clear, the wait
function sets the mutex so other threads cannot interfere with the display and
continues executing the thread. Otherwise, the thread blocks until the mutex clears.
When the thread completes the display update, it releases the mutex by calling
ReleaseMutex.

Screen displays and static data are only two of the resources requiring careful
management. For example, your program may have multiple threads accessing the
same file. Because another thread may have moved the file pointer, each thread must
reset the file pointer before reading or writing. In addition, each thread must make
sure that it is not preempted between the time it positions the pointer and the time it
accesses the file. These threads should use a semaphore to coordinate access to the
file by bracketing each file access with WaitForSingleObject and ReleaseMutex
calls. The following code fragment illustrates this technique:

HANDLE hIOMutex= CreateMutex (NULL, FALSE, NULL);

WaitForSingleObject(hIOMutex, INFINITE);
fseek(fp, desired_position, 0L);
fwrite(data, sizeof(data), 1, fp);
ReleaseMutex(hIOMutex);

Thread Stacks
All of an application's default stack space is allocated to the first thread of execution,
which is known as thread 1. As a result, you must specify how much memory to
allocate for a separate stack for each additional thread your program needs. The
operating system will allocate additional stack space for the thread, if necessary, but
you must specify a default value.

The first argument in the _ beginthread call is a pointer to the BounceProc function,
which will execute the threads. The second argument specifies the default stack size
for the thread. The last argument is an ID number that is passed to BounceProc.
BounceProc uses the ID number to seed the random number generator and to select
the thread's color attribute and display character.

Threads that make calls to the C run-time library or to the Win32 API must allow
sufficient stack space for the library and API functions they call. The C printf
function requires more than 500 bytes of stack space, and you should have 2K of
stack space available when calling Win32 API routines.

Because each thread has its own stack, you can avoid potential collisions over data
items by using as little static data as possible. Design your program to use automatic
stack variables for all data that can be private to a thread. The only global variables

69

Programming Techniques

in the BOUNCE.C program are either mutexes or variables that never change after
they are initialized.

Win32 also provides Thread-Local Storage (TLS) to store per-thread data. See
"Thread Local Storage" on page 71 for more information.

Compiling and Linking

70

The steps for compiling and linking the multithread program BOUNCE.C using the
Visual C++ environment are:

1. Create a new project. Choose Console Application from the Type list.

2. Add the file containing the C source code to the project.

3. From the Build menu, choose Settings. In the Project Settings dialog box, choose
the C/C++ tab. Select Code Generation from the Category drop-down list box.
From the Use Run-Time Library drop-down box, select Multithreaded. Choose
OK.

4. Build the project by choosing Build from the Build menu.

The steps for compiling and linking the multithread program BOUNCE.C from the
command line are:

1. Ensure that the Win32 library files and LIBCMT.LIB are in the directory specified
in your LIB environment variable.

2. Compile and link the program with the CL command-line option /MT:

CL IMT BOUNCE.C

3. If you choose not to use the /MT option, you must take these steps:

• Define the _MT symbol before including header files. You can do this by
specifying / D _MT on the command line.

• Specify the multithread library and suppress default library selection.

The multithread include files are used when you define the symbolic constant
_MT. You can do this with the CL command line option ID _MT or within the C
source file before any include statements, as follows:

/Idefi ne _MT
#include <stdlib.h>

Chapter 5 Creating Multithread Applications for Win32

Avoiding Problem Areas
There are several problems you might encounter in creating, linking, or executing a
multithread C program. Some of the more common ones are described here.

Problem

You get a message box
showing that your
program caused a
protection violation.

Your program generates
numerous compile and
link errors.

Probable cause

Many Win32 programming errors cause protection violations.
A common cause of protection violations is the indirect
assignment of data to null pointers. This results in your
program trying to access memory that does not "belong" to it,
so a protection violation is issued.

An easy way to detect the cause of a protection violation is to
compile your program with debugging information, and then
run it through the debugger in the Visual C++ environment.
When the protection fault occurs, Windows transfers control to
the debugger, and the cursor is positioned on the line that
caused the problem.

If you attempt to compile and link a multithread program
without defining the symbolic constant _ MT, many of the
definitions required for the multithread library will be missing.
If you are using the Visual C++ development environment,
make sure that the Project Settings dialog box specifies
multithread libraries. From the command line, define _ MT to
CL with /MT or /D _MT, or use !fdefi ne _MT in your
program.

You can eliminate many potential problems by setting the
compiler's warning level to one of its highest values and
heeding the warning messages. By using the level 3 or level 4
warning level options, you can detect unintentional data
conversions, missing function prototypes, and use of non-ANSI
features.

Thread Local Storage (TLS)
Thread Local Storage (TLS) is the method by which each thread in a given multi
threaded process may allocate locations in which to store thread-specific data.
Dynamically bound (run-time) thread-specific data is supported by way of the TLS
API (TlsAlloc, TlsGetValue, TlsSetValue, TlsFree). Win32 and the Visual C++
compiler now support statically bound (load-time) per-thread data in addition to the
existing API implementation.

API Implementation
Thread Local Storage is implemented through the Win32 API layer as well as the
compiler. For details, see the Win32 API documentation for TlsAlloc, TlsGetValue,
TlsSetValue, and TlsFree.

71

Programming Techniques

The Visual C++ compiler includes a keyword to make thread local storage operations
more automatic, rather than through the API layer. This syntax is described in the
next section, "Compiler Implementation."

Compiler Implementation
To support TLS, a new attribute, thread, has been added to the C and C++ languages
and is supported by the Visual C++ compiler. This attribute is an extended storage
class modifier, as described in the previous section. Use the __ declspec keyword to
declare a thread variable. For example, the following code declares an integer thread
local variable and initializes it with a value:

__ declspec(thread) int tls_i = 1:

Rules and Limitations for TLS

72

The following guidelines must be observed when declaring statically-bound thread
local objects and variables:

• The thread attribute can be applied only to data declarations and definitions. It
cannot be used on function declarations or definitions. For example, the following
code will generate a compiler error:

#define Thread __ declspec(thread)
Thread void func(): II This will generate an error.

• The thread modifier may be specified only on data items with static extent. This
includes global data objects (both static and extern), local static objects, and static
data members of C++ classes. Automatic data objects may not be declared with the
thread attribute. The following code will generate compiler errors:

#define Thread __ declspec(thread)
voi d func1 ()
{

Thread int tls_i:

int func2(Thread int tls_i
{

}

II This will generate an error.

II This will generate an error.

• The declarations and the definition of a thread local object must all specify the
thread attribute. For example, the following code will generate an error:

#define Thread __ declspec(thread)
extern int tls_i: II This will generate an error, since the
int Thread tls_i: II declaration and definition differ.

• The thread attribute cannot be used as a type modifier. For example, the following
code will generate a compiler error:

char __ declspec(thread) *ch: II Error

Chapter 5 Creating Multithread Applications for Win32

• C++ classes cannot use the thread attribute. However, C++ class objects may be
instantiated with the thread attribute. For example, the following code will
generate a compiler error:

#define Thread __ declspec(thread)
class Thread C II Error: classes cannot be declared Thread.
{

II Code
} :
C CObject:

Because the declaration of C++ objects that utilize the thread attribute is
permitted, the following two examples are semantically equivalent:

#define Thread __ declspec(thread)
Thread class B
{

II Code
} BObject: II OK--BObject is declared thread local.

class B
{

II Code
} :
Thread B BObject: II OK--BObject is declared thread local.

• Because C++ objects with constructors and destructors (as well as any object that
utilizes some form of initialization semantics) may be allocated as thread local
objects, an associated initialization routine (such as the constructor) is called to
initialize that object. For example:

class tlsClass
{

private:
int x:

public:
tlsClass() { x = 1: }
~tlsClass():

__ declspec(thread tlsClass tlsObject:
extern int func():
__ declspec(thread int y = func():

In this case, data or objects initialized by the func routine do not necessarily
belong to the same thread into which tl sObject is instantiated.

• The address of a thread local object is not considered constant, and any expression
involving such an address is not considered a constant expression. In standard C,
the effect of this is to forbid the use of the address of a thread local variable as an
initializer for an object or pointer. For example, the following code will be flagged
as an error by the C compiler:

73

Programming Techniques

#define Thread __ declspec(thread)
Thread int tls_i;
int *p = &tls_i; IIThis will generate an error in C.

This restriction does not apply in C++, however. Because C++ permits dynamic
initialization of all objects, you can initialize an object with an expression that
uses the address of a thread local variable. This is accomplished in the same way
as the construction of thread local objects. For example, the code shown previously
will not generate an error when compiled as a C++ source file. Note that the
address of a thread local variable is only valid as long as the thread in which the
address was taken still exists.

• Standard C permits the initialization of an object or variable with an expression
involving a reference to itself, but only for objects of non-static extent. Although
C++ normally permits such dynamic initialization of objects with an expression
involving a reference to itself, this type of initialization is not permitted with
thread local objects. For example:

#define Thread __ declspec(thread)
Thread int tls i tls_i;
i nt j = j;
Thread int tls i sizeof(tls_i)

II Error in C and C++
II OK in C++, error in C
II Legal in C and C++

Note that a sizeof expression that includes the object being initialized does not
constitute a reference to itself, and is legal in both C and C++.

C++ does not allow such dynamic initialization of thread data because of possible
future enhancements to the thread local storage facility.

If a DLL declares any non-local data or object as __ declspec(thread), it can
cause a protection fault if dynamically loaded. After the DLL is loaded with
LoadLibrary, it causes system failure whenever the code references the non-local
__ declspec(thread) data. Because the global variable space for a thread is allocated
at run time, the size of this space is based on a calculation of the requirements of the
application plus the requirements of all of the DLLs that are statically linked. When
you use LoadLibrary, there is no way to extend this space to allow for the thread
local variables declared with __ declspec(thread). Use the TLS APls, such as
TlsAlloc, in your DLL to allocate TLS if the DLL might be loaded with
LoadLibrary.

For Further Information

74

You can find more information on:

• Creating multithreaded programs using MFC in Programming with the Microsoft
Foundation Class Library.

• C run-time functions in Run-Time Library Reference.

• Win32 APls covering threads and synchronization in Win32 Programmer's
Reference.

CHAPTER 6

Templates

Templates enable you to define a family of functions or classes that can operate on
different types of information. This chapter describes the Microsoft implementation
of C++ templates, which is based on the ISO WG2l/ANSI X3J16 working papers
towards the evolving standard for C++.

For more information on templates, see Chapter 6, "Declarations," in the C++
Language Reference.

What Are Templates?
Templates are a mechanism for generating functions and classes based on type
parameters (templates are sometimes called "parameterized types"). By using
templates, you can design a single class that operates on data of many types, instead
of having to create a separate class for each type.

For example, to create a type-safe function that returns the minimum of two
parameters without using templates, you would have to write a set of overloaded
functions like this:

II min for ints
int min(int a, int b)

return (a < b) ? a b;

II min for longs
long min(long a, long b

return (a < b) ? a b;

II min for chars
char min(char a, char b

return (a < b) ? a b;

I I etc ...

By using templates you can reduce this duplication to a single templated function:

template <class T> T min(T a, T b)
return (a < b) ? a : b;

75

Programming Techniques

Templates can significantly reduce source code size and increase code flexibility
without reducing type safety.

Working with Function Templates
With function templates, you can specify a set of functions that are based on the same
code, but act on different types or classes. For example:

template <class T) void MySwap(T& a, T& b)
{

T c(a);
a = b; b = c;

}

This code defines a family of functions that swap their parameters. From this
template you can generate functions that will swap not only int and long types, but
also user-defined types. MySwap will even swap classes if the class's copy constructor
and assignment operator are properly defined.

In addition, the function template will prevent you from swapping objects of different
types, since the compiler knows the types of the a and b parameters at compile time.
Note that all of the template parameters inside the angle brackets must be used as
parameters for the templated function.

You call a templated function as you would a nontemplated function; no special
syntax is needed. For example:

i nt i, j;
char k;
MySwap(i, j);
MySwap(i, k);

IIOK
IIError, different types.

Function Template Instantiation

76

When a templated function is first called for each type, the compiler creates an
"instantiation," a specialized version of the templated function for the type. This
instantiation will be called every time the function is used for the type. If you have
several identical instantiations, even in different modules, only one copy of the
instantiation will end up in the executable.

Standard type conversions are not applied to templated functions. Instead, the
compiler first looks for an "exact match" for the parameters supplied. If this fails, it
tries to create a new instantiation to create an "exact match." Finally, the compiler
attempts to apply overloading resolution to find a match for the parameters. If this
fails, the compiler generates an error.

Chapter 6 Templates

Microsoft Specific--?

Trivial type conversions, but not promotions, are applied when trying to match
template types. This behavior is disabled by turning on "Disable Language
Extensions" (/Za) C++ compiler option.

END Microsoft Specific

Function Template Overrides
With a templated function, you can define special behavior for a specific type by
providing a non-templated function for that type. For example:

void MySwap(double a, double b);

This declaration enables you to define a different function for double variables. Like
other non-templated functions, standard type conversions (such as promoting a
variable of type float to double) are applied.

Working with Class Templates
You can use class templates to create a family of classes that operate on a type.

template <class T, int i> class TempClass
{

public:
TempClass(void);
-TempClass(void);
int MemberSet(T a, int b);

private:

} ;

T Tarray[iJ;
int arraysize;

In this example, the templated class uses two parameters, a type T and an int i. The T

parameter can be passed any type, including structures and classes. The i parameter
has to be passed an integer constant. Since i is a constant defined at compile time,
you can define a member array of size i using a standard automatic array declaration.

Unlike function templates, you do not need to use all template parameters in the
definition of a templated class.

Members of Template Classes
Members of classes are defined slightly differently than those of nontemplated
classes. Continuing the preceding example:

77

Programming Techniques

template <class T, int i>
int TempClass< T, i >::MemberSet(T a, int b)
{

}

if((b >= 0) && (b < i))
{

}

Tarray[b++] = a;
return sizeof(a);

else
return -1;

Constructors and Destructors
Although constructors and destructors reference the name of the templated class
twice, the template parameters should be referenced only once in the fully specified
name.

template <class T, int i>
TempClass< T, i >::TempClass(void j
{

TRACE("TempClass created.\n");
}

template <class T, int i>
TempClass< T, i >::~TempClass(void
{

TRACE("TempClass destroyed.\n");

Class Template Instantiation
Unlike function templates, when instantiating a class template, you must explicitly
instantiate the class by giving the parameters for the templated class. To create an
instance of TempClass:

TempClass< float, 6 > test1;
TempClass< char, items++ > test2;

II OK
II Error, second parameter
II must be constant.

No code is generated for a templated class (or function) until it is instantiated.
Moreover, member functions are instantiated only if they are called. This can cause
problems if you are building a library with templates for other users. See "Explicit
Instantiation" in Chapter 6 of the C++ Language Reference for more information.

Angle Bracket Placement

78

Bad placement of angle brackets «» causes many template syntax errors. Make sure
that you use proper spacing and parentheses to distinguish angle brackets from
operators such as »and ->. For example:

Chapter 6 Templates

TempClass< float, a > b ? a

should be rewritten as

b > test!;

TempClass< float, (a > b ? a : b) > test!;

Similarly, pay extra attention when using macros that use angle brackets as template
arguments.

When Should You Use Templates?
Templates are often used to:

• Create a type-safe collection class (for example, a stack) that can operate on data
of any type.

• Add extra type checking for functions that would otherwise take void pointers.

• Encapsulate groups of operator overrides to modify type behavior (such as smart
pointers).

Most of these uses can be implemented without templates; however templates offer
several advantages:

• Templates are easier to write. You create only one generic version of your class or
function instead of manually creating specializations.

• Templates can be easier to understand, since they can provide a straightforward
way of abstracting type information.

• Templates are type safe. Since the types that templates act upon are known at
compile-time, the compiler can perform type checking before errors occur.

Templates vs. Macros
In many ways, templates work like preprocessor macros, replacing the templated
variable with the given type. However, there are many differences between a macro
like this:

#define min(i, j) «(i) < (j» ? (i) : (j»

and a template:

template<class T> T min (T i, T j) { return «i < j) ? j) }

Here are some problems with the macro:

• There is no way for the compiler to verify that the macro parameters are of
compatible types. The macro is expanded without any special type checking.

• The i and j parameters are evaluated twice. For example, if either parameter has a
postincremented variable, the increment is performed two times.

79

Programming Techniques

• Since macros are expanded by the preprocessor, compiler error messages will refer
to the expanded macro, rather than the macro definition itself. Also the macro will
show up in expanded form during debugging.

Templates vs. Void Pointers
Many functions that are now implemented with void pointers can be implemented
with templates. Void pointers are often used to allow functions to operate on data of
an unknown type. When using void pointers, the compiler cannot distinguish types,
so it cannot perform type checking or type-specific behavior such as using type
specific operators, operator overloading, or constructors and destructors.

With templates, you can create functions and classes that operate on typed data. The
type looks abstracted in the template definition. However, at compile-time the
compiler creates a separate version of the function for each specified type. This
enables the compiler to treat templated classes and functions as if they acted on
specific types. Templates can also improve coding clarity, since you don't need to
create special cases for complex types such as structures.

Collection Classes

80

Templates are a good way of implementing collection classes. Version 4.0 of the
Microsoft Foundation Class Library uses templates to implement six new collection
classes: CArray, CMap, CList, CTypedPtrArray, CTypedPtrList, and
CTypedPtrMap. For information on these classes, see the Class Library Reference.
For additional information on using and customizing these classes, see the
"Collections" articles in Programming with the Microsoft Foundation Class Library.

The MyStack collection is a simple implementation of a stack. The two template
parameters, T and i, specify the type of elements in the stack and the maximum
number of that item in the stack. The push and pop member functions add and
remove items on the stack, with the stack growing from the bottom of the stack.

template <class T, int i> class MyStack
{

T StackBuffer[i];
i nt cItems;

public:
void MyStack(void) : cltems() {};
void push(const T item);
T pope void);

} ;

template <class T, int i> void MyStack< T, >::push(const T item)
{

if(cItems > 0
StackBuffer[--cltems] item;

else
throw "Stack overflow error.":

return:

template <class T. int i> T MyStack< T.
{

if(cltems < i
return StackBuffer[cltems++]

else

throw "Stack underfl ow error.":

Smart Pointers

>: :pop(void)

c++ allows you to create "smart pointer" classes that encapsulate pointers and
override pointer operators to add new functionality to pointer operations. Templates
allow you to create generic wrappers to encapsulate pointers of almost any type.

The following code outlines a simple reference count garbage collector. The template
class Ptr<T> implements a garbage collecting pointer to any class derived from
Ref Count.

class Ref Count
int crefs:

public:

} :

RefCount(void) { crefs = 0: }
void upcount(void) { ++crefs: }
void downcount(void) { if (--crefs == 0) delete this: }

class Sample: public Ref Count {
public:

void doSomething(void) { TRACE("Did something\n"):}
} :

template <class T> class Ptr {
T* p;

public:

} :

Ptr(T* p_) : p(p_) { p->upcount();
-Ptr(void) { p->downcount(): }
operator T*(void) { return p: }
T& operator*(void) { return *p: }
T* operator->(void) { return p; }
Ptr& operator=(T* p_) {

p->upcount(): p = p_; p->downcount(); return *this:
}

Chapter 6 Templates

81

Programming Techniques

82

int main()

}

Ptr<Sample> p = new Sample; II sample #1
Ptr<Sample> p2 = new Sample; II sample #2
p = p2; II #1 has 0 refs, so it is destroyed; #2 has two refs
p->doSomething();
return 0;
II As p2 and p go out of scope, their destructors call
II downcount. The cref variable of #2 goes to 0, so #2 is
II destroyed

Classes Ref Count and Ptr<T> together provide a simple garbage collection solution
for any class that can afford the i nt per instance overhead to inherit from Ref Count.
Note that the primary benefit of using a parametric class like Pt r<T> instead of a
more generic class like Ptr is that the former is completely type-safe. The preceding
code ensures that a Ptr<T> can be used almost anywhere a T* is used; in contrast, a
generic Ptr would only provide implicit conversions to voi d*.

For example, if this class is used to create and manipulate garbage collected files,
symbols, strings, and so forth. From the class template Ptr<T>, the compiler will
create template classes Ptr<Fi 1 e>, Ptr<Symbol >, Ptr<Stri ng>, and so on, and their
member functions: Ptr<Fi 1 e>: :~Ptr(), ptr<Fi 1 e>:: operator Fi 1 e*(),
Pt r<St ri ng>: : ~Pt r (), Pt r<St ri ng>: : operator St ri ng* (), and so on.

CHAPTER 7

c++ Exception Handling

The c++ language provides built-in support for handling anomalous situations,
known as "exceptions," which may occur during the execution of your program. With
C++ exception handling, your program can communicate unexpected events to a
higher execution context that is better able to recover from such abnormal events.
These exceptions are handled by code which is outside the normal flow of control.

Note In this chapter, the terms "structured exception handling" and "structured exception" (or
"C exception") refer exclusively to the Win32 structured exception handling mechanism
provided by Windows 95 and Windows NT. All other references to exception handling (or "C++
exception") refer to the C++ exception handling mechanism.

Unlike the Win32 structured exception handling mechanism, the language itself
provides support for C++ exception handling. This chapter describes the Microsoft
implementation of C++ exception handling, which is based on the ISO WG21/ANSI
X3J16 working papers towards the evolving standard for C++.

Exception Handling Overview
For C++ programs, you should use C++ exception handling rather than structured
exception handling. While structured exception handling works in C++ programs,
you can ensure that your code is more portable by using C++ exception handling. The
C++ exception handling mechanism is more flexible, in that it can handle exceptions
of any type. C exceptions are always of type unsigned int.

In C++, the process of raising an exception is called "throwing" an exception. A
designated exception handler then "catches" the thrown exception.

To enable C++ exception handling in your code, open the Project Settings dialog box,
select the C/C++ tab, select C++ Language in the Category box, and select Enable
Exception Handling; or use the /GX compiler option. The default is /GX-, which
disables exception handling unwind semantics.

Note Version 4.0 of the Microsoft Foundation Class Library, which is included with Visual
C++, uses the C++ exception handling mechanism. Although you are encouraged to use C++

83

Programming Techniques

exception handling in new code, version 4.0 retains the macros from previous versions of MFC
so that old code will not be broken. The macros and the new mechanism can be combined, as
well. For information on mixing macros and C++ exception handling and on converting old
code to use the new mechanism, see the articles "Exceptions: Macros and C++," and
"Exceptions: Converting from MFC Exception Macros," in Programming with the Microsoft
Foundation Class Library.

Exception Handling Syntax

84

The structure for C++ exception handling is represented by the following syntax:

Syntax
try-block:

try compound-statement handler-list

handler-list :
handler handler-listopt

handler:
catch (exception-declaration) compound-statement

exception-declaration :
type-speciJier-list declarator
type-speciJier-list abstract-declarator
type-speciJier-list

throw-expression :
throw assignment-expressionopt

The compound-statement after the try clause is the guarded section of code. The
throw-expression throws an exception. The compound-statement after the catch
clause is the exception handler, and catches the exception thrown by the throw
expression. The exception-declaration statement after the catch clause indicates the
type of exception the clause handles. The type can be any valid data type, including a
c++ class.

If the exception-declaration statement is an ellipsis (...), the catch clause handles any
type of exception, including C exceptions as well as system-generated and
application-generated exceptions. This includes exceptions such as memory
protection, divide-by-zero, and floating-point violations. An ellipsis catch handler
must be the last handler for its try block.

The operand of throw is syntactically similar to the operand of a return statement.

Microsoft Specific ~

Microsoft C++ does not support the function exception specification mechanism, as
described in section 15.4 of the ANSI C++ draft.

END Microsoft Specific

Chapter 7 C++ Exception Handling

Type-Safe Exception Handling
c++ exception handling supports type-safe exception handlers. C exceptions are
always identified by an unsigned int. With C++ exception handling, you can specify
that exceptions of a particular type (including C++ objects) are caught by a handler
that matches the type of the exception being thrown.

How It Works
Exceptions are typically thrown inside a guarded section of code known as a try
block. Directly below the try block are a series of associated catch handlers. The
C++ exception handling model is known as "non-resumable." Once the flow of
program control has left the try block, it never returns to that block.

For example, this program detects failure of a memory allocation operation using the
new operator. If new is successful, the catch handler is never executed:

#include <iostream.h>

int main()
{

char *buf;
try
{

buf - new char[512];
if(buf ==== 0)

throw "Memory allocation failure!";

catch(char * str)
{

}

II

cout « "Exception raised: " « str « endl;

return 0;

The operand of the throw expression specifies that an exception of type c h a r * is
being thrown. It is handled by a catch handler that expresses the ability to catch an
exception of type c h a r *. In the event of a memory allocation failure, this is the
output from the preceding example:

Exception raised: Memory allocation failure!

If no exception is thrown during execution of a try block, the catch clause(s) that
follow the try block are not executed. Execution continues at the statement after the
last catch clause following the try block in which the exception was thrown. Control
can only enter a catch handler through a thrown exception; never via a goto
statement or a case label in a switch statement.

85

Programming Techniques

c++ Exceptions

86

The real power of C++ exception handling lies not only in its ability to deal with
exceptions of varying types, but also in its ability to automatically call destructor
functions during stack unwinding for all local objects constructed before the
exception was thrown.

The context which exists between the throw site and the catch handler is referred to
as the "exception stack frame." This frame may contain objects with destructor
semantics. If an exception is thrown during execution of the guarded section or in
any routine the guarded section calls (directly or indirectly), an exception object is
created from the object created by the throw operand. (This implies that a copy
constructor may be involved.) At this point, the compiler looks for a catch clause in a
higher execution context that can handle an exception of the type thrown, or a catch
handler that can handle any type of exception. The catch handlers are examined in
order of their appearance following the try block. If no appropriate handler is found,
the next dynamically enclosing try block is examined. This process continues until
the outermost enclosing try block is examined.

If a matching handler is still not found, or if an exception occurs while unwinding,
but before the handler gets control, the predefined run-time function terminate is
called. If an exception occurs after throwing the exception, but before the unwind
begins, the terminate function is called. You can install a custom termination
function to handle such situations. See "Unhandled Exceptions" on page 89 for more
information.

The following example demonstrates C++ exception handling using classes with
destructor semantics. It declares two C++ classes; one (class CTest) for defining the
exception object itself, and the second (class CDtorDemo) for demonstrating the
destruction of a separate frame object during stack unwinding:

#include <iostream.h>

void MyFunc(void):

class CTest
{

public:

} :

CTest()o :
-CTest() 0:
const char *ShowReason() const { return "Exception in CTest class.": }

class CDtorDemo
{

public:

} :

CDtorDemo():
-CDtorDemo():

Chapter 7 C++ Exception Handling

CDtorDemo::CDtorDemo()
{

cout « "Constructing CDtorDemo." « endl;

CDtorDemo::-CDtorDemo()
{

cout « "Destructing CDtorDemo." « endl;

v 0 i d My Fun c ()
{

CDtorDemo D;
cout« "In MyFunc(). Throwing CTest exception." « endl;
throw CTest():

int main()
{

}

cout « "In main." « endl:
try
{

}

cout « "In try block. calling MyFunc()." « endl;
MyFunc() :

catch(CTest E
{

}

cout « "In catch handler." « endl:
cout « "Caught CTest exception type: ":
cout « E.ShowReason() « end';

catch(char *str)
{

cout « "Caught some other exception: " « str « endl:

cout « "Back in main. Execution resumes here." « end':
return 0:

If a matching catch handler is found, and it catches by value, its formal parameter is
initialized by copying the exception object. If it catches by reference, the parameter is
initialized to refer to the exception object. After the formal parameter is initialized,
the process of "unwinding the stack" begins. This involves the destruction of all
automatic objects that were constructed (but not yet destructed) between the
beginning of the try block associated with the catch handler and the exception's
throw site. Destruction occurs in reverse order of construction. The catch handler is
executed and the program resumes execution following the last handler (that is, the
first statement or construct which is not a catch handler).

87

Programming Techniques

88

This is the output from the preceding example:

In main.
In try block, calling MyFunc().
Constructing CDtorDemo.
In MyFunc(). Throwing CTest exception.
Destructing CDtorDemo.
In catch handler.
Caught CTest exception type: Exception in CTest class.
Back in main. Execution resumes here.

Note the declaration of the exception parameter in both catch handlers:

catch(CTest E)
{ I I ... }
catch(char *str
{ I I ... }

You do not need to declare this parameter; in many cases it may be sufficient to notify
the handler that a particular type of exception has occurred. However, if you do not
declare an exception object in the exception declaration, you will not have access to
the object in the catch handler clause. For example:

catch(CTest)
{

II No access to a CTest exception object in this handler.

A throw expression with no operand re-throws the exception currently being
handled. Such an expression should appear only in a catch handler or in a function
called from within a catch handler. The re-thrown exception object is the original
exception object (not a copy). For example:

try
{

throw CSomeOtherException();

catch(...)
{

II Handle all exceptions

II Respond (perhaps only partially) to exception
I I . ..

throw; II Pass exception to some other handler

Catchable Types
Because C++ enables you to throw exceptions of any type, you need to determine
which catch handlers can catch an exception of a specific class type. A C++
exception can be caught by a catch handler that specifies the same type as the thrown
exception, or by a handler that can catch any type of exception. An exception can also
be caught by a catch handler that uses a reference to the same type as the thrown
exception.

Chapter 7 C++ Exception Handling

If the type of thrown exception is a class, which also has a base class (or classes), it
can be caught by handlers that accept base classes of the exception's type, as well as
references to bases of the exception's type. Note that when an exception is caught by
a reference, it is bound to the actual thrown exception object; otherwise, it is a copy
(much the same as an argument to a function).

When an exception is thrown, it may be caught by the following types of catch
handlers:

• A handler that can accept any type (using the ellipsis syntax).

• A handler that accepts the same type as the exception object; since it is a copy,
const and volatile modifiers are ignored.

• A handler that accepts a reference to the same type as the exception object.

• A handler that accepts a reference to a const or volatile form of the same type as
the exception object.

• A handler that accepts a base class of the same type as the exception object; since
it is a copy, const and volatile modifiers are ignored. The catch handler for a base
class must not precede the catch handler for the derived class.

• A handler that accepts a reference to a base class of the same type as the exception
object.

• A handler that accepts a reference to a const or volatile form of a base class of the
same type as the exception object.

• A handler that accepts a pointer to which a thrown pointer object can be converted
via standard pointer conversion rules.

Unhandled Exceptions
If a matching catch handler (or ellipsis catch handler) cannot be found for the
current exception, the predefined terminate run-time function is called. (You can
also explicitly call terminate in any of your handlers.) The default action of
terminate is to call abort. If you want terminate to call some other function in your
program before exiting the application, call the set_terminate function with the
name of the function to be called as its single argument. You can call set_terminate
at any point in your program. The terminate routine always calls the last function
given as an argument to set_terminate.

The following example code throws a c h a r * exception, but does not contain a
handler designated to catch exceptions of type c h a r *. The call to set_terminate
instructs terminate to call term_func:

#include <eh.h> II For function prototypes
#include <iostream.h>
#include <process.h>

89

Programming Techniques

void term_func()
{

}

I I . ..
cout « "term_func was called by terminate." « endl:
exit(-1):

i nt rna in ()
{

}

try
{

I I ...
set_terminate(term_func):
I I ...
throw "Out of memory!": II No catch handler for this exception

catch(int)
{

cout « "Integer exception raised." « endl:

return 0:

After performing any desired cleanup tasks, the term_func function should terminate
the program or current thread, ideally by calling ex it. If it doesn't, and instead
returns to its caller, abort is called.

Order of Handlers

90

The order in which catch handlers appear is significant, because handlers for a given
try block are examined in order of their appearance. For example, it is an error to
place the handler for a base class before the handler for a derived class. Once a
matching catch handler is found, subsequent handlers are not examined. As a result,
an ellipsis catch handler must be the last handler for its try block. For example:

I I ...
try
{

II
}

catch(
{

II Handle exception here.
}

II Error: the next two handlers are never examined.
catch(const char * str)
{

cout « "Caught exception: " « str « endl:
}

catch(CExcptClass E)
{

II Handle CExcptClass exception here.
}

Chapter 7 C++ Exception Handling

In this example, the ellipsis catch handler is the only handler that is examined.

Mixing C and C++ Exceptions
If you want to write more portable code, using structured exception handling in a
C++ program is not recommended. However, you may sometimes want to mix C and
C++ source code, and need some facility for handling both kinds of exceptions.
Because a structured exception handler has no concept of objects or typed exceptions,
it cannot handle exceptions thrown by C++ code; however, C++ catch handlers can
handle C exceptions. As such, C++ exception handling syntax (try, throw, catch) is
not accepted by the C compiler, but structured exception handling syntax <-_try,
__ except, __ tinally) is supported by the C++ compiler.

If you mix C and C++ exceptions, note the following:

1. C++ exceptions and C exceptions cannot be mixed within the same function.

2. Termination handlers <-_tinally blocks) are always executed, even during
unwinding after an exception is thrown.

3. C++ exception handling can catch and preserve unwind semantics in all modules
compiled with the /OX compiler option (this option enables unwind semantics).

4. There may be some situations in which destructor functions are not called for all
objects. For example, if a C exception occurs while attempting to make a function
call through an uninitialized function pointer, and that function takes as
parameters objects that were constructed before the call, those objects will not have
their destructors called during stack unwind.

Using setjmp/longjmp
Do not use setjrnp and longjrnp in C++ programs; these functions do not support
C++ object semantics. Also, using these functions in C++ programs may degrade
performance by preventing optimization on local variables. Use the C++ exception
handling try/catch constructs instead.

If you do use setjrnp/longjrnp in a C++ program, the interaction between these
functions and C++ exception handling requires that you include SETJMP.H or
SETJMPEX.H. Destructors for local objets will be called during the stack unwind if
you compile with the /OX option (Enable Exception Handling). Also, if you intend
your code to be portable, do not rely on correct destruction of frame-based objects
when executing a non-local goto using a call to longjrnp.

Exception Handling Differences
The major difference between structured exception handling and C++ exception
handling is that the C++ exception handling model deals in types, while the C
structured exception handling model deals with exceptions of one type; specifically,
unsigned int. That is, C exceptions are identified by an unsigned integer value,
whereas C++ exceptions are identified by data type. When an exception is raised in
C, each possible handler executes a filter, which examines the C exception context

91

Programming Techniques

92

and determines whether to accept the exception, pass it to some other handler, or
ignore it. When an exception is thrown in C++, it may be of any type.

A second difference is that the C structured exception handling model is referred to
as "asynchronous," in that exceptions occur secondary to the normal flow of control.
The C++ exception handling mechanism is fully "synchronous," which means that
exceptions occur only when they are thrown.

If a C exception is raised in a C++ program, it can be handled by a structured
exception handler with its associated filter, or by a C++ catch handler, whichever is
dynamically nearest to the exception context. For example, the following C++
program raises a C exception inside a C++ try context:

#include <iostream.h>

void SEHFunc(void);

int maine)
{

try
{

SEHFunc();

catch(...)
{

cout « "Caught a C exception."« endl;

return 0;

void SEHFunc()
{

int x, y == 0;
x = 5 / y;

_finally
{

cout « "In finally." « endl;

This is the output from the preceding example:

In finally.
Caught a C exception.

C Exception Wrapper Class
In a simple example like this, the C exception can be caught only by an ellipsis (•..)
catch handler. No information about the type or nature of the exception is
communicated to the handler. While this method works, in some cases you may need
to define a transformation between the two exception handling models so that each C

Chapter 7 C++ Exception Handling

exception is associated with a specific class. To do this, you can define a C exception
"wrapper" class, which can be used or derived from to attribute a specific class type
to a C exception. By doing so, each C exception can be handled by a C++ catch
handler in more discrete ways than the preceding example.

Your wrapper class might have an interface consisting of some member functions that
determine the value of the exception, and for accessing the extended exception
context information provided by the C exception model. You might also want to
define a default constructor and a constructor that accepts an unsigned int argument
(to provide for the underlying C exception representation), and a bitwise copy
constructor. The following is a possible implementation of a C exception wrapper
class:

class SE_Exception
{

private:
unsigned int nSE;

protected:
SE_Exception(unsigned int n) nSE(n) {}

public:

} ;

SE_Exception() {}
SE_Exception(SE_Exception&) {}
~SE_Exception() {}
unsigned int getSeNumber() { return nSE; }

To use this class, you install a custom C exception translator function which is called
by the internal exception handling mechanism each time a C exception is thrown.
Within your translator function, you can throw any typed exception (perhaps an
SE_Except i on type, or a class type derived from SE_Excepti on), which can be caught
by an appropriate matching C++ catch handler. The translator function can simply
return, which indicates that it did not handle the exception. If the translator function
itself raises a C exception, terminate is called.

To specify a custom translation function, call the _set_se_translator function with
the name of your translation function as its single argument. The translator function
that you write is called once for each function invocation on the stack that has try
blocks. There is no default translator function; if you do not specify one by calling
_set_se_translator, the C exception can only be caught by an ellipsis catch handler.

For example, the following code installs a custom translation function, then raises a
C exception which is wrapped by the SE_Excepti on class:

#include <stdio.h>
Iii ncl ude <eh. h>
#include <windows.h>

class SE_Exception {
private:

unsigned int nSE;

93

Programming Techniques

protected:
SE_Exception(unsigned int n) nSE(n) {}

public:

} ;

SE_Exception() {}
SE_Exception(SE_Exception&) {}
~SE_Exception() {}
unsigned int getSeNumber() { return nSE; }

void SEFunc(void);
void trans_func(unsigned, _EXCEPTION_POINTERS*);

int main()
{

_set_se_translator(trans_func);
try
{

SEFunc();

catch(SE_Exception e
{

printf("Caught a _try exception with SE_Exception.\n");
printf("nSE = 0x%x\n", e.getSeNumber());

return 0;

void SEFunc()
{

}

}

int x, y=0;
x = 5 / y;

_finally
{

printf("In finally\n");

void trans_func(unsigned int u, EXCEPTION_POINTERS* pExp)
{

printf("In trans_func.\n");
throw SE_Exception(u);

Exception Handling Overhead

94

There is a certain amount of extra overhead associated with the c++ exception
handling mechanism, which may increase the size of executable files and slow
program execution time. The /GX compiler option enables c++ exception handling
and unwind semantics. If you are not using C++ exception handling in your program
and you want to eliminate the associated overhead, you can use the /GX - compiler

Chapter 7 C++ Exception Handling

option to tum off exception handling and unwind semantics. Note that jGX - is the
default.

Due to the nature of exception handling and the extra overhead involved, exceptions
should be used only to signal the occurrence of unusual or unanticipated program
events. Exception handlers should not be used to redirect the program's normal flow
of control. For example, an exception should not be thrown in cases of potential logic
or user input errors, such as the overflow of an array boundary. In these cases, simply
returning an error code may be cleaner and more concise. Judicious use of exception
handling constructs makes your program easier to maintain, and your code more
readable.

For more information about C++ exception handling, see the C++ Annotated
Reference Manual by Margaret Ellis and Bjame Stroustrup.

95

CHAPTER 8

Structured Exception Handling

Windows 95 and Windows NT support a robust approach to handling exceptions,
called structured exception handling, which involves cooperation of the operating
system but also has direct support in the programming language.

You can write more reliable code with structured exception handling. You can ensure
that resources, such as memory blocks and files, are properly closed in the event of
unexpected termination. You can also handle specific problems, such as insufficient
memory, with concise, structured code that doesn't rely on goto statements or
elaborate testing of return codes.

Note This chapter describes structured exception handling for the C programming language.
Although structured exception handling can also be used with C++, the new C++ exception
handling method should be used for C++ programs. See "Using Structured Exception Handling
with C++" on page 108 for information on special considerations. For more information on C++
exception handling, see Chapter 7, "C++ Exception Handling" on page 83.

Overview of Structured Exception
Handling

An "exception" is an event that is unexpected or disrupts the ability of the process to
proceed normally. Exceptions can be detected by both hardware and software.
Hardware exceptions include dividing by zero and overflow of a numeric type.
Software exceptions include those you detect and signal to the system by calling the
RaiseException function, and special situations detected by Windows 95 and
Windows NT.

How Structured Exception Handling Works
The traditional approach to exception handling involves passing error codes: one
function detects an error and passes an error code to its caller. This process may
continue through many levels, until the error is communicated to the function that

97

Programming Techniques

can properly respond to the error. If there is a weak link in the chain of function calls,
the whole procedure fails.

Structured exception handling avoids this propagation of error codes. Its distinctive
feature is that after an exception handler is installed, it can handle the exception no
matter how many other functions are called. Thus, function A can handle an
exception raised inside a function called by A.

Exception Handlers and Termination Handlers
The previous section used the term "exception handlers" in a generic sense, but there
are actually two kinds:

• Exception handlers, which can respond to or dismiss the exception

• Termination handlers, which are called when an exception causes termination
inside a block of code

These two types of handlers are distinct, yet they are closely related through a
process called "unwinding the stack." When an exception occurs, Windows 95 and
Windows NT look for the most recently installed exception handler that is currently
active. The handler can do one of three things:

• Pass control to other handlers (fail to recognize the exception).

• Recognize but dismiss the exception.

• Recognize and handle the exception.

The exception handler that recognizes the exception may not be in the function that
was running when the exception occurred. In some cases it may be in a function
much higher on the stack. The currently running function, as well as all functions on
the stack frame, are terminated. During this process, the stack is "unwound": local
variables of terminated functions, unless they are static, are cleared from the stack.

As it unwinds the stack, the operating system calls any termination handlers you've
written for each function. Use of a termination handler gives you a chance to clean up
resources that otherwise would remain open due to abnormal termination. If you've
entered a critical section, you can exit in the termination handler. If the program is
going to shut down, you can perform other housekeeping tasks such as closing and
removing temporary files.

Writing an Exception Handler

98

Exception handlers are typically used to respond to specific errors. You can use the
exception-handling syntax to filter out all exceptions other than those you know how
to handle. Other exceptions should be passed to other handlers (possibly in the run
time library or the operating system) written to look for those specific exceptions.

Chapter 8 Structured Exception Handling

Syntax of Exception Handlers
The structure for C exception handlers is shown in the following syntax:

__ try {
statement-block-l

}
__ except (filter) {

statement-block-2
}

The statements in statement-block-l are executed unconditionally. During execution
of statement-block-l , the exception handler defined by filter and statement-block-2 is
active (it becomes the current exception handler).

If an exception occurs during execution of statement-block-l, including any function
called directly or indirectly, the system gives control to the current exception handler
- unless a handler with higher precedence takes control.

For example, in the following code, the first exception is handled by the outer block,
because it is outside the scope of the inner __ try block. The second exception is
handled by the inner block, which takes precedence.

_try {
float x, y=0;
x = 5 I y; II This exception handled by outer block
_try {

x = 0;
y = 27 I x; II This exception handled by inner block

_except(GetExceptionCode() == STATUS_FLOATING_DIVIDE_BY_ZERO)
printf("handled by inner block");

_except(GetExceptionCode() == STATUS_FLOATING_DIVIDE_BY_ZERO) {
printf("handled by outer block");

}

This code shows an example of nested exception handlers. Note that calling a
function that has a try-except block has the same effect as nesting; the try-except
block in the most recently called function takes precedence.

When an exception handler takes control, the system first evaluates the filter. One of
the powerful features of structured exception handling is that althoughfilter is
evaluated out of normal program sequence (often during execution of another
function),filter can refer to local variables within its scope just as any C expression.
After filter is evaluated, the next action depends on the value returned.

99

Programming Techniques

Value of filter

EXCEPTION_CONTINUE_SEARCH (0)

EXCEPTION_CONTINUE _ EXECUTION(-I)

EXCEPTION_EXECUTE_HANDLER (1)

Description

Passes control to exception handler
with next highest precedence. The
handler has declined to recognize
the exception.

Dismisses exception, and continues
execution at the location where the
exception was raised.

Handles exception by executing
statements in statement-block-2.
Execution then falls through to the
end of this statement block.

If the value offilter is EXCEPTION_EXECUTE_HANDLER, execution does not
resume where the exception was raised, but falls through to the end of statement
block-2 after it is executed. All blocks and function calls nested inside statement
block-l are terminated before statement-block-2 is entered.

Writing an Exception Filter

100

You can handle an exception either by jumping to the level of the exception handler
or by continuing execution. Instead of using statement-block-2 to handle the
exception and falling through, you can use filter to clean up the problem and then, by
returning -1, resume normal flow without clearing the stack.

Note Some exceptions cannot be continued. If filter evaluates to -1 for such an exception,
the system raises a new exception. When you call RaiseException, you determine whether
the exception will continue.

For example, the following code uses a function call in the filter expression: this
function handles the problem and then returns -1 to resume normal flow of control:

main ()
{

int Eval_Exception(void);

__ except (Eval_Exception(GetExceptionCode())) {
II No code; this block never executed.

int Eval_Exception (int n_except)
{

if (n_except 1= STATUS_INTEGER_OVERFLOW &&
n_except 1= STATUS_FLOATING_OVERFLOW)
return EXCEPTION_CONTINUE_SEARCH;

II Pass on most
II exceptions

Chapter 8 Structured Exception Handling

II Execute some code to clean up problem

ResetVars(0); II ResetVars -- example function to initialize
II data to 0

return EXCEPTION_CONTINUE_EXECUTION;

It's a good idea to use a function call in the filter expression whenever filter needs to
do anything complex. Evaluating the expression causes execution of the function, in
this case, Eva l_Except ion.

Note the use of GetExceptionCode to determine the exception. You must call this
function inside the filter itself. Eva l_Except i on cannot call GetExceptionCode, but
it must have the exception code passed to it.

This handler passes control to another handler unless the exception is an integer or
floating-point overflow. If it is, the handler calls a function (ResetVars is only an
example, not an API function) to reset some global variables. Statement-block-2,
which in this example is empty, can never be executed because Eval_Excepti on
never returns EXCEPTION_EXECUTE_HANDLER (1).

Using a function call is a good general-purpose technique for dealing with complex
filter expressions. Two other C language features that are useful are:

• The conditional operator

• The comma operator

The conditional operator is frequently useful, because it can be used to check for a
specific return code and then return one of two different values. For example, the
filter in the following code recognizes the exception only if the exception is
STATUS_INTEGER_OVERFLOW:

__ except(GetExceptionCode() == STATUS_INTEGER_OVERFLOW ? 1 : 0) {

The purpose of the conditional operator in this case is mainly to provide clarity,
because the following code produces the same results:

__ except(GetExceptionCode() == STATUS_INTEGER_OVERFLOW) {

The conditional operator is more useful in situations where you might want the filter
to evaluate to -1, EXCEPTION_CONTINUE_EXECUTION.

Another useful C language feature is the comma operator, which enables you to
perform multiple, independent operations inside a single expression. The effect is
roughly that of executing multiple statements and then returning the value of the last
expression. For example, the following code stores the exception code in a variable
and then tests it:

__ except(nCode = GetExceptionCode(). nCode == STATUS_INTEGER_OVERFLOW

101

Programming Techniques

Raising Software Exceptions

102

Some of the most common sources of program errors are not flagged as exceptions by
the system. For example, if you attempt to allocate a memory block but there is
insufficient memory, the run-time or API function does not raise an exception but
returns an error code.

However, you can treat any condition as an exception by detecting that condition in
your code and then reporting it by calling the RaiseException function. By flagging
errors this way, you can bring the advantages of structured exception handling to any
kind of run-time error.

To use structured exception handling with errors you:

• Define your own exception code for the event.

• Call RaiseException when you detect a problem.

• Use exception-handling filters to test for the exception code you defined.

The WINERROR.H file shows the format for exception codes. To make sure that you
do not define a code that conflicts with an existing exception code, set the third most
significant bit to 1. The four most-significant bits should be set as shown in the
following table.

Bits

31-30

29

28

Recommended
binary setting

11

o

Description

These two bits describe the basic status of the code:
11 = error, 00 = success, 01 = informational, 10 = warning.

Client bit. Set to 1 for user-defined codes.

Reserved bit. (Leave set to 0.)

You can set the first two bits to a setting other than 11 binary if you want, although
the "error" setting is appropriate for most exceptions. The important thing to
remember is to set bits 29 and 28 as shown in the table.

The resulting error code should therefore have the highest four bits set to
hexadecimal E. For example, the following definitions define exception codes that do
not conflict with any Windows 95 or Windows NT exception codes. (You may,
however, need to check which codes are used by third-party DLLs.)

#define STATUS_INSUFFICIENT_MEM 0xE0000001
#define STATUS_FILE_BAD_FORMAT 0xE0000002

After you have defined an exception code, you can use it to raise an exception. For
example, the following code raises the STATUS_INSUFFICIENT_MEM exception in
response to a memory allocation problem:

lpstr = _malloc(nBufferSize);
if (lpstr == NULL)

RaiseException(STATUS_INSUFFICIENT_MEM, 0, 0, 0);

Chapter 8 Structured Exception Handling

If you want to simply raise an exception, you can set the last three parameters to O.
The three last parameters are useful for passing additional information and setting a
flag that prevents handlers from continuing execution. See the Win32 Programmer's
Reference for more information on the RaiseException function.

In your exception-handling filters, you can then test for the codes you've defined.
For example:

_try {

_except (GetExceptionCode() == STATUS_INSUFFICIENT_MEM I I
GetExceptionCode() == STATUS_FILE_BAD_FORMAT)

Hardware Exceptions
Most of the standard exceptions recognized by the operating system are hardware
defined exceptions. Windows 95 and Windows NT recognize a few low-level software
exceptions, but these are usually best handled by the operating system.

Windows NT maps the hardware errors of different processors to the exception codes
in this section. In some cases, a processor may generate only a subset of these
exceptions. Windows NT preprocesses information about the exception and issues the
appropriate exception code.

The hardware exceptions recognized by Windows NT are summarized in the
following table:

Exception code

STATUS ACCESS VIOLATION - -

STATUS BREAKPOINT

STATUS_DATA TYPE_MISALIGNMENT

STATUS_FLOATING_DIVIDE _BY_ZERO

STATUS FLOATING OVERFLOW - -

STATUS FLOATING UNDERFLOW - -

Cause of exception

Reading or writing to an
inaccessible memory location.

Encountering a hardware-defined
breakpoint; used only by
debuggers.

Reading or writing to data at an
address that is not properly
aligned; for example, 16-bit
entities must be aligned on 2-byte
boundaries. (Not applicable to
Intel 80x86 processors.)

Dividing floating-point type by
0.0.

Exceeding maximum positive
exponent of floating-point type.

Exceeding magnitude of lowest
negative exponent of floating
point type.

103

Programming Techniques

Exception code Cause of exception

STATUS_FLOATING _ RESEVERED _OPERAND Using a reserved floating-point
format (invalid use of format).

STATUS _ILLEGAL_INSTRUCTION Attempting to execute an
instruction code not defined by
the processor.

STATUS_PRIVILEGED_INSTRUCTION Executing an instruction not
allowed in current machine mode.

STATUS_INTEGER_DIVIDE_BY_ZERO Dividing an integer type by O.

STATUS _INTEGER_OVERFLOW Attempting an operation that
exceeds the range of the integer.

STATUS_SINGLE_STEP Executing one instruction in
single-step mode; used only by
debuggers.

Many of the exceptions listed in this table are intended to be handled by debuggers,
the operating system, or other low-level code. With the exception of integer and
floating-point errors, your code should not handle these errors. Thus, you should
usually use the exception-handling filter to ignore exceptions (evaluate to 0).
Otherwise, you may prevent lower-level mechanisms from responding appropriately.

You can, however, take appropriate precautions against the potential effect of these
low-level errors by writing termination handlers as described later in this chapter.

Restrictions on Exception Handlers
The principal limitation to using exception handlers in code is that you cannot use a
goto statement to jump into a __ try statement block. Instead, you must enter the
statement block through normal flow of control. You can jump out of a __ try
statement block and nest exception handlers as you choose.

You also cannot nest an exception handler or termination handler inside an __ except
block.

Writing a Termination Handler

104

Unlike an exception handler, a termination handler is always executed, regardless of
whether the protected block of code terminated normally. The sole purpose of the
termination handler should be to ensure that resources, such as memory, handles, and
files, are properly closed regardless of how a section of code finishes executing.

Chapter 8 Structured Exception Handling

Syntax of Termination Handlers
The structure of a termination handler is shown in the following syntax:

__ try {
statement-block-l

}
__ finally {

statement-block-2
}

The statements in statement-block-l are executed unconditionally. The statements in
statement-block-2 are always executed, in one of two ways:

• If statement-block-l finishes execution normally, statement-block-2 is then
executed.

• If statement-block-l is prematurely terminated for any reason, including a jump
out of the block, the system executes statement-block-2 as a part of the process of
unwinding the stack.

In the second case, the AbnormalTermination function returns TRUE if called from
within statement-block-2; otherwise, it returns FALSE.

If statement-block-l was abnormally terminated, the termination handler is executed
as a part of the process of unwinding the stack. If control jumps outside of several
blocks of code at once, the system clears the stack frame for each block of code or
function exited, starting with the lowest (most deeply-nested) stack frame. As each
frame is cleared, the system executes its termination handler.

For example, suppose a series of function calls links function A to function D, as
shown in Figure 8.1. Each function has one termination handler. If an exception is
raised in function D and handled in A, the termination handlers are called in this
order as the system unwinds the stack: D, C, B.

Figure 8.1 Order of Termination-Handler Execution

Exception raised

105

Programming Techniques

Cleaning up Resources
During termination-handler execution, you may not know which resources are
actually allocated before the termination handler was called. It is possible that the
__ try statement block was interrupted before all resources were allocated, so that not
all resources were opened.

Therefore, to be safe, you should check to see which resources are actually open
before proceeding with termination-handling cleanup. A recommended procedure is
to:

1. Initialize handles to NULL.

2. In the __ try statement block, allocate resources. Handles are set to positive values
as the resource is allocated.

3. In the __ finally statement block, release each resource whose corresponding
handle or flag variable is nonzero or not NULL.

For example, the following code uses a termination handler to close three files and a
memory block that were allocated in the __ try statement block. Before cleaning up a
resource, the code first checks to see if the resource was allocated.

void FileOps()
{

}

FILE *fpl. *fp2. *fp3;
LPVOID lpvoid;

lpvoid = fpl = fp2 = fp3 = NULL;
_try {

lpvoid = malloc(BUFFERSIZE);
fpl = fopen("ADDRESS.DAT". "w+");
fp2 = fopen("NAMES.DAT". "w+");
fp3 = fopen("CARS.DAT". "w+");

_finally {
if (fpl) fclose(fpl);
if (fp2) fclose(fp2);
if (fp3) fclose(fp3);
if (lpvoid) free(lpvoid);

Timing of Exception Handling: A Summary

106

A termination handler is executed no matter how the __ try statement block is
terminated. Causes include jumping out of the __ try block, a longjmp statement that
transfers control out of the block, and unwinding the stack due to exception handling.

Chapter 8 Structured Exception Handling

Note Visual C++ supports two forms of the setjmp and longjmp statements. The fast version
bypasses termination handling but is more efficient. To use this version, include the file
SET JMP.H. The other version supports termination handling as described in the previous
paragraph. To use this version, include the file SET JMPEX.H. The increase in performance of
the fast version depends on hardware configuration.

The operating system executes all termination handlers in the proper order before any
other code can be executed, including the body of an exception handler.

When the cause for interruption is an exception, the system must first execute the
filter portion of one or more exception handlers before deciding what to terminate.
The order of events is:

1. An exception is raised.

2. The system looks at the hierarchy of active exception handlers and executes the
filter of the handler with highest precedence; this is the exception handler most
recently installed and most deeply nested, in terms of blocks and function calls.

3. If this filter passes control (returns 0), the process continues until a filter is found
that does not pass control.

4. If this filter returns -1, execution continues where the exception was raised, and
no termination takes place.

S. If the filter returns 1, the following events occur:

• The system unwinds the stack, clearing all stack frames between the currently
executing code (where the exception was raised) and the stack frame that
contains the exception handler gaining control.

• As the stack is unwound, each termination handler on the stack is executed.

• The exception handler itself is executed.

• Control passes to the line of code after the end of this exception handler.

Restrictions on Termination Handlers
You cannot use a goto statement to jump into a __ try statement block or a __ finally
statement block. Instead, you must enter the statement block through normal flow of
control. (You can, however, jump out of a __ try statement block.) Also, you cannot
nest an exception handler or termination handler inside a __ finally block.

In addition, some kinds of code permitted in a termination handler produce
questionable results, so you should use them with caution, if at all. One is a goto
statement that jumps out of a __ finally statement block. If the block is executing as
part of normal termination, nothing unusual happens. But if the system is unwinding
the stack, that unwinding stops, and the current function gains control as if there
were no abnormal termination.

107

Programming Techniques

A return statement inside a __ finally statement block presents roughly the same
situation. Control returns to the immediate caller of the function containing the
termination handler. If the system was unwinding the stack, this process is halted,
and the program proceeds as if there had been no exception raised.

U sing Structured Exception Handling
with C++

108

Structured exception handling described in this chapter works with both C and
C++ source files. However, it is not specifically designed for C++ and is not
recommended. You can ensure that your code is more portable by using C++
exception handling. Also, the C++ exception handling mechanism is more flexible,
in that it can handle exceptions of any type.

Microsoft C++ now supports the C++ exception handling model, based on the ISO
WG21/ANSI X3J16 working papers towards the evolving standard for C++. This
mechanism automatically handles destruction of local objects during stack unwind. If
you are writing fault-tolerant C++ code, and you want to implement exception
handling, it is strongly recommended that you use C++ exception handling, rather
than structured exception handling. (Note that while the C++ compiler supports
structured exception handling constructs as described in this chapter, the standard C
compiler does not support the C++ exception handling syntax.) For detailed
information about C++ exception handling, see Chapter 7, "C++ Exception
Handling," Chapter 5, "Statements," in the C++ Language Reference, and the
Annotated C++ Reference Manual by Margaret Ellis and Bjarne Stroustrup.

CHAPTER 9

U sing Calling Conventions

The Visual C/C++ compiler provides several ways to call internal and external
functions. The information in this chapter can help you debug your program and link
your code with assembly-language routines.

This chapter covers the differences between the calling conventions, how arguments
are passed, and how values are returned by functions. It also discusses naked function
calls, an advanced feature that enables you to write your own prolog and epilog code.

Argument Passing and
Naming Conventions

All arguments are widened to 32 bits when they are passed. Return values are also
widened to 32 bits and returned in the EAX register, except for 8-byte structures,
which are returned in the EDX:EAX register pair. Larger structures are returned in
the EAX register as pointers to hidden return structures. Parameters are pushed onto
the stack from right to left.

The compiler generates prolog and epilog code to save and restore the ESI, EDI,
EBX, and EBP registers, if they are used in the function.

Note For information on how to define your own function prolog and epilog code see "Naked
Function Calls" on page 113.

The following calling conventions are supported by the Visual C/C++ compiler.

Keyword Stack clean-up Parameter passing

__ cdecl

stdcall --

fastcall --

thiscall
(not a keyword)

Caller

Callee

Callee

Callee

Pushes parameters on the stack, in reverse order
(right to left)

Pushes parameters on the stack, in reverse order
(right to left)

Stored in registers, then pushed on stack

Pushed on stack; this pointer stored in ECX

109

Programming Techniques

__ cdecl
This is the default calling convention for C and C++ programs. Because the stack is
cleaned up by the caller, it can do vararg functions. The __ cdecl calling convention
creates larger executables than __ stdcall, because it requires each function call to
include stack clean-up code. The following list shows the implementation of this
calling convention:

Element

Argument -passing order

Stack-maintenance responsibility

N arne-decoration convention

Case-translation convention

Implementation

Right to left

Calling function pops the arguments from the stack.

Underscore character C) is prefixed to names

No case translation performed

Note For more information on decorated names, see Appendix A, "Decorated Names," in the
Visual C++ User's Guide.

The /Gd compiler option forces the __ cdecl calling convention.

__ stdcall

110

The __ stdcall calling convention is used to call Win32 API functions. The callee
cleans the stack, so the compiler makes vararg functions __ cdecl. Functions that use
this calling convention require a function prototype. The following list shows the
implementation of this calling convention.

Element

Argument-passing order

Argument-passing convention

Stack-maintenance responsibility

Name-decoration convention

Case-translation convention

Implementation

Right to left

By value, unless a pointer or reference type is passed

Called function pops its own arguments from the stack

An underscore C) is prefixed to the name. The name
is followed by the at-sign (@) character, followed by
the number of bytes (in decimal) in the argument list.
Therefore, the function declared as i n t fun c (i n t
a, daubl e b) is decorated as follows: _func@12

None

The /Gz compiler options specifies __ stdcall for all functions not explicitly declared
with a different calling convention.

Functions declared using the __ stdcall modifier return values the same way as
functions declared using __ cdecl.

Chapter 9 Using Calling Conventions

fastcall
The __ fastcall calling convention specifies that arguments to functions are to be
passed in registers, when possible. The following list shows the implementation of
this calling convention.

Element

Argument -passing order

Stack-maintenance responsibility

Name-decoration convention

Case-translation convention

Return-value conventions

Implementation

The first two DWORD or smaller arguments are
passed in ECX and EDX registers; all other
arguments are passed right to left.

Called function pops the arguments from the
stack.

At sign (@) is prefixed to names; an at sign@
followed by the number of bytes (in decimal) in
the parameter list is suffixed to names.

No case translation performed.

Identical to __ cdecl.

Note Future compiler versions may use different registers to store parameters.

U sing the lOr compiler option causes each function in the module to compile as
fastcall unless the function is declared with a conflicting attribute, or the name of the
function is rna in.

thiscall
This is the default calling convention used by C++ member functions that do not use
variable arguments. The callee cleans the stack, so the compiler makes vararg
functions __ cdecl, and pushes the this pointer on the stack last. The thiscall calling
convention cannot be explicitly specified in a program, because thiscall is not a
keyword.

All function arguments are pushed on the stack. Because this calling convention
applies only to C++, there is no C name decoration scheme.

Obsolete Calling Conventions
The __ pascal, __ fortran, and __ syscall calling conventions are no longer
supported. You can emulate their functionality by using one of the supported calling
conventions and appropriate linker options.

WINDOWS.H now supports the WINAPI macro, which translates to the appropriate
calling convention for the target. Use WINAPI where you previously used PASCAL
or __ far __ pascal.

111

Programming Techniques

Calling Example: Function Prototype
and Call

The following example shows the results of making a function call using various
calling conventions.

This example is based on the following function skeleton. Replace calltype with the
appropriate calling convention.

void calltype MyFunc(char c, short s, int i, double f);

void MyFunc(char c, short s, int i, double f)
{

MyFunc (' x', 12, 8192, 2.7183);

Results
cdecl

112

The C decorated function name is "_MyFunc."

Figure 9.1 The _cdecl calling convention

Stack

Registers

Location l
ESP+0x14

ESP+0x10

ESP+0x0C

ESP+0x08

ESP+0x04

ESP

ECX

EDX

Chapter 9 Using Calling Conventions

stdcall and thiscall
The C decorated name (__ stdcall) is "_MyFunc@20." The C++ decorated name is
proprietary.

Figure 9.2 The _stdcall and thiscall calling conventions

Stack Location l

Registers

fastcall

ESP+0x14

ESP+0x10

ESP+0x0C

ESP+0x08

ESP+0x04

ESP

ECX

EDX

The C decorated name C_stdcall) is "@MyFunc@20." The C++ decorated name is
proprietary.

Figure 9.3 The _fastcall calling convention

Stack

Registers

Location l
ESP+0x0C

ESP+0x08

ESP+0x04

ESP

ECX

EDX

Naked Function Calls
Functions declared with the naked attribute are emitted without prolog or epilog
code, enabling you to write your own custom prolog/epilog sequences using inline

113

Programming Techniques

assembler. Naked functions are provided as an advanced feature. They enable you to
declare a function that is being called from a context other than C/C++, and thus
make different assumptions about where parameters are, or which registers are
preserved. Examples include routines such as MS-DOS interrupt handlers. This
feature is particularly useful for writers of virtual device drivers (VxDs).

Syntax

114

Because the naked attribute is not a type modifier, naked functions use the extended
attribute syntax, as described previously. For example, the following code defines a
function with the naked attribute:

__ declspec(naked) int func(formal_parameters)
{

II Function body
}

Or, alternatively:

#define Naked __ declspec(naked
Naked int func(formal_parameters
{

II Function body
}

The naked modifier affects only the nature of the compiler's code generation for the
function's prolog and epilog sequences. It does not affect the code that is generated
for calling such functions. Thus, the naked attribute is not considered part of the
function's type. As such, function pointers cannot have the naked attribute.
Furthermore, the naked attribute has no meaning when applied to a data definition.
Any attempt to apply it to a data definition will generate a compiler error. For
example, the following code samples will generate errors:

__ declspec(naked) int i; II Error--naked attribute not permitted on
II data declarations.

extern __ declspec(naked) int i; II Error--naked attribute not
II permitted on data declarations.

The naked attribute is relevant only to the definition of the function. Thus it cannot
be specified on the function's prototype. The following declaration will generate a
compiler error:

__ declspec(naked) int func(); II Error--naked attribute not permitted
lion function declarations.

A new symbolic argument for use in the inline assembler block of function prolog
code is provided by the compiler. This symbol, __ LOCAL_SIZE, is used to allocate
space for local variables on the stack frame in your custom prolog code. This constant
contains a value determined by the compiler, and it represents the number of bytes of
local variables.

Chapter 9 Using Calling Conventions

__ LOCAL_SIZE includes all user-defined locals as well as compiler-generated
temporary variables. __ LOCAL_SIZE may be used as an immediate operand or in
an expression. For example:

mov
mov
mov

eax, LOCAL_SIZE
eax, __ LOCAL_SIZE + 4
eax, [ebp - __ LOCAL_SIZE]

/* Immediate operand */
/* Expression */
/* Expression */

Rules and Limitations for Naked Functions
The following rules and limitations apply to naked functions:

• The return statement is not permitted.

• Structured Exception Handling constructs are not permitted because they must
unwind across the stack frame.

• For the same reason, any form of setjmp is prohibited.

• Use of the _alloca function is prohibited.

• To ensure that no initialization code for local variables appears before the prolog
sequence, initialized local variables are not permitted at function scope. In
particular, the declaration of C++ objects is not permitted at function scope. There
may, however, be initialized data in a nested scope.

• Frame pointer optimization (the lOy compiler option) is not recommended, but it
is automatically suppressed for a naked function.

• You cannot declare C++ class objects at the. function lexical scope. You can,
however, declare objects in a nested block.

Naked Function Example
The following is a minimal example of a naked function containing custom prolog
and epilog sequences:

__ declspec (naked) func()
{

i nt i;
i nt j;

asm
{

pushebp
mov ebp, esp
sub esp, LOCAL_SIZE
}

115

Programming Techniques

/* C and/or _asm code */

_asm
{

mov esp, ebp
pop ebp
ret
}

Floating Point Coprocessor

116

If you are writing assembly routines for the floating point coprocessor, you must
preserve the floating point control word and clean the coprocessor stack unless you
are returning a float or double value (which your function should return in ST(O)).

C HAP T E R 1 0

U sing the Inline Assembler

This chapter explains how to use the Visual CjC++ inline assembler with Intel x86-
series compatible processors (such as the AMD386 and the i486™). Assembly
language serves many purposes, such as improving program speed, reducing memory
needs, and controlling hardware. You can use the inline assembler to embed
assembly-language instructions directly in your C and C++ source programs without
extra assembly and link steps. The inline assembler is built into the compiler-you
don't need a separate assembler such as the Microsoft Macro Assembler (MASM).

Advantages of Inline Assembly
Because the inline assembler doesn't require separate assembly and link steps, it is
more convenient than a separate assembler. Inline assembly code can use any C
variable or function name that is in scope, so it is easy to integrate it with your
program's C code. Because the assembly code can be mixed inline with C or C++
statements, it can do tasks that are cumbersome or impossible in C or C++.

The uses of inline assembly include:

• Writing functions in assembly language.

• Spot-optimizing speed-critical sections of code.

• Making direct hardware access for device drivers.

• Writing prolog and epilog code for "naked" calls.

Inline assembly is a special-purpose tool. If you plan to port an application to
different machines, you'll probably want to place machine-specific code in a separate
module. Because the inline assembler doesn't support all of MASM's macro and data
directives, you may find it more convenient to use MASM for such modules.

The __ asm Keyword
The __ 3sm keyword invokes the inline assembler and can appear wherever a C or
C++ statement is legal. It cannot appear by itself. It must be followed by an assembly
instruction, a group of instructions enclosed in braces, or, at the very least, an empty

117

Programming Techniques

pair of braces. The term " __ asm block" here refers to any instruction or group of
instructions, whether or not in braces.

The following code fragment is a simple __ asm block enclosed in braces:

asm

mov al, 2
mov dx, 0xD007
out al, dx

Alternatively, you can put __ asm in front of each assembly instruction:

asm mov al, 2
__ asm mov dx, 0xD007
__ asm out al, dx

Because the __ asm keyword is a statement separator, you can also put assembly
instructions on the same line:

__ asm mov al, 2 __ asm mov dx, 0xD007 __ asm out al, dx

All three examples generate the same code, but the fIrst style (enclosing the __ asm
block in braces) has some advantages. The braces clearly separate assembly code
from C or C++ code and avoid needless repetition of the __ asm keyword. Braces can
also prevent ambiguities. If you want to put a C or C++ statement on the same line as
an __ asm block, you must enclose the block in braces. Without the braces, the
compiler cannot tell where assembly code stops and C or C++ statements begin.
Finally, because the text in braces has the same format as ordinary MASM text, you
can easily cut and paste text from existing MASM source files.

The braces enclosing an __ asm block don't affect variable scope, as do braces in C
and C++. You can also nest __ asm blocks; nesting does not affect variable scope.

Using Assembly Language
In asm Blocks --

The inline assembler has much in common with other assemblers. For example, it
accepts any expression that is legal in MASM. This section describes the use of
assembly-language features in __ asm blocks.

Instruction Set

118

The inline assembler supports the full instruction set of the Intel 486 processor.
Additional instructions supported by the target processor can be created with the
_emit instruction. See "The _emit Pseudoinstruction" on page 120 for more
information.

Chapter 10 Using the Inline Assembler

MASM Expressions
Inline assembly code can use any MASM expression, which is any combination of
operands and operators that evaluates to a single value or address.

Data Directives and Operators
Although an __ 3sm block can reference C or C++ data types and objects, it cannot
define data objects with MASM directives or operators. Specifically, you cannot use
the definition directives DB, DW, DD, DQ, DT, and DF, or the operators DUP or
THIS. MASM structures and records are also unavailable. The inline assembler
doesn't accept the directives STRUC, RECORD, WIDTH, or MASK.

EVEN and ALIGN Directives
Although the inline assembler doesn't support most MASM directives, it does
support EVEN and ALIGN. These directives put NOP (no operation) instructions in
the assembly code as needed to align labels to specific boundaries. This makes
instruction-fetch operations more efficient for some processors.

MASM Macro Directives
The inline assembler is not a macro assembler. You cannot use MASM macro
directives (MACRO, REPT, IRC, IRP, and ENDM) or macro operators «>, !, &,
%, and. TYPE). An __ 3sm block can use C preprocessor directives, however. See
"Using C or C++ in __ 3sm Blocks" on page 121 for more information.

Segment References
You must refer to segments by register rather than by name (the segment name
_TEXT is invalid, for instance). Segment overrides must use the register explicitly,
as in ES:[BX].

Type and Variable Sizes
The LENGTH, SIZE, and TYPE operators have a limited meaning in inline
assembly. They cannot be used at all with the DUP operator (because you cannot
define data with MASM directives or operators). But you can use them to find the
size of C or C++ variables or types:

• The LENGTH operator can return the number of elements in an array. It returns
the value 1 for non-array variables.

• The SIZE operator can return the size of a C or C++ variable. A variable's size is
the product of its LENGTH and TYPE.

• The TYPE operator can return the size of a C or C++ type or variable. If the
variable is an array, TYPE returns the size of a single element of the array.

119

Programming Techniques

For example, if your program has an 8-element int array,

int arr[8];

the following C and assembly expressions yield the size of a r r and its elements.

LENGTHarr

SIZE arr

TYPE arr

c
sizeof(arr)/sizeof(arr[O])

sizeof(arr)

sizeof(arr[O])

Size

8

16

2

Assembly-Language Comments
Instructions in an __ asm block can use assembly-language comments:

__ asm mov ax, offset buff ; Load address of buff

Because C macros expand into a single logical line, avoid using assembly-language
comments in macros. (See "Defining __ asm Blocks as C Macros" on page 127.) An
__ asm block can also contain C-style comments; for more information, see "Using C
or C++ in __ asm Blocks" on page 121.

The emit Pseudoinstruction
The _emit pseudoinstruction is similar to the DB directive ofMASM. You use _emit
to define a single immediate byte at the current location in the current text segment.
However, _emit can define only one byte at a time, and it can only define bytes in the
text segment. It uses the same syntax as the INT instruction.

The following fragment places the given bytes into the code:

#define randasm asm _emit 0x4A asm _emit 0x43 asm _emit 0x4B

asm {
randasm
}

Debugging and Listings

120

Programs containing inline assembly code can be debugged with a source-level
debugger if you compile with the /Zi option.

Within the debugger, you can set breakpoints on both C or C++ and assembly
language lines. If you enable mixed assembly and source mode, you can display both
the source and disassembled form of the assembly code.

Note that putting multiple assembly instructions or source language statements on
one line can hamper debugging. In source mode, you can use the debugger to set
breakpoints on a single line but not on individual statements on the same line. The

\

\

Chapter 10 Using the Inline Assembler

same principle applies to an __ asm block defined as a C macro, which expands to a
single logical line.

If you create a mixed source and assembly listing with the /Fc compiler option, the
listing contains both the source and assembly forms of each assembly-language line.
Macros are not expanded in listings, but they are expanded during compilation.

Using C or C++ in __ asm Blocks
Because inline assembly instructions can be mixed with C or C++ statements, they
can refer to C or C++ variables by name and use many other elements of those
languages.

An __ asm block can use the following language elements:

• Symbols, including labels and variable and function names

• Constants, including symbolic constants and enum members

• Macros and preprocessor directives

• Comments (both /* */ and / /)

• Type names (wherever a MASM type would be legal)

• typedef names, generally used with operators such as PTR and TYPE or to
specify structure or union members

Within an __ asm block, you can specify integer constants with either C notation or
assembler radix notation (OxlOO and 100h are equivalent, for example). This allows
you to define (using #define) a constant in C and then use it in both C or C++ and
assembly portions of the program. You can also specify constants in octal by
preceding them with a O. For example, 0777 specifies an octal constant.

U sing Operators
An __ asm block cannot use C or C++ specific operators, such as the« operator.
However, operators shared by C and MASM, such as the * operator, are interpreted
as assembly-language operators. For instance, outside an __ asm block, square
brackets ([]) are interpreted as enclosing array subscripts, which C automatically
scales to the size of an element in the array. Inside an __ asm block, they are seen as
the MASM index operator, which yields an unscaled byte offset from any data object
or label (not just an array). The following code illustrates the difference:

int array[10];

__ asm mov array[6], bx; Store BX at array+6 (not scaled)

array[6] = 0; /* Store 0 at array+12 (scaled) */

121

Programming Techniques

The first reference to a rray is not scaled, but the second is. Note that you can use the
TYPE operator to achieve scaling based on a constant. For example, the following
statements are equivalent:

__ asm mov array[6 * TYPE int]. 0 ; Store 0 at array + 12

array[6] = 0; /* Store 0 at array + 12 */

Using C or C++ Symbols
An __ asm block can refer to any C or C++ symbol in scope where the block appears.
(C and C++ symbols are variable names, function names, and labels; that is, names
that aren't symbolic constants or enum members. You cannot call C++ member
functions.)

A few restrictions apply to the use of C and C++ symbols:

• Each assembly-language statement can contain only one C or C++ symbol.
Multiple symbols can appear in the same assembly instruction only with
LENGTH, TYPE, and SIZE expressions.

• Functions referenced in an __ asm block must be declared (prototyped) earlier in
the program. Otherwise, the compiler cannot distinguish between function names
and labels in the __ asm block.

• An __ asm block cannot use any C or C++ symbols with the same spelling as
MASM reserved words (regardless of case). MASM reserved words include
instruction names such as PUSH and register names such as S1.

• Structure and union tags are not recognized in __ asm blocks.

Accessing C or C++ Data

122

A great convenience of inline assembly is the ability to refer to C or C++ variables by
name. An __ asm block can refer to any symbols, including variable names, that are
in scope where the block appears. For instance, if the C variable va r is in scope, the
instruction

__ asm mov eax. var

stores the value of va r in EAX.

If a class, structure, or union member has a unique name, an __ asm block can refer
to it using only the member name, without specifying the variable or typedef name
before the period (.) operator. If the member name is not unique, however, you must
place a variable or typedef name immediately before the period operator. For
example, the following structure types share same_name as their member name:

struct first_type
{

} ;

char *weasel;
int same_name;

Chapter lOUsing the Inline Assembler

struct second_type
{

} ;

int wonton;
long same_name;

If you declare variables with the types

struct first_type hal;
struct second_type oat;

all references to the member same_name must use the variable name because
same_name is not unique. But the member weasel has a unique name, so you can refer
to it using only its member name:

asm

mov ebx. OFFSET hal
mov ecx. [ebx]hal.same_name Must use 'hal'
mov esi. [ebx] .weasel Can omit 'hal'

Note that omitting the variable name is merely a coding convenience. The same
assembly instructions are generated whether or not the variable name is present.

You can access data members in C++ without regard to access restrictions. However,
you cannot call member functions.

Writing Functions
If you write a function with inline assembly code, it's easy to pass arguments to the
function and return a value from it. The following examples compare a function first
written for a separate assembler and then rewritten for the inline assembler. The
function, called power2, receives two parameters, multiplying the first parameter by 2
to the power of the second parameter. Written for a separate assembler, the function
might look like this:

POWER.ASM
Compute the power of an integer

PUBLIC _power2
TEXT SEGMENT WORD PUBLIC 'CODE'

_power2 PROC

Save EBP push ebp
mov ebp. esp Move ESP into EBP so we can

mov eax.
mov ecx.
shl eax.
pop ebp
ret

[ebp+4]
[ebp+6]
cl

to arguments on the stack
; Get first argument
; Get second argument

EAX "" EAX * (2 A CL
Restore EBP
Return with sum in EAX

refer

123

Programming Techniques

_power2 ENDP
TEXT ENDS

END

Since it's written for a separate assembler, the function requires a separate source file
and assembly and link steps. C and C++ function arguments are usually passed on
the stack, so this version of the p owe r 2 function accesses its arguments by their
positions on the stack. (Note that the MODEL directive, available in MASM and
some other assemblers, also allows you to access stack arguments and local stack
variables by name.)

The POWER2.C program writes the power2 function with inline assembly code:

/* POWER2.C */
#include <stdio.h>

int power2(int num, int power);

void maine void
{

printf("3 times 2 to the power of 5 is %d\n", \
power2(3, 5));

int power2(int num, int power
{

asm

mov eax, num
mov ecx, power
shl eax, cl

Get first argument
Get second argument
EAX = EAX * (2 to the power of CL)

/* Return with result in EAX */

The inline version of the power2 function refers to its arguments by name and
appears in the same source file as the rest of the program. This version also requires
fewer assembly instructions.

Because the inline version of power2 doesn't execute a C return statement, it causes
a harmless warning if you compile at warning level 2 or higher. The function does
return a value, but the compiler cannot tell that in the absence of a return statement.
You can use #pragma warning to disable the generation of this warning.

Using and Preserving Registers

124

In general, you should not assume that a register will have a given value when an
__ asm block begins. An __ asm block inherits whatever register values happen to
result from the normal flow of control.

If you use the __ fastcall calling convention, the compiler passes function arguments
in registers instead of on the stack. This can create problems in functions with __ asm

Chapter 10 Using the Inline Assembler

blocks because a function has no way to tell which parameter is in which register. If
the function happens to receive a parameter in EAX and immediately stores
something else in EAX, the original parameter is lost. In addition, you must preserve
the ECX register in any function declared with __ fastcall.

To avoid such register conflicts, don't use the __ fastcall convention for functions that
contain an __ asm block. If you specify the __ fastcall convention globally with the
/Gr compiler option, declare every function containing an __ asm block with __ cdecl
or __ stdcall. (The __ cdecl attribute tells the compiler to use the C calling
convention for that function.) If you are not compiling with /Gr, avoid declaring the
function with the __ fastcall attribute.

As you may have noticed in the POWER2.C example in "Writing Functions" on page
123, the power2 function doesn't preserve the value in the EAX register. When you
write a function in assembly language, you don't need to preserve the EAX, EBX,
ECX, EDX, ES, and flags registers. However, you should preserve any other registers
you use (EDI, ESI, DS, SS, SP, and BP).

Note If your inline assembly code changes the direction flag using the STO or CLO
instructions, you must restore the flag to its original value.

Assembly instructions that appear inline with C or C++ statements are free to alter
the EAX, EBX, ECX, and EDX registers. C and C++ don't expect these registers to
be maintained between statements, so you don't need to preserve them. The same is
true of the ESI and EDI registers, with some exceptions (see "Optimizing" on page
128). You should preserve the ESP and EBP registers unless you have some reason to
change them-to switch stacks, for example.

Jumping to Labels
Like an ordinary C or C++ label, a label in an __ asm block has scope throughout the
function in which it is defined (not only in the block). Both assembly instructions and
goto statements can jump to labels inside or outside the __ asm block.

Labels defined in __ asm blocks are not case sensitive; both goto statements and
assembly instructions can refer to those labels without regard to case. C and C++
labels are case sensitive only when used by goto statements. Assembly instructions
can jump to a C or C++ label without regard to case.

The following do-nothing code shows all the permutations:

void func(void
{

goto C_Dest: /* Lega 1 : correct case */
goto c_dest: /* Error: incorrect case */

goto A_Dest: /* Legal: correct case */
goto a_dest: /* Legal: incorrect case */

125

Programming Techniques

asm
{

jmp C Dest Lega 1 : correct case
jmp c_dest Legal: incorrect case

jmp A_Dest Lega 1 : correct case
jmp a_dest Lega 1 : incorrect case

a_dest: asm 1 abel
}

C Dest: 1* C label *1
return;

}

Don't use C library function names as labels in __ asm blocks. For instance, you
might be tempted to use exi t as a label, as follows:

; BAD TECHNIQUE: using library function name as label
jne exit

exit:
; More __ asm code follows

Because exit is the name of a C library function, this code might cause a jump to the
exit function instead of to the desired location.

As in MASM programs, the dollar symbol ($) serves as the current location counter.
It is a label for the instruction currently being assembled. In __ asm blocks, its main
use is to make long conditional jumps:

jne $+5 ; next instruction is 5 bytes long
jmp farlabel

$+5

farlabel:

Calling C Functions

126

An __ asm block can call C functions, including C library routines. The following
example calls the printf library routine:

#include <stdio.h>

char formatE] = "%s %s\n";
char hello[] "Hello";
cha r worl d [J = "worl d";

Chapter 10 U sing the Inline Assembler

void main(void)
{

{

}

asm

mov
push
mov
push
mov
push
call

eax, offset
eax
eax, offset
eax
eax, offset
eax
printf

world

hell 0

format

Because function arguments are passed on the stack, you simply push the needed
arguments-string pointers, in the previous example-before calling the function.
The arguments are pushed in reverse order, so they come off the stack in the desired
order. To emulate the C statement

printf(format, hello, world);

the example pushes pointers to worl d, hello, and format, in that order, and then
calls printf.

Calling C++ Functions
An __ asm block can call only global C++ functions that are not overloaded. If you
call an overloaded global C++ function or a C++ member function, the compiler
issues an error.

You can also call any functions declared with extern "c" linkage. This allows an
__ asm block within a C++ program to call the C library functions, because all the
standard header files declare the library functions to have extern" CIt linkage.

Defining __ asm Blocks as C Macros
C macros offer a convenient way to insert assembly code into your source code, but
they demand extra care because a macro expands into a single logical line. To create
trouble-free macros, follow these rules:

• Enclose the __ asm block in braces.

• Put the __ asm keyword in front of each assembly instruction.

• Use old-style C comments (1* comment *1) instead of assembly-style comments
(; comment) or single-line C comments (I I comment).

127

Programming Techniques

To illustrate, the following example defines a simple macro:

Ifdefi ne PORTIO asm \
1* Port output *1 \
{ \

asm mov a 1 . 2 \
asm mov dx. 0xD007 \
asm out a 1 • dx \

At first glance, the last three __ asm keywords seem superfluous. They are needed,
however, because the macro expands into a single line:

__ asm 1* Port output *1 { __ asm mov al. 2 __ asm mov dx. 0xD007 __ asm out al. dx }

The third and fourth __ asm keywords are needed as statement separators. The only
statement separators recognized in __ asm blocks are the newline character and
__ asm keyword. Because a block defined as a macro is one logical line, you must
separate each instruction with __ asm.

The braces are essential as well. If you omit them, the compiler can be confused by C
or c++ statements on the same line to the right of the macro invocation. Without the
closing brace, the compiler cannot tell where assembly code stops, and it sees C or
C++ statements after the __ asm block as assembly instructions.

Assembly-style comments that start with a semicolon (;) continue to the end of the
line. This causes problems in macros because the compiler ignores everything after
the comment, all the way to the end of the logical line. The same is true of single-line
C or C++ comments (I I comment). To prevent errors, use old-style C comments (1*

comment *1) in __ asm blocks defined as macros.

An __ asm block written as a C macro can take arguments. Unlike an ordinary C
macro, however, an __ asm macro cannot return a value. So you cannot use such
macros in C or C++ expressions.

Be careful not to invoke macros of this type indiscriminately. For instance, invoking
an assembly-language macro in a function declared with the __ fastcall convention
may cause unexpected results. (See "Using and Preserving Registers" on page 124.)

Optimizing

128

The presence of an __ asm block in a function affects optimization in several ways.
First, the compiler doesn't try to optimize the __ asm block itself. What you write in
assembly language is exactly what you get. Second, the presence of an __ asm block
affects register variable storage. The compiler avoids putting variables in registers
across an __ asm block if the register's contents would be changed by the __ asm
block. Finally, some other function-wide optimizations will be affected by the
inclusion of assembly language in a function.

CHAPTER 11

Programming with Mixed Languages

Mixed-language programming is the process of building programs in which the
source code is written in two or more languages. Although mixed-language
programming presents some additional challenges, it is worthwhile because it enables
you to call existing code that may be written in another language.

Microsoft provides 32-bit versions of C, C++, MASM, and Fortran, and mixed
language programming is possible between all these languages. Mixed-language
programming for Win32 is not the same as for 16-bit environments, but in many
respects it is simpler. This chapter describes important mixed-language programming
considerations.

Overview of Mixed-Language Issues
This section reviews basic concepts of mixed-language programming, and introduces
relevant new Win32 features. For example, the __ stdcall keyword replaces the
fortran and pascal keywords in C modules. Another important aspect of Win32 is
that all addresses are the same size, simplifying pass by reference. Thus, you may
want to review this section even if you have written mixed-language programs
extensively for MS-DOS.

Mixed-language programming is possible with Microsoft languages because each
language implements functions, subroutines, and procedures in approximately the
same way. Table 11.1 shows how different kinds of routines from each language
equate to each other. For example, a C main program could call an external void
function, which is actually implemented as a Fortran subroutine.

Table 11.1 Language Equivalents for Calls to Routines

Language

Assembly language

CandC++

Fortran

Call with return value

Procedure

function

FUNCTION

Call with no return value

Procedure

(void) function

SUBROUTINE .

129

Programming Techniques

In this chapter, the term "routine" refers to functions, subroutines, and procedures
from different languages. This definition does not include macros or inline functions,
which are not implemented using the stack.

There are some important differences in the way languages implement these routines,
however. This chapter presents a series of keywords, attributes, and techniques to
reconcile these differences, which fall into three categories:

• Adjusting calling conventions

• Adjusting naming conventions

• Passing by value or by reference

In addition, you need to reconcile differences in the way individual data types
(strings, arrays, common blocks, and so on) may be treated. This important and
complex topic is discussed in the last section.

Adjusting Calling Conventions

130

The calling convention determines how a program makes a call and where the
parameters are passed. In a single-language program, calling conventions are nearly
always correct, because there is one default for all modules and because header files
enforce consistency between the caller and the called routine. In a mixed-language
program, different languages cannot share the same header files. It's easy to link
Fortran and C modules that use different calling conventions, and the error isn't
apparent until the bad call is made at run time, causing immediate program failure.
Therefore, you should check calling conventions carefully for each mixed-language
call.

Table 11.2 summarizes how C and Fortran calling conventions work.

Table 11.2 C and Fortran Calling Conventions

Calling convention

C/C++

Fortran C_stdcall)

Parameter passing

Pushes parameters on the stack, in
reverse order (right to left)

Pushes parameters on the stack, in
reverse order (right to left)

Stack cleared by

Caller

Called function

In C and C++ modules, you can specify the Fortran calling convention by using the
__ stdcall keyword in a function prototype or definition. The __ stdcall convention is
also used by window procedures and API functions. For example, the following C
language prototype sets up a function call to a subroutine using the Fortran calling
convention:

extern void stdcall fortran_routine (int n);

Chapter 11 Programming with Mixed Languages

Instead of changing the calling convention of the C code, you can adjust the Fortran
source code by using the C attribute, enclosed in brackets ([D. For example, the
following declaration assumes the subroutine is called with the C calling convention:

SUBROUTINE CALLED_FROM_C [C] (A)
INTEGER*4 A

It should be clear that calling conventions need only agree between individual calls
and the called routines, and that the conventions must be the same: both caller and
called routine must use the CjC++ convention or both must use the __ stdcall
convention (the Fortran default).

Note In programs written for the graphical user interface of Windows, PASCAL, WINAPI, and
CALLBACK are all defined with __ stdeall. But the C language default is still edeel.

Table 11.3 summarizes how to specify calling conventions. You can always specify
calling conventions explicitly rather than relying on the default, which is a good
technique for mixed-language programming.

Table 11.3 Specifying Calling Conventions

Language

C/C++

Fortran

C calling convention

cdecl (default)

C attribute

Fortran calling convention

__ stdcall

STDCALL attribute (default)

Adjusting Naming Conventions
The naming convention determines how a language alters a symbol name as it places
the name in an .OBJ file. This is an issue for external data symbols shared between
modules as well as external routines. Parameter names are never affected. The
reasons for altering the name include case sensitivity or lack thereof, type decoration,
and other issues. Note that you can always see exactly how a name has been placed in
an .OBJ file by using the DUMPBIN utility with the jSYMBOLS option. If naming
conventions are not reconciled, the program cannot successfully link. You will
receive an "unresolved external" error.

Naming conventions are closely related to calling conventions because the keywords
that specify calling conventions affect naming conventions as well. However, CjC++
preserves case sensitivity in its symbol tables and Fortran does not, which can
necessitate some additional work on your part. Fortunately, you can use the Fortran
ALIAS attribute to resolve any discrepancy in names.

131

Programming Techniques

132

Table 11.4 summarizes how C, Fortran, and C++ handle public names.

Table 11.4 Naming Conventions in C, Fortran, and C++

Language

C, cdecl (default)

C, __ stdcall

Fortran [C]

Fortran [STDCALL]

Fortran default

C++

Name translated as

_name

_name@nn

_name

_name@nn

_name@nn

_ name@@decoration

Case of name in .OBJ file

Mixed case preserved

Mixed case preserved

All lowercase

All lowercase

All uppercase

Mixed case preserved

In Table 11.4, nn represents the stack space, in decimal notation, occupied by
parameters. For example, assume a function is declared in C as

ext ern i n t _ s t de a 11 S u m_ Up (i n t a. i n t b. i n t c);

Each integer occupies 4 bytes, so the symbol name placed in the .OBJ file is:

_Sum_Up@12

Case sensitivity can present a problem. The 32-bit linker always distinguishes case.
The strategy you use to handle a discrepancy due to case depends on whether the
situation involves:

• Calls from C to Fortran, where Fortran cannot be recompiled

• Symbol names that are all lowercase

• Mixed-case names

C Calls Using Fortran Names
If you call a Fortran routine from C and cannot recompile the Fortran code, and if the
routine uses Fortran defaults, then you must use an all-uppercase name to make the
call. Use of the __ stdcall convention is not enough, because __ stdcall (unlike the
fortran keyword in 16-bit code) always preserves case. Fortran generates all
uppercase names by default and the C code must match it.

For example, this prototype sets up a call to a Fortran function ffa rctan:

extern float _stdcall FFARCTAN(float angle);

All-Lowercase Names
If the name of the routine appears as all lowercase in C, then naming conventions are
automatically correct when the C or STDCALL attribute is applied to the Fortran
declaration. Any case may be used in the Fortran source code, including mixed case;
the C and STDCALL attributes change the name to all lowercase. Note that this is a
way in which STDCALL differs from the Fortran default behavior.

:11
,'il

t'! Chapter 11 Programming with Mixed Languages

Mixed-Case Names
If the name of the routine appears as mixed-case in C, and you cannot change the
name, you can only resolve naming conflicts by using the Fortran ALIAS attribute.
ALIAS is required in this situation so that Fortran will generate mixed-case names.

To use the ALIAS attribute, place the name in quotation marks exactly as it is to
appear in the .OBJ file. For example, suppose you are calling a C function that has
the following prototype:

extern void My_Proc (int i):

The Fortran call to this function should be declared with the following INTERFACE
block:

INTERFACE TO SUBROUTINE My_Proc [C, ALIAS:'_My_Proc'] (I)
INTEGER*4 I
END

Note When using the __ stdcall convention, both Fortran and C should calculate parameter
space size by rounding each parameter upward to multiples of four (because it is more efficient
to keep the stack-pointer aligned on 4-byte boundaries). Thus, the function PrinCNums which
is passed a byte, a short, and a long integer should be translated as _PrintNums@12.
However, there is an early version of 32-bit Fortran that translates this as _PrinCNums@7, not
rounding upward. To correct the discrepancy, use the ALIAS attribute.

Passing By Value or By Reference
Each individual parameter can be passed by value or by reference (which places the
address of the parameter on the stack). In Fortran, C, and C++, all addresses are the
same size (4 bytes), so there is no passing by near or far reference. You need to make
sure that for every call, the calling program and the called routine agree on how each
parameter is passed. Otherwise, the called routine receives bad data.

The C/C++ technique for passing parameters is always the same, regardless of calling
convention: all parameters are passed by value, except for arrays, which are
translated into the address of the first member. To pass data by reference, pass a
pointer to it.

The Fortran technique for passing parameters changes depending on the calling
convention specified. By default, Fortran passes all data by reference (except the
hidden length argument of strings, which is a special case). If the C or STDCALL
attribute is used, the default changes to passing all data by value.

In Fortran, use the VALUE and REFERENCE attributes to specify pass by value or
pass by reference. In mixed-language programming, it is a good idea to always
specify passing technique explicitly rather than relying on defaults. For example, the
following C declaration sets up a call to a Fortran subroutine:

extern void __ stdcall TESTPROC(int ValParm, int *RefParm):

133

Programming Techniques

In the following example, the definition of TESTPROC in Fortran declares how each
parameter is passed. The REFERENCE attribute is not strictly necessary in this
example, but using it is a good idea, in case you later change the calling convention.

SUBROUTINE TESTPROC(VALPARM. REFPARM)
INTEGER*4 VALPARM [VALUE]
INTEGER*4 REFPARM [REFERENCE]
END

Table 11.5 summarizes parameter-passing defaults. Note that an array name in C is
equated to its starting address. Therefore arrays are passed by reference. To pass an
array by value, declare a structure with the array as its only member.

Table 11.5 C/C++ and Fortran Defaults for Passing Parameters

Language By value By reference

c/c++
Fortran

Fortran [C or
STDCALL]

C/C++ arrays

variable

variable [VALUE]

variable [VALUE], or
variable

struct { type } variable

* variable

variable [REFERENCE], or
variable

variable [REFERENCE]

variable

C Calls to Fortran

134

This section applies the principles in the section "Overview of Mixed-Language
Issues" to a typical case involving one function call and one subroutine call from C to
Fortran. Default conventions are assumed for Fortran, so adjustments are made to the
C code.

The C main program uses the __ stdcall keyword to call the Fortran routines with the
correct calling convention. The C source must use all-uppercase names for the
routines, because this Fortran code does not use the C, STDCALL, or ALIAS
attributes. Finally, pass by value and pass by reference are specified explicitly, though
pass by reference would have been assumed by default for Fortran.

/* File CMAIN.C */

#include <stdio.h>

extern int _stdcall FACT (int n);
extern void stdcall PYTHAGORAS (float a. float b. float *c);

main()
{

}

float c;
printf("Factorial of 7 is: %d\n", FACT(7»;
PYTHAGORAS (30, 40, &c);
printf("Hypotenuse if sides 30, 40 is: %f\n". c);

Chapter 11 Programming with Mixed Languages

C
C

File FORSUBS.FOR

INTEGER*4 FUNCTION Fact (n)
INTEGER*4 n [VALUE]
INTEGER*4 i, amt
amt = 1
DO i = I, n

amt = amt *
END DO
Fact = amt
END

SUBROUTINE Pythagoras (a, b, c)
REAL*4 a [VALUE]
REAL*4 b [VALUE]
REAL*4 c [REFERENCE]
c = SORT (a * a + b * b)
END

Fortran Calls to C
This section applies the principles in the section "Overview of Mixed-Language
Issues" to a typical case involving one function call and one subroutine call from
Fortran to C. Default conventions are assumed for C, so adjustments are made to the
Fortran code. The example in this section is the converse of that in the previous
section.

The Fortran main program uses the C attribute to call the C functions with the
correct calling convention. The C attribute causes Fortran to generate all-lowercase
names, so the ALIAS attribute must be used to preserve mixed case. Finally, pass by
value and pass by reference are specified explicitly, though pass by value would have
been assumed because of the C attribute.

C File FORMAIN.FOR
C

INTERFACE TO INTEGER*4 FUNCTION Fact [C,ALIAS:'_Fact'] (n)
INTEGER*4 n [VALUE]
END

INTERFACE TO SUBROUTINE Pythagoras [C,ALIAS: '_Pythagoras'] (a,b,c)
REAL*4 a [VALUE]
REAL*4 b [VALUE]
REAL*4 c [REFERENCE]
END

INTEGER*4 Fact
REAL*4 c
WRITE (*,*) 'Factorial of 7 is " Fact (7)

CALL Pythagoras (30, 40, c)
WRITE (*,*) 'Hypotenuse if sides 30,40 is " c
END

135

Programming Techniques

1* File CSUBS.C *1

#include <math.h>

int Fact(int n
{

if (n > 1)

return(n * Fact(n - 1 »;
return 1;

void Pythagoras(float a, float b, float *c)
{

*c = sqrt(a * a + b * b);

Building the Mixed-Language Program
In Win32, the choice of libraries is much simpler than it is in 16-bit environments.
Consequently, it is easier to build a mixed-language program. To link C and Fortran
modules, use the Fortran linker; the linker should find the correct default libraries.

For example, the simple console applications featured in the previous sections require
no special options. The CMAIN application can be created with the following
commands:

ell c cma in. c
f132 cmain.obj forsubs.for

The FORMAIN application can be created with the following commands:

cl Ie csubs.c
f132 formain.for cmain.obj

Multithread applications should have full multithread support, so if you use
LmFMT.LIB, make sure that LIBCMT.LIB is specified as a default library as well.

Mixed-Language Programming with C++

136

C++ uses the same calling convention and parameter-passing techniques as C, but
naming conventions are different because of C++ decoration of external symbols. The
extern "e" syntax makes it possible for a C++ module to share data and routines
with other languages, by causing C++ to drop name decoration.

The following example declares prn as an external function using the C naming
convention. This declaration appears in C++ source code.

extern "c n

{

}
void prn();

Chapter 11 Programming with Mixed Languages

To call functions written in Fortran (or MASM), declare the function as you would in
C and use a "C" linkage specification. For example, to call the Fortran function FACT

from C++, declare it as follows:

extern "c" { i nt _stdcall FACT(i nt n): }

The extern "C" syntax can be used to adjust a call from C++ to other languages, or
to change the naming convention of C++ routines called from other languages.
However, extern "C" can only be used from within C++. If the C++ code does not
use extern" CIt and cannot be changed, you can call C++ routines only by
determining the name decoration and generating it from the other language. You can
always determine the decoration by using the DUMPBIN utility. Use this approach
only as a last resort, because the decoration scheme is not guaranteed to remain the
same between versions.

Use of extern "c" has some restrictions:

• You cannot declare a member function with extern "C" .

• You can specify extern "c" for only one instance of an overloaded function; all
other instances of an overloaded function have C++ linkage.

For more information on the extern "c" linkage specification, see "Linkage
Specifications" in chapter 6 of the C++ Language Reference.

Handling Data Types
Even when you've reconciled calling conventions, naming conventions, and
parameter passing technique (pass by value or pass by reference), it is still possible to
pass data incorrectly, because each language has different ways of handling data
types. The following sections describe how to pass each type of data between
languages.

Numeric Data Types
Normally, passing numeric data does not present a problem. The most important
thing to keep in mind when passing numeric types is that in Win32, the C int type is
4 bytes, not 2 bytes, and therefore is equivalent to the Fortran INTEGER*4 type. The
COMPLEX type is a special case and is discussed in a later section. Table 11.6
summarizes equivalent numeric data types for Fortran, MASM, and C/C++.

Table 11.6 Equivalent Fortran, MASM, and C/C++ Numeric Data Types

Fortran MASM C/C++

CHARACTER*l

INTEGER*l

(none)

BYTE

SBYTE

WORD

unsigned char

char

unsigned short

137

Programming Techniques

Table 11.6 Equivalent Fortran, MASM, and C/C++ Numeric Data Types (continued)

Fortran MASM C/C++

INTEGER*2

(none)

INTEGER,INTEGER*4

REAL, REAL*4

DOUBLE PRECISION,
REAL*8

SWORD

DWORD

SDWORD

REAL4

REAL8

short

unsigned long, unsigned int

long, int

float

double

If a C program passes an unsigned data type to a Fortran routine, the routine can
accept the argument as the equivalent signed data type, but you should be careful that
the range of the signed type is not exceeded.

Pointers (Address Variables)
In Fortran, you use the LOC function to extract the address of a variable. (In Win32,
all addresses are 4 bytes, so there is no separate LOCFAR function as for 16-bit
environments.) Because Fortran does not have a pointer type, the result of the LOC
function must be stored in an INTEGER*4 variable or passed as a parameter of type
INTEGER*4. Generally, a pointer should be passed by value.

Passing a pointer by value is equivalent to passing what it points to by reference. In
the following example, the two subroutine calls push identical data on the stack, and
in each case the C routine called should expect an address. The two functions require
different parameter declarations.

INTERFACE TO SUBROUTINE pass_addrl [C] (addr_data)
REAL*8 addr_data [REFERENCE]
END

INTERFACE TO SUBROUTINE pass_addr2 [C] (addr_data)
INTEGER*4 addr_data [VALUE]
END

REAL*8 x
INTEGER*4 ptr
CALL pass_addrl (x)
ptr = LOC(x)
CALL pass_addr2 (ptr)

Declaring and Indexing Arrays

138

Each language varies in the way that arrays are declared and indexed. Array indexing
is a source-level consideration and involves no difference in the underlying data.
There are two differences in the way elements are indexed by each language:

(I
Iii
!'I

~.
Chapter 11 Programming with Mixed Languages

• The value of the lower array bound is different.

By default, Fortran indexes the first element of an array as 1. C and C++ index it
as O. Fortran subscripts should therefore be 1 higher. (Fortran also provides the
option of specifying another integer lower bound.)

• C varies subscripts in row-major order, Fortran in column-major order.

The differences in how subscripts are varied only affect arrays with more than one
dimension. With row-major order (C and C++), the rightmost dimension changes
fastest. With column-major order (Fortran), the leftmost dimension changes fastest.
Thus, in C, the first four elements of an array declared as X [3] [3] are

X[0][0] X[0][1] X[0][2] X[1][0]

In Fortran, the four elements are

X(1,l) X(2,1) X(3,l) X(1,2)

The preceding C and Fortran arrays illustrate the difference between row-major and
column-major order, and also the difference in the assumed lower bound between C
and Fortran. Table 11.7 shows equivalencies for array declarations in each language.
In this table, r is the number of elements of the row dimension (which changes the
slowest), and c is the number of elements of the column dimension (which changes
the fastest).

Table 11.7 Equivalent Array Declarations

Language

C/C++

Fortran

Array declaration

type x[r][c], or struct { type x[r][c]; } x 1

type x(c, r)

1 Use a structure to pass an array by value in C and C++.

Array reference

x[r][c]

x(c+l, r+l)

The order of indexing extends to any number of dimensions you declare. For
example, the C declaration

int arrl[2][10][15][20];

is equivalent to the Fortran declaration

INTEGER*2 ARRl(20, 15, 10, 2)

The constants used in a C array declaration represent dimensions, not upper bounds
as they do in other languages. Therefore, the last element in the C array declared as
i n tar r [5] [5] is a r r [4] [4], not a r r [5][5] .

The following code provides a complete example, showing how arrays are passed as
arguments to a routine.

139

Programming Techniques

C File FORARRS.FOR
C

INTERFACE TO SUBROUTINE Pass_Arr [C,ALIAS:'_Pass_Arr'] (Array)
INTEGER*4 Array(10, 10)
END

INTEGER*4 Arr(10, 10)
CALL Pass_Arr(Arr)
write (*,*) 'Array values: ' Arr(1, 10), Arr(2, 10)
END

1* File CF.C *1

#include <stdio.h>

void Pass_Arr (int arr[10][10])
{

arr[9][0] = 10;
arr[9][1] 20;

Character Strings

140

In Win32, Fortran by default passes a hidden length argument for strings. This
argument is easily accessible to other languages, unlike the string-length information
passed in 16-bit versions of Fortran. The hidden length argument consists of an
unsigned 4-byte integer, always passed by value, immediately following the character
string argument.

For example, if a Fortran program sets up the following call to a routine, Pass_Str,
implemented in C:

INTERFACE TO SUBROUTINE Pass_Str (string)
CHARACTER*(*) string
END

Then the C routine must expect two arguments:

void __ stdcall PASS_STR (char *string, unsigned int length_arg)

Another important difference is in the format of the strings themselves. C strings are
null-terminated. For example, given the following assignment:

Char *cstring-"C text string";

The string data is stored as shown in the following figure.

Chapter 11 Programming with Mixed Languages

Fortran strings are not null-terminated, and they are padded with blank spaces when
assigned string data that is shorter than the declared length. For example, given the
following assignment:

CHARACTER*14 forstring
DATA FORSTRING I"Fortran STRING'I

The string data is stored as follows. Note that if the string were any longer, it would
be padded with trailing blanks.

A more efficient approach, wherever possible, is to adopt C string behavior. When the
C or STDCALL attribute is applied to a routine, Fortran does not pass a hidden
length argument. Furthermore, you can use the C-string feature to assign null
terminated string data in Fortran, as follows:

CHARACTER*20 forstring
DATA forstring /'This is a string'C/

The string variable, for s t r i n g, can then be passed to a C routine. If the C or
STDCALL attribute is used, Fortran passes forstring just as C does: pushing the
address of a null-terminated string onto the stack, with no hidden length argument.

Note Fortran functions of type CHARACTER*(*) place a hidden string argument at the
beginning of the parameter list; this may include both string address and length, as
appropriate. C functions that implement such a call from Fortran must declare this hidden
string argument explicitly and use it to return a value. However, you are more likely to avoid
errors by not using character-string return types. Use subroutines whenever possible.

The following example demonstrates how a Fortran main program calls a C function
that translates a string to all-uppercase. Because the string is passed by reference,
there is no need to use a string return type. Note that the C attribute stops Fortran
from passing a hidden string-length argument, and the DATA statement uses a "C"
to specify null termination.

C File FORMAIN.FOR
C

INTERFACE TO SUBROUTINE Ucase [C,ALIAS:'_Ucase'] (text)
CHARACTER*(*) text [REFERENCE]
END

CHARACTER*40 forstring
DATA forstring /'This is a sample string. 'CI
WRITE (*, *) forstring
CALL Ucase (forstring)
WRITE (*, *) forstring
END

141

Programming Techniques

/* File CSTR.C */

#include <ctype.h>

void Ucase(char *string
{

char *ptr;

for (ptr = string; *ptr; ptr++)
*ptr = toupper(*ptr);

This use of C strings is usually the best approach, because most C library functions,
as well as API functions, assume null-termination. However, if you use C to write
string-manipulation functions, it is a good idea to translate null-terminated strings
back into blank-padded strings after the C function returns. The following code
performs this operation:

SUBROUTINE Fix_C_Str (text. length)
CHARACTER*(*) text
INTEGER*4 length

INTEGER*4

C Find the first null ('\0')

i = 1
DO WHILE «i .LE. length) .AND. (text(i:i) .NE. '\0'»

i = i + 1
END DO

C Pad with blanks to the end of the string

DO WHILE (i .LE. length)
text (i: i) = ' ,

END DO
END

Structures, COMPLEX, and LOGICAL Types

142

The Fortran structure variable, defined with the STRUCTURE keyword and
declared with the RECORD statement, is equivalent to C struct declarations. You
can pass structures by value or by reference. Be careful, however, about the effect of
structure alignment if you are going to share structures.

C, C++, and MASM do not directly implement the Fortran types COMPLEX*8 and
COMPLEX*16. However, you can write structur~s that are equivalent. The type
COMPLEX*8 has two fields, both of which are 4-byte floating-point numbers; the
first contains the real-number component, and the second contains the imaginary
number component. The type COMPLEX is equivalent to the type COMPLEX*8.
The type COMPLEX*16 is similar to COMPLEX*8. The only difference is that
each field of COMPLEX*16 contains an 8-byte floating-point number.

::1

~I,I,I".' /1

1

Chapter 11 Programming with Mixed Languages

Note Fortran functions of type COMPLEX place a hidden COMPLEX argument at the
beginning of the parameter list. C functions that implement such a call from Fortran must
declare this argument explicitly, and use it to return a value. The C return type should be void.

Here are the C/C++ structure definitions for the Fortran COMPLEX types.

struct complex8 {
float real. imag;

} ;

struct complex16 {
double real. imag;

} ;

A Fortran LOGICAL*2 is stored as a I-byte indicator value (l=true, O=false)
followed by one unused byte. A Fortran LOGICAL*4 is stored as a I-byte indicator
value followed by three unused bytes. The type LOGICAL is equivalent to
LOGICAL*4.

To pass or receive a Fortran LOGICAL type, use an integer. Note that only the low
byte is tested or used by Fortran.

The c++ class type has the same layout as the corresponding C struct type, unless
the class defines virtual functions or has base classes. Classes that lack those features
can be passed in the same way as C structures.

Common Blocks
You can pass individual members of a Fortran common block in an argument list, just
as you can any data item. However, you can also give a different language module
access to the entire common block.

C or C++ modules can reference the items of a common block by first declaring a
structure with fields that correspond to the common-block variables. Having defined
a structure with the appropriate fields, the C or C++ module must then connect with
the common block. The next two sections present methods for gaining access to
common blocks.

Passing the Address of a Common Block
To pass the address of a common block, simply pass the address of the first variable
in the block. (In other words, pass the first variable by reference.) The receiving C or
C++ module should expect to receive a structure by reference.

In the following example, the C function in i tcb receives the address of the variable
N, which it considers to be a pointer to a structure with three fields:

143

Programming Techniques

144

C Fortran SOURCE CODE
C

COMMON ICBLOCK/N. X. Y
INTEGER*4 N
REAL*8 X. Y

CALL INITCB(N)

1* C source code *1

struct block_type
{

} ;

long n;
double x;
double y;

initcb(struct block_type * block_hed
{

block_hed->n = 1;
block_hed->x = 10.0;
block_hed->y = 20.0;

Accessing Common Blocks Directly
You can access Fortran common blocks directly by defining a structure with the
appropriate fields and then declaring the structure as an external data symbol. For
example, the following code defines a structure named CBLOCK, which the C code
can use to directly access items in the Fortran common block named CBLOCK:

struct block_type
{

} ;

int n;
double x;
double y;

extern struct block_type CBLOCK;

;'/

1"1

II
I

,I,

1,:,:,"'1

I,'

I,
I"

~
1

C HAP T E R 1 2

Advanced Profiling

The Microsoft 32-Bit Source Profiler is a powerful analysis tool for examining the
run-time behavior of your programs. You can use information generated by the
profiler to identify which sections of code work efficiently and which need to be
examined more carefully. (For basic information on the profiler, see Chapter 18,
"Profiling Code," in the Visual c++ User's Guide.)

Note For complete syntax and command-line options for PREP, PROFILE and PLiST see
Chapter 29, "Profiler Reference," in the Visual C++ User's Guide.

Combining PROFILE Sessions
With the profiler's modular design, you can make several profiling runs without
having to run PREP each time (see Figure 12.1). After PREP has created .PBI and
.PBT files, you can reuse these files with PROFILE to create multiple .PBO files. You
can then merge the .PBO files using the PREP /10 command-line option with
mUltiple .PBO files. The Visual C++ Profile dialog box contains a Merge option
button that automates this process.

Figure 12.1 Combining PROFILE Sessions

145

Programming Techniques

U sing the Profile Dialog Box Merge Option
The .PBI, .PBO, and .PBT files for your project are generated the first time you run
PROFILE. After that, you can use the Merge option button in the Profile dialog box
(shown in Figure 12.2). PROFILE executes each time you choose the Merge button,
and PREP Phase II adds the result to the existing .PBT file. PLIST prints the
cumulative results each time the profiled program exits.

Figure 12.2 Profile dialog box

Using Batch Files

146

If you use the Merge button, you will get a PLIST report each time you invoke
PROFILE. If, instead, you need a single PLIST report from multiple profile runs, you
must write and execute a batch file like this:

PREP ILV myprog.exe myfuncs.dll
PROFILE 10 myprogl myprog.exe
PROFILE 10 myprog2 myprog.exe
PROFILE 10 myprog3 myprog.exe
PREP lIT myprog 110 myprogl lID myprog2 110 myprog3 lOT myprog
PLIST myprog >myprog.out

Or, alternatively, because PREP Phase II adds data to an existing .PBT file:

PREP ILV myprog.exe myfuncs.dll
PROFILE myprog
PREP 1M myprog
PROFILE myprog
PREP 1M myprog
PROFILE myprog
PREP 1M myprog
PLIST myprog >myprog.out

Note You can merge only eight .PSO files from the command line with each PREP
invocation. To overcome this limitation, use PREP Phase II to merge groups of .PSO files into
.PST files. Then, merge the resulting .PST files to yield a single .PST file that contains
statistics from the constituent. PSO files.

Chapter 12 Advanced Profiling

You cannot merge .PBO or .PBT files from different .PBI files. PREP can combine
information only from profiling sessions that use the same .EXE and .PBI files (and
therefore have identical profiling characteristics). You cannot, for example, merge the
results of a timing session with the results of a coverage session.

Reusing .PBT and .PBI Files
For a large program, it can take a lot of time for PREP to create .PBT and .PBI files
from scratch. You must rebuild these files if you change your source code or the
profiling method, but you can reuse the files if you only need another profile run with
different program input data. Just copy the .PBT file after the initial Phase I PREP
run. The .PBI file is never changed, so you don't need to copy it.

Profiling Dynamic-Link Libraries
Profiling a dynamic-link library (DLL) is similar to profiling an .EXE file. When you
profile a DLL, you follow the same steps and use the same commands that you would
for an .EXE file. The same profiling rules that apply to .EXE files (such as the need
to include debugging information and to supply a .MAP file) apply to DLLs.

For function profiling, the DLL is typically renamed with an _LL extension, but the
.EXE file looks for a file with a .DLL extension when it executes. Therefore the
prepared DLL must be renamed prior to profiling.

The following batch file (PROFDLL.BAT) profiles a DLL with the assumption that
the .EXE file has not been prepared for profiling:

COPY %1.dll save
PREP 10M %1.d11
COPY %1._11 %1.dll
PROFILE II %1 10 %1 %2 %3 %4 %5 %6
COPY save %1.d11
PREP 1M %1
PLIST %1

Note The preceding batch generates a message warning you that the main program has not
been prepared for profiling.

If you had a main program HEARTS.EXE that used a DLL called CARDS.DLL, and
you wanted to profile only CARDS.DLL, you would run the preceding batch as:

PROFDLL cards hearts

Profiling Multiple .DLL and .EXE Files
The profiler can profile several DLLs and their calling executable file in a single
profiler run. With phase I PREP command-line options, you can specify more than
one .DLL or .EXE.

147

Programming Techniques

The following commands demonstrate how to profile an executable file and two
DLLs from the command line:

PREP 10M IFC wingame.exe aliens.dll hiscore.dll
PROFILE wingame.exe
PREP 1M wingame
PLIST wingame >wingame.out

The first line causes PREP to create WINGAME.PBI and WINGAME.PBT files that
include information on WINGAME.EXE, ALIENS.DLL, and HISCORE.DLL. The
next line causes PROFILE to run WINGAME.EXE (actually WINGAME._XE, as
generated by PREP Phase I). During the execution of WINGAME, PROFILE collects
statistics for WINGAME.EXE as well as ALIENS.DLL and HISCORE.DLL, if they
are called. The final two lines process the information from the profiling session and
store the results in WINGAME.OUT.

Program Statistics vs. Module Statistics
PLIST reports always start with a "Program Statistics" section followed by a "Module
Statistics" section. If there are several DLLs involved, as in the previous example,
there is one "Module Statistics" section per .EXE or .DLL. The "Program Statistics"
section lists totals for the entire program, including DLLs. Total time includes time in
functions and modules not being profiled.

Profiling Inlined Code
If you specify, the Visual C++ compiler will perform inlining, which replaces a
function call with an actual copy of the code. Profiling inlined code requires special
attention.

Function Profiling for Inlined Functions
Because inlined functions don't generate .MAP file entries or CALL instructions, the
profiler cannot tell when the computer is executing one of these functions. The time,
hit, and coverage data will be attributed to the "calling" function.

Note In many cases there are .MAP file entries for "inlined" functions because the functions
are not necessarily inlined everywhere in the application. Take this into account when you
analyze profiler results.

Line Profiling for Inlined Functions

148

The profiler can provide line-level hit count and coverage information for inlined
functions. Be sure to include the source lines in the Phase I PREP command-line
options, just as you would include source lines in the calling program.

Chapter 12 Advanced Profiling

Profiling Win32 Console Applications
Win32 console applications do not use the graphical user interface; they run from the
command line, often doing console input/output. You can easily use the profiler with
these applications. If the application does do console I/O, you should run the profiling
batch from the command prompt rather than from the Profile dialog box.

Profiling Multithreaded Applications
For multithreaded applications, profiler behavior depends on the profiling method.

For line counting and line coverage, the profiler does not discriminate among
threads. The hit counts encompass all the program's threads.

For function timing, function counting, and function coverage, profiling is thread
dependent. You can profile an individual thread by (1) declaring the thread's main
function as the starting function (PREP /SF option), and (2) including all functions in
the program (don't use the PREP/EXC option).

The profile results will be difficult to interpret if you do not specify a starting
function, if you specify a starting function that is called from mUltiple threads, or if
you don't include all functions.

Profiling on a "Quiet" Computer
For maximum pro filer accuracy, close as many other applications as possible during
profiling. In particular, do not run programs such as electronic mail that execute at
random intervals. If you have a network connection, you might want to disconnect it
as well, since networks can cause differences in profile results.

Miscellaneous Profiler Restrictions
Function-level profiling works only with ordinary functions that return with the stack
pointer unchanged. Profiling should be turned off for functions that change the stack
pointer or store the return address for later use. The profiler automatically turns off
profiling for the functions alloca and setjrnp. If you write your own similar functions,
you must write them in assembly language. By default, assembly-language functions
are excluded from profiling. Do not use these functions with the PREP /INC option.

149

C HAP T E R 1 3

Developing for International Markets

An important aspect of developing applications for international markets is the
adequate representation of local character sets. The ASCII character set defines
characters in the range OxOO to Ox7F. There are other character sets, primarily
European, that define the characters within the range OxOO to Ox7F identically to the
ASCII character set and also define an extended character set from Ox80 to OxFF.
Thus an 8-bit, single-byte-character set (SBCS) is sufficient to represent the ASCII
character set as well as the character sets for many European languages. However,
some non-European character sets, such as Japanese Kanji, include many more
characters than can be represented in a single-byte coding scheme, and therefore
require multibyte-character set (MBCS) encoding.

This chapter describes the Visual C++ support for extended character sets, and
focuses on writing portable code that can be built for several different character sets.

Unicode and MBCS
The Microsoft Foundation Class Library (MFC), the C run-time library for Visual
C++, and the Visual C++ development environment are enabled to assist your
international programming:

• Support for the Unicode standard on Windows NT.

• Unicode is a 16-bit character encoding, providing enough encodings for all
languages. All ASCII characters are included in Unicode as "widened" characters.

Note The Unicode standard is not supported on Windows 95.

• Support for a form of Multibyte Character Set (MBCS) called Double Byte
Character Set (DBCS) on all platforms.

DBCS characters are composed of one or two bytes. Some ranges of bytes are set
aside for use as "lead bytes." A lead byte specifies that it and the following "trail
byte" comprise a single two-byte-wide character. You must keep track of which
bytes are lead bytes. In a particular multibyte-character set, the lead bytes fall
within a certain range, as do the trail bytes. When these ranges overlap, it may be

151

Programming Techniques

necessary to evaluate the context to determine whether a given byte is functioning
as a lead byte or a trail byte.

• Support for tools that simplify MBCS programming of applications written for
international markets.

When run on an MBCS-enabled version of the Windows NT operating system, the
Visual c++ development system-including the integrated source code editor,
debugger, and command line tools-is completely MBCS-enabled. For more
information, see "MBCS Support in Visual C++" on page 159.

Note In this documentation, "MBCS" is used to describe all non-Unicode support for wide
characters. In Visual C++, MBCS always means DBCS. Character sets wider than two bytes
are not supported.

By definition, the ASCII character set is a subset of all multibyte-character sets. In
many multibyte character sets, each character in the range OxOO-Ox7F is identical to
the character that has the same value in the ASCII character set. For example, in both
ASCII and MBCS character strings, the one-byte NULL character (\0') has value
OxOO and indicates the terminating null character.

International Enabling

152

Most traditional C and C++ code makes assumptions about character and string
manipulation that do not work well for international applications. While both MFC
and the run-time library support Unicode or MBCS, there is still work for you to do.
To guide you, this section explains the meaning of "international enabling" in Visual
C++:

• Both Unicode and MBCS are enabled by means of portable data types in MFC
function parameter lists and return types. These types are conditionally defined in
the appropriate ways, depending on whether your build defines the symbol
UNICODE or the symbol MBCS (which means DBCS). Different variants of
the MFC libraries are automatically linked with your application, depending on
which of these two symbols your build defines.

• Class library code uses portable run-time functions and other means to ensure
correct Unicode or MBCS behavior.

• You still must handle certain kinds of internationalization tasks in your code:

• Use the same portable run-time functions that make MFC portable under either
environment.

• Make literal strings and characters portable under either environment using the
_ T macro. For more information, see "Generic-Text Mappings in TCHAR.H"
on page 164.

• Take precautions when parsing strings under MBCS. These precautions are not
needed under Unicode. For more information, see "MBCS Programming Tips"
on page 160.

Chapter 13 Developing for International Markets

• Take care if you mix ANSI (8-bit) and Unicode (16-bit) characters in your
application. It's possible to use ANSI characters in some parts of your program
and Unicode characters in others, but you cannot mix them in the same string .

• Don't "hard-code" strings in your application. Instead, make them
STRINGTABLE resources by adding them to the application's .RC file. Your
application can then be localized without requiring source code changes or
recompilation. For more information on STRINGTABLE resources, see
"Multiline Statements" in the Visual C++ User's Guide.

Note European and MBCS character sets have some characters, such as accented letters,
with character codes greater than Dx8D. Since most code uses signed characters, these
characters greater than Dx8D are sign extended when converted to int. This is a problem for
array indexing because the sign-extended characters, being negative, will index outside the
array.

Languages that use MBCS, such as Japanese, are also unique. Since a character may consist
of one or two bytes, you should always manipulate both bytes at the same time.

Internationalization Strategies
Depending on your target operating system(s) and markets, you have several
internationalization strategies:

• Your application uses Unicode and therefore runs on Windows NT (but not on
Windows 95).

You use Unicode-specific programming techniques and all characters are 16 bits
wide (although you can use ANSI characters in some parts of your program for
special purposes). The C run-time library provides functions, macros, and data
types for Unicode-only programming. MFC is fully Unicode-enabled.

• Your application uses MBCS and can be run on any Win32 platform.

You use MBCS-specific programming techniques. Strings can contain single-byte
characters, double-byte characters, or both. The C run-time library provides
functions, macros, and data types for MBCS-only programming. MFC is fully
MBCS-enabled.

• The source code for your application is written for complete portability - by
recompiling with the symbol_UNICODE or the symbol_ MBCS defined, you can
produce versions that use either. For more information, see "Generic-Text
Mappings in TCHAR.H" on page 164.

You use fully portable C run-time functions, macros, and data types. MFC's
flexibility supports any of these strategies.

The remainder of this chapter focuses on writing completely portable code that you
can build as Unicode or as MBCS.

153

Programming Techniques

Locales and Code Pages

154

A "locale" reflects the local conventions and language for a particular geographical
region. A given language may be spoken in more than one country; for example,
Portuguese is spoken in Brazil as well as Portugal. Conversely, a country may have
more than one official language. For example, Canada has two: English and French.
Thus, Canada has two distinct locales: Canadian-English and Canadian-French.
Some locale-dependent categories include the formatting of dates and the display
format for monetary values.

The language determines the text and data formatting conventions, while the country
determines the national conventions. Every language has a unique mapping,
represented by "code pages," which includes characters other than those in the
alphabet (such as punctuation marks and numbers). A code page is a character set
and is related to the current locale and language. As such, a locale is a unique
combination of language, country, and code page. The code page setting can
determine the locale setting and can be changed at run-time by calling the setlocale
run-time function.

Different languages may use different code pages. For example, the ANSI code page
1252 is used for American English and most European languages, and the ANSI code
page 932 is used for Japanese Kanji. Virtually all code pages share the ASCII
character set for the lowest 128 characters (OxOO to Ox7F).

Any single-byte code page can be represented in a table (with 256 entries) as a
mapping of byte values to characters (including numbers and punctuation marks), or
glyphs. Any multibyte code page can also be represented as a very large table (with
64K entries) of double-byte values to characters. In practice, however, they are
usually represented as a table for the first 256 (single-byte) characters and as ranges
for the double-byte values.

The C run-time library has two types of internal code pages: locale and multibyte.
You can change the current code page during program execution (see the
documentation for the setlocale and _setmbcp functions). Also, the run-time library
may obtain and use the value of the operating system code page. In Windows NT, the
operating system code page is the "system default ANSI" code page. This code page
is constant for the duration of the program's execution.

When the locale code page changes, the behavior of the locale-dependent set of
functions changes to that dictated by the chosen code page. By default, all locale
dependent functions begin execution with a locale code page unique to the "C" locale.
You can change the internal locale code page (as well as other locale-specific
properties) by calling the setlocale function. A call to setlocale(LC_ALL, "") will set
the locale to that indicated by the operating system's default code page.

Similarly, when the multibyte code page changes, the behavior of the multibyte
functions changes to that dictated by the chosen code page. By default, all multibyte
functions begin execution with a multibyte code page corresponding to the operating

Chapter 13 Developing for International Markets

system's default code page. You can change the internal multibyte code page by
calling the setmbcp function.

The C run-time function setlocale sets, changes, or queries some or all of the current
program's locale information. The _ wsetlocale routine is a wide-character version of
setlocale; the arguments and return values of _ wsetlocale are wide-character strings.
For more information, see the documentation for setlocale in the Run-Time Library
Reference.

Benefits of Character Set Portability
You can benefit from using MFC and C run-time portability features even if you don't
currently intend to internationalize your application:

• Coding portably makes your code base flexible. You can later move it easily to
Unicode or MBCS.

• Using Unicode makes your applications for Windows NT more efficient. Windows
NT uses Unicode, so non-Unicode strings passed to and from the operating system
must be translated, incurring overhead.

• Using MBCS enables you to support international markets on Win32 platforms
other than Windows NT, such as Windows 95.

Support for Unicode
A "wide character" is a two-byte multilingual character code. Any character used in
modem computing worldwide, including technical symbols and special publishing
characters, can be represented according to the Unicode specification as a wide
character. Because each wide character is always represented in a fixed size of 16
bits, using wide characters simplifies programming with international character sets.

A wide-character string is represented as a wchar _ t[] array and is pointed to by a
wchar _ t* pointer. Any ASCII character can be represented as a wide character by
prefixing the letter L to the character. For example, L \0' is the terminating wide (16-
bit) NULL character. Similarly, any ASCII string literal can be represented as a
wide-character string literal by prefixing the letter L to the ASCII literal (L"Hello").

Generally, wide characters take more space in memory than multibyte characters but
are faster to process. In addition, only one locale can be represented at a time in
multi byte encoding, whereas all character sets in the world are represented
simultaneously by the Unicode representation.

The MFC framework is Unicode-enabled throughout, except for the database classes.
(ODBC is not Unicode enabled.) MFC accomplishes Unicode enabling by using
"portable" macros throughout, as shown in Table 13.1:

155

Programming Techniques

Table 13.1 Portable Data Types in MFC

Non-portable Data Type(s)

char

char*, LPSTR (Win32 data type)

const char*, LPCSTR (Win32 data type)

Replaced by This Macro

_TCHAR

LPTSTR

LPCTSTR

Class CString uses _ TCHAR as its base and provides constructors and operators for
easy conversions. Most string operations for Unicode can be written by using the
same logic used for handling the Windows ANSI character set, except that the basic
unit of operation is a 16-bit character instead of an 8-bit byte. Unlike working with
multibyte character sets (MBCS), you do not have to (and should not) treat a Unicode
character as if it were two distinct bytes.

Support for Using wmain

156

Microsoft Specific ~

Visual c++ supports defining a wmain function and passing wide-character
arguments to your Unicode application. You declare formal parameters to wmain
using a format similar to main. You can then pass wide-character arguments and,
optionally, a wide-character environment pointer to the program. The argv and envp
parameters to wmain are of type wchar _ t*. For example:

wmain(int argc, wchar_t *argv[], wchar_t *envp[])

Note MFC Unicode applications use wWinMain as the entry point. In this case,
CWinApp::mJpCmdLine is a Unicode string. Be sure to set wWinMainCRTStartup as the
Entry Point symbol in the Output category of the Link tab in the Project Settings dialog box.

If your program uses a main function, the multibyte-character environment is created
by the run-time library at program startup. A wide-character copy of the environment
is created only when needed (for example, by a call to the _ wgetenv or _ wputenv
functions). On the first call to _ wputenv, or on the first call to _ wgetenv if an MBCS
environment already exists, a corresponding wide-character string environment is
created. The environment is then pointed to by the _ wenviron global variable, which
is a wide-character version of the _environ global variable. At this point, two copies
of the environment (MBCS and Unicode) exist simultaneously and are maintained by
the run-time system throughout the life of the program.

Similarly, if your program uses a wmain function, a wide-character environment is
created at program startup and is pointed to by the _ wenviron global variable. An
MBCS (ASCII) environment is created on the first call to Jlutenv or getenv, and is
pointed to by the _environ global variable.

END Microsoft Specific

Chapter 13 Developing for International Markets

Unicode Programming Summary

a

To take advantage of the MFC and C run-time support for Unicode, you need to:

• Define _UNICODE.

Define the symbol_UNICODE before you build your program.

• Specify entry point.

In the Output category of the Link tab in the Project Settings dialog box, set the
Entry Point Symbol to wWinMainCRTStartnp.

• Use "portable" run-time functions and types.

Use the proper C run-time functions for Unicode string handling. You can use the
wcs family of functions, but you may prefer the fully "portable" (internationally
enabled) _ TCHAR macros. These macros are all prefixed with _ tcs; they
substitute, one for one, for the str family of functions. These functions are
described in detail in the "Internationalization" section in Chapter 1 of the Run
Time Library Reference. For more information, see "Generic-Text Mappings in
TCHAR.H" on page 164.

Use _TCHAR and the related portable data types described in "Support for
Unicode" on page 155.

• Handle literal strings properly.

The Visual C++ compiler interprets a literal string coded as

L"this is a literal string"

to mean a string of Unicode characters. You can use the same prefix for literal
characters. Use the _ T macro to code literal strings generically, so they compile as
Unicode strings under Unicode or as ANSI strings (including MBCS) without
Unicode. For example, instead of:

pWnd-)SetWindowText("Hello");

use:

pWnd-)SetWindowText(_T("Hello"));

• With _UNICODE defined, _ T translates the literal string to the L-prefixed form;
otherwise, _ T translates the string without the L prefix.

•
Tip The _ T macro is identical to the _TEXT macro.

Be careful passing string lengths to functions.

Some functions want the number of characters in a string; others want the number
of bytes. For example, if _UNICODE is defined, the following call to a CArchive
object will not work (str is a CString):

archive.Write(str, str.GetLengthC)); II invalid

157

Programming Techniques

In a Unicode application, the length gives you the number of characters but not the
correct number of bytes, since each character is two bytes wide. Instead, you must
use:

archive.Write(str. str.GetLength() * sizeof(_TCHAR));

which specifies the correct number of bytes to write.

II valid

However, MFC member functions that are character-oriented, rather than byte
oriented, work without this extra coding:

pDC-)TextOut(str. str.GetLength());

CDC::TextOut takes a number of characters, not a number of bytes.

To summarize, MFC and the run-time library provide the following support for
Unicode programming under Windows NT:

• Except for database class member functions, all MFC functions are Unicode
enabled, including CString. CString also provides Unicode/ANSI conversion
functions.

• The run-time library supplies Unicode versions of all string-handling functions.
(The run-time library also supplies "portable" versions suitable for Unicode or for
MBCS. These are the _tcs macros.)

• TCHAR.H supplies portable data types and the _ T macro for translating literal
strings and characters. See "Generic-Text Mappings in TCHAR.H" on page 164.

• The run-time library provides a wide-character version of main. Use wmain to
make your application "Unicode aware."

Support for Multibyte Character Sets
(MBCS)

158

For platforms used in markets whose languages use large character sets, the best
alternative to Unicode is MBCS. MFC supports MBCS by using "internationalizable"
data types and C run-time functions. You should do the same in your code.

Under MBCS, characters are encoded in either one or two bytes. In two-byte
characters, the first, or "lead-byte," signals that both it and the following byte are to
be interpreted as one character. The first byte comes from a range of codes reserved
for use as lead bytes. Which ranges of bytes can be lead bytes depends on the code
page in use. For example, Japanese code page 932 uses the range Ox81 through Ox9F
as lead bytes, but Korean code page 949 uses a different range.

Consider all of the following in your MBCS programming:

MBCS characters in the environment MBCS characters can appear in strings such
as file and directory names.

Chapter 13 Developing for International Markets

Editing operations Editing operations in MBCS applications should operate on
characters, not bytes. The caret should not split a character, the RIGHT ARROW key
should move right one character, and so on. Delete should delete a character;
Undo should reinsert it.

String handling In an application that uses MBCS, string handling poses special
problems. Characters of both widths are mixed in a single string; therefore you
must remember to check for lead bytes.

Run-time library support The C run-time library and MFC support single-byte,
MBCS, and Unicode programming. Single-byte strings are processed with the str
family of run-time functions; MBCS strings are processed with corresponding
_ mbs functions; and Unicode strings are processed with corresponding wcs
functions. MFC class member function implementations use portable run-time
functions that map, under the right circumstances, to the normal str family of
functions, the MBCS functions, or the Unicode functions, as described in
"MBCS/Unicode portability."

MBCS/Unicode portability Using the header file TCHAR.H, you can build single
byte, MBCS, and Unicode applications from the same sources. TCHAR.H defines
macros prefixed with _tcs , which map to str, _ mbs, or wcs functions as
appropriate. To build MBCS, define the symbol_ MBCS. To build Unicode, define
the symbol_UNICODE. By default, _ MBCS is defined for MFC applications. For
more information, see "Generic-Text Mappings in TCHAR.H" on page 164.

Note Behavior is undefined if you define both _UNICODE and _MBCS.

The MBCTYPE.H and MBSTRING.H header files define MBCS-specific functions
and macros, which you may need in some cases. For example, Jsmbblead tells you
whether a specific byte in a string is a lead byte.

MBCS Support in Visual C++
When run on an MBCS-enabled version of the Windows 95 or Windows NT
operating system, the Visual C++ development system, including the integrated
source code editor, debugger, and command line tools, is completely MBCS-enabled.
Visual C++ will accept double-byte characters wherever it is appropriate to do so.
This includes path names and filenames in dialog boxes, and text entries in the
Visual C++ resource editor (for example, static text in the dialog editor, and static
text entries in the icon editor). In addition, the preprocessor recognizes some double
byte directives-for example, filenames in #include statements, and as arguments to
the code_seg and data_seg pragmas. In the source code editor, double-byte
characters in comments and string literals are accepted, although not in CjC++
language elements (such as variable names).

Support for the Input Method Editor (IME)
Applications written for Far East markets that use MBCS (for example, Japan)
normally support the Windows IME for entering both single- and double-byte

159

Programming Techniques

characters. The Visual C++ development environment contains full support for the
IME.

Japanese keyboards do not directly support Kanji characters. The IME converts a
phonetic string, entered in one of the other Japanese alphabets, Romaji, Katakana, or
Hiragana, into its possible Kanji representations. If there is ambiguity, you can select
from several alternate possibilities. Once you have selected the intended Kanji
character, the IME passes two WM _ CHAR messages to the controlling application.

The IME, activated by the ALT+' key combination, appears as a set of buttons (an
indicator) and a conversion window. The application positions the window at the text
insertion point. The application must handle WM_MOVE and WM_SIZE messages
by repositioning the conversion window to conform to the new location or size of the
target window.

If you want users of your application to have the ability to enter Kanji characters, the
application must handle Windows IME messages. For more information on 1MB
programming, see the Internationalization Handbookfor Software Design, in the
Microsoft Development Library.

Visual C++ Debugger
The Visual C++ debugger provides· the ability to set breakpoints on IME messages. In
addition, the memory window can display double-byte characters.

Command-Line Tools
The Visual C++ command-line tools, including the compiler, NMAKE, and the
resource compiler (RC.EXE), are MBCS-enabled. You can use the resource
compiler's Ic option to change the default code page when compiling your
application's resources.

To change the default locale at source code compile time, use the setlocale pragma.

Graphical Tools
The Visual C++ Windows-based tools, such as Spy++ and the resource editing tools,
fully support 1MB strings.

MBCS Programming Tips

160

This section supplies tips for successful multibyte character set (MBCS)
programming. The advice applies to MFC applications and applications written
without MFC. Topics include:

• General MBCS programming advice

• Incrementing and decrementing pointers

• Byte indices

• Last character in a string

Chapter 13 Developing for International Markets

• Character assignment

• Character comparison

• Buffer overflow

General MBCS Programming Advice
Use the following tips:

• For flexibility, use run-time macros such as _ tcschr and _ tcscpy when possible.
For more information, see "Generic-Text Mappings in TCHAR.H" on page 164.

• Use the C run-time _getmbcp function to get information about the current code
page.

• Do not reuse string resources. Depending on the target language, a given string
may have a different meaning when translated. For example, "File" on the
application's main menu might translate differently than the string "File" in a
dialog box. If you need to use more than one string with the same name, use
different string IDs for each.

• You may want to find out whether or not your application is running on an
MBCS-enabled operating system. To do so, set a flag at program startup; do not
rely on API calls.

• When designing dialog boxes, allow approximately 30% extra space at the end of
static text controls, to allow for MBCS translation.

• Be careful when selecting fonts for your application, since some fonts are not
available on all systems. For example, the Japanese version of Windows NT does
not support the Helvetica font.

• When designing your application, decide which strings can or cannot be localized.
If in doubt, assume that any given string will be localized. As such, do not mix
strings that can be localized with those that cannot.

Incrementing and Decrementing Pointers
Use the following tips:

• Point to lead bytes, not trail bytes. It is usually unsafe to have a pointer to a trail
byte. It's usually safest to scan a string forward rather than in reverse.

• There are pointer increment/decrement functions and macros available which
move over a whole character:

szl++;

becomes

szl = _mbsinc(szl);

The _ mbsinc and _ mbsdec functions correctly increment and decrement in
character units, regardless of the character size.

161

Programming Techniques

162

• For decrements, you need a pointer to the head of the string, as in the following:

sz2--;

becomes

sz2 = _mbsdec(sz2Head. sz2);

Alternatively, your "head" pointer could be to a valid character in the string, such
that

sz2Head < sz2

You must have a pointer to a known valid lead byte.

• You may want to maintain a pointer to the previous character for faster calls to
mbsdec.

Byte Indices
Use the following tips:

• Working with a bytewise index into a string presents problems similar to those
posed by pointer manipulation. Consider this example, which scans a string for a
backs lash character:

while (rgch[i] != '\\')
i++;

This may index a trail byte, not a lead byte, and thus it may not point to a
character.

• Use the _ mbslen function to solve the preceding problem:

while (rgch[i] != '\\')
i += _mbsl en(rgch + i);

This correctly indexes to a lead byte, hence to a character. The _mbslen function
determines the size of a character (one or two bytes).

The Last Character ina Stri ng
Use the following tips:

• Trail byte ranges overlap the ASCII character set in many cases. You can safely
use bytewise scans for any control characters (less than 32).

• Consider the following line of code, which might be checking to see if the last
character in a string is a backs lash character:

if (sz[strlen(sz) - 1] == '\\') II Is last character a '\'?
I I . . .

Since strlen is not "MBCS-aware," it will return the number of bytes, not the
number of characters, in a multibyte string. Also, note that in some code pages
(932, for example), '\' (Ox5c) is a valid trail byte (s z is a C string).

Chapter 13 Developing for International Markets

One possible solution is to rewrite the code this way:

char *pLast;
p Las t - _m b s r c h r (s z • '\\'); 1/ fin d 1 a s t 0 c cur e n ceo f '\' ins z
if (pLast && (*_mbsinc(pLast) -- '\0'))

/ / . . .
This code uses the MBCS functions _ mbsrchr and _ mbsinc. Since these functions
are MBCS-aware, they can distinguish between a '\' character and a trail byte '\'.
The code performs some action if the last character in the string is a null ('\0').

Character Assignment
Consider the following example, in which the while loop scans a string, copying all
characters except 'X' into another string:

while(*sz2)
{

if(*sz2 !- 'X')
*szl++ *sz2;

else
sz2++;

The code copies the byte at s z 2 to the location pointed to by s z 1, then increments s z 1
to receive the next byte. But if the next character in sz2 is a double-byte character,
the assignment to s z 1 will copy only the first byte. The following code uses a portable
function to copy the character safely and another to increment szl and sz2 correctly:

whil e(*sz2)
{

if(*sz2 !- 'X')
{

else

_mbscpy(szl. sz2);
szl - _mbsinc(szl);

sz2 = _mbsinc(sz2);

Character Comparison
Use the following tips:

• Comparing a known lead byte with an ASCII character works correctly:

if(*szl -- 'A')

• Comparing two unknown characters requires the use of one of the macros defined
in MBSTRING.H:

if(!_mbccmp(szl, sz2))

This ensures that both bytes of a double-byte character are compared for equality.

163

Programming Techniques

Buffer Overflow
Varying character sizes can cause problems when you put characters into a buffer.
Consider the following code, which copies characters from a string, 5Z, into a buffer,
rgch:

cb = 0;
while(cb < sizeof(rgch))

rgch[cb++] = *sz++;

The question is: was the last byte copied a lead byte? The following does not solve the
problem because it can potentially overflow the buffer:

cb = 0;
while(cb < sizeof(rgch)
{

_mbccpy(rgch + cb, sz);
cb += _mbclen(sz);
sz = _mbsinc(sz);

The _mbccpy call attempts to do the right thing-copy the full character, whether
it's one or two bytes. But it doesn't take into account that the last character copied
may not fit the buffer if the character is two bytes wide. The correct solution is:

cb = 0;
while((cb + _mbclen(sz » <= sizeof(rgch))
{

_mbccpy(rgch + cb. sz);
cb += _mbclen(sz);
sz = _mbsinc(sz);

This code tests for possible buffer overflow in the loop test, using _ mbclen to test the
size of the current character pointed to by s z. By making a call to the _ mbsnbcpy
function, you can replace the code in the while loop with a single line of code. For
example:

cb = 0;
while((cb + _mbclen(sz » <= sizeof(rgch))
{

_mbsnbcpy(rgch. sz, sizeof(rgch));
}

Generic-Text Mappings in TCHAR.H

164

To simplify transporting code for international use, the Microsoft run-time library
provides Microsoft-specific "generic-text" mappings for many data types, routines,
and other objects. You can use these mappings, which are defined in TCHAR.H, to
write generic code that can be compiled for single byte, multibyte, or Unicode,
depending on a manifest constant you define using a #define statement. Generic-text
mappings are Microsoft extensions that are not ANSI compatible.

Chapter 13 Developing for International Markets

Using the header file TCHAR.H, you can build single-byte, MBCS, and Unicode
applications from the same sources. TCHAR.H defines macros prefixed with _ tcs,
which, with the correct preprocessor definitions, map to str, _ mbs, or wcs functions
as appropriate. To build MBCS, define the symbol_MBCS. To build Unicode, define
the symbol_UNICODE. To build a single-byte application, define neither (the
default). By default, _ MBCS is defined for MFC applications.

The _ TCHAR data type is defined conditionally in TCHAR.H. If the symbol
_UNICODE is defined for your build, _ TCHAR is defined as wchar _ t; otherwise,
for single-byte and MBCS builds, it is defined as char. (wchar_t, the basic Unicode
wide character data type, is the 16-bit counterpart to an 8-bit signed char.) For
international applications, use the _ tcs family of functions, which operate in
_ TCHAR units, not bytes. For example, _tcsncpy copies n _ TCHARs, not n bytes.

Because some SBCS string-handling functions take (signed) char* parameters, a
type mismatch compiler warning will result when _ MBCS is defined. There are three
ways to avoid this warning, listed in order of efficiency:

1. Use the "type-safe" inline function thunks in TCHAR.H. This is the default
behavior.

2. Use the "direct" macros in TCHAR.H by defining _MB_MAP _DIRECT on the
command line. If you do this, you must manually match types. This is the fastest
method, but is not type-safe.

3. Use the "type-safe" statically-linked library function thunks in TCHAR.H. To do
so, define the constant _NO _ INLINING on the command line. This is the slowest
method, but the most type-safe.

Table 13.2 Preprocessor Directives for Generic-Text Mappings

define Compiled Version Example

_UNICODE

_MBCS

None (the default:
neither _UNICODE
nor _ MBCS defined)

Unicode (wide-character)

Multibyte-character

SBCS (ASCII)

_ tcsrev maps to _ wcsrev

_tcsrev maps to _mbsrev

_ tcsrev maps to strrev

For example, the generic-text function _tcsrev, defined in TCHAR.H, maps to
_ mbsrev if you defined _ MBCS in your program, or to _ wcsrev if you defined
_UNICODE. Otherwise _tcsrev maps to strrev. Other data type mappings are
provided in TCHAR.H for programming convenience, but _ TCHAR is the most
useful.

165

Programming Techniques

166

Table 13.3 Generic-Text Data Type Mappings

SBCS LUNICODE,
Generic-Text _MBCS Not _MBCS
Data Type Name Defined) Defined

_ TCHAR char char

TINT

TSCHAR

_TUCHAR

TXCHAR

_Tor _TEXT

int

signed char

unsigned char

char

No effect (removed
by preprocessor)

int

signed char

unsigned char

unsigned char

No effect (removed
by preprocessor)

_UNICODE
Defined

wchar t

wint t

wchar t

wchar t

wchar t

L (converts following
character or string to
its Unicode
counterpart)

For a complete list of generic-text mappings of routines, variables, and other objects,
see Appendix B, "Generic-Text Mappings," in the Run-Time Library Reference.

Note Do not use the str family of functions with Unicode strings, which are likely to contain
embedded null bytes. Similarly, do not use the wcs family of functions with MBCS (or SBCS)
strings.

The following code fragments illustrate the use of _ TCHAR and _ tcsrev for
mapping to the MBCS, Unicode, and SBCS models.

_TCHAR *RetVal, *szString;
RetVal = _tcsrev(szString);

If _ MBCS has been defined, the preprocessor maps this fragment to the code:

char *RetVal, *szString;
RetVal = _mbsrev(szString);

If _UNICODE has been defined, the preprocessor maps this fragment to the code:

wchar_t *RetVal, *szString;
RetVal = _wcsrev(szString);

If neither _ MBCS nor _UNICODE has been defined, the preprocessor maps the
fragment to single-byte ASCII code:

char *RetVal, *szString;
RetVal = strrev(szString);

Thus you can write, maintain, and compile a single source code file to run with
routines that are specific to any of the three kinds of character sets.

1/

"I Chapter 13 Developing for International Markets

Using TCHAR.H Data Types with _MBCS Code
When the manifest constant _ MBCS is defined, a given generic-text routine maps to
one of the following kinds of routines:

• An SBCS routine that handles multibyte bytes, characters, and strings
appropriately. In this case, the string arguments are expected to be of type char*.
For example, _ tprintf maps to printf; the string arguments to printf are of type
char*. If you use the _ TCHAR generic-text data type for your string types, the
formal and actual parameter types for printf match because _ TCHAR * maps to
char*.

• An MBCS-specific routine. In this case, the string arguments are expected to be of
type unsigned char*. For example, _tcsrev maps to _mbsrev, which expects and
returns a string of type unsigned char*. If you use the _ TCHAR generic-text data
type for your string types, there is a potential type conflict because _ TCHAR maps
to type char.

Following are three solutions for preventing this type conflict (and the C compiler
warnings or c++ compiler errors that would result).

• Use the default behavior. TCHAR.H provides generic-text routine prototypes for
routines in the run-time libraries, as in the following example.

char * _tcsrev(char *);

In the default case, the prototype for _ tcsrev maps to _ mbsrev through a thunk in
LIBC.LIB. This changes the types of the _ mbsrev incoming parameters and
outgoing return value from _ TCHAR * (that is, char *) to unsigned char *. This
method ensures type matching when you are using _ TCHAR, but it is relatively
slow due to the function call overhead.

• Use function inlining by incorporating the following preprocessor statement in
your code.

#define _USE_INLINING

This method causes an inline function thunk, provided in TCHAR.H, to map the
generic-text routine directly to the appropriate MBCS routine. The following code
excerpt from TCHAR.H provides an example of how this is done.

__ inline char *_tcsrev(char *_sl)
{return (char *)_mbsrev«unsigned char *)_sl);}

If you can use inlining, this is the best solution, because it guarantees type
matching and has no additional time cost.

• Use "direct mapping" by incorporating the following preprocessor statement in
your code.

#define _MB_MAP_DIRECT

167

Programming Techniques

This approach provides a fast alternative if you do not want to use the default
behavior or cannot use inlining. It causes the generic-text routine to be mapped by
a macro directly to the MBCS version of the routine, as in the following example
from TCHAR.H.

#define _tcschr _mbschr

When you take this approach, you must be careful to ensure use of appropriate
data types for string arguments and string return values. You can use type casting
to ensure proper type matching or you can use the _ TXCHAR generic-text data
type. _ TXCHAR maps to type char in SBCS code but maps to type unsigned
char in MBCS code. For more information about generic-text macros, see
Appendix B, "Generic-Text Mappings," in the Run-Time Library Reference.

For More Information

168

For more information on developing for international markets, see the following:

• In the Run-Time Library Reference: "Internationalization."

• In the Win32 Programmer's Reference, Volume 2: "String Manipulation and
Unicode."

• In Advanced Windows NT, Microsoft Press, 1994, by Jeffrey Richter: Chapter 11,
"Unicode. "

• "The Unicode™ Standard: Worldwide Character Encoding," Version 1.0, Volumes
1 and 2, Addison-Wesley, 1992.

$ (dollar sign), label jumps, inline
assembly 126

& operator, thread attribute and 73
* operator, inline assembly, using in 121
[] (square brackets), using in inline

assembly 121
{ } (braces), __ asm blocks 117,118
32 bits, data increased to 1

A
AbnormalTermination API function 105
Accelerator type handle 42
Accessing the COMSTAT structure 47
Address wrapping 16, 17
Addresses

common blocks, mixed-language
programming 143

in mixed languages 138
Adjusting

calling conventions 130, 131
naming conventions 131

Advanced applications, porting 14
ALIAS attribute in FORTRAN 133,135
Alignment within structures 16
All-lowercase names, in FORTRAN 132
All-uppercase names, in FORTRAN 132
Angle brackets, templates 78
ANSI-compatible COMSTAT structure 47
API differences, summary 17
API functions, porting to 32 bits 7
Applications

instances 13
profiling

multithreaded 149
Win32 console 149

Arguments
passing 109, 11 0
passing to threads 69
widening 109

Arrays
declaring mixed-language

programming 138, 139
indexing mixed-language

programming 138, 139
lower bounds 139
mixed-language programming 138, 139

__ asm blocks
described 117, 118
__ fastcall calling convention

limitations 124, 125
features 118 -120
functions calls 126, 127
labels 125, 126
language elements, using 121-124
macros, defining as 127
optimization, effects on 128
registers 124, 125

__ asm keyword 117, 118
Assembly, groups described 117, 118
Assembly language, inline See Inline

assembly
Attributes, file 11
Automatic data stack usage 69

8
_beginthread function

compared to CreateThread 64
discussed 64
return value 64

Binary mode, support for 12
BINMODE.OBJ file 12
Bitmaps

handle 42
shared 15

Blocking 68
Blocks, mixed-language programming 143
Braces ({ n, __ asm blocks 117,118
Brackets ([D, using in inline assembly 121
Breakpoint exception 103
Brushes, shared 15

Index

169

Index

170

Buffer overflow 164
Building DLLs

described 56
with mutual imports 58

Building mixed-language programs 136
Button click messages 27, 28
Button_ control message functions 36
Byte indices 162

c
C attribute in FORTRAN

effect on calling convention 131
effect on naming convention 132
effect on parameters 133
effect on string passing 141
used in example 135

C exception wrapper class 92
C language

calling convention 130
coding techniques 16
naming convention 132
string format 140

C macros, defining as __ asm blocks 127
C++

DLL initiatization 50
exception handling 108
name decoration, removing 136
naming convention 132
STRICT type checking 44

CALLBACK function type 41
Callback functions, effect of STRICT 43
Calling conventions

discussed 109
mixed languages 130

Calling functions See Function calls
Calling message handlers 25
CallWindowProc function 31
Capture, mouse 15
Case sensitivity

labels, inline assembler 125, 126
naming conventions 131

catch statement 84
cbClsExtra member 10
cdecl calling convention 109, 110, 112
__ cdecl calling convention 109, 110, 112
cdecl keyword 131
Character assignment 163
Character comparison 163

Character sets
MBCS support 158
portability 155

Character strings in mixed languages 140
Class structure, window 10
Class templates 77
Classes, in mixed languages 143
Cleaning up resources in termination

handlers 106
Click message 27, 28
Codepage

defined 154
dynamically changing 154

Code, exception 101
CodeView, debugging inline assembly

code 120
Coding techniques, and porting 16
Column-major order 139
COM port information 47
Combo box functions 13
ComboBox_ control message functions 36
Comma operator, and exception filters 101
Command line, access to DLLs from 53
Comments, inline assembly 120, 121
Communications port 47
Compiler options

/LD 57
/MD 57
/ML 57
/MT 57

Compiling
DLLs 56
linking mixed-language programs 136
multithread applications 70

COMPLEX type in FORTRAN 142
Complying with STRICT type checking 44
COMST AT fields 47
COMSTAT structure 47
Conditional operation, and exception

filters 101
Console applications, profiling Win32 149
Constants

inline assembly 121
symbolic, inline assembly 121

Constructors
templates 78
thread attribute 73

Continuable exceptions 100, 103
Control message API, summarized 36

Control message functions 35
Continuing execution after exception 100
Create window message 28
CreateDirectory function 11
CreateFile function 11
CreateThread function

compared to _beginthread 64
using when calling C run-time

programs 63
Create Window function 46
Creating macros, __ asm block 127
CSTF _ flags 47
Current directory functions 11

o
Data directives, inline assembly

limitation 119
Data increased to 32 bits 1
Data members, accessing inline

assembly 122, 123
Data types

alignment of 16
defined in WINDOWS.H 41
distinguishing HMODULE and

HINST ANCE 47
HANDLE 44
handles 42
HMENU 46
HWND 4
LPARAM 41
LPCSTR 41
LPVOID 41
LRESULTS 41
ranges and promotions 17
DINT 3,41,45
WORD 4

Date and time functions 11
DDE messages, 32 bit 7
Debugging

CodeView, with inline assembly
code 120

DLLs 57
inline assembly code, with

Code View 120
Declaring

arrays, mixed-language
programming 138, 139

functions, and STRICT 45

__ declspec keyword
andDLLs 53
general syntax 54
naked 113

_declspec, thread attribute 72-74
Decoration of C++ names 137
Decrementing pointers 161
/DEF LIB option 58
Default program name, DLL builds 57
Defining macros, __ asm blocks 127
DefMDIChildProc function 28
DefWindowProc function 26, 28, 45
DeleteFile function 11
Design goals, 32-bit API 1
Destructor functions, and exception

handling 108
Destructors

templates 78
thread attribute 73

Development strategies, international 153
Dialog procedures, and message crackers 30
Directives, inline assembly

limitations 119
using in 121

Directory functions 11
DiskFreeSpace function 11
Dismissing exceptions 98, 100, 107
Divide by zero exception 103
DlgDirSelect function 13
DlgDirSelectComboBox function 13
.DLL files, profiling mUltiple 147
dllexport attribute 53,54
dllimport attribute 53,55
DllMain function 51
DLLs

access to command line 53
building 56
debugging in Visual C++ 57
__ declspec keyword 53
default name 57
defined 49
differences from Win16 49
dynamic and static loading 59
exporting inline functions 56
exporting symbols 53,54
header files and 53,55
import libraries 57, 58
importing symbols 55
initialization 51

Index

171

Index

172

DLLs (continued)
multithread support 57
profiling 147
run-time library in 62
run-time library support 50
termination 51
thread attribute and 74

Dollar sign ($), inline assembly 126
DOS See MS-DOS
DOS3Call function 11
Double click message 27, 28
Driver handle 42
DUMPBIN utility 131, 137
DWORD return value, in graphics

functions 9
Dynamic-data exchange (DDE) 7
Dynamic-link libraries 49

E
Edie control message functions 36
Edit_GetLine function 35
EdieGetLineCount function 35
_emit pseudoinstruction 120
Enabling STRICT type checking 44
_endthread function 64
Epilog

calling conventions 109
user-defined 113

Error messages
and STRICT 47
_MT symbolic constant 71

ESP, after function call 111
Ex functions, and graphics 8
Exception codes

defining 102
format 102

Exception filters 99
Exception handlers

defined 98
restrictions 104
syntax 99

Exception handling
See Also Structured exception handling
advantages of 97
c++

abort function 89
ANSI proposal 83
catch handlers, order of 90

Exception handling (continued)
C++ (continued)

catch statement 84
catchable types 88
described 85
destruction of local objects 86
ellipsis catch handler 84, 90
enabling 83
example 86
exception object 88
exception parameter, declaring 88
IGX compiler option 83,91,94
mixing C and C++ exceptions 91-93
order of catch handlers 90
overhead 94
overview 83
re-throwing an exception 88
_seese_translator function 93
set_terminate function 89
stack unwinding 86, 87
syntax 84
terminate function 86, 89
throw statement 84
try statement 84
unhandled exceptions 89
unwinding 87

C++ specification 108
differences between C++ and structured

exception handling 91
mixing C++ and structured exception

handling 91
structured exception handling 98
traditional approach 97

Exceptions
defined 97
hardware 103
list of 103
software 102

.EXE files, profiling multiple 147
ExitThread, using with run-time libraries 64
.EXP files 58
Export files 58
__ export keyword 54
Exporting inline functions 56
Exporting symbols 53,54
Expressions, using MASM in inline

assembly 119

extern
C 136
combined with dllexport 54
data, thread attribute 72

Extra data, window 10
Extracting data from messages 5

F
j prefix functions 12
_jar __ pascal calling convention 111
far pascal calling convention 111
Far pointer functions 12
far pointers 1
FARPROC function type 44
__ fastcall calling convention

described 109, 111, 113
inline assembly limitations 124, 125

fastcall calling convention 109, 111, 113
FIELDOFFSET macro 42
File handles 42
File I/O, low-level 12
File operations, issues in porting 12
Filenames, long 12
Files

BINMODE.OBJ 12
export files 58
.INI 14
PORT.INI 2
system functions 11
WINDOWS.H 41
WINDOWSX.H 12

Filters, exception handling 99
_jinally keyword 105
finally keyword See __ finally keyword
Floating-point data types, mixed

languages 137
Focus, window 15
Format, character-string 140
FORTRAN

ALIAS attribute 133, 135
C attribute 131-133
calling convention 130
LOC function 138
naming convention 132
special types in mixed languages 142
STDCALL attribute 131
string format 140
VALUE and REFERENCE attributes 133

Fortran calling convention 111
_jortran calling convention 111
fortran keyword, replaced by __ stdcall 129
FORWARD_macros 26
FreeDDEIParam 7
FreeProcInstance function 44
Functions

G

and mixed-language programming 129
calling conventions 109
calls, inline assembly 126, 127
CallWindowProc 31
control message API 35
DetMDIChildProc 28
DefWindowProc 26,28
EdiC GetLine 35
EdiCGetLineCount 35
far pointer 12
file I/O 12
file manipulation 11
FreeProcInstance 44
GetParent 10
graphics 8
inline assembly

calling, C 126, 127
calling, C++ 127
versions 123, 124

inlining and DLLs 56
list and combo box 13
MakeProcInstance 44
parameter list error 48
pointers and STRICT 44
profiling, inlined functions 148
RegisterWindowMessage 29
SendMessage 4
system calls 11
templated 76
types

and STRICT 44
CALLBACK 41
WINAPI 3,41

window extra data 10
WinMain 13
writing inline assembly 123, 124

GCL_ flags 10
GCW _ flags 10
GDI handle 42

Index

173

Index

174

Generic HANDLE type 44
Generic parameters 45
Generic return types 45
Generic-text mappings 165
GetAspectRatioFilter function 9
GetBitmapDimension function 9
GetBrushOrg function 9
GetClassLong function 10
GetClass Word function 10
GetCurrentPosition function 9
GetExceptionCode API function 101
GetParent function 10
GetProfileString function 14
GetTextExtent function 9
GetTextExtentEx function 9
GetViewportExt function 9
Get ViewportOrg function 9
GetWindowExt function 9
GetWindowLong function 10,45
GetWindowOrg function 9
GetWindowWord function 10,45
Global handle 42
GlobalLock function 45
goto statement

and termination handlers 107
inline assembly 125, 126

Graphical objects, shared 15
Graphics coordinates 1, 4, 8
Graphics functions, porting to 32 bits 8
GWL_ flags 10
GWW _ flags 10

H
HANDLE data type 44
Handle types 42
HANDLE_MSG macro

described 25
limitations on 29, 30

HANDLE_ WM_ macros 24
Handlers, message 23
Handles

and WORD data type 4
increased to 32 bits 1

Handling exceptions See Structured
exception handling

Hardware exceptions 103

Header (.H) files
and DLL imports 53, 55
effect of STRICT on 45

HINSTANCE data type 47
HIWORD macro 16
HMENU data type 46
HMODULE data type 47
hPrevInstance parameter 13
HWND type, porting to 32 bits 4

Import libraries 57, 58
Importing

inline functions 56
symbols 55

Imports, mutual 58
#include files, #define _MT and 63
Incrementing pointers 161
Indexing arrays, mixed-language

programming 138, 139
Indices, byte 162
Indirection errors, and STRICT 47
.INI files 14
Initialization (.INI) files 14
Initialization of DLLs 51
Initializing application instance 13
Inline assembly

advantages 117
__ asm blocks

described 117, 118
__ fastcall calling convention

limitations 124, 125
features 118 -120
function calls, C++ 127
function calls, C 126, 127
labels 125, 126
language elements, using 121-124
macros, defining as 127
optimization, effects on 128
registers 124, 125

__ asm keyword 117, 118
comments 120
data directives, limitations 119
data members 122, 123
debugging with CodeView 120
_emit pseudoinstruction 120
expressions, using 119
__ fastcall calling convention 124, 125

('

'1"1 1,

I~' I
,~
~

Inline assembly (continued)
function calls 126, 127
functions, writing 123, 124
instruction set 118
labels 125, 126
macros

defining __ asm blocks as 127
limitations 119

MASM compatibility limitations 119
operators, limitations 119, 121
optimization concerns 128
registers 124, 125
segment referencing 119
structure types 122, 123
symbols 122
type and variable sizes 119
using 117
variables 122, 123

Inline functions
imported 56
taking address of 56

Inlined code, profiling 148
Inlined functions

function profiling for 148
line profiling for 148

Input Method Editor (IME), support for 159
Input queues, localized 15
Input/output, file 12
Installing exception handlers 99
Instance

application 13
data, Window 10
handle 42

Instantiation
class template 78
discussed 76
explicit 78

Instructions, inline assembler 117,118,125,
126

INT 21H functions 11
Integer data types in mixed languages 137
Integers, size and range 17
Integers in Win32 4
International applications, enabling 152
Internationalization

discussed 151
development strategies 153

Interprocess communication 15

J
Jumping to labels, inline assembly 125, 126

K
Keyboard messages 28

L
Labels, inline assembly 125, 126
Last characters in strings 162
/LD compiler option 57
LENGTH operator, inline assembler use 119
LIB utility, and building DLLs 58
LIBCMT.LIB

alternatives to 62, 63
compiler options 63
/MT compiler option 63
using 62

Libraries
run-time, and DLLs 50
run-time DLL 57

Line profiling for inlined functions 148
Linking multithread applications 70
List box functions 13
ListBox_ control message functions 36
Loading DLLs 59
LoadLibrary API function 59
LOC function in FORTRAN 138
Local data, stack usage 69
Local handle 42
Local heap, and pointers 16, 17
Local variables, __ LOCAL_SIZE symbolic

constant 115
_~OCAL_SIZE symbolic constant 115
Locales

defined 154
setlocale function 154
setmbcp function 154

Localized input queues 15
LocalLock function 45
LockFile function 11
LOGICAL type in FORTRAN 143
Long filenames 12
longjmp function

described 106
using in C++ programs 91

_lopen and _lread functions 12
Low-level file I/O 12

Index

175

Index

176

Lower bounds of arrays 139
Lowercase, names in FORTRAN 132
LOWORDmacro 16
IParam

message parameter 4
and message crackers 26
and sending messages 35

LP ARAM data type 41
IpCmdLine parameter 13
LPCSTR data type 41
LPSTR data type 43
LPVOID data type 41, 43
LRESUL T data type 41

M
Macro Assembler, inline assembly See Inline

assembly
Macros

__ asm blocks, defining as 127
compared to templates 79
defined WINDOWS.H 42
HANDLE_MSG 25, 29, 30
HANDLE_ WM_ macros 24
inline assembly

limitations 119
using in 121

message decoders 24
message forwarders 26
message handlers 24

Main WndProc function 3
MAKELP macro 42
MAKELPARAM macro 42
MAKELRESUL T macro 42
MakeProcInstance function 44
MASM, inline assembly See Inline assembly
_MBCS code, using TCHAR.H data types

with 167
MCBS

general programming advice 161
programming 160, 167
support 158
support in Visual C++ 159
Unicode and 151

/MD compiler option 57
MDI applications, and message crackers 28
Member functions, templates 77
Menu handles 46

Message crackers
advantages 23
defined 23
dialog procedures and 30
handling special messages 28
MDI applications and 28
overview 23
user-defined messages 28
window instance data and 32
window subclassing and 30

Message decoders 24
Message forwarders 26
Message handlers

calling 25
discussed 23
naming 25
prototyping 25
writing 26

Message packing
and message sending 35
in Win32 4
summary of differences 17

Messages
button click and double click 27, 28
create window 28
extracting data from 5
keyboard 28

Metafile handles 42
Microsoft Macro Assembler, inline assembly

See Inline assembly
Mixed-language programming

32-bit languages 129
arrays, declaring, indexing 138
C to FORTRAN example 134
C++ classes 143
C++ name decoration, removing 136
calculating parameter-space size 133
calling conventions 130
common blocks 143
compiling, linking 136
COMPLEX type 142
defined 129
differences from 16-bit environments 129
FORTRAN to C example 135
functions, subroutines, and

procedures 129
LOGICALtype 143
mixed-case names 133
naming conventions 131

Mixed-language programming (continued)
null terminated strings 141
numeric data types 137
parameter-passing defaults 134
passing by value or by reference 133
pointers 138
strings 140
structures 142

/ML compiler option 57
Module handle 42
Module statistics vs. program statistics 148
Mouse capture 15
MoveTo function 8
MoveToEx function 8
MS-DOS filenames 12
MS-DOS system calls 11
MSVCRT.LIB

alternatives to 62, 63
using 62

MSVCRT30.DLL
alternatives to 62, 63
using 57,62

/MT compiler option 57
/MT compiler option, LIBCMT.LIB and 63
_MT symbolic constant, with include

files 63
Multiple application instances 13
Multiple document interface See MDI
MUltiprocessing, running threads 61
Multithread

applications, introduction to 61
DLL support 57
libraries, compiler options 63
program, sample 65
support and mixed languages 136

Mutexes 68
Mutually importing DLLs 58

N
Naked function calls

discussed 113, 114, 115
example 115
restrictions 115

Name decoration, removing 136
Naming conventions

and mixed languages 131
summary 132

Naming message handlers 25

near pointers
Nested exception handlers 99
Nonportable coding techniques 16
Null terminated strings 141
Numeric data types, in mixed languages 137

o
Object (.OBJ) files, symbol names in 131
Objects, and DLL initialization 50
OFFSETOF macro 42
OffsetViewportOrg function 8
OffsetWindowOrg function 8
_open and _read functions 12
Open file function 11
Operators, inline assembly

limitations 119, 121
Optimization, __ asm blocks, effect of 128
Overflow exception 103

p
PackDDEIParam 7
Parameter list error 48
Parameter passing, and mixed languages 133
Parameter-passing defaults 134
Parameter-space size, and __ stdcall naming

convention 132, 133
Parameterized types 75
Parameters

for message handlers 25
in graphics functions 9
of message forwarders 26
passing 109
to WinMain 13
widening 109

Pascal calling convention 111
__ pascal calling convention 111
pascal keyword, replaced by __ stdcall 129
Passing by value or by reference 133
.PBI files, reusing 147
.PBT files, reusing 147
Pens, shared 15
POINT structure 9
Pointer, smart, templates 81
Pointer indirection errors, and STRICT 47
Pointer manipulation 16

Index

177

Index

178

Pointers
compared to templates 80
generic 43
in mixed languages 138
in Win32 1
incrementing and decrementing 161

Polymorphic data types, and STRICT 46
PORT.INI file 2
Portability, character set 155
Portability guidelines

and message crackers 23
portability defined 1

Portable message-handling code 5
Porting

advanced applications 14
affect of coding techniques 16
file operations 12
message parameters 4
ranges and promotions 17
revising structures 16
revising WinMain 13
specific handle types 4
summary of API changes 7
summary of API differences 17
system calls 11
to 32 bits

general steps 2
top-down approach
using PORTTOOL utility 2

PORTIOOL utility 2
Precedence of exception handlers 99
Preprocessor directives, using in inline

assembly 121
Process attach 51
Process detach 51
Processes

resources and 61
with multiple threads 61

Processors, and hardware exceptions 103
Profile Dialog Box

Merge Option 146
PROFILE sessions

combining 145
Profile strings 14
Profiling

advanced 145
DLLs 147
function for inlined functions 148
inlined code 148

Profiling (continued)
line for inlined functions 148
miscellaneous restrictions 149
multiple .DLL and .EXE files 147
multithreaded applications 149
Win32 console applications 149

Prolog
calling conventions 109
user-defined 113

Promotion of data types 17
Protection violation 71
Prototyping message handlers 25
Pseudoinstructions, __ emit 120

R
RaiseException API function 102
Raising software exceptions 102
Ranges of data types 17
Re-entrancy with threads 62
_read function 12
Readable code, and message crackers 23
ReadFile function 11
Records, inline assembly limitations 119
Reference, passing by 133
REFERENCE attribute in FORTRAN 133
Registers

__ asm blocks 124, 125
saving 109

RegisterWindowMessage functions 29
Registration database 14
ReleaseMutex function 69
RemoveDirectory function 11
Resource handle 42
Resources, shared by threads 61
Responding to exceptions 100
Restrictions

exceptions 104
termination handlers 107

return statement, and termination
handlers 108

Return values
described 109
inline assembly, registers 124, 125

Returning strings in FORTRAN 141
Routine, defined 130
Row-major order 139

Run-time library
DLL 57

s

support for DLLs 50
threads and 62

Saving registers 109
Scale ViewportExt function 8
ScaleWindowExt function 8
Scope, labels in __ asm blocks 125, 126
ScrollBar_ control message functions 36
See __ asm blocks 143
Segmented memory, and porting 16
Segments, references to, inline assembly 119
SELECTOROF macro 42
SendDlgItemMsg function 45
Sending messages 35
SendMessage function 4,35,45
SetBitmapDimension function 8
SetClassLong function 10
SetClass Word function 10
setjmp function

described 106
using in C++ programs 91

setjmp/longjmp, with C++ exception
handling 91

setlocale function 154
setmbcp function 154
SetMetaFileBits function 8
SetProfileString function 14
SetViewportExt function 8
SetWindowExt function 8
SetWindowLong function 10, 45
SetWindowOrg function 8
SetWindowWord function 10,45
Shared graphical objects 15
Shared header files, and DLL imports 55
Sign extension, portability 17
Size of arrays, declaring 139
SIZE operator, inline assembler use 119
SIZE structure 9
Smart pointer, templates 81
Software exceptions 102
Specific handle types

and STRICT 44
use of 4, 42, 43

Specifying calling conventions 131
Specifying parameter-passing technique 134

Square brackets ([]), using in inline
assembly 121

Stacks
after function call 111
clean-up 110
threads and 62, 69

Static data
thread attribute 72
threads 62

Static_ control message functions 36
Static-extent data, defined 59
Statistics, program vs. module 148
STDCALL attribute in FORTRAN

effect on parameters 133
effect on string passing 141

stdcall calling convention 109, 110, 113
__ stdcall calling convention 109, 110, 113
__ stdcall keyword

effect on calling conventions 130
effect on naming conventions 132
example 134
replaces fortran keyword 129

Steps in porting to 32 bits 2
Storage class 53
Storage register variables, effect on __ asm

blocks 128
STRICT type checking

and C++ 44
and polymorphic types 46
compiling with 44
defined 43
effect of 43
effect on COMSTAT 47
effect on error messages 47
enabling 44
guidelines for best use 46
types generated 45
using function pointers 44

String-length argument, in FORTRAN 140
Strings

in mixed languages 140
last characters in 162
returning from FORTRAN 141

Structure alignment 16
Structure types, inline assembly 122, 123
Structured exception handling

and C++ objects 108
defined 98
dismissing exceptions 100

Index

179

Index

180

Structured exception handling (continued)
exception filters 99
exception handler precedence 99
exception handler syntax 99
getting exception code 101
hardware exceptions 103
mixing C++ and structured exception

handling 91
raising software exceptions 102
recognizing exceptions 98, 100
restrictions 104, 107
termination handlers 104
timing of actions 106
unwinding the stack 98, 105, 107

Structures
and near pointers 16
COMSTAT 47
inline assembly limitations 119

Subclassed windows, and message
crackers 31

Subroutines, and mixed-language
programming 129

Subscripts, array 139
Summaries

API and message differences 17
API differences 7
control message API 36

Superclass procedure, calling 31
SuspendThread, using with run-time

libraries 64
Symbol names in .OBJ files 131
Symbolic constants, using in inline

assembly 121
Symbols, using in inline assembly 121, 122
Synchronization

file access and 69
mutexes 68
ReleaseMutex function 69
threads 68
WaitForSingleObject function 69

syscall calling convention 111
__ syscall calling convention 111
System calls 11

T
Task handles 42
_ TCHAR data type 164

TCHAR.H data types, using with _MBCS
code 167

TCHAR.H header file 165
Templates

advantages of 79
class 77
class __ template instantiation 78
compared to macros 79
compared to void pointers 80
constuctors 78
definition of 75
destructors 78
explicit instantiation 78
function 76
function template overrides 77
garbage collection 81
instantiation 76
member functions 77
smart pointer example 81
type conversions 76
type safety 79,80
uses of 75, 79

Temporary filenames, getting 11
Termination handlers

defined 98
order of execution 105
purpose of 98, 104
restrictions 107
syntax of 105
writing 106

Termination of DLLs 51
Testing exception codes 101
Testing for software exceptions 103
Text mode, support for 12
thiscall calling convention 109, 111, 113
Thread attach 51
thread attribute

discussed 72-74
functions and 72
with type modifiers 72

Thread detach 51
Thread-local storage

andDLLs 59
discussed 71

Threads
and window focus 15
argument passing 69
_beginthread function 64
blocking 68

Threads (continued)
compiler options 63
compiling and linking 70
controlling with run-time library 64
creation of 64
description of 61
_endthread function 64
error messages 71
independence of 62
introduction to 61
multiprocessing 61
mutexes 68
re-entrancy 62
resources, sharing 68
resources and 61
sample program 65
sharing resources 68
stack usage 68, 69
synchronization 68
termination of 64
thread attribute 72-74
using run-time library with 62
using static data with 62
using the stack 62
Win32s 61
writing programs that use 68

throw statement 84
Time functions 11
Timing, exception handling 106
TLS 71
TlsAlloc function 71
TlsFree function 71
TlsGet Value function 71
TlsSetValue function 71
Tools, PORTTOOL 2
Top-down approach 1
__ try keyword 105
try statement 84
Type checking, STRICT 43
Type conversions, templates 76
type modifiers with thread attribute 72
TYPE operator, inline assembler use 119
Type safe linking, and STRICT 44
typedef names, using in inline assembly 121
Types

inline assembly
described 119
using names in 121

Types, parameterized 75

u
UINT data type 3, 41, 45
Underflow exception 103
Unicode

and MBCS development 151
programming summary 157
support 155

UnlockFile function 11
UnPackDDEIParam 7
Unresolved external, error message 131
Unsigned data types, in mixed

languages 138
Unwinding the stack 98, 105, 107
Uppercase names, in FORTRAN 132
User-defined messages 28
Using PORTIOOL 2
Utilities, PORTIOOL 2
Utility macros, in WINDOWS.H 42

v
Value, passing by 133
VALUE attribute in FORTRAN 133
Values, return, inline assembly,

registers 124, 125
vararg functions 110
variable arguments 110
Variables, inline assembly 119, 122, 123
Viewing symbol names in .OB] files 131,

137
Visual C++, building DLLs with 56

w
WaitForSingleObject function 69
Warning levels, and COMSTAT 47
Warning levels, and STRICT 44
Widening 109
Win32

API different from Windows 3.x 7
data increased to 32 bits 1
design goals 1
far pointer functions 12
flat memory model 16
localized input queues 15
long filenames 12
message-packing 4
pointers 16
profile strings 14

Index

181

Index

182

Win32 (continued)
system calls in 11
window focus 15
Window procedure 3

Win32s, multithreading and 61
WINAPI calling convention 111
WINAPI function type 3,41
Window

extra data 10
focus 15
instance data 10
instance data, and message crackers 32
procedures 3
subclassing, and message crackers 30

Windows
class structure 10
version, and COMST AT 47

Windows 3.x DLL initialization 52
Windows NT, porting See Win32
WINDOWS.H file 41
WINDOWSX.H file 12
WinMain function 13
WINVER symbol 47
WM_COMMAND message 5
WM_CREATE message 28
WM_DDE_ messages, 32 bit 7
WM_LBUTTONDBLCLK message 27, 28
WM_LBUTIONDOWN 28
WM_LBUTTONDOWN message 27
WM_NCCREATE message 28
wmain function 156
WNDCLASS structure

and message crackers 32
calculating offsets 10
cbClsExtra member 10
cbWndExtra field 32

WORD type, porting to 32 bits 4
WPARAM 41
WP ARAM data type 41
wParam message parameter

and message crackers 26
and sending messages 35
described 4

Wrapping, address 16, 17
WriteFile function 11
Writing functions, inline assembly code 123,

124
Writing message handlers 26

z
(Zg option, effect of STRICT on 45

Contributors to Programming Techniques

Richard Carlson, Index Editor

Pat Fenn, Production

Roger Haight, Editor

Jonathan Kagle, Writer

Seth Manheim, Writer

Chuck Sphar, Writer

David Adam Edelstein, Art Director

DEBUGGING fHE--··-················----

DEVELOPMENT PROCESS -

In this eagerly awaited companion to the award winning, bestselling Writing Solid Code, Steve
Maguire describes the sometimes controversial but always effective practices that enable his
software teams at Microsoft to develop high-quality software-on schedule.

With the refreshing candor reviewers admired in Writing Solid Code, Maguire talks about what
did and what didn't work at Microsoft and tells you:

• How to energize software teams to work effectively

• How to deliver on schedule and without overwork

• How to pull twice the value out of everything you do

• How to get your team going on a creative roll

If you're part of a development team, this book is for you. Once you've read it, you'll want to
give it to your manager, your peers, and your friends.

More Ways to Smooth Software Development
with the Programming Practices Series

from Microsoft Press

Code Complete
Steve McConnell

ISBN 1-55615-484-4
880 pages

$35.00 ($44.95 Canada)

Debugging tbe
Development Process

Steve Maguire
ISBN 1-55615-650-2

216 pages
$24.95 ($32.95 Canada)

Writing Solid Code
Steve Maguire

ISBN 1-55615-551-4
288 pages

$24.95 ($32.95 Canada)

Microsoft Press~ books are available wherever quality books are sold and through CompuServe's Electronic Mall-GO MSP.
Call1-800-MSPRESS for more information or to place a credit card order. * Please refer to BBK when placing your order. Prices subject to change.

*In Canada, contact Macmillan Canada, Attn: Microsoft Press Dept., 164 Commander Blvd., Agincourt, Ontario, Canada MIS 3C7, or call 1-800-667-1115.
Outside the U.S. and Canada, write to International Coordinator, Microsoft Press, One Microsoft Way, Redmond, WA 98052-6399 or fax +(206) 936-7329.

Microsoft Press

ISBN 1-55615-891-2
950 pages, with one CD-ROM
$45.00 ($59.95 Canada)

The Microsoft® Visual
C++™ development
system offers an

exciting new way to
create Windows®-based applications.

Now you can combine the power of object-
oriented programming with the efficiency of the C

language. The application framework approach in Visual C++-centering on the
Microsoft Foundation Class Library-enables programmers to simplify and
streamline the process of creating robust, professional applications for Windows.

INSIDE VISUAL C++ takes you one step at a time through the process of creating
real-world applications for Windows-the Visual C++ way. Using ample source
code examples, this book explores MFC, App Studio, and the product's nifty
"wizards" -App Wizard and Class Wizard-in action. The book also provides a
good explanation of application framework theory, along with tips for exploiting
hidden features of the MFC library.

Microsoft Press® books are available wherever quality books are sold and through CompuServe's Electronic Mall-GO MSP.
Call1-800-MSPRESS for more information or to place a credit card order.* Please refer to BBK when placing your order. Prices subject to change.

*In Canada, contact Macmillan Canada, Attn: Microsoft Press Dept., 164 Commander Blvd., Agincourt, Ontario, Canada MIS 3C7, or call1-800-667-1115.
Outside the U.S. and Canada, write to International Coordinator, Microsoft Press, One Microsoft Way, Redmond, WA 98052-6399, or fax +1-206-936-7329.

Microsoft Press

Volume Two~Six

This six-volume collection is the complete printed product documentation for Microsoft Visual C++ version 4, the development system fo r Win32®.
In book form, this information is portable and easy to access and browse,a comprehensive alternative to the substantial online help system in Visual C++.
Although the volumes are numbered as a set, you have the convenience and savings of buying only the volumes you need, when you need them.

Volume 1: MICROSOFT VISUAL C++ USER'S GUIDE
You'll get vital information on the Visual C++ development environment in this four-part tutorial. It provides detailed information on wizards, the
Component Gallery,and the Microsoft Developer Studio with its integrated debugger and code browser - all essential instruments for building and using
prebuilt applications in Visual C++. A comprehensive reference for all the command-line tools is included.

Volume 2: MICROSOFT VISUAL C++ PROGRAMMING WITH MFC
This comprehensive tutorial gives you valuable information for programming with the Microsoft
Foundation Class Library (MF(), and Microsoft Winl}, plus details on building OLE (ontrols.
You'll find out how MF(works with an in-depth overview and a valuable compilation of over
100 articles on MF(programming. Win12 topics cover exception handling, templates, OLLs,
and multithreading with a Visual (++ perspective.

Volume 3: MICROSOFT FOUNDATION CLASS LIBRARY REFERENCE, PART 1
Volume 4: MICROSOFT FOUNDATION CLASS LIBRARY REFERENCE, PART 2
This two-volume reference is your Rosetta stone to Visual C++, providing a thorough introduction
to MFC, a class library overview, and the alphabetical listing of all the classes used in MFC.
In-depth class descriptions summarize members by category and list member functions,
operators, and data members. Entries for member functions include return values, parameters, related classes, important comments, and source code
examples. Valuable information on macros and globals, structures, styles, callbacks, and message maps is included at the end of Volume 4.

Volume 5: MICROSOFT VISUAL C++ RUN-TIME LIBRARY REFERENCE
Combining the information of two books, this volume contains complete descriptions and alphabetical listings of all the functions and parameters in both
the run-time and iostream class libraries, and includes helpful source code examples. You'll also get full details on the 27 new debug run-time functions.

Volume 6: MICROSOFT VISUAL C++ LANGUAGE REFERENCE
Three books in one, the C and C++ references in this volume guide you through the two languages: terminologies and concepts, programming structures,
functions, declarations, and expressions. The C++ section also covers Run-Time Type Information (RTII) and Namespaces, important new language features
added to this version of Visual C++. The final section ofthis valuable resource discusses the preprocessor and translation phases, integral to C and C++
programming, and includes an alphabetical listing of preprocessor directives.

ISBN 1- 55 615-921-8

90000

U S_A. $29.95
UK £27.49
Canada $39.95

[Recommended] Microsoft·Press 9 78
I

