
Version 4

MICROSOFT$
WJNIX:MIS<!>
COMPATIBLE
32-8il App/icaliol1

TM

PART ONE

The Six-Volume Documentation Collection
for Microsoft Visual C++ Version 4 for Win32®

Volume Three - The first of two volumes containing a
complete description of all the functions and parameters

in Microsoft Foundation Class Library version 4,
including helpful source code examples

Micl'OSoft'Press
-- - -- --- - -- --~------- -- -- - ---- - ---- --

Microsofr Foundation
Class Library Reference
Part 1 of 2

Microsoft Visual C++TM
Development System for Windows® 95 and Windows NTTM
Version 4

Microsoft Corporation

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 1995 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted
in any form or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Microsoft Visual C++ programmer's references I Microsoft Corporation.

-- 2nd ed.
p. cm.

Includes index.
v. 1. Microsoft Visual C++ user's guide -- v. 2. Programming with

MFC -- v. 3. Microsoft foundation class library reference, part 1 --
v. 4. Microsoft foundation class library reference, part 2 -- v.
5. Microsoft Visual C++ run-time library reference -- v.
6. Microsoft Visual C/C++ language reference.

ISBN 1-55615-915-3 (v. 1). -- ISBN 1-55615-921-8 (v. 2).
1-55615-922-6 (v. 3). -- ISBN 1-55615-923-4 (v. 4). -- ISBN
1-55615-924-2 (v. 5). -- ISBN 1-55615-925-0 (v. 6)

ISBN

1. C++ (Computer program language) 2. Microsoft Visual C++.
I. Microsoft Corporation.
QA76.73.C153M53 1995
005. 13'3--dc20

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QMQM 0 9 8 7 6 5

95-35604
CIP

Distributed to the book trade in Canada by Macmillan of Canada, a division of
Canada Publishing Corporation.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further
information about international editions, contact your local Microsoft Corporation office. Or
contact Microsoft Press International directly at fax (206) 936-7329.

PostScript is a trademark of Adobe Systems, Inc. Macintosh and TrueType are registered trademarks of
Apple Computer, Inc. Borland, dBASE, dBASE II, dBASE III, dBASE IV, and Paradox are registered
trademarks of Borland International, Inc. Btrieve is a registered trademark of Btrieve Technologies, Inc.
Hewlett-Packard is a registered trademark of Hewlett-Packard Company. Intel is a registered trademark of
Intel Corporation. IBM is a registered trademark of International Business Machines Corporation. FoxPro,
Microsoft, Microsoft Press, MS, MS-DOS, Visual Basic, Win32, Win32s, and Windows are registered
trademarks and Visual C++ and Windows NT are trademarks of Microsoft Corporation in the U.S.A. and
other countries. ORACLE is a registered trademark of Oracle Corporation. Unicode is a trademark of
Unicode, Inc.

Acquisitions Editor: Eric Stroo
Project Editor: Brenda L. Matteson

Contents

Introduction xi

Class Library Overview 1
About the Microsoft Foundation Classes
Root Class: CObject 4
MFC Application Architecture Classes 4
Window, Dialog, and Control Classes 10
Drawing and Printing Classes 17
Simple Data Type Classes 18
Array, List, and Map Classes 19
File, Database, and Socket Classes 21
OLE Classes 24
Debugging and Exception Classes 29

Alphabetical Reference to the Microsoft Foundation Class Library 33
CAnimateCtrl 33
CArchive 38
CArchiveException 56
CArray 58
CAsyncSocket 68
CBitmap 102
CBitmapButton 112
CBrush 117
CButton 126
CByteArray 136
CCheckListBox 138
CClientDC 143
CCmdTarget 145
CCmdUI 155
CColorDialog 158
CComboBox 163
CCommandLinelnfo 189
CCommonDialog 195

iii

Contents

CConnectionPoint 197
CControlBar 201
CCreateContext 209
CCriticalSection 211
CCtrlView 214
CDaoDatabase 216
CDaoException 239
CDaoFieldExchange 245
CDaoQueryDef 250
CDaoRecordset 271
CDaoRecordView 339
CDaoTableDef 345
CDao Workspace 370
CDatabase 394
CDataExchange 408
CDBException 412
CDC 416
CDialog 549
CDialogBar 561
CDocItem 564
CDocTemplate 566
CDocument 579
CDragListBox 600
CDumpContext 604
CDWordArray 609
CEdit 611
CEditView 633
CEvent 643
CException 647
CFieldExchange 652
CFile 655
CFileDialog 673
CFileException 682
CFindReplaceDialog 687
CFont 694
CFontDialog 703
CFontHolder 709
CForm View 713
CFrameWnd 717

iv

CGdiObject 736
CHeaderCtrl 744
CHotKeyCtrl 751
ClmageList 755
CList 769
CListBox 780
CListCtrl 806
CListView 838
CLongBinary 840
CMap 842
CMapPtrToPtr 849
CMapPtrToWord 851
CMapStringToOb 853
CMapStringToPtr 861
CMapStringToString 863
CMapWordToOb 865
CMapWordToPtr 867
CMDIChildWnd 869
CMDIFrameWnd 874
CMemFile 882
CMemoryException 888
CMemoryState 889
CMenu 893
CMetaFileDC 917
CMiniFrame Wnd 922
CMultiDocTemplate 924
CMultiLock 927
CMutex 931
CNotSupportedException 933
CObArray 934
CObject 944
CObList 952
COleBusyDialog 969
COleChangeIconDialog 973
COleChangeSourceDialog 977
COleClientltem 982
COleControl 1026
COleControlModule 1079
COleConvertDialog 1080

Contents

v

Contents

COleCurrency 1086
COleDataObject 1098
COleDataSource 1105
COleDateTime 1116
COleDateTimeSpan 1140
COleDialog 1154
COleDispatchDriver 1156

Index

Part 2

vi

COleDispatchException 1163
COleDocument 1166
COleDropSource 1175
COleDropTarget 1179
COleException 1186
COlelnsertDialog 1188
COleIPFrameWnd 1194
COleLinkingDoc 1197
COleLinksDialog 1201
COleMessageFilter 1204
COleObjectFactory 1211
COlePasteSpecialDialog 1218
COlePropertiesDialog 1225
COlePropertyPage 1230
COleResizeBar 1237
COleServerDoc 1239
COleServerItem 1256
COleStreamFile 1277
COleTemplateServer 1281
COleUpdateDialog 1284
COleVariant 1286
CPageSetupDialog 1292
CPaintDC 1301
CPalette 1303
CPen 1310
CPictureHolder 1318
CPoint 1324
CPrintDialog 1330

CPrintInfo 1339
CProgressCtrl 1346
CPropertyPage 1350
CPropertySheet 1358
CPropExchange 1369
CPtrArray 1374
CPtrList 1376
CRecordset 1378
CRecordView 1412
CRect 1418
CRectTracker 1435
CResourceException 1444
CRgn 1445
CRichEditCntrItem 1459
CRichEditCtrl 1461
CRichEditDoc 1490
CRichEditView 1493
CRuntimeClass 1514
CScrollBar 1515
CScrollView 1522
CSemaphore 1530
CSingleDocTemplate 1532
CSingleLock 1535
CSize 1538
CSliderCtrl 1542
CSocket 1554
CSocketFile 1560
CSpinButtonCtrl 1562
CSplitterWnd 1569
CStatic 1587
CStatusBar 1594
CStatusBarCtrl 1602
CStdioFile 1610
CString 1614
CStringArray 1641
CStringList 1643
CSyncObject 1645
CTabCtrl 1647
CTime 1660

Contents

vii

Contents

viii

CTimeSpan 1671
CToolBar 1679
CToolBarCtrl 1691
CToolTipCtrl 1719
CTreeCtrl 1727
CTreeView 1752
CTypedPtrArray 1754
CTypedPtrList 1757
CTypedPtrMap 1763
CUIntArray 1766
CUserException 1768
CView 1770
CWaitCursor 1790
CWinApp 1794
CWindowDC 1837
CWinThread 1839
CWnd 1850
CWordArray 2044

Macros and Globals 2046
Data Types 2047
Run-Time Object Model Services 2048
Diagnostic Services 2050
Exception Processing 2052
CString Formatting and Message-Box Display 2053
Message Map Macros 2054
Application Information and Management 2056
Standard Command and Window Ids 2057
Collection Class Helpers 2058
Record Field Exchange Functions 2058
Dialog Data Exchange Functions for CRecordView and CDaoRecordView 2060
Database Macros 2061
OLE Initialization 2061
Application Control 2062
Dispatch Maps 2062
Variant Parameter Type Constants 2063
Type Library Access 2064
Property Pages 2064
Event Maps 2066

Event Sink Maps 2067

Connection Maps 2067

Registering OLE Controls 2068
Class Factories and Licensing 2069

Persistence of OLE Controls 2070

Macros, Global Functions, and Global Variables 2070

Class Wizard Comment Delimiters 2202

Callback Functions, Structures, and Styles 2208
Callback Functions Used by MFC 2208

Structures Used by MFC 2210
Styles Used by MFC 2270

Index

Contents

ix

Introduction

The Class Library Overview lists the classes in helpful categories. Use these lists to
help locate a class that contains the functionality you are interested in. Programming
with MFC explains how to use the class library to program for Microsoft Windows
NTTM, Microsoft Windows® 95, and other Win32® platforms. Practical examples and
techniques are supplied in the tutorials in Tutorials.

The remainder of the Class Library Reference consists of an alphabetical listing of
the classes and a Macros and Globals section that explains the global functions,
global variables, and macros used with the class library.

The individual hierarchy charts included with each class are useful for locating base
classes. The Class Library Reference usually does not describe inherited member
functions, inherited operators, and overridden virtual member functions. For
information on these functions, refer to the base classes depicted in the hierarchy
diagrams.

In the alphabetical listing section, each class description includes a member summary
by category, followed by alphabetical listings of member functions, overloaded
operators, and data members.

Public and protected class members are documented only when they are normally
used in application programs or derived classes. Occasionally, private members are
listed because they override a public or protected member in the base class. See the
class header files for a complete listing of class members.

Some C-Ianguage structures defined by Windows are so widely applicable that their
descriptions have been reproduced completely in a section following the alphabetical
reference.

Please note that the "See Also" sections refer to Win32 API functions by prefacing
them with the scope resolution operator (::), for example, : :EqualRect. More
information on these functions can be found in the Win32 SDK documentation.

xi

Class Library Overview

Class Library Overview
This overview categorizes and describes the classes in the Microsoft Foundation
Class Library (MFC) version 4.0. The classes in MFC, taken together, constitute an
"application framework" - the framework of an application written for the Windows
API. Your programming task is to fill in the code that is specific to your application.

About the Microsoft Foundation Classes
The library's classes are presented here in the following categories:

• Root Class: CObject

• MFC Application Architecture Classes

• Application and Thread Support Classes

• Command Routing Classes

• Document Classes

• View Classes (Architecture)

• Frame Window Classes (Architecture)

• Document-Template Classes

• Window, Dialog, and Control Classes

• Frame Window Classes (Windows)

• View Classes (Windows)

• Dialog Box Classes

• Control Classes

• Control Bar Classes

• Drawing and Printing Classes

• Output (Device Context) Classes

• Drawing Tool Classes

• Simple Data Type Classes

• Array, List, and Map Classes

• Template Classes for Arrays, Lists, and Maps

• Ready-to-Use Array Classes

• Ready-to-Use List Classes

• Ready-to-Use Map Classes

Class Library Overview

• File, Database, and Socket Classes

• File 110 Classes

• DAO Classes

• ODBC Classes

• Windows Sockets Classes

• OLE Classes

• OLE Container Classes

• OLE Server Classes

• OLE Drag-and-Drop and Data Transfer Classes

• OLE Common Dialog Classes

• OLE Automation Classes

• OLE Control Classes

• OLE-Related Classes

• Debugging and Exception Classes

• Debugging Support Classes

• Exception Classes

The section "General Class Design Philosophy" explains how the Microsoft
Foundation Class Library was designed.

The framework is explained in detail in Chapters I though 8 of Programming with
MFC. Some of the classes listed above are general-purpose classes that can be used
outside of the framework. Chapter 8, "Using the General-Purpose Classes," of
Programming with MFC details these classes, which provide useful abstractions such
as collections, exceptions, files, and strings.

To see the inheritance of a class, use the Class Hierarchy Chart in Books Online.

In addition to the classes listed in this chapter, the Microsoft Foundation Class
Library contains a number of global functions, global variables, and macros. There is
an overview and detailed listing of these in the section "Macros and Globals," which
follows the alphabetical reference to the MFC classes.

General Class Design Philosophy

2

Microsoft Windows was designed long before the C++ language became popular.
Because thousands of applications use the C-language Windows application
programming interface (API), that interface will be maintained for the foreseeable
future. Any C++ Windows interface must therefore be built on top of the procedural
C-language API. This guarantees that C++ applications will be able to coexist with C
applications.

Class Library Overview

The Microsoft Foundation Class Library is an object-oriented interface to Windows
that meets the following design goals:

• Significant reduction in the effort to write an application for Windows.

• Execution speed comparable to that of the C-Ianguage API.

• Minimum code size overhead.

• Ability to call any Windows C function directly.

• Easier conversion of existing C applications to C++.

• Ability to leverage from the existing base of C-Ianguage Windows programming
experience.

• Easier use of the Windows API with C++ than with C.

• Easier-to-use yet powerful abstractions of complicated features such as OLE,
database support, printing, toolbars, and status bars.

• True Windows API for C++ that effectively uses C++ language features.

The Application Framework
The core of the Microsoft Foundation Class Library is an encapsulation of a large
portion of the Windows API in C++ form. Library classes represent windows, dialog
boxes, device contexts, common GDI objects such as brushes and pens, controls, and
other standard Windows items. These classes provide a convenient C++ member
function interface to the structures in Windows that they encapsulate. For more
information about these core classes, see "Windows of Your Own with CWnd" in
Chapter 1 of Programming with MFC.

But the Microsoft Foundation Class Library also supplies a layer of additional
application functionality built on the C++ encapsulation of the Windows API. This
layer is a working application framework for Windows that provides most of the
common user interface expected of programs for Windows, including toolbars, status
bars, printing, print preview, database support, and OLE support. Chapter 1, "Using
the Classes to Write Applications for Windows," of Programming with MFC explains
the framework in detail, and Tutorials provides the Scribble tutorial, which teaches
application-framework programming.

Relationship to the C-Language API
The single characteristic that sets the Microsoft Foundation Class Library apart from
other class libraries for Windows is the very close mapping to the Windows API
written in the C language. Further, you can generally mix calls to the class library
freely with direct calls to the Windows API. This direct access does not, however,
imply that the classes are a complete replacement for that API. Developers must still
occasionally make direct calls to some Windows functions-SetCursor and

3

Class Library Overview

GetSystemMetrics, for example. A Windows function is wrapped by a class member
function only when there is a clear advantage to doing so.

Because you sometimes need to make native Windows function calls, you should have
access to the C-Ianguage Windows API documentation. This documentation is
included with Microsoft Visual C++TM. Two useful books are Advanced Windows, by
Jeffrey Richter, and Programming Windows 3.1, third edition, by Charles Petzold.
Both are published by Microsoft Press. Many of those books' examples can be easily
converted to the Microsoft Foundation classes. For examples and additional
information about programming with the Microsoft Foundation Class Library, see
Inside Visual C++ by David J. Kruglinski, also published by Microsoft Press.

Note For an overview of how the Microsoft Foundation Class Library framework operates, see
Chapter 1, "Using the Classes to Write Applications for Windows," in Programming with MFG.
The overview material is no longer located in the Class Library Reference.

Class Summary by Category
The following is a brief summary of the classes in the Microsoft Foundation Class
Library, divided by category to help you locate what you need. In some cases, a class
is listed in more than one category. To see the inheritance of a class, use the Class
Hierarchy Chart in Books Online.

Root Class: CObject
Most of the classes in the Microsoft Foundation Class Library are derived from a
single base class at the root of the class hierarchy. CObject provides a number of
useful capabilities to all classes derived from it, with very low overhead. For more
information about CObject and its capabilities, see the article "CObject Class" in
Programming with MPC.

CObject The ultimate base class of most MFC classes. Supports serializing data
and obtaining run-time information about a class.

CRuntimeClass Structure used to determine the exact class of an object at run time.

MFC Application Architecture Classes

4

Classes in this category contribute to the architecture of a framework application.
They supply functionality common to most applications. You fill in the framework to
add application-specific functionality. Typically, you do so by deriving new classes
from the architecture classes, then adding new members and/or overriding existing
member functions.

Class Library Overview

AppWizard generates several types of applications, all of which use the application
framework in differing ways. SDI (single document interface) and MDI (multiple
document interface) applications make full use of a part of the framework called
document/view architecture. Other types of applications, such as dialog-based
applications, form-based applications, and DLLs, use only some of document/view
architecture features.

Document/view applications contain one or more sets of documents, views, and frame
windows. A document-template object associates the classes for each
document/view Iframe set.

Although you do not have to use document/view architecture in your MFC
application, there are a number of advantages to doing so. MFC's OLE container and
server support is based on document/view architecture, as is support for printing and
print preview.

All MFC applications have at least two objects: an application object derived from
CWinApp, and some sort of main window object, derived (often indirectly) from
CWnd. (Most often, the main window is derived from CFrameWnd,
CMDIFrameWnd, or CDialog, all of which are derived from CWnd.)

Applications that use document/view architecture contain additional objects. The
principal objects are as follows:

• An application object derived from class CWinApp, as mentioned before.

• One or more document objects derived from class CDocument. Document objects
are responsible for the internal representation of the data manipulated in the view.
They may be associated with a data file.

• One or more view objects derived from class CView, each attached to a document
and associated with a window. Views display and manipulate the data contained in
a document object.

Document/view applications also contain frame windows (derived from
CFrameWnd) and document templates (derived from CDocTemplate).

Application and Thread Support Classes
Each application has one and only one application object; this object coordinates
other objects in the running program and is derived from CWinApp.

The Microsoft Foundation Class Library supports multiple threads of execution
within an application. All applications must have at least one thread; the thread used
by your CWinApp object is this "primary" thread.

CWinThread encapsulates a portion of the operating system's threading capabilities.
To make using multiple threads easier, MFC also provides synchronization object
classes to provide a C++ interface to Win32 synchronization objects.

5

Class Library Overview

Application and Thread Classes
CWinApp Encapsulates the code to initialize, run, and terminate the application.

You will derive your application object from this class.

CWinThread The base class for all threads. Vse directly, or derive a class from
CWinThread if your thread performs user-interface functions. CWinApp is
derived from CWinThread.

Synchronization Object Classes
CSyncObject Base class of the synchronization object classes.

CCriticalSection A synchronization class that allows only one thread within a
single process to access an object.

CSemaphore A synchronization class that allows between one and a specified
maximum number of simultaneous accesses to an object.

CMutex A synchronization class that allows only one thread within any number of
processes to access an object.

CEvent A synchronization class that notifies an application when an event has
occurred.

CSingleLock V sed in member functions of thread-safe classes to lock on one
synchronization object.

CMultiLock Vsed in member functions of thread-safe classes to lock on one or
more synchronization objects from an array of synchronization objects.

Related Classes
CCommandLinelnfo Parses the command line with which your program was

started.

CWaitCursor Puts a wait cursor on the screen. Vsed during lengthy operations.

Command Routing Classes

6

As the user interacts with the application by choosing menus or control-bar buttons
with the mouse, the application sends messages from the affected user-interface
object to an appropriate command-target object. Command-target classes derived
from CCmdTarget include CWinApp, CWnd, CDocTemplate, CDocoment,
CView, and the classes derived from them. The framework supports automatic
command routing so that commands can be handled by the most appropriate object
currently active in the application.

An object of class CCmdID is passed to your command targets' OnUpda teCmdU I
handler functions to allow you to update the state of the user interface for a particular
command (for instance, to check or remove the check from menu items). You call
member functions of the CCmdUI object to update the state of the VI object. This

Class Library Overview

process is the same whether the UI object associated with a particular command is a
menu item or a button or both.

CCmdTarget Serves as the base class for all classes of objects that can receive and
respond to messages.

CCmdUI Provides a programmatic interface for updating user-interface objects
such as menu items or control-bar buttons. The command target object enables,
disables, checks, and/or clears the user-interface object via this object.

Document Classes
Document objects, created by document-template objects, manage the application's
data. You will derive a class for your document objects from one of these classes.

Document objects interact with view objects. View objects represent the client area of
a window, display a document's data, and allow users to interact with it. Documents
and views are created by a document-template object.

CDocument The base class for application-specific documents. Derive your
document class(es) from CDocument.

COleDocument Used for OLE compound document implementation, as well as
basic container support. Serves as a container for classes derived from CDocItem.
This class can be used as the base class for container documents and is the base
class for COleServerDoc.

COleLinkingDoc A class derived from COleDocument that provides the
infrastructure for linking. You should derive the document classes for your
container applications from this class instead of from COleDocument if you want
them to support links to embedded objects.

CRichEditDoc Maintains the list of OLE client items that are in the rich edit
control. Used with CRichEditView and CRichEditCntrItem.

COleServerDoc Used as the base class for server-application document classes.
COleServerDoc objects provide the bulk of server support through interactions
with COleServerItem objects. Visual editing capability is provided using the class
library's document/view architecture.

Related Classes
Document objects can be persistent-in other words, they can write their state to a
storage medium and read it back. MFC provides the CArchive class to facilitate
transferring the document's data to a storage medium.

CArchive Cooperates with a CFile object to implement persistent storage for
objects through serialization (see CObject::Serialize).

Documents can also contain OLE objects. CDocItem is the base class of the server
and client items.

7

Class Library Overview

CDocltem Abstract base class of COleClientltem and COleServerItem. Objects of
classes derived from CDocltem represent parts of documents.

View Classes (Architecture)
CView and its derived classes are child windows that represent the client area of a
frame window. Views show data and accept input for a document.

A view class is associated with a document class and a frame window class using a
document-template object.

CView The base class for application-specific views of a document's data. Views
display data and accept user input to edit or select the data. Derive your view
class(es) from CView.

CScrollView The base class for views with scrolling capabilities. Derive your view
class from CScrollView for automatic scrolling.

Form and Record Views
Form views are also scrolling views. They are based on a dialog box template.

Record views are derived from form views. In addition to the dialog box template,
they Iso have a connection to a database.

CFor View A scroll view whose layout is defined in a dialog resource. Derive
class from CFormView to implement user interfaces quickly based on dialog
resourc .

CDaoRecordView Provides a form view directly connected to a Data Access Object
(DAO) recordset object. Like all form views, a CDaoRecordView is based on a
dialog template resource.

CRecordView Provides a form view directly connected to an Open Database
Connectivity (ODBC) recordset object. Like all form views, a CRecordView is
based on a dialog template resource.

Control Views

8

Control views display a control as their view.

CCtrlView The base class for all views associated with Windows controls. The
views based on controls are described below.

CEditView A view that contains a Windows standard edit control (see CEdit). Edit
controls support text-editing, searching, replacing, and scrolling capabilities.

CRichEditView A view that contains a Windows rich edit control (see
CRichEditCtrl). In addition to the capabilities of an edit control, rich edit
controls support fonts, colors, paragraph formatting, and embedded OLE objects.

Class Library Overview

CListView A view that contains a Windows list control (see CListCtrl). A list
control displays icons and strings in a manner similar to the right-hand pane of
the Windows 95 Explorer.

CTreeView A view that contains a Windows tree control (see CTreeCtrl). A tree
control displays icons and strings arranged in a hierarchy in a manner similar to
the left-hand pane of the Windows 95 Explorer.

Frame Window Classes (Architecture)
In document/view architecture, frame windows are windows that contain a view
window. They also support having control bars attached to them.

In multiple document interface (MDI) applications, the main window is derived from
CMDIFrameWnd. It indirectly contains the documents' frames, which are
CMDIChildWnd objects. The CMDIChildWnd objects, in tum, contain the
documents' views.

In single document interface (SDI) applications, the main window, derived from
CFrameWnd, contains the view of the current document.

CFrameWnd The base class for an SDI application's main frame window. Also the
base class for all other frame window classes.

CMDIFrameWnd The base class for an MDI application's main frame window.

CMDIChildWnd The base class for an MDI application's document frame
windows.

COleIPFrameWnd Provides the frame window for a view when a server document
is being edited in place.

Document-Template Classes
Document-template objects coordinate the creation of document, view, and frame
window objects when a new document and/or view is created.

CDocTemplate The base class for document templates. You will never use this class
directly; instead, you'll use one of the other document-template classes derived
from this class.

CMultiDocTemplate A template for documents in the multiple document interface
(MDI). MDI applications can have multiple documents open at a time.

CSingleDocTemplate A template for documents in the single document interface
(SDI). SDI applications have only one document open at a time.

9

Class Library Overview

Related Class
CCreateContext A structure passed by a document template to window-creation

functions to coordinate the creation of document, view, and frame-window objects.

Window, Dialog, and Control Classes
Class CWnd and its derived classes encapsulate an HWND, a handle to a Windows
window. CWnd can be used by itself or as a base for deriving new classes. The
derived classes supplied by the class library represent various kinds of windows.

CWnd The base class for all windows. You can use one of the classes derived from
CWnd or derive your own classes directly from it.

Frame Window Classes (Windows)
Frame windows are windows that frame an application or a part of an application.
Frame windows usually contain other windows, such as views, tool bars, and status
bars. In the case of CMDIFrameWnd, they may contain CMDICbildWnd objects
indirectly.

CFrameWnd The base class for an SDI application's main frame window. Also the
base class for all other frame window classes.

CMDIFrameWnd The base class for an MDI application's main frame window.

CMDICbildWnd The base class for an MDI application's document frame
windows.

CMiniFrameWnd A half-height frame window typically seen around floating
toolbars.

COleIPFrame Wnd Provides the frame window for a view when a server document
is being edited in place.

Related Class

10

Class CMenu provides an interface through which to access your application's
menus. It is useful for manipulating menus dynamically at run time; for example,
when adding or deleting menu items according to context. Although menus are most
often used with frame windows, they can also be used with dialog boxes and other
nonchild windows.

CMenu Encapsulates an HMENU handle to the application's menu bar and pop-up
menus.

Class Library Overview

View Classes (Windows)
CView and its derived classes are child windows that represent the client area of a
frame window. Views show data and accept input for a document.

A view class is associated with a document class and a frame window class using a
document-template object.

CView The base class for application-specific views of a document's data. Views
display data and accept user input to edit or select the data. Derive your view
class(es) from CView.

CScrollView The base class for views with scrolling capabilities. Derive your view
class from CScrollView for automatic scrolling.

Form and Record Views
Form views are also scrolling views. They are based on a dialog box template.

Record views are derived from form views. In addition to the dialog box template,
they also have a connection to a database.

CForm View A scroll view whose layout is defined in a dialog resource. Derive
classes from CForm View to implement user interfaces quickly based on dialog
resources.

CDaoRecordView Provides a form view directly connected to a Data Access Object
(DAO) recordset object. Like all form views, a CDaoRecordView is based on a
dialog template resource.

CRecordView Provides a form view directly connected to an Open Database
Connectivity (ODBC) recordset object. Like all form views, a CRecordView is
based on a dialog template resource.

Control Views
Control views display a control as their view.

CCtrlView The base class for all views associated with Windows controls. The
views based on controls are described below.

CEditView A view that contains a Windows standard edit control (see CEdit). Edit
controls support text-editing, searching, replacing, and scrolling capabilities.

CRichEditView A view that contains a Windows rich edit control (see
CRichEditCtrl). In addition to the capabilities of an edit control, rich edit
controls support fonts, colors, paragraph formatting, and embedded OLE objects.

CListView A view that contains a Windows list control (see CListCtrl). A list
control displays a collection of items, each consisting of an icon and a label, in a
manner similar to the right-hand pane of the Windows 95 Explorer.

11

Class Library Overview

CTreeView A view that contains a Windows tree control (see CTreeCtrl). A tree
control displays a hierarchical list of icons and labels arranged in a manner
similar to the left-hand pane of the Windows 95 Explorer.

Related Classes
CSplitterWnd allows you to have multiple views within a single frame window.
CPrintDialog and CPrintlnfo support the print and print preview ability of views.
CRichEditDoc and CRichEditCntrItem are used with CRichEditView to
implement OLE container capabilities.

CSplitterWnd A window that the user can split into multiple panes. These panes
can be resizable by the user or fixed size.

CPrintDialog Provides a standard dialog box for printing a file.

CPrintInfo A structure containing information about a print or print preview job.
Used by CView's printing architecture.

CRichEditDoc Maintains the list of OLE client items that are in a CRichEditView.

CRichEditCntrltem Provides client-side access to an OLE item stored in a
CRichEditView.

Dialog Box Classes
Class CDialog and its derived classes encapsulate dialog-box functionality. Since a
dialog box is a special kind of window, CDialog is derived from CWnd. Derive your
dialog classes from CDialog or use one of the common dialog classes for standard
dialog boxes, such as opening or saving a file, printing, selecting a font or color,
initiating a search-and-replace operation, or performing various OLE-related
operations.

CDialog The base class for all dialog boxes-both modal and modeless.

CDataExchange Supplies data exchange and validation information for dialog
boxes.

Common Dialogs

12

These dialog box classes encapsulate the Windows common dialog boxes. They
provide easy-to-use implementations of complicated dialog boxes.

CCommonDialog This is the base class for all common dialog boxes.

CFileDialog Provides a standard dialog box for opening or saving a file.

CColorDialog Provides a standard dialog box for selecting a color.

CFontDialog Provides a standard dialog box for selecting a font.

CFindReplaceDialog Provides a standard dialog box for a search-and-replace
operation.

CPrintDialog Provides a standard dialog box for printing a file.

Class Library Overview

CPageSetupDialog Encapsulates the services provided by the Windows common
Page Setup dialog box with additional support for setting and modifying print
margins.

OLE Common Dialogs
OLE adds several common dialog boxes to Windows. These classes encapsulate the
OLE common dialog boxes.

COleDialog Used by the framework to contain common implementations for all
OLE dialog boxes. All dialog box classes in the user-interface category are derived
from this base class. Cannot be used directly.

COlelnsertDialog Displays the Insert Object dialog box, the standard user interface
for inserting new OLE linked or embedded items.

COlePasteSpecialDialog Displays the Paste Special dialog box, the standard user
interface for implementing the Edit Paste Special command.

COleLinksDialog Displays the Edit Links dialog box, the standard user interface
for modifying information about linked items.

COleChangelconDialog Displays the Change Icon dialog box, the standard user
interface for changing the icon associated with an OLE embedded or linked item.

COleConvertDialog Displays the Convert dialog box, the standard user interface
for converting OLE items from one type to another.

COlePropertiesDialog Encapsulates the Windows common OLE Properties dialog
box. Common OLE Properties dialog boxes provide an easy way to display and
modify the properties of an OLE document item in a manner consistent with
Windows standards.

COleUpdateDialog Displays the Update dialog box, the standard user interface for
updating all links in a document. The dialog box contains a progress indicator to
indicate how close the update procedure is to completion.

COleChangeSourceDialog Displays the Change Source dialog box, the standard
user interface for changing the destination or source of a link.

COleBusyDialog Displays the Server Busy and Server Not Responding dialog
boxes, the standard user interface for handling calls to busy applications. Usually
displayed automatically by the COleMessageFilter implementation.

Property Sheet Classes
The property sheet classes allow your applications to use property sheets, also known
as "tabbed dialogs." Property sheets are an efficient way to organize a large number
of controls in a single dialog box.

CPropertyPage Provides the individual pages within a property sheet. Derive a
class from CPropertyPage for each page to be added to your property sheet.

13

Class Library Overview

CPropertySheet Provides the frame for multiple property pages. Derive your
property sheet class from CPropertySheet to implement your property sheets
quickly.

COlePropertyPage Displays the properties of an OLE custom control in a
graphical interface, similar to a dialog box.

Related Classes
These classes are not dialog boxes per se, but they use dialog box templates and have
much of the behavior of dialog boxes.

CDialogBar A control bar that is based on a dialog box template.

CForm View A scroll view whose layout is defined in a dialog resource. Derive
classes from CForm View to implement user interfaces quickly based on dialog
resources.

CDaoRecordView Provides a form view directly connected to a Data Access Object
(DAO) recordset object. Like all form views, a CDaoRecordView is based on a
dialog template resource.

CRecordView Provides a form view directly connected to an Open Database
Connectivity (ODBC) recordset object. Like all form views, a CRecordView is
based on a dialog template resource.

CPrintInfo A structure containing information about a print or print preview job.
Used by CView's printing architecture.

Control Classes
Control classes encapsulate a wide variety of standard Windows controls ranging
from static text controls to tree controls. In addition, MFC provides some new
controls, including buttons with bitmaps and control bars.

The controls whose class names end in "Ctrl" are new in Windows 95 and Windows
NT version 3.51.

Static Display Controls
CStatic A static-display window. Static controls are used to label, box, or separate

other controls in a dialog box or window. They may also display graphical images
rather than text or a box.

Text Controls

14

CEdit An editable-text control window. Edit controls are used to accept textual
input from the user.

CRichEditCtrl A control in which the user can enter and edit text. Unlike the
control encapsulated in CEdit, a rich edit control supports character and
paragraph formatting and OLE objects.

Class Library Overview

Controls Which Represent Numbers

Buttons

Lists

CSliderCtrl A control containing a slider, which the user moves to select a value or
set of values.

CSpinButtonCtrl A pair of arrow buttons the user can click to increment or
decrement a value.

CProgressCtrl Displays a rectangle that is gradually filled from left to right to
indicate the progress of an operation.

CScrollBar A scroll-bar control window. The class provides the functionality of a
scroll bar, for use as a control in a dialog box or window, through which the user
can specify a position within a range.

CButton A button control window. The class provides a programmatic interface for
a pushbutton, check box, or radio button in a dialog box or window.

CBitmapButton A button with a bitmap rather than a text caption.

CListBox A list-box control window. A list box displays a list of items that the user
can view and select.

CDragListBox Provides the functionality of a Windows list box; allows the user to
move list box items, such as filenames and string literals, within the list box. List
boxes with this capability are useful for an item list in an order other than
alphabetical, such as include pathnames or files in a project.

CComboBox A combo-box control window. A combo box consists of an edit control
plus a list box.

CCheckListBox Displays a list of items with check boxes, which the user can check
or clear, next to each item.

CListCtrl Displays a collection of items, each consisting of an icon and a label, in a
manner similar to the right-hand pane of the Windows 95 Explorer.

CTreeCtrl Displays a hierarchical list of icons and labels arranged in a manner
similar to the left-hand pane of the Windows 95 Explorer.

Toolbars and Status Bars
CToolBarCtrl Provides the functionality of the Windows toolbar common control.

Most MFC programs use CToolBar instead of this class.

CStatusBarCtrl A horizontal window, usually divided into panes, in which an
application can display status information. Most MFC programs use CStatusBar
instead of this class.

15

Class Library Overview

Miscellaneous Controls
CAnimateCtrl Displays a simple video clip.

CToolTipCtrl A small pop-up window that displays a single line of text describing
the purpose of a tool in an application.

CHeaderCtrl Displays titles or labels for columns.

CTabCtrl A control with tabs on which the user can click, analogous to the dividers
in a notebook.

CHotKeyCtrl Enables the user to create a "hot key" combination, which the user
can press to perform an action quickly.

Related Classes
ClmageList Provides the functionality of the Windows image list. Image lists are

used with list controls and tree controls. They can also be used to store and archive
a set of same-sized bitmaps.

CCtrlView The base class for all views associated with Windows controls. The
views based on controls are described below.

CEditView A view that contains a Windows standard edit control.

CRichEditView A view that contains a Windows rich edit control.

CListView A view that contains a Windows list control.

CTree View A view that contains a Windows tree control.

Control Bar Classes
Control bars are attached to a frame window. They contain buttons, status panes, or a
dialog template. Free-floating control bars, also called tool palettes, are implemented
by attaching them to a CMiniFrameWnd object.

Framework Control Bars

16

These control bars are an integral part of the MFC framework. They are easier to use
and more powerful because they're integrated with the framework. Most MFC
applications use these control bars rather than the Windows control bars.

CControlBar The base class for MFC control bars listed in this section. A control
bar is a window aligned to the edge of a frame window. The control bar contains
either HWND-based child controls or controls not based on an HWND, such as
toolbar buttons.

CToolBar Toolbar control windows that contain bitmap command buttons not based
on an HWND. Most MFC applications use this class rather than CToolBarCtrl.

CStatusBar The base class for status-bar control windows. Most MFC applications
use this class rather than CStatusBarCtrl.

CDialogBar A control bar that is based on a dialog box template.

Class Library Overview

Windows Control Bars
These control bars are thin wrappers for the corresponding Windows controls. Since
they're not integrated with the framework, they're harder to use than the control bars
listed above. Most MFC applications use the control bars listed above.

CStatusBarCtrl A horizontal window, usually divided into panes, in which an
application can display status information.

CToolBarCtrl Provides the functionality of the Windows toolbar common control.

Related Classes
CToolTipCtrl A small pop-up window that displays a single line of text describing

the purpose of a tool in an application.

Drawing and Printing Classes
In Windows, all graphical output is drawn on a virtual drawing area called a device
context (or DC). MFC provides classes to encapsulate the various types of DCs, as
well as encapsulations for Windows drawing tools such as bitmaps, brushes, palettes,
and pens.

Output (Device Context) Classes
These classes encapsulate the different types of device contexts available in Windows.

Most of the following classes encapsulate a handle to a Windows device context. A
device context is a Windows object that contains information about the drawing
attributes of a device such as a display or a printer. All drawing calls are made
through a device-context object. Additional classes derived from CDC encapsulate
specialized device-context functionality, including support for Windows metafiles.

CDC The base class for device contexts. Used directly for accessing the whole
display and for accessing nondisplay contexts such as printers.

CPaintDC A display context used in OnPaint member functions of windows.
Automatically calls BeginPaint on construction and EndPaint on destruction.

CClientDC A display context for client areas of windows. Used, for example, to
draw in an immediate response to mouse events.

CWindowDC A display context for entire windows, including both the client and
nonclient areas.

CMetaFileDC A device context for Windows metafiles. A Windows metafile
contains a sequence of graphics device interface (GDI) commands that can be
replayed to create an image. Calls made to the member functions of a
CMetaFileDC are recorded in a metafile.

17

Class Library Overview

Related Classes
CPoint Holds coordinate (x, y) pairs.

CSize Holds distance, relative positions, or paired values.

CRect Holds coordinates of rectangular areas.

CRgn Encapsulates a GDI region for manipulating an elliptical, polygonal, or
irregular area within a window. Used in conjunction with the clipping member
functions in class CDC.

CRectTracker Displays and handles the user interface for resizing and moving
rectangular objects.

CColorDialog Provides a standard dialog box for selecting a color.

CFontDialog Provides a standard dialog box for selecting a font.

CPrintDialog Provides a standard dialog box for printing a file.

Drawing Tool Classes
These classes encapsulate drawing tools that are used to draw on a device context.

CGdiObject The base class for GDI drawing tools.

CBrush Encapsulates a GDI brush that can be selected as the current brush in a
device context. Brushes are used for filling interiors of objects being drawn.

CPen Encapsulates a GDI pen that can be selected as the current pen in a device
context. Pens are used for drawing the border lines of objects.

CFont Encapsulates a GDI font that can be selected as the current font in a device
context.

CBitmap Encapsulates a GDI bitmap, providing an interface for manipulating
bitmaps.

CPalette Encapsulates a GDI color palette for use as an interface between the
application and a color output deviCe such as a display.

CRectTracker Displays and handles the user interface for resizing and moving
rectangular objects.

Simple Data Type Classes

18

The following classes encapsulate drawing coordinates, character strings, and time
and date information, allowing convenient use of C++ syntax. These objects are used
widely as parameters to the member functions of Windows classes in the class library.
Because CPoint, CSize, and CRect correspond to the POINT, SIZE, and RECT
structures, respectively, in the Win32 SDK, you can use objects of these C++ classes
wherever you can use these C-Ianguage structures. The classes provide useful

Class Library Overview

interfaces through their member functions. CString provides very flexible dynamic
character strings. CTime, COleDateTime, CTimeSpan, and COleTimeSpan
represent time and date values. For more information about these classes, see the
article "Date and Time" in Programming with MFC.

The classes that begin with "COle" are encapsulations of data types provided by
OLE. These data types can be used in Windows programs regardless of whether other
OLE features are used.

CString Holds character strings.

CTime Holds absolute time and date values.

COleDateTime Wrapper for the OLE automation type DATE. Represents date and
time values.

CTimeSpan Holds relative time and date values.

COleDateTimeSpan Holds relative COleDateTime values, such as the difference
between two COleDateTime values.

CPoint Holds coordinate (x, y) pairs.

CSize Holds distance, relative positions, or paired values.

CRect Holds coordinates of rectangular areas.

ClmageList Provides the functionality of the Windows image list. Image lists are
used with list controls and tree controls. They can also be used to store and archive
a set of same-sized bitmaps.

COle Variant Wrapper for the OLE automation type VARIANT. Data in
VARIANTs can be stored in many formats.

COleCurrency Wrapper for the OLE automation type CURRENCY, a fixed-point
arithmetic type, with 15 digits before the decimal point and 4 digits after.

Array, List, and Map Classes
For handling aggregates of data, the class library provides a group of collection
classes-arrays, lists, and "maps" -that can hold a variety of object and predefined
types. The collections are dynamically sized. These classes can be used in any
program, whether written for Windows or not. However, they are most useful for
implementing the data structures that define your document classes in the application
framework. You can readily derive specialized collection classes from these, or you
can create them based on the template classes. For more information about these
approaches, see the article "Collections" in Programming with MFC and "Template
Classes for Arrays, Lists, and Maps" in this overview for a list of the template
collection classes.

19

Class Library Overview

Arrays are one-dimensional data structures that are stored contiguously in memory.
They support very fast random access since the memory address of any given element
can be calculated by multiplying the index of the element by the size of an element
and adding the result to the base address of the array. But arrays are very expensive if
you have to insert elements into the array, since the entire array past the element
inserted has to be moved to make room for the element to be inserted. Arrays can
grow and shrink as necessary.

Lists are similar to arrays but are stored very differently. Each element in a list also
includes a pointer to the previous and next elements, making it a doubly-linked list.
It's very fast to add or delete items because doing so only involves changing a few
pointers. However, searching a list can be expensive since all searches need to start at
one of the list's ends.

Maps relate a key value to a data value. For instance, the key of a map could be a
string and the data a pointer into a list. You would ask the map to give you the
pointer associated with a particular string. Map lookups are fast because maps use
hash tables for key lookUps. Adding and deleting items is also fast. Maps are often
used with other data structures as auxiliary indices. MFC uses a special kind of map
called a "message map" to map Windows messages to a pointer to the handler
function for that message.

Template Classes for Arrays, Lists, and Maps

20

These collection classes are templates whose parameters determine the types of the
objects stored in the aggregates. The CArray, CMap, and CList classes use global
helper functions that must usually be customized. For more information about these
helper functions, see Collection Class Helpers in the "Macros and Globals" section.
The typed pointer classes are "wrappers" for other classes in the class library. By
using these wrappers, you enlist the compiler's type-checking to help you avoid
errors. For more information on using these classes, see the article "Collections" in
Programming with MFC.

These classes provide templates you can use to create arrays, lists, and maps using
any type you like.

CArray Template class for making arrays of arbitrary types.

CList Template class for making lists of arbitrary types.

CMap Template class for making maps with arbitrary key and value types.

CTypedPtrArray Template class for type-safe arrays of pointers.

CTypedPtrList Template class for type-safe lists of pointers.

CTypedPtrMap Template class for type-safe maps with pointers.

Class Library Overview

Ready-ta-Use Array Classes
CByteArray Stores elements of type BYTE in an array.

CDWordArray Stores elements of type DWORD in an array.

CObArray Stores pointers to objects of class CObject or to objects of classes
derived from CObject in an array.

CPtrArray Stores pointers to void (generic pointers) in an array.

CUlntArray Stores elements of type UINT in an array.

CWordArray Stores elements of type WORD in an array.

CStringArray Stores CString objects in an array.

Ready-ta-Use List Classes
CObList Stores pointers to objects of class CObject or to objects of classes derived

from CObject in a linked list.

CPtrList Stores pointers to void (generic pointers) in a linked list.

CStringList Stores CString objects in a linked list.

Ready-ta-Use Map Classes
CMapPtrToPtr Uses void pointers as keys for finding other void pointers.

CMapPtrToWord Uses void pointers as keys for finding data of type WORD.

CMapStringToOb Uses CString objects as keys for finding CObject pointers.

CMapStringToPtr Uses CString objects as keys for finding void pointers.

CMapStringToString Uses CString objects as keys for finding other CString
objects.

CMapWordToOb Uses data of type WORD to find CObject pointers.

CMapWordToPtr Uses data of type WORD to find void pointers.

File, Database, and Socket Classes
These classes allow you to store information to a database or a disk file or to
exchange information with another computer via a Windows Socket. There are two
sets of database classes-DAO and ODBC-which provide similar functionality. The
DAO group is implemented using the Data Access Object, while the ODBC group is

21

Class Library Overview

implemented using Open Database Connectivity. There are also a set of classes for
manipulating standard files and OLE streams, and a set of classes for manipulating
Windows Sockets.

File 110 Classes
These classes provide an interface to traditional disk files, in-memory files, OLE
streams, and Windows sockets. All of the classes derived from CFile can be used
with a CArchive object to perform serialization.

Use the following classes, particularly CArchive and CFile, if you write your own
input/output processing. Normally you don't need to derive from these classes. If you
use the application framework, the default implementations of the Open and Save
commands on the File menu will handle file I/O (using class CArchive), as long as
you override your document's Serialize function to supply details about how a
document "serializes" its contents. For more information about the file classes and
serialization, see the article "Files" and the article "Serialization (Object
Persistence)" in Programming with MFC.

CFile Provides a file interface to binary disk files.

CStdioFile Provides a CFile interface to buffered stream disk files, usually in text
mode.

CMemFile Provides a CFile interface to in-memory files.

COleStreamFile Uses the OLE IStream interface to provide CFile access to OLE
compound files.

CSocketFile Provides a CFile interface to a Windows Socket.

Related Classes
CArchive Cooperates with a CFile object to implement persistent storage for

objects through serialization (see CObject::Serialize).

CArchiveException An archive exception.

CFileException A file-oriented exception.

CFileDialog Provides a standard dialog box for opening or saving a file.

DAO Classes

22

These classes work with the other application framework classes to give easy access
to DAO (Data Access Object) databases, which use the same database engine as
Microsoft Visual Basic® and Microsoft Access. The DAO classes can also access a
wide variety of databases for which Open Database Connectivity (ODBC) drivers are
available.

Class Library Overview

Programs that use DAO databases will have at least a CDaoDatabase object and a
CDaoRecordset object.

CDaoWorkspace Manages a named, password-protected database session from
login to logoff. Most programs use the default workspace.

CDaoDatabase A connection to a database through which you can operate on the
data.

CDaoRecordset Represents a set of records selected from a data source.

CDaoRecordView A view that displays database records in controls.

CDaoQueryDef Represents a query definition, usually one saved in a database.

CDaoTableDef Represents the stored definition of a base table or an attached table.

CDaoException Represents an exception condition arising from the DAO classes.

CDaoFieldExchange Supports the DAO record field exchange (DFX) routines used
by the DAO database classes. You will normally not directly use this class.

Related Classes
CLongBinary Encapsulates a handle to storage for a binary large object (or BLOB),

such as a bitmap. CLongBinary objects are used to manage large data objects
stored in database tables.

COleCurrency Wrapper for the OLE automation type CURRENCY, a fixed-point
arithmetic type, with 15 digits before the decimal point and 4 digits after.

COleDateTime Wrapper for the OLE automation type DATE. Represents date and
time values.

COleVariant Wrapper for the OLE automation type VARIANT. Data in
VARIANTs can be stored in many formats.

ODBC Classes
These classes work with the other application framework classes to give easy access
to a wide variety of databases for which Open Database Connectivity (ODBC) drivers
are available.

Programs that use ODBC databases will have at least a CDatabase object and a
CRecordset object.

CDatabase Encapsulates a connection to a data source, through which you can
operate on the data source.

CRecordset Encapsulates a set of records selected from a data source. Recordsets
enable scrolling from record to record, updating records (adding, editing, and
deleting records), qualifying the selection with a filter, sorting the selection, and
parameterizing the selection with information obtained or calculated at run time.

23

Class Library Overview

CRecordView Provides a form view directly connected to a recordset object. The
dialog data exchange (DDX) mechanism exchanges data between the recordset
and the controls of the record view. Like all form views, a record view is based on
a dialog template resource. Record views also support moving from record to
record in the recordset, updating records, and closing the associated recordset
when the record view closes.

CDBException An exception resulting from failures in data access processing. This
class serves the same purpose as other exception classes in the exception-handling
mechanism of the class library.

CFieldExchange Supplies context information to support record field exchange
(RFX), which exchanges data between the field data members and parameter data
members of a record set object and the corresponding table columns on the data
source. Analogous to class CDataExchange, which is used similarly for dialog
data exchange (DDX).

Related Class
CLongBinary Encapsulates a handle to storage for a binary large object (or BLOB),

such as a bitmap. CLongBinary objects are used to manage large data objects
stored in database tables.

Windows Sockets Classes
Windows Sockets provide a network protocol-independent way to communicate
between two computers. These sockets can be synchronous (your program waits until
the communication is done) or asynchronous (your program continues running while
the communication is going on).

CAsyncSocket Encapsulates the Windows Sockets API in a thin wrapper.

CSocket Higher-level abstraction derived from CAsyncSocket. It operates
synchronously.

CSocketFile Provides a CFile interface to a Windows Socket.

OLE Classes

24

The OLE classes work with the other application framework classes to provide easy
access to the OLE API, giving your programs an easy way to provide the power of
OLE to your users. Using OLE, you can:

• Create OLE documents, which allow users to create and edit documents
containing data created by multiple applications, including text, graphics,
spreadsheets, sound, or other types of data .

• Create OLE objects that can be embedded in OLE documents.

Class Library Overview

• Use OLE drag and drop to copy data between applications.

• Use OLE automation to control one program with another.

The following categories of classes support OLE:

• OLE Container Classes

• OLE Server Classes

• OLE Drag-and-Drop and Data Transfer Classes

• OLE Common Dialog Classes

• OLE Automation Classes

• OLE Control Classes

• OLE-Related Classes

To see the inheritance of a class, use the Class Hierarchy Chart in Books Online.

OLE Container Classes
These classes are used by container applications. Both COleLinkingDoc and
COleDocument manage collections of COleClientItem objects. Rather than deriving
your document class from CDocument, you'll derive it from COleLinkingDoc or
COleDocument, depending on whether or not you want support for links to objects
embedded in your document.

Use a COleClientItem object to represent each OLE item in your document that is
embedded from another document or is a link to another document.

COleDocument Used for OLE compound document implementation, as well as
basic container support. Serves as a container for classes derived from CDocltem.
This class can be used as the base class for container documents and is the base
class for COleServerDoc.

COleLinkingDoc A class derived from COleDocument that provides the
infrastructure for linking. You should derive the document classes for your
container applications from this class instead of from COleDocument if you want
them to support links to embedded objects.

CRichEditDoc Maintains the list of OLE client items that are in the rich edit
control. Used with CRichEditView and CRichEditCntrltem.

CDocltem Abstract base class of COleClientItem and COleServerltem. Objects of
classes derived from CDocltem represent parts of documents.

COleClientltem A client item class that represents the client's side of the
connection to an embedded or linked OLE item. Derive your client items from this
class.

25

Class Library Overview

CRichEditCntrItem Provides client-side access to an OLE item stored in a rich
edit control when used with CRichEditView and CRichEditDoc.

COleException An exception resulting from a failure in OLE processing. This class
is used by both containers and servers.

OLE Server Classes

26

These classes are used by server applications. Server documents are derived from
COleServerDoc rather than CDocument. Note that since COleServerDoc is derived
from COleLinkingDoc, server documents can also be containers that support
linking.

The COleServerItem class represents a document or portion of a document that can
be embedded in another document or linked to.

COleIPFrameWnd and COleResizeBar support in-place editing while the object is
in a container, and COleTemplateServer supports creation of document/view pairs
so OLE objects from other applications can be edited.

COleServerDoc Used as the base class for server-application document classes.
COleServerDoc objects provide the bulk of server support through interactions
with COleServerItem objects. Visual editing capability is provided using the class
library's document/view architecture.

CDocItem Abstract base class of COleClientltem and COleServerItem. Objects of
classes derived from CDocItem represent parts of documents.

COleServerItem Used to represent the OLE interface to COleServerDoc items.
There is usually one COleServerDoc object, which represents the embedded part
of a document. In servers that support links to parts of documents, there can be
many COleServerItem objects, each of which represents a link to a portion of the
document.

COleIPFrameWnd Provides the frame window for a view when a server document
is being edited in place.

COleResizeBar Provides the standard user interface for in-place resizing. Objects
of this class are always used in conjunction with COleIPFrameWnd objects.

COleTemplateServer Used to create documents using the framework's
document/view architecture. A COleTemplateServer object delegates most of its
work to an associated CDocTemplate object.

COleException An exception resulting from a failure in OLE processing. This class
is used by both containers and servers.

Class Library Overview

OLE Drag-and-Drop and Data Transfer Classes
These classes are used in OLE data transfers. They allow data to be transferred
between applications by using the Clipboard or through drag and drop.

COleDropSource Controls the drag-and-drop operation from start to finish. This
class determines when the drag operation starts and when it ends. It also displays
cursor feedback during the drag-and-drop operation.

COleDataSource U sed when an application provides data for a data transfer.
COleDataSource could be viewed as an object-oriented Clipboard object.

COleDropTarget Represents the target of a drag-and-drop operation. A
COleDropTarget object corresponds to a window on screen. It determines
whether to accept any data dropped onto it and implements the actual drop
operation.

COleDataObject Used as the receiver side to COleDataSource. COleDataObject
objects provide access to the data stored by a COleDataSource object.

OLE Common Dialog Classes
These classes handle common OLE tasks by implementing a number of standard
OLE dialog boxes. They also provide a consistent user interface for OLE
functionality.

COleDialog Used by the framework to contain common implementations for all
OLE dialog boxes. All dialog box classes in the user-interface category are derived
from this base class. Cannot be used directly.

COleInsertDialog Displays the Insert Object dialog box, the standard user interface
for inserting new OLE linked or embedded items.

COlePasteSpecialDialog Displays the Paste Special dialog box, the standard user
interface for implementing the Edit Paste Special command.

COleLinksDialog Displays the Edit Links dialog box, the standard user interface
for modifying information about linked items.

COleChangeIconDialog Displays the Change Icon dialog box, the standard user
interface for changing the icon associated with an OLE embedded or linked item.

COleConvertDialog Displays the Convert dialog box, the standard user interface
for converting OLE items from one type to another.

27

Class Library Overview

COlePropertiesDialog Encapsulates the Windows common OLE Properties dialog
box. Common OLE Properties dialog boxes provide an easy way to display and
modify the properties of an OLE document item in a manner consistent with
Windows standards.

COleUpdateDialog Displays the Update dialog box, the standard user interface for
updating all links in a document. The dialog box contains a progress indicator to
indicate how close the update procedure is to completion.

COleChangeSourceDialog Displays the Change Source dialog box, the standard
user interface for changing the destination or source of a link.

COleBusyDialog Displays the Server Busy and Server Not Responding dialog
boxes, the standard user interface for handling calls to busy applications. Usually
displayed automatically by the COleMessageFilter implementation.

OLE Automation Classes
These classes support automation clients (applications that control other
applications). Automation servers (applications that can be controlled by other
applications) are supported through dispatch maps.

COleDispatchDriver U sed to call automation servers from your automation client.
Class Wizard uses this class to create type-safe classes for automation servers that
provide a type library.

COleDispatchException An exception resulting from an error during OLE
automation. OLE automation exceptions are thrown by automation servers and
caught by automation clients.

OLE Control Classes

28

These are the primary classes you'll use when writing OLE controls. The
COleControlModule class in an OLE control module is like the CWinApp class in
an application. Each module implements one or more OLE controls; these controls
are represented by COle Control objects. These controls communicate with their
containers using CConnectionPoint objects.

The CPictureHolder and CFontHolder classes encapsulate OLE interfaces for
pictures and fonts, while the COlePropertyPage and CPropExchangeclasses help
you implement property pages and property persistence for your control.

COleControlModuie Replaces the CWinApp class for your OLE control module.
Derive from the COleControlModuie class to develop an OLE control module
object. It provides member functions for initializing your OLE control's module.

Class Library Overview

COleControl Derive from the COleControl class to develop an OLE control.
Derived from CWnd, this class inherits all the functionality of a Windows window
object plus additional functionality specific to OLE, such as event firing and the
ability to support methods and properties.

CConnectionPoint The CConnectionPoint class defines a special type of interface
used to communicate with other OLE objects, called a "connection point." A
connection point implements an outgoing interface that is able to initiate actions
on other objects, such as firing events and change notifications.

CPictureHolder Encapsulates the functionality of a Windows picture object and the
IPicture OLE interface; is used to implement the custom Picture property of an
OLE control.

CFontHolder Encapsulates the functionality of a Windows font object and the
IFont OLE interface; is used to implement the stock Font property of an OLE
control.

COlePropertyPage Displays the properties of an OLE custom control in a
graphical interface, similar to a dialog box.

CPropExchange Supports the implementation of property persistence for your OLE
controls. Analogous to CDataExchange for dialog boxes.

OLE-Related Classes
These classes provide a number of different services, ranging from exceptions to file
input and output.

COleObjectFactory Used to create items when requested from other OLE
containers. This class serves as the base class for more specific types of factories,
including COleTemplateServer.

COleMessageFiIter Used to manage concurrency with OLE Lightweight Remote
Procedure Calls (LRPC).

COleStreamFile Uses the OLE IStream interface to provide CFile access to
compound files. This class (derived from CFile) enables MFC serialization to use
OLE structured storage.

CRectTracker Used to allow moving, resizing, and reorientation of in-place items.

Debugging and Exception Classes
These classes provide support for debugging dynamic memory allocation and for
passing exception information from the function where the exception is thrown to the
function where it's caught.

29

Class Library Overview

Use classes CDumpContext and CMemoryState during development to assist with
debugging, as described in the article "Diagnostics." Use CRuntimeClass to
determine the class of any object at run time, as described in the article
"CObjectClass: Accessing Run-Time Class Information." Both articles are in
Programming with MFC. The framework uses CRuntimeClass to create objects of a
particular class dynamically.

Debugging Support Classes
MFC provides the following classes to help you debug dynamic memory allocation
problems.

CDumpContext Provides a destination for diagnostic dumps.

CMemoryState Structure that provides snapshots of memory use. Also used to
compare earlier and later memory snapshots.

Exception Classes

30

The class library provides an exception-handling mechanism based on class
CException. The application framework uses exceptions in its code; you can also use
them in yours. For more information, see the article "Exceptions" in Programming
with MFC. You can derive your own exception types from CException.

MFC provides an exception class from which you can derive your own exception as
well as exception classes for all of the exceptions it supports.

CException The base class for exceptions.

CArchiveException An archive exception.

CDaoException An exception resulting from a failure in a DAO database
operation.

CDBException An exception resulting from a failure in ODBC database
processing.

CFileException A file-oriented exception.

CMemoryException An out-of-memory exception.

CNotSupportedException An exception resulting from using an unsupported
feature.

Class Library Overview

COleException An exception resulting from a failure in OLE processing. This class
is used by both containers and servers.

COleDispatchException An exception resulting from an error during OLE
automation. OLE automation exceptions are thrown by automation servers and
caught by automation clients.

CResoorceException An exception resulting from a failure to load a Windows
resource.

CUserException An exception used to stop a user-initiated operation. Typically the
user has been notified of the problem before this exception is thrown.

31

CAnimateCtrl

The CAnimateCtrl class provides the functionality of the Windows common
animation control. This control (and therefore the CAnimateCtrl class) is available
only to programs running under Windows 95 and Windows NT version 3.51 and
later.

An animation control is a rectangular window that displays a clip in AVI (Audio
Video Interleaved) format-the standard Windows video/audio format. An AVI clip
is a series of bitmap frames, like a movie.

Animation controls can play only simple AVI clips. Specifically, the clips to be played
by an animation control must meet the following requirements:

• There must be exactly one video stream and it must have at least one frame.

• There can be at most two streams in the file (typically the other stream, if present,
is an audio stream, although the animation control ignores audio information).

• The clip must either be uncompressed or compressed with RLE8 compression.

• No palette changes are allowed in the video stream.

You can add the AVI clip to your application as an AVI resource, or it can accompany
your application as a separate AVI file.

Since your thread continues executing while the AVI clip is displayed, one common
use for an animation control is to indicate system activity during a lengthy operation.
For example, the Find dialog box of the Windows 95 Explorer displays a moving
magnifying glass as the system searches for a file.

If you create a CAnimateCtrl object within a dialog box or from a dialog resource
using the dialog editor, it will be automatically destroyed when the user closes the
dialog box.

If you create a CAnimateCtrl object within a window, you may need to destroy it. If
you create the CAnimateCtrl object on the stack, it is destroyed automatically. If you
create the CAnimateCtrl object on the heap by using the new function, you must call
delete on the object to destroy it. If you derive a new class from CAnimateCtrl and
allocate any memory in that class, override the CAnimateCtrl destructor to dispose
of the allocations.

CAnimateCtrl

33

CAnimateCtrl: :CAnimateCtrl

#include <afxcmn.h>

See Also "Animation Control Styles" in CAnimateCtrl::Create, ON_CONTROL

Construction

CAnimateCtri

Initialization

Create

Operations

Open

Play

Seek

Stop

Close

Constructs a CAnimateCtri object.

Creates an animation control and attaches it to a CAnimateCtrl
object.

Opens an A VI clip from a file or resource and displays the first frame.

Plays the A VI clip without sound.

Displays a selected single frame of the A VI clip.

Stops playing the A VI clip.

Closes the A VI clip that was previously opened.

Member Functions
CAnimateCtrl: :CAnimateCtrl

CAnimateCtrl();

Remarks
Constructs a CAnimateCtrl object. You must call the Create member function
before you can perform any other operations on the object you create.

See Also CAnimateCtrl: : Create

CAnimateCtrl: :Close
BOOL Close();

Return Value

Remarks

34

Nonzero if successful; otherwise zero.

Use the Close member function to close the AVI clip that was previously opened in
the animation control (if any) and remove it from memory.

See Also CAnimateCtrl: :Open

CAnimateCtrl: : Create

CAnimateCtrl: : Create
BOOL Create(DWORD dwStyle, const RECT & reet, CWnd* pParentWnd, UINT nID);

Return Value
Nonzero if successful; otherwise zero.

Parameters

Remarks

dwStyle Specifies the animation control's style. Apply any combination of the
window and animation control styles described under "Remarks" to the control.

reet Specifies the animation control's position and size. It can be either a CRect
object or a RECT structure.

pParentWnd Specifies the animation control's parent window, usually a CDialog.
It must not be NULL.

nID Specifies the animation control's ID.

You construct a CAnimateCtrl in two steps. First call the constructor, then call
Create, which creates the animation control and attaches it to the CAnimateCtrl
object.

Apply the following window styles to an Animation Control. (For a list of window
styles, see "Window Styles" in the "Styles Used by MFC" section.

• WS_CHILD Always

• WS_ VISIBLE Usually

• WS_DISABLED Rarely

In addition to the window styles listed above, you may want to apply one or more of
the following animation control styles to an animation control:

• ACS_CENTER Centers the AVI clip in the animation control's window and
leaves the animation control's size and position unchanged when the AVI clip is
opened. If this style is not specified, the control will be resized when the AVI clip
is opened to the size of the images in the AVI clip.

• ACS_TRANSPARENT Causes the AVI clip to be drawn using a transparent
background rather than the background color specified in the AVI clip.

• ACS_AUTOPLAY Causes the AVI clip to start playing as soon as it is opened.
When the clip is done playing, it will automatically be repeated.

See Also CAnimateCtrl: :CAnimateCtrl, CAnimateCtrl: : Open,
CAnimateCtrl: : Play , CAnimateCtrl: :Seek

35

CAnimateCtrl::Open

CAnimateCtrl: : Open
BOOL Open(LPCTSTR lpszFileName);
BOOL Open(UINT nID);

Return Value
Nonzero if successful; otherwise zero.

Parameters

Remarks

lpszFileName A CString object or a pointer to a null-terminated string that contains
either the name of the AVI file or the name of an AVI resource. If this parameter is
NULL, the system closes the AVI clip that was previously opened for the
animation control, if any.

nID The AVI resource identifier. If this parameter is NULL, the system closes the
AVI clip that was previously opened for the animation control, if any.

Call this function to open an AVI clip and display its first frame.

If the animation control has the ACS_AUTOPLAY style, the animation control will
automatically start playing the clip immediately after it opens it. It will continue to
play the clip in the background while your thread continues executing. When the clip
is done playing, it will automatically be repeated.

If the animation control has the ACS_CENTER style, the AVI clip will be centered
in the control and the size of the control will not change. If the animation control
does not have the ACS_CENTER style, the control will be resized when the AVI clip
is opened to the size of the images in the AVI clip. The position of the top left comer
of the control will not change, only the size of the control.

If the animation control has the ACS_TRANSPARENT style, the first frame will be
drawn using a transparent background rather than the background color specified in
the animation clip.

See Also CAnimateCtrl::Close, CAnimateCtrl::Create

CAnimateCtrl: : Play
BOOL Play(UINT nFrom, UINT nTo, UINT nRep);

Return Value
Nonzero if successful; otherwise zero.

Parameters

36

nFrom Zero-based index of the frame where playing begins. Value must be less than
65,536. A value of 0 means begin with the first frame in the AVI clip.

Remarks

nTo Zero-based index of the frame where playing ends. Value must be less than
65,536. A value of -1 means end with the last frame in the AVI clip.

nRep Number of times to replay the AVI clip. A value of -1 means replay the file
indefinitely.

Call this function to play an AVI clip in an animation control. The animation control
will play the clip in the background while your thread continues executing. If the
animation control has ACS_TRANSPARENT style, the AVI clip will be played
using a transparent background rather than the background color specified in the
animation clip.

See Also CAnimateCtrl: :Open, CAnimateCtrl: :Stop, CAnimateCtrl: :Seek,
CAnimateCtrl: : Create

CAnimateCtrl: :Seek
BOOL Seek(UINT nTo);

Return Value
Nonzero if successful; otherwise zero.

Parameters

Remarks

nTo Zero-based index of the frame to display. Value must be less than 65,536. A
value of 0 means display the first frame in the AVI clip. A value of -1 means
display the last frame in the AVI clip.

Call this function to statically display a single frame of your AVI clip. If the
animation control has ACS_TRANSPARENT style, the AVI clip will be drawn
using a transparent background rather than the background color specified in the
animation clip.

See Also CAnimateCtrl::Open, CAnimateCtrl::Play, CAnimateCtrl::Create

CAnimateCtrl:: Stop
BOOL Stope);

Return Value

Remarks

Nonzero if successful; otherwise zero.

Call this function to stop playing an AVI clip in an animation control.

See Also CAnimateCtrl: :Play

CAnimateCtrl: :Stop

37

CArchive

CArchive

38

The CArchive class allows you to save a complex network of objects in a permanent
binary form (usually disk storage) that persists after those objects are deleted. Later
you can load the objects from persistent storage, reconstituting them in memory. This
process of making data persistent is called "serialization."

You can think of an archive object as a kind of binary stream. Like an input/output
stream, an archive is associated with a file and permits the buffered writing and
reading of data to and from storage. An input/output stream processes sequences of
ASCII characters, but an archive processes binary object data in an efficient,
nonredundant format.

You must create a CFile object before you can create a CArchive object. In addition,
you must ensure that the archive's load/store status is compatible with the file's open
mode. You are limited to one active archive per file.

When you construct a CArchive object, you attach it to an object of class CFile (or a
derived class) that represents an open file. You also specify whether the archive
will be used for loading or storing. A CArchive object can process not only primitive
types but also objects of CObject-derived classes designed for serialization. A
serializable class usually has a Serialize member function, and it usually uses the
DECLARE_SERIAL and IMPLEMENT_SERIAL macros, as described under
class CObject.

The overloaded extraction (») and insertion «<) operators are convenient archive
programming interfaces that support both primitive types and CObject-derived
classes.

CArchive also supports programming with the MFC Windows Sockets classes
CSocket and CSocketFile. The IsBufferEmpty member function supports that
usage.

For more information on CArchive, see "Serialization (Object Persistence)" and
"Windows Sockets: Using Sockets with Archives" in Programming with MFC.

#include <afx.h>

See Also CFile, CObject, CSocket, CSocketFile

Data Members

Construction

CArchive

Close

Points to the CDocument object being serialized.

Creates a CArchive object.

Flushes unwritten data and disconnects from the CFile.

Basic Input/Output

Flush

operator»

operator «

Read

Write

WriteString

ReadString

Status

GetFile

GetObjectSchema

SetObjectSchema

IsLoading

IsStoring

IsBufferEmpty

Object Input/Output

ReadObject

WriteObject

MapObject

SetStoreParams

SetLoadParams

ReadClass

WriteClass

SerializeClass

Flushes unwritten data from the archive buffer.

Loads objects and primitive types from the archive.

Stores objects and primitive types to the archive.

Reads raw bytes.

Writes raw bytes.

Writes a single line of text.

Reads a single line of text.

Gets the CFile object pointer for this archive.

Called from the Serialize function to determine the version of the
object that is being deserialized.

Sets the object schema stored in the archive object.

Determines whether the archive is loading.

Determines whether the archive is storing.

Determines whether the buffer has been emptied during a Windows
Sockets receive process.

Calls an object's Serialize function for loading.

Calls an object's Serialize function for storing.

Places objects in the map that are not serialized to the file, but that
are available for subobjects to reference.

Sets the hash table size and the block size of the map used to identify
unique objects during the serialization process.

Sets the size to which the load array grows. Must be called before
any object is loaded or before MapObject or ReadObject is called.

Reads a class reference previously stored with WriteClass.

Writes a reference to the CRuntimeClass to the CArchive.

Reads or writes the class reference to the CArchive object
depending on the direction of the CArchive.

Member Functions
CArchive: :CArchi ve

CArchive(CFile* pFile, UINT nMode, int nBujSize = 512, void* lpBuJ= NULL);
throw(CMemoryException, CArchiveException, CFileException);

CArchive::CArchive

39

CArchive::CArchive

Parameters

Remarks

Example

40

pFile A pointer to the CFile object that is the ultimate source or destination of the
persistent data.

nMode A flag that specifies whether objects will be loaded from or stored to the
archive. The nMode parameter must have one of the following values:

• CArcbive: :Ioad Loads data from the archive. Requires only CFile read
permission.

• CArchive::store Saves data to the archive. Requires CFile write permission.

• CArchive::bNoFlushOnDelete Prevents the archive from automatically
calling Flush when the archive destructor is called. If you set this flag, you are
responsible for explicitly calling Close before the destructor is called. If you do
not, your data will be corrupted.

nBujSize An integer that specifies the size of the internal file buffer, in bytes. Note
that the default buffer size is 512 bytes. If you routinely archive large objects, you
will improve performance if you use a larger buffer size that is a multiple of the
file buffer size.

IpBuJ An optional pointer to a user-supplied buffer of size nBujSize. If you do not
specify this parameter, the archive allocates a buffer from the local heap and frees
it when the object is destroyed. The archive does not free a user-supplied buffer.

Constructs a CArchive object and specifies whether it will be used for loading or
storing objects. You cannot change this specification after you have created the
archive.

You may not use CFile operations to alter the state of the file until you have closed
the archive. Any such operation will damage the integrity of the archive. You may
access the position of the file pointer at any time during serialization by obtaining the
archive's file object from the GetFile member function and then using the
CFile::GetPosition function. You should call CArchive::Flush before obtaining the
position of the file pointer.

extern char* pFileName;
CFile f;
char buf[512];
if(!f.Open(pFileName, CFile::modeCreate I CFile::modeWrite)) {

t/ifdef _DEBUG

}

afxDump « "Unable to open file" « "\n";
exit(1);

t/endif

CArchive ar(&f, CArchive::store, 512, buf);

See Also CArchive::Close, CArchive::Flush, CFile::Close

CArchive: :Close

Remarks

void Close();
throw(CArchiveException, CFileException);

Flushes any data remaining in the buffer, closes the archive, and disconnects the
archive from the file. No further operations on the archive are permitted. After you
close an archive, you can create another archive for the same file or you can close
the file.

The member function Close ensures that all data is transferred from the archive to
the file, and it makes the archive unavailable. To complete the transfer from the file
to the storage medium, you must first use CFile::Close and then destroy the CFile
object.

See Also CArchive::Flush

CArchive: :Flush

Remarks

void Flush();
throw(CFileException);

Forces any data remaining in the archive buffer to be written to the file.

The member function Flush ensures that all data is transferred from the archive to
the file. You must call CFile::Close to complete the transfer from the file to the
storage medium.

See Also CArchive::Close, CFile::Flush, CFile::Close

CArchive: : GetFile
CFile* GetFile() const;

Return Value

Remarks

Example

A constant pointer to the CFile object in use.

Gets the CFile object pointer for this archive. You must flush the archive before using
GetFile.

extern CArchive ar;
const CFile* fp = ar.GetFile();

CArchive: : GetFile

41

CArchive::GetObjectSchema

CArchive: : GetObjectSchema
UINT GetObjectSchema();

Return Value

Remarks

Example

42

During deserialization, the version of the object being read.

Call this function from the Serialize function to determine the version of the object
that is currently being deserialized. Calling this function is only valid when the
CArchive object is being loaded (CArchive::IsLoading returns nonzero). It should
be the first call in the Serialize function and called only once. A return value of
(UINT)-l indicates that the version number is unknown).

A CObject-derived class may use VERSIONABLE_SCHEMA combined (using
bitwise OR) with the schema version itself (in the IMPLEMENT_SERIAL macro)
to create a "versionable object," that is, an object whose Serialize member function
can read multiple versions. The default framework functionality (without
VERSIONABLE_SCHEMA) is to throw an exception when the version is
mismatched.

IMPLEMENT_SERIAL(CMyObject, CObject, VERSIONABLE_SCHEMAI1)
II defines version as 1 and "versionable"

CMyObject::Serialize(CArchive& ar)
{

if (ar.lsLoading())
{

nVersion = GetObjectSchema();
switch (nVersion)
{

}

case -1:
II read in current version
II or report error
break;

case 0:
II read in old version
break;*

case I;
II read in latest version of
II this object
break;

default:
Ilreport unknown version
brea k;

else
II Normal storing code here

}

See Also CObject: : Serialize, CObject: :IsSerializable, IMPLEMENT_SERIAL,
DECLARE_SERIAL, CArchive::IsLoading

CArchive: : IsBufferEmpty
BOOL IsBufTerEmpty() const;

Return Value

Remarks

Nonzero if the archive's buffer is empty; otherwise O.

Call this member function to determine whether the archive object's internal buffer is
empty. This function is supplied to support programming with the MFC Windows
Sockets class CSocketFile. You do not need to use it for an archive associated with a
CFile object.

The reason for using IsBufTerEmpty with an archive associated with a CSocketFile
object is that the archive's buffer might contain more than one message or record.
After receiving one message, you should use IsBufferEmpty to control a loop that
continues receiving data until the buffer is empty. For more information, see the
Receive member function of class CAsyncSocket and the MFC Advanced Concepts
sample CHATSRVR, which shows how to use IsBufTerEmpty.

For more information, see the article "Windows Sockets: Using Sockets with
Archives" in Programming with MFC.

See Also CSocketFile, CAsyncSocket: : Receive

CArchive: :IsLoading
BOOL IsLoading() const;

Return Value

Remarks

Nonzero if the archive is currently being used for loading; otherwise O.

Determines whether the archive is loading data. This member function is called by
the Serialize functions of the archived classes.

CArchive: :IsLoading

43

CArchive: :IsStoring

Example
int i;
extern CArchive ar;
if(ar.lsLoading())

ar » i;
else

ar«i;

See Also CArchive: :IsStoring

CArchive: :IsStoring
BOOL IsStoring() const;

Return Value

Remarks

Example

Nonzero if the archive is currently being used for storing; otherwise 0.

Determines whether the archive is storing data. This member function is called by the
Serialize functions of the archived classes.

If the IsStoring status of an archive is nonzero, then its IsLoading status is 0, and
vice versa.

i nt i:
extern CArchive ar;
if(ar.lsStoring()

ar « i;
else

ar » i;

See Also CArchive: : IsLoading

CArchive: :MapObject
void MapObject(const CObject* pOb);

Parameters

Remarks

44

pOb A constant pointer to the object being stored.

Call this member function to place objects in the map that are not really serialized to
the file, but that are available for subobjects to reference. For example, you might not
serialize a document, but you would serialize the items that are part of the document.
By calling MapObject, you allow those items, or subobjects, to reference the
document. Also, serialized subitems can serialize their ID_pDoc back pointer.

Example

CArchive::MapObject

You can call MapObject when you store to and load from the CArchive object.
MapObject adds the specified object to the internal data structures maintained by the
CArchive object during serialization and de serialization, but unlike ReadObject and
WriteObject, it does not call serialize on the object.

class CSubltem : public CObject
{

public:

} ;

CSubltem(CMyDocument* pDoc)
{ m_pDoc - pDoc; }

II back pointer to owning document
CMyDocument* m_pDoc;
WORD m_i; II other item data

void CMyDocument::Serialize(CArchive& ar)
{

}

Ilmake the document pointer
Ilavailable for subobjects ...
MapObject(this);

Iiserialize the sUbitems in the document;
Iithey will be able to serialize their m_pDoc
Ilback pointer
m_listOfSubltems.Serialize(ar);

void CSubltem::Serialize(CArchive& ar)
{

if (ar.lsStoring(»
{

else
{

}

II will serialize a reference
lito the "mapped" document pointer
ar « m_pDoc;

ar « m_i;

II will load a reference to
lithe "mapped" document pointer
ar » m_pDoc;

ar » m_i;

See Also CArchive: :ReadObject, CArchive:: WriteObject

45

CArchive::Read

CArchive: :Read
UINT Read(void* lpBuf, UINT nMax);

throw(CFileException);

Return Value
An unsigned integer containing the number of bytes actually read. If the return value
is less than the number requested, the end of file has been reached. No exception is
thrown on the end-of-file condition.

Parameters

Remarks

Example

lpBuJ A pointer to a user-supplied buffer that is to receive the data read from the
archive.

nMax An unsigned integer specifying the number of bytes to be read from the
archive.

Reads a specified number of bytes from the archive. The archive does not interpret
the bytes.

You can use the Read member function within your Serialize function for reading
ordinary structures that are contained in your objects.

extern CArchive ar;
char pb[100];
UINT nr = ar.Read(pb. 100);

CArchive: : ReadClass
CRuntimeClass* ReadClass(const CRuntimeClass* pClassRefRequested = NULL,

UINT* pSchema = NULL, DWORD* obTag = NULL);
Throw CArchiveException;
Throw CNotSupportedException;

Return Value
A pointer to the CRuntimeClass structure.

Parameters

46

pClassRefRequested A pointer to the CRuntimeClass structure that corresponds to
the class reference requested. Can be NULL.

pSchema A pointer to a schema of the run-time class previously stored.

obTag A number that refers to an object's unique tag. Used internally by the
implementation of ReadObject. Exposed for advanced programming only; obTag
normally should be NULL.

CArchive::ReadObject

Remarks
Call this member function to read a reference to a class previously stored with
WriteClass.

If pClassRefRequested is not NULL, ReadClass verifies that the archived class
information is compatible with your runtime class. If it is not compatible, ReadClass
will throw a CArchiveException.

Your runtime class must use DECLARE_SERIAL and IMPLEMENT_SERIAL;
otherwise, ReadClass will throw a CNotSupportedException.

If pSchema is NULL, the schema of the stored class can be retrieved by calling
CArchive::GetObjectSchema; otherwise, *pSchema will contain the schema of the
run-time class that was previously stored.

You can use SerializeClass instead of ReadClass, which handles both reading and
writing of the class reference.

See Also CArchive:: WriteClass, CArchive: : GetObjectSchema,
CArchive: :SetObjectSchema, CArchiveException, CNotSupportedException,
CArchive: :SerializeClass

CArchive: :ReadObject
CObject* ReadObject(const CRuntimeClass* pClass);

throw(CFileException, CArchiveException, CMemoryException);

Return Value
A CObject pointer that must be safely cast to the correct derived class by using
CObject: : IsKindOf.

Parameters

Remarks

pClass A constant pointer to the CRuntimeClass structure that corresponds to the
object you expect to read.

Reads object data from the archive and constructs an object of the appropriate type.

This function is normally called by the CArchive extraction (») operator overloaded
for a CObject pointer. ReadObject, in turn, calls the Serialize function of the
archived class.

If you supply a nonzero pClass parameter, which is obtained by the
RUNTIME_CLASS macro, then the function verifies the run-time class of the
archived object. This assumes you have used the IMPLEMENT_SERIAL macro in
the implementation of the class.

See Also CArchive:: WriteObject, CObject: : IsKindOf

47

CArchive: :ReadString

CArchive: : ReadString
Bool ReadString(CString& rString);
LPTSTR ReadString(LPTSTR lpsz, UINT nMax);

throw(CArchiveException);

Return Value
In the version that returns Bool, TRUE if successful; FALSE otherwise.

In the version that returns an LPTSTR, a pointer to the buffer containing the text
data; NULL if end-of-file was reached.

Parameters

Remarks

rString A reference to a CString that will contain the resultant string after it is read
from the file associated with the CArchive object.

lpsz Specifies a pointer to a user-supplied buffer that will receive a null-terminated
text string.

nMax Specifies the maximum number of characters to read. Should be one less than
the size of the lpsz buffer.

Call this member function to read text data into a buffer from the file associated with
the CArchive object. In the version of the member function with the nMax
parameter, the buffer will hold up to a limit of nMax-l characters. Reading is stopped
by a carriage return-linefeed pair. Trailing newline characters are always removed. A
null character ('\0') is appended in either case.

CArchive::Read is also available for text-mode input, but it does not terminate on a
carriage return-linefeed pair.

See Also CArchive: :Read, CArchive:: Write, CArchive:: Write String,
CArchiveException

CArchi ve: : SerializeClass
void SerializeClass(const CRuntimeClass* pRuntimeClass);

Parameters

Remarks

48

pRuntimeClass A pointer to a run-time class object for the base class.

Call this member function when you want to store and load the version information
of a base class. Serialize Class reads or writes the reference to a class to the
CArchive object, depending on the direction of the CArchive. Use Serialize Class in
place of ReadClass and Write Class as a convenient way to serialize base-class
objects; Serialize Class requires less code and fewer parameters.

CArchive: :SetLoadParams

Example

Like ReadClass, SerializeClass verifies that the archived class information is
compatible with your runtime class. If it is not compatible, Serialize Class will throw
a CArchiveException.

Your runtime class must use DECLARE_SERIAL and IMPLEMENT_SERIAL;
otherwise, Serialize Class will throw a CNotSupportedException.

Use the RUNTIME_CLASS macro to retrieve the value for the pRuntimeClass
parameter. The base class must have used the IMPLEMENT_SERIAL macro.

class CBaseClass : public CObject { ... };
class CDerivedClass : public CBaseClass { ... };
void CDerivedClass::Serialize(CArchive& ar)
{

}

if (ar.lsStoring(»
{

else
{

}

Iinormal code for storing contents
Ilof this object

Iinormal code for reading contents
Ilof this object

Iiallow the base class to serialize along
Ilwith its version information
ar.SerializeClass(RUNTIME_CLASS(CBaseClass»;
CBaseClass::Serialize(ar);

See Also CArchive::ReadClass, CArchive::WriteClass,
CArchive: : GetObjectSchema, CArchive: :SetObjectSchema,
CArchiveException, CNotSupportedException

CArchive: :SetLoadParams
void SetLoadParams(UINT nGrowBy = 1024);

Parameters

Remarks

nGrowBy The minimum number of element slots to allocate if a size increase is
necessary.

Call SetLoadParams when you are going to read a large number of CObject-derived
objects from an archive. CArchive uses a load array to resolve references to objects
stored in the archive. SetLoadParams allows you to set the size to which the load
array grows.

49

CArchive: :SetObjectSchema

Example

You must not call SetLoadParams after any object is loaded, or after MapObject or
ReadObject is called.

class CMyLargeDocument : public CDocument { ... }:
void CMyLargeDocument::Serialize(CArchive& ar)
{

}

if (ar.lsStoring(»
ar.SetStoreParams(): II use large defaults

else
ar.SetLoadParams():

if (ar.lsStoring(»
{

}

else
{

}

II code for storing CMyLargeDocument

II code for loading CMyLargeDocument

See Also CArchive: :SetStoreParams

CArchi ve:: SetObjectSchema
void SetObjectSchema(UINT nSchema);

Parameters

Remarks

nSchema Specifies the object's schema.

Call this member function to set the object schema stored in the archive object to
nSchema. The next call to GetObjectSchema will return the value stored in
nSchema.

Use SetObjectSchema for advanced versioning; for example, when you want toforce
a particular version to be read in a Serialize function of a derived class.

See Also CArchive: : GetObjectSchema

CArchive:: SetStoreParams
void SetStoreParams(UINT nHashSize = 2053, UINT nBlockSize = 128);

Parameters

50

nHashSize The size of the hash table for interface pointer maps. Should be a prime
number.

Remarks

Example

nBlockSize Specifies the memory-allocation granularity for extending the
parameters. Should be a power of 2 for the best performance.

Use SetStoreParams when storing a large number of CObject-derived objects in an
archive.

SetStoreParams allows you to set the hash table size and the block size of the map
used to identify unique objects during the serialization process.

You must not call SetStoreParams after any objects are stored, or after MapObject
or WriteObject is called.

class CMyLargeDocument : public CDocument { ... }:
void CMyLargeDocument::Serialize(CArchive& ar)
{

}

if (ar.IsStoring(»
ar.SetStoreParams(): II use large defaults

else
ar.SetLoadParams();

if (ar.IsStoring(»
{

}

else
{

}

II code for storing CMyLargeDocument

II code for loading CMyLargeDocument

See Also CArchive::SetLoadParams

CArchive::Write
void Write(const void* lpBuj, UINT nMax);

throw(CFileException);

Parameters

Remarks

lpBuJ A pointer to a user-supplied buffer that contains the data to be written to the
archive.

nMax An integer that specifies the number of bytes to be written to the archive.

Writes a specified number of bytes to the archive. The archive does not format the
bytes.

You can use the Write member function within your Serialize function to write
ordinary structures that are contained in your objects.

CArchive::Write

51

CArchive::WriteClass

Example
extern CArchive ar;
cha r pb[100];
ar.Write(pb, 100);

See Also CArchive: : Read

CArchive:: WriteClass
void WriteClass(const CRuntimeClass* pClassRef);

Parameters

Remarks

pClassRef A pointer to the CRuntimeClass structure that corresponds to the class
reference requested.

Use WriteClass to store the version and class information of a base class during
serialization of the derived class. Write Class writes a reference to the
CRuntimeClass for the base class to the CArchive. Use CArchive::ReadClass to
retrieve the reference.

Write Class verifies that the archived class information is compatible with your
runtime class. If it is not compatible, WriteClass will throw a CArchiveException.

Your runtime class must use DECLARE_SERIAL and IMPLEMENT_SERIAL;
otherwise, Write Class will throw a CNotSupportedException.

You can use Serialize Class instead of WriteClass, which handles both reading and
writing of the class reference.

See Also CArchive: :ReadClass, CArchive: :GetObjectSchema,
CArchive: :SetObjectSchema, CArchive: :SerializeClass, CArchiveException,
CNotSupportedException.

CArchive::WriteObject
void WriteObject(const CObject* pOb);

throw(CFileException, CArchiveException);

Parameters

Remarks

52

pOb A constant pointer to the object being stored.

Stores the specified CObject to the archive.

This function is normally called by the CArchive insertion «<) operator overloaded
for CObject. WriteObject, in turn, calls the Serialize function of the archived class.

CArchive::operator «

You must use the IMPLEMENT_SERIAL macro to enable archiving. WriteObject
writes the ASCII class name to the archive. This class name is validated later during
the load process. A special encoding scheme prevents unnecessary duplication of the
class name for multiple objects of the class. This scheme also prevents redundant
storage of objects that are targets of more than one pointer.

The exact object encoding method (including the presence of the ASCII class name)
is an implementation detail and could change in future versions of the library.

Note Finish creating, deleting, and updating all your objects before you begin to archive
them. Your archive will be corrupted if you mix archiving with object modification.

See Also CArchive: :ReadObject

CArchive:: WriteString
void WriteString(LPCTSTR lpsz);

throw(CFileException);

Parameters

Remarks

lpsz Specifies a pointer to a buffer containing a null-terminated text string.

Use this member function to write data from a buffer to the file associated. with the
CArchive object. The terminating null character ('\0') is not written to the file; nor is
a newline automatically written.

WriteString throws an exception in response to several conditions, including the
disk-full condition.

Write is also available, but rather than terminating on a null character, it writes the
requested number of bytes to the file.

See Also CArchive:: Write, CArchive: : Read, CArchive: : ReadString,
CFileException

Operators
CArchive::operator «

friend CArchive& operator «(CArchive& ar, const CObject* pOb);
throw(CArchiveException, CFileException);

CArchive& operator «(BYTE by);
throw(CArchiveException, CFileException);

CArchive& operator «(WORD w);
throw(CArchiveException, CFileException);

53

CArchive::operator »

CArchive& operator «(LONG I);
throw(CArchiveException, CFileException);

CArchive& operator «(DWORD dw);
throw(CArchiveException, CFileException);

CArchive& operator «(float/);
throw(CArchiveException, CFileException);

CArchive& operator «(double d);
throw(CArchiveException, CFileException);

Return Value

Remarks

Example

A CArchive reference that enables multiple extraction operators on a single line.

Stores the indicated object or primitive type to the archive.

If you used the IMPLEMENT_SERIAL macro in your class implementation, then
the insertion operator overloaded for CObject calls the protected WriteObject. This
function, in turn, calls the Serialize function of the class.

long 1;
int i;
extern CArchive ar;
if(ar.IsStoring())

a r « 1 « i;

See Also CArchive:: WriteObject, CObject: : Serialize

CArchive::operator »

54

friend CArchive& operator »(CArchive& ar, CObject *& pOb);
throw(CArchiveException, CFileException, CMemoryException);

friend CArchive& operator »(CArchive& ar, const CObject *& pOb);
throw(CArchiveException, CFileException, CMemoryException);

CArchive& operator »(BYTE& by);
throw(CArchiveException, CFileException);

CArchive& operator »(WORD& w);
throw(CArchiveException, CFileException);

CArchive& operator »(LONG& I);
throw(CArchiveException, CFileException);

CArchive& operator »(DWORD& dw);
throw(CArchiveException, CFileException);

CArchive& operator »(float&/);
throw(CArchiveException, CFileException);

CArchive& operator »(double& d);
throw(CArchiveException, CFileException);

CArchive::m_pDocument

Return Value

Remarks

Example

A CArchive reference that enables multiple insertion operators on a single line.

Loads the indicated object or primitive type from the archive.

If you used the IMPLEMENT_SERIAL macro in your class implementation, then
the extraction operators overloaded for CObject call the protected ReadObject
function (with a nonzero run-time class pointer). This function, in tum, calls the
Serialize function of the class.

int i;
extern CArchive ar;
if(ar.IsLoading())

ar » i;

See Also CArchive: : ReadObject, CObject: : Serialize

Data Members
CArchive: :m_pDocument
Remarks

Set to NULL by default, this pointer to a CDocument can be set to anything the user
of the CArchive instance wants. A common usage of this pointer is to convey
additional information about the serialization process to all objects being serialized.
This is achieved by initializing the pointer with the document (a CDocument-derived
class) that is being serialized, in such a way that objects within the document can
access the document if necessary. This pointer is also used by COleClientItem
objects during serialization.

The framework sets m_pDocument to the document being serialized when a user
issues a File Open or Save command. If you serialize an Object Linking and
Embedding (OLE) container document for reasons other than File Open or Save, you
must explicitly set m_pDocument. For example, you would do this when serializing
a container document to the Clipboard.

See Also CDocument, COleClientltem

55

CArchiveException

CArchiveException

A CArchiveException object represents a serialization exception condition. The
CArchiveException class includes a public data member that indicates the cause of
the exception.

CArchiveException objects are constructed and thrown inside CArchive member
functions. You can access these objects within the scope of a CATCH expression.
The cause code is independent of the operating system. For more information about
exception processing, see the article "Exceptions" in Programming with MFC.

#include <afx.h>

See Also CArchive, AfxThrow ArchiveException

Data Members

Indicates the exception cause.

Construction

CArchiveException Constructs a CArchiveException object.

Member Functions
CArchiveException: :CArchiveException

CArchiveException(int cause = CArchiveException::none);

Parameters

56

cause An enumerated type variable that indicates the reason for the exception. For a
list of the enumerators, see the m_cause data member.

CArchiveException: :m_cause

Remarks
Constructs a CArchiveException object, storing the value of cause in the object. You
can create a CArchiveException object on the heap and throw it yourself or let the
global function AfxThrowArchiveException handle it for you.

Do not use this constructor directly; instead, call the global function
AfxThrow ArchiveException.

Data Members
CArchiveException: :m_cause
Remarks

Specifies the cause of the exception. This data member is a public variable of type
int. Its values are defined by a CArchiveException enumerated type. The
enumerators and their meanings are as follows:

• CArchiveException::none No error occurred.

• CArchiveException::generic Unspecified error.

• CArchiveException::readOnly Tried to write into an archive opened for
loading.

• CArchiveException::endOfFile Reached end of file while reading an object.

• CArchiveException::writeOnly Tried to read from an archive opened for
storing.

• CArchiveException::badlndex Invalid file format.

• CArchiveException::badClass Tried to read an object into an object of the
wrong type.

• CArchiveException::badSchema Tried to read an object with a different version
of the class.

Note These CArchiveException cause enumerators are distinct from the CFileException
cause enumerators.

57

CArray.

CArray

template< class TYPE, class ARG_TYPE > class CArray : public CObject

Parameters

Remarks

58

TYPE Template parameter specifying the type of objects stored in the array. TYPE is
a parameter that is returned by CArray.

ARG_TYPE Template parameter specifying the argument type used to access objects
stored in the array. Often a reference to TYPE. ARG_TYPE is a parameter that is
passed to CArray.

The CArray class supports arrays that are are similar to C arrays, but can
dynamically shrink and grow as necessary.

Array indexes always start at position O. You can decide whether to fix the upper
bound or allow the array to expand when you add elements past the current bound.
Memory is allocated contiguously to the upper bound, even if some elements are null.

As with a C array, the access time for a CArray indexed element is constant and is
independent of the array size.

Tip Before using an array, use SetSize to establish its size and allocate memory for it. If you
do not use SetSize, adding elements to your array causes it to be frequently reallocated and
copied. Frequent reallocation and copying are inefficient and can fragment memory.

If you need a dump of individual elements in an array, you must set the depth of the
CDumpContext object to 1 or greater.

Certain member functions of this class call global helper functions that must be
customized for most uses of the CArray class. See the topic "Collection Class
Helpers" in the "Macros and Globals" section.

When elements are removed from a CArray object, the helper function
DestructElements is called. When elements are added, the helper function
ConstructElements is called.

Array class derivation is similar to list derivation.

For more information on using CArray, see the article "Collections" in
Programming with MFC.

#include <afxtempl.h>

See Also CObArray, DestructElements, ConstructElements, "Collection
Class Helpers"

Construction

CArray

Attributes

GetSize

GetUpperBound

SetSize

Operations

FreeExtra

RemoveAll

Element Access

GetAt

SetAt

ElementAt

GetData

Growing the Array

SetAtGrow

Add

Append

Copy

Insertion/Removal

InsertAt

RemoveAt

Operators

operator []

Constructs an empty array.

Gets the number of elements in this array.

Returns the largest valid index.

Sets the number of elements to be contained in this array.

Frees all unused memory above the current upper bound.

Removes all the elements from this array.

Returns the value at a given index.

Sets the value for a given index; array not allowed to grow.

Returns a temporary reference to the element pointer within the
array.

Allows access to elements in the array. Can be NULL.

Sets the value for a given index; grows the array if necessary.

Adds an element to the end of the array; grows the array if
necessary.

Appends another array to the array; grows the array if necessary

Copies another array to the array; grows the array if necessary.

Inserts an element (or all the elements in another array) at a
specified index.

Removes an element at a specific index.

Sets or gets the element at the specified index.

CArray

59

CArray::Add

Member Functions
CArray: :Add

int Add(ARG_TYPE newElement);
throw(CMemoryException);

Return Value
The index of the added element.

Parameters

Remarks

Example

ARG_TYPE Template parameter specifying the type of arguments referencing
elements in this array.

new Element The element to be added to this array.

Adds a new element to the end of an array, growing the array by 1. If SetSize has
been used with an nGrowBy value greater than 1, then extra memory may be
allocated. However, the upper bound will increase by only 1.

II example for CArray::Add
CArray<CPoint.CPoint) ptArray;

CPoint pt(10.20);
ptArray.Add(pt); II Element 0
ptArray.Add(CPoint(30.40»; II Element 1

See Also CArray: :SetAt, CArray: :SetAtGrow, CArray: :InsertAt,
CArray::operator []

CArray: : Append
int Append(const CArray & src);

Return Value
The index of the first appended element.

Parameters

Remarks

60

src Source of the elements to be appended to an array.

Call this member function to add the contents of one array to the end of another. The
arrays must be of the same type.

If necessary, Append may allocate extra memory to accommodate the elements
appended to the array.

See Also CArray::Copy

CArray: :CArray

Remarks

CArray();

Constructs an empty array. The array grows one element at a time.

See Also CObArray::CObArray

CArray::Copy
void Copy(const CArray & src);

Parameters

Remarks

src Source of the elements to be copied to an array.

Use this member function to copy the elements of one array to another.

Call this member function to overwrite the elements of one array with the elements of
another array.

Copy does not free memory; however, if necessary, Copy may allocate extra memory
to accommodate the elements copied to the array.

See Also CArray::Append

CArray: : ElementAt
TYPE& ElementAt(int nlndex);

Return Value
A reference to an array element.

Parameters
TYPE Template parameter specifying the type of elements in the array.

nlndex An integer index that is greater than or equal to 0 and less than or equal to
the value returned by GetUpperBound.

CArray: :ElementAt

61

CArray: :FreeExtra

Remarks
Returns a temporary reference to the specified element within the array. It is used to
implement the left-side assignment operator for arrays.

See Also CArray: :operator []

CArray: : FreeExtra

Remarks

void FreeExtra();

Frees any extra memory that was allocated while the array was grown. This function
has no effect on the size or upper bound of the array.

CArray: : GetAt
TYPE GetAt(int nlndex) const;

Return Value
The array element currently at this index. If no element is at the index, a new object
as constructed by the ConstructElements helper function is returned.

Parameters

Remarks

TYPE Template parameter specifying the type of the array elements.

nlndex An integer index that is greater than or equal to 0 and less than or equal to
the value returned by GetUpperBound.

Returns the array element at the specified index.

See Also CArray::SetAt, CArray::operator [], ConstructElements

CArray: : GetData
const TYPE* GetData() const;
TYPE* GetData();

Return Value
A pointer to an array element.

Parameters

Remarks

62

TYPE Template parameter specifying the type of the array elements.

Use this member function to gain direct access to the elements in an array. If no
elements are available, GetData returns a null value.

While direct access to the elements of an array can help you work more quickly, use
caution when calling GetData; any errors you make directly affect the elements of
your array.

See Also CArray: : GetAt, CArray: :SetAt, CArray: :ElementAt

CArray: :GetSize

Remarks

int GetSize() const;

Returns the size of the array. Since indexes are zero-based, the size is 1 greater than
the largest index.

See Also CArray: :GetUpperBound, CArray: :SetSize

CArray: : GetUpperBound
int GetUpperBound() const;

Remarks
Returns the current upper bound of this array. Because array indexes are zero-based,
this function returns a value 1 less than GetSize.

The condition GetUpperBound() = -1 indicates that the array contains no elements.

See Also CArray: : GetSize, CArray: :SetSize

CArray: : InsertAt
void InsertAt(int nlndex, ARG_TYPE newElement, int nCount = 1);

throw(CMemoryException);
void InsertAt(int nStartlndex, CArray* pNewArray);

throw(CMemoryException);

Parameters
nlndex An integer index that may be greater than the value returned by

GetUpperBound.

ARG_TYPE Template parameter specifying the type of elements in this array.

newElement The element to be placed in this array.

nCount The number of times this element should be inserted (defaults to 1).

nStartlndex An integer index that may be greater than the value returned by
GetUpperBound.

pNewArray Another array that contains elements to be added to this array.

CArray: : InsertAt

63

CArray::RemoveAll

Remarks

Example

The first version of InsertAt inserts one element (or multiple copies of an element) at
a specified index in an array. In the process, it shifts up (by incrementing the index)
the existing element at this index, and it shifts up all the elements above it.

The second version inserts all the elements from another CArray collection, starting
at the nStartIndex position.

The SetAt function, in contrast, replaces one specified array element and does not
shift any elements.

II example for CArray::lnsertAt

CArray<CPoint.CPoint> ptArray;

ptArray.Add(CPoint(10.20»; II Element 0
ptArray.Add(CPoint(30.40»; II Element 1 (will become element 2)
ptArray.lnsertAt(l. CPoint(50.60»; II New element 1

See Also GetUpperBound, CArray: :SetAt, CArray: : RemoveAt

CArray: : RemoveAll

Remarks

void RemoveAlI();

Removes all the elements from this array. If the array is already empty, the function
still works.

CArray: : RemoveAt
void RemoveAt(int nlndex, int nCount = 1);

Parameters

Remarks

64

nlndex An integer index that is greater than or equal to 0 and less than or equal to
the value returned by GetUpperBound.

nCount The number of elements to remove.

Removes one or more elements starting at a specified index in an array. In the
process, it shifts down all the elements above the removed element(s). It decrements
the upper bound of the array but does not free memory.

If you try to remove more elements than are contained in the array above the removal
point, then the Debug version of the library asserts.

See Also CArray::SetAt, CArray::SetAtGrow, CArray::lnsertAt

CArray:: SetAt
void SetAt(int nlndex, ARG_TYPE newElement);

Parameters

Remarks

nlndex An integer index that is greater than or equal to 0 and less than or equal to
the value returned by GetUpperBound.

ARG _TYPE Template parameter specifying the type of arguments used for
referencing array elements.

newElement The new element value to be stored at the specified position.

Sets the array element at the specified index. SetAt will not cause the array to grow.
Use SetAtGrow if you want the array to grow automatically.

You must ensure that your index value represents a valid position in the array. If it is
out of bounds, then the Debug version of the library asserts.

See Also CArray: : GetAt, CArray: :SetAtGrow, CArray: :ElementAt,
CArray: :operator []

CArray:: SetAtGrow
void SetAtGrow(int nlndex, ARG_TYPE newElement);

throw(CMemoryException);

Parameters

Remarks

nlndex An integer index that is greater than or equal to o.
ARG _TYPE Template parameter specifying the type of elements in the array,

newElement The element to be added to this array. A NULL value is allowed.

Sets the array element at the specified index. The array grows automatically if
necessary (that is, the upper bound is adjusted to accommodate the new element).

CArray::SetAtGrow

65

CArray: :SetSize

Example
II example for CArray::SetAtGrow
CArray<CPoint,CPoint> ptArray;

ptArray.Add(CPoint(10,20»; II Element 0
ptArray.Add(CPoint(30,40»; 1/ Element 1

II Element 2 deliberately skipped
ptArray.SetAtGrow(3, CPoint(50,60»; II Element 3

See Also CArray: : GetAt, CArray: :SetAt, CArray: :ElementAt,
CArray::operator []

CArray:: SetSize
void SetSize(int nNewSize, int nGrowBy = -1);

throw(CMemoryException);

Parameters

Remarks

66

nNewSize The new array size (number of elements). Must be greater than or
equal to O.

nGrowBy The minimum number of element slots to allocate if a size increase is
necessary.

Establishes the size of an empty or existing array; allocates memory if necessary.

If the new size is smaller than the old size, then the array· is truncated and all unused
memory is released.

Use this function to set the size of your array before you begin using the array. If you
do not use SetSize, adding elements to your array causes it to be frequently
reallocated and copied. Frequent reallocation and copying are inefficient and can
fragment memory.

The nGrowBy parameter affects internal memory allocation while the array is
growing. Its use never affects the array size as reported by GetSize and
GetUpperBound. If the default value is used, MFC allocates memory in a way
calculated to avoid memory fragmentation and optimize efficiency for most cases.

See Also CArray: : GetUpperBound, CArray: : GetSize

Operators
CArray::operator []

TYPE& operator [](int nlndex);
TYPE operator [](int nlndex) const;

Parameters

Remarks

TYPE Template parameter specifying the type of elements in this array.

nlndex Index of the element to be accessed.

These subscript operators are a convenient substitute for the SetAt and GetAt
functions.

The first operator, called for arrays that are not const, may be used on either the right
(r-value) or the left (I-value) of an assignment statement. The second, called for const
arrays, may be used only on the right.

The Debug version of the library asserts if the subscript (either on the left or right
side of an assignment statement) is out of bounds.

See Also CArray: : GetAt, CArray: :SetAt, CArray: :ElementAt

CArray::operator []

67

CAsyncSocket

CAsyncSocket

68

A CAsyncSocket object represents a Windows Socket - an endpoint of network
communication. Class CAsyncSocket encapsulates the Windows Sockets API,
providing an object-oriented abstraction for programmers who want to use Windows
Sockets in conjunction with MFC. If you are working solely on the Windows NT
platform, you can take advantage of additional socket functionality built-in to
Windows NT. For more information, see "Windows Sockets for Windows NT" in the
Windows Sockets Reference.

This class is based on the assumption that you understand network communications.
You are responsible for handling blocking, byte-order differences, and conversions
between Unicode and multibyte character set (MBCS) strings. If you want a more
convenient interface that manages these issues for you, see class CSocket.

To use a CAsyncSocket object, call its constructor, then call the Create function to
create the underlying socket handle (type SOCKET), except on accepted sockets. For
a server socket call the Listen member function, and for a client socket call the
Connect member function. The server socket should call the Accept function upon
receiving a connection request. Use the remaining CAsyncSocket functions to carry
out communications between sockets. Upon completion, destroy the CAsyncSocket
object if it was created on the heap; the destructor automatically calls the Close
function. The SOCKET data type is described in the article "Windows Sockets:
Background" in Programming with MFC.

For more information, see "Windows Sockets: Using Class CAsyncSocket" and
related articles in Programming with MFC, as well as "Programming with Sockets"
in the Win32 SDK documentation.

#include <afxsock.h>

See Also CSocket, CSocketFile

Construction

CAsyncSocket

Create

Attributes

Attach

Detach

Constructs a CAsyncSocket object.

Creates a socket.

Attaches a socket handle to a CAsyncSocket object.

Detaches a socket handle from a CAsyncSocket object.

FromHandle

GetLastError

GetPeerName

GetSockName

GetSockOpt

SetSockOpt

Operations

Accept

AsyncSelect

Bind

Close

Connect

IOCtl

Listen

Receive

ReceiveFrom

Send

SendTo

ShutDown

Returns a pointer to a CAsyncSocket object, given a socket
handle.

Gets the error status for the last operation that failed.

Gets the address of the peer socket to which the socket is
connected.

Gets the local name for a socket.

Retrieves a socket option.

Sets a socket option.

Accepts a connection on the socket.

Requests event notification for the socket.

Associates a local address with the socket.

Closes the socket.

Establishes a connection to a peer socket.

Controls the mode of the socket.

Establishes a socket to listen for incoming connection requests.

Receives data from the socket.

Receives a datagram and stores the source address.

Sends data to a connected socket.

Sends data to a specific destination.

Disables Send and/or Receive calls on the socket.

Overridable Notification Functions

OnAccept

OnClose

OnConnect

OnOutOmandData

OnReceive

OnSend

Data Members

Notifies a listening socket that it can accept pending
connection requests by calling Accept.

Notifies a socket that the socket connected to it has closed.

Notifies a connecting socket that the connection attempt is
complete, whether successfully or in error.

Notifies a receiving socket that there is out-of-band data to be
read on the socket, usually an urgent message.

Notifies a listening socket that there is data to be retrieved by
calling Receive.

Notifies a socket that it can send data by calling Send.

Indicates the SOCKET handle attached· to this CAsyncSocket
object.

CAsyncSocket

69

CAsyncSocket: : Accept

Member Functions
CAsyncSocket: : Accept

virtual BOOL Accept(CAsyncSocket& rConnectedSocket, SOCKADDR* IpSockAddr = NULL,
int* IpSockAddrLen = NULL);

Return Value
Nonzero if the function is successful; otherwise 0, and a specific error code can be
retrieved by calling GetLastError. The following errors apply to this member
function:

• WSANOTINITIALISED A successful AfxSocketlnit must occur before using
this API.

• WSAENETDOWN The Windows Sockets implementation detected that the
network subsystem failed.

• WSAEFAULT The IpSockAddrLen argument is too small (less than the size of a
SOCKADDR structure).

• WSAEINPROGRESS A blocking Windows Sockets call is in progress.

• WSAEINVAL Listen was not invoked prior to accept.

• WSAEMFILE The queue is empty upon entry to accept and there are no
descriptors available.

• WSAENOBUFS No buffer space is available.

• WSAENOTSOCK The descriptor is not a socket.

• WSAEOPNOTSUPP The referenced socket is not a type that supports
connection-oriented service.

• WSAEWOULDBLOCK The socket is marked as nonblocking and no
connections are present to be accepted.

Parameters

70

rConnectedSocket A reference identifying a new socket that is available for
connection.

IpSockAddr A pointer to a SOCKADDR structure that receives the address of the
connecting socket, as known on the network. The exact format of the IpSockAddr
argument is determined by the address family established when the socket was
created. If IpSockAddr and/or IpSockAddrLen are equal to NULL, then no
information about the remote address of the accepted socket is returned.

IpSockAddrLen A pointer to the length of the address in IpSockAddr in bytes. The
IpSockAddrLen is a value-result parameter: it should initially contain the amount
of space pointed to by IpSockAddr; on return it will contain the actual length (in
bytes) of the address returned.

CAsyncSocket: :AsyncSelect

Remarks
Call this member function to accept a connection on a socket. This routine extracts
the first connection in the queue of pending connections, creates a new socket with
the same properties as this socket, and attaches it to rConnectedSocket. If no pending
connections are present on the queue, Accept returns zero and GetLastError returns
an error. The accepted socket (rConnectedSocket) cannot be used to accept more
connections. The original socket remains open and listening.

The argument lpSockAddr is a result parameter that is filled in with the address of
the connecting socket, as known to the communications layer. Accept is used with
connection-based socket types such as SOCK_STREAM.

See Also CAsyncSocket::Bind, CAsyncSocket::Connect,· CAsyncSocket::Listen,
CAsyncSocket: : Create, :: WSAAsyncSelect

CAsyncSocket: :AsyncSelect
BOOL AsyncSelect(long lEvent = FD_READ I FD_ WRITE I FD_OOB I FD_ACCEPT I

FD_CONNECT I FD_CLOSE);

Return Value
Nonzero if the function is successful; otherwise 0, and a specific error code can be
retrieved by calling GetLastError. The following errors apply to this member
function:

• WSANOTINITIALISED A successful AfxSocketInit must occur before using
this API.

• WSAENETDOWN The Windows Sockets implementation detected that the
network subsystem failed.

• WSAEINVAL Indicates that one of the specified parameters was invalid.

• WSAEINPROGRESS A blocking Windows Sockets operation is in progress.

Parameters
lEvent A bitmask which specifies a combination of network events in which the

application is interested.

• FD _READ Want to receive notification of readiness for reading.

• FD_ WRITE Want to receive notification when data is available to be read.

• FD_OOB Want to receive notification of the arrival of out-of-band data.

• FD_ACCEPT Want to receive notification of incoming connections.

71

CAsyncSocket: :Attach

Remarks

• FD_CONNECT Want to receive notification of connection results.

• FD _CLOSE Want to receive notification when a socket has been closed by
a peer.

Call this member function to request event notification for a socket. This function is
used to specify which MFC callback notification functions will be called for the
socket. AsyncSelect automatically sets this socket to nonblocking mode. For more
information, see the article "Windows Sockets: Socket Notifications" in Programming
with MFC and "Programming with Sockets" in the Win32 SDK documentation.

See Also CAsyncSocket::GetLastError, ::WSAAsyncSelect

CAsyncSocket: : Attach
BOOL Attach(SOCKET hSocket, long lEvent = FD_READ I FD_ WRITE I FD_OOB I

FD_ACCEPT I FD_CONNECT I FD_CLOSE);

Return Value
Nonzero if the function is successful.

Parameters

Remarks

72

hSocket Contains a handle to a socket.

lEvent A bitmask which specifies a combination of network events in which the
application is interested.

• FD_READ Want to receive notification of readiness for reading.

• FD _ WRITE Want to receive notification when data is available to be read.

• FD_OOB Want to receive notification of the arrival of out-of-band data.

• FD_ACCEPT Want to receive notification of incoming connections.

• FD_CONNECT Want to receive notification of connection results.

• FD_CLOSE Want to receive notification when a socket has been closed by
a peer.

Call this member function to attach the hSocket handle to an. CAsyncSocket object.
The SOCKET handle is stored in the object's m_hSocket data member.

See Also CAsyncSocket: :Detach

CAsyncSocket: :Bind
BOOL Bind(UINT nSocketPort, LPCTSTR IpszSocketAddress = NULL);
BOOL Bind (const SOCKADDR* IpSockAddr, int nSockAddrLen);

Return Value
Nonzero if the function is successful; otherwise 0, and a specific error code can be
retrieved by calling GetLastError. The following errors apply to this member
function:

• WSANOTINITIALISED A successful AfxSocketlnit must occur before using
this API.

• WSAENETDOWN The Windows Sockets implementation detected that the
network subsystem failed.

• WSAEADDRINUSE The specified address is already in use. (See the
SO_REUSEADDR socket option under SetSockOpt.)

• WSAEFAULT The nSockAddrLen argument is too small (less than the size of a
SOCKADDR structure).

• WSAEINPROGRESS A blocking Windows Sockets call is in progress.

• WSAEAFNOSUPPORT The specified address family is not supported by this
port.

• WSAEINVAL The socket is already bound to an address.

• WSAENOBUFS Not enough buffers available, too many connections.

• WSAENOTSOCK The descriptor is not a socket.

Parameters

Remarks

nSocketPort The port identifying the socket application.

IpszSocketAddress The network address, a dotted number such as "128.56.22.8".

IpSockAddr A pointer to a SOCKADDR structure that contains the address to
assign to this socket.

nSockAddrLen The length of the address in IpSockAddr in bytes.

Call this member function to associate a local address with the socket. This routine is
used on an unconnected datagram or stream socket, before subsequent Connect or
Listen calls. Before it can accept connection requests, a listening server socket must
select a port number and make it known to Windows Sockets by calling Bind. Bind
establishes the local association (host address/port number) of the socket by assigning
a local name to an unnamed socket.

See Also CAsyncSocket:: Connect, CAsyncSocket: : Listen,
CAsyncSocket: : GetSockName, CAsyncSocket: :SetSockOpt,
CAsyncSocket: : Create

CAsyncSocket::Bind

73

CAsyncSocket::CAsyncSocket

CAsyncSocket: :CAsyncSocket

Remarks

CAsyncSocket();

Constructs a blank socket object. After constructing the object, you must call its
Create member function to create the SOCKET data structure and bind its address.
(On the serVer side of a Windows Sockets communication, when the listening socket
creates a socket to use in the Accept call, you do not call Create for that socket.)

See Also CAsyncSocket: : Create

CAsyncSocket: :Close

Remarks

virtual void Close();

This function closes the socket. More precisely, it releases the socket descriptor, so
that further references to it will fail with the error WSAENOTSOCK. If this is the
last reference to the underlying socket, the associated naming information and
queued data are discarded. The socket object's destructor calls Close for you.

For CAsyncSocket, but not for CSocket, the semantics of Close are affected by the
socket options SO_LINGER and SO _DONTLINGER. For further information, see
member function GetSockOpt and "Programming with Sockets" in the Win32 SDK
documentation.

See Also CAsyncSocket: :Accept, CAsyncSocket: :CAsyncSocket,
CAsyncSocket: :IOCtl, CAsyncSocket: : GetSockOpt,
CAsyncSocket: :SetSockOpt, CAsyncSocket: : AsyncSelect

CAsyncSocket: : Connect
BOOL Connect(LPCTSTR IpsiliostAddress, UINT nHostPort);
BOOL Connect(const SOCKADDR* IpSockAddr, int nSockAddrLen);

Return Value

74

Nonzero if the function is successful; otherwise 0, and a specific error code can be
retrieved by calling GetLastError. If this indicates an error code of
WSAEWOULDBLOCK,and your application is using the overridable callbacks,
your application will receive an OnConnect message when the connect operation is
complete. The following errors apply to this member function:

.' WSANOTINITIALISED A successful AfxSocketInit must occur before using
this API.

CAsyncSocket: : Connect

• WSAENETDOWN The Windows Sockets implementation detected that the
network subsystem failed.

• WSAEADDRINUSE The specified address is already in use.

• WSAEINPROGRESS A blocking Windows Sockets call is in progress.

• WSAEADDRNOTAVAIL The specified address is not available from the local
machine.

• WSAEAFNOSUPPORT Addresses in the specified family cannot be used with
this socket.

• WSAECONNREFUSED The attempt to connect was rejected.

• WSAEDESTADDREQ A destination address is required.

• WSAEFAULT The nSockAddrLen argument is incorrect.

• WSAEINVAL The socket is not already bound to an address.

• WSAEISCONN The socket is already connected.

• WSAEMFILE No more file descriptors are available.

• WSAENETUNREACH The network cannot be reached from this host at
this time.

• WSAENOBUFS No buffer space is available. The socket cannot be connected.

• WSAENOTSOCK The descriptor is not a socket.

• WSAETIMEDOUT Attempt to connect timed out without establishing a
connection.

• WSAEWOULDBLOCK The socket is marked as nonblocking and the
connection cannot be completed immediately.

Parameters

Remarks

IpszHostAddress The network address of the socket to which this object is
connected: a machine name such as "ftp.microsoft.com", or a dotted number such
as "128.56.22.8".

nHostPort The port identifying the socket application.

IpSockAddr A pointer to a SOCKADDR structure that contains the address of the
connected socket.

nSockAddrLen The length of the address in IpSockAddr in bytes.

Call this member function to establish a connection to an unconnected stream or
datagram socket. If the socket is unbound, unique values are assigned to the local
association by the system, and the socket is marked as bound. Note that if the address
field of the name structure is all zeroes, Connect will return zero. To get extended
error information, call the GetLastError member function.

75

CAsyncSocket: :Create

For stream sockets (type SOCK_STREAM), an active connection is initiated to the
foreign host. When the socket call completes successfully, the socket is ready to
send/receive data.

For a datagram socket (type SOCK_DGRAM), a default destination is set, which
will be used on subsequent Send and Receive calls.

See Also CAsyncSocket: :Accept, CAsyncSocket: :Bind,
CAsyncSocket: : GetSockName, CAsyncSocket: : Create,
CAsyncSocket: :AsyncSelect

CAsyncSocket: : Create
BOOL Create(UINT nSocketPort = 0, int nSocketType = SOCK_STREAM, long lEvent =

FD_READ I FD_WRITE I FD_OOB I FD_ACCEPT I FD_CONNECT I FD_CLOSE,
LPCTSTR lpszSocketAddress = NULL);

Return Value
Nonzero if the function is successful; otherwise 0, and a specific error code can be
retrieved by calling GetLastError. The following errors apply to this member
function:

• WSANOTINITIALISED A successful AfxSocketInit must occur before using
this API.

• WSAENETDOWN The Windows Sockets implementation detected that the
network subsystem failed.

• WSAEAFNOSUPPORT The specified address family is not supported.

• WSAEINPROGRESS A blocking Windows Sockets operation is in progress.

• WSAEMFILE No more file descriptors are available.

• WSAENOBUFS No buffer space is available. The socket cannot be created.

• WSAEPROTONOSUPPORT The specified port is not supported.

• WSAEPROTOTYPE The specified port is the wrong type for this socket.

• WSAESOCKTNOSUPPORT The specified socket type is not supported in this
address family.

Parameters

76

nSocketPort A well-known port to be used with the socket, or 0 if you want
Windows Sockets to select a port.

nSocketType SOCK_STREAM or SOCK_DGRAM.

lEvent A bitmask which specifies a combination of network events in which the
application is interested.

Remarks

• FD _READ Want to receive notification of readiness for reading.

• FD_ WRITE Want to receive notification of readiness for writing.

• FD_OOB Want to receive notification of the arrival of out-of-band data.

• FD_ACCEPT Want to receive notification of incoming connections.

• FD_CONNECT Want to receive notification of completed connection.

• FD_CLOSE Want to receive notification of socket closure.

lpszSockAddress A pointer to the address of a SOCKADDR structure that contains
the network address.

Call the Create member function after constructing a socket object to create the
Windows socket and attach it. Create then calls Bind to bind the socket to the
specified address. The following socket types are supported:

• SOCK_STREAM Provides sequenced, reliable, full-duplex, connection-based
byte streams. Uses the Transmission Control Protocol (TCP) for the Internet
address family .

• SOCK_DGRAM Supports datagrams, which are connectionless, unreliable
packets of a fixed (typically small) maximum length. Uses the User Datagram
Protocol (UDP) for the Internet address family.

CAsyncSocket: :Detach

Note The Accept member function takes a reference to a new, empty CSocket object as
its parameter. You must construct this object before you call Accept. Keep in mind that if
this socket object goes out of scope, the connection closes. Do not call Create for this new
socket object.

For more information about stream and datagram sockets, see the articles "Windows
Sockets: Background" and "Windows Sockets: Ports and Socket Addresses" in
Programming with MFC and "Programming with Sockets" in the Win32 SDK
documentation.

See Also CAsyncSocket::Accept, CAsyncSocket::Bind, CAsyncSocket::Connect,
CAsyncSocket: : GetSockName, CAsyncSocket: :IOCtI, CAsyncSocket: :Listen,
CAsyncSocket: : Receive, CAsyncSocket: :Send, CAsyncSocket: : ShutDown

CAsyncSocket: : Detach

Remarks

SOCKET Detach();

Call this member function to detach the SOCKET handle in the m_hSocket data
member from the CAsyncSocket object and set m_hSocket to NULL.

See Also CAsyncSocket: :Attach

77

CAsyncSocket::FromHandle

CAsyncSocket: : FromHandle
static CAsyncSocket* PASCAL FromHandle(SOCKET hSocket);

Return Value
A pointer to an CAsyncSocket object, or NULL if there is no CAsyncSocket object
attached to hSocket.

Parameters

Remarks

hSocket Contains a handle to a socket.

Returns a pointer to a CAsyncSocket object. When given a SOCKET handle,
if a CAsyncSocket object is not attached to the handle, the member function
returns NULL.

See Also CSocket: :FromHandle, CAsyncSocket: : Attach , CAsyncSocket: :Detach

CAsyncSocket: : GetLastError
static int GetLastError();

Return Value

Remarks

The return value indicates the error code for the last Windows Sockets API routine
performed by this thread.

Call this member function to get the error status for the last operation that failed.
When a particular member function indicates that an error has occurred,
GetLastError should be called to retrieve the appropriate error code. See the
individual member function descriptions for a list of applicable error codes.

For more information about the error codes, see "Programming with Sockets" in the
Win32 SDK documentation.

See Also :: WSASetLastError

CAsyncSocket: : GetPeerN arne
BOOL GetPeerName(CString& rPeerAddress, UINT & rPeerPort);
BOOL GetPeerName(SOCKADDR* lpSockAddr, int* lpSockAddrLen);

Return Value

78

Nonzero if the function is successful; otherwise 0, and a specific error code can be
retrieved by calling GetLastError. The following errors apply to this member
function.

CAsyncSocket::GetSockName

• WSANOTINITIALISED A successful AfxSocketInit must occur before using
this API.

• WSAENETDOWN The Windows Sockets implementation detected that the
network subsystem failed.

• WSAEFAULT The lpSoc"kAddrLen argument is not large enough.

• WSAEINPROGRESS A blocking Windows Sockets call is in progress.

• WSAENOTCONN The socket is not connected.

• WSAENOTSOCK The descriptor is not a socket.

Parameters

Remarks

rPeerAddress Reference to a CString object that receives a dotted number IP
address.

rPeerPort Reference to a UINT that stores a port.

lpSockAddr A pointer to the SOCKADDR structure that receives the name of the
peer socket.

lpSockAddrLen A pointer to the length of the address in lpSockAddr in bytes. On
return, the lpSockAddrLen argument contains the actual size of lpSockAddr
returned in bytes.

Call this member function to get the address of the peer socket to which this socket is
connected.

See Also CAsyncSocket: :Bind, CAsyncSocket: : Connect, CAsyncSocket: :Create,
CAsyncSocket::GetSockName

CAsyncSocket: : GetSockN arne
BOOL GetSockName(CString& rSocketAddress, UINT& rSocketPort);
BOOL GetSockName(SOCKADDR* lpSockAddr, int* lpSockAddrLen);

Return Value
Nonzero if the function is successful; otherwise 0, and a specific error code can be
retrieved by calling GetLastError. The following errors apply to this member
function:

• WSANOTINITIALISED A successful AfxSocketInit must occur before using
this API.

• WSAENETDOWN The Windows Sockets implementation detected that the
network subsystem failed.

• WSAEFAULT The lpSockAddrLen argument is not large enough.

• WSAEINPROGRESS A blocking Windows Sockets operation is in progress.

79

CAsyncSocket: :GetSockOpt

• WSAENOTSOCK The descriptor is not a socket.

• WSAEINVAL The socket has not been bound to an address with Bind.

Parameters

Remarks

rSocketAddress Reference to a CString object that receives a dotted number IP
address.

rSocketPort Reference to a UINT that stores a port.

IpSockAddr A pointer to a SOCKADDR structure that receives the address of the
socket.

IpSockAddrLen A pointer to the length of the address in IpSockAddr in bytes.

Call this member function to get the local name for a socket. This call is especially
useful when a Connect call has been made without doing a Bind first; this call
provides the only means by which you can determine the local association which has
been set by the system. For more information, see "Programming with Sockets" in the
Win32 SDK documentation.

See Also CAsyncSocket: :Bind, CAsyncSocket: : Create,
CAsyncSocket: : GetPeerName

CAsyncSocket:: GetSockOpt
BOOL GetSockOpt(int nOptionName, void* IpOption Value, int* IpOptionLen,

int nLevel = SOL_SOCKET);

Return Value

80

Nonzero if the function is successful; otherwise 0, and a specific error code can be
retrieved by calling GetLastError. If an option was never set with SetSockOpt, then
GetSockOpt returns the default value for the option. The following errors apply to
this member function:

• WSANOTINITIALISED A successful AfxSocketInit must occur before using
this API.

• WSAENETDOWN The Windows Sockets implementation detected that the
network subsystem failed.

• WSAEFAULT The IpOptionLen argument was invalid.

• WSAEINPROGRESS A blocking Windows Sockets operation is in progress.

• WSAENOPROTOOPT The option is unknown or unsupported. In particular,
SO _BROADCAST is not supported on sockets of type SOCK_STREAM, while
SO_ACCEPT CONN, SO_DONTLINGER, SO_KEEP ALIVE, SO_LINGER,
and SO _ OOBINLINE are not supported on sockets of type SOCK_DGRAM.

• WSAENOTSOCK The descriptor is not a socket.

CAsyncSocket: : GetSockOpt

Parameters

Remarks

nOptionName The socket option for which the value is to be retrieved.

IpOption Value A pointer to the buffer in which the value for the requested option is
to be returned. The value associated with the selected option is returned in the
buffer IpOptionValue. The integer pointed to by IpOptionLen should originally
contain the size of this buffer in bytes; and on return, it will be set to the size of
the value returned. For SO_LINGER, this will be the size of a LINGER
structure; for all other options it will be the size of a BOOL or an iot, depending
on the option. See the list of options and their sizes in the Remarks section.

IpOptionLen A pointer to the size of the IpOption Value buffer in bytes.

nLevel The level at which the option is defined; the only supported levels are
SOL_SOCKET and IPPROTO_TCP.

Call this member function to retrieve a socket option. GetSockOpt retrieves the
current value for a socket option associated with a socket of any type, in any state,
and stores the result in IpOption Value. Options affect socket operations, such as the
routing of packets, out-of-band data transfer, and so on.

The following options are supported for GetSockOpt. The Type identifies the type of
data addressed by IpOption Value. The TCP _NODELAY option uses level
IPPROTO_TCP; all other options use level SOL_SOCKET.

Value Type Meaning

SO_ACCEPTCONN BOOL Socket is listening.

SO_BROADCAST BOOL Socket is configured for the
transmission of broadcast messages.

SO_DEBUG BOOL Debugging is enabled.

SO_DONTLINGER BOOL If true, the SO_LINGER option is
disabled.

SO_DONTROUTE BOOL Routing is disabled.

SO_ERROR int Retrieve error status and clear.

SO_KEEPALIVE BOOL Keep-alives are being sent.

SO_LINGER struct LINGER Returns the current linger options.

SO_OOBINLINE BOOL Out-of-band data is being received in
the normal data stream.

SO_RCVBUF int Buffer size for receives.

SO_REUSEADDR BOOL The socket can be bound to an address
which is already in use.

SO_SNDBUF int Buffer size for sends.

81

CAsyncSocket::IOCtl

Value Type

int

BOOL

Meaning

The type of the socket (for example,
SOCK_STREAM).

Disables the Nagle algorithm for send
coalescing.

Berkeley Software Distribution (BSD) options not supported for GetSockOpt are:

Value Type Meaning

SO_RCVLOWAT int Receive low water mark.

SO_RCVTIMEO int Receive timeout.

SO_SNDLOWAT int Send low water mark.

SO_SNDTIMEO int Send timeout.

IP_OPTIONS Get options in IP header.

TCP_MAXSEG hit Get TCP maximum segment size.

Calling GetSockOpt with an unsupported option will result.in an error code of
WSAENOPROTOOPT being returned from GetLastError.

See Also CAsyncSocket::SetSockOpt

CAsyncSocket: : IOCtl
BOOL IOCtl(long lCommand, DWORD* lpArgument);

Return Value

82

Nonzero if the function is successful; otherwise 0, and a specific error code can be
retrieved by calling GetLastError. The following errors apply to this member
function:

• WSANOTINITIALISED A successful AfxSocketInit must occur before using
this API.

• WSAENETDOWN The Windows Sockets implementation detected that the
network subsystem failed.

• WSAEINVAL lCommand is not a valid command, or lpArgument is not an
acceptable parameter for lCommand, or the command is not applicable to the type
of socket supplied.

• WSAEINPROGRESS A blocking Windows Sockets operation is in progress.

• WSAENOTSOCK The descriptor is not a.socket.

Parameters

Remarks

lCommand The command to perform on the socket.

lpArgument A pointer to a parameter for lCommand.

Call this member function to control the mode of a socket. This routine can be used
on any socket in any state. It is used to get or retrieve operating parameters associated
with the socket, independent of the protocol and communications subsystem. The
following commands are supported:

• FIONBIO Enable or disable nonblocking mode on the socket. The lpArgument
parameter points at a DWORD, which is nonzero if nonblocking mode is to be
enabled and zero if it is to be disabled. If AsyncSelect has been issued on a socket,
then any attempt to use IOCtI to set the socket back to blocking mode will fail
with WSAEINVAL. To set the socket back to blocking mode and prevent the
WSAEINVAL error, an application must first disable AsyncSelect by calling
AsyncSelect with the lEvent parameter equal to 0, then call IOCtI.

• FIONREAD Determine the maximum number of bytes that can be read with one
Receive call from this socket. The lpArgument parameter points at a DWORD in
which IOCtI stores the result. If this socket is of type SOCK_STREAM,
FIONREAD returns the total amount of data which can be read in a single
Receive; this is normally the same as the total amount of data queued on the
socket. If this socket is of type SOCK_DGRAM, FIONREAD returns the size of
the first datagram queued on the socket.

• SIOCATMARK Determine whether all out-of-band data has been read. This
applies only to a socket of type SOCK_STREAM which has been configured for
in-line reception of any out-of-band data (SO_OOBINLINE).1f no out-of-band
data is waiting to be read, the operation returns nonzero. Otherwise it returns 0,
and the next Receive or ReceiveFrom performed on the socket will retrieve some
or all of the data preceding the "mark"; the application should use the
SIOCATMARK operation to determine whether any data remains. If there is any
normal data preceding the "urgent" (out-of-band) data, it will be received in order.
(Note that a Receive or ReceiveFrom will never mix out-of-band and normal data
in the same call.) The lpArgument parameter points at a DWORD in which IOCtI
stores the result.

This function is a subset of ioctlO as used in Berkeley sockets. In particular, there is
no command which is equivalent to FIOASYNC, while SIOCATMARK is the only
socket-level command which is supported.

See Also CAsyncSocket: :AsyncSelect, CAsyncSocket:: Create,
CAsyncSocket: :GetSockOpt, CAsyncSocket: :SetSockOpt

CAsyncSocket: : IOCtl

83

CAsyncSocket: :Listen

CAsyncSocket: : Listen
BOOL Listen(int nConnectionBacklog = 5);

Return Value
Nonzero if the function is successful; otherwise 0, and a specific error code can be
retrieved by calling GetLastError. The following errors apply to this member
function:

• WSANOTINITIALISED A successful AfxSocketlnit must occur before using
this API.

• WSAENETDOWN The Windows Sockets implementation detected that the
network subsystem failed.

• WSAEADDRINUSE An attempt has been made to listen on an address in use.

• WSAEINPROGRESS A blocking Windows Sockets operation is in progress.

• WSAEINVAL The socket has not been bound with Bind or is already connected.

• WSAEISCONN The socket is already connected.

• WSAEMFILE No more file descriptors are available.

• WSAENOBUFS No buffer space is available.

• WSAENOTSOCK The descriptor is not a socket.

• WSAEOPNOTSUPP The referenced socket is not of a type that supports the
Listen operation.

Parameters

Remarks

84

nConnectionBacklog The maximum length to which the queue of pending
connections can grow. Valid range is from 1 to 5.

Call this member function to listen for incoming connection requests. To accept
connections, the socket is first created with Create, a backlog for incoming
connections is specified with Listen, and then the connections are accepted with
Accept. Listen applies only to sockets that support connections, that is, those of type
SOCK_STREAM. This socket is put into "passive" mode where incoming
connections are acknowledged and queued pending acceptance by the process.

This function is typically used by servers (or any application that wants to accept
connections) that could have more than one connection request at a time: if a
connection request arrives with the queue full, the client will receive an error with an
indication of WSAECONNREFUSED.

CAsyncSocket::OnClose

Listen attempts to continue to function rationally when there are no available ports
(descriptors). It will accept connections until the queue is emptied. If ports become
available, a later call to Listen or Accept will refill the queue to the current or most
recent "backlog," if possible, and resume listening for incoming connections.

See Also CAsyncSocket: :Accept, CAsyncSocket: : Connect,
CAsyncSocket:: Create

CAsyncSocket: :OnAccept
virtual void OnAccept(int nErrorCode);

Parameters

Remarks

nErrorCode The most recent error on a socket. The following error codes applies to
the OnAccept member function:

• 0 The function executed successfully.

• WSAENETDOWN The Windows Sockets implementation detected that the
network subsystem failed.

Called by the framework to notify a listening socket that it can accept pending
connection requests by calling the Accept member function. For more information,
see the article "Windows Sockets: Socket Notifications" in Programming with MPC.

See Also CAsyncSocket: :Accept, CAsyncSocket: : GetLastError,
CAsyncSocket: :OnClose, CAsyncSocket: :OnConnect,
CAsyncSocket: :OnOutOmandData, CAsyncSocket: :OnReceive,
CAsyncSocket: :OnSend

CAsyncSocket:: OnClose
virtual void OnClose(int nErrorCode);

Parameters
nErrorCode The most recent error on a socket. The following error codes apply to

the OnClose member function:

• 0 The function executed successfully.

• WSAENETDOWN The Windows Sockets implementation detected that the
network subsystem failed.

• WSAECONNRESET The connection was reset by the remote side.

• WSAECONNABORTED The connection was aborted due to timeout or
other failure.

85

CAsyncSocket: :OnConnect

Remarks
Called by the framework to notify this socket that the connected socket is closed by its
process. For more information, see the article "Windows Sockets: Socket
Notifications" in Programming with MFC.

See Also CAsyncSocket::Close, CAsyncSocket::GetLastError,
CAsyncSocket: :OnAccept, CAsyncSocket: :OnConnect,
CAsyncSocket: :OnOutOmandData, CAsyncSocket: :OnReceive,
CAsyncSocket: :OnSend

CAsyncSocket: :OnConnect
virtual void OnConnect(int nErrorCode);

Parameters

86

nErrorCode The most recent error on a socket. The following error codes apply to
the OnConnect member function:

• 0 The function executed successfully.

• WSAEADDRINUSE The specified address is already in use.

• WSAEADDRNOTAVAIL The specified address is not available from the
local machine.

• WSAEAFNOSUPPORT Addresses in the specified family cannot be used
with this socket.

• WSAECONNREFUSED The attempt to connect was forcefully rejected.

• WSAEDESTADDRREQ A destination address is required.

• WSAEFAULT The lpSockAddrLen argument is incorrect.

• WSAEINVAL The socket is already bound to an address.

• WSAEISCONN The socket is already connected.

• WSAEMFILE No more file descriptors are available.

• WSAENETUNREACH The network cannot be reached from this host at
this time.

• WSAENOBUFS No buffer space is available. The socket cannot be
connected.

• WSAENOTCONN The socket is not connected.

• WSAENOTSOCK The descriptor is a file, not a socket.

• WSAETIMEDOUT The attempt to connect timed out without establishing a
connection.

CAsyncSocket::OnOutOfBandData

Remarks
Called by the framework to notify this connecting socket that its connection attempt
is completed, whether successfully or in error.

Important In CSocket, the OnSend and OnConnect notification functions are never called.

Note To send data, you simply call Send, which won't return until all the data has been sent.
The use of the notification to complete this task is an MFC implementation detail for CSocket.
For connections, you simply call Connect, which will return when the connection is completed
(either successfully or in error). How connection notifications are handled is also an MFC
implementation detail.

For more information, see the article "Windows Sockets: Socket Notifications" in
Programming with MFC.

See Also CAsyncSocket::Connect, CAsyncSocket::GetLastError,
CAsyncSocket: :OnAccept, CAsyncSocket: :OnClose,
CAsyncSocket: :OnOutOmandData, CAsyncSocket: :OnReceive,
CAsyncSocket: :OnSend

CAsyncSocket: :OnOutOfBandData
virtual void OnOutOmandData(int nErrorCode);

Parameters

Remarks

nErrorCode The most recent error on a socket. The following error codes apply to
the OnOutOmandData member function:

• 0 The function executed successfully.

• WSAENETDOWN The Windows Sockets implementation detected that the
network subsystem failed.

Called by the framework to notify the receiving socket that the sending socket has
out-of-band data to send. Out-of-band data is a logically independent channel that is
associated with each pair of connected sockets of type SOCK_STREAM. The
channel is generally used to send urgent data.

MFC supports out-of-band data, but users of class CAsyncSocket are discouraged
from using it. The easier way is to create a second socket for passing such data. For
more information about out-of-band data, see the article "Windows Sockets: Socket
Notifications" in Programming with MFC and "Programming with Sockets" in the
Win32 SDK documentation.

See Also CAsyncSocket::GetLastError, CAsyncSocket::OnAccept,
CAsyncSocket: :OnClose, CAsyncSocket: : On Connect,
CAsyncSocket::OnReceive, CAsyncSocket: :OnSend

87

CAsyncSocket: :OnReceive

CAsyncSocket: :OnReceive
virtual void OnReceive(int nErrorCode);

Parameters

Remarks

nErrorCode The most recent error on a socket. The following error codes apply to
the OnReceive member function:

• 0 The function executed successfully.

• WSAENETDOWN The Windows Sockets implementation detected that the
network subsystem failed.

Called by the framework to notify this socket that there is data in the buffer that can
be retrieved by calling the Receive member function. For more information, see the
article "Windows Sockets: Socket Notifications" in Programming with MFC.

See Also CAsyncSocket::GetLastError, CAsyncSocket::OnAccept,
CAsyncSocket::OnClose, CAsyncSocket: :OnConnect,
CAsyncSocket: :OnOutOmandData, CAsyncSocket: :OnSend,
CAsyncSocket: : Receive

CAsyncSocket:: OnSend
virtual void OnSend(int nErrorCode);

Parameters

Remarks

88

nErrorCode The most recent error on a socket. The following error codes apply to
the OnSend member function:

• 0 The function executed successfully.

• WSAENETDOWN The Windows Sockets implementation detected that the
network subsystem failed.

Called by the framework to notify the socket that it can now send data by calling the
Send member function.

Important In CSocket, the OnSend and OnConnect notification functions are never called.

Note To send data, you simply call Send, which won't return until all the data has been sent.
The use of the notification to complete this task is an MFC implementation detail for CSocket.
For connections, you simply call Connect, which will return when the connection is completed
(either successfully or in error). How connection notifications are handled is also an MFC
implementation detail.

CAsyncSocket: : Receive

For more information, see the article "Windows Sockets: Socket Notifications" in
Programming with MFC.

See Also CAsyncSocket::GetLastError, CAsyncSocket::OnAccept,
CAsyncSocket: :OnClose, CAsyncSocket: :OnConnect,
CAsyncSocket: :OnOutOffiandData, CAsyncSocket: :OnReceive,
CAsyncSocket: :Send

CAsyncSocket: : Receive
virtual int Receive(void* IpBuf, int nBujLen, int nFlags = 0);

Return Value
If no error occurs, Receive returns the number of bytes received. If the connection
has been closed, it returns O. Otherwise, a value of SOCKET_ERROR is returned,
and a specific error code can be retrieved by calling GetLastError. The following
errors apply to this member function:

• WSANOTINITIALISED A successful AfxSocketInit must occur before using
this API.

• WSAENETDOWN The Windows Sockets implementation detected that the
network subsystem failed.

• WSAENOTCONN The socket is not connected.

• WSAEINPROGRESS A blocking Windows Sockets operation is in progress.

• WSAENOTSOCK The descriptor is not a socket.

• WSAEOPNOTSUPP MSG_OOB was specified, but the socket is not of type
SOCK_STREAM.

• WSAESHUTDOWN The socket has been shut down; it is not possible to call
Receive on a socket after ShutDown has been invoked with nHow set to 0 or 2.

• WSAEWOULDBLOCK The socket is marked as nonblocking and the Receive
operation would block.

• WSAEMSGSIZE The datagram was too large to fit into the specified buffer and
was truncated.

• WSAEINVAL The socket has not been bound with Bind.

• WSAECONNABORTED The virtual circuit was aborted due to timeout or
other failure.

• WSAECONNRESET The virtual circuit was reset by the remote side.

Parameters
IpBuf A buffer for the incoming data.

nBujLen The length of IpBuf in bytes.

89

CAsyncSocket: :ReceiveFrom

Remarks

nFlags Specifies the way in which the call is made. The semantics of this function
are determined by the socket options and the nFlags parameter. The latter is
constructed by combining any of the following values with the C++ OR operator:

• MSG_PEEK Peek at the incoming data. The data is copied into the buffer but
is not removed from the input queue.

• MSG_OOB Process out-of-band data (see "Programming with Sockets" in
the Win32 SDK documentation for a discussion of this topic).

Call this member function to receive data from a socket. This function is used for
connected stream or datagram sockets and is used to read incoming data.

For sockets of type SOCK_STREAM, as much information as is currently available
up to the size of the buffer supplied is returned. If the socket has been configured for
in-line reception of out-of-band data (socket option SO_OOBINLINE) and out-of
band data is unread, only out-of-band data will be returned. The application can use
the IOCtl SIOCATMARK option or OnOutOmandData to determine whether any
more out-of-band data remains to be read.

For datagram sockets, data is extracted from the first enqueued datagram, up to the
size of the buffer supplied. If the datagram is larger than the buffer supplied, the
buffer is filled with the first part of the datagram, the excess data is lost, and Receive
returns a value of SOCKET_ERROR with the error code set to WSAEMSGSIZE.
If no incoming data is available at the socket, a value of SOCKET_ERROR is
returned with the error code set to WSAEWOULDBLOCK. The OnReceive
callback function can be used to determine when more data arrives.

If the socket is of type SOCK_STREAM and the remote side has shut down the
connection gracefully, a Receive will complete immediately with 0 bytes received. If
the connection has been reset, a Receive will fail with the error
WSAECONNRESET.

See Also CAsyncSocket: :AsyncSelect, CAsyncSocket:: Create,
CAsyncSocket: : ReceiveFrom, CAsyncSocket: : Send

CAsyncSocket: : ReceiveFrom

90

int ReceiveFrom(void* lpBuf, int nBujLen, CString& rSocketAddress, UINT & rSocketPort,
int nFlags = 0);

int ReceiveFrom(void* lpBuf, int nBujLen, SOCKADDR* lpSockAddr, int* lpSockAddrLen,
int nFlags = 0);

CAsyncSocket: :ReceiveFrom

Return Value
If no error occurs, ReceiveFrom returns the number of bytes received. If the
connection has been closed, it returns O. Otherwise, a value of SOCKET_ERROR is
returned, and a specific error code can be retrieved by calling GetLastError. The
following errors apply to this member function:

• WSANOTINITIALISED A successful AfxSocketInit must occur before using
this API.

• WSAENETDOWN The Windows Sockets implementation detected that the
network subsystem failed.

• WSAEFAULT The IpSockAddrLen argument was invalid: the IpSockAddr buffer
was too small to accommodate the peer address.

• WSAEINPROGRESS A blocking Windows Sockets operation is in progress.

• WSAEINVAL The socket has not been bound with Bind.

• WSAENOTCONN The socket is not connected (SOCK_STREAM only).

• WSAENOTSOCK The descriptor is not a socket.

• WSAEOPNOTSUPP MSG_OOB was specified, but the socket is not of type
SOCK_STREAM.

• WSAESHUTDOWN The socket has been shut down; it is not possible to call
ReceiveFrom on a socket after ShutDown has been invoked with nHow set to
o or 2.

• WSAEWOULDBLOCK The socket is marked as nonblocking and the
ReceiveFrom operation would block.

• WSAEMSGSIZE The datagram was too large to fit into the specified buffer and
was truncated.

• WSAECONNABORTED The virtual circuit was aborted due to timeout or
other failure.

• WSAECONNRESET The virtual circuit was reset by the remote side.

Parameters
IpBuJ A buffer for the incoming data.

nBujLen The length of IpBuJin bytes.

rSocketAddress Reference to a CString object that receives a dotted number IP
address.

rSocketPort Reference to a UINT that stores a port.

IpSockAddr A pointer to a SOCKADDR structure that holds the source address
upon return.

IpSockAddrLen A pointer to the length of the source address in IpSockAddr in bytes.

91

CAsyncSocket: :ReceiveFrom

Remarks

92

nFlags Specifies the way in which the call is made. The semantics of this function
are determined by the socket options and the nFlags parameter. The latter is
constructed by combining any of the following values with the C++ OR operator:

• MSG_PEEK Peek at the incoming data. The data is copied into the buffer but
is not removed from the input queue .

• MSG_OOB Process out-of-band data (see "Programming with Sockets" in
the Win32 SDK documentation for a discussion of this topic).

Call this member function to receive a datagram and store the source address in the
SOCKADDR structure or in rSocketAddress. This function is used to read incoming
data on a (possibly connected) socket and capture the address from which the data
was sent.

For sockets of type SOCK_STREAM, as much information as is currently available
up to the size of the buffer supplied is returned. If the socket has been configured for
in-line reception of out-of-band data (socket option SO_OOBINLINE) and out-of
band data is unread, only out-of-band data will be returned. The application can use
the IOCtl SIOCATMARK option or OnOutOmandData to determine whether any
more out-of-band data remains to be read. The lpSockAddr and lpSockAddrLen
parameters are ignored for SOCK_STREAM sockets.

For datagram sockets, data is extracted from the first enqueued datagram, up to the
size of the buffer supplied. If the datagram is larger than the buffer supplied, the
buffer is filled with the first part of the message, the excess data is lost, and
ReceiveFrom returns a value of SOCKET_ERROR with the error code set to
WSAEMSGSIZE.

If lpSockAddr is nonzero, and the socket is of type SOCK_DGRAM, the network
address of the socket which sent the data is copied to the corresponding
SOCKADDR structure. The value pointed to by lpSockAddrLen is initialized to the
size of this structure, and is modified on return to indicate the actual size of the
address stored there. If no incoming data is available at the socket, the ReceiveFrom
call waits for data to arrive unless the socket is nonblocking. In this case, a value of
SOCKET_ERROR is returned with the error code set to WSAEWOULDBLOCK.
The OnReceive callback can be used to determine when more data arrives.

If the socket is of type SOCK_STREAM and the remote side has shut down the
connection gracefully, a ReceiveFrom will complete immediately with 0 bytes
received.

See Also CAsyncSocket: :AsyncSelect, CAsyncSocket: : Create,
CAsyncSocket: : Receive, CAsyncSocket: :Send

CAsyncSocket: :Send
virtual int Send(const void* IpBuJ, int nBufLen, int nFlags = 0);

Return Value
If no error occurs, Send returns the total number of characters sent. (Note that
this can be less than the number indicated by nBufLen.) Otherwise, a value of
SOCKET_ERROR is returned, and a specific error code can be retrieved by
calling GetLastError. The following errors apply to this member function:

• WSANOTINITIALISED A successful AfxSocketInit must occur before using
this API.

• WSAENETDOWN The Windows Sockets implementation detected that the
network subsystem failed.

• WSAEACCES The requested address is a broadcast address, but the appropriate
flag was not set.

• WSAEINPROGRESS A blocking Windows Sockets operation is in progress.

• WSAEFAULT The IpBuJargument is not in a valid part of the user address
space.

• WSAENETRESET The connection must be reset because the Windows Sockets
implementation dropped it.

• WSAENOBUFS The Windows Sockets implementation reports a buffer
deadlock.

• WSAENOTCONN The socket is not connected.

• WSAENOTSOCK The descriptor is not a socket.

• WSAEOPNOTSUPP MSG_OOB was specified, but the socket is not of type
SOCK_STREAM.

• WSAESHUTDOWN The socket has been shut down; it is not possible to call
Send on a socket after ShutDown has been invoked with nHow set to 1 or 2.

• WSAEWOULDBLOCK The socket is marked as nonblocking and the
requested operation would block.

• WSAEMSGSIZE The socket is of type SOCK_DGRAM, and the datagram is
larger than the maximum supported by the Windows Sockets implementation.

• WSAEINVAL The socket has not been bound with Bind.

• WSAECONNABORTED The virtual circuit was aborted due to timeout or
other failure.

• WSAECONNRESET The virtual circuit was reset by the remote side.

CAsyncSocket: :Send

93

CAsyncSocket: :SendTo

Parameters

Remarks

IpBuJ A buffer containing the data to be transmitted.

nBufLen The length of the data in IpBuJ in bytes.

nFlags Specifies the way in which the call is made. The semantics of this function
are determined by the socket options and the nFlags parameter. The latter is
constructed by combining any of the following values with the C++ OR operator:

• MSG_DONTROUTE Specifies that the data should not be subject to routing.
A Windows Sockets supplier can choose to ignore this flag; see also the
discussion of the SO_DONTROUTE option in "Programming with Sockets"
in the Win32 SDK documentation.

• MSG_OOB Send out-of-band data (SOCK_STREAM only; also see
"Programming with Sockets" in the Win32 SDK documentation).

Call this member function to send data on a connected socket. Send is used to write
outgoing data on connected stream or datagram sockets. For datagram sockets, care
must be taken not to exceed the maximum IP packet size of the underlying subnets,
which is given by the iMaxUdpDg element in the WSADATA structure returned by
AfxSocketInit. If the data is too long to pass atomically through the underlying
protocol, the error WSAEMSGSIZE is returned via GetLastError, and no data is
transmitted.

Note that for a datagram socket the successful completion of a Send does not indicate
that the data was successfully delivered.

On CAsyncSocket objects of type SOCK_STREAM, the number of bytes written
can be between 1 and the requested length, depending on buffer availability on both
the local and foreign hosts.

See Also CAsyncSocket::Create, CAsyncSocket::Receive,
CAsyncSocket::ReceiveFrom, CAsyncSocket: :SendTo

CAsyncSocket:: SendTo
int SendTo(const void* IpBuf, int nBufLen, UINT nHostPort, LPCTSTR IpszHostAddress = NULL,

int nFlags = 0);
int SendTo(const void* IpBuf, int nBufLen, const SOCKADDR* IpSockAddr, int nSockAddrLen,

int nFlags = 0);

Return Value

94

If no error occurs, SendTo returns the total number of characters sent. (Note
that this can be less than the number indicated by nBufLen.) Otherwise, a value
of SOCKET_ERROR is returned, and a specific error code can be retrieved by
calling GetLastError. The following errors apply to this member function:

CAsyncSocket: :SendTo

• WSANOTINITIALISED A successful AfxSocketInit must occur before using
this API.

• WSAENETDOWN The Windows Sockets implementation detected that the
network subsystem failed.

• WSAEACCES The requested address is a broadcast address, but the appropriate
flag was not set.

• WSAEINPROGRESS A blocking Windows Sockets operation is in progress.

• WSAEFAULT The IpBuJ or IpSockAddr parameters are not part of the user
address space, or the IpSockAddr argument is too small (less than the size of a
SOCKADDR structure).

• WSAENETRESET The connection must be reset because the Windows Sockets
implementation dropped it.

• WSAENOBUFS The Windows Sockets implementation reports a buffer
deadlock.

• WSAENOTCONN The socket is not connected (SOCK_STREAM only).

• WSAENOTSOCK The descriptor is not a socket.

• WSAEOPNOTSUPP MSG_OOB was specified, but the socket is not of type
SOCK_STREAM.

• WSAESHUTDOWN The socket has been shut down; it is not possible to call
SendTo on a socket after ShutDown has been invoked with nHow set to 1 or 2.

• WSAEWOULDBLOCK The socket is marked as nonblocking and the
requested operation would block.

• WSAEMSGSIZE The socket is of type SOCK_DGRAM, and the datagram is
larger than the maximum supported by the Windows Sockets implementation.

• WSAECONNABORTED The virtual circuit was aborted due to timeout or
other failure.

• WSAECONNRESET The virtual circuit was reset by the remote side.

• WSAEADDRNOTAVAIL The specified address is not available from the local
machine.

• WSAEAFNOSUPPORT Addresses in the specified family cannot be used with
this socket.

• WSAEDESTADDRREQ A destination address is required.

• WSAENETUNREACH The network cannot be reached from this host at
this time.

Parameters
IpBuJ A buffer containing the data to be transmitted.

nBufLen The length of the data in IpBuJ in bytes.

95

CAsyncSocket: :SendTo

Remarks

96

nHostPort The port identifying the socket application.

Ips:dlostAddress The network address of the socket to which this object is
connected: a machine name such as "ftp.microsoft.com," or a dotted number such
as "128.56.22.8".

nFlags Specifies the way in which the call is made. The semantics of this function
are determined by the socket options and the nFlags parameter. The latter is
constructed by combining any of the following values with the C++ OR operator:

• MSG_DONTROUTE Specifies that the data should not be subject to routing.
A Windows Sockets supplier can choose to ignore this flag; see also the
discussion of the SO _DONTROUTE option in Programming with Sockets in
the Win32 SDK documentation .

• MSG_OOB Send out-of-band data (SOCK_STREAM only).

IpSockAddr A pointer to a SOCKADDR structure that contains the address of the
target socket.

nSockAddrLen The length of the address in IpSockAddr in bytes.

Call this member function to send data to a specific destination. SendTo is. used on
datagram or stream sockets and is used to write outgoing data on a socket. For
datagram sockets, care must be taken not to exceed the maximum IP packet size of
the underlying subnets, which is given by the iMaxUdpDg element in the
WSADATA structure filled out by AfxSocketInit. If the data is too long to pass
atomically through the underlying protocol, the error WSAEMSGSIZE is returned,
and no data is transmitted.

Note that the successful completion of a SendTo does not indicate that the data was
successfully delivered.

SendTo is only used on a SOCK_DGRAM socket to send a datagram to a specific
socket identified by the IpSockAddr parameter.

To send a broadcast (on a SOCK_DGRAM only), the address in the
IpSockAddr parameter should be constructed using the special IP address
INADDR_BROADCAST (defined in the Windows Sockets header file
WINSOCK.H) together with the intended port number. Or, if the Ips:dlostAddress
parameter is NULL, the socket is configured for broadcast. It is generally inadvisable
for a broadcast datagram to exceed the size at which fragmentation can occur, which
implies that the data portion of the datagram (excluding headers) should not exceed
512 bytes.

See Also CAsyncSocket: : Create, CAsyncSocket: : Receive ,
CAsyncSocket::ReceiveFrom, CAsyncSocket: : Send

CAsyncSocket: :SetSockOpt

CAsyncSocket: :SetSockOpt
BOOL SetSockOpt(int nOptionName, const void* lpOptionValue, int nOptionLen,

int nLevel = SOL_SOCKET);

Return Value
Nonzero if the function is successful; otherwise 0, and a specific error code can be
retrieved by calling GetLastError. The following errors apply to this member
function:

• WSANOTINITIALISED A successful AfxSocketInit must occur before using
this API.

• WSAENETDOWN The Windows Sockets implementation detected that the
network subsystem failed.

• WSAEFAULT lpOption Value is not in a valid part of the process address space.

• WSAEINPROGRESS A blocking Windows Sockets operation is in progress.

• WSAEINVAL nLevel is not valid, or the information in lpOptionValue is not
valid.

• WSAENETRESET Connection has timed out when SO_KEEP ALIVE is set.

• WSAENOPROTOOPT The option is unknown or unsupported. In particular,
SO_BROADCAST is not supported on sockets of type SOCK_STREAM, while
SO_DONTLINGER, SO_KEEPALIVE, SO_LINGER, and SO_OOBINLINE
are not supported on sockets of type SOCK_DGRAM.

• WSAENOTCONN Connection has been reset when SO_KEEPALIVE is set.

• WSAENOTSOCK The descriptor is not a socket.

Parameters

Remarks

nOptionName The socket option for which the value is to be set.

lpOption Value A pointer to the buffer in which the value for the requested option is
supplied.

nOptionLen The size of the lpOption Value buffer in bytes.

nLevel The level at which the option is defined; the only supported levels are
SOL_SOCKET and IPPROTO_TCP.

Call this member function to set a socket option. SetSockOpt sets the current value
for a socket option associated with a socket of any type, in any state. Although
options can exist at multiple protocol levels, this specification only defines options
that exist at the uppermost "socket" level. Options affect socket operations, such as
whether expedited data is received in the normal data stream, whether broadcast
messages can be sent on the socket, and so on.

97

CAsyncSocket: :SetSockOpt

98

There are two types of socket options: Boolean options that enable or disable a feature
or behavior, and options which require an integer value or structure. To enable a
Boolean option, IpOption Value points to a nonzero integer. To disable the option
IpOption Value points to an integer equal to zero. nOptionLen should be equal to
sizeof(BOOL) for Boolean options. For other options, IpOpti()n Value points to the
integer or structure that contains the desired value for the option, and nOptionLen is
the length of the integer or structure.

SO_LINGER controls the action taken when unsent data is queued on a socket and
the Close function is called to close the socket. For more information,. see
"Programming with Sockets" in the Win32 SDK documentation.

By default, a socket cannot be bound (see Bind) to a local address which is already in
use. On occasion, however, it may be desirable to "reuse" an address in this way.
Since every connection is uniquely identified by the combination of local and remote
addresses, there is no problem with having two sockets bound to the same local
address as long as the remote addresses are different.

To inform the Windows Sockets implementation that a Bind calion a socket should
not be disallowed because the desired address is already in use by another socket, the
application should set the SO_REUSEADDR socket option for the socket before
issuing the Bind call. Note that the option is interpreted only at the time of the Bind
call: it is therefore unnecessary (but harmless) to set the option on a socket which is
not to be bound to an existing address, and setting or resetting the option after the
Bind call has no effect on this or any other socket.

An application can request that the Windows Sockets implementation enable the use
of "keep-alive" packets on Transmission Control Protocol (TCP) connections by
turning on the SO_KEEP ALIVE socket option. (For information about "keep-alive"
packets, see "Programming with Sockets" in the Win32 SDK documentation.) A
Windows Sockets implementation need not support the use of keep-alives: if it does,
the precise semantics are implementation-specific but should conformto section
4.2.3.6 of RFC 1122: "Requirements for Internet Hosts - Communication Layers."
If a connection is dropped as the result of "keep-alives"the error code
WSAENETRESET is returned to any calls in progress on the socket, and any
subsequent calls will fail with WSAENOTCONN.

The TCP _NODELAY option disables the Nagle algorithm. The Nagle algorithm
is used to reduce the number of small packets sent by a host by buffering
unacknowledged send data until a full-size packet can be sent. However, for some
applications this algorithm can impede performance, and TCP _NODELAY can be
used to tum it off. Application writers should not set TCP _NODELAY unless the
impact of doing so is well-understood and desired, since setting TCP _NODELAY
can have a significant negative impact on network performance. TCP _NODELAY is
the only supported socket option which uses level IPPROTO_TCP; all other options
use level SOL_SOCKET.

CAsyncSocket: :SetSockOpt

Some implementations of Windows Sockets supply output debug information if the
SO_DEBUG option is set by an application.

The following options are supported for SetSockOpt. The Type identifies the type of
data addressed by IpOption Value.

Value

SO_DEBUG

SO_DONTLINGER

SO_DONTROUTE

SO_KEEPALIVE

SO_LINGER

SO_OOBINLINE

SO_RCVBUF

SO_REUSEADDR

SO_SNDBUF

TCP _NODELA Y

Type

BOOL

BOOL

BOOL

BOOL

BOOL

struct LINGER

BOOL

int

BOOL

int

BOOL

Meaning

Allow transmission of broadcast
messages on the socket.

Record debugging information.

Don't block Close waiting for unsent data
to be sent. Setting this option is
equivalent to setting SO_LINGER with
l_onoff set to zero.

Don't route: send directly to interface.

Send keep-alives.

Linger on Close if un sent data is present.

Receive out-of-band data in the normal
data stream.

Specify buffer size for receives.

Allows the socket to be bound to an address
which is already in use. (See Bind.)

Specify buffer size for sends.

Disables the Nagle algorithm for send
coalescing.

Berkeley Software Distribution (BSD) options not supported for SetSockOpt are:

Value Type Meaning

SO_ACCEPTCONN BOOL Socket is listening

SO_ERROR int Get error status and clear.

SO_RCVLOWAT int Receive low water mark.

SO_RCVTIMEO int Receive timeout

SO_SNDLOWAT int Send low water mark.

SO_SNDTIMEO int Send timeout.

SO_TYPE int Type of the socket.

IP_OPTIONS Set options field in IP header.

See Also CAsyncSocket: :AsyncSelect, CAsyncSocket: :Bind,
CAsyncSocket: : Create, CAsyncSocket: : GetSockOpt, CAsyncSocket: :IOCtl

99

CAsyncSocket: :ShutDown

CAsyncSocket:: ShutDown
BOOL ShutDown(int nHow = sends);

Return Value
Nonzero if the function is successful; otherwise 0, and a specific error code can be
retrieved by calling GetLastError. The following errors apply to this member
function:

• WSANOTINITIALISED A successful AfxSocketInit must occur before using
this API.

• WSAENETDOWN The Windows Sockets implementation detected that the
network subsystem failed.

• WSAEINVAL nHow is not valid.

• WSAEINPROGRESS A blocking Windows Sockets operation is in progress.

• WSAENOTCONN The socket is not connected (SOCK_STREAM only).

• WSAENOTSOCK The descriptor is not a socket.

Parameters

Remarks

100

nHow A flag that describes what types of operation will no longer be allowed, using
the following enumerated values:

• receives = 0

• sends = 1

• both = 2

Call this member function to disable sends and/or receives on the socket. ShutDown
is used on all types of sockets to disable reception, transmission, or both. If nHow is
0, subsequent receives on the socket will be disallowed. This has no effect on the
lower protocol layers.

For Transmission Control Protocol (TCP), the TCP window is not changed and
incoming data will be accepted (but not acknowledged) until the window is
exhausted. For User Datagram Protocol (UDP), incoming datagrams are accepted and
queued. In no case will an ICMP error packet be generated. If nHow is 1, subsequent
sends are disallowed. For TCP sockets, a FIN will be sent. Setting nHow to 2 disables
both sends and receives as described above.

CAsyncSocket: :m_hSocket

Note that ShutDown does not close the socket, and resources attached to the socket
will not be freed until Close is called. An application should not rely on being able to
reuse a socket after it has been shut down. In particular, a Windows Sockets
implementation is not required to support the use of Connect on such a socket.

See Also CAsyncSocket::Connect, CAsyncSocket::Create

Data Members
CAsyncSocket: :m_hSocket
Remarks

Contains the SOCKET handle for the socket encapsulated by this CAsyncSocket
object.

101

CBitmap

CBitmap

102

The CBitmap class encapsulates a Windows graphics device interface (GDI) bitmap
and provides member functions to manipulate the bitmap. To use a CBitmap object,
construct the object, attach a bitmap handle to it with one of the initialization
member functions, and then call the object's member functions.

For more information on using graphic objects like CBitmap, see "Graphic Objects"
in Chapter 1 of Programming with MFC.

#include <afxwin.h>

Construction

CBitmap

Initialization

LoadBitmap

LoadOEMBitmap

LoadMappedBitmap

CreateBitmap

CreateBitmapIndirect

Constructs a CBitmap object.

Initializes the object by loading a named bitmap resource
from the application's executable file and attaching the
bitmap to the object.

Initializes the object by loading a predefined Windows
bitmap and attaching the bitmap to the object.

Loads a bitmap and maps colors to current system colors.

Initializes the object with a device-dependent memory
bitmap that has a specified width, height, and bit pattern.

Initializes the object with a bitmap with the width, height,
and bit pattern (if one is specified) given in a BITMAP
structure.

CreateCompatibleBitmap Initializes the object with a bitmap so that it is compatible
with a specified device.

CreateDiscardableBitmap Initializes the object with a discardable bitmap that is
compatible with a specified device.

Attributes

GetBitmap

operator HBITMAP

Returns a pointer to the specified CBitmap object.

Returns the Windows handle attached to the CBitmap
object.

CBitmap: :CreateBitmap

Operations

FromHandle

SetBitmapBits

GetBitmapBits

SetBitmapDimension

GetBitmapDimension

Returns a pointer to a CBitmap object when given a handle
to a Windows HBITMAP bitmap.

Sets the bits of a bitmap to the specified bit values.

Copies the bits of the specified bitmap into the specified
buffer.

Assigns a width and height to a bitmap in O.i-millimeter
units.

Returns the width and height of the bitmap. The height and
width are assumed to have been set previously by the
SetBitmapDimension member function.

Member Functions
CBitmap: :CBitmap

Remarks

CBitmap();

Constructs a CBitmap object. The resulting object must be initialized with one of the
initialization member functions.

See Also CBitmap: :LoadBitmap, CBitmap::LoadOEMBitmap,
CBitmap: :CreateBitmap, CBitmap: :CreateBitmaplndirect,
CBitmap: :CreateCompatibleBitmap, CBitmap::CreateDiscardableBitmap

CBitmap: :CreateBitmap
BOOL CreateBitmap(int nWidth, int nHeight, UINT nPlanes, UINT nBitcount,

const void* IpBits);

Return Value
Nonzero if successful; otherwise O.

Parameters
nWidth Specifies the width (in pixels) of the bitmap.

nHeight Specifies the height (in pixels) of the bitmap.

nPlanes Specifies the number of color planes in the bitmap.

103

CBitmap::CreateBitmaplndirect

Remarks

nBitcount Specifies the number of color bits per display pixel.

IpBits Points to a short-integer array that contains the initial bitmap bit values. If it
is NULL, the new bitmap is left uninitialized.

Initializes a device-dependent memory bitmap that has the specified width, height,
and bit pattern.

For a color bitmap, either the nPlanes or nBitcount parameter should be set to 1. If
both of these parameters are set to 1, CreateBitmap creates a monochrome bitmap.

Although a bitmap cannot be directly selected for a display device, it can be selected
as the current bitmap for a "memory device context" by using CDC::SelectObject
and copied to any compatible device context by using the CDC::BitBIt function.

When you finish with the CBitmap object created by the CreateBitmap function,
first select the bitmap out of the device context, then delete the CBitmap object.

For more information, see the description of the bmBits field in the BITMAP
structure. The BITMAP structure is described under the
CBitmap::CreateBitmapIndirect member function.

See Also CDC::SelectObject, CGdiObject::DeleteObject, CDC::BitBlt,
: :CreateBitmap

CBitmap: :CreateBitmapIndirect
BOOL CreateBitmapIndirect(LPBITMAP lpBitmap);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

104

lpBitmap Points to a BITMAP structure that contains information about the bitmap.

Initializes a bitmap that has the width, height, and bit pattern (if one is specified)
given in the structure pointed to by IpBitmap. Although a bitmap cannot be directly
selected for a display device, it can be selected as the current bitmap for a memory
device context by using CDC::SelectObject and copied to any compatible device
context by using the CDC::BitBIt or CDC::StretchBlt function. (The CDC::PatBIt
function can copy the bitmap for the current brush directly to the display device
context.)

CBitmap::CreateCompatibleBitmap

If the BITMAP structure pointed to by the lpBitmap parameter has been filled in by
using the GetObject function, the bits of the bitmap are not specified and the bitmap
is uninitialized. To initialize the bitmap, an application can use a function such as
CDC::BitBlt or ::SetDIBits to copy the bits from the bitmap identified by the first
parameter of CGdiObject: : GetObject to the bitmap created by
CreateBitmapIndirect.

When you finish with the CBitmap object created with CreateBitmapIndirect
function, first select the bitmap out of the device context, then delete the CBitmap
object.

See Also CDC::SelectObject, CDC::BitBlt, CGdiObject::DeleteObject,
CGdiObject: : GetObject, : :CreateBitmapIndirect

CBitmap: :CreateCompatibleBitmap
BOOL CreateCompatibleBitmap(CDC* pDC, int n Width, int nHeight);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

pDC Specifies the device context.

n Width Specifies the width (in bits) of the bitmap.

nHeight Specifies the height (in bits) of the bitmap.

Initializes a bitmap that is compatible with the device specified by pDC. The bitmap
has the same number of color planes or the same bits-per-pixel format as the
specified device context. It can be selected as the current bitmap for any memory
device that is compatible with the one specified by pDC.

If pDC is a memory device context, the bitmap returned has the same format as the
currently selected bitmap in that device context. A "memory device context" is a
block of memory that represents a display surface. It can be used to prepare images in
memory before copying them to the actual display surface of the compatible device.

When a memory device context is created, GDI automatically selects a monochrome
stock bitmap for it.

Since a color memory device context can have either color or monochrome bitmaps
selected, the format of the bitmap returned by the CreateCompatibleBitmap
function is not always the same; however, the format of a compatible bitmap for a
nonmemory device context is always in the format of the device.

105

CBitmap: :CreateDiscardableBitmap

When you finish with the CBitmap object created with the
CreateCompatibleBitmap function, fIrst select the bitmap out of the device context,
then delete the CBitmap object.

See Also : :CreateCompatibleBitmap, CGdiObject: : DeleteObject

CBitmap: :CreateDiscardableBitmap
BOOL CreateDiscardableBitmap(CDC* pDC, int nWidth, int nHeight);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

pDC Specifies a device context.

n Width Specifies the width (in bits) of the bitmap.

nHeight Specifies the height (in bits) of the bitmap.

Initializes a discardable bitmap that is compatible with the device context identified
by pDC. The bitmap has the same number of color planes or the same bits-per-pixel
format as the specified device context. An application can select this bitmap as the
current bitmap for a memory device that is compatible with the one specified by pDC.

Windows can discard a bitmap created by this function only if an application has not
selected it into a display context. If Windows discards the bitmap when it is not
selected and the application later attempts to select it, the CDC::SelectObject
function will return NULL.

When you finish with the CBitmap object created with the
CreateDiscardableBitmap function, first select the bitmap out of the device context,
then delete the CBitmap object.

See Also : :CreateDiscardableBitmap, CGdiObject: :DeleteObject

CBitmap: : FromHandle
static CBitmap* PASCAL FromHandle(HBITMAP hBitmap);

Return Value
A pointer to a CBitmap object if successful; otherwise NULL.

Parameters
hBitmap Specifies a Windows GDI bitmap.

106

CBitmap: :GetBitmapBits

Remarks
Returns a pointer to a CBitmap object when given a handle to a Windows GDI
bitmap. If a CBitmap object is not already attached to the handle, a temporary
CBitmap object is created and attached. This temporary CBitmap object is valid
only until the next time the application has idle time in its event loop, at which time
all temporary graphic objects are deleted. Another way of saying this is that the
temporary object is only valid during the processing of one window message.

CBitmap: : GetBitmap
int GetBitmap(BITMAP* pBitMap);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

pBitMap Pointer to a BITMAP structure. Must not be NULL.

Call this member function to retrieve information about a CBitmap object. This
information is returned in the BITMAP structure referred to by pBitmap.

See Also BITMAP

CBitmap: : GetBitmapBits
DWORD GetBitmapBits(DWORD dwCount, LPVOID lpBits) const;

Return Value
The actual number of bytes in the bitmap, or 0 if there is an error.

Parameters

Remarks

dwCount Specifies the number of bytes to be copied.

lpBits Points to the buffer that is to receive the bitmap. The bitmap is an array of
bytes. The bitmap byte array conforms to a structure where horizontal scan lines
are multiples of 16 bits.

Copies the bit pattern of the CBitmap object into the buffer that is pointed to by
lpBits. The dwCount parameter specifies the number of bytes to be copied to the
buffer. Use CGdiObject::GetObject to determine the correct dwCount value for the
given bitmap.

See Also CGdiObject::GetObject, ::GetBitmapBits

107

CBitmap::GetBitmapDimension

CBitmap::GetBitmapDimension
CSize GetBitmapDimension() eonst;

Return Value

Remarks

The width and height of the bitmap, measured in O.I-millimeter units. The height is
in the cy member of the CSize object, and the width is in the ex member. If the
bitmap width and height have not been set by using SetBitmapDimension, the
return value is O.

Returns the width and height of the bitmap. The height and width are assumed to
have been set previously by using the SetBitmapDimension member function.

See Also CBitmap: :SetBitmapDimension, : : GetBitmapDimension

CBitmap: :LoadBitmap
BOOL LoadBitmap(LPCTSTR lpszResourceName);
BOOL LoadBitmap(UINT nIDResource);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

108

lpszResourceName Points to a null-terminated string that contains the name of the
bitmap resource.

nIDResource Specifies the resource ID number of the bitmap resource.

Loads the bitmap resource named by lpszResourceName or identified by the ID
number in nIDResource from the application's executable file. The loaded bitmap is
attached to the CBitmap object.

If the bitmap identified by lpszResourceName does not exist or if there is insufficient
memory to load the bitmap, the function returns O.

An application must call the CGdiObject: :DeleteObject function to delete any
bitmap loaded by the LoadBitmap function.

The following bitmaps were added to Windows versions 3.1 and later:

OBM_UPARRROWI
OBM_DNARROWI
OBM_RGARROWI
OBM_LFARROWI

CBitmap: :LoadOEMBitmap

These bitmaps are not found in device drivers for Windows versions 3.0 and earlier.
For a complete list of bitmaps and a display of their appearance, see the l-Wn32
Programmer's Reference.

See Also CBitmap: : LoadOEMBitmap, : :LoadBitmap,
CGdiObject: :DeleteObject

CBitmap: : LoadMappedBitmap
BOOL LoadMappedBitmap(UINT nIDBitmap, UINT nFlags = 0,

LPCOLORMAP IpColorMap = NULL, int nMapSize = 0);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

nIDBitmap The ID of the bitmap resource.

nFlags A flag for a bitmap. Can be zero or CMB_MASKED.

IpColorMap A pointer to a COLORMAP structure that contains the color
information needed to map the bitmaps. If this parameter is NULL, the function
uses the default color map.

nMapSize The number of color maps pointed to by IpColorMap.

Call this member function to load a bitmap and map the colors to the current system
colors. By default, LoadMappedBitmap will map colors commonly used in button
glyphs.

For information about creating a mapped bitmap, see the Windows function
::CreateMappedBitmap and the COLORMAP structure in the l-Wn32
Programmer's Reference.

See Also ::LoadBitmap, ::CreateMappedBitmap

CBitmap: :LoadOEMBitmap
BOOL LoadOEMBitmap(UINT nIDBitmap);

Return Value
Nonzero if successful; otherwise O.

109

CBitmap::operator HBITMAP

Parameters

Remarks

nIDBitmap ID number of the predefined Windows bitmap. The possible values are
listed below from WINDOWS.H:

OBM_BTNCORNERS OBM_OLD_RESTORE

OBM_BTSIZE OBM_OLD_RGARROW

OBM_CHECK OBM_OLD_UPARROW

OBM_CHECKBOXES OBM_OLD_ZOOM

OBM_CLOSE OBM_REDUCE

OBM_COMBO OBM_REDUCED

OBM_DNARROW OBM_RESTORE

OBM_DNARROWD OBM_RESTORED

OBM_DNARROWI OBM_RGARROW

OBM_LFARROW OBM_RGARROWD

OBM_LFARROWD OBM_RGARROWI

OBM_LFARROWI OBM_SIZE

OBM_MNARROW OBM_UPARROW

OBM_OLD_CLOSE OBM_UPARROWD

OBM_OLD_DNARROW OBM_UPARROW

OBM_OLD_LFARROW OBM_ZOOM

OBM_OLD_REDUCE OBM_ZOOMD

Loads a predefined bitmap used by Windows.

Bitmap names that begin with OBM_OLD represent bitmaps used by Windows
versions prior to 3.0.

Note that the constant OEMRESOURCE must be defined before including
WINDOWS.H in order to use any of the OBM_ constants.

See Also CBitmap: :LoadBitmap, : :LoadBitmap

CBitmap: : operator HBITMAP
operator HBITMAP() const;

Return Value

110

If successful, a handle to the Windows GDI object represented by the CBitmap
object; otherwise NULL.

CBitmap: :SetBitmapDimension

Remarks
Use this operator to get the attached Windows GDI handle of the CBitmap object.
This operator is a casting operator, which supports direct use of an HBITMAP
object.

For more information about using graphic objects, see "Graphic Objects" in the
Win32 Programmer~ Reference.

CBitmap:: S etBitmapB its
DWORD SetBitmapBits(DWORD dwCount, eonst void* lpBits);

Return Value
The number of bytes used in setting the bitmap bits; a if the function fails.

Parameters

Remarks

dwCount Specifies the number of bytes pointed to by lpBits.

lpBits Points to the BYTE array that contains the bit values to be copied to the
CBitmap object.

Sets the bits of a bitmap to the bit values given by lpBits.

See Also : :SetBitmapBits

CBitmap: :SetBitmapDimension
CSize SetBitmapDimension(int n Width, int nHeight);

Return Value
The previous bitmap dimensions. Height is in the ey member variable of the CSize
object, and width is in the ex member variable.

Parameters

Remarks

nWidth Specifies the width of the bitmap (in a.I-millimeter units).

nHeight Specifies the height of the bitmap (in a.I-millimeter units).

Assigns a width and height to a bitmap in a.I-millimeter units. The GDI does not use
these values except to return them when an application calls the
GetBitmapDimension member function.

See Also CBitmap::GetBitmapDimension, ::SetBitmapDimension

111

CBitmapButton

CBitmapButton

112

Use the CBitmapButton class to create pushbutton controls labeled with bitmapped
images instead of text. CBitmapButton objects contain up to four bitmaps, which
contain images for the different states a button can assume: up (or normal), down (or
selected), focused, and disabled. Only the first bitmap is required; the others are
optional.

Bitmap-button images include the border around the image as well as the image
itself. The border typically plays a part in showing the state of the button. For
example, the bitmap for the focused state usually is like the one for the up state but
with a dashed rectangle inset from the border or a thick solid line at the border. The
bitmap for the disabled state usually resembles the one for the up state but has lower
contrast (like a dimmed or grayed menu selection).

These bitmaps can be of any size, but all are treated as if they were the same size as
the bitmap for the up state.

Various applications demand different combinations of bitmap images:

Up Down Focused Disabled Application

x Bitmap

x x Button without WS_TABSTOP
style

x x x x Dialog button with all states

x x x Dialog button with
WS_TABSTOP style

When creating a bitmap-button control, set the BS_OWNERDRAW style to specify
that the button is owner-drawn. This causes Windows to send the
WM_MEASUREITEM and WM_DRAWITEM messages for the button; the
framework handles these messages and manages the appearance of the button
for you.

To create a bitmap-button control in a window's client area, follow these steps:

1. Create one to four bitmap images for the button.

2. Construct the CBitmapButton object.

3. Call the Create function to create the Windows button control and attach it to the
CBitmapButton object.

4. Call the LoadBitmaps member function to load the bitmap resources after the
bitmap button is constructed.

To include a bitmap-button control in a dialog box, follow these steps:

1. Create one to four bitmap images for the button.

2. Create a dialog template with an owner-draw button positioned where you want
the bitmap button. The size of the button in the template does not matter.

3. Set the button's caption to a value such as "MYIMAGE" and define a symbol for
the button such as IDC_MYIMAGE.

4. In your application's resource script, give each of the images created for the button
an ID constructed by appending one of the letters "U," "D," "F," or "X" (for up,
down, focused, and disabled) to the string used for the button caption in step 3.
For the button caption "MYIMAGE," for example, the IDs would be
"MYIMAGEU," "MYIMAGED," "MYIMAGEF," and "MYIMAGEX."

5. In your application's dialog class (derived from CDialog), add a CBitmapButton
member object.

6. In the CDialog object's OnInitDialog routine, call the CBitmapButton object's
AutoLoad function, using as parameters the button's control ID and the CDialog
object's this pointer.

If you want to handle Windows notification messages, such as BN_CLICKED, sent
by a bitmap-button control to its parent (usually a class derived from CDialog), add
to the CDialog-derived object a message-map entry and message-handler member
function for each message. The notifications sent by a CBitmapButton object are the
same as those sent by a CButton object.

The class CToolBar takes a different approach to bitmap buttons. See CToolBar for
more information.

For more information on CBitmapButton, see the article "Controls" in Programming
withMFC.

CBitmapButton

113

CBitmapButton::AutoLoad

#include <afxext.h>

See Also CButton, CBitmapButton: :AutoLoad, CToolBar

Construction

CBitmapButton

LoadBitmaps

AutoLoad

Operations

SizeToContent

Constructs a CBitmapButtonobject.

Initializes the object by loading one or more named bitmap
resources from the application's resource file and attaching the
bitmaps to the object.

Associates a button in a dialog box with an object of the
CBitmapButton class, loads the bitmap(s) by name, and sizes the
button to fit the bitmap.

Sizes the button to accommodate the bitmap.

Member Functions
CBitmapButton: : AutoLoad

BOOL AutoLoad(UINT nID, CWnd* pParent);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

nID The button's control ID.

pParent Pointer to the object that owns the button.

Associates a button in a dialog box with an object of the CBitmapButton class, loads
the bitmap(s) by name, and sizes the button to fit the bitmap.

Use the AutoLoad function to initialize an owner-draw button in a 4ialog box as a
bitmap button. Instructions for using this function are in the remarks for the
CBitmapButton class.

See Also CBitmapButton: :LoadBitmaps, CBitmapButton::SizeToContent

CBitmapB utton: :CBitmapButton
CBitmapButton();

Remarks
Creates a CBitmapButton object.

114

CBitmapButton: :LoadBitmaps

After creating the C++ CBitmapButton object, call CButton::Create to create the
Windows button control and attach it to the CBitmapButton object.

See Also CBitmapButton: :LoadBitmaps, CBitmapButton: :AutoLoad,
CBitmapButton: :SizeToContent, CButton: : Create

CBitmapButton: :LoadBitmaps
BOOL LoadBitmaps(LPCTSTR lpszBitmapResouree, LPCTSTR lpszBitmapResoureeSel = NULL,

LPCTSTR lpszBitmapResoureeF oeus = NULL,
LPCTSTR lpszBitmapResoureeDisabled = NULL);

BOOL LoadBitmaps(UINT nIDBitmapResouree, UINT nIDBitmapResoureeSel = 0,
UINT nIDBitmapResourceFoeus = 0, UINT nIDBitmapResoureeDisabled = 0);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

lpszBitmapResouree Points to the null-terminated string that contains the name of
the bitmap for a bitmap button's normal or "up" state. Required.

lpszBitmapResoureeSel Points to the null-terminated string that contains the name
of the bitmap for a bitmap button's selected or "down" state. May be NULL.

lpszBitmapResoureeFoeus Points to the null-terminated string that contains the
name of the bitmap for a bitmap button's focused state. May be NULL.

lpszBitmapResoureeDisabled Points to the null-terminated string that contains the
name of the bitmap for a bitmap button's disabled state. May be NULL.

nIDBitmapResouree Specifies the resource ID number of the bitmap resource for a
bitmap button's normal or "up" state. Required.

nIDBitmapResoureeSel Specifies the resource ID number of the bitmap resource for
a bitmap button's selected or "down" state. May be O.

nIDBitmapResoureeFoeus Specifies the resource ID number of the bitmap resource
for a bitmap button's focused state. May be O.

nIDBitmapResoureeDisabled Specifies the resource ID number of the bitmap
resource for a bitmap button's disabled state. May be O.

Use this function when you want to load bitmap images identified by their resource
names or ID numbers, or when you cannot use the AutoLoad function because, for
example, you are creating a bitmap button that is not part of a dialog box.

See Also CBitmapButton::AutoLoad, CBitmapButton: :SizeToContent,
CButton: : Create, CBitmap: :LoadBitmap

115

CBitmapButton: :SizeToContent

CBitmapButton: :SizeToContent
void SizeToContent();

Remarks
Call this function to resize a bitmap button to the size of the bitmap.

See Also CBitmapButton: :LoadBitmaps, CBitmapButton: :AutoLoad

116

CBrush

The CBrush class encapsulates a Windows graphics device interface (GDI) brush. To
use a CBrush object, construct a CBrush object and pass it to any CDC member
function that requires a brush.

Brushes can be solid, hatched, or patterned.

For more information on CBrush, see "Graphic Objects" in Chapter 1 of
Programming with MFC.

#include <afxwin.h>

See Also CBitmap, CDC

Construction

CBrush

Initialization

CreateSolidBrush

CreateHatchBrush

CreateBrushlndirect

CreatePatternBrush

CreateDIBPatternBrush

CreateSysColorBrush

Operations

FromHandle

Attributes

GetLogBrush

operator HBRUSH

Constructs a CBrush object.

Initializes a brush with the specified solid color.

Initializes a brush with the specified hatched pattern and
color.

Initializes a brush with the style, color, and pattern
specified in a LOGBRUSH structure.

Initializes a brush with a pattern specified by a bitmap.

Initializes a brush with a pattern specified by a device
independent bitmap (DIB).

Creates a brush that is the default system color.

Returns a pointer to a CBrush object when given a handle
to a Windows HBRUSH object.

Gets a LOGBRUSH structure.

Returns the Windows handle attached to the CBrush
object.

CBrush

117

CBrush::CBrush

Member Functions
CBrush: :CBrush

CBrush();
CBrush(COLORREF crColor);

throw(CResourceException);
CBrush(int nlndex, COLORREF crColor);

throw(CResourceException);
CBrush(CBitmap* pBitmap);

throw(CResourceException);

Parameters

Remarks

118

crColor Specifies the foreground color of the brush as an RGB color. If the brush is
hatched, this parameter specifies the color of the hatching.

nlndex Specifies the hatch style of the brush. It can be anyone of the following
values:

• HS_BDIAGONAL Downward hatch (left to right) at 45 degrees

• HS_CROSS Horizontal and vertical crosshatch

• HS_DIAGCROSS Crosshatch at 45 degrees

• HS_FDIAGONAL Upward hatch (left to right) at 45 degrees

• HS_HORIZONTAL Horizontal hatch

• HS_ VERTICAL Vertical hatch

pBitmap Points to a CBitmap object that specifies a bitmap with which the brush
paints.

Has four overloaded constructors. The constructor with no arguments constructs an
uninitialized CBrush object that must be initialized before it can be used.

If you use the constructor with no arguments, you must initialize the resulting
CBrush object with CreateSolidBrush, CreateHatchBrush, CreateBrushlndirect,
CreatePatternBrush, or CreateDIBPatternBrush. If you use one of the
constructors that takes arguments, then no further initialization is necessary. The
constructors with arguments can throw an exception if errors are encountered, while
the constructor with no arguments will always succeed.

The constructor with a single COLORREF parameter constructs a solid brush with
the specified color. The color specifies an RGB value and can be constructed with the
RGB macro in WINDOWS.H.

CBrush::CreateDIBPattemBrush

The constructor with two parameters constructs a hatch brush. The nlndex parameter
specifies the index of a hatched pattern. The creolor parameter specifies the color.

The constructor with a CBitmap parameter constructs a patterned brush. The
parameter identifies a bitmap. The bitmap is assumed to have been created by using
CBitmap: :CreateBitmap, CBitmap:: CreateBitmaplndirect,
CBitmap: :LoadBitmap, or CBitmap: :CreateCompatibleBitmap. The minimum
size for a bitmap to be used in a fill pattern is 8 pixels by 8 pixels.

See Also CBrush: :CreateSolidBrush, CBrush: :CreateHatchBrush,
CBrush::CreateBrushlndirect, CBrush::CreatePatternBrush,
CBrush: :CreateDIBPatternBrush, CGdiObject: :CreateStockObject

CBrush: :CreateBrushIndirect
BOOL CreateBrushlndirect(LPLOGBRUSH lpLogBrush);

Return Value
Nonzero if the function is successful; otherwise O.

Parameters

Remarks

lpLogBrush Points to a LOGBRUSH structure that contains information about the
brush.

Initializes a brush with a style, color, and pattern specified in a LOGBRUSH
structure. The brush can subsequently be selected as the current brush for any device
context.

A brush created using a monochrome (1 plane, 1 bit per pixel) bitmap is drawn using
the current text and background colors. Pixels represented by a bit set to 0 will be
drawn with the current text color. Pixels represented by a bit set to 1 will be drawn
with the current background color.

See Also CBrush::CreateDIBPatternBrush, CBrush::CreatePatternBrush,
CBrush: :CreateSolidBrush, CBrush:: CreateHatchBrush,
CGdiObject::CreateStockObject, CGdiObject::DeleteObject,
: :CreateBrushlndirect

CBrush: :CreateDIBPattemBrush
BOOL CreateDIBPatternBrush(HGLOBAL hPackedDIB, UINT nUsage);
BOOL CreateDIBPatternBrush(const void* lpPackedDIB, UINT nUsage);

Return Value
Nonzero if successful; otherwise O.

119

CBrush: :CreateDmPattemBrush

Parameters

Remarks

120

hPackedDIB Identifies a global-memory object containing a packed device
independent bitmap (DIB).

nUsage Specifies whether the bmiColors[] fields of the BITMAPINFO data
structure (a part of the "packed DIB") contain explicit RGB values or indices into
the currently realized logical palette. The parameter must be one of the following
values:

• DIB_PAL_COLORS The color table consists of an array of 16-bit indexes.

• DIB_RGB_COLORS The color table contains literal RGB values.

The following value is available only in the second version of this member
function:

• DIB_PAL_INDICES No color table is provided. The bitmap itself contains
indices into the logical palette of the device context into which the brush is to
be selected.

IpPackedDIB Points to a packed DIB consisting of a BITMAPINFO structure
immediately followed by an array of bytes defining the pixels of the bitmap.

Initializes a brush with the pattern specified by a device-independent bitmap (DIB).
The brush can subsequently be selected for any device context that supports raster
operations.

The two versions differ in the way you handle the DIB:

• In the first version, to obtain a handle to the DIB you call the Windows
: :GlobalAlloc function to allocate a block of global memory and then fill the
memory with the packed DIB.

• In the second version, it is not necessary to call ::GlobalAlloc to allocate memory
for the packed DIB.

A packed DIB consists of a BITMAPINFO data structure immediately followed by
the array of bytes that defines the pixels of the bitmap. Bitmaps used as fill patterns
should be 8 pixels by 8 pixels. If the bitmap is larger, Windows creates a fill pattern
using only the bits corresponding to the first 8 rows and 8 columns of pixels in the
upper-left comer of the bitmap.

When an application selects a two-color DIB pattern brush into a monochrome device
context, Windows ignores the colors specified in the DIB and instead displays the
pattern brush using the current text and background colors of the device context.
Pixels mapped to the first color (at offset 0 in the DIB color table) of the DIB are
displayed using the text color. Pixels mapped to the second color (at offset 1 in the
color table) are displayed using the background color.

CBrush: :CreateHatchBrush

For information about using the following Windows functions, see the Win32 SDK
Programmer:S- Reference:

• ::CreateDmPatternBrush (This function is provided only for compatibility
with applications written for versions of Windows earlier than 3.0; use the
: :CreateDmPatternBrushPt function.)

• ::CreateDIBPatternBrushPt (This function should be used for Win32-based
applications.)

• ::GlobalAlloc

See Also CBrush::CreatePatternBrush, CBrush::CreateBrushlndirect,
CBrush::CreateSolidBrush, CBrush: :CreateHatchBrush,
CGdiObject: :CreateStockObject, CDC: :SelectObject,
CGdiObject: :DeleteObject, CDC: : GetBrushOrg, CDC: :SetBrushOrg

CBrush: :CreateHatchBrush
BOOL CreateHatchBrush(int nlndex, COLORREF crColor);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

nlndex Specifies the hatch style of the brush. It can be anyone of the following
values:

• HS_BDIAGONAL Downward hatch (left to right) at 45 degrees

• HS_CROSS Horizontal and vertical crosshatch

• HS_DIAGCROSS Crosshatch at 45 degrees

• HS_FDIAGONAL Upward hatch (left to right) at 45 degrees

• HS_HORIZONTAL Horizontal hatch

• HS_ VERTICAL Vertical hatch

crColor Specifies the foreground color of the brush as an RGB color (the color of
the hatches).

Initializes a brush with the specified hatched pattern and color. The brush can
subsequently be selected as the current brush for any device context.

See Also CBrush::CreateBrushIndirect, CBrush::CreateDIBPatternBrush,
CBrush:: CreatePatternBrush, CBrush: :CreateSolidBrush,
CGdiObject: :CreateStockObject, : :CreateHatchBrush

121

CBrush: :CreatePatternBrush

CBrush: :CreatePattemBrush
BOOL CreatePatternBrush(CBitmap* pBitmap);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

pBitmap Identifies a bitmap.

Initializes a brush with a pattern specified by a bitmap. The brush can subsequently
be selected for any device context that supports raster operations. The bitmap
identified by pBitmap is typically initialized by using the CBitmap::CreateBitmap,
CBitmap: :CreateBitmaplndirect, CBitmap::LoadBitmap, or
CBitmap: :CreateCompatibleBitmap function.

Bitmaps used as fill patterns should be 8 pixels by 8 pixels. If the bitmap is larger,
Windows will only use the bits corresponding to the first 8 rows and columns of
pixels in the upper-left comer of the bitmap.

A pattern brush can be deleted without affecting the associated bitmap. This means
the bitmap can be used to create any number of pattern brushes.

A brush created using a monochrome bitmap (l color plane, 1 bit per pixel) is drawn
using the current text and background colors. Pixels represented by a bit set to 0 are
drawn with the current text color. Pixels represented by a bit set to 1 are drawn with
the current background color.

For information about using ::CreatePatternBrush, a Windows function, see the
Win32 SDK Programmer's Reference.

See Also CBrush: :CreateBrushlndirect, CBrush: :CreateDIBPatternBrush,
CBrush: :CreateHatchBrush, CBrush: :CreateSolidBrush,
CGdiObject::CreateStockObject

CBrush: :CreateSolidBrush
BOOL CreateSolidBrush(COLORREF crColor);

Return Value
Nonzero if successful; otherwise o.

Parameters

122

crColor A COLORREF structure that specifies the color of the brush. The color
specifies an RGB value and can be constructed with the RGB macro in
WINDOWS.H.

CBrush::CreateSysColorBrush

Remarks
Initializes a brush with a specified solid color. The brush can subsequently be selected
as the current brush for any device context.

When an application has finished using the brush created by CreateSolidBrush, it
should select the brush out of the device context.

See Also CBrush::CreateBrushIndirect, CBrush::CreateDIBPatternBrush,
CBrush::CreateHatchBrush, CBrush::CreatePatternBrush, ::CreateSolidBrush,
CGdiObject: :DeleteObject

CBrush: :CreateSysColorBrush
BOOL CreateSysColorBrush(int nlndex);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

nlndex Specifies the hatch style of the brush. It can be anyone of the following
values:

• HS_BDIAGONAL Downward hatch (left to right) at 45 degrees

• HS_ CROSS Horizontal and vertical crosshatch

• HS_DIAGCROSS Crosshatch at 45 degrees

• HS_FDIAGONAL Upward hatch (left to right) at 45 degrees

• HS_HORIZONTAL Horizontal hatch

• HS_ VERTICAL Vertical hatch

Initializes a brush color. The brush can subsequently be selected as the current brush
for any device context.

When an application has finished using the brush created by CreateSysColorBrush,
it should select the brush out of the device context.

See Also CBrush: :CreateBrushIndirect, CBrush: :CreateDIBPatternBrush,
CBrush::CreateHatchBrush, CBrush::CreatePatternBrush, ::CreateSolidBrush,
CBrush: :CreateSolidBrush, : : GetSysColorBrush, CGdiObject: :DeleteObject

123

CBrush::FromHandle

CBrush: :FromHandle
static CBrush* PASCAL FromHandle(HBRUSH hBrush);

Return Value
A pointer to a CBrush object if successful; otherwise NULL.

Parameters

Remarks

hBrush HANDLE to a Windows GDI brush.

Returns a pointer to a CBrush object when given a handle to a Windows HBRUSH
object. If a CBrush object is not already attached to the handle, a temporary CBrush
object is created and attached. This temporary CBrush object is valid only until the
next time the application has idle time in its event loop. At this time, all temporary
graphic objects are deleted. In other words, the temporary object is valid only during
the processing of one window message.

For more information about using graphic objects, see "Graphic Objects" in the
Win32 SDK Programmer's Reference.

CBrush: : GetLogBrush
int GetLogBrush(LOGBRUSH* pLogBrush);

Return Value
If the function succeeds, and pLogBrush is a valid pointer, the return value is the
number of bytes stored into the buffer.

If the function succeeds, and pLogBrush is NULL, the return value is the number of
bytes required to hold the information the function would store into the buffer.

If the function fails, the return value is O.

Parameters

Remarks

Example

124

pLogBrush Points to a LOGBRUSH structure that contains information about the
brush.

Call this member function to retrieve the LOGBRUSH structure. The LOGBRUSH
structure defines the style, color, and pattern of a brush.

For example, call GetLogBrush to match the particular color or pattern of a bitmap.

LOGBRUSH logbrush;
brushExisting.GetLogBrush(&logbrush);
CBrush brushOther(logbrush.lbColor);

See Also LOGBRUSH, ::GetObject

CBrush::operator HBRUSH

CBrush::operator HBRUSH
operator HBRUSH() const;

Return Value

Remarks

If successful, a handle to the Windows GDI object represented by the CBrush object;
otherwise NULL.

Use this operator to get the attached Windows GDI handle of the CBrush object. This
operator is a casting operator, which supports direct use of an HBRUSH object.

For more information about using graphic objects, see "Graphic Objects" in the
Win32 SDK Programmer's Reference.

125

CButton

CButton

126

The CButton class provides the functionality of Windows button controls. A button
control is a small, rectangular child window that can be clicked on and off. Buttons
can be used alone or in groups and can either be labeled or appear without text. A
button typically changes appearance when the user clicks it.

Typical buttons are the check box, radio button, and pushbutton. A CButton object
can become any of these, according to the button style specified at its initialization by
the Create member function. For a list of button styles, see "Button Styles" in the
"Styles Used by MFC" section.

In addition, the CBitmapButton class derived from CButton supports creation of
button controls labeled with bitmap images instead of text. A CBitmapButton can
have separate bitmaps for a button's up, down, focused, and disabled states.

You can create a button control either from a dialog template or directly in your code.
In both cases, first call the constructor CButton to construct the CButton object; then
call the Create member function to create the Windows button control and attach it
to the CButton object.

Construction can be a one-step process in a class derived from CButton. Write a
constructor for the derived class and call Create from within the constructor.

If you want to handle Windows notification messages sent by a button control to its
parent (usually a class derived from CDialog), add a message-map entry and
message-handler member function to the parent class for each message.

Each message-map entry takes the following form:

ON_Notification(id, memberFxn)

where id specifies the child window ID of the control sending the notification and
memberFxn is the name of the parent member function you have written to handle
the notification.

The parent's function prototype is as follows:

afx_msg void memberFxn();

Potential message-map entries are as follows:

Map entry Sent to parent when ...

ON_BN_CLICKED

ON_BN_DOUBLECLICKED

The user clicks a button.

The user double-clicks a button.

If you create a CButton object from a dialog resource, the CButton object is
automatically destroyed when the user closes the dialog box.

If you create a CButton object within a window, you may need to destroy it. If you
create the CButton object on the heap by using the new function, you must call
delete on the object to destroy it when the user closes the Windows button control. If
you create the CButton object on the stack, or it is embedded in the parent dialog
object, it is destroyed automatically.

#include <afxwin.h>

See Also CWnd, CComboBox, CEdit, CListBox, CScrollBar, CStatic,
CBitmapButton, CDialog

Construction

CButton

Initialization

Create

Operations

GetState

SetState

GetCheck

SetCheck

GetButtonStyle

SetButtonStyle

GetIcon

SetIcon

GetBitmap

SetBitmap

GetCursor

SetCursor

Constructs a CButton object.

Creates the Windows button control and attaches it to the
CButton object.

Retrieves the check state, highlight state, and focus state of a
button control.

Sets the highlighting state of a button control.

Retrieves the check state of a button control.

Sets the check state of a button control.

Retrieves information about the button control style.

Changes the style of a button.

Retrieves the handle of the icon previously set with SetIcon.

Specifies an icon to be displayed on the button.

Retrieves the handle of the bitmap previously set with
SetBitmap.

Specifies a bitmap to be displayed on the button.

Retrieves the handle of the cursor image previously set with
SetCursor.

Specifies a cursor image to be displayed on the button.

CButton

127

CButton::CButton

Overridables

Drawltem Override to draw an owner-drawn CButton object.

Member Functions
CButton: :CButton

Remarks

CButton();

Constructs a CButton object.

See Also CButton: : Create

CButton::Create
BOOL Create(LPCTSTR lpszCaption, DWORD dwStyle, const RECT& reet, CWnd*

pParentWnd, UINT nID);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

128

lpszCaption Specifies the button control's text.

dwStyle Specifies the button control's style. Apply any combination of button styles
to the button.

reet Specifies the button control's size and position. It can be either a CRect object
or a RECT structure.

pParentWnd Specifies the button control's parent window, usually a CDialog. It
must not be NULL.

nID Specifies the button control's ID.

You construct a CButton object in two steps. First call the constructor, then call
Create, which creates the Windows button control and attaches it to the CButton
object

If the WS_ VISffiLE style is given, Windows sends the button control all the
messages required to activate and show the button.

Apply the following window styles to a button control: (For a list of window styles,
see "Window Styles" in the "Styles Used by MFC" section.)

• WS_CHILD Always

• WS_ VISIBLE Usually

• WS_DISABLED Rarely

• WS_GROUP To group controls

• WS_TABSTOP To include the button in the tabbing order

See Also CButton::CButton

CButton::DrawItem
virtual void Drawltem(LPDRAWITEMSTRUCT lpDrawltemStruct);

Parameters

Remarks

lpDrawltemStruct A long pointer to a DRAWITEMSTRUCT structure. The
structure contains information about the item to be drawn and the type of drawing
required.

Called by the framework when a visual aspect of an owner-drawn button has
changed. An owner-drawn button has the BS_OWNERDRAW style set. Override
this member function to implement drawing for an owner-drawn CButton object.
The application should restore all graphics device interface (GDI) objects selected for
the display context supplied in lpDrawltemStruct before the member function
terminates.

Also see the BS_ style values. For a list of button styles, see "Button Styles" in the
"Styles Used by MFC" section.

See Also CButton::SetButtonStyle, WM_DRAWITEM

CButton: : GetBitmap
HBITMAP GetBitmap() const;

Return Value

Remarks

A handle to a bitmap. NULL if no bitmap is previously specified.

Call this member function to get the handle of a bitmap, previously set with
SetBitmap, that is associated with a button.

CButton: : GetBitmap

129

CButton::GetButtonStyle

See Also CButton: :SetBitmap, CBitmapButton: : LoadBitmaps

In the Win32 SDK documentation: "Bitmaps"

CButton: : GetButtonStyle
UINT GetButtonStyle() const;

Return Value

Remarks

Returns the button styles for this CButton object.

This function returns only the BS_ style values, not any of the other window styles.
For a list of button styles, see "Button Styles" in the "Styles Used by MFC" section.

See Also CButton::SetButtonStyle, ::GetWindowLong

CButton: : GetCheck
int GetCheck() const;

Return Value

Remarks

The return value from a button control created with the BS_AUTOCHECKBOX,
BS_AUTORADIOBUTTON, BS_AUT03STATE, BS_CHECKBOX,
BS_RADIOBUTTON, or BS_3STATE style is one of the following values:

Value Meaning

o Button state is unchecked.

1 Button state is checked.

2 Button state is indeterminate (applies only if the button has the BS_3STATE
or BS_AUT03STATE style).

If the button has any other style, the return value is O.

Retrieves the check state of a radio button or check box.

See Also CButton::GetState, CButton::SetState, CButton::SetCheck,
BM_GETCHECK

CButton: : GetCursor
HCURSOR GetCursor();

Return Value
A handle to a cursor image. NULL if no cursor is previously specified.

130

Remarks
Call this member function to get the handle of a cursor, previously set with
SetCursor, that is associated with a button.

See Also CButton: :SetCursor, CBitmapButton: : LoadBitmaps

In the Win32 SDK documentation: "Bitmaps"

CButton: : GetIcon
HICON GetIcon() const;

Return Value

Remarks

A handle to an icon. NULL if no icon is previously specified.

Call this member function to get the handle of an icon, previously set with Setlcon,
that is associated with a button.

See Also CButton: :Setlcon, CBitmapButton: : LoadBitmaps

In the Win32 SDK documentation: "Bitmaps"

CButton: : GetS tate
UINT GetState() const;

Return Value
Specifies the current state of the button control. You can use the following masks
against the return value to extract information about the state:

Mask

Ox0003

Ox0004

Ox0008

Meaning

Specifies the check state (radio buttons and check boxes only). A 0 indicates
the button is unchecked. A 1 indicates the button is checked. A radio button
is checked when it contains a bullet (.). A check box is checked when it
contains an X. A 2 indicates the check state is indeterminate (three-state
check boxes only). The state of a three-state check box is indeterminate
when it contains a halftone pattern.

Specifies the highlight state. A nonzero value indicates that the button is
highlighted. A button is highlighted when the user clicks and holds the left
mouse button. The highlighting is removed when the user releases the mouse
button.

Specifies the focus state. A nonzero value indicates that the button has the
focus.

CButton::GetState

131

CButton: :SetBitmap

Remarks
Retrieves the state of a radio button or check box.

See Also CButton: : GetCheck, CButton: :SetCheck, CButton: :SetState,
BM_GETSTATE

CButton:: SetBitmap
HBITMAP SetBitmap(HBITMAP hBitmap);

Return Value
The handle of a bitmap previously associated with the button.

Parameters

Remarks

hBitmap The handle of a bitmap.

Call this member function to associate a new bitmap with the button.

The bitmap will be automatically placed on the face of the button, centered by default.
If the bitmap is too large for the button, it will be clipped on either side. You can
choose other alignment options, including the following:

• BS_TOP

• BS_LEFT

• BS_RIGHT

• BS_CENTER

• BS_BOTTOM

• BS_ VCENTER

Unlike CBitmapButton, which uses four bitmaps per button, SetBitmap uses only
one bitmap per the button. When the button is pressed, the bitmap appears to shift
down and to the right.

See Also CButton: : GetBitmap, CBitmapButton, CBitmapButton: :LoadBitmaps

In the Win32 SDK documentation: "Bitmaps"

CB utton: : SetB uttonS ty Ie
void SetButtonStyle(UINT nStyle, BOOL bRedraw = TRUE);

Parameters

132

nStyle Specifies the button style.

bRedraw Specifies whether the button is to be redrawn. A nonzero value redraws the
button. A 0 value does not redraw the button. The button is redrawn by default.

Remarks
Changes the style of a button.

Use the GetButtonStyle member function to retrieve the button style. The low-order
word of the complete button style is the button-specific style.

For a list of possible button styles, see "Button Styles" in the "Styles Used by MFC"
section ..

See Also CButton: : GetButtonStyle, BM_SETSTYLE

CButton: :SetCheck
void SetCheck(int nCheck);

Parameters

Remarks

nCheck Specifies the check state. This parameter can be one of the following:

Value Meaning

o Set the button state to unchecked.

Set the button state to checked.

2 Set the button state to indeterminate. This value can be used only if the button
has the BS_3STATE or BS...:.AUT03STATE style.

Sets or resets the check state of a radio button or check box. This member function
has no effect on a pushbutton.

See Also CButton: : GetCheck, CButton: : GetState, CButton: :SetState,
BM_SETCHECK

CB utton:: SetCursor
HCURSOR SetCursor(HCURSOR hCursor);

Return Value
The handle of a cursor previously associated with the button.

Parameters
hCursor The handle of a cursor.

Remarks
Call this member function to associate a new cursor with the button.

CButton: :SetCursor

133

CButton::SetIcon

The cursor will be automatically placed on the face of the button, centered by default.
If the cursor is too large for the button, it will be clipped on either side. You can
choose other alignment options, including the following:

• BS_TOP

• BS_LEFT

• BS_RIGHT

• BS_CENTER

• BS_BOTTOM

• BS_ VCENTER

Unlike CBitmapButton, which uses four bitmaps per button, SetCursor uses only
one cursor per the button. When the button is pressed, the cursor appears to shift
down and to the right.

See Also CButton::GetCursor, CBitmapButton: :LoadBitmaps

In the Win32 SDK documentation: "Bitmaps"

CButton::Setlcon
HICON SetIcon(HICON h/con);

Return Value
The handle of an icon previously associated with the button.

Parameters

Remarks

134

h/con The handle of an icon.

Call this member function to associate a new icon with the button.

The icon will be automatically placed on the face of the button, centered by default. If
the icon is too large for the button, it will be clipped on either side. You can choose
other alignment options, including the following:

• BS_TOP

• BS_LEFT

• BS_RIGHT

• BS_CENTER

• BS_BOTTOM

• BS_ VCENTER

Unlike CBitmapButton, which uses four bitmaps per button, SetIcon uses only one
icon per the button. When the button is pressed, the icon appears to shift down and to
the right.

See Also CButton::Getlcon, CBitmapButton::LoadBitmaps

In the Win32 SDK documentation: "Bitmaps"

CButton::SetState
void SetState(BOOL bHighlight);

Parameters

Remarks

bHighlight Specifies whether the button is to be highlighted. A nonzero value
highlights the button; a 0 value removes any highlighting.

Sets the highlighting state of a button control.

Highlighting affects the exterior of a button control. It has no effect on the check state
of a radio button or check box.

A button control is automatically highlighted when the user clicks and holds the left
mouse button. The highlighting is removed when the user releases the mouse button.

See Also CButton: : GetState, CButton: :SetCheck, CButton: : GetCheck,
BM_SETSTATE

CButton::SetState

135

CByteArray

CByteArray

136

The CByteArray class supports dynamic arrays of bytes.

The member functions of CByteArray are similar to the member functions of class
CObArray. Because of this similarity, you can use the CObArray reference
documentation for member function specifics. Wherever you see a CObject pointer
as a function parameter or return value, substitute a BYTE.

CObject* CObArray::GetAt(int <nlndex>) cans~;

for example, translates to

BYTE CByteArray::GetAt(int <nlndex>) canst;

CByteArray incorporates the IMPLEMENT_SERIAL macro to support
serialization and dumping of its elements. If an array of bytes is stored to an archive,
either with the overloaded insertion «<) operator or with the Serialize member
function, each element is, in tum, serialized.

Note Before using an array, use SetSize to establish its size and allocate memory for it. If
you do not use SetSize, adding elements to your array causes it to be frequently reallocated
and copied. Frequent reallocation and copying are inefficient and can fragment memory.

If you need debug output from individual elements in the array, you must set the
depth of the CDumpContext object to 1 or greater.

For more information on using CByteArray, see the article "Collections" in
Programming with MFC.

#include <afxcoll.h>

See Also CObArray

Construction

CByteArray

Bounds

GetSize

GetUpperBound

SetSize

Constructs an empty array for bytes.

Gets the number of elements in this array.

Returns the largest valid index.

Sets the number of elements to be contained in this array.

Operations

FreeExtra

RemoveAII

Element Access

GetAt

SetAt

ElementAt

Growing the Array

SetAtGrow

Add

Insertion/Removal

InsertAt

RemoveAt

Operators

operator []

Frees all unused memory above the current upper bound.

Removes all the elements from this array.

Returns the value at a given index.

Sets the value for a given index; array not allowed to grow.

Returns a temporary reference to the byte within the array.

Sets the value for a given index; grows the array if necessary.

Adds an element to the end of the array; grows the array if
necessary.

Inserts an element (or all the elements in another array) at a
specified index.

• Removes an element at a specific index.

Sets or gets the element at the specified index.

CByteArray

137

CCheckListBox

CCheckListBox

138

The CCheckListBox class provides the functionality of a Windows checklist box. A
"checklist box" displays a list of items, such as filenames, that the user can view and
select. A check box appears next to each item in the list; the user can check or clear
the selected item's check box.

You can create a checklist box either from a dialog template or directly in your code.
In both cases, call the constructor CCheckListBox to construct the CCheckListBox
object, then call the Create member function to create the Windows cheeklist-box
control and attach it to the CCheckListBox object.

Construction can be a one-step process in a class derived from CCheckListBox.
Write a constructor for the derived class and call Create from within the constructor.

#include <afxwin.h>

See Also CListBox

Construction

CCheckListBox

Create

Attributes

SetCheckStyle

GetCheckStyle

SetCheck

GetCheck

Enable

IsEnabled

OnGetCheckPosition

Constructs a CCheckListBox object.

Creates the Windows checklist box and attaches it to the
CCheckListBox object.

Sets the style of the control's check boxes.

Gets the style of the control's check boxes.

Sets the state of an item's check box.

Gets the state of an item's check box.

Enables or disables a checklist box item.

Determines whether an item is enabled.

Called by the framework to get the position of an item's check box.

CCheckListBox: : Create

Member Functions
CCheckListBox: :CCheckListBox

Remarks

CCheckListBox();

Constructs a CCheckListBox object.

You construct a CCheckListBox object in two steps. First call the constructor
CCheckListBox, then call Create, which initializes the Windows checklist box and
attaches it to the CCheckListBox.

See Also CCheckListBox::Create

CCheckListBox: : Create
BOOL Create(DWORD dwStyle, const RECT& reet, CWnd* pParentWnd, UINT nID);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

dwStyle Specifies the style of the checklist box. Apply any combination of list-box
styles to the box. For a list of list-box styles, see "List-Box Styles" in the "Styles"
section.

reet Specifies the checklist-box size and position. Can be either a CRect object or a
RECT structure.

pParentWnd Specifies the checklist box's parent window (usually a CDialog object).
It must not be NULL.

nID Specifies the checklist box's control ID.

You construct a CCheckListBox object in two steps. First call the constructor, then
call Create, which initializes the Windows checklist box and attaches it to the
CCheckListBox object.

When Create executes, Windows sends the WM_NCCREATE, WM_CREATE,
WM_NCCALCSIZE, and WM_GETMINMAXINFO messages to the checklist
box control.

These messages are handled by default by the OnNcCreate, OnCreate,
OnNcCaIcSize, and OnGetMinMaxInfo member functions in the CWnd base class.
To extend the default message handling, derive a class from CCheckListBox, add a
message map to the new class, and override the preceding message-handler member

139

CCheckListBox: : Enable

functions. Override OnCreate, for example, to perform needed initialization for a
new class.

Apply the following window styles to a checklist-box control: (for a list of window
styles, see "Window Styles" in the "Styles Used by MFC" section.)

• WS_CHILD Always

• WS_ VISIBLE Usually

• WS_DISABLED Rarely

• WS_ VSCROLL To add a vertical scroll bar

• WS_HSCROLL To add a horizontal scroll bar

• WS_GROUP To group controls

• WS_TABSTOP To allow tabbing to this control

See Also CCheckListBox::CCheckListBox

CCheckListBox: : Enable
void Enable(int nlndex, BOOL bEnabled = TRUE);

Parameters

Remarks

nlndex Index of the checklist box item to be enabled.

bEnabled Specifies whether the item is enabled or disabled.

Call this function to enable or disable a checklist box item.

See Also CCheckListBox: :IsEnabled

CCheckListBox: : GetCheck
int GetCheck(int nlndex);

Return Value
Zero if the item is not checked, 1 if it is checked, and 2 if it is indeterminate.

Parameters

Remarks

140

nlndex Index of the item whose check status is to be retrieved.

Call this function to determine the check state of an item.

See Also CCheckListBox::OnGetCheckPosition CCheckListBox::SetCheck
CCheckListBox: :SetCheckStyle CCheckListBox: : GetCheckStyle

CCheckListBox: :OnGetCheckPosition

CCheckListBox: : GetCheckSty Ie
UINT GetCheckStyle();

Return Value

Remarks

The style of the control's check boxes.

Call this function to get the checklist box's style. For information on possible styles,
see SetCheckStyle.

See Also CCheckListBox: :OnGetCheckPosition CCheckListBox: : Set Check
CCheckListBox: :SetCheckStyle CCheckListBox: : GetCheck

CCheckListBox: : IsEnabIed
BOOL IsEnabled(int nlndex);

Return Value
Nonzero if the item is enabled; otherwise O.

Parameters
nlndex Index of the item.

Remarks
Call this function to determine whether an item is enabled.

See Also CCheckListBox: :Enable

CCheckListBox: :OnGetCheckPosition
virtual CRect OnGetCheckPosition(CRect reet/tern, CRect reetCheekBox);

Return Value
The position of the check box.

Parameters

Remarks

reetltern The position of the item.

reetCheekBox The position of the check box.

The framework calls this function to get the position of the check box.

The default implementation only returns the position of the check box. Override this
function to change the default position of the check box within the item.

See Also CCheckListBox: :SetCheck CCheckListBox: :SetCheckStyle
CCheckListBox: : GetCheck CCheckListBox::GetCheckStyle
CCheckListBox: :OnGetCheckPosition

141

CCheckListBox: :SetCheck

CCheckListBox:: SetCheck
void SetCheck(int nlndex, int nCheck);

Parameters

Remarks

nlndex Index of the item whose check box is to be set.

nCheck State of the. check box: 0 for clear, 1 for checked, and 2 for indeterminate.

Call this function to set the check box of the item specified by nlndex.

See Also CCheckListBox::SetCheckStyle CCheckListBox::GetCheck
CCheckListBox: : GetCheckStyle

CCheckListBox:: SetCheckSty Ie
void SetCheckStyle(UINT nStyle);

Parameters

Remarks

142

nStyle Determines the style of check boxes in the checklist box.

Call this function to set the style of check boxes in the checklist box. Valid styles are:

• BS_CHECKBOX

• BS_AUTOCHECKBOX

• BS_AUT03STATE

• BS_3STATE

For information on these styles, see "Button Styles" in the "Styles" section.

See Also CCheckListBox: :SetCheck CCheckListBox: : GetCheck
CCheckListBox: : GetCheckStyle

CClientDC

The CClientDC class is derived from CDC and takes care of calling the Windows
functions GetDC at construction time and ReleaseDC at destruction time. This
means that the device context associated with a CClientDC object is the client area
ofa window.

For more information on CClientDC, see "Device Contexts" in Chapter 1 of
Programming with MPC.

#include <afxwin.h>

SeeAlso CDC

Construction

CClientDC Constructs a CClientDC object connected to the CWnd.

Data Members

The HWND of the window for which this CClientDC is valid.

Member Functions
CClientDC: :CClientDC

CClientDC(CWnd* p Wnd);
throw(CResourceException);

Parameters

Remarks

p Wnd The window whose client area the device context object will access.

Constructs a CClientDC object that accesses the client area of the CWnd pointed to
by p Wnd. The constructor calls the Windows function GetDC.

An exception (of type CResourceException) is thrown if the Windows GetDC call
fails. A device context may not be available if Windows has already allocated all of
its available device contexts. Your application competes for the five common display
contexts available at any given time under Windows.

CClientDC

143

CClientDC::mj} Wnd

Data Members
CClientDC: :m_h Wnd
Remarks

144

The HWND of the CWnd pointer used to construct the CCUentDC object. m_h Wnd
is a protected variable.

CCmdTarget

CCmdTarget is the base class for the Microsoft Foundation Class Library message
map architecture. A message map routes commands or messages to the member
functions you write to handle them. (A command is a message from a menu item,
command button, or accelerator key.)

Key framework classes derived from CCmdTarget include CView, CWinApp,
CDocument, CWnd, and CFrame Wnd. If you intend for a new class to handle
messages, derive the class from one of these CCmdTarget-derived classes. You will
rarely derive a class from CCmdTarget directly.

For an overview of command targets and OnCmdMsg routing, see the topics
"Command Targets," "Command Routing," and "Message Maps" in Chapter 2 of
Programming with MFC.

CCmdTarget includes member functions that handle the display of an hourglass
cursor. Display the hourglass cursor when you expect a command to take a noticeable
time interval to execute.

Dispatch maps, similar to message maps, are used to expose OLE automation
IDispatch functionality. By exposing this interface, other applications (such as Visual
Basic) can call into your application. For more information on OLE automation and
IDispatch interfaces, see "Dispatch Interfaces," Chapter 5 of Creating Programmable
Applications.

#include <afxwin.h>

See Also CCmdID, CDocument, CDocTemplate, CWinApp, CWnd, CView,
CFrameWnd, COleDispatchDriver

Attributes

FromIDispatch

GetlDispatch

IsResultExpected

Returns a pointer to the CCmdTarget object associated with
the IDispatch pointer.

Returns a pointer to the IDispatch object associated with the
CCmdTarget object.

Returns TRUE if an automation function should return a
value.

CCmdTarget

145

CCmdTarget: :Begin W aitCursor

Operations

Begin WaitCursor

EnableAutomation

EndWaitCursor

RestoreWaitCursor

Overridables

OnCmdMsg

OnFinalRelease

Displays the cursor as an hourglass cursor.

Allows OLE automation for the CCmdTarget object.

Returns to the previous cursor.

Restores the hourglass cursor.

Routes and dispatches command messages.

Cleans up after the last OLE reference is released.

Member Functions
CCmdTarget: :Begin WaitCursor

Remarks

Example

146

void Begin WaitCursor();

Call this function to display the cursor as an hourglass when you expect a command
to take a noticeable time interval to execute. The framework calls this function to
show the user that it is busy, such as when a CDocument object loads or saves itself
to a file.

The actions of BeginWaitCursor are not always effective outside of a single message
handler as other actions, such as OnSetCursor handling, could change the cursor.

Call EndWaitCursor to restore the previous cursor.

II The following example illustrates the most common case
II of displaying the hourglass cursor during some lengthy
II processing of a command handler implemented in some
II CCmdTarget-derived class, such as a document or view.

void CMyView::OnSomeCommand()
{

BeginWaitCursor(); II display the hourglass cursor

II do some lengthy processing

EndWaitCursor(); II remove the hourglass cursor
}

II The next example illustrates RestoreWaitCursor.
void CMyView::OnSomeCommand()
{

BeginWaitCursor(); II display the hourglass cursor

CCmdTarget: :Begin W aitCursor

}

II do some lengthy processing

II The dialog box will normally change the cursor to
II the standard arrow cursor, and leave the cursor in
II as the standard arrow cursor when the dialog box is
II closed.
CMyDialog dlg;
dlg.DoModal();

II It is necessary to call RestoreWaitCursor here in order
II to change the cursor back to the hourglass cursor.
RestoreWaitCursor();

II do some more lengthy processing

EndWaitCursor(); II remove the hourglass cursor

II In the above example, the dialog was clearly invoked between
II the pair of calls to BeginWaitCursor and EndWaitCursor.
II Sometimes it may not be clear whether the dialog is invoked
II in between a pair of calls to BeginWaitCursor and EndWaitCursor.
II It is permissable to call RestoreWaitCursor, even if
II BeginWaitCursor was not previously called. This case is
II illustrated below, where CMyView::AnotherFunction does not
II need to know whether it was called in the context of an
II hourglass cursor.
void CMyView::AnotherFunction()
{

}

II some processing

CMyDialog dlg;
d 1 g . DoModa 1 () ;
RestoreWaitCursor();

II some more processing

II If the dialog is invoked from a member function of
II some non-CCmdTarget, then you can call CWinApp::DoWaitCursor
II with a 0 parameter value to restore the hourglass cursor.
void CMyObject::AnotherFunction()
{

}

CMyDialog dlg;
d 1 g . DoModa 1 () ;
AfxGetApp()-)DoWaitCursor(0); II same as CCmdTarget::RestoreWaitCursor

See Also CWaitCursor, CCmdTarget::EndWaitCursor,
CCmdTarget::RestoreWaitCursor, CWinApp::DoWaitCursor

147

CCmdTarget: :EnableAutomation

CCmdTarget: : EnableAutomation

Remarks

void EnableAutomation();

Call this function to enable OLE automation for an object. This function is typically
called from the constructor of your object and should only be called if a dispatch map
has been declared for the class. For more information on automation see the articles
"Automation Clients" and "Automation Servers" in Programming with MFC.

See Also DECLARE_DISPATCH_MAP, DECLARE_OLE CREATE

CCmdTarget: :EndWaitCursor

Remarks

Example

148

void EndWaitCursor();

Call this function after you have called the Begin WaitCursor member function to
return from the hourglass cursor to the previous cursor. The framework also calls this
member function after it has called the hourglass cursor.

II The following example illustrates the most common case
II of displaying the hourglass cursor during some lengthy
II processing of a command handler implemented in some
II CCmdTarget-derived class, such as a document or view.

void CMyView::OnSomeCommand()
{

BeginWaitCursor(); II display the hourglass cursor

II do some lengthy processing

EndWaitCursor(); II remove the hourglass cursor
}

II The next example illustrates RestoreWaitCursor.
void CMyView::OnSomeCommand()
{

BeginWaitCursor(); II display the hourglass cursor

II do some lengthy processing

II The dialog box will normally change the cursor to
II the standard arrow cursor, and leave the cursor in
II as the standard arrow cursor when the dialog box is
II closed.
CMyDialog dlg;
dlg.DoModal();

CCmdTarget::FromIDispatch

II It is necessary to call RestoreWaitCursor here in order
II to change the cursor back to the hourglass cursor.
RestoreWaitCursor();

II do some more lengthy processing

EndWaitCursor(); II remove the hourglass cursor

II In the above example, the dialog was clearly invoked between
II the pair of calls to BeginWaitCursor and EndWaitCursor.
II Sometimes it may not be clear whether the dialog is invoked
II in between a pair of calls to BeginWaitCursor and EndWaitCursor.
II It is permissable to call RestoreWaitCursor, even if
II BeginWaitCursor was not previously called. This case is
II illustrated below, where CMyView::AnotherFunction does not
II need to know whether it was called in the context of an
II hourglass cursor.
void CMyView::AnotherFunction()
{

}

II some processing

CMyDialog dlg;
dlg.DoModal();
RestoreWaitCursor();

II some more processing

II If the dialog is invoked from a member function of
II some non-CCmdTarget, then you can call CWinApp::DoWaitCursor
II with a 0 parameter value to restore the hourglass cursor.
void CMyObject::AnotherFunction()
{

CMyDialog dlg;
dlg.DoModal();
AfxGetApp()-)DoWaitCursor(0); II same as CCmdTarget::RestoreWaitCursor

See Also CWaitCursor, CCmdTarget::BeginWaitCursor,
CCmdTarget: : RestoreWaitCursor, CWinApp::Do WaitCursor

CCmdTarget: :FromIDispatch
static CCmdTarget* FromIDispatch(LPDISPATCH lpDispatch);

Return Value
A pointer to the CCmdTarget object associated with lpDispatch. This function
returns NULL if the IDispatch object is not recognized as a Microsoft Foundation
Class IDispatch object.

149

CCmdTarget: : GetIDispatch

Parameters

Remarks

IpDispatch A pointer to an IDispatch object.

Call this function to map an IDispatch pointer, received from automation member
functions of a class, into the CCmdTarget object that implements the interfaces of
the IDispatch object.

The result of this function is the inverse of a call to the member function
GetIDispatch.

See Also CCmdTarget: :GetIDispatch, COleDispatchDriver

CCmdTarget: : GetIDispatch
LPDISPATCH GetIDispatch(BOOL bAddRef);

Return Value
The IDispatch pointer associated with the object.

Parameters

Remarks

bAddRef Specifies whether to increment the reference count for the object.

Call this member function to retrieve the IDispatch pointer from an automation
method that either returns an IDispatch pointer or takes an IDispatch pointer by
reference.

For objects that call EnableAutomation in their constructors, making them
automation enabled, this function returns a pointer to the Foundation Class
implementation of IDispatch that is used by clients who communicate via the
IDispatch interface. Calling this function automatically adds a reference to the
pointer, so it is not necessary to make a call to IUnknown: :AddRef.

See Also CCmdTarget: :EnableAutomation, COleDispatchDriver

In the OLE documentation: IUnknown::Release, IUnknown::AddRef

CCmdTarget: : IsResultExpected
BOOL IsResuItExpected();

Return Value

Remarks

150

Nonzero if an automation function should return a value; otherwise O.

Use IsResultExpected to ascertain whether a client expects a return value from its
call to an automation function. The OLE interface supplies information to MFC about
whether the client is using or ignoring the result of a function call, and MFC in turn

CCmdTarget::OnCmdMsg

uses this information to determine the result of a call to IsResultExpected. If
production of a return value is time- or resource-intensive, you can increase efficiency
by calling this function before computing the return value.

This function returns 0 only once so that you will get valid return values from other
automation functions if you call them from the automation function that the client
has called.

IsResultExpected returns a nonzero value if called when an automation function call
is not in progress.

See Also CCmdTarget: : GetlDispatch , CCmdTarget: :EnableAutomation

CCmdTarget: :OnCmdMsg
virtual BOOL OnCmdMsg(UINT nID, int nCode, void* pExtra,

AFX_ CMDHANDLERINFO* pHandlerlnfo);

Return Value
Nonzero if the message is handled; otherwise O.

Parameters

Remarks

nID Contains the command ID.

nCode Identifies the command notification code.

pExtra Used according to the value of nCode.

pHandlerlnfo If not NULL, OnCmdMsg fills in the pTarget and pmf members of
the pHandlerlnfo structure instead of dispatching the command. Typically, this
parameter should be NULL.

Called by the framework to route and dispatch command messages and to handle the
update of command user-interface objects. This is the main implementation routine of
the framework command architecture.

At run time, OnCmdMsg dispatches a command to other objects or handles the
command itself by calling the root class CCmdTarget: :OnCmdMsg, which does the
actual message-map lookup. For a complete description of the default command
routing, see Chapter 2, "Working with Messages and Commands," in Programming
withMPC.

On rare occasions, you may want to override this member function to extend the
framework's standard command routing. Refer to Technical Note 21 under MFC in
Books Online for advanced details of the command-routing architecture.

151

CCmdTarget::OnFinalRelease

Example
II This example illustrates extending the framework's standard command
II route from the view to objects managed by the view. This example

II is from an object-oriented drawing application. similar to the
II DRAWCLI sample application. which draws and edits "shapes".

BOOL CMyView::OnCmdMsg(UINT nID. int nCode. void* pExtra.

{
AFX_CMDHANDLERINFO* pHandlerInfo)

II Extend the framework's command route from the view to
II the application-specific CMyShape that is currently selected
II in the view. m_pActiveShape is NULL if no shape object
II is currently selected in the view.
if «m_pActiveShape != NULL)

&& m_pActiveShape->OnCmdMsg(nID. nCode. pExtra. pHandlerInfo))
return TRUE:

II If the object(s) in the extended command route don't handle
II the command. then let the base class OnCmdMsg handle it.
return CView::OnCmdMsg(nID. nCode. pExtra. pHandlerInfo):

II The command handler for ID_SHAPE_COLOR (menu command to change
II the color of the currently selected shape) was added to
II the message map of CMyShape (note. not CMyView) using ClassWizard.

II The menu item will be automatically enabled or disabled. depending
lIon whether a CMyShape is currently selected in the view. that is.
II depending on whether CMyView::m_pActiveView is NULL. It is not
II necessary to implement an ON_UPDATE_COMMAND_UI handler to enable
II or disable the menu item.

BEGIN_MESSAGE_MAP(CMyShape. CCmdTarget)
11{{AFX_MSG_MAP(CMyShape)
ON_COMMAND(ID_SHAPE_COLOR. OnShapeColor)
I/} lAFX_MSG_MAP

END_MESSAGE_MAP()

See Also CCmdUI

CCmdTarget:: OnFinalRelease

Remarks

152

virtual void OnFinalRelease();

Called by the framework when the last OLE reference to or from the object is
released. Override this function to provide special handling for this situation. The
default implementation deletes the object.

See Also COleServerItem

CCmdTarget: : Restore W aitCursor

CCmdTarget: : Restore WaitCursor

Remarks

Example

void RestoreWaitCursor();

Call this function to restore the appropriate hourglass cursor after the system cursor
has changed (for example, after a message box has opened and then closed while in
the middle of a lengthy operation).

II The following example illustrates the most common case
II of displaying the hourglass cursor
during some lengthy

II processing of a command handler implemented in some
II CCmdTarget-derived class, such as a document or view.

void CMyView::OnSomeCommand()
{

BeginWaitCursor(); II display the hourglass cursor

II do some lengthy processing

EndWaitCursor(); II remove the hourglass cursor

II The next example illustrates RestoreWaitCursor.
void CMyView::OnSomeCommand()
{

}

BeginWaitCursor(); II display the hourglass cursor

II do some lengthy processing

II The dialog box will normally change the cursor to
II the standard arrow cursor, and leave the cursor in
II as the standard arrow cursor when the dialog box is
II closed.
CMyDialog dlg;
dlg.DoModal ();

II It is necessary to call RestoreWaitCursor here in order
II to change the cursor back to the hourglass cursor.
RestoreWaitCursor();

II do some more lengthy processing

EndWaitCursor(); II remove the hourglass cursor

153

CCmdTarget: : Restore WaitCursor

154

II In the above example. the dialog was clearly invoked between
II the pair of calls to BeginWaitCursor and EndWaitCursor.
II Sometimes it may not be clear whether the dialog is invoked
II in between a pair of calls to BeginWaitCursor and EndWaitCursor.
II It is permissable to call RestoreWaitCursor. even if
II BeginWaitCursor was not previously called. This case is
II illustrated below. where CMyView::AnotherFunction does not
II need to know whether it was called in the context of an
II hourglass cursor.
void CMyView::AnotherFunction()
{

II some processing

CMyDialog dlg;
d 1 9 . DoModa 1 () ;
RestoreWaitCursor();

II some more processing

II If the dialog is invoked from a member function of
II some non-CCmdTarget. then you can call CWinApp::DoWaitCursor
II with a 0 parameter value to restore the hourglass cursor.
void CMyObject::AnotherFunction()
{

}

CMyDialog dlg;
dlg.DoModal();
AfxGetApp()->DoWaitCursor(0); II same as CCmdTarget::RestoreWaitCursor

See Also CWaitCursor, CCmdTarget::EndWaitCursor,
CCmdTarget::BeginWaitCursor, CWinApp::DoWaitCursor

CCmdUI
The CCmdUI class is used only within an ON_UPDATE_COMMAND_UI handler
in a CCmdTarget-derived class.

When a user of your application pulls down a menu, each menu item needs to know
whether it should be displayed as enabled or disabled. The target of a menu command
provides this information by implementing an ON_UPDATE_COMMAND_UI
handler. Use ClassWizard to browse the command user-interface objects in your
application and create a message-map entry and function prototype for each handler.

When the menu is pulled down, the framework searches for and calls each
ON_UPDATE_COMMAND_UI handler, each handler calls CCmdUI member
functions such as Enable and Check, and the framework then appropriately displays
each menu item.

A menu item can be replaced with a control-bar button or other command user
interface object without changing the code within the
ON_UPDATE_COMMAND_UI handler.

The following table summarizes the effect CCmdUI's member functions have on
various command user-interface items.

User-Interface Enable SetCheck SetRadio SetText
Item

Menu item Enables or Checks (x) or Checks using Sets item text
disables unchecks dot (.)

Toolbar button Enables or Selects, Same as (Not applicable)
disables unselects, or SetCheck

indeterminate

Status-bar pane Makes text Sets pop-out or Same as Sets pane text
visible or normal border SetCheck
invisible

Normal button in Enables or Checks or Same as Sets button text
CDialogBar disables unchecks check SetCheck

box

Normal control in Enables or (Not applicable) (Not Sets window
CDialogBar disables applicable) text

For more on the use of this class, see Chapter 6, "Constructing the User Interface," in
Tutorials and "How to Update User-Interface Objects" in Chapter 2 of Programming
withMFC.

#include <afxwin.h>

See Also CCmdTarget

CCmdUI

155

CCmdUI::ContinueRouting

Operations

Enable

SetCheck

SetRadio

SetText

ContinueRouting

Enables or disables the user-interface item for this command.

Sets the check state of the user-interface item for this command.

Like the SetCheck member function, but operates on radio
groups.

Sets the text for the user-interface item for this command.

Tells the command-routing mechanism to continue routing the
current message down the chain of handlers.

Member Functions
CCmdUI: :ContinueRouting

Remarks

void ContinueRouting();

Call this member function to tell the command-routing mechanism to continue
routing the current message down the chain of handlers.

This is an advanced member function that should be used in conjunction with an
ON_COMMAND_EX handler that returns FALSE. For more information, see
Technical Note 21 under MFC in Books Online.

CCmdUI: : Enable
virtual void Enable(BOOL bOn = TRUE);

Parameters

Remarks

156

bOn TRUE to enable the item, FALSE to disable it.

Call this member function to enable or disable the user-interface item for this
command.

See Also CCmdUI::SetCheck

CCmdUI:: SetCheck
virtual void SetCheck(int nCheck = 1);

Parameters

Remarks

nCheck Specifies the check state to set. If 0, unchecks; if 1, checks; and if 2, sets
indeterminate.

Call this member function to set the user-interface item for this command to the
appropriate check state. This member function works for menu items and toolbar
buttons. The indeterminate state applies only to toolbar buttons.

See Also CCmdUI: :SetRadio

CCmdUI: :SetRadio
virtual void SetRadio(BOOL bOn = TRUE);

Parameters

Remarks

bOn TRUE to enable the item; otherwise FALSE.

Call this member function to set the user-interface item for this command to the
appropriate check state. This member function operates like SetCheck, except that it
operates on user-interface items acting as part of a radio group. Unchecking the other
items in the group is not automatic unless the items themselves maintain the radio
group behavior.

See Also CCmdUI: :SetCheck

CCmdUI::SetText
virtual void SetText(LPCTSTR lpszText);

Parameters
lpszText A pointer to a text string.

Remarks
Call this member function to set the text of the user-interface item for this command.

See Also CCmdUI::Enable

CCmdUI::SetText

157

CColorDialog

CColorDialog

158

The CColorDialog class allows you to incorporate a color-selection dialog box into
your application. A CColorDialog object is a dialog box with a list of colors that are
defined for the display system. The user can select or create a particular color from
the list, which is then reported back to the application when the dialog box exits.

To construct a CColorDialog object, use the provided constructor or derive a new
class and use your own custom constructor.

Once the dialog box has been constructed, you can set or modify any values in the
m_cc structure to initialize the values of the dialog box's controls. The m_cc
structure is of type CHOOSECOLOR. For more information on this structure, see
the Win32 SDK documentation.

After initializing the dialog box's controls, call the DoModal member function to
display the dialog box and allow the user to select a color. DoModai returns the
user's selection of either the dialog box's OK (IDOK) or Cancel (IDCANCEL)
button.

If DoModai returns IDOK, you can use one of CColorDialog's member functions to
retrieve the information input by the user.

You can use the Windows CommDlgExtendedError function to determine whether
an error occurred during initialization of the dialog box and to learn more about the
error. For more information on this function, see the Win32 SDK documentation.

CColorDialog relies on the COMMDLG.DLL file that ships with Windows versions
3.1 and later.

To customize the dialog box, derive a class from CColorDialog, provide a custom
dialog template, and add a message map to process the notification messages from
the extended controls. Any unprocessed messages should be passed to the base class.

Customizing the hook function is not required.

CColorDialog: :CColorDialog

Note On some installations the CColorDialog object will not display with a gray background
if you have used the framework to make other CDialog objects gray.

For more information on using CColorDialog, see "Common Dialog Classes" in
Chapter 4 of Programming with MFC.

#include <afxdlgs.h>

Data Members

Construction

CColorDialog

Operations

DoModal

GetColor

GetSavedCustomColors

SetCurrentColor

Overridables

OnColorOK

A structure used to customize the settings of the
dialog box.

Constructs a CColorDialog object.

Displays a color dialog box and allows the user to
make a selection.

Returns a COLORREF structure containing the
values of the selected color.

Retrieves custom colors created by the user.

Forces the current color selection to the specified color.

Override to validate the color entered into the dialog box.

Member Functions
CColorDialog: :CColorDialog

CColorDialog(COLORREF clrlnit = 0, DWORD dwFlags = 0, CWnd* pParentWnd = NULL);

Parameters

Remarks

clrlnit The default color selection. If no value is specified, the default is RGB(O,O,O)
(black).

dwFlags A set of flags that customize the function and appearance of the dialog box.
For more information, see the CHOOSECOLOR structure in the Win32 SDK
documentation.

pParentWnd A pointer to the dialog box's parent or owner window.

Constructs a CColorDialog object.

See Also CDialog: :DoModal

159

CColorDialog::DoModal

CColorDialog: : DoModal
virtual int DoModal();

Return Value

Remarks

IDOK or IDCANCEL if the function is successful; otherwise O. IDOK and
IDCANCEL are constants that indicate whether the user selected the OK or Cancel
button.

If IDCANCEL is returned, you can call the Windows CommDlgExtendedError
function to determine whether an error occurred.

Call this function to display the Windows common color dialog box and allow the
user to select a color.

If you want to initialize the various color dialog-box options by setting members of
the m_cc structure, you should do this before calling DoModal but after the dialog
box object is constructed.

After calling DoModal, you can call other member functions to retrieve the settings
or information input by the user into the dialog box.

See Also CDialog: : DoModal, CColorDialog: :CColorDialog

CColorDialog: : GetColor
COLORREF GetColor() const;

Return Value

Remarks

A COLORREF value that contains the RGB information for the color selected in the
color dialog box.

Call this function after calling DoModal to retrieve the information about the color
the user selected.

See Also CColorDialog: :SetCurrentColor

CColorDialog::GetSavedCustomColors
static COLORREF * GetSavedCustomColors();

Return Value

160

A pointer to an array of 16 RGB color values that stores custom colors created by
the user.

CColorDialog: :SetCurrentColor

Remarks
CColorDialog objects permit the user, in addition to choosing colors, to define up to
16 custom colors. The GetSavedCustomColors member function provides access to
these colors. These colors can be retrieved after DoModal returns IDOK.

Each of the 16 RGB values in the returned array is initialized to RGB(255,255,255)
(white). The custom colors chosen by the user are saved only between dialog box
invocations within the application. If you wish to save these colors between
invocations of the application, you must save them in some other manner, such as in
an initialization (.INI) file.

See Also CColorDialog: :GetColor

CColorDialog: :OnColorOK
virtual BOOL OnColorOK();

Return Value

Remarks

Nonzero if the dialog box should not be dismissed; otherwise 0 to accept the color
that was entered.

Override this function only if you want to provide custom validation of the color
entered into the dialog box. This function allows you to reject a color entered by a
user into a common color dialog box for any application-specific reason. Normally,
you do not need to use this function because the framework provides default
validation of colors and displays a message box if an invalid color is entered.

Use the GetColor member function to get the RGB value of the color.

If 0 is returned, the dialog box will remain displayed in order for the user to enter
another filename.

CColorDialog:: SetCurrentColor
void SetCurrentColor(COLORREF clr);

Parameters

Remarks

clr An RGB color value.

Call this function after calling DoModai to force the current color selection to the
color value specified in clr. This function is called from within a message handler or
OnColorOK. The dialog box will automatically update the user's selection based on
the value of the clr parameter.

See Also CColorDialog::GetColor, CColorDialog::OnColorOK

161

CColorDialog::m3C

Data Members
CColorDialog: :m_cc

Remarks

162

CHOOSECOLOR m_cc;

A structure of type CHOOSECOLOR, whose members store the characteristics and
values of the dialog box. After constructing a CColorDialog object, you can use
m_cc to set various aspects of the dialog box before calling the DoModal member
function.

For more information on the CHOOSECOLOR structure, see the Win32 SDK
documentation.

CComboBox

The CComboBox class provides the functionality of a Windows combo box.

A combo box consists of a list box combined with either a static control or edit
control. The list-box portion of the control may be displayed at all times or may only
drop down when the user selects the drop-down arrow next to the control.

The currently selected item (if any) in the list box is displayed in the static or edit
control. In addition, if the combo box has the drop-down list style, the user can type
the initial character of one of the items in the list, and the list box, if visible, will
highlight the next item with that initial character.

The following table compares the three combo-box styles. (For a list of combo-box
styles, see "Combo-Box Styles" in the "Styles" section.)

Style When is list box visible? Static or edit control?

Simple Always Edit

Drop-down When dropped down Edit

Drop-down list When dropped down Static

You can create a CComboBox object from either a dialog template or directly in your
code. In both cases, first call the constructor CComboBox to construct the
CComboBox object; then call the Create member function to create the control and
attach it to the CComboBox object.

If you want to handle Windows notification messages sent by a combo box to its
parent (usually a class derived from CDialog), add a message-map entry and
message-handler member function to the parent class for each message.

Each message-map entry takes the following form:

ON_Notification(id, memberFxn)

where id specifies the child-window ID of the combo-box control sending the
notification and memberFxn is the name of the parent member function you have
written to handle the notification.

CComboBox

163

CComboBox

164

The parent's function prototype is as follows:

afx_msg void memberFxn();

The order in which certain notifications will be sent cannot be predicted. In
particular, a CBN_SELCHANGE notification may occur either before or after a
CBN_ CLOSEUP notification.

Potential message-map entries are the following:

• ON_CBN_CLOSEUP (Windows 3.1 and later.) The list box of a combo box has
closed. This notification message is not sent for a combo box that has the
CBS_SIMPLE style.

• ON_CBN_DBLCLK The user double-clicks a string in the list box of a combo
box. This notification message is only sent for a combo box with the
CBS_SIMPLE style. For a combo box with the CBS_DROPDOWN or
CBS_DROPDOWNLIST style, a double-click cannot occur because a single click
hides the list box.

• ON_CBN_DROPDOWN The list box of a combo box is about to drop down (be
made visible). This notification message can occur only for a combo box with the
CBS_DROPDOWN or CBS_DROPDOWNLIST styie.

• ON_CBN_EDITCHANGE The user has taken an action that may have altered
the text in the edit-control portion of a combo box. Unlike the
CBN_EDITUPDATE message, this message is sent after Windows updates the
screen. It is not sent if the combo box has the CBS_DROPDOWNLIST style.

• ON_CBN_EDITUPDATE The edit-control portion of a combo box is about to
display altered text. This notification message is sent after the control has
formatted the text but before it displays the text. It is not sent if the combo box has
the CBS_DROPDOWNLIST style.

• ON_CBN_ERRSPACE The combo box cannot allocate enough memory to meet
a specific request.

• ON_CBN_SELENDCANCEL (Windows 3.1 and later.) Indicates the user's
selection should be canceled. The user clicks an item and then clicks another
window or control to hide the list box of a combo box. This notification message is
sent before the CBN_CLOSEUP notification message to indicate that the user's
selection should be ignored. The CBN_SELENDCANCEL or
CBN_SELENDOK notification message is sent even if the CBN_CLOSEUP
notification message is not sent (as in the case of a combo box with the
CBS_SIMPLE style).

• ON_CBN_SELENDOK The user selects an item and then either presses the
ENTER key or clicks the DOWN ARROW key to hide the list box of a combo box. This
notification message is sent before the CBN_ CLOSEUP message to indicate that
the user's selection should be considered valid. The CBN_SELENDCANCEL or
CBN_SELENDOK notification message is sent even if the CBN_CLOSEUP

notification message is not sent (as in the case of a combo box with the
CBS_SIMPLE style).

• ON_ CBN_KILLFOCUS The combo box is losing the input focus.

• ON_CBN_SELCHANGE The selection in the list box of a combo box is about
to be changed as a result of the user either clicking in the list box or changing the
selection by using the arrow keys. When processing this message, the text in the
edit control of the combo box can only be retrieved via GetLBText or another
similar function. GetWindowText cannot be used.

• ON_CBN_SETFOCUS The combo box receives the input focus.

If you create a CComboBox object within a dialog box (through a dialog resource),
the CComboBox object is automatically destroyed when the user closes the dialog
box.

If you embed a CComboBox object within another window object, you do not need to
destroy it. If you create the CComboBox object on the stack, it is destroyed
automatically. If you create the CComboBox object on the heap by using the new
function, you must call delete on the object to destroy it when the Windows combo
box is destroyed.

#include <afxwin.h>

See Also CWnd, CButton, CEdit, CListBox, CScrollBar, CStatic, CDialog

Construction

CComboBox

Initialization

Create

InitStorage

General Operations

GetCount

GetCurSel

SetCurSel

GetEditSel

SetEditSel

SetltemData

Constructs a CComboBox object.

Creates the combo box and attaches it to the
CComboBox object.

Preallocates blocks of memory for items and strings in
the list-box portion of the combo box.

Retrieves the number of items in the list box of a combo
box.

Retrieves the index of the currently selected item, if
any, in the list box of a combo box.

Selects a string in the list box of a combo box.

Gets the starting and ending character positions of the
current selection in the edit control of a combo box.

Selects characters in the edit control of a combo box.

Sets the 32-bit value associated with the specified item
in a combo box.

CComboBox

165

CComboBox

166

SetItemDataPtr

GetItemData

GetltemDataPtr

GetToplndex

SetToplndex

SetHorizontalExtent

GetHorizontalExtent

SetDroppedWidth

GetDroppedWidth

Clear

Copy

Cut

Paste

LimitText

SetltemHeight

GetltemHeight

GetLBText

GetLBTextLen

ShowDropDown

GetDroppedControlRect

Sets the 32-bit value associated with the specified item
in a combo box to the specified pointer (void*).

Retrieves the application-supplied 32-bit value
associated with the specified combo-box item.

Retrieves the application-supplied 32-bit value
associated with the specified combo-box item as a
pointer (void*).

Returns the index of the first visible item in the list-box
portion of the combo box.

Tells the list-box portion of the combo box to display
the item with the specified index at the top.

Sets the width in pixels that the list-box portion of the
combo box can be scrolled horizontally.

Returns the width in pixels that the list-box portion of
the combo box can be scrolled horizontally.

Sets the minimum allowable width for the drop-down
list-box portion of a combo box.

Retrieves the minimum allowable width for the drop
down list-box portion of a combo box.

Deletes (clears) the current selection (if any) in the edit
control.

Copies the current selection (if any) onto the Clipboard
in CF _TEXT format.

Deletes (cuts) the current selection, if any, in the edit
control and copies the deleted text onto the Clipboard in
CF _TEXT format.

Inserts the data from the Clipboard into the edit control
at the current cursor position. Data is inserted only if
the Clipboard contains data in CF _TEXT format.

Limits the length of the text that the user can enter into
the edit control of a combo box.

Sets the height of list items in a combo box or the height
of the edit-control (or static-text) portion of a combo
box.

Retrieves the height of list items in a combo box.

Gets a string from the list box of a combo box.

Gets the length of a string in the list box of a combo
box.

Shows or hides the list box of a combo box that has the
CBS_DROPDOWN or CBS_DROPDOWNLIST
style.

Retrieves the screen coordinates of the visible (dropped
down) list box of a drop-down combo box.

GetDroppedState

SetExtendedUI

GetExtendedUI

GetLocale

SetLocale

String Operations

AddString

DeleteString

InsertString

ResetContent

Dir

FindString

FindStringExact

SelectString

Overridables

DrawItem

MeasureItem

CompareItem

DeleteItem

Determines whether the list box of a drop-down combo
box is visible (dropped down).

Selects either the default user interface or the extended
user interface for a combo box that has the
CBS_DROPDOWN or CBS_DROPDOWNLIST
style.

Determines whether a combo box has the default user
interface or the extended user interface.

Retrieves the locale identifier for a combo box.

Sets the locale identifier for a combo box.

Adds a string to the end of the list in the list box of a
combo box or at the sorted position for list boxes with
the CBS_SORT style.

Deletes a string from the list box of a combo box.

Inserts a string into the list box of a combo box.

Removes all items from the list box and edit control of a
combo box.

Adds a list of filenames to the list box of a combo box.

Finds the first string that contains the specified prefix in
the list box of a combo box.

Finds the first list-box string (in a combo box) that
matches the specified string.

Searches for a string in the list box of a combo box and,
if the string is found, selects the string in the list box
and copies the string to the edit control.

Called by the framework when a visual aspect of an
owner-draw combo box changes.

Called by the framework to determine combo box
dimensions when an owner-draw combo box is created.

Called by the framework to determine the relative
position of a new list item in a sorted owner-draw
combo box.

Called by the framework when a list item is deleted
from an owner-draw combo box.

CComboBox

167

CComboBox::AddString

Member Functions
CComboBox: : AddString

int AddString(LPCTSTR lpszString);

Return Value
If the return value is greater than or equal to 0, it is the zero-based index to the string
in the list box. The return value is CB_ERR if an error occurs; the return value is
CB_ERRSPACE if insufficient space is available to store the new string.

Parameters

Remarks

lpszString Points to the null-terminated string that is to be added.

Adds a string to the list box of a combo box. If the list box was not created with the
CBS_SORT style, the string is added to the end of the list. Otherwise, the string is
inserted into the list~ and the list is sorted.

To insert a string into a specific location within the list, use the InsertString member
function.

See Also CComboBox: : InsertString, CComboBox: :DeleteString,
CB_ADDSTRING

CComboBox: :CComboBox
CComboBox();

Remarks
Constructs a CComboBox object.

See Also CComboBox::Create

CComboBox: : Clear
void Clear();

Remarks

168

Deletes (clears) the current selection, if any, in the edit control of the combo box.

To delete the current selection and place the deleted contents onto the Clipboard, use
the Cut member function.

See Also CComboBox::Copy, CComboBox::Cut, CComboBox::Paste,
WM_CLEAR

CComboBox::Create

CComboBox: :CompareItem
virtual int CompareItem(LPCOMPAREITEMSTRUCT IpCompareltemStruet);

Return Value
Indicates the relative position of the two items described in the
COMPAREITEMSTRUCT structure. It can be any of the following values:

Value Meaning

-1 Item 1 sorts before item 2.

o Item 1 and item 2 sort the same.

Item 1 sorts after item 2.

See CWnd::OnCompareItem for a description of COMPAREITEMSTRUCT.

Parameters

Remarks

IpCompareltemStruet A long pointer to a COMPAREITEMSTRUCT structure.

Called by the framework to determine the relative position of a new item in the list
box portion of a sorted owner-draw combo box. By default, this member function
does nothing. If you create an owner-draw combo box with the LBS_SORT style,
you must override this member function to assist the framework in sorting new items
added to the list box.

See Also WM_COMPAREITEM, CComboBox::DrawItem,
CComboBox::MeasureItem, CComboBox: :Deleteltem

CComboBox: :Copy

Remarks

void Copy();

Copies the current selection, if any, in the edit control of the combo box onto the
Clipboard in CF _TEXT format.

See Also CComboBox::Clear, CComboBox::Cut, CComboBox: :Paste,
WM_COPY

CComboBox: : Create
BOOL Create(DWORD dwStyle, const RECT & reet, CWnd* pParentWnd, UINT nlD);

Return Value
Nonzero if successful; otherwise O.

169

CComboBox::Create

Parameters

Remarks

170

dwSfyle Specifies the style of the combo box. Apply any combination of combo-box
styles to the box. For a list of combo-box styles, see "Combo-Box Styles" in the
"Styles Used by MFC" section.

reef Points to the position and size of the combo box. Can be a RECT structure or a
CRect object.

pParentWnd Specifies the combo box's parent window (usually a CDialog). It must
not be NULL.

nID Specifies the combo box's control ID.

You construct a CComboBox object in two steps. First call the constructor, then call
Create, which creates the Windows combo box and attaches it to the CComboBox
object.

When Create executes, Windows sends the WM_NCCREATE, WM_CREATE,
WM_NCCALCSIZE, and WM_GETMINMAXINFO messages to the combo box.

These messages are handled by default by the OnNcCreate, OnCreate,
OnNcCalcSize, and OnGetMinMaxlnfo member functions in the CWnd base class.
To extend the default message handling, derive a class from CComboBox, add a
message map to the new class, and override the preceding message-handler member
functions. Override OnCreate, for example, to perform needed initialization for a
new class.

Apply the following window styles to a combo-box control. (For a list of window
styles, see "Window Styles" in the "Styles Used by MFC" section.)

• WS_CHILD Always

• WS_VISIBLE Usually

• WS_DISABLED Rarely

• WS_ VSCROLL To add vertical scrolling for the list box in the combo box

• WS_HSCROLL To add horizontal scrolling for the list box in the combo box

• WS_GROUP To group controls

• WS_TABSTOP To include the combo box in the tabbing order

See Also CComboBox::CComboBox

CComboBox: :DeleteString

CComboBox: :Cut

Remarks

void Cut();

Deletes (cuts) the current selection, if any, in the combo-box edit control and copies
the deleted text onto the Clipboard in CF _TEXT format.

To delete the current selection without placing the deleted text onto the Clipboard,
call the Clear member function.

See Also CComboBox::Clear, CComboBox::Copy, CComboBox::Paste,
WM_CUT

CComboBox: : DeleteItem
virtual void DeleteItem(LPDELETEITEMSTRUCT IpDeleteltemStruct);

Parameters

Remarks

IpDeleteltemStruct A long pointer to a Windows DELETEITEMSTRUCT structure that contains
information about the deleted item. See CWnd::OnDeleteItem for a description of this structure.

Called by the framework when the user deletes an item from an owner-draw
CComboBox object or destroys the combo box. The default implementation of this
function does nothing. Override this function to redraw the combo box as needed.

See Also CComboBox::CompareItem, CComboBox::DrawItem,
CComboBox::MeasureItem, WM_DELETEITEM

CComboBox: : DeleteString
int DeleteString(UINT nlndex);

Return Value
If the return value is greater than or equal to 0, then it is a count of the strings
remaining in the list. The return value is CB_ERR if nlndex specifies an index
greater then the number of items in the list.

Parameters

Remarks

nlndex Specifies the index to the string that is to be deleted.

Deletes a string in the list box of a combo box.

See Also CComboBox: :InsertString, CComboBox::AddString,
CB_DELETESTRING

171

CComboBox: :Dir

CComboBox:: Dir
int Dir(UINT attr, LPCTSTR lpszWildCard);

Return Value
If the return value is greater than or equal to 0, it is the zero-based index of the last
filename added to the list. The return value is CB_ERR if an error occurs; the return
value is CB_ERRSPACE if insufficient space is available to store the new strings.

Parameters

Remarks

attr Can be any combination of the enom values described in CFile::GetStatus or
any combination of the following values:

• DDL_READWRITE File can be read from or written to.

• DDL_READONLY File can be read from but not written to.

• DDL_HIDDEN File is hidden and does not appear in a directory listing.

• DDL_SYSTEM File is a system file.

• DDL_DIRECTORY The name specified by lpszWildCard specifies a
directory.

• DDL_ARCHIVE File has been archived.

• DDL_DRIVES Include all drives that match the name specified by
lpsz WildCard.

• DDL_EXCLUSIVE Exclusive flag. If the exclusive flag is set, only files of
the specified type are listed. Otherwise, files of the specified type are listed in
addition to "normal" files.

lpszWildCard Points toa file-specification string. The string can contain wildcards
(for example, *. *).

Adds a list of filenames and/or drives to the list box of a combo box.

See Also CWnd::DlgDirList, CB_DIR, CFile::GetStatus

CComboBox: : Draw Item
virtual void Drawltem(LPDRAWITEMSTRUCT lpDrawltemStruct);

Parameters

172

lpDrawltemStruct A pointer to a DRAWITEMSTRUCT structure that contains
information about the type of drawing required.

CComboBox: :FindStringExact

Remarks
Called by the framework when a visual aspect of an owner-draw combo box changes.
The itemAction member of the DRAWITEMSTRUCT structure defines the
drawing action that is to be performed. See CWnd::OnDrawItem for a description
of this structure.

By default, this member function does nothing. Override this member function to
implement drawing for an owner-draw CComboBox object. Before this member
function terminates, the application should restore all graphics device interface (GDI)
objects selected for the display context supplied in lpDrawltemStruct.

See Also CComboBox::CompareItem, WM_DRAWITEM,
CComboBox::MeasureItem, CComboBox: : Deleteltem

CComboBox: :FindString
int FindString(int nStartAfter, LPCTSTR lpszString) const;

Return Value
If the return value is greater than or equal to 0, it is the zero-based index of the
matching item. It is CB_ERR if the search was unsuccessful.

Parameters

Remarks

nStartAfter Contains the zero-based index of the item ~efore the first item to be
searched. When the search reaches the bottom of the list box, it continues from the
top of the list box back to the item specified by nStartAfter. If -1, the entire list
box is searched from the beginning.

lpszString Points to the null-terminated string that contains the prefix to search for.
The search is case independent, so this string can contain any combination of
uppercase and lowercase letters.

Finds, but doesn't select, the first string that contains the specified prefix in the list
box of a combo box.

See Also CComboBox: :SelectString, CComboBox: :SetCurSel,
CB_FINDSTRING

CComboBox: : FindStringExact
int FindStringExact(int nlndexStart, LPCTSTR lpszFind) const;

Return Value
The zero-based index of the matching item, or CB_ERR if the search was
unsuccessful.

173

CComboBox::GetCount

Parameters

Remarks

nlndexStart Specifies the zero-based index of the item before the first item to be
searched. When the search reaches the bottom of the list box, it continues from the
top of the list box back to the item specified by nlndexStart. If nlndexStart is -1,
the entire list box is searched from the beginning.

lpszFind Points to the null-terminated string to search for. This string can contain a
complete filename, including the extension. The search is not case sensitive, so
this string can contain any combination of uppercase and lowercase letters.

Call the FindStringExact member function to find the first list-box string (in a
combo box) that matches the string specified in lpszFind.

If the combo box was created with an owner-draw style but without the
CBS_HASSTRINGS style, FindStringExact attempts to match the doubleword
value against the value of lpszFind.

See Also CComboBox::FindString, CB_FINDSTRINGEXACT

CComboBox: : GetCount
int GetCount() const;

Return Value

Remarks

The number of items. The returned count is one greater than the index value of the
last item (the index is zero-based). It is CB_ERR if an error occurs.

Call this member function to retrieve the number of items in the list-box portion of a
combo box.

See Also CB_GETCOUNT

CComboBox: : GetCurSel
int GetCurSel() const;

Return Value

Remarks

174

The zero-based index of the currently selected item in the list box of a combo box, or
CB_ERR if no item is selected.

Call this member function to determine which item in the combo box is selected.
GetCurSel returns an index into the list.

See Also CComboBox::SetCurSel, CB_GETCURSEL

CComboBox: : GetDroppedWidth

CComboBox: : GetDroppedControlRect
void GetDroppedControlRect(LPRECT lprect) const;

Parameters

Remarks

lprect Points to the RECT structure that is to receive the coordinates.

Call the GetDroppedControlRect member function to retrieve the screen
coordinates of the visible (dropped-down) list box of a drop-down combo box.

See Also CB_GETDROPPEDCONTROLRECT

CComboBox: : GetDroppedState
BOOL GetDroppedState() const;

Return Value

Remarks

Nonzero if the list box is visible; otherwise O.

Call the GetDroppedState member function to determine whether the list box of a
drop-down combo box is visible (dropped down).

SeeAlso CB_SHOWDROPDOWN, CB_GETDROPPEDSTATE

CComboBox: : GetDroppedWidth
int GetDroppedWidth() const;

Return Value

Remarks

If successful, the minimum allowable width, in pixels; otherwise, CB_ERR.

Call this function to retrieve the minimum allowable width, in pixels, of the list box
of a combo box. This function only applies to combo boxes with the
CBS_DROPDOWN or CBS_DROPDOWNLIST style.

By default, the minimum allowable width of the drop-down list box is O. The
minimum allowable width can be set by calling SetDroppedWidth. When the list
box portion of the combo box is displayed, its width is the larger of the minimum
allowable width or the combo box width.

See Also CComboBox::SetDroppedWidth, CB_GETDROPPEDWIDTH

175

CComboBox::GetEditSel

CComboBox: : GetEditSel
DWORD GetEditSel() const;

Return Value

Remarks

A 32-bit value that contains the starting position in the low-order word and the
position of the first nonselected character after the end of the selection in the high
order word. If this function is used on a combo box without an edit control, CB_ERR
is returned.

Gets the starting and ending character positions of the current selection in the edit
control of a combo box.

See Also CComboBox::SetEditSel, CB_GETEDITSEL

CComboBox: : GetExtendedUI
BOOL GetExtendedUI() const;

Return Value

Remarks

Nonzero if the combo box has the extended user interface; otherwise O.

Call the GetExtendedUI member function to determine whether a combo box has the
default user interface or the extended user interface. The extended user interface can
be identified in the following ways:

• Clicking the static control displays the list box only for combo boxes with the
CBS_DROPDOWNLIST style.

• Pressing the DOWN ARROW key displays the list box (F4 is disabled).

Scrolling in the static control is disabled when the item list is not visible (arrow keys
are disabled).

See Also CComboBox::SetExtendedUI, CB_GETEXTENDEDUI

CComboBox:: GetHorizontalExtent
UINT GetHorizontalExtent() const;

Return Value
The scrollable width of the list-box portion of the combo box, in pixels.

176

CComboBox::GetltemDataPtr

Remarks
Retrieves from the combo box the width in pixels by which the list-box portion of the
combo box can be scrolled horizontally. This is applicable only if the list-box portion
of the combo box has a horizontal scroll bar.

See Also CListBox: :SetHorizootaIExteot, CB_ GETHORIZONTALEXTENT

CComboBox: : GetItemData
DWORD GetItemData(iot nlndex) coost;

Return Value
The 32-bit value associated with the item, or CB_ERR if an error occurs.

Parameters

Remarks

nlndex Contains the zero-based index of an item in the combo box's list box.

Retrieves the application-supplied 32-bit value associated with the specified combo
box item. The 32-bit value can be set with the dwltemData parameter of a
SetltemData member function call. Use the GetltemDataPtr member function if the
32-bit value to be retrieved is a pointer (void*).

See Also CComboBox::SetltemData, CComboBox::GetltemDataPtr,
CComboBox::SetltemDataPtr, CB_GETITEMDATA

CComboBox: : GetItemDataPtr
void* GetltemDataPtr(iot nlndex) const;

Return Value
Retrieves a pointer, or -1 if an error occurs.

Parameters

Remarks

nlndex Contains the zero-based index of an item in the combo box's list box.

Retrieves the application-supplied 32-bit value associated with the specified combo
box item as a pointer (void*).

See Also CComboBox::SetItemDataPtr, CComboBox: : GetItemData ,
CComboBox::SetItemData, CB_GETITEMDATA

177

CComboBox::GetItemHeight

CComboBox: : GetltemHeight
int GetItemHeight(int nlndex) const;

Return Value
The height, in pixels, of the specified hem in a l:OIllbo box. The return value is
CB_ERR if an error occurs.

Parameters

Remarks

nlndex Specifies the component of the combo box whose height is to be retrieved. If
the nlndex parameter is -1, the height of the edit.,.control (or static-text) portion of
the combo box is retrieved. If the combo box has the
CBS_OWNERDRAWVARIABLE style, nlndex specifies the zero-based index of
the list item whose height is to be retrieved. Otherwise, nlndex should be set to O.

Call the GetItemHeight member function to retrieve the height of list items in a
combo box.

See Also CComboBox::SetItemHeight, WM_MEASUREITEM,
CB_GETITEMHEIGHT

CComboBox: : GetLBText
int GetLBText(int nlndex, LPTSTR lpszText) const;
void GetLBText(int nlndex, CString& rString) const;

Return Value
The length (in bytes) of the string, excluding the terminating null character. If nlndex
does not specify a valid index, the return value is CB _ERR.

Parameters

Remarks

178

nlndex Contains the zero-based index of the list-box string to be copied.

lpszText Points to a buffer that is to receive the string. The buffer must have
sufficient space for the string and a terminating null character.

rString A reference to a CString.

Gets a string from the list box of a combo box. The second form of this member
function fills a CString object with the item's text.

See Also CComboBox::GetLBTextLen, CB_GETLBTEXT

CComboBox::GetTopIndex

CComboBox: : GetLBTextLen
iot GetLBTextLeo(iot nlndex) coost;

Return Value
The length of the string in bytes, excluding the terminating null character. If nlndex
does not specify a valid index, the return value is CB _ERR.

Parameters
nlndex Contains the zero-based index of the list-box string.

Remarks
Gets the length of a string in the list box of a combo box.

See Also CComboBox::GetLBText, CB_GETLBTEXTLEN

CComboBox: : GetLocale
LCID GetLocaIe() coost;

Return Value

Remarks

The locale identifier (LCID) value for the strings in the combo box.

Retrieves the locale used by the combo box. The locale is used, for example, to
determine the sort order of the strings in a sorted combo box.

See Also CComboBox::SetLocale, ::GetStriogTypeW,
: : GetSystemDefaultLCID, : : GetUserDefaultLCID

CComboBox:: GetTopIndex
iot GetToplodex() coost;

Return Value

Remarks

The zero-based index of the first visible item in the list-box portion of the combo box
if successful, CB _ERR otherwise.

Retrieves the zero-based index of the first visible item in the list-box portion of the
combo box. Initially, item 0 is at the top of the list box, but if the list box is scrolled,
another item may be at the top.

See Also CComboBox::SetTopIndex, CB_GETTOPINDEX

179

CComboBox: : InitStorage

CComboBox: : InitStorage
int InitStorage(int nltems, UINT nBytes);

Return Value
If successful, the maximum number of items that the list-box portion of the combo
box can store before a memory reallocation is needed, otherwise CB _ERR, meaning
not enough memory is available.

Parameters

Remarks

nltems Specifies the number of items to add.

nBytes Specifies the amount of memory, in bytes, to allocate for item strings.

Allocates memory for storing list box items in the list-box portion of the combo box.
Call this function before adding a large number of items to the list-box portion of the
CComboBox.

Windows 95 only: The w Param parameter is limited to 16-bit values. This means list
boxes cannot contain more than 32,767 items. Although the number of items is
restricted, the total size of the items in a list box is limited only by available memory.

This function helps speed up the initialization of list boxes that have a large number
of items (more than 100). It preallocates the specified amount of memory so that
subsequent AddString, InsertString, and Dir functions take the shortest possible
time. You can use estimates for the parameters. If you overestimate, some extra
memory is allocated; if you underestimate, the normal allocation is used for items
that exceed the preallocated amount.

See Also CComboBox::CComboBox, CComboBox: : Create,
CComboBox::ResetContent, CB_INITSTORAGE

CComboBox: : InsertString
int InsertString(int nlndex, LPCTSTR IpszString);

Return Value
The zero-based index of the position at which the string was inserted. The return
value is CB_ERR if an error occurs. The return value is CB_ERRSPACE if
insufficient space is available to store the new string.

Parameters

180

nlndex Contains the zero-based index to the position in the list box that will receive
the string. If this parameter is -1, the string is added to the end of the list.

IpszString Points to the null-terminated string that is to be inserted.

CComboBox::MeasureItem

Remarks
Inserts a string into the list box of a combo box. Unlike the AddString member
function, the InsertString member function does not cause a list with the
CBS_SORT style to be sorted.

See Also CComboBox: :AddString, CComboBox: :DeleteString,
CComboBox::ResetContent, CB_INSERTSTRING

CComboBox: :LimitText
BOOL LimitText(int nMaxChars);

Return Value
Nonzero if successful. If called for a combo box with the style
CBS_DROPDOWNLIST or for a combo box without an edit control, the return
value is CB_ERR.

Parameters

Remarks

nMaxChars Specifies the length (in bytes) of the text that the user can enter. If this
parameter is 0, the text length is set to 65,535 bytes.

Limits the length in bytes of the text that the user can enter into the edit control of a
combo box.

If the combo box does not have the style CBS_AUTOHSCROLL, setting the text
limit to be larger than the size of the edit control will have no effect.

LimitText only limits the text the user can enter. It has no effect on any text already
in the edit control when the message is sent, nor does it affect the length of the text
copied to the edit control when a string in the list box is selected.

See Also CB_LIMITTEXT

CComboBox: : MeasureItem
virtual void Measureltem(LPMEASUREITEMSTRUCT lpMeasureltemStruct);

Parameters
lpMeasureltemStruct A long pointer to a MEASUREITEMSTRUCT structure.

Remarks
Called by the framework when a combo box with an owner-draw style is created.

181

CComboBox::Paste

By default, this member function does nothing. Override this member function and
fill in the MEASUREITEMSTRUCT structure to inform Windows of the
dimensions of the list box in the combo box. If the combo box is created with the
CBS_OWNERDRAWVARIABLE style, the framework calls this member function
for each item in the list box. Otherwise, this member is called only once.

Using the CBS_OWNERDRAWFIXED style in an owner-draw combo box created
with the SubclassDIgltem member function of CWnd involves further programming
considerations. See the discussion in Technical Note 14 under MFC in Books Online.

See CWnd::OnMeasureltem for a description of the MEASUREITEMSTRUCT
structure.

See Also CComboBox::Compareltem, CComboBox::Drawltem,
WM_MEASUREITEM, CComboBox::Deleteltem

CComboBox: :Paste

Remarks

void Paste();

Inserts the data from the Clipboard into the edit control of the combo box at the
current cursor position. Data is inserted only if the Clipboard contains data in
CF _TEXT format.

See Also CComboBox::Clear, CComboBox::Copy, CComboBox::Cut,
WM_PASTE

CComboBox: : ResetContent
void ResetContent();

Remarks
Removes all items from the list box and edit control of a combo box.

See Also CB_RESETCONTENT

CComboBox:: SelectString
int SelectString(int nStartAfter, LPCTSTR IpszString);

Return Value

182

The zero-based index of the selected item if the string was found. If the search was
unsuccessful, the return value is CB_ERR and the current selection is not changed.

CComboBox::SetCurSel

Parameters

Remarks

nStartAfter Contains the zero-based index of the item before the first item to be
searched. When the search reaches the bottom of the list box, it continues from the
top of the list box back to the item specified by nStartAfter. If -1, the entire list
box is searched from the beginning.

lpszString Points to the null-terminated string that contains the prefix to search for.
The search is case independent, so this string can contain any combination of
uppercase and lowercase letters.

Searches for a string in the list box of a combo box, and if the string is found, selects
the string in the list box and copies it to the edit control.

A string is selected only if its initial characters (from the starting point) match the
characters in the prefix string.

Note that the SelectString and FindString member functions both find a string, but
the SelectString member function also selects the string.

See Also CComboBox::FindString, CB_SELECTSTRING

CComboBox:: SetCurSel
int SetCurSel(int nSelect);

Return Value
The zero-based index of the item selected if the message is successful. The return
value is CB_ERR if nSelect is greater than the number of items in the list or if
nSelect is set to -1, which clears the selection.

Parameters

Remarks

nSelect Specifies the zero-based index of the string to select. If -1, any current
selection in the list box is removed and the edit control is cleared.

Selects a string in the list box of a combo box. If necessary, the list box scrolls the
string into view (if the list box is visible). The text in the edit control of the combo
box is changed to reflect the new selection. Any previous selection in the list box is
removed.

See Also CComboBox::GetCurSel, CB_SETCURSEL

183

CComboBox: :SetDroppedWidth

CComboBox:: SetDroppedWidth
iot SetDroppedWidth(UINT nWidth);

Return Value
If successful, the new width of the list box, otherwise CB_ERR.

Parameters

Remarks

nWidth The minimum allowable width of the list-box portion of the combo box, in
pixels.

Call this function to set the minimum allowable width, in pixels, of the list box of a
combo box. This function only applies to combo boxes with the CBS_DROPDOWN
or CBS_DROPDOWNLIST style.

By default, the minimum allowable width of the drop-down list box is O. When the
list-box portion of the combo box is displayed, its width is the larger of the minimum
allowable width or the combo box width.

See Also CComboBox::GetDroppedWidth, CB_SETDROPPEDWIDTH

CComboBox:: SetEditSel
BOOL SetEditSel(iot nStartChar, iot nEndChar);

Return Value
Nonzero if the member function is successful; otherwise O. It is CB_ERR if
CComboBox has the CBS_DROPDOWNLIST style or does not have a list box.

Parameters

Remarks

184

nStartChar Specifies the starting position. If the starting position is set to -1, then
any existing selection is removed.

nEndChar Specifies the ending position. If the ending position is set to -1, then all
text from the starting position to the last character in the edit control is selected.

Selects characters in the edit control of a combo box.

The positions are zero-based. To select the first character of the edit control, you
specify a starting position of O. The ending position is for the character just after the
last character to select. For example, to select the first four characters of the edit
control, you would use a starting position of 0 and an ending position of 4.

See Also CComboBox::GetEditSel, CB_SETEDITSEL

CComboBox: :SetHorizontalExtent

CComboBox:: SetExtendedUI
int SetExtendedUI(BOOL bExtended = TRUE);

Return Value
CB_OKAY if the operation is successful, or CB_ERR if an error occurs.

Parameters

Remarks

bExtended Specifies whether the combo box should use the extended user interface
or the default user interface. A value of TRUE selects the extended user interface;
a value of FALSE selects the standard user interface.

Call the SetExtendedUI member function to select either the default user interface or
the extended user interface for a combo box that has the CBS_DROPDOWN or
CBS_DROPDOWNLIST style.

The extended user interface can be identified in the following ways:

• Clicking the static control displays the list box only for combo boxes with the
CBS_DROPDOWNLIST style.

• Pressing the DOWN ARROW key displays the list box (F4 is disabled).

Scrolling in the static control is disabled when the item list is not visible (the arrow
keys are disabled).

See Also CComboBox::GetExtendedUI, CB_SETEXTENDEDUI

CComboBox:: SetHorizontalExtent
void SetHorizontalExtent(UINT nExtent);

Parameters

Remarks

nExtent Specifies the number of pixels by which the list-box portion of the combo
box can be scrolled horizontally.

Sets the width, in pixels, by which the list-box portion of the combo box can be
scrolled horizontally. If the width of the list box is smaller than this value, the
horizontal scroll bar will horizontally scroll items in the list box. If the width of the
list box is equal to or greater than this value, the horizontal scroll bar is hidden or, if
the combo box has the CBS_DISABLENOSCROLL style, disabled.

See Also CComboBox::GetHorizontaIExtent, CB_SETHORIZONTALEXTENT

185

CComboBox::SetltemData

CComboBox:: SetItemData
int SetItemData(int nlndex, DWORD dwltemData);

Return Value
CB_ERR if an error occurs.

Parameters

Remarks

nlndex Contains a zero-based index to the item to set.

dwltemData Contains the new value to associate with the item.

Sets the 32-bit value associated with the specified item in a combo box. Use the
SetItemDataPtr member function if the 32-bit item is to be a pointer.

See Also CComboBox::GetItemData, CComboBox::GetItemDataPtr,
CComboBox: :SetItemDataPtr, CB_SETITEMDATA, CComboBox::AddString,
CComboBox: :InsertString

CComboBox: : SetItemDataPtr
int SetltemDataPtr(int nlndex, void* pData);

Return Value
CB_ERR if an error occurs.

Parameters

Remarks

186

nlndex Contains a zero-based index to the item.

pData Contains the pointer to associate with the item.

Sets the 32-bit value associated with the specified item in a combo box to be the
specified pointer (void*). This pointer remains valid for the life of the combo box,
even though the item's relative position within the combo box might change as items
are added or removed. Hence, the item's index within the box can change, but the
pointer remains reliable.

See Also CComboBox: : GetItemData, CComboBox: :GetltemDataPtr,
CComboBox: :SetItemData, CB_SETITEMDATA, CComboBox::AddString,
CComboBox: :InsertString

CComboBox::SetLocale

CComboBox:: SetItemHeight
int SetltemHeight(int nlndex, UINT cyltemHeight);

Return Value
CB_ERR if the index or height is invalid; otherwise O.

Parameters

Remarks

nlndex Specifies whether the height of list items or the height of the edit-control (or
static-text) portion of the combo box is set.

If the combo box has the CBS_OWNERDRAWVARIABLE style, nlndex
specifies the zero-based index of the list item whose height is to be set; otherwise,
nlndex must be 0 and the height of all list items will be set.

If nlndex is -1, the height of the edit-control or static-text portion of the combo
box is to be set.

cyltemHeight Specifies the height, in pixels, of the combo-box component identified
by nlndex.

Call the SetltemHeight member function to set the height of list items in a combo
box or the height of the edit-control (or static-text) portion of a combo box.

The height of the edit-control (or static-text) portion of the combo box is set
independently of the height of the list items. An application must ensure that the
height of the edit-control (or static-text) portion is not smaller than the height of a
particular list-box item.

See Also CComboBox::GetltemHeight, WM_MEASUREITEM,
CB_SETITEMHEIGHT

CComboBox:: SetLocale
LCID SetLocale(LCID nNewLocale);

Return Value
The previous locale identifier (LCID) value for this combo box.

Parameters

Remarks

nNewLocale The new locale identifier (LCID) value to set for the combo box.

Sets the locale identifier for this combo box. If SetLocale is not called, the default
locale is obtained from the system. This system default locale can be modified by
using Control Panel's Regional (or International) application.

See Also CComboBox::GetLocale

187

CComboBox::SetTopfudex

CComboBox: : SetTopIndex
int SetTopIndex(int nlndex);

Return Value
Zero if successful, or LB_ERR if an error occurs.

Parameters

Remarks

nlndex Specifies the zero-based index of the list-box item.

Ensures that a particular item is visible in the list-box portion of the combo box.

The system scrolls the list box until either the item specified by nlndex appears at the
top of the list box or the maximum scroll range has been reached.

See Also CComhoBox::GetTopIndex, CB_SETTOPINDEX

CComboBox: :ShowDropDown
void ShowDropDown(BOOL bShowlt = TRUE);

Parameters

Remarks

188

bShowlt Specifies whether the drop-down list box is to be shown or hidden. A value
of TRUE shows the list box. A value of FALSE hides the list box.

Shows or hides the list box of a combo box that has the CBS_DROPDOWN or
CBS_DROPDOWNLIST style. By default, a combo box of this style will show the
list box.

This member function has no effect on a combo box created with the CBS_SIMPLE
style.

See Also CB_SHOWDROPDOWN

CCommandLineInfo
The CCommandLinelnfo class aids in parsing the command line at application
startup.

An MFC application will typically create a local instance of this class in the
InitInstance function of its application object. This object is then passed to
CWinApp: :ParseCommandLine, which repeatedly calls ParseParam to fill the
CCommandLinelnfo object. The CCommandLinelnfo object is then passed to
CWinApp::ProcessSheIlCommand to handle the command-line arguments and
flags.

You can use this object to encapsulate the following command-line options and
parameters:

Command-line argument

app

app filename

app /p filename

Command executed

New file.

Open file.

Print file to default printer.

app /pt filename printer driver port

app/dde

Print file to the specified printer.

Start up and await DDE command.

Start up as an OLE automation server.

Start up to edit an embedded OLE item.

app / Automation

app !Embedding

Derive a new class from CCommandLinelnfo to handle other flags and parameter
values. Override ParseParam to handle the new flags.

#include <afxwin.h>

See Also CWinApp: :ParseCommandLine, CWinApp: :ProcessShellCommand

Construction

CommandLineInfo

Operations

ParseParam

Data Members

m_bShowSpJash

m_bRunEmbedded

m_bRunAutomated

m_nShellCommand

m_strFileName

Constructs a default CCommandLineInfo object.

Override this callback to parse individual parameters.

Indicates if a splash screen should be shown.

Indicates the command-line !Embedding option was found.

Indicates the command-line /Automation option was found.

Indicates the shell command to be processed.

Indicates the filename to be opened or printed; empty if the

CCommandLinelnfo

189

CCommandLineInfo::CCommandLineInfo

m_strPrinterName

m_strDriverName

m_strPortName

shell command is New or DDE.

Indicates the printer name if the shell command is Print To;
otherwise empty.

Indicates the driver name if the shell command is Print To;
otherwise empty.

Indicates the port name if the shell command is Print To;
otherwise empty.

Member Functions
CCommandLineInfo: :CCommandLineInfo

CCommandLinelnfo();

Remarks
This constructor creates a CCommandLineInfo object with default values. The
default is to show the splash screen (m_bShowSplash = TRUE) and to execute the
New command on the File menu (m_nSheIlCommand = NewFile).

The application framework calls ParseParam to fill data members of this object.

See Also CCommandLinelnfo: :ParseParam

CCommandLineInfo::ParseParam
virtual void ParseParam(LPCTSTR IpszParam, BOOL bFlag, BOOL bLast);

Parameters

Remarks

190

IpszParam The parameter or flag.

bFlag Indicates whether IpszParam is a parameter or a flag.

bLast Indicates if this is the last parameter or a flag on the command line.

The framework calls this function to parse/interpret individual parameters from the
command line. CWinApp::ParseCommandLine calls ParseParam once for each
parameter or flag on the command line, passing the argument to IpszParam. If the
first character of the parameter is a '.' or a '/', then it is removed and bFlag is set to
TRUE. When parsing the final parameter, bLast is set to TRUE.

CCommandLineInfo: :m_bRunAutomated

The default implementation of this function recognizes the following flags: /p, /pt,
/dde, / Automation, and /Embedding, as shown in the following table:

Command·line argument

app

app filename

app /p filename

app /pt filename printer driver port

app/dde

app / Automation

app !Embedding

Command executed

New file.

Open file.

Print file to default printer.

Print file to the specified printer.

Start up and await DDE command.

Start up as an OLE automation server.

Start up to edit an embedded OLE item.

This information is stored in m_bRunAutomated, m_bRunEmbedded, and
m_nSheIlCommand. Flags are marked by either a forward-slash '/' or hyphen '.'.

The default implementation puts the first non-flag parameter into m_strFileName. In
the case of the /pt flag, the default implementation puts the second, third, and fourth
non-flag parameters into m_strPrinterName, m_strDriverName, and
m_strPortName, respectively.

The default implementation also sets m_bShowSplash to TRUE only in the case of a
new file. In the case of a new file, the user has taken action involving the application
itself. In any other case, including opening existing files using the shell, the user
action involves the file directly. In a document-centric standpoint, the splash screen
does not need to announce the application starting up.

Override this function in your derived class to handle other flag and parameter
values.

See Also CWinApp: :ParseCommandLine

Data Members
CCommandLineInfo: :m_bRunAutomated
Remarks

Indicates that the / Automation flag was found on the command line. If TRUE, this
means start up as an OLE automation server.

See Also CCommandLinelnfo: :ParseParam, CWinApp: :ProcessShellCommand

191

CCommandLineInfo::m_bRunEmbedded

CCommandLineInfo: :m_bRunEmbedded
Remarks

Indicates that the !Embedding flag was found on the command line. If TRUE, this
means start up for editing an embedded OLE item.

See Also CCommandLineInfo::m_bShowSplash,
CWinApp::ProcessShellCommand

CCommandLineInfo: :m_bShowSplash
Remarks

Indicates that the splash screen should be displayed. If TRUE, this means the splash
screen for this application should be displayed during startup. The default
implementation of ParseParam sets this data member to TRUE if
m_nShellCommand is equal to CCommandLineInfo::FileNew.

See Also CCommandLineInfo::m_bRunAutomated,
CCommandLineInfo::m_bRunEmbedded,
CCommandLineInfo::m_nShellCommand, CCommandLineInfo: :ParseParam,
CWinApp: :ProcessShellCommand

CCommandLineInfo: :m_nShellCommand
Remarks

192

Indicates the shell command for this instance of the application.

The type for this data member is the following enumerated type, which is defined
within the CCommandLineInfo class.

enum{

} :

Fil eNew,
FileOpen,
Fil ePri nt,
FilePrintTo,
Fil eDDE,

For a brief description of these values, see the following list.

• CCommandLinelnfo: : FileNew Indicates that no filename was found on the
command line.

CCommandLineInfo::m_strDriverName

• CCommandLinelnfo::FileOpen Indicates that a filename was found on the
command line and that none of the following flags were found on the command
line: /p, /pt, /dde.

• CCommandLinelnfo::FilePrint Indicates that the /p flag was found on the
command line.

• CCommandLinelnfo: :FilePrintTo Indicates that the /pt flag was found on the
command line.

• CCommandLinelnfo: :FileDDE Indicates that the /dde flag was found on the
command line.

See Also CCommandLinelnfo::m_strFileName,
CCommandLinelnfo: :m_strPrinterName,
CCommandLinelnfo: :m_strDriverName, CCommandLinelnfo::m_strPortName,
CWinApp: :ProcessShellCommand

CCornrnandLineInfo: :rn_strFileN arne
Remarks

Stores the value of the first non-flag parameter on the command line. This parameter
is typically the name of the file to open.

See Also CCommandLinelnfo: :m_strPrinterName,
CCommandLineInfo: :m_strDriverName, CCommandLinelnfo::m_strPortName,
CWinApp::ProcessSheIlCommand

CCommandLineInfo: :rn_strDriverN arne
Remarks

Stores the value of the third non-flag parameter on the command line. This parameter
is typically the name of the printer driver for a Print To shell command. The default
implementation of ParseParam sets this data member only if the /pt flag was found
on the command line.

See Also CCommandLinelnfo::m_strFileName,
CCommandLinelnfo: :m_strPrinterName,
CCommandLinelnfo::m_strPortName, CWinApp::ProcessSheIlCommand

193

CCommandLineInfo::m_strPortName

CCommandLineInfo: :rn_strPortN arne
Remarks

Stores the value of the fourth non-flag parameter on the command line. This
parameter is typically the name of the printer port for a Print To shell command. The
default implementation of ParseParam sets this data member only if the /pt flag was
found on the command line.

See Also CCommandLinelnfo::m_strFileName,
CCommandLinelnfo: :m_strPrinterName,
CCommandLinelnfo::m_strDriverName, CWinApp::ProcessShellCommand

CCornrnandLineInfo: :rn_strPrinterN arne
Remarks

194

Stores the value of the second non-flag parameter on the command line. This
parameter is typically the name of the printer for a Print To shell command. The
default implementation of ParseParam sets this data member only if the /pt flag was
found on the command line.

See Also CCommandLinelnfo::m_strFileName,
CCommandLinelnfo: :m_strDriverName, CCommandLinelnfo::m_strPortName,
CWinApp: :ProcessShellCommand

CCommonDialog

CCommonDialog is the base class for classes that encapsulate functionality of the
Windows common dialogs:

• CFileDialog

• CFontDialog

• CColorDialog

• CPageSetupDialog

• CPrintDialog

• CFindReplaceDialog

• COleDialog

#include <afxdlgs.h>

See Also CFileDialog, CFontDialog, CColorDialog, CPageSetupDiaiog,
CPrintDialog, CFindReplaceDialog, COleDialog

Construction

CCommonDialog Constructs a CCommonDialog object.

Member Functions
CCommonDialog: :CCommonDialog

CCommonDialog(CWnd* pParentWnd);

Parameters
pParentWnd Points to the parent or owner window object (of type CWnd) to which

the dialog object belongs. If it is NULL, the dialog object's parent window is set to
the main application window.

CCommonDialog

195

CCommonDialog::CCommonDialog

Remarks

196

Constructs a CCommonDialog object. See CDialog::CDialog for complete
information.

See Also CDialog: :CDialog

CConnectionPoint

The CConnectionPoint class defines a special type of interface used to communicate
with other OLE objects, called a "connection point." Unlike normal OLE interfaces,
which are used to implement and expose the functionality of an OLE control, a
connection point implements an outgoing interface that is able to initiate actions on
other objects, such as firing events and change notifications.

A connection consists of two parts: the object calling the interface, called the
"source," and the object implementing the interface, called the "sink." By exposing a
connection point, a source allows sinks to establish connections to itself. Through the
connection point mechanism, a source object obtains a pointer to the sink's
implementation of a set of member functions. For example, to fire an event
implemented by the sink, the source can call the appropriate method of the sink's
implementation.

By default, a COle Control-derived class implements two connection points: one for
events and one for property change notifications. These connections are used,
respectively, for event firing and for notifying a sink (for example, the control's
container) when a property value has changed. Support is also provided for OLE
controls to implement additional connection points. For each additional connection
point implemented in your control class, you must declare a "connection part" that
implements the connection point. If you implement one or more connection points,
you also need to declare a single "connection map" in your control class.

The following example demonstrates a simple connection map and one connection
point for the Sampl e OLE control, consisting of two fragments of code: the first
portion declares the connection map and point; the second implements this map and
point. The first fragment is inserted into the declaration of the control class, under
the protected section:

II Connection point for ISample interface
BEGIN_CONNECTION_PART(CSampleCtrl, SampleConnPt)

CONNECTION_IID(IID_ISampleSink)
END_CONNECTION_PART(SampleConnPt)

CConnectionPoint

197

CConnectionPoint

198

The BEGIN_CONNECTION_PART and END_CONNECTION_PART macros
declare an embedded class, XSampl eConnPt (derived from CConnectionPoint) that
implements this particular connection point. If you want to override any
CConnectionPoint member functions, or add member functions of your own, declare
them between these two macros. For example, the CONNECTION_lID macro
overrides the CConnectionPoint::GetIID member function when placed between
these two macros.

The second code fragment is inserted into the implementation file (.CPP) of your
control class. This code implements the connection map, which includes the
additional connection point, Sampl eConnPt:

BEGIN_CONNECTION_MAP(CSampleCtrl. COleControl)
CONNECTION_PART(CSampleCtrl. IID_ISampleSink. SampleConnPt)

END_CONNECTION_MAP()

Once these code fragments have been inserted, the Sample OLE control exposes a
connection point for the ISampleSink interface.

Typically, connection points support "multicasting"; the ability to broadcast to
multiple sinks connected to the same interface. The following code fragment
demonstrates how to accomplish multicasting by iterating through each sink on a
connection point:

void CSampleCtrl::CallSinkFunc()
{

}

const CPtrArray* pConnections = m_xSampleConnPt.GetConnections();
ASSERT(pConnections != NULL);

int cConnections = pConnections-)GetSize();
ISampleSink* pSampleSink;
for (int i = 0; i < cConnections; i++)
{

}

pSampleSink = (ISampleSink*)(pConnections-)GetAt(i»;
ASSERT(pSampleSink != NULL);
pSampleSink-)SinkFunc();

This example retrieves the current set of connections on the Sampl eConnPt
connection point with a call to CConnect i onPoi nt: : GetConnect ions. It then iterates
through the connections and calls ISampl eSi nk: : Si nkFunc on every active
connection.

For more information on using CConnectionPoint, see the article "Connection
Points" and Appendix A, "OLE Controls Architecture," in Programming with MFC.

#include <afxctl.h>

Operations

GetConnections Retrieves all connection points in a connection map.

CConnectionPoint: : GetlID

Overridables

GetContainer

GetIID

GetMaxConnections

OnAdvise

Retrieves the container of the control that owns the connection
map.

Retrieves the interface ID of a connection point.

Retrieves the maximum number of connection points supported
by a control.

Called by the framework when establishing or breaking
connections.

Member Functions
CConnectionPoint:: GetConnections

const CPtrArray* GetConnections();

Return Value

Remarks

A pointer to an array of active connections (sinks). Each pointer in this array can be
safely converted to a pointer to the sink interface using a cast operator.

Call this function to retrieve all active connections for a connection point.

See Also CConnectionPoint: : GetMaxConnections

CConnectionPoint: : GetContainer
virtual LPCONNECTIONPOINTCONTAINER GetContainer() = 0;

Return Value

Remarks

If successful, a pointer to the container; otherwise NULL.

Called by the framework to retrieve the IConnectionPointContainer for the
connection point. This function is typically implemented by the
BEGIN_CONNECTION_PART macro.

See Also BEGIN_CONNECTION_PART

CConnectionPoint: : GetIID
virtual REFIID GetlID() = 0;

Return Value
A reference to the connection point's interface ID.

199

CConnectionPoint: :GetMaxConnections

Remarks
Called by the framework to retrieve the interface ID of a connection point.

Override this function to return the interface ID for this connection point.

See Also CONNECTION_lID

CConnectionPoint: : GetMaxConnections
virtual int GetMaxConnections();

Return Value

Remarks

The maximum number of connections supported by the control, or -1 if no limit.

Called by the framework to retrieve the maximum number of connections supported
by the connection point. The default implementation returns -1, indicating no limit.

Override this function if you want to limit the number of sinks that can connect to
your control.

See Also CConnectionPoint: : GetConnections

CConnectionPoint: :OnAdvise
virtual void OnAdvise(BOOL bAdvise);

Parameters

Remarks

200

bAdvise TRUE, if a connection is being established; otherwise FALSE.

Called by the framework when a connection is being established or broken. The
default implementation does nothing.

Override this function if you want notification when sinks connect to or disconnect
from your connection point.

CControlBar

CControlBar is the base class for the control-bar classes CStatusBar, CToolBar,
CDialogBar, and COleResizeBar. A control bar is a window that is usually aligned
to the left or right of a frame window. It may contain child items that are either
HWND-based controls, which are Windows windows that generate and respond to
Windows messages, or non-HWND-based items, which are not windows and are
managed by application code or framework code. List boxes and edit controls are
examples of HWND-based controls; status-bar panes and bitmap buttons are
examples of non-HWND-based controls.

Control-bar windows are usually child windows of a parent frame window and are
usually siblings to the client view or MDI client of the frame window. A
CControlBar object uses information about the parent window's client rectangle to
position itself. It then informs the parent window as to how much space remains
unallocated in the parent window's client area.

For more information on CControlBar, see the article "Control Bars" in
Programming with MFC and Technical Note 31, "Control Bars," available under
MFC in Books Online.

#include <afxext.h>

See Also CToolBar, CDialogBar, CStatusBar

Data Members

m_bAutoDelete

Attributes

GetBarStyle

SetBarStyle

GetCount

GetDockingFrame

If nonzero, the CControlBar object is deleted when the
Windows control bar is destroyed.

Retrieves the control bar style settings.

Modifies the control bar style settings.

Returns the number of non-HWND elements in the control bar.

Returns a pointer to the frame to which a control bar is docked.

CControlBar

201

CControlBar: :Ca1cDynamicLayout

IsFloating

CalcFixedLayout

CalcDynamicLayout

Overridables

OnUpdateCmdUI

Operations

EnableDocking

Returns a nonzero value if the control bar in question is a
floating control bar.

Returns the size of the control bar as a CSize object.

Returns the size of a dynamic control bar as a CSize object.

Calls the Command UI handlers.

Allows a control bar to be docked or floating.

Member Functions
CControlBar: :CalcDynamicLayout

virtual CSize CalcDynamicLayout(int nLength, DWORD dwMode);

Return Value
The control bar size, in pixels, of a CSize object.

Parameters

202

nLength The requested dimension of the control bar, either horizontal or vertical,
depending on dwMode.

dwMode The following predefined flags are used to determine the height and width
of the dynamc control bar. Use the bitwise-OR (I) operator to combine the flags.

Layout mode flags What it means

Indicates whether the control bar should be stretched to the size of
the frame. Set if the bar is not a docking bar (not available for
docking). Not set when the bar is docked or floating (available for
docking). If set, LM_STRETCH ignores nLength and returns
dimensions based on the LM_HORZ state. LM_STRETCH
works similarly to the the bStretch parameter used in
CalcFixedLayout; see that member function for more information
about the relationship between stretching and orientation.

Indicates that the bar is horizontally or vertically oriented. Set if the
bar is horizontally oriented, and if it is vertically oriented, it is not
set. LM_HORZ works similarly to the the bHorz parameter used
in CalcFixedLayout; see that member function for more
information about the relationship between stretching and
orientation.

Most Recently Used Dynamic Width. Ignores nLength parameter
and uses the remembered most recently used width.

CControlBar: :Ca1cFixedLayout

Remarks

Layout mode flags

LM_LENGTHY

LM_COMMIT

What it means

Horizontal Docked Dimensions. Ignores nLength parameter and
returns the dynamic size with the largest width.

Vertical Docked Dimensions. Ignores nLength parameter and
returns the dynamic size with the largest height.

Set if nLength indicates height (Y -direction) instead of width.

Resets LM_MRUWIDTH to current width of floating control bar.

The framework calls this member function to calculate the dimensions of a dynamic
toolbar.

Override this member function to provide your own dynamic layout in classes you
derive from CControlBar. MFC classes derived from CControlBar, such as
CToolbar, override this member function and provide their own implementation.

See Also CControlBar: :CalcFixedLayout, CToolbar

CControlBar: :CalcFixedLayout
virtual CSize CalcFixedLayout(BOOL bStretch, BOOL bHorz);

Return Value
The control bar size, in pixels, of a CSize object.

Parameters

Remarks

bStretch Indicates whether the bar should be stretched to the size of the frame. The
bStretch parameter is nonzero when the bar is not a docking bar (not available for
docking) and is 0 when it is docked or floating (available for docking).

bHorz Indicates that the bar is horizontally or vertically oriented. The bHorz
parameter is nonzero if the bar is horizontally oriented and is 0 if it is vertically
oriented.

Call this member function to calculate the horizontal size of a control bar.

Control bars such as toolbars can stretch horizontally or vertically to accommodate
the buttons contained in the control bar.

If bStretch is TRUE, stretch the dimension along the orientation provided by bHorz.
In other words, if bHorz is FALSE, the control bar is stretched vertically. If bStretch
is FALSE, no stretch occurs. The following table shows the possible permutations,
and resulting control-bar styles, of bStretch and bHorz.

203

CControlBar: : EnableDocking

Docking/Not
bStretch bHorz Stretching Orientation docking

TRUE TRUE Horizontal Horizontally Not docking
stretching oriented

TRUE FALSE Vertical Vertically Not docking
stretching oriented

FALSE TRUE No stretching Horizontally Docking
available oriented

FALSE FALSE No stretching Vertically Docking
available oriented

See Also CControlBar: :CalcDynamicLayout

CControlBar: :EnableDocking
void EnableDocking(DWORD dwStyle);

Parameters

Remarks

204

dwStyle Specifies whether the control bar supports docking and the sides of its
parent window to which the control bar can be docked, if supported. Can be one or
more of the following:

• CBRS_ALIGN_TOP Allows docking at the top of the client area.

• CBRS_ALIGN_BOTTOM Allows docking at the bottom of the client area.

• CBRS_ALIGN_LEFT Allows docking on the left side of the client area.

• CBRS_ALIGN_RIGHT Allows docking on the right side of the client area.

• CBRS_ALIGN_ANY Allows docking on any side of the client area.

• CBRS_FLOAT_MULTI Allows multiple control bars to be floated in a
single mini-frame window.

If 0 (that is, indicating no flags), the control bar will not dock.

Call this function to enable a control bar to be docked. The sides specified must
match one of the sides enabled for docking in the destination frame window, or the
control bar cannot be docked to that frame window.

See Also CFrame Wnd: :EnableDocking, CFrame Wnd: : DockControlBar ,
CFrame Wnd: :FloatControIBar, CControlBar: :SetBarStyle

CControlBar: :GetDockingFrame

CControIBar::GetBarStyle
DWORD GetBarStyle();

Return Value

Remarks

The current CBRS_ (control bar styles) settings for the control bar. See
CControlBar::SetBarStyle for the complete list of available styles.

Call this function to determine which CBRS_ (control bar styles) settings are
currently set for the control bar. Does not handle WS_ (window style) styles.

See Also CControlBar::SetBarStyle

CControlBar: : GetCount
int GetCount() const;

Return Value

Remarks

The number of non-HWND items on the CControlBar object. This function returns
o for a CDialogBar object.

Returns the number of non-HWND items on the CControlBar object. The type of
the item depends on the derived object: panes for CStatusBar objects, and buttons
and separators for CToolBar objects.

See Also CTooIBar::SetButtons, CStatusBar::SetIndicators, CStatusBar,
CToolBar, CDialogBar

CControlBar: : GetDockingFrame
CFrameWnd* GetDockingFrame() const;

Return Value

Remarks

A pointer to a frame window if successful; otherwise NULL.

Call this member function to obtain a pointer to the current frame window to which
your control bar is docked.

For more information about dockable control bars, see
CControlBar: :EnableDocking and CFrame Wnd: :DockControlBar.

See Also CControlBar: :EnableDocking, CFrame Wnd: :DockControlBar

205

CControlBar::IsFloating .

CControIBar: : IsFloating
BOOL IsFloating() const;

Return Value

Remarks

Nonzero if the control bar is floating; otherwise O.

Call this member function to determine whether the control bar is floating or docked.

To change the state of a control bar from docked to floating, call
CFrameWnd: :FloatControIBar.

See Also CFrameWnd::FloatControIBar

CControIBar::OnUpdateCmdUI
virtual void OnUpdateCmdUI(CFrameWnd* pTarget, BOOL bDisableljNoHndler) = 0;

Parameters

Remarks

pTarget Points to the main frame window of the application. This pointer is used for
routing update messages.

bDisableljNoHndler Flag that indicates whether a control that has no update
handler should be automatically displayed as disabled.

This member function is called by the framework to update the status of the toolbar or
status bar.

To update an individual button or pane, use the ON_UPDATE_COMMAND_UI
macro in your message map to set an update handler appropriately. See
ON_UPDATE_COMMAND _UI for more information about using this macro.

OnUpdateCmdUI is called by the framework when the application is idle. The frame
window to be updated must be a child window, at least indirectly, of a visible frame
window. OnUpdateCmdUI is an advanced overridable.

See Also ON_UPDATE_COMMAND_UI, Technical Note 31: "Control Bars"

CControIB ar: : SetB arSty Ie
void SetBarStyle(DWORD dwStyle);

Parameters
dwStyle The desired styles for the control bar. Can be one or more of the following:

206

CControlBar: :m_bAutoDelete

Remarks

• CBRS_ALIGN_TOP Allows the control bar to be docked to the top of the
client area of a frame window.

• CBRS_ALIGN_BOTTOM Allows the control bar to be docked to the bottom
of the client area of a frame window.

• CBRS_ALIGN_LEFT Allows the control bar to be docked to the left side of
the client area of a frame window.

• CBRS_ALIGN_RIGHT Allows the control bar to be docked to the right side
of the client area of a frame window.

• CBRS_ALIGN_ANY Allows the control bar to be docked to any side of the
client area of a frame window.

• CBRS_BORDER_TOP Causes a border to be drawn on the top edge of the
control bar when it would be visible.

• CBRS_BORDER_BOTTOM Causes a border to be drawn on the bottom
edge of the control bar when it would be visible.

• CBRS_BORDER_LEFT Causes a border to be drawn on the left edge of the
control bar when it would be visible.

• CBRS_BORDER_RIGHT Causes a border to be drawn on the right edge of
the control bar when it would be visible.

• CBRS_FLOAT_MULTI Allows multiple control bars to be floated in a
single mini-frame window.

• CBRS_TOOLTIPS Causes tool tips to be displayed for the control bar.

• CBRS_FLYBY Causes message text to be updated at the same time as
tool tips.

Call this function to set the desired CBRS_ styles for the control bar. Does not affect
the WS_ (window style) settings.

See Also CControIBar::GetBarStyle

Data Members
CControlBar: :m_bAutoDelete
Remarks

m_bAutoDelete is a public variable of type BOOL. If it is nonzero when the
Windows control-bar object is destroyed, the CControlBar object is deleted.

207

CControlBar: :m_bAutoDelete

208

A control-bar object is usually embedded in a frame-window object. In this case,
m_bAutoDelete is 0 because the embedded control-bar object is destroyed when the
frame window is destroyed.

Set this variable to a n~nzero value if you allocate a CControlBar object on the heap
and you do not plan to call delete.

See Also CWnd::DestroyWindow

CCreateContext
The framework uses the CCreateContext structure when it creates the frame
windows and views associated with a document. When creating a window, the values
in this structure provide information used to connect the components that make up a
document and the view of its data. You will only need to use CCreateContext if you
are overriding parts of the creation process.

A CCreateContext structure contains pointers to the document, the frame window,
the view, and the document template. It also contains a pointer to a CRuntimeClass
that identifies the type of view to create. The run-time class information and the
current document pointer are used to create a new view dynamically. The following
table suggests how and when each CCreateContext member might be used:

Member

m_pNewViewClass

m_pCurrentDoc

m_pNewDocTemplate

m_pCurrentFrame

What it is for

CRuntimeClass of the new view to create.

The existing document to be associated with the new view.

The document template associated with the creation of a
new MDI frame window.

The original view upon which additional views are
modeled, as in the creation of a splitter window's views or
the creation of a second view on a document.

The frame window upon which additional frame windows
are modeled, as in the creation of a second frame window
on a document.

When a document template creates a document and its associated components, it
validates the information stored in the CCreateContext structure. For example, a
view should not be created for a nonexistent document.

Note All of the pointers in CCreateContext are optional and can be NULL if unspecified or
unknown.

CCreateContext is used by the member functions listed under "See Also." Consult
the descriptions of these functions for specific information if you plan to override
them.

Here are a few general guidelines:

• When passed as an argument for window creation, as in CWnd: : Create,
CFrameWnd::Create, and CFrameWnd::LoadFrame, the create context
specifies what the new window should be connected to. For most windows, the
entire structure is optional and a NULL pointer can be passed .

• For overridable member functions, such as CFrameWnd::OnCreateClient, the
CCreateContext argument is optional.

CCreateContext

209

CCreateContext

210

• For member functions involved in view creation, you must provide enough
information to create the view. For example, for the first view in a splitter window,
you must supply the view class information and the current document.

In general, if you use the framework defaults, you can ignore CCreateContext. If you
attempt more advanced modifications, the Microsoft Foundation Class Library source
code or the sample programs, such as VIEWEX, will guide you. If you do forget a
required parameter, a framework assertion will tell you what you forgot.

For more information on CCreateContext, see the MFC sample VIEWEX.

#include <afxext.h>

See Also CFrameWnd::Create, CFrameWnd::LoadFrame,
CFrameWnd: :OnCreateClient, CSplitterWnd: : Create,
CSplitterWnd: : Create View, CWnd: : Create

CCriticalSection

An object of class CCriticalSection represents a "critical section"-a
synchronization object that allows one thread at a time to access a resource or section
of code. Critical sections are useful when only one thread at a time can be allowed to
modify data or some other controlled resource. For example, adding nodes to a linked
list is a process that should only be allowed by one thread at a time. By using a
CCriticalSection object to control the linked list, only one thread at a time can gain
access to the list.

Critical sections are used instead of mutexes when speed is critical and the resource
will not be used across process boundaries. For more information on using mutexes in
MFC, see CMutex.

To use a CCriticalSection object, construct the CCriticalSection object when it is
needed. You can then access the critical section when the constructor returns. Call
Unlock when you are done accessing the critical section.

An alternative method for using CCriticalSection objects is to add a variable of type
CCriticalSection as a data member to the class you wish to control. During
construction of the controlled object, call the constructor of the CCriticalSection
data member specifying if the critical section is initially owned and the desired
security attributes.

To access a resource controlled by a CCriticalSection object in this manner, first
create a variable of either type CSingleLock or type CMultiLock in your resource's
access member function. Then call the lock object's Lock member function (for
example, CSingleLock::Lock). At this point, your thread will either gain access to
the resource, wait for the resource to be released and gain access, or wait for the
resource to be released and time out, failing to gain access to the resource. In any
case, your resource has been accessed in a thread-safe manner. To release the
resource, use the lock object's Unlock member function (for example,
CSingleLock::Unlock), or allow the lock object to fall out of scope.

Alternatively, you can create a CCriticalSection object stand-alone, and access it
explicitly before attempting to access the controlled resource. This method, while
clearer to someone reading your source code, is more prone to error as you must
remember to lock and unlock the critical section before and after access.

CCriticalSection

211

CCriticalSection::CCriticalSection

For more information on using CCriticalSection objects, see the article
"Multithreading: How to Use the Synchronization Classes" in Programming with
MPC.

#include <afxmt.h>

See Also CMutex

Construction

CCriticalSection

Methods

Unlock

Lock

Constructs a CCriticalSection object.

Releases the CCriticalSection object.

Use to gain access to the CCriticalSection object.

Member Functions
CCriticalSection: :CCriticalSection

Remarks

CCriticalSection();

Constructs a CCriticalSection object. To access or release a CCriticalSection object,
create a CMultiLock or CSingleLock object and call its Lock and Unlock member
functions. If the CCriticalSection object is being used stand-alone, call its Unlock
member function to release it.

CCriticalSection: :Lock
BOOL Lock();
BOOL Lock(DWORD dwTimeout);

Return Value
Nonzero if the function was successful; otherwise O.

Parameters

212

dwTimeout Specifies the amount of time (in milliseconds) to wait for the critical
section to become available. If not supplied, Lock will wait an infinite amount
of time.

CCriticalSection:: Unlock

Remarks
Call this function to gain access to the critical section object. If the critical section is
signaled (available), Lock will return successfully and the thread now owns the
critical section. If the critical section is non signaled (unavailable), Lock will wait up
to the number of milliseconds specified in dwTimeout for the critical section to
become signaled. If the critical section did not become signaled in the specified
amount of time, Lock returns failure.

See Also CSingieLock: :Lock, CMultiLock: :Lock

CCriticaISection:: Unlock
virtual BOOL Unlock();

Return Value

Remarks

Nonzero if the CCriticalSection object was owned by the thread and the release was
successful; otherwise O.

Releases the CCriticalSection object for use by another thread. If the
CCriticalSection is being used stand-alone, Unlock must be called immediately after
completing use of the resource controlled by the critical section. If a CSingleLock or
CMultiLock object is being used, CCriticaISection::Unlock will be called by the
lock object's Unlock member function.

213

CCtrlView

CCtrlView

The class CCtrlView and its derivatives, CEditView, CListView, CTreeView, and
CRichEditView, adapt the document-view architecture to the new common controls
supported by Windows 95, Windows NT versions 3.51 and later, and Win32s versions
1.3 and later. For more information on the document-view architecture, see Chapter
3, "Working with Frame Windows, Documents, and Views," of Programming
withMFC.

#include <afxwin.h>

See Also CTree View, CListView, CRichEditView

Construction

CCtrlView

Data Members

m_strClass

m_dwDefaultStyle

Constructs a CCtrlView object.

Contains the Windows class name for the view class.

Contains the default style for the view class.

Member Functions
CCtrlView: :CCtrlView

CCtrlView(LPCTSTR IpszClass, DWORD dwStyle);

Parameters
IpszClass Windows class name of the view class.

dwStyle Style of the view class.

214

Remarks
Constructs a CCtrlView object. The framework calls the constructor when a new
frame window is created or a window is split. Override CView::OnlnitiaIUpdate to
initialize the view after the document is attached. Call CWnd::Create or
CWnd::CreateEx to create the Windows object.

See Also CWnd: :PreCreate Window

Data Members
CCtrlView: :m_dw DefaultStyle

DWORD m_dwDefauItStyle;

Remarks
Contains the default style for the view class. This style is applied when a window is
created.

See Also CCtrlView: :m_strClass

CCtrlView: :m_strClass
CString m_strClass;

Remarks
Contains the Windows class name for the view class.

See Also CCtrlView: :m_dwDefauItStyle

CCtrlView: :m_strClass

215

CDaoDatabase

CDaoDatabase

Usage

216

A CDaoDatabase object represents a connection to a database through which you
can operate on the data. For information about the database formats supported, see
the GetName member function. You can have one or more CDaoDatabase objects
active at a time in a given "workspace," represented by a CDaoWorkspace object.
The workspace maintains a collection of open database objects, called the Databases
collection.

Note The MFC DAO database classes are distinct from the MFC database classes based on
ODBC. All DAO database class names have the "CDao" prefix. Class CDaoDatabase supplies
an interface similar to that of the ODBC class CDatabase. The main difference is that
CDatabase accesses the DBMS through Open Database Connectivity (ODBC) and an ODBC
driver for that DBMS. CDaoDatabase accesses data through a Data Access Object (DAO)
based on the Microsoft Jet database engine. In general, the MFC classes based on DAO are
more capable than the MFC classes based on ODBC; the DAO-based classes can access
data, including through ODBC drivers, via their own database engine. The DAO-based classes
also support Data Definition Language (DDL) operations, such as adding tables via the
classes, without having to call DAO directly.

You can create database objects implicitly, when you create recordset objects. But you
can also create database objects explicitly. To use an existing database explicitly with
CDaoDatabase, do either of the following:

• Construct a CDaoDatabase object, passing a pointer to an open CDaoWorkspace
object.

• Or construct a CDaoDatabase object without specifying the workspace (MFC
creates a temporary workspace object).

To create a new Microsoft Jet (.MDB) database, construct a CDaoDatabase object
and call its Create member function. Do not call Open after Create.

To open an existing database, construct a CDaoDatabase object and call its Open
member function.

Any of these techniques appends the DAO database object to the workspace's
Databases collection and opens a connection to the data. When you then construct
CDaoRecordset, CDaoTableDef, or CDaoQueryDef objects for operating on the
connected database, pass the constructors for these objects a pointer to your
CDaoDatabase object. When you finish using the connection, call the Close
member function and destroy the CDaoDatabase object. Close closes any
recordsets you have not closed previously.

Transactions
Database transaction processing is supplied at the workspace level-see the
BeginTrans, CommitTrans, and Rollback member functions of class
CDaoWorkspace. For more information, see the article "DAO Workspace:
Managing Transactions" in Programming with MFC.

OOSC Connections
The recommended way to work with ODBC data sources is to attach external tables
to a Microsoft Jet (.MDB) database. For more information, see the article "DAO
External: Working with External Data Sources" in Programming with MFC.

Collections
Each database maintains its own collections of tabledef, querydef, recordset, and
relation objects. Class CDaoDatabase supplies member functions for manipulating
these objects.

Note The objects are stored in DAO, not in the MFC database object. MFC supplies classes
for tabledef, querydef, and recordset objects but not for relation objects.

For more information about CDaoDatabase, see the article "DAO Database" in
Programming with MFC.

#include <afxdao.h>

See Also CDaoWorkspace, CDaoRecordset, CDaoTableDef, CDaoQueryDef,
CDatabase, CDaoException

Data Members

m_pWorkspace

m_pDAODatabase

Construction

CDaoDatabase

Attributes

CanTransact

CanUpdate

A pointer to the CDaoWorkspace object that contains the database
and defines its transaction space.

A pointer to the underlying DAO database object.

Constructs a CDaoDatabase object. Call Open to connect the
object to a database.

Returns nonzero if the database supports transactions.

Returns nonzero if the CDaoDatabase object is updatable (not
read-only).

CDaoDatabase

217

CDaoDatabase

218

GetConnect

GetName

GetQueryTimeout

GetRecordsAffected

GetVersion

IsOpen

SetQueryTimeout

Operations

Close

Create

CreateRelation

DeleteQueryDef

DeleteRelation

DeleteTableDef

Execute

GetQueryDefCount

GetQueryDefinfo

GetRelationCount

GetRelationlnfo

GetTableDefCount

GetTableDefinfo

Open

Returns the connect string used to connect the CDaoDatabase
object to a database. Used for ODBC.

Returns the name of the database currently in use.

Returns the number of seconds after which database query
operations will time out. Affects all subsequent open, add new,
update, and edit operations and other operations on ODBC data
sources (only) such as Execute calls.

Returns the number of records affected by the last update, edit, or
add operation or by a call to Execute.

Returns the version of the database engine associated with the
database.

Returns nonzero if the CDaoDatabase object is currently connected
to a database.

Sets the number of seconds after which database query operations
(on ODBC data sources only) will time out. Affects all subsequent
open, add new, update, and delete operations.

Closes the database connection.

Creates the underlying DAO database object and initializes the
CDaoDatabase object.

Defines a new relation among the tables in the database.

Deletes a querydef object saved in the database's QueryDefs
collection.

Deletes an existing relation between tables in the database.

Deletes the definition of a table in the database. This deletes the
actual table and all of its data.

Executes an action query. Calling Execute for a query that returns
results throws an exception.

Returns the number of queries defined for the database.

Returns information about a specified query defined in the
database.

Returns the number of relations defined between tables in the
database.

Returns information about a specified relation defined between
tables in the database.

Returns the number of tables defined in the database.

Returns information about a specified table in the database.

Establishes a connection to a database.

CDaoDatabase: :CDaoDatabase

Member Functions
CDaoDatabase: : C anTrans act

BOOL CanTransact();
throw(CDaoException, CMemoryException);

Return Value

Remarks

Nonzero if the database supports transactions; otherwise O.

Call this member function to determine whether the database allows transactions.
Transactions are managed in the database's workspace. For information about
transactions, see the article "DAO Workspace: Managing Transactions" in
Programming with MFC.

See Also CDao Workspace: :BeginTrans, CDao Workspace: : CommitTrans ,
CDao Workspace: :Rollback

CDaoDatabase: :CanUpdate
BOOL CanUpdate();

throw(CDaoException, CMemoryException);

Return Value

Remarks

Nonzero if the CDaoDatabase object allows updates; otherwise 0, indicating either
that you passed TRUE in bReadOnly when you opened the CDaoDatabase object or
that the database itself is read-only. See the Open member function.

Call this member function to determine whether the CDaoDatabase object allows
updates. For information about database updatability, see the article "DAO Recordset:
Recordset Operations" in Programming with MFC and see the topic "Updatable
Property" in DAO Help.

CDaoDatabase: :CDaoDatabase
CDaoDatabase(CDaoWorkspace* pWorkspace = NULL);

Parameters
pWorkspace A pointer to the CDaoWorkspace object that will contain the new

database object. If you accept the default value of NULL, the constructor creates a
temporary CDaoWorkspace object that uses the default DAO workspace. You can
get a pointer to the workspace object via the m_pWorkspace data member.

219

CDaoDatabase: :Close

Remarks
Constructs a CDaoDatabase object. After constructing the object, if you are creating
a new Microsoft Jet (.MDB) database, call the object's Create member function. If
you are, instead, opening an existing database, call the object's Open member
function.

When you finish with the object, you should call its Close member function and then
destroy the CDaoDatabase object.

You might find it convenient to embed the CDaoDatabase object in your document
class.

Note A CDaoDatabase object is also created implicitly if you open a CDaoRecordset object
without passing a pointer to an existing CDaoDatabase object. This database object is closed
when you close the recordset object.

For information about workspaces, see the article "DAO Workspace." For
information about using CDaoDatabase objects, see the article "DAO Database."
These articles are in Programming with MFC.

CDaoDatabase: :Close

Remarks

220

virtual void Close();

Call this member function to disconnect from a database and close any open
recordsets, tabledefs, and querydefs associated with the database. It is good practice
to close these objects yourself before you call this member function. Closing a
CDaoDatabase object removes it from the Databases collection in the associated
workspace. Because Close does not destroy the CDaoDatabase object, you can reuse
the object by opening the same database or a different database.

Caution Call the Update member function (if there are pending edits) and the Close member
function on all open recordset objects before you close a database. If you exit a function that
declares CDaoRecordset or CDaoDatabase objects on the stack, the database is closed, any
unsaved changes are lost, all pending transactions are rolled back, and any pending edits to
your data are lost.

Caution If you try to close a database object while any recordset objects are open, or if you
try to close a workspace object while any database objects belonging to that specific
workspace are open, those recordset objects will be closed and any pending updates or edits
will be rolled back. If you try to close a workspace object while any database objects belonging
to it are open, the operation closes all database objects belonging to that specific workspace
object, which may result in unclosed recordset objects being closed. If you do not close your
database object, MFC reports an assertion failure in debug builds.

CDaoDatabase: : Create

If the database object is defined outside the scope of a function, and you exit the
function without closing it, the database object will remain open until explicitly
closed or the module in which it is defined is out of scope.

For more information about CDaoDatabase objects, see the article "DAO Database"
in Programming with MFC. For related information, see the topic "Close Method" in
DAOHelp.

See Also CDaoDatabase::Open, CDaoRecordset::Close,
CDao Workspace: : Close, CDaoQueryDef: : Close, CDaoTableDef: : Close

CDaoDatabase: : Create
virtual void Create(LPCTSTR lpsiName, LPCTSTR lpszLocale = dbLangGeneral,

int dwOptions = 0);
throw(CDaoException, CMemoryException);

Parameters
lpsiName A string expression that is the name of the database file that you are

creating. It can be the full path and filename, such as "C:\\MYDB.MDB". You
must supply a name. If you do not supply a filename extension, .MDB is
appended. If your network supports the uniform naming convention (UNC), you
can also specify a network path, such as
"\\\\MYSERVER\\MYSHARE\\MYDIR\\MYDB". Only Microsoft Jet (.MDB)
database files can be created using this member function. (Double backslashes are
required in string literals because "\" is the C++ escape character.) .

lpszLocale A string expression used to specify collating order for creating the
database. The default value is dbLangGeneral. Possible values are:

• dbLangGeneral English, German, French, Portuguese, Italian, and Modem
Spanish

• dbLangArabic Arabic

• dbLangCyrillic Russian

• dbLangCzech Czech

• dbLangDutch Dutch

• dbLangGreek Greek

• dbLangHebrew Hebrew

• dbLangHungarian Hungarian

221

CDaoDatabase: : Create

Remarks

222

• dbLanglcelandic Icelandic

• dbLangNordic Nordic languages (Microsoft Jet database engine version
1.0 only)

• dbLangNorwdan Norwegian and Danish

• dbLangPolish Polish

• dbLangSpanish Traditional Spanish

• dbLangSwedtin Swedish and Finnish

• dbLangThrkish Turkish

dwOptions An integer that indicates one or more options. Possible values are:

• dbEncrypt Create an encrypted database.

• dbVersionl0 Create a database with Microsoft Jet database version 1.0.

• dbVersionll Create a database with Microsoft Jet database version 1.1.

• dbVersion20 Create a database with Microsoft Jet database version 2.0.

• dbVersion30 Create a database with Microsoft Jet database version 3.0.

If you omit the encryption constant, an unencrypted database is created. You can
specify only one version constant. If you omit a version constant, a database that
uses the Microsoft Jet database version 3.0 is created.

Caution If a database is not encrypted, it is possible, even if you implement
user/password security, to directly read the binary disk file that constitutes the database.

To create a new Microsoft Jet (.MDB) database, call this member function after you
construct a CDaoDatabase object. Create creates the database file and the
underlying DAO database object and initializes the C++ object. The object is
appended to the associated workspace's Databases collection. The database object is
in an open state; do not call Open after Create.

Note With Create, you can create only Microsoft Jet (.MDB) databases. You cannot create
ISAM databases or ODBC databases.

For information about databases, see the article "DAO Database" in Programming
with MFC. For related information, see the topic "CreateDatabase Method" in
DAOHelp.

See Also CDaoDatabase::CDaoDatabase

CDaoDatabase: :CreateRelation

CDaoDatabase: :CreateRelation
void CreateRelation(LPCTSTR IpszName, LPCTSTR IpszTable, LPCTSTR IpszForeignTable,

long IAttributes, LPCTSTR IpszField, LPCTSTR IpszForeignField);
throw(CDaoException, CMemoryException);

void CreateRelation(CDaoRelationlnfo& relinfo);
throw(CDaoException, CMemoryException);

Parameters

Remarks

IpszName The unique name of the relation object. The name must start with a letter
and can contain a maximum of 40 characters. It can include numbers and
underscore characters but cannot include punctuation or spaces.

IpszTable The name of the primary table in the relation. If the table does not exist,
MFC throws an exception of type CDaoException.

IpszF oreignTable The name of the foreign table in the relation. If the table does not
exist, MFC throws an exception of type CDaoException.

IAttributes A long value that contains information about the relationship type. You
can use this value to enforce referential integrity, among other things. You can use
the bitwise-OR operator (I) to combine any of the following values (as long as the
combination makes sense):

• dbRelationUnique Relationship is one-to-one.

• dbRelationDontEnforce Relationship is not enforced (no referential
integrity).

• dbRelationlnherited Relationship exists in a noncurrent database that
contains the two attached tables.

• dbRelationUpdateCascade Updates will cascade (for more on cascades, see
Remarks).

• dbRelationDeleteCascade Deletions will cascade.

IpszField A pointer to a null-terminated string containing the name of a field in the
primary table (named by IpszTable).

IpszForeignField A pointer to a null-terminated string containing the name of a
field in the foreign table (named by IpszForeignTable).

relinfo A reference to a CDaoRelationlnfo object that contains information about
the relation you want to create.

Call this member function to establish a relation between one or more fields in a
primary table in the database and one or more fields in a foreign table (another table
in the database). The relationship cannot involve a query or an attached table from an
external database.

223

CDaoDatabase::DeleteQueryDef

Use the first version of the function when the relation involves one field in each of
the two tables. Use the second version when the relation involves multiple fields. The
maximum number of fields in a relation is 14.

This action creates an underlying DAO relation object, but this is an MFC
implementation detail since MFC's encapsulation of relation objects is contained
within class CDaoDatabase. MFC does not supply a class for relations.

If you set the relation object's attributes to activate cascade operations, the database
engine automatically updates or deletes records in one or more other tables when
changes are made to related primary key tables.

For example, suppose you establish a cascade delete relationship between a
Customers table and an Orders table. When you delete records from the Customers
table, records in the Orders table related to that customer are also deleted. In
addition, if you establish cascade delete relationships between the Orders table and
other tables, records from those tables are automatically deleted when you delete
records from the Customers table.

For related information, see the topic "CreateRelation Method" in DAO Help.

See Also CDaoDatabase::DeleteRelation

CDaoDatabase: : DeleteQuery Def
void DeleteQueryDef(LPCTSTR lpszName);

throw(CDaoException, CMemoryException);

Parameters

Remarks

224

lpszName The name of the saved query to delete.

Call this member function to delete the specified querydef-saved query-from the
CDaoDatabase object's QueryDefs collection. Afterwards, that query is no longer
defined in the database.

For information about creating querydef objects, see class CDaoQueryDef. A
querydef object becomes associated with a particular CDaoDatabase object when you
construct the CDaoQueryDef object, passing it a pointer to the database object.

For information about querydefs, see the article "DAO QueryDef' in Programming
with MFC. For related information, see the topic "Delete Method" in DAO Help.

See Also CDaoQueryDef::Create, CDaoDatabase: :CreateRelation,
CDaoTableDef: : Create

CDaoDatabase: :Execute

CDaoDatabase: : DeleteRelation
void DeleteRelation(LPCTSTR lpszName);

throw(CDaoException, CMemoryException);

Parameters

Remarks

lpszName The name of the relation to delete.

Call this member function to delete an existing relation from the database object's
Relations collection. Afterwards, the relation no longer exists.

For related information, see the topic "Delete Method" in DAO Help.

See Also CDaoDatabase::CreateRelation, CDaoTableDef::Create,
CDaoQueryDef: : Create

CDaoDatabase: : DeleteTableDef
void DeleteTableDef(LPCTSTR lpszName);

throw(CDaoException, CMemoryException);

Parameters

Remarks

v

lpszName The name of the tabledef to delete.

Call this member function to delete the specified table and all of its data from the
CDaoDatabase object's TableDefs collection. Afterwards, that table is no longer
defined in the database.

Warning Be very careful not to delete system tables.

For information about creating tabledef objects, see class CDaoTableDef. A tabledef
object becomes associated with a particular CDaoDatabase object when you
construct the CDaoTableDef object, passing it a pointer to the database object.

For information about tabledefs, see the article "DAO TableDef' in Programming
with MFC. For related information, see the topic "Delete Method" in DAO Help.

See Also CDaoTableDef::Create, CDaoQueryDef::Create,
CDaoDatabase: :CreateRelation

CDaoDatabase: : Execute
void Execute(LPCTSTR lpszSQL, int nOptions = 0);

throw(CDaoException, CMemoryException);

225

CDaoDatabase: :Execute

Parameters

Remarks

226

lpszSQL Pointer to a null-terminated string containing a valid SQL command to
execute.

nOptions An integer that specifies options relating to the integrity of the query. You
can use the bitwise-OR operator (I) to combine any of the following constants
(provided the combination makes sense-for example, you would not combine
dblnconsistent with dbConsistent):

• dbDenyWrite Deny write permission to other users.

• dblnconsistent (Default) Inconsistent updates.

• db Consistent Consistent updates.

• dbSQLPassThrough SQL pass-through. Causes the SQL statement to be
passed to an ODBC data source for processing.

• dbFaiiOnError Roll back updates if an error occurs.

• dbSeeChanges Generate a run-time error if another user is changing data you
are editing.

Note If both dblnconsistent and dbConsistent are included or if neither is included, the
result is the default. For an explanation of these constants, see the topic "Execute Method" in
DAD Help.

Call this member function to run an action query or execute an SQL statement on the
database. Execute works only for action queries or SQL pass-through queries that do
not return results. It does not work for select queries, which return records.

For a definition and information about action queries, see the topics "Action Query"
and "Execute Method" in DAO Help.

Tip Given a syntactically correct Sal statement and proper permissions, the Execute
member function will not fail even if not a single row can be modified or deleted. Therefore,
always use the dbFaiiOnError option when using the Execute member function to run an
update or delete query. This option causes MFC to throw an exception of type CDaoException
and rolls back all successful changes if any of the records affected are locked and cannot be
updated or deleted. Note that you can always call GetRecordsAffected to see how many
records were affected.

Call the GetRecordsAffected member function of the database object to determine
the number of records affected by the most recent Execute call. For example,
GetRecordsAffected returns information about the number of records deleted,
updated, or inserted when executing an action query. The count returned will not
reflect changes in related tables when cascade updates or deletes are in effect.

CDaoDatabase: : GetName

Execute does not return a recordset. Using Execute on a query that selects records
causes MFC to throw an exception of type CDaoException. (There is no
ExecuteSQL member function analogous to CDatabase::ExecuteSQL.)

For more information about using the Execute member function, see the article
"DAO Querydef: Using Querydefs" in Programming with MFC.

CDaoDatabase: : GetConnect
CString GetConnect();

throw(CDaoException, CMemoryException);

Return Value

Remarks

The connect string if Open has been called successfully on an ODBC data source;
otherwise, an empty string. For a Microsoft Jet (.MDB) database, the string is always
empty unless you set it for use with the dbSQLPassThrough option used with the
Execute member function or used in opening a recordset.

Call this member function to retrieve the connect string used to connect the
CDaoDatabase object to an ODBC or ISAM database. The string provides
information about the source of an open database or a database used in a pass
through query. The connect string is composed of a database type specifier and zero
or more parameters separated by semicolons. For additional information about
connect strings in DAO, see the topic "Connect Property" in DAO Help.

Important Using the MFC DAO classes to connect to a data source via ODBC is less
efficient than connecting via an attached table. For more information, see the article "DAO
External: Working with External Data Sources" in Programming with MFG.

Note The connect string is used to pass additional information to ODBC and certain ISAM
drivers as needed. It is not used for .MDB databases. For Microsoft Jet database base tables,
the connect string is an empty string (1111) except when you use it for an SQl pass-through query
as described under Return Value above.

See the Open member function for a description of how the connect string is created.
Once the connect string has been set in the Open call, you can later use it to check
the setting to determine the type, path, user ID, Password, or ODBC data source of
the database.

For connect string syntax, see the topic "Connect Property" in DAO Help.

CDaoDatabase: : GetN arne
CString GetName();

throw(CDaoException, CMemoryException);

227

CDaoDatabase::GetQueryDefCount

Return Value

Remarks

The full path and filename for the database if successful; otherwise, an empty
CString.

Call this member function to retrieve the name of the currently open database, which
is the name of an existing database file or registered ODBC data source name. If your
network supports the uniform naming convention (UNC), you can also specify a
network path, such as "\\\\MYSERVER\\MYSHARE\\MYDIR\\MYDB.MDB".
(Double backslashes are required in string literals because "\" is the C++ escape
character.)

You might, for example, want to display this name in a heading. If an error occurs
while retrieving the name, MFC throws an exception of type CDaoException.

Important For better performance when accessing external databases, it is recommended
that you attach external database tables to a Microsoft Jet engine database (.MOB) rather than
connecting directly to the data source.

The database type is indicated by the file or directory that the path points to, as
follows:

Pathname points to ••

.MDB file

.DDFfile

Directory containing .DBF file(s)

Directory containing .xLS file

Directory containing .DBF files(s)

Directory containing .PDX file(s)

Directory containing appropriately
formatted text database files

Database type

Microsoft Jet database (Microsoft Access)

Btrieve® database

dBASE® database

Microsoft Excel database

Microsoft FoxPro® database

Paradox® database

Text format database

For ODBC databases, such as Microsoft SQL Server and Oracle®, the database's
connect string identifies a data source name (DSN) registered by ODBC.

For more about attaching external tables, see the article "DAO External: Attaching
External Tables" in Programming with MFC.

See Also CDatabase::Open, CDatabase::GetConnect

CDaoDatabase: : GetQuery DefCount
short GetQueryDefCount();

throw(CDaoException, CMemoryException);

Return Value
The number of queries defined in the database.

228

CDaoDatabase: : GetQueryDeflnfo

Remarks
Call this member function to retrieve the number of queries defined in the database's
QueryDefs collection. GetQueryDefCount is useful if you need to loop through all
querydefs in the QueryDefs collection. To obtain information about a given query in
the collection, see GetQueryDeflnfo.

For information about queries and querydef objects, see the articles "DAO Queries"
and "DAO QueryDef." Both articles are in Programming with MFC.

CDaoDatabase: : GetQuery Deflnfo
void GetQueryDeflnfo(int nlndex, CDaoQueryDeflnfo& querydefinfo,

DWORD dwlnfoOptions = AFX_DAO_PRIMARY _INFO);
throw(CDaoException, CMemoryException);

void GetQueryDeflnfo(LPCTSTR lpszName, CDaoQueryDeflnfo& querydefinfo,
DWORD dwlnfoOptions = AFX_DAO_PRIMARY _INFO);
throw(CDaoException, CMemoryException);

Parameters

Remarks

nlndex The index of the predefined query in the database's QueryDefs collection, for
lookup by index.

querydefinfo A reference to a CDaoQueryDeflnfo object that returns the
information requested.

dwlnfoOptions Options that specify which information about the recordset to
retrieve. The available options are listed here along with what they cause the
function to return about the recordset:

• AFX_DAO_PRIMARY_INFO (Default) Name" Type

':. AFX_DAO_SECONDARY_INFO Primary information plus: Date Created,
Date of Last Update, Returns Records, Up datable

• AFX_DAO_ALL_INFO Primary and secondary information plus: SQL,
Connect,ODBCTimeout

lpszName A string containing the name of a query defined in the database, for
lookup by name.

Call this member function to obtain various kinds of information about a query
defined in the database. Two versions of the function are supplied so you can select a
query either by index in the database's QueryDefs collection or by the name of the
query.

229

CDaoDatabase: : GetQueryTimeout

For a description of the information returned in querydefinfo, see the
CDaoQueryDeflnfo structure. This structure has members that correspond to the
items of information listed above in the description of dwlnfoOptions. If you request
one level of information, you get any prior levels of information as well.

For information about queries and querydef objects, see the articles "DAO Queries"
and "DAO QueryDef." Both articles are in Programming with MFC.

See Also CDaoDatabase: : GetQueryDefCount

CDaoDatabase: : GetQueryTimeout
short GetQueryTimeout();

throw(CDaoException, CMemoryException);

Return Value

Remarks

A short integer containing the timeout value in seconds.

Call this member function to retrieve the current number of seconds to allow before
subsequent operations on the connected database are timed out. An operation might
time out due to network access problems, excessive query processing time, and so on.
While the setting is in effect, it affects all open, add new, update, and delete
operations on any recordsets associated with this CDaoDatabase object. You can
change the current timeout setting by calling SetQueryTimeout. Changing the query
timeout value for a recordset after opening does not change the value for the
recordset. For example, subsequent Move operations do not use the new value. The
default value is initially set when the database engine is initialized.

The default value for query timeouts is taken from the Windows registry. If there is
no registry setting, the default is 60 seconds. Not all databases support the ability to
set a query timeout value. If you set a query timeout value of 0, no timeout occurs;
and communication with the database may hang. This behavior may be useful during
development. If the call fails, MFC throws an exception of type CDaoException.

For more information about database objects, see the article "DAO Database" in
Programming with MFC. For related information, see the topic "QueryTimeout
Property" in DAO Help.

See Also CDao Workspace: :SetLoginTimeout

CDaoDatabase: : GetRecordsAffected
long GetRecordsAffected();

throw(CDaoException, CMemoryException);

230

CDaoDatabase::GetRelationInfo

Return Value

Remarks

A long integer containing the number of records affected.

Call this member function to determine the number of records affected by the most
recent call of the Execute member function. The value returned includes the number
of records deleted, updated, or inserted by an action query run with Execute. The
count returned will not reflect changes in related tables when cascade updates or
deletes are in effect.

For more information about database objects, see the article "DAO Database" in
Programming with MFC. For related information, see the topic "RecordsAffected
Property" in DAO Help.

CDaoDatabase: : GetRelationCount
short GetRelationCount();

throw(CDaoException, CMemoryException);

Return Value

Remarks

The number of relations defined between tables in the database.

Call this member function to obtain the number of relations defined between tables in
the database. GetRelationCount is useful if you need to loop through all defined
relations in the database's Relations collection. To obtain information about a given
relation in the collection, see GetRelationInfo.

To illustrate the concept of a relation, consider a Suppliers table and a Products table,
which might have a one-to-many relationship. In this relationship, one supplier can
supply more than one product. Other relations are one-to-one and many-to-many.

For more information about database objects, see the article "DAO Database" in
Programming with MFC.

CDaoDatabase: : GetRelationInfo
void GetRelationInfo(int nlndex, CDaoRelationInfo& relinfo,

DWORD dwlnfoOptions = AFX_DAO_PRIMARY _INFO);
throw(CDaoException, CMemoryException);

void GetRelationInfo(LPCTSTR lpszName, CDaoRelationInfo& relinfo,
DWORD dwlnfoOptions = AFX_DAO_PRIMARY_INFO);
throw(CDaoException, CMemoryException);

Parameters
nlndex The index of the relation object in the database's Relations collection, for

lookup by index.

231

CDaoDatabase::GetTableDefCount

Remarks

relinfo A reference to a CDaoRelationlnfo object that returns the information
requested.

dwlnfoOptions Options that specify which information about the relation to retrieve.
The available options are listed here along with what they cause the function to
return about the relation:

• AFX_DAO_PRIMARY_INFO (Default) Name, Table, Foreign Table

• AFX_DAO _SECONDARY _INFO Attributes, Field Information

The Field Information is a CDaoRelationFieldlnfo object containing the fields
from the primary table involved in the relation.

ipsiName A string containing the name of the relation object, for lookup by name.

Call this member function to obtain information about a specified relation in the
database's Relations collection. Two versions of this function provide access either by
index or by name. For a description of the information returned in relinfo, see the
CDaoRelationlnfo structure. This structure has members that correspond to the
items of information listed above in the description of dw Info Options . If you request
information at one level, you also get information at any prior levels as well.

Note If you set the relation object's attributes to activate cascade operations
(dbRelationUpdateCascades or dbRelationDeleteCascades), the Microsoft Jet database
engine automatically updates or deletes records in one or more other tables when changes are
made to related primary key tables. For example, suppose you establish a cascade delete
relationship between a Customers table and an Orders table. When you delete records from
the Customers table, records in the Orders table related to that customer are also deleted. In
addition, if you establish cascade delete relationships between the Orders table and other
tables, records from those tables are automatically deleted when you delete records from the
Customers table.

For more information about database objects, see the article "DAO Database" in
Programming with MPC.

See Also CDaoDatabase: : GetRelationCount

CDaoDatabase: : GetTableDefCount
short GetTableDefCount();

throw(CDaoException, CMemoryException);

Return Value
The number of tabledefs defined in the database.

232

CDaoDatabase::GetTableDeflnfo

Remarks
Call this member function to retrieve the number of tables defined in the database.
GetTableDefCount is useful if you need to loop through all tabledefs in the
database's TableDefs collection. To obtain information about a given table in the
collection, see GetTableDeflnfo.

For more information about tables and tabledef objects, see the article "DAO
TableDef' in Programming with MFC.

CDaoDatabase: : GetTableDefinfo
void GetTableDeflnfo(int nlndex, CDaoTableDeflnfo& tabledefinfo,

DWORD dwlnfoOptions = AFX_DAO_PRIMARY _INFO);
throw(CDaoException, CMemoryException);

void GetTableDeflnfo(LPCTSTR IpszName, CDaoTableDeflnfo& tabledefinfo,
DWORD dwlnfoOptions = AFX_DAO_PRIMARY_INFO);
throw(CDaoException, CMemoryException);

Parameters

Remarks

nlndex The index of the tabledef object in the database's TableDefs collection, for
lookup by index.

tabledefinfo A reference to a CDaoTableDeflnfo object that returns the information
requested.

dwlnfoOptions Options that specify which information about the table to retrieve.
The available options are listed here along with what they cause the function to
return about the relation:

• AFX_DAO_PRIMARY _INFO (Default) Name, Updatable, Attributes

• AFX_DAO_SECONDARY _INFO Primary information plus: Date Created,
Date Last Updated, Source Table Name, Connect

• AFX_DAO_ALL_INFO Primary and secondary information plus: Validation
Rule, Validation Text, Record Count

IpszName The name of the tabledef object, for lookup by name.

Call this member function to obtain various kinds of information about a table
defined in the database. Two versions of the function are supplied so you can select a
table either by index in the database's TableDefs collection or by the name of the
table.

For a description of the information returned in tabledefinfo, see the
CDaoTableDeflnfo structure. This structure has members that correspond to the
items of information listed above in the description of dwlnfoOptions. If you request
information at one level, you get information for any prior levels as well.

233

CDaoDatabase: : GetVersion

v Warning The AFX_DAO_ALLJNFO option provides information that can be slow to obtain.
In this case, counting the records in the table could be very time consuming if there are many
records.

For more information about tables and tabledef objects, see the article "DAO
TableDef' in Programming with MFC.

See Also CDaoDatabase: : GetTableDefCount

CDaoDatabase: : GetVersion
CString GetVersion();

throw(CDaoException, CMemoryException);

Return Value

Remarks

A CString that indicates the version of the database file associated with the object.

Call this member function to determine the version of the Microsoft Jet database file.
The value returned represents the version number in the form "major.minor"; for
example, "3.0". The product version number (for example, 3.0) consists of the
version number (3), a period, and the release number (0). The versions to date are
1.0, 1.1, 2.0, and 3.0.

For more information about database objects, see the article "DAO Database" in
Programming with MFC. For related information, see the topic "Version Property" in
DAOHelp.

CDaoDatabase: :IsOpen
BOOL IsOpen() const;

Return Value

Remarks

234

Nonzero if the CDaoDatabase object is currently open; otherwise 0.

Call this member function to determine whether the CDaoDatabase object is
currently open on a database.

For more information about database objects, see the article "DAO Database" in
Programming with MFC.

See Also CDatabase: :Open

CDaoDatabase: :Open

CDaoDatabase: : Open
virtual void Open(LPCTSTR IpsiName, BOOL bExclusive = FALSE,

BOOL bReadOnly = FALSE, LPCTSTR IpszConnect = _T(lflf»;
throw(CDaoException, CMemoryException);

Parameters
IpsiName A string expression that is the name of an existing Microsoft Jet (.MDB)

database file. If the filename has an extension, it is required. If your network
supports the uniform naming convention (UNC), you can also specify a network
path, such as "\\\\MYSERVER\\MYSHARE\\MYDIR\\MYDB.MDB". (Double
backslashes are required in string literals because "\" is the C++ escape character.)

Some considerations apply when using IpsiName. If it:

• Refers to a database that is already open for exclusive access by another user,
MFC throws an exception of type CDaoException. Trap that exception to let
your user know that the database is unavailable.

• Is an empty string ("") and IpszConnect is "ODBC;", a dialog box listing all
registered ODBC data source names is displayed so the user can select a
database. You should avoid direct connections to ODBC data sources; use an
attached table instead. For information, see the article "DAO External:
Working with External Data Sources" in Programming with MFC.

• Otherwise does not refer to an existing database or valid ODBC data source
name, MFC throws an exception of type CDaoException.

Note For details about DAD error codes, see the DADERR.H file. For related information,
see the topic "Trappable Data Access Errors" in DAD Help.

bExclusive A Boolean value that is TRUE if the database is to be opened for
exclusive (nonshared) access and FALSE if the database is to be opened for shared
access. If you omit this argument, the database is opened for shared access.

bReadOnly A Boolean value that is TRUE if the database is to be opened for read
only access and FALSE if the database is to be opened for read/write access. If you
omit this argument, the database is opened for read/write access. All dependent
recordsets inherit this attribute.

IpszConnect A string expression used for opening the database. This string
constitutes the ODBC connect arguments. You must supply the exclusive and read
only arguments to supply a source string. For syntax, see the topic "Connect
Property" in DAO Help. If the database is a Microsoft Jet database (.MDB), this
string is empty (""). The syntax for the default value-_T("")-provides
portability for Unicode as well as ANSI builds of your application.

235

CDaoDatabase: : Open

Remarks

236

You must call this member function to initialize a newly constructed CDaoDatabase
object that represents an existing database. Open associates the database with the
underlying DAO object. You cannot use the database object to construct recordset,
tabledef, or querydef objects until it is initialized. Open appends the database object
to the associated workspace's Databases collection.

Use the parameters as follows:

• If you are opening a Microsoft Jet (.MDB) database, use the IpszName parameter
and pass an empty string for the IpszConnect parameter or pass a password string
of the form "PWD=password" if the database is password-protected (.MDB
databases only).

• If you are opening an ODBC data source, pass a valid ODBC connect string in
IpszConnect and an empty string in IpszName.

For related information, see the topic "OpenDatabase Method" in DAO Help.

Important For better performance when accessing external databases, including ISAM
databases and DDBe data sources, it is recommended that you attach external database
tables to a Microsoft Jet engine database (.MDB) rather than connecting directly to the data
source.

It is possible for a connection attempt to time out if, for example, the DBMS host is
unavailable. If the connection attempt fails, Open throws an exception of type
CDaoException.

The remaining remarks apply only to ODBC databases:

If the database is an ODBC database and the parameters in your Open call do not
contain enough information to make the connection, the ODBC driver opens a dialog
box to obtain the necessary information from the user. When you call Open, your
connect string, IpszConnect, is stored privately and is available by calling the
GetConnect member function.

If you wish, you can open your own dialog box before you call Open to get
information from the user, such as a password, then add that information to the
connect string you pass to Open. Or you might want to save the connect string you
pass (perhaps in the Windows registry) so you can reuse it the next time your
application calls Open on a CDaoDatabase object.

You can also use the connect string for mUltiple levels of login authorization (each
for a different CDaoDatabase object) or to convey other database-specific
information.

For related information about connect strings, see the topic "Connect Property" in
DAOHelp.

See Also CDatabase:: CDatabase, CDatabase:: Close

CDaoDatabase: :m_pDAODatabase

CDaoDatabase:: SetQueryTimeout
void SetQueryTimeout(short nSeconds);

throw(CDaoException, CMemoryException);

Parameters

Remarks

nSeconds The number of seconds to allow before a query attempt times out.

Call this member function to override the default number of seconds to allow before
subsequent operations on the connected database time out. An operation might time
out due to network access problems, excessive query processing time, and so on. Call
SetQueryTimeout prior to opening your recordset or prior to calling the recordset's
AddNew, Update, or Delete member functions if you want to change the query
timeout value. The setting affects all subsequent Open, AddNew, Update, and
Delete calls to any recordsets associated with this CDaoDatabase object. Changing
the query timeout value for a recordset after opening does not change the value for
the recordset. For example, subsequent Move operations do not use the new value.

The default value for query timeouts is 60 seconds. Not all databases support the
ability to set a query timeout value. If you set a query timeout value of 0, no timeout
occurs; the communication with the database may hang. This behavior may be useful
during development.

For related information, see the topic "QueryTimeout Property" in DAO Help.

See Also CDaoWorkspace::SetLoginTimeout

Data Members
CDaoDatabase: :m_pDAODatabase
Remarks

Contains a pointer to the OLE interface for the DAO database object underlying the
CDaoDatabase object. Use this pointer if you need to access the DAO interface
directly.

For more information about DAO databases, see the article "DAO Database" in
Programming with MPC. For information about calling DAO directly, see Technical
Note 54. Technical Notes are available under MFC in Books Online.

237

CDaoDatabase::m_pWorkspace

CDaoDatabase: :m_p Workspace
Remarks

238

Contains a pointer to the CDaoWorkspace object that contains the database object.
Use this pointer if you need to access the workspace directly - for example, to obtain
pointers to other database objects in the workspace's Databases collection.

For more information about workspaces, see the article "DAO Workspace" in
Programming with MFC.

CDaoException

A CDaoException object represents an exception condition arising from the MFC
database classes based on data access objects (DAO). The class includes public data
members you can use to determine the cause of the exception. CDaoException
objects are constructed and thrown by member functions of the DAO database
classes.

Note The DAO database classes are distinct from the MFC database classes based on Open
Database Connectivity (ODBC). All DAO database class names have the "CDao" prefix. You
can still access ODBC data sources with the DAO classes. In general, the MFC classes based
on DAO are more capable than the MFC classes based on ODBC; the DAO-based classes
can access data, including through ODBC drivers, via their own database engine. The DAO
based classes also support Data Definition Language (DOL) operations, such as adding tables
via the classes, without having to call DAO directly. For information on exceptions thrown by
the ODBC classes, see CDBException.

You can access exception objects within the scope of a CATCH expression. You can
also throw CDaoException objects from your own code with the
AfxThrowDaoException global function.

In MFC, all DAO errors are expressed as exceptions, of type CDaoException. When
you catch an exception of this type, you can use CDaoException member functions to
retrieve information from any DAO error objects stored in the database engine's
Errors collection. As each error occurs, one or more error objects are placed in the
Errors collection. (Normally the collection contains only one error object; if you are
using an ODBC data source, you are more likely to get multiple error objects.) When
another DAO operation generates an error, the Errors collection is cleared, and the
new error object is placed in the Errors collection. DAO operations that do not
generate an error have no effect on the Errors collection.

For DAO error codes, see the file DAOERR.H. For related information, see the topic
"Trappable Data Access Errors" in DAO Help.

CDaoException

239

CDaoException::CDaoException

For more information about exception handling in general, or about CDaoException
objects, see the articles "Exceptions" and "Exceptions: Database Exceptions" in
Programming with MFC. The second article contains example code that illustrates
exception handling in DAO.

#include <afxdao.h>

See Also CException

Data Members

m_scode

m_nAfxDaoError

Construction

CDaoException

Operations

GetErrorCount

GetErrorlnfo

The SCODE value associated with the error.

Contains an extended error code for any error in the MFC DAO
classes.

A pointer to a CDaoErrorInfo object that contains information
about one DAO error object.

Constructs a CDaoException object.

Returns the number of errors in the database engine's Errors
collection.

Returns error information about a particular error object in the
Errors collection.

Member Functions
CDaoException: :CDaoException

CDaoException();

Remarks

240

Constructs a CDaoException object. Ordinarily, the framework creates exception
objects when its code throws an exception. You seldom need to construct an exception
object explicitly. If you want to throw a CDaoException from your own code, call the
global function AfxThrowDaoException.

However, you might want to explicitly create an exception object if you are making
direct calls to DAO via the DAO interface pointers that MFC classes encapsulate. In
that case, you might need to retrieve error information from DAO. Suppose an error
occurs in DAO when you call a DAO method via, say, the DAODatabases interface to
a workspace's Databases collection. To retrieve the DAO error information:

1. Construct a CDaoException object.

CDaoException: : GetErrorInfo

2. Call the exception object's GetErrorCount member function to determine how
many error objects are in the database engine's Errors collection. (Normally only
one, unless you are using an ODBC data source.)

3. Call the exception object's GetErrorInfo member function to retrieve one specific
error object at a time, by index in the collection, via the exception object. Think of
the exception object as a proxy for one DAO error object.

4. Examine the current CDaoErrorInfo structure that GetErrorInfo returns in the
m_pErrorInfo data member. Its members provide information on the DAO error.

5. In the case of an ODBC data source, repeat steps 3 and 4 as needed, for more error
objects.

6. If you constructed the exception object on the heap, delete it with the delete
operator when you finish.

For more information about handling errors in the MFC DAO classes, see the article
"Exceptions: Database Exceptions" in Programming with MFC.

CDaoException: : GetErrorCount
short GetErrorCount();

Return Value

Remarks

The number of DAO error objects in the database engine's Errors collection.

Call this member function to retrieve the number of DAO error objects in the
database engine's Errors collection. This information is useful for looping through
the Errors collection to retrieve each of the one or more DAO error objects in the
collection. To retrieve an error object by index or by DAO error number, call the
GetErrorInfo member function.

Note Normally there is only one error object in the Errors collection. If you are working with
an ODBe data source, however, there could be more than one.

CDaoException: : GetErrorInfo
void GetErrorInfo(int nlndex);

Parameters
nlndex The index of the error information in the database engine's Errors collection,

for lookup by index.

241

CDaoException::m_nAfxDaoError

Remarks
Call this member function to obtain the following kinds of information about the
exception:

• Error Code

• Source

• Description

• Help File

• Help Context

GetErrorInfo stores the information in the exception object's m_pErrorInfo data
member. For a brief description of the information returned, see m_pErrorInfo. If
you catch an exception of type CDaoException thrown by MFC, the m_pErrorInfo
member will already be filled in. If you choose to call DAO directly, you must call the
exception object's GetErrorInfo member function yourself to fill m_pErrorInfo. For
a more detailed description, see the CDaoErrorInfo structure.

For information about DAO exceptions, and example code, see the article
''Exceptions: Database Exceptions." For more about getting information from DAO
object collections, see the article "DAO: Obtaining Information About DAO Objects."
Both articles are in Programming with MFC.

See Also CDaoException: : GetErrorCount

Data Members
CDaoException: :m_nAfxDaoError
Remarks

242

Contains an MFC extended error code. This code is supplied in cases where a specific
component of the MFC DAO classes has erred.

Possible values are:

• NO_AFX_DAO_ERROR The most recent operation did not result in an
MFC extended error. However, the operation could have produced other errors
from DAO or OLE, so you should check m_pErrorlnfo and possibly m_scode.

• AFX_DAO_ERROR_ENGINE_INITIALIZATION MFC could not
initialize the Microsoft Jet database engine. OLE might have failed to initialize,
or it might have been impossible to create an instance of the DAO database
engine object. These problems usually suggest a bad installation of either DAO
or OLE.

CDaoException: :m_pErrorInfo

• AFX_DAO_ERROR_DFX_BIND An address used in a DAO record field
exchange (DFX) function call does not exist or is invalid (the address was not
used to bind data). You might have passed a bad address in a DFX call, or the
address might have become invalid between DFX operations .

• AFX_DAO_ERROR_OBJECT_NOT_OPEN You attempted to open a
recordset based on a querydef or a tabledef object that was not in an open state.

For more information about DFX, see the article "DAO Record Field Exchange
(DFX)" in Programming with MFC.

See Also CDaoException: : GetErrorCount, CDaoException: : GetErrorInfo

CDaoException: :m_pErrorInfo
Remarks

Contains a pointer to a CDaoErrorInfo structure that provides information on the
DAO error object that you last retrieved by calling GetErrorInfo. This object
contains the following information:

COaoErrorlnfo member Information Meaning

m_lErrorCode Error Code The DAO error code

m_strSource Source The name of the object or application that
originally generated the error

m_strDescription Description A descriptive string associated with the
error

m_strHelpFile Help File A path to a Windows Help file in which
the user can get information about the
problem

m_lHelpContext Help Context The context ID for a topic in the DAO
Help file

For full details about the information contained in the CDaoErrorInfo object, see the
CDaoErrorInfo structure.

See Also CDaoException: :m_scode, CDaoException: :m_nAfxDaoError

243

CDaoException::m_scode

CDaoException: :m_scode
Remarks

244

Contains a value of type SCODE that describes the error. This is an OLE code. You
will seldom need to use this value because, in almost all cases, more specific MFC or
DAO error information is available in the other CDaoException data members.

For information about SCODE, see the topic "Structure of OLE Error Codes" in the
Win32 SDK, OLE Programmer's Reference, Volume 1. The SCODE data type maps
to the HRESULT data type.

See Also CDaoException: :m_pErrorlnfo, CDaoException::m_nAfxDaoError

CDaoFieldExchange
The CDaoFieldExchange class supports the DAO record field exchange (DFX)
routines used by the DAO database classes. Use this class if you are writing data
exchange routines for custom data types; otherwise, you will not directly use this
class. DFX exchanges data between the field data members of your CDaoRecordset
object and the corresponding fields of the current record on the data source. DFX
manages the exchange in both directions, from the data source and to the data source.
See Technical Note 53, available under MFC in Books Online, for information about
writing custom DFX routines.

Note The DAD database classes are distinct from the MFC database classes based on Dpen
Database Connectivity (DDSC). All DAD database class names have the "CDao" prefix. You
can still access DDSC data sources with the DAD classes. In general, the MFC classes based
on DAD are more capable than the MFC classes based on DDSC. The DAD-based classes
can access data, including through DDSC drivers, via their own database engine. They also
support Data Definition Language (DDL) operations, such as adding tables via the classes
instead of having to call DAD yourself.

Note DAD record field exchange (DFX) is very similar to record field exchange (RFX) in the
DDSC-based MFC database classes (CDatabase, CRecordset). If you understand RFX, you
will find it easy to use DFX.

A CDaoFieldExchange object provides the context information needed for DAO
record field exchange to take place. CDaoFieldExchange objects support a number
of operations, including binding parameters and field data members and setting
various flags on the fields of the current record. DFX operations are performed on
recordset-class data members of types defined by the enum FieldType in
CDaoFieldExchange. Possible FieldType values are:

• CDaoFieldExchange::outputColumn for field data members.

• CDaoFieldExchange: :param for parameter data members.

The IsValidOperation member function is provided for writing your own custom
DFX routines. You will use SetFieldType frequently in your
CDaoRecordset::DoFieldExchange functions. For details about the DFX global
functions, see "Record Field Exchange Functions" in the "Macros and Globals"
section. For information about writing custom DFX routines for your own data types,
see Technical Note 53, available under MFC in Books Online.

CDaoFieldExchange

245

CDaoFieldExchange: :Is V alidOperation

For information about DFX, see the article "DAO Record Field Exchange (DFX)" in
Programming with MFC.

#include <afxdao.h>

See Also CDaoRecordset

Data Members

Member Functions

IsValidOperation

SetFieldType

The DFX operation being performed by the current call to the
recordset's DoFieldExchange member function.

A pointer to the recordset on which DFX operations are being
performed.

Returns nonzero if the current operation is appropriate for the
type of field being updated.

Specifies the type of recordset data member-column or
parameter-represented by all subsequent calls to DFX
functions until the next call to SetFieldType.

Member Functions
CDaoFieldExchange: :Is ValidOperation

BOOL IsValidOperation();

Return Value

Remarks

246

Nonzero if the current operation is appropriate for the type of field being updated.

If you write your own DFX function, call IsValidOperation at the beginning of your
function to determine whether the current operation can be performed on a particular
field data member type (a CDaoFieldExchange::outputColumn or a
CDaoFieldExchange::param). Some of the operations performed by the DFX
mechanism apply only to one of the possible field types. Follow the model of the
existing DFX functions.

For more information about DFX, see the article "DAO Record Field Exchange
(DFX)" in Programming with MFC. For additional information on writing custom
DFX routines, see Technical Note 53, available under MFC in Books Online.

See Also CDaoFieldExchange: :SetFieldType

CDaoFieldExchange: :m_nOperation

CDaoFieldExchange: : SetFieldType
void SetFieldType(UINT nFieldType);

Parameters

Remarks

nFieldType A value of the enum FieldType, declared in CDaoFieldExchange,
which can be either of the following:

• CDaoFieldExchange: :outputColumn

• CDaoFieldExchange: :param

Call SetFieldType in your CDaoRecordset class's DoFieldExchange override.
Normally, ClassWizard writes this call for you. If you write your own function and
are using the wizard to write your DoFieldExchange function, add calls to your own
function outside the field map. If you do not use the wizard, there will not be a field
map. The call precedes calls to DFX functions, one for each field data member of
your class, and identifies the field type as CDaoFieldExchange: :outputColumn.

If you parameterize your recordset class, you should add DFX calls for all parameter
data members (outside the field map) and precede these calls with a call to
SetFieldType. Pass the value CDaoFieldExchange::param. (You can, instead,
use a CDaoQueryDef and set its parameter values.)

In general, each group of DFX function calls associated with field data members or
parameter data members must be preceded by a call to SetFieldType. The nFieldType
parameter of each SetFieldType call identifies the type of the data members
represented by the DFX function calls that follow the SetFieldType call.

For more information about DFX, see the article "DAO Record Field Exchange
(DFX)" in Programming with MFC.

See Also CDaoFieldExchange::IsValidOperation,
CDaoRecordset: :DoFieldExchange

Data Members
CDaoFieldExchange: :m_nOperation
Remarks

Identifies the operation to be performed on the CDaoRecordset object associated
with the field exchange object. The CDaoFieldExchange object supplies the context
for a number of different DFX operations on the recordset.

247

CDaoFieldExchange::m_nOperation

248

Note The PSEUDO NULL value described under the MarkForAddNew and SetFieldNuli
operations below is a value used to mark fields Null. The DAO record field exchange
mechanism (DFX) uses this value to determine which fields have been explicitly marked Null.
PSEUDO NULL is not required for COleDateTime and COleCurrency fields.

For more information about DFX and these operations, see the article "DAO Record
Field Exchange (DFX)" in Programming with MFC.

Possible values of m_nOperation are:

Operation

AddToParameterList

AddToSelectList

BindField

BindParam

Fixup

AllocCache

StoreField

LoadField

FreeCache

SetFieldNull

MarkForAddNew

MarkForEdit

SetDirty Field

DumpField

MaxDFXOperation

Description

Builds the PARAMETERS clause of the SQL statement.

Builds the SELECT clause of the SQL statement.

Binds a field in the database to a memory location in your
application.

Sets parameter values for the recordset's query.

Sets the Null status for a field.

Allocates the cache used to check for "dirty" fields in the
recordset.

Saves the current record to the cache.

Restores the cached data member variables in the recordset.

Frees the cache used to check for "dirty" fields in the recordset.

Sets a field's status to Null and value to PSEUDO NULL.

Marks fields "dirty" if not PSEUDO NULL.

Marks fields "dirty" if they do not match the cache.

Sets field values marked as "dirty."

Dumps a field's contents (debug only).

U sed for input checking.

See Also CDaoFieldExchange: :IsValidOperation, CDaoFieldExchange::m_prs,
CDaoRecordset: :DoFieldExchange

CDaoFieldExchange: :m_prs
Remarks

Contains a pointer to the CDaoRecordset object associated with the
CDaoFieldExchange object.

For more information about DFX, see the article "DAD Record Field Exchange
(DFX)" in Programming with MFC.

See Also CDaoFieldExchange::m_nOperation, CDaoRecordset

CDaoFieldExchange::m_prs

249

CDaoQueryDef

CDaoQueryDef

Usage

250

A CDaoQueryDef object represents a query definition, or "querydef," usually one
saved in a database. A querydef is a data access object that contains the SQL
statement that describes a query, and its properties, such as "Date Created" and
"ODBC Timeout." You can also create temporary querydef objects without saving
them, but it is convenient - and much more efficient - to save commonly reused
queries in a database. A CDaoDatabase object maintains a collection, called the
QueryDefs collection, that contains its saved querydefs.

Note The DAO database classes are distinct from the MFC database classes based on Open
Database Connectivity (ODSC). All DAO database class names have the "CDao" prefix. You
can still access ODSC data sources with the DAO classes. In general, the MFC classes based
on DAO are more capable than the MFC classes based on ODSC; the DAO-based classes
can access data, including through ODSC drivers, via their own database engine. The DAO
based classes also support Data Definition Language (DDL) operations, such as adding tables
via the classes, without having to call DAO directly.

Use querydef objects either to work with an existing saved query or to create a new
saved query or temporary query:

1. In all cases, first construct a CDaoQueryDef object, supplying a pointer to the
CDaoDatabase object to which the query belongs.

2. Then do the following, depending on what you want:

• To use an existing saved query, call the querydef object's Open member
function, supplying the name of the saved query.

• To create a new sav~d query, call the querydef object's Create member
function, supplying the name of the query. Then call Append to save the query
by appending it to the database's QueryDefs collection. Create puts the
querydef into an open state, so after calling Create you do not call Open.

• To create a temporary querydef, call Create. Pass an empty string for the query
name. Do not call Append.

When you finish using a querydef object, call its Close member function; then destroy
the querydef object.

Tip The easiest way to create saved queries is to create them and store them in your
database using Microsoft Access. Then you can open and use them in your MFC code.

Purposes
You can use a querydef object for any of the following purposes:

• To create a CDaoRecordset object

• To call the object's Execute member function to directly execute an action query
or an SQL pass-through query

You can use a querydef object for any type of query, including select, action, crosstab,
delete, update, append, make-table, data definition, SQL pass-through, union, and
bulk queries. The query's type is determined by the content of the SQL statement that
you supply. For information about query types, see the Execute and GetType member
functions. Recordsets are commonly used for row-returning queries, usually those
using the SELECT ... FROM keywords. Execute is most commonly used for bulk
operations. For more information, see Execute and CDaoRecordset.

Querydefs and Recordsets
To use a querydef object to create a CDaoRecordset object, you typically create or
open a querydef as described above. Then construct a record set object, passing a
pointer to your querydef object when you call CDaoRecordset: :Open. The querydef
you pass must be in an open state. For more information, see class CDaoRecordset.

You cannot use a querydef to create a recordset (the most common use for a querydet)
unless it is in an open state. Put the querydef into an open state by calling either
Open or Create.

External Databases
Querydef objects are the preferred way to use the native SQL dialect of an external
database engine. For example, you can create a Transact SQL query (as used on
Microsoft SQL Server) and store it in a querydef object. When you need to use a SQL
query not based on the Microsoft Jet database engine, you must provide a connect
string that points to the external data source. Queries with valid connect strings
bypass the database engine and pass the query directly to the external database server
for processing.

Tip The preferred way to work with ODBC tables is to attach them to a Microsoft Jet (.MDB)
database. For more information, see the article "DAO External: Working with External Data
Sources" in Programming with MFG.

For more information about querydefs, see the article "DAO Querydef' in
Programming with MFC. For related information, see the topics "QueryDef Object,"
"QueryDefs Collection," and "Accessing External Databases with DAO" in DAO
Help.

#include <afxdao.h>

See Also CDaoRecordset, CDaoDatabase, CDaoTableDef, CDaoException

CDaoQueryDef

251

CDaoQueryDef

252

Data Members

m_pDAOQueryDef

Construction

CDaoQueryDef

Create

Append

Open

Close

Attributes

CanUpdate

GetConnect

GetDateCreated

GetDateLastUpdated

GetName

GetODBCTimeout

GetRecordsAffected

GetReturnsRecords

GetSQL

GetType

IsOpen

A pointer to the CDaoDatabase object with which the
querydef is associated. The querydef might be saved in the
database or not.

A pointer to the OLE interface for the underlying DAO
querydef object.

Constructs a CDaoQueryDef object. Next call Open or
Create, depending on your needs.

Creates the underlying DAO querydef object. Use the
querydef as a temporary query, or call Append to save it in
the database.

Appends the querydefto the database's QueryDefs collection
as a saved query.

Opens an existing querydef stored in the database's
QueryDefs collection.

Closes the querydef object. Destroy the C++ object when you
finish with it.

Returns nonzero if the query can update the database.

Returns the connect string associated with the querydef. The
connect string identifies the data source. (For SQL pass
through queries only; otherwise an empty string.)

Returns the date the saved query was created.

Returns the date the saved query was last updated.

Returns the name of the querydef.

Returns the timeout value used by ODBC (for an ODBC
query) when the querydef is executed. This determines how
long to allow for the query's action to complete.

Returns the number of records affected by an action query.

Returns nonzero if the query defined by the querydef returns
records.

Returns the SQL string that specifies the query defined by
the querydef.

Returns the query type: delete, update, append, make-table,
and so on.

Returns nonzero if the querydef is open and can be executed.

CDaoQueryDef: :Append

SetConnect

SetName

SetODBCTimeout

SetReturnsRecords

SetSQL

Operations

Execute

GetFieldCount

GetFieldlnfo

GetParameterCount

GetParameterInfo

GetParam Value

SetParam Value

Sets the connect string for an SQL pass through query
on an ODBC data source.

Sets the name of the saved query, replacing the name in
use when the querydef was created.

Sets the timeout value used by ODBC (for an ODBC
query) when the querydef is executed.

Specifies whether the querydef returns records. Setting
this attribute to TRUE is only valid for SQL pass
through queries.

Sets the SQL string that specifies the query defined by
the querydef.

Executes the query defined by the querydef object.

Returns the number of fields defined by the querydef.

Returns information about a specified field defined in
the query.

Returns the number of parameters defined for the query.

Returns information about a specified parameter to the
query.

Returns the value of a specified parameter to the query.

Sets the value of a specified parameter to the query.

Member Functions
CDaoQuery Def: : Append

Remarks

virtual void Append();
throw(CDaoException, CMemoryException);

Call this member function after you call Create to create a new querydef object.
Append saves the querydef in the database by appending the object to the database's
QueryDefs collection. You can use the querydef as a temporary object without
appending it, but if you want it to persist, you must call Append.

If you attempt to append a temporary querydef object, MFC throws an exception of
type CDaoException.

For information about querydefs, see the article "DAO Querydef' in Programming
withMFC.

253

CDaoQueryDef::CanUpdate

CDaoQueryDef: :CanUpdate
BOOL CanUpdate();

throw(CDaoException, CMemoryException);

Return Value

Remarks

Nonzero if you are permitted to modify the querydef; otherwise O.

Call this member function to determine whether you can modify the
querydef - such as changing its name or SQL string. You can modify
the querydef if:

• It is not based on a database that is open read-only.

• You have update permissions for the database.

This depends on whether you have implemented security features. MFC does not
provide support for security; you must implement it yourself by calling DAO
directly or by using Microsoft Access. See the topic "Permissions Property" in
DAOHelp.

For information about querydefs, see the article "DAO Querydef' in Programming
withMFC.

CDaoQuery Def: :CDaoQuery Def
CDaoQueryDef(CDaoDatabase* pDatabase);

Parameters

Remarks

254

pDatabase A pointer to an open CDaoDatabase object.

Constructs a CDaoQueryDef object. The object can represent an existing querydef
stored in the database's QueryDefs collection, a new query to be stored in the
collection, or a temporary query, not to be stored. Your next step depends on the
type of querydef:

• If the object represents an existing querydef, call the object's Open member
function to initialize it.

• If the object represents a new querydef to be saved, call the object's Create
member function. This adds the object to the database's QueryDefs collection.
Then call CDaoQueryDef member functions to set the object's attributes. Finally,
call Append.

• If the object represents a temporary querydef (not to be saved in the database), call
Create, passing an empty string for the query's name. After calling Create,
initialize the querydef by directly setting its attributes. Do not call Append.

CDaoQuery Def: : Create

To set the attributes of the querydef, you can use the SetName, SetSQL, SetConnect,
SetODBCTimeout, and SetReturnsRecords member functions.

When you finish with the querydef object, call its Close member function. If you have
a pointer to the querydef, use the delete operator to destroy the C++ object.

For information about querydefs, see the article "DAO Querydef' in Programming
withMFC.

See Also CDaoQueryDef: : GetConnect, CDaoQueryDef: : GetDateCreated,
CDaoQueryDef: : GetDateLastUpdated, CDaoQueryDef: : GetName,
CDaoQueryDef: : GetODBCTimeout, CDaoQueryDef: : GetReturnsRecords,
CDaoQueryDef: :GetSQL

CDaoQuery Def: :Close

Remarks

virtual void Close();

Call this member function when you finish using the querydef object. Closing the
querydef releases the underlying DAO object but does not destroy the saved
DAO querydef object or the C++ CDaoQueryDef object. This is not the same as
CDaoDatabase::DeleteQueryDef, which deletes the querydef from the database's
QueryDefs collection in DAO (if not a temporary querydef).

For information about querydefs, see the article "DAO Querydef' in Programming
withMFC.

See Also CDaoQueryDef::Open, CDaoQueryDef::Create,
CDaoQueryDef: :CDaoQueryDef

CDaoQuery Def: : Create
virtual void Create(LPCTSTR IpszName = NULL, LPCTSTR IpszSQL = NULL);

throw(CDaoException, CMemoryException);

Parameters
IpszName The unique name of the query saved in the database. For details about the

string, see the topic CreateQueryDefMethod in DAO Help. If you accept the
default value, an empty string, a temporary querydef is created. Such a query is not
saved in the QueryDefs collection.

255

CDaoQueryDef::Execute

Remarks

IpszSQL The SQL string that defines the query. If you accept the default value of
NULL, you must later call SetSQL to set the string. Until then, the query is
undefined. You can, however, use the undefined query to open a recordset; see
"Remarks" for details. The SQL statement must be defined before you can append
the querydef to the QueryDefs collection.

Call this member function to create a new saved query or a new temporary query. If
you pass a name in Ips'lName, you can then call Append to save the querydef in the
database's QueryDefs collection. Otherwise, the object is a temporary querydef and is
not saved. In either case, the querydef is in an open state, and you can either use it to
create a CDaoRecordset object or call the querydef's Execute member function.

If you do not supply an SQL statement in IpszSQL, you cannot run the query with
Execute but you can use it to create a recordset. In that case, MFC uses the
recordset's default SQL statement.

For information about querydefs, see the article "DAD Querydef' in Programming
withMFC.

See Also CDaoQueryDef: :Open, CDaoQueryDef::CDaoQueryDef,
CDaoRecordset::GetSQL

CDaoQueryDef: : Execute
virtual void Execute(int nOptions = 0);

throw(CDaoException, CMemoryException);

Parameters

256

nOptions An integer that determines the characteristics of the query. For related
information, see the topic "Execute Method" in DAD Help. You can use the
bitwise-OR operator (I) to combine the following constants for this argument:

• dbDenyWrite Deny write permission to other users.

• dbInconsistent (Default) Inconsistent updates.

• db Consistent Consistent updates.

• dbSQLPassThrough SQL pass-through. Causes the SQL statement to be
passed to an ODBC database for processing.

• dbFailOnError Roll back updates if an error occurs and report the error to
the user.

• dbSeeChanges Generate a run-time error if another user is changing data you
are editing.

Note For an explanation of the terms "inconsistent" and "consistent," see the topic
"Execute Method" in DAO Help.

CDaoQueryDef::GetConnect

Remarks
Call this member function to run the query defined by the querydef object. Querydef
objects used for execution in this manner can only represent one of the following
query types:

• Action queries

• SQL pass-through queries

Execute does not work for queries that return records, such as select queries. Execute
is commonly used for bulk operation queries, such as UPDATE, INSERT, or
SELECT INTO, or for data definition language (DDL) operations.

For an explanation of action queries and SQL pass-through queries, see the article
"DAO Querydef: Action Queries and SQL Pass-Through Queries" in Programming
withMFC.

Tip The preferred way to work with ODBe data sources is to attach tables to a Microsoft Jet
(.MDB) database. For more information, see the topic "Accessing External Databases with
DAO" in DAO Help and the article "DAO External: Working with External Data Sources" in
Programming with MFG.

Call the GetRecordsAffected member function of the querydef object to determine
the number of records affected by the most recent Execute call. For example,
GetRecordsAffected returns information about the number of records deleted,
updated, or inserted when executing an action query. The count returned will not
reflect changes in related tables when cascade updates or deletes are in effect.

If you include both dbInconsistent and db Consistent or if you include neither, the
result is the default, dbInconsistent.

Execute does not return a recordset. Using Execute on a query that selects records
causes MFC to throw an exception of type CDaoException.

For more information about using the Execute member function for querydef objects,
see the article "DAO Querydef: Using Querydefs" in Programming with MFC.

CDaoQueryDef: : GetConnect
CString GetConnect();

throw(CDaoException, CMemoryException);

Return Value

Remarks

A CString containing the connect string for the querydef.

Call this member function to get the connect string associated with the querydef's
data source. This function is used only with ODBC data sources and certain ISAM

257

CDaoQueryDef: : GetDateCreated

drivers. It is not used with Microsoft Jet (.MDB) databases; in this case, GetConnect
returns an empty string. For more information, see SetConnect.

Tip The preferred way to work with ODBe tables is to attach them to an .MDB database. For
more information, see the topic "Accessing External Databases with DAO" in DAO Help and
the article "DAO External: Working with External Data Sources" in Programming with MFG.

For information about connect strings, see the topic "Connect Property" in DAO
Help. For information about querydefs, see. the article "DAO Querydef' in
Programming with MFC.

CDaoQuery Def:: GetDateCreated
COleDateTime GetDateCreated();

throw(CDaoException, CMemoryException);

Return Value

Remarks

A COleDateTime object containing the date and time the querydef was created.

Call this member function to get the date the querydef object was created.

For information about querydefs, see the article "DAO Querydef' in Programming
with MFC. For related information, see the topic "DateCreated, LastUpdated
Properties" in DAO Help.

See Also CDaoQueryDef::GetDateLastUpdated

CDaoQueryDef::GetDateLastUpdated
COleDateTime GetDateLastUpdated();

throw(CDaoException, CMemoryException);

Return Value

Remarks

258

A COleDateTime object containing the date and time the querydef was last updated.

Call this member function to get the date the querydef object was last updated -
when any of its properties were changed, such as its name, its SQL string, or its
connect string.

For information about querydefs, see the article "DAO Querydef' in Programming
with MFC. For related information, see the topic "DateCreated, LastUpdated
Properties" in DAO Help.

See Also CDaoQueryDef: : GetDateCreated

CDaoQueryDef: : GetFieldInfo

CDaoQuery Def:: GetFieldCount
short GetFieldCount();

throw(CDaoException, CMemoryException);

Return Value

Remarks

The number of fields defined in the query.

Call this member function to retrieve the number of fields in the query.
GetFieldCount is useful for looping through all fields in the querydef. For that
purpose, use GetFieldCount in conjunction with GetFieldInfo.

For information about obtaining information about querydef fields, see the article
"DAO: Obtaining Information About DAO Objects" in Programming with MFC.

CDaoQuery Def:: GetFieldInfo
void GetFieldInfo(int nlndex, CDaoFieldInfo& fieldinfo,

DWORD dwlnfoOptions = AFX_DAO_PRIMARY_INFO);
throw(CDaoException, CMemoryException);

void GetFieldInfo(LPCTSTR lpszName, CDaoFieldInfo& fieldinfo,
DWORD dwlnfoOptions = AFX_DAO_PRIMARY _INFO);
throw(CDaoException, CMemoryException);

Parameters
nlndex The zero-based index of the desired field in the querydef's Fields collection,

for lookup by index.

fieldinfo A reference to a CDaoFieldInfo object that returns the information
requested.

dwlnfoOptions Options that specify which information about the field to retrieve.
The available options are listed here along with what they cause the function to
return:

• AFX_DAO_PRIMARY_INFO (Default) Name, Type, Size, Attributes

• AFX_DAO_SECONDARY_INFO Primary information plus: Ordinal
Position, Required, Allow Zero Length, Source Field, Foreign Name, Source
Table, Collating Order

• AFX_DAO_ALL_INFO Primary and secondary information plus: Default
Value, Validation Text, Validation Rule

lpszName A string containing the name of the desired field, for lookup by name.
You can use a CString.

259

CDaoQueryDef::GetName

Remarks
Call this member function to obtain various kinds of information about a field defined
in the querydef. For a description of the information returned infieldinfo, see the
CDaoFieldlnfo structure. This structure has members that correspond to the
descriptive information under dwlnfoOptions above. If you request one level of
information, you get any prior levels of information as well.

For more information about obtaining field information, see the article "DAO:
Obtaining Information About DAO Objects" in Programming with MFC.

See Also CDaoQueryDef::GetFieldCount

CDaoQueryDef: : GetN arne
CString GetName();

throw(CDaoException, CMemoryException);

Return Value

Remarks

The name of the query.

Call this member function to retrieve the name of the query represented by the
querydef. Querydef names are unique user-defined names. For more information
about querydef names, see the topic "Name Property" in DAO Help.

For information about querydefs, see the article "DAO Querydef' in Programming
withMFC.

See Also CDaoQueryDef::SetName, CDaoQueryDef::GetSQL,
CDaoQueryDef: : GetReturnsRecords, CDaoQueryDef: : GetODBCTimeout

CDaoQueryDef::GetODBCTirneout
short GetODBCTimeout();

throw(CDaoException, CMemoryException);

Return Value

Remarks

260

The number of seconds before a query times out.

Call this member function to retrieve the current time limit before a query to an
ODBC data source times out. For information about this time limit, see the topic
"ODBCTimeout Property" in DAO Help.

Tip The preferred way to work with ODBe tables is to attach them to a Microsoft Jet (.MDB)
database. For more information, see the topic "Accessing External Databases with DAO" in
DAO Help and the article "DAO External: Working with External Data Sources" in Programming
with MFG.

CDaoQuery Def: : GetParameterInfo

For information about querydefs, see the article "DAO Querydef' in Programming
withMFC.

See Also CDaoQueryDef: :SetODBCTimeout, CDaoQueryDef: : GetName,
CDaoQueryDef: : GetSQL, CDaoQueryDef: : GetReturnsRecords

CDaoQuery Def:: GetParameterCount
short GetParameterCount();

throw(CDaoException, CMemoryException);

Return Value

Remarks

The number of parameters defined in the query.

Call this member function to retrieve the number of parameters in the saved query.
GetParameterCount is useful for looping through all parameters in the querydef.
For that purpose, use GetParameterCount in conjunction with GetParameterInfo.

For information about parameterizing queries, see the article "DAO Queries:
Filtering and Parameterizing Queries" in Programming with MFC. For related
information, see the topics "Parameter Object," "Parameters Collection," and
"PARAMETERS Declaration (SQL)" in DAO Help.

See Also CDaoQueryDef: : GetParam Value, CDaoQueryDef: :SetParam Value

CDaoQuery Def:: GetParameterInfo
void GetParameterInfo(int nlndex, CDaoParameterInfo& paraminfo,

DWORD dwlnfoOptions = AFX_DAO_PRlMARY_INFO);
throw(CDaoException, CMemoryException);

void GetParameterInfo(LPCTSTR lpszName, CDaoParameterInfo& paraminfo,
DWORD dwlnfoOptions = AFX_DAO_PRIMARY_INFO);
throw(CDaoException, CMemoryException);

Parameters
nlndex The zero-based index of the desired parameter in the querydef's Parameters

collection, for lookup by index.

paraminfo A reference to a CDaoParameterInfo object that returns the information
requested.

dwlnfoOptions Options that specify which information about the parameter to
retrieve. The available option is listed here along with what it causes the function
to return:

261

CDaoQueryDef::GetParam Value

Remarks

lpsiName A string containing the name of the desired parameter, for lookup by
name. You can use a CString.

Call this member function to obtain information about a parameter defined in the
querydef. For a description of the information returned in paraminfo, see the
CDaoParameterInfo structure. This structure has members that correspond to the
descriptive information under dwlnfoOptions above.

For more information about obtaining parameter information, see the article "DAO:
Obtaining Information About DAO Objects." For more information about
parameterizing queries, see the article "DAO Queries: Filtering and Parameterizing
Queries." Both articles are in Programming with MFC. For related information, see
the topic "PARAMETERS Declaration (SQL)" in DAO Help.

See Also CDaoQueryDef::GetParameterCount

CDaoQuery Def:: GetParam Value
COle Variant GetParam Value(LPCTSTR lpsiName);

throw(CDaoException, CMemoryException);
COle Variant GetParam Value(int nlndex);

throw(CDaoException, CMemoryException);

Return Value
An object of class COleVariant that contains the parameter's value.

Parameters

Remarks

262

lpsiName The name of the parameter whose value you want, for lookup by name.

nlndex The zero-based index of the parameter in the querydef's Parameters
collection, for lookup by index. You can obtain this value with calls to
GetParameterCount and GetParameterlnfo.

Call this member function to retrieve the current value of the specified parameter
stored in the querydef's Parameters collection. You can access the parameter either by
name or by its ordinal position in the collection.

For examples and more information about parameterizing queries, see the article
"DAO Queries: Filtering and Parameterizing Queries" in Programming with MFC.
For related information, see the topic "PARAMETERS Declaration (SQL)" in
DAOHelp.

See Also CDaoQueryDef::SetParam Value

CDaoQueryDef::GetSQL

CDaoQuery Def: : GetRecordsAffected
long GetRecordsAffected();

throw(CDaoException, CMemoryException);

Return Value

Remarks

The number of records affected.

Call this member function to determine how many records were affected by the last
call of Execute. The count returned will not reflect changes in related tables when
cascade updates or deletes are in effect.

For information about querydefs, see the article "DAO Querydef' in Programming
with MFC. For related information see the topic "RecordsAffected Property" in
DAOHelp.

C'DaoQueryDef: : GetRetumsRecords
BOOL GetReturnsRecords();

throw(CDaoException, CMemoryException);

Return Value

Remarks

Nonzero if the querydef is based on a query that returns records; otherwise O.

Call this member function to determine whether the querydef is based on a query that
returns records. This member function is only used for SQL pass-through queries. For
more information about SQL queries, see the Execute member function. For more
information about working with SQL pass-through queries, see the
SetReturnsRecords member function.

For information about querydefs, see the article "DAO Querydef' in Programming
with MFC. For related information, see the topic "ReturnsRecords Property" in
DAOHelp.

See Also CDaoQueryDef::GetName, CDaoQueryDef::GetSQL,
CDaoQueryDef: : GetODBCTimeout

CDaoQueryDef: : GetS QL
CString GetSQL();

throw(CDaoException, CMemoryException);

263

CDaoQueryDef::GetType

Return Value

Remarks

The SQL statement that defines the query on which the querydef is based.

Call this member function to retrieve the SQL statement that defines the query on
which the querydef is based. You will then probably parse the string for keywords,
table names, and so on.

For information about querydefs, see the article "DAO Querydef' in Programming
with MFC. For related information, see the topics "SQL Property," "Comparison of
Microsoft Jet Database Engine SQL and ANSI SQL," and "Querying a Database with
SQL in Code" in DAO Help.

See Also C:paoQueryDef::SetSQL, CDaoQueryDef::GetName,
CDaoQueryDef: : GetReturnsRecords, CDaoQueryDef::GetODBCTimeout

CDaoQuery Def: : GetType
short GetType();

throw(CDaoException, CMemoryException);

Return Value

Remarks

264

The type of the query defined by the querydef. For values, see "Remarks."

Call this member function to determine the query type of the querydef. The query
type is set by what you specify in the querydef's SQL string when you create the
querydef or call an existing querydef's SetSQL member function. The query type
returned by this function can be one of the following values:

• dbQSelect Select

• dbQAction Action

• dbQCrosstab Crosstab

• dbQDelete Delete

• dbQUpdate Update

• dbQAppend Append

• dbQMakeTable Make-table

• dbQDDL Data-definition

• dbQSQLPassThrough Pass-through

• dbQSetOperation Union

• dbQSPTBulk Used with dbQSQLPassThrough to specify a query that does not
return records.

CDaoQueryDef::Open

Note To create an Sal pass-through query, don't set the dbSQLPassThrough constant. This
is set automatically by the Microsoft Jet database engine when you create a querydef object
and set the connect string.

For information about SQL strings, see GetSQL. For information about query types,
see Execute.

CDaoQueryDef: :IsOpen
BOOL IsOpen() const;

Return Value

Remarks

Nonzero if the CDaoQueryDef object is currently open; otherwise O.

Call this member function to determine whether the CDaoQueryDef object is
currently open. A querydef must be in an open state before you use it to call Execute
or to create a CDaoRecordset object. To put a querydef into an open state call either
Create (for a new querydef) or Open (for an existing querydef).

For information about querydefs, see the article "DAO Querydef' in Programming
withMPC.

CDaoQuery Def: : Open
virtual void Open(LPCTSTR IpszName = NULL);

throw(CDaoException, CMemoryException);

Parameters

Remarks

IpszName A string that contains the name of the saved querydefto open. You can
use a CString.

Call this member function to open a querydef previously saved in the database's
Query Defs collection. Once the querydef is open, you can call its Execute member
function or use the querydef to create a CDaoRecordset object.

For information about querydefs, see the article "DAO Querydef' in Programming
withMFC.

See Also CDaoQueryDef::IsOpen, CDaoQueryDef::Close,
CDaoQueryDef: :SetName, CDaoQueryDef: : Create

265

CDaoQueryDef::SetConnect

CDaoQuery Def:: SetConnect
void SetConnect(LPCTSTR lpszConnect);

throw(CDaoException, CMemoryException);

Parameters

Remarks

lpszConnect A string that contains a connect string for the associated
CDaoDatabase object.

Call this member function to set the querydef object's connect string. The connect
string is used to pass additional information to ODBC and certain ISAM drivers as
needed. It is not used for Microsoft Jet (.MDB) databases.

Tip The preferred way to work with ODSe tables is to attach them to an .MDB database. For
more information, see the topic "Accessing External Databases with DAO" in DAO Help and
the article "DAO External: Working with External Data Sources" in Programming with MFG.

Before executing a querydef that represents anSQL pass-through query to an ODBC
data source, set the connect string with SetConnect and call SetReturnsRecords to
specify whether the query returns records.

For more information about the connect string's structure and examples of connect
string components, see the topic "Connect Property" in DAO Help. For information
about querydefs, see the article "DAO Querydef' in Programming with MFC.

CDaoQuery Def:: SetN arne
void SetName(LPCTSTR lpsiName);

throw(CDaoException, CMemoryException);

Parameters

Remarks

266

lpsiName A string that contains the new name for a nontemporary query in the
associated CDaoDatabase object.

Call this member function if you want to change the name of a querydef that is not
temporary. Querydef names are unique, user-defined names. You can call SetName
before the querydef object is appended to the QueryDefs collection.

For information about querydefs, see the article "DAO Querydef' in Programming
with MFC. For more information about the querydef name, see the topic "Name
Property" in DAO Help.

See Also CDaoQueryDef::GetName, CDaoQueryDef::SetSQL,
CDaoQueryDef: :SetConnect, CDaoQueryDef: :SetODBCTimeout,
CDaoQueryDef: :SetReturnsRecords

CDaoQueryDef::SetParam Value

CDaoQueryDef: :SetODBCTimeout
void SetODBCTimeout(short nODBCTimeout);

throw(CDaoException, CMemoryException);

Parameters

Remarks

nODBCTimeout The number of seconds before a query times out.

Call this member function to set the time limit before a query to an ODBC data
source times out.

Tip The preferred way to work with ODBC tables is to attach them to a Microsoft Jet (.MDB)
database. For more information, see the topic "Accessing External Databases with DAO" in
DAO Help and the article "DAO External: Working with External Data Sources" in Programming
with MFG.

This member function lets you override the default number of seconds before
subsequent operations on the connected data source "time out." An operation might
time out due to network access problems, excessive query processing time, and so on.
Call SetODBCTimeout prior to executing a query with this querydef if you want to
change the query timeout value. (As ODBC reuses connections, the timeout value is
the same for all clients on the same connection.)

The default value for query timeouts is 60 seconds.

For information about querydefs, see the article "DAO Querydef' in Programming
with MFC. For related information, see the topic "ODBCTimeout Property" in
DAOHelp.

See Also CDaoQueryDef: : GetODBCTimeout, CDaoQueryDef: :SetName,
CDaoQueryDef: :SetSQL, CDaoQueryDef::SetConnect,
CDaoQueryDef: :SetReturnsRecords

CDaoQuery Def:: SetParam Value
void SetParam Value(LPCTSTR IpszName, const COle Variant& varValue);

throw(CDaoException, CMemoryException);
void SetParamValue(int nOrdinal, const COleVariant& varValue);

throw(CDaoException, CMemoryException);

Parameters
IpszName The name of the parameter whose value you want to set.

267

CDaoQuery Def: :SetReturnsRecords

Remarks

varValue The value to set; see "Remarks."

nOrdinal The ordinal position of the parameter in the querydef's Parameters
collection. You can obtain this value with calls to GetParameterCount and
GetParameterlnfo.

Call this member function to set the value of a parameter in the querydef at run time.
The parameter must already have been established as part of the querydef's SQL
string. You can access the parameter either by name or by its ordinal position in the
collection.

Specify the value to set as a COle Variant object. For information about setting the
desired value and type in your COle Variant object, see class COle Variant.

For examples and more information about parameterizing queries, see the article
"DAO Queries: Filtering and Parameterizing Queries" in Programming with MPC.
For related information, see the topic "PARAMETERS Declaration (SQL)" in
DAOHelp.

See Also CDaoQueryDef::GetParam Value

CDaoQuery Def:: SetReturnsRecords
void SetReturnsRecords(BOOL bReturnsRecords);

throw(CDaoException, CMemoryException);

Parameters

Remarks

268

bReturnsRecords Pass TRUE if the query on an external database returns records;
otherwise, FALSE.

Call this member function as part of the process of setting up an SQL pass-through
query to an external database. In such a case, you must create the querydef and set its
properties using other CDaoQueryDef member functions. For a description of
external databases, see SetConnect.

For information about querydefs, see the article "DAO Querydef." For information
about external data sources, see the article "DAO External: Working with External
Data Sources." Both articles are in Programming with MPC. For related information,
see the topic "ReturnsRecords Property" in DAO Help.

See Also CDaoQueryDef: : GetReturnsRecords, CDaoQueryDef: :SetName,
CDaoQueryDef: :SetSQL, CDaoQueryDef: :SetConnect,
CDaoQueryDef: :SetODBCTimeout

CDaoQueryDef: :m_pDatabase

CDaoQuery Def:: SetSQL
void SetSQL(LPCTSTR IpszSQL);

throw(CDaoException, CMemoryException);

Parameters

Remarks

IpszSQL A string containing a complete SQL statement, suitable for execution. The
syntax of this string depends on the DBMS that your query targets. For a
discussion of syntax used in the Microsoft Jet database engine, see the topic
"Building SQL Statements in Code" in DAD Help.

Call this member function to set the SQL statement that the querydef executes. A
typical use of SetSQL is setting up a querydef object for use in an SQL pass-through
query. (For the syntax of SQL pass-through queries on your target DBMS, see the
documentation for your DBMS.)

For information about querydefs, see the article "DAD Querydef' in Programming
with MPC. For more information about SQL, see the topics "SQL Property,"
"Microsoft Jet Database Engine SQL Data Types," and "Querying a Database with
SQL in Code" in DAD Help.

See Also CDaoQueryDef: :GetSQL, CDaoQueryDef: :SetName,
CDaoQueryDef: :SetConnect, CDaoQueryDef::SetODBCTimeout,
CDaoQueryDef: :SetReturnsRecords

Data Members
CDaoQueryDef: :m_pDatabase
Remarks

Contains a pointer to the CDaoDatabase object associated with the querydef object.
Use this pointer if you need to access the database directly - for example, to obtain
pointers to other querydef or recordset objects in the database's collections.

For information about querydefs, see the article "DAD Querydef' in Programming
withMPC.

269

CDaoQueryDef::m_pDAOQueryDef

CDaoQueryDef: :m_pDAOQueryDef
Remarks

270

Contains a pointer to the OLE interface for the underlying DAO querydef object. This
pointer is provided for completeness and consistency with the other classes. However,
because MFC rather fully encapsulates DAO querydefs, you are unlikely to need it. If
you do use it, do so cautiously - in particular, do not change the value of the pointer
unless you know what you are doing.

For information about querydefs, see the article "DAO Querydef' in Programming
withMFC.

CDaoRecordset

A CDaoRecordset object represents a set of records selected from a data source.
Known as "recordsets," CDaoRecordset objects are available in three forms: table
type recordsets, dynaset-type recordsets, and snapshot-type recordsets.

• Table-type recordsets represent a base table that you can use to examine, add,
change, or delete records from a single database table.

• Dynaset-type recordsets are the result of a query that can have updatable records.
A dynaset-type recordset is a set of records that you can use to examine, add,
change, or delete records from an underlying database table or tables. A dynaset
type recordset can contain fields from one or more tables in a database.

• A snapshot-type record sets is a static copy of a set of records that you can use to
find data or generate reports. A snapshot-type recordset can contain fields from
one or more tables in a database but cannot be updated.

Each form of recordset represents a set of records fixed at the time the recordset is
opened. When you scroll to a record in a table-type recordset or a dynaset -type
recordset, it reflects changes made to the record after the recordset is opened, either
by other users or by other recordsets in your application. (A snapshot-type recordset
cannot be updated.) You can use CDaoRecordset directly or derive an application
specific recordset class from CDaoRecordset. You can then:

• Scroll through the records.

• Set an index and quickly look for records using Seek (table-type recordsets only).

• Find records based on a string comparison: "<", "<=", "=", ">=", or ">" (dynaset
type and snapshot-type recordsets).

• Update the records and specify a locking mode (except snapshot-type recordsets).

• Filter the recordset to constrain which records it selects from those available on
the data source.

• Sort the recordset.

• Parameterize the recordset to customize its selection with information not known
until run time.

Class CDaoRecordset supplies an interface similar to that of class CRecordset. The
main difference is that class CDaoRecordset accesses data through a Data Access
Object (DAO) based on OLE. Class CRecordset accesses the DBMS through Open
Database Connectivity (ODBC) and an ODBC driver for that DBMS.

CDaoRecordset

271

CDaoRecordset

272

Note The DAO database classes are distinct from the MFC database classes based on Open
Database Connectivity (ODBC). All DAO database class names have the "CDao" prefix. You
can still access ODBC data sources with the DAO classes; the DAO classes generally offer
superior capabilities because they are specific to the Microsoft Jet database engine.

You can either use CDaoRecordset directly or derive a class from CDaoRecordset.
To use a recordset class in either case, open a database and construct a recordset
object, passing the constructor a pointer to your CDaoDatabase object. You can also
construct a CDaoRecordset object and let MFC create a temporary CDaoDatabase
object for you. Then call the recordset's Open member function, specifying whether
the object is a table-type recordset, a dynaset-type recordset, or a snapshot-type
recordset. Calling Open selects data from the database and retrieves the first record.

Use the object's member functions and data members to scroll through the records
and operate on them. The operations available depend on whether the object is a
table-type recordset, a dynaset-type recordset, or a snapshot-type recordset, and
whether it is updatable or read-only-this depends on the capability of the database
or Open Database Connectivity (ODBC) data source. To refresh records that may
have been changed or added since the Open call, call the object's Requery member
function. Call the object's Close member function and destroy the object when you
finish with it.

CDaoRecordset uses DAO record field exchange (DFX) to support reading and
updating of record fields through type-safe C++ members of your CDaoRecordset or
CDaoRecordset-derived class. You can also implement dynamic binding of columns
in a database without using the DFX mechanism using GetFieldValue and
SetFieldValue.

For more information about recordsets, see the article "DAO: Recordset
Architecture" in Programming with MFC. For related information, see the topic
"Recordset Object" in DAO Help.

#include <afxdao.h>

See Also CDaoTableDef, CDaoWorkspace, CDaoDatabase, CDaoQueryDef

Data Members

m_bCheckCacheForDirtyFields

m_pDAORecordset

Contains a flag indicating whether fields are
automatically marked as changed.

A pointer to the DAO interface underlying the
recordset object.

Contains the number of parameter data members in the
recordset class - the number of parameters passed
with the recordset's query

Source database for this result set. Contains a pointer
to a CDaoDatabase object.

Contains a string used to construct an SQL WHERE

Construction

CDaoRecordset

Close

Open

Attributes

CanAppend

CanBookmark

CanRestart

CanScroll

CanTransact

CanUpdate

GetCurrentIndex

GetDateCreated

GetDateLastUpdated

GetEditMode

GetLastModitiedBookmark

GetName

GetParam Value

GetRecordCount

GetSQL

GetType

statement.

Contains a string used to construct an SQL ORDER
BY statement.

Constructs a CDaoRecordset object.

Closes the recordset.

Creates a new recordset from a table, dynaset, or
snapshot.

Returns nonzero if new records can be added to the
recordset via the AddNew member function.

Returns nonzero if the recordset supports bookmarks.

Returns nonzero if Requery can be called to run the
recordset's query again.

Returns nonzero if you can scroll through the records.

Returns nonzero if the data source supports
transactions.

Returns nonzero if the recordset can be updated (you
can add, update, or delete records).

Returns a CString containing the name of the index
most recently used on an indexed, table-type
CDaoRecordset.

Returns the date and time the base table underlying a
CDaoRecordset object was created

Returns the date and time of the most recent change
made to the design of a base table underlying a
CDaoRecordset object.

Returns a value that indicates the state of editing for
the current record.

Used to determine the most recently added or updated
record.

Returns a CString containing the name of the
recordset.

Retrieves the current value of the specified parameter
stored in the underlying DAOParameter object.

Returns the number of records accessed in a recordset
object.

Gets the SQL string used to select records for the
recordset.

Called to determine the type of a recordset: table-type,
dynaset-type, or snapshot-type.

CDaoRecordset

273

CDaoRecordset

274

GetValidationRule

GetValidationText

IsBOF

IsDeleted

IsEOF

IsFieldDirty

IsFieldNull

IsFieldNullable

IsOpen

SetCurrentlndex

SetParam Value

SetParam ValueNull

Recordset Update Operations

AddNew

CancelUpdate

Delete

Edit

Update

Returns a CString containing the value that validates
data as it is entered into a field.

Retrieves the text that is displayed when a validation
rule is not satisfied.

Returns nonzero if the recordset has been positioned
before the first record. There is no current record.

Returns nonzero if the recordset is positioned on a
deleted record.

Returns nonzero if the recordset has been positioned
after the last record. There is no current record.

Returns nonzero if the specified field in the current
record has been changed.

Returns nonzero if the specified field in the current
record is Null (having no value).

Returns nonzero if the specified field in the current
record can be set to Null (having no value).

Returns nonzero if Open has been called previously.

Called to set an index on a table-type recordset.

Sets the current value of the specified parameter stored
in the underlying DAOParameter object

Sets the current value of the specified parameter to
Null (having no value).

Prepares for adding a new record. Call Update to
complete the addition.

Cancels any pending updates due to an Edit or
AddNew operation.

Deletes the current record from the recordset. You
must explicitly scroll to another record after the
deletion.

Prepares for changes to the current record. Call Update
to complete the edit.

Completes an AddNew or Edit operation by saving the
new or edited data on the data source.

Recordset Navigation Operations

Find

FindFirst

FindLast

FindNext

FindPrev

GetAbsolutePosition

GetBookmark

GetPercentPosition

Move

MoveFirst

MoveLast

MoveNext

MovePrev

Seek

SetAbsolutePosition

SetBookmark

SetPercentPosition

Locates the first, next, previous, or last location of a
particular string in a dynaset-type record set that
satisfies the specified criteria and makes that record the
current record.

Locates the first record in a dynaset-type or snapshot
type recordset that satisfies the specified criteria and
makes that record the current record.

Locates the last record in a dynaset-type or snapshot
type record set that satisfies the specified criteria and
makes that record the current record.

Locates the next record in a dynaset-type or snapshot
type recordset that satisfies the specified criteria and
makes that record the current record.

Locates the previous record in a dynaset-type or
snapshot-type recordset that satisfies the specified
criteria and makes that record the current record.

Returns the record number of a recordset object's
current record.

Returns a value that represents the bookmark on a
record.

Returns the position of the current record as a
percentage of the total number of records.

Positions the recordset to a specified number of records
from the current record in either direction.

Positions the current record on the first record in the
recordset.

Positions the current record on the last record in the
recordset.

Positions the current record on the next record in the
recordset.

Positions the current record on the previous record in
the recordset.

Locates the record in an indexed table-type recordset
object that satisfies the specified criteria for the current
index and makes that record the current record.

Sets the record number of a recordset object's current
record.

Positions the recordset on a record containing the
specified bookmark.

Sets the position of the current record to a location
corresponding to a percentage of the total number of
records in a recordset.

CDaoRecordset

275

CDaoRecordset

276

Other Recordset Operations

FilICache

GetCacheSize

GetCacheStart

GetFieldCount

GetFieldlnfo

GetFieldValue

GetlndexCount

GetlndexInfo

GetLockingMode

Requery

SetCacheSize

SetCacheStart

SetFieldDirty

SetFieldNull

SetFieldValue

SetFieldValueNull

SetLockingMode

Overridables

DoFieldExchange

GetDefaultDBName

GetDefaultSQL

Fills all or a part of a local cache for a recordset object
that contains data from an ODBC data source.

Returns a value that specifies the number of records in
a dynaset-type recordset containing data to be locally
cached from an ODBC data source.

Returns a value that specifies the bookmark of the first
record in the recordset to be cached.

Returns a value that represents the number of fields in
a recordset.

Returns specific kinds of information about the fields
in the recordset.

Returns the value of a field in a recordset.

Retrieves the number of indexes in a table underlying a
recordset.

Returns various kinds of information about an index.

Returns a value that indicates the type of locking that is
in effect during editing.

Runs the record set' s query again to refresh the selected
records.

Sets a value that specifies the number of records in a
dynaset-type recordset containing data to be locally
cached from an ODBC data source.

Sets a value that specifies the bookmark of the first
record in the recordset to be cached.

Marks the specified field in the current record as
changed.

Sets the value of the specified field in the current
record to Null (having no value).

Sets the value of a field in a recordset.

Sets the value of a field in a recordset to Null (having
no value).

Sets a value that indicates the type of locking to put
into effect during editing.

Called to exchange data (in both directions) between
the field data members of the recordset and the
corresponding record on the data source. Implements
DAO record field exchange (DFX).

Returns the name of the default data source.

Called to get the default SQL string to execute.

CDaoRecordset::AddNew

Member Functions
CDaoRecordset: : AddN ew

Remarks

virtual void AddNew();
throw(CDaoException, CMemoryException);

Call this member function to add a new record to a table-type or dynaset-type
recordset. The record's fields are initially Null. (In database terminology, Null means
"having no value" and is not the same as NULL in C++.) To complete the operation,
you must call the Update member function. Update saves your changes to the data
source.

Caution If you edit a record and then scroll to another record without calling Update, your
changes are lost without warning.

If you add a record to a dynaset-type recordset by calling AddNew, the record is
visible in the recordset and included in the underlying table where it becomes visible
to any new CDaoRecordset objects.

The position of the new record depends on the type of recordset:

• In a dynaset-type recordset, records are inserted at the end of the recordset,
regardless of any sorting or ordering rules that may have been in effect when the
recordset was opened .

• In a table-type recordset for which an index has been specified, records are
returned in their proper place in the sort order. If no index has been specified, new
records are returned at the end of the recordset.

The record that was current before you used AddNew remains current. If you want to
make the new record current and the recordset supports bookmarks, call
SetBookmark to the bookmark identified by the LastModified property setting of the
underlying DAO recordset object. Doing so is useful for determining the value for
counter (auto-increment) fields in an added record. For more information, see
GetLastModifledBookmark.

If the database supports transactions, you can make your AddNew call part of a
transaction. For more information about transactions, see class CDaoWorkspace.
Note that you should call CDaoWorkspace::BeginTrans before calling AddNew.

It is illegal to call AddNew for a recordset whose Open member function has not
been called. A CDaoException is thrown if you call AddNew for a recordset that
cannot be appended. You can determine whether the recordset is updatable by calling
CanAppend.

277

CDaoRecordset::CanAppend

The framework marks changed field data members to ensure they will be written to
the record on the data source by the DAO record field exchange (DFX) mechanism.
Changing the value of a field generally sets the field dirty automatically, so you will
seldom need to call SetFieldDirty yourself, but you might sometimes want to ensure
that columns will be explicitly updated or inserted regardless of what value is in the
field data member. The DFX mechanism also employs the use of PSEUDO NULL.
For more information, see CDaoFieldExchange::m_nOperation.

If the double-buffering mechanism is not being used, then changing the value of the
field does not automatically set the field as dirty. In this case, it will be necessary to
explicity set the field dirty. The flag contained in m_bCheckCacheForDirtyFields
controls this automatic field checking.

Note If records are double-buffered (that is, automatic field checking is enabled), calling
Cancel Update will restore the member variables to the values they had before Add New or
Edit was called.

For more information about updating records, see the article "DAO Recordset:
Recordset Operations" in Programming with MPC. For related information, see the
topics "AddNew Method," "CancelUpdate Method," "LastModified Property," and
"EditMode Property" in DAO Help.

See Also CDaoRecordset: :CanUpdate, CDaoRecordset: :CancelUpdate,
CDaoRecordset: :Delete, CDaoRecordset: : Edit, CDaoRecordset:: Update,
CDaoRecordset: :CanTransact

CDaoRecordset: :CanAppend
BOOL CaoAppend() const;

Return Value

Remarks

278

Nonzero if the recordset allows adding new records; otherwise O. CaoAppend will
return 0 if you opened the recordset as read-only.

Call this member function to determine whether the previously opened recordset
allows you to add new records by calling the AddNew member function.

For more information about updating records, see the article "DAO Recordset:
Recordset Operations" in Programming with MPC. For related information, see the
topic "Append Method" in DAO Help.

See Also CDaoRecordset::CanBookmark, CDaoRecordset: :CanRestart,
CDaoRecordset: :CanScroll, CDaoRecordset: :CanTransact,
CDaoRecordset: : CanUp date

CDaoRecordset: :CancelUpdate

CDaoRecordset: :CanBookmark
BOOL CanBookmark() const;

throw(CDaoException, CMemoryException);

Return Value

Remarks

Nonzero if the recordset supports bookmarks, otherwise O.

Call this member function to determine whether the previously opened recordset
allows you to individually mark records using bookmarks. If you are using recordsets
based entirely on Microsoft Jet database engine tables, bookmarks can be used except
on snapshot-type record sets flagged as forward-only scrolling recordsets. Other
database products (external ODBC data sources) may not support bookmarks.

For more information about recordset navigation, see the article "DAO Recordset:
Recordset Navigation" in Programming with MFC. For related information, see the
topic "Bookmarkable Property" in DAO Help.

See Also CDaoRecordset: : CanAppend , CDaoRecordset: :CanRestart,
CDaoRecordset: :CanScroll, CDaoRecordset: :CanTransact,
CDaoRecordset: :CanUpdate

CDaoRecordset: :CancelUpdate

Remarks

virtual void CanceIUpdate();
throw(CDaoException, CMemoryException);

The CancelUpdate member function cancels any pending updates due to an Edit or
AddNew operation. For example, if an application calls the Edit or AddNew
member function and has not called Update, CancelUpdate cancels any changes
made after Edit or AddNew was called.

Note If records are double-buffered (that is, automatic field checking is enabled), calling
Cancel Update will restore the member variables to the values they had before Add New or
Edit was called.

If there is no Edit or AddNew operation pending, CancelUpdate causes MFC to
throw an exception. Call the GetEditMode member function to determine if there is
a pending operation that can be canceled.

For more information about updating data, see the article "DAO Recordset: Recordset
Operations" in Programming with MFC. For related information, see the topic
"CancelUpdate Method" in DAO Help.

See Also CDaoRecordset::AddNew, CDaoRecordset::Delete,
CDaoRecordset: :Edit, CDaoRecordset:: Update, CDaoRecordset: :CanTransact

279

CDaoRecordset: :CanRestart

CDaoRecordset: : C anRe start
BOOL CanRestart();

throw(CDaoException, CMemoryException);

Return Value

Remarks

Nonzero if Requery can be called to run the recordset's query again, otherwise O.

Call this member function to determine whether the record set allows restarting its
query (to refresh its records) by calling the Requery member function. Table-type
recordsets do not support Requery.

If Requery is not supported, call Close then Open to refresh the data. You can call
Requery to update a recordset object's underlying parameter query after the
parameter values have been changed.

For more information about working with DAO objects, see the article "DAO:
Creating, Opening, and Closing DAO Objects" in Programming with MFC. For
related information, see the topic "Restartable Property" in DAO Help.

See Also CDaoRecordset: :CanAppend, CDaoRecordset::CanBookmark,
CDaoRecordset: :CanScroll, CDaoRecordset: :CanTransact,
CDaoRecordset: : CanUp date

CDaoRecordset: : CanS croll
BOOL CanScroll() const;

Return Value

Remarks

280

Nonzero if you can scroll through the records, otherwise O.

Call this member function to determine whether the recordset allows scrolling. If you
call Open with dbForwardOnly, the recordset can only scroll forward.

For more information about navigating through recordsets, see the article "DAO
Recordset: Recordset Navigation" in Programming with MFC. For related
information, see the topic "Positioning the Current Record Pointer with DAO" in
DAOHelp.

See Also CDaoRecordset::CanAppend, CDaoRecordset: :CanBookmark,
CDaoRecordset: :CanRestart, CDaoRecordset: :CanTransact,
CDaoRecordset::CanUpdate, CDaoRecordset::Open

CDaoRecordset: :Can Update

CDaoRecordset: :CanTransact
BOOL CanTransact() const;

throw(CDaoException, CMemoryException);

Return Value

Remarks

Nonzero if the underlying data source supports transactions, otherwise O.

Call this member function to determine whether the recordset allows transactions.

For more information about updating data, see the article "DAO Recordset: Recordset
Operations" in Programming with MFC. For related information, see the topic
"Transactions Property" in DAO Help.

See Also CDaoRecordset::AddNew, CDaoRecordset::CanAppend,
CDaoRecordset: :CancelUpdate, CDaoRecordset: :CanScroll,
CDaoRecordset::CanRestart, CDaoRecordset: :CanUpdate,
CDaoRecordset: :Delete, CDaoRecordset: :Edit, CDaoRecordset:: Update

CDaoRecordset:: Can Update
BOOL CanUpdate() const;

throw(CDaoException, CMemoryException);

Return Value

Remarks

Nonzero if the recordset can be updated (add, update, and delete records),
otherwise O.

Call this member function to determine whether the record set can be updated. A
recordset might be read-only if the underlying data source is read-only or if you
specified dbReadOnly for nOptions when you called Open for the recordset.

For more information about updating data, see the article "DAO Recordset: Recordset
Operations" in Programming with MFC. For related information, see the topics
"AddNew Method," "Edit Method," "Delete Method," "Update Method," and
"Updatable Property" in DAO Help.

See Also CDaoRecordset: :CanAppend, CDaoRecordset::CanBookmark,
CDaoRecordset: : CanScroll , CDaoRecordset:: CanRestart,
CDaoRecordset: :CanTransact

281

CDaoRecordset::CDaoRecordset

CDaoRecordset: :CDaoRecordset
CDaoRecordset(CDaoDatabase* pDatabase = NULL);

Parameters

Remarks

pDatabase Contains a pointer to a CDaoDatabase object or the value NULL. If not
NULL and the CDaoDatabase object's Open member function has not been
called to connect it to the data source, the recordset attempts to open it for you
during its own Open call. If you pass NULL, a CDaoDatabase object is
constructed and connected for you using the data source information you specified
if you derived your recordset class from CDaoRecordset.

Constructs a CDaoRecordset object. You can either use CDaoRecordset directly or
derive an application-specific class from CDaoRecordset. You can use ClassWizard
to derive your recordset classes.

Note If you derive a CDaoRecordset class, your derived class must supply its own
constructor. In the constructor of your derived class, call the constructor
CDaoRecordset::CDaoRecordset, passing the appropriate parameters along to it.

Pass NULL to your recordset constructor to have a CDaoDatabase object constructed
and connected for you automatically. This is a useful shortcut that does not require
you to construct and connect a CDaoDatabase object prior to constructing your
recordset. If the CDaoDatabase object is not open, a CDaoWorkspace object will
also be created for you that uses the default workspace. For more information, see
CDaoDatabase: :CDaoDatabase.

For more information about constructing recordsets, see the article "DAD: Creating,
Opening, and Closing DAD Objects" in Programming with MFC.

See Also CDaoRecordset: : GetDefaultDBName,
CDaoRecordset: : GetDefaultSQL, CDaoRecordset: :GetDateCreated,
CDaoRecordset: : GetDateLastUpdated

CDaoRecordset: :Close

Remarks

282

virtual void Close();
throw(CDaoException);

Closing a CDaoRecordset object removes it from the collection of open recordsets in
the associated database. Because Close does not destroy the CDaoRecordset object,
you can reuse the object by calling Open on the same data source or a different data
source.

CDaoRecordset: :Delete

All pending AddNew or Edit statements are canceled, and all pending transactions
are rolled back. If you want to preserve pending additions or edits, call Update before
you call Close for each recordset.

You can call Open again after calling Close. This lets you reuse the recordset object.
A better alternative is to call Requery, if possible.

For more information about working with recordsets, see the article "DAO: Creating,
Opening, and Closing DAO Objects" in Programming with MFC. For related
information, see the topic "Close Method" in DAO Help.

See Also CDaoRecordset::Open, CDaoRecordset::CDaoRecordset

CDaoRecordset: :Delete

Remarks

virtual void Delete();
throw(CDaoException, CMemoryException);

Call this member function to delete the current record in an open dynaset-type or
table-type record set object. After a successful deletion, the recordset's field data
members are set to a Null value, and you must explicitly call one of the recordset
navigation member functions (Move, Seek, SetBookmark, and so on) in order to
move off the deleted record. When you delete records from a recordset, there must be
a current record in the recordset before you call Delete; otherwise, MFC throws an
exception.

Delete removes the current record and makes it inaccessible. Although you cannot
edit or use the deleted record, it remains current. Once you move to another record,
however, you cannot make the deleted record current again.

Caution The recordset must be updatable and there must be a valid record current in the
recordset when you call Delete. For example, if you delete a record but do not scroll to a new
record before you call Delete again, Delete throws a CDaoException.

You can undelete a record if you use transactions and you call the
CDaoWorkspace::Rollback member function. If the base table is the primary table
in a cascade delete relationship, deleting the current record may also delete one or
more records in a foreign table. For more information, see the definition of cascade
delete in DAO Help.

Unlike AddNew and Edit, a call to Delete is not followed by a call to Update.

283

CDaoRecordset: :DoFieldExchange

For more information about updating data, see the article "DAO Recordset: Recordset
Operations~' in Programming w,ith MFC. For related information, see the topics
"AddNew Method," "Edit Method," "Delete Method," "Update Method," and
"Updatable Property" in DAO Help.

See Also CDaoRecordset: :AddNew, CDaoRecordset: :CanceIUpdate,
CDaoRecordset::Edit, CDaoRecordset:: Update, CDaoRecordset: :CanTransact

CDaoRecordset: : DoFieldExchange
virtual void DoFieldExchange(CDaoFieldExchange* pFX);

Parameters

Remarks

284

pFX Contains a pointer to a CDaoFieldExchange object. The framework will
already have set up this object to specify a context for the field exchange
operation.

The framework calls this member function to automatically exchange data between
the field data members of your recordset object and the corresponding columns of the
current record on the data source. It also binds your parameter data members, if any,
to parameter placeholders in the SQL statement string for the recordset's selection.
The exchange of field data, called DAO record field exchange (DFX), works in both
directions: from the recordset object's field data members to the fields of the record
on the data source, and from the record on the data source to the recordset object. If
you are binding columns dynamically, you are not required to implement
DoFieldExchange. .

The only action you must normally take to implement DoFieldExchange for your
derived recordset class is to create the class with ClassWizard and specify the names
and data types of the field data members. You might also add code to what
Class Wizard writes to specify parameter data members. If all fields are to be bound
dynamically, this function will be inactive unless you specify parameter data
members. For more information, see the article "DAO Recordset: Binding Records
Dynamically" in Programming with MFC.

When you declare your derived recordset class with Class Wizard, the wizard writes
an override of DoFieldExchange for you, which resembles the following example:

void CCustSet::DoFieldExchange(CDaoFieldExchange* pFX)
{

}

//{{AFX_FIELD_MAP(CCustSet)
pFX->SetFieldType(CFieldExchange::outputColumn);
DFX_Text(pFX. "Name". m_strName);
DFX_Short(pFX. "Age". m_wAge);
//}}AFX_FIELD_MAP

For more information about record field exchange, see the article "DAO Record Field
Exchange (DFX)" in Programming with MPC.

See Also CDaoException

CDaoRecordset: :Edit

Remarks

virtual void Edit();
throw(CDaoException, CMemoryException);

Call this member function to allow changes to the current record.

Once you call the Edit member function, changes made to the current record's fields
are copied to the copy buffer. After you make the desired changes to the record, call
Update to save your changes. Edit saves the values of the recordset's data members.
If you call Edit, make changes, then call Edit again, the record's values are restored
to what they were before the first Edit call.

Caution If you edit a record and then perform any operation that moves to another record
without first calling Update, your changes are lost without warning. In addition, if you close the
recordset or the parent database, your edited record is discarded without warning.

In some cases, you may want to update a column by making it Null (containing no
data). To do so, call SetFieldNull with a parameter of TRUE to mark the field Null;
this also causes the column to be updated. If you want a field to be written to the data
source even though its value has not changed, call SetFieldDirty with a parameter of
TRUE. This works even if the field had the value Null.

The framework marks changed field data members to ensure they will be written to
the record on the data source by the DAO record field exchange (DFX) mechanism.
Changing the value of a field generally sets the field dirty automatically, so you will
seldom need to call SetFieldDirty yourself, but you might sometimes want to ensure
that columns will be explicitly updated or inserted regardless of what value is in the
field data member. The DFX mechanism also employs the use of PSEUDO NULL.
For more information, see CDaoFieldExchange: :m_nOperation.

If the double-buffering mechanism is not being used, then changing the value of the
field does not automatically set the field as dirty. In this case, it will be necessary to
explicity set the field dirty. The flag contained in m_bCheckCacheForDirtyFields
controls this automatic field checking.

CDaoRecordset: :Edit

285

CDaoRecordset: :FillCache

When the record set object is pessimistically locked in a multiuser environment, the
record remains locked from the time Edit is used until the updating is complete. If
the recordset is optimistically locked, the record is locked and compared with the pre
edited record just before it is updated in the database. If the record has changed since
you called Edit, the Update operation fails and MFC throws an exception. You can
change the locking mode with SetLockingMode.

Note Optimistic locking is always used on external database formats, such as ODSe and
installable ISAM.

The current record remains current after you call Edit. To call Edit, there must be a
current record. If there is no current record or if the recordset does not refer to an
open table-type or dynaset-type recordset object, an exception occurs. Calling Edit
causes a CDaoException to be thrown under the following conditions:

• There is no current record.

• The database or recordset is read-only.

• No fields in the record are updatable.

• The database or recordset was opened for exclusive use by another user.

• Another user has locked the page containing your record.

If the data source supports transactions, you can make the Edit call part of a
transaction. Note that you should call CDaoWorkspace::BeginTrans before calling
Edit and after the record set has been opened. Also note that calling
CDaoWorkspace::CommitTrans is not a substitute for calling Update to complete
the Edit operation. For more information about transactions, see class
CDaoWorkspace.

For more information about updating data, see the article "DAO Recordset: Recordset
Operations" in Programming with MFC. For related information, see the topics
"AddNew Method," "Edit Method," "Delete Method," "Update Method," and
"Updatable Property" in DAO Help.

See Also CDaoRecordset: :AddNew, CDaoRecordset: :CanceIUpdate,
CDaoRecordset: :CanTransact, CDaoRecordset: : Delete, CDaoRecordset:: Update

CDaoRecordset: : FillCache
void FillCache(long* pSize = NULL, COle Variant* pBookmark = NULL);

throw(CDaoException, CMemoryException);

Parameters

286

pSize Specifies the number of rows to fill in the cache. If you omit this parameter,
the value is determined by the CacheSize property setting of the underlying DAO
object.

Remarks

CDaoRecordset: :FillCache

pBookmark A COle Variant specifying a bookmark. The cache is filled starting
from the record indicated by this bookmark. If you omit this parameter, the cache
is filled starting from the record indicated by the CacheStart property of the
underlying DAO object.

Call this member function to cache a specified number of records from the record set.
Caching improves the performance of an application that retrieves, or fetches, data
from a remote server. A cache is space in local memory that holds the data most
recently fetched from the server on the assumption that the data will probably be
requested again while the application is running. When data is requested, the
Microsoft Jet database engine checks the cache for the data first rather than fetching
it from the server, which takes more time. Using data caching on non-ODBC data
sources has no effect as the data is not saved in the cache.

Rather than waiting for the cache to be filled with records as they are fetched, you
can explicitly fill the cache at any time by calling the FiIICache member function.
This is a faster way to fill the cache because FiIICache fetches several records at once
instead of one at a time. For example, while each screenful of records is being
displayed, you can have your application call FiIICache to fetch the next screenful of
records.

Any ODBC database accessed with recordset objects can have a local cache. To create
the cache, open a recordset object from the remote data source, and then call the
SetCacheSize and SetCacheStart member functions of the recordset. If [Size and
[Bookmark create a range that is partly or wholly outside the range specified by
SetCacheSize and SetCacheStart, the portion of the recordset outside this range is
ignored and is not loaded into the cache. If FiIICache requests more records than
remain in the remote data source, only the remaining records are fetched, and no
exception is thrown.

Records fetched from the cache do not reflect changes made concurrently to the
source data by other users.

FiIICache fetches only records not already cached. To force an update of all the
cached data, call the SetCacheSize member function with an [Size parameter equal to
0, call SetCacheSize again with the [Size parameter equal to the size of the cache you
originally requested, and then call FiIICache.

For more information about caching records, see the article "DAO External:
Improving Performance with External Data Sources" in Programming with MPC. For
related information, see the topic "FillCache Method" in DAO Help.

See Also CDaoRecordset: :GetCacheSize, CDaoRecordset: : GetCacheStart,
CDaoRecordset: :SetCacheSize, CDaoRecordset: :SetCacheStart

287

CDaoRecordset: :Find

CDaoRecordset: : Find
virtual BOOL Find(long IFindType, LPCTSTR IpszFilter);

throw(CDaoException, CMemoryException);

Return Value
Nonzero if matching records are found, otherwise O.

Parameters

Remarks

IFindType A value indicating the type of Find operation desired. The possible
values are:

• AFX_DAO_NEXT Find the next location of a matching string.

• AFX_DAO_PREV Find the previous location of a matching string.

• AFX_DAO_FIRST Find the first location of a matching string.

• AFX_DAO_LAST Find the last location of a matching string.

IpszFilter A string expression (like the WHERE clause in an SQL statement
without the word WHERE) used to locate the record. For example:

Find(AFX_OAO_FIRST, "col RecIO - 7"), "customer name - 'Jones'"

Call this member function to locate a particular string in the recordset using a
comparison operator. You can find the first, next, previous, or last instance of the
string. Find is a virtual function, so you can override it and add your own
implementation. The FindFirst, FindLast, FindNext, and FindPrev member
functions call the Find member function, so you can use Find to control the behavior
of all Find operations.

Tip The smaller the set of records you have, the more effective Find will be. In general, and
especally with OOSC data, it is better to create a new query that retrieves just the records you
want. With table-type recordsets, it is faster to set an index and call Seek.

For more information about finding records, see the article "DAO Recordset:
Recordset Navigation" in Programming with MFC. For related information, see the
topic "FindFirst, FindLast, FindNext, FindPrevious Methods" in DAO Help.

See Also CDaoRecordset: :FindFirst, CDaoRecordset: :FindLast,
CDaoRecordset::FindNext, CDaoRecordset::FindPrev

CDaoRecordset: : FindFirst
BOOL FindFirst(LPCTSTR IpszFilter);

throw(CDaoException, CMemoryException);

288

CDaoRecordset: :FindFirst

Return Value
Nonzero if matching records are found, otherwise O.

Parameters

Remarks

IpszFilter A string expression (like the WHERE clause in an SQL statement
without the word WHERE) used to locate the record.

Call this member function to find the first record that matches a specified condition.
The FindFirst member function begins its search from the beginning of the recordset
and searches to the end of the recordset.

If you want to include all the records in your search (not just those that meet a
specific condition) use one of the Move operations to move from record to record. To
locate a record in a table-type recordset, call the Seek member function.

If a record matching the criteria is not located, the current record pointer is
undetermined, and Find returns zero. If the recordset contains more than one record
that satisfies the criteria, FindFirst locates the first occurrence, FindNext locates the
next occurrence, and so on.

Caution If you edit the current record, be sure to save the changes by calling the Update
member function before you move to another record. If you move to another record without
updating, your changes are lost without warning.

The Find member functions search from the location and in the direction specified in
the following table:

Find operations Begin Search direction

FindFirst Beginning of recordset End of recordset

FindLast End of recordset Beginning of recordset

FindNext Current record End of recordset

FindPrevious Current record Beginning of recordset

Important When you call FindLast, the Microsoft Jet database engine fully populates your
record set before beginning the search, if this has not already been done. The first search may
take longer than subsequent searches.

U sing one of the Find operations is not the same as calling MoveFirst or MoveNext,
however, which simply makes the first or next record current without specifying a
condition. You can follow a Find operation with a Move operation.

Keep the following in mind when using the Find operations:

• If Find returns nonzero, the current record is not defined. In this case, you must
position the current record pointer back to a valid record.

289

CDaoRecordset: :FindLast

• You cannot use a Find operation with a forward-only scrolling snapshot-type
recordset.

• You should use the U.S. date format (month-day-year) when you search for fields
containing dates, even if you are not using the U.S. version of the Microsoft Jet
database engine; otherwise, matching records may not be found.

• When working with ODBC databases and large dynasets, you may discover that
using the the Find operations is slow, especially when working with large
recordsets. You can improve performance by using SQL queries with customized
ORDER BY or WHERE clauses, parameter queries, or CDaoQuerydef objects
that retrieve specific indexed records.

For more information about finding records, see the article "DAO Recordset:
Recordset Navigation" in Programming with MFC. For related information, see the
topic "FindFirst, FindLast, FindNext, FindPrevious Methods" in DAO Help.

See Also CDaoRecordset: :Find, CDaoRecordset: :FindLast,
CDaoRecordset::FindNext, CDaoRecordset: :FindPrev

CDaoRecordset: : FindLast
BOOL FindLast(LPCTSTR IpszFilter);

throw(CDaoException, CMemoryException);

Return Value
Nonzero if matching records are found, otherwise O.

Parameters

Remarks

290

IpszFilter A string expression (like the WHERE clause in an SQL statement
without the word WHERE) used to locate the record.

Call this member function to find the last record that matches a specified condition.
The FindLast member function begins its search at the end of the recordset and
searches backward towards the begining of the recordset.

If you want to include all the records in your search (not just those that meet a
specific condition) use one of the Move operations to move from record to record. To
locate a record in a table-type recordset, call the Seek member function.

If a record matching the criteria is not located, the current record pointer is
undetermined, and calling the IsNoMatch member function returns nonzero. If the
recordset contains more than one record that satisfies the criteria, FindFirst locates
the first occurrence, FindNext locates the next occurrence after the first occurrence,
and so on.

CDaoRecordset: : FindNext

Caution If you edit the current record, be sure you save the changes by calling the Update
member function before you move to another record. If you move to another record without
updating, your changes are lost without warning.

Using one of the Find operations is not the same as calling MoveFirst or MoveNext~
however~ which simply makes the first or next record current without specifying a
condition. You can follow a Find operation with a Move operation.

Keep the following in mind when using the Find operations:

• If Find returns nonzero~ the current record is not defined. In this case~ you must
position the current record pointer back to a valid record.

• You cannot use a Find operation with a forward-only scrolling snapshot-type
recordset.

• You should use the U.S. date format (month-day-year) when you search for fields
containing dates~ even if you are not using the U.S. version of the Microsoft Jet
database engine; otherwise~ matching records may not be found.

• When working with ODBC databases and large dynasets~ you may discover that
using the the Find operations is slow~ especially when working with large
recordsets. You can improve performance by using SQL queries with customized
ORDER BY or WHERE clauses~ parameter queries~ or CDaoQuerydef objects
that retrieve specific indexed records.

For more information about finding records~ see the article "DAO Recordset:
Recordset Navigation" in Programming with MFC. For related information~ see the
topic "FindFirst~ FindLast~ FindNext~ FindPrevious Methods" in DAO Help.

See Also CDaoRecordset: :Find~ CDaoRecordset: :FindFirst~
CDaoRecordset: :FindNext~ CDaoRecordset: : FindPrev

CDaoRecordset: : FindN ext
BOOL FindNext(LPCTSTR lpszFilter);

throw(CDaoException, CMemoryException);

Return Value
Nonzero if matching records are found~ otherwise o.

Parameters

Remarks

lpszFilter A string expression (like the WHERE clause in an SQL statement
without the word WHERE) used to locate the record.

Call this member function to find the next record that matches a specified condition.
The FindNext member function begins its search at the current record and searches
to the end of the recordset.

291

CDaoRecordset::FindPrev

If you want to include all the records in your search (not just those that meet a
specific condition) use one of the Move operations to move from record to record. To
locate a record in a table-type recordset, call the Seek member function.

If a record matching the criteria is not located, the current record pointer is
undetermined, and calling the IsNoMatch member function returns nonzero. If the
recordset contains more than one record that satisfies the criteria, FindFirst locates
the first occurrence, FindNext locates the next occurrence, and so on.

Caution If you edit the current record, be sure you save the changes by calling the Update
member function before you move to another record. If you move to another record without
updating, your changes are lost without warning.

U sing one of the Find operations is not the same as calling MoveFirst or MoveNext,
however, which simply makes the first or next record current without specifying a
condition. You can follow a Find operation with a Move operation.

Keep the following in mind when using the Find operations:

• If Find returns nonzero, the current record is not defined. In this case, you must
position the current record pointer back to a valid record.

• You cannot use a Find operation with a forward-only scrolling snapshot-type
recordset.

• You should use the U.S. date format (month-day-year) when you search for fields
containing dates, even if you are not using the U.S. version of the Microsoft Jet
database engine; otherwise, matching records may not be found.

• When working with ODBC databases and large dynasets, you may discover that
using the the Find operations is slow, especially when working with large
recordsets. You can improve performance by using SQL queries with customized
ORDER BY or WHERE clauses, parameter queries, or CDaoQuerydef objects
that retrieve specific indexed records.

For more information about finding records, see the article "DAO Recordset:
Recordset Navigation" in Programming with MFC. For related information, see the
topic "FindFirst, FindLast, FindNext, FindPrevious Methods" in DAO Help.

See Also CDaoRecordset: : Find, CDaoRecordset: : FindFirst,
CDaoRecordset: :FindLast, CDaoRecordset: : FindPrev

CDaoRecordset: : FindPrev
BOOL FindPrev(LPCTSTR IpszFilter);

throw(CDaoException, CMemoryException);

Return Value
Nonzero if matching records are found, otherwise O.

292

CDaoRecordset: :FindPrev

Parameters

Remarks

IpszFilter A string expression (like the WHERE clause in an SQL statement
without the word WHERE) used to locate the record.

Call this member function to find the previous record that matches a specified
condition. The FindPrev member function begins its search at the current record and
searches backward towards the beginning of the recordset.

If you want to include all the records in your search (not just those that meet a
specific condition) use one of the Move operations to move from record to record. To
locate a record in a table-type recordset, call the Seek member function.

If a record matching the criteria is not located, the current record pointer is
undetermined, and calling the IsNoMatch member function returns nonzero. If the
recordset contains more than one record that satisfies the criteria, FindFirst locates
the first occurrence, FindNext locates the next occurrence, and so on.

Caution If you edit the current record, be sure you save the changes by calling the Update
member function before you move to another record. If you move to another record without
updating, your changes are lost without warning.

V sing one of the Find operations is not the same as calling MoveFirst or MoveNext,
however, which simply makes the first or next record current without specifying a
condition. You can follow a Find operation with a Move operation.

Keep the following in mind when using the Find operations:

• If Find returns nonzero, the current record is not defined. In this case, you must
position the current record pointer back to a valid record.

• You cannot use a Find operation with a forward-only scrolling snapshot-type
recordset.

• You should use the V.S. date format (month-day-year) when you search for fields
containing dates, even if you are not using the V.S. version of the Microsoft Jet
database engine; otherwise, matching records may not be found.

• When working with ODBC databases and large dynasets, you may discover that
using the the Find operations is slow, especially when working with large
recordsets. You can improve performance by using SQL queries with customized
ORDER BY or WHERE clauses, parameter queries, or CDaoQuerydef objects
that retrieve specific indexed records.

For more information about finding records, see the article "DAO Recordset:
Recordset Navigation" in Programming with MFC. For related information, see the
topic "FindFirst, FindLast, FindNext, FindPrevious Methods" in DAO Help.

See Also CDaoRecordset: :Find, CDaoRecordset: :FindFirst,
CDaoRecordset: : FindLast, CDaoRecordset::FindNext

293

CDaoRecordset: : GetAbsolutePosition

CDaoRecordset::GetAbsolutePosition
long GetAbsolutePosition();

throw(CDaoException, CMemoryException);

Return Value

Remarks

An integer from 0 to the number of records in the recordset. Corresponds to the
ordinal position of the current record in the recordset.

Returns the record number of a recordset object's current record. The
AbsolutePosition property value of the underlying DAO object is zero-based; a setting
of 0 refers to the first record in the recordset. You can determine the number of
populated records in the recordset by calling GetRecordCount. Calling
GetRecordCount may take some time because it must access all records to determine
the count.

If there is no current record, as when there are no records in the record set, -1 is
returned. If the current record is deleted, the AbsolutePosition property value is not
defined, and MFC throws an exception if it is referenced. For dynaset-type recordsets,
new records are added to the end of the sequence.

Note This property is not intended to be used as a surrogate record number. Bookmarks are
still the recommended way of retaining and returning to a given position and are the only way
to position the current record across all types of recordset objects. In particular, the position of
a given record changes when record(s) preceding it are deleted. There is also no assurance
that a given record will have the same absolute position if the recordset is re-created again
because the order of individual records within a recordset is not guaranteed unless it is created
with an Sal statement using an ORDER BY clause.

Note This member function is valid only for dynaset-type and snapshot-type recordsets.

For more information about finding records, see the article "DAO Recordset:
Recordset Navigation" in Programming with MFC. For related information, see the
topic "AbsolutePosition Property" in DAO Help.

See Also CDaoRecordset: :SetAbsolutePosition

CDaoRecordset: : GetBookmark
COle Variant GetBookmark();

throw(CDaoException, CMemoryException);

Return Value
Returns a value representing the bookmark on the current record.

294

CDaoRecordset: :GetCacheSize

Remarks
Call this member function to obtain the bookmark value in a particular record. When
a recordset object is created or opened, each of its records already has a unique
bookmark if it supports them. Call CanBookmark to determine whether a recordset
supports bookmarks.

You can save the bookmark for the current record by assigning the value of the
bookmark to a COle Variant object. To quickly return to that record at any time after
moving to a different record, call SetBookmark with a parameter corresponding to
the value of that COle Variant object.

For more information about finding records, see the article "DAO Recordset:
Recordset Navigation" in Programming with MFC. For related information, see the
topic "Bookmark Property" in DAO Help.

See Also CDaoRecordset: :SetBookmark, CDaoRecordset: :CanBookmark

CDaoRecordset:: GetCacheSize
long GetCacheSize();

throw(CDaoException, CMemoryException);

Return Value

Remarks

A value that specifies the number of records in a dynaset-type recordset containing
data to be locally cached from an ODBC data source.

Call this member function to obtain the number of records cached. Data caching
improves the performance of an application that retrieves data from a remote server
through dynaset-type recordset objects. A cache is a space in local memory that holds
the data most recently retrieved from the server in the event that the data will be
requested again while the application is running. When data is requested, the
Microsoft Jet database engine checks the cache for the requested data first rather than
retrieving it from the server, which takes more time. Data that does not come from an
ODBC data source is not saved in the cache.

Any ODBC data source, such as an attached table, can have a local cache.

For more information about caching records, see the article "DAO External:
Improving Performance with External Data Sources" in Programming with MFC. For
related information, see the topic "CacheSize, CacheS tart Properties" in DAO Help.

See Also CDaoRecordset: : Fill Cache, CDaoRecordset: : GetCacheStart,
CDaoRecordset: :SetCacheSize, CDaoRecordset: :SetCacheStart

295

CDaoRecordset::GetCacheStart

CDaoRecordset: : GetCacheStart
COle Variant GetCacheStart();

throw(CDaoException, CMemoryException);

Return Value

Remarks

A COle Variant that specifies the bookmark of the first record in the recordset to
be cached.

Call this member function to obtain the bookmark value of the first record in the
recordset to be cached. The Microsoft Jet database engine requests records within the
cache range from the cache, and it requests records outside the cache range from
the server.

Note Records retrieved from the cache do not reflect changes made concurrently to the
source data by other users.

For more information about caching records, see the article "DAO External:
Improving Performance with External Data Sources" in Programming with MFC. For
related information, see the topic "CacheSize, CacheStart Properties" in DAO Help.

See Also CDaoRecordset: :FillCache, CDaoRecordset: : GetCacheSize,
CDaoRecordset: :SetCacheSize, CDaoRecordset: :SetCacheStart

CDaoRecordset: : GetCurrentIndex
CString GetCurrentlndex();

throw(CDaoException, CMemoryException);

Return Value

Remarks

296

A CString containing the name of the index currently in use with a table-type
recordset. Returns an empty string if no index has been set.

Call this member function to determine the index currently in use in an indexed
table-type CDaoRecordset object. This index is the basis for ordering records in a
table-type recordset, and is used by the Seek member function to locate records.

A CDaoRecordset object can have more than one index but can use only one index
at a time (although a CDaoTableDef object may have several indexes defined on it).

For more information about finding records, see the article "DAO Recordset:
Recordset Navigation" in Programming with MFC. For related information, see the
topic "Index Object" and the definition of current index in DAO Help.

See Also CDaoRecordset: :SetCurrentIndex

CDaoRecordset: :GetDefaultDBN arne

CDaoRecordset: : GetDateCreated
COleDateTime GetDateCreated();

throw(CDaoException, CMemoryException);

Return Value

Remarks

A COleDateTime object containing the date and time the base table was created.

Call this member function to retrieve the date and time a base table was created. Date
and time settings are derived from the computer on which the base table was created.

For more information about creating recordsets, see the article "DAO: Creating,
Opening, and Closing DAO Objects" in Programming with MFC. For related
information, see the topic "DateCreated, LastUpdated Properties" in DAO Help.

See Also CDaoRecordset::GetDateLastUpdated

CDaoRecordset: : GetDateLastUpdated
COleDateTime GetDateLastUpdated();

throw(CDaoException, CMemoryException);

Return Value

Remarks

A COleDateTime object containing the date and time the base table structure
(schema) was last updated.

Call this member function to retrieve the date and time the schema was last updated.
Date and time settings are derived from the computer on which the base table
structure (schema) was last updated.

For more information about creating recordsets, see the article "DAO: Creating,
Opening, and Closing DAO Objects" in Programming with MFC. For related
information, see the topic "DateCreated, LastUpdated Properties" in DAO Help.

See Also CDaoRecordset: : GetDateCreated

CDaoRecordset: : GetDefaultDBN arne
virtual CString GetDefaultDBName();

Return Value
A CString that contains the path and name of the database from which this recordset
is derived.

297

CDaoRecordset: : GetDefaultSQL

Remarks
Call this member function to determine the name of the database for this recordset. If
a recordset is created without a pointer to a CDaoDatabase, then this path is used by
the recordset to open the default database. By default, this function returns an empty
string. When ClassWizard derives a new recordset from CDaoRecordset, it will
create this function for you.

The following example illustrates the use of the double backslash (\\) in the string, as
is required for the string to be interpreted correctly.

CString CMyRecordset::GetDefaultDBName
{

return _T("c:\\mydir\\datasrc.mdb");
}

For more information about connecting to databases, see the article "DAO: Creating,
Opening, and Closing DAO Objects" in Programming with MPC.

See Also CDaoRecordset: : GetDefaultSQL, CDaoRecordset: : GetName,
CDaoRecordset: :GetSQL, CDaoRecordset: : GetType

CDaoRecordset: : GetDefaultSQL
virtual CString GetDefaultSQL();

Return Value

Remarks

298

A CString that contains the default SQL statement.

The framework calls this member function to get the default SQL statement on which
the recordset is based. This might be a table name or an SQL SELECT statement.

You indirectly define the default SQL statement by declaring your recordset class
with Class Wizard, and Class Wizard performs this task for you.

If you pass a null SQL string to Open, then this function is called to determine the
table name or SQL for your recordset.

For more information about connecting to databases, see the article "DAO: Creating,
Opening, and Closing DAO Objects" in Programming with MPC.

See Also CDaoRecordset: : GetDefaultDBName, CDaoRecordset: : GetName,
CDaoRecordset: : GetSQL, CDaoRecordset: : GetType

CDaoRecordset: : GetFieldCount

CDaoRecordset: : GetEditMode
short GetEditMode();

throw(CDaoException, CMemoryException);

Return Value

Remarks

Returns a value that indicates the state of editing for the current record.

Call this member function to determine the state of editing, which is one of the
following values:

Value

dbEditNone

dbEditInProgress

dbEditAdd

Description

No editing operation is in progress.

Edit has been called.

AddNew has been called.

For more information about updating data, see the article "DAO Recordset: Recordset
Operations" in Programming with MFC. For related information, see the topic
"EditMode Property" in DAO Help.

CDaoRecordset: : GetFieldCount
short GetFieldCount();

throw(CDaoException, CMemoryException);

Return Value

Remarks

The number of fields in the recordset.

Call this member function to retrieve the number of fields (columns) defined in the
recordset.

For more information about creating recordsets, see the article "DAO Recordset:
Creating Recordsets" in Programming with MFC. For related information, see the
topic "Count Property" in DAO Help.

See Also CDaoRecordset: : GetFieldlnfo, CDaoRecordset: : GetFieldValue,
CDaoRecordset: :GetlndexCount, CDaoRecordset: : GetlndexInfo

299

CDaoRecordset::GetFieldInfo

CDaoRecordset: : GetFieldInfo
void GetFieldInfo(int nlndex, CDaoFieldInfo& fieldinfo,

DWORD dwlnfoOptions = AFX_DAO_PRIMARY _INFO);
throw(CDaoException, CMemoryException);

void GetFieldInfo(LPCTSTR IpszName, CDaoFieldInfo& fieldinfo,
DWORD dwlnfoOptions = AFX_DAO_PRIMARY_INFO);
throw(CDaoException, CMemoryException);

Parameters

Remarks

300

nlndex The zero-based index of the predefined field in the recordset's Fields
collection, for lookup by index.

fieldinfo A reference to a CDaoFieldInfo structure.

dwlnfoOptions Options that specify which information about the recordset to
retrieve. The available options are listed here along with what they cause the
function to return. For best performance, retrieve only the level of information
you need:

• AFX_DAO_PRIMARY _INFO (Default) Name, Type, Size, Attributes

• AFX_DAO_SECONDARY_INFO Primary information, plus: Ordinal
Position, Required, Allow Zero Length, Collating Order, Foreign Name, Source
Field, Source Table

• AFX_DAO_ALL_INFO Primary and secondary information, plus: Default
Value, Validation Rule, Validation Text

IpszName The name of the field.

Call this member function to obtain information about the fields in a recordset. One
version of the function lets you look up a field by index. The other version lets you
look up a field by name.

For a description of the information returned, see the CDaoFieldInfo structure. This
structure has members that correspond to the items of information listed above in the
description of dwlnfoOptions. When you request information at one level, you get
information for any prior levels as well.

For more information about creating recordsets, see the article "DAO Recordset:
Creating Recordsets" in Programming with MFC. For related information, see the
topic "Attributes Property" in DAO Help.

See Also CDaoRecordset: : GetFieldCount, CDaoRecordset: : GetFieldValue,
CDaoRecordset: : GetlndexCount, CDaoRecordset: : GetIndexInfo

CDaoRecordset::GetIndexCount

CDaoRecordset: : GetFieldValue
virtual COleVariant GetFieldValue (LPCTSTR IpszName);

throw(CDaoException, CMemoryException);
virtual COleVariant GetFieldValue(int nlndex);

throw(CDaoException, CMemoryException);

Return Value
A COle Variant object that contains the value of a field.

Parameters

Remarks

IpszName A pointer to a string that contains the name of a field.

nlndex A zero-based index of the field in the recordset's Fields collection, for
lookup by index.

Call this member function to retrieve data in a recordset. One version of the function
lets you look up a field by ordinal position. The other version lets you look up a field
by name.

Use GetFieldValue and SetFieldValue to dynamically bind fields at run time rather
than statically binding columns using the DoFieldExchange mechanism.

GetFieldValue and the DoFieldExchange mechanism can be combined to improve
performance. For example, use GetFieldValue to retrieve a value that you need only
on demand, and assign that call to a "More Information" button in the interface.

For more information about binding fields dynamically, see the article "DAO
Recordset: Binding Records Dynamically" in Programming with MFC. For related
information, see the topics "Field Object" and "Value Property" in DAO Help.

See Also CDaoRecordset: :SetFieldValue

CDaoRecordset: : GetIndexCount
short GetlndexCount();

throw(CDaoException, CMemoryException);

Return Value

Remarks

The number of indexes in the table-type recordset.

Call this member function to determine the number of indexes available on the table
type recordset. GetIndexCount is useful for looping through all indexes in the
recordset. For that purpose, use GetlndexCount in conjunction with GetlndexInfo.
If you call this member function on dynaset-type or snapshot-type recordsets, MFC
throws an exception.

301

CDaoRecordset: : GetIndexInfo

For more information about creating recordsets, see the article "DAO Recordset:
Creating Recordsets" in Programming with MFC. For related information, see the
topic "Attributes Property" in DAO Help.

See Also CDaoRecordset: : GetFieldCount, CDaoRecordset: : GetFieldInfo,
CDaoRecordset: : GetIndexInfo

CDaoRecordset: : GetIndexInfo
void GetIndexInfo(int nlndex, CDaoIndexInfo& indexinfo,

DWORD dwlnfoOptions = AFX_DAO_PRIMARY_INFO);
throw(CDaoException, CMemoryException);

void GetIndexInfo(LPCTSTR IpszName, CDaoIndexInfo& indexinfo,
DWORD dwlnfoOptions = AFX_DAO_PRIMARY _INFO);
throw(CDaoException, CMemoryException);

Parameters

Remarks

302

nlndex The zero-based index in the table's Indexes collection, for lookup by
numerical position.

indexinfo A reference to a CDaoIndexInfo structure.

dwlnfoOptions Options that specify which information about the index to retrieve.
The available options are listed here along with what they cause the function to
return. For best performance, retrieve only the level of information you need:

• AFX_DAO_PRIMARY_INFO (Default) Name, Field Info, Fields

• AFX_DAO_SECONDARY_INFO Primary information, plus: Primary,
Unique, Clustered, IgnoreNulls, Required, Foreign

• AFX_DAO_ALL_INFO Primary and secondary information, plus:
Distinct Count

IpszName A pointer to the name of the index object, for lookup by name.

Call this member function to obtain various kinds of information about an index
defined in the base table underlying a recordset. One version of the function lets you
look up a index by its position in the collection. The other version lets you look up an
index by name.

For a description of the information returned, see the CDaoIndexInfo structure. This
structure has members that correspond to the items of information listed above in the
description of dwlnfoOptions. When you request information at one level, you get
information for any prior levels as well.

CDaoRecordset: : GetLockingMode

For more information about creating recordsets, see the article "DAO Recordset:
Creating Recordsets" in Programming with MPC. For related information, see the
topic "Attributes Property" in DAO Help.

See Also CDaoRecordset: : GetFieldCount, CDaoRecordset: : GetFieldlnfo,
CDaoRecordset: : GetIndexCount, CDaoRecordset: : GetLastModifiedBookmark

CDaoRecordset: : GetLastModifiedBookmark
COle Variant GetLastModifiedBookmark();

throw(CDaoException, CMemoryException);

Return Value

Remarks

A COle Variant containing a bookmark that indicates the most recently added or
changed record.

Call this member function to retrieve the bookmark of the most recently added or
updated record. When a recordset object is created or opened, each of its records
already has a unique bookmark if it supports them. Call GetBookmark to determine
if the recordset supports bookmarks. If the recordset does not support bookmarks, a
CDaoException is thrown.

When you add a record, it appears at the end of the recordset, and is not the current
record. To make the new record current, call GetLastModifiedBookmark and then
call SetBookmark to return to the newly added record.

For more information about navigating in recordsets, see the article "DAO Recordset:
Recordset Navigation" in Programming with MPC. For related information, see the
topic "LastModified Property" in DAO Help.

See Also CDaoRecordset: : GetBookmark, CDaoRecordset: :SetBookmark

CDaoRecordset: : GetLockingMode
BOOL GetLockingMode();

throw(CDaoException, CMemoryException);

Return Value
Nonzero if the type of locking is pessimistic, otherwise 0 for optimistic record
locking.

303

CDaoRecordset::GetName

Remarks
Call this member function to determine the type of locking in effect for the record set.
When pessimistic locking is in effect, the data page containing the record you are
editing is locked as soon as you call the Edit member function. The page is unlocked
when you call the Update or Close member function or any of the Move or Find
operations.

When optimistic locking is in effect, the data page containing the record is locked
only while the record is being updated with the Update member function.

When working with ODBC data sources, the locking mode is always optimistic.

For more information about updating data, see the article "DAO Recordset: Recordset
Operations" in Programming with MPC. For related information, see the topics
"LockEdits Property" and "Locking Behavior in Multiuser Applications" in DAO
Help.

See Also CDaoRecordset::SetLockingMode

CDaoRecordset: : GetN arne
CString GetName();

throw(CDaoException, CMemoryException);

Return Value

Remarks

A CString containing the name of the recordset.

Call this member function to retrieve the name of the recordset. The name of the
recordset must start with a letter and can contain a maximum of 40 characters. It can
include numbers and underscore characters but can't include punctuation or spaces.

For more information about creating recordsets, see the article "DAO Recordset:
Creating Recordsets" in Programming with MPC. For related information, see the
topic "Name Property" in DAO Help.

See Also CDaoRecordset::GetDefaultDBName,
CDaoRecordset: : GetDefaultSQL, CDaoRecordset::GetSQL,
CDaoRecordset: : GetType

CDaoRecordset: : GetParam Value

304

virtual COleVariant GetParamValue(int nlndex);
throw(CDaoException, CMemoryException);

virtual COleVariant GetParamValue(LPCTSTR lpszName);
throw(CDaoException, CMemoryException);

CDaoRecordset: : GetPercentPosition

Return Value
An object of class COleVariant that contains the parameter's value.

Parameters

Remarks

nlndex The numerical position of the parameter in the underlying DAOParameter
object.

lpszName The name of the parameter whose value you want.

Call this member function to retrieve the current value of the specified parameter
stored in the underlying DAOParameter object. You can access the parameter either
by name or by its numerical position in the collection.

For more information about parameters, see the article "DAO Queries: Filtering and
Parameterizing Queries" in Programming with MFC. For related information, see the
topic "Parameter Object" in DAO Help.

See Also CDaoRecordset::SetParam Value, CDaoRecordset: :m_nParams

CDaoRecordset: : GetPercentPosition
float GetPercentPosition();

throw(CDaoException, CMemoryException);

Return Value

Remarks

A number between 0 and 100 that indicates the approximate location of the current
record in the recordset object based on a percentage of the records in the recordset.

When working with a dynaset-type or snapshot-type recordset, if you call
GetPercentPosition before fully populating the recordset, the amount of movement is
relative to the number of records accessed as indicated by calling GetRecordCount.
You can move to the last record by calling MoveLast to complete the population of
all recordsets, but this may take a significant amount of time.

You can call GetPercentPosition on all three types of recordset objects, including
tables without indexes. However, you cannot call GetPercentPosition on forward
only scrolling snapshots, or on a recordset opened from a pass-through query against
an external database. If there is no current record, or the current record has been
deleted, a CDaoException is thrown.

For more information about navigating in recordsets, see the article "DAO Recordset:
Recordset Navigation" in Programming with MFC. For related information, see the
topic "PercentPosition Property" in DAO Help.

See Also CDaoRecordset: :SetPercentPosition

305

CDaoRecordset::GetRecordCount

CDaoRecordset: : GetRecordCount
long GetRecordCount();

tbrow(CDaoException, CMemoryException);

Return Value

Remarks

306

Returns the number of records in a recordset.

Call this member function to find out how many records in a recordset have been
accessed. GetRecordCount does not indicate how many records are contained in a
dynaset-type or snapshot-type recordset until all records have been accessed. This
member function call may take a significant amount of time to complete.

Once the last record has been accessed, the return value indicates the total number of
undeleted records in the recordset. To force the last record to be accessed, call the
MoveLast or FindLast member function for the recordset. You can also use a SQL
Count to determine the approximate number of records your query will return.

As your application deletes records in a dynaset-type recordset, the return value of
GetRecordCount decreases. However, records deleted by other users are not reflected
by GetRecordCount until the current record is positioned to a deleted record. If you
execute a transaction that affects the record count and subsequently roll back the
transaction, GetRecordCount will not reflect the actual number of remaining
recQrds.

The value of GetRecordCount from a snapshot-type recordset is not affected by
changes in ~he underlying tables.

The value of GetRecordCount from a table-type recordset reflects the approximate
number of records in the table and is affected immediately as table records are added
and deleted.

A recordset with no records returns a value of O. When working with attached tables
or ODBC databases, GetRecordCount always returns -1. Calling the Requery
member function on a recordset resets the value of GetRecordCount just as if the
query were re-executed.

For more information about navigating in recordsets, see the article "DAO Recordset:
Recordset Navigation" in Programming with MFC. For related information, see the
topic "RecordCount Property" in DAO Help.

See Also CDaoRecordset::GetFieldCount, CDaoRecordset::GetFieldlnfo,
CDaoRecordset::GetlndexCount, CDaoRecordset: : GetIndexlnfo

CDaoRecordset: : GetType

CDaoRecordset: : GetSQL
CString GetSQL() const;

Return Value

Remarks

A CString that contains the SQL statement.

Call this member function to get the SQL statement that was used to select the
recordset's records when it was opened. This will generally be an SQL SELECT
statement.

The string returned by GetSQL is typically different from any string you may have
passed to the recordset in the IpszSQL parameter to the Open member function. This
is because the recordset constructs a full SQL statement based on what you passed to
Open, what you specified with Class Wizard, and what you may have specified in the
m_strFilter and m_strSort data members.

Important Call this member function only after calling Open.

For more information about creating recordsets, see the article "DAO Recordset:
Creating Recordsets" in Programming with MPC. For related information, see the
topic "SQL Property" in DAO Help.

See Also CDaoRecordset: : GetDefauItSQL,
CDaoRecordset::GetDefauItDBName, CDaoRecordset::GetName,
CDaoRecordset::GetType

CDaoRecordset: : GetType
short GetType();

throw(CDaoException, CMemoryException);

Return Value

Remarks

One of the following values that indicates the type of a recordset:

• dbOpenTabJe Table-type recordset

• dbOpenDynaset Dynaset-type recordset

• dbOpenSnapshot Snapshot-type record set

Call this member function after opening the recordset to determine the type of the
recordset object.

307

CDaoRecordset: : GetV alidationRule

For more information about creating recordsets, see the article "DAO Recordset:
Creating Recordsets" in Programming with MFC. For related information, see the
topic "Type Property" in DAO Help.

See Also CDaoRecordset::GetDefauItDBName,
CDaoRecordset: : GetDefaultSQL, CDaoRecordset: : GetName,
CDaoRecordset: : GetSQL

CDaoRecordset: : Get ValidationRule
CString GetValidationRule();

throw(CDaoException, CMemoryException);

Return Value

Remarks

A CString object containing a value that validates the data in a record as it is
changed or added to a table.

Call this member function to determine the rule used to validate data. This rule is
text-based, and is applied each time the underlying table is changed. If the data is not
legal, MFC throws an exception. The returned error message is the text of the
ValidationText property of the underlying field object, if specified, or the text of the
expression specified by the ValidationRule property of the underlying field object.
You can call GetValidationText to obtain the text of the error message.

For example, a field in a record that requires the day of the month might have a
validation rule such as "DAY BETWEEN 1 AND 31."

For more information about creating recordsets, see the article "DAO Recordset:
Creating Recordsets" in Programming with MFC. For related information, see the
topic "ValidationRule Property" in DAO Help.

See Also CDaoRecordset: : GetValidationText

CDaoRecordset: :Get ValidationText
CString GetValidationText();

throw(CDaoException, CMemoryException);

Return Value

Remarks

308

A CString object containing the text of the message that is displayed if the value of a
field does not satisfy the validation rule of the underlying field object.

Call this member function to retrieve the text of the Validation Text property of the
underlying field object.

CDaoRecordset: :IsBOF

For more information about creating recordsets, see the article "DAO Recordset:
Creating Recordsets" in Programming with MFC. For related information, see the
topic "ValidationText Property" in DAO Help.

See Also CDaoRecordset: :Get ValidationRule

CDaoRecordset: :IsBOF
BOOL IsBOF() const;

throw(CDaoException, CMemoryException);

Return Value

Remarks

Nonzero if the recordset contains no records or if you have scrolled backward before
the first record; otherwise O.

Call this member function before you scroll from.'record to record to learn whether
you have gone before the first record of the recordset. You can also call IsBOF along
with IsEOF to determine whether the recordset 'contains any records or is empty.
Immediately after you call Open, if the recordset contains no records, IsBOF returns
nonzero. When you open a recordset that has at least one record, the first record is
the current record and IsBOF returns O.

If the first record is the current record and you call MovePrev, IsBOF will
subsequently return nonzero. If IsBOF returns nonzero and you call MovePrev, an
exception is thrown. If IsBOF returns nonzero, the current record is undefined, and
any action that requires a current record will result in an exception.

Effect of specific methods on IsBOF and IsEOF settings:

• Calling Open internally makes the first record in the recordset the current record
by calling MoveFirst. Therefore, calling Open on. an empty set of records causes
IsBOF and IsEOF to return nonzero. (See the following table for the behavior of a
failed MoveFirst or MoveLast call.)

• All Move operations that successfully locate a record cause both IsBOF and
IsEOF to return O.

• An AddNew call followed by an Update call that successfully inserts a new record
will cause IsBOF to return 0, but only if IsEOF is already nonzero. The state of
IsEOF will always remain unchanged. As defined by the Microsoft Jet database
engine, the current record pointer of an empty recordset is at the end of a file, so
any new record is inserted after the current record.

• Any Delete call, even if it removes the only remaining record from a recordset,
will not change the value of IsBOF or IsEOF.

309

CDaoRecordset: :IsDeleted

This table shows which Move operations are allowed with different combinations of
IsBOFIIsEOF.

MoveFirst, MovePrev, MoveNext,
Movelast Move<O Move 0 Move >0

IsBOF=nonzero, Allowed Exception Exception Allowed
IsEOF=O

IsBOF=O, Allowed Allowed Exception Exception
IsEOF=nonzero

Both nonzero Exception Exception Exception Exception

Both 0 Allowed Allowed Allowed Allowed

Allowing a Move operation does not mean that the operation will successfully locate
a record. It merely indicates that an attempt to perform the specified Move operation
is allowed and will not generate an exception. The value of the IsBOF and IsEOF
member functions may change as a result of the attempted move.

The effect of Move operations that do not locate a record on the value of IsBOF and
IsEOF settings is shown in the following table.

IsBOF IsEOF

MoveFirst, MoveLast Nonzero Nonzero

Move 0 No change No change

MovePrev, Move < 0 Nonzero No change

MoveNext, Move> 0 No change Nonzero

For more information about navigating in recordsets, see the article "DAO Recordset:
Recordset Navigation" in Programming with MFC. For related information, see the
topic "BOF, EOF Properties" in DAO Help.

See Also CDaoRecordset: :IsEOF

CDaoRecordset: : IsDeleted
BOOL IsDeleted() const;

Return Value

Remarks

310

Nonzero if the recordset is positioned on a deleted record; otherwise O.

Call this member function to determine whether the current record has been deleted.
If it has, you must scroll to another record before you can perform any other recordset
operations. IsDeleted returns nonzero only if you deleted a record and did not scroll
off that record.

CDaoRecordset: :IsEOF

For more information about navigating in recordsets, see the article "DAO Recordset:
Recordset Navigation" in Programming with MFC. For related information, see the
topics "Delete Method," "LastModified Property," and "EditMode Property" in DAO
Help.

See Also CDaoRecordset::IsBOF, CDaoRecordset: : IsEOF

CDaoRecordset: :IsEOF
BOOL IsEOF() const;

throw(CDaoException, CMemoryException);

Return Val ue

Remarks

Nonzero if the recordset contains no records or if you have scrolled beyond the last
record; otherwise O.

Call this member function as you scroll from record to record to learn whether you
have gone beyond the last record of the recordset. You can also call IsEOF to
determine whether the recordset contains any records or is empty. Immediately after
you call Open, if the recordset contains no records, IsEOF returns nonzero. When
you open a recordset that has at least one record, the first record is the current record
and IsEOF returns O.

If the last record is the current record when you call MoveNext, IsEOF will
subsequently return nonzero. If IsEOF returns nonzero and you call MoveNext, an
exception is thrown. If IsEOF returns nonzero, the current record is undefined, and
any action that requires a current record will result in an exception.

Effect of specific methods on IsBOF and IsEOF settings:

• Calling Open internally makes the first record in the recordset the current record
by calling MoveFirst. Therefore, calling Open on an empty set of records causes
IsBOF and IsEOF to return nonzero. (See the following table for the behavior of a
failed MoveFirst call.)

• All Move operations that successfully locate a record cause both IsBOF and
IsEOF to return O.

• An AddNew call followed by an Update call that successfully inserts a new record
will cause IsBOF to return 0, but only if IsEOF is already nonzero. The state of
IsEOF will always remain unchanged. As defined by the Microsoft Jet database
engine, the current record pointer of an empty recordset is at the end of a file, so
any new record is inserted after the current record.

• Any Delete call, even if it removes the only remaining record from a recordset,
will not change the value of IsBOF or IsEOF.

311

CDaoRecordset::IsFieldDirty

This table shows which Move operations are allowed with different combinations of
IsBOFIIsEOF.

MoveFirst, MovePrev, MoveNext,
MoveLast Move<O Move 0 Move> 0

IsBOF=nonzero, Allowed Exception Exception Allowed
IsEOF=O

IsBOF=O, Allowed Allowed Exception Exception
IsEOF=nonzero

Both nonzero Exception Exception Exception Exception

Both 0 Allowed Allowed Allowed Allowed

Allowing a Move operation does not mean that the operation will successfully locate
a record. It merely indicates that an attempt to perform the specified Move operation
is allowed and will not generate an exception. The value of the IsBOF and IsEOF
member functions may change as a result of the attempted Move.

The effect of Move operations that do not locate a record on the value of IsBOF and
IsEOF settings is shown in the following table.

IsBOF IsEOF

MoveFirst, MoveLast Nonzero Nonzero

Move 0 No change No change

MovePrev, Move < 0 Nonzero No change

MoveNext, Move> 0 No change Nonzero

For more information about navigating in recordsets, see the article "DAO Recordset:
Recordset Navigation" in Programming with MFC. For related information, see the
topic "BOF, EOF Properties" in DAO Help.

See Also CDaoRecordset::IsBOF

CDaoRecordset: : IsFieldDirty
BOOL IsFieldDirty(void* pv) const;

throw(CDaoException, CMemoryException);

Return Value
Nonzero if the specified field data member is flagged as dirty; otherwise O.

Parameters

312

pv A pointer to the field data member whose status you want to check, or NULL to
determine if any of the fields are dirty.

CDaoRecordset: :IsFieldNull

Remarks
Call this member function to determine whether the specified field data member of a
dynaset has been flagged as "dirty" (changed). The data in all dirty field data
members will be transferred to the record on the data source when the current record
is updated by a call to the Update member function of CDaoRecordset (following a
call to Edit or AddNew). With this knowledge, you can take further steps, such as
unflagging the field data member to mark the column so it will not be written to the
data source. For more information on the dirty flag, see the article "DAO Recordset:
Caching Multiple Records" in Programming with MFC.

IsFieldDirty is implemented through DoFieldExchange.

For more information about record field exchange, see the article "DAO Record Field
Exchange (DFX)" in Programming with MFC.

See Also CDaoRecordset::IsFieldNull, CDaoRecordset::IsFieldNullable

CDaoRecordset: : IsFieldNul1
BOOL IsFieldNull(void* pv);

throw(CDaoException, CMemoryException);
BOOL IsFieldNull(short nlndex);

throw(CDaoException, CMemoryException);
BOOL IsFieldNull(LPCTSTR IpszName);

throw(CDaoException, CMemoryException);

Return Value
Nonzero if the specified field data member is flagged as Null; otherwise O.

Parameters

Remarks

pv A pointer to the field data member whose status you want to check, or NULL to
determine if any of the fields are Null.

nlndex The index of the field in the recordset, for lookup by zero-based index.

IpszName The name of the field in the recordset, for lookup by name.

Call this member function to determine whether the specified field data member of a
recordset has been flagged as Null. (In database terminology, Null means "having no
value" and is not the same as NULL in C++.) If a field data member is flagged as
Null, it is interpreted as a column of the current record for which there is no value.

The first version of IsFieldNull is used for fields bound in the DoFieldExchange
mechanism. If you choose to bind your fields dynamically, you must use either the
second or third version of this member function. You can mix the calls as necessary.

313

CDaoRecordset: :IsFieldNullable

For more information about record field exchange, see the article "DAO Record Field
Exchange (DFX)" in Programming with MFC.

See Also CDaoRecordset: : IsFieldDirty, CDaoRecordset: : IsFieldNullable

CDaoRecordset: : IsFieldNullable
BOOL IsFieldNullable(void* pv);

throw(CDaoException, CMemoryException);
BOOL IsFieldNullable(short nlndex);

throw(CDaoException, CMemoryException);
BOOL IsFieldNullable(LPCTSTR IpszName);

throw(CDaoException, CMemoryException);

Return Value
Nonzero if the specified field data member can be made Null; otherwise O.

Parameters

Remarks

314

pv A pointer to the field data member whose status you want to check, or NULL to
determine if any of the fields are Null.

nlndex The index of the field in the recordset, for lookup by zero-based index.

lpszName The name of the field in the recordset, for lookup by name.

Call this member function to to determine whether the specified field data member is
"nullable" (can be set to a Null value; C++ NULL is not the same as Null, which, in
database terminology, means "having no value").

A field that cannot be Null must have a value. If you attempt to set such a field to
Null when adding or updating a record, the data source rejects the addition or update,
and Update will throw an exception. The exception occurs when you call Update,
not when you call SetFieldNull.

The first version of IsFieldNullable is used for fields bound in the DoFieldExchange
mechanism. If you choose to bind your fields dynamically, you must use either the
second or third version of this member function. You can mix the calls as necessary.

For more information about record field exchange, see the article "DAO Record Field
Exchange (DFX)" in Programming with MFC.

See Also CDaoRecordset: : IsFieldDirty , CDaoRecordset: :IsFieldNull

CDaoRecordset: :Move

CDaoRecordset: :IsOpen
BOOL IsOpen() const;

Return Value

Remarks

Nonzero if the recordset object's Open or Requery member function has previously
been called and the recordset has not been closed; otherwise O.

Call this member function to determine if the recordset is open.

For more information about creating recordsets, see the article "DAO Recordset:
Creating Recordsets" in Programming with MFC.

See Also CDaoRecordset::Open, CDaoRecordset::Close

CDaoRecordset: :Move
virtual void Move(long tRows);

throw(CDaoException, CMemoryException);

Parameters

Remarks

tRows The number of records to move forward or backward. Positive values move
forward, toward the end of the recordset. Negative values move backward, toward
the beginning.

Call this member function to position the recordset tRows records from the current
record. You can move forward or backward. Move(1) is equivalent to MoveNext,
and Move (-1) is equivalent to MovePrev.

Caution Calling any of the Move functions throws an exception if the recordset has no
records. In general, call both IsBOF and IsEOF before a Move operation to determine whether
the recordset has any records. After you call Open or Requery, call either IsBOF or IsEOF.

If you have scrolled past the beginning or end of the recordset (lsBOF or IsEOF returns
nonzero), a call to Move throws a CDaoException.

If you call any of the Move functions while the current record is being updated or added, the
updates are lost without warning.

When you call Move on a forward-only scrolling snapshot, the tRows parameter must
be a positive integer and bookmarks are not allowed, so you can move forward only.

To make the first, last, next, or previous record in a record set the current record, call
the MoveFirst, MoveLast, MoveNext, or MovePrev member function.

315

CDaoRecordset: :MoveFirst

For more information about finding records, see the article "DAO Recordset:
Recordset Navigation" in Programming with MPC. For related information, see the
topics "Move Method" and "MoveFirst, MoveLast, MoveNext, MovePrevious
Methods" in DAO Help.

See Also CDaoRecordset: :MoveFirst, CDaoRecordset::MoveLast,
CDaoRecordset: : MoveNext, CDaoRecordset: :MovePrev

CDaoRecordset: : MoveFirst

Remarks

316

void MoveFirst();
throw(CDaoException, CMemoryException);

Call this member function to make the first record in the recordset (if any) the current
record. You do not have to call MoveFirst immediately after you open the recordset.
At that time, the first record (if any) is automatically the current record.

Caution Calling any of the Move functions throws an exception if the recordset has no
records. In general, call both IsBOF and IsEOF before a Move operation to determine whether
the recordset has any records. After you call Open or Requery, call either IsBOF or IsEOF.

If you call any of the Move functions while the current record is being updated or added, the
updates are lost without warning.

Use the Move functions to move from record to record without applying a condition.
Use the Find operations to locate records in a dynaset-type or snapshot-type recordset
object that satisfy a certain condition. To locate a record in a table-type recordset
object, call Seek.

If the recordset refers to a table-type recordset, movement follows the table's current
index. You can set the current index by using the Index property of the underlying
DAO object. If you do not set the current index, the order of returned records is
undefined.

If you call MoveLast on a recordset object based on an SQL query or querydef, the
query is forced to completion and the recordset object is fully populated.

You cannot call the MoveFirst or MovePrev member function with a forward-only
scrolling snapshot.

To move the position of the current record in a recordset object a specific number of
records forward o~ backward, call Move.

CDaoRecordset: : MoveLast

For more information about finding records, see the article "DAO Recordset:
Recordset Navigation" in Programming with MFC. For related information, see the
topics "Move Method" and "MoveFirst, MoveLast, MoveNext, MovePrevious
Methods" in DAO Help.

See Also CDaoRecordset::Move, CDaoRecordset::MoveLast,
CDaoRecordset: :MoveNext, CDaoRecordset::MovePrev

CDaoRecordset: :MoveLast

Remarks

void MoveLast();
throw(CDaoException, CMemoryException);

Call this member function to make the last record (if any) in the recordset the current
record.

Caution Calling any of the Move functions throws an exception if the recordset has no
records. In general, call both IsBOF and IsEOF before a Move operation to determine whether
the recordset has any records. After you call Open or Requery, call either IsBOF or IsEOF.

If you call any of the Move functions while the current record is being updated or added, the
updates are lost without warning.

Use the Move functions to move from record to record without applying a condition.
Use the Find operations to locate records in a dynaset-type or snapshot-type recordset
object that satisfy a certain condition. To locate a record in a table-type recordset
object, call Seek.

If the recordset refers to a table-type recordset, movement follows the table's current
index. You can set the current index by using the Index property of the underlying
DAO object. If you do not set the current index, the order of returned records is
undefined.

If you call MoveLast on a recordset object based on an SQL query or querydef, the
query is forced to completion and the record set object is fully populated.

To move the position of the current record in a recordset object a specific number of
records forward or backward, call Move.

For more information about finding records, see the article "DAO Recordset:
Recordset Navigation" in Programming with MFC. For related information, see the
topics "Move Method" and "MoveFirst, MoveLast, MoveNext, MovePrevious
Methods" in DAO Help.

See Also CDaoRecordset: :Move, CDaoRecordset: :MoveFirst,
CDaoRecordset: : MoveNext, CDaoRecordset: :MovePrev

317

CDaoRecordset: :MoveNext

CDaoRecordset: :MoveN ext

Remarks

318

void MoveNext();
throw(CDaoException, CMemoryException);

Call this member function to make the next record in the recordset the current record.
It is recommended that you call IsBOF before you attempt to move to the previous
record. A call to MovePrev will throw a CDaoException if IsBOF returns nonzero,
indicating either that you have already scrolled before the first record or that no
records were selected by the record set.

Caution Calling any of the Move functions throws an exception if the recordset has no
records. In general, call both IsBOF and IsEOF before a Move operation to determine whether
the recordset has any records. After you call Open or Requery, call either IsBOF or IsEOF.

If you call any of the Move functions while the current record is being updated or added, the
updates are lost without warning.

Use the Move functions to move from record to record without applying a condition.
Use the Find operations to locate records in a dynaset-type or snapshot-type recordset
object that satisfy a certain condition. To locate a record in a table-type recordset
object, call Seek.

If the recordset refers to a table-type recordset, movement follows the table's current
index. You can set the current index by using the Index property of the underlying
DAO object. If you do not set the current index, the order of returned records is
undefined.

To move the position of the current record in a recordset object a specific number of
records forward or backward, call Move.

For more information about finding records, see the article "DAO Recordset:
Recordset Navigation" in Programming with MFC. For related information, see the
topics "Move Method" and "MoveFirst, MoveLast, MoveN ext, MovePrevious
Methods" in DAO Help.

See Also CDaoRecordset::Move, CDaoRecordset::MoveFirst,
CDaoRecordset: : MoveLast, CDaoRecordset::MovePrev

CDaoRecordset: :MovePrev

CDaoRecordset: : MovePrev

Remarks

void MovePrev();
throw(CDaoException, CMemoryException);

Call this member function to make the previous record in the recordset the current
record.

It is recommended that you call IsBOF before you attempt to move to the previous
record. A call to MovePrev will throw a CDaoException if IsBOF returns nonzero,
indicating either that you have already scrolled before the first record or that no
records were selected by the record set.

Caution Calling any of the Move functions throws an exception if the recordset has no
records. In general, call both IsBOF and IsEOF before a Move operation to determine whether
the recordset has any records. After you call Open or Requery, call either IsBOF or IsEOF.

If you call any of the Move functions while the current record is being updated or added, the
updates are lost without warning.

Use the Move functions to move from record to record without applying a condition.
Use the Find operations to locate records in a dynaset-type or snapshot-type recordset
object that satisfy a certain condition. To locate a record in a table-type recordset
object, call Seek.

If the recordset refers to a table-type recordset, movement follows the table's current
index. You can set the current index by using the Index property of the underlying
DAO object. If you do not set the current index, the order of returned records is
undefined.

You cannot call the MoveFirst or MovePrev member function with a forward-only
scrolling snapshot.

To move the position of the current record in a recordset object a specific number of
records forward or backward, call Move.

For more information about finding records, see the article "DAO Recordset:
Recordset Navigation" in Programming with MFC. For related information, see the
topics "Move Method" and "MoveFirst, MoveLast, MoveNext, MovePrevious
Methods" in DAO Help.

See Also CDaoRecordset: :Move, CDaoRecordset: :MoveFirst,
CDaoRecordset: : MoveLast, CDaoRecordset: : MoveNext

319

CDaoRecordset: : Open

CDaoRecordset: :Open
virtual void Open(int nOpenType = AFX_DAO_USE_DEFAVLT_TYPE,

LPCTSTR lpszSQL = NULL, int nOptions = 0);
throw(CDaoException, CMemoryException);

virtual void Open(CDaoTableDef* pTableDef, int nOpenType = dbOpenTable, int nOptions = 0);
throw(CDaoException, CMemoryException);

virtual void Open(CDaoQueryDef* pQueryDef,
int nOpenType = dbOpenDynaset, int nOptions = 0);
throw(CDaoException, CMemoryException);

Parameters

320

nOpenType One of the following values:

• dbOpenDynaset A dynaset-type recordset with bidirectional scrolling. This is
the default.

• dbOpenTable A table-type recordset with bidirectional scrolling.

• dbOpenSnapshot A snapshot-type recordset with bidirectional scrolling.

lpszSQL A string pointer containing one of the following:

• A NULL pointer.

• The name of one or more tabledefs and/or querydefs (comma-separated).

• An SQL SELECT statement (optionally with an SQL WHERE or ORDER
BY clause).

• A pass-through query.

nOptions One or more of the options listed below. The default value is O. Possible
values are as follows:

• dbAppendOnly You can only append new records (dynaset-type recordset
only). This option means literally that records may only be appended. The MFC
ODBC database classes have an append-only option that allows records to be
retrieved and appended.

• dbForwardOnly The recordset is a forward-only scrolling snapshot.

• dbSeeChanges Generate an exception if another user is changing data you are
editing.

• dbDenyWrite Other users cannot modify or add records.

• dbDenyRead Other users cannot view records (table-type recordset only).

• dbReadOnly You can only view records; other users can modify them.

• dblnconsistent Inconsistent updates are allowed (dynaset-type
recordset only).

Remarks

CDaoRecordset: : Open

• db Consistent Only consistent updates are allowed (dynaset-type
recordset only).

Note The constants dbConsistent and dblnconsistent are mutually exclusive. You can
use one or the other, but not both in a given instance of Open.

pTableDef A pointer to a CDaoTableDef object. This version is valid only for
table-type recordsets. When using this option, the CDaoDatabase pointer used to
construct the CDaoRecordset is not used; rather, the database in which the
tabledef resides is used.

pQueryDef A pointer to a CDaoQueryDef object. This version is valid only for
dynaset-type and snapshot-type recordsets. When using this option, the
CDaoDatabase pointer used to construct the CDaoRecordset is not used; rather,
the database in which the querydef resides is used.

You must call this member function to retrieve the records for the recordset. Before
calling Open, you must construct the recordset object. There are several ways to
do this:

• When you construct the recordset object, pass a pointer to a CDaoDatabase object
that is already open.

• When you construct the recordset object, pass a pointer to a CDaoDatabase object
that is not open. The recordset opens a CDaoDatabase object, but will not close it
when the recordset object closes.

• When you construct the recordset object, pass a NULL pointer. The recordset
object calls GetDefaultDBName to get the name of the Microsoft Access .MDB
file to open. The recordset then opens a CDaoDatabase object and keeps it open
as long as the recordset is open. When you call Close on the recordset, the
CDaoDatabase object is also closed.

Note When the recordset opens the CDaoDatabase object, it opens the data source with
nonexclusive access.

For the version of Open that uses the lpszSQL parameter, once the recordset is open
you can retrieve records in one of several ways. The first option is to have DFX
functions in your DoFieldExchange. The second option is to use dynamic binding by
calling the GetFieldValue member function. These options can be implemented
separately or in combination. If they are combined, you will have to pass in the SQL
statement yourself on the call to Open. For more information about dynamic binding,
see the article "DAO Recordset: Binding Records Dynamically" in Programming
withMFC.

When you use the second version of Open where you pass in a CDaoTableDef
object, the resulting columns will be available for you to bind via DoFieldExchange
and the DFX mechanism, and/or bind dynamically via GetFieldValue.

321

CDaoRecordset: : Open

322

Note You can only call Open using a CDaoTableDef object for table-type recordsets.

When you use the third version of Open where you pass in a CDaoQueryDef object,
that query will be executed, and the resulting columns will be available for you to
bind via DoFieldExchange and the DFX mechanism, and/or bind dynamically via
GetFieldValue.

Note You can only call Open using a CDaoQueryDef object for dynaset-type and snapshot
type recordsets.

For the first version of Open that uses the lpszSQL parameter, records are selected
based on criteria shown in the following table.

Value of the IpszSQL parameter Records selected are determined by

NULL

A comma-separated list of one
or more tabledefs and/or
querydef names.

SELECT column-list FROM
table-list

The string returned by
GetDefaultSQL.

All columns represented in the
DoFieldExchange.

The specified columns from the
specified tabledef(s) and/or
querydef(s).

Example

"Customer"

"SELECT CustId, CustName
FROM Customer"

The usual procedure is to pass NULL to Open; in that case, Open calls
GetDefaultSQL, an overridable member function that Class Wizard generates when
creating a CDaoRecordset-derived class. This value gives the tabledef(s) and/or
querydef name(s) you specified in Class Wizard. You can instead specify other
information in the lpszSQL parameter.

Whatever you pass, Open constructs a final SQL string for the query (the string may
have SQL WHERE and ORDER BY clauses appended to the lpszSQL string you
passed) and then executes the query. You can examine the constructed string by
calling GetSQL after calling Open.

The field data members of your recordset class are bound to the columns of the data
selected. If any records are returned, the first record becomes the current record.

If you want to set options for the recordset, such as a filter or sort, set m_strSort or
m_strFilter after you construct the recordset object but before you call Open. If you
want to refresh the records in the recordset after the recordset is already open, call
Requery.

If you call Open on a dynaset-type or snapshot-type recordset, or if the data source
refers to an SQL statement or a tabledef that represents an attached table, you cannot
use dbOpenTable for the type argument; if you do, MFC throws an exception. To
determine whether a tabledef object represents an attached table, create a
CDaoTableDef object and call its GetConnect member function.

CDaoRecordset: :Requery

Use the dbSeeChanges flag if you wish to trap changes made by another user or
another program on your machine when you are editing or deleting the same record.
For example, if two users start editing the same record, the first user to call the
Update member function succeeds. When Update is called by the second user, a
CDaoException is thrown. Similarly, if the second user tries to call Delete to delete
the record, and it has already been changed by the first user, a CDaoException
occurs.

Typically, if the user gets this CDaoException while updating, your code should
refresh the contents of the fields and retrieve the newly modified values. If the
exception occurs in the process of deleting, your code could display the new record
data to the user and a message indicating that the data has recently changed. At this
point, your code can request a confirmation that the user still wants to delete
the record.

Tip Use the forward-only scrolling option (dbForwardOnly) to improve performance when
your application makes a single pass through a recordset opened from an ODSe data source.

For more information about opening recordsets, see the articles "DAO Recordset:
Creating Recordsets" and "DAO: Creating, Opening, and Closing DAO Objects" in
Programming with MFC. For related information, see the topic "OpenRecordset
Method" in DAO Help.

See Also CDaoRecordset: : Close, CDaoRecordset: :CDaoRecordset

CDaoRecordset: : Requery

Remarks

virtual void Requery();
throw(CDaoException, CMemoryException);

Call this member function to rebuild (refresh) a recordset. If any records are returned,
the first record becomes the current record.

In order for the recordset to reflect the additions and deletions that you or other users
are making to the data source, you must rebuild the recordset by calling Requery. If
the recordset is a dynaset, it automatically reflects updates that you or other users
make to its existing records (but not additions). If the recordset is a snapshot, you
must call Requery to reflect edits by other users as well as additions and deletions.

For either a dynaset or a snapshot, call Requery any time you want to rebuild the
recordset using parameter values. Set the new filter or sort by setting m_strFilter and
m_strSort before calling Requery. Set new parameters by assigning new values to
parameter data members before calling Requery.

323

CDaoRecordset: : Seek

If the attempt to rebuild the recordset fails, the recordset is closed.· Before you call
Requery, you can determine whether the recordset can be requeried by calling the
CanRestart member function. CanRestart does not guarantee that Requery will
succeed.

Caution Call Requery only after you have called Open.

You can't call Requery on a dynaset-type or snapshot-type recordset if calling
CanRestart returns 0, nor can you use it on a table-type recordset.

If both IsBOF and IsEOF return nonzero after you call Requery, the query didn't
return any records and the recordset will contain no data.

For more information about updating data, see the article "DAO Recordset: Recordset
Operations" in Programming with MFC. For related information, see the topic
"Requery Method" in DAO Help.

See Also CDaoRecordset: :CanRestart

CDaoRecordset:: Seek
BOOL Seek(LPCTSTR lpszComparison, COleVariant* pKeyJ,

COleVariant* pKey2 = NULL, COleVariant* pKey3 = NULL);
throw(CDaoException, CMemoryException);

BOOL Seek (LPCTSTR lpszComparison, COleVariant* pKeyArray, WORD nKeys);
throw(CDaoException, CMemoryException);

Return Value
Nonzero if matching records are found, otherwise 0.

Parameters

324

lpszComparison One of the following string expressions: "<",
"<=", "=", ">=", or ">".

pKeyJ A pointer to a COleVariant whose value corresponds to the first field in the
index. Required.

pKey2 A pointer to a COleVariant whose value corresponds to the second field in
the index, if any. Defaults to NULL.

pKey3 A pointer to a COleVariant whose value corresponds to the third field in the
index, if any. Defaults to NULL.

pKeyArray A pointer to an array of variants. The array size corresponds to the
number of fields in the index.

nKeys An integer corresponding to the size of the array, which is the number·of
fields in the index.

CDaoRecordset: :SetAbsolutePosition

Remarks
Call this member function to locate the record in an indexed table-type recordset
object that satisfies the specified criteria for the current index and make that record
the current record. Use the second (array) version of Seek to handle indexes of four
fields or more.

Seek enables high-performance index searching on table-type recordsets. You must
set the current index by calling SetCurrentIndex before calling Seek. If the index
identifies a nonunique key field or fields, Seek locates the first record that satisfies
the criteria. If you do not set an index, an exception is thrown.

When you call Seek, you pass one or more key values and a comparison operator
("<", "<=", "=", ">=", or ">"). Seek searches through the specified key fields and
locates the first record that satisfies the criteria specified by lpszComparison and
pKey 1. Once found, Seek returns nonzero, and makes that record current. If Seek
fails to locate a match, Seek returns nonzero, and the current record is undefined.
When using DAO directly, you must explicitly check the NoMatch property.

If lpszComparison is "=", ">=", or ">", Seek starts at the beginning of the index. If
lpszComparison is "<" or "<=", Seek starts at the end of the index and searches
backward unless there are duplicate index entries at the end. In this case, Seek starts
at an arbitrary entry among the duplicate index entries at the end of the index.

There does not have to be a current record when you use Seek.

To locate a record in a dynaset-type or snapshot-type recordset that satisfies a specific
condition, use the Find operations. To include all records, not just those that satisfy a
specific condition, use the Move operations to move from record to record.

You cannot call Seek on an attached table of any type because attached tables must be
opened as dynaset-type or snapshot-type recordsets. However, if you call
CDaoDatabase: :Open to directly open an installable ISAM database, you can call
Seek on tables in that database, although the performance may be slow.

For more information about finding records, see the article "DAO Recordset:
Recordset Navigation" in Programming with MFC. For related information, see the
topic "Seek Method" in DAO Help.

See Also CDaoRecordset: :FindFirst, CDaoRecordset: :FindLast,
CDaoRecordset: :FindNext, CDaoRecordset: :FindPrev, CDaoRecordset: :Move,
CDaoRecordset: : MoveFirst, CDaoRecordset: :MoveLast,
CDaoRecordset::MoveNext, CDaoRecordset: :MovePrev

CDaoRecordset: : SetAbsolutePosition
voidSetAbsolutePosition(long lPosition);

throw(CDaoException, CMemoryException);

325

CDaoRecordset: :SetBookmark

Parameters

Remarks

lPosition Corresponds to the ordinal position of the current record in the recordset.

Sets the relative record number of a recordset object's current record. Calling
SetAbsolutePosition enables you to position the current record pointer to a specific
record based on its ordinal position in a dynaset-type or snapshot-type recordset. You
can also determine the current record number by calling GetAbsolutePosition.

Note This member function is valid only for dynaset-type and snapshot-type recordsets.

The AbsolutePosition property value of the underlying DAO object is zero-based; a
setting of 0 refers to the first record in the recordset. Setting a value greater than the
number of populated records causes MFC to throw an exception. You can determine
the number of populated records in the recordset by calling the GetRecordCount
member function.

If there is no current record, as when there are no records in the recordset, -1 is
returned. If the current record is deleted, the AbsolutePosition property value is not
defined, and MFC throws an exception if it is referenced. New records are added to
the end of the sequence.

Note This property is not intended to be used as a surrogate record number. Bookmarks are
still the recommended way of retaining and returning to a given position and are the only way
to position the current record across all types of recordset objects that support bookmarks. In
particular, the position of a given record changes when record(s) preceding it are deleted.
There is also no assurance that a given record will have the same absolute position if the
recordset is re-created again because the order of individual records within a recordset is not
guaranteed unless it is created with an Sal statement using an ORDER BY clause.

For more information about finding records, see the article "DAO Recordset:
Recordset Navigation" in Programming with MFC. For related information, see the
topic "AbsolutePosition Property" in DAO Help.

See Also CDaoRecordset: : GetAbsolutePosition

CDaoRecordset:: SetBookmark
void SetBookmark(COleVariant varBookmark);

throw(CDaoException, CMemoryException);

Parameters

326

varBookmark A COle Variant object containing the bookmark value for a
specific record.

CDaoRecordset: :SetCacheSize

Remarks
Call this member function to position the recordset on the record containing the
specified bookmark. When a recordset object is created or opened, each of its records
already has a unique bookmark. You can retrieve the bookmark for the current record
by calling GetBookmark and saving the value to a COleVariant object. You can
later return to that record by calling SetBookmark using the saved bookmark value.

For more information about finding records, see the article "DAO Recordset:
Recordset Navigation" in Programming with MPC. For related information, see the
topics "Bookmark Property" and "Bookmarkable Property" in DAO Help.

See Also CDaoRecordset: : GetBookmark

CDaoRecordset:: SetCacheSize
void SetCacheSize(long lSize);

throw(CDaoException, CMemoryException);

Parameters

Remarks

lSize Specifies the number of records. A typical value is 100. A setting of 0 turns off
caching. The setting must be between 5 and 1200 records. The cache may use a
considerable amount of memory.

Call this member function to set the number of records to be cached. A cache is a
space in local memory that holds the data most recently retrieved from the server in
the event that the data will be requested again while the application is running. Data
caching improves the performance of an application that retrieves data from a remote
server through dynaset-type recordset objects. When data is requested, the Microsoft
Jet database engine checks the cache for the requested data first rather than retrieving
it from the server, which takes more time. Data that does not come from an ODBC
data source is not saved in the cache.

Any ODBC data source, such as an attached table, can have a local cache. To create
the cache, open a recordset object from the remote data source, call the SetCacheSize
and SetCacheStart member functions, and then call the FillCache member function
or step through the records by using one of the Move operations. The lSize parameter
of the SetCacheSize member function can be based on the number of records your
application can work with at one time. For example, if you are using a recordset as
the source of the data to be displayed on screen, you could pass the SetCacheSize
[Size parameter as 20 to display 20 records at one time.

327

CDaoRecordset:: SetCacheStart

For more information about finding records, see the article "DAO Recordset:
Recordset Navigation" in Programming with MFC. For related information, see the
topic "CacheSize, CacheStart Properties" in DAO Help.

See Also CDaoRecordset::FillCache, CDaoRecordset::GetCacheSize,
CDaoRecordset: : GetCacheStart, CDaoRecordset: :SetCacheStart

CDaoRecordset: : SetCacheStart
void SetCacheStart(COleVariant varBookmark);

throw(CDaoException, CMemoryException);

Parameters

Remarks

varBookmark A COle Variant that specifies the bookmark of the first record in the
recordset to be cached.

Call this member function to specify the bookmark of the first record in the recordset
to be cached. You can use the bookmark value of any record for the varBookmark
parameter of the SetCacheStart member function. Make the record you want to start
the cache with the current record, establish a bookmark for that record using
SetBookmark, and pass the bookmark value as the parameter for the SetCacheStart
member function.

The Microsoft Jet database engine requests records within the cache range from the
cache, and it requests records outside the cache range from the server.

Records retrieved from the cache do not reflect changes made concurrently to the
source data by other users.

To force an update of all the cached data, pass the ISize parameter of SetCacheSize
as 0, call SetCacheSize again with the size of the cache you originally requested, and
then call the FillCache member function.

For more information about finding records, see the article "DAO Recordset:
Recordset Navigation" in Programming with MFC. For related information, see the
topic "CacheSize, CacheStart Properties" in DAO Help.

See Also CDaoRecordset::FillCache, CDaoRecordset::GetCacheSize,
CDaoRecordset: : GetCacheStart, CDaoRecordset: :SetCacheSize

CDaoRecordset:: SetCurrentIndex
void SetCurrentlndex(LPCTSTR lpszlndex);

throw(CDaoException, CMemoryException);

Parameters
lpszlndex A pointer containing the name of the index to be set.

328

CDaoRecordset: :SetFieldDirty

Remarks
Call this member function to set an index on a table-type recordset. Records in base
tables are not stored in any particular order. Setting an index changes the order of
records returned from the database, but it does not affect the order in which the
records are stored. The specified index must already be defined. If you try to use an
index object that does not exist, or if the index is not set when you call Seek, MFC
throws an exception.

You can create a new index for the table by calling CDaoTableDef::Createlndex
and appending the new index to the Indexes collection of the underlying tabledef by
calling CDaoTableDef: :Append, and then reopening the recordset.

Records returned from a table-type recordset can be ordered only by the indexes
defined for the underlying tabledef. To sort records in some other order, you can open
a dynaset-type or snapshot-type recordset using an SQL ORDER BY clause stored in
CDaoRecordset: :m_strSort.

For more information about finding records, see the article "DAO Recordset:
Recordset Navigation" in Programming with MFC. For related information, see the
topic "Index Object" and the definition of current index in DAO Help.

See Also CDaoRecordset::GetCurrentIndex

CDaoRecordset: : SetFieldDirty
void SetFieldDirty(void* pv, BOOL bDirty = TRUE);

throw(CDaoException, CMemoryException);

Parameters

Remarks

pv Contains the address of a field data member in the recordset or NULL. If NULL,
all field data members in the recordset are flagged. (C++ NULL is not the same as
Null in database terminology, which means "having no value.")

bDirty TRUE if the field data member is to be flagged as "dirty" (changed).
Otherwise FALSE if the field data member is to be flagged as "clean"
(unchanged).

Call this member function to flag a field data member of the recordset as changed or
as unchanged. Marking fields as unchanged ensures the field is not updated.

The framework marks changed field data members to ensure they will be written to
the record on the data source by the DAO record field exchange (DFX) mechanism.
Changing the value of a field generally sets the field dirty automatically, so you will
seldom need to call SetFieldDirty yourself, but you might sometimes want to ensure
that columns will be explicitly updated or inserted regardless of what value is in the
field data member. The DFX mechanism also employs the use of PSEUDO NULL.
For more information, see CDaoFieldExchange: :m_nOperation.

329

CDaoRecordset: :SetFieldNull

If the double-buffering mechanism is not being used, then changing the value
of the field does not automatically set the field as dirty. In this case, it will be
necessary to explicity set the field as dirty. The flag contained in
m_bCheckCacheForDirtyFields controls this automatic field checking.

Important Call this member function only after you have called Edit or AddNew.

U sing NULL for the first argument of the function will apply the function to all
outputColumns, not params in CDaoFieldExchange. For instance, the call

SetFieldDirty(NULL);

will set only outputColumns to NULL. The value of param will be unaffected.

To work on a param, you must supply the actual address of the individual param you
want to work on, such as:

SetFieldDirty(&m_strParam);

This means you cannot set all params NULL, as you can with outputColumns.

SetFieldDirty is implemented through DoFieldExchange.

For more information about record field exchange, see the articles "DAO Record
Field Exchange (DFX)" and "DAO Recordset: Binding Records Dynamically" in
Programming with MFC.

See Also CDaoRecordset: :SetFieldNull, CDaoRecordset: :SetFieldValue

CDaoRecordset:: SetFieldN ull
void SetFieldNull(void* pv, BOOL bNull = TRUE);

throw(CDaoException, CMemoryException);

Parameters

Remarks

330

pv Contains the address of a field data member in the recordset or NULL. If NULL,
all field data members in the recordset are flagged. (C++ NULL is not the same as
Null in database terminology, which means "having no value.")

bNull Nonzero if the field data member is to be flagged as having no value (Null).
Otherwise 0 if the field data member is to be flagged as non-Null.

Call this member function to flag a field data member of the recordset as Null
(specifically having no value) or as non-Null. The first version of SetFieldNull is
used for fields bound in the DoFieldExchange mechanism. If you choose to bind
your fields dynamically, you must use either the second or third version of this
member function. You can mix the calls as necessary.

CDaoRecordset: :SetFieldValue

When you add a new record to a recordset, all field data members are initially set to a
Null value and flagged as "dirty" (changed). When you retrieve a record from a data
source, its columns either already have values or are Null. If it is not appropriate to
make a field Null, a CDaoException is thrown.

If you are using the double-buffering mechanism, for example, if you specifically
wish to designate a field of the current record as not having a value, call
SetFieldNull with bNull set to TRUE to flag it as Null. If a field was previously
marked Null and you now want to give it a value, simply set its new value. You do
not have to remove the Null flag with SetFieldNull. To determine whether the field is
allowed to be Null, call IsFieldNullable.

If you are not using the double-buffering mechanism, then changing the value of the
field does not automatically set the field as dirty and non-Null. You must specifically
set the fields dirty and non-Null. The flag contained in
m_bCheckCacheForDirtyFields controls this automatic field checking.

The DFX mechanism employs the use of PSEUDO NULL. For more information,
see CDaoFieldExchange: :m_nOperation.

Important Call this member function only after you have called Edit or AddNew.

U sing NULL for the first argument of the function will apply the function only to
outputColunms, not params in CDaoFieldExchange. For instance, the call

SetFieldNull(NULL);

will set only outputColunms to NULL. The value of param will be unaffected.

For more information about record field exchange, see the articles "DAO Record
Field Exchange (DFX)" and "DAO Recordset: Binding Records Dynamically" in
Programming with MFC.

See Also CDaoRecordset: :SetParam Value

CDaoRecordset:: SetFieldValue
void SetFieldValue(LPCTSTR lpszName, const COleVariant& varValue);

throw(CDaoException, CMemoryException);
void SetFieldValue(int nOrdinal, const COle Variant& varValue);

throw(CDaoException, CMemoryException);

Parameters
lpszName A pointer to a string containing the name of a field.

varValue A reference to a COleVariant object containing the value of the field's
contents.

nOrdinal An integer that represents the ordinal position of the field in the
recordset's Fields collection (zero-based).

331

CDaoRecordSet::SetFieldValueNull

Remarks
Call this member function to set the value of a field, either by ordinal position or by
changing the value of the string. Use SetFieldValue and GetFieldValue to
dynamically bind fields at run time rather than statically binding columns using the
DoFieldExchange mechanism.

For more information about record field exchange, see the articles "DAO Record
Field Exchange (DFX)" and "DAO Recordset: Binding Records Dynamically" in
Programming with MFC. For related information, see the topics "Field Object" and
"Value Property" in DAO Help.

See Also CDaoRecordset: : GetFieldValue, CDaoRecordset: :m_nParams,
CDaoRecordset: :SetFieldValueNull

CDaoRecordSet:: SetFieldValueNull
void SetFieldValueNull(short nlndex);

throw(CDaoException, CMemoryException);
void SetFieldValueNull(LPCTSTR IpszName);

throw(CDaoException, CMemoryException);

Parameters

Remarks

nlndex The index of the field in the recordset, for lookup by zero-based index.

IpszName The name of the field in the recordset, for lookup by name.

Call this member function to set the field to a Null value. C++ NULL is not the same
as Null, which, in database terminology, means "having no value."

For more information about record field exchange, see the articles "DAO Record
Field Exchange (DFX)" and "DAO Recordset: Binding Records Dynamically" in
Programming with MFC. For related information, see the topics "Field Object" and
"Value Property" in DAO Help.

See Also CDaoRecordset: :SetFieldValue

CDaoRecordset: : SetLockingMode
void SetLockingMode(BOOL bPessimistic);

throw(CDaoException, CMemoryException);

Parameters
bPessimistic A flag that indicates the type of locking.

332

CDaoRecordset: :SetParam Value

Remarks
Call this member function to set the type of locking for the recordset. When
pessimistic locking is in effect, the 2K page containing the record you are editing is
locked as soon as you call the Edit member function. The page is unlocked when you
call the Update or Close member function or any of the Move or Find operations.

When optimistic locking is in effect, the 2K page containing the record is locked only
while the record is being updated with the Update member function.

If a page is locked, no other user can edit records on the same page. If you call
SetLockingMode and pass a nonzero value and another user already has the page
locked, an exception is thrown when you call Edit. Other users can read data from
locked pages.

If you call SetLockingMode with a zero value and later call Update while the page
is locked by another user, an exception occurs. To see the changes made to your
record by another user (and lose your changes), call the SetBookmark member
function with the bookmark value of the current record.

When working with ODBC data sources, the locking mode is always optimistic.

For more information about updating data, see the article "DAO Recordset: Recordset
Operations" in Programming with MFC. For related information, see the topics
"LockEdits Property," "EditMode Property," and "Locking Behavior in Multiuser
Applications" in DAO Help.

See Also CDaoRecordset: : GetLockingMode

CDaoRecordset: :SetParam Value
virtual void SetParam Value(int nlndex, const COle Variant& var);

throw(CDaoException, CMemoryException);
virtual void SetParamValue(LPCTSTR IpszName, const COleVariant& var);

throw(CDaoException, CMemoryException);

Parameters

Remarks

nlndex The numerical position of the parameter in the querydef's Parameters
collection.

var The value to set; see "Remarks."

IpszName The name of the parameter whose value you want to set.

Call this member function to set the value of a parameter in the recordset at run time.
The parameter must already have been established as part of the recordset's SQL
string. You can access the parameter either by name or by its index position in the
collection.

333

CDaoRecordSet: :SetParam ValueNull

Specify the value to set as a COle Variant object. For information about setting the
desired value and type in your COle Variant object, see class COle Variant.

For more information about updating data, see the article "DAO Recordset: Recordset
Operations" in Programming with MFC. For related information, see the topic
"Parameter Object" in DAO Help.

See Also CDaoRecordset: :GetParam Value, CDaoRecordset: :m_nParams,
CDaoRecordset::SetParam ValueNull

CDaoRecordSet:: SetParam ValueN ull
void SetParam ValueNull(short nlndex);

throw(CDaoException, CMemoryException);
void SetParam ValueNull(LPCTSTR lpsiName);

throw(CDaoException, CMemoryException);

Parameters

Remarks

nlndex The index of the field in the recordset, for lookup by zero-based index.

lpsiName The name of the field in the recordset, for lookup by name.

Call this member function to set the parameter to a Null value. C++ NULL is not the
same as Null, which, in database terminology, means "having no value."

For more information about updating data, see the article "DAO Recordset: Recordset
Operations" in Programming with MFC. For related information, see the topic
"Parameter Object" in DAO Help.

CDaoRecordset:: SetPercentPosition
void SetPercentPosition(floatjPosition);

throw(CDaoException, CMemoryException);

Parameters

Remarks

334

jPosition A number between 0 and 100.

Call this member function to set a value that changes the approximate location of the
current record in the recordset object based on a percentage of the records in the
recordset.

When working with a dynaset-type or snapshot-type recordset, first populate the
recordset by moving to the last record before you call SetPercentPosition. If you call
SetPercentPosition before fully populating the recordset, the amount of movement is
relative to the number of records accessed as indicated by the value of
GetRecordCount. You can move to the last record by calling MoveLast.

CDaoRecordset: : Update

Once you call SetPercentPosition, the record at the approximate position
corresponding to that value becomes current.

Note Calling SetPercentPosition to move the current record to a specific record in a
recordset is not recommended. Call the SetBookmark member function instead.

For more information about navigating in recordsets, see the article "DAO Recordset:
Recordset Navigation" in Programming with MFC. For related information, see the
topic "PercentPosition Property" in DAO Help.

See Also CDaoRecordset: : GetPercentPosition

CDaoRecordset:: Update

Remarks

virtual void Update();
throw(CDaoException, CMemoryException);

Call this member function after a call to the AddNew or Edit member function. This
call is required to complete the AddNew or Edit operation.

Both AddNew and Edit prepare an edit buffer in which the added or edited data is
placed for saving to the data source. Update saves the data. Only those fields marked
or detected as changed are updated.

If the data source supports transactions, you can make the Update call (and its
corresponding AddNew or Edit call) part of a transaction. For more information
about transactions, see the article "DAO Workspace: Managing Transactions" in
Programming with MFC.

Caution If you call Update without first calling either AddNew or Edit, Update throws a
CDaoException. If you call AddNew or Edit, you must call Update before you call MoveNext
or close either the recordset or the data source connection. Otherwise, your changes are lost
without notification.

When the recordset object is pessimistically locked in a multiuser environment, the
record remains locked from the time Edit is used until the updating is complete. If
the recordset is optimistically locked, the record is locked and compared with the pre
edited record just before it is updated in the database. If the record has changed since
you called Edit, the Update operation fails and MFC throws an exception. You can
change the locking mode with SetLockingMode.

Note Optimistic locking is always used on external database formats, such as ODSC and
installable ISAM.

335

CDaoRecordset: :m_bCheckCacheForDirtyFields

For more information about updating data, see the article "DAO Recordset: Recordset
Operations" in Programming with MFC. For related information, see the topics
"AddNew Method," "CancelUpdate Method," "Delete Method," "LastModified
Property," "Update Method," and "EditMode Property" in DAO Help.

See Also CDaoRecordset::AddNew, CDaoRecordset: :CancelUpdate,
CDaoRecordset: : Delete, CDaoRecordset: :Edit, CDaoRecordset: :CanTransact

Data Members
CDaoRecordset: :m_bCheckCacheForDirtyFields
Remarks

Contains a flag indicating whether cached fields are automatically marked as dirty
(changed) and Null. The flag defaults to TRUE. The setting in this data member
controls the entire double-buffering mechanism. If you set the flag to TRUE, you can
turn off the caching on a field-by-field basis using the DFX mechanism. If you set the
flag to FALSE, you must call SetFieldDirty and SetFieldNull yourself.

Set this data member before calling Open. This mechanism is primarily for ease-of
use. Performance may be slower because of the double-buffering of fields as changes
are made.

For more information about binding records dynamically, see the article "DAO
Recordset: Binding Records Dynamically" in Programming with MFC.

See Also CDaoRecordset: :SetFieldNull, CDaoRecordset: : IsFieldNull,
CDaoRecordset: : IsFieldDirty , CDaoRecordset: :SetFieldDirty

CDaoRecordset: :m_nParams
Remarks

336

Contains the number of parameter data members in the recordset class - the number
of parameters passed with the recordset's query. If your recordset class has any
parameter data members, the constructor for the class must initialize ID_nParams
with the correct number. The value of ID_nParams defaults to O. If you add
parameter data members - which you must do manually - you must also manually
add an initialization in the class constructor to reflect the number of parameters
(which must be at least as large as the number of I?' placeholders in your ID_strFilter
or ID_strSort string).

The framework uses this number when it parameterizes the recordset's query.

Important This number must correspond to the number of "params" registered in
DoFieldExchange after a call to SetFieldType with the parameter CFieldExchange::param.

CDaoRecordset: :m_strFilter

For more information about selecting records, see the article "DAO Queries: Filtering
and Parameterizing Queries" in Programming with MFC. For related information,
see the topic "Parameter Object" in DAO Help.

CDaoRecordset: :m_pDAORecordset
Remarks

Contains a pointer to the OLE interface for the DAO recordset object underlying the
CDaoRecordset object. Use this pointer if you need to access the DAO interface
directly.

For more information about accessing underlying DAO objects, see the article "DAO:
Obtaining Information About DAO Objects" in Programming with MFC. For related
information, see the topic "Recordset Object" in DAO Help.

See Also CDaoRecordset: :m_pDatabase

CDaoRecordset: :m_pDatabase
Remarks

Contains a pointer to the CDaoDatabase object through which the recordset is
connected to a data source. This variable is set in two ways. Typically, you pass a
pointer to an already open CDaoDatabase object when you construct the recordset
object. If you pass NULL instead, CDaoRecordset creates a CDaoDatabase object
for you and opens it. In either case, CDaoRecordset stores the pointer in this
variable.

Normally you will not directly need to use the pointer stored in m_pDatabase. If you
write your own extensions to CDaoRecordset, however, you might need to use the
pointer. For example, you might need the pointer if you throw your own
CDaoException(s).

For more information about accessing underlying DAO objects, see the article "DAO:
Obtaining Information About DAO Objects" in Programming with MFC. For related
information, see the topic "Database Object" in DAO Help.

See Also CDaoRecordset::m_pDAORecordset

CDaoRecordset: :m_strFilter
Remarks

Contains a string that is used to construct the WHERE clause of an SQL statement.
It does not include the reserved word WHERE to filter the recordset. The use of this
data member is not applicable to table-type recordsets. The use of m_strFilter has no
effect when opening a recordset using a CDaoQueryDef pointer.

337

CDaoRecordset: :m_strSort

Use the U.S. date format (month-day-year) when you filter fields containing dates,
even if you are not using the U.S. version of the Microsoft Jet database engine;
otherwise, the data may not be filtered as you expect.

For more information about selecting records, see the article "DAO Queries: Filtering
and Parameterizing Queries" in Programming with MFC. For related information,
see the topic "Filter Property" in DAO Help.

See Also CDaoRecordset: :m_strSort

CDaoRecordset: :m_strSort
Remarks

338

Contains a string containing the ORDER BY clause of an SQL statement without
the reserved words ORDER BY. You can sort on dynaset- and snapshot-type
recordset objects.

You cannot sort table-type recordset objects. To determine the sort order ofa table
type recordset, call SetCurrentIndex.

The use of m_strSort has no effect when opening a recordset using a
CDaoQueryDef pointer.

For more information about selecting records, see the article "DAO Queries: Filtering
and Parameterizing Queries" in Programming with MFC. For related information,
see the topic "Sort Property" in DAO Help.

See Also CDaoRecordset: :m_strFilter

CDaoRecordView

A CDaoRecordView object is a view that displays database records in controls. The
view is a form view directly connected to a CDaoRecordset object. The view is
created from a dialog template resource and displays the fields of the
CDaoRecordset object in the dialog template's controls. The CDaoRecordView
object uses dialog data exchange (DDX) and DAO record field exchange (DFX) to
automate the movement of data between the controls on the form and the fields of the
recordset. CDaoRecordView also supplies a default implementation for moving to
the first, next, previous, or last record and an interface for updating the record
currently in view.

Note The DAO database classes are distinct from the MFC database classes based on Open
Database Connectivity (ODSC). All DAO database class names have the "CDao" prefix. You
can still access ODSC data sources with the DAO classes; the DAO classes generally offer
superior capabilities because they use the Microsoft Jet database engine.

The most common way to create your record view is with App Wizard. App Wizard
creates both the record view class and its associated recordset class as part of your
skeleton starter application.

If you simply need a single form, the AppWizard approach is easier. ClassWizard lets
you decide to use a record view later in the development process. If you don't create
the record view class with App Wizard, you can create it later with Class Wizard.
Using ClassWizard to create a record view and a recordset separately and then
connect them is the most flexible approach because it gives you more control in
naming the recordset class and its .W.CPP files. This approach also lets you have
multiple record views on the same recordset class.

CDaoRecordView

339

CDaoRecordView

340

To make it easy for end-users to move from record to record in the record view,
AppWizard creates menu (and optionally toolbar) resources for moving to the first,
next, previous, or last record. If you create a record view class with Class Wizard, you
need to create these resources yourself with the menu and bitmap editors. For more
information about these resources, see the articles "AppWizard: Database Support"
and "ClassWizard: Creating a Database Form."

For information about the default implementation for moving from record to record,
see IsOnFirstRecord and IsOnLastRecord and the article "Record Views: Using a
Record View," which appplies to both CRecordView and CDaoRecordView.

CDaoRecordView keeps track of the user's position in the recordset so that the
record view can update the user interface. When the user moves to either end of the
recordset, the record view disables user interface objects - such as menu items or
toolbar buttons- for moving further in the same direction.

For more information about declaring and using your record view and recordset
classes, see the article "Designing and Creating a Record View." For more
information about how record views work and how to use them, see the articles
"Forms," "Record Views," and "Record Views: Using a Record View." All the articles
mentioned above apply to both CRecordView and CDaoRecordView, and are found
in Programming with MFC.

#include <afxdao.h>

See Also CDaoRecordset, CDaoTableDef, CDaoQueryDef, CDaoDatabase,
CDaoWorkspace, CFormView

Construction

CDaoRecordView

Attributes

OnGetRecordset

IsOnLastRecord

IsOnFirstRecord

Operations

OnMove

Constructs a CDaoRecordView object.

Returns a pointer to an object of a class derived from
CDaoRecordset. Class Wizard overrides this function for you and
creates the recordset if necessary.

Returns nonzero if the current record is the last record in the
associated recordset.

Returns nonzero if the current record is the first record in the
associated recordset.

If the current record has changed, updates it on the data source,
then moves to the specified record (next, previous, first, or last).

CDaoRecordView: :CDaoRecordView

Member Functions
CDaoRecordView: :CDaoRecordView

CDaoRecordView(LPCSTR IpszTemplateName);
CDaoRecordView(UINT nIDTemplate);

Parameters

Remarks

IpszTemplateName Contains a null-terminated string that is the name of a dialog
template resource.

nIDTemplate Contains the ID number of a dialog template resource.

When you create an object of a type derived from CDaoRecordView, call either form
of the constructor to initialize the view object and identify the dialog resource on
which the view is based. You can either identify the resource by name (pass a string
as the argument to the constructor) or by its ID (pass an unsigned integer as the
argument). Using a resource ID is recommended ..

Note Your derived class must supply its own constructor. In the constructor of your derived
class, call the constructor CDaoRecordView::CDaoRecordView with the resource name or ID
as an argument.

CDaoRecordView::OnInitiaIUpdate calls CWnd::UpdateData, which calls
CWnd: :DoDataExchange. This initial call to DoDataExchange connects
CDaoRecordView controls (indirectly) to CDaoRecordset field data members
created by Class Wizard. These data members cannot be used until after you call the
base class CForm View: :OnInitialUpdate member function.

Note If you use ClassWizard, the wizard defines an enum value CDaoRecordVi ew: : IDD
and specifies it in the member initialization list for the constructor where you see I DD_MY FORM.

CMyRecordView::CMyRecordView()

{

}

: CDaoRecordView(IDD_MYFORM

II{{AFX_DATA_INIT(CMyRecordView
II NOTE: the ClassWizard will add member initialization here

/I}}AFX_DATA_INIT
II Other construction code, such as data initialization

See Also CWnd:: UpdateData, CWnd: :DoDataExchange

341

CDaoRecordView: :IsOnFirstRecord

CDaoRecordView: : IsOnFirstRecord
BOOL IsOnFirstRecord();

Return Value

Remarks

Nonzero if the current record is the first record in the recordset; otherwise O.

Call this member function to determine whether the current record is the first record
in the recordset object associated with this record view. This function is useful for
writing your own implementations of the default command update handlers written
by Class Wizard.

If the user moves to the first record, the framework disables any user interface objects
(for example, menu items or toolbar buttons) you have for moving to the first or the
previous record.

See Also CDaoRecordView: :IsOnLastRecord

CDaoRecordView: : IsOnLastRecord
BOOL IsOnLastRecord();

Return Value

Remarks

342

Nonzero if the current record is the last record in the recordset; otherwise o.

Call this member function to determine whether the current record is the last record
in the recordset object associated with this record view. This function is useful for
writing your own implementations of the default command update handlers that
Class Wizard writes to support a user interface for moving from record to record.

Caution The result of this function is reliable except that the view may not be able to detect
the end of the recordset until the user has moved past it. The user might have to move beyond
the last record before the record view can tell that it must disable any user interface objects for
moving to the next or last record. If the user moves past the last record and then moves back
to the last record (or before it), the record view can track the user's position in the recordset
and disable user interface objects correctly.

See Also CDaoRecordView: :IsOnFirstRecord

CDaoRecordView::OnMove

CDaoRecordView: :OnGetRecordset
virtual CDaoRecordset* OnGetRecordset() = 0;

Return Value

Remarks

A pointer to a CDaoRecordset-derived object if the object was successfully created;
otherwise a NULL pointer.

Returns a pointer to the CDaoRecordset-derived object associated with the record
view. You must override this member function to construct or obtain a recordset
object and return a pointer to it. If you declare your record view class with
ClassWizard, the wizard writes a default override for you. ClassWizard's default
implementation returns the recordset pointer stored in the record view if one exists. If
not, it constructs a recordset object of the type you specified with Class Wizard and
calls its Open member function to open the table or run the query, and then returns a
pointer to the object.

For more information and examples, see the article "Record Views: Using a Record
View" in Programming with MFC.

See Also CDaoRecordset, CDaoRecordset::Open

CDaoRecordView: :OnMove
virtual BOOL OnMove(UINT nIDMoveCommand);

Return Value
Nonzero if the move was successful; otherwise 0 if the move request was denied.

Parameters

Remarks

nIDMoveCommand One of the following standard command ID values:

• ID_RECORD_FIRST Move to the first record in the recordset.

• ID _RECORD _LAST Move to the last record in the recordset.

• ID_RECORD_NEXT Move to the next record in the recordset.

• ID_RECORD_PREV Move to the previous record in the recordset.

Call this member function to move to a different record in the recordset and display
its fields in the controls of the record view. The default implementation calls the
appropriate Move member function of the CDaoRecordset object associated with the
record view.

343

CDaoRecordView::OnMove

344

By default, OnMove updates the current record on the data source if the user has
changed it in the record view.

AppWizard creates a menu resource with First Record, Last Record, Next Record,
and Previous Record menu items. If you select the Initial Toolbar option, AppWizard
also creates a toolbar with buttons corresponding to these commands.

If you move past the last record in the recordset, the record view continues to display
the last record. If you move backward past the first record, the record view continues
to display the first record.

Caution Calling OnMove throws an exception if the recordset has no records. Call
the appropriate user interface update handler function - OnUpdateRecordFirst,
OnUpdateRecordLast, OnUpdateRecordNext, or OnUpdateRecordPrev - before the
corresponding move operation to determine whether the recordset has any records. For
information about the update handlers, see the article "AppWizard: Database Support" in
Programming with MFG.

See Also CDaoRecordset::Move

CDaoTableDef

A CDaoTableDef object represents the stored definition of a base table or an attached
table. Each DAO database object maintains a collection, called TableDefs, that
contains all saved DAO tabledef objects.

You manipulate a table definition using a CDaoTableDef object. For example,
you can:

• Examine the field and index structure of any local, attached, or external table in a
database.

• Call the SetConnect and SetSourceTableName member functions for attached
tables, and use the RefreshLink member function to update connections to
attached tables.

• Call the CanUpdate member function to determine if you can edit field definitions
in the table.

• Get or set validation conditions using the GetValidationRule and
SetValidationRule, and the GetValidationText and SetValidationText member
functions.

• Use the Open member function to create a table-, dynaset-, or snapshot-type
CDaoRecordset object.

Note The DAO database classes are distinct from the MFC database classes based on Open
Database Connectivity (ODSC). All DAO database class names have the "CDao" prefix. You
can still access ODSC data sources with the DAO classes; the DAO classes generally offer
superior capabilities because they are specific to the Microsoft Jet database engine.

Use tabledef objects either to work with an existing table or to create a new table:

1. In all cases, first construct a CDaoTableDef object, supplying the a pointer to a
CDaoDatabase object to which the table belongs.

2. Then do the following, depending on what you want:

• To use an existing saved table, call the tabledef object's Open member function,
supplying the name of the saved table.

CDaoTableDef

345

CDaoTableDef

346

• To create a new table, call the tabledef object's Create member function,
supplying the name of the table. Call CreateField and Createlndex to add
fields and indexes to the table .

• Call Append to save the table by appending it to the database's TableDefs
collection. Create puts the tabledef into an open state, so after calling Create
you do not call Open.

Tip The easiest way to create saved tables is to create them and store them in your database
using Microsoft Access. Then you can open and use them in your MFC code.

To use the tabledef object you have opened or created, create and open a
CDaoRecordset object, specifying the name of the tabledef with a dbOpenTable
value in the nOpenType parameter.

To use a tabledef object to create a CDaoRecordset object, you typically create or
open a tabledef as described above, then construct a recordset object, passing a
pointer to your tabledef object when you call CDaoRecordset: :Open. The tabledef
you pass must be in an open state. For more information, see class CDaoRecordset.

When you finish using a tabledef object, call its Close member function; then destroy
the tabledef object.

For more information on tabledefs, see the articles "DAO Tabledef' and "DAO
Tabledef: Using Tabledefs" in Programming with MFC.

#include <afxdao.h>

See Also CDaoDatabase, CDaoRecordset

Data Members

m_pDatabase

m_pDAOTableDef

Construction

Append

CDaoTableDef

Close

Create

Open

Source database for this table.

A pointer to the DAO interface underlying the tabledef object.

Adds a new table to the database.

Constructs a CDaoTableDef object.

Closes an open tabledef.

Creates a table which can be added to the database using
Append.

Opens an existing tabledef stored in the database's
TableDef s collection.

Attributes

CanUpdate

GetAttributes

GetConnect

GetDateCreated

GetDateLastUpdated

GetFieldCount

GetFieldlnfo

GetIndexCount

GetIndexInfo

GetName

GetRecordCount

GetSourceTableName

GetValidationRule

GetValidationText

IsOpen

SetA ttributes

SetConnect

SetName

SetSourceTableName

SetValidationRule

SetValidationText

Returns nonzero if the table can be updated (you can modify
the definition of fields or the table properties).

Returns a value that indicates one or more characteristics of a
CDaoTableDef object.

Returns a value that provides information about the source of
a table.

Returns the date and time the base table underlying a
CDaoTableDef object was created.

Returns the date and time of the most recent change made to
the design of the base table.

Returns a value that represents the number of fields in
the table.

Returns specific kinds of information about the fields in
the table.

Returns the number of indexes for the table.

Returns specific kinds of information about the indexes for
the table.

Returns the user-defined name of the table.

Returns the number of records in the table.

Returns a value that specifies the name of the attached table
in the source database.

Returns a value that validates the data in a field as it is
changed or added to a table.

Returns a value that specifies the text of the message that your
application displays if the value of a Field object does not
satisfy the specified validation rule.

Returns nonzero if the table is open.

Sets a value that indicates one or more characteristics of a
CDaoTableDef object.

Sets a value that provides information about the source of
a table.

Sets the name of the table.

Sets a value that specifies the name of an attached table in the
source database.

Sets a value that validates the data in a field as it is changed
or added to a table.

Sets a value that specifies the text of the message that your
application displays if the value of a Field object does not
satisfy the specified validation rule.

CDaoTableDef

347

CDaoTableDef::Append

Operations

CreateField

CreateIndex

DeleteField

DeleteIndex

RefreshLink

Called to create a field for a table.

Called to create an index for a table.

Called to delete a field from a table.

Called to delete an index from a table.

Updates the connection information for an attached table.

Member Functions
CDaoTableDef: : Append

Remarks

virtual void Append();
throw(CDaoException, CMemoryException);

Call this member function after you call Create to create a new tabledef object to
save the tabledef in the database. The function appends the object to the database's
TableDefs collection. You can use the tabledef as a temporary object while defining it
by not appending it, but if you want to save and use it, you must call Append.

Note If you attempt to append an unnamed tabledef (containing a null or empty string), MFC
throws an exception.

For more information on tabledefs, see the articles "DAO Tabledef' and "DAO
Tabledef: Using Tabledefs" in Programming with MFC. For related information, see
the topic "Append Method" in DAO Help.

See Also CDaoTableDef: : Create

CDaoTableDef: :CanUpdate
BOOL CanUpdate();

throw(CDaoException, CMemoryException);

Return Value

Remarks

348

Nonzero if the table structure (schema) can be modified (add or delete fields and
indexes), otherwise O.

Call this member function to determine whether the definition of the table underlying
a CDaoTableDef object can be changed.

By default, a newly created table underlying aCDaoTableDef object can be updated,
and an attached table underlying a CDaoTa-bleDef object cannot be updated. A
CDaoTableDef object may be updatable, even if the resulting recordset is not
updatable.

For more information on tabledefs, see the articles "DAO Tabledef' and "DAO
Tabledef: Using Tabledefs" in Programming with MFC. For related information, see
the topic "Updatable Property" in DAO Help.

See Also CDaoTableDef: :GetDateLastl!pdated

CDaoTableDef: :CDaoTableDef
CDaoTableDef(CDaoDatabase* pDatabase);

Parameters

Remarks

pDatabase A pointer to a CDaoDatabase object.

Constructs a CDaoTableDef object. After constructing the object, you must call the
Create or Open member function. When you finish with the object, you must call its
Close member function and destroy the CDaoTableDef object.

For more information on tabledefs, see the articles "DAO Tabledef' and "DAO
Tabledef: Using Tabledefs" in Programming with MFC.

See Also CDaoTableDef::Open, CDaoTableDef::Close, CD~oTableDef::Create,
CDaoDatabase

CDaoTableDef: :Close

Remarks

virtual void Close();
throw(CDaoException, CMemoryException);

Call this member function to close and release the tabledef object. Usually after
calling Close, you delete the tabledef object if it was allocated with new.

You can call Open again after calling Close. This lets you reuse the tabledef object.

For more information on tableqefs, see the articles "DAO Tabledef' and "DAO
Tabledef: Using Tabledefs" in Programming with MFC. For related information, see
the topic "Close Method" in DAO Help.

See Also CDaoTableDef: :Open, CDaoTableDef: : Create

CDaoTableDef: :Close

349

CDaoTableDef::Create

CDaoTableDef: : Create
virtual void Create(LPCTSTR lpsiName, long lAttributes = 0, LPCTSTR lpszSrcTable = NULL,

LPCTSTR lpszConnect = NULL);
throw(CDaoException, CMemoryException);

Parameters

Remarks

350

lpsiName A pointer to a string containing the name of the table.

lAttributes A value corresponding to characteristics of the table represented by the
tabledef object. You can use the bitwise-OR to combine any of the following
constants:

Constant

dbAttachExciusive

dbAttachSavePWD

dbSystemObject

dbHiddenObject

dbAttachedTable

dbAttachedODBC

Description

For databases that use the Microsoft Jet database engine,
indicates the table is an attached table opened for exclusive
use.

For databases that use the Microsoft Jet database engine,
indicates that the user ID and password for the attached table
are saved with the connection information.

Indicates the table is a system table provided by the Microsoft
Jet database engine.

Indicates the table is a hidden table provided by the Microsoft
Jet database engine.

Indicates the table is an attached table from a non-ODBC
database, such as a Paradox database.

Indicates the table is an attached table from an ODBC
database, such as Microsoft SQL Server.

lpszSrcTable A pointer to a string containing the source table name. By default this
value is initialized as NULL.

lpszConnect A pointer to a string containing the default connect string. By default
this value is initialized as NULL.

Call this member function to create a new saved table. Once you have named the
tabledef, you can then call Append to save the tabledef in the database's TableDefs
collection. After calling Append, the tabledef is in an open state, and you can use it
to create a CDaoRecordset object.

For more information on tabledefs, see the articles "DAO Tabledef' and "DAO
Tabledef: Using Tabledefs" in Programming with MFC. For related information, see
the topic "CreateTableDef Method" in DAO Help.

See Also CDaoTableDef::Open, CDaoTableDef::Close, CDaoRecordset

CDaoTableDef: :CreateField

CDao TableDef: : CreateField
void CreateField(LPCTSTR IpszName, short nType, long ISize, long IAttributes = 0);

throw(CDaoException, CMemoryException);
void CreateField(CDaoFieldInfo& fieldinfo);

throw(CDaoException, CMemoryException);

Parameters
IpszName A pointer to a string expression specifying the name of this field.

nType A value indicating the data type of the field. The setting can be one of these
values:

Type Size (bytes) Description

dbBoolean 1 byte BaaL

dbByte BYTE

dblnteger 2 int

dbLong 4 long

dbCurrency 8 Currency (COleCurrency)

dbSingle 4 float

dbDouble 8 double

dbDate 8 DatelTime (COleDateTime)

dbText 1-255 Text (CString)

dbLongBinary 0 Long Binary (OLE Object), CLongBinary or
CByteArray

dbMemo 0 Memo (CString)

ISize A value that indicates the maximum size, in bytes, of a field that contains text,
or the fixed size of a field that contains text or numeric values. The ISize
parameter is ignored for all but text fields.

IAttributes A value corresponding to characteristics of the field and that can be
combined using a bitwise-OR.

Constant

dbFixedField

db VariableField

dbAutolncrField

Description

The field size is fixed (default for Numeric fields).

The field size is variable (Text fields only).

The field value for new records is automatically incremented
to a unique long integer that cannot be changed. Only
supported for Microsoft Jet database tables.

351

CDaoTableDef::CreateIndex

Remarks

Constant

dbUpdatableField

dbDescending

Description

The field value can be changes.

The field is sorted in descending (Z-A or 100-0) order
(applies only to a Field object in a Fields collection of an
Index object). If you omit this constant, the field is sorted in
ascending (A-Z or 0-100) order (default).

fieldinfo A reference to a CDaoFieldInfo structure.

Call this member function to add a field to the table. A DAOField (OLE) object is
created and appended to the Fields collection of the DAOTabieDef (OLE) object.
Besides its use for examining object properties, you can also use CDaoFieldInfo to
construct an input parameter for creating new fields in a tabledef. The first version of
CreateField is simpler to use, but if you want finer control, you can use the second
version of CreateField, which takes a CDaoFieldlnfo parameter.

If you use the version of CreateField that takes a CDaoFieldlnfo parameter, you
must carefully set each of the following members of the CDaoFieldlnfo structure:

• m_strName

• m_nType

• m_lSize

• m_lAttributes

• m_bAllowZeroLength

The remaining members of CDaoFieldInfo should be set to 0, FALSE, or an empty
string, as appropriate for the member, or a CDaoException may occur.

For more information on tabledefs, see the articles "DAO Tabledef' and "DAO
Tabledef: Using Tabledefs" in Programming with MFC. For related information, see
the topic "CreateField Method" in DAO Help.

See Also CDaoTableDef: :DeleteField, CDaoTableDef:: Createlndex,
CDaoTableDef: :Deletelndex

CDaoTableDef: :CreateIndex
void Createlndex(CDaolndexInfo& indexinfo);

throw(CDaoException, CMemoryException);

Parameters
indexinfo A reference to a CDaoIndexInfo structure.

352

CDaoTableDef: :DeleteField

Remarks
Call this function to add an index to a table. Indexes specify the order of records
accessed from database tables and whether or not duplicate records are accepted.
Indexes also provide efficient access to data.

You do not have to create indexes for tables, but in large, unindexed tables, accessing
a specific record or creating a recordset can take a long time. On the other hand,
creating too many indexes slows down update, append, and delete operations as all
indexes are automatically updated. Consider these factors as you decide which
indexes to create.

The following members of the CDaoIndexInfo structure must be set:

• m_strName A name must be supplied.

• m_pFieldlnfos Must point to an array of CDaolndexFieldlnfo structures.

• m_nFields Must specify the number of fields in the array of CDaoFieldlnfo
structures.

The remaining members will be ignored if set to FALSE. In addition, the
m_IDistinctCount member is ignored during creation of the index.

For more information on tabledefs, see the articles "DAO Tabledef' and "DAO
Tabledef: Using Tabledefs" in Programming with MFC. For related information, see
the topic "CreateIndex Method" in DAO Help.

See Also CDaoTableDef: :Deletelndex, CDaoTableDef: :CreateField,
CDaoTableDef: :DeleteField, CDaoIndexInfo

CDaoTableDef: : DeleteField
void DeleteField(LPCTSTR IpszName);

throw(CDaoException, CMemoryException);
void DeleteField(int nlndex);

throw(CDaoException, CMemoryException);

Parameters
lpszName A pointer to a string expression that is the name of an existing field.

nlndex The index of the field in the table's zero-based Fields collection, for lookup
by index.

353

CDaoTableDef: : DeleteIndex

Remarks
Call this member function to remove a field and make it inaccessible. You can use
this member function on a new object that has not been appended to the database or
when CanUpdate returns nonzero.

For more information on tabledefs, see the articles "DAO Tabledef' and "DAO
Tabledef: Using Tabledefs" in Programming with MFC. For related information, see
the topic "Delete Method" in DAO Help.

See Also CDaoTableDef::CreateField, CDaoTableDef::Createlndex,
CDaoTableDef: :Deletelndex

CDaoTableDef: : Deletelndex
void Deletelndex(LPCTSTR lpszName);

throw(CDaoException, CMemoryException);
void Deletelndex(int nlndex);

throw(CDaoException, CMemoryException);

Parameters

Remarks

lpszName A pointer to a string expression that is the name of an existing index.

nlndex The array index of the predefined index object in the database's zero-based
TableDefs collection, for lookup by index.

Call this member function to delete an index in an underlying table. You can use this
member function on a new object that hasn't been appended to the database or when
CanUpdate returns nonzero.

For more information on tabledefs, see the articles "DAO Tabledef' and "DAO
Tabledef: Using Tabledefs" in Programming with MFC. For related information, see
the topic "Delete Method" in DAO Help.

See Also CDaoTableDef: :Createlndex, CDaoTableDef: :CreateField,
CDaoTableDef: : DeleteField

CDaoTableDef: : GetAttributes
long GetAttributes();

throw(CDaoException, CMemoryException);

Return Value
Returns a value that indicates one or more characteristics of a CDaoTableDef object.

354

CDaoTableDef: : GetConnect

Remarks
For a CDaoTableDef object, the return value specifies characteristics of the table
represented by the CDaoTableDef object and can be a sum of these constants:

Constant

dbAttachExclusive

dbAttachSavePWD

dbSystemObject

dbHiddenObject

dbAttachedTable

dbAttachedODBC

Description

For databases that use the Microsoft Jet database engine, indicates
the table is an attached table opened for exclusive use.

For databases that use the Microsoft Jet database engine, indicates
that the user ID and password for the attached table are saved
with the connection information.

Indicates the table is a system table provided by the Microsoft Jet
database engine.

Indicates the table is a hidden table provided by the Microsoft Jet
database engine.

Indicates the table is an attached table from a non-ODBC
database, such as a Paradox database.

Indicates the table is an attached table from an ODBC database,
such as Microsoft SQL Server.

A system table is a table created by the Microsoft Jet database engine to contain
various internal information.

A hidden table is a table created for temporary use by the Microsoft Jet database
engine.

For more information on tabledefs, see the articles "DAO Tabledef' and "DAO
Tabledef: Using Tabledefs" in Programming with MFC. For related information, see
the topic "Attributes Property" in DAO Help.

See Also CDaoTableDef::SetAttributes

CDaoTableDef: : GetConnect
CString GetConnect();

throw(CDaoException, CMemoryException);

Return Value

Remarks

A CString object containing the path and database type for the table.

Call this member function to obtain the connect string for a data source. For a
CDaoTableDef object that represents an attached table, the CString object consists
of one or two parts (a database type specifier and a path to the database).

355

CDaoTableDef::GetConnect

356

The path as shown in the table below is the full path for the directory containing the
database files and must be preceded by the identifier "DATABASE=". In some cases
(as with Microsoft Jet, Btrieve, and Microsoft Excel databases), a specific filename is
included in the database path argument.

The following table shows possible database types and their corresponding database
specifiers and paths:

Database type

Database using the Jet
database engine

dBASEm

dBASEIV

Paradox 3.x

Paradox4.x

Btrieve

FoxPro 2.0

FoxPro 2.5

FoxPro 2.6

Excel 3.0

Excel 4.0

Excel 5.0

Text

ODBC

Specifier
n.n ,

"dBASEID;"

"dBASEIV;"

"Paradox 3.x;"

"Paradox 4.x;"

"Btrieve;"

"FoxPro 2.0;"

"FoxPro 2.5;"

"FoxPro 2.6;"

"Excel 3.0;"

"Excel 4.0;"

"Excel 5.0;"

"Text;"

"ODBC;
DAT ABASE=defaultdatabase;
UID=user;PWD=password;
DSN=datasourcename;
LOGINTIMEOUT=seconds" (This
may not be a complete connection
string for all servers; it is just an
example. It is very important not to
have spaces between the parameters.)

Path

"drive:\path\filename.MDB"

" drive:\path"

"drive:\path"

"drive:\path"

"drive:\path"

"drive:\path\filename.DDF"

"drive:\path"

"drive:\path"

"drive:\path"

"drive:\path\filename.xLS"

"drive:\path\filename.xLS"

"drive:\path\filename.xLS"

"drive:\path"

None

For Microsoft Jet database base tables, the specifier is a empty string ("").

If a password is required but not provided, the ODBC driver displays a login dialog
box the first time a table is accessed and again if the connection is closed and
reopened. If an attached table has the dbAttacbSavePWD attribute, the login prompt
will not appear when the table is reopened.

For more information on tabledefs, see the articles "DAO Tabledef' and "DAO
Tabledef: Using Tabledefs" in Programming with MFC. For related information, see
the topic "Connect Property" in DAO Help.

See Also CDaoTableDef: :SetConnect

CDaoTableDef: : GetDateLastUpdated

CDaoTableDef: : GetDateCreated
COleDateTime GetDateCreated();

throw(CDaoException, CMemoryException);

Return Value

Remarks

A value containing the date and time of the creation of the table underlying the
CDaoTableDef object.

Call this function to determine the date and time the table underlying the
CDaoTableDef object was created.

The date and time settings are derived from the computer on which the base table was
created or last updated. In a multiuser environment, users should get these settings
directly from the file server to avoid discrepancies; that is, all clients should use a
"standard" time source - perhaps from one server.

For more information on tabledefs, see the articles "DAO Tabledef' and "DAO
Tabledef: Using Tabledefs" in Programming with MFC. For related information, see
the topic "DateCreated, LastUpdated Properties" in DAO Help.

See Also CDaoTableDef: : GetLastDateUpdated

CDaoTableDef::GetDateLastUpdated
COleDateTime GetDateLastUpdated();

throw(CDaoException, CMemoryException);

Return Value

Remarks

A value that contains the date and time the table underlying the CDaoTableDef
object was last updated.

Call this function to determine the date and time the table underlying the
CDaoTableDef object was last updated.

The date and time settings are derived from the computer on which the base table was
created or last updated. In a multiuser environment, users should get these settings
directly from the file server to avoid discrepancies; that is, all clients should use a
"standard" time source - perhaps from one server.

For more information on tabledefs, see the articles "DAO Tabledef' and "DAO
Tabledef: Using Tabledefs" in Programming with MPC. For related information, see
the topic "DateCreated, LastUpdated Properties" in DAO Help.

See Also CDaoTableDef: : GetDateCreated

357

CDaoTableDef::GetFieldCount

CDaoTableDef: : GetFieldCount
short GetFieldCount();

throw(CDaoException, CMemoryException);

Return Value

Remarks

The number of fields in the table.

Call this member function to retrieve the number of fields defined in the table. If its
value is 0, there are no objects in the collection.

For more information on tabledefs, see the articles "DAO Tabledef' and "DAO
Tabledef: Using Tabledefs" in Programming with MFC. For related information, see
the topic "Count Property" in DAO Help.

See Also CDaoTableDef: : GetFieldInfo, CDaoTableDef: : GetIndexInfo,
CDaoTableDef: :GetIndexCount

CDaoTableDef: : GetFieldlnfo
void GetFieldInfo(int nlndex, CDaoFieldInfo& fieldinfo,

DWORD dwlnfoOptions = AFX_DAO_PRIMARY_INFO);
throw(CDaoException, CMemoryException);

void GetFieldInfo(LPCTSTR lpsiName, CDaoFieldInfo& fieldinfo,
DWORD dwlnfoOptions = AFX_DAO_PRIMARY _INFO);
throw(CDaoException, CMemoryException);

Parameters

358

nlndex The index of the field object in the table's zero-based Fields collection, for
lookup by index.

fieldinfo A reference to a CDaoFieldInfo structure.

dwlnfoOptions Options that specify which information about the field to retrieve.
The available options are listed here along with what they cause the function to
return:

• AFX_DAO_PRIMARY_INFO (Default) Name, Type, Size, Attributes. Use
this option for fastest performance.

• AFX_DAO_SECONDARY_INFO Primary information, plus: Ordinal
Position, Required, Allow Zero Length, Collating Order, Foreign Name, Source
Field, Source Table

• AFX_DAO _ALL_INFO Primary and secondary information, plus:
Validation Rule, Validation Text, Default Value

lpsiName A pointer to the name of the field object, for lookup by name. The name is
a string with up to 14 characters that uniquely names the field.

CDaoTableDef: : GetIndexInfo

Remarks
Call this member function to obtain various kinds of information about a field defined
in the tabledef. One version of the function lets you look up a field by index. The
other version lets you look up a field by name.

For a description of the information returned, see the CDaoFieldInfo structure. This
structure has members that correspond to the items of information listed above in the
description of dwlnfoOptions. When you request information at one level, you get
information for any prior levels as well.

For more information on tabledefs, see the articles "DAO Tabledef' and "DAO
Tabledef: Using Tabledefs" in Programming with MFC. For related information, see
the topic "Attributes Property" in DAO Help.

See Also CDaoTableDef: : GetlndexInfo, CDaoTableDef: : GetlndexCount,
CDaoTableDef: : GetFieldCount

CDaoTableDef: : GetIndexCount
short GetIndexCount();

throw(CDaoException, CMemoryException);

Return Value

Remarks

The number of indexes for the table.

Call this member function to obtain the number of indexes for a table. If its value is
0, there are no indexes in the collection.

For more information on tabledefs, see the articles "DAO Tabledef' and "DAO
Tabledef: Using Tabledefs" in Programming with MFC. For related information, see
the topic "Count Property" in DAO Help.

See Also CDaoTableDef: : GetlndexInfo, CDaoTableDef: : GetFieldInfo,
CDaoTableDef::GetFieldCount

CDaoTableDef: : GetIndexInfo
void GetIndexInfo(int nlndex, CDaoIndexInfo& indexinfo,

DWORD dwlnfoOptions = AFX_DAO_PRIMARY_INFO);
throw(CDaoException, CMemoryException);

void GetIndexInfo(LPCTSTR lpszName, CDaoIndexInfo& indexinfo,
DWORD dwlnfoOptions = AFX_DAO_PRIMARY _INFO);
throw(CDaoException, CMemoryException);

359

CDaoTableDef::GetName

Parameters

Remarks

nlndex The numeric index of the Index object in the table's zero-based Indexes
collection, for lookup by its position in the collection.

indexinfo A reference to a CDaoIndexInfo structure.

dwlnfoOptions Options that specify which information about the index to retrieve.
The available options are listed here along with what they cause the function to
return:

• AFX_DAO_PRIMARY_INFO Name, Field Info, Fields. Use this option for
fastest performance.

• AFX_DAO_SECONDARY_INFO Primary information, plus: Primary,
Unique, Clustered, Ignore Nulls, Required, Foreign

• AFX_DAO_ALL_INFO Primary and secondary information, plus: Distinct
Count

lpszName A pointer to the name of the index object, for lookup by name.

Call this member function to obtain various kinds of information about an index
defined in the tabledef. One version of the function lets you look up an index by its
position in the collection. The other version lets you look up an index by name.

For a description of the information returned, see the CDaolndexInfo structure. This
structure has members that correspond to the items of information listed above in the
description of dwlnfoOptions. When you request information at one level, you get
information for any prior levels as well.

For more information on tabledefs, see the articles "DAO Tabledef' and "DAO
Tabledef: Using Tabledefs" in Programming with MFC. For related information, see
the topic "Attributes Property" in DAO Help.

See Also CDaoTableDef::GetFieldlnfo, CDaoTableDef::GetlndexCount,
CDaoTableDef::GetFieldCount

CDaoTableDef: : GetN arne
CString GetName();

throw(CDaoException, CMemoryException);

Return Value

Remarks

360

A user-defined name for a table.

Call this member function to obtain the user-defined name of the underlying table.
This name starts with a letter and can contain a maximum of 64 characters. It can
include numbers and underscore characters but cannot include punctuation or spaces.

CDaoTableDef: :GetSourceTableName

For more information on tabledefs, see the articles "DAD Tabledef' and "DAD
Tabledef: Using Tabledefs" in Programming with MFC. For related information, see
the topic "Name Property" in DAD Help.

See Also CDaoTableDef::SetName, CDaoTableDef: : GetConnect,
CDaoTableDef: :SetConnect

CDaoTableDef: : GetRecordCount
long GetRecordCount();

throw(CDaoException, CMemoryException);

Return Value

Remarks

The number of records accessed in a tabledef object.

Call this member function to find out how many records are in a CDaoTableDef
object.

Calling GetRecordCount for a table-type CDaoTableDef object reflects the
approximate number of records in the table and is affected immediately as table
records are added and deleted. Rolled back transactions will appear as part of the
record count until you call CDaoWorkSpace::CompactDatabase. A CDaoTableDef
object with no records has a record count property setting of o. When working with
attached tables or DDBC databases, GetRecordCount always returns -1.

For more information on tabledefs, see the articles "DAD Tabledef' and "DAD
Tabledef: Using Tabledefs" in Programming with MFC. For related information, see
the topic "RecordCount Property" in DAD Help.

See Also CDaoTableDef: : GetSourceTableName,
CDaoTableDef: :SetSourceTableName

CDaoTableDef: : GetSourceTableN arne
CString GetSourceTableName();

throw(CDaoException, CMemoryException);

Return Value

Remarks

A CString object that specifies the source name of an attached table, or an empty
string if a native data table.

Call this member function to retrieve the name of an attached table in a source
database. An attached table is a table in another database linked to a Microsoft Jet
database. Data for attached tables remains in the external database, where it can be
manipulated by other applications.

361

CDaoTableDef: : GetV alidationRule

For more information on tabledefs, see the articles "DAO Tabledef' and "DAO
Tabledef: Using Tabledefs" in Programming with MFC. For related information, see
the topic "SourceTableName Property" in DAO Help.

See Also CDaoTableDef::GetRecordCount,
CDaoTableDef: :SetSourceTableName

CDaoTableDef: :Get ValidationRule
CString GetValidationRule();

throw(CDaoException, CMemoryBxception);

Return Value

Remarks

A CString object that validates the data in a field as it is changed or added to a table.

Call this member function to retrieve the validation rule for a tabledef. Validation
rules are used in connection with update operations. If a tabledef contains a
validation rule, updates to that tabledef must match predetermined criteria before the
data is changed. If the change does not match the criteria, an exception containing
the value of GetValidationText is thrown. For a CDaoTableDef object, this CString
is read-only for an attached table and read/write for a base table.

For more information on tabledefs, see the articles "DAO Tabledef' and "DAO
Tabledef: Using Tabledefs" in Programming with MFC. For related information, see
the topic "ValidationRule Property" in DAO Help.

See Also CDaoTableDef: :SetValidationRule, CDaoTableDef: : GetValidationText,
CDaoTableDef: :Set Validation Text

CDaoTableDef: : Get Validation Text
CString GetValidationText();

throw(CDaoException, CMemoryException);

Return Value

Remarks

362

A CString object that specifies the text displayed if the user enters data that does not
match the validation rule.

Call this function to retrieve the string to display when a user enters data that does
not match the validation rule. For a CDaoTableDef object, this CString is read-only
for an attached table and read/write for a base table.

For more information on tabledefs, see the articles "DAO Tabledef' and "DAO
Tabledef: Using Tabledefs" in Programming with MFC. For related information, see
the topic "ValidationText Property" in DAO Help.

See Also CDaoTableDef: :Set ValidationRule, CDaoTableDef: :Set Validation Text,
CDaoTableDef: : GetValidationRule

CDaoTableDef: :IsOpen
BOOL IsOpen() const;

throw(CDaoException, CMemoryException);

Return Value

Remarks

Nonzero if the CDaoTableDef object is open; otherwise O.

Call this member function to determine whether the CDaoTableDef object is
currently open.

For more information on tabledefs, see the articles "DAO Tabledef' and "DAO
Tabledef: Using Tabledefs" in Programming with MFC.

See Also CDaoTableDef::Open

CDaoTableDef: : Open
virtual void Open(LPCTSTR IpszName);

throw(CDaoException, CMemoryException);

Parameters

Remarks

IpszName A pointer to a string that specifies a table name.

Call this member function to open a tabledef previously saved in the database's
TableDef's collection.

For more information on tabledefs, see the articles "DAO Tabledef' and "DAO
Tabledef: Using Tabledefs" in Programming with MFC.

See Also CDaoTableDef: :IsOpen, CDaoTableDef: : Create, CDaoTableDef: :Close

CDaoTableDef::Open

363

CDaoTableDef::RefreshLink

CDaoTableDef: : RefreshLink

Remarks

void RefreshLink();
throw(CDaoException, CMemoryException);

Call this member function to update the connection information for an attached table.
You change the connection information for an attached table by calling SetConnect
on the corresponding CDaoTableDef object and then using the RefreshLink member
function to update the information. When you call RefreshLink, the attached table's
properties are not changed.

To force the modified connect information to take effect, all open CDaoRecordset
objects based on this tabledef must be closed.

For more information on tabledefs, see the articles "DAO Tabledef' and "DAO
Tabledef: Using Tabledefs" in Programming with MFC. For related information, see
the topic "RefreshLink Method" in DAO Help.

See Also CDaoTableDef: :SetConnect

CDaoTableDef:: SetAttributes
void SetAttributes(long lAttributes);

throw(CDaoException, CMemoryException);

Parameters

364

lAttributes Characteristics of the table represented by the CDaoTableDef object and
can be a sum of these constants:

Constant

dbAttachExclusive

dbAttachSavePWD

dbSystemObject

dbHiddenObject

dbAttachedTable

dbAttachedODBC

Description

For databases that use the Microsoft Jet database engine,
indicates the table is an attached table opened for exclusive
use.

For databases that use the Microsoft Jet database engine,
indicates that the user ID and password for the attached table
are saved with the connection information.

Indicates the table is a system table provided by the Microsoft
Jet database engine.

Indicates the table is a hidden table provided by the Microsoft
Jet database engine.

Indicates the table is an attached table from a non-ODBC
database, such as a Paradox database.

Indicates the table is an attached table from an ODBC
database, such as Microsoft SQL Server.

CDaoTableDef: :SetConnect

Remarks
When setting mUltiple attributes, you can combine them by summing the appropriate
constants using the bitwise-OR operator. Setting dbAttachExclusive on a
nonattached table produces an exception. Combining the following values also
produce an exception:

• dbAttachExclusive I dbAttachedODBC

• dbAttachSavePWD I dbAttachedTable

For more information on tabledefs, see the articles "DAO Tabledef' and "DAO
Tabledef: Using Tabledefs" in Programming with MFC. For related information, see
the topic "Attributes Property" in DAO Help.

See Also CDaoTableDef: :SetConnect

CDao TableDef: : SetConnect
void SetConnect(LPCTSTR IpszConnect);

throw(CDaoException, CMemoryException);

Parameters

Remarks

IpszConnect A pointer to a string expression that specifies additional parameters to
pass to ODBC or installable ISAM drivers.

For a CDaoTableDef object that represents an attached table, the string object
consists of one or two parts (a database type specifier and a path to the database).

The path as shown in the table below is the full path for the directory containing the
database files and must be preceded by the identifier "DATABASE=". In some cases
(as with Microsoft Jet, Btrieve, and Microsoft Excel databases), a specific filename is
included in the database path argument.

The following table shows possible database types and their corresponding database
specifiers and paths:

Database type Specifier Path

Database using the Jet "." "drive:\\path\\filename.MDB" ,
database engine

dBASEIII "dBASEIII;" "drive:\\path"

dBASEIV "dBASEIV;" "drive:\\path"

Paradox 3.x "Paradox 3.x;" "drive:\\path"

Paradox 4.x "Paradox 4.x;" "drive:\\path"

Btrieve "Btrieve;" "drive:\\path\\filename.DDF"

FoxPro 2.0 "FoxPro 2.0;" "drive: \\path "

FoxPro 2.5 "FoxPro 2.5;" "drive:\\path"

365

CDaoTableDef::SetName

Database type

FoxPro 2.6

Excel 3.0

Excel 4.0

Excel 5.0

Text

ODBC

Specifier

"FoxPro 2.6;"

"Excel 3.0;"

"Excel 4.0;"

"Excel 5.0;"

"Text;"

"ODBC;
DAT ABASE=defaultdatabase;
UID=user;PWD=password;
DSN=datasourcename;
LOGINTIMEOUT=seconds" (This
may not be a complete connection
string for all servers; it is just an
example. It is very important not to
have spaces between the parameters.)

Path

"drive:\\path"

"drive:\\path\\filename.xLS"

"drive:\\path\\filename.:xLS"

"drive:\\path\\filename.:xLS"

"drive:\\path"

None

For Microsoft Jet database base tables, the specifier is an empty string ("").

You must use a double backslash (\\) in the connect strings. After setting the connect
string, you must then call RefreshLink.

If a password is required but not provided, the ODBC driver displays a login dialog
box the first time a table is accessed and again if the connection is closed and
reopened.

You can set the connect string for a CDaoTableDef object by providing a source
argument to the Create member function. You can check the setting to determine the
type, path, user ID, password, or ODBC data source of the database. For more
information, see the documentation for the specific driver.

For more information on tabledefs, see the articles "DAO Tabledef' and "DAO
Tabledef: Using Tabledefs" in Programming with MFC. For related information, see
the topic "Connect Property" in DAO Help.

See Also CDaoTableDef: : RefreshLink, CDaoTableDef: :SetAttributes

CDaoTableDef::SetName
void SetName(LPCTSTR lpszName);

throw(CDaoException, CMemoryException);

Parameters
lpszName A pointer to a string expression that specifies a name for a table.

366

CDaoTableDef: :SetValidationRule

Remarks
Call this member function to set a user-defined name for a table. The name must start
with a letter and can contain a maximum of 64 characters. It can include numbers
and underscore characters but cannot include punctuation or spaces.

For more information on tabledefs, see the articles "DAO Tabledef' and "DAO
Tabledef: Using Tabledefs" in Programming with MFC. For related information, see
the topic "Name Property" in DAO Help.

See Also CDaoTableDef: : RefreshLink, CDaoTableDef: :SetConnect

CDao TableDef: : SetSourceTableN arne
void SetSourceTableName(LPCTSTR lpszSrcTableName);

throw(CDaoException, CMemoryException);

Parameters

Remarks

lpszSrcTableName A pointer to a string expression that specifies a table name in the
external database. For a base table, the setting is an empty string ("").

Call this member function to specify the name of an attached table or the name of the
base table on which the CDaoTableDef object is based, as it exists in the original
source of the data. You must then call RefreshLink. This property setting is empty
for a base table and read/write for an attached table or an object not appended to a
collection.

For more information on tabledefs, see the articles "DAO Tabledef' and "DAO
Tabledef: Using Tabledefs" in Programming with MFC. For related information, see
the topic "SourceTableName Property" in DAO Help.

See Also CDaoTableDef: :RefreshLink, CDaoTableDef: : GetSourceTableName

CDao TableDef:: Set ValidationRule
void SetValidationRule(LPCTSTR lpszValidationRule);

throw(CDaoException, CMemoryException);

Parameters

Remarks

lpsz ValidationRule A pointer to a string expression that validates an operation.

Call this member function to set a validation rule for a tabledef. Validation rules are
used in connection with update operations. If a tabledef contains a validation rule,
updates to that tabledef must match predetermined criteria before the data is changed.
If the change does not match the criteria, an exception containing the text of
GetValidationText is displayed.

367

CDaoTableDef: :SetV alidationText

Validation is supported only for databases that use the Microsoft Jet database engine.
The expression cannot refer to user-defined functions, domain aggregate functions,
SQL aggregate functions, or queries. A validation rule for a CDaoTableDef object
can refer to multiple fields in that object.

For example, for fields named hi re_date and termi nati on_date, a validation rule
might be:

CString strRule = _T("termination_date>hire_date");
MyRs.SetValidationRule(strRule);

For more information on tabledefs, see the articles "DAO Tabledef' and "DAO
Tabledef: Using Tabledefs" in Programming with MFC. For related information, see
the topic "ValidationRule Property" in DAO Help.

See Also CDaoTableDef: : GetValidationText, CDaoTableDef: :SetValidationText,
CDaoTableDef: : GetValidationRule

CDaoTableDef:: Set Validation Text
void SetValidationText(LPCTSTR lpszValidationText);

throw(CDaoException, CMemoryException);

Parameters

Remarks

lpszValidationText A pointer to a string expression that specifies the text displayed if
entered data is invalid.

Call this member function to set the exception text of a validation rule for a
CDaoTableDef object with an underlying base table supported by the Microsoft Jet
database engine. You cannot set the validation text of an attached table.

For more information on tabledefs, see the articles "DAO Tabledef' and "DAO
Tabledef: Using Tabledefs" in Programming with MFC. For related information, see
the topic "ValidationText Property" in DAO Help.

See Also CDaoTableDef: :Set ValidationRule, CDaoTableDef: :Get ValidationText,
CDaoTableDef: : GetValidationRule

Data Members
CDaoTableDef: :m_pDatabase
Remarks

Contains a pointer to the CDaoDatabase object for this table.

368

CDaoTableDef::m_pDAOTableDef

For more information on accessing underlying DAO objects, see the article "DAO
Collections: Obtaining Information About DAO Objects" in Programming with MFC.

See Also CDaoTableDef::m_pDAOTableDef

CDaoTableDef: :m_pDAOTableDef
Remarks

Contains a pointer to the OLE interface for the DAO tabledef object underlying the
CDaoTableDef object. Use this pointer if you need to access the DAO interface
directly.

For more information on accessing underlying DAO objects, see the article "DAO
Collections: Obtaining Information About DAO Objects" in Programming with MFC.

See Also CDaoTableDef::m_pDatabase

369

CDao Workspace

CDao Workspace

A CDaoWorkspace object manages a named, password-protected database session
from login to logoff, by a single user. In most cases, you will not need multiple
workspaces, and you will not need to create explicit workspace objects; when you
open database and recordset objects, they use DAO's default workspace. However, if
needed, you can run multiple sessions at a time by creating additional workspace
objects. Each workspace object can contain multiple open database objects in its own
Databases collection. In MFC, a workspace is primarily a transaction manager,
specifying a set of open databases all in the same "transaction space."

Note The DAO database classes are distinct from the MFC database classes based on Open
Database Connectivity (ODBC). All DAO database class names have a "CDao" prefix. In
general, the MFC classes based on DAO are more capable than the MFC classes based on
ODBC. The DAO-based classes access data through the Microsoft Jet database engine,
including ODBC drivers. They also support Data Definition Language (DDL) operations, such
as creating databases and adding tables and fields via the classes, without having to call DAO
directly.

Capabilities

370

Class CDao Workspace provides the following:

• Explicit access, if needed, to a default workspace, created by initializing the
database engine. Usually you use DAO's default workspace implicitly by creating
database and recordset objects.

• A transaction space in which transactions apply to all databases open in the
workspace. You can create additional workspaces to manage separate transaction
spaces.

• An interface to many properties of the underlying Microsoft Jet database engine
(see the static member functions). Opening or creating a workspace, or calling a
static member function before open or create, initializes the database engine.

• Access to the database engine's Workspaces collection, which stores all active
workspaces that have been appended to it. You can also create and work with
workspaces without appending them to the collection.

Security

Usage

MFC does not implement the Users and Groups collections in DAO, which are used
for security control. If you need those aspects of DAO, you must program them
yourself via direct calls to DAO interfaces. For information, see Technical Note 54
under MFC in Books Online.

You can use class CDaoWorkspace to:

• Explicitly open the default workspace.

Usually your use of the default workspace is implicit-when you open new
CDaoDatabase or CDaoRecordset objects. But you might need to access it
explicitly - for example, to access database engine properties or the Workspaces
collection. See "Implicit Use of the Default Workspace" below.

• Create new workspaces. Call Append if you want to add them to the Workspaces
collection.

• Open an existing workspace in the Workspaces collection.

Creating a new workspace that does not already exist in the Workspaces collection is
described under the Create member function. Workspace objects do not persist in any
way between datababase engine sessions. If your application links MFC statically,
ending the application uninitializes the database engine. If your application links
with MFC dynamically, the database engine is uninitialized when the MFC DLL is
unloaded.

Explicitly opening the default workspace, or opening an existing workspace in the
Workspaces collection, is described under the Open member function.

End a workspace session by closing the workspace with the Close member function.
Close closes any databases you have not closed previously, rolling back any
uncommitted transactions.

Transactions
DAO manages transactions at the workspace level; hence, transactions on a
workspace with multiple open databases apply to all of the databases. For example, if
two databases have uncommitted updates and you call CommitTrans, all of the
updates are committed. If you want to limit transactions to a single database, you
need a separate workspace object for it.

Implicit Use of the Default Workspace
MFC uses DAO's default workspace implicitly under the following circumstances
described on the following page.

CDao Workspace

371

CDao Workspace

• If you create a new CDaoDatabase object but do not do so through an existing
CDaoWorkspace object, MFC creates a temporary workspace object for you,
which corresponds to DAO's default workspace. If you do so for multiple
databases, all of the database objects are associated with the default workspace.
You can access a database's workspace through a CDaoDatabase data member.

• Similarly, if you create a CDaoRecordset object without supplying a pointer to a
CDaoDatabase object, MFCcreates a temporary database object and, by
extension, a temporary workspace object. You can access a recordset's database,
and indirectly its workspace, through a CDaoRecordset data member.

Other Operations

372

Other database operations are also provided, such as repairing a corrupted database
or compacting a database.

For more about CDaoWorkspace, see the article "DAO Workspace." For information
about calling DAO directly and about DAO security, see Technical Note 54 under
MFC in Books Online. For more about working with ODBC data sources through
DAO, see the article "DAO External: Working with External Data Sources." For
information about the database engine, see the article "DAO Workspace: The
Database Engine." All articles are in Programming with MFC. The MFC Database
sample DAOVIEW illustrates using CDaoWorkspace. Information about samples is
available under MFC Samples, under MFC in Books Online.

#include <afxdao.b>

See Also CDaoDatabase, CDaoRecordset, CDaoTableDef, CDaoQueryDef,
CDaoException

Data Members

m_pDAOWorkspace

Construction

CDaoWorkspace

Attributes

GetlsolateODBCTrans

GetName

GetUserName

IsOpen

SetIsolateODBCTrans

Points to the underlying DAO workspace object.

Constructs a workspace object. Afterwards, call Create or Open.

Returns a value that indicates whether multiple transactions that
involve the same ODBC data source are isolated via forced
multiple connections to the data source.

Returns the user-defined name for the workspace object.

Returns the user name specified when the workspace was created.
This is the name of the workspace owner.

Returns nonzero if the workspace is open.

Specifies whether multiple transactions that involve the same
ODBC data source are isolated by forcing multiple connections to
the data source.

Operations

Append

BeginTrans

Close

CommitTrans

CompactDatabase

Create

GetDatabaseCount

GetDatabaseInfo

GetWorkspaceCount

GetWorkspaceInfo

Open

RepairDatabase

Rollback

Idle

Database Engine Properties

GetVersion

GetIniPath

GetLoginTimeout

SetDefaultPassword

SetDefaultUser

SetIniPath

SetLoginTimeout

Appends a newly created workspace to the database engine's
Workspaces collection.

Begins a new transaction, which applies to all databases open
in the workspace.

Closes the workspace and all of the objects it contains.
Pending transactions are rolled back.

Completes the current transaction and saves the changes.

Compacts (or duplicates) a database.

Creates a new DAO workspace object.

Returns the number of DAO database objects in the
workspace's Databases collection.

Returns information about a specified DAO database defined
in the workspace's Databases collection.

Returns the number of DAO workspace objects in the
database engine's Workspaces collection.

Returns information about a specified DAO workspace
defined in the database engine's Workspaces collection.

Explicitly opens a workspace object associated with DAO' s
default workspace.

Attempts to repair a damaged database.

Ends the current transaction and does not save the changes.

Allows the database engine to perform background tasks.

Returns a string that contains the version of the database
engine associated with the workspace.

Returns the location of the Microsoft Jet database engine's
initialization settings in the Windows registry.

Returns the number of seconds before an error occurs when
the user attempts to log in to an ODBC database.

Sets the password that the database engine uses when a
workspace object is created without a specific password.

Sets the user name that the database engine uses when a
workspace object is created without a specific user name.

Sets the location of the Microsoft Jet database engine's
initialization settings in the Windows registry.

Sets the number of seconds before an error occurs when the
user attempts to log in to an ODBC data source.

CDaoWorkspace

373

CDao Workspace::Append

Member Functions
CDao Workspace: : Append

Remarks

void Append();
throw(CDaoException, CMemoryException);

Call this member function after you call Create. Append appends a newly created
workspace object to the database engine's Workspaces collection. Workspaces do not
persist between database engine sessions; they are stored only in memory, not on disk.
You do not have to append a workspace; if you do not, you can still use it.

An appended workspace remains in the Workspaces collection, in an active, open
state, until you call its Close member function.

For more information about workspaces, see the article "DAO Workspace." For more
information about the database engine, see the article "DAO Workspace: The
Database Engine." Both articles are in Programming with MPC. For related
information, see the topic "Append Method" in DAO Help.

CDao Workspace: :BeginTrans

Remarks

374

void BeginTrans();
throw(CDaoException, CMemoryException);

Call this member function to initiate a transaction. After you call BeginTrans,
updates you make to your data or database structure take effect when you commit the
transaction. Because the workspace defines a single transaction space, the transaction
applies to all open databases in the workspace. There are two ways to complete the
transaction:

• Call the CommitTrans member function to commit the transaction and save
changes to the data source.

• Or call the Rollback member function to cancel the transaction.

Closing the workspace object or a database object while a transaction is pending rolls
back all pending transactions.

If you need to isolate transactions on one ODBC data source from those on another
ODBC data source, see the SetIsolateODBCTrans member function.

CDao Workspace: :Close

For information about transactions, see the article "DAO Workspace: Managing
Transactions." For more information about workspaces, see the article "DAO
Workspace." Both articles are in Programming with MFC.

See Also CDao Workspace: : GetIsolateODBCTrans,
CDao Workspace: :CommitTrans, CDao Workspace: : Rollback

CDao Workspace: :CDao Workspace
CDaoWorkspace();

Remarks
Constructs a CDaoWorkspace object. After constructing the C++ object, you have
two options:

• Call the object's Open member function to open the default workspace or to open
an existing object in the Workspaces collection.

• Or call the object's Create member function to create a new DAO workspace
object. This explicitly starts a new workspace session, which you can refer to via
the CDaoWorkspace object. After calling Create, you can call Append if you
want to add the workspace to the database engine's Workspaces collection.

See the class overview for CDaoWorkspace for information about when you need to
explicitly create a CDaoWorkspace object. Usually, you use workspaces created
implicitly when you open a CDaoDatabase object without specifying a workspace or
when you open a CDaoRecordset object without specifying a database object. MFC
DAO objects created in this way use DAO's default workspace, which is created once
and reused.

To release a workspace and its contained objects, call the workspace object's Close
member function.

For more information about workspaces, see the article "DAO Workspace." For more
information about implicit workspace creation, see the article "DAO: Accessing
Implicit MFC DAO Objects." Both articles are in Programming with MFC.

CDao Workspace: :Close

Remarks

virtual void Close();
throw(CDaoException, CMemoryException);

Call this member function to close the workspace object. Closing an open workspace
object releases the underlying DAO object and, if the workspace is a member of the
Workspaces collection, removes it from the collection. Calling Close is good
programming practice.

375

CDao Workspace: :CommitTrans

Caution Closing a workspace object closes any open databases in the workspace. This
results in any recordsets open in the databases being closed as well, and any pending edits or
updates are rolled back. For related information, see the CDaoDatabase::Close,
CDaoRecordset::Close, CDaoTableDef::Close, and CDaoQueryDef::Close member
functions.

Workspace objects are not permanent; they only exist while references to them exist.
This means that when the database engine session ends, the workspace and its
Databases collection do not persist. You must re-create them for the next session by
opening your workspace and database(s) again.

For more information about workspaces, see the article "DAO Workspace" in
Programming with MFC. For related information, see the topic "Close Method" in
DAOHelp.

See Also CDaoWorkspace::Open

CDao Workspace: :CommitTrans

Remarks

376

void CommitTrans();
throw(CDaoException, CMemoryException);

Call this member function to commit a transaction-save a group of edits and
updates to one or more databases in the workspace. A transaction consists of a series
of changes to the database's data or its structure, beginning with a call to
BeginTrans. When you complete the transaction, either commit it or roll it back
(cancel the changes) with Rollback. By default, without transactions, updates to
records are committed immediately. Calling BeginTrans causes commitment of
updates to be delayed until you call CommitTrans.

Caution Within one workspace, transactions are always global to the workspace and are not
limited to only one database or recordset. If you perform operations on more than one
database or recordset within a workspace transaction, CommitTrans commits all pending
updates, and Rollback restores all operations on those databases and recordsets.

When you close a database or workspace with pending transactions, the transactions
are all rolled back.

Note This is not a two-phase commit mechanism. If one update fails to commit, others still
will commit.

For more information about workspaces, see the article "DAO Workspace." For more
about transactions, including information about separate transaction spaces, see the
article "DAO Workspace: Managing Transactions." Both articles are in Programming
withMFC.

CDao Workspace: :CompactDatabase

CDao Workspace: :CompactDatabase
static void PASCAL CompactDatabase(LPCTSTR lpszSrcName, LPCTSTR lpszDestName,

LPCTSTR lpszLocale = dbLangGeneral, int nOptions = 0);
throw(CDaoException, CMemoryException);

static void PASCAL CompactDatabase(LPCTSTR lpszSrcName, LPCTSTR lpszDestName,
LPCTSTR lpszLocale, int nOptions, LPCTSTR lpszPassword);
throw(CDaoException, CMemoryException);

Parameters
lpszSrcName The name of an existing, closed database. It can be a full path

and filename, such as "C:\\MYDB.MDB". If the filename has an extension,
you must specify it. If your network supports the uniform naming convention
(UNC), you can also specify a network path, such as
"\\\\MYSERVER\\MYSHARE\\MYDIR\\MYDB.MDB". (Double backslashes
are required in the path strings because "\" is the C++ escape character.)

lpszDestName The full path of the compacted database that you are creating. You
can also specify a network path as with lpszSrcName. You cannot use the
lpszDestName argument to specify the same database file as lpszSrcName.

lpszPassword A password, used when you want to compact a password-protected
database. Note that if you use the version of CompactDatabase that takes a
password, you must supply all parameters.

lpszLocale A string expression used to specify collating order for creating
lpszDestName. If you omit this argument by accepting the default value of
dbLangGeneral (see below), the locale of the new database is the same as that of
the old database. Possible values are:

• dbLangGeneral English, German, French, Portuguese, Italian, and Modern
Spanish

• dbLangArabic Arabic

• dbLangCyrilIic Russian

• dbLangCzech Czech

• dbLangDutch Dutch

• dbLangGreek Greek

• dbLangHebrew Hebrew

• dbLangHungarian Hungarian

• dbLanglcelandic Icelandic

3n

CDao Workspace: :CompactDatabase

378

• dbLangNordic Nordic languages (Microsoft Jet database engine version
1.0 only)

• dbLangNorwdan Norwegian and Danish

• dbLangPolish Polish

• dbLangSpanish Traditional Spanish

• dbLangSwedfin Swedish and Finnish

• dbLangThrkish Turkish

nOptions Indicates one or more options for the target database, lpszDestName. If
you omit this argument by accepting the default value, the lpszDestName will have
the same encryption and the same version as lpszSrcName. You can combine the
dbEncrypt or dbDecrypt option with one of the version options using the
bitwise-OR operator. Possible values, which specify a database format, not a
database engine version, are:

• dbEncrypt Encrypt the database while compacting.

• dbDecrypt Decrypt the database while compacting.

• dbVersionl0 Create a database that uses the Microsoft Jet database engine
version 1.0 while compacting.

• dbVersionll Create a database that uses the Microsoft Jet database engine
version 1.1 while compacting.

• dbVersion20 Create a database that uses the Microsoft Jet database engine
version 2.0 while compacting.

• dbVersion30 Create a database that uses the Microsoft Jet database engine
version 3.0 while compacting.

You can use dbEncrypt or dbDecrypt in the options argument to specify whether
to encrypt or to decrypt the database as it is compacted. If you omit an encryption
constant or if you include both dbDecrypt and dbEncrypt, lpszDestName will
have the same encryption as lpszSrcName. You can use one of the version
constants in the options argument to specify the version of the data format for the
compacted database. This constant affects only the version of the data format of
lpszDestName. You can specify only one version constant. If you omit a version
constant, lpszDestName will have the same version as lpszSrcName. You can
compact lpszDestName only to a version that is the same or later than that of
lpszSrcName.

Caution If a database is not encrypted, it is possible, even if you implement
user/password security, to directly read the binary disk file that constitutes the database.

CDao Workspace: : Create

Remarks

v

Call this member function to compact a specified Microsoft Jet (.MDB) database.
As you change data in a database, the database file can become fragmented and use
more disk space than necessary. Periodically, you should compact your database to
defragment the database file. The compacted database is usually smaller. You can
also choose to change the collating order, the encryption, or the version of the data
format while you copy and compact the database.

Warning The CompactDatabase member function will not correctly convert a complete
Microsoft Access database from one version to another. Only the data format is converted.
Microsoft Access-defined objects, such as forms and reports, are not converted. However, the
data is correctly converted.

Tip You can also use CompactDatabase to copy a database file.

For more information about workspaces, see the article "DAO Workspace" in
Programming with MFC. For more information about compacting databases, see
the topic "CompactDatabase Method" in DAO Help.

See Also CDao Workspace: : RepairDatabase

CDao Workspace: : Create
virtual void Create(LPCTSTR IpszName, LPCTSTR IpszUserName, LPCTSTR IpszPassword);

throw(CDaoException, CMemoryException);

Parameters

Remarks

IpszName A string with up to 14 characters that uniquely names the new workspace
object. You must supply a name. For related information, see the topic "Name
Property" in DAO Help.

IpszUserName The user name of the workspace's owner. For requirements, see the
IpszDeJaultUser parameter to the SetDefaultUser member function. For related
information, see the topic "UserName Property" in DAO Help.

IpszPassword The password for the new workspace object. A password can be up to
14 characters long and can contain any character except ASCII 0 (null).
Passwords are case-sensitive. For related information, see the topic "Password
Property" in DAO Help.

Call this member function to create a new DAO workspace object and associate it
with the MFC CDaoWorkspace object. The overall creation process is:

1. Construct a CDaoWorkspace object.

2. Call the object's Create member function to create the underlying DAO
workspace. You must specify a workspace name.

379

CDao Workspace::GetDatabaseCount

3. Optionally call Append if you want to add the workspace to the database engine's
Workspaces collection. You can work with the workspace without appending it.

After the Create call, the workspace object is in an open state, ready for use. You do
not call Open after Create. You do not call Create if the workspace already exists in
the Workspaces collection. Create initializes the database engine if it has not already
been initialized for your application.

For more information about workspaces, see the article "DAO Workspace" in
Programming with MFC.

See Also CDao Workspace: :CDao Workspace, CDao Workspace: : Close,
CDao Workspace: : Open

CDao Workspace: : GetDatabaseCount
short GetDatabaseCount();

throw(CDaoException, CMemoryException);

Return Value

Remarks

The number of open databases in the workspace.

Call this member function to retrieve the number of DAO database objects in the
workspace's Databases collection-the number of open databases in the workspace.
GetDatabaseCount is useful if you need to loop through all defined databases in the
workspace's Databases collection. To obtain information about a given database in
the collection, see GetDatabaselnfo. Typical usage is to call GetDatabaseCount for
the number of open databases, then use that number as a loop index for repeated calls
to GetDatabaselnfo.

For more information about obtaining database information, see the article "DAO:
Obtaining Information About DAO Objects" in Programming with MFC.

CDao Workspace: : GetDatabaseInfo
void GetDatabaselnfo(int nlndex, CDaoDatabaselnfo& dbinfo,

DWORD dwlnfoOptions = AFX_DAO_PRlMARY_INFO);
throw(CDaoException, CMemoryException);

void GetDatabaseInfo(LPCTSTR lpszName, CDaoDatabaselnfo& dbinfo,
DWORD dwlnfoOptions = AFX_DAO_PRIMARY_INFO);
throw(CDaoException, CMemoryException);

Parameters

380

nlndex The zero-based index of the database object in the workspace's Databases
collection, for lookup by index.

CDao Workspace: : GetIniPath

Remarks

dbinfo A reference to a CDaoDatabaselnfo object that returns the information
requested.

dwlnfoOptions Options that specify which information about the database to
retrieve. The available options are listed here along with what they cause the
function to return:

• AFX_DAO_PRIMARY_INFO. (Default) Name, Updatable, Transactions

• AFX_DAO_SECONDARY_INFO Primary information plus: Version,
Collating Order, Query Timeout

• AFX_DAO_ALL_INFO Primary and secondary information plus: Connect

lpszName The name of the database object, for lookup by name. The name is a
string with up to 14 characters that uniquely names the new workspace object.

Call this member function to obtain various kinds of information about a database
open in the workspace. One version of the function lets you look up a database by
index. The other version lets you look up a database by name.

For a description of the information returned in dbinfo, see the CDaoDatabaselnfo
structure. This structure has members that correspond to the items of information
listed above in the description of dwlnfoOptions. When you request information at
one level, you get information for any prior levels as well.

For more information about obtaining database information, see the article "DAO:
Obtaining Information About DAO Objects" in Programming with MPC.

See Also CDao Workspace: :GetDatabaseCount

CDao Workspace: : GetIniPath
static CString PASCAL GetlniPath();-

throw(CDaoException, CMemoryException);

Return Value

Remarks

A CString containing the registry location.

Call this member function to obtain the location of the Microsoft Jet database
engine's initialization settings in the Windows registry. You can use the location to
obtain information about settings for the database engine. The information returned
is actually the name of a registry subkey.

381

CDao Workspace::GetlsolateODBCTrans

For more information about the database engine, see the article "DAO Workspace:
The Database Engine" in Programming with MFC. For related information, see the
topics "IniPath Property" and "Customizing Windows Registry Settings for Data
Access" in DAO Help.

See Also CDao Workspace: :SetIniPath, CDao Workspace: : GetVersion

CDaoWorkspace::GetIsolateODBCTrans
BOOL GetIsolateODBCTrans();

throw(CDaoException, CMemoryException);

Return Value

Remarks

Nonzero if ODBC transactions are isolated; otherwise O.

Call this member function to get the current value of the DAO IsolateODBCTrans
property for the workspace. In some situations, you might need to have multiple
simultaneous transactions pending on the same ODBC database. To do this, you need
to open a separate workspace for each transaction. Keep in mind that although each
workspace can have its own ODBC connection to the database, this slows system
performance. Because transaction isolation is not normally required, ODBC
connections from multiple workspace objects opened by the same user are shared by
default.

Some ODBC servers, such as Microsoft SQL Server, do not allow simultaneous
transactions on a single connection. If you need to have more than one transaction at
a time pending against such a database, set the IsolateODBCTrans property to TRUE
on each workspace as soon as you open it. This forces a separate ODBC connection
for each workspace.

For more information about workspaces, see the article "DAO Workspace." For more
information about working with ODBC data sources through DAO, see the article
"DAO External: Working with External Data Sources." Both articles are in
Programming with MFC. For related information, see the topic "IsolateODBCTrans
Property" in DAO Help.

See Also CDaoWorkspace::SetIsoiateODBCTrans

CDao Workspace: : GetLoginTimeout
static short PASCAL GetLoginTimeout();

throw(CDaoException, CMemoryException);

Return Value

382

The number of seconds before an error occurs when you attempt to log in to an
ODBC database.

CDaoWorkspace::GetUserName

Remarks
Call this member function to get the current value of the DAD LoginTirneout
property for the workspace. This value represents the number of seconds before an
error occurs when you attempt to log in to an DDBC database. The default
LoginTimeout setting is 20 seconds. When LoginTimeout is set to 0, no timeout
occurs and the communication with the data source might hang.

When you are attempting to log in to an DDBC database, such as Microsoft SQL
Server, the connection may fail as a result of network errors or because the server is
not running. Rather than waiting for the default 20 seconds to connect, you can
specify how long the database engine waits before it produces an error. Logging in to
the server happens implicitly as part of a number of different events, such as running
a query on an external server database.

For more information about workspaces, see the article "DAD Workspace." For more
information about working with DDBC data sources through DAD, see the article
"DAD External: Working with External Data Sources." Both articles are in
Programming with MFC. For related information, see the topic "LoginTimeout
Property" in DAD Help.

See Also CDao Workspace: :SetLoginTimeout

CDaoWorkspace::GetNarne
CString GetName();

throw(CDaoException, CMemoryException);

Return Value

Remarks

A CString containing the user-defined name of the DAD workspace object.

Call this member function to get the user-defined name of the DAD workspace object
underlying the CDaoWorkspace object. The name is useful for accessing the DAD
workspace object in the database engine's Workspaces collection by name.

For more information about workspaces, see the article "DAD Workspace" in
Programming with MFC. For related information, see the topic "Name Property" in
DAD Help.

CDao Workspace: : GetU serN arne
CString GetUserName();

throw(CDaoException, CMemoryException);

Return Value
A CString that represents the owner of the workspace object.

383

CDao Workspace::GetVersion

Remarks
Call this member function to obtain the name of the owner of the workspace.

To get or set the permissions for the workspace owner, call DAO directly to check the
Permissions property setting; this determines what permissions that user has. To
work with permissions, you need a SYSTEM.MDA file.

For more information about workspaces, see the article DAO Workspace. For
information about calling DAO directly, see Technical Note 54 under MFC in Books
Online. For related information, see the topic "UserName Property" in DAO Help.

See Also CDaoWorkspace::SetDefaultUser

CDao Workspace: : GetVersion
static CString PASCAL GetVersion();

throw(CDaoException, CMemoryException);

Return Value

Remarks

A CString that indicates the version of the database engine associated with the
object.

Call this member function to determine the version of the Microsoft Jet database
engine in use. The value returned represents the version number in the form
"major.minor"; for example, "3.0". The product version number (for example, 3.0)
consists of the version number (3), a period, and the release number (0).

For more information about obtaining workspace information, see the article "DAO:
Obtaining Information About DAO Objects" in Programming with MFC. For related
information, see the topic "Version Property" in DAO Help.

See Also CDaoDatabase::GetVersion

CDao Workspace: : GetWorkspaceCount
short GetWorkspaceCount();

throw(CDaoException, CMemoryException);

Return Value

Remarks

384

The number of open workspaces in the Workspaces collection.

Call this member function to retrieve the number of DAO workspace objects in the
database engine's Workspaces collection. This count does not include any open
workspaces not appended to the collection. GetWorkspaceCount is useful if you
need to loop through all defined workspaces in the Workspaces collection. To obtain
information about a given workspace in the collection, see GetWorkspacelnfo.

CDao Workspace::GetWorkspaceInfo

Typical usage is to call GetWorkspaceCount for the number of open workspaces,
then use that number as a loop index for repeated calls to GetWorkspacelnfo.

For more information about obtaining workspace information, see the article "DAO:
Obtaining Information About DAO Objects" in Programming with MFC.

CDao Workspace: : GetWorkspaceInfo
void GetWorkspacelnfo(int nlndex, CDaoWorkspacelnfo& wkspcinfo,

DWORD dwlnfoOptions = AFX_DAO_PRIMARY_INFO);
throw(CDaoException, CMemoryException);

void GetWorkspacelnfo(LPCTSTR lpszName, CDaoWorkspacelnfo& wkspcinfo,
DWORD dwlnfoOptions = AFX_DAO_PRIMARY_INFO);
throw(CDaoException, CMemoryException);

Parameters

Remarks

nlndex The zero-based index of the database object in the Workspaces collection, for
lookup by index.

wkspcinfo A reference to a CDaoWorkspacelnfo object that returns the information
requested.

dwlnfoOptions Options that specify which information about the workspace to
retrieve. The available options are listed here along with what they cause the
function to return:

• AFX_DAO_PRIMARY_INFO (Default) Name

• AFX_DAO_SECONDARY_INFO Primary information plus: User Name

• AFX_DAO_ALL_INFO Primary and secondary information plus: Isolate
ODBCTrans

lpszName The name of the workspace object, for lookup by name. The name is a
string with up to 14 characters that uniquely names the new workspace object.

Call this member function to obtain various kinds of information about a workspace
open in the session. For a description of the information returned in wkspcinfo, see
the CDaoWorkspacelnfo structure. This structure has members that correspond to
the items of information listed above in the description of dwlnfoOptions. When you
request information at one level, you get information for prior levels as well.

For more information about obtaining workspace information, see the article "DAO:
Obtaining Information About DAO Objects" in Programming with MFC.

See Also CDao Workspace: : GetWorkspaceCount

385

CDao Workspace: : Idle

CDao Workspace: :Idle
static void PASCAL Idle(int nAction = dbFreeLocks);

throw(CDaoException, CMemoryException);

Parameters

Remarks

nAction An action to take during the idle processing. Currently the only valid action
is dbFreeLocks.

Call Idle to provide the database engine with the opportunity to perform background
tasks that may not be up-to-date because of intense data processing. This is often true
in multiuser, multitasking environments in which there is not enough background
processing time to keep all records in a recordset current.

Important Calling Idle is not necessary with databases created with version 3.0 of the
Microsoft Jet database engine. Use Idle only for databases created with earlier versions.

Usually, read locks are removed and data in local dynaset-type recordset objects is
updated only when no other actions (including mouse movements) are occurring. If
you periodically call Idle, you provide the database engine with time to catch up on
background processing tasks by releasing unneeded read locks. Specifying the
dbFreeLocks constant as an argument delays processing until all read locks are
released.

This member function is not needed in single-user environments unless multiple
instances of an application are running. The Idle member function may increase
performance in a multiuser environment because it forces the database engine to flush
data to disk, releasing locks on memory. You can also release read locks by making
operations part of a transaction.

For more information about workspaces, see the article "DAO Workspace" in
Programming with MFC. For related information, see the topic "Idle Method" in
DAOHelp.

CDao Workspace: :IsOpen
BOOL IsOpen() const;

Return Value
Nonzero if the workspace object is open; otherwise O.

386

CDaoWorkspace::Open

Remarks
Call this member function to determine whether the CDaoWorkspace object is
open - that is, whether the MFC object has been initialized by a call to Open or a
call to Create. You can call any of the member functions of a workspace that is in an
open state.

For more information about workspaces, see the article "DAO Workspace" in
Programming with MFC.

CDao Workspace: : Open
virtual void Open(LPCTSTR lpszName = NULL);

throw(CDaoException, CMemoryException);

Parameters

Remarks

lpszName The name of the DAO workspace object to open-a string with up to 14
characters that uniquely names the workspace. Accept the default value NULL to
explicitly open the default workspace. For naming requirements, see the lpszName
parameter for Create. For related information, see the topic "Name Property" in
DAOHelp.

After constructing a CDaoWorkspace object, call this member function to do one of
the following:

• Explicitly open the default workspace. Pass NULL for lpszName .

• Open an existing CDaoWorkspace object, a member of the Workspaces
collection, by name. Pass a valid name for an existing workspace object.

Open puts the workspace object into an open state and also initializes the database
engine if it has not already been initialized for your application.

Although many CDaoWorkspace member functions can only be called after the
workspace has been opened, the following member functions, which operate on the
database engine, are available after construction of the C++ object but before a call to
Open:

Create

GetlniPath

GetLoginTimeout

GetVersion

Idle

SetDefaultPassword

SetDefaultUser

SetlniPath

SetLoginTimeout

For more information about workspaces, see the article "DAO Workspace" in
Programming with MFC.

See Also CDao Workspace: : IsOpen, CDao Workspace: :CDao Workspace,
CDao Workspace: : Create, CDao Workspace: :Close

387

CDao Workspace: :RepairDatabase

CDao Workspace: : RepairDatabase
static void PASCAL RepairDatabase(LPCTSTR lpszName);

throw(CDaoException, CMemoryException);

Parameters

Remarks

lpszName The path and filename for an existing Microsoft Jet engine database file.
If you omit the path, only the current directory is searched. If your system supports
the uniform naming convention (UNC), you can also specify a network path, such
as: "\\\\MYSERVER\\MYSHARE\\MYDIR\\MYDB.MDB". (Double backslashes
are required in the path string because "\" is the C++ escape character.)

Call this member function if you need to attempt to repair a corrupted database that
accesses the Microsoft Jet database engine. You must close the database specified by
lpszName before you repair it. In a multiuser environment, other users cannot have
lpszName open while you are repairing it. If lpszName is not closed or is not available
for exclusive use, an error occlirs.

This member function attempts to repair a database that was marked as possibly
corrupt by an incomplete write operation. This can occur if an application using the
Microsoft Jet database engine is closed unexpectedly because of a power outage or
computer hardware problem. If you complete the operation and call the Close
member function or you quit the application in a usual way, the database will not be
marked as possibly corrupt.

Note After repairing a database, it is also a good idea to compact it using the
CompactDatabase member function to defragment the file and to recover disk space.

For more information about workspaces, see the article "DAO Workspace" in
Programming with MFC. For more information about repairing databases, see the
topic "RepairDatabase Method" in DAO Help.

CDao Workspace: : Rollback

Remarks

388

void Rollback();
throw(CDaoException, CMemoryException);

Call this member function to end the current transaction and restore all databases in
the workspace to their condition before the transaction was begun.

CDao Workspace: :SetDefaultPassword

Caution Within one workspace object, transactions are always global to the workspace and
are not limited to only one database or recordset. If you perform operations on more than one
database or recordset within a workspace transaction, Rollback restores all operations on all
of those databases and recordsets.

If you close a workspace object without saving or rolling back any pending
transactions, the transactions are automatically rolled back. If you call CommitTrans
or Rollback without first calling BeginTrans, an error occurs.

Note When you begin a transaction, the database engine records its operations in a file kept
in the directory specified by the TEMP environment variable on the workstation. If the
transaction log file exhausts the available storage on your TEMP drive, the database engine
will cause MFC to throw a CDaoException (DAO error 2004). At this point, if you call
CommitTrans, an indeterminate number of operations are committed but the remaining
uncompleted operations are lost, and the operation has to be restarted. Calling Rollback
releases the transaction log and rolls back all operations in the transaction.

For more information about workspaces, see the article "DAO Workspace." For more
about transactions, see the article "DAO Workspace: Managing Transactions." Both
articles are in Programming with MFC.

See Also CDaoRecordset

CDao Workspace: :SetDefaultPassword
static void PASCAL SetDefaultPassword(LPCTSTR lpszPassword);

throw(CDaoException, CMemoryException);

Parameters

Remarks

lpszPassword The default password. A password can be up to 14 characters long and
can contain any character except ASCII 0 (null). Passwords are case-sensitive.

Call this member function to set the default password that the database engine uses
when a workspace object is created without a specific password. The default password
that you set applies to new workspaces you create after the call. When you create
subsequent workspaces, you do not need to specify a password in the Create call.

To use this member function:

1. Construct a CDaoWorkspace object but do not call Create.

2. Call SetDefaultPassword and, if you like, SetDefaultUser.

389

CDao Workspace: :SetDefaultU ser

3. Call Create for this workspace object or subsequent ones, without specifying a
password.

By default, the DefaultUser property is set to "admin" and the DefaultPassword
property is set to an empty string ("").

For more information about workspaces, see the article "DAO Workspace" in
Programming with MFC. For more about security, see the topic "Permissions
Property" in DAO Help. For related information, see the topics "DefaultPassword
Property" and "DefaultUser Property" in DAO Help.

CDaoWorkspace::SetDefaultUser
static void PASCAL SetDefaultUser(LPCTSTR lpszDeJaultUser);

throw(CDaoException, CMemoryException);

Parameters

Remarks

390

lpszDeJaultUser The default user name. A user name can be 1-20 characters long
and include alphabetic characters, accented characters, numbers, spaces, and symbols
except for: II (quotation marks), / (forward slash), \ (backslash), [] (brackets),
: (colon), I (pipe), < (less-than sign), > (greater-than sign), + (plus sign), =
(equal sign), ; (semicolon), , (comma), ? (question mark), * (asterisk), leading
spaces, and control characters (ASCII 00 to ASCII 31). For related information,
see the topic "UserName Property" in DAO Help.

Call this member function to set the default user name that the database engine uses
when a workspace object is created without a specific user name. The default user
name that you set applies to new workspaces you create after the call. When you
create subsequent workspaces, you do not need to specify a user name in the Create
call.

To use this member function:

1. Construct a CDaoWorkspace object but do not call Create.

2. Call SetDefaultUser and, if you like, SetDefaultPassword.

3. Call Create for this workspace object or subsequent ones, without specifying a
user name.

By default, the DefaultUser property is set to "admin" and the DefaultPassword
property is set to an empty string ("").

For more information about workspaces, see the article "DAO Workspace" in
Programming with MFC. For related information, see the topics "DefaultUser
Property" and "DefaultPassword Property" in DAO Help.

CDao Workspace: :SetIsolateODBCTrans

CDao Workspace: :SetIniPath
static void PASCAL SetIniPath(LPCTSTR IpszRegistrySubkey);

throw(CDaoException, CMemoryException);

Parameters

Remarks

IpszRegistrySubkey A string containing the name of a Windows registry subkey for
the location of Microsoft Jet database engine settings or parameters needed for
installable IS AM databases.

Call this member function to specify the location of Windows registry settings for the
Microsoft Jet database engine. Call SetIniPath only if you need to specify special
settings. For more information, see the topic "IniPath Property" in DAO Help.

Important Call SetlniPath during application installation, not when the application runs.
SetlniPath must be called before you open any workspaces, databases, or recordsets;
otherwise, MFC throws an exception.

You can use this mechanism to configure the database engine with user-provided
registry settings. The scope of this attribute is limited to your application and cannot
be changed without restarting your application.

For more information about workspaces, see the article "DAO Workspace" in
Programming with MFC.

CDaoWorkspace::SetIsolateODBCTrans
void SetIsolateODBCTrans(BOOL bIsolateODBCTrans);

throw(CDaoException, CMemoryException);

Parameters

Remarks

bIsolateODBCTrans Pass TRUE if you want to begin isolating ODBC transactions.
Pass FALSE if you want to stop isolating ODBC transactions.

Call this member function to set the value of the DAO IsolateODBCTrans property
for the workspace. In some situations, you might need to have multiple simultaneous
transactions pending on the same ODBC database. To do this, you need to open a
separate workspace for each transaction. Although each workspace can have its own
ODBC connection to the database, this slows system performance. Because
transaction isolation is not normally required, ODBC connections from multiple
workspace objects opened by the same user are shared by default.

391

CDao Workspace: :SetLoginTimeout

Some ODBC servers, such as Microsoft SQL Server, do not allow simultaneous
transactions on a single connection. If you need to have more than one transaction at
a time pending against such a database, set the IsolateODBCTrans property to TRUE
on each workspace as soon as you open it. This forces a separate ODBC connection
for each workspace.

For more information about workspaces, see the article "DAO Workspace." For more
about transactions, see the article "DAO Workspace: Managing Transactions." For
more about working with ODBC data sources through DAO, see the article "DAO
External: Working with External Data Sources." All articles are in Programming
withMFC.

See Also CDao Workspace: : GetlsolateODBCTrans

CDao Workspace: :SetLoginTimeout
static void PASCAL SetLoginTimeout(short nSeconds);

throw(CDaoException, CMemoryException);

Parameters

Remarks

392

nSeconds The number of seconds before an error occurs when you attempt to log in
to an ODBC database.

Call this member function to set the value of the DAO LoginTimeout property for the
workspace. This value represents the number of seconds before an error occurs when
you attempt to log in to an ODBC database. The default LoginTimeout setting is 20
seconds. When LoginTimeout is set to 0, no timeout occurs and the communication
with the data source might hang.

When you are attempting to log in to an ODBC database, such as Microsoft SQL
Server, the connection may fail as a result of network errors or because the server is
not running. Rather than waiting for the default 20 seconds to connect, you can
specify how long the database engine waits before it produces an error. Logging on to
the server happens implicitly as part of a number of different events, such as running
a query on an external server database. The timeout value is determined by the
current setting of the LoginTimeout property.

For more information about workspaces, see the article "DAO Workspace." For more
information about working with ODBC data sources through DAO, see the article
"DAO External: Working with External Data Sources." Both articles are in
Programming with MFC. For related information, see the topic "LoginTimeout
Property" in DAO Help.

See Also CDao Workspace: : GetLoginTimeout

CDao Workspace: :m_pDAOWorkspace

Data Members
CDao Workspace: :m_pDAOWorkspace
Remarks

A pointer to the underlying DAO workspace object. Use this data member if you need
direct access to the underlying DAO object. You can call the DAO object's interfaces
through this pointer.

For information about accessing DAO objects directly, see Technical Note 54 under
MFC in Books Online.

393

CDatabase

CDatabase

394

A CDatabase object represents a connection to a data source, through which you can
operate on the data source. A data source is a specific instance of data hosted by some
database management system (DBMS). Examples include Microsoft SQL Server,
Microsoft Access, Borland® dBASE®, and xBASE. You can have one or more
CDatabase objects active at a time in your application.

Note If you are working with the Data Access Objects (DAO) classes rather than the Open
Database Connectivity (ODBC) classes, use class CDaoDatabase instead. For more
information, see the articles "Database Overview" and "DAO and MFC." Both articles are in
Programming with MFG.

To use CDatabase, construct a CDatabase object and call its Open member
function. This opens a connection. When you then construct CRecordset objects for
operating on the connected data source, pass the recordset constructor a pointer to
your CDatabase object. When you finish using the connection, call the Close
member function and destroy the CDatabase object. Close closes any recordsets you
have not closed previously.

For more information about CDatabase, see the articles "Data Source (ODBC)" and
"Database Overview" in Programming with MPC.

#include <afxdb.h>

See Also CRecordset

Data Members

Construction

CDatabase

Open

Close

Open Database Connectivity (ODBC)
connection handle to a data source. Type
HDBC.

Constructs a CDatabase object. You must
initialize the object by calling Open.

Establishes a connection to a data source
(through an ODBC driver).

Closes the data source connection.

Database Attributes

GetConnect

IsOpen

GetDatabaseName

CanUpdate

CanTransact

In WaitForDataSource

SetLoginTimeout

SetQueryTimeout

SetSynchronousMode

Database Operations

BeginTrans

CommitTrans

Rollback

Cancel

ExecuteSQL

Returns the ODBC connect string used to
connect the CDatabase object to a data
source.

Returns nonzero if the CDatabase object is
currently connected to a data source.

Returns the name of the database currently in
use.

Returns nonzero if the CDatabase object is
updatable (not read-only).

Returns nonzero if the data source supports
transactions.

Returns nonzero if the CDatabase object is
currently waiting for the server to respond.

Sets the number of seconds after which a data
source connection attempt will time out.

Sets the number of seconds after which
database query operations will time out.
Affects all subsequent Open, AddNew, Edit,
and Delete calls.

Enables or disables synchronous processing
for all recordsets and SQL statements
associated with the CDatabase object.
Asynchronous processing is the default.

Starts a "transaction" -a series of reversible
calls to the AddNew, Edit, Delete, and
Update member functions of class
CRecordset-on the connected data source.
The data source must support transactions for
BeginTrans to have any effect.

Completes a transaction begun by
BeginTrans. Commands in the transaction
that alter the data source are carried out.

Reverses changes made during the current
transaction. The data source returns to its
previous state, as defined at the BeginTrans
call, unaltered.

Cancels an asynchronous operation.

Executes an SQL statement. No data records
are returned.

CDatabase

395

CDatabase: :BeginTrans

Database Overridables

OnSetOptions

On WaitForDataSource

Called by the framework to set standard
connection options. The default
implementation sets the query timeout value
and the processing mode (asynchronous or
synchronous). You can establish these
options ahead of time by calling
SetQueryTimeout and
SetSynchronousMode.

Called by the framework to yield processing
time to other applications during a lengthy
operation.

Member Functions
CDatabase: :BeginTrans

BOOL BeginTrans();

Return Value

Remarks

396

Nonzero if the call was successful and changes are committed only manually;
otherwise O.

Call this member function to begin a transaction with the connected data source. A
transaction consists of one or more calls to the AddNew, Edit, Delete, and Update
CDatabase object. Before beginning a transaction, the CDatabase object must
already have been connected to the data source by calling its Open member function.
To end the transaction, call CommitTrans to accept all changes to the data source
(and carry them out) or call Rollback to abort the entire transaction. Call
BeginTrans after you open any recordsets involved in the transaction and as close to
the actual update operations as possible.

Warning If you call BeginTrans before opening recordsets, you may have problems when
you call Rollback. Your recordsets will be unsafe because the OOBC "cursors" the database
classes use to implement your recordsets did not exist when you called BeginTrans. For more
information about the timing of your BeginTrans call, see Technical Note 47 (available under
MFC in Books Online).

BeginTrans may also lock data records on the server, depending on the requested
concurrency and the capabilities of the data source. For information about locking
data, see the article "Recordset: Locking Records (ODBC)" in Programming
withMFC.

CDatabase: :CanTransact

v

Example

User-defined transactions are explained in the article "Transaction (ODBC)" in
Programming with MFC.

BeginTrans establishes the state to which the sequence of transactions can be rolled
back (reversed). To establish a new state for rollbacks, commit any current
transaction, then call BeginTrans again.

Warning Calling BeginTrans again without calling CommitTrans or Rollback is an error.

Your data source mayor may not sufficiently support transactions for the database
classes to use them. To determine the transaction behavior of your driver, call
CanTransact. If the data source does not sufficiently support transactions,
CDatabase ignores transaction calls. For more information about transactions and
how to tell whether they are supported, see the article "Transaction (ODBC)" in
Programming with MFC.

See the article "Transaction: Performing a Transaction in a Recordset (ODBC)" in
Programming with MFC.

See Also CDatabase: :CommitTrans, CDatabase: : Rollback,
CRecordset: :CanTransact

CDatabase: :Cancel

Remarks

void Cancel();

Call this member function to cancel an asynchronous operation in progress. This
requests that the data source abort the current operation. The
On WaitForDataSource member function will continue to call the ODBC function
until it no longer returns SQL_STILL_EXECUTING.

See Also CDatabase: :SetSynchronousMode, CDatabase: :In WaitForDataSource,
CDatabase: :On WaitForDataSource

CDatabase: : Can Trans act
BOOL CanTransact() const;

Return Value
Nonzero if recordsets using this CDatabase object allow transactions; otherwise O.

397

CDatabase: :Can Update

Remarks
Call this member function to determine whether the database allows transactions. For
information about transactions, see the article "Transaction (ODBC)" in
Programming with MFC.

See Also CDatabase: :BeginTrans, CDatabase: :CommitTrans,
CDatabase: :Rollback

CDatabase: :CanUpdate
BOOL CanUpdate() const;

Return Value

Remarks

Nonzero if the CDatabase object allows updates; otherwise 0, indicating either that
you passed TRUE in bReadOnly when you opened the CDatabase object or that the
data source itself is read-only. The data source is read-only if a call to the ODBC API
function ::SQLGetInfo for SQL_DATASOURCE_READ_ONLY returns "y".

Call this member function to determine whether the CDatabase object allows
updates. Not all drivers support updates.

CDatabase: :CDatabase

Remarks

Example

398

CDatabase();

Constructs a CDatabase object. After constructing the object, you must call its Open
member function to establish a connection to a specified data source.

You may find it convenient to embed the CDatabase object in your document class.

IIThis example illustrates using CDatabase in a CDocument-derived class.

class CMyDocument : public CDocument
{

public:

} ;

II

II Declare a CDatabase embedded in the document
CDatabase m_dbCust;
II

II Initialize when needed
CDatabase* CMyDocument::GetDatabase(

CDatabase: :CommitTrans

{

II Connect the object to a data source
if(!m_dbCust.IsOpen() && !m_dbCust.Open(NULL))

return NULL;
return &m_dbCust;

See Also CDatabase::Open

CDatabase: :Close

Remarks

Example

virtual void Close();

Call this member function if you want to disconnect from a data source. You must
close any recordsets associated with the CDatabase object before you call this
member function. Because Close does not destroy the CDatabase object, you can
reuse the object by opening a new connection to the same data source. or a different
data source.

All pending AddNew or Edit statements of recordsets using the database are
canceled, and all pending transactions are rolled back. Any recordsets dependent on
the CDatabase object are left in an undefined state.

II Close the current connection
m_dbCust.Close();
II Perhaps connect the object to a different data source
m_dbCust.Open("MYDATASOURCE",

FALSE, FALSE, "ODBC;UID-JOES");
I I ...

See Also CDatabase: :Open

CDatabase: :CommitTrans
BOOL CommitTrans();

Return Value

Remarks

Nonzero if the updates were successfully committed; otherwise O. If Commit fails,
the state of the data source is undefined. You must check the data to determine its
state.

Call this member function upon completing transactions. A transaction consists of a
series of calls to the AddNew, Edit, Delete, and Update member functions of a
CRecordset object that began with a call to BeginTrans. CommitTrans commits the
transaction. By default, updates are committed immediately; calling BeginTrans
causes commitment of updates to be delayed until CommitTrans is called.

399

CDatabase: :ExecuteSQL

Example

Until you call CommitTrans to end a transaction, you can call the Rollback member
function to abort the transaction and leave the data source in its original state. To
begin a new transaction, call BeginTrans again.

For more information about transactions, see the article "Transaction (ODBC)" in
Programming with MFC.

See the article Transaction: "Performing a Transaction in a Recordset (ODBC)" in
Programming with MFC.

See Also CDatabase: :BeginTrans, CDatabase: : Rollback

CDatabase: :ExecuteSQL
void ExecuteSQL(LPCSTR IpszSQL);

throw(CDBException);

Parameters

Remarks

Example

400

IpszSQL Pointer to a null-terminated string containing a valid SQL command to
execute. You can pass a CString.

Call this member function when you need to execute an SQL command directly.
Create the command as a null-terminated string. ExecuteSQL does not return data
records. If you want to operate on records, use a recordset object instead.

Most of your commands for a data source are issued through recordset objects, which
support commands for selecting data, inserting new records, deleting records, and
editing records. However, not all ODBC functionality is directly supported by the
database classes, so you may at times need to make a direct SQL call with
ExecuteSQL.

CString strCmd "UPDATE Taxes SET Federal = 36%";
TRY
{

m_dbCust.ExecuteSOL(strCmd);
}

CATCH(CDBException, e)
{

II The error code is in e->m_nRetCode
}

END_CATCH

See Also CDatabase: :SetSynchronousMode, CDatabase: :SetLoginTimeout,
CRecordset

CDatabase: :In WaitForDataSource

CDatabase: : GetConnect
const CString& GetConnect() const;

Return Value

Remarks

A const reference to a CString containing the connect string if Open has been
called; otherwise, an empty string.

Call this member function to retrieve the connect string used during the call to
Connect that connected the CDatabase object to a data source.

See CDatabase: :Open for a description of how the connect string is created.

See Also CDatabase::Open

CDatabase: : GetDatabaseN arne
CString GetDatabaseName() const;

Return Value

Remarks

A CString containing the database name if successful; otherwise, an empty CString.

Call this member function to retrieve the name of the currently connected database
(provided that the data source defines a named object called "database"). This is
not the same as the data source name (DSN) specified in the Open call. What
GetDatabaseName returns depends on ODBC. In general, a database is a collection
of tables. If this entity has a name, GetDatabaseName returns it.

You might, for example, want to display this name in a heading. If an error occurs
while retrieving the name from ODBC, GetDatabaseName returns an empty
CString.

See Also CDatabase: :Open, CDatabase: : GetConnect

CDatabase: :In WaitForDataSource
static BOOL PASCAL In WaitForDataSource();

Return Value

Remarks

Nonzero if the application is still waiting for a server to complete an operation;
otherwise O.

Call this function from your main window's On Command or OnCmdMsg member
function to disable user commands until a data source responds.

401

CDatabase: : IsOpen

CDatabase: :IsOpen
BOOL IsOpen() const;

Return Value

Remarks

Nonzero if the CDatabase object is currently connected; otherwise O.

Call this member function to determine whether the CDatabase object is currently
connected to a data source.

See Also CDatabase: :Open

CDatabase: :OnSetOptions
virtual void OnSetOptions(HSTMT hstmt);

Parameters

Remarks

402

hstmt The ODBC statement handle for which options are being set.

The framework calls this member function when directly executing an SQL statement
with the ExecuteSQL member function. CRecordset::OnSetOptions also calls this
member function. OnSetOptions sets options for synchronous or asynchronous
processing and the login timeout value. If there have been previous calls to the
SetQueryTimeout and SetSynchronousMode member functions, OnSetOptions
reflects the current values; otherwise, it sets default values.

You do not need to override OnSetOptions to change the timeout and synchronous
mode options. Instead, to customize the query timeout value, call SetQueryTimeout
before creating a recordset; OnSetOptions will use the new value. To change the
default processing mode from asynchronous to synchronous, call
SetSynchronousMode before creating a recordset; OnSetOptions sets the mode to
asynchronous unless you have changed it to synchronous. The values set apply to
subsequent operations on all recordsets or direct SQL calls.

Override OnSetOptions if you want to set additional options. Your override should
call the base class OnSetOptions either before or after you call the ODBC API
function ::SQLSetStmtOption. Follow the method illustrated in the framework's
default implementation of OnSetOptions.

See Also CDatabase: :ExecuteSQL, CDatabase: :SetQueryTimeout,
CDatabase: :SetSynchronousMode, CRecordset: :OnSetOptions

CDatabase: :On WaitForDataSource
virtual void OnWaitForDataSource(BOOL bStillExecuting);

Parameters

Remarks

bStillExecuting TRUE if this is the first time the function is called before an
asynchronous operation. Data access operations are asynchronous by default.

The framework calls this member function to yield processing time to other
applications. You can also override it to give the user a chance to cancel a long
operation.

Override On WaitForDataSource if you want to fine-tune the behavior of the default
version. For example, you may also want to detect the ESC key in your override and, if
you detect it, call the Cancel member function to break out of the wait loop.

CDatabase: : Open
virtual BOOL Open(LPCSTR IpszDSN, BOOL bExclusive = FALSE,

BOOL bReadOnly = FALSE, LPCSTR IpszConnect = "ODBC;",
BOOL bUseCursorLib = TRUE);
throw(CDBException, CMemoryException);

Return Value
Nonzero if the connection is successfully made; otherwise 0 if the user chooses
Cancel when presented a dialog box asking for more connection'information. In all
other cases, the framework throws an exception.

Parameters
IpszDSN Specifies a data source name-a name registered with ODBC through the

ODBC Administrator program. If a DSN value is specified in IpszConnect (in the
form "DSN=<data-source>"), it must not be specified again in IpszDSN. In this
case, IpszDSN should be NULL. Otherwise, you can pass NULL if you want to
present the user with a Data Source dialog box in which the user can select a data
source. For further information, see "Remarks."

bExclusive Not supported in this version of the class library. Currently, an assertion
fails if this parameter is TRUE. The data source is always opened as shared (not
exclusive).

bReadOnly TRUE if you intend the connection to be read-only and to prohibit
updates to the data source. All dependent recordsets inherit this attribute.

IpszConnect Specifies a connect string. The connect string concatenates
information, possibly including a data source name, a user ID valid on the data
source, a user authentication string (password, if the data source requires one),
and other information. The whole connect string must be prefixed by the string

CDatabase: :Open

403

CDatabase: :Open

Remarks

Example

404

"ODBC;" (uppercase or lowercase). The "ODBC;" string is used to indicate that
the connection is to an ODBC data source; this is for upward compatibility when
future versions of the class library might support non-ODBC data sources. If you
do not supply lpszConnect, its value defaults to "ODBC;". For further information,
see "Remarks."

bUseCursorLib TRUE if you want the ODBC Cursor Library DLL to be loaded.
The Cursor Library masks some functionality of the underlying ODBC driver,
effectively preventing the use of dynasets (if the driver supports them). The only
cursors supported if the Cursor Library is loaded are static snapshots and
"forwardOnly" cursors. The default value is TRUE.

You must call this member function to initialize a newly constructed CDatabase
object. You cannot use the database object to construct recordset objects until it is
initialized.

If the parameters in your Open call do not contain enough information to make the
connection, the ODBC driver opens a dialog box to obtain the necessary information
from the user. When you call Open, your connect string, lpszConnect, is stored
privately in the CDatabase object and is available by calling the GetConnect
member function.

If you wish, you can open your own dialog box before you call Open to get
information from the user, such as a password, then add that information to the
connect string you pass to Open. Or you might want to save the connect string you
pass (perhaps in an INI file) so you can reuse it the next time your application calls
Open on a CDatabase object.

You can also use the connect string for multiple levels of login authorization (each
for a different CDatabase object) or to convey other data source-specific information.
For more information about connect strings, see Chapter 5 in the ODBC
Programmer's Reference.

It is possible for a connection attempt to time out if, for example, the DBMS host is
unavailable. If the connection attempt fails, Open throws a CDBException.

II Embed the CDatabase object in your document class
CDatabase m_dbCust();
II
II Connect the object to a data source (no password)
II Instead of hard-coded values. you might use user-supplied values
m_dbCust. Open ("MYDATASOURCE". FALSE. FALSE.

"ODBC;UID-JOES");
II Or query the user for all connection information
m_dbCust.Open(NULL);

See Also CDatabase::CDatabase, CDatabase::Close, CDBException,
CRecordset: :Open

CDatabase::SetSynchronousMode

CDatabase: : Rollback
BOOL Rollback();

Return Value

Remarks

Example

Nonzero if the transaction was successfully reversed; otherwise 0. If a Rollback call
fails, the data source and transaction states are undefined. If Rollback returns 0, you
must check the data source to determine its state.

Call this member function to reverse the changes made during a transaction. All
CRecordset AddNew, Edit, Delete, and Update calls executed since the last
BeginTrans are rolled back to the state that existed at the time of that call.

After a call to Rollback, the transaction is over, and you must call BeginTrans again
for another transaction. The record that was current before you called BeginTrans
becomes the current record again after Rollback.

After a rollback, the record that was current before the rollback remains current. For
details about the state of the recordset and the data source after a rollback, see the
article "Transaction (ODBC)" in Programming with MFC.

See the article "Transaction: Performing a Transaction in a Recordset (ODBC)" in
Programming with MFC.

See Also CDatabase: :BeginTrans, CDatabase: :CommitTrans

CDatabase: :SetSynchronousMode
void SetSynchronousMode(BOOL bSynchronous);

Parameters

Remarks

bSynchronous TRUE to enable synchronous processing; FALSE to disable.

Call this member function to enable or disable synchronous processing of database
transactions. This state applies to all subsequently opened recordsets or direct SQL
calls on the CDatabase connection.

By default, functions are processed asynchronously. The driver returns control to an
application before a function call completes; the application can continue non
database processing while the driver completes the function in progress.

Not all data sources support the ability to specify asynchronous processing.

See Also CDatabase: :OnSetOptions, CDatabase: :In WaitForDataSource

405

CDatabase:: SetLoginTimeout

CDatabase::SetLoginTimeout
void SetLoginTimeout(DWORD dwSeconds);

Parameters

Remarks

dwSeconds The number of seconds to allow before a connection attempt times out.

Call this member function-before you call Open-to override the default number
of seconds allowed before an attempted data source connection times out. A
connection attempt might time out if, for example, the DBMS is not available. Call
SetLoginTimeout after you construct the uninitialized CDatabase object but before
you call Open.

The default value for login timeouts is 15 seconds. Not all data sources support the
ability to specify a login timeout value. If the data source does not support timeout,
you get trace output but not an exception. A value of 0 means "infinite."

See Also CDatabase: :OnSetOptions, CDatabase: :SetQueryTimeout

CDatabase:: SetQueryTimeout
void SetQueryTimeout(DWORD dwSeconds);

Parameters

Remarks

406

dwSeconds The number of seconds to allow before a query attempt times out.

Call this member function to override the default number of seconds to allow before
subsequent operations on the connected data source time out. An operation might
time out due to network access problems, excessive query processing time, and so on.
Call SetQueryTimeout prior to opening your recordset or prior to calling the
recordset's AddNew, Update or Delete member functions if you want to change the
query timeout value. The setting affects all subsequent Open, AddNew, Update, and
Delete calls to any recordsets associated with this CDatabase object. Changing the
query timeout value for a recordset after opening does not change the value for the
recordset. For example, subsequent Move operations do not use the new value.

The default value for query timeouts is 15 seconds. Not all data sources support the
ability to set a query timeout value. If you set a query timeout value of 0, no timeout
occurs; the communication with the data source may hang. This behavior may be
useful during development. If the data source does not support timeout, you get trace
output but not an exception.

See Also CDatabase::SetLoginTimeout

Data Members
CDatabase: :m_hdbc
Remarks

Example

Contains a public handle to an ODBC data source connection-a "connection
handle." Normally, you will have no need to access this member variable directly.
Instead, the framework allocates the handle when you call Open. The framework
deallocates the handle when you call the delete operator on the CDatabase object.
Note that the Close member function does not deallocate the handle.

Under some circumstances, however, you may need to use the handle directly. For
example, if you need to call ODBC API functions directly rather than through class
CDatabase, you may need a connection handle to pass as a parameter. See the code
example below.

II Using m_hdbc for a direct ODBC API call
II m_db is the CDatabase object; m_hdbc is its HDBC member variable
nRetcode = ::SQLGetInfo(m_db.m_hdbc, SQL_ODBC_SQL_CONFORMANCE,

&nValue, sizeof(nValue), &cbValue);

See Also CDatabase::Open, CDatabase::Close

CDatabase: :m_hdbc

407

CDataExchange

CDataExchange
The CDataExchange class supports the dialog data exchange (DDX) and dialog data
validation (DDV) routines used by the Microsoft Foundation classes. Use this class if
you are writing data exchange routines for custom data types or controls, or if you are
writing your own data validation routines. For more information on writing your own
DDX and DDV routines, see Technical Note 26 under MFC in Books Online. For an
overview of DDX and DDV, see "Dialog Data Exchange and Validation" and "Dialog
Boxes" in Chapter 4 of Programming with MFC.

A CDataExchange object provides the context information needed for DDX and
DDV to take place. The flag ID_bSaveAndValidate is FALSE when DDX is used
to fill the initial values of dialog controls from data members. The flag
ID_bSaveAndValidate is TRUE when DDX is used to set the current values of
dialog controls into data members and when DDV is used to validate the data values.
If the DDV validation fails, the DDV procedure will display a message box
explaining the input error. The DDV procedure will then call Fail to reset the focus
to the offending control and throw an exception to stop the validation process.

#include <afxwin.h>

See Also CWnd::DoDataExchange, CWnd::UpdateData

Data Members

ID_bSaveAndValidate

ID_pDlgWnd

Operations

PrepareCtrl

PrepareEditCtrl

Fail

Flag for the direction of DDX and DDV.

The dialog box or window where the data exchange takes
place.

Prepares the specified control for data exchange or validation.
Use for nonedit controls.

Prepares the specified edit control for data exchange or
validation.

Called when validation fails. Resets focus to the previous
control and throws an exception.

Member Functions
CDataExchange: :Fail

void Fail();
throw(CUserException);

408

CDataExchange: : PrepareCtrl

Remarks
The framework calls this member function when a dialog data validation (DDV)
operation fails. Fail restores the focus and selection to the control whose validation
failed (if there is a control to restore). Fail then throws an exception of type
CUserException to stop the validation process. The exception causes a message box
explaining the error to be displayed. After DDV validation fails, the user can reenter
data in the offending control.

Implementors of custom DDV routines can call Fail from their routines when a
validation fails.

For more information on writing your own DDX and DDV routines, see Technical
Note 26 under MFC in Books Online. For an overview of DDX and DDV, see
"Dialog Data Exchange and Validation" and "Dialog Boxes" in Chapter 4 of
Programming with MFC.

See Also CDataExchange: :PrepareCtrl, CDataExchange: :PrepareEditCtrl

CDataExchange: : Prep are Ctrl
HWND PrepareCtrl(int nIDC);

throw(CNotSupportedException);

Return Value
The HWND of the control being prepared for DDX or DDV.

Parameters

Remarks

nIDC The ID of the control to be prepared for DDX or DDV.

The framework calls this member function to prepare the specified control for dialog
data exchange (DDX) and validation (DDV). Use PrepareEditCtrl instead for edit
controls; use this member function for all other controls.

Preparation consists of storing the control's HWND in the CDataExchange class.
The framework uses this handle to restore the focus to the previously focused control
in the event of a DDX or DDV failure.

Implementors of custom DDX or DDV routines should call PrepareCtrl for all non
edit controls for which they are exchanging data via DDX or validating data
viaDDY.

For more information on writing your own DDX and DDV routines, see Technical
Note 26 under MFC in Books Online. For an overview of DDX and DDV, see
"Dialog Data Exchange and Validation" and "Dialog Boxes" in Chapter 4 of
Programming with MFC.

See Also CDataExchange: :Fail

409

CDataExchange: :PrepareEditCtrl

CDataExchange: :PrepareEditCtrl
HWND PrepareEditCtrl(int nIDC);

throw(CNotSupportedException);

Return Value
The HWND of the edit control being prepared for DDX or DDY.

Parameters

Remarks

nIDC The ID of the edit control to be prepared for DDX or DDV.

The framework calls this member function to prepare the specified edit control for
dialog data exchange (DDX) and validation (DDV). Use PrepareCtri instead for all
non-edit controls.

Preparation consists of two things. First, PrepareEditCtri stores the control's
HWND in the CDataExchange class. The framework uses this handle to restore the
focus to the previously focused control in the event of a DDX or DDV failure.
Second, PrepareEditCtrl sets a flag in the CDataExchange class to indicate that the
control whose data is being exchanged or validated is an edit controL

Implementors of custom DDX or DDV routines should call PrepareEditCtrl for all
edit controls for which they are exchanging data via DDX or validating data
via DDY.

For more information on writing your own DDX and DDV routines, see Technical
Note 26 under MFC in Books Online. For an overview of DDX and DDV, see
"Dialog Data Exchange and Validation" and "Dialog Boxes" in Chapter 4 of
Programming with MFC.

See Also CDataExchange: :Fail

Data Members
CDataExchange: :m_bSaveAndValidate
Remarks

410

This flag indicates the direction of a dialog data exchange (DDX) operation. The flag
is nonzero if the CDataExchange object is being used to move data from the dialog
controls to dialog-class data members after the user edits the controls. The flag is
zero if the object is being used to initialize dialog controls from dialog-class data
members.

The flag is also nonzero during dialog data validation (DDV).

CDataExchange: :m_pDlgWnd

For more information on writing your own DDX and DDV routines, see Technical
Note 26 under MFC in Books Online. For an overview ofDDX and DDV, see
"Dialog Data Exchange and Validation" and "Dialog Boxes" in Chapter 4 of
Programming with MFC.

CDataExchange: :m_pDIgWnd
Remarks

Contains a pointer to the CWnd object for which dialog data exchange (DDX)
or validation (DDV) is taking place. This object is usually a CDialog object.
Implementors of custom DDX or DDV routines can use this pointer to obtain access
to the dialog window that contains the controls they are operating on.

For more information on writing your own DDX and DDV routines, see Technical
Note 26 under MFC in Books Online. For an overview of DDX and DDV, see
"Dialog Data Exchange and Validation" and "Dialog Boxes" in Chapter 4 of
Programming with MFC.

411

CDBException

CDBException

412

A CDBException object represents an exception condition arising from the database
classes. The class includes two public data members you can use to determine the
cause of the exception or to display a text message describing the exception.
CDBException objects are constructed and thrown by member functions of the
database classes.

Note This class is one of MFC's Open Database Connectivity (ODSC) classes. If you are
instead using the newer Data Access Objects (DAD) classes, use CDaoException instead. All
DAD class names have "CDao" as a prefix. For more information, see the articles "Database
Overview" and "DAD and MFC" in Programming with MFG.

Exceptions are cases of abnormal execution involving conditions outside the
program's control, such as data source or network 110 errors. Errors that you might
expect to see in the normal course of executing your program are usually not
considered exceptions.

You can access these objects within the scope of a CATCH expression. You can also
throw CDBException objects from your own code with the AfxThrowDBException
global function.

For more information about exception handling in general, or about CDBException
objects, see the articles "Exceptions" and "Exceptions: Database Exceptions" in
Programming with MFC.

#include <afxdb.h>

See Also CDatabase, CRecordset, CFieldExchange, AfxThrowDBException,
CRecordset:: Update, CRecordset: :Delete, CException

Data Members

Contains an Open Database Connectivity (ODBC) return
code, of type RETCODE.

Contains a string that describes the error in alphanumeric
terms.

m_strStateNativeOrigin Contains a string describing the error in terms of the error
codes returned by ODBC.

CDBException::m_nRetCode

Data Members
CD BException: :m_nRetCode
Remarks

Contains an ODBC error code of type RET CODE returned by an ODBC application
programming interface (API) function. This type includes SQL-prefixed codes
defined by ODBC and AFX_SQL-prefixed codes defined by the database classes. For
a CDBException, this member will contain one of the following values:

• AFX_SQL_ERROR_API_CONFORMANCE The driver for a
CDatabase::Open call does not conform to required ODBC API Conformance
level! (SQL_OAC_LEVELl).

• AFX_SQL_ERROR_CONNECT_FAIL Connection to the data source failed.
You passed a NULL CDatabase pointer to your recordset constructor and the
subsequent attempt to create a connection based on GetDefaultConnect failed.

• AFX_SQL_ERROR_DATA_TRUNCATED You requested more data than you
have provided storage for. For information on increasing the provided data storage
for CString or CByteArray data types, see the nMaxLength argument for
RFX_Text and RFX_Binary under "Macros and Globals."

• AFX_SQL_ERROR_DYNASET_NOT_SUPPORTED A call to
CRecordset::Open requesting a dynaset failed. Dynasets are not supported by the
driver.

• AFX_SQL_ERROR_EMPTY_COLUMN_LIST You attempted to open a table
(or what you gave could not be identified as a procedure call or SELECT
statement) but there are no columns identified in record field exchange (RFX)
function calls in your DoFieldExchange override.

• AFX_SQL_ERROR_FIELD_SCHEMA_MISMATCH The type of an RFX
function in your DoFieldExchange override is not compatible with the column
data type in the recordset.

• AFX_SQL_ERROR_ILLEGAL_MODE You called CRecordset::Update
without previously calling CRecordset::AddNew or CRecordset::Edit.

• AFX_SQL_ERROR_LOCK_MODE_NOT_SUPPORTED Your request to
lock records for update could not be fulfilled because your ODBC driver does not
support locking.

• AFX_SQL_ERROR_MULTIPLE_ROWS_AFFECTED You called
CRecordset:: Update or Delete for a table with no unique key and changed
multiple records.

413

CDBException::m_nRetCode

414

• AFX_SQL_ERROR_NO_CURRENT_RECORD You attempted to edit or
delete a previously deleted record. You must scroll to a new current record after a
deletion.

• AFX_SQL_ERROR_NO_POSITIONED_UPDATES Your request for a
dynaset could not be fulfilled because your ODBC driver does not support
positioned updates.

• AFX_SQL_ERROR_NO_ROWS_AFFECTED You called
CRecordset:: Update or Delete, but when the operation began the record could no
longer be found.

• AFX_SQL_ERROR_ODBC_LOAD_FAILED An attempt to load the
ODBC.DLL failed; Windows could not find or could not load this DLL. This error
is fatal.

• AFX_SQL_ERROR_ODBC_ V2_REQUIRED Your request for a dynaset
could not be fulfilled because a Level2-compliant ODBC driver is required.

• AFX_SQL_ERROR_RECORDSET_FORWARD_ONLY An attempt to scroll
did not succeed because the data source does not support backward scrolling.

• AFX_SQL_ERROR_SNAPSHOT_NOT_SUPPORTED A call to
CRecordset: :Open requesting a snapshot failed. Snapshots are not supported by
the driver. (This should only occur when the ODBC cursor library
ODBCCURS.DLL-is not present.)

• AFX_SQL_ERROR_SQL_CONFORMANCE The driver for a
CDatabase::Open call does not conform to the required ODBC SQL
Conformance level of "Minimum" (SQL_OSC_MINIMUM).

• AFX_SQL_ERROR_SQL_NO_ TOTAL The ODBC driver was unable to
specify the total size of a CLongBinary data value. The operation probably failed
because a global memory block could not be preallocated.

• AFX_SQL_ERROR_RECORDSET_READONLY You attempted to update a
read-only recordset, or the data source is read-only. No update operations can be
performed with the recordset or the CDatabase object it is associated with.

• SQL_ERROR Function failed. The error message returned by : :SQLError is
stored in the ID_strError data member.

• SQL_INVALID_HANDLE Function failed due to an invalid environment
handle, connection handle, or statement handle. This indicates a programming
error. No additional information is available from ::SQLError.

The SQL-prefixed codes are defined by ODBC. The AFX-prefixed codes are defined
in AFXDB.H, found in MFC\INCLUDE.

See Also CDatabase, CLongBinary, CRecordset

CDBException::m_strStateNativeOrigin

CDBException::m_strError
Remarks

Contains a string describing the error that caused the exception. The string describes
the error in alphanumeric terms. For more detailed information and an example, see
ID_strStateNativeOrigin.

See Also CDBException: :m_strStateNativeOrigin

CDBException: :m_strStateN ativeOrigin
Remarks

Example

Contains a string describing the error that caused the exception. The string is of the
form "State:%s,Native:%ld,Origin:%s", where the format codes, in order, are
replaced by values that describe:

• The SQLSTATE, a null-terminated string containing a five-character error code
returned in the szSqlState parameter of the ::SQLError function. SQLSTATE
values are listed in Appendix A, "ODBC Error Codes," in the ODBC SDK
Programmer's Reference. Example: "S0022".

• The native error code, specific to the data source, returned in the pfNativeError
parameter of the: :SQLError function. Example: 207.

• The error message text returned in the szErrorMsg parameter of the: :SQLError
function. This message consists of several bracketed names. As an error is passed
from its source to the user, each ODBC component (data source, driver, Driver
Manager) appends its own name. This information helps to pinpoint the origin of
the error. Example: [Microsoft] [ODBC SQL Server Driver][SQL Server]

The framework interprets the error string and puts its components into
m_strStateNativeOrigin; if m_strStateNativeOrigin contains information for more
than one error, the errors are separated by newlines. The framework puts the
alphanumeric error text into m_strError.

For additional information about the codes used to make up this string, see the
::SQLError function in the ODBC SDK Programmer's Reference.

From ODBC: "State:S0022,Native:207,Origin:[Microsoft][ODBC SQL Server
Driver][SQL Server] Invalid column name 'ColName'"

In m_strStateNativeOrigin: "State:S0022,Native:207,Origin:[Microsoft][ODBC
SQL Server Driver][SQL Server]"

In m_strError: "Invalid column name 'ColName'"

See Also CDBException::ID_strError

415

CDC

CDC

416

The CDC class defines a class of device-context objects. The CDC object provides
member functions for working with a device context, such as a display or printer, as
well as members for working with a display context associated with the client area of
a window.

Do all drawing through the member functions of a CDC object. The class provides
member functions for device-context operations, working with drawing tools, type
safe graphics device interface (GDI) object selection, and working with colors and
palettes. It also provides member functions for getting and setting drawing attributes,
mapping, working with the viewport, working with the window extent, converting
coordinates, working with regions, clipping, drawing lines, and drawing simple
shapes, ellipses, and polygons. Member functions are also provided for drawing text,
working with fonts, using printer escapes, scrolling, and playing metafiles.

To use a CDC object, construct it, and then call its member functions that parallel
Windows functions that use device contexts.

For specific uses, the Microsoft Foundation Class Library provides several classes
derived from CDC. CPaintDC encapsulates calls to BeginPaint and EndPaint.
CClientDC manages a display context associated with a window's client area.
CWindowDC manages a display context associated with an entire window, including
its frame and controls. CMetaFileDC associates a device context with a metafile.

CDC contains two device contexts, m_hDC and m_hAttribDC, which, on creation
of a CDC object, refer to the same device. CDC directs all output GDI calls to
m_hDC and most attribute GDI calls to m_hAttribDC. (An example of an attribute
call is GetTextColor, while SetTextColor is an output call.)

For example, the framework uses these two device contexts to implement a
CMetaFileDC object that will send output to a metafile while reading attributes from
a physical device. Print preview is implemented in the framework in a similar
fashion. You can also use the two device contexts in a similar way in your
application-specific code.

There are times when you may need text-metric information from both the m_hDC
and m_hAttribDC device contexts. The following pairs of functions provide this
capability:

Uses m_hAttribDC Uses m_hDC

GetTextExtent

GetTabbedTextExtent

GetTextMetrics

GetCharWidth

GetOutputTextExtent

GetOutputTabbedTextExtent

GetOutputTextMetrics

GetOutputCharWidth

For more information on CDC, see "Device Contexts" in Chapter 1 of Programming
withMFC.

#include <afxwin.h>

See Also CPaintDC, CWindowDC, CClientDC, CMetaFileDC

Data Members

m_hDC

m_hAttribDC

Construction

CDC

Initialization

CreateDC

CreateIC

CreateCompatibleDC

DeleteDC

FromHandle

DeleteTempMap

Attach

Detach

SetAttribDC

The output-device context used by this CDC object.

The attribute-device context used by this CDC object.

Constructs a CDC object.

Creates a device context for a specific device.

Creates an information context for a specific device. This
provides a fast way to get information about the device
without creating a device context.

Creates a memory-device context that is compatible with
another device context. You can use it to prepare images
in memory.

Deletes the Windows device context associated with this
CDC object.

Returns a pointer to a CDC object when given a handle
to a device context. If a CDC object is not attached to the
handle, a temporary CDC object is created and attached.

Called by the CWinApp idle-time handler to delete any
temporary CDC object created by FromHandle. Also
detaches the device context.

Attaches a Windows device context to this CDC object.

Detaches the Windows device context from this CDC
object.

Sets m_hAttribDC, the attribute device context.

CDC

417

CDC

418

SetOutputDC

ReleaseAttribDC

ReleaseOutputDC

GetCurrentBitmap

GetCurrentBrush

GetCurrentFont

GetCurrentPalette

GetCurrentPen

GetWindow

Device-Context Functions

GetSafeHdc

SaveDC

RestoreDC

ResetDC

GetDeviceCaps

IsPrinting

Drawing-Tool Functions

GetBrushOrg

SetBrushOrg

EnumObjects

Type-Safe Selection Helpers

SelectObject

SelectStockObject

Color and Color Palette Functions

GetNearestColor

SelectPalette

Sets m_hDC, the output device context.

Releases m_hAttribDC, the attribute device context.

Releases m_hDC, the output device context.

Returns a pointer to the currently selected CBitmap
object.

Returns a pointer to the currently selected CBrush
object.

Returns a pointer to the currently selected CFont object.

Returns a pointer to the currently selected CPalette
object.

Returns a pointer to the currently selected CPen object.

Returns the window associated with the display device
context.

Returns m_hDC, the output device context.

Saves the current state of the device context.

Restores the device context to a previous state saved with
SaveDC.

Updates the mjIAttribDC device context.

Retrieves a specified kind of device-specific information
about a given display device's capabilities.

Determines whether the device context is being used for
printing.

Retrieves the origin of the current brush.

Specifies the origin for the next brush selected into a
device context.

Enumerates the pens and brushes available in a device
context.

Selects a GDI drawing object such as a pen.

Selects one of the predefined stock pens, brushes, or
fonts provided by Windows.

Retrieves the closest logical color to a specified logical
color that the given device can represent.

Selects the logical palette.

RealizePalette

UpdateColors

GetHalftoneBrush

Drawing-Attribute Functions

GetBkColor

SetBkColor

GetBkMode

SetBkMode

GetPolyFillMode

SetPolyFillMode

GetROP2

SetROP2

GetStretchBltMode

SetStretchBltMode

GetTextColor

SetTextColor

GetColor Adjustment

SetColorAdjustment

Mapping Functions

GetMapMode

SetMapMode

GetViewportOrg

SetViewportOrg

OffsetViewportOrg

GetViewportExt

SetViewportExt

Scale ViewportExt

GetWindowOrg

SetWindowOrg

OffsetWindowOrg

Maps palette entries in the current logical palette to the
system palette.

Updates the client area of the device context by matching
the current colors in the client area to the system palette
on a pixel-by-pixel basis.

Retrieves a halftone brush.

Retrieves the current background color.

Sets the current background color.

Retrieves the background mode.

Sets the background mode.

Retrieves the current polygon-filling mode.

Sets the polygon-filling mode.

Retrieves the current drawing mode.

Sets the current drawing mode.

Retrieves the current bitmap-stretching mode.

Sets the bitmap-stretching mode.

Retrieves the current text color.

Sets the text color.

Retrieves the color adjustment values for the device
context.

Sets the color adjustment values for the device context
using the specified values.

Retrieves the current mapping mode.

Sets the current mapping mode.

Retrieves the x- and y-coordinates of the viewport origin.

Sets the viewport origin.

Modifies the viewport origin relative to the coordinates of
the current viewport origin.

Retrieves the x- and y-extents of the viewport.

Sets the x- and y-extents of the viewport.

Modifies the viewport extent relative to the current
values.

Retrieves the x- and y-coordinates of the origin of the
associated window.

Sets the window origin of the device context.

Modifies the window origin relative to the coordinates of
the current window origin.

CDC

419

CDC

420

GetWindowExt

SetWindowExt

Scale WindowExt

Coordinate Functions

DPtoHIMETRIC

DPtoLP

HIMETRICtoDP

HIMETRICtoLP

LPtoDP

LPtoHIMETRIC

Region Functions

FillRgn

FrameRgn

InvertRgn

PaintRgn

Clipping Functions

SetBoundsRect

GetBoundsRect

GetClipBox

SelectClipRgn

ExciudeClipRect

ExciudeUpdateRgn

IntersectClipRect

OffsetClipRgn

PtVisible

RectVisible

Retrieves the x- and y-extents of the associated window.

Sets the x- and y-extents of the associated window.

Modifies the window extents relative to the current
values.

Converts device units into HIMETRIC units.

Converts device units into logical units.

Converts HIMETRIC units into device units.

Converts HIMETRIC units into logical units.

Converts logical units into device units.

Converts logical units into HIMETRIC units.

Fills a specific region with the specified brush.

Draws a border around a specific region using a brush.

Inverts the colors in a region.

Fills a region with the selected brush.

Controls the accumulation of bounding-rectangle
information for the specified device context.

Returns the current accumulated bounding rectangle for
the specified device context.

Retrieves the dimensions of the tightest bounding
rectangle around the current clipping boundary.

Combines the given region with the current clipping
region by using the specified mode.

Creates a new clipping region that consists of the existing
clipping region minus the specified rectangle.

Prevents drawing within invalid areas of a window by
excluding an updated region in the window from a
clipping region.

Creates a new clipping region by forming the intersection
of the current region and a rectangle.

Moves the clipping region of the given device.

Specifies whether the given point is within the clipping
region.

Determines whether any part of the given rectangle lies
within the clipping region.

Line-Output Functions

GetCurrentPosition

MoveTo

LineTo

Arc

ArcTo

AngleArc

GetArcDirection

SetArcDirection

PolyDraw

Polyline

PolyPolyline

PolylineTo

PolyBezier

PolyBezierTo

Simple-Drawing Functions

FillRect

FrameRect

InvertRect

Drawlcon

DrawDragRect

FillSolidRect

Draw3dRect

DrawEdge

DrawFrameControl

DrawState

Retrieves the current position of the pen (in logical
coordinates) .

Moves the current position.

Draws a line from the current position up to, but not
including, a point.

Draws an elliptical arc.

Draws an elliptical arc. This function is similar to Arc,
except that the current position is updated.

Draws a line segment and an arc, and moves the current
position to the ending point of the arc.

Returns the current arc direction for the device context.

Sets the drawing direction to be used for arc and
rectangle functions.

Draws a set of line segments and Bezier splines. This
function updates the current position.

Draws a set of line segments connecting the specified
points.

Draws multiple series of connected line segments. The
current position is neither used nor updated by this
function.

Draws one or more straight lines and moves the current
position to the ending point of the last line.

Draws one or more Bezier splines. The current position is
neither used nor updated.

Draws one or more Bezier splines, and moves the current
position to the ending point of the last Bezier spline.

Fills a given rectangle by using a specific brush.

Draws a border around a rectangle.

Inverts the contents of a rectangle.

Draws an icon.

Erases and redraws a rectangle as it is dragged.

Fills a rectangle with a solid color.

Draws a three-dimensional rectangle.

Draws the edges of a rectangle.

Draw a frame control.

Displays an image and applies a visual effect to indicate
a state.

CDC

421

CDC

422

Ellipse and Polygon Functions

Chord

DrawFocusRect

Ellipse

Pie

Polygon

PolyPolygon

Polyline

Rectangle

RoundRect

Bitmap Functions

PatBlt

BitBlt

StretchBlt

GetPixel

SetPixel

SetPixelV

FloodFill

ExtFloodFill

MaskBlt

PlgBlt

Draws a chord (a closed figure bounded by the
intersection of an ellipse and a line segment).

Draws a rectangle in the style used to indicate focus.

Draws an ellipse.

Draws a pie-shaped wedge.

Draws a polygon consisting of two or more points
(vertices) connected by lines. .

Creates two or more polygons that are filled using the
current polygon-filling mode. The polygons may be
disjoint or they may overlap.

Draws a polygon consisting of a set of line segments
connecting specified points.

Draws a rectangle using the current pen and fills it using
the current brush.

Draws a rectangle with rounded corners using the current
pen and filled using the current brush.

Creates a bit pattern.

Copies a bitmap from a specified device context.

Moves a bitmap from a source rectangle and device into a
destination rectangle, stretching or compressing the
bitmap if necessary to fit the dimensions of the
destination rectangle.

Retrieves the RGB color value of the pixel at the
specified point.

Sets the pixel at the specified point to the closest
approximation of the specified color.

Sets the pixel at the specified coordinates to the closest
approximation of the specified color. SetPixelV is faster
than SetPixel because it does not need to return the color
value of the point actually painted.

Fills an area with the current brush.

Fills an area with the current brush. Provides more
flexibility than the FloodFill member function.

Combines the color data for the source and destination
bitmaps using the given mask and raster operation.

Performs a bit-block transfer of the bits of color data from
the specified rectangle in the source device context to the
specified parallelogram in the given device context.

Text Functions

TextOut

ExtTextOut

TabbedTextOut

DrawText

GetTextExtent

GetOutputTextExtent

GetTabbedTextExtent

GetOutputTabbedTextExtent

GrayString

GetTextAIign

SetTextAlign

GetTextFace

GetTextMetrics

GetOutputTextMetrics

SetTextjustification

GetTextCharacterExtra

SetTextCharacterExtra

Font Functions

GetFontData

GetKerningPairs

GetOutlineTextMetrics

Writes a character string at a specified location using
the currently selected font.

Writes a character string within a rectangular region
using the currently selected font.

Writes a character string at a specified location,
expanding tabs to the values specified in an array of
tab-stop positions.

Draws formatted text in the specified rectangle.

Computes the width and height of a line of text on the
attribute device context using the current font to
determine the dimensions.

Computes the width and height of a line of text on the
output device context using the current font to
determine the dimensions.

Computes the width and height of a character string on
the attribute device context.

Computes the width and height of a character string on
the output device context.

Draws dimmed (grayed) text at the given location.

Retrieves the text-alignment flags.

Sets the text-alignment flags.

Copies the typeface name of the current font into a
buffer as a null-terminated string.

Retrieves the metrics for the current font from the
attribute device context.

Retrieves the metrics for the current font from the
output device context.

Adds space to the break characters in a string.

Retrieves the current setting for the amount of
intercharacter spacing.

Sets the amount of intercharacter spacing.

Retrieves font metric information from a scalable font
file. The information to retrieve is identified by
specifying an offset into the font file and the length of
the information to return.

Retrieves the character kerning pairs for the font that is
currently selected in the specified device context.

Retrieves font metric information for TrueType fonts.

CDC

423

CDC

424

GetGlyphOutline

GetCharABCWidths

GetCharWidth

GetOutputCharWidth

SetMapperFlags

GetAspectRatioFilter

Printer Escape Functions

QueryAbort

Escape

DrawEscape

StartDoc

StartPage

EndPage

SetAbortProc

AbortDoc

EndDoc

Scrolling Functions

ScrollDC

Metafile Functions

PlayMetaFile

Retrieves the outline curve or bitmap for an outline
character in the current font.

Retrieves the widths, in logical units, of consecutive
characters in a given range from the current font.

Retrieves the fractional widths of consecutive
characters in a given range from the current font.

Retrieves the widths of individual characters in a
consecutive group of characters from the current font
using the output device context.

Alters the algorithm that the font mapper uses when it
maps logical fonts to physical fonts.

Retrieves the setting for the current aspect-ratio filter.

Calls the AbortProc callback function for a printing
application and queries whether the printing should be
terminated.

Allows applications to access facilities that are not
directly available from a particular device through GD!.
Also allows access to Windows escape functions. Escape
calls made by an application are translated and sent to
the device driver.

Accesses drawing capabilities of a video display that are
not directly available through the graphics device
interface (GDI).

Informs the device driver that a new print job is starting.

Informs the device driver that a new page is starting.

Informs the device driver that a page is ending.

Sets a programmer-supplied callback function that
Windows calls if a print job must be aborted.

Terminates the current print job, erasing everything the
application has written to the device since the last call of
the StartDoc member function.

Ends a print job started by the StartDoc member
function.

Scrolls a rectangle of bits horizontally and vertically.

Plays the contents of the specified metafile on the given
device. The enhanced version of PlayMetaFile displays
the picture stored in the given enhanced-format metafile.
The metafile can be played any number of times.

AddMetaFileComment

Path Functions

AbortPath

BeginPath

CloseFigure

EndPath

FillPath

FlattenPath

GetMiterLimit

GetPath

SelectClipPath

SetMiterLimit

StrokeAndFillPath

StrokePath

WidenPath

Copies the comment from a buffer into a specified
enhanced-format metafile.

Closes and discards any paths in the device context.

Opens a path bracket in the device context.

Closes an open figure in a path.

Closes a path bracket and selects the path defined by the
bracket into the device context.

Closes any open figures in the current path and fills the
path's interior by using the current brush and polygon
filling mode.

Transforms any curves in the path selected into the
current device context, and turns each curve into a
sequence of lines.

Returns the miter limit for the device context.

Retrieves the coordinates defining the endpoints of lines
and the control points of curves found in the path that is
selected into the device context.

Selects the current path as a clipping region for the
device context, combining the new region with any
existing clipping region by using the specified mode.

Sets the limit for the length of miter joins for the device
context.

Closes any open figures in a path, strikes the outline of
the path by using the current pen, and fills its interior by
using the current brush.

Renders the specified path by using the current pen.

Redefines the current path as the area that would be
painted if the path were stroked using the pen currently
selected into the device context.

Member Functions
CDC: : AbortDoc

int AhortDoc();

Return Value
A value greater than or equal to 0 if successful, or a negative value if an error has
occurred. The following list shows common error values and their meanings:

• SP _ERROR General error.

CDC::AbortDoc

425

CDC::AbortPath

Remarks

• SP _OUTOFDISK Not enough disk space is currently available for spooling, and
no more space will become available.

• SP _OUTOFMEMORY Not enough memory is available for spooling.

• SP _USERABORT User terminated the job through the Print Manager.

Terminates the current print job and erases everything the application has written to
the device since the last call to the StartDoc member function.

This member function replaces the ABORTDOC printer escape.

AbortDoc should be used to terminate the following:

• Printing operations that do not specify an abort function using SetAbortProc.

• Printing operations that have not yet reached their first NEWFRAME or
NEXTBAND escape call.

If an application encounters a printing error or a canceled print operation, it must not
attempt to terminate the operation by using either the EndDoc or AbortDoc member
functions of class CDC. GDI automatically terminates the operation before returning
the error value.

If the application displays a dialog box to allow the user to cancel the print operation,
it must call AbortDoc before destroying the dialog box.

If Print Manager was used to start the print job, calling AbortDoc erases the entire
spool job-the printer receives nothing. If Print Manager was not used to start the
print job, the data may have been sent to the printer before AbortDoc was called. In
this case, the printer driver would have reset the printer (when possible) and closed
the print job.

See Also CDC::StartDoc, CDC::EndDoc, CDC::SetAbortProc

CDC: : AbortPath
BOOL AbortPath()

Return Value

Remarks

426

Nonzero if the function is successful; otherwise O.

Closes and discards any paths in the device context. If there is an open path bracket
in the device context, the path bracket is closed and the path is discarded. If there is a
closed path in the device context, the path is discarded.

See Also CDC: :BeginPath, CDC: :EndPath

CDC: : AddMetaFileComment
BOOL AddMetaFileComment(UINT nDataSize, const BYTE* pCommentData);

Return Value
Nonzero if the function is successful; otherwise O.

Parameters

Remarks

nDataSize Specifies the length of the comment buffer, in bytes.

pCommentData Points to the buffer that contains the comment.

Copies the comment from a buffer into a specified enhanced-format metafile. A
comment may include any private information-for example, the source of the
picture and the date it was created. A comment should begin with an application
signature, followed by the data. Comments should not contain position-specific data.
Position-specific data specifies the location of a record, and it should not be included
because one metafile may be embedded within another metafile. This function can
only be used with enhanced metafiles.

See Also CMetaFileDC: :CreateEnhanced, : : GdiComment

CDC: : AngleArc
BOOL AngleArc(int x, int y, int nRadius, floatfStartAngle, floatfSweepAngle);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

x Specifies the logical x-coordinate of the center of the circle.

y Specifies the logical y-coordinate of the center of the circle.

nRadius Specifies the radius of the circle in logical units. This value must be
positive.

fStartAngle Specifies the starting angle in degrees relative to the x-axis.

fSweepAngle Specifies the sweep angle in degrees relative to the starting angle.

Draws a line segment and an arc. The line segment is drawn from the current
position to the beginning of the arc. The arc is drawn along the perimeter of a circle
with the given radius and center. The length of the arc is defined by the given start
and sweep angles.

CDC::AngleArc

427

CDC::Arc

AngleArc moves the current position to the ending point of the arc. The arc drawn by
this function may appear to be elliptical, depending on the current transformation and
mapping mode. Before drawing the arc, this function draws the line segment from
the current position to the beginning of the arc. The arc is drawn by constructing an
imaginary circle with the specified radius around the specified center point. The
starting point of the arc is determined by measuring counterclockwise from the x -axis
of the circle by the number of degrees in the start angle. The ending point is similarly
located by measuring counterclockwise from the starting point by the number of
degrees in the sweep angle.

If the sweep angle is greater than 360 degrees the arc is swept multiple times. This
function draws lines by using the current pen. The figure is not filled.

See Also CDC: :Arc, CDC: :ArcTo, CDC::MoveTo, : :AngleArc

CDC::Arc
BOOL Arc(int xl, int yl, int x2, int y2, int x3, int y3, int x4, int y4);
BOOL Arc(LPCRECT lpRect, POINT ptStart, POINT ptEnd);

Return Value
Nonzero if the function is successful; otherwise O.

Parameters

428

xl Specifies the x-coordinate of the upper-left comer of the bounding rectangle (in
logical units).

yl Specifies the y-coordinate of the upper-left comer of the bounding rectangle (in
logical units).

x2 Specifies the x-coordinate of the lower-right comer of the bounding rectangle (in
logical units).

y2 Specifies the y-coordinate of the lower-right comer of the bounding rectangle (in
logical units).

x3 Specifies the x-coordinate of the point that defines the arc's starting point (in
logical units). This point does not have to lie exactly on the arc.

y3 Specifies the y-coordinate of the point that defines the arc's starting point (in
logical units). This point does not have to lie exactly on the arc.

x4 Specifies the x-coordinate of the point that defines the arc's endpoint (in logical
units). This point does not have to lie exactly on the arc.

y4 Specifies the y-coordinate of the point that defines the arc's endpoint (in logical
units). This point does not have to lie exactly on the arc.

lpRect Specifies the bounding rectangle (in logical units). You can pass either an
LPRECT or a CRect object for this parameter.

Remarks

ptStart Specifies the x- and y-coordinates of the point that defines the arc's starting
point (in logical units). This point does not have to lie exactly on the arc. You can
pass either a POINT structure or a CPoiot object for this parameter.

ptEnd Specifies the x- and y-coordinates of the point that defines the arc's ending
point (in logical units). This point does not have to lie exactly on the arc. You can
pass either a POINT structure or a CPoiot object for this parameter.

Draws an elliptical arc. The arc drawn by using the function is a segment of the
ellipse defined by the specified bounding rectangle.

The actual starting point of the arc is the point at which a ray drawn from the center
of the bounding rectangle through the specified starting point intersects the ellipse.
The actual ending point of the arc is the point at which a ray drawn from the center
of the bounding rectangle through the specified ending point intersects the ellipse.
The arc is drawn in a counterclockwise direction. Since an arc is not a closed figure,
it is not filled. Both the width and height of the rectangle must be greater than 2 units
and less than 32,767 units.

See Also CDC::Chord, ::Arc, POINT, RECT

CDC::ArcTo
BOOL ArcTo(iot xl, iot yl, iot x2, iot y2, iot x3, iot y3, iot x4, iot y4);
BOOL ArcTo(LPCRECT lpRect, POINT ptStart, POINT ptEnd);

Return Value
Nonzero if the function is successful; otherwise O.

Parameters
xl Specifies the x-coordinate of the upper-left corner of the bounding rectangle (in

logical units).

yl Specifies the y-coordinate of the upper-left corner of the bounding rectangle (in
logical units).

x2 Specifies the x-coordinate of the lower-right corner of the bounding rectangle (in
logical units).

y2 Specifies the y-coordinate of the lower-right corner of the bounding rectangle (in
logical units).

x3 Specifies the x-coordinate of the point that defines the arc's starting point (in
logical units). This point does not have to lie exactly on the arc.

y3 Specifies the y-coordinate of the point that defines the arc's starting point (in
logical units). This point does not have to lie exactly on the arc.

x4 Specifies the x-coordinate of the point that defines the arc's endpoint (in logical
units). This point does not have to lie exactly on the arc.

CDC::ArcTo

429

CDC::Attach

Remarks

y4 Specifies the y-coordinate of the point that defines the arc's endpoint (in logical
units). This point does not have to lie exactly on the arc.

lpRect Specifies the bounding rectangle (in logical units). You can pass either a
pointer to a RECT data structure or a CRect object for this parameter.

ptStart Specifies the x- and y-coordinates of the point that defines the arc's starting
point (in logical units). This point does not have to lie exactly on the arc. You can
pass either a POINT data structure or a CPoint object for this parameter.

ptEnd Specifies the x-and y -coordinates of the point that defines the arc's ending
point (in logical units). This point does not have to lie exactly on the arc. You can
pass either a POINT data structure or a CPoint object for this parameter.

Draws an elliptical arc. This function is similar to CDC::Arc, except that the current
position is updated. The points (xl,yl) and (x2,y2) specify the bounding rectangle.
An ellipse formed by the given bounding rectangle defines the curve of the arc. The
arc extends counterclockwise (the default arc direction) from the point where it
intersects the radial line from the center of the bounding rectangle to (x3,y3). The arc
ends where it intersects the radial line from the center of the bounding rectangle to
(x4,y4). If the starting point and ending point are the same, a complete ellipse is
drawn.

A line is drawn from the current position to the starting point of the arc. If no error
occurs, the current position is set to the ending point of the arc. The arc is drawn
using the current pen; it is not filled.

See Also CDC::AngleArc, CDC::Arc, CDC::SetArcDirection, ::ArcTo

CDC::Attach
BOOL Attach(HDC hDC);

Return Value
Nonzero if the function is successful; otherwise O.

Parameters

Remarks

430

hDC A Windows device context.

Use this member function to attach an hDC to the CDC object. The hDC is stored in
both m_hDC, the output device context, and in m_hAttribDC, the attribute device
context.

See Also CDC::Detach, CDC::m_hDC, CDC::m_hAttribDC

CDC: :BeginPath
BOOL BeginPath();

Return Value

Remarks

Nonzero if the function is successful; otherwise O.

Opens a path bracket in the device context. After a path bracket is open, an
application can begin calling GDI drawing functions to define the points that lie in
the path. An application can close an open path bracket by calling the EndPath
member function. When an application calls BeginPath, any previous paths are
discarded.

The following drawing functions define points in a path:

AngleArc PolyBezierTo

Arc PolyDraw

ArcTo Polygon

Chord Polyline

CloseFigure PolylineTo

Ellipse PolyPolygon

ExtTextOut PolyPolyline

LineTo Rectangle

MoveToEx RoundRec

Pie TextOut

PolyBezier

See Also CDC::EndPath, CDC::FillPath, CRgn::CreateFromPath,
CDC: :SelectClipPath, CDC: :StrokeAndFillPath, CDC: :StrokePath,
CDC:: WidenPath, : :BeginPath

CDC::BitBlt
BOOL BitBlt(int x, int y, int nWidth, int nHeight, CDC* pSrcDC, int xSrc, int ySrc,

DWORD dwRop);

Return Value
Nonzero if the function is successful; otherwise o.

CDC::BitBlt

431

CDC::BitBlt

Parameters

432

x Specifies the logical x-coordinate of the upper-left comer of the destination
rectangle.

y Specifies the logical y-coordinate of the upper-left comer of the destination
rectangle.

n Width Specifies the width (in logical units) of the destination rectangle and source
bitmap.

nHeight Specifies the height (in logical units) of the destination rectangle and
source bitmap.

pSrcDC Pointer to a CDC object that identifies the device context from which the
bitmap will be copied. It must be NULL if dwRop specifies a raster operation that
does not include a source.

xSrc Specifies the logical x-coordinate of the upper-left comer of the source bitmap.

ySrc Specifies the logical y-coordinate of the upper-left comer of the source bitmap.

dwRop Specifies the raster operation to be performed. Raster-operation codes define
how the GDI combines colors in output operations that involve a current brush, a
possible source bitmap, and a destination bitmap. The following lists raster
operation codes for dwRop and their descriptions:

• BLACKNESS Turns all output black.

• DSTINVERT Inverts the destination bitmap.

• MERGE COpy Combines the pattern and the source bitmap using the
Boolean AND operator.

• MERGEPAINT Combines the inverted source bitmap with the destination
bitmap using the Boolean OR operator.

• NOTSRCCOPY Copies the inverted source bitmap to the destination.

• NOTSRCERASE Inverts the result of combining the destination and source
bitmaps using the Boolean OR operator.

• PATCOPY Copies the pattern to the destination bitmap.

• PATINVERT Combines the destination bitmap with the pattern using the
Boolean XOR operator.

• PATPAINT Combines the inverted source bitmap with the pattern using the
Boolean OR operator. Combines the result of this operation with the destination
bitmap using the Boolean OR operator.

• SRCAND Combines pixels of the destination and source bitmaps using the
Boolean AND operator.

• SRCCOPY Copies the source bitmap to the destination bitmap.

Remarks

• SRCERASE Inverts the desination bitmap and combines the result with the
source bitmap using the Boolean AND operator.

• SRCINVERT Combines pixels of the destination and source bitmaps using
the Boolean XOR operator.

• SRCPAINT Combines pixels of the destination and source bitmaps using the
Boolean OR operator.

• WHITENESS Turns all output white.

For a complete list of raster-operation codes, see "About Raster Operation Codes" in
the "Appendices" section of the Win32 SDK Programmer's Reference.

Copies a bitmap from the source device context to this current device context.

The application can align the windows or client areas on byte boundaries to ensure
that the BitBIt operations occur on byte-aligned rectangles. (Set the
CS_BYTEALIGNWINDOW or CS_BYTEALIGNCLIENT flags when you
register the window classes.)

BitBlt operations on byte-aligned rectangles are considerably faster than BitBIt
operations on rectangles that are not byte aligned. If you want to specify class styles
such as byte-alignment for your own device context, you will have to register a
window class rather than relying on the Microsoft Foundation classes to do it for you.
Use the global function AfxRegisterWndClass.

GDI transforms n Width and nHeight, once by using the destination device context,
and once by using the source device context. If the resulting extents do not match,
GDI uses the Windows StretchBIt function to compress or stretch the source bitmap
as necessary.

If destination, source, and pattern bitmaps do not have the same color format, the
BitBIt function converts the source and pattern bitmaps to match the destination. The
foreground and background colors of the destination bitmap are used in the
conversion.

When the BitBIt function converts a monochrome bitmap to color, it sets white bits
(1) to the background color and black bits (0) to the foreground color. The foreground
and background colors of the destination device context are used. To convert color to
monochrome, BitBlt sets pixels that match the background color to white and sets all
other pixels to black. BitBIt uses the foreground and background colors of the color
device context to convert from color to monochrome.

Note that not all device contexts support BitBIt. To check whether a given device
context does support BitBIt, use the GetDeviceCaps member function and specify
the RASTERCAPS index.

See Also CDC: :GetDeviceCaps, CDC: :PatBIt, CDC: :SetTextColor,
CDC: :StretchBIt, : :StretchDIBits, : :BitBlt

CDC: :BitBlt

433

CDC::CDC

CDC::CDC
CDC(};

Remarks
Constructs a CDC object.

See Also CDC: :CreateDC, CDC: :CreateIC, CDC: :CreateCompatibleDC

CDC::Chord
BOOL Chord(int xl, int yl, int x2, int y2, int x3, int y3, int x4, int y4);
BOOL Chord(LPCRECT lpRect, POINT ptStart, POINT ptEnd);

Return Value
Nonzero if the function is successful; otherwise O.

Parameters

434

xl Specifies the x-coordinate of the upper-left comer of the chord's bounding
rectangle (in logical units).

yl Specifies the y-coordinate of the upper-left comer of the chord's bounding
rectangle (in logical units).

x2 Specifies the x-coordinate of the lower-right comer of the chord's bounding
rectangle (in logical units). .

y2 Specifies the y-coordinate of the lower-right comer of the chord's bounding
rectangle (in logical units).

x3 Specifies the x-coordinate of the point that defines the chord's starting point (in
logical units).

y3 Specifies the y-coordinate of the point that defines the chord's starting point (in
logical units).

x4 Specifies the x-coordinate of the point that defines the chord's endpoint (in
logical units).

y4 Specifies the y-coordinate of the point that defines the chord's endpoint (in
logical units).

lpRect Specifies the bounding rectangle (in logical units). You can pass either a
LPRECT or a CRect object for this parameter.

ptStart Specifies the x- and y-coordinates of the point that defines the chord's
starting point (in logical units). This point does not have to lie exactly on the
chord. You can pass either a POINT structure or a CPoint object for this
parameter.

CDC::CreateCompatibleDC

Remarks

ptEnd Specifies the x- and y-coordinates of the point that defines the chord's ending
point (in logical units). This point does not have to lie exactly on the chord. You
can pass either a POINT structure or a CPoint object for this parameter.

Draws a chord (a closed figure bounded by the intersection of an ellipse' and a line
segment). The (xl, yl) and (x2, y2) parameters specify the upper-left and lower-right
comers, respectively, of a rectangle bounding the ellipse that is part of the chord. The
(x3, y3) and (x4, y4) parameters specify the endpoints of a line that intersects the
ellipse. The chord is drawn by using the selected pen and filled by using the selected
brush.

The figure drawn by the Chord function extends up to, but does not include the right
and bottom coordinates. This means that the height of the figure is y2 - y 1 and the
width of the figure is x2 - xl.

See Also CDC::Arc, ::Chord, POINT

CDC: :CloseFigure
BOOL CloseFigure();

Return Value

Remarks

Nonzero if the function is successful; otherwise O.

Closes an open figure in a path. The function closes the figure by drawing a line from
the current position to the first point of the figure (usually, the point specified by the
most recent call to the MoveTo member function) and connects the lines by using the
line join style. If a figure is closed by using the LineTo member function instead of
CloseFigure, end caps are used to create the comer instead of a join. CloseFigure
should only be called if there is an open path bracket in the device context.

A figure in a path is open unless it is explicitly closed by using this function. (A
figure can be open even if the current point and the starting point of the figure are the
same.) Any line or curve added to the path after CloseFigure starts a new figure.

See Also CDC::BeginPath, CDC::EndPath, CDC::MoveTo, ::CloseFigure

CDC: :CreateCompatibleDC
virtual BOOL CreateCompatibleDC(CDC* pDC);

Return Value
Nonzero if the function is successful; otherwise O.

435

CDC::CreateDC

Parameters

Remarks

pDC A pointer to a device context. If pDC is NULL, the function creates a memory
device context that is compatible with the system display.

Creates a memory device context that is compatible with the device specified by pDC.
A memory device context is a block of memory that represents a display surface. It
can be used to prepare images in memory before copying them to the actual device
surface of the compatible device.

When a memory device context is created, GDI automatically selects a I-by-l
monochrome stock bitmap for it. GDI output functions can be used with a memory
device context only if a bitmap has been created and selected into that context.

This function can only be used to create compatible device contexts for devices that
support raster operations. See the CDC: :BitBIt member function for information
regarding bit-block transfers between device contexts. To determine whether a device
context supports raster operations, see the RC_BITBLT raster capability in the
member function CDC::GetDeviceCaps.

See Also CDC::CDC, CDC::GetDeviceCaps, ::CreateCompatibleDC,
CDC::BitBlt, CDC::CreateDC, CDC::CreateIC, CDC::DeleteDC

CDC:: CreateDC
virtual BOOL CreateDC(LPCTSTR IpszDriverName, LPCTSTR IpszDeviceName,

LPCTSTR IpszOutput, const void* IplnitData);

Return Value
Nonzero if the function is successful; otherwise O.

Parameters

436

IpszDriverName Points to a null-terminated string that specifies the filename
(without extension) of the device driver (for example, "EPSON"). You can also
pass a CString object for this parameter.

IpszDeviceName Points to a null-terminated string that specifies the name of the
specific device to be supported (for example, "EPSON FX-80"). The
IpszDeviceName parameter is used if the module supports more than one device.
You can also pass a CString object for this parameter.

IpszOutput Points to a null-terminated string that specifies the file or device name
for the physical output medium (file or output port). You can also pass a CString
object for this parameter.

Remarks

lplnitData Points to a DEVMODE structure containing device-specific
initialization data for the device driver. The Windows DocumentProperties
function retrieves this structure filled in for a given device. The lplnitData
parameter must be NULL if the device driver is to use the default initialization (if
any) specified by the user through the Control Panel.

Creates a device context for the specified device.

The PRINT.H header file is required if the DEVMODE structure is used.

Device names follow these conventions: an ending colon (:) is recommended, but
optional. Windows strips the terminating colon so that a device name ending with a
colon is mapped to the same port as the same name without a colon. The driver and
port names must not contain leading or trailing spaces. ODI output functions cannot
be used with information contexts.

See Also ::DocumentProperties, ::CreateDC, CDC::DeleteDC, CDC::CreateIC

CDC: :CreateIC
virtual BOOL CreateIC(LPCTSTR lpszDriverName, LPCTSTR lpszDeviceName,

LPCTSTR lpszOutput, const void* lplnitData);

Return Value
Nonzero if successful; otherwise O.

Parameters
lpszDriverName Points to a null-terminated string that specifies the filename

(without extension) of the device driver (for example, "EPSON"). You can pass a
CString object for this parameter.

lpszDeviceName Points to a null-terminated string that specifies the name of the
specific device to be supported (for example, "EPSON FX-80"). The
lpszDeviceName parameter is used if the module supports more than one device.
You can pass a CString object for this parameter.

lpszOutput Points to a null-terminated string that specifies the file or device name
for the physical output medium (file or port). You can pass a CString object for
this parameter.

lplnitData Points to device-specific initialization data for the device driver. The
lplnitData parameter must be NULL if the device driver is to use the default
initialization (if any) specified by the user through the Control Panel. See
CreateDC for the data format for device-specific initialization.

CDC::CreateIC

437

CDC::DeleteDC

Remarks
Creates an information context for the specified device. The information context
provides a fast way to get information about the device without creating a device
context.

Device names follow these conventions: an ending colon (:) is recommended, but
optional. Windows strips the terminating colon so that a device name ending with a
colon is mapped to the same port as the same name without a colon. The driver and
port names must not contain leading or trailing spaces. GDI output functions cannot
be used with information contexts.

See Also CDC::CreateDC, ::CreateIC, CDC::DeleteDC

CDC: : DeleteDC
virtual BOOL DeleteDC();

Return Value

Remarks

Nonzero if the function completed successfully; otherwise O.

In general, do not call this function; the destructor will do it for you. The DeleteDC
member function deletes the Windows device contexts that are associated with
m_hDC in the current CDC object. If this CDC object is the last active device
context for a given device, the device is notified and all storage and system resources
used by the device are released.

An application should not call DeleteDC if objects have been selected into the device
context. Objects must first be selected out of the device context before it it is deleted.

An application must not delete a device context whose handle was obtained by calling
CWnd::GetDC. Instead, it must call CWnd::ReleaseDC to free the device context.
The CClientDC and CWindowDC classes are provided to wrap this functionality.

The DeleteDC function is generally used to delete device contexts created with
CreateDC, CreateIC, or CreateCompatibleDC.

See Also CDC::CDC, ::DeleteDC, CDC::CreateDC, CDC::CreateIC,
CDC: :CreateCompatibleDC, CWnd: :GetDC, CWnd: : ReleaseDC

CDC: : DeleteTempMap
static void PASCAL DeleteTempMap();

438

Remarks
Called automatically by the CWinApp idle-time handler, DeleteTempMap deletes
any temporary CDC objects created by FromHandle, but does not destroy the device
context handles (hDCs) temporarily associated with the CDC objects.

See Also CDC::Detach, CDC::FromHandle, CWinApp::OnIdle

CDC: : Detach
HDC Detach();

Return Value

Remarks

A Windows device context.

Call this function to detach m_hDC (the output device context) from the CDC object
and set both m_hDC and m_hAttribDC to NULL.

See Also CDC::Attach, CDC::m_hDC, CDC::m_hAttribDC

CDC: : DPtoHIMETRIC
void DPtoHIMETRIC(LPSIZE IpSize) const;

Parameters

Remarks

IpSize Points to a SIZE structure or CSize object.

Use this function when you give HIMETRIC sizes to OLE, converting pixels to
HIMETRIC.

If the mapping mode of the device context object is MM_LOENGLISH,
MM_HIENGLISH, MM_LOMETRIC, or MM_HIMETRIC, then the conversion
is based on the number of pixels in the physical inch. If the mapping mode is one of
the other non-constrained modes (e.g., MM_TEXT), then the conversion is based on
the number of pixels in the logical inch.

See Also CDC::DPtoLP, CDC::LPtoDP, CDC::HIMETRICtoLP,
CDC::HIMETRICtoDP, CDC::LPtoHIMETRIC

CDC::DPtoLP
void DPtoLP(LPPOINT IpPoints, int nCount = 1) const;
void DPtoLP(LPRECT IpRect) const;
void DPtoLP(LPSIZE IpSize) const;

CDC::DPtoLP

439

CDC::Draw3dRect

Parameters

Remarks

IpPoints Points to an array of POINT structures or CPoint objects.

nCount The number of points in the array.

IpReet Points to a RECT structure or CRect object. This parameter is used for the
simple case of converting one rectangle from device points to logicalpoints.

IpSize Points to a SIZE structure or CSize object.

Converts device units into logical units. The function maps the coordinates of each
point, or dimension of a size, from the device coordinate system into GDI's logical
coordinate system. The conversion depends on the current mapping mode and the
settings of the origins and extents for the device's window and viewport.

See Also CDC::LPtoDP, CDC::HIMETRICtoDP, ::DPtoLP, POINT, RECT,
CDC: : GetWindowExt, CDC::GetWindowOrg

CDC: : Draw3dRect
void Draw3dRect(LPCRECT IpReet, COLORREF clrTopLeft, COLORREF clrBottomRight);
void Draw3dRect(int x, int y, int ex, int ey, COLORREF clrTopLeJt,

COLORREF clrBottomRight);

Parameters

Remarks

440

IpReet Specifies the bounding rectangle (in logical units). You can pass either a
pointer to a RECT structure or a CRect object for this parameter.

clrTopLeJt Specifies the color of the top and left sides of the three-dimensional
rectangle.

clrBottomRight Specifies the color of the bottom and right sides of the three
dimensional rectangle.

x Specifies the logical x-coordinate of the upper-left comer of the three-dimensional
rectangle.

y Specifies the logical y-coordinate of the upper-left comer of the three-dimensional
rectangle.

ex Specifies the width of the three-dimensional rectangle.

ey Specifies the height of the three-dimensional rectangle.

Call this member function to draw a three-dimensional rectangle. The rectangle will
be drawn with the top and left sides in the color specified by clrTopLeJt and the
bottom and right sides in the color specified by clrBottomRight.

See Also RECT, CRect

CDC::DrawEdge

CDC::DrawDragRect
void DrawDragRect(LPCRECT lpRect, SIZE size, LPCRECT lpRectLast, SIZE sizeLast,

CBrush* pBrush = NULL, CBrush* pBrushLast = NULL);

Parameters

Remarks

lpRect Points to a RECT structure or a CRect object that specifies the logical
coordinates of a rectangle-in this case, the end position of the rectangle being
redrawn.

size Specifies the displacement from the top-left comer of the outer border to the
top-left comer of the inner border (that is, the thickness of the border) of a
rectangle.

lpRectLast Points to a RECT structure or a CRect object that specifies the logical
coordinates of the position of a rectangle-in this case, the original position of the
rectangle being redrawn.

sizeLast Specifies the displacement from the top-left comer of the outer border to
the top-left comer of the inner border (that is, the thickness of the border) of the
original rectangle being redrawn.

pBrush Pointer to a brush object. Set to NULL to use the default halftone brush.

pBrushLast Pointer to the last brush object used. Set to NULL to use the default
halftone brush.

Call this member function repeatedly to redraw a drag rectangle. Call it in a
loop as you sample mouse position, in order to give visual feedback. When you
call DrawDragRect, the previous rectangle is erased and a new one is drawn.
For example, as the user drags a rectangle across the screen, DrawDragRect will
erase the original rectangle and redraw a new one in its new position. By default,
DrawDragRect draws the rectangle by using a halftone brush to eliminate flicker
and to create the appearance of a smoothly moving rectangle.

The first time you call DrawDragRect, the lpRectLast parameter should be NULL.

See Also RECT, CRect, CDC: : GetHalftoneBrush

CDC::DrawEdge
BOOL DrawEdge(LPRECT lpRect, UINT nEdge, UINT nFlags);

Return Value
Nonzero if successful; otherwise O.

Parameters
IpRect A pointer to a RECT structure that contains the logical coordinates of the

rectangle.

441

CDC: :DrawEdge

Remarks

442

nEdge Specifies the type of inner and outer edge to draw. This parameter must be a
combination of one inner-border flag and one outer-border flag. See the
"Remarks" section for a table of the parameter's types.

nFlags The flags that specify the type of border to be drawn. See the "Remarks"
section for a table of the parameter's values:

Call this member function to draw the edges of a rectangle of the specified type and
style.

The inner and outer border flags are as follows:

• Inner-border flags

• BDR_RAISEDINNER Raised inner edge.

• BDR_SUNKENINNER Sunken inner edge.

• Outer-border flags

• BDR_RAISEDOUTER Raised outer edge.

• BDR_SUNKENOUTER Sunken outer edge.

The nEdge parameter must be a combination of one inner and one outer border flag.
The nEdge parameter can specify one of the following flags:

• EDGE_BUMP Combination of BDR_RAISEDOUTER and
BDR_SUNKENINNER.

• EDGE_ETCHED Combination of BDR_SUNKENOUTER and
BDR_RAISEDINNER.

• EDGE_RAISED Combination of BDR_RAISEDOUTER and
BDR_RAISEDINNER.

• EDGE_SUNKEN Combination of BDR_SUNKENOUTER and
BDR_SUNKENINNER.

The nFlags parameter types are as follows:

• BF _RECT Entire border rectangle.

• BF _LEFT Left side of border rectangle.

• BF _BOTTOM Bottom of border rectangle.

• BF _RIGHT Right side of border rectangle.

• BF _TOP Top of border rectangle.

• BF _ TOPLEFT Top and left side of border rectangle.

• BF _ TOPRIGHT Top and right side of border rectangle.

• BF _BOTTOMLEFT Bottom and left side of border rectangle.

• BF _BOTTOMRIGHT Bottom and right side of border rectangle.

For diagonal lines, the BF _RECT flags specify the end point of the vector bounded
by the rectangle parameter.

• BF _DIAGONAL_ENDBOTTOMLEFT Diagonal border. The end point is the
bottom-left comer of the rectangle; the origin is top-right comer.

• BF _DIAGONAL_ENDBOTTOMRIGHT Diagonal border. The end point is
the bottom-right comer of the rectangle; the origin is top-left comer.

• BF _DIAGONAL_ENDTOPLEFT Diagonal border. The end point is the top
left comer of the rectangle; the origin is bottom-right comer.

• BF _DIAGONAL_ENDTOPRIGHT Diagonal border. The end point is the top-
right comer of the rectangle; the origin is bottom-left comer.

For more information about the Windows API DrawEdge, see : :DrawEdge in the
Win32 SDK Programmer's Reference.

See Also ::DrawEdge

CDC: : DrawEscape
int DrawEscape(int nEscape, int nlnputSize, LPCSTR IpszInputData);

Return Value
Specifies the outcome of the function. Greater than zero if successful, except for the
QUERYESCSUPPORT draw escape, which checks for implementation only; or
zero if the escape is not implemented; or less than zero if an error occurred.

Parameters

Remarks

nEscape Specifies the escape function to be performed.

nlnputSize Specifies the number of bytes of data pointed to by the IpszInputData
parameter.

IpszInputData Points to the input structure required for the specified escape.

Accesses drawing capabilities of a video display that are not directly available
through the graphics device interface (GDI). When an application calls DrawEscape,
the data identified by nlnputSize and IpszInputData is passed directly to the specified
display driver.

See Also CDC::Escape, ::DrawEscape

CDC: :DrawEscape

443

CDC::DrawFocusRect

CDC: : DrawFocusRect
void DrawFocusRect(LPCRECT lpRect);

Parameters

Remarks

lpRect Points to a RECT structure or a CRect object that specifies the logical
coordinates of the rectangle to be drawn.

Draws a rectangle in the style used to indicate that the rectangle has the focus.

Since this is a Boolean XOR function, calling this function a second time with the
same rectangle removes the rectangle from the display. The rectangle drawn by this
function cannot be scrolled. To scroll an area containing a rectangle drawn by this
function, first call DrawFocusRect to remove the rectangle from the display, then
scroll the area, and then call DrawFocusRect again to draw the rectangle in the new
position.

See Also CDC: :FrameRect, ::DrawFocusRect, RECT

CDC: : Draw FrameControl
BOOL DrawFrameControl(LPRECT lpRect, UINT nType, UINT nState);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

444

lpRect A pointer to a RECT structure that contains the logical coordinates of the
rectangle.

nType Specifies the type of frame control to draw. This parameter can be one of the
following values:

• DFC_BUTTON Standard button

• DFC_ CAPTION Title bar

• DFC_MENU Menu

• DFC_SCROLL Scroll bar

nState Specifies the initial state of the frame control. See the "Remarks" section for
a table of the parameter's values:

Call this member function to draw a frame control of the specified type and style.

CDC: : DrawFrameControl

Use the nState value DFCS_ADJUSTRECT to adjust the bounding rectangle to
exclude the surrounding edge of the push button. One or more of the following values
can be used to set the state of the control to be drawn:

• DFCS_CHECKED Button is checked.

• DFCS_FLAT Button has a flat border.

• DFCS_INACTIVE Button is inactive (grayed).

• DFCS_MONO Button has a monochrome border.

• DFCS_PUSHED Button is pushed.

In several cases, nState depends on the nType parameter. The following list shows the
relationship between the four nType values and nState:

• DFCJJUTTON

• DFCS_BUTTON3STATE Three-state button

• DFCS_BUTTONCHECK Check box

• DFCS_BUTTONPUSH Push button

• DFCS_BUTTONRADIO Radio button

• DFCS_BUTTONRADIOIMAGE Image for radio button (nonsquare
needs image)

• DFCS_BUTTONRADIOMASK Mask for radio button (nonsquare needs
mask)

• DFC_CAPTION

• DFCS_CAPTIONCLOSE Close button

• DFCS_CAPTIONHELP Help button

• DFCS_CAPTIONMAX Maximize button

• DFCS_CAPTIONMIN Minimize button

• DFCS_CAPTIONRESTORE Restore button

• DFC_MENU

• DFCS_MENUARROW Submenu arrow

• DFCS_MENUBULLET Bullet

• DFCS_MENUCHECK Check mark

• DFC_SCROLL

• DFCS_SCROLLCOMBOBOX Combo box scroll bar

• DFCS_SCROLLDOWN Down arrow of scroll bar

• DFCS_SCROLLLEFT Left arrow of scroll bar

• DFCS_SCROLLRIGHT Right arrow of scroll bar

445

CDC::Drawlcon

• DFCS_SCROLLSIZEGRIP Size grip in bottom-right comer of window

• DFCS_SCROLLUP Up arrow of scroll bar

For more information about the Windows API DrawFrameControl, see
::DrawFrameControl in the Win32 SDK Programmer's Reference.

See Also : :DrawFrameControl

CDC::DrawIcon
BOOL Drawlcon(int x, int y, HICON hIcon);
BOOL Drawlcon(POINT point, HICON hIcon);

Return Value
Nonzero if the function completed successfully; otherwise O.

Parameters

Remarks

x Specifies the logical x-coordinate of the upper-left comer of the icon.

y Specifies the logical y-coordinate of the upper-left comer of the icon.

hlcon Identifies the handle of the icon to be drawn.

point Specifies the logical x- and y-coordinates of the upper-left comer of the icon.
You can pass a POINT structure or a CPoint object for this parameter.

Draws an icon on the device represented by the current CDC object. The function
places the icon's upper-left comer at the location specified by x and y. The location is
subject to the current mapping mode of the device context.

The icon resource must have been previously loaded by using the functions
CWinApp: :Loadlcon, CWinApp: : LoadStandardlcon, or
CWinApp::LoadOEMlcon. The MM_ TEXT mapping mode must be selected prior
to using this function.

See Also CWinApp::Loadlcon, CWinApp::LoadStandardlcon,
CWinApp::LoadOEMlcon, CDC::GetMapMode, CDC::SetMapMode,
::Drawlcon, POINT

CDC: : Draw S tate

446

BOOL DrawState(CPoint pt, CSize size, HBITMAP hBitmap, UINT nFlags,
HBRUSH hBrush = NULL);

BOOL DrawState(CPoint pt, CSize size, CBitmap* pBitmap, UINT nFlags,
CBrush* pBrush = NULL);

BOOL DrawState(CPoint pt, CSize size, HICON hIcon, UINT nFlags,
HBRUSH hBrush = NULL);

BOOL DrawState(CPoint pt, CSize size, HICON hIcon, UINT nFlags,
CBrush* pBrush = NULL);

BOOL DrawState(CPoint pt, CSize size, LPCTSTR lpszText, UINT nFlags,
BOOL bPrefixText = TRUE, int nTextLen = 0, HBRUSH hBrush = NULL);

BOOL DrawState(CPoint pt, CSize size, LPCTSTR lpszText, UINT nFlags,
BOOL bPrefixText = TRUE, int nTextLen = 0, CBrush* pBrush = NULL);

BOOL DrawS tate (CPoint pt, CSize size, DRAWSTATEPROC lpDrawProc,
LPARAM lData, UINT nFlags, HBRUSH hBrush = NULL);

BOOL DrawState(CPoint pt, CSize size, DRAWSTATEPROC lpDrawProc,
LPARAM lData, UINT nFlags, CBrush* pBrush = NULL);

Return Value
Nonzero if successful; otherwise 0.

Parameters

Remarks

pt Specifies the location of the image.

size Specifies the size of the image.

hBitmap A handle to a bitmap.

nFlags Flags that specify the image type and state. See the "Remarks" section for
the possible nFlags types and states.

hBrush A handle to a brush.

pBitmap A pointer to a Cbitmap object.

pBrush A pointer to a Cbrush object.

hIcon A handle to an icon.

lpszText A pointer to text.

bPrefixText Text that may contain an accelerator mnemonic. The lData parameter
specifies the address of the string, and the nTextLen parameter specifies the length.
If nTextLen is 0, the string is assumed to be null-terminated.

nTextLen Length of the text string pointed to by lpszText. If nTextLen is 0, the string
is assumed to be null-terminated.

lpDrawProc A pointer to a callback function used to render an image. This
parameter is required if the image type in nFlags is DST_COMPLEX. It is
optional and can be NULL if the image type is DST_TEXT. For all other image
types, this parameter is ignored. For more information about the callback function,
see the ::DrawStateProc function in the Win32 SDK Programmer's Reference.

lData Specifies information about the image. The meaning of this parameter
depends on the image type.

Call this member function to display an image and apply a visual effect to indicate a
state, such as a disabled or default state.

CDC::DrawState

447

CDC::DrawText

The parameter nFlag type can be set to one of the following values:

• DST_BITMAP The image is a bitmap. The low-order word of the lData
parameter is the bitmap handle.

• DST_COMPLEX The image is application defined. To render the image,
DrawState calls the callback function specified by the lpDrawProc parameter.

• DST_ICON The image is an icon. The low-order word of lData is the icon
handle.

• DST_PREFIXTEXT The image is text that may contain an accelerator
mnemonic. DrawState interprets the ampersand (&) prefix character as a
directive to underscore the character that follows. The lData parameter specifies
the address of the string.

• DST _TEXT The image is text. The lData parameter specifies the address of the
string.

The parameter nFlag state can be one of following values:

• DSS_NORMAL Draws the image without any modification.

• DSS_UNION Dithers the image.

• DSS_DISABLED Embosses the image.

• DSS_DEFAULT Makes the image bold.

• DSS_MONO Draws the image using the brush specified by the hBrush or
pBrush parameter.

Note For all nFlag states except DSS_NORMAL, the image is converted to monochrome
before the visual effect is applied.

For more information about the Windows API DrawState, see : :DrawState in the
Win32 SDK Programmer's Reference.

See Also ::DrawState, ::DrawStateProc

CDC: :DrawText
virtual int DrawText(LPCTSTR IpszString, int nCount, LPRECT IpRect, UINT nFormat);
int DrawText(const CString& str, LPRECT lpRect, UINT nFormat);

Return Value
The height of the text if the function is successful.

Parameters

448

lpszString Points to the string to be drawn. If nCount is -1, the string must be null
terminated.

nCount Specifies the number of chars in the string. If nCount is -1, then IpszString
is assumed to be a long pointer to a null-terminated string and DrawText
computes the character count automatically.

IpRect Points to a RECT structure or CRect object that contains the rectangle (in
logical coordinates) in which the text is to be formatted.

str A CString object that contains the specified characters to be drawn.

nF ormat Specifies the method of formatting the text. It can be any combination of
the following values (combine using the bitwise OR operator):

• DT_BOTTOM Specifies bottom-justified text. This value must be combined
with DT_SINGLELINE.

• DT _ CALCRECT Determines the width and height of the rectangle. If there
are mUltiple lines of text, DrawText will use the width of the rectangle pointed
to by IpRect and extend the base of the rectangle to bound the last line of text.
If there is only one line of text, DrawText will modify the right side of the
rectangle so that it bounds the last character in the line. In either case,
DrawText returns the height of the formatted text, but does not draw the text.

• DT _CENTER Centers text horizontally.

• DT_EXPANDTABS Expands tab characters. The default number of
characters per tab is eight.

• DT_EXTERNALLEADING Includes the font's external leading in the line
height. Normally, external leading is not included in the height of a line of text.

• DT_LEFT Aligns text flush-left.

• DT_NOCLIP Draws without clipping. DrawText is somewhat faster when
DT_NOCLIP is used.

• DT_NOPREFIX Turns off processing of prefix characters. Normally,
DrawText interprets the ampersand (&) mnemonic-prefix character as a
directive to underscore the character that follows, and the two-ampersand (&&)
mnemonic-prefix characters as a directive to print a single ampersand. By
specifying DT_NOPREFIX, this processing is turned off.

• DT_RIGHT Aligns text flush-right.

• DT_SINGLELINE Specifies single line only. Carriage returns and linefeeds
do not break the line.

• DT_TABSTOP Sets tab stops. The high-order byte of nFormat is the number
of characters for each tab. The default number of characters per tab is eight.

• DT_TOP Specifies top-justified text (single line only).

CDC::DrawText

449

CDC::Ellipse

Remarks

• DT_ VCENTER Specifies vertically centered text (single line only).

• DT_ WORDBREAK Specifies word-breaking. Lines are automatically broken
between words if a word would extend past the edge of the rectangle specified
by lpRect. A carriage retum-linefeed sequence will also break the line.

Note The values OT_CALCRECT, OT_EXTERNALLEAOING, OTJNTERNAL, OT_NOCLlP,
and OT _NO PREFIX cannot be used with the OT _ TABSTOP value.

Call this member function to format text in the given rectangle. It formats text by
expanding tabs into appropriate spaces, aligning text to the left, right, or center of the
given rectangle, and breaking text into lines that fit within the given rectangle. The
type of formatting is specified by nFormat.

This member function uses the device context's selected font, text color, and
background color to draw the text. Unless the DT_NOCLIP format is used,
DrawText clips the text so that the text does not appear outside the given rectangle.
All formatting is assumed to have multiple lines unless the DT_SINGLELINE
format is given.

If the selected font is too large for the specified rectangle, the DrawText member
function does not attempt to substitute a smaller font.

If the DT_CALCRECT flag is specified, the rectangle specified by lpRect will be
updated to reflect the width and height needed to draw the text.

If the TA_UPDATECP text-alignment flag has been set (see CDC::SetTextAlign),
DrawText will display text starting at the current position, rather than at the left of
the given rectangle. DrawText will not wrap text when the TA_UPDATECP flag has
been set (that is, the DT_ WORDBREAK flag will have no effect).

The text color may be set by CDC::SetTextCoior.

See Also CDC::SetTextCoior, CDC::ExtTextOut, CDC::TabbedTextOut,
CDC::TextOut, ::DrawText, RECT, CDC::SetTextAlign

CDC: : Ellipse
BOOL Ellipse(int xl, int yl, int x2, int y2);
BOOL Ellipse(LPCRECT lpRect);

Return Value
Nonzero if the function is successful; otherwise O.

Parameters

450

xl Specifies the logical x-coordinate of the upper-left comer of the ellipse'S
bounding rectangle.

Remarks

yl Specifies the logical y-coordinate of the upper-left corner of the ellipse's
bounding rectangle.

x2 Specifies the logical x-coordinate of the lower-right corner of the ellipse's
bounding rectangle.

y2 Specifies the logical y-coordinate of the lower-right corner of the ellipse's
bounding rectangle.

lpRect Specifies the ellipse's bounding rectangle. You can also pass a CRect object
for this parameter.

Draws an ellipse. The center of the ellipse is the center of the bounding rectangle
specified by xl, yl, x2, and y2, or lpRect. The ellipse is drawn with the current pen,
and its interior is filled with the current brush.

The figure drawn by this function extends up to, but does not include, the right and
bottom coordinates. This means that the height of the figure is y2 - yl and the width
of the figure is x2 - xl.

If either the width or the height of the bounding rectangle is 0, no ellipse is drawn.

See Also CDC::Arc, CDC::Chord, ::Ellipse

CDC: :EndDoc
int EndDoc();

Return Value

Remarks

Greater than or equal to 0 if the function is successful, or a negative value if an error
occurred. The following list shows common error values:

• SP _ERROR General error.

• SP _OUTOFDISK Not enough disk space is currently available for spooling, and
no more space will become available.

• SP _OUTOFMEMORY Not enough memory is available for spooling.

• SP _USERABORT User ended the job through the Print Manager.

Ends a print job started by a call to the StartDoc member function. This member
function replaces the ENDDOC printer escape, and should be called immediately
after finishing a successful print job.

If an application encounters a printing error or a canceled print operation, it must not
attempt to terminate the operation by using either EndDoc or AbortDoc. GDI
automatically terminates the operation before returning the error value.

CDC::EndDoc

451

CDC::EndPage

This function should not be used inside metafiles.

See Also CDC::AbortDoc, CDC::Escape, CDC::StartDoc

CDC: :EndPage
int EndPage();

Return Value

Remarks

Greater than or equal to 0 if successful; otherwise it is an error value, which can be
one of the following:

• SP _ERROR General error.

• SP _APPABORT Job was ended because the application's abort function
returned O.

• SP _USERABORT User ended the job through Print Manager.

• SP _OUTOFDISK Not enough disk space is currently available for spooling, and
no more space will become available.

• SP _OUTOFMEMORY Not enough memory is available for spooling.

Informs the device that the application has finished writing to a page. This member
function is typically used to direct the device driver to advance to a new page.

This member function replaces the NEWFRAME printer escape. Unlike
NEWFRAME, this function is always called after printing a page.

See Also CDC::StartPage, CDC::StartDoc, CDC::Escape

CDC: : EndPath
BOOL EndPath();

Return Value

Remarks

Nonzero if the function is successful; otherwise O.

Closes a path bracket and selects the path defined by the bracket into the device
context.

See Also CDC: :BeginPath

CDC: :EnumObjects

452

int EnumObjects(int nObjectType, int (CALLBACK EXPORT* lpfn)(LPVOID,
LPARAM), LPARAM lpData);

Return Value
Specifies the last value returned by the callback function. Its meaning is user-defined.
For more information about the callback function, see "Callback Functions for
CDC::EnumObjects" in the "Callback Functions Used by MFC" section.

Parameters

Remarks

nObjectType Specifies the object type. It can have the values OBJ_BRUSH or
OBJ_PEN.

lpfn Is the procedure-instance address of the application-supplied callback function.
See the "Remarks" section below.

lpData Points to the application-supplied data. The data is passed to the callback
function along with the object information.

Enumerates the pens and brushes available in a device context. For each object of a
given type, the callback function that you pass is called with the information for that
object. The system calls the callback function until there are no more objects or the
callback function returns O.

Note that new features of Microsoft Visual C++ let you use an ordinary function as
the function passed to EnumObjects. Th,e address passed to EnumObjects is a
pointer to a function exported with EXPORT and with the Pascal calling convention.
In protect-mode applications, you do not have to create this function with the
Windows MakeProcInstance function or free the function after use with the
FreeProcInstance Windows function.

You also do not have to export the function name in an EXPORTS statement in your
application's module-definition file. You can instead use the EXPORT function
modifier, as in

int CALLBACK EXPORT AFunction(LPSTR, LPSTR);

to cause the compiler to emit the proper export record for export by name without
aliasing. This works for most needs. For some special cases, such as exporting a
function by ordinal or aliasing the export, you still need to use an EXPORTS
statement in a module-definition file.

For compiling Microsoft Foundation programs, you will normally use the lOA and
IOEs compiler options. The lOw compiler option is not used with the Microsoft
Foundation classes. (If you do use the Windows function MakeProcInstance, you
will need to explicitly cast the returned function pointer from FARPROC to the type
needed in this API.) Callback registration interfaces are now type-safe (you must pass
in a function pointer that points to the right kind of function for the specific
callback).

CDC: : EnumObjects

453

CDC::Escape

Also note that all callback functions must trap Microsoft Foundation exceptions
before returning to Windows, since exceptions cannot be thrown across callback
boundaries. For more information about exceptions, see the article "Exceptions" in
Programming with the Microsoft Foundation Class Library.

See Also ::EnumObjects

CDC: :Escape
virtual int Escape(int nEscape, int nCount, LPCSTR Ipsz!nData, LPVOID IpOutData);

int ExtEscape(int nEscape, int nlnputSize, LPCSTR lpsz!nputData,
int nOutputSize, LPSTR IpszOutputData);

Return Value
Positive if the function is successful, except for the QUERYESCSUPPORT escape,
which only checks for implementation. Zero is returned if the escape is not
implemented, and a negative value is returned if an error occurred. The following are
common error values:

• SP _ERROR General error.

• SP _OUTOFDISK Not enough disk space is currently available for spooling, and
no more space will become available.

• SP_OUTOFMEMORY Not enough memory is available for spooling.

• SP _USERABORT User ended the job through the Print Manager.

Parameters

454

nEscape Specifies the escape function to be performed.

For a complete list of escape functions, see the information on printer escapes in the
Windows Software Development Kit documentation.

nCount Specifies the number of bytes of data pointed to by Ipsz!nData.

Ipsz!nData Points to the input data structure required for this escape.

IpOutData Points to the structure that is to receive output from this escape. The
IpOutData parameter is NULL if no data is returned.

nlnputSize Specifies the number of bytes of data pointed to by the lpsz!nputData
parameter.

Ipsz!nputData Points to the input structure required for the specified escape.

nOutputSize Specifies the number of bytes of data pointed to by the lpszOutputData
parameter.

lpszOutputData Points to the structure that receives output from this escape. This
parameter should be NULL if no data is returned.

CDC: :ExcludeClipRect

Remarks
Allows applications to access facilities of a particular device that are not directly
available through GDI. Use the first version of Escape to pass a driver-defined escape
value to a device. Use the second version of Escape to pass one of the escape values
defined by Windows to a device. Escape calls made by an application are translated
and sent to the device driver.

The nEscape parameter specifies the escape function to be performed. For possible
values, see the information on printer escapes in the Windows SDK documentation.

See Also CDC::StartDoc, CDC::StartPage, CDC::EndPage,
CDC::SetAbortProc, CDC::AbortDoc, CDC::EndDoc, CDC::GetDeviceCaps,
: :ExtEscape, : :Escape

CDC: : ExcludeClipRect
virtual int ExciudeClipRect(int xl, int yl, int x2, int y2);
virtual int ExciudeClipRect(LPCRECT IpRect);

Return Value
Specifies the new clipping region's type. It can be any of the following values:

• COMPLEXREGION The region has overlapping borders.

• ERROR No region was created.

• NULL REGION The region is empty.

• SIMPLEREGION The region has no overlapping borders.

Parameters

Remarks

xl Specifies the logical x-coordinate of the upper-left comer of the rectangle.

yl Specifies the logical y-coordinate of the upper-left comer of the rectangle.

x2 Specifies the logical x-coordinate of the lower-right comer of the rectangle.

y2 Specifies the logical y-coordinate of the lower-right comer of the rectangle.

IpRect Specifies the rectangle. Can also be a CRect object.

Creates a new clipping region that consists of the existing clipping region minus the
specified rectangle.

The width of the rectangle, specified by the absolute value of x2 - xl, must not
exceed 32,767 units. This limit applies to the height of the rectangle as well.

See Also CDC::ExciudeUpdateRgn, ::ExciudeClipRect

455

CDC: : Exc1udeUpdateRgn

CDC: : ExcludeUpdateRgn
int ExciudeUpdateRgn(CWnd* pWnd);

Return Value
The type of excluded region. It can be anyone of the following values:

• COMPLEXREGION The region has overlapping borders.

• ERROR No region was created.

• NULLREGION The region is empty.

• SIMPLEREGION The region has no overlapping borders.

Parameters

Remarks

p Wnd Points to the window object whose window is being updated.

Prevents drawing within invalid areas of a window by excluding an updated region in
the window from the clipping region associated with the CDC object.

See Also CDC::ExciudeClipRect, ::ExciudeUpdateRgn

CDC: : ExtFloodFil1
BOOL ExtFloodFill(int x, int y, COLORREF creolor, UINT nFillType);

Return Value
Nonzero if the function is successful; otherwise 0 if the filling could not be
completed, if the given point has the boundary color specified by creolor (if
FLOODFILLBORDER was requested), if the given point does not have the color
specified by creolor (if FLOODFILLSURFACE was requested), or if the point is
outside the clipping region.

Parameters

456

x Specifies the logical x-coordinate of the point where filling begins.

y Specifies the logical y-coordinate of the point where filling begins.

creolor Specifies the color of the boundary or of the area to be filled. The
interpretation of creolor depends on the value of nFillType.

nFillType Specifies the type of flood fill to be performed. It must be either of the
following values:

• FLOODFILLBORDER The fill area is bounded by the color specified by
creolor. This style is identical to the filling performed by FloodFill .

• FLOODFILLSURFACE The fill area is defined by the color specified by
creolor. Filling continues outward in all directions as long as the color is
encountered. This style is useful for filling areas with multicolored boundaries.

CDC::ExtTextOut

Remarks
Fills an area of the display surface with the current brush. This member function
offers more flexibility than FloodFiII because you can specify a fill type in nFillType.

If nFillType is set to FLOODFILLBORDER, the area is assumed to be completely
bounded by the color specified by crColor. The function begins at the point specified
by x and y and fills in all directions to the color boundary.

If nFillType is set to FLOODFILLSURFACE, the function begins at the point
specified by x and y and continues in all directions, filling all adjacent areas
containing the color specified by crColor.

Only memory-device contexts and devices that support raster-display technology
support ExtFloodFiII. For more information, see the GetDeviceCaps member
function.

See Also CDC::FloodFiII, CDC::GetDeviceCaps, ::ExtFloodFill

CDC: : ExtTextOut
virtual BOOL ExtTextOut(int x, int y, UINT nOptions, LPCRECT lpRect, LPCTSTR lpszString,

UINT nCount, LPINT lpDxWidths);
BOOL ExtTextOut(int x, int y, UINT nOptions, LPCRECT lpRect, const CString& str,

LPINT lpDxWidths);

Return Value
Nonzero if the function is successful; otherwise O.

Parameters
x Specifies the logical x-coordinate of the character cell for the first character in the

specified string.

y Specifies the logical y-coordinate of the top of the character cell for the first
character in the specified string.

nOptions Specifies the rectangle type. This parameter can be one, both, or neither of
the following values:

• ETO _CLIPPED Specifies that text is clipped to the rectangle .

• ETO_OPAQUE Specifies that the current background color fills the
rectangle. (You can set and query the current background color with the
SetBkColor and GetBkColor member functions.)

lpRect Points to a RECT structure that determines the dimensions of the rectangle.
This parameter can be NULL. You can also pass a CRect object for this
parameter.

lpszString Points to the specified character string to be drawn. You can also pass a
CString object for this parameter.

457

CDC::FillPath

Remarks

nCount Specifies the number of characters in the string. If -1, the length will be
calculated.

lpDxWidths Points to an array of values that indicate the distance between origins of
adjacent character cells. For instance, lpDxWidths[i] logical units will separate the
origins of character cell i and character cell i + 1. If lpDxWidths is NULL,
ExtTextOut uses the default spacing between characters.

str A CString object that contains the specified characters to be drawn.

Call this member function to write a character string within a rectangular region
using the currently selected font. The rectangular region can be opaque (filled with
the current background color), and it can be a clipping region.

If nOptions is 0 and lpRect is NULL, the function writes text to the device context
without using a rectangular region. By default, the current position is not used or
updated by the function. If an application needs to update the current position when it
calls ExtTextOut, the application can call the CDC member function SetTextAlign
with nFlags set to TA_UPDATECP. When this flag is set, Windows ignores x and y
on subsequent calls to ExtTextOut and uses the current position instead. When an
application uses TA_ UPDATECP to update the current position, ExtTextOut sets
the current position either to the end of the previous line of text or to the position
specified by the last element of the array pointed to by lpDxWidths, whichever is
greater.

See Also CDC::SetTextAlign, CDC::TabbedTextOut, CDC::TextOut,
CDC::GetBkColor, CDC::SetBkColor, CDC::SetTextColor, ::ExtTextOut,
RECT

CDC::FiIIPath
BOOL FillPath();

Return Value

Remarks

458

Nonzero if the function is successful; otherwise O.

Closes any open figures in the current path and fills the path's interior by using the
current brush and polygon-filling mode. After its interior is filled, the path is
discarded from the device context.

See Also CDC: :BeginPath, CDC: :SetPolyFillMode, CDC::StrokeAndFillPath,
CDC::StrokePath, ::FillPath

CDC: : FillRect
void FiIIRect(LPCRECT [pReet, CBrush* pBrush);

Parameters

Remarks

[pReet Points to a RECT structure that contains the logical coordinates of the
rectangle to be filled. You can also pass a CRect object for this parameter.

pBrush Identifies the brush used to fill the rectangle.

Call this member function to fill a given rectangle using the specified brush. The
function fills the complete rectangle, including the left and top borders, but it does
not fill the right and bottom borders.

The brush needs to either be created using the CBrush member functions
CreateHatchBrush, CreatePatternBrush, and CreateSolidBrush, or retrieved by
the ::GetStockObject Windows function.

When filling the specified rectangle, FiIIRect does not include the rectangle's right
and bottom sides. ODI fills a rectangle up to, but does not include, the right column
and bottom row, regardless of the current mapping mode. FillRect compares the
values of the top, bottom, left, and right members of the specified rectangle. If
bottom is less than or equal to top, or if right is less than or equal to left, the
rectangle is not drawn.

FiIIRect is similar to CDC: :FiIISolidRect; however, FiIIRect takes a brush and
therefore can be used to fill a rectangle with a solid color, a dithered color, hatched
brushes, or a pattern. FillSolidRect uses only solid colors (indicated by a
COLORREF parameter). FillRect usually is slower than FiIISolidRect.

See Also CBrush: :CreateHatchBrush, CBrush: :CreatePatternBrush,
CBrush::CreateSolidBrush, ::FiIIRect, ::GetStockObject, RECT, CBrush,
CDC: : FillS olidRect

CDC::FiIIRgn
BOOL FiIIRgn(CRgn* pRgn, CBrush* pBrush);

Return Value
Nonzero if the function is successful; otherwise O.

Parameters
pRgn A pointer to the region to be filled. The coordinates for the given region are

specified in device units.

pBrush Identifies the brush to be used to fill the region.

CDC::FillRgn

459

CDC::FillSolidRect

Remarks
Fills the region specified by pRgn with the brush specified by pBrush.

The brush must either be created using the CBrush member functions
CreateHatchBrush, CreatePatternBrush, CreateSolidBrush, or be retrieved by
GetStockObject.

See Also CDC::PaintRgn, CDC::FiIIRect, CBrush, CRgn, ::FiIlRgn

CDC: :FillSolidRect
void FillSolidRect(LPCRECT lpReet, COLORREF clr);
void FiIISolidRect(int x, int y, int ex, int ey, COLORREF clr);

Parameters

Remarks

lpReet Specifies the bounding rectangle (in logical units). You can pass either a
pointer to a RECT data structure or a CRect object for this parameter.

clr Specifies the color to to be used to fill the rectangle.

x Specifies the logical x -coordinate of the upper-left comer of the rectangle.

y Specifies the logical y-coordinate of the upper-left comer of the destination
rectangle.

ex Specifies the width of the rectangle.

ey Specifies the height of the rectangle.

Call this member function to fill the given rectangle with the specified solid color.

FiIISolidRect is very similar to CDC::FiIIRect; however, FiIISolidRect uses only
solid colors (indicated by the COLORREF parameter), while FillRect takes a brush
and therefore can be used to fill a rectangle with a solid color, a dithered color,
hatched brushes, or a pattern. FillSolidRect usually is faster than FillRect.

Note When you call FiliSolidRect, the background color, which was previously set using
SetBkColor, is set to the color indicated by elr.

SeeAlso RECT, CRect, CDC::FiIlRect

CDC: : FlattenPath
BOOL FlattenPath();

Return Value
Nonzero if the function is successful; otherwise O.

460

Remarks
Transforms any curves in the path selected into the current device context, and turns
each curve into a sequence of lines.

See Also CDC:: WidenPath

CDC: :FloodFill
BOOL FloodFiII(int x, int y, COLORREF creolor);

Return Value
Nonzero if the function is successful; otherwise 0 is returned if the filling could not
be completed, the given point has the boundary color specified by creolor, or the
point is outside the clipping region.

Parameters

Remarks

x Specifies the logical x-coordinate of the point where filling begins.

y Specifies the logical y-coordinate of the point where filling begins.

creolor Specifies the color of the boundary.

Fills an area of the display surface with the current brush. The area is assumed to be
bounded as specified by creolor. The FloodFiII function begins at the point specified
by x and y and continues in all directions to the color boundary.

Only memory-device contexts and devices that support raster-display technology
support the FloodFiII member function. For information about RC_BITBLT
capability, see the GetDeviceCaps member function.

The ExtFloodFilI function provides similar capability but greater flexibility.

See Also CDC::ExtFloodFiII, CDC::GetDeviceCaps, ::FloodFiII

CDC: : FrameRect
void FrameRect(LPCRECT lpRect, CBrush* pBrush);

Parameters

Remarks

lpRect Points to a RECT structure or CRect object that contains the logical
coordinates of the upper-left and lower-right comers of the rectangle. You can
also pass a CRect object for this parameter.

pBrush Identifies the brush to be used for framing the rectangle.

Draws a border around the rectangle specified by lpRect. The function uses the given
brush to draw the border. The width and height of the border is always 1 logical unit.

CDC::FrameRect

461

CDC::FrameRgn

If the rectangle's bottom coordinate is less than or equal to top, or if right is less
than or equal to left, the rectangle is not drawn.

The border drawn by FrameRect is in the same position as a border drawn by the
Rectangle member function using the same coordinates (if Rectangle uses a pen that
is 1 logical unit wide). The interior of the rectangle is not filled by FrameRect.

See Also CBrush, ::FrameRect, CDC::Rectangle, CDC::FrameRgn, RECT

CDC: : FrameRgn
BOOL FrameRgn(CRgn* pRgn, CBrush* pBrush, int n Width, int nHeight);

Return Value
Nonzero if the function is successful; otherwise O.

Parameters

Remarks

pRgn Points to the CRgn object that identifies the region to be enclosed in a border.
The coordinates for the given region are specified in device units.

pBrush Points to the CBrush object that identifies the brush to be used to draw the
border.

n Width Specifies the width of the border in vertical brush strokes in device units.

nHeight Specifies the height of the border in horizontal brush strokes in device
units.

Draws a border around the region specified by pRgn using the brush specified by
pBrush.

See Also CDC::Rectangle, CDC::FrameRect, CBrush, CRgn, ::FrameRgn

CDC: : FromHandle
static CDC* PASCAL FromHandle(HDC hDC);

Return Value
The pointer may be temporary and should not be stored beyond immediate use.

Parameters

Remarks

462

hDC Contains a handle to a Windows device context.

Returns a pointer to a CDC object when given a handle to a device context. If a CDC
object is not attached to the handle, a temporary CDC object is created and attached.

See Also CDC::DeleteTempMap

CDC: : GetArcDirection
int GetArcDirection() const;

Return Value

Remarks

Specifies the current arc direction, if successful. Following are the valid return
values:

• AD_COUNTERCLOCKWISE Arcs and rectangles drawn counterclockwise.

• AD_CLOCKWISE Arcs and rectangles drawn clockwise.

If an error occurs, the return value is zero.

Returns the current arc direction for the device context. Arc and rectangle functions
use the arc direction.

See Also CDC::SetArcDirection, ::GetArcDirection

CDC: : GetAspectRatioFilter
CSize GetAspectRatioFilter() const;

Return Value

Remarks

A CSize object representing the aspect ratio used by the current aspect ratio filter.

Retrieves the setting for the current aspect-ratio filter. The aspect ratio is the ratio
formed by a device's pixel width and height. Information about a device's aspect ratio
is used in the creation, selection, and display of fonts. Windows provides a special
filter, the aspect-ratio filter, to select fonts designed for a particular aspect ratio from
all of the available fonts. The filter uses the aspect ratio specified by the
SetMapperFlags member function.

See Also CDC::SetMapperFlags, ::GetAspectRatioFilter, CSize

CDC: : GetBkColor
COLORREF GetBkColor() const;

Return Value
An RGB color value.

CDC::GetBkColor

463

CDC: :GetBkMode

Remarks
Returns the current background color. If the background mode is OPAQUE, the
system uses the background color to fill the gaps in styled lines, the gaps between
hatched lines in brushes, and the background in character cells. The system also uses
the background color when converting bitmaps between color and monochrome
device contexts.

See Also CDC::GetBkMode, CDC::SetBkColor, CDC::SetBkMode,
::GetBkColor

CDC::GetBkMode
int GetBkMode() const;

Return Value

Remarks

The current background mode, which can be OPAQUE, TRANSPARENT, or
TRANSPARENTl.

Returns the background mode. The background mode defines whether the system
removes existing background colors on the drawing surface before drawing text,
hatched brushes, or any pen style that is not a solid line.

See Also CDC::GetBkColor, CDC::SetBkColor, CDC::SetBkMode,
::GetBkMode

CDC: : GetBoundsRect
UINT GetBoundsRect(LPRECT lpRectBounds, UINT flags);

Return Value
Specifies the current state of the bounding rectangle if the function is successful. It
can be a combination of the following values:

• DCB_ACCUMULATE Bounding rectangle accumulation is occurring.

• DCB_RESET Bounding rectangle is empty.

• DCB_SET Bounding rectangle is not empty.

• DCB_ENABLE Bounding accumulation is on.

• DCB_DISABLE Bounding accumulation is off.

Parameters
lpRectBounds Points to a buffer that will receive the current bounding rectangle.

The rectangle is returned in logical coordinates.

464

CDC: :GetCharABCWidths

Remarks

flags Specifies whether the bounding rectangle is to be cleared after it is returned.
This parameter can be either of the following values:

• DCB_RESET Forces the bounding rectangle to be cleared after it is returned.

• DCB_ WINDOWMGR Queries the Windows bounding rectangle instead of
the application's.

Returns the current accumulated bounding rectangle for the specified device context.

See Also CDC::SetBoundsRect, ::GetBoundsRect

CDC::GetBrushOrg
CPoint GetBrushOrg() const;

Return Value

Remarks

The current origin of the brush (in device units) as a CPoint object.

Retrieves the origin (in device units) of the brush currently selected for the device
context.

The initial brush origin is at (0,0) of the client area. The return value specifies this
point in device units relative to the origin of the desktop window.

See Also CDC::SetBrushOrg, ::GetBrushOrg, CPoint

CDC: : GetCharABCWidths
BOOL GetCharABCWidths(UINT nFirstChar, UINT nLastChar, LPABC lpabc) const;
BOOL GetCharABCWidths(UINT nFirstChar, UINT nLastChar, LPABCFLOAT IpABCF) const;

Return Value
Nonzero if the function is successful; otherwise 0.

Parameters
nFirstChar Specifies the first character in the range of characters from the current

font for which character widths are returned.

nLastChar Specifies the last character in the range of characters from the current
font for which character widths are returned.

lpabc Points to an array of ABC structures that receive the character widths when
the function returns. This array must contain at least as many ABC structures as
there are characters in the range specified by the nFirstChar and nLastChar
parameters.

465

CDC: : GetCharWidth

Remarks

IpABCF Points to an application-supplied buffer with an array of ABCFLOAT
structures to receive the character widths when the function returns. The widths
returned by this function are in the IEEE floating-point format.

Retrieves the widths of consecutive characters in a specified range from the current
TrueType font. The widths are returned in logical units. This function succeeds only
with TrueType fonts.

The TrueType rasterizer provides "ABC" character spacing after a specific point size
has been selected. "A" spacing is the distance that is added to the current position
before placing the glyph. "B" spacing is the width of the black part of the glyph. "C"
spacing is added to the current position to account for the white space to the right of
the glyph. The total advanced width is given by A + B + C.

When the GetCharABCWidths member function retrieves negative "A" or "C"
widths for a character, that character includes underhangs or overhangs.

To convert the ABC widths to font design units, an application should create a font
whose height (as specified in the ItHeight member of the LOGFONT structure) is
equal to the value stored in the ntmSizeEM member of the NEWTEXTMETRIC
structure. (The value of the ntmSizeEM member can be retrieved by calling the
EnumFontFamilies Windows function.)

The ABC widths of the default character are useq for characters that are outside the
range of the currently selected font.

To retrieve the widths of characters in non-TrueType fonts, applications should use
the GetCharWidth member function.

See Also ::EnumFontFamilies, CDC::GetCharWidth, ::GetCharABCWidths,
: : GetChar ABCWidthsFloat, : : GetCharWidthFloat, : :EnumFontFamilies,
: : GetChar ABCWidths

CDC:: GetCharWidth
BOOL GetCharWidth(UINT nFirstChar, UINT nLastChar, LPINT lpBuffer) const;
BOOL GetCharWidth(UINT nFirstChar, UINT nLastChar, float* lpFloatBuffer) const;

Return Value
Nonzero if the function is successful; otherwise O.

Parameters

466

nFirstChar Specifies the first character in a consecutive group of characters in the
current font.

nLastChar Specifies the last character in a consecutive group of characters in the
current font.

Remarks

IpBuffer Points to a buffer that will receive the width values for a consecutive group
of characters in the current font.

IpFloatBuffer Points to a buffer to receive the character widths. The returned widths
are in the 32-bit IEEE floating-point format. (The widths are measured along the
base line of the characters.)

Retrieves the widths of individual characters in a consecutive group of characters
from the current font, using m_hAttrihDC, the input device context. For example, if
nFirstChar identifies the letter 'a' and nLastChar identifies the letter 'z', the function
retrieves the widths of all lowercase characters.

The function stores the values in the buffer pointed to by IpBuffer. This buffer must
be large enough to hold all of the widths. That is, there must be at least 26 entries in
the example given.

If a character in the consecutive group of characters does not exist in a particular
font, it will be assigned the width value of the default character.

See Also CDC::GetOutputCharWidth, CDC::m_hAttrihDC, CDC::m_hDC,
CDC: :GetCharABCWidths, : : GetCharWidth, : :GetCharABCWidths,
: :GetCharABCWidthsFloat, : : GetCharWidthFloat

CDC: : GetClipBox
virtual int GetClipBox(LPRECT IpRect) const;

Return Value
The clipping region's type. It can be any of the following values:

• COMPLEXREGION Clipping region has overlapping borders.

• ERROR Device context is not valid.

• NULLREGION Clipping region is empty.

• SIMPLEREGION Clipping region has no overlapping borders.

Parameters

Remarks

IpRect Points to the RECT structure or CRect object that is to receive the rectangle
dimensions.

Retrieves the dimensions of the tightest bounding rectangle around the current
clipping boundary. The dimensions are copied to the buffer pointed to by IpRect.

See Also CDC: :SelectClipRgn, : : GetClipBox, RECT

CDC: : GetClipB ox

467

CDC::GetColorAdjustment

CDC: : GetColorAdjustment
BOOL GetColorAdjustment(LPCOLORADJUSTMENT lpColorAdjust) const;

Return Value
Nonzero if the function is successful; otherwise O.

Parameters

Remarks

lpColorAdjust Points to a COLORADJUSTMENT data structure to receive the
color adjustment values.

Retrieves the color adjustment values for the device context.

See Also CDC: :SetColor Adjustment

CDC:: GetCurrentBitmap
CBitmap* GetCurrentBitmap() const;

Return Value

Remarks

Pointer to a CBitmap object, if successful; otherwise NULL.

Returns a pointer to the currently selected CBitmap object. This member function
may return temporary objects.

See Also CDC::SelectObject, ::GetCurrentObject

CDC: : GetCurrentBrush
CBrush* GetCurrentBrush() const;

Return Value

Remarks

Pointer to a CBrush object, if successful; otherwise NULL.

Returns a pointer to the currently selected CBrush object. This member function may
return temporary objects.

See Also CDC::SelectObject, ::GetCurrentObject

CDC:: GetCurrentFont
CFont* GetCurrentFont() const;

Return Value
Pointer to a CFont object, if successful; otherwise NULL.

468

CDC: : GetCurrentPosition

Remarks
Returns a pointer to the currently selected CFont object. This member function may
return temporary objects.

See Also CDC: :SelectObject, : :GetCurrentObject

CDC:: GetCurrentPalette
CPalette* GetCurrentPalette() const;

Return Value

Remarks

Pointer to a CPalette object, if successful; otherwise NULL.

Returns a pointer to the currently selected CPalette object. This member function
may return temporary objects.

See Also CDC::SelectObject, ::GetCurrentObject

CDC: : GetCurrentPen
CPen* GetCurrentPen() const;

Return Value

Remarks

Pointer to a CPen object, if successful; otherwise NULL.

Returns a pointer to the currently selected CPen object. This member function may
return temporary objects.

See Also CDC::SelectObject, ::GetCurrentObject

CDC: : GetCurrentPosition
CPoint GetCurrentPosition() const;

Return Value

Remarks

The current position as a CPoint object.

Retrieves the current position (in logical coordinates). The current position can be set
with the MoveTo member function.

See Also CDC::MoveTo, CPoint, ::GetCurrentPosition

469

CDC::GetDeviceCaps

CDC: : GetDeviceCaps
int GetDeviceCaps(int nlndex) const;

Return Value
The value of the requested capability if the function is successful.

Parameters

470

nlndex Specifies the type of information to return. It can be anyone of the following
values:

• DRIVERVERSION Version number; for example, OxIOO for 1.0.

• TECHNOLOGY Device technology. It can be anyone of the following:

Value Meaning

DT_PLOTTER Vector plotter

DT_RASDISPLAY Raster display

DT_RASPRINTER Raster printer

DT_RASCAMERA Raster camera

DT_CHARSTREAM Character stream

DT_METAFILE Metafile

DT_DISPFILE Display file

• HORZSIZE Width of the physical display (in millimeters).

• VERT SIZE Height of the physical display (in millimeters).

• HORZRES Width of the display (in pixels).

• VERTRES Height of the display (in raster lines).

• LOGPIXELSX Number of pixels per logical inch along the display width.

• LOGPIXELSY Number of pixels per logical inch along the display height.

• BITSPIXEL Number of adjacent color bits for each pixel.

• PLANES Number of color planes.

• NUMBRUSHES Number of device-specific brushes.

• NUMPENS Number of device-specific pens.

• NUMFONTS Number of device-specific fonts.

• NUMCOLORS Number of entries in the device's color table.

• ASPECTX Relative width of a device pixel as used for line drawing.

• ASPECTY Relative height of a device pixel as used for line drawing.

• ASPECTXY Diagonal width of the device pixel as used for line drawing.

• PDEVICESIZE Size of the PDEVICE internal data structure.

• CLIPCAPS Clipping capabilities of the device. It can be one of the following:

Value

CP_NONE

CP _RECTANGLE

CP_REGION

Meaning

Output is not clipped.

Output is clipped to rectangles.

Output is clipped to regions.

• SIZEPALETTE Number of entries in the system palette. This index is valid
only if the device driver sets the RC_PALETTE bit in the RASTERCAPS
index.

• NUMRESERVED Number of reserved entries in the system palette. This
index is valid only if the device driver sets the RC_PALETTE bit in the
RASTERCAPS index.

• COLORRES Actual color resolution of the device in bits per pixel. This
index is valid only if the device driver sets the RC_PALETTE bit in the
RASTERCAPS index.

• RASTERCAPS Value that indicates the raster capabilities of the device. It
can be a combination of the following:

Value Meaning

RC_BANDING

RC_BIGFONT

RC_BITBLT

RC_BITMAP64

RC_DEVBITS

RC_DI_BITMAP

RC_FLOODFILL

RC_GDI20_0UTPUT

RC_GDI20_STATE

RC_NONE

RC_OP _DX_OUTPUT

RC_PALETTE

RC_SA VEBITMAP

RC_SCALING

RC_STRETCHBLT

Requires banding support.

Supports fonts larger than 64K.

Capable of transferring bitmaps.

Supports bitmaps larger than 64K.

Supports device bitmaps.

Capable of supporting the SetDIBits and
GetDIBits Windows functions.

Capable of supporting the SetDIBitsToDevice
Windows function.

Capable of performing flood fills.

Capable of supporting Windows version 2.0
features.

Includes a state block in the device context.

Supports no raster operations.

Supports dev opaque and DX array.

Specifies a palette-based device.

Capable of saving bitmaps locally.

Capable of scaling.

Capable of performing the StretchBIt member
function.

Capable of performing the StretchDIBits
Windows function.

CDC: : GetDeviceCaps

471

CDC::GetDeviceCaps

472

• CURVE CAPS The curve capabilities of the device. It can be a combination of
the following:

Value

CC_NONE

CC_CIRCLES

CC_PIE

CC_CHORD

CC_ELLIPSES

CC_WIDE

CC_STYLED

CC_WIDESTYLED

CC_INTERIORS

CC_ROUNDRECT

Meaning

Supports curves.

Supports circles.

Supports pie wedges.

Supports chords.

Supports ellipses.

Supports wide borders.

Supports styled borders.

Supports wide, sty led borders.

Supports interiors.

Supports rectangles with rounded corners.

• LINE CAPS Line capabilities the device supports. It can be a combination of
the following:

Value

LC_NONE

LC_POLYLINE

LC_MARKER

LC_POL YMARKER

LC_WIDE

LC_STYLED

LC_ WIDESTYLED

LC_INTERIORS

Meaning

Supports no lines.

Supports polylines.

Supports markers.

Supports polymarkers.

Supports wide lines.

Supports styled lines.

Supports wide, styled lines.

Supports interiors.

• POLYGONAL CAPS Polygonal capabilities the device supports. It can be a
combination of the following:

Value Meaning

PC_NONE

PC_POLYGON

PC_RECTANGLE

PC_ WINDPOL YGON

PC_SCANLINE

PC_WIDE

PC_STYLED

PC_ WIDESTYLED

PC_INTERIORS

Supports no polygons.

Supports alternate fill polygons.

Supports rectangles.

Supports winding number fill polygons.

Supports scan lines.

Supports wide borders.

Supports styled borders.

Supports wide, styled borders.

Supports interiors.

• TEXTCAPS Text capabilities the device supports. It can be a combination of
the following:

Value Meaning

Supports character output precision, which
indicates the device can place device fonts at any
pixel location. This is required for any device with
device fonts.

Supports stroke output precision, which indicates
the device can omit any stroke of a device font.

Supports stroke clip precision, which indicates the
device can clip device fonts to a pixel boundary.

Supports 90-degree character rotation, which
indicates the device can rotate characters only 90
degrees at a time.

Supports character rotation at any degree, which
indicates the device can rotate device fonts through
any angle.

Supports scaling independent of x and y directions,
which indicates the device can scale device fonts
separately in x and y directions.

Supports doubled characters for scaling, which
indicates the device can double the size of device
fonts.

Supports integer multiples for scaling, which
indicates the device can scale the size of device
fonts in any integer mUltiple.

Supports any mUltiples for exact scaling, which
indicates the device can scale device fonts by any
amount but still preserve the x and y ratios.

Supports double-weight characters, which indicates
the device can make device fonts bold. If this bit is
not set for printer drivers, GDI attempts to create
bold device fonts by printing them twice.

Supports italics, which indicates the device can
make device fonts italic. If this bit is not set, GDI
assumes italics are not available.

Supports underlining, which indicates the device
can underline device fonts. If this bit is not set,
GDI creates underlines for device fonts.

Supports strikeouts, which indicates the device can
strikeout device fonts. If this bit is not set, GDI
creates strikeouts for device fonts.

CDC::GetDeviceCaps

473

CDC::GetFontData

Remarks

Value Meaning

Supports raster fonts, which indicates that GDI should
enumerate any raster or TrueType fonts available for this
device in response to a call to the EnumFonts or
EnumFontFamilies Windows functions. If this bit is not
set, GDI-supplied raster or TrueType fonts are not
enumerated when these functions are called.

Supports vector fonts, which indicates that GDI should
enumerate any vector fonts available for this device in
response to a call to the EnumFonts or
EnumFontFamilies Windows functions. This is
significant for vector devices only (that is, for plotters).
Display drivers (which must be able to use raster fonts)
and raster printer drivers always enumerate vector fonts,
because GDI rasterizes vector fonts before sending them to
the driver.

Reserved; must be O.

Retrieves a wide range of device-specific information about the display device.

See Also ::GetDeviceCaps

CDC: : GetFontData
DWORD GetFontData(DWORD dwTable, DWORD dwOffset, LPVOID lpData,

DWORD cbData) const;

Return Value
Specifies the number of bytes returned in the buffer pointed to by lpData if the
function is successful; otherwise -1.

Parameters

474

dwTable Specifies the name of the metric table to be returned. This parameter can be
one of the metric tables documented in the TrueType Font Files specification
published by Microsoft Corporation. If this parameter is 0, the information is
retrieved starting at the beginning of the font file.

dwOffset Specifies the offset from the beginning of the table at which to begin
retrieving information. If this parameter is 0, the information is retrieved starting
at the beginning of the table specified by the dwTable parameter. If this value is
greater than or equal to the size of the table, GetFontData returns 0.

lpData Points to a buffer that will receive the font information. If this value is
NULL, the function returns the size of the buffer required for the font data
specified in the dwTable parameter.

CDC::GetGlyphOutline

Remarks

cbData Specifies the length, in bytes, of the information to be retrieved. If this
parameter is 0, GetFontData returns the size of the data specified in the dwTable
parameter.

Retrieves font-metric information from a scalable font file. The information to
retrieve is identified by specifying an offset into the font file and the length of the
information to return.

An application can sometimes use the GetFontData member function to save a
True Type font with a document. To do this, the application determines whether the
font can be embedded and then retrieves the entire font file, specifying 0 for the
dwTable, dwOffset, and cbData parameters.

Applications can determine whether a font can be embedded by checking the
otmfsType member of the OUTLINETEXTMETRIC structure. If bit 1 of
otmfsType is set, embedding is not permitted for the font. If bit 1 is clear, the font
can be embedded. If bit 2 is set, the embedding is read only.

If an application attempts to use this function to retrieve information for a non
True Type font, the GetFontData member function returns -1.

See Also CDC: : GetOutlineTextMetrics, : : GetFontData,
OUTLINETEXTMETRIC

CDC: : GetGlyphOutline
DWORD GetGlyphOutline(UINT nChar, UINT nFormat, LPGLYPHMETRICS lpgm,

DWORD cbBuffer, LPVOID IpBuffer, const MAT2 FAR* Ipmat2) const;

Return Value
The size, in bytes, of the buffer required for the retrieved information if cbBuffer is 0
or IpBuffer is NULL. Otherwise, it is a positive value if the function is successful, or
-1 if there is an error.

Parameters
nChar Specifies the character for which information is to be returned.

nFormat Specifies the format in which the function is to return information. It can
be one of the following values, or O.

475

CDC: : GetGlyphOutline

Remarks

476

Value

GGO_BITMAP

Meaning

Returns the glyph bitmap. When the function returns,
the buffer pointed to by lpBuffer contains a I-bit-per
pixel bitmap whose rows start on doubleword
boundaries.

Returns the curve data points in the rasterizer's native
format, using device units. When this value is specified,
any transformation specified in lpmat2 is ignored.

When the value of nFonnat is 0, the function fills in a GLYPHMETRICS
structure but does not return glyph-outline data.

lpgm Points to a GLYPHMETRICS structure that describes the placement of the
glyph in the character cell.

cbBuffer Specifies the size of the buffer into which the function copies information
about the outline character. If this value is 0 and the nF onnat parameter is either
the GGO_BITMAP or GGO_NATIVE values, the function returns the required
size of the buffer.

lpBuffer Points to a buffer into which the function copies information about the
outline character. If nF onnat specifies the GGO _NATIVE value, the information
is copied in the form of TTPOLYGONHEADER and TTPOLYCURVE
structures. If this value is NULL and nFonnat is dther the GGO_BITMAP or
GGO_NATIVE value, the function returns the required size of the buffer.

lpmat2 Points to a MAT2 structure that contains a transformation matrix for the
character. This parameter cannot be NULL, even when the GGO_NATIVE value
is specified for nFonnat.

Retrieves the outline curve or bitmap for an outline character in the current font.

An application can rotate characters retrieved in bitmap format by specifying a 2-by-2
transformation matrix in the structure pointed to by lpmat2.

A glyph outline is returned as a series of contours. Each contour is defined by a
TTrOLYGONHEADER structure followed by as many TTPOLYCURVE
structures as are required to describe it. All points are returned as POINTFX
structures and represent absolute positions, not relative moves. The starting point
given by the pfxStart member of the TTPOLYGONHEADER structure is the point
at which the outline for a contour begins. The TTPOLYCURVE structures that
follow can be either polyline records or spline records. Polyline records are a series of
points; lines drawn between the points describe the outline of the character. Spline
records represent the quadratic curves used by TrueType (that is, quadratic b-splines).

See Also CDC::GetOutlineTextMetrics, ::GetGlyphOutline, GLYPHMETRICS,
TTPOLYGONHEADER,TTPOLYCURVE

CDC: :GetKemingPairs

CDC: : GetHalftoneBrush
static CBrush* PASCAL GetHalftoneBrush();

Return Value

Remarks

A pointer to a CBrush object if successful; otherwise NULL.

Call this member function to retrieve a halftone brush. A halftone brush shows pixels
that are alternately foreground and background colors to create a dithered pattern.
The following is an example of a dithered pattern created by a halftone brush.

',BaCkground color

<~ Foreground color

See Also CBrush

Dithered pattern

CDC:: GetKerningPairs
int GetKerningPairs(int nPairs, LPKERNINGPAIR lpkrnpair) const;

Return Value
Specifies the number of kerning pairs retrieved or the total number of kerning pairs
in the font, if the function is successful. Zero is returned if the function fails or there
are no kerning pairs for the font.

Parameters

Remarks

nPairs Specifies the number of KERNINGPAIR structures pointed to by lpkrnpair.
The function will not copy more kerning pairs than specified by nPairs.

lpkrnpair Points to an array of KERNINGPAIR structures that receive the kerning
pairs when the function returns. This array must contain at least as many
structures as specified by nPairs. If this parameter is NULL, the function returns
the total number of kerning pairs for the font.

Retrieves the character kerning pairs for the font that is currently selected in the
specified device context.

See Also : : GetKerningPairs, KERNINGPAIR

477

CDC::GetMapMode

CDC::GetMapMode
int GetMapMode() const;

Return Value

Remarks

The mapping mode.

Retrieves the current mapping mode.

See the SetMapMode member function for a description of the mapping modes.

See Also CDC::SetMapMode, ::GetMapMode

CDC: : GetMiterLimit
float GetMiterLimit() const;

Return Value

Remarks

Nonzero if the function is successful; otherwise O.

Returns the miter limit for the device context. The miter limit is used when drawing
geometric lines that have miter joins.

See Also CDC::SetMiterLimit, ::GetMiterLimit

CDC: : GetN earestColor
COLORREF GetNearestColor(COLORREF creolor) const;

Return Value
An RGB (red, green, blue) color value that defines the solid color closest to the
creolor value that the device can represent.

Parameters

Remarks

478

creolor Specifies the color to be matched.

Returns the solid color that best matches a specified logical color. The given device
must be able to represent this color.

See Also ::GetNearestColor, CPalette::GetNearestPalettelndex

CDC: : GetOutputCharWidth

CDC:: GetOutlineTextMetrics
UINT CDC::GetOutlioeTextMetrics(UINT cbData, LPOUTLINETEXTMETRIC lpotm) coost

Return Value
Nonzero if the function is successful; otherwise o.

Parameters

Remarks

lpotm Points to an array of OUTLINETEXTMETRIC structures. If this parameter
is NULL, the function returns the size of the buffer required for the retrieved
metric data.

cbData Specifies the size, in bytes, of the buffer to which information is returned.

lpotm Points to an OUTLINETEXTMETRIC structure. If this parameter is
NULL, the function returns the size of the buffer required for the retrieved metric
information.

Retrieves metric information for TrueType fonts.

The OUTLINETEXTMETRIC structure contains most of the font metric
information provided with the TrueType format, including a TEXTMETRIC
structure. The last four members of the OUTLINETEXTMETRIC structure are
pointers to strings. Applications should allocate space for these strings in addition to
the space required for the other members. Because there is no system-imposed limit
to the size of the strings, the simplest method for allocating memory is to retrieve the
required size by specifying NULL for lpotm in the first call to the
GetOutlioeTextMetrics function.

See Also : : GetTextMetrics, : : GetOutlioeTextMetrics, CDC: : GetTextMetrics

CDC: : GetOutputChar Width
BOOL GetOutputCharWidth(UINT nFirstChar, UINT nLastChar, LPINT lpBuffer) coost;

Return Value
Nonzero if the function is successful; otherwise O.

Parameters
nFirstChar Specifies the first character in a consecutive group of characters in the

current font.

nLastChar Specifies the last character in a consecutive group of characters in the
current font.

lpBuffer Points to a buffer that will receive the width values for a consecutive group
of characters in the current font.

479

CDC: : GetOutputTabbedTextExtent

Remarks
Uses the output device context, m_hDC, and retrieves the widths of individual
characters in a consecutive group of characters from the current font. For example, if
nFirstChar identifies the letter 'a' and nLastChar identifies the letter 'z', the function
retrieves the widths of all lowercase characters.

The function stores the values in the buffer pointed to by lpBuffer. This buffer must
be large enough to hold all of the widths; that is, there must be at least 26 entries in
the example given.

If a character in the consecutive group of characters does not exist in a particular
font, it will be assigned the width value of the default character.

See Also CDC::GetCharWidth, CDC::m_hAttribDC, CDC::m_hDC,
: : GetCharWidth

CDC: : GetOutputTabbedTextExtent
CSize GetOutputTabbedTextExtent(LPCTSTR lpszString, int nCount, int nTabPositions,

LPINT lpnTabStopPositions) const;
CSize GetOutputTabbedTextExtent(const CString& str, int nTabPositions,

LPINT lpnTabStopPositions) const;

Return Value
The dimensions of the string (in logical units) in a CSize object.

Parameters

Remarks

480

lpszString Points to a character string to be measured. You can also pass a CString
object for this parameter.

nCount Specifies the number of characters in the string. If nCount is -1, the length
is calculated.

nTabPositions Specifies the number of tab-stop positions in the array pointed to by
lpnTabStopPositions.

lpnTabStopPositions Points to an array of integers containing the tab-stop positions
in logical units. The tab stops must be sorted in increasing order; the smallest x
value should be the first item in the array. Back tabs are not allowed.

str A CString object that contains the specified characters to be measured.

Call this member function to compute the width and height of a character string
using m_hDC, the output device context. If the string contains one or more tab
characters, the width of the string is based upon the tab stops specified by
lpnTabStopPositions. The function uses the currently selected font to compute the
dimensions of the string.

CDC: : GetOutputTextExtent

The current clipping region does not offset the width and height returned by the
GetOutputTabbedTextExtent function.

Since some devices do not place characters in regular cell arrays (that is, they kern
the characters), the sum of the extents of the characters in a string may not be equal
to the extent of the string.

If nTabPositions is 0 and IpnTabStopPositions is NULL, tabs are expanded to eight
average character widths. If nTabPositions is 1, the tab stops will be separated by the
distance specified by the first value in the array to which IpnTabStopPositions points.
If IpnTabStopPositions points to more than a single value, a tab stop is set for each
value in the array, up to the number specified by nTabPositions.

See Also CDC: : GetTextExtent, CDC: :m_hAttribDC, CDC: :m_hDC,
CDC: : GetTabbedTextExtent, CDC: : GetOutputTextExtent,
CDC: : TabbedTextOut, : : GetTabbedTextExtent, CSize

CDC: : GetOutputTextExtent
CSize GetOutputTextExtent(LPCTSTR IpszString, int nCount) const;
CSize GetOutputTextExtent(const CString& str) const;

Return Value
The dimensions of the string (in logical units) returned in a CSize object.

Parameters

Remarks

IpszString Points to a string of characters. You can also pass a CString object for
this parameter.

nCount Specifies the number of characters in the string. If nCount is -1, the length
is calculated.

str A CString object that contains the specified characters to be measured.

Call this member function to use the output device context, m_hDC, and compute the
width and height of a line of text, using the current font.

The current clipping region does not affect the width and height returned by
GetOutputTextExtent.

Since some devices do not place characters in regular cell arrays (that is, they carry
out kerning), the sum of the extents of the characters in a string may not be equal to
the extent of the string.

See Also CDC: : GetTabbedTextExtent, CDC: : GetOutputTabbedTextExtent,
CDC::m_hAttribDC, CDC::m_hDC, CDC::GetTextExtent, ::GetTextExtent,
CDC: :SetTextjustification, CSize

481

CDC: : GetOutputTextMetrics

CDC: : GetOutputTextMetrics
BOOL GetOutputTextMetrics(LPTEXTMETRIC lpMetrics) const;

Return Value
Nonzero if the function is successful; otherwise 0.

Parameters

Remarks

lpMetrics Points to the TEXTMETRIC structure that receives the metrics.

Retrieves the metrics for the current font using m_hDC, the output device context.

See Also CDC: : GetTextAlign, CDC: :m_hAttribDC, CDC: :m_hDC,
CDC: : GetTextMetrics, CDC::GetTextExtent, CDC: : GetTextFace,
CDC: :SetTextJustification, : : GetTextMetrics

CDC: : GetPath
int GetPath(LPPOINT lpPoints, LPBYTE lpTypes, int nCount) const;

Return Value
If the nCount parameter is nonzero, the number of points enumerated. If nCount is 0,
the total number of points in the path (and GetPath writes nothing to the buffers).
If nCount is nonzero and is less than the number of points in the path, the return
value is -1.

Parameters

482

lpPoints Points to an array of POINT data structures or CPoint objects where the
line endpoints and curve control points are placed.

lpTypes Points to an array of bytes where the vertex types are placed. Values are one
of the following:

• PT_MOVETO Specifies that the corresponding point in lpPoints starts a
disjoint figure.

• PT_LINETO Specifies that the previous point and the corresponding point in
lpPoints are the endpoints of a line.

• PT_BEZIERTO Specifies that the corresponding point in lpPoints is a
control point or ending point for a Bezier curve.

PT_BEZIERTO types always occur in sets of three. The point in the path
immediately preceding them defines the starting point for the Bezier curve. The
first two PT_BEZIERTO points are the control points, and the third
PT_BEZIERTO point is the end point (if hard-coded).

Remarks

A PT_LINETO or PT_BEZIERTO type may be combined with the following
flag (by using the bitwise operator OR) to indicate that the corresponding point is
the last point in a figure and that the figure should be closed:

• PT_CLOSEFIGURE Specifies that the figure is automatically closed after
the corresponding line or curve is drawn. The figure is closed by drawing a line
from the line or curve endpoint to the point corresponding to the last
PT_MOVETO.

nCount Specifies the total number of POINT data structures that may be placed in
the lpPoints array. This value must be the same as the number of bytes that may be
placed in the lpTypes array.

Retrieves the coordinates defining the endpoints of lines and the control points of
curves found in the path that is selected into the device context. The device context
must contain a closed path. The points of the path are returned in logical coordinates.
Points are stored in the path in device coordinates, so GetPath changes the points
from device coordinates to logical coordinates by using the inverse of the current
transformation. The FlattenPath member function may be called before GetPath, to
convert all curves in the path into line segments.

See Also CDC::FlattenPath, CDC::PolyDraw, CDC::WidenPath

CDC:: GetPixel
COLORREF GetPixel(int x, int y) const;
COLORREF GetPixel(POINT point) const;

Return Value
For either version of the function, an RGB color value for the color of the given
point. It is -1 if the coordinates do not specify a point in the clipping region.

Parameters

Remarks

x Specifies the logical x-coordinate of the point to be examined.

y Specifies the logical y-coordinate of the point to be examined.

point Specifies the logical x- and y-coordinates of the point to be examined.

Retrieves the RGB color value of the pixel at the point specified by x and y. The point
must be in the clipping region. If the point is not in the clipping region, the function
has no effect and returns -1.

Not all devices support the GetPixel function. For more information, see the
RC_BITBLT raster capability under the GetDeviceCaps member function.

CDC: : GetPixel

483

CDC::GetPolyFi1lMode

The GetPixel member function has two forms. The first takes two coordinate values;
the second takes either a POINT structure or a CPoint object.

See Also CDC::GetDeviceCaps, CDC::SetPixel, ::GetPixel, POINT, CPoint

CDC: : GetPolyFillMode
int GetPolyFillMode() const;

Return Value

Remarks

The current polygon-filled mode, ALTERNATE or WINDING, if the function is
successful.

Retrieves the current polygon-filling mode.

See the SetPolyFillMode member function for a description of the polygon-filling
modes.

See Also CDC: :SetPolyFillMode, : : GetPolyFillMode

CDC: : GetROP2
int GetROP2() const;

Return Value

Remarks

The drawing mode. For a list of the drawing mode values, see the SetROP2 member
function.

Retrieves the current drawing mode. The drawing mode specifies how the colors of
the pen and the interior of filled objects are combined with the color already on the
display surface.

See Also CDC::GetDeviceCaps, CDC::SetROP2, ::GetROP2

CDC: : GetSafeHdc
HDC GetSafeHdc() const;

Return Value

Remarks

484

A device context handle.

Call this member function to get m_hDC, the output device context. This member
function also works with null pointers.

CDC: : GetTabbedTextExtent

CDC: : GetStretchBltMode
int GetStretchBltMode() const;

Return Value

Remarks

The return value specifies the current bitmap-stretching mode
STRETCH_ANDSCANS, STRETCH_DELETES CANS, or
STRETCH_ORSCANS-if the function is successful.

Retrieves the current bitmap-stretching mode. The bitmap-stretching mode defines
how information is removed from bitmaps that are stretched or compressed by the
StretchBIt member function.

The STRETCH_ANDSCANS and STRETCH_ ORSCANS modes are
typically used to preserve foreground pixels in monochrome bitmaps. The
STRETCH_DELETES CANS mode is typically used to preserve color in
color bitmaps.

See Also CDC: :StretchBlt, CDC: :SetStretchBltMode, : : GetStretchBItMode

CDC: : GetTabbedTextExtent
CSize GetTabbedTextExtent(LPCTSTR IpszString, int nCount, int nTabPositions,

LPINT IpnTabStopPositions) const;
CSize GetTabbedTextExtent(const CString& str, int nTabPositions, LPINT IpnTabStopPositions)

const;

Return Value
The dimensions of the string (in logical units) in a CSize object.

Parameters

Remarks

IpszString Points to a character string. You can also pass a CString object for this
parameter.

nCount Specifies the number of characters in the string. If nCount is -1, the length
is calculated.

nTabPositions Specifies the number of tab-stop positions in the array pointed to by
IpnTabStopPositions.

IpnTabStopPositions Points to an array of integers containing the tab-stop positions
in logical units. The tab stops must be sorted in increasing order; the smallest x
value should be the first item in the array. Back tabs are not allowed.

str A CString object that contains the specified characters to be drawn.

Call this member function to compute the width and height of a character string
using m_hAttribDC, the attribute device context. If the string contains one or more

485

CDC::GetTextAlign

tab characters, the width of the string is based upon the tab stops specified by
lpnTabStopPositions. The function uses the currently selected font to compute
the dimensions of the string.

The current clipping region does not offset the width and height returned by the
GetTabbedTextExtent function.

Since some devices do not place characters in regular cell arrays (that is, they kern
the characters), the sum of the extents of the characters in a string may not be equal
to the extent of the string.

If nTabPositions is 0 and lpnTabStopPositions is NULL, tabs are expanded to eight
times the average character width. If nTabPositions is 1, the tab stops will be
separated by the distance specified by the first value in the array to which
lpnTabStopPositions points. If lpnTabStopPositions points to more than a single
value, a tab stop is set for each value in the array, up to the number specified by
nTabPositions.

See Also CDC: : GetTextExtent, CDC: : GetOutputTabbedTextExtent,
CDC: : GetOutputTextExtent, CDC::TabbedTextOut, : : GetTabbedTextExtent,
CSize

CDC:: GetTextAlign
UINT GetTextAlign() const;

Return Value

486

The status of the text-alignment flags. The return value is one or more of the
following values:

• TA_BASELINE Specifies alignment of the x-axis and the baseline of the chosen
font within the bounding rectangle.

• TA_BOTTOM Specifies alignment of the x-axis and the bottom of the bounding
rectangle.

• TA_CENTER Specifies alignment of the y-axis and the center of the bounding
rectangle.

• TA_LEFT Specifies alignment of the y-axis and the left side of the bounding
rectangle.

• TA_NOUPDATECP Specifies that the current position is not updated.

• TA_RIGHT Specifies alignment of the y-axis and the right side of the bounding
rectangle.

• TA_TOP Specifies alignment of the x-axis and the top of the bounding
rectangle.

• TA_UPDATECP Specifies that the current position is updated.

Remarks
Retrieves the status of the text-alignment flags for the device context.

The text-alignment flags determine how the TextOut and ExtTextOut member
functions align a string of text in relation to the string's starting point. The text
alignment flags are not necessarily single-bit flags and may be equal to O. To test
whether a flag is set, an application should follow these steps:

1. Apply the bitwise OR operator to the flag and its related flags, grouped as follows:

• TA_LEFT, TA_CENTER, and TA_RIGHT

• TA_BASELINE, TA_BOTTOM, and TA_TOP

• TA_NOUPDATECPandTA_UPDATECP

2. Apply the bitwise-AND operator to the result and the return value of
GetTextAlign.

3. Test for the equality of this result and the flag.

See Also CDC::ExtTextOut, CDC::SetTextAlign, CDC::TextOut,
: : GetTextAlign

CDC: : GetTextCharacterExtra
int GetTextCharacterExtra() const;

Return Value

Remarks

The amount of the intercharacter spacing.

Retrieves the current setting for the amount of intercharacter spacing. GDI adds this
spacing to each character, including break characters, when it writes a line of text to
the device context.

The default value for the amount of intercharacter spacing is o.
See Also CDC::SetTextCharacterExtra, ::GetTextCharacterExtra

CDC: : GetTextColor
COLORREF GetTextColor() const;

Return Value
The current text color as an RGB color value.

CDC::GetTextColor

487

CDC::GetTextExtent

Remarks
Retrieves the current text color. The text color is the foreground color of characters
drawn by using the GDI text-output member functions TextOut, ExtTextOut, and
TabbedTextOut.

See Also CDC::GetBkColor, CDC::GetBkMode, CDC::SetBkMode,
CDC::SetTextColor, ::GetTextColor

CDC: : GetTextExtent
CSize GetTextExtent(LPCTSTR IpszString, int nCount) const;
CSize GetTextExtent(const CString& str) const;

Return Value
The dimensions of the string (in logical units) in a CSize object.

Parameters

Remarks

IpszString Points to a string of characters. You can also pass a CString object for
this parameter.

nCount Specifies the number of characters in the string. If nCount is -1, the length
is calculated.

str A CString object that contains the specified characters.

Call this member function to compute the width and height of a line of text using the
current font to determine the dimensions. The information is retrieved from
m_hAttribDC, the attribute device context.

The current clipping region does not affect the width and height returned by
GetTextExtent.

Since some devices do not place characters in regular cell arrays (that is, they carry
out kerning), the sum of the extents of the characters in a string may not be equal to
the extent of the string.

See Also CDC::GetTabbedTextExtent, CDC::m_hAttribDC, CDC::m_hDC,
CDC: : GetOutputTextExtent, : : GetTextExtent, CDC: :SetTextJustification, CSize

CDC: : GetTextFace
int GetTextFace(int nCount, LPTSTR IpszFacename) const;
int GetTextFace(CString& rString) const;

Return Value

488

The number of bytes copied to the buffer, not including the terminating null
character. It is 0 if an error occurs.

CDC: : GetViewportExt

Parameters

Remarks

nCount Specifies the size of the buffer (in bytes). If the typeface name is longer than
the number of bytes specified by this parameter, the name is truncated.

lpszFacename Points to the buffer for the typeface name.

rString A reference to a CString object.

Call this member function to copy the typeface name of the current font into a buffer.
The typeface name is copied as a null-terminated string.

See Also CDC::GetTextMetrics, CDC::SetTextAlign, CDC::TextOut,
: : GetTextFace

CDC: : GetTextMetrics
BOOL GetTextMetrics(LPTEXTMETRIC lpMetrics) const;

Return Value
Nonzero if the function is successful; otherwise O.

Parameters

Remarks

lpMetrics Points to the TEXTMETRIC structure that receives the metrics.

Retrieves the metrics for the current font using the attribute device context.

See Also CDC::GetTextAlign, CDC::m_hAttribDC, CDC::m_hDC,
CDC: : GetOutputTextMetrics, CDC: : GetTextExtent, CDC: : GetTextFace,
CDC: :SetTextJustification, : : GetTextMetrics

CDC: : GetViewportExt
CSize GetViewportExt() const;

Return Value

Remarks

The x- and y-extents (in device units) as a CSize object.

Retrieves the x- and y-extents of the device context's viewport.

See Also CDC::SetViewportExt, CSize, ::GetViewportExt,
CDC::SetWindowExt

489

CDC::GetViewportOrg

CDC: :Get ViewportOrg
CPoint GetViewportOrg() const;

Return Value

Remarks

The origin of the viewport (in device coordinates) as a CPoint object.

Retrieves the x- and y-coordinates of the origin of the viewport associated with the
device context.

See Also CDC: : GetWindowOrg, CPoint, : : GetViewportOrg,
CDC: :SetViewportOrg

CDC: : GetWindow
CWnd* GetWindow() const;

Return Value

Remarks

Pointer to a CWnd object if successful; otherwise NULL.

Returns the window associated with the display device context. This is an advanced
function. For example, this member function may not return the view window when
printing or in print preview. It always returns the window associated with output.
Output functions that use the given DC draw into this window.

See Also CWnd::GetDC, CWnd::GetWindowDC, ::GetWindow

CDC: : GetWindowExt
CSize GetWindowExt() const;

Return Value
The x- and y-extents (in logical units) as a CSize object.

Remarks
Retrieves the x- and y-extents of the window associated with the device context.

See Also CDC::SetWindowExt, CSize, ::GetWindowExt, CDC::GetViewportExt

CDC: : GetWindowOrg
CPoint GetWindowOrg() const;

Return Value
The origin of the window (in logical coordinates) as a CPoint object.

490

CDC: :GrayString

Remarks
Retrieves the x- and y-coordinates of the origin of the window associated with the
device context.

See Also CDC::GetViewportOrg, CDC::SetWindowOrg, CPoint,
::GetWindowOrg

CDC::GrayString
virtual BOOL GrayString(CBrush* pBrush, BOOL (CALLBACK EXPORT* IpjnOutput)

(HDC, LPARAM, int), LPARAM IpData, int nCount, int x, int y, int nWidth, int nHeight);

Return Value
Nonzero if the string is drawn, or ° if either the TextOut function or the application
supplied output function returned 0, or if there was insufficient memory to create a
memory bitmap for dimming.

Parameters
pBrush Identifies the brush to be used for dimming (graying).

IpjnOutput Specifies the procedure-instance address of the application-supplied
callback function that will draw the string. For more information, see the
description of the Windows OutputFunc callback function in "Callback Function
for CDC::Gray String" in the "Callback Functions Used by MFC" section. If this
parameter is NULL, the system uses the Windows TextOut function to draw the
string, and IpData is assumed to be a long pointer to the character string to be
output.

IpData Specifies a far pointer to data to be passed to the output function. If
IpjnOutput is NULL, IpData must be a long pointer to the string to be output.

nCount Specifies the number of characters to be output. If this parameter is 0,
GrayString calculates the length of the string (assuming that IpData is a pointer
to the string). If nCount is -1 and the function pointed to by IpjnOutput returns 0,
the image is shown but not dimmed.

x Specifies the logical x -coordinate of the starting position of the rectangle that
encloses the string.

y Specifies the logical y-coordinate of the starting position of the rectangle that
encloses the string.

n Width Specifies the width (in logical units) of the rectangle that encloses the string.
If n Width is 0, GrayString calculates the width of the area, assuming IpData is a
pointer to the string.

nHeight Specifies the height (in logical units) of the rectangle that encloses the
string. If nHeight is 0, GrayString calculates the height of the area, assuming
IpData is a pointer to the string.

491

CDC::HIMETRICtoDP

Remarks
Draws dimmed (gray) text at the given location by writing the text in a memory
bitmap, dimming the bitmap, and then copying the bitmap to the display. The
function dims the text regardless of the selected brush and background. The
GrayString member function uses the currently selected font. The MM_ TEXT
mapping mode must be selected before using this function.

An application can draw dimmed (grayed) strings on devices that support a solid
gray color without calling the GrayString member function. The system colbr
COLOR_GRAYTEXT is the solid-gray system color used to draw disabled text. The
application can call the GetSysColor Windows function to retrieve the color value of
COLOR_GRAYTEXT. If the color is other than 0 (black), the application can call
the SetTextColor member function to set the text color to the color value and then
draw the string directly. If the retrieved color is black, the application must call
GrayString to dim (gray) the text.

If lpfnOutput is NULL, GDI uses the Windows TextOut function, and lpData is
assumed to be a far pointer to the character to be output. If the characters to be output
cannot be handled by the TextOut member function (for example, the string is stored
as a bitmap), the application must supply its own output function.

Also note that all callback functions must trap Microsoft Foundation exceptions
before returning to Windows, since exceptions cannot be thrown across callback
boundaries. For more information about exceptions, see the article "Exceptions" in
Programming with MFC.

The callback function passed to GrayString must use the Pascal calling convention,
must be exported with _export, and must be declared FAR.

When the framework is in preview mode, a call to the GrayString member function
is translated to a TextOut call, and the callback function is not called.

See Also ::GetSysColor, CDC::SetTextColor, CDC::TextOut, ::GrayString

CDC: :HIMETRICtoDP
void HIMETRICtoDP(LPSIZE lpSize) const;

Parameters

Remarks

492

lpSize Points to a SIZE structure or CSize object.

Use this function when you convert HIMETRIC sizes from OLE to pixels.

If the mapping mode of the device context object is MM_LOENGLISH,
MM_HIENGLISH, MM_LOMETRIC or MM_HIMETRIC, then the conversion
is based on the number of pixels in the physical inch. If the mapping mode is one of

CDC: : IntersectClipRect

the other non-constrained modes (e.g., MM_TEXT), then the conversion is based on
the number of pixels in the logical inch.

See Also CDC::LPtoDP, CDC::HIMETRICtoLP

CDC: :HIMETRICtoLP
void HIMETRICtoLP(LPSIZE lpSize) const;

Parameters

Remarks

lpSize Points to a SIZE structure or CSize object.

Call this function to convert HIMETRIC units into logical units. Use this function
when you get HIMETRIC sizes from OLE and wish to convert them to your
application's natural mapping mode.

The conversion is accomplished by first converting the HIMETRIC units into pixels
and then converting these units into logical units using the device context's current
mapping units. Note that the extents of the device's window and viewport will affect
the result.

See Also CDC::HIMETRICtoDP, CDC::DPtoLP

CDC: : IntersectClipRect
virtual int IntersectClipRect(int xl, int yl, int x2, int y2);
virtual int IntersectClipRect(LPCRECT lpRect);

Return Value
The new clipping region's type. It can be anyone of the following values:

• COMPLEXREGION New clipping region has overlapping borders.

• ERROR Device context is not valid.

• NULLREGION New clipping region is empty.

• SIMPLEREGION New clipping region has no overlapping borders.

Parameters
xl Specifies the logical x-coordinate of the upper-left comer of the rectangle.

yl Specifies the logical y-coordinate of the upper-left comer of the rectangle.

x2 Specifies the logical x-coordinate of the lower-right comer of the rectangle.

y2 Specifies the logical y-coordinate of the lower-right comer of the rectangle.

lpRect Specifies the rectangle. You can pass either a CRect object or a pointer to a
RECT structure for this parameter.

493

CDC::InvertRect

Remarks
Creates a new clipping region by forming the intersection of the current region and
the rectangle specified by xl, yl, x2, and y2. GDI clips all subsequent output to fit
within the new boundary. The width and height must not exceed 32,767.

See Also ::IntersectClipRect, CRect, RECT

CDC: : InvertRect
void InvertRect(LPCRECT lpRect);

Parameters

Remarks

lpRect Points to a RECT that contains the logical coordinates of the rectangle to be
inverted. You can also pass a CRect object for this parameter.

Inverts the contents of the given rectangle. Inversion is a logical NOT operation and
flips the bits of each pixel. On monochrome displays, the function makes white pixels
black and black pixels white. On color displays, the inversion depends on how colors
are generated for the display. Calling InvertRect twice with the same rectangle
restores the display to its previous colors.

If the rectangle is empty, nothing is drawn.

See Also CDC::FillRect, ::InvertRect, CRect, RECT

CDC::InvertRgn
BOOL InvertRgn(CRgn* pRgn);

Return Value
Nonzero if the function is successful; otherwise O.

Parameters

Remarks

494

pRgn Identifies the region to be inverted. The coordinates for the region are
specified in device units.

Inverts the colors in the region specified by pRgn. On monochrome displays, the
function makes white pixels black and black pixels white. On color displays, the
inversion depends on how the colors are generated for the display.

See Also CDC::FillRgn, CDC::PaintRgn, CRgn, ::InvertRgn

CDC: : IsPrinting
BOOL IsPrinting() const;

Return Value
Nonzero if the CDC object is a printer DC; otherwise O.

CDC::LineTo
BOOL LineTo(int x, int y);

BOOL LineTo(POINT point);

Return Value
Nonzero if the line is drawn; otherwise O.

Parameters

Remarks

x Specifies the logical x-coordinate of the endpoint for the line.

y Specifies the logical y-coordinate of the endpoint for the line.

point Specifies the endpoint for the line. You can pass either a POINT structure or a
CPoint object for this parameter.

Draws a line from the current position up to, but not including, the point specified by
x and y (or point). The line is drawn with the selected pen. The current position is set
to x,y or to point.

See Also CDC::MoveTo, CDC::GetCurrentPosition, ::LineTo, CPoint, POINT

CDC: :LPtoDP
void LPtoDP(LPPOINT IpPoints, int nCount = 1) const;
void LPtoDP(LPRECT IpRect) const;
void LPtoDP(LPSIZE IpSize) const;

Parameters
IpPoints Points to an array of points. Each point in the array is a POINT structure

or a CPoint object.

nCount The number of points in the array.

IpRect Points to a RECT structure or a CRect object. This parameter is used for the
common case of mapping a rectangle from logical to device units.

IpSize Points to a SIZE structure or a CSize object.

CDC::LPtoDP

495

CDC::LPtoHIMETRIC

Remarks
Converts logical units into device units. The function maps the coordinates of each
point, or dimensions of a size, from GDI's logical coordinate system into a device
coordinate system. The conversion depends on the current mapping mode and the
settings of the origins and extents of the device's window and viewport.

The x- and y-coordinates of points are 2-byte signed integers in the range -32,768
through 32,767. In cases where the mapping mode would result in values larger than
these limits, the system sets the values to -32,768 and 32,767, respectively.

See Also CDC::DPtoLP, CDC::HIMETRICtoLP, ::LPtoDP,
CDC::GetWindowOrg, CDC::GetWindowExt

CDC: : LPtoHIMETRIC
void LPToHIMETRIC(LPSIZE lpSize) const;

Parameters

Remarks

lpSize Points to a SIZE structure or a CSize object.

Call this function to convert logical units into HIMETRIC units. Use this function
when you give HIMETRIC sizes to OLE, converting from your application's natural
mapping mode. Note that the extents of the device's window and viewport will affect
the result.

The conversion is accomplished by first converting the logical units into pixels using
the device context's current mapping units and then converting these units into
HIMETRIC units.

See Also CDC::HIMETRICtoLP, CDC::LPtoDP, CDC::DPtoHIMETRIC

CDC: : MaskB It
BOOL MaskBlt(int x, int y, int nWidth, int nHeight, CDC* pSrcDC, int xSrc, int ySrc,

CBitmap& maskBitmap, int xMask, int yMask, DWORD dwRop);

Return Value
Nonzero if the function is successful; otherwise O.

Parameters

496

x Specifies the logical x-coordinate of the upper-left corner of the destination
rectangle.

y Specifies the logical y-coordinate of the upper-left corner of the destination
rectangle.

Remarks

n Width Specifies the width, in logical units, of the destination rectangle and source
bitmap.

nHeight Specifies the height, in logical units, of the destination rectangle and source
bitmap.

pSrcDC Identifies the device context from which the bitmap is to be copied. It must
be zero if the dwRop parameter specifies a raster operation that does not include a
source.

xSrc Specifies the logical x-coordinate of the upper-left comer of the source bitmap.

ySrc Specifies the logical y-coordinate of the upper-left comer of the source bitmap.

maskBitmap Identifies the monochrome mask bitmap combined with the color
bitmap in the source device context.

xMask Specifies the horizontal pixel offset for the mask bitmap specified by the
maskBitmap parameter.

yMask Specifies the vertical pixel offset for the mask bitmap specified by the
maskBitmap parameter.

dwRop Specifies both foreground and background ternary raster operation codes,
which the function uses to control the combination of source and destination data.
The background raster operation code is stored in the high byte of the high word
of this value; the foreground raster operation code is stored in the low byte of the
high word of this value; the low word of this value is ignored, and should be zero.
The macro MAKEROP4 creates such combinations of foreground and
background raster operation codes. See the "Remarks" section for a discussion of
foreground and background in the context of this function. See the BitBlt member
function for a list of common raster operation codes.

Combines the color data for the source and destination bitmaps using the given mask
and raster operation. A value of 1 in the mask specified by maskBitmap indicates that
the foreground raster operation code specified by dwRop should be applied at that
location. A value of 0 in the mask indicates that the background raster operation code
specified by dwRop should be applied at that location. If the raster operations require
a source, the mask rectangle must cover the source rectangle. If it does not, the
function will fail. If the raster operations do not require a source, the mask rectangle
must cover the destination rectangle. If it does not, the function will fail.

If a rotation or shear transformation is in effect for the source device context when
this function is called, an error occurs. However, other types of transformations are
allowed.

If the color formats of the source, pattern, and destination bitmaps differ, this
function converts the pattern or source format, or both, to match the destination
format. If the mask bitmap is not a monochrome bitmap, an error occurs. When an
enhanced metafile is being recorded, an error occurs (and the function returns 0) if

CDC::MaskBlt

497

CDC::MoveTo

the source device context identifies an enhanced-metafile device context. Not all
devices support MaskBIt. An application should call GetDeviceCaps to determine
whether a device supports this function. If no mask bitmap is supplied, this function
behaves exactly like BitBlt, using the foreground raster operation code. The pixel
offsets in the mask bitmap map to the point (0,0) in the source device context's
bitmap. This is useful for cases in which a mask bitmap contains a set of masks; an
application can easily apply anyone of them to a mask-blitting task by adjusting the
pixel offsets and rectangle sizes sent to MaskBIt.

See Also CDC::BitBlt, CDC::GetDeviceCaps, CDC::PlgBlt, CDC::StretchBlt,
::MaskBIt

CDC: :MoveTo
CPoint MoveTo(int x, int y);
CPoint MoveTo(POINT point);

Return Value
The x- and y-coordinates of the previous position as a CPoint object.

Parameters

Remarks

x Specifies the logical x -coordinate of the new position.

y Specifies the logical y-coordinate of the new position.

point Specifies the new position. You can pass either a POINT structure or a
CPoint object for this parameter.

Moves the current position to the point specified by x and y (or by point).

See Also CDC::GetCurrentPosition, CDC::LineTo, ::MoveTo, CPoint, POINT

CDC: :OffsetClipRgn
virtual int OffsetClipRgn(int x, int y);
virtual int OffsetClipRgn(SIZE size);

Return Value
The new region's type. It can be anyone of the following values:

• COMPLEXREGION Clipping region has overlapping borders.

• ERROR Device context is not valid.

• NULLREGION Clipping region is empty.

• SIMPLEREGION Clipping region has no overlapping borders.

498

CDC: :OffsetWindowOrg

Parameters

Remarks

x Specifies the number of logical units to move left or right.

y Specifies the number of logical units to move up or down.

size Specifies the amount to offset.

Moves the clipping region of the device context by the specified offsets. The function
moves the region x units along the x-axis and y units along the y-axis.

See Also CDC: :SelectClipRgn, : :OffsetClipRgn

CDC: :OffsetViewportOrg
virtual CPoint OffsetViewportOrg(int nWidth, int nHeight);

Return Value
The previous viewport origin (in device coordinates) as a CPoint object.

Parameters

Remarks

nWidth Specifies the number of device units to add to the current origin's
x -coordinate.

nHeight Specifies the number of device units to add to the current origin's
y -coordinate.

Modifies the coordinates of the viewport origin relative to the coordinates of the
current viewport origin.

See Also CDC: : GetViewportOrg, CDC: :OffsetWindowOrg,
CDC::SetViewportOrg, ::OffsetViewportOrg, CPoint

CDC: :OffsetWindowOrg
CPoint OffsetWindowOrg(int n Width, int nHeight);

Return Value
The previous window origin (in logical coordinates) as a CPoint object.

Parameters
nWidth Specifies the number of logical units to add to the current origin's

x -coordinate.

nHeight Specifies the number of logical units to add to the current origin's
y -coordinate.

499

CDC::PaintRgn

Remarks
Modifies the coordinates of the window origin relative to the coordinates of the
current window origin.

See Also CDC::GetWindowOrg, CDC::OffsetViewportOrg,
CDC::SetWindowOrg, ::OffsetWindowOrg, CPoint

CDC: :PaintRgn
BOOL PaintRgn(CRgn* pRgn);

Return Value
Nonzero if the function is successful; otherwise O.

Parameters

Remarks

pRgn Identifies the region to be filled. The coordinates for the given region are
specified in device units.

Fills the region specified by pRgn using the current brush.

See Also CBrush, CDC::SelectObject, CDC::FiIlRgn, ::PaintRgn, CRgn

CDC::PatBlt
BOOL PatBIt(int x, int y, int nWidth, int nHeight, DWORD dwRop);

Return Value
Nonzero if the function is successful; otherwise O.

Parameters

500

x Specifies the logical x -coordinate of the upper-left comer of the rectangle that is to
receive the pattern.

y Specifies the logical y-coordinate of the upper-left comer of the rectangle that is to
receive the pattern.

n Width Specifies the width (in logical units) of the rectangle that is to receive the
pattern.

nHeight Specifies the height (in logical units) of the rectangle that is to receive the
pattern.

dwRop Specifies the raster-operation code. Raster-operation codes (ROPs) define
how GDI combines colors in output operations that involve a current brush, a
possible source bitmap, and a destination bitmap. This parameter can be one of the
following values:

• PATCOPY Copies pattern to destination bitmap.

Remarks

• PATINVERT Combines destination bitmap with pattern using the Boolean
XOR operator.

• DSTINVERT Inverts the destination bitmap.

• BLACKNESS Turns all output black.

• WHITENESS Turns all output white.

• PATPAINT Paints the destination bitmap.

Creates a bit pattern on the device. The pattern is a combination of the selected brush
and the pattern already on the device. The raster-operation code specified by dwRop
defines how the patterns are to be combined. The raster operations listed for this
function are a limited subset of the full 256 ternary raster-operation codes; in
particular, a raster-operation code that refers to a source cannot be used.

Not all device contexts support the PatBIt function. To determine whether a device
context supports PatBIt, call the GetDeviceCaps member function with the
RASTER CAPS index and check the return value for the RC_BITBLT flag.

See Also CDC::GetDeviceCaps, ::PatBIt

CDC::Pie
BOOL Pie(int xl, int yl, int x2, int y2, int x3, int y3, int x4, int y4);
BOOL Pie(LPCRECT lpRect, POINT ptStart, POINT ptEnd);

Return Value
Nonzero if the function is successful; otherwise O.

Parameters
xl Specifies the x-coordinate of the upper-left comer of the bounding rectangle

(in logical units).

yl Specifies the y-coordinate of the upper-left comer of the bounding rectangle
(in logical units).

x2 Specifies the x-coordinate of the lower-right comer of the bounding rectangle
(in logical units).

y2 Specifies the y-coordinate of the lower-right comer of the bounding rectangle
(in logical units).

x3 Specifies the x-coordinate of the arc's starting point (in logical units). This point
does not have to lie exactly on the arc.

CDC::Pie

501

CDC::PlayMetaFile

Remarks

y3 Specifies the y-coordinate of the arc's starting point (in logical units). This point
does not have to lie exactly on the arc.

x4 Specifies the x-coordinate of the arc's endpoint (in logical units). This point does
not have to lie exactly on the arc.

y4 Specifies the y-coordinate of the arc's endpoint (in logical units). This point does
not have to lie exactly on the arc.

IpRect Specifies the bounding rectangle. You can pass either a CRect object or a
pointer to a RECT structure for this parameter.

ptStart Specifies the starting point of the arc. This point does not have to lie exactly
on the arc. You can pass either a POINT structure or a CPoint object for this
parameter.

ptEnd Specifies the endpoint of the arc. This point does not have to lie exactly on
the arc. You can pass either a POINT structure or a CPoint object for this
parameter.

Draws a pie-shaped wedge by drawing an elliptical arc whose center and two
endpoints are joined by lines. The center of the arc is the center of the bounding
rectangle specified by xl, yl, x2, andy2 (or by lpRect). The starting and ending
points of the arc are specified by x3, y3, x4, and y4 (or by ptStart and ptEnd).

The arc is drawn with the selected pen, moving in a counterclockwise direction. Two
additional lines are drawn from each endpoint to the arc's center. The pie-shaped
area is filled with the current brush. If x3 equals x4 and y3 equals y4, the result is an
ellipse with a single line from the center of the ellipse to the point (x3, y3) or
(x4, y4).

The figure drawn by this function extends up to but does not include the right and
bottom coordinates. This means that the height of the figure is y2 - y I and the width
of the figure is x2 - xl. Both the width and the height of the bounding rectangle must
be greater than 2 units and less than 32,767 units.

See Also CDC::Chord, ::Pie, RECT, POINT, CRect, CPoint

CDC::PlayMetaFile
BOOL PlayMetaFile(HMETAFILE hMF);
BOOL PlayMetaFile(HENHMETAFILE hEnhMetaFile, LPCRECT lpBounds);

Return Value
Nonzero if the function is successful; otherwise o.

502

Parameters

Remarks

hMF Identifies the metafile to be played.

hEnhMetaFile Identifies the enhanced metafile.

IpBounds Points to a RECT structure or a CRect object that contains the
coordinates of the bounding rectangle used to display the picture. The coordinates
are specified in logical units.

Plays the contents of the specified metafile on the device context. The metafile can be
played any number of times.

The second version of PlayMetaFile displays the picture stored in the given
enhanced-format metafile. When an application calls the second version of
PlayMetaFile, Windows uses the picture frame in the enhanced-metafile header to
map the picture onto the rectangle pointed to by the lpBounds parameter. (This
picture may be sheared or rotated by setting the world transform in the output device
before calling PlayMetaFile.) Points along the edges of the rectangle are included in
the picture. An enhanced-metafile picture can be clipped by defining the clipping
region in the output device before playing the enhanced metafile.

If an enhanced metafile contains an optional palette, an application can achieve
consistent colors by setting up a color palette on the output device before calling the
second version of PlayMetaFile. To retrieve the optional palette, use the
::GetEnhMetaFilePaletteEntries function. An enhanced metafile can be embedded
in a newly created enhanced metafile by calling the second version of PlayMetaFile
and playing the source enhanced metafile into the device context for the new
enhanced metafile.

The states of the output device context are preserved by this function. Any object
created but not deleted in the enhanced metafile is deleted by this function. To stop
this function, an application can call the ::CanceIDC function from another thread to
terminate the operation. In this case, the function returns zero.

See Also ::CancelDC, ::GetEnhMetaFileHeader,
: :GetEnhMetaFilePaietteEntries, : :SetWorldTransform, : :PlayMetaFile,
: :PlayEnhMetaFile, : :PlayMetaFile

CDC::PIgBlt
BOOL PlgBlt(POINT lpPoint, CDC* pSrcDC, int xSrc, int ySrc, int n Width, int nHeight,

CBitmap& maskBitmap, int xMask, int yMask);

Return Value
Nonzero if the function is successful; otherwise O.

CDC::PlgBlt

503

CDC::PlgBlt

Parameters

Remarks

504

lpPoint Points to an array of three points in logical space that identifies three
comers of the destination parallelogram. The upper-left comer of the source
rectangle is mapped to the first point in this array, the upper-right comer to the
second point in this array, and the lower-left comer to the third point. The lower
right comer of the source rectangle is mapped to the implicit fourth point in the
parallelogram.

pSrcDC Identifies the source device context.

xSrc Specifies the x-coordinate, in logical units, of the upper-left comer of the
source rectangle.

ySrc Specifies the y-coordinate, in logical units, of the upper-left comer of the
source rectangle.

n Width Specifies the width, in logical units, of the source rectangle.

nHeight Specifies the height, in logical units, of the source rectangle.

maskBitmap Identifies an optional monochrome bitmap that is used to mask the
colors of the source rectangle.

xMask Specifies the x-coordinate of the upper-left comer of the monochrome
bitmap.

yMask Specifies the y-coordinate of the upper-left comer of the monochrome
bitmap.

Performs a bit-block transfer of the bits of color data from the specified rectangle in
the source device context to the specified parallelogram in the given device context. If
the given bitmask handle identifies a valid monochrome bitmap, the function uses
this bitmap to mask the bits of color data from the source rectangle.

The fourth vertex of the parallelogram (D) is defined by treating the first three points
(A, B, and C) as vectors and computing D = B + C - A.

If the bitmask exists, a value of 1 in the mask indicates that the source pixel color
should be copied to the destination. A value of 0 in the mask indicates that the
destination pixel color is not to be changed.

If the mask rectangle is smaller than the source and destination rectangles, the
function replicates the mask pattern.

Scaling, translation, and reflection transformations are allowed in the source device
context; however, rotation and shear transformations are not. If the mask bitmap is
not a monochrome bitmap, an error occurs. The stretching mode for the destination
device context is used to determine how to stretch or compress the pixels, if that is
necessary. When an enhanced metafile is being recorded, an error occurs if the source
device context identifies an enhanced-metafile device context.

The destination coordinates are transformed according to the destination device
context; the source coordinates are transformed according to the source device
context. If the source transformation has a rotation or shear, an error is returned. If
the destination and source rectangles do not have the same color format, PlgBIt
converts the source rectangle to match the destination rectangle. Not all devices
support PlgBIt. For more information, see the description of the RC_BITBLT raster
capability in the CDC::GetDeviceCaps member function.

If the source and destination device contexts represent incompatible devices, PlgBlt
returns an error.

See Also CDC: : BitBlt, CDC: : GetDeviceCaps, CDC: :MaskBIt,
CDC::StretchBIt, ::SetStretchBltMode , ::PlgBIt

CDC::PolyBezier
BOOL PolyBezier(const POINT* lpPoints, int nCount);

Return Value
Nonzero if the function is successful; otherwise O.

Parameters

Remarks

lpPoints Points to an array of POINT data structures that contain the endpoints and
control points of the spline(s).

nCount Specifies the number of points in the lpPoints array. This value must be one
more than three times the number of splines to be drawn, because each Bezier
spline requires two control points and an endpoint, and the initial spline requires
an additional starting point.

Draws one or more Bezier splines. This function draws cubic Bezier splines by using
the endpoints and control points specified by the lpPoints parameter. The first spline
is drawn from the first point to the fourth point by using the second and third points
as control points. Each subsequent spline in the sequence needs exactly three more
points: the end point of the previous spline is used as the starting point, the next two
points in the sequence are control points, and the third is the end point.

The current position is neither used nor updated by the PolyBezier function. The
figure is not filled. This function draws lines by using the current pen.

See Also CDC::PolyBezierTo, ::PolyBezier

CDC::PolyBezier

505

CDC::PolyBezierTo

CDC::PolyBezierTo
BOOL PolyBezierTo(const POINT* lpPoints, int nCount);

Return Value
Nonzero if the function is successful; otherwise O.

Parameters

Remarks

lpPoints Points to an array of POINT data structures that contains the endpoints
and control points.

nCount Specifies the number of points in the lpPoints array. This value must be
three times the number of splines to be drawn, because each Bezier spline requires
two control points and an end point.

Draws one or more Bezier splines. This function draws cubic Bezier splines by using
the control points specified by the lpPoints parameter. The first spline is drawn from
the current position to the third point by using the first two points as control points.
For each subsequent spline, the function needs exactly three more points, and uses
the end point of the previous spline as the starting point for the next. PolyBezierTo
moves the current position to the end point of the last Bezier spline. The figure is not
filled. This function draws lines by using the current pen.

See Also CDC::MoveTo, CDC::PolyBezier, ::PolyBezierTo

CDC: :PolyDraw
BOOL PolyDraw(const POINT* lpPoints, const BYTE* lpTypes, int nCount);

Return Value
Nonzero if the function is successful; otherwise O.

Parameters

506

lpPoints Points to an array of POINT data structures that contains the endpoints for
each line segment and the endpoints and control points for each Bezier spline.

lpTypes Points to an array that specifies how each point in the lpPoints array is
used. Values can be one of the following:

• PT_MOVETO Specifies that this point starts a disjoint figure. This point
becomes the new current position.

• PT_LINETO Specifies that a line is to be drawn from the current position to
this point, which then becomes the new current position.

• PT_BEZIERTO Specifies that this point is a control point or ending point for
a Bezier spline.

Remarks

PT _BEZIERTO types always occur in sets of three. The current position
defines the starting point for the Bezier spline. The first two PT _BEZIERTO
points are the control points, and the third PT _BEZIERTO point is the ending
point. The ending point becomes the new current position. If there are not three
consecutive PT _BEZIERTO points, an error results.

A PT _LINETO or PT _BEZIERTO type can be combined with the following
constant by using the bitwise operator OR to indicate that the corresponding
point is the last point in a figure and the figure is closed:

• PT_CLOSEFIGURE Specifies that the figure is automatically closed after
the PT_LINETO or PT _BEZIERTO type for this point is done. A line is
drawn from this point to the most recent PT _MOVETO or MoveTo point.

This flag is combined with the PT _LINETO type for a line, or with the
PT _BEZIERTO type of ending point for a Bezier spline, by using the bitwise
OR operator. The current position is set to the ending point of the closing line.

nCount Specifies the total number of points in the IpPoints array, the same as the
number of bytes in the IpTypes array.

Draws a set of line segments and Bezier splines. This function can be used to draw
disjoint figures in place of consecutive calls to CDC::MoveTo, CDC::LineTo, and
CDC::PolyBezierTo member functions. The lines and splines are drawn using the
current pen, and figures are not filled. If there is an active path started by calling the
CDC::BeginPath member function, PolyDraw adds to the path. The points
contained in the IpPoints array and in IpTypes indicate whether each point is part of a
CDC::MoveTo, a CDC::LineTo, or a CDC::BezierTo operation. It is also possible
to close figures. This function updates the current position.

See Also CDC::BeginPath, CDC::EndPath, CDC::LineTo, CDC::MoveTo,
CDC::PolyBezierTo, CDC::PolyLine, ::PolyDraw

CDC::Polygon
BOOL Polygon(LPPOINT IpPoints, int nCount);

Return Value
Nonzero if the function is successful; otherwise O.

Parameters
IpPoints Points to an array of points that specifies the vertices of the polygon. Each

point in the array is a POINT structure or a CPoint object.

nCount Specifies the number of vertices in the array.

CDC::Polygon

507

CDC: :Polyline

Remarks
Draws a polygon consisting of two or more points (vertices) connected by lines, using
the current pen. The system closes the polygon automatically, if necessary, by
drawing a line from the last vertex to the first.

The current polygon-filling mode can be retrieved or set by using the
GetPolyFillMode and SetPolyFillMode member functions.

See Also CDC::GetPolyFiIlMode, CDC::Polyline, CDC::PolyPolygon,
CDC::SetPolyFillMode, CPoint, ::Polygon

CDC: : Polyline
BOOL Polyline(LPPOINT lpPoints, int nCount);

Return Value
Nonzero if the function is successful; otherwise O.

Parameters

Remarks

lpPoints Points to an array of POINT structures or CPoint objects to be connected.

nCount Specifies the number of points in the array. This value must be at least 2.

Draws a set of line segments connecting the points specified by lpPoints. The lines
are drawn from the first point through subsequent points using the current pen.
Unlike the LineTo member function, the Polyline function neither uses nor updates
the current position.

For more information, see ::PolyLine in the Win32 Programmer S Reference.

SeeAlso CDC::LineTo, CDC::Polygon, POINT, CPoint

CDC::PolylineTo
BOOL PolylineTo(const POINT* lpPoints, int nCount);

Return Value
Nonzero if the function is successful; otherwise O.

Parameters

508

lpPoints Points to an array of POINT data structures that contains the vertices of
the line.

nCount Specifies the number of points in the array.

Remarks
Draws one or more straight lines. A line is drawn from the current position to the
first point specified by the IpPoints parameter by using the current pen. For each
additional line, the function draws from the ending point of the previous line to the
next point specified by IpPoints. PolylineTo moves the current position to the ending
point of the last line. If the line segments drawn by this function form a closed figure,
the figure is not filled.

See Also CDC::LineTo, CDC::Polyline, CDC::MoveTo, ::PolylineTo

CDC: :PolyPolygon
BOOL PolyPolygon(LPPOINT IpPoints, LPINT IpPolyCounts, int nCount);

Return Value
Nonzero if the function is successful; otherwise O.

Parameters

Remarks

IpPoints Points to an array of POINT structures or CPoint objects that define the
vertices of the polygons.

IpPolyCounts Points to an array of integers, each of which specifies the number of
points in one of the polygons in the'lpPoints array.

nCount The number of entries in the IpPolyCounts array. This number specifies the
number of polygons to be drawn. This value must be at least 2.

Creates two or more polygons that are filled using the current polygon-filling mode.
The polygons may be disjoint or overlapping.

Each polygon specified in a call to the PolyPolygon function must be closed. Unlike
polygons created by the Polygon member function, the polygons created by
PolyPolygon are not closed automatically.

The function creates two or more polygons. To create a single polygon, an application
should use the Polygon member function.

The current polygon-filling mode can be retrieved or set by using the
GetPolyFiIIMode and SetPolyFiIIMode member functions.

See Also CDC::GetPolyFiIIMode, CDC::Polygon, CDC::Polyline,
CDC::SetPolyFiIIMode, ::PolyPolygon, POINT, CPoint

CDC::PolyPolygon

509

CDC: :PolyPolyline

CDC::PolyPolyline
BOOL PolyPolyline(const POINT* lpPoints, const DWORD* lpPolyPoints, int nCount);

Return Value
Nonzero if the function is successful; otherwise O.

Parameters

Remarks

lpPoints Points to an array of structures that contains the vertices of the polylines.
The polylines are specified consecutively.

lpPolyPoints Points to an array of variables specifying the number of points in the
lpPoints array for the corresponding polygon. Each entry must be greater than or
equal to 2.

nCount Specifies the total number of counts in the lpPolyPoints array.

Draws multiple series of connected line segments. The line segments are drawn by
using the current pen. The figures formed by the segments are not filled. The current
position is neither used nor updated by this function.

See Also CDC::Polyline, CDC::PolylineTo, ::PolyPolyline

CDC::PtVisible
virtual BOOL PtVisible(int x, int y) const;
virtual BOOL PtVisible(POINT point) const;

Return Value
Nonzero if the specified point is within the clipping region; otherwise O.

Parameters

Remarks

510

x Specifies the logical x-coordinate of the point.

y Specifies the logical y-coordinate of the point.

point Specifies the point to check in logical coordinates. You can pass either a
POINT structure or a CPoint object for this parameter.

Determines whether the given point is within the clipping region of the device
context.

See Also CDC::RectVisible, CDC::SelectClipRgn, CPoint, ::PtVisible, POINT

CDC: : Query Abort
BOOL QueryAbort() const;

Return Value

Remarks

The return value is nonzero if printing should continue or if there is no abort
procedure. It is 0 if the print job should be terminated. The return value is supplied by
the abort function.

Calls the abort function installed by the SetAbortProc member function for a
printing application and queries whether the printing should be terminated.

See Also CDC::SetAbortProc

CDC: : RealizePalette
UINT RealizePalette();

Return Value

Remarks

Indicates how many entries in the logical palette were mapped to different entries in
the system palette. This represents the number of entries that this function remapped
to accommodate changes in the system palette since the logical palette was last
realized.

Maps entries from the current logical palette to the system palette.

A logical color palette acts as a buffer between color-intensive applications and the
system, allowing an application to use as many colors as needed without interfering
with its own displayed colors or with colors displayed by other windows.

When a window has the input focus and calls RealizePalette, Windows ensures
that the window will display all the requested colors, up to the maximum number
simultaneously available on the screen. Windows also displays colors not found in
the window's palette by matching them to available colors.

In addition, Windows matches the colors requested by inactive windows that call the
function as closely as possible to the available colors. This significantly reduces
undesirable changes in the colors displayed in inactive windows.

See Also CDC: :SelectPalette, CPalette, : : RealizePalette

CDC: : RealizePalette

511

CDC: :Rectangle

CDC: : Rectangle
BOOL Rectangle(int xl, int y l, int x2, int y2);
BOOL Rectangle(LPCRECT lpRect);

Return Value
Nonzero if the function is successful; otherwise O.

Parameters

Remarks

xl Specifies the x-coordinate of the upper-left comer of the rectangle (in logical
units).

y 1 Specifies the y-coordinate of the upper-left comer of the rectangle (in logical
units).

x2 Specifies the x-coordinate of the lower-right comer of the rectangle (in logical
units).

y2 Specifies the y-coordinate of the lower-right comer of the rectangle (in logical
units).

lpRect Specifies the rectangle in logical units. You can pass either a CRect object or
a pointer to a RECT structure for this parameter.

Draws a rectangle using the current pen. The interior of the rectangle is filled using
the current brush.

The rectangle extends up to, but does not include, the right and bottom coordinates.
This means that the height of the rectangle is y2 - yl and the width of the rectangle
is x2 - xl. Both the width and the height of a rectangle must be greater than 2 units
and less than 32,767 units.

See Also ::Rectangle, CDC::PolyLine, CDC::RoundRect, RECT, CRect

CDC::RectVisible
virtual BOOL RectVisible(LPCRECT lpRect) const;

Return Value
Nonzero if any portion of the given rectangle lies within the clipping region;
otherwise O.

Parameters

512

lpRect Points to a RECT structure or a CRect object that contains the logical
coordinates of the specified rectangle.

Remarks
Determines whether any part of the given rectangle lies within the clipping region of
the display context.

See Also CDC::PtVisible, CDC::SelectClipRgn, CRect, ::RectVisible, RECT

CDC: : ReleaseAttribDC

Remarks

virtual void ReleaseAttribDC();

Call this member function to set m_hAttribDC to NULL. This does not cause a
Detach to occur. Only the output device context is attached to the CDC object, and
only it can be detached.

See Also CDC::SetOutputDC, CDC::SetAttribDC, CDC::ReleaseOutputDC,
CDC::m_hAttribDC

CDC: : ReleaseOutputDC

Remarks

virtual void ReleaseOutputDC();

Call this member function to set the m_hDC member to NULL. This member
function cannot be called when the output device context is attached to the CDC
object. Use the Detach member function to detach the output device context.

See Also CDC::SetAttribDC, CDC::SetOutputDC, CDC::ReleaseAttribDC,
CDC::m_hDC

CDC: :ResetDC
BOOL ResetDC(const DEVMODE* lpDevMode);

Return Value
Nonzero if the function is successful; otherwise O.

Parameters

Remarks

lpDevMode A pointer to a Windows DEVMODE structure.

Call this member function to update the device context wrapped by the CDC object.
The device context is updated from the information specified in the Windows
DEVMODE structure. This member function only resets the attribute device context.

CDC::ResetDC

513

CDC::RestoreDC

An application will typically use the ResetDC member function when a window
processes a WM_DEVMODECHANGE message. You can also use this member
function to change the paper orientation or paper bins while printing a document.

You cannot use this member function to change the driver name, device name, or
output port. When the user changes the port connection or device name, you must
delete the original device context and create a new device context with the new
information.

Before you call this member function, you must ensure that all objects (other than
stock objects) that had been selected into the device context have been selected out.

See Also CDC::m_hAttribDC, ::ResetDC, WM_DEVMODECHANGE,
DEVMODE

CDC: : RestoreDC
virtual BOOL RestoreDC(int nSavedDC);

Return Value
Nonzero if the specified context was restored; otherwise O.

Parameters

Remarks

nSavedDC Specifies the device context to be restored. It can be a value returned by a
previous SaveDC function call. If nSavedDC is -1, the most recently saved device
context is restored.

Restores the device context to the previous state identified by nSavedDC. RestoreDC
restores the device context by popping state information off a stack created by earlier
calls to the SaveDC member function.

The stack can contain the state information for several device contexts. If the context
specified by nSavedDC is not at the top of the stack, RestoreDC deletes all state
information between the device context specified by nSavedDC and the top of the
stack. The deleted information is lost.

See Also CDC::SaveDC, ::RestoreDC

CDC: : RoundRect
BOOL RoundRect(int xl, int yl, int x2, int y2, int x3, int y3)
BOOL RoundRect(LPCRECT IpRect, POINT point);

Return Value
Nonzero if the function is successful; otherwise O.

514

Parameters

Remarks

xl Specifies the x-coordinate of the upper-left comer of the rectangle (in logical
units).

yl Specifies the y-coordinate of the upper-left comer of the rectangle (in logical
units).

x2 Specifies the x-coordinate of the lower-right comer of the rectangle (in logical
units).

y2 Specifies the y-coordinate of the lower-right comer of the rectangle (in logical
units).

x3 Specifies the width of the ellipse used to draw the rounded comers (in logical
units).

y3 Specifies the height of the ellipse used to draw the rounded comers (in logical
units).

IpRect Specifies the bounding rectangle in logical units. You can pass either a
CRect object or a pointer to a RECT structure for this parameter.

point The x-coordinate of point specifies the width of the ellipse to draw the
rounded comers (in logical units). The y-coordinate of point specifies the height of
the ellipse to draw the rounded comers (in logical units). You can pass either a
POINT structure or a CPoint object for this parameter.

Draws a rectangle with rounded comers using the current pen. The interior of the
rectangle is filled using the current brush.

The figure this function draws extends up to but does not include the right and
bottom coordinates. This means that the height of the figure is y2 - yl and the width
of the figure is x2 - xl. Both the height and the width of the bounding rectangle must
be greater than 2 units and less than 32,767 units.

See Also CDC::Rectangle, ::RoundRect, CRect, RECT, POINT, CPoint

CDC::SaveDC
virtual int SaveDC();

Return Value

Remarks

An integer identifying the saved device context. It is 0 if an error occurs. This return
value can be used to restore the device context by calling RestoreDC.

Saves the current state of the device context by copying state information (such as
clipping region, selected objects, and mapping mode) to a context stack maintained
by Windows. The saved device context can later be restored by using RestoreDC.

CDC::SaveDC

515

CDC: : Scale ViewportExt

SaveDC can be used any number of times to save any number of device-context
states.

See Also CDC::RestoreDC, ::SaveDC

CDC: : Scale ViewportExt
virtual CSize ScaleViewportExt(int xNum, int xDenom, int yNum, int yDenom);

Return Value
The previous viewport extents (in device units) as a CSize object.

Parameters

Remarks

xNum Specifies the amount by which to multiply the current x-extent.

xDenom Specifies the amount by which to divide the result of multiplying the
current x-extent by the value of the xNum parameter.

yNum Specifies the amount by which to multiply the current y-extent.

yDenom Specifies the amount by which to divide the result of multiplying the
current y-extent by the value of the yNum parameter.

Modifies the viewport extents relative to the current values. The formulas are written
as follows:

xNewVE = (xOldVE * xNum) / xDenom
yNewVE = (yOldVE * yNum) / yDenom

The new viewport extents are calculated by multiplying the current extents by the
given numerator and then dividing by the given denominator.

See Also CDC::GetViewportExt, ::ScaleViewportExt, CSize

CDC::ScaleWindowExt
virtual CSize Scale WindowExt(int xNum, int xDenom, int yNum,

int yDenom);

Return Value
The previous window extents (in logical units) as a CSize object.

Parameters

516

xNum Specifies the amount by which to multiply the current x-extent.

xDenom Specifies the amount by which to divide the result of multiplying the
current x-extent by the value of the xNum parameter.

Remarks

yNum Specifies the amount by which to multiply the current y-extent.

yDenom Specifies the amount by which to divide the result of multiplying the
current y-extent by the value of the yNum parameter.

Modifies the window extents relative to the current values. The formulas are written
as follows:

xNewWE = (xOldWE * xNum) / xDenom
yNewWE = (yOldWE * yNum) / yDenom

The new window extents are calculated by multiplying the current extents by the
given numerator and then dividing by the given denominator.

See Also CDC::GetWindowExt, ::ScaleWindowExt, CSize

CDC::ScroIIDC
BOOL ScrollDC(int dx, int dy, LPCRECT IpRectScroll, LPCRECT IpRectClip,

CRgn* pRgnUpdate, LPRECT IpRectUpdate);

Return Value
Nonzero if scrolling is executed; otherwise O.

Parameters

Remarks

dx Specifies the number of horizontal scroll units.

dy Specifies the number of vertical scroll units.

IpRectScroll Points to the RECT structure or CRect object that contains the
coordinates of the scrolling rectangle.

IpRectClip Points to the RECT structure or CRect object that contains the
coordinates of the clipping rectangle. When this rectangle is smaller than the
original one pointed to by IpRectScroll, scrolling occurs only in the smaller
rectangle.

pRgnUpdate Identifies the region uncovered by the scrolling process. The ScrollDC
function defines this region; it is not necessarily a rectangle.

IpRectUpdate Points to the RECT structure or CRect object that receives the
coordinates of the rectangle that bounds the scrolling update region. This is the
largest rectangular area that requires repainting. The values in the structure or
object when the function returns are in client coordinates, regardless of the
mapping mode for the given device context.

Scrolls a rectangle of bits horizontally and vertically.

CDC::ScrollDC

517

CDC: :SelectClipPath

If lpRectUpdate is NULL, Windows does not compute the update rectangle. If both
pRgnUpdate and lpRectUpdate are NULL, Windows does not compute the update
region. If pRgnUpdate is not NULL, Windows assumes that it contains a valid
pointer to the region uncovered by the scrolling process (defined by the ScrollDC
member function). The update region returned in lpRectUpdate can be passed to
CWnd: :InvalidateRgn if required.

An application should use the ScrollWindow member function of class CWnd when
it is necessary to scroll the entire client area of a window. Otherwise, it should use
ScrollDC.

See Also CWnd::lnvalidateRgn, CWnd::ScroIlWindow, ::ScroIlDC, CRgn,
RECT, CRect

CDC: :SelectClipPath
BOOL SelectClipPath(int nMode);

Return Value
Nonzero if the function is successful; otherwise O.

Parameters

Remarks

518

nMode Specifies the way to use the path. The following values are allowed:

• RGN_AND The new clipping region includes the intersection (overlapping
areas) of the current clipping region and the current path.

• RGN_COPY The new clipping region is the current path.

• RGN_DIFF The new clipping region includes the areas of the current
clipping region, and those of the current path are excluded.

• RGN_OR The new clipping region includes the union (combined areas) of
the current clipping region and the current path.

• RGN_XOR The new clipping region includes the union of the current
clipping region and the current path, but without the overlapping areas.

Selects the current path as a clipping region for the device context, combining the
new region with any existing clipping region by using the specified mode. The device
context identified must contain a closed path.

See Also CDC::BeginPath, CDC::EndPath

CDC: :SelectClipRgn
virtual int SelectClipRgn(CRgn* pRgn);
int SelectClipRgn(CRgn* pRgn, int nMode);

Return Value
The region's type. It can be any of the following values:

• COMPLEXREGION New clipping region has overlapping borders.

• ERROR Device context or region is not valid.

• NULLREGION New clipping region is empty.

• SIMPLEREGION New clipping region has no overlapping borders.

Parameters

Remarks

pRgn Identifies the region to be selected.

• For the first version of this function, if this value is NULL, the entire client
area is selected and output is still clipped to the window.

• For the second version of this function, this handle can be NULL only when
the RGN_ COpy mode is specified.

nMode Specifies the operation to be performed. It must be one of the following
values:

• RGN_AND The new clipping region combines the overlapping areas of the
current clipping region and the region identified by pRgn.

• RGN_ COPY The new clipping region is a copy of the region identified by
pRgn. This is functionality is identical to the first version of SelectClipRgn.

• If the region identified by pRgn is NULL, the new clipping region becomes the
default clipping region (a null region).

• RGN_DIFF The new clipping region combines the areas of the current
clipping region with those areas excluded from the region identified by pRgn.

• RGN_OR The new clipping region combines the current clipping region and
the region identified by pRgn.

• RGN_XOR The new clipping region combines the current clipping region
and the region identified by pRgn but excludes any overlapping areas.

Selects the given region as the current clipping region for the device context. Only a
copy of the selected region is used. The region itself can be selected for any number
of other device contexts, or it can be deleted.

CDC: :SelectClipRgn

519

CDC: :SelectObject

The function assumes that the coordinates for the given region are specified in device
units. Some printer devices support text output at a higher resolution than graphics
output in order to retain the precision needed to express text metrics. These devices
report device units at the higher resolution, that is, in text units. These devices then
scale coordinates for graphics so that several reported device units map to only 1
graphic unit. You should always call the SelectClipRgn function using text units.

Applications that must take the scaling of graphics objects in the GDI can use the
GETSCALINGFACTOR printer escape to determine the scaling factor. This scaling
factor affects clipping. If a region is used to clip graphics, GDI divides the
coordinates by the scaling factor. If the region is used to clip text, GDI makes no
scaling adjustment. A scaling factor of 1 causes the coordinates to be divided by 2; a
scaling factor of 2 causes the coordinates to be divided by 4; and so on.

See Also CDC::GetClipBox, CDC::Escape, CRgn ::SelectClipRgn

CDC::SelectObject
CPen* SelectObject(CPen* pPen);
CBrush* SelectObject(CBrush* pBrush);
virtual CFont* SelectObject(CFont* pFont);
CBitmap* SelectObject(CBitmap* pBitmap);
int SelectObject(CRgn* pRgn);

Return Value
A pointer to the object being replaced. This is a pointer to an object of one of the
classes derived from CGdiObject, such as CPen, depending on which version of the
function is used. The return value is NULL if there is an error. This function may
return a pointer to a temporary object. This temporary object is only valid during the
processing of one Windows message. For more information, see
CGdiObject: : FromHandle.

The version of the member function that takes a region parameter performs the same
task as the SelectClipRgn member function. Its return value can be any of the
following:

• COMPLEXREGION New clipping region has overlapping borders.

• ERROR Device context or region is not valid.

• NULLREGION New clipping region is empty.

• SIMPLEREGION New clipping region has no overlapping borders.

Parameters

520

pPen A pointer to a CPen object to be selected.

pBrush A pointer to a CBrush object to be selected.

pFont A pointer to a CFont object to be selected.

Remarks

pBitmap A pointer to a CBitmap object to be selected.

pRgn A pointer to a CRgn object to be selected.

Selects an object into the device context. Class CDC provides five versions
specialized for particular kinds of GDI objects, including pens, brushes, fonts,
bitmaps, and regions. The newly selected object replaces the previous object of the
same type. For example, if pObject of the general version of SelectObject points to a
CPen object, the function replaces the current pen with the pen specified by pObject.

An application can select a bitmap into memory device contexts only and into only
one memory device context at a time. The format of the bitmap must either be
monochrome or compatible with the device context; if it is not, SelectObject returns
an error.

For Windows 3.1 and later, the SelectObject function returns the same value whether
it is used in a metafile or not. Under previous versions of Windows, SelectObject
returned a nonzero value for success and 0 for failure when it was used in a metafile.

See Also CGdiObject: :DeleteObject, CGdiObject::FromHandle,
CDC: :SelectClipRgn, CDC: :SelectPaiette, : :SelectObject

CDC:: SelectPalette
CPalette* SelectPalette(CPalette* pPalette, BOOL bForceBackground);

Return Value
A pointer to a CPalette object identifying the logical palette replaced by the palette
specified by pPalette. It is NULL if there is an error.

Parameters

Remarks

pPalette Identifies the logical palette to be selected. This palette must already have
been created with the CPalette member function CreatePalette.

bForceBackground Specifies whether the logical palette is forced to be a
background palette. If bForceBackground is nonzero, the selected palette is always
a background palette, regardless of whether the window has the input focus. If
bForceBackground is 0 and the device context is attached to a window, the logical
palette is a foreground palette when the window has the input focus.

Selects the logical palette that is specified by pPalette as the selected palette object of
the device context. The new palette becomes the palette object used by GDI to control
colors displayed in the device context and replaces the previous palette.

CDC: :SelectPalette

521

CDC::SelectStockObject

An application can select a logical palette into more than one device context.
However, changes to a logical palette will affect all device contexts for which it is
selected. If an application selects a palette into more than one device context, the
device contexts must all belong to the same physical device.

See Also CDC::RealizePalette, CPalette, ::SelectPalette

CDC: :SelectStockObject
virtual CGdiObject* SelectStockObject(int nlndex);

Return Value
A pointer to the CGdiObject object that was replaced if the function is successful.
The actual object pointed to is a CPen, CBrush, or CFont object. If the call is
unsuccessful, the return value is NULL.

Parameters

522

nlndex Specifies the kind of stock object desired. It can be one of the following
values:

• BLACK_BRUSH Black brush.

• DKGRAY _BRUSH Dark gray brush.

• GRAY_BRUSH Gray brush.

• HOLLOW_BRUSH Hollow brush.

• LTGRAY _BRUSH Light gray brush.

• NULL_BRUSH Null brush.

• WHITE_BRUSH White brush.

• BLACK_PEN Black pen.

• NULL_PEN Null pen.

• WHITE_PEN White pen.

• ANSI_FIXED_FONT ANSI fixed system font.

• ANSI_ VAR_FONT ANSI variable system font.

• DEVICE_DEFAULT_FONT Device-dependent font.

• OEM_FIXED_FONT OEM-dependent fixed font.

• SYSTEM_FONT The system font. By default, Windows uses the system font
to draw menus, dialog-box controls, and other text. In Windows versions 3.0
and later, the system font is proportional width; earlier versions of Windows use
a fixed-width system font.

Remarks

• SYSTEM_FIXED_FONT The fixed-width system font used in Windows
prior to version 3.0. This object is available for compatibility with earlier
versions of Windows .

• DEFAULT_PALETTE Default color palette. This palette consists of the 20
static colors in the system palette.

Selects a CGdiObject object that corresponds to one of the predefined stock pens,
brushes, or fonts.

See Also CGdiObject: : GetObject

CDC: : SetAbortProc
int SetAbortProc(BOOL (CALLBACK EXPORT* lpfn)(HDC, int));

Return Value
Specifies the outcome of the SetAbortProc function. Some of the following values
are more probable than others, but all are possible.

• SP _ERROR General error.

• SP _OUTOFDISK Not enough disk space is currently available for spooling, and
no more space will become available.

• SP _OUTOFMEMORY Not enough memory is available for spooling.

• SP _USERABORT User ended the job through the Print Manager.

Parameters

Remarks

lpfn A pointer to the abort function to install as the abort procedure. For more about
the callback function, see "Callback Function for CDC::SetAbortProc" in the
"Callback Functions Used by MFC" section.

Installs the abort procedure for the print job.

If an application is to allow the print job to be canceled during spooling, it must set
the abort function before the print job is started with the StartDoc member function.
The Print Manager calls the abort function during spooling to allow the application
to cancel the print job or to process out-of-disk-space conditions. If no abort function
is set, the print job will fail if there is not enough disk space for spooling.

CDC: :SetAbortProc

523

CDC: :SetArcDirection

Note that the features of Microsoft Visual C++ simplify the creation of the callback
function passed to SetAbortProc. The address passed to the EnumObjects member
function is a pointer to a function exported with _export and with the Pascal calling
convention. In protect-mode applications, you do not have to create this function with
the Windows MakeProcInstance function or free the function after use with the
Windows function FreeProcInstance.

You also do not have to export the function name in an EXPORTS statement in your
application's module-definition file. You can instead use the EXPORT function
modifier, as in

BOOL CALLBACK EXPORT AFunction(HDC, int);

to cause the compiler to emit the proper export record for export by name without
aliasing. This works for most needs. For some special cases, such as exporting a
function by ordinal or aliasing the export, you still need to use an EXPORTS
statement in a module-definition file.

For compiling Microsoft Foundation programs, you'll normally use the /GA and
/GEs compiler options. The /Gw compiler option is not used with the Microsoft
Foundation classes. (If you do use the Windows function MakeProcInstance, you
will need to explicitly cast the returned function pointer from FARPROC to the type
needed by this member function.) Callback registration interfaces are now type-safe
(you must pass in a function pointer that points to the right kind of function for the
specific callback).

Also note that all callback functions must trap Microsoft Foundation exceptions
before returning to Windows, since exceptions cannot be thrown across callback
boundaries. For more information about exceptions, see the article "Exceptions" in
Programming with MPC.

CDC:: SetArcDirection
int SetArcDirection(int nArcDirection);

Return Value
Specifies the old arc direction, if successful; otherwise o.

Parameters

524

nArcDirection Specifies the new arc direction. This parameter can be either of the
following values:

• AD_COUNTERCLOCKWISE Figures drawn counterclockwise.

• AD_CLOCKWISE Figures drawn clockwise.

Remarks
Sets the drawing direction to be used for arc and rectangle functions. The default
direction is counterclockwise. The SetArcDirection function specifies the direction
in which the following functions draw:

Arc

ArcTo

Chord

Ellipse

Pie

Rectangle

RoundRect

See Also CDC: : GetArcDirection, : :SetArcDirection

CDC: : SetAttribDC
virtual void SetAttribDC(HDC hDC);

Parameters

Remarks

hDC A Windows device context.

Call this function to set the attribute device context, m_hAttribDC. This member
function does not attach the device context to the CDC object. Only the output device
context is attached to a CDC object.

See Also CDC: : SetOutputDC , CDC: : ReleaseAttribDC ,
CDC: :ReleaseOutputDC

CDC::SetBkColor
virtual COLORREF SetBkColor(COLORREF crColor);

Return Value
The previous background color as an RGB color value. If an error occurs, the return
value is Ox80000000.

Parameters

Remarks

crColor Specifies the new background color.

Sets the current background color to the specified color. If the background mode is
OPAQUE, the system uses the background color to fill the gaps in styled lines, the
gaps between hatched lines in brushes, and the background in character cells. The
system also uses the background color when converting bitmaps between color and
monochrome device contexts.

CDC::SetBkColor

525

CDC: :SetBkMode

If the device cannot display the specified color, the system sets the background color
to the nearest physical color.

See Also CDC::BitBlt, CDC::GetBkColor, CDC::GetBkMode,
CDC: :SetBkMode, CDC: :StretchBlt, : :SetBkColor

CDC::SetBkMode
int SetBkMode(int nBkMode);

Return Value
The previous background mode.

Parameters

Remarks

nBkMode Specifies the mode to be set. This parameter can be either of the following
values:

• OPAQUE Background is filled with the current background color before the
text, hatched brush, or pen is drawn. This is the default background mode.

• TRANSPARENT Background is not changed before drawing.

Sets the background mode. The background mode defines whether the system
removes existing background colors on the drawing surface before drawing text,
hatched brushes, or any pen style that is not a solid line.

See Also CDC: : GetBkColor, CDC: : GetBkMode, CDC: :SetBkColor,
::SetBkMode

CDC: : SetBoundsRect
UINT SetBoundsRect(LPCRECT lpRectBounds, UINT flags);

Return Value
The current state of the bounding rectangle, if the function is successful. Like flags,
the return value can be a combination of DCB_ values:

• DCB_ACCUMULATE The bounding rectangle is not empty. This value will
always be set.

• DCB_DISABLE Bounds accumulation is off.

• DCB _ENABLE Bounds accumulation is on.

Parameters

526

lpRectBounds Points to a RECT structure or CRect object that is used to set the
bounding rectangle. Rectangle dimensions are given in logical coordinates. This
parameter can be NULL.

Remarks

flags Specifies how the new rectangle will be combined with the accumulated
rectangle. This parameter can be a combination of the following values:

• DCB_ACCUMULATE Add the rectangle specified by IpRectBounds to the
bounding rectangle (using a rectangle-union operation).

• DCB_DISABLE Tum off bounds accumulation.

• DCB_ENABLE Tum on bounds accumulation. (The default setting for
bounds accumulation is disabled.)

Controls the accumulation of bounding-rectangle information for the specified device
context.

Windows can maintain a bounding rectangle for all drawing operations. This
rectangle can be queried and reset by the application. The drawing bounds are useful
for invalidating bitmap caches.

See Also CDC::GetBoundsRect, ::SetBoundsRect, RECT, CRect

CDC::SetBrushOrg
CPoint SetBrushOrg(int x, int y);

CPoint SetBrushOrg(POINT point);

Return Value
The previous origin of the brush in device units.

Parameters

Remarks

x Specifies the x-coordinate (in device units) of the new origin. This value must be
in the range 0-7.

y Specifies the y-coordinate (in device units) of the new origin. This value must be
in the range 0-7.

point Specifies the x- and y-coordinates of the new origin. Each value must be in the
range 0-7. You can pass either a POINT structure or a CPoint object for this
parameter.

Specifies the origin that GDI will assign to the next brush that the application selects
into the device context.

The default coordinates for the brush origin are (0, 0). To alter the origin of a brush,
call the UnrealizeObject function for the CBrush object, call SetBrushOrg, and
then call the SelectObject member function to select the brush into the device
context.

CDC: :SetBrushOrg

527

CDC::SetColorAdjustment

Do not use SetBrushOrg with stock CBrush objects.

See Also CBrush, CDC::GetBrushOrg, CDC::SelectObject,
CGdiObject::UnrealizeObject, ::SetBrushOrg, POINT, CPoint

CDC:: SetColorAdjustment
BOOL SetColorAdjustment(const COLORADJUSTMENT* lpColorAdjust);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

lpColorAdjust Points to a COLORADJUSTMENT data structure containing the
color adjustment values.

Sets the color adjustment values for the device context using the specified values. The
color adjustment values are used to adjust the input color of the source bitmap for
calls to the CDC::StretchBlt member function when HALFTONE mode is set.

See Also CDC::SetStretchBItMode, CDC::StretchBlt, ::StretchDIBits

CDC::SetMapMode
virtual int SetMapMode(int nMapMode);

Return Value
The previous mapping mode.

Parameters

528

nMapMode Specifies the new mapping mode. It can be anyone of the following
values:

MM_ANISOTROPIC Logical units are converted to arbitrary units with arbitrarily
scaled axes. Setting the mapping mode to MM_ANISOTROPIC does not change
the current window or viewport settings. To change the units, orientation, and
scaling, call the SetWindowExt and SetViewportExt member functions.

• MM_HIENGLISH Each logical unit is converted to 0.001 inch. Positive x is
to the right; positive y is up.

• MM_HIMETRIC Each logical unit is converted to 0.01 millimeter. Positive
x is to the right; positive y is up.

CDC::SetMapperFlags

Remarks

• MM_ISOTROPIC Logical units are converted to arbitrary units with equally
scaled axes; that is, 1 unit along the x-axis is equal to 1 unit along the y-axis.
Use the SetWindowExt and SetViewportExt member functions to specify the
desired units and the orientation of the axes. GDI makes adjustments as
necessary to ensure that the x and y units remain the same size.

• MM_LOENGLISH Each logical unit is converted to 0.01 inch. Positive x is
to the right; positive y is up.

• MM_LOMETRIC Each logical unit is converted to 0.1 millimeter. Positive x
is to the right; positive y is up.

• MM_TEXT Each logical unit is converted to 1 device pixel. Positive x is to
the right; positive y is down.

• MM_TWIPS Each logical unit is converted to 1120 of a point. (Because a
point is 1172 inch, a twip is 111440 inch.) Positive x is to the right; positive
y is up.

Sets the mapping mode. The mapping mode defines the unit of measure used to
convert logical units to device units; it also defines the orientation of the device's x
and y-axes. GDI uses the mapping mode to convert logical coordinates into the
appropriate device coordinates. The MM_TEXT mode allows applications to work in
device pixels, where 1 unit is equal to 1 pixel. The physical size of a pixel varies from
device to device.

The MM_HIENGLISH, MM_HIMETRIC, MM_LOENGLISH,
MM_LOMETRIC, and MM_TWIPS modes are useful for applications that must
draw in physically meaningful units (such as inches or millimeters). The
MM_ISOTROPIC mode ensures a 1: 1 aspect ratio, which is useful when it is
important to preserve the exact shape of an image. The MM_ANISOTROPIC mode
allows the x- and y-coordinates to be adjusted independently.

See Also CDC::SetViewportExt, CDC::SetWindowExt, ::SetMapMode

CDC:: SetMapperFlags
DWORD SetMapperFlags(DWORD dwFlag);

Return Value
The previous value of the font-mapper flag.

529

CDC: :SetMiterLimit

Parameters

Remarks

dwFlag Specifies whether the font mapper attempts to match a font's aspect height
and width to the device. When this value is ASPECT_FILTERING, the mapper
selects only fonts whose x-aspect and y-aspect exactly match those of the specified
device.

Changes the method used by the font mapper when it converts a logical font to a
physical font. An application can use SetMapperFlags to cause the font mapper to
attempt to choose only a physical font that exactly matches the aspect ratio of the
specified device.

An application that uses only raster fonts can use the SetMapperFlags function to
ensure that the font selected by the font mapper is attractive and readable on the
specified device. Applications that use scalable (True Type) fonts typically do not use
SetMapperFlags.

If no physical font has an aspect ratio that matches the specification in the logical
font, GDI chooses a new aspect ratio and selects a font that matches this new aspect
ratio.

See Also : :SetMapperFlags

CDC:: SetMiterLimit
BOOL SetMiterLimit(floatjMiterLimit);

Return Value
Nonzero if the function is successful; otherwise O.

Parameters

Remarks

jMiterLimit Specifies the new miter limit for the device context.

Sets the limit for the length of miter joins for the device context. The miter length is
defined as the distance from the intersection of the line walls on the inside of the join
to the intersection of the line walls on the outside of the join. The miter limit is the
maximum allowed ratio of the miter length to the line width. The default miter limit
is 10.0.

See Also CDC::GetMiterLimit, ::SetMiterLimit

CDC::SetOutputDC
virtual void SetOutputDC(HDC hDC);

Parameters
hDC A Windows device context.

530

Remarks
Call this member function to set the output device context, m_hDC. This member
function can only be called when a device context has not been attached to the CDC
object. This member function sets m_hDC but does not attach the device context to
the CDC object.

See Also CDC: :SetAttribDC, CDC: : ReleaseAttribDC, CDC: :ReleaseOutputDC,
CDC::m_hDC

CDC::SetPixel
COLORREF SetPixel(int x, int y, COLORREF erColor);
COLORREF SetPixel(POINT point, COLORREF erColor);

Return Value
An RGB value for the color that the point is actually painted. This value can be
different from that specified by erColor if an approximation of that color is used.
If the function fails (if the point is outside the clipping region), the return value is -1.

Parameters

Remarks

x Specifies the logical x-coordinate of the point to be set.

y Specifies the logical y-coordinate of the point to be set.

erColor Specifies the color used to paint the point.

point Specifies the logical x- and y-coordinates of the point to be set. You can pass
either a POINT structure or a CPoint object for this parameter.

Sets the pixel at the point specified to the closest approximation of the color specified
by erColor. The point must be in the clipping region. If the point is not in the
clipping region, the function does nothing.

Not all devices support the SetPixel function. To determine whether a device supports
SetPixel, call the GetDeviceCaps member function with the RASTERCAPS index
and check the return value for the RC_BITBLT flag.

See Also CDC::GetDeviceCaps, CDC::GetPixel, ::SetPixel, POINT, CPoint

CDC::SetPixeIV
BOOL SetPixelV(int x, int y, COLORREF erColor);
BOOL SetPixelV(POINT point, COLORREF erColor);

Return Value
Nonzero if the function is successful; otherwise O.

CDC::SetPixeIV

531

CDC::SetPolyFi1lMode

Parameters

Remarks

x Specifies the x-coordinate, in logical units, of the point to be set.

y Specifies the y-coordinate, in logical units, of the point to be set.

crColor Specifies the color to be used to paint the point.

point Specifies the logical x- and y-coordinates of the point to be set. You can pass
either a POINT data structure or a CPoint object for this parameter.

Sets the pixel at the specified coordinates to the closest approximation of the specified
color. The point must be in both the clipping region and the visible part of the device
surface. Not all devices support the member function. For more information, see the
RC_BITBLT capability in the CDC::GetDeviceCaps member function. SetPixelV
is faster than SetPixel because it does not need to return the color value of the point
actually painted.

See Also CDC::GetDeviceCaps, CDC::SetPixel, ::SetPixeIV

CDC: :SetPolyFillMode
int SetPolyFillMode(int nPolyFillMode);

Return Value
The previous filling mode, if successful; otherwise O.

Parameters

Remarks

532

nPolyFillMode Specifies the new filling mode. This value may be either
ALTERNATE or WINDING. The default mode set in Windows is
ALTERNATE.

Sets the polygon-filling mode.

When the polygon-filling mode is ALTERNATE, the system fills the area between
odd-numbered and even-numbered polygon sides on each scan line. That is, the
system fills the area between the first and second side, between the third and fourth
side, and so on. This mode is the default.

When the polygon-filling mode is WINDING, the system uses the direction in which
a figure was drawn to determine whether to fill an area. Each line segment in a
polygon is drawn in either a clockwise or a counterclockwise direction. Whenever an
imaginary line drawn from an enclosed area to the outside of a figure passes through
a clockwise line segment, a count is incremented. When the line passes through a
counterclockwise line segment, the count is decremented. The area is filled if the
count is nonzero when the line reaches the outside of the figure.

See Also CDC::GetPolyFiIIMode, CDC::PolyPolygon, ::SetPolyFiIIMode

CDC::SetROP2
int SetROP2(int nDrawMode);

Return Value
The previous drawing mode.

It can be any of the values given in the Windows SDK documentation.

Parameters
nDrawMode Specifies the new drawing mode. It can be any of the following values:

• R2_BLACK Pixel is always black.

• R2_ WHITE Pixel is always white.

• R2_NOP Pixel remains unchanged.

• R2_NOT Pixel is the inverse of the screen color.

• R2_COPYPEN Pixel is the pen color.

• R2_NOTCOPYPEN Pixel is the inverse of the pen color.

• R2_MERGEPENNOT Pixel is a combination of the pen color and the
inverse of the screen color (final pixel = (NOT screen pixel) OR pen).

• R2_MASKPENNOT Pixel is a combination of the colors common to both the
pen and the inverse of the screen (final pixel = (NOT screen pixel) AND pen).

• R2_MERGENOTPEN Pixel is a combination of the screen color and the
inverse of the pen color (final pixel = (NOT pen) OR screen pixel).

• R2_MASKNOTPEN Pixel is a combination of the colors common to both the
screen and the inverse of the pen (final pixel = (NOT pen) AND screen pixel).

• R2_MERGEPEN Pixel is a combination of the pen color and the screen color
(final pixel = pen OR screen pixel).

• R2_NOTMERGEPEN Pixel is the inverse of the R2_MERGEPEN color
(final pixel = NOT(pen OR screen pixel).

• R2_MASKPEN Pixel is a combination of the colors common to both the pen
and the screen (final pixel = pen AND screen pixel).

• R2_NOTMASKPEN Pixel is the inverse of the R2_MASKPEN color (final
pixel = NOT(pen AND screen pixel»).

• R2_XORPEN Pixel is a combination of the colors that are in the pen or in the
screen, but not in both (final pixel = pen XOR screen pixel).

• R2_NOTXORPEN Pixel is the inverse of the R2_XORPEN color (final
pixel = NOT(pen XOR screen pixel).

CDC::SetROP2

533

CDC: :SetStretchBltMode

Remarks
Sets the current drawing mode. The drawing mode specifies how the colors of the pen
and the interior of filled objects are combined with the color already on the display
surface.

The drawing mode is for raster devices only; it does not apply to vector devices.
Drawing modes are binary raster-operation codes representing all possible Boolean
combinations of two variables, using the binary operators AND, OR, and XOR
(exclusive OR), and the unary operation NOT.

See Also CDC::GetDeviceCaps, CDC::GetROP2, ::SetROP2

CDC:: SetStretchBltMode
int SetStretchBItMode(int nStretchMode);

Return Value
The previous stretching mode. It can be STRETCH_ANDSCANS,
STRETCH_DELETES CANS, or STRETCH_ORSCANS.

Parameters

534

nStretchMode Specifies the stretching mode. It can be any of the following values:

Value

BLACKONWHITE

COLORONCOLOR

HALFTONE

STRETCH_ANDSCANS

Description

Performs a Boolean AND operation using the
color values for the eliminated and existing
pixels. If the bitmap is a monochrome
bitmap, this mode preserves black pixels at
the expense of white pixels.

Deletes the pixels. This mode deletes all
eliminated lines of pixels without trying to
preserve their information.

Maps pixels from the source rectangle into
blocks of pixels in the destination rectangle.
The average color over the destination block
of pixels approximates the color of the source
pixels.

After setting the HALFTONE stretching
mode, an application must call the Win32
function ::SetBrushOrgEx to set the brush
origin. If it fails to do so, brush misalignment
occurs.

Windows 95: Same as BLACKONWHITE

Remarks

Value

STRETCH_DELETES CANS

STRETCH_HALFTONE

STRETCH_ORSCANS

WHITEONBLACK

Description

Windows 95: Same as COLORONCOLOR

Windows 95: Same as HALFTONE

Windows 95: Same as WHITEONBLACK

Performs a Boolean OR operation using the
color values for the eliminated and existing
pixels. If the bitmap is a monochrome
bitmap, this mode preserves white pixels at
the expense of black pixels.

Sets the bitmap-stretching mode for the StretchBlt member function. The bitmap
stretching mode defines how information is removed from bitmaps that are
compressed by using the function.

The BLACKONWHITE (STRETCH_ANDSCANS) and WHITEONBLACK
(STRETCH_ORSCANS) modes are typically used to preserve foreground pixels in
monochrome bitmaps. The COLORONCOLOR (STRETCH_DELETES CANS)
mode is typically used to preserve color in color bitmaps.

The HALFTONE mode requires more processing of the source image than the other
three modes; it is slower than the others, but produces higher quality images. Also
note that SetBrushOrgEx must be called after setting the HALFTONE mode to
avoid brush misalignment.

Additional stretching modes might also be available depending on the capabilities of
the device driver.

See Also CDC: :GetStretchBltMode, CDC: :StretchBlt, SetStretchBltMode

CDC: : SetTextAlign
UINT SetTextAlign(UINT nFlags);

Return Value
The previous text-alignment setting, if successful. The low-order byte contains the
horizontal setting and the high-order byte contains the vertical setting; otherwise o.

Parameters
nFlags Specifies text-alignment flags. The flags specify the relationship between a

point and a rectangle that bounds the text. The point can be either the current
position or coordinates specified by a text-output function. The rectangle that
bounds the text is defined by the adjacent character cells in the text string. The
nFlags parameter can be one or more flags from the following three categories.
Choose only one flag from each category. The first category affects text alignment
in the x-direction:

CDC::SetTextAlign

535

CDC: :SetTextCharacterExtra

Remarks

• TA_ CENTER Aligns the point with the horizontal center of the bounding
rectangle.

• TA_LEFT Aligns the point with the left side of the bounding rectangle. This
is the default setting.

• TA_RIGHT Aligns the point with the right side of the bounding rectangle.

The second category affects text alignment in the y-direction:

• TA_BASELINE Aligns the point with the base line of the chosen font.

• TA_BOTTOM Aligns the point with the bottom of the bounding rectangle.

• TA_TOP Aligns the point with the top of the bounding rectangle. This is the
default setting.

The third category determines whether the current position is updated when text is
written:

• TA_NOUPDATECP Does not update the current position after each call to a
text-output function. This is the default setting.

• TA_UPDATECP Updates the current x-position after each call to a text
output function. The new position is at the right side of the bounding rectangle
for the text. When this flag is set, the coordinates specified in calls to the
TextOut member function are ignored.

Sets the text-alignment flags.

The TextOut and ExtTextOut member functions use these flags when positioning a
string of text on a display or device. The flags specify the relationship between a
specific point and a rectangle that bounds the text. The coordinates of this point are
passed as parameters to the TextOut member function. The rectangle that bounds the
text is formed by the adjacent character cells in the text string.

See Also CDC::ExtTextOut, CDC::GetTextAlign, CDC::TabbedTextOut,
CDC: :TextOut, : :SetTextAlign

CDC:: SetTextCharacterExtra
int SetTextCharacterExtra(int nCharExtra);

Return Value
The amount of the previous intercharacter spacing.

536

CDC: :SetTextJustification

Parameters

Remarks

nCharExtra Specifies the amount of extra space (in logical units) to be added to
each character. If the current mapping mode is not MM_TEXT, nCharExtra is
transformed and rounded to the nearest pixel.

Sets the amount of intercharacter spacing. GDI adds this spacing to each character,
including break characters, when it writes a line of text to the device context. The
default value for the amount of intercharacter spacing is O.

See Also CDC::GetTextCharacterExtra, ::SetTextCharacterExtra

CDC::SetTextColor
virtual COLORREF SetTextColor(COLORREF crColor);

Return Value
An RGB value for the previous text color.

Parameters

Remarks

crColor Specifies the color of the text as an RGB color value.

Sets the text color to the specified color. The system will use this text color when
writing text to this device context and also when converting bitmaps between color
and monochrome device contexts.

If the device cannot represent the specified color, the system sets the text color to the
nearest physical color. The background color for a character is specified by the
SetBkColor and SetBkMode member functions.

See Also CDC: : GetTextColor, CDC: :BitBlt, CDC: :SetBkColor,
CDC: :SetBkMode, : :SetTextColor

CDC: :SetTextJustification
int SetTextJustification(int nBreakExtra, int nBreakCount);

Return Value
One if the function is successful; otherwise O.

Parameters
nBreakExtra Specifies the total extra space to be added to the line of text (in logical

units). If the current mapping mode is not MM_TEXT, the value given by this
parameter is converted to the current mapping mode and rounded to the nearest
device unit.

nBreakCount Specifies the number of break characters in the line.

537

CDC::SetViewportExt

Remarks
Adds space to the break characters in a string. An application can use the
GetTextMetrics member functions to retrieve a font's break character.

After the SetTextJustification member function is called, a call to a text-output
function (such as TextOut) distributes the specified extra space evenly among the
specified number of break characters. The break character is usually the space
character (ASCII 32), but may be defined by a font as some other character.

The member function GetTextExtent is typically used with SetTextJustification.
GetTextExtent computes the width of a given line before alignment. An application
can determine how much space to specify in the nBreakExtra parameter by
subtracting the value returned by GetTextExtent from the width of the string after
alignment.

The SetTextJustification function can be used to align a line that contains multiple
runs in different fonts. In this case, the line must be created piecemeal by aligning
and writing each run separately.

Because rounding errors can occur during alignment, the system keeps a running
error term that defines the current error. When aligning a line that contains multiple
runs, GetTextExtent automatically uses this error term when it computes the extent
of the next run. This allows the text-output function to blend the error into the
new run.

After each line has been aligned, this error term must be cleared to prevent it from
being incorporated into the next line. The term can be cleared by calling
SetTextjustification with nBreakExtra set to O.

See Also CDC::GetMapMode, CDC::GetTextExtent, CDC::GetTextMetrics,
CDC: :SetMapMode, CDC: : TextOut, : :SetTextJustification

CDC: :SetViewportExt
virtual CSize SetViewportExt(int ex, int ey);
virtual CSize SetViewportExt(SIZE size);

Return Value
The previous extents of the viewport as a CSize object. When an error occurs, the
x- and y-coordinates of the returned CSize object are both set to o.

Parameters
ex Specifies the x-extent of the viewport (in device units).

cy Specifies the y-extent of the viewport (in device units).

size Specifies the x- and y-extents of the viewport (in device units).

538

CDC: :SetViewportOrg

Remarks
Sets the x- and y-extents of the viewport of the device context. The viewport, along
with the device-context window, defines how GDI maps points in the logical
coordinate system to points in the coordinate system of the actual device. In other
words, they define how GDI converts logical coordinates into device coordinates.

When the following mapping modes are set, calls to SetWindowExt and
SetViewportExt are ignored:

MM_HIENGLISH

MM_HIMETRIC

MM_LOENGLISH

MM_LOMETRIC

MM_TEXT

MM_TWIPS

When MM_ISOTROPIC mode is set, an application must call the SetWindowExt
member function before it calls SetViewportExt.

See Also CDC: :SetWindowExt, : :SetViewportExt, CSize,
CDC: : GetViewportExt

CDC:: Set ViewportOrg
virtual CPoint SetViewportOrg(int x, int y);
virtual CPoint SetViewportOrg(POINT point);

Return Value
The previous origin of the viewport (in device coordinates) as a CPoint object.

Parameters

Remarks

x Specifies the x-coordinate (in device units) of the origin of the viewport. The value
must be within the range of the device coordinate system.

y Specifies the y-coordinate (in device units) of the origin of the viewport. The value
must be within the range of the device coordinate system.

point Specifies the origin of the viewport. The values must be within the range of
the device coordinate system. You can pass either a POINT structure or a CPoint
object for this parameter.

Sets the viewport origin of the device context. The viewport, along with the device
context window, defines how GDI maps points in the logical coordinate system to
points in the coordinate system of the actual device. In other words, they define how
GDI converts logical coordinates into device coordinates.

539

CDC::SetWindowExt

The viewport origin marks the point in the device coordinate system to which GDI
maps the window origin, a point in the logical coordinate system specified by the
SetWindowOrg member function. GDI maps all other points by following the same
process required to map the window origin to the viewport origin. For example, all
points in a circle around the point at the window origin will be in a circle around the
point at the viewport origin. Similarly, all points in a line that passes through the
window origin will be in a line that passes through the viewport origin.

See Also CDC::SetWindowOrg, ::SetViewportOrg, CPoint, POINT,
CDC: : GetViewportOrg

CDC::SetWindowExt
virtual CSize SetWindowExt(iot ex, iot ey);
virtual CSize SetWindowExt(SIZE size);

Return Value
The previous extents of the window (in logical units) as a CSize object. If an error
occurs, the x- and y-coordinates of the returned CSize object are both set to O.

Parameters

Remarks

540

ex Specifies the x-extent (in logical units) of the window.

ey Specifies the y-extent (in logical units) of the window.

size Specifies the x- and y-extents (in logical units) of the window.

Sets the x- and y-extents of the window associated with the device context. The
window, along with the device-context viewport, defines how GDI maps points in the
logical coordinate system to points in the device coordinate system.

When the following mapping modes are set, calls to SetWindowExt and
SetViewportExt functions are ignored:

• MM_HIENGLISH

• MM_HIMETRIC

• MM_LOENGLISH

• MM_LOMETRIC

• MM_TEXT

• MM_TWIPS

When MM_ISOTROPIC mode is set, an application must call the SetWindowExt
member function before calling SetViewportExt.

See Also CDC::GetWindowExt, CDC::SetViewportExt, ::SetWindowExt, CSize

CDC::SetWindowOrg
CPoint Set WindowOrg(int x, int y);
CPoint SetWindowOrg(POINT point);

Return Value
The previous origin of the window as a CPoint object.

Parameters

Remarks

x Specifies the logical x-coordinate of the new origin of the window.

y Specifies the logical y-coordinate of the new origin of the window.

point Specifies the logical coordinates of the new origin of the window. You can
pass either a POINT structure or a CPoint object for this parameter.

Sets the window origin of the device context. The window, along with the device
context viewport, defines how GDI maps points in the logical coordinate system to
points in the device coordinate system.

The window origin marks the point in the logical coordinate system from which GDI
maps the viewport origin, a point in the device coordinate system specified by the
SetWindowOrg function. GDI maps all other points by following the same process
required to map the window origin to the viewport origin. For example, all points in
a circle around the point at the window origin will be in a circle around the point at
the viewport origin. Similarly, all points in a line that passes through the window
origin will be in a line that passes through the viewport origin.

See Also ::SetWindowOrg, ::SetViewportOrg, CPoint, POINT,
CDC::GetWindowOrg

CDC::StartDoc
int StartDoc(LPDOCINFO IpDoclnfo);

Return Value
The value -1 if there is an error such as insufficient memory or an invalid port
specification occurs; otherwise a positive value.

Parameters

Remarks

IpDoclnfo Points to a DOCINFO structure containing the name of the document
file and the name of the output file.

Informs the device driver that a new print job is starting and that all subsequent
StartPage and EndPage calls should be spooled under the same job until an EndDoc
call occurs. This ensures that documents longer than one page will not be
interspersed with other jobs.

CDC::StartDoc

541

CDC::StartPage

For Windows versions 3.1 and later, this function replaces the STARTDOC printer
escape. Using this function ensures that documents containing more than one page
are not interspersed with other print jobs.

StartDoc should not be used inside metafiles.

See Also CDC::Escape, CDC::EndDoc, CDC::AbortDoc

CDC::StartPage
int StartPage();

Remarks
Call this member function to prepare the printer driver to receive data. StartPage
supersedes the NEWFRAME and BANDINFO escapes.

For an overview of the sequence of printing calls, see the StartDoc member function.

The system disables the ResetDC member function between calls to StartPage and
EndPage.

See Also CDC: : Escape, CDC: :EndPage

CDC::StretchBlt
BOOL StretchBlt(int x, int y, int nWidth, int nHeight, CDC* pSrcDC, int xSrc, int ySrc,

int nSrcWidth, int nSrcHeight, DWORD dwRop);

Return Value
Nonzero if the bitmap is drawn; otherwise O.

Parameters

542

x Specifies the x-coordinate (in logical units) of the upper-left corner of the
destination rectangle.

y Specifies the y-coordinate (in logical units) of the upper-left corner of the
destination rectangle.

n Width Specifies the width (in logical units) of the destination rectangle.

nHeight Specifies the height (in logical units) of the destination rectangle.

pSrcDC Specifies the source device context.

xSrc Specifies the x-coordinate (in logical units) of the upper-left corner of the
source rectangle.

ySrc Specifies the x-coordinate (in logical units) of the upper-left corner of the
source rectangle.

nSrc Width Specifies the width (in logical units) of the source rectangle.

nSrcHeight Specifies the height (in logical units) of the source rectangle.

Remarks

dwRop Specifies the raster operation to be performed. Raster operation codes define
how GDI combines colors in output operations that involve a current brush, a
possible source bitmap, and a destination bitmap. This parameter may be one of
the following values:

• BLACKNESS Turns all output black.

• DSTINVERT Inverts the destination bitmap.

• MERGE COPY Combines the pattern and the source bitmap using the
Boolean AND operator.

• MERGEPAINT Combines the inverted source bitmap with the destination
bitmap using the Boolean OR operator.

• NOTSRCCOPY Copies the inverted source bitmap to the destination.

• NOTSRCERASE Inverts the result of combining the destination and source
bitmaps using the Boolean OR operator.

• PATCOPY Copies the pattern to the destination bitmap.

• PATINVERT Combines the destination bitmap with the pattern using the
Boolean XOR operator.

• PATPAINT Combines the inverted source bitmap with the pattern using the
Boolean OR operator. Combines the result of this operation with the destination
bitmap using the Boolean OR operator.

• SRCAND Combines pixels of the destination and source bitmaps using the
Boolean AND operator.

• SRCCOPY Copies the source bitmap to the destination bitmap.

• SRCERASE Inverts the destination bitmap and combines the result with the
source bitmap using the Boolean AND operator.

• SRCINVERT Combines pixels of the destination and source bitmaps using
the Boolean XOR operator.

• SRCPAINT Combines pixels of the destination and source bitmaps using the
Boolean OR operator.

• WHITENESS Turns all output white.

Copies a bitmap from a source rectangle into a destination rectangle, stretching or
compressing the bitmap if necessary to fit the dimensions of the destination rectangle.
The function uses the stretching mode of the destination device context (set by
SetStretchBltMode) to determine how to stretch or compress the bitmap.

CDC: :StretchBlt

543

CDC: :StrokeAndFillPath

The StretchBlt function moves the bitmap from the source device given by pSrcDC
to the destination device represented by the device-context object whose member
function is being called. The xSrc, ySrc, nSrcWidth, and nSrcHeight parameters
define the upper-left comer and dimensions of the source rectangle. The x, y, n Width,
and nHeight parameters give the upper-left comer and dimensions of the destination
rectangle. The raster operation specified by dwRop defines how the source bitmap
and the bits already on the destination device are combined.

The StretchBlt function creates a mirror image of a bitmap if the signs of the
nSrcWidth and nWidth or nSrcHeight and nHeight parameters differ. If nSrcWidth and
n Width have different signs, the function creates a mirror image of the bitmap along
the x-axis. If nSrcHeight and nHeight have different signs, the function creates a
mirror image of the bitmap along the y-axis.

The StretchBlt function stretches or compresses the source bitmap in memory and
then copies the result to the destination. If a pattern is to be merged with the result, it
is not merged until the stretched source bitmap is copied to the destination. If a brush
is used, it is the selected brush in the destination device context. The destination
coordinates are transformed according to the destination device context; the source
coordinates are transformed according to the source device context.

If the destination, source, and pattern bitmaps do not have the same color format,
StretchBlt converts the source and pattern bitmaps to match the destination bitmaps.
The foreground and background colors of the destination device context are used in
the conversion.

If StretchBlt must convert a monochrome bitmap to color, it sets white bits (1) to the
background color and black bits (0) to the foreground color. To convert color to
monochrome, it sets pixels that match the background color to white (1) and sets all
other pixels to black (0). The foreground and background colors of the device context
with color are used.

Not all devices support the StretchBlt function. To determine whether a device
supports StretchBlt, call the GetDeviceCaps member function with the
RASTERCAPS index and check the return value for the RC_STRETCHBLT flag.

See Also CDC::BitBlt, CDC::GetDeviceCaps, CDC::SetStretchBltMode,
::StretchBlt

CDC: :StrokeAndFillPath
BOOL StrokeAndFillPath();

Return Value
Nonzero if the function is successful; otherwise O.

544

CDC::TabbedTextOut

Remarks
Closes any open figures in a path, strokes the outline of the path by using the current
pen, and fills its interior by using the current brush. The device context must contain
a closed path. The StrokeAndFiIIPath member function has the same effect as
closing all the open figures in the path, and stroking and filling the path separately,
except that the filled region will not overlap the stroked region even if the pen is
wide.

See Also CDC::BeginPath, CDC::FiIIPath, CDC::SetPolyFiIIMode,
CDC: :StrokePath, : :StrokeAndFiIIPath

CDC::StrokePath
BOOL StrokePath();

Return Value

Remarks

Nonzero if the function is successful; otherwise O.

Renders the specified path by using the current pen. The device context must contain
a closed path.

See Also CDC: :BeginPath, CDC: :EndPath, : :StrokePath

CDC: : TabbedTextOut
virtual CSize TabbedTextOut(int x, int y, LPCTSTR IpszString, int nCount, int nTabPositions,

LPINT IpnTabStopPositions, int nTabOrigin);
CSize TabbedTextOut(int x, int y, const CString& str, int nTabPositions,

LPINT IpnTabStopPositions, int nTabOrigin);

Return Value
The dimensions of the string (in logical units) as a CSize object.

Parameters
x Specifies the logical x-coordinate of the starting point of the string.

y Specifies the logical y-coordinate of the starting point of the string.

IpszString Points to the character string to draw. You can pass either a pointer to an
array of characters or a CString object for this parameter.

nCount Specifies the number of characters in the string. If nCount is -1, the length
is calculated.

nTabPositions Specifies the number of values in the array of tab-stop positions.

IpnTabStopPositions Points to an array containing the tab-stop positions (in logical
units). The tab stops must be sorted in increasing order; the smallest x-value
should be the first item in the array.

545

CDC: :TextOut

Remarks

nTabOrigin Specifies the x-coordinate of the starting position from which tabs are
expanded (in logical units).

str A CString object that contains the specified characters.

Call this member function to write a character string at the specified location,
expanding tabs to the values specified in the array of tab-stop positions. Text is
written in the currently selected font. If nTabPositions is 0 and lpnTabStopPositions
is NULL, tabs are expanded to eight times the average character width.

If nTabPositions is 1, the tab stops are separated by the distance specified by the first
value in the lpnTabStopPositions array. If the lpnTabStopPositions array contains
more than one value, a tab stop is set for each value in the array, up to the number
specified by nTabPositions. The nTabOrigin parameter allows an application to call
the TabbedTextOut function several times for a single line. If the application calls
the function more than once with the nTabOrigin set to the same value each time, the
function expands all tabs relative to the position specified by nTabOrigin.

By default, the current position is not used or updated by the function. If an
application needs to update the current position when it calls the function, the
application can call the SetTextAlign member function with nFlags set to
TA_UPDATECP. When this flag is set, Windows ignores the x and y parameters on
subsequent calls to TabbedTextOut, using the current position instead.

See Also CDC::GetTabbedTextExtent, CDC::SetTextAlign, CDC::TextOut,
CDC: :SetTextColor, : : TabbedTextOut, CSize

CDC::TextOut
virtual BOOL TextOut(int x, int y, LPCTSTR lpszString, int nCount);
BOOL TextOut(int x, int y, const CString& str);

Return Value
Nonzero if the function is successful; otherwise O.

Parameters

546

x Specifies the logical x-coordinate of the starting point of the text.

y Specifies the logical y-coordinate of the starting point of the text.

lpszString Points to the character string to be drawn.

nCount Specifies the number of bytes in the string.

str A CString object that contains the characters to be drawn.

Remarks
Writes a character string at the specified location using the currently selected font.

Character origins are at the upper-left comer of the character cell. By default, the
current position is not used or updated by the function.

If an application needs to update the current position when it calls TextOut, the
application can call the SetTextAlign member function with nFlags set to
TA_UPDATECP. When this flag is set, Windows ignores the x and y parameters on
subsequent calls to TextOut, using the current position instead.

See Also CDC::ExtTextOut, CDC::GetTextExtent, CDC::SetTextAlign,
CDC::SetTextColor, CDC::TabbedTextOut, ::TextOut

CDC:: UpdateColors
void UpdateColors();

Remarks
Updates the client area of the device context by matching the current colors in the
client area to the system palette on a pixel-by-pixel basis. An inactive window with a
realized logical palette may call Update Colors as an alternative to redrawing its
client area when the system palette changes.

For more information about using color palettes, see ::UpdateColors in the Win32
SDK Programmer's Reference.

The Update Colors member function typically updates a client area faster than
redrawing the area. However, because the function performs the color translation
based on the color of each pixel before the system palette changed, each call to this
function results in the loss of some color accuracy.

See Also CDC::RealizePalette, CPalette, ::UpdateColors

CDC:: WidenPath
BOOL WidenPath();

Return Value
Nonzero if the function is successful; otherwise O.

CDC:: WidenPath

547

CDC::m_hAttribDC

Remarks
Redefines the current path as the area that would be painted if the path were stroked
using the pen currently selected into the device context. This function is successful
only if the current pen is a geometric pen created by the second version of CreatePen
member function, or if the pen is created with the first version of CreatePen and has
a width, in device units, of greater than 1. The device context must contain a closed
path. Any Bezier curves in the path are converted to sequences of straight lines
approximating the widened curves. As such, no Bezier curves remain in the path
after WidenPath is called.

See Also CDC::BeginPath, CDC::EndPath, CDC::SetMiterLimit, ::WidenPath

CDC: :m_hAttribDC
Remarks

Remarks

548

The attribute device context for this CDC object. By default, this device context is
equal to m_hDC. In general, CDC GDI calls that request information from the
device context are directed to m_hAttribDC. See the CDC class description for more
on the use of these two device contexts.

See Also CDC::m_hDC, CDC::SetAttribDC, CDC::ReleaseAttribDC

The output device context for this CDC object. By default, m_hDC is equal to
m_hAttribDC, the other device context wrapped by CDC. In general, CDC GDI
calls that create output go to the m_hDC device context. You can initialize m_hDC
and m_hAttribDC to point to different devices. See the CDC class description for
more on the use of these two device contexts.

See Also CDC::m_hAttribDC, CDC::SetOutputDC, CDC::ReleaseOutputDC

CDialog

The CDialog class is the base class used for displaying dialog boxes on the screen.
Dialog boxes are of two types: modal and modeless. A modal dialog box must be
closed by the user before the application continues. A modeless dialog box allows the
user to display the dialog box and return to another task without canceling or
removing the dialog box.

A CDialog object is a combination of a dialog template and a CDialog-derived class.
Use the dialog editor to create the dialog template and store it in a resource, then use
Class Wizard to create a class derived from CDialog.

A dialog box, like any other window, receives messages from Windows. In a dialog
box, you are particularly interested in handling notification messages from the dialog
box's controls since that is how the user interacts with your dialog box. ClassWizard
browses through the potential messages generated by each control in your dialog box,
and you can select which messages you wish to handle. Class Wizard then adds the
appropriate message-map entries and message-handler member functions to the new
class for you. You only need to write application-specific code in the handler member
functions.

If you prefer, you can always write message-map entries and member functions
yourself instead of using Class Wizard.

In all but the most trivial dialog box, you add member variables to your derived
dialog class to store data entered in the dialog box's controls by the user or to display
data for the user. Class Wizard browses through those controls in your dialog box that
can be mapped to data and prompts you to create a member variable for each control.
At the same time, you choose a variable type and permissible range of values for each
variable. ClassWizard adds the member variables to your derived dialog class.

Class Wizard then writes a data map to automatically handle the exchange of data
between the member variables and the dialog box's controls. The data map provides
functions that initialize the controls in the dialog box with the proper values, retrieve
the data, and validate the data.

CDialog

549

CDialog

550

To create a modal dialog box, construct an object on the stack using the constructor
for your derived dialog class and then call DoModal to create the dialog window and
its controls. If you wish to create a modeless dialog, call Create in the constructor of
your dialog class.

You can also create a template in memory by using a DLGTEMPLATE data
structure as described in the Win32 SDK documentation. After you construct a
CDialog object, call Createlndirect to create a modeless dialog box, or call
InitModalIndirect and DoModal to create a modal dialog box.

ClassWizard writes the exchange and validation data map in an override of
CWnd::DoDataExchange that ClassWizard adds to your new dialog class.
See the DoDataExchange member function in CWnd for more on the exchange
and validation functionality.

Both the programmer and the framework call DoDataExchange indirectly through a
call to CWnd::UpdateData.

The framework calls UpdateData when the user clicks the OK button to close a
modal dialog box. (The data is not retrieved if the Cancel button is clicked.) The
default implementation of OnlnitDialog also calls UpdateData to set the initial
values of the controls. You typically override OnlnitDialog to further initialize
controls. OnlnitDialog is called after all the dialog controls are created and just
before the dialog box is displayed.

You can call CWnd::UpdateData at any time during the execution of a modal or
modeless dialog box.

If you develop a dialog box by hand, you add the necessary member variables to the
derived dialog-box class yourself, and you add member functions to set or get these
values.

For more on ClassWizard, see Chapter 14, "Working with Classes," in the Visual
C++ User's Guide.

Call CWinApp::SetDialogBkColor to set the background color for dialog boxes in
your application.

A modal dialog box closes automatically when the user presses the OK or Cancel
buttons or when your code calls the EndDialog member function.

When you implement a modeless dialog box, always override the OnCancel member
function and call DestroyWindow from within it. Don't call the base class
CDialog: :OnCancel, because it calls EndDialog, which will make the dialog box
invisible but will not destroy it. You should also override PostNcDestroy for
modeless dialog boxes in order to delete this, since modeless dialog boxes are usually
allocated with new. Modal dialog boxes are usually constructed on the frame and do
not need PostNcDestroy cleanup.

For more information on CDialog, see the article "Dialog Boxes" in Programming
withMFC.

#include <afxwin.h>

Construction

CDialog

Initialization

Create

Createlndirect

InitModalIndirect

Operations

DoModal

MapDialogRect

NextDlgCtrl

PrevDlgCtrl

GotoDlgCtrl

SetDefID

GetDefID

SetHeipID

EndDialog

Overridables

OnlnitDialog

OnSetFont

OnOK

On Cancel

Constructs a CDialog object.

Initializes the CDialog object. Creates a modeless dialog box and
attaches it to the CDialog object.

Creates a modeless dialog box from a dialog-box template in
memory (not resource-based).

Creates a modal dialog box from a dialog-box template in
memory (not resource-based). The parameters are stored until the
function DoModal is called.

Calls a modal dialog box and returns when done.

Converts the dialog-box units of a rectangle to screen units.

Moves the focus to the next dialog-box control in the dialog box.

Moves the focus to the previous dialog-box control in the dialog
box.

Moves the focus to a specified dialog-box control in the dialog
box.

Changes the default pushbutton control for a dialog box to a
specified pushbutton.

Gets the ID of the default pushbutton control for a dialog box.

Sets a context-sensitive help ID for the dialog box.

Closes a modal dialog box.

Override to augment dialog-box initialization.

Override to specify the font that a dialog-box control is to use
when it draws text.

Override to perform the OK button action in a modal dialog box.
The default closes the dialog box and DoModal returns IDOK.

Override to perform the Cancel button or ESC key action. The
default closes the dialog box and DoModal returns IDCANCEL.

CDialog

551

CDialog: :CDialog

Member Functions
CDialog: :CDialog

CDialog(LPCTSTR lpszTemplateName, CWnd* pParentWnd = NULL);
CDialog(UINT nIDTemplate, CWnd* pParentWnd = NULL);
CDialog();

Parameters

Remarks

lpszTemplateName Contains a null-terminated string that is the name of a dialog
box template resource.

nIDTemplate Contains the ID number of a dialog-box template resource.

pParentWnd Points to the parent or owner window object (of type CWnd) to which
the dialog object belongs. If it is NULL, the dialog object's parent window is set to
the main application window.

To construct a resource-based modal dialog box, call either public form of the
constructor. One form of the constructor provides access to the dialog resource by
template name. The other constructor provides access by template ID number, usually
with an IDD_ prefix (for example, IDD_DIALOGl).

To construct a modal dialog box from a template in memory, first invoke the
parameterless, protected constructor and then call InitModalIndirect.

After you construct a modal dialog box with one of the above methods, call
DoModal.

To construct a modeless dialog box, use the protected form of the CDialog
constructor. The constructor is protected because you must derive your own dialog
box class to implement a modeless dialog box. Construction of a modeless dialog box
is a two-step process. First call the constructor; then call the Create member function
to create a resource-based dialog box, or call Createlndirect to create the dialog box
from a template in memory.

See Also CDialog::Create, CWnd::DestroyWindow,
CDialog: : InitModalIndirect, CDialog: :DoModal, : :CreateDialog

CDialog: : Create

552

BOOL Create(LPCTSTR lpszTemplateName, CWnd* pParentWnd = NULL);
BOOL Create(UINT nIDTemplate, CWnd* pParentWnd = NULL);

CDialog: :Createlndirect

Return Value
Both forms return nonzero if dialog-box creation and initialization were successful;
otherwise O.

Parameters

Remarks

IpszTemplateName Contains a null-terminated string that is the name of a dialog
box template resource.

pParentWnd Points to the parent window object (of type CWnd) to which the dialog
object belongs. If it is NULL, the dialog object's parent window is set to the main
application window.

nIDTemplate Contains the ID number of a dialog-box template resource.

Call Create to create a modeless dialog box using a dialog-box template from a
resource. You can put the call to Create inside the constructor or call it after the
constructor is invoked.

Two forms of the Create member function are provided for access to the dialog-box
template resource by either template name or template ID number (for example,
IDD_DIALOGl).

For either form, pass a pointer to the parent window object. If pParentWnd is NULL,
the dialog box will be created with its parent or owner window set to the main
application window.

The Create member function returns immediately after it creates the dialog box.

Use the WS_ VISIBLE style in the dialog-box template if the dialog box should
appear when the parent window is created. Otherwise, you must call ShowWindow.
For further dialog-box styles and their application, see the DLGTEMPLATE
structure in the Win32 SDK documentation and "Window Styles" in the Class
Library Reference.

Use the CWnd::DestroyWindow function to destroy a dialog box created by the
Create function.

See Also CDialog::CDialog, CWnd::DestroyWindow,
CDialog: : InitModalIndirect, CDialog: :DoModal, : :CreateDialog

CDialog: :CreateIndirect
BOOL CreateIndirect(LPCDLGTEMPLATE IpDialogTemplate, CWnd* pParentWnd = NULL);
BOOL CreateIndirect(HGLOBAL hDialogTemplate, CWnd* pParentWnd = NULL);

Return Value
Nonzero if the dialog box was created and initialized successfully; otherwise O.

553

CDialog::DoModal

Parameters

Remarks

IpDialogTemplate Points to memory that contains a dialog-box template used to
create the dialog box. This template is in the form of a DLGTEMPLATE
structure and control information. For more information on this structure, see the
Win32 SDK documentation.

pParentWnd Points to the dialog object's parent window object (of type CWnd). If it
is NULL, the dialog object's parent window is set to the main application window.

hDialogTemplate Contains a handle to global memory containing a dialog-box
template. This template is in the form of a DLGTEMPLATE structure and data
for each control in the dialog box.

Call this member function to create a modeless dialog box from a dialog-box template
in memory.

The Createlndirect member function returns immediately after it creates the
dialog box.

Use the WS_ VISIBLE style in the dialog-box template if the dialog box should
appear when the parent window is created. Otherwise, you must call ShowWindow
to cause it to appear. For more information on how you can specify other dialog-box
styles in the template, see the DLGTEMPLATE structure in the Win32 SDK
documentation.

Use the CWnd::DestroyWindow function to destroy a dialog box created by the
CreateIndirect function.

See Also CDialog::CDialog, CWnd::DestroyWindow, CDialog::Create,
: :CreateDialoglndirect

CDialog: : DoModal
virtual int DoModal();

Return Value

Remarks

554

An int value that specifies the value of the nResult parameter that was passed to the
CDialog: :EndDialog member function, which is used to close the dialog box. The
return value is -1 if the function could not create the dialog box, or IDABORT if
some other error occurred.

Call this member function to invoke the modal dialog box and return the dialog-box
result when done. This member function handles all interaction with the user while
the dialog box is active. This is what makes the dialog box modal; that is, the user
cannot interact with other windows until the dialog box is closed.

If the user clicks one of the pushbuttons in the dialog box, such as OK or Cancel, a
message-handler member function, such as OnOK or On Cancel, is called to attempt
to close the dialog box. The default OnOK member function will validate and update
the dialog-box data and close the dialog box with result IDOK, and the default
On Cancel member function will close the dialog box with result IDCANCEL
without validating or updating the dialog-box data. You can override these message
handler functions to alter their behavior.

Note PreTranslateMessage is now called for modal dialog box message processing.

See Also ::DialogBox, CWnd::lsDialogMessage

CDialog: : EndDialog
void EndDialog(int nResult);

Parameters

Remarks

nResult Contains the value to be returned from the dialog box to the caller of
DoModal.

Call this member function to terminate a modal dialog box. This member function
returns nResult as the return value of DoModal. You must use the EndDialog
function to complete processing whenever a modal dialog box is created.

You can call EndDialog at any time, even in OnlnitDialog, in which case you should
close the dialog box before it is shown or before the input focus is set.

EndDialog does not close the dialog box immediately. Instead, it sets a flag that
directs the dialog box to close as soon as the current message handler returns.

See Also CDialog: :DoModal, CDialog: :OnOK, CDialog: :OnCancel

CDialog: : GetDefiD
DWORD GetDeflD() const;

Return Value

Remarks

A 32-bit value (DWORD). If the default pushbutton has an ID value, the high-order
word contains DC_HASDEFID and the low-order word contains the ID value. If the
default pushbutton does not have an ID value, the return value is O.

Call the GetDeflD member function to get the ID of the default pushbutton control
for a dialog box. This is usually an OK button.

See Also CDialog::SetDeflD, DM_GETDEFID

CDialog: : GetDeflD

555

CDialog: : GotoDlgCtrl

CDialog: : GotoDlgCtrl
void GotoDlgCtrl(CWnd* p WndCtrl);

Parameters

Remarks

pWndCtrl Identifies the window (control) that is to receive the focus.

Moves the focus to the specified control in the dialog box.

To get a pointer to the control (child window) to pass as p WndCtrl, call the
CWnd::GetDlgItem member function, which returns a pointer to a CWnd object.

See Also CWnd: : GetDlgItem, CDialog: :PrevDlgCtri, CDialog: : NextDlgCtri

CDialog: : InitModalIndirect
BOOL InitModalIndirect(LPCDLGTEMPLATE lpDialogTemplate,

CWnd* pParentWnd = NULL);
BOOL InitModalIndirect(HGLOBAL hDialogTemplate, CWnd* pParentWnd = NULL);

Return Value
Nonzero if the dialog object was created and initialized successfully; otherwise O.

Parameters

Remarks

556

lpDialogTemplate Points to memory that contains a dialog-box template used to
create the dialog box. This template is in the form of a DLGTEMPLATE
structure and control information. For more information on this structure, see the
Win32 SDK documentation.

hDialogTemplate Contains a handle to global memory containing a dialog-box
template. This template is in the form of a DLGTEMPLATE structure and data
for each control in the dialog box.

pParentWnd Points to the parent or owner window object (of type CWnd) to which
the dialog object belongs. If it is NULL, the dialog object's parent window is set to
the main application window.

Call this member function to initialize a modal dialog object using a dialog-box
template that you construct in memory.

To create a modal dialog box indirectly, first allocate a global block of memory and
fill it with the dialog box template. Then call the empty CDialog constructor to
construct the dialog-box object. Next, call InitModalIndirect to store your handle to
the in-memory dialog-box template. The Windows dialog box is created and
displayed later, when the DoModal member function is called.

See Also : :DialogBoxlndirect, CDialog: :DoModal, CWnd: : DestroyWindow ,
CDbtlog: :CDialog

CDialog: : MapDialogRect
void MapDialogRect(LPRECT IpRect) const;

Parameters

Remarks

IpRect Points to a RECT structure or CRect object that contains the dialog-box
coordinates to be converted.

Call to convert the dialog-box units of a rectangle to screen units. Dialog-box units
are stated in terms of the current dialog-box base unit derived from the average width
and height of characters in the font used for dialog-box text. One horizontal unit is
one-fourth of the dialog-box base-width unit, and one vertical unit is one-eighth of
the dialog-box base height unit.

The GetDialogBaseUnits Windows function returns size information for the system
font, but you can specify a different font for each dialog box if you use the
DS_SETFONT style in the resource-definition file. The MapDialogRect Windows
function uses the appropriate font for this dialog box.

The MapDialogRect member function replaces the dialog-box units in IpRect with
screen units (pixels) so that the rectangle can be used to create a dialog box or
position a control within a box.

See Also ::GetDialogBaseUnits, ::MapDialogRect, WM_SETFONT

CDialog: : NextDIgCtrl
void NextDlgCtrl() const;

Remarks
Moves the focus to the next control in the dialog box. If the focus is at the last control
in the dialog box, it moves to the first control.

See Also CDialog: :PrevDlgCtrl, CDialog: : GotoDlgCtri

CDialog::NextDlgCtrl

557

CDialog: :OnCance1

CDialog::OnCancel

Remarks

virtual void OnCancel();

The framework calls this member function when the user clicks the Cancel button or
presses the ESC key in a modal or modeless dialog box.

Override this member function to perform Cancel button action. The default simply
terminates a modal dialog box by calling EndDialog and causing DoModal to return
IDCANCEL.

If you implement the Cancel button in a modeless dialog box, you must override the
OnCancel member function and call DestroyWindow from within it. Don't call the
base-class member function, because it calls EndDialog, which will make the dialog
box invisible but not destroy it.

See Also CDialog: :OnOK, CDialog: :EndDialog

CDialog: : OnInitDialog
virtual BOOL OnlnitDialog();

Return Value

Remarks

558

Specifies whether the application has set the input focus to one of the controls in the
dialog box. If OnlnitDialog returns nonzero, Windows sets the input focus to the first
control in the dialog box. The application can return 0 only if it has explicitly set the
input focus to one of the controls in the dialog box.

This member function is called in response to the WM_INITDIALOG message.
This message is sent to the dialog box during the Create, Createlndirect, or
DoModal calls, which occur immediately before the dialog box is displayed.

Override this member function if you need to perform special processing when the
dialog box is initialized. In the overridden version, first call the base class
OnlnitDialog but disregard its return value. You will normally return TRUE from
your overridden member function.

Windows calls the OnlnitDialog function via the standard global dialog-box
procedure common to all Microsoft Foundation Class Library dialog boxes, rather
than through your message map, so you do not need a message-map entry for this
member function.

See Also CDialog::Create, CDialog::Createlndirect, WM_INITDIALOG

CDialog: :OnOK

Remarks

virtual void OnOK();

Called when the user clicks the OK button (the button with an ID ofIDOK).

Override this member function to perform the OK button action. If the dialog box
includes automatic data validation and exchange, the default implementation of this
member function validates the dialog-box data and updates the appropriate variables
in your application.

If you implement the OK button in a modeless dialog box, you must override the
OnOK member function and call DestroyWindow from within it. Don't call the
base-class member function, because it calls EndDialog, which makes the dialog box
invisible but does not destroy it.

See Also CDialog: :OnCancel, CDialog: :EndDialog

CDialog: :OnSetFont
virtual void OnSetFont(CFont* pFont);

Parameters

Remarks

pFont Specifies a pointer to the font. Used as the default font for all controls in this
dialog box.

Specifies the font a dialog-box control will use when drawing text. The dialog-box
control will use the specified font as the default for all dialog-box controls.

The dialog editor typically sets the dialog-box font as part of the dialog-box template
resource.

See Also WM_SETFONT, CWnd::SetFont

CDialog: :PrevDIgCtrl
void PrevDlgCtrl() const;

Remarks
Sets the focus to the previous control in the dialog box. If the focus is at the first
control in the dialog box, it moves to the last control in the box.

See Also CDialog: :NextDlgCtrl, CDialog: : GotoDlgCtrl

CDialog: : PrevDIgCtrl

559

CDialog: :SetDeflD

CDialog::SetDefiD
void SetDefID(UINT nID);

Parameters

Remarks

nID Specifies the ID of the pushbutton control that will become the default.

Changes the default pushbutton control for a dialog box.

See Also CDialog: : GetDefID

CDialog:: SetHelpID
void SetHelpID(UINT nIDR);

Parameters
nIDR Specifies the context-sensitive help ID.

Remarks
Sets a context-sensitive help ID for the dialog box.

560

CDialogBar

The CDialogBar class provides the functionality of a Windows modeless dialog box
in a control bar. A dialog bar resembles a dialog box in that it contains standard
Windows controls that the user can tab between. Another similarity is that you create
a dialog template to represent the dialog bar.

Creating and using a dialog bar is similar to creating and using a CForm View object.
First, use the dialog editor to define a dialog template with the style WS_CHILD and
no other style (see the Visual c++ User's Guide, Chapter 6, "Using the Dialog
Editor"). The template must not have the style WS_ VISIBLE. In your application
code, call
the constructor to construct the CDialogBar object, then call Create to create the
dialog-bar window and attach it to the CDialogBar object.

For more information on CDialogBar, see the article "Dialog Bars" in Programming
with MFC and Technical Note 31, "Control Bars," available under MFC in Books
Online.

#include <afxext.h>

See Also CForm View, CControlBar

Construction

CDialogBar

Create

Constructs a CDialogBar object.

Creates a Windows dialog bar and attaches it to the CDialogBar
object.

CDialogBar

561

CDialogBar: :CDialogBar

Member Functions
CDialogBar: : CDialogBar

Remarks

CDialogBar();

Constructs a CDialogBar object.

See Also CControlBar

CDialogBar: : Create
BOOL Create(CWnd* pParentWnd, LPCTSTR IpszTemplateName, UINT nStyle, UINT nID);
BOOL Create(CWnd* pParentWnd, UINT nIDTemplate, UINT nStyle, UINT nID);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

562

pParentWnd A pointer to the parent CWnd object.

IpszTemplateName A pointer to the name of the CDialogBar object's dialog-box
resource template.

nStyle The alignment style of the dialog bar. The following styles are supported:

• CBRS_TOP Control bar is at the top of the frame window.

• CBRS_BOTTOM Control bar is at the bottom of the frame window.

• CBRS_NOALIGN Control bar is not repositioned when the parent is resized.

• CBRS_LEFT Control bar is at the left of the frame window.

• CBRS_RIGHT Control bar is at the right of the frame window.

nID The control ID of the dialog bar.

nIDTemplate The resource ID of the CDialogBar object's dialog-box template.

Loads the dialog-box resource template specified by IpszTemplateName or
nIDTemplate, creates the dialog-bar window, sets its style, and associates it with the
CDialogBar object.

If you specify the CBRS_TOP or CBRS_BOTTOM alignment style, the dialog
bar's width is that of the frame window and its height is that of the resource specified
by nIDTemplate. If you specify the CBRS_LEFT or CBRS_RIGHT alignment style,
the dialog bar's height is that of the frame window and its width is that of the
resource specified by nIDTemplate.

See Also CDialogBar: :CDialogBar

CDialogBar: : Create

563

CDocItem

CDocItem

CDocItem is the base class for document items, which are components of a
document's data. CDocItem objects are used to represent OLE items in both client
and server documents.

For more information, see the article "Containers: Implementing a Container" in
Programming with MFC.

#include <afxole.h>

See Also COleDocument, COleServerltem, COleClientItem

Operations

GetDocument Returns the document that contains the item.

Overridables

IsBlank Determines whether the item contains any information.

Member Functions
CDocItem: :IsBlank

virtual BOOL IsBlank() const;

Return Value

Remarks

564

Nonzero if the item contains no information; otherwise O.

Called by the framework when default serialization occurs.

By default, CDocItem objects are not blank. COleClientltem objects are sometimes
blank because they derive directly from CDocItem. However, COleServerItem
objects are always blank. By default, OLE applications containing COleClientltem
objects that have no x or y extent are serialized. This is done by returning TRUE
from an override of IsBlank when the item has no x or y extent.

CDocItem: : GetDocument

Override this function if you want to implement other actions during serialization.

See Also CObject: :Serialize

CDocItem: : GetDocument
CDocument* GetDocument() const;

Return Value

Remarks

A pointer to the document that contains the item; NULL, if the item is not part of a
document.

Call this function to get the document that contains the item.

This function is overridden in the derived classes COleClientItem and
COleServerItem, returning a pointer to either a COleDocument, a
COleLinkingDoc, or a COleServerDoc object.

See Also COleDocument, COleLinkingDoc, COleServerDoc, COleClientItem,
COleServerItem

565

CDocTemplate

CDocTemplate

566

CDocTemplate is an abstract base class that defines the basic functionality for
document templates. You usually create one or more document templates in the
implementation of your application's lnitInstance function. A document template
defines the relationships among three types of classes:

• A document class, which you derive from CDocument.

• A view class, which displays data from the document class listed above. You can
derive this class from CView, CScrollView, CFormView, or CEditView. (You
can also use CEditView directly.)

• A frame window class, which contains the view. For a single document
interface (SDI) application, you derive this class from CFrameWnd. For
a multiple document interface (MDI) application, you derive this class from
CMDIChildWnd. If you don't need to customize the behavior of the frame
window, you can use CFrameWnd or CMDIChildWnd directly without
deriving your own class.

Your application has one document template for each type of document that it
supports. For example, if your application supports both spreadsheets and text
documents, the application has two document template objects. Each document
template is responsible for creating and managing all the documents of its type.

The document template stores pointers to the CRuntimeClass objects for the
document, view, and frame window classes. These CRuntimeClass objects are
specified when constructing a document template.

The document template contains the ID of the resources used with the document type
(such as menu, icon, or accelerator table resources). The document template also has
strings containing additional information about its document type. These include the
name of the document type (for example, "Worksheet") and the file extension (for
example, ".xls"). Optionally, it can contain other strings used by the application's
user interface, the Windows File Manager, and Object Linking and Embedding
(OLE) support.

If your application is an OLE container and/or server, the document template also
defines the ID of the menu used during in-place activation. If your application is an
OLE server, the document template defines the ID of the toolbar and menu used
during in-place activation. You specify these additional OLE resources by calling
SetContainerInfo and SetServerInfo.

Because CDocTemplate is an abstract class, you cannot use the class directly. A
typical application uses one of the two CDocTemplate-derived classes provided by
the Microsoft Foundation Class Library: CSingleDocTemplate, which implements
SDI, and CMultiDocTemplate, which implements MDI. See those classes for more
information on using document templates.

If your application requires a user-interface paradigm that is fundamentally different
from SDI or MDI, you can derive your own class from CDocTemplate.

For more information on CDocTemplate, see "Document Templates" in Chapter 2 of
Programming with MFC.

include# <afxwin.h>

See Also CSingleDocTemplate, CMultiDocTemplate, CDocument, CView,
CScrollView, CEditView, CFormView, CFrameWnd, CMDIChildWnd

Constructors

CDocTemplate

Attributes

SetContainerInfo

SetServerInfo

GetFirstDocPosition

GetNextDoc

LoadTemplate

Operations

AddDocument

RemoveDocument

GetDocString

CreateOleFrame

Constructs a CDocTemplate object.

Detennines the resources for OLE containers when editing
an in-place OLE item.

Determines the resources and classes when the server
document is embedded or edited in-place.

Retrieves the position of the first document associated with
this template.

Retrieves a document and the position of the next one.

Loads the resources for a given CDocTemplate or
derived class.

Adds a document to a template.

Removes a document from a template.

Retrieves a string associated with the document type.

Creates an OLE-enabled frame window.

CDocTemplate

567

CDocTemplate::AddDocument

Overridables

MatcbDocType

CreateNewDocument

CreateNewFrame

lnitialUpdateFrame

SaveAIIModitied

CloseAllDocuments

OpenDocumentFile

SetDefaultTitle

Determines the degree of confidence in the match between
a document type and this template.

Creates a new document.

Creates a new frame window containing a document
and view.

Initializes the frame window, and optionally makes it
visible.

Saves all documents associated with this template which
have been modified.

Closes all documents associated with this template.

Opens a file specified by a pathname.

Displays the default title in the document window's
title bar.

Member Functions
CDocTemplate: : AddDocument

virtual void AddDocument(CDocument* pDoc);

Parameters

Remarks

pDoc A pointer to the document to be added.

Use this function to add a document to a template. The derived classes
CMultiDocTemplate and CSingleDocTemplate override this function. If you derive
your own document-template class from CDocTemplate, your derived class must
override this function.

See Also CDocTemplate::RemoveDocument, CMultiDocTemplate,
CSingleDocTemplate

CDocTemplate: :CDocTemplate
CDocTemplate (UINT nIDResource, CRuntimeClass* pDocClass, CRuntimeClass* pFrameClass,

CRuntimeClass* pViewClass);

Parameters

568

nIDResource Specifies the ID of the resources used with the document type. This
may include menu, icon, accelerator table, and string resources.

CDocTemplate: :CloseAllDocuments

Remarks

The string resource consists of up to seven substrings separated by the '\n'
character (the '\n' character is needed as a place holder if a substring is not
included; however, trailing '\n' characters are not necessary); these substrings
describe the document type. For information on the substrings, see GetDocString.
This string resource is found in the application's resource file. For example:

II MYCALC.RC
STRINGTABLE PRELOAD DISCARDABLE
BEGIN

IDR_SHEETTYPE "\nSheet\nWorksheet\nWorksheets (*.myc)\n.myc\n
MyCalcSheet\nMyCalc Worksheet"
END

Note that the string begins with a '\n' character; this is because the first substring
is not used for MDI applications and so is not included. You can edit this string
using the string editor; the entire string appears as a single entry in the String
Editor, not as seven separate entries.

For more information about these resource types, see the Visual C++ User ~
Guide.

pDocClass Points to the CRuntimeClass object of the document class. This class is
a CDocument-derived class you define to represent your documents.

pFrameClass Points to the CRuntimeClass object of the frame window class. This
class can be a CFrameWnd-derived class, or it can be CFrameWnd itself if you
want default behavior for your main frame window.

p ViewClass Points to the CRuntimeClass object of the view class. This class is a
CView-derived class you define to display your documents.

Use this member function to construct a CDocTemplate object. Dynamically allocate
a CDocTemplate object and pass it to CWinApp::AddDocTemplate from the
In i tIn s tan c e member function of your application class.

See Also CDocTemplate: : GetDocString, CWinApp::AddDocTemplate,
CWinApp: :InitInstance, CRuntimeClass

CDocTemplate: :CloseAIIDocuments
virtual void CloseAIIDocuments(BOOL bEndSession);

Parameters

Remarks

bEndSession Specifies whether or not the session is being ended. It is TRUE if the
session is being ended; otherwise FALSE.

Call this member function to close all open documents. This member function is
typically used as part of the File Exit command. The default implementation of this

569

CDocTemplate::CreateNewDocument

function calls the CDocument: :DeleteContents member function to delete the
document's data and then closes the frame windows for all the views attached to the
document.

Override this function if you want to require the user to perform special cleanup
processing before the document is closed. For example, if the document represents a
record in a database, you may want to override this function to close the database.

See Also CDocTemplate: :OpenDocumentFile, CDocTemplate: :SaveAIIModified

CDocTemplate:: CreateN ew Document
virtual CDocument* CreateNewDocument();

Return Value

Remarks

A pointer to the newly created document, or NULL if an error occurs.

Call this member function to create a new document of the type associated with this
document template.

See Also CDocTemplate::CreateNewFrame

CDocTemplate::CreateNewFrame
virtual CFrameWnd* CreateNewFrame(CDocument* pDoc, CFrameWnd* pOther);

Return Value
A pointer to the newly created frame window, or NULL if an error occurs.

Parameters

Remarks

570

pDoc The document to which the new frame window should refer. Can be NULL.

pOther The frame window on which the new frame window is to be based. Can
be NULL.

CreateNewFrame uses the CRuntimeClass objects passed to the constructor to
create a new frame window with a view and document attached. If the pDoc
parameter is NULL, the framework outputs a TRACE message.

The pOther parameter is used to implement the Window New command. It provides a
frame window on which to model the new frame window. The new frame window is
usually created invisible. Call this function to create frame windows outside the
standard framework implementation of File New and File Open.

See Also CCreateContext, CFrameWnd::LoadFrame,
CDocTemplate: :InitialUpdateFrame

CDocTemplate: :GetDocString

CDocTemplate: :CreateOleFrame
CFrameWnd* CreateOleFrame(CWnd* pParentWnd, CDocument* pDoc, BOOL bCreateView);

Return Value
A pointer to a frame window if successful; otherwise NULL.

Parameters

Remarks

pParentWnd A pointer to the frame's parent window.

pDoc A pointer to the document to which the new OLE frame window should refer.

bCreate View Determines whether a view is created along with the frame.

Creates an OLE frame window. If bCreate View is zero, an empty frame is created.

See Also CDocTemplate: :CreateNewFrame, COleDocument, COleIPFrame Wnd

CDocTemplate: : GetDocString
virtual BOOL GetDocString(CString& rString, enum DocStringlndex index) const;

Return Value
Nonzero if the specified substring was found; otherwise o.

Parameters
rString A reference to a CString object that will contain the string when the

function returns.

index An index of the substring being retrieved from the string that describes the
document type. This parameter can have one of the following values:

• CDocTemplate::windowTitie Name that appears in the application window's
title bar (for example, "Microsoft Excel"). Present only in the document
template for SDI applications.

• CDocTemplate::docName Root for the default document name (for example,
"Sheet"). This root, plus a number, is used for the default name of a new
document of this type whenever the user chooses the New command from the
File menu (for example, "Sheet!" or "Sheet2"). If not specified, "Untitled" is
used as the default.

• CDocTemplate::flleNewName Name of this document type. If the
application supports more than one type of document, this string is displayed in
the File New dialog box (for example, "Worksheet"). If not specified, the
document type is inaccessible using the File New command.

571

CDocTemplate: :GetFirstDocPosition

Remarks

• CDocTemplate::fiiterName Description of the document type and a wildcard
filter matching documents of this type. This string is displayed in the List Files
Of Type drop-down list in the File Open dialog box (for example, "Worksheets
(*.xls)"). If not specified, the document type is inaccessible using the File Open
command.

• CDocTemplate::fiiterExt Extension for documents of this type (for example,
".xls"). If not specified, the document type is inaccessible using the File Open
command.

• CDocTemplate: :regFileTypeId Identifier for the document type to be stored
in the registration database maintained by Windows. This string is for internal
use only (for example, "ExceIWorksheet"). If not specified, the document type
cannot be registered with the Windows File Manager.

• CDocTemplate::regFileTypeName Name of the document type to be stored
in the registration database. This string may be displayed in dialog boxes of
applications that access the registration database (for example, "Microsoft
Excel Worksheet").

Call this function to retrieve a specific substring describing the document type. The
string containing these substrings is stored in the document template and is derived
from a string in the resource file for the application. The framework calls this
function to get the strings it needs for the application's user interface. If you have
specified a filename extension for your application's documents, the framework also
calls this function when adding an entry to the Windows registration database; this
allows documents to ?e opened from the Windows File Manager.

Call this function only if you are deriving your own class from CDocTemplate.

See Also CMultiDocTemplate: :CMuitiDocTemplate,
CSingleDocTemplate:: CSingleDocTemplate, CWinApp: : RegisterShellFileTypes

CDocTemplate: : GetFirstDocPosition
virtual POSITION GetFirstDocPosition() const = 0;

Return Value

Remarks

572

A POSITION value that can be used to iterate through the list of documents
associated with this document template; or NULL if the list is empty.

Use this function to get the position of the first document in the list of documents
associated with this template. Use the POSITION value as an argument to
CDocTemplate::GetNextDoc to iterate through the list of documents associated with
the template.

CDocTemplate: : InitialUpdateFrame

CSingleDocTemplate and CMultiDocTemplate both override this pure virtual
function. Any class you derive from CDocTemplate must also override this function.

See Also CDocTemplate::GetNextDoc, CSingleDocTemplate,
CMultiDocTemplate

CDocTemplate: : GetN extDoc
virtual CDocument* GetNextDoc(POSITION& rPos) const = 0;

Return Value
A pointer to the next document in the list of documents associated with this template.

Parameters

Remarks

rPos A reference to a POSITION value returned by a previous call to
GetFirstDocPosition or GetNextDoc.

Retrieves the list element identified by rPos, then sets rrPos to the POSITION value
of the next entry in the list. If the retrieved element is the last in the list, then the new
value of rPos is set to NULL.

You can use GetNextDoc in a forward iteration loop if you establish the initial
position with a call to GetFirstDocPosition.

You must ensure that your POSITION value represents a valid position in the list. If
it is invalid, then the Debug version of the Microsoft Foundation Class Library
asserts.

See Also CDocTemplate: : GetFirstDocPosition

CDocTemplate: : InitialUpdateFrame
virtual void InitialUpdateFrame(CFrameWnd* pFrame, CDocument* pDoc,

BOOL bMake Visible = TRUE);

Parameters

Remarks

pFrame The frame window that needs the initial update.

pDoc The document to which the frame is associated. Can be NULL.

bMakeVisible Indicates whether the frame should become visible and active.

Call IntitialUpdateFrame after creating a new frame with CreateNewFrame.
Calling this function causes the views in that frame window to receive their
OnInitialUpdate calls. Also, if there was not previously an active view, the primary
view of the frame window is made active; the primary view is a view with a child ID
of AFX_IDW_PANE_FIRST. Finally, the frame window is made visible if

573

CDocTempate::LoadTemplate

bMake Visible is non-zero. If bMake Visible is zero, the current focus and visible
state of the frame window will remain unchanged.

It is not necessary to call this function when using the framework's implementation
of File New and File Open.

See Also CView::OnlnititaIUpdate, CFrameWnd::SetActiveView,
CDocTemplate::CreateNewFrame

CDocTempate: : LoadTemplate
virtual void LoadTemplate();

Remarks
This member function is called by the framework to load the resources for a given
CDocTemplate or derived class. Normally it is called during construction, except
when the template is being constructed globally. In that case, the call to
LoadTemplate is delayed until CWinApp::AddDocTemplate is called.

See Also CWinApp: :AddDocTemplate

CDocTemplate: : MatchDocType
virtual Confidence MatchDocType(LPCTSTR IpszPathName, CDocument*& rpDocMatch);
virtual Confidence MatchDocType(LPCTSTR IpszPathName, DWORD dwFileType,

CDocument*& rpDocMatch);

Return Value
A value from the Confidence enumeration, which is defined as follows:

enum Confidence
{

noAttempt.
maybeAttemptForeign.
maybeAttemptNative.
yesAttemptForeign.
yesAttemptNative.
yesAlreadyOpen

} ;

Parameters

574

IpszPathName Pathname of the file whose type is to be determined.

rpDocMatch Pointer to a document that is assigned the matching document, if the
file specified by IpszPathName is already open.

dwFileType The type of the document (Macintosh® only).

CDocTemplate: :OpenDocumentFile

Remarks
Use this function to determine the type of document template to use for opening a
file. If your application supports mUltiple file types, for example, you can use this
function to determine which of the available document templates is appropriate for a
given file by calling MatchDocType for each template in turn, and choosing a
template according to the confidence value returned.

If the file specified by IpszPathName is already open, this function returns
CDocTemplate::yesAlreadyOpen and copies the file's Cdocument object into the
object at rpDocMatch.

If the file is not open but the extension in IpszPathName matches the extension
specified by CDocTemplate: :filterExt (or the Macintosh file type matches), this
function returns CDocTemplate::yesAttemptNative and sets rpDocMatch to NULL.
For more information on CDocTemplate: :filterExt, see
CDocTemplate: : GetDocString.

If neither case is true, the function returns CDocTemplate: :yesAttemptForeign.

The default implementation does not return CDocTemplate: :maybeAttemptForeign
or CDocTemplate::maybeAttemptNative. Override this function to implement type
matching logic appropriate to your application, perhaps using these two values from
the Confidence enumeration.

See Also CDocTemplate: : GetDocString

CDocTemplate:: OpenDocumentFile
virtual CDocument* OpenDocumentFile(LPCTSTR IpszPathName,

BOOL bMake Visible = TRUE) = 0;

Return Value
A pointer to the document whose file is named by IpszPathName; NULL if
unsuccessful.

Parameters

Remarks

IpszPathName Pointer to the pathname of the file containing the document to be
opned.

bMake Visible Determines whether the window containing the document is to be
made visible.

Opens the file whose pathname is specified by IpzsPathName. If IpszPathName is
NULL, a new file, containing a document of the type associated with this template,
is created.

See Also CDocTemplate: :CloseAIIDocuments

575

CDocTemplate::RemoveDocument

CDocTemplate: : RemoveDocument
virtual void RemoveDocument(CDocument* pDoc);

Parameters

Remarks

pDoc Pointer to the document to be removed.

Removes the document pointed to by pDoc from the list of documents associated with
this template. The derived classes CMultiDocTemplate and CSingleDocTemplate
override this function. If you derive your own document-template class from
CDocTempiate, your derived class must override this function.

See Also CDocTemplate::AddDocument, CMultiDocTemplate,
CSingleDocTemplate

CDocTemplate:: SaveAIIModified
virtual BOOL SaveAIIModified();

Return Value

Remarks

Non-zero if successful; otherwise o.

Saves all documents that have been modified.

See Also CDocTemplate::OpenDocumentFile,
CDocTemplate::CloseAIIDocuments

CDocTemplate: :SetContainerInfo
void SetContainerlnfo(UINT nIDOlelnPlaceContainer);

Parameters

Remarks

576

nIDOlelnPlaceContainer The ID of the resources used when an embedded object is
activated.

Call this function to set the resources to be used when an OLE 2 object is in-place
activated. These resources may include menus and accelerator tables. This function is
usually called in the CWinApp: :InitInstance function of your application.

CDocTemplate: :SetServerInfo

The menu associated with nlDOlelnPlaceContainer contains separators that allow
the menu of the activated in-place item to merge with the menu of the container
application. For more information about merging server and container menus, see
the article "Menus and Resources" in Programming with MFC.

See Also CDocTemplate: :SetServerInfo, CWinApp: :InitInstance,
CMultiDocTemplate: :CMultiDocTemplate

CDocTemplate:: SetDefaultTitle
virtual void SetDefaultTitle(CDocument* pDocument) = 0;

Parameters

Remarks

pDocument Pointer to the document whose title is to be set.

Call this function to load the document's default title and display it in the document's
title bar. For information on the default title, see the description of
CDocTemplate::docName in CDocTemplate: : GetDocString.

See Also CDocTemplate::GetDocString

CDocTemplate:: SetServerInfo
void SetServerInfo(UINT nlDOleEmbedding, UINT nlDOlelnPlaceServer = 0,

CRuntimeClass* pOleFrameClass = NULL, CRuntimeClass* pOle View Class = NULL);

Parameters

Remarks

nlDOleEmbedding The ID of the resources used when an embedded object is opened
in a separate window.

nlDOlelnPlaceServer The ID of the resources used when an embedded object is
activated in-place.

pOleFrameClass Pointer to a CRuntimeClass structure containing class
information for the frame window object created when in-place activation occurs.

pOle ViewClass Pointer to a CRuntimeClass structure containing class information
for the view object created when in-place activation occurs.

Call this member function to identify resources that will be used by the server
application when the user requests activation of an embedded object. These resources
consist of menus and accelerator tables. This function is usually called in the
InitInstance of your application.

577

CDocTemplate: :SetServerInfo

578

The menu associated with nIDOlelnPlaceServer contains separators that allow the
server menu to merge with the menu of the container. For more information about
merging server and container menus, see the article "Menus and Resources" in
Programming with MFC.

See Also CMultiDocTemplate::CMultiDocTemplate,
CDocTemplate: :SetContainerInfo, CWinApp: :Initlnstance

CDocument

The CDocument class provides the basic functionality for user-defined document
classes. A document represents the unit of data that the user typically opens with the
File Open command and saves with the File Save command.

CDocument supports standard operations such as creating a document, loading it,
and saving it. The framework manipulates documents using the interface defined by
CDocument.

An application can support more than one type of document; for example, an
application might support both spreadsheets and text documents. Each type of
document has an associated document template; the document template specifies
what resources (for example, menu, icon, or accelerator table) are used for that
type of document. Each document contains a pointer to its associated CDocTemplate
object.

Users interact with a document through the CView object(s) associated with it. A
view renders an image of the document in a frame window and interprets user input
as operations on the document. A document can have multiple views associated with
it. When the user opens a window on a document, the framework creates a view and
attaches it to the document. The document template specifies what type of view and
frame window are used to display each type of document.

Documents are part of the framework's standard command routing and consequently
receive commands from standard user-interface components (such as the File Save
menu item). A document receives commands forwarded by the active view. If the
document doesn't handle a given command, it forwards the command to the
document template that manages it.

When a document's data is modified, each of its views must reflect those
modifications. CDocument provides the UpdateAIlViews member function for you
to notify the views of such changes, so the views can repaint themselves as necessary.
The framework also prompts the user to save a modified file before closing it.

To implement documents in a typical application, you must do the following:

• Derive a class from CDocument for each type of document.

• Add member variables to store each document's data.

• Implement member functions for reading and modifying the document's data. The
document's views are the most important users of these member functions.

CDocument

579

CDocument

580

• Override the CObject: : Serialize member function in your document class to
write and read the document's data to and from disk.

CDocument supports sending your document via mail if mail support (MAPI) is
present. See the articles "MAPI" and "MAPI Support in MFC" in Part 2 of
Programming with MFC.

For more information on CDocument, see the article "Serialization (Object
Persistence), Documents and Views" in Chapter 3, and "DocumentlView Creation" in
Chapter 1 of Programming with MFC.

#include <afxwin.h>

See Also CCmdTarget, CView, CDocTempiate

Construction

CDocument

Operations

AddView

GetDocTemplate

GetFirstViewPosition

GetNextView

GetPathName

GetTitle

IsModified

RemoveView

SetModifiedFlag

SetPathName

SetTitle

UpdateAllViews

Overridables

CanCloseFrame

DeleteContents

OnChangedViewList

Constructs a CDocument object.

Attaches a view to the document.

Returns a pointer to the document template that
describes the type of the document.

Returns the position of the first in the list of views;
used to begin iteration.

Iterates through the list of views associated with the
document.

Returns the path of the document's data file.

Returns the document's title.

Indicates whether the document has been modified
since it was last saved.

Detaches a view from the document.

Sets a flag indicating that you have modified the
document since it was last saved.

Sets the path of the data file used by the document.

Sets the document's title.

Notifies all views that document has been modified.

Advanced overridable; called before closing a frame
window viewing this document.

Called to perform cleanup of the document.

Called after a view is added to or removed from the
document.

CDocument: : AddView

OnCloseDocument

OnNewDocument

OnOpenDocument

OnSaveDocument

ReportSaveLoadException

GetFile

ReleaseFile

SaveModified

PreCloseFrame

Mail Functions

OnFileSendMail

OnUpdateFileSendMail

Called to close the document.

Called to create a new document.

Called to open an existing document.

Called to save the document to disk.

Advanced overridable; called when an open or save
operation cannot be completed because of an
exception.

Returns a pointer to the desired CFile object.

Releases a file to make it available for use by other
applications.

Advanced overridable; called to ask the user whether
the document should be saved.

Called before the frame window is closed.

Sends a mail message with the document attached.

Enables the Send Mail command if mail support is
present.

Member Functions
CDocument: : AddView

void AddView(CView* p View);

Parameters

Remarks

p View Points to the view being added.

Call this function to attach a view to the document. This function adds the specified
view to the list of views associated with the document; the function also sets the
view's document pointer to this document. The framework calls this function when
attaching a newly created view object to a document; this occurs in response to a File
New, File Open, or New Window command or when a splitter window is split.

Call this function only if you are manually creating and attaching a view. Typically
you will let the framework connect documents and views by defining a
CDocTempiate object to associate a document class, view class, and frame window
class.

581

CDocument::AddView

Example

582

II The following example toggles two views in an SDI (single document
II interface) frame window. A design decision must be made as to

II whether to leave the inactive view connected to the document,
II such that the inactive view continues to receive OnUpdate
II notifications from the document. It is usually desirable to
II keep the inactive view continuously in sync with the document, even
II though it is inactive. However, doing so incurs a performance cost,
II as well as the programming cost of implementing OnUpdate hints.
II It may be less expensive, in terms of performance andlor programming,
II to re-sync the inactive view with the document only with it is
II reactivated. This example illustrates this latter approach, by
II reconnecting the newly active view and disconnecting the newly
II inactive view, via calls to CDocument::AddView and RemoveView.

BOOL CMainFrame::OnViewChange(UINT nCmdID)
{

CView* pViewAdd;
CView* pViewRemove;
CDocument* pDoc = GetActiveDocument();
if (nCmdID == ID_VIEW_VIEW2)
{

}

if (m_pView2 == NULL)
{

}

m_pViewl = GetActiveView();
m_pView2 = new CMyView2;
m_pView2->Create(NULL, NULL, AFX_WS_DEFAULT_VIEW,

rectDefault, this, AFX_IDW_PANE_FIRST + 1, NULL);

pViewAdd = m_pView2;
pViewRemove = m_pViewl;

else
{

}

pViewAdd = m_pViewl;
pViewRemove = m_pView2;

II Set the child i .d. of the active view to AFX_IDW_PANE_FIRST,
II so that CFrameWnd::RecalcLayout will allocate to this
II "first pane" that portion of the frame window's client area
II not allocated to control bars. Set the child i.d. of the
II other view to anything other than AFX_IDW_PANE_FIRST; this
II examples switches the child id's of the two views.

CDocument: :CanCloseFrame

int nSwitchChildID - pViewAdd->GetDlgCtrlID();
pViewAdd->SetDlgCtrlID(AFX_IDW_PANE_FIRST);
pViewRemove->SetDlgCtrlID(nSwitchID);

II Show the newly active view and hide the inactive view.
pViewAdd->ShowWindow(SW_SHOW);
pViewRemove->ShowWindow(SW_HIDE);

II Connect the newly active view to the document. and
II disconnect the inactive view.
pDoc->AddView(pViewAdd);
pDoc->RemoveView(pViewRemove);

II Inform the frame window which view is now active;
II and reallocate the frame window's client area to the
II new view. Implement logic to resync the view to the
II document in an override of CView::OnActivateView.
II which is called from CFrameWnd::SetActiveView.
SetActiveView(pViewAdd);
Recal cLayout();

return TRUE;

See Also CDocTempiate, CDocument: : GetFirstViewPosition,
CDocument: : GetNextView, CDocument::Remove View, CView: : GetDocument

CDocument: :CanCloseFrame
virtual BOOL CanCioseFrame(CFrameWnd* pFrame);

Return Value
Nonzero if it is safe to close the frame window; otherwise O.

Parameters

Remarks

pFrame Points to the frame window of a view attached to the document.

Called by the framework before a frame window displaying the document is closed.
The default implementation checks if there are other frame windows displaying the
document. If the specified frame window is the last one that displays the document,
the function prompts the user to save the document if it has been modified. Override
this function if you want to perform special processing when a frame window is
closed. This is an advanced overridable.

See Also CDocument: :SaveModified

583

CDocument::CDocument

CDocument: :CDocument

Remarks

CDocument();

Constructs a CDocument object. The framework handles document creation for you.
Override the OnNewDocument member function to perform initialization on a per
document basis; this is particularly important in single document interface (SDI)
applications.

See Also CDocument: :OnNewDocument, CDocument: :OnOpenDocument

CDocument: : DeleteContents

Remarks

Example

584

virtual void DeleteContents();

Called by the framework to delete the document's data without destroying the
document object itself. It is called just before the document is to be destroyed. It is
also called to ensure that a document is empty before it is reused. This is particularly
important for an SDI application, which uses only one document object; the
document object is reused whenever the user creates or opens another document. Call
this function to implement an "Edit Clear All" or similar command that deletes all of
the document's data. The default implementation of this function does nothing.
Override this function to delete the data in your document.

II This example is the handler for an Edit Clear All command.

void CMyDoc::OnEditClearAll()
{

}

DeleteContents();
UpdateAllViews(NULL);

void CMyDoc::DeleteContents()
{

II Re-initialize document data here.

}

See Also CDocument: :OnCloseDocument, CDocument: :OnNewDocument,
CDocument::OnOpenDocument

CDocument::GetFile

CDocument: : GetDocTemplate
CDocTemplate* GetDocTemplate() const;

Return Value

Remarks

Example

A pointer to the document template for this document type, or NULL if the document
is not managed by a document template.

Call this function to get a pointer to the document template for this document type.

II This example accesses the doc template object to construct
II a default document name such as SHEET.XLS. where "sheet"
II is the base document name and ".xls" is the file extension
II for the document type.
CString strDefaultDocName. strBaseName. strExt;
CDocTemplate* pDocTemplate = GetDocTemplate();
if (!pDocTemplate->GetDocString(strBaseName. CDocTemplate::docName)

I I !pDocTemplate->GetDocString(strExt. CDocTemplate::filterExt))

AfxThrowUserException(); II These doc template strings will
II be available if you created the application using AppWizard
II and specified the file extension as an option for
II the document class produced by AppWizard.

strDefaultDocName = strBaseName + strExt;

See Also CDocTemplate

CDocument: : GetFile
virtual CFile* GetFile(LPCTSTR lpszFileName, UINT nOpenFlags, CFileException* pError);

Return Value
A pointer to a CFile object.

Parameters
lpszFileName A string that is the path to the desired file. The path may be relative

or absolute.

pError A pointer to an existing file-exception object that indicates the completion
status of the operation.

nOpenFlags Sharing and access mode. Specifies the action to take when opening
the file. You can combine options listed in the CFile constructor CFile::CFile by
using the bitwise OR (I) operator. One access permission and one share option are
required; the mode Create and modeNoInherit modes are optional.

585

CDocument::GetFirstViewPosition

Remarks
Call this member function to get a pointer to a CFile object.

See Also CDocTemplate

CDocument: : GetFirstViewPosition
virtual POSITION GetFirstViewPosition() const;

Return Value

Remarks

Example

A POSITION value that can be used for iteration with the GetNextView member
function.

Call this function to get the position of the first view in the list of views associated
with the document.

liTo get the first view in the list of views:

POSITION pos = GetFirstViewPosition();
CView* pFirstView = GetNextView(pos);
II This example uses CDocument::GetFirstViewPosition
II and GetNextView to repaint each view.
void CMyDoc::OnRepaintAllViews()
{

}

POSITION pos = GetFirstViewPosition();
while (pos != NULL)
{

CView* pView = GetNextView(pos);
pView-)UpdateWindow();

II An easier way to accomplish the same result is to call
II UpdateAllViews(NULL);

See Also CDocument: : GetNextView

CDocument: : GetN ext View
virtual CView* GetNextView(POSITION& rPosition) const;

Return Value
A pointer to the view identified by rPosition.

586

Parameters

Remarks

Example

rPosition A reference to a POSITION value returned by a previous call to the
GetNextView or GetFirstViewPosition member functions. This value must
not be NULL.

Call this function to iterate through all of the document's views. The function returns
the view identified by rPosition and then sets rPosition to the POSITION value of
the next view in the list. If the retrieved view is the last in the list, then rPosition is
set to NULL.

II This example uses CDocument::GetFirstViewPosition
II and GetNextView to repaint each view.
void CMyDoc::OnRepaintAllViews()
{

POSITION pos = GetFirstViewPosition();
while (pos !- NULL)
{

}

CView* pView = GetNextView(pos);
pView->UpdateWindow();

II An easier way to accomplish the same result is to call
II UpdateAllViews(NULL);

See Also CDocument::AddView, CDocument::GetFirstViewPosition,
CDocument::Remove View, CDocument:: UpdateAIIViews

CDocurnent:: GetPathN arne
const CString& GetPathName() const;

Return Value

Remarks

The document's fully qualified path. This string is empty if the document has not
been saved or does not have a disk file associated with it.

Call this function to get the fully qualified path of the document's disk file.

See Also CDocument::SetPathName

CDocurnent: : GetTitle
const CString& GetTitle() const;

Return Value
The document's title.

CDocument: : GetTitle

587

CDocument: : IsModified

Remarks
Call this function to get the document's title, which is usually derived from the
document's filename.

See Also CDocument::SetTitle

CDocument: : IsModified
BOOL IsModified();

Return Value

Remarks

Nonzero if the document has been modified since it was last saved; otherwise O.

Call this function to determine whether the document has been modified since it was
last saved.

See Also CDocument: :SetModifiedFlag, CDocument: :SaveModified

CDocument: :OnChangedViewList

Remarks

virtual void OnChangedViewList();

Called by the framework after a view is added to or removed from the document. The
default implementation of this function checks whether the last view is being
removed and, if so, deletes the document. Override this function if you want to
perform special processing when the framework adds or removes a view. For
example, if you want a document to remain open even when there are no views
attached to it, override this function.

See Also CDocument: :AddView, CDocument: : Remove View

CDocument: :OnCloseDocument

Remarks

588

virtual void OnCloseDocument();

Called by the framework when the document is closed, typically as part of the File
Close command. The default implementation of this function calls the
DeleteContents member function to delete the document's data and then closes the
frame windows for all the views attached to the document.

Override this function if you want to perform special cleanup processing when the
framework closes a document. For example, if the document represents a record in a
database, you may want to override this function to close the database. You should
call the base class version of this function from your override.

CDocument::OnNewDocument

See Also CDocument: :DeleteContents, CDocument: :OnNewDocument,
CDocument: :OnOpenDocument

CDocument: :OnFileSendMail
void OnFileSendMail();

Remarks
Sends a message via the resident mail host (if any) with the document as an
attachment. OnFileSendMaii calls OnSaveDocument to serialize (save) untitled and
modified documents to a temporary file, which is then sent via electronic mail. If the
document has not been modified, a temporary file is not needed; the original is sent.
OnFileSendMailloads MAPI32.DLL if it has not already been loaded.

A special implementation of OnFileSendMaii for COleDocument handles
compound files correctly.

CDocument supports sending your document via mail if mail support (MAPI) is
present. See the articles "MAPI" and "MAPI Support in MFC" in Part 2 of
Programming with MFC.

See Also CDocument: :OnUpdateFileSendMail,
COleDocument: :OnFileSendMail, CDocument: :OnSaveDocument.
In the Client Developer's Guide: ::MAPISendMaii

CDocument: :OnNewDocument
virtual BOOL OnNewDocument();

Return Value

Remarks

Nonzero if the document was successfully initialized; otherwise O.

Called by the framework as part of the File New command. The default
implementation of this function calls the DeleteContents member function to ensure
that the document is empty and then marks the new document as clean. Override this
function to initialize the data structure for a new document. You should call the base
class version of this function from your override.

If the user chooses the File New command in an SDI application, the framework uses
this function to reinitialize the existing document object, rather than creating a new
one. If the user chooses File New in a multiple document interface (MDI) application,
the framework creates a new document object each time and then calls this function
to initialize it. You must place your initialization code in this function instead of in
the constructor for the File New command to be effective in SDI applications.

589

CDocument::OnNewDocument

Example

590

II The follow examples illustrate alternative methods of
II initializing a document object.

II Method 1: In an MDI application. the simplest place to do
II initialization is in the document constructor. The framework
II always creates a new document object for File New or File Open.

CMyDoc: : CMyDoc ()
{

}

II Do initialization of MDI document here.
II

II Method 2: In an SDI or MDI application. do all initialization
II in an override of OnNewDocument. if you are certain that
II the initialization is effectively saved upon File Save
II and fully restored upon File Open. via serialization.

BOOl CMyDoc::OnNewDocument()
{

}

if (!CDocument::OnNewDocument())
return FALSE;

II Do initialization of new document here.

return TRUE;

II Method 3: If the initialization of your document is not
II effectively saved and restored by serialization (during File Save
II and File Open). then implement the initialization in single
II function (named InitMyDocument in this example). Call the
II shared initialization function from overrides of both
II OnNewDocument and OnOpenDocument.

BOOl CMyDoc::OnNewDocument()
{

}

if (!CDocument::OnNewDocument())
return FALSE;

InitMyDocument(); II call your shared initialization function

II If your new document object requires additional initialization
II not necessary when the document is deserialized via File Open.
II then perform that additional initialization here.

return TRUE;

CDocument: :OnOpenDocument

BOOl CMyDoc::OnOpenDocument(lPCTSTR lpszPathName)
{

if (!CDocument::OnOpenDocument(lpszPathName»
return FALSE;

InitMyDocument();

return TRUE;

See Also CDocument::CDocument, CDocument: :DeleteContents,
CDocument::OnCloseDocument, CDocument::OnOpenDocument,
CDocument::OnSaveDocument

CDocument: :OnOpenDocument
virtual BOOL OnOpenDocument(LPCTSTR lpszPathName);

Return Value
Nonzero if the document was successfully loaded; otherwise O.

Parameters

Remarks

Example

lpszPathName Points to the path of the document to be opened.

Called by the framework as part of the File Open command. The default
implementation of this function opens the specified file, calls the DeleteContents
member function to ensure that the document is empty, calls CObject::Serialize to
read the file's contents, and then marks the document as clean. Override this function
if you want to use something other than the archive mechanism or the file
mechanism. For example, you might write an application where documents represent
records in a database rather than separate files.

If the user chooses the File Open command in an SDI application, the framework
uses this function to reinitialize the existing document object, rather than creating a
new one. If the user chooses File Open in an MDI application, the framework
constructs a new document object each time and then calls this function to initialize
it. You must place your initialization code in this function instead of in the
constructor for the File Open command to be effective in SDI applications.

II The follow examples illustrate alternative methods of
II initializing a document object.

II Method 1: In an MOl application, the simplest place to do
II initialization is in the document constructor. The framework
II always creates a new document object for File New or File Open.

CMyOoc::CMyOoc()

591

CDocument: :OnOpenDocument

592

}

II Do initialization of MDI document here.
II

II Method 2: In an SDI or MDI application. do all initialization
II in an override of OnNewDocument. if you are certain that
II the initialization is effectively saved upon File Save
II and fully restored upon File Open. via serialization.

BOOl CMyDoc::OnNewDocument()
{

}

if (!CDocument::OnNewDocument(»
return FALSE;

II Do initialization of new document here.

return TRUE;

II Method 3: If the initialization of your document is not
II effectively saved and restored by serialization (during File Save
II and File Open). then implement the initialization in single
II function (named InitMyDocument in this example). Call the
II shared initialization function from overrides of both
II OnNewDocument and OnOpenDocument.

BOOl CMyDoc::OnNewDocument()
{

}

if (!CDocument::OnNewDocument(»
return FALSE;

InitMyDocument(); II call your shared initialization function

II If your new document object requires additional initialization
II not necessary when the document is deserialized via File Open.
II then perform that additional initialization here.

return TRUE;

BOOl CMyDoc::OnOpenDocument(lPCTSTR lpszPathName)
{

if (!CDocument::OnOpenDocument(lpszPathName»
return FALSE;

InitMyDocument();

return TRUE;

CDocument: :On UpdateFileSendMail

See Also CDocument::DeleteContents, CDocument::OnCloseDocument,
CDocument: :OnNewDocument, CDocument::OnSaveDocument,
CDocument::ReportSaveLoadException, CObject::Serialize

CDocument: :OnSaveDocument
virtual BOOL OnSaveDocument(LPCTSTR lpszPathName);

Return Value
Nonzero if the document was successfully saved; otherwise O.

Parameters

Remarks

lpszPathName Points to the fully qualified path to which the file should be saved.

Called by the framework as part of the File Save or File Save As command.
The default implementation of this function opens the specified file, calls
CObject::Serialize to write the document's data to the file, and then marks the
document as clean. Override this function if you want to perform special processing
when the framework saves a document. For example, you might write an application
where documents represent records in a database rather than separate files.

See Also CDocument::OnCloseDocument, CDocument::OnNewDocument,
CDocument::OnOpenDocument, CDocument: :ReportSaveLoadException,
CObject: : Serialize

CDocument: :On UpdateFileSendMail
void OnUpdateFileSendMail(CCmdUI* pCmdUI);

Parameters

Remarks

pCmdUI A pointer to the CCmdUI object associated with the
ID_FILE_SEND _MAIL command.

Enables the ID _FILE_SEND _MAIL command if mail support (MAPI) is present.
Otherwise the function removes the ID _FILE_SEND _MAIL command from the
menu, including separators above or below the menu item as appropriate. MAPI is
enabled if MAPI32.DLL is present in the path and, in the [Mail] section of the
WIN.INI file, MAPI=1. Most applications put this command on the File menu.

CDocument supports sending your document via mail if mail support (MAPI) is
present. See the articles "MAPI" and "MAPI Support in MFC" in Part 2 of
Programming with MFC.

See Also CDocument: :OnFileSendMaii

593

CDocument: :PreCloseFrame

CDocument: :PreCloseFrame
virtual void PreCloseFrame(CFrameWnd* pFrame);

Parameters

Remarks

pFrame Pointer to the CFrameWnd that holds the associated CDocument object.

This member function is called by the framework before the frame window is
destroyed. It can be overridden to provide custom cleanup, but be sure to call the
base class as well.

The default of PreCloseFrame does nothing in CDocument. The CDocument
derived classes COleDocument and CRichEditDoc use this member function.

CDocument: : ReleaseFile
virtual void ReleaseFile(CFile* pFile, BOOL bAbort);

Parameters

Remarks

pFile A pointer to the CFile object to be released.

bAbort Specifies whether the file is to be released by using either CFile: : Close or
CFile::Abort. FALSE if the file is to be released using CFile::Close; TRUE if
the file is to be released using CFile: :Abort.

This member function is called by the framework to release a file, making it available
for use by other applications. If bAbort is TRUE, ReleaseFile calls CFile: :Abort,
and the file is released. CFile: :Abort will not throw an exception.

If bAbort is FALSE, ReleaseFile calls CFile::Close and the file is released.

Override this member function to require an action by the user before the file is
released.

See Also CDocTemplate, CFile::Close, CFile::Abort

CDocument: : Remove View
void RemoveView(CView* pView);

Parameters

Remarks

594

p View Points to the view being removed.

Call this function to detach a view from a document. This function removes the
specified view from the list of views associated with the document; it also sets the

Example

CDocument::Remove View

view's document pointer to NULL. This function is called by the framework when a
frame window is closed or a pane of a splitter window is closed.

Call this function only if you are manually detaching a view. Typically you will let the
framework detach documents and views by defining a CDocTemplate object to
associate a document class, view class, and frame window class.

II The following example toggles two views in an SOl (single document
II interface) frame window. A design decision must be made as to
II whether to leave the inactive view connected to the document,
II such that the inactive view continues to receive OnUpdate
II notifications from the document. It is usually desirable to
II keep the inactive view continuously in sync with the document, even
II though it is inactive. However, doing so incurs a performance cost,
II as well as the programming cost of implementing OnUpdate hints.
II It may be less expensive, in terms of performance andlor programming,
II to re-sync the inactive view with the document only with it is
II reactivated. This example illustrates this latter approach, by
II reconnecting the newly active view and disconnecting the newly
II inactive view, via calls to COocument::AddView and RemoveView.

BOOL CMainFrame::OnViewChange(UINT nCmdIO)
{

CView* pViewAdd;
CView* pViewRemove;
COocument* pOoc = GetActiveOocument();
if (nCmdIO == IO_VIEW_VIEW2)
{

}

if (m_pView2 == NULL)
{

m_pViewl = GetActiveView();
m_pView2 = new CMyView2;
m_pView2-)Create(NULL, NULL, AFX_WS_OEFAULT_VIEW,

rectOefault, this, AFX_IOW_PANE_FIRST + 1, NULL);

pViewAdd = m_pView2;
pViewRemove = m_pViewl;

else
{

}

pViewAdd = m_pViewl;
pViewRemove = m_pView2;

II Set the child i .d. of the active view to AFX_IOW_PANE_FIRST,
II so that CFrameWnd::RecalcLayout will allocate to this
II "first pane" that portion of the frame window's client area
II not allocated to control bars. Set the child i.d. of the
II other view to anything other than AFX_IOW_PANE_FIRST; this
II examples switches the child id's of the two views.

595

CDocument: :ReportSaveLoadException

}

int nSwitchChildID = pViewAdd->GetDlgCtrlID();
pViewAdd->SetDlgCtrlID(AFX_IDW_PANE_FIRST);
pViewRemove->SetDlgCtrlID(nSwitchID);

II Show the newly active view and hide the inactive view.
pViewAdd->ShowWindow(SW_SHOW);
pViewRemove->ShowWindow(SW_HIDE);

II Connect the newly active view to the document, and
II disconnect the inactive view.
pDoc->AddVieW(pViewAdd);
pDoc->RemoveView(pViewRemove);

II Inform the frame window which view is now active;
II and reallocate the frame window's client area to the
II new view. Implement logic to resync the view to the
II document in an override of CView::OnActivateView,
II which is called from CFrameWnd::SetActiveView.
SetActiveView(pViewAdd);
Recal cLayout();

return TRUE;

See Also CDocument::AddView, CDocument::GetFirstViewPosition,
CDocument::GetNextView

CDocument: : ReportS aveLoadException
virtual void ReportSaveLoadException(LPCTSTR lpszPathName, CException* e, BOOL bSaving,

UINT nIDPDefault);

Parameters

Remarks

596

lpszPathName Points to name of document that was being saved or loaded.

e Points to the exception that was thrown. May be NULL.

bSaving Flag indicating what operation was in progress; nonzero if the document
was being saved, 0 if the document was being loaded.

nIDPDefault Identifier of the error message to be displayed if the function does not
specify a more specific one.

Called if an exception is thrown (typically a CFileException or CArchiveException)
while saving or loading the document. The default implementation examines the
exception object and looks for an error message that specifically describes the cause.

CDocument: :SetModifiedFlag

If a specific message is not found or if e is NULL, the general message specified by
the nIDPDefault parameter is used. The function then displays a message box
containing the error message. Override this function if you want to provide
additional, customized failure messages. This is an advanced overridable.

See Also CDocument: :OnOpenDocument, CDocument::OnSaveDocument,
CFileException, CArchiveException

CDocument:: SaveModified
virtual BOOL SaveModitied();

Return Value

Remarks

Nonzero if it is safe to continue and close the document; 0 if the document should not
be closed.

Called by the framework before a modified document is to be closed. The default
implementation of this function displays a message box asking the user whether to
save the changes to the document, if any have been made. Override this function if
your program requires a different prompting procedure. This is an advanced
overridable.

See Also CDocument::CanCloseFrame, CDocument::IsModitied,
CDocument::OnNewDocument, CDocument::OnOpenDocument,
CDocument::OnSaveDocument

CDocument: : SetModifiedFlag
void SetModifledFlag(BOOL bModified = TRUE);

Parameters

Remarks
bModified Flag indicating whether the document has been modified.

Call this function after you have made any modifications to the document. By calling
this function consistently, you ensure that the framework prompts the user to save
changes before closing a document. Typically you should use the default value of
TRUE for the bModified parameter. To mark a document as clean (unmodified), call
this function with a value of FALSE.

See Also CDocument: :IsModifled, CDocument: :SaveModitied

597

CDocument::SetPathName

CDocurnent:: SetPathN arne
virtual void SetPathName(LPCTSTR lpszPathName, BOOL bAddToMRU = TRUE);

Parameters

Remarks

lpsZPathName Points to the string to be used as the path for the document.

bAddToMRU Determines whether the filename is added to the most recently used
(MRU) file list. If TRUE, the filename is added; if FALSE, it is not added.

Call this function to specify the fully qualified path of the document's disk file.
Depending on the value of bAddToMRU the path is added, or not added, to the MRU
list maintained by the application. Note that some documents are not associated with
a disk file. Call this function only if you are ovenj.ding the default implementation for
opening and saving files used by the framework.

See Also CDocument::GetPathName, CWinApp::AddToRecentFileList

CDocurnent: : SetTitle
virtual void SetTitle(LPCTSTR lpszTitle);

Parameters

Remarks

lpszTitle Points to the string to be used as the document's title.

Call this function to specify the document's title (the string displayed in the title bar
of a frame window). Calling this function updates the titles of all frame windows that
display the document.

See Also CDocument: : GetTitle

CDocurnent:: U pdateAIIViews
void UpdateAllViews(CView* pSender, LPARAM lHint = OL, CObject* pHint = NULL);

Parameters

598

pSender Points to the view that modified the document, or NULL if all views are to
be updated.

lHint Contains information about the modification.

pHint Points to an object storing information about the modification.

Remarks

CDocument:: UpdateAllViews

Call this function after the document has been modified. You should call this function
after you call the SetModifiedFlag member function. This function informs each
view attached to the document, except for the view specified by pSender, that the
document has been modified. You typically call this function from your view class
after the user has changed the document through a view.

This function calls the CView::OnUpdate member function for each of the
document's views except the sending view, passing pHint and lHint. Use these
parameters to pass information to the views about the modifications made to
the document. You can encode information using lHint and/or you can define a
CObject-derived class to store information about the modifications and pass an
object of that class using pHint. Override the CView::OnUpdate member function
in your CView-derived class to optimize the updating of the view's display based on
the information passed.

See Also CDocument: :SetModifiedFlag, CDocument: : GetFirstViewPosition,
CDocument: : GetNextView, CView: :OnUpdate

599

CDragUstBox

CDragListBox

600

In addition to providing the functionality of a Windows list box, the CDragListBox
class allows the user to move list box items, such as filenames and string literals,
within the list box. List boxes with this capability are useful for an item list in an
order other than alphabetic, such as include pathnames or files in a project. By
default, the list box will move the item, along with the data, to the new location.
However, CDragListBox objects can be customized to copy items instead of moving
them.

To use a drag list box in an existing dialog box of your application, add a list box
control to your dialog template using the dialog editor and then assign a member
variable (of Category Control and Variable Type CDragL i stBox) corresponding to
the list box control in your dialog template.

For more information on assigning controls to member variables, see "Shortcut for
Defining Member Variables for Dialog Controls" in Chapter 14 of the Visual c++
User's Guide.

#include <afxcmn.h>

See Also CListBox

Attributes

ItemFromPt Returns the coordinates of the item being dragged.

Construction

CDragListBox Constructs a CDragListBox object.

Operations

Drawlnsert Draws the insertion guide of the drag list box.

CDragListBox: :CancelDrag

Overridables

BeginDrag

CancelDrag

Dragging

Dropped

Called by the framework when a drag operation starts.

Called by the framework when a drag operation has been canceled.

Called by the framework during a drag operation.

Called by the framework after the item has been dropped.

Member Functions
CDragListBox: :BeginDrag

virtual BOOL BeginDrag(CPoint pt);

Return Value
Nonzero if dragging is allowed, otherwise O.

Parameters

Remarks

pt A CPoint object that contains the coordinates of the item being dragged.

Called by the framework when an event occurs that could begin a drag operation,
such as pressing the left mouse button. Override this function if you want to control
what happens when a drag operation begins. The default implementation captures the
mouse and stays in drag mode until the user clicks the left or right mouse button or
presses ESC, at which time the drag operation is canceled.

See Also CDragListBox: :CanceIDrag, CDragListBox: :Dragging

CDragListBox: :CancelDrag
virtual void CancelDrag(CPoint pt);

Parameters

Remarks

pt A CPoint object that contains the coordinates of the item being dragged.

Called by the framework when a drag operation has been canceled. Override this
function to handle any special processing for your list box control.

See Also CDragListBox: :BeginDrag, CDragListBox: :Dragging

601

CDragListBox: : CDragListB ox

CDragListBox: :CDragListBox

Remarks

CDragListBox();

Constructs a CDragListBox object.

See Also CListBox::Create

CDragListBox: : Dragging
virtual UINT Dragging(CPoint pt);

Return Value
The resource ID of the cursor to be displayed. The following values are possible:

• DL_COPYCURSOR Indicates that the item will be copied.

• DL_MOVECURSOR Indicates that the item will be moved.

• DL_STOPCURSOR Indicates that the current drop target is not acceptable.

Parameters

Remarks

pt A CPoint object that contains the x and y screen coordinates of the cursor.

Called by the framework when a list box item is being dragged within the
CDragListBox object. The default behavior returns DL_MOVECURSOR.
Override this function if you want to provide additional functionality.

See Also CDragListBox: : BeginDrag, CDragListBox: :CancelDrag

CDragListBox: : Draw Insert
virtual void DrawInsert(int nltem);

Parameters

Remarks

602

nltem Zero-based index of the insertion point.

Called by the framework to draw the insertion guide before the item with the
indicated index. A value of - 1 clears the insertion guide. Override this function to
modify the appearance or behavior of the insertion guide.

CDragListBox: : ItemFromPt

CDragListBox: : Dropped
virtual void Dropped(iot nSrclndex, CPoiot pt);

Parameters

Remarks

nSrcIndex Specifies the zero-based index of the dropped string.

pt A CPoiot object that contains the coordinates of the drop site.

Called by the framework when an item is dropped within a CDragListBox object.
The default behavior copies the list box item and its data to the new location and then
deletes the original item. Override this function to customize the default behavior,
such as enabling copies of list box items to be dragged to other locations within the
list.

See Also CDragListBox: : BeginDrag

CDragListBox: : ItemFromPt
iot ItemFromPt(CPoiot pt, BOOL bAutoScroll = TRUE);

Return Value
Zero-based index of the drag list box item.

Parameters
pt A CPoint object containing the coordinates of a point within the list box.

bAutoScroll Nonzero if scrolling is allowed, otherwise O.

Remarks
Call this function to retrieve the zero-based index of the list box item located at pt.

603

CDumpContext

CDumpContext

604

The CDumpContext class supports stream-oriented diagnostic output in the form of
human-readable text. You can use afxDump, a predeclared CDumpContext object,
for most of your dumping. The afxDump object is available only in the Debug
version of the Microsoft Foundation Class Library.

Several of the memory diagnostic functions use afxDump for their output.

Under the Windows environment, the output from the predefined afxDump object,
conceptually similar to the cerr stream, is routed to the debugger via the Windows
function OutputDebugString.

The CDumpContext class has an overloaded insertion «<) operator for CObject
pointers that dumps the object's data. If you need a custom dllmp format for a derived
object, override CObject::Dump. Most Microsoft Foundation classes implement an
overridden Dump member function.

Classes that are not derived from CObject, such as CString, CTime, and
CTimeSpan, have their own overloaded CDumpContext insertion operators, as
do often-used structures such as CFileStatus, CPoint, and CRect.

If you use the IMPLEMENT_DYNAMIC or IMPLEMENT_SERIAL macro in the
implementation of your class, then CObject: :Dump will print the name of your
CObject-derived class. Otherwise, it will print CObj ect.

The CDumpContext class is available with both the Debug and Release versions of
the library, but the Dump member function is defined only in the Debug version. Use
#ifdef _DEBUG / #endif statements to bracket your diagnostic code, including your
custom Dump member functions.

Before you create your own CDumpContext object, you must create a CFile object
that serves as the dump destination.

For more information on CDumpContext, see the articles "Diagnostics: Dumping
Object Contents" and "Diagnostics: Dumping All Objects" in Programming
withMPC.

#define _DEBUG

#include <afx.h>

See Also CFile, CObject

Construction

CDumpContext Constructs a CDumpContext object.

CDumpContext: :Flush

Basic Input/Output

Flush

operator «
HexDump

Status

GetDepth

SetDepth

Flushes any data in the dump context buffer.

Inserts variables and objects into the dump context.

Dumps bytes in hexadecimal format.

Gets an integer corresponding to the depth of the dump.

Sets the depth of the dump.

Member Functions
CDumpContext: :CDumpContext

CDumpContext(CFile* pFile);
throw(CMemoryException, CFileException);

Parameters

Remarks

Example

pFile A pointer to the CFile object that is the dump destination.

Constructs an object of class CDumpContext. The afxDump object is constructed
automatically.

Do not write to the underlying CFile while the dump context is active; otherwise, you
will interfere with the dump. Under the Windows environment, the output is routed to
the debugger via the Windows function OutputDebugString.

Ilexample for CDumpContext::CDumpContext
CFile f;
if(!f.Open("dump.txt". CFile::modeCreate CFile::modeWrite» {

afxDump « "Unable to open file" « "\n";
exit (1);

CDumpContext dc(&f);

CDumpContext: :Flush
void Flush();

throw(CFileException);

605

CDumpContext::GetDepth

Remarks

Example

Forces any data remaining in buffers to be written to the file attached to the dump
context.

//example for COumpContext::Flush
afxOump.Flush();

CDumpContext: : GetDepth
int GetDepth() const;

Return Value
The depth of the dump as set by SetDepth.

Remarks
Determines whether a deep or shallow dump is in process.

Example
See the example for SetDepth.

See Also CDumpContext: :SetDepth

CDumpContext: : HexDump
void HexDump(LPCTSTR lpszLine, BYTE* pby, int nBytes, int n Width);

throw(CFileException);

Parameters

Remarks

Example

606

lpszLine A string to output at the start of a new line.

pby A pointer to a buffer containing the bytes to dump.

nBytes The number of bytes to dump.

n Width Maximum number of bytes dumped per line (not the width of the output
line).

Dumps an array of bytes formatted as hexadecimal numbers.

//example for COumpContext::HexOump
char test[] = "This is a test of COumpContext::HexOump\n";
afxOump.HexOump(".", (BYTE*) test, sizeof test, 20);

The output from this program is:

54 68 69 73 20 69 73 20 61 20 74 65 73 74 20 6F 66 20 43 44
75 60 70 43 6F 6E 74 65 78 74 3A 3A 48 65 78 44 75 60 70 0A

. 00

CDumpContext: : operator «

CDumpContext: : SetDepth
void SetDepth(int nNewDepth);

Parameters

Remarks

Example

nNewDepth The new depth value.

Sets the depth for the dump. If you are dumping a primitive type or simple CObject
that contains no pointers to other objects, then a value of 0 is sufficient. A value
greater than 0 specifies a deep dump where all objects are dumped recursively. For
example, a deep dump of a collection will dump all elements of the collection. You
may use other specific depth values in your derived classes.

Note Circular references are not detected in deep dumps and can result in infinite loops.

Ilexample for CDumpContext::SetDepth
afxDump.SetDepth(1); II Specifies deep dump
ASSERT(afxDump.GetDepth() == 1);

See Also CObject: :Dump

Operators
CDumpContext::operator «

CDumpContext& operator «(const CObject* pOb);
throw(CFileException);

CDumpContext& operator «(const CObject& ob);
throw(CFileException);

CDumpContext& operator «(LPCTSTR Ipsz);
throw(CFileException);

CDumpContext& operator «(const void* Ip);
throw(CFileException);

CDumpContext& operator «(BYTE by);
throw(CFileException);

CDumpContext& operator «(WORD w);
throw(CFileException);

CDumpContext& operator «(DWORD dw);
throw(CFileException);

CDumpContext& operator «(int n);
throw(CFileException);

CDumpContext& operator «(double d);
throw(CFileException);

607

CDumpContext::operator «

CDumpContext& operator «(float!);
throw(CFileException);

CDumpContext& operator «(LONG I);
throw(CFileException);

CDumpContext& operator «(UINT u);
throw(CFileException);

CDumpContext& operator «(LPCWSTR lpsz);
throw(CFileException);

CDumpContext& operator «(LPCSTR lpsz);
throw(CFileException);

Return Value

Remarks

Example

608

A CDumpContext reference. Using the return value, you can write multiple
insertions on a single line of source code.

Outputs the specified data to the dump context.

The insertion operator is overloaded for CObject pointers as well as for most
primitive types. A pointer to character results in a dump of string contents; a pointer
to void results in a hexadecimal dump of the address only.

If you use the IMPLEMENT_DYNAMIC or IMPLEMENT_SERIAL macro in the
implementation of your class, then the insertion operator, through CObject::Dump,
will print the name of your CObject-derived class. Otherwise, it will print CObj ect.
If you override the Dump function of the class, then you can provide a more
meaningful output of the object's contents instead of a hexadecimal dump.

//example for CDumpContext::operator «
extern CObList li;
CString s - "test";
int i ... 7;
long 10 = 1000000000L;
afxDump « "list-" « &li « "string-"

« s « "int=" « i « "long-" « 10 « "\n";

CDWordArray

The CDWordArray class supports arrays of 32-bit doublewords.

The member functions of CDWordArray are similar to the member functions of
class CObArray. Because of this similarity, you can use the CObArray reference
documentation for member function specifics. Wherever you see a CObject pointer
as a function parameter or return value, substitute a DWORD.

CObject* CObArray::GetAt(int <nlndex>) canst:

for example, translates to

DWORD CDWardArray::GetAt(int <nlndex>) canst:

CDWordArray incorporates the IMPLEMENT_SERIAL macro to support
serialization and dumping of its elements. If an array of doublewords is stored to
an archive, either with the overloaded insertion «<) operator or with the Serialize
member function, each element is, in tum, serialized.

Note Before using an array, use SetSize to establish its size and allocate memory for it. If
you do not use SetSize, adding elements to your array causes it to be frequently reallocated
and copied. Frequent reallocation and copying are inefficient and can fragment memory.

If you need debug output from individual elements in the array, you must set the
depth of the CDumpContext object to 1 or greater.

For more information on using CDWordArray, see the article "Collections" in
Programming with MFC.

#include <afxcoll.h>

See Also CObArray

Construction

CDWordArray

Bounds

GetSize

GetUpperBound

SetSize

Constructs an empty array for doublewords.

Gets the number of elements in this array.

Returns the largest valid index.

Sets the number of elements to be contained in this array.

CDWordArray

609

CDWordArray

610

Operations

FreeExtra

RemoveAll

Element Access

GetAt

SetAt

ElementAt

Growing the Array

SetAtGrow

Add

Insertion/Removal

InsertAt

RemoveAt

Operators

operator []

Frees all unused memory above the current upper bound.

Removes all the elements from this array.

Returns the value at a given index.

Sets the value for a given index; array not allowed to grow.

Returns a temporary reference to the doubleword within the
array.

Sets the value for a given index; grows the array if necessary.

Adds an element to the end of the array; grows the array if
necessary.

Inserts an element (or all the elements in another array) at a
specified index.

Removes an element at a specific index.

Sets or gets the element at the specified index.

CEdit

The CEdit class provides the functionality of a Windows edit control. An edit control
is a rectangular child window in which the user can enter text.

You can create an edit control either from a dialog template or directly in your code.
In both cases, first call the constructor CEdit to construct the CEdit object, then call
the Create member function to create the Windows edit control and attach it to the
CEdit object.

Construction can be a one-step process in a class derived from CEdit. Write a
constructor for the derived class and call Create from within the constructor.

CEdit inherits significant functionality from CWnd. To set and retrieve text
from a CEdit object, use the CWnd member functions SetWindowText and
GetWindowText, which set or get the entire contents of an edit control, even if it
is a multiline control. Also, if an edit control is multiline, get and set part of the
control's text by calling the CEdit member functions GetLine, SetSel, GetSel,
and ReplaceSel.

If you want to handle Windows notification messages sent by an edit control to its
parent (usually a class derived from CDialog), add a message-map entry and
message-handler member function to the parent class for each message.

Each message-map entry takes the following form:

ON_Notification(id, memberFxn)

where id specifies the child window ID of the edit control sending the notification,
and memberFxn is the name of the parent member function you have written to
handle the notification.

The parent's function prototype is as follows:

afx_msg void memberFxn();

CEdit

611

CEdit

612

Following is a list of potential message-map entries and a description of the cases in
which they would be sent to the parent:

• ON_EN_CHANGE The user has taken an action that may have altered text in
an edit control. Unlike the EN_UPDATE notification message, this notification
message is sent after Windows updates the display.

• ON_EN_ERRSPACE The edit control cannot allocate enough memory to meet
a specific request.

• ON_EN_HSCROLL The user clicks an edit control's horizontal scroll bar. The
parent window is notified before the screen is updated.

• ON_EN_KILLFOCUS The edit contrqlloses the input focus.

• ON_EN_MAXTEXT The current insertion has exceeded the specified number
of characters for the edit control and has been truncated. Also sent when an edit
control does not have the ES_AUTOHSCROLL style and the number of
characters to be inserted would exceed the width of the edit control. Also sent
when an edit control does not have the ES_AUTOVSCROLL style and the total
number of lines resulting from a text insertion would exceed the height of the edit
control.

• ON_EN_SETFOCUS Sent when an edit control receives the input focus.

• ON_EN_UPDATE The edit control is about to display altered text. Sent after the
control has formatted the text but before it screens the text so that the window size
can be altered, if necessary.

• ON_EN_ VSCROLL The user clicks an edit control's vertical scroll bar. The
parent window is notified before the screen is updated.

If you create a CEdit object within a dialog box, the CEdit object is automatically
destroyed when the user closes the dialog box.

If you create a CEdit object from a dialog resource using the dialog editor, the CEdit
object is automatically destroyed when the user closes the dialog box.

If you create a CEdit object within a window, you may also need to destroy it. If you
create the CEdit object on the stack, it is destroyed automatically. If you create the
CEdit object on the heap by using the new function, you must call delete on the
object to destroy it when the user terminates the Windows edit control. If you allocate
any memory in the CEdit object, override the CEdit destructor to dispose of the
allocations.

For more information on CEdit, see the article "Controls" in Programming
withMFC.

#include <afxwin.h>

See Also CWnd, CButton, CComboBox, CListBox, CScrollBar, CStatic,
CDialog

Construction

CEdit

Create

General Operations

GetSel

ReplaceSel

SetSel

Clear

Copy

Cut

Paste

Undo

CanUndo

EmptyUndoBuffer

GetModify

SetModify

SetReadOnly

GetPasswordChar

SetPasswordChar

GetFirst VisibleLine

LineLength

LineScroll

LineFromChar

GetRect

LimitText

Constructs a CEdit control object.

Creates the Windows edit control and attaches it to the CEdit
object.

Gets the starting and ending character positions of the current
selection in an edit control.

Replaces the current selection in an edit control with the
specified text.

Selects a range of characters in an edit control.

Deletes (clears) the current selection (if any) in the edit
control.

Copies the current selection (if any) in the edit control to the
Clipboard in CF _TEXT format.

Deletes (cuts) the current selection (if any) in the edit control
and copies the deleted text to the Clipboard in CF _TEXT
format.

Inserts the data from the Clipboard into the edit control at the
current cursor position. Data is inserted only if the Clipboard
contains data in CF _TEXT format.

Reverses the last edit-control operation.

Determines whether an edit-control operation can be undone.

Resets (clears) the undo flag of an edit control.

Determines whether the contents of an edit control have been
modified.

Sets or clears the modification flag for an edit control.

Sets the read-only state of an edit control.

Retrieves the password character displayed in an edit control·
when the user enters text.

Sets or removes a password character displayed in an edit
control when the user enters text.

Determines the topmost visible line in an edit control.

Retrieves the length of a line in an edit control.

Scrolls the text of a multiple-line edit control.

Retrieves the line number of the line that contains the
specified character index.

Gets the formatting rectangle of an edit control.

Limits the length of the text that the user may enter into an
edit control.

CEdit

613

CEdit::CanUndo

Multiple-Line Operations

GetLineCount

GetLine

LineIndex

FmtLines

SetTabStops

SetRect

SetRectNP

GetHandle

SetHandle

Windows 95 Operations

GetMargins

SetMargins

GetLimitText

SetLimitText

CharFromPos

PosFromChar

Retrieves the number of lines in a multiple-line edit controL

Retrieves a line of text from an edit controL

Retrieves the character index of a line within a multiple-line
edit controL

Sets the inclusion of soft line-break characters on or off
within a multiple-line edit controL

Sets the tab stops in a multiple-line edit controL

Sets the formatting rectangle of a multiple-line edit control
and updates the control.

Sets the formatting rectangle of a multiple-line edit control
without redrawing the control window.

Retrieves a handle to the memory currently allocated for a
multiple-line edit control.

Sets the handle to the local memory that will be used by a
multiple-line edit control.

Gets the left and right margins for this CEdit.

Sets the left and right margins for this CEdit.

Gets the maximum amount of text this CEdit can contain.

Sets the maximum amount of text this CEdit can contain.

Retrieves the line and character indices for the character
closest to a specified position.

Retrieves the coordinates of the upper-left comer of a
specified character index.

Member Functions
CEdit::CanUndo

BOOL CanUndo() const;

Return Value

Remarks

614

Nonzero if the last edit operation can be undone by a call to the Undo member
function; 0 if it cannot be undone.

Call this function to determine if the last edit operation can be undone.

For more information, see EM_CANUNDO in the Win32 documentation.

See Also CEdit:: Undo, CEdit: :EmptyUndoButTer

CEdit: : CEdit

Remarks

CEdit();

Constructs a CEdit object. Use Create to construct the Windows edit control.

See Also CEdit::Create

CEdit: :CharFromPos
int CharFromPos(CPoint pt) const;

Return Value
The character index in the low-order WORD, and the line index in the high-order
WORD.

Parameters

Remarks

pt The coordinates of a point in the client area of this CEdit object.

Call this function to retrieve the zero-based line and character indices of the character
nearest the specified point in this CEdit control

Note This member function is available only in Windows 95.

For more information, see EM_CHARFROMPOS in the Win32 documentation.

See Also CEdit: :PosFromChar

CEdit::Clear

Remarks

void Clear();

Call this function to delete (clear) the current selection (if any) in the edit control.

The deletion performed by Clear can be undone by calling the Undo member
function.

To delete the current selection and place the deleted contents into the Clipboard, call
the Cut member function.

For more information, see WM_CLEAR in the Win32 documentation.

See Also CEdit::Undo, CEdit::Copy, CEdit::Cut, CEdit::Paste

CEdit: : Clear

615

CEdit::Copy

CEdit: :Copy

Remarks

void Copy();

Call this function to coy the current selection (if any) in the edit control to the
Clipboard in CF_TEXT format.

For more information, see WM_COPY in the Win32 documentation.

See Also CEdit::Clear, CEdit::Cut, CEdit::Paste

CEdit: : Create
BOOL Create(DWORD dwStyle, const RECT & reet, CWnd* pParentWnd, UINT nID);

Return Value
Nonzero if initialization is successful; otherwise O.

Parameters

Remarks

616

dwStyle Specifies the edit control's style. Apply any combination of edit styles to the
control. For a list of edit styles, see "Edit Styles" in the "Styles Used by MFC"
section.

reet Specifies the edit control's size and position. Can be a CRect object or RECT
structure.

pParentWnd Specifies the edit control's parent window (usually a CDialog). It must
not be NULL.

nID Specifies the edit control's ID.

You construct a CEdit object in two steps. First, call the CEdit constructor, then call
Create, which creates the Windows edit control and attaches it to the CEdit object.

When Create executes, Windows sends the WM_NCCREATE,
WM_NCCALCSIZE, WM_CREATE, and WM_GETMINMAXINFO messages
to the edit control.

These messages are handled by default by the OnNcCreate, OnNcCalcSize,
OnCreate, and OnGetMinMaxlnfo member functions in the CWnd base class. To
extend the default message handling, derive a class from CEdit, add a message map
to the new class, and override the above message-handler member functions.
Override OnCreate, for example, to perform needed initialization for the new class.

Apply the following window styles to an edit control. For a list of window styles, see
"Window Styles" in the "Styles Used by MFC" section.

CEdit: :EmptyUndoBuffer

• WS_CHILD Always

• WS_ VISffiLE Usually

• WS_DISABLED Rarely

• WS_GROUP To group controls

• WS_TABSTOP To include edit control in the tabbing order

See Also CEdit:: CEdit

CEdit::Cut

Remarks

void Cut();

Call this function to delete (cut) the current selection (if any) in the edit control and
copy the deleted text to the Clipboard in CF _TEXT format.

The deletion performed by Cut can be undone by calling the Undo member function.

To delete the current selection without placing the deleted text into the Clipboard,
call the Clear member function.

For more information, see WM_CUT in the Win32 documentation.

See Also CEdit::Undo, CEdit::Clear, CEdit::Copy, CEdit::Paste

CEdit::EmptyUndoBuffer
void EmptyUndoBuffer();

Remarks
Call this function to reset (clear) the undo flag of an edit control. The edit control
will now be unable to undo the last operation. The undo flag is set whenever an
operation within the edit control can be undone.

The undo flag is automatically cleared whenever the SetWindowText or SetHandle
CWnd member functions are called.

For more information, see EM_EMPTYUNDOBUFFER in the Win32
documentation.

See Also CEdit::CanUndo, CEdit::SetHandle, CEdit::Undo,
CWnd::SetWindowText

617

CEdit: :FmtLines

CEdit: :FmtLines
BOOL FmtLines(BOOL bAddEOL);

Return Value
Nonzero if any formatting occurs; otherwise O.

Parameters

Remarks

bAddEOL Specifies whether soft line-break characters are to be inserted. A value of
TRUE inserts the characters; a value of FALSE removes them.

Call this function to set the inclusion of soft line-break characters on or off within a
mUltiple-line edit control. A soft line break consists of two carriage returns and a
linefeed inserted at the end of a line that is broken because of word wrapping. A hard
line break consists of one carriage return and a linefeed. Lines that end with a hard
line break are not affected by FmtLines.

Windows will only respond if the CEdit object is a multiple-line edit control.

FmtLines only affects the buffer returned by GetHandle and the text returned by
WM_GETTEXT.1t has no impact on the display of the text within the edit control.

For more information, see EM_FMTLINES in the Win32 documentation.

See Also CEdit::GetHandle, CWnd::GetWindowText

CEdit:: GetFirst VisibleLine
int GetFirstVisibleLine() const;

Return Value

Remarks

618

The zero-based index of the topmost visible line. For single-line edit controls, the
return value is O.

Call this function to determine the topmost visible line in an edit control.

For more information, see EM_GETFIRSTVISIBLELINE in the Win32
documentation.

See Also CEdit::GetLine

CEdit: : GetHandle
HLOCAL GetHandle() const;

Return Value

Remarks

A local memory handle that identifies the buffer holding the contents of the edit
control. If an error occurs, such as sending the message to a single-line edit control,
the return value is O.

Call this function to retrieve a handle to the memory currently allocated for a
multiple-line edit control. The handle is a local memory handle and may be used by
any of the Local Windows memory functions that take a local memory handle as a
parameter.

GetHandle is processed only by multiple-line edit controls.

Call GetHandle for a multiple-line edit control in a dialog box only if the dialog box
was created with the DS_LOCALEDIT style flag set. If the DS_LOCALEDIT style
is not set, you will still get a nonzero return value, but you will not be able to use the
returned value.

For more information, see EM_GETHANDLE in the Win32 documentation.

See Also CEdit: :SetHandle

CEdit:: GetLimitText
UINT GetLimitText() const;

Return Value

Remarks

The current text limit, in bytes, for this CEdit object.

Call this member function to get the text limit for this CEdit object. The text limit is
the maximum amount of text, in bytes, that the edit control can accept.

Note This member function is available only in Windows 95.

For more information, see EM_GETLIMITTEXT in the Win32 documentation.

See Also CEdit: :SetLimitText, CEdit: :LimitText

CEdit::GetLimitText

619

CEdit: : GetLine

CEdit::GetLine
int GetLine(int nlndex, LPTSTR IpszBujfer) const;
int GetLine(int nlndex, LPTSTR IpszBujfer, int nMaxLength) const;

Return Value
The number of bytes actually copied. The return value is 0 if the line number
specified by nlndex is greater then the number of lines in the edit control.

Parameters

Remarks

nlndex Specifies the line number to retrieve from a multiple-line edit control. Line
numbers are zero-based; a value of 0 specifies the first line. This parameter is
ignored by a single-line edit control.

IpszBujfer Points to the buffer that receives a copy of the line. The first word of the
buffer must specify the maximum number of bytes that can be copied to the buffer.

nMaxLength Specifies the maximum number of bytes that can be copied to the
buffer. GetLine places this value in the first word of IpszBujfer before making the
call to Windows.

Call this function to retrieve a line of text from an edit control and places it in
IpszBujfer. This call is not processed for a single-line edit control.

The copied line does not contain a null-termination character.

For more information, see EM_GETLINE in the Win32 documentation.

See Also CEdit::LineLength, CWnd::GetWindowText

CEdit: : GetLineCount
int GetLineCount() const;

Return Value

Remarks

620

An integer containing the number of lines in the multiple-line edit control. If no text
has been entered into the edit control, the return value is 1.

Call this function to retrieve the number of lines in a multiple-line edit control.

GetLineCount is only processed by multiple-line edit controls.

For more information, see EM_GETLINECOUNT in the Win32 documentation.

CEdit: : GetPasswordChar

CEdit: : GetMargins
DWORD GetMargins() const;

Return Value

Remarks

The width of the left margin in the low-order WORD and the width of the right
margin in the high-order WORD.

Call this member function to retrieve the left and right margins of this edit control.
Margins are measured in pixels.

Note This member function is available only in Windows 95.

For more information, see EM_GETMARGINS in the Win32 documentation.

See Also CEdit::SetMargins

CEdit::GetModify
BOOL GetModify() const;

Return Value

Remarks

Nonzero if the edit-control contents have been modified; 0 if they have remained
unchanged.

Call this function to determine whether the contents of an edit control have been
modified.

Windows maintains an internal flag indicating whether the contents of the edit
control have been changed. This flag is cleared when the edit control is first created
and may also be cleared by calling the SetModify member function.

For more information, see EM_GETMODIFY in the Win32 documentation.

See Also CEdit: :SetModify

CEdit: : GetPasswordChar
TCHAR GetPasswordChar() const;

Return Value

Remarks

Specifies the character to be displayed in place of the character typed by the user. The
return value is NULL if no password character exists.

Call this function to retrieve the password character displayed in an edit control when
the user enters text.

621

CEdit::GetRect

If the edit control is created with the ES_PASSWORD style, the default password
character is set to an asterisk (*).

For more information, see EM_GETPASSWORDCHAR in the Win32
documentation.

See Also CEdit::SetPasswordChar

CEdit: : GetRect
void GetRect(LPRECT IpRect) const;

Parameters

Remarks

IpRect Points to the RECT structure that receives the formatting rectangle.

Call this function to get the formatting rectangle of an edit control. The formatting
rectangle is the limiting rectangle of the text, which is independent of the size of the
edit-control window.

The formatting rectangle of a multiple-line edit control can be modified by the
SetRect and SetRectNP member functions.

For more information, see EM_GETRECT in the Win32 documentation.

See Also CEdit: :SetRect, CEdit: :SetRectNP

CEdit: :GetSel
DWORD GetSel() const;
void GetSel(int& nStartChar, int& nEndChar) const;

Return Value
The version that returns a DWORD returns a value that contains the starting position
in the low-order word and the position of the first nonselected character after the end
of the selection in the high-order word.

Parameters

Remarks

622

nStartChar Reference to an integer that will receive the position of the first
character in the current selection.

nEndChar Reference to an integer that will receive the position of the first
nonselected character past the end of the current selection.

Call this function to get the starting and ending character positions of the current
selection (if any) in an edit control, using either the return value or the parameters.

For more information, see EM_GETSEL in the Win32 documentation.

See Also CEdit: :SetSel

CEdit: :LimitText
void LimitText(int nChars = 0);

Parameters

Remarks

nChars Specifies the length (in bytes) of the text that the user can enter. If this
parameter is 0, the text length is set to DINT_MAX bytes. This is the default
behavior.

Call this function to limit the length of the text that the user may enter into an edit
control.

Changing the text limit restricts only the text the user can enter. It has no effect on
any text already in the edit control, nor does it affect the length of the text copied to
the edit control by the SetWindowText member function in CWnd. If an application
uses the SetWindowText function to place more text into an edit control than is
specified in the call to LimitText, the user can delete any of the text within the edit
control. However, the text limit will prevent the user from replacing the existing text
with new text, unless deleting the current selection causes the text to fall below the
text limit.

Note In Win32 (Windows NT and Windows 95), SetLimitText replaces this function.

For more information, see EM_LIMITTEXT in the Win32 documentation.

See Also CWnd: :SetWindowText, CEdit: : GetLimitText, CEdit: :SetLimitText

CEdit: : LineFromChar
int LineFromChar(int nlndex = -1) const;

Return Value
The zero-based line number of the line containing the character index specified by
nlndex. If nlndex is -1, the number of the line that contains the first character of the
selection is returned. If there is no selection, the current line number is returned.

Parameters
nlndex Contains the zero-based index value for the desired character in the text of

the edit control, or contains -1. If nlndex is -1, it specifies the current line, that is,
the line that contains the caret.

CEdit: :LineFromChar

623

CEdit: : Linelndex

Remarks
Call this function to retrieve the line number of the line that contains the specified
character index. A character index is the number of characters from the beginning of
the edit control.

This member function is only used by multiple-line edit controls.

For more information, see EM_LINEFROMCHAR in the Win32 documentation.

See Also CEdit: :Linelndex

CEdit: :LineIndex
int Linelndex(int nLine = -1) const;

Return Value
The character index of the line specified in nLine or -1 if the specified line number is
greater then the number of lines in the edit control.

Parameters

Remarks

nLine Contains the index value for the desired line in the text of the edit control, or
contains -1. If nLine is -1, it specifies the current line, that is, the line that
contains the caret.

Call this function to retrieve the character index of a line within a multiple-line edit
control. The character index is the number of characters from the beginning of the
edit control to the specified line.

This member function is only processed by multiple-line edit controls.

For more information, see EM_LINEINDEX in the Win32 documentation.

See Also CEdit: :LineFromChar

CEdit: :LineLength
int LineLength(int nLine = -1) const;

Return Value

624

When LineLength is called for a multiple-line edit control, the return value is the
length (in bytes) of the line specified by nLine. When LineLength is called for a
single-line edit control, the return value is the length (in bytes) of the text in the edit
control.

Parameters

Remarks

nLine Specifies the character index of a character in the line whose length is to be
retrieved. If this parameter is -1, the length of the current line (the line that
contains the caret) is returned, not including the length of any selected text within
the line. When LineLength is called for a single-line edit control, this parameter
is ignored.

Call this function to retrieve the length of a line in an edit control.

Use the LineIndex member function to retrieve a character index for a given line
number within a mUltiple-line edit control.

For more information, see EM_LINELENGTH in the Win32 documentation.

See Also CEdit::LineIndex

CEdit: :LineScroll
void LineScroll(int nLines, int nChars = 0);

Parameters

Remarks

nLines Specifies the number of lines to scroll vertically.

nChars Specifies the number of character positions to scroll horizontally. This value
is ignored if the edit control has either the ES_RIGHT or ES_CENTER style.

Call this function to scroll the text of a multiple-line edit control.

This member function is processed only by multiple-line edit controls.

The edit control does not scroll vertically past the last line of text in the edit control.
If the current line plus the number of lines specified by nLines exceeds the total
number of lines in the edit control, the value is adjusted so that the last line of the
edit control is scrolled to the top of the edit-control window.

LineScroll can be used to scroll horizontally past the last character of any line.

For more information, see EM_LINES CROLL in the Win32 documentation.

See Also CEdit: :LineIndex

CEdit: :Paste

Remarks

void Paste();

Call this function to insert the data from the Clipboard into the CEdit at the insertion
point. Data is inserted only if the Clipboard contains data in CF _TEXT format.

CEdit: : Paste

625

CEdit: :PosFromChar

For more information, see WM_PASTE in the Win32 documentation.

See Also CEdit::Clear, CEdit::Copy, CEdit::Cut

CEdit: :PosFromChar
CPoint PosFromChar(UINT nChar) const;

Return Value
The coordinates of the top-left comer of the character specified by nChar.

Parameters

Remarks

nChar The zero-based index of the specified character.

Call this function to get the position (top-left comer) of a given character within this
CEdit object. The character is specified by giving its zero-based index value. If
nChar is greater than the index of the last character in this CEdit object, the return
value specifies the coordinates of the character position just past the last character in
this CEdit object.

Note This member function is available only in Windows 95.

For more information, see EM_POSFROMCHAR in the Win32 documentation.

See Also CEdit::CharFromPos

CEdit: :ReplaceSel
void ReplaceSel(LPCTSTR lpszNewText);

Parameters

Remarks

626

lpszNewText Points to a null-terminated string containing the replacement text.

Call this function to replace the current selection in an edit control with the text
specified by lpszNewText.

Replaces only a portion of the text in an edit control. If you want to replace all of the
text, use the CWnd::SetWindowText member function.

If there is no current selection, the replacement text is inserted at the current cursor
location.

For more information, see EM_REPLACESEL in the Win32 documentation.

See Also CWnd: :SetWindowText

CEdit:: SetHandle
void SetHandle(HLOCAL hBuffer);

Parameters

Remarks

hBuffer Contains a handle to the local memory. This handle must have been created
by a previous call to the LocalAlloc Windows function using the
LMEM_MOVEABLE flag. The memory is assumed to contain a null-terminated
string. If this is not the case, the first byte of the allocated memory should be
set to O.

Call this function to set the handle to the local memory that will be used by a
multiple-line edit control. The edit control will then use this buffer to store the
currently displayed text instead of allocating its own buffer.

This member function is processed only by multiple-line edit controls.

Before an application sets a new memory handle, it should use the GetHandle
member function to get the handle to the current memory buffer and free that
memory using the LocalFree Windows function.

SetHandle clears the undo buffer (the CanUndo member function then returns 0)
and the internal modification flag (the GetModify member function then returns 0).
The edit-control window is redrawn.

You can use this member function in a multiple-line edit control in a dialog box only
if you have created the dialog box with the DS_LOCALEDIT style flag set.

For more information, see EM_SETHANDLE, LocalAIloc, and LocalFree in the
Win32 documentation.

See Also CEdit::CanUndo, CEdit::GetHandle, CEdit::GetModify

CEdi t: : SetLimi tText
void SetLimitText(UINT nMax);

Parameters

Remarks

nMax The new text limit, in bytes.

Call this member function to set the text limit for this CEdit object. The text limit is
the maximum amount of text, in bytes, that the edit control can accept.

Changing the text limit restricts only the text the user can enter. It has no effect on
any text already in the edit control, nor does it affect the length of the text copied to
the edit control by the SetWindowText member function in CWnd. If an application
uses the SetWindowText function to place more text into an edit control than is

CEdit::SetLimitText

627

CEdit: :SetMargins

specified in the call to LimitText, the user can delete any of the text within the edit
control. However, the text limit will prevent the user from replacing the existing text
with new text, unless deleting the current selection causes the text to fall below the
text limit.

This function replaces LimitText in Win32.

Note This member function is not available in Win32s. Use LimitText in Win32s.

For more information, see EM_SETLIMITTEXT in the Win32 documentation.

See Also CEdit: : GetLimitText, CEdit: : LimitText

CEdit::SetMargins
void SetMargins(UINT nLeft, UINT nRight);

Parameters

Remarks

nLeft The width of the new left margin, in pixels.

nRight The width of the new right margin, in pixels.

Call this member function to set the left and right margins of this edit control.

Note This member function is available only in Windows 95.

For more information, see EM_SETMARGINS in the Win32 documentation.

See Also CEdit::GetMargins

CEdit:: SetModify
void SetModify(BOOL bModified = TRUE);

Parameters

Remarks

628

bModified A value of TRUE indicates that the text has been modified, and a value
of FALSE indicates it is unmodified. By default, the modified flag is set.

Call this function to set or clear the modified flag for an edit control. The modified
flag indicates whether or not the text within the edit control has been modified. It is
automatically set whenever the user changes the text. Its value may be retrieved with
the GetModify member function.

For more information, see EM_SETMODIFY in the Win32 documentation.

See Also CEdit: : GetModify

CEdit:: SetPasswordChar
void SetPasswordChar(TCHAR ch);

Parameters

Remarks

ch Specifies the character to be displayed in place of the character typed by the user.
If ch is 0, the actual characters typed by the user are displayed.

Call this function to set or remove a password character displayed in an edit control
when the user types text. When a password character is set, that character is
displayed for each character the user types.

This member function has no effect on a multiple-line edit control.

When the SetPasswordChar member function is called, CEdit will redraw all
visible characters using the character specified by ch.

If the edit control is created with the ES_PASSWORD style, the default password
character is set to an asterisk (*). This style is removed if SetPasswordChar is called
with ch set to O.

For more information, see EM_SETPASSWORDCHAR in the Win32
docuqlentation.

See Also CEdit: : GetPasswordChar

CEdit: :SetReadOnly
BOOL SetReadOnly(BOOL bReadOnly = TRUE);

Return Value
Nonzero if the operation is successful, or 0 if an error occurs.

Parameters

Remarks

bReadOnly Specifies whether to set or remove the read-only state of the edit control.
A value of TRUE sets the state to read-only; a value of FALSE sets the state to
read/write.

Calls this function to set the read-only state of an edit control.

The current setting can be found by testing the ES_READONLY flag in the return
value of CWnd::GetStyle.

For more information, see EM_SETREADONLY in the Win32 documentation.

See Also CWnd::GetStyle

CEdit: :SetReadOnly

629

CEdit: :SetRect

CEdit:: SetRect
void SetRect(LPCRECT lpRect);

Parameters

Remarks

lpRect Points to the RECT structure or CRect object that specifies the new
dimensions of the formatting rectangle.

Call this function to set the dimensions of a rectangle using the specified coordinates.
This member is processed only by multiple-line edit controls.

Use SetRect to set the formatting rectangle of a multiple-line edit control. The
formatting rectangle is the limiting rectangle of the text, which is independent of the
size of the edit-control window. When the edit control is first created, the formatting
rectangle is the same as the client area of the edit-control window. By using the
SetRect member function, an application can make the formatting rectangle larger or
smaller than the edit-control window.

If the edit control has no scroll bar, text will be clipped, not wrapped, if the
formatting rectangle is made larger than the window. If the edit control contains a
border, the formatting rectangle is reduced by the size of the border. If you adjust the
rectangle returned by the GetRect member function, you must remove the size of the
border before you pass the rectangle to SetRect.

When SetRect is called, the edit control's text is also reformatted and redisplayed.

For more information, see EM_SETRECT in the Win32 documentation.

See Also CRect::CRect, CRect::CopyRect, CRect::operator =,
CRect::SetRectEmpty, CEdit: : GetRect, CEdit: :SetRectNP

CEdit: : SetRectNP
void SetRectNP(LPCRECT lpRect);

Parameters

Remarks

630

lpRect Points to a RECT structure or CRect object that specifies the new
dimensions of the rectangle.

Call this function to set the formatting rectangle of a multiple-line edit control. The
formatting rectangle is the limiting rectangle of the text, which is independent of the
size of the edit-control window.

SetRectNP is identical to the SetRect member function except that the edit-control
window is not redrawn.

When the edit control is first created, the formatting rectangle is the same as the
client area of the edit-control window. By calling the SetRectNP member function,
an application can make the formatting rectangle larger or smaller than the edit
control window.

If the edit control has no scroll bar, text will be clipped, not wrapped, if the
formatting rectangle is made larger than the window.

This member is processed only by mUltiple-line edit controls.

For more information, see EM_SETRECTNP in the Win32 documentation.

See Also CRect::CRect, CRect::CopyRect, CRect::operator =,
CRect: :SetRectEmpty, CEdit: : GetRect, CEdit: :SetRect

CEdit: : SetSel
void SetSel(DWORD dwSelection, BOOL bNoScroll = FALSE);
void SetSel(int nStartChar, int nEndChar, BOOL bNoScroll = FALSE);

Parameters

Remarks

dwSelection Specifies the starting position in the low-order word and the ending
position in the high-order word. If the low-order word is 0 and the high-order
word is -1, all the text in the edit control is selected. If the low-order word is -1,
any current selection is removed.

bNoScroll Indicates whether the caret should be scrolled into view. If FALSE, the
caret is scrolled into view. If TRUE, the caret is not scrolled into view.

nStartChar Specifies the starting position. If nStartChar is 0 and nEndChar is -1,
all the text in the edit control is selected. If nStartChar is -1, any current selection
is removed.

nEndChar Specifies the ending position.

Call this function to select a range of characters in an edit control.

For more information, see EM_SETSEL in the Win32 documentation.

See Also CEdit::GetSel, CEdit::ReplaceSel

CEdit: :SetTabStops
void SetTabStops();
BOOL SetTabStops(const int& cxEachStop);
BOOL SetTabStops(int nTabStops, LPINT rgTabStops);

Return Value
Nonzero if the tabs were set; otherwise O.

CEdit:: SetTabStops

631

CEdit::Undo

Parameters

Remarks

cxEachStop Specifies that tab stops are to be set at every cxEachStop dialog units.

nTabStops Specifies the number of tab stops contained in rgTabStops. This number
must be greater than 1.

rgTabStops Points to an array of unsigned integers specifying the tab stops in dialog
units. A dialog unit is a horizontal or vertical distance. One horizontal unit is
equal to one-fourth of the current base width unit, and 1 vertical unit is equal to
one-eighth of the current base height unit. The base units are computed based on
the height and width of the current system font. The GetDialogBaseUnits
Windows function returns the current dialog base units in pixels.

Call this function to set the tab stops in a multiple-line edit control. When text is
copied to a multiple-line edit control, any tab character in the text will cause space to
be generated up to the next tab stop.

To set tab to the default size of 32 dialog units, call the parameterless version of this
function. To set tab stops to a size other than 32, call the version with the cxEachStop
parameter. To set tab stops to an array of sizes, use the version with two parameters ..

SetTabStops does not automatically redraw the edit window. If you change the tab
stops for text already in the edit control, call CWnd::lnvalidateRect to redraw the
edit window.

For more information, see EM_SETTABSTOPS and GetDialogBaseUnits in the
Win32 documentation.

See Also CWnd::lnvalidateRect

CEdit::Undo
BOOL Undo();

Return Value

Remarks

632

For a single-line edit control, the return value is always nonzero. For a multiple-line
edit control, the return value is nonzero if the undo operation is successful, or 0 if the
undo operation fails.

Call this function to undo the last edit-control operation.

An undo operation can also be undone. For example, you can restore deleted text with
the first call to Undo. As long as there is no intervening edit operation, you can
remove the text again with a second call to Undo.

For more information, see EM_UNDO in the Win32 documentation.

See Also CEdit::CanUndo

CEditView

A CEditView object is a view that, like the CEdit class, provides the functionality of
a Windows edit control and can be used to implement simple text-editor functionality.
The CEditView class provides the following additional functions:

• Printing

• Find and replace

Because class CEditView is a derivative of class CView, objects of class CEditView
can be used with documents and document templates.

Each CEditView control's text is kept in its own global memory object. Your
application can have any number of CEditView objects.

Create objects of type CEditView if you want an edit window with the added
functionality listed above, or if you want simple text-editor functionality. A
CEditView object can occupy the entire client area of a window. Derive your own
classes from CEditView to add or modify the basic functionality, or to declare classes
that can be added to a document template.

The default implementation of class CEditView handles the following commands:
ID_EDIT_SELECT_ALL, ID_EDIT_FIND, ID_EDIT_REPLACE,
ID_EDIT_REPEAT, and ID_FILE_PRINT.

Objects of type CEditView (or of types derived from CEditView) have the following
limitations:

• CEditView does not implement true WYSIWYG (what you see is what you get)
editing. Where there is a choice between readability on the screen and matching
printed output, CEditView opts for screen readability.

• CEditView can display text in only a single font. No special character formatting
is supported. See class CRichEditView for greater capabilities.

• The amount of text a CEditView can contain is limited. The limits are the same as
for the CEdit control.

CEditView

633

CEditView

634

For more information on CEditView, see "Special View Classes" in Chapter 1 of
Programming with MPC.

#include <afxext.h>

See Also CEdit, CDocument, CDocTemplate, CCtrlView, CRichEditView

Data Members

dwStyleDefault

Construction

CEditView

Attributes

GetEditCtrl

GetPrinterFont

GetSelectedText

LockBuffer

UnlockBuffer

GetBufferLength

SetPrinterFont

SetTabStops

Operations

FindText

PrintinsideRect

SerializeRaw

Overridables

OnFindNext

OnReplaceAll

OnReplaceSel

OnTextNotFound

Default style for objects of type CEditView.

Constructs an object of type CEditView.

Provides access to the CEdit portion of a CEditView object (the
Windows edit control).

Retrieves the current printer font.

Retrieves the current text selection.

Locks the buffer.

Unlocks the buffer.

Obtains the length of the character buffer.

Sets a new printer font.

Sets tab stops for both screen display and printing.

Searches for a string within the text.

Renders text inside a given rectangle.

Serializes a CEditView object to disk as raw text.

Finds next occurrence of a text string.

Replaces all occurrences of a given string with a new string.

Replaces current selection.

Called when a find operation fails to match any further text.

CEditView::FindText

Member Functions
CEditView: :CEditView

Remarks

CEditView();

Constructs an object of type CEditView. After constructing the object, you must call
the CWnd::Create function before the edit control is used. If you derive a class from
CEditView and add it to the template using CWinApp::AddDocTemplate, the
framework calls both this constructor and the Create function.

See Also CWnd::Create, CWinApp::AddDocTemplate

CEdit View: :FindText
BOOL FindText(LPCTSTR lpszFind, BOOL bNext = TRUE, BOOL bCase = TRUE);

Return Value
Nonzero if the search text is found; otherwise O.

Parameters

Remarks

lpszFind The text to be found.

bNext Specifies the direction of the search. If TRUE, the search direction is toward
the end of the buffer. If FALSE, the search direction is toward the beginning of
the buffer.

bCase Specifies whether the search is case sensitive. If TRUE, the search is case
sensitive. If FALSE, the search is not case sensitive.

Call the FindText function to search the CEditView object's text buffer. This
function searches the text in the buffer for the text specified by lpszFind, starting at
the current selection, in the direction specified by bNext, and with case sensitivity
specified by bCase. If the text is found, it sets the selection to the found text and
returns a nonzero value. If the text is not found, the function returns O.

You normally do not need to call the FindText function unless you override
OnFindNext, which calls FindText.

See Also CEditView::OnFindNext, CEditView::OnReplaceAII,
CEditView: :OnReplaceSel, CEditView: :OnTextNotFound

635

CEditView::GetBufferLength

CEditView::GetBufferLength
UINT GetBufferLength() const;

Return Value

Remarks

The length of the string in the buffer.

Call this member function to obtain the number of characters currently in the edit
control's buffer, not including the null terminator.

See Also CEditView::LockBuffer, CEditView::UnlockBuffer

CEditView: : GetEditCtrl
CEdit& GetEditCtrl() const;

Return Value

Remarks

A reference to a CEdit object.

Call GetEditCtrl to get a reference to the edit control used by the edit view. This
control is of type CEdit, so you can manipulate the Windows edit control directly
using the CEdit member functions.

Warning Using the CEdit object can change the state of the underlying Windows edit control.
For example, you should not change the tab settings using the CEdit::SetTabStops function
because CEditView caches these settings for use both in the edit control and in printing.
Instead, use CEditView::SetTabStops.

See Also CEdit, CEditView::SetTabStops

CEdit View:: GetPrinterFont
CFont* GetPrinterFont() const;

Return Value

Remarks

636

A pointer to a CFont object that specifies the current printer font; NULL if the
printer font has not been set. The pointer may be temporary and should not be stored
for later use.

Call GetPrinterFont to get a pointer to a CFont object that describes the current
printer font. If the printer font has not been set, the default printing behavior of the
CEditView class is to print using the same font used for display.

CEditView::OnFindNext

Use this function to determine the current printer font. If it is not the desired printer
font, use CEditView::SetPrinterFont to change it.

See Also CEditView::SetPrinterFont

CEdit View: : GetSelectedText
void GetSelectedText(CString& strResult) const;

Parameters

Remarks

strResult A reference to the CString object that is to receive the selected text.

Call GetSelectedText to copy the selected text into a CString object, up to the end of
the selection or the character preceding the first carriage-return character in the
selection.

See Also CEditView::OnReplaceSel

CEditView: : LockBuffer
LPCTSTR LockBuffer() const;

Return Value

Remarks

A pointer to the edit control's buffer.

Call this member function to obtain a pointer to the buffer. The buffer should not be
modified.

See Also CEditView::UnlockBuffer, CEditView::GetBufferLength

CEditView: :OnFindNext
virtual void OnFindNext(LPCTSRT lpszFind, BOOL bNext, BOOL bCase);

Parameters
lpszFind The text to be found.

bNext Specifies the direction of the search. If TRUE, the search direction is toward
the end of the buffer. If FALSE, the search direction is toward the beginning of
the buffer.

bCase Specifies whether the search is case sensitive. If TRUE, the search is case
sensitive. If FALSE, the search is not case sensitive.

637

CEditView: :OnReplaceAll

Remarks
Searches the text in the buffer for the text specified by lpszFind, in the direction
specified by bNext, with case sensitivity specified by bCase. The search starts at the
beginning of the current selection and is accomplished through a call to FindText. In
the default implementation, OnFindNext calls OnTextNotFound if the text is not
found.

Override OnFindNext to change the way a CEditView-derived object searches text.
CEditView calls OnFindNext when the user chooses the Find Next button in the
standard Find dialog box.

See Also CEditView::OnTextNotFound, CEditView::FindText,
CEditView: :OnReplaceAll, CEditView: :OnReplaceSel

CEdit View:: OnReplaceAll
virtual void OnReplaceAII(LPCTSTR lpszFind, LPCTSTR lpszReplace, BOOL bCase);

Parameters

Remarks

638

lpszFind The text to be found.

lpszReplace The text to replace the search text.

bCase Specifies whether search is case sensitive. If TRUE, the search is case
sensitive. If FALSE, the search is not case sensitive.

CEditView calls OnReplaceAII when the user selects the Replace All button in the
standard Replace dialog box. OnReplaceAII searches the text in the buffer for the
text specified by lpszFind, with case sensitivity specified by bCase. The search starts
at the beginning of the current selection. Each time the search text is found, this
function replaces that occurrence of the text with the text specified by lpszReplace.
The search is accomplished through a call to FindText. In the default
implementation, OnTextNotFound is called if the text is not found.

If the current selection does not match lpszFind, the selection is updated to the first
occurrence of the text specified by lpszFind and a replace is not performed. This
allows the user to confirm that this is what they want to do when the selection does
not match the text to be replaced.

Override OnReplaceAll to change the way a CEditView-derived object replaces text.

See Also CEditView: :OnFindNext, CEditView: :OnTextNotFound,
CEditView: :FindText, CEdit View: :OnReplaceSel

CEditView::OnTextNotFound

CEdit View: : OnReplaceSel
virtual void OnReplaceSel(LPCTSTR lpszFind, BOOL bNext, BOOL bCase,

LPCTSTR lpszReplace);

Parameters

Remarks

lpszFind The text to be found.

bNext Specifies the direction of the search. If TRUE, the search direction is toward
the end of the buffer. If FALSE, the search direction is toward the beginning of
the buffer.

bCase Specifies whether the search is case sensitive. If TRUE, the search is case
sensitive. If FALSE, the search is not case sensitive.

lpszReplace The text to replace the found text.

CEditView calls OnReplaceSel when the user selects the Replace button in the
standard Replace dialog box.

After replacing the selection, this function searches the text in the buffer for the next
occurrence of the text specified by lpszFind, in the direction specified by bNext, with
case sensitivity specified by bCase. The search is accomplished through a call to
FindText. If the text is not found, OnTextNotFound is called.

Override OnReplaceSel to change the way a CEditView-derived object replaces the
selected text.

See Also CEditView::OnFindNext, CEditView::OnTextNotFound,
CEditView: :FindText, CEditView: :OnReplaceAII

CEdit View:: OnTextN otFound
virtual void OnTextNotFound(LPCTSTR IpszFind);

Parameters

Remarks

lpszFind The text to be found.

Override this function to change the default implementation, which calls the
Windows function MessageBeep.

See Also CEditView::FindText, CEditView::OnFindNext,
CEditView: :OnReplaceAII, CEdit View: :OnReplaceSel

639

CEditView: :PrintInsideRect

CEdit View: :PrintInsideRect
UINT PrintInsideRect(CDC *pDC, RECT & rectLayout, UINT nlndexStart, UINT nlndexStop);

Return Value
The index of the next character to be printed (that is, the character following the last
character rendered).

Parameters

Remarks

pDC Pointer to the printer device context.

rectLayout Reference to a CRect object or RECT structure specifying the rectangle
in which the text is to be rendered.

nlndexStart Index within the buffer of the first character to be rendered.

nlndexStop Index within the buffer of the character following the last character to be
rendered.

Call PrintlnsideRect to print text in the rectangle specified by rectLayout.

If the CEditView control does not have the style ES_AUTOHSCROLL~ text is
wrapped within the rendering rectangle. If the control does have the style
ES_AUTOHSCROLL, the text is clipped at the right edge of the rectangle.

The rect.bottom element of the rectLayout object is changed so that the rectangle's
dimensions define the part of the original rectangle that is occupied by the text.

See Also CEditView::SetPrinterFont, CEditView::GetPrinterFont

CEditView: :SerializeRaw
void SerializeRaw(CArchive& ar);

Parameters

Remarks

640

ar Reference to the CArchive object that stores the serialized text.

Call SerializeRaw to have a CArchive object read or write the text in the
CEditView object to a text file. SerializeRaw differs from CEditView's internal
implementation of Serialize in that it reads and writes only the text, without
preceding object-description data.

See Also CArchive, CObject::Serialize

CEditView::UnlockBuffer

CEditView::SetPrinterFont
void SetPrinterFont(CFont* pFont);

Parameters

Remarks

pFont A pointer to an object of type CFont. If NULL, the font used for printing is
based on the display font.

Call SetPrinterFont to set the printer font to the font specified by pFont.

If you want your view to always use a particular font for printing, include a call to
SetPrinterFont in your class's OnPreparePrinting function. This virtual function is
called before printing occurs, so the font change takes place before the view's
contents are printed.

See Also CWnd: :SetFont, CFont, CView: :OnPreparePrinting

CEditView: :SetTabStops
void SetTabStops(int nTabStops);

Parameters

Remarks

nTabStops Width of each tab stop, in dialog units.

Call this function to set the tab stops used for display and printing. Only a single tab
stop width is supported. (CEdit objects support multiple tab widths.) Widths are in
dialog units, which equal one-fourth of the average character width (based on
uppercase and lowercase alphabetic characters only) of the font used at the time of
printing or displaying. You should not use CEdit::SetTabStops because CEditView
must cache the tab-stop value.

This function modifies only the tabs of the object for which it is called. To change the
tab stops for each CEditView object in your application, call each object's
SetTabStops function.

See Also CWnd::SetFont, CEditView::SetPrinterFont

CEditView:: UnlockBuffer

Remarks

void UnlockBuffer() const;

Call this member function to unlock the buffer. Call UnlockBuffer after you have
finished using the pointer returned by LockBuffer.

See Also CEditView::LockBuffer, CEditView::GetBufferLength

641

CEditView::dwStyleDefault

Data Members
CEditView::dwStyleDefault
Remarks

642

Pass this static member as the dwStyle parameter of the Create function to obtain the
default style for the CEditView object. dwStyleDefault is a public member of type
DWORD.

CEvent

An object of class CEvent represents an "event"-a synchronization object that
allows one thread to notify another that an event has occurred. Events are useful
when a thread needs to know when to perform its task. For example, a thread that
copies data to a data archive would need to be notified when new data is available. By
using a CEvent object to notify the copy thread when new data is available, the
thread can perform its task as soon as possible.

CEvent objects have two types: manual and automatic. A manual CEvent object
stays in the state set by SetEvent or ResetEvent until the other function is called. An
automatic CEvent object automatically returns to a non signaled (unavailable) state
after at least one thread is released.

To use a CEvent object, construct the CEvent object when it is needed. Specify the
name of the event you wish to wait on, and that your application should initially own
it. You can then access the event when the constructor returns. Call SetEvent to
signal (make available) the event object and then call Unlock when you are done
accessing the controlled resource.

An alternative method for using CEvent objects is to add a variable of type CEvent
as a data member to the class you wish to control. During construction of the
controlled object, call the constructor of the CEvent data member specifying if the
event is initially signaled, the type of event object you want, the name of the event (if
it will be used across process boundaries), and desired security attributes.

To access a resource controlled by a CEvent object in this manner, first create a
variable of either type CSingleLock or type CMultiLock in your resource's access
member function. Then call the lock object's Lock member function (for example,
CMultiLock::Lock). At this point, your thread will either gain access to the
resource, wait for the resource to be released and gain access, or wait for the resource
to be released and time out, failing to gain access to the resource. In any case, your
resource has been accessed in a thread-safe manner. To release the resource, call
SetEvent to signal the event object, and then use the lock object's Unlock member
function (for example, CMultiLock::Unlock), or allow the lock object to fall out of
scope.

For more information on using CEvent objects, see the article "Multithreading: How
to Use the Synchronization Classes" in Programming with MFC.

#include <afxmt.h>

CEvent

643

CEvent: :CEvent

Construction

CEvent

Methods

SetEvent

PulseEvent

ResetEvent

Unlock

Constructs a CEvent object.

Sets the event to available (signaled) and releases any waiting
threads.

Sets the event to available (signaled), releases waiting threads, and
sets the event to unavailable (nonsignaled).

Sets the event to unavailable (nonsignaled).

Releases the event object.

Member Functions
CEvent: :CEvent

CEvent(BOOL blnitiallyOwn = FALSE, BOOL bManualReset = FALSE,
LPCTSTR lpszName = NULL, LPSECURITY_ATTRIBUTES lpsaAttribute = NULL);

Parameters

Remarks

644

blnitiallyOwn If TRUE, specifies that the event object is initially owned, and all
threads wanting to access the resource must wait; otherwise the event object is not
initially owned.

bManualReset If TRUE, specifies that the event object is a manual event, otherwise
the event object is an automatic event.

lpszName Name of the CEvent object. Must be supplied if the object will be used
across process boundaries. If the name matches an existing event, the constructor
builds a new CEvent object which references the event of that name. If the name
matches an existing synchronization object that is not an event, the construction
will fail. If NULL, the name will be null.

lpsaAttribute Security attributes for the event object. For a full description of this
structure, see SECURITY_ATTRIBUTES in the Win32 SDK Programmer's
Reference.

Constructs a named or unnamed CEvent object. To access or release a CEvent
object, create.a CMultiLock or CSingleLock object and call its Lock and Unlock
member functions.

To change the state of a CEvent object to signaled (threads do not have to wait), call
SetEvent or PuiseEvent. To set the state of a CEvent object to nonsignaled (threads
must wait), call ResetEvent.

CEvent: :PulseEvent
BOOL PulseEvent();

Return Value

Remarks

Nonzero if the function was successful; otherwise O.

Sets the state of the event to signaled (available), releases any waiting threads, and
resets it to non signaled (unavailable) automatically. If the event is manual, all waiting
threads are released, the event is set to nonsignaled, and PulseEvent returns. If the
event is automatic, a single thread is released, the event is set to nonsignaled, and
PulseEvent returns.

If no threads are waiting, or no threads can be released immediately, PulseEvent sets
the state of the event to nonsignaled and returns.

CEvent: : ResetEvent
BOOL ResetEvent();

Return Value

Remarks

Nonzero if the function was successful; otherwise O.

Sets the state of the event to nonsignaled until explicitly set to signaled by the
SetEvent member function. This causes all threads wishing to access this event
to wait.

This member function is not used by automatic events.

CEvent: : SetEvent
BOOL SetEvent();

Return Value

Remarks

Nonzero if the function was successful, otherwise O.

Sets the state of the event to signaled, releasing any waiting threads. If the event is
manual, the event will remain signaled until ResetEvent is called. More than one
thread can be released in this case. If the event is automatic, the event will remain
signaled until a single thread is released. The system· will then set the state of the
event to nonsignaled. If no threads are waiting, the state remains signaled until one
thread is released.

CEvent::SetEvent

645

CEvent::Unlock

CEvent: : Unlock
virtual BOOL Unlock();

Return Value

Remarks

646

Nonzero if the thread owned the event object and the event is an automatic event;
otherwise O.

Releases the event object. This member function is called by threads that currently
own an automatic event to release it after they are done, if their lock object is to be
reused. If the lock object is not to be reused, this function will be called by the lock
object's destructor.

CException

CException is the base class for all exceptions in the Microsoft Foundation Class
Library. The derived classes and their descriptions are listed below:

CMemoryException

CNotSupportedException

CArchiveException

CFileException

CResourceException

COleException

CDBException

COleDispatchException

CUserException

Out-of-memory exception

Request for an unsupported operation

Archive-specific exception

File-specific exception

Windows resource not found or not create able

OLE exception

Database exception (that is, exception conditions
arising for MFC database classes based on Open
Database Connectivity)

OLE dispatch (automation) exception

Exception that indicates that a resource could not be
found

CDaoException Data access object exception (that is, exception
conditions arising for for DAO classes)

These exceptions are intended to be used with the THROW, THROW_LAST,
TRY, CATCH, AND_CATCH, and END_CATCH macros. For more information
on exceptions, see Exception Processing, or see the article "Exceptions" in
Programming with MFC.

To catch a specific exception, use the appropriate derived class. To catch all types of
exceptions, use CException, and then use CObject::IsKindOf to differentiate
among CException-derived classes. Note that CObject::IsKindOfworks only for
classes declared with the IMPLEMENT_DYNAMIC macro, in order to take
advantage of dynamic type checking. Any CException-derived class that you create
should use the IMPLEMENT_DYNAMIC macro, too.

You can report details about exceptions to the user by calling GetErrorMessage or
ReportError, two member functions that work with any of CException's derived
classes.

If an exception is caught by one of the macros, the CException object is deleted
automatically; do not delete it yourself. If an exception is caught by using a catch
keyword, it is not automatically deleted. See the article "Exceptions" in Programming
with MFC for more information about when to delete an exeption object.

CException

647

CException: :GetErrorMessage

CException is an abstract base class. You cannot create CException objects; you
must create objects of derived classes. If you need to create your own CException
type, use one of the derived classes listed above as a model. Make sure that your
derived class also uses IMPLEMENT_DYNAMIC.

#include <afx.h>

See Also Exception Processing

Operations

GetErrorMessage

ReportError

Retrieves the message describing an exception.

Reports an error message in a message box to the user.

Member Functions
CException: : GetErrorMessage

virtual BOOL GetErrorMessage(LPTSTR lpszError, UINT nMaxError,
PUINT pnHelpContext = NULL);

Return Value
Nonzero if the function is successful; otherwise 0 if no error message text is
available.

Parameters

Remarks

648

lpszError A pointer to a buffer that will receive an error message.

nMaxError The maximum number of characters the buffer can hold, including the
NULL terminator.

pnHelpContext The address of a UINT that will receive the help context ID. If
NULL, no ID will be returned.

Call this member function to provide text about an error that has occurred. For
example, call GetErrorMessage to retrieve a string describing the error which
caused MFC to throw a CFileException when writing to a CFile object.

Note GetErrorMessage will not copy more than nMaxError -1 characters to the buffer, and it
will always add a trailing null to end the string. If the buffer is too small, the error message may
be truncated.

Example

CException: :GetErrorMessage

Here is an example of the use of CException::GetErrorMessage.

CFile filelnput;
CFileException ex;

II try to open a file for reading.
II The file will certainly not
II exist because there are too many explicit
II directories in the name.

II if the call to Open() fails, ex will be
II initialized with exception
II information. the call to ex.GetErrorString()
II will retrieve an appropriate message describing
II the error, and we'll add our own text
II to make sure the user is perfectly sure what
II went wrong.

if (!filelnput.Open("\\Too\\Many\\Bad\\Dirs.DAT", CFile: :modeRead, lex»~

{

TCHAR szCause[255];
CString strFormatted;

ex.GetErrorMessage(szCause, 255);

II (in real life, it's probably more
II appropriate to read this from
II a string resource so it would be easy to
II localize)

strFormatted = _T<"The data file could not be opened because of this error: H);
strFormatted += szCause;

}

else
{

}

AfxMessageBox(strFormatted);

II the file was opened, so do whatever work
II with filelnput
II we were planning ...
II

filelnput.Close();

See Also CException: : ReportError

649

CException: : ReportError

CException: : ReportError
virtual int ReportError(UINT nType = MB_OK, UINT nMessageID = 0);

Return Value
An AfxMessageBox value; otherwise ° if there is not enough memory to display the
message box. See AfxMessageBox for the possible return values.

Parameters

Remarks

Example

650

nType Specifies the style of the message box. Apply any combination of the
message-box styles to the box. If you don't specify this parameter, the default is
MB_OK.

nMessageID Specifies the resource ID (string table entry) of a message to display if
the exception object does not have an error message. If 0, the message "No error
message is available" is displayed.

Call this member function to report error text in a message box to the user.

Here is an example of the use of CException::ReportError.

CFile filelnput;
CFileException ex;

II try to open a file for reading.
II The file will certainly not
II exist because there are too many explicit
II directories in the name.

II if the call to Open() fails, ex will be
II initialized with exception
II information. the call to ex.ReportError() will
II display an appropriate
II error message to the user, such as
II "\Too\Many\Bad\Dirs.DAT contains an
II invalid path." The error message text will be
II appropriate for the
II file name and error condition.

if (!filelnput.Open("\\Too\\Many\\Bad\\Dirs.DAT", CFile::modeRead, &ex»
{

ex.ReportError();
}

else

II the file was opened, so do whatever work
II with filelnput we were planning ...
II
filelnput.Close();

See Also AfxMessageBox, CException::GetErrorMessage

CException: : ReportError

651

CFieldExchange

CFieldExchange

652

The CFieldExchange class supports the record field exchange (RFX) routines used
by the database classes. Use this class if you are writing data exchange routines for
custom data types; otherwise, you will not directly use this class. RFX exchanges data
between the field data members of your record set object and the corresponding fields
of the current record on the data source. RFX manages the exchange in both
directions, from the data source and to the data source.

Note If you are working with the Data Access Objects (DAO) classes rather than the Open
Database Connectivity (ODSC) classes, use class CDaoFieldExchange instead. For more
information, see the articles "Database Overview" and "DAO and MFC" in Programming
with MFG.

A CFieldExchange object provides the context information needed for record field
exchange to take place. CFieldExchange objects support a number of operations,
including binding parameters and field data members and setting various flags on the
fields of the current record. RFX operations are performed on recordset-class data
members of types defined by the enom FieldType in CFieldExchange. Possible
FieldType values are:

• CFieldExchange: :outputColumn for field data members.

• CFieldExchange::param for parameter data members.

Most of the class's member functions and data members are provided for writing your
own custom RFX routines. You will use SetFieldType frequently. For more
information about RFX and the use of CFieldExchange objects, see the articles
"Record Field Exchange (RFX)" and "Recordset (ODBC)" in Programming with
MFC. For details about the RFX global functions, see "Record Field Exchange
Functions" in the "Macros and Globals" section in this manual.

#include <afxdb.h>

See Also CRecordset

Operations

IsFieldType

SetFieldType

Returns nonzero if the current operation is appropriate for the type
of field being updated.

Specifies the type of recordset data member-column or parameter
- represented by all following calls to RFX functions until the next
call to SetFieldType.

CFieldExchange::SetFieldType

Member Functions
CFieldExchange: : IsFieldType

BOOL IsFieldType(UINT* pnField);

Return Value
Nonzero if the current operation can be performed on the current field type.

Parameters

Remarks

pnField The sequential number of the field data member is returned in this
parameter. This number corresponds to the field's order in the
CRecordset: :DoFieldExchange function.

If you write your own RFX function, call IsFieldType at the beginning of your
function to determine whether the current operation can be performed on a particular
field data member type (a CFieldExchange: :outputColumn or a
CFieldExchange::param). Follow the model of the existing RFX functions.

CFieldExchange: :SetFieldType
void SetFieldType(UINT nFieldType);

Parameters

Remarks

nFieldType A value of the enum FieldType, declared in CFieldExchange, which
can be either of the following:

• CFieldExchange: :outputColumn

• CFieldExchange: :param

You need a call to SetFieldType in the field map section of your recordset class's
DoFieldExchange override. Class Wizard places the SetFieldType call for you. The
call precedes calls to RFX functions, one for each field data member of your class,
and identifies the field type as CFieldExchange: :outputColumn.

If you parameterize your recordset class, you must add RFX calls for all parameter
data members (outside the field map) and precede these calls with a call to
SetFieldType. Pass the value CFieldExchange: :param.

In general, each group of RFX function calls associated with field data members or
parameter data members must be preceded by a call to SetFieldType. The nFieldType
parameter of each SetFieldType call identifies the type of the data members
represented by the RFX function calls that follow the SetFieldType call.

653

CFieldExchange: :SetFieldType

Example

654

This example shows several calls to RFX functions with accompanying calls to
SetFieldType. ClassWizard normally writes the first call to SetFieldType, and its
associated RFX calls. You must write the second, and its RFX call. Note that
SetFieldType is called through the pFX pointer to a CFieldExchange object.

void CSections::DoFieldExchange(CFieldExchange* pFX)
{

//{{AFX_FIELD_MAP(CSections)
pFX->SetFieldType(pFX, CFieldExchange::outputColumn);
RFX_Text(pFX, 1, "CourseID", m_strCourseID);
RFX_Text(pFX, 2, "InstructorID", m_strlnstructorID);
RFX_Text(pFX, 3, "RoomNo", m_strRoomNo);
RFX_Text(pFX, 4, "Schedule", m_strSchedule);
RFX_Text(pFX, 5, "SectionNo", m_strSectionNo);
//}}AFX_FIELD_MAP
pFX->SetFieldType(pFX, CFieldExchange::param);
RFX_Text(pFX, "Name," m_strNameParam);

See Also CRecordset::DoFieldExchange, "Record Field Exchange Functions" in
the "Macros and Globals" section

CFile

CFile is the base class for Microsoft Foundation file classes. It directly provides
unbuffered, binary disk input/output services, and it indirectly supports text files
and memory files through its derived classes. CFile works in conjunction with the
CArchive class to support serialization of Microsoft Foundation Class objects.

The hierarchical relationship between this class and its derived classes allows your
program to operate on all file objects through the polymorphic CFile interface. A
memory file, for example, behaves like a disk file.

Use CFile and its derived classes for general-purpose disk 110. Use of stream or other
Microsoft iostream classes for formatted text sent to a disk file.

Normally, a disk file is opened automatically on CFile construction and closed on
destruction. Static member functions permit you to interrogate a file's status without
opening the file.

For more information on using CFile, see the article "Files" in Programming with
MFC and "File Handling" in the Run-Time Library Reference.

#include <afx.h>

See Also CStdioFile, CMemFile

Data Members

Construction

CFile

Abort

Duplicate

Open

Close

Usually contains the operating-system file handle.

Constructs a CFile object from a path or file handle.

Closes a file ignoring all warnings and errors.

Constructs a duplicate object based on this file.

Safely opens a file with an error-testing option.

Closes a file and deletes the object.

CFile

655

CFile

Input/Output

Read

ReadHuge

Write

WriteHuge

Flush

Position

Seek

SeekToBegin

SeekToEnd

GetLength

SetLength

Locking

LockRange

UniockRange

Status

GetPosition

GetStatus

GetFileName

GetFileTitie

GetFilePath

SetFilePath

Static

Rename

Remove

GetStatus

SetStatus

656

Reads (unbuffered) data from a file at the current file position.

Can read more than 64K of (unbuffered) data from a file at the current
file position. Obsolete in 32-bit programming. See Read.

Writes (unbuffered) data in a file to the current file position.

Can write more than 64K of (unbuffered) data in a file to the current
file position. Obsolete in 32-bit programming. See Write.

Flushes any data yet to be written.

Positions the current file pointer.

Positions the current file pointer at the beginning of the file.

Positions the current file pointer at the end of the file.

Retrieves the length of the file.

Changes the length of the file.

Locks a range of bytes in a file.

Unlocks a range of bytes in a file.

Retrieves the current file pointer.

Retrieves the status of this open file.

Retrieves the filename of the selected file.

Retrieves the title of the selected file.

Retrieves the full file path of the selected file.

Sets the full file path of the selected file.

Renames the specified file (static function).

Deletes the specified file (static function).

Retrieves the status of the specified file (static, virtual function).

Sets the status of the specified file (static, virtual function).

Member Functions
CFile: : Abort

Remarks

Example

virtual void Abort();

Closes the file associated with this object and makes the file unavailable for reading
or writing. If you have not closed the file before destroying the object, the destructor
closes it for you.

When handling exceptions, CFile::Abort differs from CFile::Close in two important
ways. First, the Abort function will not throw an exception on failures because
failures are ignored by Abort. Second, Abort will not ASSERT if the file has not
been opened or was closed previously.

If you used new to allocate the CFile object on the heap, then you must delete it after
closing the file. Abort sets m_hFile to CFile: :hFileNull.

Ilexample for CFile::Abort
CStdioFile fileTest;
char* pFileName = "test.dat";
TRY
{

II do stuff that may throw exceptions
fileTest.Open(pFileName. CFile::modeWrite);

}

CATCH_ALL(e)
{

fileTest.Abort();
THROW_LAST() ;

}
END_CATCH_ALL

II close file safely and quietly

See Also CFile::Close, CFile::Open

CFile: :CFile
CFile();
CFile(int hFile);
CFile(LPCTSTR IpszFileName, UINT nOpenFlags);

throw(CFileException);

Parameters
hFile The handle of a file that is already open.

IpszFileName A string that is the path to the desired file. The path can be relative or
absolute.

CFile::CFile

657

CFile::CFile

658

nOpenFlags Sharing and access mode. Specifies the action to take when opening
the file. You can combine options listed below by using the bitwise-OR (I)
operator. One access permission and one share option are required; the
modeCreate and modeNolnherit modes are optional. The values are as follows:

• CFile: :modeCreate Directs the constructor to create a new file. If the file
exists already, it is truncated to 0 length.

• CFile: :modeNoTruncate Combine this value with modeCreate. If the file
being created already exists, it is not truncated to 0 length. Thus the file is
guaranteed to open, either as a newly created file or as an existing file. This
might be useful, for example, when opening a settings file that mayor may not
exist already. This option applies to CStdioFile as well.

• CFile: :modeRead Opens the file for reading only.

• CFile::modeReadWrite Opens the file for reading and writing.

• CFile: : mode Write Opens the file for writing only.

• CFile: :modeNolnherit Prevents the file from being inherited by child
processes.

• CFile: :shareDenyNone Opens the file without denying other processes read
or write access to the file. Create fails if the file has been opened in
compatibility mode by any other process.

• CFile::shareDenyRead Opens the file and denies other processes read access
to the file. Create fails if the file has been opened in compatibility mode or for
read access by any other process.

• CFile::shareDenyWrite Opens the file and denies other processes write
access to the file. Create fails if the file has been opened in compatibility mode
or for write access by any other process.

• CFile: :shareExclusive Opens the file with exclusive mode, denying other
processes both read and write access to the file. Construction fails if the file has
been opened in any other mode for read or write access, even by the current
process.

• CFile: :shareCompat Opens the file with compatibility mode, allowing any
process on a given machine to open the file any number of times. Construction
fails if the file has been opened with any of the other sharing modes.

• CFile: :typeText Sets text mode with special processing for carriage return
linefeed pairs (used in derived classes only).

• CFile::typeBinary Sets binary mode (used in derived classes only).

Remarks

Example

The default constructor does not open a file but rather sets m_hFile to
CFile: :hFileNull. Because this constructor does not throw an exception, it does
not make sense to use TRY/CATCH logic. Use the Open member function, then
test directly for exception conditions. For a discussion of exception-processing
strategy, see the article "Exceptions" in Programming with MFC.

The constructor with one argument creates a CFile object that corresponds to an
existing operating-system file identified by hFile. No check is made on the access
mode or file type. When the CFile object is destroyed, the operating-system file will
not be closed. You must close the file yourself.

The constructor with two arguments creates a CFile object and opens the
corresponding operating-system file with the given path. This constructor combines
the functions of the first constructor and the Open member function. It throws an
exception if there is an error while opening the file. Generally, this means that the
error is unrecoverable and that the user should be alerted.

//example for CFile::CFile
char* pFileName = "test.dat";
TRY
{

CFile f(pFileName, CFile::modeCreate I CFile::modeWrite);
}

CATCH(CFileException, e)
{

Iii fdef _DEBUG
afxDump « "File could not be opened" « e->m_cause « "\n";

Ilendi f

CFile: :Close

Remarks

virtual void Close();
throw(CFileException);

Closes the file associated with this object and makes the file unavailable for reading
or writing. If you have not closed the file before destroying the object, the destructor
closes it for you.

If you used new to allocate the CFile object on the heap, then you must delete it after
closing the file. Close sets m_hFile to CFile: :hFileNull.

See Also CFile::Open

CFile::Close

659

CFile: :Duplicate

CFile:::Duplicate
virtual CFile* Duplicate() const;

throw(CFileException);

Return Value

Remarks

A pointer to a duplicate CFile object.

Constructs a duplicate CFile object for a given file. This is equivalent to the C
run-time function _dup.

CFile::Flush

Remarks

virtual void Flush();
throw(CFileException);

Forces any data remaining in the file buffer to be written to the file.

The use of Flush does not guarantee flushing of CArchive buffers. If you are using
an archive, call CArchive::Flush first.

CFile::GetFileName,
virtual CString GetFileName() const;

Return Value

Remarks

The name of the file.

Call this member function to retrieve the name of a specified file. For example,
when you call GetFileName to generate a message to the user about the file
c: \wi ndows \write\myfil e. wri, the filename, myfil e. wri, is returned. To return
the entire path of the file, including the name, call GetFilePath. To return the title
of the file (in this example, myfi 1 e), call GetFileTitle.

See Also CFile::GetFilePath, CFile::GetFileTitie

CFile: : GetFilePath
virtual CString GetFilePath() const;

Return Value
The full path of the specified file.

660

Remarks
Call this member function to retrieve the full path of a specified file. For example,
when you call GetFilePath to generate a message to the user about the file
c: \wi ndows \write \myfil e. wri, the file path, c: \wi ndows \wri te \myfi 1 e. wri, is
returned. To return just the name of the file (myfi 1 e. wri), call GetFileName. To
return the title of the file (myfi 1 e), call GetFileTitle.

See Also CFile: :SetFilePath, CFile: : GetFileTitle, CFile: : GetFileName

CFile: : GetFileTitle
virtual CString GetFileTitle() const;

Return Value

Remarks

The title of the specified file.

Call this member function to retrieve the file title for a specified file. For example,
when you call GetFileTitle to generate a message to the user about the file
c: \wi ndows \wri te \myfi 1 e. wri, the file title (myfi 1 e) is returned. The file title
typically does not include the extention.

See Also CFile::GetFileName, CFile::GetFilePath

CFile: : GetLength
virtual DWORD GetLength() const;

throw(CFileException);

Return Value

Remarks

The length of the file.

Obtains the current logical length of the file in bytes, not the amount.

See Also CFile: :SetLength

CFile: : GetPosition
virtual DWORD GetPosition() const;

throw(CFileException);

Return Value
The file pointer as a 32-bit doubleword.

CFile: :GetPosition

661

CFile: : GetStatus

Remarks

Example

Obtains the current value of the file pointer, which can be used in subsequent calls
to Seek.

//example for CFile::GetPosition
extern CFile cfile;
DWORD dwPosition = cfile.GetPosition();

CFile: : GetStatus
BOOL GetStatus(CFileStatus& rStatus) const;
static BOOL PASCAL GetStatus(LPCTSTR lpszFileName, CFileStatus& rStatus);

Return Value
Nonzero if no error, in which case rStatus is valid; otherwise O. A value of 0 indicates
that the file does not exist.

Parameters

Remarks

662

rStatus A reference to a user-supplied CFileStatus structure that will receive the
status information. The CFileStatus structure has the following fields:

• CTime m_ctime The date and time the file was created.

• CTime m_mtime The date and time the file was last modified.

• CTime m_atime The date and time the file was last accessed for reading.

• LONG m_size The logical size of the file in bytes, as reported by the DIR
command.

• BYTE m_attribute The attribute byte of the file.

• char m_szFuIlNameLMAX_PATH] The absolute filename in the Windows
character set.

lpszFileName A string in the Windows character set that is the path to the desired
file. The path can be relative or absolute, but cannot contain a network name.

The virtual version of GetStatus retrieves the status of the open file associated with
this CFile object. It does not insert a value into the m_szFullName structure member.

The static version gets the status of the named file and copies the filename to
m_szFuIlName. This function obtains the file status from the directory entry without
actually opening the file. It is useful for testing the existence and access rights of a
file.

The m_attribute is the file attribute. The Microsoft Foundation classes provide an
enum type attribute so that you can specify attributes symbolically:

Example

enum Attribute
normal = 0x00,
readOnly = 0x01,
hidden = 0x02,
system = 0x04,
volume = 0x08,
directory 0x10,
archive = 0x20
} ;

Ilexample for CFile::GetStatus
CFileStatus status;
extern CFile cfile;
if(cfile.GetStatus(status))

{

lIifdef _DEBUG

II virtual member function

afxDump « "File size = " « status.m_size « "\n";
lIendif

char* pFileName = "test.dat";
if(CFile::GetStatus(pFileName, status)) II static function

{

lIifdef _DEBUG
afxDump « "Full fil e name "« status. m_szFull Name « "\n";

lIendif

See Also CFiIe::SetStatus, CTime

CFile: : LockRange
virtual void LockRange(DWORD dwPos, DWORD dwCount);

throw(CFiIeException);

Parameters

Remarks

dwPos The byte offset of the start of the byte range to lock.

dwCount The number of bytes in the range to lock.

\

Locks a range of bytes in an open file, throwing an exception if the file is already
locked. Locking bytes in a file prevents access to those bytes by other processes.
You can lock more than one region of a file, but no overlapping regions are allowed.

When you unlock the region, using the UnlockRange member function, the byte
range must correspond exactly to the region that was previously locked. The
LockRange function does not merge adjacent regions; if two locked regions are
adjacent, YO\ must unlock each region separately.

Note This function is not available for the CMemFile-derived class.

CFile: :LockRange

663

CFile::Open

Example
Ilexample for CFile::LockRange
extern DWORD dwPos;
extern DWORD dwCount;
extern CFile cfile;
cfile.LockRange(dwPos. dwCount);

See Also CFile:: UnlockRange

CFile::Open
virtual BOOL Open(LPCTSTR lpszFileName, UINT nOpenFlags,

CFileException* pError = NULL);

Return Value
Nonzero if the open was successful; otherwise O. The pError parameter is meaningful
only if 0 is returned.

Parameters

Remarks

664

lpszFileName A string that is the path to the desired file. The path can be relative or
absolute but cannot contain a network name.

nOpenFlags A UINT that defines the file's sharing and access mode. It specifies the
action to take when opening the file. You can combine options by using the
bitwise-OR (I) operator. One access permission and one share option are
required; the modeCreate and modeNolnherit modes are optional. See the CFile
constructor for a list of mode options.

pError A pointer to an existing file-exception object that will receive the status of a
failed operation.

Open is designed for use with the default CFile constructor. The two functions form
a "safe" method for opening a file where a failure is a normal, expected condition.

While the CFile constructor will throw an exception in an error condition, Open will
return FALSE for error conditions. Open can still initialize a CFileException object
to describe the error, however. If you don't supply the pError parameter, or if you
pass NULL for pError, Open will return FALSE and not throw a CFileException. If
you pass a pointer to an existing CFileException, and Open encounters an error, the
function will fill it with information describing that error. In neither case will Open
throw an exception.

The following table describes the possible results of Open.

Example

pError Error encountered?

NULL No

ptr to No
CFileException

NULL Yes

ptr to Yes
CFileException

//example for CFile::Open
CFile f;
CFileException e;
char* pFileName = "test.dat";

Return value CFileException content

TRUE nla

TRUE unchanged

FALSE nla

FALSE initialized to describe
error

if(!f.Open(pFileName, CFile::modeCreate I CFile::modeWrite, &e))
{

1/i fdef _DEBUG
afxDump « "File could not be opened" « e.m_cause « "\n";

11end if
}

See Also CFile::CFile, CFile::Close

CFile: : Read
virtual UINT Read(void* lpBuf, UINT nCount);

throw(CFileException);

Return Value
The number of bytes transferred to the buffer. Note that for all CFile classes, the
return value may be less than nCount if the end of file was reached.

Parameters

Remarks

Example

lpBuJ Pointer to the user-supplied buffer that is to receive the data read from the file.

nCount The maximum number of bytes to be read from the file. For text-mode files,
carriage return-linefeed pairs are counted as single characters.

Reads data into a buffer from the file associated with the CFile object.

//example for CFile::Read
extern CFile cfile;
char pbuf[100];
UINT nBytesRead = cfile.Read(pbuf, 100);

CFile::Read

665

CFile: : ReadHuge

CFile: : ReadHuge
DWORD ReadHuge(void* lpBuffer, DWORD dwCount);

throw(CFileException);

Return Value
The number of bytes transferred to the buffer. Note that for all CFile objects, the
return value can be less than dwCount if the end of (ile was reached.

Parameters

Remarks

lpBuJ Pointer to the user-supplied buffer that is to receive the data read from the file.

dwCount The maximum number of bytes to be read from the file. For text-mode
files, carriage return-linefeed pairs are counted as single characters.

Reads data into a buffer from the file associated with the CFile object.

This function differs from Read in that more than 64K-l bytes of data can be read by
ReadHuge. This function can be used by any object derived from CFile.

Note ReadHuge is provided only for backward compatiblity. ReadHuge and Read have the
same semantics under Win32.

See Also CFile::Write, CFile::WriteHuge, CFile::Read

CFile: : Remove
static void PASCAL Remove(LPCTSTR lpszFileName);

throw(CFileException);

Parameters

Remarks

Example

666

lpszFileName A string that is the path to the desired file. The path can be relative or
absolute but cannot contain a network name.

This static function deletes the file specified by the path. It will not remove a
directory.

The Remove member function throws an exception if the connected file is open or if
the file cannot be removed. This is equivalent to the DEL command.

I/example for CFile::Remove
char* pFileName = "test.dat";
TRY
{

CFile::Remove(pFileName);

CATCH(CFileException, e)

Iii fdef _DEBUG
afxDump « "File" « pFileName « " cannot be removed\n";

Ilendif

CFile: : Rename
static void PASCAL Rename(LPCTSTR IpszOldName, LPCTSTR IpsiNewName);

throw(CFileException);

Parameters

Remarks

Example

IpszOldName The old path.

IpsiNewName The new path.

This static function renames the specified file. Directories cannot be renamed. This is
equivalent to the REN command.

Ilexample for CFile::Rename
extern char* pOldName;
extern char* pNewName;
TRY
{

CFile::Rename(pOldName, pNewName);
}

CATCH(CFileException, e
{

Iii fdef _DEBUG
afxDump « "File" « pOldName « " not found, cause = "

« e->m_cause « "\n";
Ilendi f

CFile::Seek
virtual LONG Seek(LONG IOff, UINT nFrom);

throw(CFileException);

Return Value
If the requested position is legal, Seek returns the new byte offset from the beginning
of the file. Otherwise, the return value is undefined and a CFileException object is
thrown.

Parameters
IOff Number of bytes to move the pointer.

CFile::Seek

667

CFile: :SeekToBegin

Remarks

Example

nFrom Pointer movement mode. Must be one of the following values:

• CFile:: begin Move the file pointer lOff bytes forward from the beginning of
the file.

• CFile: : current Move the file pointer lOff bytes from the current position in
the file.

• CFile::end Move the file pointer lOff bytes from the end of the file. Note that
lOffmust be negative to seek into the existing file; positive values will seek past
the end of the file.

Repositions the pointer in a previously opened file. The Seek function permits
random access to a file's contents by moving the pointer a specified amount,
absolutely or relatively. No data is actually read during the seek.

When a file is opened, the file pointer is positioned at offset 0, the beginning of
the file.

//example for CFile::Seek
extern CFile cfile;
LONG lOffset = 1000. lActual;
lActual = cfile.Seek(lOffset. CFile::begin);

CFile:: SeekToBegin

Remarks

Example

void SeekToBegin();
throw(CFileException);

Sets the value of the file pointer to the beginning of the file. See k To Beg i n () is
equivalent to Seek(0L. CFile: :begin).

//example for CFile::SeekToBegin
extern CFile cfile;
cfile.SeekToBegin();

CFile::SeekToEnd
DWORD SeekToEnd();

throw(CFileException);

Return Value
The length of the file in bytes.

668

Remarks

Example

Sets the value of the file pointer to the logical end of the file. See k ToE n d () is
equivalent to CFile: :Seek(0L. CFile: :end).

Ilexample for CFile::SeekToEnd
extern CFile cfile:
DWORD dwActual - cfile.SeekToEnd():

See Also CFile::GetLength, CFile::Seek, CFile::SeekToBegin

CFile: :SetFilePath
virtual void SetFilePath(LPCTSTR lpszNewName);

Parameters

Remarks

lpszNewName Pointer to a string specifying the new path.

Call this function to specify the path of the file; for example, if the path of a file is not
available when a CFile object is constructed, call SetFilePath to provide it.

Note SetFilePath does not open the file or create the file; it simply associates the CFile
object with a path name, which can then be used.

See Also CFile::GetFilePath, CFile::CFile

CFile:: SetLength
virtual void SetLength(DWORD dwNewLen);

throw(CFileException);

Parameters

Remarks

Example

dwNewLen Desired length of the file in bytes. This value can be larger or smaller
than the current length of the file. The file will be extended or truncated as
appropriate.

Call this function to change the length of the file.

Note With CMemFile, this function could throw a CMemoryException object.

Ilexample for CFile::SetLength
extern CFile cfile;
DWORD dwNewLength = 10000:
cfile.SetLength(dwNewLength):

CFile: :SetLength

669

CFile::SetStatus

CFile: : SetStatus
static void SetStatus(LPCTSTR lpszFileName, const CFileStatus& status);

throw(CFileException);

Parameters

Remarks

Example

IpszFileName A string that is the path to the desired file. The path can be relative or
absolute but cannot contain a network name.

status The buffer containing the new status infonnation. Call the GetStatus member
function to prefill the CFileStatus structure with current values, then make
changes as required. If a value is 0, then the corresponding status item is not
updated. See the GetStatus member function for a description of the CFileStatus
structure.

Sets the status of the file associated with this file location.

To set the time, modify the m_mtime field of status.

Please note that when you make a call to SetStatus in an attempt to change only the
attributes of the file, and the m_mtime member of the file status structure is nonzero,
the attributes may also be affected (changing the time stamp may have side effects on
the attributes). If you want to only change the attributes of the file, first set the
m_mtime member of the file status structure to zero and then make a call to
SetStatus.

//example for CFile::SetStatus
char* pFileName = "test.dat";
extern BYTE newAttribute;
CFileStatus status;
CFile::GetStatus(pFileName, status);
status.m_attribute = newAttribute;
CFile::SetStatus(pFileName, status);

See Also CFile: : GetStatus

CFile:: U nlockRange
virtual void UnlockRange(DWORD dwPos, DWORD dwCount);

throw(CFileException);

Parameters
dwPos The byte offset of the start of the byte range to unlock.

dwCount The number of bytes in the range to unlock.

670

Remarks

Example

Unlocks a range of bytes in an open file. See the description of the LockRange
member function for details.

Note This function is not available for the CMemFile-derived class.

//example for CFile::UnlockRange
extern DWORD dwPos;
extern DWORD dWCount;
extern CFile cfile;
cfile.UnlockRange(dwPos. dwCount);

See Also CFile: : LockRange

CFile::Write
virtual void Write(const void* IpBuf, DINT nCount);

throw(CFileException);

Parameters

Remarks

Example

IpBuJ A pointer to the user-supplied buffer that contains the data to be written to
the file.

nCount The number of bytes to be transferred from the buffer. For text-mode files,
carriage retum-linefeed pairs are counted as single characters.

Writes data from a buffer to the file associated with the CFile object.

Write throws an exception in response to several conditions, including the disk-full
condition.

//example for CFile::Write
extern CFile cfile;
char pbuf[100];
cfile.Write(pbuf. 100);

See Also CFile: :Read, CStdioFile:: Write String

CFile: : WriteHuge
void WriteHuge(const void* IpBuf, DWORD dwCount);

throw(CFileException);

Parameters
IpBuJ A pointer to the user-supplied buffer that contains the data to be written to

the file.

CFile::WriteHuge

671

CFile: :m_hFile

Remarks

dwCount The number of bytes to be transferred from the buffer. For text-mode files,
carriage retum-linefeed pairs are counted as single characters.

Writes data from a buffer to the file associated with the CFile object. WriteHuge
throws an exception in response to several conditions, including the disk-full
condition.

This function differs from Write in that more than 64K-l bytes of data can be
written by WriteHuge. This function can be used by any object derived from CFile.

Note WriteHuge is provided only for backward compatiblity. WriteHuge and Write have the
same semantics under Win32.

See Also CFile: : Read, CFile: :ReadHuge, CFile:: Write, CStdioFile:: WriteString

Data Members
CFile: :m_hFile
Remarks

672

Contains the operating-system file handle for an open file. m_hFile is a public
variable of type UINT. It contains CFile::hFileNull (an operating-system
independent empty file indicator) if the handle has not been assigned.

Use of m_hFile is not recommended because the member's meaning depends on the
derived class. m_hFile is made a public member for convenience in supporting
nonpolymorphic use of the class.

CFileDialog

The CFileDialog class encapsulates the Windows common file dialog box. Common
file dialog boxes provide an easy way to implement File Open and File Save As
dialog boxes (as well as other file-selection dialog boxes) in a manner consistent with
Windows standards.

You can use CFileDialog "as is" with the constructor provided, or you can derive
your own dialog class from CFileDialog and write a constructor to suit your needs. In
either case, these dialog boxes will behave like standard Microsoft Foundation class
dialog boxes because they are derived from the CCommonDialog class.

To use a CFileDialog object, first create the object using the CFileDialog constructor.
After the dialog box has been constructed, you can set or modify any values in the
m_ofn structure to initialize the values or states of the dialog box's controls. The
m_ofn structure is of type OPENFILENAME. For more information, see the
OPENFILENAME structure in the Win32 SDK documentation.

After initializing the dialog box's controls, call the DoModal member function to
display the dialog box and allow the user to enter the path and file. DoModai returns
whether the user selected the OK (IDOK) or the Cancel (IDCANCEL) button.

If DoModal returns IDOK, you can use one of CFileDialog's public member
functions to retrieve the information input by the user.

CFileDialog includes several protected members that enable you to do custom
handling of share violations, filename validation, and list-box change notification.
These protected members are callback functions that most applications do not need to
use, since default handling is done automatically. Message-map entries for these
functions are not necessary because they are standard virtual functions.

You can use the Windows CommDlgExtendedError function to determine whether
an error occurred during initialization of the dialog box and to learn more about
the error.

CFileDialog

673

CFileDialog

674

The destruction of CFileDialog objects is handled automatically. It is not necessary to
call CDialog: : EndDialog.

To allow the user to select multiple files, set the OFN_ALLOWMULTISELECT
flag before calling DoModal. You need to supply your own filename buffer to
accommodate the returned list of multiple filenames. Do this by replacing
m_ofn.lpstrFile with a pointer to a buffer you have allocated, after constructing the
CFileDialog, but before calling DoModal.

CFileDialog relies on the COMMDLG.DLL file that ships with Windows versions
3.1 and later.

If you derive a new class from CFileDialog, you can use a message map to handle
any messages. To extend the default message handling, derive a class from CWnd,
add a message map to the new class, and provide member functions for the new
messages. You do not need to provide a hook function to customize the dialog box.

To customize the dialog box, derive a class from CFileDialog, provide a custom
dialog template, and add a message map to process the notification messages from
the extended controls. Any unprocessed messages should be passed to the base class.

Customizing the hook function is not required.

For more information on using CFileDialog, see "Common Dialog Classes" in
Chapter 4 of Programming with MFC.

#include <afxdlgs.h>

Data Members

Construction

CFileDialog

Operations

DoModal

GetPathName

GetFileName

GetFileExt

GetFileTitle

GetNextPathName

GetReadOnlyPref

GetStartPosition

The Windows OPENFILENAME structure. Provides
access to basic file dialog box parameters.

Constructs a CFileDialog object.

Displays the dialog box and allows the user to make a
selection.

Returns the full path of the selected file.

Returns the filename of the selected file.

Returns the file extension of the selected file.

Returns the title of the selected file.

Returns the full path of the next selected file.

Returns the read-only status of the selected file.

Returns the position of the first element of the filename list.

Overridables

OnShare Violation

OnFileNameOK

OnLBSelChangedNotify

Called when a share violation occurs.

Called to validate the filename entered in the dialog box.

Called when the list box selection changes.

CFileDialog: :CFileDialog

Member Functions
CFileDialog: :CFileDialog

CFileDialog(BOOL bOpenFileDialog, LPCTSTR lpszDeJExt = NULL, LPCTSTR lpszFileName =
NULL, DWORD dwFlags = OFN_HIDEREADONLY I OFN_OVERWRITEPROMPT,
LPCTSTR lpszFilter = NULL, CWnd* pParentWnd = NULL);

Parameters

Remarks

bOpenFileDialog Set to TRUE to construct a File Open dialog box or FALSE to
construct a File Save As dialog box.

lpszDeJExt The default filename extension. If the user does not include an extension
in the Filename edit box, the extension specified by lpszDeJExt is automatically
appended to the filename. If this parameter is NULL, no file extension is
appended.

lpszFileName The initial filename that appears in the filename edit box. If NULL,
no filename initially appears.

dwFlags A combination of one or more flags that allow you to customize the dialog
box. For a description of these flags, see the OPENFILENAME structure in the
Win32 SDK documentation. If you modify the m_ofn.Flags structure member, use
a bitwise-OR operator in your changes to keep the default behavior intact.

lpszFilter A series of string pairs that specify filters you can apply to the file. If you
specify file filters, only selected files will appear in the Files list box. See the
"Remarks" section for more information on how to work with file filters.

pParentWnd A pointer to the file dialog-box object's parent or owner window.

Call this function to construct a standard Windows file dialog box-object. Either a
File Open or File Save As dialog box is constructed, depending on the value of
bOpenFileDialog.

The lpszFilter parameter is used to determine the type of filename a file must have to
be displayed in the file list box. The first string in the string pair describes the filter;
the second string indicates the file extension to use. Multiple extensions may be
specified using ';' as the delimiter. The string ends with two 'I' characters, followed
by a NULL character. You can also use a CString object for this parameter.

675

CFileDialog: :DoModal

For example, Microsoft Excel permits users to open files with extensions .XLC
(chart) or .XLS (worksheet), among others. The filter for Excel could be written as:

static char BASED_CODE szFilter[] - "Chart Files (*.xlc) I *.xlc I Worksheet Files
(*.xls) I *.xls I Data Files (*.xlc:*.xls) I *.xlc: *.xls I All Files (*.*) I *.* I I"

See Also CFileDialog: :DoModal, : : GetOpenFileName, : : GetSaveFileName

CFileDialog: :DoModal
virtual int DoModal();

Return Value

Remarks

IDOK or IDCANCEL if the function is successful; otherwise O. IDOK and
IDCANCEL are constants that indicate whether the user selected the OK or Cancel
button.

If IDCANCEL is returned, you can call the Windows CommDlgExtendedError
function to determine whether an error occurred.

Call this function to display the Windows common file dialog box and allow the user
to browse files and directories and enter a filename.

If you want to initialize the various file dialog-box options by setting members of the
m_ofn structure, you should do this before calling DoModal, but after the dialog
object is constructed.

When the user clicks the dialog box's OK or Cancel buttons, or selects the Close
option from the dialog box's control menu, control is returned to your application.
You can then call other member functions to retrieve the settings or information the
user inputs into the dialog box.

DoModal is a virtual function overridden from class CDialog.

See Also CDialog::DoModal, CFileDialog::CFileDialog

CFileDialog: : GetFileExt
CString GetFileExt() const;

Return Value

Remarks

676

The extension of the filename.

Call this function to retrieve the extension of the filename entered into the dialog
box. For example, if the name of the file entered is DATA.TXT, GetFileExt
returns "TXT".

CFileDialog: : GetFileTitle

If m_ofn.Flags has the OFN_ALLOWMULTISELECT flag set, this string contains
a sequence of null-terminated strings, with the first string being the directory path of
the file group selected, followed by the names of all files selected by the user. To
retrieve file pathnames, use the GetStartPosition and GetNextPathName member
functions.

See Also CFileDialog: : GetPathName, CFileDialog: : GetFileName,
CFileDialog: : GetFileTitle

CFileDialog: : GetFileN arne
CString GetFileName() const;

Return Value

Remarks

The name of the file.

Call this function to retrieve the name of the file entered in the dialog box. The name
of the file includes only its prefix, without the path or the extension. For example,
GetFileName will return "TEXT" for the file C:\FILES\TEXT.DAT.

If m_ofn.Flags has the OFN_ALLOWMULTISELECT flag set, you should call
GetNextPathName to retrieve a file pathname.

See Also CFileDialog: : GetPathName, GetStartPosition,
CFileDialog: : GetFileTitle

CFileDialog: : GetFileTitle
CString GetFileTitle() const;

Return Value

Remarks

The title of the file.

Call this function to retrieve the title of the filename entered in the dialog box. The
title of the filename includes both the name and the extension. For example,
GetFileTitie will return "TEXT.DAT" for the file C:\FILES\TEXT.DAT.

If m_ofn.Flags has the OFN_ALLOWMULTISELECT flag set, this string contains
a sequence of null-teminated strings, with the first string being the directory path of
the file group selected, followed by the names of all files selected by the user. For this
reason, use the GetStartPosition and GetNextPathName member functions to
retrieve the next file name in the list.

See Also CFileDialog: : GetPathName, CFileDialog: : GetFileName,
CFileDialog: : GetFileExt, : : GetFileTitle

677

CFileDialog: : GetNextPathN arne

CFileDialog::GetNextPathNarne
CString GetNextPathName(POSITION& pos) const;

Parameters
pos A reference to a POSITION value returned by a previous GetNextPathName

or GetStartPosition function call. NULL if the end of the list has been reached.

Return Value

Remarks

The full path of the file.

Call this function to retrieve the next filename from the group selected in the dialog
box. The path of the filename includes the file's title plus the entire directory path.
For example, GetNextPathName will return "C:\FILES\TEXT.DAT" for the file
C:\FILES\TEXT.DAT. You can use GetNextPathName in a forward iteration loop
if you establish the initial position with a call to GetStartPosition.

If the selection consists of only one file, that file name will be returned.

See Also CFileDialog: : GetFileName, CFileDialog: : GetStartPosition

CFileDialog: : GetPathN arne
CString GetPathName() const;

Return Value

Remarks

678

The full path of the file.

Call this function to retrieve the full path of the file entered in the dialog box. The
path of the filename includes the file's title plus the entire directory path. For
example, GetPathName will return "C:\FILES\TEXT.DAT" for the file
C:\FILES\TEXT.DAT.

If m_ofn.Flags has the OFN_ALLOWMULTISELECT flag set, this string contains
a sequence of null-teminated strings, with the first string being the directory path of
the file group selected, followed by the names of all files selected by the user. For this
reason, use the GetStartPosition and GetNextPathName member functions to
retrieve the next file name in the list.

See Also CFileDialog: : GetFileName, CFileDialog: : GetFileExt,
CFileDialog: : GetFileTitle

CFileDialog: :OnFileNameOK

CFileDialog:: GetReadOnly Pref
BOOL GetReadOnlyPref() const;

Return Value

Remarks

Non-zero if the Read Only check box in the dialog box is selected; otherwise O.

Call this function to determine whether the Read Only check box has been selected in
the Windows standard File Open and File Save As dialog boxes. The Read Only
check box can be hidden by setting the OFN_HIDEREADONLY style in the
CFileDialog constructor.

See Also CFileDialog::CFileDialog, CFileDialog::GetPathName,
CFileDialog: : GetFileExt

CFileDialog: : GetStartPosition
POSITION GetStartPosition() const;

Return Value

Remarks

A POSITION value that can be used for iteration; NULL if the list is empty.

Call this function to retrieve the position of the first file path name in the list, if
m_ofn.Flags has the OFN_ALLOWMULTISELECT flag set.

If the selection consists of only one file, that filename will be returned.

See Also CFileDialog: : GetFileName, CFileDialog: : GetNextPathName,
CFileDialog: : GetStartPosition

CFileDialog::OnFileNameOK
virtual BOOL OnFileNameOK();

Return Value

Remarks

Nonzero if the filename is not a valid filename; otherwise O.

Override this function only if you want to provide custom validation of filenames
that are entered into a common file dialog box. This function allows you to reject a
filename for any application-specific reason. Normally, you do not need to use this
function because the framework provides default validation of filenames and displays
a message box if an invalid filename is entered.

679

CFileDialog::OnLBSeIChangedNotify

If a nonzero value is returned, the dialog box will remain displayed for the user to
enter another filename.

See Also OPENFILENAME

CFileDialog:: OnLB SelChangedN otify
virtual void OnLBSelChangedNotify(UINT nIDBox, UINT iCurSel, UINT nCode};

Parameters

Remarks

nIDBox The ID of the list box or combo box in which the selection occurred.

iCurSel The index of the current selection.

nCode The control notification code. This parameter must have one of the following
values:

• CD_LBSELCHANGE Specifies iCurSel is the selected item in a single
selection list box.

• CD _LBSELSUB Specifies that iCurSel is no longer selected in a
multi selection list box.

• CD_LBSELADD Specifies that iCurSel is selected in a multi selection list
box.

• CD_LBSELNOITEMS Specifies that no selection exists in a multi selection
list box.

For more information, see "About Common Dialog Boxes" in the Win32 SDK
documentation.

This function is called whenever the current selection in a list box is about to change.
Override this function to provide custom handling of selection changes in the list
box. For example, you can use this function to display the access rights or date-Iast
modified of each file the user selects.

CFileDialog: :OnShare Violation
virtual UINT OnShareViolation(LPCTSTR lpszPathName};

Return Value

680

One of the following values:

• OFN_SHAREFALLTHROUGH The filename is returned from the dialog box.

• OFN_SHARENOWARN No further action needs to be taken.

• OFN_SHAREWARN The user receives the standard warning message for
this error.

Parameters

Remarks

lpszPathName The path of the file on which the share violation occurred.

Override this function to provide custom handling of share violations. Normally, you
do not need to use this function because the framework provides default checking of
share violations and displays a message box if a share violation occurs.

If you want to disable share violation checking, use the bitwise OR operator to
combine the flag OFN_SHAREAWARE with m_ofn.Flags.

See Also CFileDialog::OnFileNameOK

Data Members
CFileDialog: :m_ofn
Remarks

m_ofn is a structure of type OPENFILENAME. Use this structure to initialize the
appearance of a File Open or File Save As dialog box after it is constructed but before
it is displayed with the DoModal member function. For example, you can set the
IpszTitle member of m_ofn to the caption you want the dialog box to have.

For more information, see the OPENFILENAME structure in the Win32 SDK
documentation.

CFileDialog: :m_ofn

681

CFileException

CFileException

682

A CFileException object represents a file-related exception condition. The
CFileException class includes public data members that hold the portable cause code
and the operating-system-specific error number. The class also provides static
member functions for throwing file exceptions and for returning cause codes for both
operating-system errors and C run-time errors.

CFileException objects are constructed and thrown in CFile member functions and
in member functions of derived classes. You can access these objects within the scope
of a CATCH expression. For portability, use only the cause code to get the reason for
an exception. For more information about exceptions, see the article "Exceptions" in
Programming with MFC.

#include <afx.h>

See Also "Exception Processing"

Data Members

Construction

CFileException

Code Conversion

OsErrorToException

ErrnoToException

Helper Functions

ThrowOsError

ThrowErrno

Contains portable code corresponding to the exception
cause.

Contains the related operating-system error number.

Constructs a CFileException object.

Returns a cause code corresponding to an operating system
error code.

Returns cause code corresponding to a run-time error
number.

Throws a file exception based on an operating-system error
number.

Throws a file exception based on a run-time error number.

CFileException: :ErrnoToException

Member Functions
CFileException: :CFileException

CFileException(int cause = CFileException::none, LONG lOsError = -1);

Parameters

Remarks

cause An enumerated type variable that indicates the reason for the exception.
See CFileException::m_cause for a list of the possible values.

IOsError An operating-system-specific reason for the exception, if available.
The lOsError parameter provides more information than cause does.

Constructs a CFileException object that stores the cause code and the operating
system code in the object.

Do not use this constructor directly, but rather call the global function
AfxThrowFileException.

Note The variable IOsError applies only to CFile and CStdioFile objects. The CMemFile
class does not handle this error code.

See Also AfxThrowFileException

CFileException: : ErrnoToException
static int PASCAL ErrnoToException(int nErrno);

Return Value
Enumerated value that corresponds to a given run-time library error value.

Parameters

Remarks

Example

nErrno An integer error code as defined in the run-time include file ERRNO.H.

Converts a given run-time library error value to a CFileException enumerated error
value. See CFileException::m_cause for a list of the possible enumerated values.

//example for CFileException::ErrnoToException
#include <errno.h>
ASSERT(CFileException::ErrnoToException(EACCES)

CFileException::accessDenied);

See Also CFileException: :OsErrorToException

683

CFileException: :OsErrorToException

CFileException:: OsErrorToException
static int PASCAL OsErrorToException(LONG IOsError);

Return Value
Enumerated value that corresponds to a given operating-system error value.

Parameters

Remarks

Example

IOsError An operating-system-specific error code.

Returns an enumerator that corresponds to a given IOsError value. If the error code is
unknown, then the function returns CFileException: : generic.

//example for CFileException::OsErrorToException
ASSERT(CFileException::OsErrorToException(5) ==

CFileException::accessDenied):

See Also CFileException: : ErrnoToException

CFileException: : Throw Ermo
static void PASCAL ThrowErrno(int nErrno);

Parameters

Remarks

Example

nErrno An integer error code as defined in the run-time include file ERRNO.H.

Constructs a CFileException object corresponding to a given nErrno value, then
throws the exception.

//example for CFileException::ThrowErrno
#include <errno.h>
CFi 1 eExcepti on: :ThrowErrno(EACCES): / / "access deni ed"

See Also CFileException: : ThrowOsError

CFileException: : ThrowOsError
static void PASCAL ThrowOsError(LONG IOsError);

Parameters
IOsError An operating-system-specific error code.

684

CFileException: :m_cause

Remarks

Example

Throws a CFileException corresponding to a given IOsError value. If the error code
is unknown, then the function throws an exception coded as
CFileException: : generic.

Ilexample for CFileException::ThrowOsError
FileException::ThrowOsError(5); II "access denied"

See Also CFileException::ThrowErrno

Data Members
CFileException: :m_cause
Remarks

Contains values defined by a CFileException enumerated type. This data member is
a public variable of type int. The enumerators and their meanings are as follows:

• CFileException::none No error occurred.

• CFileException::generic An unspecified error occurred.

• CFileException::fileNotFound The file could not be located.

• CFileException::badPath All or part of the path is invalid.

• CFileException: :tooManyOpenFiles The permitted number of open files was
exceeded.

• CFileException: :accessDenied The file could not be accessed.

• CFileException: :invalidFile There was an attempt to use an invalid file handle.

• CFileException: :removeCurrentDir The current working directory cannot be
removed.

• CFileException::directoryFull There are no more directory entries.

• CFileException:: badSeek There was an error trying to set the file pointer.

• CFileException: :hardIO There was a hardware error.

• CFileException: :sharingViolation SHARE.EXE was not loaded, or a shared
region was locked.

• CFileException::lockViolation There was an attempt to lock a region that was
already locked.

• CFileException: :diskFull The disk is full.

• CFileException: :endOfFile The end of file was reached.

Note These CFileException cause enumerators are distinct from the CArchiveException
cause enumerators.

685

CFileException: :m_lOsError

Example
Ilexample for CFileException: :m_cause
extern char* pFileName;
TRY
{

CFile f(pFileName. CFile: :modeCreate I CFile::modeWrite);
}

CATCH(CFileException. e)
{

}

if(e->m_cause == CFileException::fileNotFound
pr; ntf("ERROR: Fil e not found\n");

CFileException: :m_lOsError
Remarks

686

Contains the operating-system error code for this exception. See your operating
system technical manual for a listing of error codes. This data member is a public
variable of type LONG.

CFindReplaceDialog

The CFindReplaceDialog class allows you to implement standard string
FindlReplace dialog boxes in your application. Unlike the other Windows common
dialog boxes, CFindReplaceDialog objects are modeless, allowing users to interact
with other windows while they are on screen. There are two kinds of
CFindReplaceDialog objects: Find dialog boxes and FindlReplace dialog boxes.
Although the dialog boxes allow the user to input search and search/replace strings,
they do not perform any of the searching or replacing functions. You must add these
to the application.

To construct a CFindReplaceDialog object, use the provided constructor (which has
no arguments). Since this is a modeless dialog box, allocate the object on the heap
using the new operator, rather than on the stack.

Once a CFindReplaceDialog object has been constructed, you must call the Create
member function to create and display the dialog box.

Use the m_fr structure to initialize the dialog box before calling Create. The m_fr
structure is of type FINDREPLACE. For more information on this structure, see the
Win32 SDK documentation.

In order for the parent window to be notified of find/replace requests, you must use
the Windows RegisterMessage function and use the
ON_REGISTERED_MESSAGE message-map macro in your frame window that
handles this registered message. You can call any of the member functions listed in
the "Operations" section in the table below from the frame window's callback
function.

You can determine whether the user has decided to terminate the dialog box with the
IsTerminating member function.

CFindReplaceDialog relies on the COMMDLG.DLL file that ships with Windows
versions 3.1 and later.

CFindReplaceDialog

687

CFindReplaceDialog

688

To customize the dialog box, derive a class from CFindReplaceDialog, provide a
custom dialog template, and add a message map to process the notification messages
from the extended controls. Any unprocessed messages should be passed to the base
class.

Customizing the hook function is not required.

For more information on using CFindReplaceDialog, see "Common Dialog Classes"
in Chapter 4 of Programming with MPC.

#include <afxdlgs.h>

Data Members

Construction

CFindReplaceDialog

Create

Operations

FindNext

GetNotitier

GetFindString

GetReplaceString

IsTerminating

MatchCase

Match WholeWord

ReplaceAll

ReplaceCurrent

SearchDown

A structure used to customize a CFindReplaceDialog object.

Call this function to construct a CFindReplaceDialog object.

Creates and displays a CFindReplaceDialog dialog box.

Call this function to determine whether the user wants to find
the next occurrence of the find string.

Call this function to retrieve the FINDREPLACE structure
in your registered message handler.

Call this function to retrieve the current find string.

Call this function to retrieve the current replace string.

Call this function to determine whether the dialog box is
terminating.

Call this function to determine whether the user wants to
match the case of the find string exactly.

Call this function to determine whether the user wants to
match entire words only.

Call this function to determine whether the user wants all
occurrences of the string to be replaced.

Call this function to determine whether the user wants the
current word to be replaced.

Call this function to determine whether the user wants the
search to proceed in a downward direction.

CFindReplaceDialog: : Create

Member Functions
CFindReplaceDialog: :CFindReplaceDialog

CFindReplaceDialog();

Remarks
Constructs a CFindReplaceDialog object. CFindReplaceDialog objects are
constructed on the heap with the new operator. For more information on the
construction of CFindReplaceDialog objects, see the CFindReplaceDialog
overview. Use the Create member function to display the dialog box.

See Also CFindReplaceDialog::Create

CFindReplaceDialog: : Create
BOOL Create(BOOL bFindDialogOnly, LPCTSTR lpszFindWhat,

LPCTSTR lpszReplaceWith = NULL, DWORD dwFlags = FR_DOWN,
CWnd* pParentWnd = NULL);

Return Value
Nonzero if the dialog box object was successfully created; otherwise O.

Parameters

Remarks

bFindDialogOnly Set this parameter to TRUE to display the standard Windows
Find dialog box. Set it to FALSE to display the Windows FindlReplace dialog box.

lpszFindWhat Specifies the string for which to search.

lpszReplace With Specifies the default string with which to replace found strings.

dwFlags One or more flags you can use to customize the settings of the dialog box,
combined using the bitwise OR operator. The default value is FR_DOWN, which
specifies that the search is to proceed in a downward direction. See the
FINDREPLACE structure in the Win32 SDK documentation for more
information on these flags.

pParentWnd A pointer to the dialog box's parent or owner window. This is the
window that will receive the special message indicating that a find/replace action
is requested. If NULL, the application's main window is used.

Creates and displays either a Find or FindlReplace dialog box object, depending on
the value of bFindDialogOnly.

In order for the parent window to be notified of find/replace requests, you must use
the Windows RegisterMessage function whose return value is a message number
unique to the application's instance. Your frame window should have a message map

689

CFindReplaceDialog::FindNext

entry that declares the callback function (OnFindReplace in the example that
follows) that handles this registered message. The following code fragment is an
example of how to do this for a frame window class named CMyFrameWnd:

class CMyFrameWnd : public CFrameWnd
{

protected:
afx_msg LONG LRESULT OnFindReplaceCWPARAM wParam, LPARAM lParam);

} ;

static UINT WM_FINREPLACE = ::RegisterMessageCFINDMSGSTRING);

BEGIN_MESSAGE_MAPC CMyFrameWnd, CFrameWnd
IINormal message map entries here.
ON_REGISTERED_MESSAGEC WM_FINDREPLACE, OnFindReplace

END_MESSAGE_MAP

Within your OnFindReplace function, you interpret the intentions of the user and
create the code for the find/replace operations.

See Also CFindReplaceDialog:: CFindReplaceDialog

CFindReplaceDialog: : FindNext
BOOL FindNext() const;

Return Value

Remarks

Nonzero if the user wants to find the next occurrence of the search string;
otherwise O.

Call this function from your callback function to determine whether the user wants to
find the next occurrence of the search string.

See Also CFindReplaceDialog: :GetFindString,
CFindReplaceDialog: :SearchDown

CFindReplaceDialog: : GetFindString
CString GetFindString() const;

Return Value

Remarks

690

The default string to find.

Call this function from your callback function to retrieve the default string to find.

See Also CFindReplaceDialog: :FindNext,
CFindReplaceDialog: : GetReplaceString

CFindReplaceDialog: :IsTerminating

CFindReplaceDialog::GetNotifier
static CFindReplaceDialog* PASCAL GetNotifier(LPARAM IParam);

Return Value
A pointer to the current dialog box.

Parameters

Remarks

IParam The Iparam value passed to the frame window's OnFindReplace member
function.

Call this function to retrieve a pointer to the current Find Replace dialog box. It
should be used within your callback function to access the current dialog box, call its
member functions, and access the m_fr structure.

CFindReplaceDialog: : GetReplaceString
CString GetReplaceString() const;

Return Value

Remarks

The default string with which to replace found strings.

Call this function to retrieve the current replace string.

See Also CFindReplaceDialog: : GetFindString

CFindReplaceDialog: : IsTerminating
BOOL IsTerminating() const;

Return Value

Remarks

Nonzero if the user has decided to terminate the dialog box; otherwise O.

Call this function within your callback function to determine whether the user has
decided to terminate the dialog box. If this function returns nonzero, you should call
the DestroyWindow member function of the current dialog box and set any dialog
box pointer variable to NULL. Optionally, you can also store the find/replace text last
entered and use it to initialize the next find/replace dialog box.

691

CFindReplaceDialog::MatchCase

CFindReplaceDialog: : MatchCase
BOOL MatchCase() const;

Return Value

Remarks

Nonzero if the user wants to find occurrences of the search string that exactly match
the case of the search string; otherwise O.

Call this function to determine whether the user wants to match the case of the find
string exactly.

See Also CFindReplaceDialog: : Match Whole Word

CFindReplaceDialog: : Match Whole Word
BOOL MatchWholeWord() const;

Return Value

Remarks

Nonzero if the user wants to match only the entire words of the search string;
otherwise O.

Call this function to determine whether the user wants to match entire words only.

See Also CFindReplaceDialog: :MatchCase

CFindReplaceDialog: : ReplaceAII
BOOL ReplaceAll() const;

Return Value

Remarks

692

Nonzero if the user has requested that all strings matching the replace string be
replaced; otherwise O.

Call this function to determine whether the user wants all occurrences of the string to
be replaced.

See Also CFindReplaceDialog: :ReplaceCurrent

CFindReplaceDialog: :m_fr

CFindReplaceDialog: : ReplaceCurrent
BOOL RepJaceCurrent() const;

Return Value

Remarks

Nonzero if the user has requested that the currently selected string be replaced with
the replace string; otherwise O.

Call this function to determine whether the user wants the current word to be
replaced.

See Also CFindRepJaceDialog: :RepJaceAII

CFindReplaceDialog: :SearchDown
BOOL SearchDown() const;

Return Value

Remarks

Nonzero if the user wants the search to proceed in a downward direction; 0 if the user
wants the search to proceed in an upward direction.

Call this function to determine whether the user wants the search to proceed in a
downward direction.

Data Members
CFindReplaceDialog: :m_fr
Remarks

m_fr is a structure of type FINDREPLACE. Its members store the characteristics of
the dialog-box object. After constructing a CFindRepJaceDialog object, you can use
m_fr to modify various values in the dialog box.

For more information on this structure, see the FINDREPLACE structure in the
Win32 SDK documentation.

693

CFont

CFont

694

The CFont class encapsulates a Windows graphics device interface (GDI) font and
provides member functions for manipulating the font. To use a CFont object,
construct a CFont object and attach a Windows font to it with CreateFont,
CreateFontIndirect, CreatePointFont, or CreatePointFontIndirect, and then use
the object's member functions to manipulate the font.

The CreatePointFont and CreatePointFontIndirect functions are often easier to use
than CreateFont or CreateFontIndirect since they do the conversion for the height
of the font from a point size to logical units automatically.

For more information on CFont, see "Graphic Objects" in Chapter 1 of Programming
withMFC.

#include <afxwin.h>

Construction

CFont

Initialization

CreateFontindirect

CreateFont

CreatePointFont

CreatePointFontindirect

Operations

FromHandle

Attributes

operator HFONT

GetLogFont

Constructs a CFont object.

Initializes a CFont object with the characteristics given in
a LOGFONT structure.

Initializes a CFont with the specified characteristics.

Initializes a CFont with the specified height, measured in
tenths of a point, and typeface.

Same as CreateFontindirect except that the font height is
measured in tenths of a point rather than logical units.

Returns a pointer to a CFont object when given a
Windows HFONT.

Returns the Windows GDI font handle attached to the
CFont object.

Fills a LOGFONT with information about the logical font
attached to the CFont object.

CFont: :CreateFont

Member Functions
CFont: :CFont

Remarks

CFont();

Constructs a CFont object. The resulting object must be initialized with CreateFont,
CreateFontIndirect, CreatePointFont, or CreatePointFontIndirect before it can
be used.

See Also CFont::CreateFontIndirect, CFont::CreateFont,
CFont: :CreatePointFont, CFont: :CreatePointFontIndirect, : :EnumFonts

CFont::CreateFont
BOOL CreateFont(int nHeight, int nWidth, int nEseapement, int nOrientation, int nWeight,

BYTE bItalie, BYTE bUnderline, BYTE eStrikeOut, BYTE nCharSet, BYTE nOutPrecision,
BYTE nClipPrecision, BYTE nQuality, BYTE nPitehAndFamily, LPCTSTR lpszFaeename);

Return Value
Nonzero if successful; otherwise 0.

Parameters
nHeight Specifies the desired height (in logical units) of the font. The font height

can be specified in the following ways:

• Greater than 0, in which case the height is transformed into device units and
matched against the cell height of the available fonts.

• Equal to 0, in which case a reasonable default size is used.

• Less than 0, in which case the height is transformed into device units and the
absolute value is matched against the character height of the available fonts.

The absolute value of nHeight must not exceed 16,384 device units after it is
converted. For all height comparisons, the font mapper looks for the largest font
that does not exceed the requested size or the smallest font if all the fonts exceed
the requested size.

nWidth Specifies the average width (in logical units) of characters in the font. If
n Width is 0, the aspect ratio of the device will be matched against the digitization
aspect ratio of the available fonts to find the closest match, which is determined by
the absolute value of the difference.

695

CFont: :CreateFont

696

nEscapement Specifies the angle (in O.l-degree units) between the escapement
vector and the x-axis of the display surface. The escapement vector is the line
through the origins of the first and last characters on a line. The angle is measured
counterclockwise from the x-axis.

nOrientation Specifies the angle (in O.l-degree units) between the baseline of a
character and the x-axis. The angle is measured counterclockwise from the x-axis
for coordinate systems in which the y-direction is down and clockwise from the x
axis for coordinate systems in which the y-direction is up.

nWeight Specifies the font weight (in inked pixels per 1000). Although nWeight can
be any integer value from 0 to 1000, the common constants and values are as
follows:

Constant Value

FW _DONTCARE 0
FW_THIN 100
FW _EXTRALIGHT 200

FW_ULTRALIGHT 200
FW_LIGHT 300

FW_NORMAL 400

FW_REGULAR 400
FW_MEDIUM 500
FW _SEMIBOLD 600

FW_DEMIBOLD 600
FW_BOLD 700
FW _EXTRABOLD 800

FW_ULTRABOLD 800
FW_BLACK 900

FW_HEAVY 900

These values are approximate; the actual appearance depends on the typeface.
Some fonts have only FW _NORMAL, FW _REGULAR, and FW _BOLD
weights. If FW _DONTCARE is specified, a default weight is used.

bltalic Specifies whether the font is italic.

bUnderline Specifies whether the font is underlined.

cStrikeOut Specifies whether characters in the font are struck out. Specifies a
strikeout font if set to a nonzero value.

nCharSet Specifies the font's character set. The following constants and values are
predefined:

Constant Value

ANSCCHARSET 0

DEFAULT_CHARSET 1

SYMBOL_CHARSET 2

SHIFTJIS_CHARSET 128

OEM_CHARSET 255

The OEM character set is system-dependent.

Fonts with other character sets may exist in the system. An application that uses a
font with an unknown character set must not attempt to translate or interpret
strings that are to be rendered with that font. Instead, the strings should be passed
directly to the output device driver.

The font mapper does not use the DEFAULT_CHARSET value. An application
can use this value to allow the name and size of a font to fully describe the logical
font. If a font with the specified name does not exist, a font from any character set
can be substituted for the specified font. To avoid unexpected results, applications
should use the DEFAULT_CHARSET value sparingly.

nOutPrecision Specifies the desired output precision. The output precision defines
how closely the output must match the requested font's height, width, character
orientation, escapement, and pitch. It can be anyone of the following values:

OUT_CHARACTER_PRECIS OUT_STRING_PRECIS

OUT_DEFAULT_PRECIS OUT_STROKE_PRECIS

OUT_DEVICE_PRECIS OUT_TT_PRECIS

OUT_RASTER_PRECIS

Applications can use the OUT_DEVICE_PRECIS, OUT_RASTER_PRECIS,
and OUT_TT_PRECIS values to control how the font mapper chooses a font
when the system contains more than one font with a given name. For example, if a
system contains a font named Symbol in raster and TrueType form, specifying
OUT_TT_PRECIS forces the font mapper to choose the TrueType version.
(Specifying OUT_TT_PRECIS forces the font mapper to choose a TrueType font
whenever the specified font name matches a device or raster font, even when there
is no TrueType font of the same name.)

nClipPrecision Specifies the desired clipping precision. The clipping precision
defines how to clip characters that are partially outside the clipping region. It can
be anyone of the following values:

CFont: :CreateFont

697

CFont: :CreateFont

698

CLIP _CHARACTER_PRECIS CLIP_MASK

CLIP _DEFAULT_PRECIS CLIP _STROKE_PRECIS

CLIP_ENCAPSULATE CLIP _TT_ALWAYS

CLIP _LH_ANGLES

To use an embedded read-only font, an application must specify
CLIP_ENCAPSULATE.

To achieve consistent rotation of device, TrueType, and vector fonts, an
application can use the OR operator to combine the CLIP _LH_ANGLES value
with any of the other nClipPrecision values. If the CLIP _LH_ANGLES bit is set,
the rotation for all fonts depends on whether the orientation of the coordinate
system is left-handed or right-handed. (For more information about the orientation
of coordinate systems, see the description of the nOrientation parameter.) If
CLIP _LH_ANGLES is not set, device fonts always rotate counterclockwise, but
the rotation of other fonts is dependent on the orientation of the coordinate system.

nQuality Specifies the font's output quality, which defines how carefully the GDI
must attempt to match the logical-font attributes to those of an actual physical
font. It can be one of the following values:

• DEFAULT_QUALITY Appearance of the font does not matter.

• DRAFT_QUALITY Appearance of the font is less important than when
PROOF_QUALITY is used. For GDI raster fonts, scaling is enabled. Bold,
italic, underline, and strikeout fonts are synthesized if necessary.

• PROOF_QUALITY Character quality of the font is more important than
exact matching of the logical-font attributes. For GDI raster fonts, scaling is
disabled and the font closest in size is chosen. Bold, italic, underline, and
strikeout fonts are synthesized if necessary.

nPitchAndFamily Specifies the pitch and family of the font. The two low-order bits
specify the pitch of the font and can be anyone of the following values:

DEFAULT_PITCH VARIABLE_PITCH
FIXED_PITCH

Applications can add TMPF _ TRUETYPE to the nPitchAndF amily parameter to
choose a TrueType font. The four high-order bits of the parameter specify the font
family and can be anyone of the following values:

• FF _DECORATIVE Novelty fonts: Old English, for example.

• FF _DONTCARE Don't care or don't know.

• FF _MODERN Fonts with constant stroke width (fixed-pitch), with or
without serifs. Fixed-pitch fonts are usually modem faces. Pica, Elite, and
Courier New are examples.

CFont: :CreateFontlndirect

Remarks

• FF _ROMAN Fonts with variable stroke width (proportionally spaced) and
with serifs. Times New Roman and Century Schoolbook are examples.

• FF _SCRIPT Fonts designed to look like handwriting. Script and Cursive are
examples.

• FF _SWISS Fonts with variable stroke width (proportionally spaced) and
without serifs. MS Sans Serif is an example.

An application can specify a value for nPitchAndFamily by using the Boolean OR
operator to join a pitch constant with a family constant.

Font families describe the look of a font in a general way. They are intended for
specifying fonts when the exact typeface desired is not available.

lpszFacename A CString or pointer to a null-terminated string that specifies the
typeface name of the font. The length of this string must not exceed 30 characters.
The Windows EnumFontFamilies function can be used to enumerate all currently
available fonts. If lpszFacename is NULL, the ODI uses a device-independent
typeface.

Initializes a CFont object with the specified characteristics. The font can
subsequently be selected as the font for any device context.

The CreateFont function does not create a new Windows ODI font. It merely selects
the closest match from the fonts available in the ODI's pool of physical fonts.

Applications can use the default settings for most of these parameters when creating a
logical font. The parameters that should always be given specific values are nHeight
and lpszFacename. If nHeight and lpszFacename are not set by the application, the
logical font that is created is device-dependent.

When you finish with the CFont object created by the CreateFont function, first
select the font out of the device context, then delete the CFont object.

See Also CFont::CreateFontIndirect, CFont::CreatePointFont, ::CreateFont,
: :EnumFontFamiIies, ::EnumFonts

CFont: :CreateFontIndirect
BOOL CreateFontIndirect(const LOGFONT* lpLogFont);

Return Value
Nonzero if successful; otherwise o.

Parameters
lpLogFont Points to a LOGFONT structure that defines the characteristics of the

logical font.

699

CFont: :CreatePointFont

Remarks
Initializes a CFont object with the characteristics given in a LOGFONT structure
pointed to by IpLogFont. The font can subsequently be selected as the current font for
any device.

This font has the characteristics specified in the LOGFONT structure. When the font
is selected ~y using the CDC::SeiectObject member function, the GDI's font mapper
attempts to match the logical font with an existing physical font. If it fails to find an
exact match for the logical font, it provides an alternative whose characteristics
match as many of the requested characteristics as possible.

When you finish with the CFont object created by the CreateFontlndirect function,
fIrst select the font out of the device context, then delete the CFont object.

See Also CFont: :CreateFont, CFont: :CreatePointFontlndirect,
CDC: :SeiectObject, CGdiObject: :DeieteObject, :: CreateFontlndirect

CFont: :CreatePointFont
BOOL CreatePointFont(int nPointSize, LPCTSTR IpszFaceName, CDC* pDC = NULL);

Return Value
Nonzero if successful, otherwise O.

Parameters

Remarks

700

nPointSize Requested font height in tenths of a point. (For instance, pass 120 to
request a 12-point font.)

IpszFaceName A CString or pointer to a null-terminated string that specifies the
typeface name of the font. The length of this string must not exceed 30 characters.
The Windows EnumFontFamilies function can be used to enumerate all currently
available fonts. If IpszFaceName is NULL, the GDI uses a device-independent
typeface.

pDC Pointer to the CDC object to be used to convert the height in nPointSize to
logical units. If NULL, a screen device context is used for the conversion.

This function provides a simple way to create a font of a specified typeface and point
size. It automatically converts the height in nPointSize to logical units using the CDC
object pointed to by pDC.

When you finish with the CFont object created by the CreatePointFont function,
first select the font out of the device context, then delete the CFont object.

See Also CFont::CreatePointFontlndirect, CFont::CreateFont

CFont::FromHandle

CFont: :CreatePointFontIndirect
BOOL CreatePointFontlndirect(const LOGFONT* lpLogFont, CDC* pDC = NULL);

Return Value
Nonzero if successful, otherwise O.

Parameters

Remarks

lpLogFont Points to a LOGFONT structure that defines the characteristics of the
logical font. The lfHeight member of the LOGFONT structure is measured in
tenths of a point rather than logical units. (For instance, set lfHeight to 120 to
request a 12 point font.)

pDC pointer to the CDC object to be used to convert the height in nPointSize to
logical units. If NULL, a screen device context is used for the conversion.

This function is the same as CreateFontlndirect except that the lfHeight member of
the LOGFONT is interpreted in tenths of a point rather than device units. This
function automatically converts the height in lfHeight to logical units using the CDC
object pointed to by pDC before passing the LOGFONT structure on to Windows.

When you finish with the CFont object created by the CreatePointFontlndirect
function, first select the font out of the device context, then delete the CFont object.

See Also CFont::CreatePointFont, CFont::CreateFontlndirect

CFont: : FromHandle
static CFont* PASCAL FromHandle(HFONT hFont);

Return Value
A pointer to a CFont object if successful; otherwise NULL.

Parameters

Remarks

hF ont An HFONT handle to a Windows font.

Returns a pointer to a CFont object when given an HFONT handle to a Windows
GDI font object. If a CFont object is not already attached to the handle, a temporary
CFont object is created and attached. This temporary CFont object is valid only until
the next time the application has idle time in its event loop, at which time all
temporary graphic objects are deleted. Another way of saying this is that the
temporary object is valid only during the processing of one window message.

701

CFont: : GetLogFont

CFont: : GetLogFont
int GetLogFont(LOGFONT * pLogFont);

Return Value
Nonzero if the function succeeds, otherwise O.

Parameters

Remarks

pLogFont Pointer to the LOGFONT structure to receive the font information.

Call this function to retrieve a copy of the LOGFONT structure for CFont.

SeeAlso LOGFONT, ::GetObject

CFont: : operator HFONT
operator HFONT() const;

Return Value

Remarks

702

The handle of the Windows GDI font object attached to CFont if successful;
otherwise NULL.

Use this operator to get the Windows GDI handle of the font attached to the CFont
object.

Since this operator is automatically used for conversions from CFont to Fonts and
Text, you can pass CFont objects to functions that expect HFONTs.

For more information about using graphic objects, see "Graphic Objects" in the
Win32 SDK documentation.

CFontDialog

The CFontDialog class allows you to incorporate a font-selection dialog box into
your application. A CFontDialog object is a dialog box with a list of fonts that are
currently installed in the system. The user can select a particular font from the list,
and this selection is then reported back to the application.

To construct a CFontDialog object, use the provided constructor or derive a new
subclass and use your own custom constructor.

Once a CFontDialog object has been constructed, you can use the ID_cf structure to
initialize the values or states of controls in the dialog box. The ID_cf structure is of
type CHOOSEFONT. For more information on this structure, see the Win32 SDK
documentation.

After initializing the dialog object's controls, call the DoModal member function to
display the dialog box and allow the user to select a font. DoModal returns whether
the user selected the OK (IDOK) or Cancel (IDCANCEL) button.

If DoModal returns IDOK, you can use one of CFontDialog's member functions to
retrieve the information input by the user.

You can use the Windows COIDIDDIgExtendedError function to determine whether
an error occurred during initialization of the dialog box and to learn more about the
error. For more information on this function, see the Win32 SDK documentation.

CFontDialog relies on the COMMDLG.DLL file that ships with Windows versions
3.1 and later.

To customize the dialog box, derive a class from CFontDialog, provide a custom
dialog template, and add a message-map to process the notification messages from
the extended controls. Any unprocessed messages should be passed to the base class.

Customizing the hook function is not required.

CFontDialog

703

CFontDialog: :CFontDialog

For more information on using CFontDialog, see "Common Dialog Classes" in
Chapter 4 of Programming with MFC.

#include <afxdlgs.h>

Data Members

Construction

CFontDialog

Operations

DoModal

GetCurrentFont

GetFaceName

GetStyleName

GetSize

GetColor

GetWeight

IsStrikeOut

IsUnderline

IsBold

IsItalic

A structure used to customize a CFontDialog object.

Constructs a CFontDialog object.

Displays the dialog and allows the user to make a selection.

Retrieves the name of the currently selected font.

Returns the face name of the selected font.

Returns the style name of the selected font.

Returns the point size of the selected font.

Returns the color of the selected font.

Returns the weight of the selected font.

Determines whether the font is displayed with strikeout.

Determines whether the font is underlined.

Determines whether the font is bold.

Determines whether the font is italic.

Member Functions
CFontDialog: :CFontDialog

CFontDialog(LPLOGFONT lplfInitial = NULL, DWORD dwFlags = CF _EFFECTS I
CF _SCREENFONTS, CDC* pdcPrinter = NULL, CWnd* pParentWnd = NULL);

Parameters

704

lplfInitial A pointer to a LOGFONT data structure that allows you to set some of
the font's characteristics.

dwFlags Specifies one or more choose-font flags. One or more preset values can be
combined using the bitwise OR operator. If you modify the m_cf.Flags structure
member, be sure to use a bitwise OR operator in your changes to keep the default
behavior intact. For details on each of these flags, see the description of the
CHOOSEFONT structure in the Win32 SDK documentation.

CFontDialog: :GetColor

Remarks

pdcPrinter A pointer to a printer-device context. If supplied, this parameter points
to a printer-device context for the printer on which the fonts are to be selected.

pParentWnd A pointer to the font dialog box's parent or owner window.

Constructs a CFontDiaiog object. Note that the constructor automatically fills in the
members of the CHOOSEFONT structure. You should only change these if you want
a font dialog different than the default.

See Also CFontDialog: :DoModal

CFontDialog: : DoModal
virtual int DoModal();

Return Value

Remarks

IDOK or IDCANCEL if the function is successful; otherwise O. IDOK and
IDCANCEL are constants that indicate whether the user selected the OK or Cancel
button.

If IDCANCEL is returned, you can call the Windows CommDlgExtendedError
function to determine whether an error occurred.

Call this function to display the Windows common font dialog box and allow the user
to choose a font.

If you want to initialize the various font dialog controls by setting members of the
m_cf structure, you should do this before calling DoModal, but after the dialog object
is constructed.

If DoModal returns IDOK, you can call other member functions to retrieve the
settings or information input by the user into the dialog box.

See Also CDialog: :DoModal, CFontDialog: :CFontDiaiog

CF ontDialog: : GetColor
COLORREF GetColor() const;

Return Value
The color of the selected font.

Remarks
Call this function to retrieve the selected font color.

See Also CFontDialog::GetCurrentFont

705

CFontDialog::GetCurrentFont

CFontDialog: : GetCurrentFont
void GetCurrentFont(LPLOGFONT lplf);

Parameters

Remarks

lplf A pointer to a LOGFONT structure.

Call this function to assign the characteristics of the currently selected font to the
members of a LOGFONT structure. Other CFontDialog member functions are
provided to access individual characteristics of the current font.

If this function is called during a call to DoModal, it returns the current selection at
the time (what the user sees or has changed in the dialog). If this function is called
after a call to DoModai (only if DoModal returns IDOK), it returns what the user
actually selected.

See Also CFontDialog: : GetFaceName, CFontDialog: : GetStyleName

CFontDialog: : GetFaceN arne
CString GetFaceName() const;

Return Value
The face name of the font selected in the CFontDialog dialog box.

Remarks
Call this function to retrieve the face name of the selected font.

See Also CFontDialog: : GetCurrentFont, CFontDialog: : GetStyleName

CFontDialog: : GetSize
int GetSize() const;

Return Value
The font's size, in tenths of a point.

Remarks
Call this function to retrieve the size of the selected font.

See Also CFontDialog: : GetWeight, CFontDialog: : GetCurrentFont

706

CFontDialog::GetStyleName
CString GetStyleName() const;

Return Value
The style name of the font.

Remarks
Call this function to retrieve the style name of the selected font.

See Also CFontDialog: : GetFaceName, CFontDialog: : GetCurrentFont

CFontDialog: : GetWeight
int GetWeight() const;

Return Value

Remarks

The weight of the selected font.

Call this function to retrieve the weight of the selected font. For more information on
the weight of a font, see CFont::CreateFont.

See Also CFontDialog: : GetCurrentFont, CFontDialog: : IsBold

CFontDialog: :IsBold
BOOL IsBold() const;

Return Value

Remarks

Nonzero if the selected font has the Bold characteristic enabled; otherwise O.

Call this function to determine if the selected font is bold.

See Also CFontDialog::GetCurrentFont

CFontDialog: : IsItalic
BOOL Isltalic() const;

Return Value
Nonzero if the selected font has the Italic characteristic enabled; otherwise O.

Remarks
Call this function to determine if the selected font is italic.

See Also CFontDialog::GetCurrentFont

CFontDialog: : IsItalic

707

CFontDialog: :IsStrikeOut

CFontDialog: : Is S trike Out
BOOL IsStrikeOut() const;

Return Value

Remarks

Nonzero if the selected font has the Strikeout characteristic enabled; otherwise O.

Call this function to determine if the selected font is displayed with strikeout.

See Also CFontDialog: : GetCurrentFont

CFontDialog: :Is Underline
BOOL IsUnderline() const;

Return Value

Remarks

Nonzero if the selected font has the Underline characteristic enabled; otherwise O.

Call this function to determine if the selected font is underlined.

See Also CFontDialog::GetCurrentFont

Data Members·
CFontDialog: :m_cf
Remarks

708

A structure whose members store the characteristics of the dialog object. After
constructing a CFontDialog object, you can use m_cf to modify various aspects of the
dialog box before calling the DoModal member function. For more information on
this structure, see CHOOSEFONT in the Win32 SDK documentation.

CFontHolder
The CFontHolder class, which encapsulates the functionality of a Windows font
object and the IFont interface, is used to implement the stock Font property.

Use this class to implement custom font properties for your control. For information
on creating such properties, see the article "OLE Controls: Using Fonts in an OLE
Control" in Programming with MFC.

#include <afxctl.h>

See Also CPropExchange

Data Members

Construction/Destruction

CFontHolder

Operations

GetFontDispatch

GetDisplayString

GetFontHandle

InitializeFont

ReleaseFont

Select

SetFont

A pointer to the CFontHolder object's IFont interface.

Constructs a CFontHolder object.

Returns the font's IDispatch interface.

Retrieves the string displayed in a container's property browser.

Returns a handle to a Windows font.

Initializes a CFontHolder object.

Disconnects the CFontHolder object from the IFont and
IFontNotification interfaces.

Selects a font resource into a device context.

Connects the CFontHolder object to an IFont interface.

Member Functions
CFontHolder: :CFontHolder

CFontHolder(LPPROPERTYNOTIFYSINK pNotify);

Parameters

Remarks

pNotify Pointer to the font's IPropertyNotifySink interface.

Constructs a CFontHolder object. You must call InitializeFont to initialize the
resulting object before using it.

See Also CFontHolder::lnitializeFont

CFontHolder

709

CFontHolder: : GetDisplay String

CFontHolder: : GetDisplayString
BOOL GetDisplayString(CString& strValue);

Return Value
Nonzero if the string is successfully retrieved; otherwise O.

Parameters
strValue Reference to the CString that is to hold the display string.

Remarks
Retrieves a string that can be displayed in a container's property browser.

CFontHolder: : GetFontDispatch
LPFONTDISP GetFontDispatch();

Return Value

Remarks

A pointer to the CFontHolder object's IFontDisp interface. Note that the function
that calls GetFontDispatch must call IUnknown: : Release on this interface pointer
when done with it.

Call this function to retrieve a pointer to the font's dispatch interface. Call
InitializeFont before calling GetFontDispatch.

See Also CFontHolder: :InitializeFont

CFontHolder: : GetFontHandle
HFONT GetFontHandle();
HFONT GetFontHandle(long cyLogical, long cyHimetric);

Return Value
A handle to the Font object; otherwise NULL.

Parameters
cyLogical Height, in logical units, of the rectangle in which the control is drawn.

cyHimetric Height, in MM_HIMETRIC units, of the control.

710

CFontHolder: : ReleaseFont

Remarks
Call this function to get a handle to a Windows font.

The ratio of cyLogicaZ and cyHimetric is used to calculate the proper display size, in
logical units, for the font's point size expressed in MM_HIMETRIC units:

Display size = (cyLogicaZ / cyHimetric) X font size

The version with no parameters returns a handle to a font sized correctly for the
screen.

CFontHolder: : InitializeFont
void InitializeFont(const FONTDESC FAR* pFontDesc = NULL,

LPDISPATCHpFontDispAmbient = NULL);

Parameters

Remarks

pFontDesc Pointer to a font description structure that specifies the font's
characteristics. For more information on this structure, see "Standard Font Type"
in Appendix A of Programming with MFC.

pFontDispAmbient Pointer to the container's ambient Font property.

Initializes a CFontHolder object.

If pFontDispAmbient is not NULL, the CFontHolder object is connected to a clone
of the IFont interface used by the container's ambient Font property.

If pFontDispAmbient is NULL, a new Font object is created either from the font
description pointed to by pFontDesc or, if pFontDesc is NULL, from a default
description.

Call this function after constructing a CFontHolder object.

See Also CFontHolder::CFontHolder

CFontHolder: : ReleaseFont

Remarks

void ReleaseFont();

This function disconnects the CFontHolder object from its IFont interface.

See Also CFontHolder: :SetFont

711

CFontHolder: : Select

CFontHolder: : Select
CFont* Select(CDC* pDC, long cyLogical, long cyHimetric);

Return Value
A pointer to the font that is being replaced.

Parameters

Remarks

pDC Device context into which the font is selected.

cyLogical Height, in logical units, of the rectangle in which the control is drawn.

cyHimetric Height, in MM_HIMETRIC units, of the control.

Call this function to select your control's font into the specified device context.

See GetFontHandle for a discussion of the cyLogical and cyHimetric parameters.

CFontHolder: : SetFont
void SetFont(LPFONT pNewFont);

Parameters

Remarks

pNewFont Pointer to the new IFont interface.

Releases any existing font and connects the CFontHolder object to an IFont
interface.

See Also CFontHolder: : ReleaseFont

Data Members
CFontHolder: :m_pFont
Remarks

712

A pointer to the CFontHolder object's IFont interface.

See Also CFontHolder: :SetFont

CFormView

The CForm View class is the base class used for views containing controls. These
controls are laid out based on a dialog-template resource. Use CFormView if you
want form-based documents in your application. These views support scrolling, as
needed, using the CScrollView functionality.

Creating a view based on CForm View is similar to creating a dialog box.

To use CFormView, take the following steps:

1. Design a dialog template.

Use the dialog editor to design the dialog box. Then, in the Styles property page,
set the following properties:

• In the Style box, select Child (WS_CHILD on).

• In the Border box, select None (WS_BORDER off).

• Clear the Visible check box (WS_ VISIBLE off).

• Clear the Titlebar check box (WS_CAPTION off).

These steps are necessary because a form view is not a true dialog box. For more
information about creating a dialog-box resource, see "Creating a Form View
Dialog Box" in Chapter 6 of the Visual c++ User's Guide.

2. Create a view class.

With your dialog template open, run Class Wizard and choose CForm View as
the class type when you are filling in the Add Class dialog box. Class Wizard
creates a CFormView-derived class and connects it to the dialog template
you just designed. This connection is established in the constructor for your
class; Class Wizard generates a call to the base-class constructor,
CFormView::CFormView, and passes the resource ID of your dialog template.
For example:

CFormView

713

CFormView

714

CMyFormView::CMyFormView()

{

J

: CFormView(CMyFormView::IDD

II{{AFX_DATA_INIT(CMyFormView)
II NOTE: the ClassWizard will add member
II initialization here
IIJJAFX_DATA_INIT

II Other construction code, such as data initialization

Note If you choose not to use ClassWizard, you must define the appropriate ID you supply
to the CFormView constructor (that is, CMy FormVi ew: : I DD is not predefined).
ClassWizard declares I DD as an enum value in the class it creates for you.

If you want to define member variables in your view class that correspond to the
controls in your form view, use the Edit Variables button in the Class Wizard
dialog box. This allows you to use the dialog data exchange (DDX) mechanism. If
you want to define message handlers for control-notification messages, use the
Add Function button in the Class Wizard dialog box. For more information on
using ClassWizard, see Chapter 14, "Working with Classes," in the Visual c++
User's Guide.

3. Override the OnUpdate member function.

The OnUpdate member function is defined by CView and is called to update the
form view's appearance. Override this function to update the member variables in
your view class with the appropriate values from the current document. Then, if
you are using DDX, use the UpdateData member function (defined by CWnd)
with an argument of FALSE to update the controls in your form view.

The OnlnitialUpdate member function (also defined by CView) is called to
perform one-time initialization of the view. CForm View overrides this function to
use DDX to set the initial values of the controls you have mapped using
ClassWizard. Override OnlnitialUpdate if you want to perform custom
initialization.

4. Implement a member function to move data from your view to your document.

This member function is typically a message handler for a control-notification
message or for a menu command. If you are using DDX, call the UpdateData
member function to update the member variables in your view class. Then move
their values to the document associated with the form view.

5. Override the OnPrint member function (optional).

The OnPrint member function is defined by CView and prints the view. By
default, printing and print preview are not supported by the CForm View class. To
add printing support, override the OnPrint function in your derived class. See the
MFC General sample VIEWEX for more information about how to add printing
capabilities to a view derived from CFormView.

6. Associate your view class with a document class and a frame-window class using a
document template.

Unlike ordinary views, form views do not require you to override the OnDraw
member function defined by CView. This is because controls are able to paint
themselves. Only if you want to customize the display of your form view (for
example, to provide a background for your view) should you override OnDraw. If
you do so, be careful that your updating does not conflict with the updating done by
the controls.

If your view contains controls that are derived from (or instances of) CSliderCtrl or
CSpinButtonCtrl and you have message handlers for WM_HSCROLL and
WM_ VSCROLL, you should write code that calls the proper routines. The code
example below calls CWnd::OnHScroll if a WM_HSCROLL message is sent by
either a spin button or slider control.

void CMyFormView::OnHScroll(UINT nSBCode. UINT nPos. CScrollBar* pScrollBar
{

if pScrollbar->IsKindOf(RUNTIME_CLASS(CScrollBar)))
{

CFormView::OnHScroll(nSBCode, nPos. pScrollBar);
}

else if (pScrollbar->IsKindOf(RUNTIME_CLASS(CSliderCtrl)))
{

CWnd::OnHScroll(nSBCode. nPos. pScrollBar);
}

else if (pScrollbar->IsKindOf(RUNTIME_CLASS(CSpinButtonCtrl)))
{

CWnd::OnHScroll(nSBCode, nPos. pScrollBar);

If the view becomes smaller than the dialog template, scroll bars appear
automatically. Views derived from CFormView support only the MM_TEXT
mapping mode.

If you are not using DDX, use the CWnd dialog functions to move data between the
member variables in your view class and the controls in your form view.

For more information about DDX, see "Defining Member Variables" in Chapter 14 of
the Visual c++ User:S Guide. For more information on CFormView, see "Special
View Classes" in Chapter 1 and "Documents and Views" in Chapter 3 of
Programming with MFC.

#include <afxext.h>

See Also CDialog, CScrollView, CView::OnUpdate, CView::OnlnitiaIUpdate,
CView: :OnPrint, CWnd:: UpdateData, CScrollView: : ResizeParentToFit

Construction

CFormView Constructs a CForm View object.

CFonnView

715

CForm View::CForm View

Member Functions
CForm View: :CForm View

CFonn View(LPCTSTR lpszTemplateName);
CFonn View(UINT nIDTemplate);

Parameters

Remarks

716

lpszTemplateName Contains a null-terminated string that is the name of a dialog
template resource.

nIDTemplate Contains the ID number of a dialog-template resource.

When you create an object of a type derived from CFonn View, invoke one of the
constructors to create the view object and identify the dialog resource on which the
view is based. You can identify the resource either by name (pass a string as the
argument to the constructor) or by its ID (pass an unsigned integer as the argument).

The form-view window and child controls are not created until CWnd::Create is
called. CWnd::Create is called by the framework as part of the document and view
creation process, which is driven by the document template.

Note Your derived class must supply its own constructor. In the constructor, invoke the
constructor, CFormView::CFormView, with the resource name or ID as an argument as
shown in the preceding class overview.

See Also CWnd::Create

CFrameWnd

The CFrameWnd class provides the functionality of a Windows single document
interface (SDI) overlapped or pop-up frame window, along with members for
managing the window.

To create a useful frame window for your application, derive a class from
CFrameWnd. Add member variables to the derived class to store data specific to
your application. Implement message-handler member functions and a message map
in the derived class to specify what happens when messages are directed to the
window.

There are three ways to construct a frame window:

• Directly construct it using Create.

• Directly construct it using LoadFrame.

• Indirectly construct it using a document template.

Before you call either Create or LoadFrame, you must construct the frame-window
object on the heap using the C++ new operator. Before calling Create, you can also
register a window class with the AfxRegisterWndClass global function to set the
icon and class styles for the frame.

Use the Create member function to pass the frame's creation parameters as
immediate arguments.

LoadFrame requires fewer arguments than Create, and instead retrieves most of its
default values from resources, including the frame's caption, icon, accelerator table,
and menu. To be accessible by LoadFrame, all these resources must have the same
resource ID (for example, IDR_MAINFRAME).

When a CFrame Wnd object contains views and documents, they are created
indirectly by the framework instead of directly by the programmer. The
CDocTemplate object orchestrates the creation of the frame, the creation of the
containing views, and the connection of the views to the appropriate document. The
parameters of the CDocTemplate constructor specify the CRuntimeClass of the
three classes involved (document, frame, and view). A CRuntimeClass object is used
by the framework to dynamically create new frames when specified by the user (for

CFrameWnd

717

CFrameWnd

718

example, by using the File New command or the multiple document interface (MDI)
Window New command).

A frame-window class derived from CFrameWnd must be declared with
DECLARE_DYNCREATE in order for the above RUNTIME_CLASS mechanism
to work correctly.

A CFrameWnd contains default implementations to perform the following functions
of a main window in a typical application for Windows:

• A CFrame Wnd frame window keeps track of a currently active view that is
independent of the Windows active window or the current input focus. When the
frame is reactivated, the active view is notified by calling
CView: :OnActivate View.

• Command messages and many common frame-notification messages, including
those handled by the OnSetFocus, OnHScroll, and On VScroll functions of
CWnd, are delegated by a CFrame Wnd frame window to the currently
active view.

• The currently active view (or currently active MDI child frame window in the case
of an MDI frame) can determine the caption of the frame window. This feature can
be disabled by turning off the FWS_ADDTOTITLE style bit of the frame
window.

• A CFrame Wnd frame window manages the positioning of the control bars, views,
and other child windows inside the frame window's client area. A frame window
also does idle-time updating of toolbar and other control-bar buttons. A
CFrameWnd frame window also has default implementations of commands for
toggling on and off the toolbar and status bar.

• A CFrameWnd frame window manages the main menu bar. When a pop-up
menu is displayed, the frame window uses the UPDATE_COMMAND _ UI
mechanism to determine which menu items should be enabled, disabled, or
checked. When the user selects a menu item, the frame window updates the status
bar with the message string for that command.

• A CFrameWnd frame window has an optional accelerator table that
automatically translates keyboard accelerators.

• A CFrameWnd frame window has an optional help ID set with LoadFrame that
is used for context-sensitive help. A frame window is the main orchestrator of
semimodal states such as context-sensitive help (SHIFf+Pl) and print-preview
modes.

• A CFrameWnd frame window will open a file dragged from the File Manager
and dropped on the frame window. If a file extension is registered and associated
with the application, the frame window responds to the dynamic data exchange
(DDE) open request that occurs when the user opens a data file in the File
Manager or when the ShellExecute Windows function is called.

• If the frame window is the main application window (that is,
CWinThread::m_pMainWnd), when the user closes the application, the frame
window prompts the user to save any modified documents (for OnClose and
OnQueryEndSession).

• If the frame window is the main application window, the frame window is the
context for running WinHelp. Closing the frame window will shut down
WINHELP.EXE if it was launched for help for this application.

Do not use the C++ delete operator to destroy a frame window. Use
CWnd::DestroyWindow instead. The CFrameWnd implementation of
PostNcDestroy will delete the C++ object when the window is destroyed. When the
user closes the frame window, the default On Close handler will call
DestroyWindow.

For more information on CFrame Wnd, see "Frame Windows" in Chapter 3 of
Programming with MFC.

#include <afxwin.h>

See Also CWnd, CMDIFrameWnd, CMDIChildWnd, CView, CDocTemplate,
CRuntimeClass

Data Members

m_bAutoMenuEnable

rectDefault

Construction

CFrameWnd

Initialization

Create

LoadFrame

LoadAccelTable

LoadBarState

SaveBarState

ShowControlBar

SetDockState

GetDockState

Controls automatic enable and disable functionality for
menu items.

Pass this static CRect as a parameter when creating a
CFrameWnd object to allow Windows to choose the
window's initial size and position.

Constructs a CFrameWnd object.

Call to create and initialize the Windows frame window
associated with the CFrameWnd object.

Call to dynamically create a frame window from resource
information.

Call to load an accelerator table.

Call to restore control bar settings.

Call to save control bar settings.

Call to show the control bar.

Call to dock the frame window in the main window.

Retrieves the dock state of a frame window.

CFrameWnd

719

CFrameWnd

720

Operations

ActivateFrame

InitialUpdateFrame

GetActiveFrame

SetActive View

GetActive View

CreateView

GetActiveDocument

GetControlBar

GetMessageString

IsTracking

SetMessageText

EnableDocking

DockControlBar

FloatControlBar

BeginModalState

EndModalState

InModalState

ShowOwnedWindows

RecalcLayout

Overridables

OnCreateClient

OnSetPreviewMode

GetMessageBar

NegotiateBorderSpace

Command Handlers

OnContextHelp

Makes the frame visible and available to the user.

Causes the OnInitialUpdate mel!lber function belonging to
all views in the frame window to be called.

Returns the active CFrameWnd object.

Sets the active CView object.

Returns the active CView object.

Creates a view within a frame that is not derived from
CView.

Returns the active CDocument object.

Retrieves the control bar.

Retrieves message corresponding to a command ID.

Determines if splitter bar is currently being moved.

Sets the text of a standard status bar.

Allows a control bar to be docked.

Docks a control bar.

Floats a control bar.

Sets the frame window to modal.

Ends the frame window's modal state. Enables all of the
windows disabled by BeginModalState.

Returns a value indicating whether or not a frame window is
in a modal state.

Shows all windows that are descendants of the CFrameWnd
object.

Repositions the control bars of the CFrameWnd object.

Creates a client window for the frame.

Sets the application's main frame window into and out of
print-preview mode.

Returns a pointer to the status bar belonging to the frame
window.

Negotiates border space in the frame window.

Handles SHIFT +Fl Help for in-place items.

CFrameWnd::CFrameWnd

Member Functions
CFrame W nd: : Acti vateFrame

virtual void ActivateFrame(int nCmdShow = - 1);

Parameters

Remarks

nCmdShow Specifies the parameter to pass to CWnd::ShowWindow. By default,
the frame is shown and correctly restored.

Call this member function to activate and restore the frame window so that it is
visible and available to the user. This member function is usually called after a non
user interface event such as a DDE, OLE, or other event that may show the frame
window or its contents to the user.

The default implementation activates the frame and brings it to the top of the Z-order
and, if necessary, carries out the same steps for the application's main frame window.

Override this member function to change how a frame is activated. For example, you
can force MDI child windows to be maximized. Add the appropriate functionality,
then call the base class version with an explicit nCmdShow.

CFrame Wnd: :BeginModalState
virtual void BeginModaIState();

Remarks
Call this member function to make a frame window modal.

CFrame Wnd: :CFrame Wnd

Remarks

CFrameWnd();

Constructs a CFrame Wnd object, but does not create the visible frame window. Call
Create to create the visible window.

See Also CFrameWnd::Create, CFrameWnd::LoadFrame

721

CFrame Wnd::Create

CFrame W nd: : Create
BOOL Create(LPCTSTR lpszClassName, LPCTSTR lpszWindowName,

DWORD dwStyle = WS_OVERLAPPEDWINDOW, const RECT & reet = rectDefault,
CWnd* pParentWnd = NULL, LPCTSTR lpszMenuName = NULL, DWORD dwExStyle = 0,
CCreateContext* pContext = NULL);

Return Value
Nonzero if initialization is successful; otherwise O.

Parameters

Remarks

722

lpszClassName Points to a null-terminated character string that names the Windows
class. The class name can be any name registered with the AfxRegisterWndClass
global function or the RegisterClass Windows function. If NULL, uses the
predefined default CFrameWnd attributes.

lpszWindowName Points to a null-terminated character string that represents the
window name. Used as text for the title bar.

dwStyle Specifies the window style attributes. Include the FWS_ADDTOTITLE
style if you want the title bar to automatically display the name of the document
represented in the window. For a list of window styles, see "Window Styles" in the
"Styles Used by MFC" section.

reet Specifies the size and position of the window. The rectDefault value allows
Windows to specify the size and position of the new window.

pParentWnd Specifies the parent window of this frame window. This parameter
should be NULL for top-level frame windows.

lpszMenuName Identifies the name of the menu resource to be used with the
window. Use MAKEINTRESOURCE if the menu has an integer ID instead of a
string. This parameter can be NULL.

dwExStyle Specifies the window extended style attributes. For a list of extended
window styles, see "Extended Window Styles" in the "Styles Used by MFC"
section.

pContext Specifies a pointer to a CCreateContext structure. This parameter can
be NULL.

Construct a CFrameWnd object in two steps. First invoke the constructor, which
constructs the CFrameWnd object, then call Create, which creates the Windows
frame window and attaches it to the CFrameWnd object. Create initializes the
window's class name and window name and registers default values for its style,
parent, and associated menu.

CFrame Wnd: :DockControlBar

Use LoadFrame rather than Create to load the frame window from a resource
instead of specifying its arguments.

See Also CFrameWnd::CFrameWnd, CFrameWnd::LoadFrame,
CCreateContext, CWnd: : Create, CWnd: : Pre C reate Window

CFrame Wnd: : Create View
CWnd* Create View(CCreateContext* pContext, UINT nlD = AFX_IDW _PANE_FIRST);

Return Value
Pointer to a CWnd object if successful; otherwise NULL.

Parameters

Remarks

pContext Specifies the type of view and document.

nlD The ID number of a view.

Call Create View to create a view within a frame. Use this member function to create
"views" that are not CView-derived within a frame. After calling CreateView, you
must manually set the view to active and set it to be visible; these tasks are not
automatically performed by CreateView.

Note The MFC Advanced Concepts sample COLLECT uses CreateView to get correct 3D
effects in Windows 95.

CFrame Wnd: :DockControlBar
void DockControlBar(CControlBar * pBar, UINT nDoekBarlD = 0, LPCRECT [pReet = NULL);

Parameters
pBar Points to the control bar to be docked.

nDoekBarlD Determines which sides of the frame window to consider for docking.
It can be 0, or one or more of the following:

• AFX_IDW_DOCKBAR_TOP Dock to the top side of the window.

• AFX_IDW _DOCKBAR_BOTTOM Dock to the bottom side of the window.

• AFX_IDW _DOCKBAR_LEFT Dock to the left side of the window.

• AFX_IDW _DOCKBAR_RIGHT Dock to the right side of the window.

If 0, the control bar can be docked to any side enabled for docking in the
destination frame window.

[pReet Determines, in screen coordinates, where the control bar will be docked in
the nonclient area of the destination frame window.

723

CFrame Wnd::EnableDocking

Remarks
Causes a control bar to be docked to the frame window. The control bar will be
docked to one of the sides of the frame window specified in the calls to both
CControIBar::EnableDocking and CFrameWnd::EnableDocking. The side
chosen is determined by nDockBarID.

See Also CFrameWnd::FloatControIBar

CFrame W nd: :EnableDocking
void EnableDocking(DWORD dwDockStyle);

Parameters

Remarks

dwDockStyle Specifies which sides of the frame window can serve as docking sites
for control bars. It can be one or more of the following:

• CBRS_ALIGN_TOP Allows docking at the top of the client area.

• CBRS_ALIGN_BOTTOM Allows docking at the bottom of the client area.

• CBRS_ALIGN_LEFT Allows docking on the left side of the client area.

• CBRS_ALIGN_RIGHT Allows docking on the right side of the client area.

• CBRS_ALIGN_ANY Allows docking on any side of the client area.

Call this function to enable dockable control bars in a frame window. By default,
control bars will be docked to a side of the frame window in the following order: top,
bottom, left, right.

See Also CControlBar: :EnableDocking, CFrame Wnd: :DockControIBar,
CFrameWnd: :FloatControlBar

CFrame W nd: : EndModalState

Remarks

virtual void EndModalState();

Call this member function to change a frame window from modal to modeless.
EndModalState enables all of the windows disabled by BeginModalState.

CFrame W nd: :FloatControlBar

724

CFrameWnd* FloatControlBar(CControlBar * pBar, CPoint point,
DWORD dwStyle = CBRS_ALIGN_TOP);

CFrameWnd: : GetActiveDocument

Return Value
Pointer to the current frame window.

Parameters

Remarks

pBar Points to the control bar to be floated.

point The location, in screen coordinates, where the top left corner of the control bar
will be placed.

dwStyle Specifies whether to align the control bar horizontally or vertically within
its new frame window. It can be anyone of the following:

• CBRS_ALIGN_TOP Orients the control bar vertically.

• CBRS_ALIGN_BOTTOM Orients the control bar vertically.

• CBRS_ALIGN_LEFT Orients the control bar horizontally.

• CBRS_ALIGN_RIGHT Orients the control bar horizontally.

If styles are passed specifying both horizontal and vertical orientation, the toolbar
will be oriented horizontally.

Call this function to cause a control bar to not be docked to the frame window.
Typically, this is done at application startup when the program is restoring settings
from the previous execution.

This function is called by the framework when the user causes a drop operation by
releasing the left mouse button while dragging the control bar over a location that is
not available for docking.

See Also CFrame Wnd: :DockControlBar

CFrame W nd:: GetActi veDocument
virtual CDocument* GetActiveDocument();

Return Value

Remarks

A pointer to the current CDocument. If there is no current document, returns NULL.

Call this member function to obtain a pointer to the current CDocument attached to
the current active view.

See Also CFrame Wnd: : GetActive View

725

CFrame Wnd::GetActiveFrame

CFrame W nd: : GetActi veFrame
virtual CFrameWnd* GetActiveFrame();

Return Value

Remarks

A pointer to the active MOl child window. If the application is an SOl application, or
the MDI frame window has no active document, the implicit this pointer will be
returned.

Call this member function to obtain a pointer to the active multiple document
interface (MOl) child window of an MOl frame window.

If there is no active MOl child or the application is a single document interface
(SOl), the implicit this pointer is returned.

See Also CFrame Wnd: : GetActive View, CFrame Wnd: : GetActiveDocument,
CMDIFrameWnd

CFrame W nd:: GetActi ve View
CView* GetActive View() const;

Return Value
A pointer to the current CView. If there is no current view, returns NULL.

Remarks
Call this member function to obtain a pointer to the active view.

See Also CFrame Wnd::SetActive View, CFrame Wnd: : GetActiveDocument

CFrameWnd::GetControlBar
CControlBar* GetControlBar(UINT nID);

Return Value
A pointer to the control bar that is associated with the 10.

Parameters

Remarks

726

nID The 10 number of a control bar.

Call GetControlBar to gain access to the control bar that is associated with the 10.
GetControlBar will return the control bar even if it is floating and thus is not
currently a child window of the frame.

CFrame W nd: :InitialUpdateFrame

CFrame W nd:: GetDockState
void GetDockState(CDockState& state) const;

Parameters
state Contains the current state of the frame window upon return.

Remarks
Call this member function to specify the current dock state of the frame window.

CFrame W nd: : GetMessageB ar
virtual CWnd* GetMessageBar();

Return Value
Pointer to the status-bar window.

Remarks
Call this member function to get a pointer to the status bar.

CFrame W nd: : GetMessageString
virtual void GetMessageString(UINT nID, CString& rMessage) const;

Parameters

Remarks

nID Resource ID of the desired message.

rMessage CString object into which to place the message.

Override this function to provide custom strings for command IDs. The default
implementation simply loads the string specified by nID from the resource file. This
function is called by the framework when the message string in the status bar needs
updating.

See Also CFrameWnd::SetMessageText

CFrameWnd::InitiaIUpdateFrame
void InitialUpdateFrame(CDocument* pDoc, BOOL bMakeVisible);

Parameters
pDoc Points to the document to which the frame window is associated.

Can be NULL.

bMakeVisible If TRUE, indicates that the frame should become visible and active.
If FALSE, no descendants are made visible.

727

CFrame Wnd::lnModalState

Remarks
Call IntitialUpdateFrame after creating a new frame with Create. This causes all
views in that frame window to receive their OnInitialUpdate calls.

Also, if there was not previously an active view, the primary view of the frame
window is made active. The primary view is a view with a child ID of
AFX_IDW _PANE_FIRST. Finally, the frame window is made visible if
bMakeVisible is nonzero. If bMakeVisible is 0, the current focus and visible state of
the frame window will remain unchanged. It is not necessary to call this function
when using the framework's implementation of File New and File Open.

See Also CView::OnInitiaIUpdate, CFrameWnd::SetActiveView,
CDocTemplate::CreateNewFrame

CFrame W nd: : InModalState
BOOL InModalState() const;

Return Value
Nonzero if yes; otherwise O.

Remarks
Call this member function to check if a frame window is modal or modeless.

CFrame W nd: : IsTracking
BOOL IsTracking() const;

Return Value

Remarks

Nonzero if a splitter operation is in progress; otherwise O.

Call this member function to determine if the splitter bar in the window is currently
being moved.

CFrame W nd: : LoadAccelTable
BOOL LoadAccelTable(LPCTSTR IpszResourceName);

Return Value
Nonzero if the accelerator table was successfully loaded; otherwise O.

Parameters

728

IpszResourceName Identifies the name of the accelerator resource. Use
MAKEINTRESOURCE if the resource is identified with an integer ID.

CFrame Wnd::LoadFrame

Remarks
Call to load the specified accelerator table. Only one table can be loaded at a time.

Accelerator tables loaded from resources are freed automatically when the application
terminates.

If you call LoadFrame to create the frame window, the framework loads an
accelerator table along with the menu and icon resources, and a subsequent call to
this member function is then unnecessary.

See Also CFrame Wnd: :LoadFrame, : :LoadAccelerators

CFrame Wnd: :LoadBarState
void LoadBarState(LPCTSTR IpszProfileName);

Parameters

Remarks

IpszProfileName Name of a section in the initialization file or a key in the Windows
registry where state information is stored.

Call this function to restore the settings of each control bar owned by the frame
window. This information is written to the initialization file using SaveBarState.
Information restored includes visibility, horizontal/vertical orientation, docking state,
and control-bar position.

See Also CFrameWnd::SaveBarState, CWinApp::SetRegistryKey,
CWinApp: :m_pszProfileName

CFrame W nd: :LoadFrame
virtual BOOL LoadFrame(UINT nIDResource,

Parameters

DWORD dwDefaultStyle = WS_OVERLAPPEDWINDOW I FWS_ADDTOTITLE,
CWnd* pParentWnd = NULL, CCreateContext* pContext = NULL);

nIDResource The ID of shared resources associated with the frame window.

dwDefaultStyle The frame's style. Include the FWS_ADDTOTITLE style if you
want the title bar to automatically display the name of the document represented in
the window. For a list of window styles, see "Window Styles" in the "Styles Used
by MFC" section.

pParentWnd A pointer to the frame's parent.

pContext A pointer to a CCreateContext structure. This parameter can be NULL.

729

CFrame W nd: : NegotiateB orderS pace

Remarks
Construct a CFrameWnd object in two steps. First invoke the constructor, which
constructs the CFrameWnd object, then call LoadFrame, which loads the Windows
frame window and associated resources and attaches the frame window to the
CFrameWnd object. The nIDResource parameter specifies the menu, the accelerator
table, the icon, and the string resource of the title for the frame window.

Use the Create member function rather than LoadFrame when you want to specify
all of the frame window's creation parameters.

The framework calls LoadFrame when it creates a frame window using a document
template object.

The framework uses the pContext argument to specify the objects to be connected to
the frame window, including any contained view objects. You can set the pContext
argument to NULL when you call LoadFrame.

See Also CDocTemplate, CFrameWnd::Create, CFrameWnd::CFrameWnd,
CWnd: :PreCreate Window

CFrame W nd::N egotiateBorderSpace
virtual BOOL NegotiateBorderSpace(UINT nBorderCmd, LPRECT lpRectBorder);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

730

nBorderCmd Contains one of the following values from the enum BorderCmd:

• borderGet = 1

• borderRequest = 2

• borderSet = 3

lpRectBorder Pointer to a RECT structure or a CRect object that specifies the
coordinates of the border.

Call this member function to negotiate border space in a frame window during OLE
inplace activation. This member function is the CFrameWnd implementation of
OLE border space negotiation.

See Also In the OLE documentation: IOleInPlaceUIWindow

CFrameWnd: :OnCreateClient

CFrame W nd: : OnContextHelp
afx_msg void OnContextHelp{);

Remarks
To enable context-sensitive help, you must add an

ON_COMMAND(ID_CONTEXT_HELP, OnContextHelp

statement to your CFrameWnd class message map and also add an accelerator-table
entry, typically SHIFT+Fl, to enable this member function.

If your application is an OLE Container, OnContextHelp puts all in-place items
contained within the frame window object into Help mode. The cursor changes to an
arrow and a question mark, and the user can then move the mouse pointer and press
the left mouse button to select a dialog box, window, menu, or command button. This
member function calls the Windows function WinHelp with the Help context of the
object under the cursor.

See Also CWinApp::OnHelp, CWinApp:: WinHelp

CFrame W nd: :OnCreateClient
virtual BOOL OnCreateClient{ LPCREATESTRUCT [pes, CCreateContext* pContext);

Parameters

Remarks

[pes A pointer to a Windows CREATESTRUCT structure.

pContext A pointer to a CCreateContext structure.

Called by the framework during the execution of OnCreate. Never call this function.

The default implementation of this function creates a CView object from the
information provided in pContext, if possible.

Override this function to override values passed in the CCreateContext object or to
change the way controls in the main client area of the frame window are created. The
CCreateContext members you can override are described in the CCreateContext
class.

Note Do not replace values passed in the CREATESTRUCT structure. They are for
informational use only. If you want to override the initial window rectangle, for example,
override the CWnd member function PreCreateWindow.

731

CFrame Wnd::OnSetPreviewMode

CFrame Wnd: :OnSetPreview Mode
virtual void OnSetPreviewMode(BOOL bPreview, CPrintPreviewState* pModeStuff);

Parameters

Remarks

bPreview Specifies whether or not to place the application in print-preview mode.
Set to TRUE to place in print preview, FALSE to cancel preview mode.

pModeStuff A pointer to a CPrintPreviewState structure.

Call this member function to set the application's main frame window into and out of
print-preview mode.

The default implementation disables all standard toolbars and hides the main menu
and the main client window. This turns MDI frame windows into temporary SDI
frame windows.

Override this member function to customize the hiding and showing of control bars
and other frame window parts during print preview. Call the base class
implementation from within the overridden version.

CFrame W nd: : RecalcLayout
virtual void RecalcLayout(BOOL bNotify = TRUE);

Parameters

Remarks

732

bNotify Determines whether the active in-place item for the frame window receives
notification of the layout change. If TRUE, the item is notified; otherwise FALSE.

Called by the framework when the standard control bars are toggled on or off or
when the frame window is resized. The default implementation of this member
function calls the CWnd member function RepositionBars to reposition all the
control bars in the frame as well as in the main client window (usually a CView or
MDICLIENT).

Override this member function to control the appearance and behavior of control bars
after the layout of the frame window has changed. For example, call it when you tum
control bars on or off or add another control bar.

See Also CWnd::RepositionBars

CFrame Wnd::SetDockState

CFrame Wnd: :SaveBarState
void SaveBarState(LPCTSTR IpszProJileName) const;

Parameters

Remarks

IpszProJileName Name of a section in the initialization file or a key in the Windows
registry where state information is stored.

Call this function to store information about each control bar owned by the frame
window. This information can be read from the initialization file using
LoadBarState. Information stored includes visibility, horizontal/vertical orientation,
docking state, and control bar position.

See Also CFrameWnd::LoadBarState, CWinApp::SetRegistryKey,
CWinApp: :m_pszProfileName

CFrame W nd:: SetActi ve View
void SetActiveView(CView* pViewNew, BOOL bNotify = TRUE);

Parameters

Remarks

p ViewNew Specifies a pointer to a CView object, or NULL for no active view.

bNotify Specifies whether the view is to be notified of activation. If TRUE,
OnActivate View is called for the new view; if FALSE, it is not.

Call this member function to set the active view. The framework will call this
function automatically as the user changes the focus to a view within the frame
window. You can explicitly call SetActiveView to change the focus to the specified
view.

See Also CFrameWnd::GetActiveView, CView::OnActivateView,
CFrame Wnd: : GetActiveDocument

CFrame W nd:: SetDockState
void SetDockState(const CDockState& state);

Parameters
state Specifies the state of the frame window.

Remarks
Call this member function to set the dock state of the frame window.

733

CFrameWnd::SetMessageText

CFrame W nd:: SetMessageText
void SetMessageText(LPCTSTR lpszText);
void SetMessageText(UINT nID);

Parameters

Remarks

lpszText Points to the string to be placed on the status bar.

nID String resource ID of the string to be placed on the status bar.

Call this function to place a string in the status-bar pane that has an ID of O. This is
typically the leftmost, and longest, pane of the status bar.

See Also CStatusBar

CFrameWnd::ShowControlBar
void ShowControlBar(CControlBar* pBar, BOOL bShow, BOOL bDelay);

Parameters

Remarks

pBar Pointer to the control bar to be shown or hidden.

bShow If TRUE, specifies that the control bar is to be shown. If FALSE, specifies
that the control bar is to be hidden.

bDelay If TRUE, delay showing the control bar. If FALSE, show the control bar
immediately.

Call this member function to show or hide the control bar.

CFrame Wnd: :ShowOwnedWindows
void ShowOwnedWindows(BOOL bShow);

Parameters

Remarks

734

bShow Specifies whether the owned windows are to be shown or hidden.

Call this member function to show all windows that are descendants of the
CFrameWnd object.

CFrame W nd: :rectDefault

Data Members
CFrame Wnd: :m_bAutoMenuEnable
Remarks

When this data member is enabled (which is the default), menu items that do not
have ON_UPDATE_COMMAND_UI or ON_COMMAND handlers will be
automatically disabled when the user pulls down a menu.

Menu items that have an ON_COMMAND handler but no
ON_UPDATE_COMMAND_UI handler will be automatically enabled.

When this data member is set, menu items are automatically enabled in the same way
that toolbar buttons are enabled.

This data member simplifies the implementation of optional commands based on the
current selection and reduces the need for an application to write
ON_UPDATE_COMMAND_UI handlers for enabling and disabling menu items.

See Also CCmdUI, CCmdTarget

CFrame Wnd: :rectDefault
Remarks

Pass this static CRect as a parameter when creating a window to allow Windows to
choose the window's initial size and position.

735

CGdiObject

CGdiObject

736

The CGdiObject class provides a base class for various kinds of Windows graphics
device interface (GDI) objects such as bitmaps, regions, brushes, pens, palettes, and
fonts. You never create a CGdiObject directly. Rather, you create an object from one
of its derived classes, such as CPen or CBrush.

For more information on CGdiObject, see "Graphic Objects" in Chapter 1 of
Programming with MPC.

#include <afxwin.h>

See Also CBitmap, CBrush, CFont, CPalette, CPen, CRgn

Data Members

Construction

CGdiObject

Operations

GetSafeHandle

FromHandle

Attach

Detach

DeleteObject

DeleteTempMap

GetObject

A HANDLE containing the HBITMAP, HPALETTE,
HRGN, HBRUSH, HPEN, or HFONT attached to this
object.

Constructs a CGdiObject object.

Returns m_hObject unless this is NULL, in which case
NULL is returned.

Returns a pointer to a CGdiObject object given a handle to a
Windows GDI object.

Attaches a Windows GDI object to a CGdiObject object.

Detaches a Windows GDI object from a CGdiObject object
and returns a handle to the Windows GDI object.

Deletes the Windows GDI object attached to the CGdiObject
object from memory by freeing all system storage associated
with the object.

Deletes any temporary CGdiObject objects created by
FromHandle.

Fills a buffer with data that describes the Windows GDI object
attached to the CGdiObject object.

CGdiObject: :CreateStockObject

Operations

CreateStockObject

UnrealizeObject

GetObjectType

Retrieves a handle to one of the Windows predefined stock
pens, brushes, or fonts.

Resets the origin of a brush or resets a logical palette.

Retrieves the type of the GDI object.

Member Functions
CGdi Object: : Attach

BOOL Attach(HGDIOBJ hObject);

Return Value
Nonzero if attachment is successful; otherwise O.

Parameters

Remarks

hObject A HANDLE to a Windows GDI object (for example, HPEN or HBRUSH).

Attaches a Windows GDI object to a CGdiObject object.

See Also CGdiObject: : Detach

CGdiObject: :CGdiObject

Remarks

CGdiObject();

Constructs a CGdiObject object. You never create a CGdiObject directly. Rather,
you create an object from one of its derived classes, such as CPen or CBrush.

See Also CPen, CBrush, CFont, CBitmap, CRgo, CPalette

CGdiObject: : CreateStockObject
BOOL CreateStockObject(int nlndex);

Return Value
Nonzero if the function is successful; otherwise O.

737

CGdiObject: :CreateStockObject

Parameters

Remarks

738

nlndex A constant specifying the type of stock object desired. It can be one of the
following values:

• BLACK_BRUSH Black brush.

• DKGRAY _BRUSH Dark gray brush.

• GRAY_BRUSH Gray brush.

• HOLLOW_BRUSH Hollow brush.

• LTGRAY _BRUSH Light gray brush.

• NULL_BRUSH Null brush.

• WHITE_BRUSH White brush.

• BLACK_PEN Black pen.

• NULL_PEN Null pen.

• WHITE_PEN White pen.

• ANSI_FIXED_FONT ANSI fixed system font.

• ANSI_ VAR_FONT ANSI variable system font.

• DEVICE~DEFAULT_FONT Device-dependent font.

• OEM_FIXED_FONT OEM-dependent fixed font.

• SYSTEM_FONT The system font. By default, Windows uses the system font
to draw menus, dialog-box controls, and other text. In Windows versions 3.0
and later, the system font is proportional width; earlier versions of Windows use
a fixed-width system font.

• SYSTEM_FIXED _FONT The fixed-width system font used in Windows
prior to version 3.0. This object is available for compatibility with earlier
versions of Windows.

• DEFAULT_PALETTE Default color palette. This palette consists of the 20
static colors in the system palette.

Retrieves a handle to one of the predefined stock Windows GDI pens, brushes, or
fonts, and attaches the GDI object to the CGdiObject object. Call this function with
one of the derived classes that corresponds to the Windows GDI object type, such as
CPen for a stock pen.

See Also CPen::CPen, CBrush::CBrush, CFont::CFont, CPalette::CPalette

CGdiObject: : DeleteObject
BOOL DeleteObject();

Return Value

Remarks

Nonzero if the GDI object was successfully deleted; otherwise O.

Deletes the attached Windows GDI object from memory by freeing all system storage
associated with the Windows GDI object. The storage associated with the
CGdiObject object is not affected by this call. An application should not call
DeleteObject on a CGdiObject object that is currently selected into a device
context.

When a pattern brush is deleted, the bitmap associated with the brush is not deleted.
The bitmap must be deleted independently.

See Also CGdiObject: :Detach

CGdiObject: : DeleteTempMap
static void PASCAL DeleteTempMap();

Remarks
Called automatically by the CWinApp idle-time handler, DeleteTempMap deletes
any temporary CGdiObject objects created by FromHandle. DeleteTempMap
detaches the Windows GDI object attached to a temporary CGdiObject object before
deleting the CGdiObject object.

See Also CGdiObject: : Detach , CGdiObject: :FromHandle

CGdiObject: : Detach
HGDIOBJ Detach();

Return Value

Remarks

A HANDLE to the Windows GDI object detached; otherwise NULL if no GDI object
is attached.

Detaches a Windows GDI object from a CGdiObject object and returns a handle to
the Windows GDI object.

See Also CGdiObject: :Attach

CGdiObject: : Detach

739

CGdiObject: : FromHandle

CGdiObject: : FromHandle
static CGdiObject* PASCAL FromHandle(HGDIOBJ hObject);

Return Value
A pointer to a CGdiObject that may be temporary or permanent.

Parameters

Remarks

hObject A HANDLE to a Windows GDI object.

Returns a pointer to a CGdiObject object given a handle to a Windows GDI object. If
a CGdiObject object is not already attached to the Windows GDI object, a temporary
CGdiObject object is created and attached.

This temporary CGdiObject object is only valid until the next time the application
has idle time in its event loop, at which time all temporary graphic objects are
deleted. Another way of saying this is that the temporary object is only valid during
the processing of one window message.

See Also CGdiObject: :DeleteTempMap

CGdiObject: : GetObject
int GetObject(int nCount, LPVOID lpObject) const;

Return Value
The number of bytes retrieved; otherwise 0 if an error occurs.

Parameters

Remarks

740

nCount Specifies the number of bytes to copy into the lpObject buffer.

lpObject Points to a user-supplied buffer that is to receive the information.

Fills a buffer with data that defines a specified object. The function retrieves a data
structure whose type depends on the type of graphic object, as shown by the following
list:

Object Buffer type

CPen LOGPEN

CBrush LOGBRUSH

CFont LOGFONT

CBitmap BITMAP

CPalette int

CRgo Not supported

CGdiObject: :GetObjectType

If the object is a CBitmap object, GetObject returns only the width, height, and
color format information of the bitmap. The actual bits can be retrieved by using
CBitmap: : GetBitmapBits.

If the object is a CPalette object, GetObject retrieves an integer that specifies the
number of entries in the palette. The function does not retrieve the LOGPALETTE
structure that defines the palette. An application can get information on palette
entries by calling CPalette::GetPaletteEntries.

See Also CBitmap: : GetBitmapBits, CPalette: : GetPaletteEntries

CGdi Object:: GetObjectType
UINT GetObjectType() const;

Return Value

Remarks

The type of the object, if successful; otherwise O. The value can be one of the
following:

• OBJ_BITMAP Bitmap

• OBJ_BRUSH Brush

• OBJ_FONT Font

• OBJ_PAL Palette

• OBJ_PEN Pen

• OBJ_EXTPEN Extended pen

• OBJ_REGION Region

• OBJ_DC Device context

• OBJ_MEMDC Memory device context

• OBJ_METAFILE Metafile

• OBJ_METADC Metafile device context

• OBJ_ENHMETAFILE Enhanced metafile

• OBJ_ENHMETADC Enhanced-metafile device context

Retrieves the type of the GDI object.

See Also CGdiObject: : GetObject, CDC: : SelectObject

741

CGdiObject: : GetSafeHandle

CGdiObject: : GetSafeHandle
HGDIOBJ GetSafeHandle() const;

Return Value

Remarks

A HANDLE to the attached Windows GDI object; otherwise NULL if no object is
attached.

Returns m_hObject unless this is NULL, in which case NULL is returned. This is
part of the general handle interface paradigm and is useful when NULL is a valid or
special value for a handle.

CGdiObject:: UnrealizeObject
BOOL UnrealizeObject();

Return Value

Remarks

742

Nonzero if successful; otherwise O.

Resets the origin of a brush or resets a logical palette. While UnrealizeObject is a
member function of the CGdiObject class, it should be invoked only on CBrush or
CPalette objects.

For CBrush objects, UnrealizeObject directs the system to reset the origin of the
given brush the next time it is selected into a device context. If the object is a
CPalette object, UnrealizeObject directs the system to realize the palette as though
it had not previously been realized. The next time the application calls the
CDC::RealizePalette function for the specified palette, the system completely
remaps the logical palette to the system palette.

The UnrealizeObject function should not be used with stock objects. The
UnrealizeObject function must be called whenever a new brush origin is set (by
means of the CDC::SetBroshOrg function). The UnrealizeObject function must not
be called for the currently selected brush or currently selected palette of any display
context.

See Also CDC::RealizePalette, CDC::SetBroshOrg

CGdiObject: : m_hObject

Data Members
CGdiObject: : m_hObject
Remarks

A HANDLE containing the HBITMAP, HRGN, HBRUSH, HPEN, HPALETTE,
or HFONT attached to this object.

743

CHeaderCtrl

CHeaderCtrl

744

A "header control" is a window usually positioned above columns of text or numbers.
It contains a title for each column, and it can be divided into parts. The user can drag
the dividers that separate the parts to set the width of each column.

The CHeaderCtrl class provides the functionality of the Windows common header
control. This control (and therefore the CHeaderCtrl class) is available only to
programs running under Windows 95 and Windows NT version 3.51 and later.

#include <afxcmn.h>

See Also CTabCtrl, CListCtrl

Construction

CHeaderCtri

Create

Attributes

GetItemCount

GetItem

SetItem

Operations

InsertItem

Deleteltem

Layout

Overridables

Drawltem

Constructs a CHeaderCtrl object.

Creates a header control and attaches it to a CHeaderCtri object.

Retrieves a count of the items in a header control.

Retrieves information about an item in a header control.

Sets the attributes of the specified item in a header control.

Inserts a new item into a header control.

Deletes an item from a header control.

Retrieves the size and position of a header control within a given
rectangle.

Draws the specified item of a header control.

CHeaderCtrl: :Create

Member Functions
CHeaderCtrl: :CHeaderCtrl

Remarks

CHeaderCtrl();

Creates a CHeaderCtrl object.

See Also CHeaderCtrl::Create

CHeaderCtrl: : Create
BOOL Create(DWORD dwStyle, const RECT& reet, CWnd* pParentWnd, UINT nID);

Return Value
Nonzero if initialization was successful; otherwise zero.

Parameters

Remarks

dwStyle Specifies the header control's style. Apply any combination of header
control styles needed to the control.

reet Specifies the header control's size and position. It can be either a CRect object
or a RECT structure.

pParentWnd Specifies the header control's parent window, usually a CDialog. It
must not be NULL.

nID Specifies the header control's ID.

You construct a CHeaderCtrl object in two steps. First call the contructor, then call
Create, which creates the header control and attaches it to the CHeaderCtrl object.

The following styles can be applied to a header control:

• HDS_BUTTONS Header items behave like buttons.

• HDS_HORZ The header control is horizontal.

• HDS_DIVIDERTRACK The header control allows the user to set the width by
dragging the item's divider.

• HDS_ VERT The header control is vertical (this style is not currently
implemented).

• HDS_HIDDEN The header control is not visible in details mode.

745

CHeaderCtrl: : Create

746

In addition, you can use the following common control styles to determine how the
header control positions and resizes itself:

• CCS_BOTTOM Causes the control to position itself at the bottom of the parent
window's client area and sets the width to be the same as the parent window's
width.

• CCS_NODIVIDER Prevents a two-pixel highlight from being drawn at the top
of the control.

• CCS_NOHILITE Prevents a one-pixel highlight from being drawn at the top of
the control.

• CCS_NOMOVEY Causes the control to resize and move itself horizontally, but
not vertically, in response to a WM_SIZE message. If the CCS_NORESIZE style
is used, this style does not apply. Header controls have this style by default.

• CCS_NOPARENTALIGN Prevents the control from automatically moving to
the top or bottom of the parent window. Instead, the control keeps its position
within the parent window despite changes to the size of the parent window. If the
CCS_TOP or CCS_BOTTOM style is also used, the height is adjusted to the
default, but the position and width remain unchanged.

• CCS_NORESIZE Prevents the control from using the default width and height
when setting its initial size or a new size. Instead, the control uses the width and
height specified in the request for creation or sizing.

• CCS_TOP Causes the control to position itself at the top of the parent window's
client area and sets the width to be the same as the parent window's width.

You can also apply the following window styles to a header control:

• WS_CHILD Creates a child window. Cannot be used with the WS_POPUP
style.

• WS_ VISIBLE Creates a window that is initially visible.

• WS_DISABLED Creates a window that is initially disabled.

• WS_GROUP Specifies the first control of a group of controls in which the user
can move from one control to the next with the arrow keys. All controls defined
with the WS_GROUP style after the first control belong to the same group. The
next control with the WS_GROUP style ends the style group and starts the next
group (that is, one group ends where the next begins).

• WS_TABSTOP Specifies one of any number of controls through which the user
can move by using the TAB key. The TAB key moves the user to the next control
specified by the WS_TABSTOP style.

See Also CHeaderCtrl: :CHeaderCtrl

CHeaderCtrl: :DeleteItem
BOOL DeleteItem(int nPos);

Return Value
Nonzero if successful; otherwise O.

Parameters
nPos Specifies the zero-based index of the item to delete.

Remarks
Deletes an item from a header control.

See Also CHeaderCtrl: : InsertItem

CHeaderCtrl: : Draw Item
void DrawItem(LPDRAWITEMSTRUCT lpDrawltemStruct);

Parameters

Remarks

/pDrawltemStruct A pointer to a DRAWITEMSTRUCT structure describing the
item to be painted.

Called by the framework when a visual aspect of an owner-draw header control
changes. The itemAction member of the DRAWITEMSTRUCT structure defines
the drawing action that is to be performed.

By default, this member function does nothing. Override this member function to
implement drawing for an owner-draw CHeaderCtrl object.

The application should restore all graphics device interface (ODI) objects selected for
the display context supplied in lpDrawltemStruct before this member function
terminates.

See Also CWnd::OnDrawItem

CHeaderCtrl: : GetItem
BOOL GetItem(int nPos, HD _ITEM* pHeaderltem) const;

Return Value
Nonzero if successful; otherwise O.

Parameters
nPos Specifies the zero-based index of the item to retrieve.

CHeaderCtrl: : Getltem

747

CHeaderCtrl: : Getltem

Remarks

748

pHeaderltem Pointer to an HD_ITEM structure that receives the new item. This
structure is used with the Insertltem and SetItem member functions. You should
set the flags in the mask element before calling to request the other elements get
filled in. If mask is zero, no data will be returned.

Retrieves information about a header control item.

The HD_ITEM structure is defined as follows:

typedef struct _HD_ITEM
{

UINT mask;
i nt
LPSTR
HBITMAP
int
int
LPARAM

HD_ITEM;

cxy;
pszText;
hbm;
cchTextMax;
fmt;
1 Param;

II width or height of item
II address of item string
II handle of item bitmap
II length of item string, in characters

II application-defined item data

mask Mask flags that indicate which of the other structure members contain valid
data. Can be a combination of these flags:

• HDI_BITMAP The hbm member is valid.

• HDI_FORMAT The fmt member is valid.

• HDI_HEIGHT The cxy member is valid and specifies the height of the item.

• HDI_LPARAM The IParam member is valid.

• HDI_ TEXT The pszText and cchTextMax members are valid.

• HDI_ WIDTH The cxy member is valid and specifies the width of the item.

fmt Format flags. Can be a combination of the following values:

• HDF _CENTER Center contents of item.

• HDF _LEFT Left justify contents of item.

• HDF _RIGHT Right justify contents of item.

• HDF _BITMAP The item displays a bitmap.

• HDF _OWNERDRAW The owner window of the header control draws the
item.

• HDF _STRING The item displays a string.

See Also CHeaderCtrl: :SetItem

CHeaderCtrl: : GetItemCount
int GetItemCount() const;

Return Value
Number of header control items if successful; otherwise -1.

Remarks
Retrieves a count of the items in a header control.

See Also CHeaderCtrl::GetItem, CHeaderCtrl::SetItem

CHeaderCtrl: : Insertltem
int InsertItem(int nPos, HD_ITEM* phdi);

Return Value
Index of the new item if successful; otherwise -1.

Parameters

Remarks

nPos The zero-based index of the item to be inserted. If the value is zero, the item is
inserted at the beginning of the header control. If the value is greater than the
maximum value, the item is inserted at the end of the header control.

phdi Pointer to an HD _ITEM structure that contains information about the item to
be inserted. For more information on this structure, see CHeaderCtrl::GetItem.

Inserts a new item into a header control at the specified index.

See Also CHeaderCtrl: :Deleteltem, CHeaderCtrl: : Getltem

CHeaderCtrl: :Layout
BOOL Layout(HD_LAYOUT* pHeaderLayout);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

pHeaderLayout Pointer to an HD_LAYOUT structure, which contains information
used to set the size and position of a header control.

Retrieves the size and position of a header control within a given rectangle. This
function is used to determine the appropriate dimensions for a new header control
that is to occupy the given rectangle.

CHeaderCtrl: :Layout

749

CHeaderCtrl: :SetItem

The HD_LAYOUT structure is defined as follows:

typedef struet _HD_LAYOUT { II hdl
REeT FAR* pre; II see below
WINDOWPOS FAR* pwpos; II see below

} HD_LAYOUT;

pre Pointer to a RECT structure that contains the coordinates of the rectangle in
which a header control is to be drawn.

pwpos Pointer to a WINDOWPOS structure that receives information about the
appropriate size and position of the header control.

CHeaderCtrl:: SetItem
BOOL SetItem(int nPos, HD_ITEM* pHeaderltem);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

750

nPos The zero-based index of the item to be manipulated.

pHeaderltem Pointer to an HD _ITEM structure that contains information about the
new item. For more information on this structure, see CHeaderCtrl: : GetItem.

Sets the attributes of the specified item in a header control.

See Also CHeaderCtrl: :GetItem,CHeaderCtrl::GetltemConnt

CHotKeyCtrl

A "hot key control" is a window that enables the user to create a hot key. A "hot
key" is a key combination that the user can press to perform an action quickly. (For
example, a user can create a hot key that activates a given window and brings it to
the top of the Z order.) The hot key control displays the user's choices and ensures
that the user selects a valid key combination.

The CHotKeyCtrl class provides the functionality of the Windows common hot key
control. This control (and therefore the CHotKeyCtrl class) is available only to
programs running under Windows 95 and Windows NT version 3.51 and later.

When the user has chosen a key combination, the application can retrieve the
specified key combination from the control and use the WM_SETHOTKEY
message to set up the hot key in the system. Whenever the user presses the hot key
thereafter, from any part of the system, the window specified in the
WM_SETHOTKEY message receives a WM_SYSCOMMAND message
specifying SC_HOTKEY. This message activates the window that receives it. The
hot key remains valid until the application that called WM_SETHOTKEY exits.

This mechanism is different from the hot key support that depends on the
WM_HOTKEY message and the Windows RegisterHotKey and
UnregisterHotKey functions.

#include <afxcmn.h>

Construction

CHotKeyCtrl

Create

Attributes

SetHotKey

GetHotKey

Constructs a CHotKeyCtrI object.

Creates a hot key control and attaches it to a CHotKeyCtrl
object.

Sets the hot key combination for a hot key control.

Retrieves the virtual-key code and modifier flags of a hot key
from a hot key control.

CHotKeyCtrl

751

CHotKeyCtrl: :CHotKeyCtrl

Operations

SetRules Defines the invalid combinations and the default modifier
combination for a hot key control.

Member Functions
CHotKeyCtrl: :CHotKeyCtrl

Remarks

CHotKeyCtrl();

Constructs a CHotKeyCtrl object.

See Also CHotKeyCtrl::Create

CHotKeyCtrl: : Create
BOOL Create(DWORD dwStyle, const RECT& reet, CWnd* pParentWnd, UINT nID);

Return Value
Nonzero, if initialization was successful; otherwise O.

Parameters

Remarks

752

dwStyle Specifies the hot key control's style. Apply any combination of control
styles.

reet Specifies the hot key control's size and position. It can be either a CRect object
or a RECT structure.

pParentWnd Specifies the hot key control's parent window, usually a CDialog. It
must not be NULL.

nID Specifies the hot key control's ID.

You construct a CHotKeyCtrl object in two steps. First call the constructor, then call
Create, which creates the hot key control and attaches it to the CHotKeyCtrl object.

See Also CHotKeyCtrl: :CHotKeyCtrl

CHotKeyCtrl: :SetHotKey

CHotKeyCtrl: : GetHotKey
DWORD GetHotKey() const;
void GetHotKey(WORD &wVirtualKeyCode, WORD &wModifiers) const;

Return Value
The virtual-key code and modifier flags. The virtual-key code is in the low-order
byte, and the modifier flags are in the high-order byte. The modifier flags can be a
combination of the following values:

• HOTKEYF_ALT ALTkey

• HOTKEYF_CONTROL cTRLkey

• HOTKEYF _EXT Extended key

• HOTKEYF _SHIFT SHIFT key

The 16-bit value returned by this member function can be used as the parameter in
the SetHotKey member function.

Parameters

Remarks

wVirtualKeyCode Virtual-key code of the hot key.

wModifiers Modifier flags indicating the keys that, when used in combination with
wVirtualKeyCode, define a hot key combination.

Call this function to retrieve the virtual-key code and modifier flags of a hot key from
a hot key control.

See Also CHotKeyCtrl: :SetHotKey

CHotKeyCtrl:: SetHotKey
void SetHotKey(WORD wVirtualKeyCode, WORD wModifiers);

Parameters

Remarks

wVirtualKeyCode Virtual-key code of the hot key.

wModifiers Modifier flags indicating the keys that, when used in combination with
wVirtualKeyCode, define a hot key combination. For more information on the
modifier flags, see GetHotKey.

Call this function to set the hot key combination for a hot key control.

See Also CHotKeyCtrl: : GetHotKey

753

CHotKeyCtrl: :SetRu1es

CHotKeyCtrl:: SetRules
void SetRules(WORD wlnvalidComb, WORD wModifiers);

Parameters

Remarks

754

wlnvalidComb Array of flags that specifies invalid key combinations. It can be a
combination of the following values:

• HKCOMB_A ALT

• HKCOMB_C CTRL

• HKCOMB_CA CTRL+ALT

• HKCOMB_NONE Unmodified keys

• HKCOMB_S SHIFT

• HKCOMB_SA SHIFT+ALT

• HKCOMB_SC SHIFT+CTRL

• HKCOMB_SCA SHIFT+CTRL+ALT

wModifiers Array of flags that specifies the key combination to use when the user
enters an invalid combination. For more information on the modifier flags, see
GetHotKey.

Call this function to define the invalid combinations and the default modifier
combination for a hot key control. When a user enters an invalid key combination,
as defined by flags specified in wlnvalidComb, the system uses the OR operator to
combine the keys entered by the user with the flags specified in wModifiers. The
resulting key combination is converted into a string and then displayed in the hot key
control.

See Also CHotKeyCtrl: : GetHotKey , CHotKeyCtrl: :SetHotKey

CImageList

An "image list" is a collection of same-sized images, each of which can be referred to
by its zero-based index. Image lists are used to efficiently manage large sets of icons
or bitmaps. All images in an image list are contained in a single, wide bitmap in
screen device format. An image list may also include a monochrome bitmap that
contains masks used to draw images transparently (icon style). The Microsoft Win32
application programming interface (API) provides image list functions that enable
you to draw images, create and destroy image lists, add and remove images, replace
images, merge images, and drag images.

The ClmageList class provides the functionality of the Windows common image list
control. This control (and therefore the ClmageList class) is available only to
programs running under Windows 95 and Windows NT version 3.51 and later.

#include <afxcmn.h>

See Also CListCtrl, CTabCtrl

Data Members

Construction

CImageList

Create

Attributes

GetSafeHandle

GetImageCount

SetBkColor

GetBkColor

GetImagelnfo

Operations

Attach

Detach

A handle containing the image list attached to this object.

Constructs a CImageList object.

Initializes an image list and attaches it to a ClmageList
object.

Retrieves m_hlmageList.

Retrieves the number of images in an image list.

Sets the background color for an image list.

Retrieves the current background color for an image list.

Retrieves information about an image.

Attaches an image list to a CImageList object.

Detaches an image list object from a ClmageList object
and returns a handle to an image list.

CImageList

755

CImageList: : Add

DeletelmageList

Add

Remove

Replace

Extractlcon

Draw

SetOverlaylmage

SetDragCursorImage

GetDragImage

Read

Write

BeginDrag

DragEnter

EndDrag

DragLeave

DragMove

DragShowNolock

Deletes an image list.

Adds an image or images to an image list.

Removes an image from an image list.

Replaces an image in an image list with a new image.

Creates an icon based on an image and mask in an
image list.

Draws the image that is being dragged during a drag-and
drop operation.

Adds the zero-based index of an image to the list of images
to be used as overlay masks.

Creates a new drag image.

Gets the temporary image list that is used for dragging.

Reads an image list from an archive.

Writes an image list to an archive.

Begins dragging an image.

Locks updates during a drag operation and displays the drag
image at a specified position.

Ends a drag operation.

Unlocks the window and hides the drag image so that the
window can be updated.

Moves the image that is being dragged during a drag-and
drop operation.

Shows or hides the drag image during a drag operation,
without locking the window.

Member Functions
ClmageList: : Add

int Add(CBitmap* pbmlmage, CBitmap* pbmMask);
int Add(CBitmap* pbmlmage, COLORREF crMask);
int Add(HICON h/con);

Return Value
Zero-based index of the first new image if successful; otherwise -1.

Parameters

756

pbmlmage Pointer to the bitmap containing t~e image or images. The number of
images is inferred from the width of the bitmap.

pbmMask Pointer to the bitmap containing the mask. If no mask is used with the
image list, this parameter is ignored.

ClmageList: :BeginDrag

Remarks

crMask Color used to generate the mask. Each pixel of this color in the given
bitmap is changed to black and the corresponding bit in the mask is set to one.

hIcon Handle of the icon that contains the bitmap a:nd mask for the new image.

Call this function to add one or more images or an icon to an image list.

See Also ClmageList::Remove, ClmageList::Replace, COLORREF in the
Win32 Programmer's Reference

CImageList: : Attach
BOOL Attach(HlMAGELIST hlmageList);

Return Value
Nonzero if the attachment was successful; otherwise O.

Parameters

Remarks

hlmageList A handle to an image list object.

Call this function to attach an image list to a ClmageList object.

See Also ClmageList: :Detach, ClmageList: : GetSafeHandle

CImageList: :BeginDrag
BOOL BeginDrag(int nlmage, CPoint ptHotSpot);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

nlmage Zero-based index of the image to drag.

ptHotSpot Coordinates of the starting drag position (typically, the cursor position).
The coordinates are relative to the upper left comer of the image.

Call this function to begin dragging an image. This function creates a temporary
image list that is used for dragging. The image combines the specified image and its
mask with the current cursor. In response to subsequent WM_MOUSEMOVE
messages, you can move the drag image by using the DragMove member function.
To end the drag operation, you can use the EndDrag member function.

See Also ClmageList: :Draw, ClmageList: :EndDrag, CImageList: :DragMove

757

CImageList: :CImageList

CImageList: :ClmageList

Remarks

CImageList();

Constructs a CImageList object.

See Also CImageList: : Create

CImageList: : Create
BOOL Create(int ex, int ey, BOOL bMask, int nlnitial, int nGrow);
BOOL Create(UINT nBitmapID, int ex, int nGrow, COLORREF erMask);
BOOL Create(LPCTSTR lpszBitmapID, int ex, int nGrow, COLORREF erMask);
BOOL Create(CImageList& imagelistl, int nlmagel, CImageList& imagelist2,

int nlmage2, int dx, int dy);

Return Value
Nonzero if successful; otherwise O.

Parameters

758

ex Dimensions of each image, in pixels.

ey Dimensions of each image, in pixels.

bMask TRUE if the image contains a mask; otherwise FALSE.

nlnitial Number of images that the image list initially contains.

nGrow Number of images by which the image list can grow when the system needs
to resize the list to make room for new images. This parameter represents the
number of new images the resized image list can contain.

nBitmapID Resource IDs of the bitmap to be associated with the image list.

erMask Color used to generate a mask. Each pixel of this color in the specified
bitmap is changed to black, and the corresponding bit in the mask is set to one.

lpszBitmapID A string containing the resource IDs of the images.

imagelistl A pointer to a CImageList object.

nlmagel Number of images contained in imagelistl.

imagelist2 A pointer to a CImageList object.

nlmage2 Number of images contained in imagelist2.

dx Dimensions of each image, in pixels.

dy Dimensions of each image, in pixels.

ClmageList: : DragEnter

Remarks
You construct a ClmageList in two steps. First call the constructor, then call Create,
which creates the image list and attaches it to the ClmageList object.

See Also ClmageList::ClmageList, COLORREF in the Win32 Programmer's
Reference

ClmageList: : DeletelmageList
BOOL DeletelmageList();

Return Value

Remarks

Nonzero if successful; otherwise O.

Call this function to delete an image list.

See Also ClmageList: :Detach

ClmageList: :Detach
HIMAGELIST Detach();

Return Value

Remarks

A handle to an image list object.

Call this function to detach an image list object from a ClmageList object. This
function returns a handle to the image list object.

See Also ClmageList: :Attach, ClmageList: :DeletelmageList

ClmageList: : DragEnter
static BOOL DragEnter(CWnd* pWndLock, CPoint point);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

p WndLock Pointer to the window that owns the drag image.

point Position at which to display the drag image. Coordinates are relative to the
upper left comer of the window (not the client area).

During a drag operation, locks updates to the window specified by p WndLock and
displays the drag image at the position specified by point.

759

ClmageList: :DragLeave

The coordinates are relative to the window's upper left comer, so you must
compensate for the widths of window elements, such as the border, title bar, and
menu bar, when specifying the coordinates.

If p WndLock is NULL, this function draws the image in the display context
associated with the desktop window, and coordinates are relative to the upper left
comer of the screen.

This function locks all other updates to the given window during the drag operation.
If you need to do any drawing during a drag operation, such as highlighting the
target of a drag-and-drop operation, you can temporarily hide the dragged image by
using the ClmageList: :DragLeave function.

See Also ClmageList: :BeginDrag, ClmageList::EndDrag,
CImageList: :DragMove, ClmageList: :DragLeave

ClmageList: : DragLeave
static BOOL DragLeave(CWnd* pWndLock);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

p WndLock Pointer to the window that owns the drag image.

Unlocks the window specified by p WndLock and hides the drag image, allowing the
window to be updated.

See Also CImageList::BeginDrag, ClmageList::EndDrag,
CImageList: :DragMove, ClmageList: :DragEnter

ClmageList: : DragMove
static BOOL DragMove(CPoint pt);

Return Value
Nonzero if successful; otherwise O.

Parameters
pt New drag position.

760

Remarks
Call this function to move the image that is being dragged during a drag-and-drop
operation. This function is typically called in response to a WM_MOUSEMOVE
message. To begin a drag operation, use the BeginDrag member function.

See Also CImageList: :BeginDrag, CImageList: :EndDrag,CImageList: :Draw

CImageList: :DragShow N olock
static BOOL DragShowNoiock(BOOL bShow);

Return Value
Nonzero if successful; otherwise o.

Parameters

Remarks

bShow Specifies whether the drag image is to be shown.

Shows or hides the drag image during a drag operation, without locking the window.

The CImageList: :DragEnter function locks all updates to the window during a drag
operation. This function, however, does not lock the window.

See Also CImageList: :BeginDrag, CImageList::EndDrag,
CImageList: :DragEnter, CImageList: : DragLeave, CImageList: :Draw

CImageList: :Draw
BOOL Draw(CDC* pdc, int nlmage, POINT pt, UINT nStyle);

Return Value
Nonzero if successful; otherwise O.

Parameters
pdc Pointer to the destination device context.

nlmage Zero-based index of the image to draw.

pt Location at which to draw within the specified device context.

nStyle Flag specifying the drawing style. It can be one or more of these values:

• ILD_NORMAL Draws the image using the background color for the image
list. If the background color is CLR_NONE, the image is drawn transparently
using the mask .

• ILD_TRANSPARENT Draws the image transparently using the mask,
regardless of the background color. This value has no effect if the image list
does not contain a mask.

CImageList::Draw

761

ClmageList: :EndDrag

Remarks

• ILD _BLEND50 Draws the image dithered with the highlight color to
indicate that it is selected. This value has no effect if the image list does not
contain a mask.

• ILD _BLEND25 Draws the image striped with the highlight color to indicate
that it has the focus.

• ILD_OVERLAYMASK Draws the image and overlays it with an overlay
mask. The zero-based index of the overlay mask must be combined with this
style. The zero-based index must also be specified by using the
INDEXTOOVERLAYMASK macro.

Call this function to draw the image that is being dragged during a drag-and-drop
operation.

See Also CImageList: :BeginDrag, CImageList: :EndDrag,
CImageList: :DragMove

CImageList: : EndDrag
static void EndDrag();

Remarks
Call this function to end a drag operation. To begin a drag operation, use the
BeginDrag member function.

See Also CImageList: :BeginDrag, CImageList: :Draw, CImageList: :DragMove

CImageList: :ExtractIcon
HICON ExtractIcon(int nlmage);

Return Value
Handle of the icon if successful; otherwise NULL.

Parameters

Remarks

762

nlmage Zero-based index of the image.

Call this function to create an icon based on an image and its related mask in an
image list.

See Also ClmageList: : Replace

CImageList: :GetImageCount

CImageList: : GetBkColor
COLORREF GetBkCoior() const;

Return Value

Remarks

The RGB color value of the CImageList object background color.

Call this function to retrieve the current background color for an image list.

See Also CImageList::SetBkCoior, COLORREF in the Win32 Programmer's
Reference

CImageList: : GetDragImage
static CImageList* GetDragImage(LPPOINT lpPoint, LPPOINT lpPointHotSpot);

Return Value
If successful, a pointer to the temporary image list that is used for dragging;
otherwise, NULL.

Parameters

Remarks

lpPoint Address of a POINT structure that receives the current drag position.

lpPointHotSpot Address of a POINT structure that receives the offset of the drag
image relative to the drag position.

Gets the temporary image list that is used for dragging.

See Also CImageList: :SetDragCursorlmage

CImageList: : GetImageCount
int GetImageCount() const;

Return Value

Remarks

The number of images.

Call this function to retrieve the number of images in an image list.

See Also CImageList: : GetImageInfo

763

CImageList: : GetImagelnfo

CImageList: : GetImageInfo
BOOL Getlmagelnfo(int nlmage, IMAGEINFO* plmagelnfo) const;

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

nlmage Zero-based index of the image.

plmagelnfo Pointer to an IMAGEINFO structure that receives information about
the image. The information in this structure can be used to directly manipulate the
bitmaps for the image.

Call this function to retrieve information about an image.

The IMAGEINFO structure contains information about an image in an image list:

typedef struct _IMAGEINFO {
HBITMAP hbmImage;
HBITMAP hbmMask;
int cPlanes;
int cBitsPerPixel;
REeT rcImage;

} IMAGEINFO;

II bitmap containing the images

II number of color planes in hbmImage
II bits per pixel in hbmImage

hhmMask Handle of a monochrome bitmap containing the masks for the images. If
the image list does not contain a mask, this member is NULL.

rcImage Bounding rectangle of the image within the bitmap specified by
hhmImage.

See Also ClmageList: : GetImageCount

CImageList: : GetSafeHandle
HIMAGELIST GetSafeHandle() const;

Return Value
A handle to the attached image list; otherwise NULL if no object is attached.

Remarks
Call this function to retrieve the m_hlmageList data member.

See Also ClmageList: : Attach, ClmageList: :Detach, CImageList: :m_hlmageList

764

CImageList: :Read
BOOL Read(CArchive* pArchive);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

pArchive A pointer to a CArchive object from which the image list is to be read.

Call this function to read an image list from an archive.

See Also ClmageList:: Write

CImageList: : Remove
BOOL Remove(int nlmage);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

nlmage Zero-based index of the image to remove.

Call this function to remove an image from an image list object.

See Also ClmageList: :DeletelmageList

CImageList: : Replace
BOOL Replace(int nlmage, CBitmap* pbmlmage, CBitmap* pbmMask);
int Replace(int nlmage, HICON h/con);

Return Value
The version returning BOOL returns nonzero if successful; otherwise O.

The version returning int returns the zero-based index of the image if successful;
otherwise -1.

Parameters
nlmage Zero-based index of the image to replace.

pbmlmage A pointer to the bitmap containing the image.

pbmMask A pointer to the bitmap containing the mask. If no mask is used with the
image list, this parameter is ignored.

h/con A handle to the icon that contains the bitmap and mask for the new image.

CImageList: : Replace

765

CImageList: :SetBkColor

Remarks
Call this function to replace an image in an image list with a new image.

See Also CImageList::Remove

CImageList:: SetBkColor
COLORREF SetBkColor(COLORREF cr);

Return Value
The previous background color if successful; otherwise CLR_NONE.

Parameters

Remarks

cr Background color to set. It can be CLR_NONE. In that case, images are drawn
transparently using the mask.

Call this function to set the background color for an image list.

See Also ClmageList::GetBkColor, COLORREF in the Win32 Programmer's
Reference

CImageList:: SetDragCursorImage
BOOL SetDragCursorImage(int nDrag, CPoint ptHotSpot);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

766

nDrag Index of the new image to be combined with the drag image.

ptHotSpot Position of the hot spot within the new image.

Creates a new drag image by combining the given image (typically a mouse cursor
image) with the current drag image.

Because the dragging functions use the new image during a drag operation, you
should use the Windows Show Cursor function to hide the actual mouse cursor after
calling CImageList::SetDragCursorImage. Otherwise, the system may appear to
have two mouse cursors for the duration of the drag operation.

See Also ClmageList: :BeginDrag, ClmageList: :EndDrag,
ClmageList: : GetDraglmage

CImageList: : SetOverlay Image
BOOL SetOverlaylmage(int nlmage, int nOverlay);

Return Value
Nonzero if successful; otherwise o.

Parameters

Remarks

nlmage Zero-based index of the image to use as an overlay mask.

nOverlay One-based index of the overlay mask.

Call this function to add the zero-based index of an image to the list of images to be
used as overlay masks. Up to four indices can be added to the list.

An overlay mask is an image drawn transparently over another image. You draw an
overlay mask over an image by using the ClmageList: :Draw member function with
the ILD _ OVERLAYMASK style combined with the one-based index of the overlay
mask. The one-based index must be specified by using the
INDEXTOOVERLAYMASK macro.

See Also ClmageList: :Add

CImageList:: Write
BOOL Write(CArchive* pArchive);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

pArchive A pointer to a CArchive object in which the image list is to be stored.

Call this function to write an image list object to an archive.

See Also ClmageList: :Read

ClmageList:: Write

767

ClmageList: :m_hImageList

Data Members
ClmageList: :m_hlmageList

Remarks

768

HIMAGELIST m_hlmageList;

A handle of the image list attached to this object. The m_hlmageList data member is
a public variable of type HIMAGELIST.

See Also ClmageList: : Attach, ClmageList: :Detach, ClmageList: :Attach

CList

template< class TYPE, class ARG_TYPE >
class CList : public CObject

Parameters

Remarks

TYPE Type of object stored in the list.

ARG_TYPE Type used to reference objects stored in the list. Can be a reference.

The CList class supports ordered lists of nonunique objects accessible sequentially or
by value. CList lists behave like doubly-linked lists.

A variable of type POSITION is a key for the list. You can use a POSITION
variable as an iterator to traverse a list sequentially and as a bookmark to hold a
place. A position is not the same as an index, however.

Element insertion is very fast at the list head, at the tail, and at a known POSITION.
A sequential search is necessary to look up an element by value or index. This search
can be slow if the list is long.

If you need a dump of individual elements in the list, you must set the depth of the
dump context to 1 or greater.

Certain member functions of this class call global helper functions that must be
customized for most uses of the CList class. See "Collection Class Helpers" in the
"Macros and Globals" section.

For more information on using CList, see the article "Collections" in Programming
withMFC.

#include <afxtempl.h>

See Also CMap, CArray, Collection Class Helpers

HeadlTaii Access

GetHead

GetTail

Operations

RemoveHead

RemoveTaii

Returns the head element of the list (cannot be empty).

Returns the tail element of the list (cannot be empty).

Removes the element from the head of the list.

Removes the element from the tail of the list.

CList

769

CList: : AddHead

AddHead

AddTail

RemoveAll

Iteration

GetHeadPosition

GetTailPosition

GetNext

GetPrev

Retrieval/Modification

GetAt

SetAt

RemoveAt

Insertion

InsertBefore

InsertAfter

Searching

Find

Findlndex

Status

GetCount

IsEmpty

Adds an element (or all the elements in another list) to the head of
the list (makes a new head).

Adds an element (or all the elements in another list) to the tail of
the list (makes a new tail).

Removes all the elements from this list.

Returns the position of the head element of the list.

Returns the position of the tail element of the list.

Gets the next element for iterating.

Gets the previous element for iterating.

Gets the element at a given position.

Sets the element at a given position.

Removes an element from this list, specified by position.

Inserts a new element before a given position.

Inserts a new element after a given position.

Gets the position of an element specified by pointer value.

Gets the position of an element specified by a zero-based index.

Returns the number of elements in this list.

Tests for the empty list condition (no elements).

Member Functions
CList: : AddHead

POSITION AddHead(ARG_TYPE newElement);
void AddHead(CList* pNewList);

Return Value
The first version returns the POSITION value of the newly inserted element.

Parameters

770

ARG _TYPE Template parameter specifying the type of the list element (can be a
reference).

Remarks

newElement The new element.

pNewList A pointer to another CList list. The elements in pNewList will be added to
this list.

Adds a new element or list of elements to the head of this list. The list can be empty
before the operation.

See Also CList: : GetHead, CList: :RemoveHead

CList: :AddTail
POSITION AddTail(ARG_TYPE newElement);
void AddTail(CList* pNewList);

Return Value
The first version returns the POSITION value of the newly inserted element.

Parameters

Remarks

ARG_TYPE Template parameter specifying the type of the list element (can be a
reference).

newElement The element to be added to this list.

pNewList A pointer to another CList list. The elements in pNewList will be added to
this list.

Adds a new element or list of elements to the tail of this list. The list can be empty
before the operation.

See Also CObList::GetTail, CObList::RemoveTail

CList: :Find
POSITION Find(ARG_TYPE searchValue, POSITION startAfter = NULL) const;

Return Value
A POSITION value that can be used for iteration or object pointer retrieval; NULL
if the object is not found.

Parameters
ARG_TYPE Template parameter specifying the type of the list element (can be a

reference).

search Value The value to be found in the list.

startAfter The start position for the search.

CList::Find

771

CList: :FindIndex

Remarks
Searches the list sequentially to find the first element matching the specified
search Value. Note that the pointer values are compared, not the contents of the
objects.

See Also CList::GetNext, CList::GetPrev

CList: : FindIndex
POSITION FindIndex(int nlndex) cons!;

Return Value
A POSITION value that can be used for iteration or object pointer retrieval; NULL
if nlndex is negative or too large.

Parameters

Remarks

nlndex The zero-based index of the list element to be found.

Uses the value of nlndex as an index into the list. It starts a sequential scan from the
head of the list, stopping on the nth element.

See Also CObList::Find, CObList::GetNext, CObList::GetPrev

CList: : GetAt
TYPE& GetAt(POSITION position);
TYPE GetAt(POSITION position) const;

Return Value
See the return value description for GetHead.

Parameters

Remarks

772

TYPE Template parameter specifying the type of object in the list.

position A POSITION value returned by a previous GetHeadPosition or Find
member function call.

A variable of type POSITION is a key for the list. It is not the same as an index, and
you cannot operate on a POSITION value yourself. GetAt returns the element (or a
reference to the element) associated with a given position.

You must ensure that your POSITION value represents a valid position in the list. If
it is invalid, then the Debug version of the Microsoft Foundation Class Library
asserts.

See Also CList::Find, CList::SetAt, CList::GetNext, CList::GetPrev,
CList::GetHead

CList: : GetHeadPosition

CList: : GetCount
int GetCountO const;

Return Value
An integer value containing the element count.

Remarks
Gets the number of elements in this list.

See Also CList: : IsEmpty

CList: : GetHead
TYPE& GetHead();
TYPE GetHead() const;

Return Value
If the list is const, GetHead returns a copy of the element at the head of the list. This
allows the function to be used only on the right side of an assignment statement and
protects the list from modification.

If the list is not const, GetHead returns a reference to an element of the list. This
allows the function to be used on either side of an assignment statement and thus
allows the list entries to be modified.

Parameters

Remarks

TYPE Template parameter specifying the type of object in the list.

Gets the head element (or a reference to the head element) of this list.

You must ensure that the list is not empty before calling GetHead. If the list is
empty, then the Debug version of the Microsoft Foundation Class Library asserts. Use
IsEmpty to verify that the list contains elements.

See Also CList::GetTail, CList::GetTaiIPosition, CList::AddHead,
CList: : RemoveHead

CList: : GetHeadPosition
POSITION GetHeadPosition() const;

Return Value
A POSITION value that can be used for iteration or object pointer retrieval; NULL
if the list is empty.

773

CList: : GetNext

Remarks
Gets the position of the head element of this list.

See Also CList: : GetTailPosition

CList: : GetN ext
TYPE& GetNext(POSITION& rPosition);
TYPE GetNext(POSITION& rPosition) const;

Return Value
If the list is const, GetNext returns a copy of the element at the head of the list. This
allows the function to be used only on the right side of an assignment statement and
protects the list from modification.

If the list is not const, GetNext returns a reference to an element of the list. This
allows the function to be used on either side of an assignment statement and thus
allows the list entries to be modified.

Parameters

Remarks

TYPE Template parameter specifying the type of the elements in the list.

rPosition A reference to a POSITION value returned by a previous GetNext,
GetHeadPosition, or other member function call.

Gets the list element identified by rPosition, then sets rPosition to the POSITION
value of the next entry in the list. You can use GetNext in a forward iteration loop if
you establish the initial position with a call to GetHeadPosition or Find.

You must ensure that your POSITION value represents a valid position in the list. If
it is invalid, then the Debug version of the Microsoft Foundation Class Library
asserts.

If the retrieved element is the last in the list, then the new value of rPosition is set
to NULL.

See Also CList::Find, CList::GetHeadPosition, CList::GetTailPosition,
CList::GetPrev, CList: : GetHead

CList: : GetPrev

774

TYPE& GetPrev(POSITION& rPosition);
TYPE GetPrev(POSITION& rPosition) const;

Return Value
If the list is const, GetPrev returns a copy of the element at the head of the list. This
allows the function to be used only on the right side of an assignment statement and
protects the list from modification.

If the list is not const, GetPrev returns a reference to an element of the list. This
allows the function to be used on either side of an assignment statement and thus
allows the list entries to be modified.

Parameters

Remarks

TYPE Template parameter specifying the type of the elements in the list.

rPosition A reference to a POSITION value returned by a previous GetPrev or
other member function call.

Gets the list element identified by rPosition, then sets rPosition to the POSITION
value of the previous entry in the list. You can use GetPrev in a reverse iteration loop
if you establish the initial position with a call to GetTailPosition or Find.

You must ensure that your POSITION value represents a valid position in the list. If
it is invalid, then the Debug version of the Microsoft Foundation Class Library
asserts.

If the retrieved element is the first in the list, then the new value of rPosition is set
to NULL.

See Also CList: :Find, CList: : GetTailPosition, CList: : GetHeadPosition,
CList: : GetNext, CList: : GetHead

CList: : GetTail
TYPE& GetTail();
TYPE GetTailO const;

Return Value
See the return value description for GetHead.

Parameters

Remarks

TYPE Template parameter specifying the type of elements in the list.

Gets the CObject pointer that represents the tail element of this list.

You must ensure that the list is not empty before calling GetTail. If the list is empty,
then the Debug version of the Microsoft Foundation Class Library asserts. Use
IsEmpty to verify that the list contains elements.

See Also CList: :AddTail, CList: :AddHead, CList: :RemoveHead,
CList: : GetHead

CList: :GetTail

775

CList: : GetTailPosition

CList: : GetTailPosition
POSITION GetTailPosition() const;

Return Value

Remarks

A POSITION value that can be used for iteration or object pointer retrieval; NULL
if the list is empty.

Gets the position of the tail element of this list; NULL if the list is empty.

See Also CList: : GetHeadPosition, CList: : GetTail

CList: : InsertAfter
POSITION InsertAfter(POSITION position, ARG_TYPE newElement);

Return Value
A POSITION value that can be used for iteration or list element retrieval.

Parameters

Remarks

position A POSITION value returned by a previous GetNext, GetPrev, or Find
member function call.

ARG_TYPE Template parameter specifying the type of the list element.

newElement The element to be added to this list.

Adds an element to this list after the element at the specified position.

See Also CList: :Find, CList: :InsertBefore

CList: :InsertBefore
POSITION InsertBefore(POSITION position, ARG_TYPE newElement);

Return Value
A POSITION value that can be used for iteration or list element retrieval; NULL if
the list is empty.

Parameters

776

position A POSITION value returned by a previous GetNext, GetPrev, or Find
member function call.

Remarks

ARG_TYPE Template parameter specifying the type of the list element (can be a
reference).

newElement The element to be added to this list.

Adds an element to this list before the element at the specified position.

See Also CList: :Find, CList: : InsertAfter

CList: : IsEmpty
BOOL IsEmpty() const;

Return Value
Nonzero if this list is empty; otherwise O.

Remarks
Indicates whether this list contains no elements.

See Also CList::GetCount

CList: : RemoveAl1

Remarks

void RemoveAII();

Removes all the elements from this list and frees the associated memory. No error is
generated if the list is already empty.

See Also CList: :RemoveAt

CList: : RemoveAt
void RemoveAt(POSITION position);

Parameters

Remarks

position The position of the element to be removed from the list.

Removes the specified element from this list.

You must ensure that your POSITION value represents a valid position in the list. If
it is invalid, then the Debug version of the Microsoft Foundation Class Library
asserts.

See Also CList: : RemoveAIl

CList::RemoveAt

CList::RemoveHead

CList: : RemoveHead
TYPE RemoveHead();

Return Value
The element previously at the head of the list.

Parameters

Remarks

TYPE Template parameter specifying the type of elements in the list.

Removes the element from the head of the list and returns a pointer to it.

You must ensure that the list is not empty before calling RemoveHead. If the list is
empty, then the Debug version of the Microsoft Foundation Class Library asserts. Use
IsEmpty to verify that the list contains elements.

See Also CList: : GetHead, CList::AddHead

CList: : RemoveTail
TYPE RemoveTail();

Return Value
The element that was at the tail of the list.

Parameters

Remarks

TYPE Template parameter specifying the type of elements in the list.

Removes the element from the tail of the list and returns a pointer to it.

You must ensure that the list is not empty before calling RemoveTail. If the list is
empty, then the Debug version of the Microsoft Foundation Class Library asserts. Use
IsEmpty to verify that the list contains elements.

See Also CList: : GetTail, CList: :AddTaii

CList: : SetAt
void SetAt(POSITION pos, ARG_TYPE newElement);

Parameters

778

pos The POSITION of the element to be set.

ARG_TYPE Template parameter specifying the type of the list element (can be a
reference) .

new Element The element to be added to the list.

Remarks
A variable of type POSITION is a key for the list. It is not the same as an index, and
you cannot operate on a POSITION value yourself. SetAt writes the element to the
specified position in the list.

You must ensure that your POSITION value represents a valid position in the list. If
it is invalid, then the Debug version of the Microsoft Foundation Class Library
asserts.

See Also CList::Find, CList::GetAt, CList::G.etNext, CList::GetPrev

CList::SetAt

779

CListBox

CListBox

780

The CListBox class provides the functionality of a Windows list box. A list box
displays a list of items, such as filenames, that the user can view and select.

In a single-selection list box, the user can select only one item. In a multiple-selection
list box, a range of items can be selected. When the user selects an item, it is
highlighted and the list box sends a notification message to the parent window.

You can create a list box either from a dialog template or directly in your code. To
create it directly, construct the CListBox object, then call the Create member
function to create the Windows list-box control and attach it to the CListBox object.
To use a list box in a dialog template, declare a list-box variable in your dialog box
class, then use DDX_Control in your dialog box class's DoDataExchange function
to connect the member variable to the control. (ClassWizard does this for you
automatically when you add a control variable to your dialog box class.)

Construction can be a one-step process in a class derived from CListBox. Write a
constructor for the derived class and call Create from within the constructor.

If you want to handle Windows notification messages sent by a list box to its parent
(usually a class derived from CDialog), add a message-map entry and message
handler member function to the parent class for each message.

Each message-map entry takes the following form:

ON_Notification(id, memberFxn)

where id specifies the child window ID of the list-box control sending the notification
and memberFxn is the name of the parent member function you have written to
handle the notification.

The parent's function prototype is as follows:

afx_msg void memberFxn();

Following is a list of potential message-map entries and a description of the cases in
which they would be sent to the parent:

• ON_LBN_DBLCLK The user double-clicks a string in a list box. Only a list
box that has the LBS_NOTIFY style will send this notification message. For a list
of list-box styles, see "List-Box Styles"in the "Styles Used by MFC" section.

• ON_LBN_ERRSPACE The list box cannot allocate enough memory to meet the
request.

• ON_LBN_KILLFOCUS The list box is losing the input focus.

• ON_LBN_SELCANCEL The current list-box selection is canceled. This
message is only sent when a list box has the LBS_NOTIFY style.

• ON_LBN_SELCHANGE The selection in the list box is about to change. This
notification is not sent if the selection is changed by the CListBox: :SetCurSel
member function. This notification applies only to a list box that has the
LBS_NOTIFY style. The LBN_SELCHANGE notification message is sent for a
multiple-selection list box whenever the user presses an arrow key, even if the
selection does not change.

• ON_LBN_SETFOCUS The list box is receiving the input focus.

• ON_ WM_CHARTOITEM An owner-draw list box that has no strings receives
a WM_ CHAR message.

• ON_ WM_ VKEYTOITEM A list box with the
LBS_ WANTKEYBOARDINPUT style receives a WM_KEYDOWN message.

If you create a CListBox object within a dialog box (through a dialog resource), the
CListBox object is automatically destroyed when the user closes the dialog box.

If you create a CListBox object within a window, you may need to destroy the
CListBox object. If you create the CListBox object on the stack, it is destroyed
automatically. If you create the CListBox object on the heap by using the new
function, you must call delete on the object to destroy it when the user closes the
parent window.

If you allocate any memory in the CListBox object, override the CListBox destructor
to dispose of the allocation.

#include <afxwin.h>

See Also CWnd, CButton, CComboBox, CEdit, CScrolIBar, CStatic, CDialog

CListBox

781

CListBox

782

Construction

CListBox

Initialization

Create

InitStorage

General Operations

GetCount

GetHorizontalExtent

SetHorizontalExtent

GetToplndex

SetToplndex

GetItemData

GetItemDataPtr

SetItemData

SetItemDataPtr

GetItemRect

ItemFromPoint

SetItemHeight

GetItemHeight

GetSel

GetText

GetTextLen

SetColumn Width

SetTabStops

GetLocale

SetLocale

Single-Selection Operations

GetCurSel

SetCurSel

Constructs a CListBox object.

Creates the Windows list box and attaches it to the CListBox
object.

Preallocates blocks of memory for list box items and strings.

Returns the number of strings in a list box.

Returns the width in pixels that a list box can be scrolled
horizontally.

Sets the width in pixels that a list box can be scrolled
horizontally.

Returns the index of the first visible string in a list box.

Sets the zero-based index of the first visible string in a
list box.

Returns the 32-bit value associated with the list-box item.

Returns a pointer to a list-box item.

Sets the 32-bit value associated with the list-box item.

Sets a pointer to the list-box item.

Returns the bounding rectangle of the list-box item as it is
currently displayed.

Returns the index of the list-box item nearest a point.

Sets the height of items in a list box.

Determines the height of items in a list box.

Returns the selection state of a list-box item.

Copies a list-box item into a buffer.

Returns the length in bytes of a list-box item.

Sets the column width of a multicolumn list box.

Sets the tab-stop positions in a list box.

Retrieves the locale identifier for a list box.

Sets the locale identifier for a list box.

Returns the zero-based index of the currently selected string
in a list box.

Selects a list-box string.

Multiple-Selection Operations

SetSel

GetCaretIndex

SetCaretlndex

GetSelCount

GetSelItems

SelItemRange

SetAnchorIndex

GetAnchorIndex

String Operations

AddString

DeleteString

InsertString

ResetContent

Dir

FindString

FindStringExact

SelectString

Overridables

DrawItem

MeasureItem

CompareItem

DeleteItem

VKeyToItem

CharToItem

Selects or deselects a list-box item in a multiple-selection
list box.

Determines the index of the item that has the focus rectangle
in a multiple-selection list box.

Sets the focus rectangle to the item at the specified index in a
multiple-selection list box.

Returns the number of strings currently selected in a
multiple-selection list box.

Returns the indices of the strings currently selected in a
list box.

Selects or deselects a range of strings in a multiple-selection
list box.

Sets the anchor in a multiple-selection list box to begin an
extended selection.

Retrieves the zero-based index of the current anchor item in a
list box.

Adds a string to a list box.

Deletes a string from a list box.

Inserts a string at a specific location in a list box.

Clears all the entries from a list box.

Adds filenames from the current directory to a list box.

Searches for a string in a list box.

Finds the first list-box string that matches a specified string.

Searches for and selects a string in a single-selection list box.

Called by the framework when a visual aspect of an owner
draw list box changes.

Called by the framework when an owner-draw list box is
created to determine list-box dimensions.

Called by the framework to determine the position of a new
item in a sorted owner-draw list box.

Called by the framework when the user deletes an item from
an owner-draw list box.

Override to provide custom WM_KEYDOWN handling for
list boxes with the LBS_ WANTKEYBOARDINPUT
style set.

Override to provide custom WM_CHAR handling for owner
draw list boxes which don't have strings.

CListBox

783

CListBox: : AddString

Member Functions
CListBox: : AddString

int AddString(LPCTSTR IpszItem);

Return Value
The zero-based index to the string in the list box. The return value is LB_ERR if an
error occurs; the return value is LB_ERRSPACE if insufficient space is available to
store the new string.

Parameters

Remarks

IpszItem Points to the null-terminated string that is to be added.

Call this member function to add a string to a list box. If the list box was not created
with the LBS_SORT style, the string is added to the end of the list. Otherwise, the
string is inserted into the list, and the list is sorted. If the list box was created with the
LBS_SORT style but not the LBS_HASSTRINGS style, the framework sorts the list
by one or more calls to the Compareltem member function. For a list of list-box
styles, see "List-Box Styles" in the "Styles Used by MFC" section.

Use InsertString to insert a string into a specific location within the list box.

See Also CListBox::lnsertString, CListBox::CompareItem, LB_ADDSTRING

CListBox: :CharToItem
virtual int CharToltem(UINT nKey, UINT nlndex);

Return Value
Returns -lor -2 for no further action or a nonnegative number to specify an index
of a list-box item on which to perform the default action for the keystroke. The
default implementation returns -1.

Parameters

Remarks

784

nKey The ANSI code of the character the user typed.

nlndex The current position of the list-box caret.

This function is called by the framework when the list box's parent window receives a
WM_CHARTOITEM message from the list box. The WM_CHARTOITEM
message is sent by the list box when it receives a WM_CHAR message, but only if
the list box meets all of these criteria:

• Is an owner-draw list box.

CListBox::Compareltem

• Does not have the LBS_HASSTRINGS style set.

• Has at least one item.

You should never call this function yourself. Override this function to provide your
own custom handling of keyboard messages.

In your override, you must return a value to tell the framework what action you
performed. A return value of -lor - 2 indicates that you handled all aspects of
selecting the item and requires no further action by the list box. Before returning -1
or -2, you could set the selection or move the caret or both. To set the selection, use
SetCurSel or SetSel. To move the caret, use SetCaretIndex.

A return value of 0 or greater specifies the index of an item in the list box and
indicates that the list box should perform the default action for the keystroke on the
given item.

See Also CListBox:: VKeyToItem, CListBox: :SetCurSel, CListBox: :SetSel,
CListBox::SetCaretIndex, WM_ CHARTOITEM

CListBox: :CListBox

Remarks

CListBox();

You construct a CListBox object in two steps. First call the constructor CListBox,
then call Create, which initializes the Windows list box and attaches it to the
CListBox.

See Also CListBox::Create

CListBox: :Compareltem
virtual int CompareItem(LPCOMPAREITEMSTRUCT IpCompareltemStruct);

Return Value
Indicates the relative position of the two items described in the
COMPAREITEMSTRUCT structure. It may be any of the following values:

Value

-1

o

Meaning

Item 1 sorts before item 2.

Item 1 and item 2 sort the same.

Item 1 sorts after item 2.

See CWnd::OnCompareItem for a description of the COMPAREITEMSTRUCT
structure.

785

CListBox::Create

Parameters

Remarks

lpCompareltemStruet A long pointer to a COMPAREITEMSTRUCT structure.

Called by the framework to determine the relative position of a new item in a sorted
owner-draw list box. By default, this member function does nothing. If you create an
owner-draw list box with the LBS_SORT style, you must override this member
function to assist the framework in sorting new items added to the list box.

See Also WM_COMPAREITEM, CWnd::OnCompareltem,
CListBox: :DrawItem, CListBox: :MeasureItem, CListBox: :DeleteItem

CListBox: : Create
BOOL Create(DWORD dwStyle, const RECT & reet, CWnd* pParentWnd, UINT nID);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

786

dwStyle Specifies the style of the list box. Apply any combination of list-box styles
to the box. For a list of list-box styles, see "List-Box Styles" in the "Styles Used by
MFC" section.

reet Specifies the list-box size and position. Can be either a CRect object or a
RECT structure.

pParentWnd Specifies the list box's parent window (usually a CDialog object). It
must not be NULL.

nID Specifies the list box's controlID.

You construct a CListBox object in two steps. First call the constructor, then call
Create, which initializes the Windows list box and attaches it to the CListBox
object.

When Create executes, Windows sends the WM_NCCREATE, WM_CREATE,
WM_NCCALCSIZE, and WM_GETMINMAXINFO messages to the list-box
control.

These messages are handled by default by the OnNcCreate, OnCreate,
OnNcCalcSize, and OnGetMinMaxInfo member functions in the CWnd base class.
To extend the default message handling, derive a class from CListBox, add a
message map to the new class, and override the preceding message-handler member
functions. Override OnCreate, for example, to perform needed initialization for a
new class.

CListBox: :DeleteString

Apply the following window styles to a list-box control. For a list of window styles,
see "Window Styles" in the "Styles Used by MFC" section.

• WS_CHILD Always

• WS_ VISIBLE Usually

• WS_DISABLED Rarely

• WS_ VSCROLL To add a vertical scroll bar

• WS_HSCROLL To add a horizontal scroll bar

• WS_GROUP To group controls

• WS_TABSTOP To allow tabbing to this control

See Also CListBox:: CListBox

CListBox: : DeleteItem
virtual void DeleteItem(LPDELETEITEMSTRUCT IpDeleteItemStruct);

Parameters

Remarks

IpDeleteltemStruct A long pointer to a Windows DELETEITEMSTRUCT
structure that contains information about the deleted item.

Called by the framework when the user deletes an item from an owner-draw
CListBox object or destroys the list box. The default implementation of this function
does nothing. Override this function to redraw an owner-draw list box as needed.

See CWnd::OnDeleteItem for a description of the DELETEITEMSTRUCT
structure.

See Also CListBox::CompareItem, CWnd::OnDeleteItem,
CListBox: :DrawItem, CListBox: : MeasureItem, : :Deleteltem

CListBox: : DeleteString
int DeleteString(UINT nlndex);

Return Value
A count of the strings remaining in the list. The return value is LB _ERR if nlndex
specifies an index greater than the number of items in the list.

Parameters
nlndex Specifies the zero-based index of the string to be deleted.

787

CListBox: :Dir

Remarks
Deletes an item in a list box.

See Also LB_DELETESTRING, CListBox::AddString, CListBox::lnsertString

CListBox: :Dir
int Dir(UINT aftr, LPCTSTR IpszWildCard);

Return Value
The zero-based index of the last filename added to the list. The return value is
LB_ERR if an error occurs; the return value is LB_ERRSPACE if insufficient space
is available to store the new strings.

Parameters

Remarks

attr Can be any combination of the enum values described in CFile: : GetStatus, or
any combination of the following values:

Value

OxOOOO
OxOOOl
Ox0002
Ox0004
OxOOlO
Ox0020
Ox4000
Ox8000

Meaning

File can be read from or written to.

File can be read from but not written to.

File is hidden and does not appear in a directory listing.

File is a system file.

The name specified by lpszWildCard specifies a directory.

File has been archived.

Include all drives that match the name specified by lpszWildCard.

Exclusive flag. If the exclusive flag is set, only files of the specified
type are listed. Otherwise, files of the specified type are listed in
addition to "normal" files.

lpsz WildCard Points to a file-specification string. The string can contain wildcards
(for example, *. *).

Adds a list of filenames and/or drives to a list box.

See Also CWnd::DIgDirList, LB_DIR, CFile::GetStatus

CListBox: : Draw Item
virtual void DrawItem(LPDRAWITEMSTRUCT IpDrawltemStruct);

Parameters

788

IpDrawltemStruct A long pointer to a DRAWITEMSTRUCT structure that
contains information about the type of drawing required.

CListBox: :FindStringExact

Remarks
Called by the framework when a visual aspect of an owner-draw list box changes.
The itemAction and itemS tate members of the DRAWITEMSTRUCT structure
define the drawing action that is to be performed.

By default, this member function does nothing. Override this member function to
implement drawing for an owner-draw CListBox object. The application should
restore all graphics device interface (GDI) objects selected for the display context
supplied in IpDrawltemStruct before this member function terminates.

See CWnd::OnDrawItem for a description of the DRAWITEMSTRUCT structure.

See Also CListBox::CompareItem, CWnd::OnDrawItem, WM_DRAWITEM,
CListBox: :MeasureItem, CListBox: : Deleteltem

CListBox: :FindString
int FindString(int nStartAfter, LPCTSTR lpsz]tem) const;

Return Value
The zero-based index of the matching item, or LB_ERR if the search was
unsuccessful.

Parameters

Remarks

nStartAfter Contains the zero-based index of the item before the first item to be
searched. When the search reaches the bottom of the list box, it continues from the
top of the list box back to the item specified by nStartAfter. If nStartAfter is -1, the
entire list box is searched from the beginning.

lpsz]tem Points to the null-terminated string that contains the prefix to search for.
The search is case independent, so this string may contain any combination of
uppercase and lowercase letters.

Finds the first string in a list box that contains the specified prefix without changing
the list-box selection. Use the SelectString member function to both find and select a
string.

See Also CListBox: :SelectString, CListBox: :AddString, CListBox: :InsertString,
LB_FINDSTRING

CListBox: : FindS tringExact
int FindStringExact(int nlndexStart, LPCTSTR IpszFind) const;

Return Value
The index of the matching item, or LB_ERR if the search was unsuccessful.

789

CListBox: : GetAnchorlndex

Parameters

Remarks

nlndexStart Specifies the zero-based index of the item before the first item to be
searched. When the search reaches the bottom of the list box, it continues from the
top of the list box back to the item specified by nlndexStart. If nlndexStart is -1,
the entire list box is searched from the beginning.

lpszFind Points to the null-terminated string to search for. This string can contain a
complete filename, including the extension. The search is not case sensitive, so the
string can contain any combination of uppercase and lowercase letters.

An application calls the FindStringExact member function to find the first list-box
string that matches the string specified in lpszFind. If the list box was created with an
owner-draw style but without the LBS_HASSTRINGS style, the FindStringExact
member function attempts to match the doubleword value against the value of
lpszFind.

See Also CListBox::FindString, LB_FINDSTRING, LB_FINDSTRINGEXACT

CListBox: : GetAnchorIndex
int GetAnchorIndex() const;

Return Value

Remarks

The index of the current anchor item, if successful; otherwise LB_ERR.

Retrieves the zero-based index of the current anchor item in the list box. In a
multiple-selection list box, the anchor item is the first or last item in a block of
contiguous selected items.

See Also CListBox::SetAnchorlndex

CListBox: : GetCaretIndex
int GetCaretlndex() const;

Return Value

Remarks

790

The zero-based index of the item that has the focus rectangle in a list box. If the list
box is a single-selection list box, the return value is the index of the item that is
selected, if any. .

An application calls the GetCaretlndex member function to determine the index of
the item that has the focus rectangle in a multiple-selection list box. The item mayor
may not be selected.

See Also CListBox: :SetCaretlndex, LB_GETCARETINDEX

CListBox: :GetHorizontalExtent

CListBox: : GetCount
iot GetCouot() coost;

Return Value

Remarks

The number of items in the list box, or LB_ERR if an error occurs.

Retrieves the number of items in a list box.

The returned count is one greater than the index value of the last item (the index is
zero-based).

SeeAlso LB_GETCOUNT

CListBox:: GetCurSel
iot GetCurSel() coost;

Return Value

Remarks

The zero-based index of the currently selected item. It is LB_ERR if no item is
currently selected or if the list box is a multiple-selection list box.

Retrieves the zero-based index of the currently selected item, if any, in a single
selection list box.

GetCurSel should not be called for a multiple-selection list box.

See Also LB_GETCURSEL, CListBox::SetCurSel

CListBox: : GetHorizontalExtent
iot GetHorizootalExteot() coost;

Return Value

Remarks

The scrollable width of the list box, in pixels.

Retrieves from the list box the width in pixels by which it can be scrolled
horizontally. This is applicable only if the list box has a horizontal scroll bar.

See Also CListBox::SetHorizootalExteot, LB_GETHORIZONTALEXTENT

791

CListBox: :GetltemData

CListBox: : GetItemData
DWORD GetItemData(int nlndex) const;

Return Value
The 32-bit value associated with the item, or LB_ERR if an error occurs.

Parameters

Remarks

nlndex Specifies the zero-based index of the item in the list box.

Retrieves the application-supplied doubleword value associated with the specified
list-box item.

The doubleword value was the dwltemData parameter of a SetltemData call.

See Also CListBox: :AddString, CListBox: : GetItemDataPtr ,
CListBox: :SetItemDataPtr, CListBox: :InsertString, CListBox: :SetItemData,
LB_GETITEMDATA

CListBox: : GetItemDataPtr
void* GetltemDataPtr(int nlndex) const;

Return Value
Retrieves a pointer, or -1 if an error occurs.

Parameters

Remarks

nlndex Specifies the zero-based index of the item in the list box.

Retrieves the application-supplied 32-bit value associated with the specified list-box
item as a pointer (void*).

See Also CListBox: :AddString, CListBox: : GetltemData,
CListBox::lnsertString, CListBox::SetItemData, LB_GETITEMDATA

CListBox: : GetItemHeight
int GetltemHeigbt(int nlndex) const;

Return Value

792

The height, in pixels, of the items in the list box. If the list box has the
LBS_OWNERDRAWVARIABLE style, the return value is the height of the item
specified by nlndex. If an error occurs, the return value is LB_ERR.

Parameters

Remarks

nlndex Specifies the zero-based index of the item in the list box. This parameter is
used only if the list box has the LBS_OWNERDRAWVARIABLE style;
otherwise, it should be set to O.

An application calls the GetltemHeight member function to determine the height of
items in a list box.

See Also LB_GETITEMHEIGHT, CListBox::SetltemHeight

CListBox: : GetItemRect
int GetltemRect(int nlndex, LPRECT lpRect) const;

Return Value
LB_ERR if an error occurs.

Parameters

Remarks

nlndex Specifies the zero-based index of the item.

lpRect Specifies a long pointer to a RECT tructure that receives the list-box client
coordinates of the item.

Retrieves the dimensions of the rectangle that bounds a list-box item as it is currently
displayed in the list-box window.

See Also LB_GETITEMRECT

CListBox: : GetLocale
LCID GetLocale() const;

Return Value

Remarks

The locale identifier (LCID) value for the strings in the list box.

Retrieves the locale used by the list box. The locale is used, for example, to determine
the sort order of the strings in a sorted list box.

See Also CListBox::SetLocaie, ::GetStringTypeW, ::GetSystemDefauItLCID,
: : GetUserDefaultLCID

CListBox: : GetLocale

793

CListBox: :GetSel

CListBox: : GetSel
int GetSel(int nlndex) const;

Return Value
A positive number if the specified item is selected; otherwise, it is O. The return value
is LB_ERR if an error occurs.

Parameters

Remarks

nlndex Specifies the zero-based index of the item.

Retrieves the selection state of an item. This member function works with both
single- and multiple-selection list boxes.

See Also LB_GETSEL, CListBox::SetSel

CListBox: : GetSelCount
int GetSeICoont() const;

Return Value

Remarks

The count of selected items in a list box. If the list box is a single-selection list box,
the return value is LB_ERR.

Retrieves the total number of selected items in a multiple-selection list box.

See Also CListBox::SetSel, LB_GETSELCOUNT

CListBox: : GetSelltems
int GetSelItems(int nMaxltems, LPINT rglndex) const;

Return Value
The actual number of items placed in the buffer. If the list box is a single-selection
list box, the return value is LB_ERR.

Parameters

794

nMaxltems Specifies the maximum number of selected items whose item numbers
are to be placed in the buffer.

rglndex Specifies a long pointer to a buffer large enough for the number of integers
specified by nMaxltems.

CListBox: : GetTextLen

Remarks
Fills a buffer with an array of integers that specifies the item numbers of selected
items in a multiple-selection list box.

See Also LB_GETSELITEMS

CListBox: : GetText
int GetText(int nlndex, LPTSTR lpszBujfer) const;
void GetText(int nlndex, CString& rString) const;

Return Value
The length (in bytes) of the string, excluding the terminating null character. If nlndex
does not specify a valid index, the return value is LB_ERR.

Parameters

Remarks

nlndex Specifies the zero-based index of the string to be retrieved.

lpszBujfer Points to the buffer that receives the string. The buffer must have
sufficient space for the string and a terminating null character. The size of the
string can be determined ahead of time by calling the GetTextLen member
function.

rString A reference to a CString object.

Gets a string from a list box. The second form of this member function fills a
CString object with the string text.

See Also CListBox::GetTextLen, LB_GETTEXT

CListBox: : GetTextLen
int GetTextLen(int nlndex) const;

Return Value
The length of the string in bytes, excluding the terminating null character. If nlndex
does not specify a valid index, the return value is LB _ERR.

Parameters
nlndex Specifies the zero-based index of the string.

Remarks
Gets the length of a string in a list-box item.

See Also CListBox: : GetText, LB_ GETTEXTLEN

795

CListBox: : GetTopIndex

CListBox: : GetTopIndex
int GetTopIndex() const;

Return Value

Remarks

The zero-based index of the first visible item in a list box if successful, CB _ERR
otherwise.

Retrieves the zero-based index of the first visible item in a list box. Initially, item 0 is
at the top of the list box, but if the list box is scrolled, another item may be at the top.

See Also CListBox::SetTopIndex, LB_GETTOPINDEX

CListBox: : InitStorage
int InitStorage(int nltems, UINT nBytes);

Return Value
If successful, the maximum number of items that the list box can store before a
memory reallocation is needed, otherwise LB_ERRSPACE, meaning not enough
memory is available.

Parameters

Remarks

796

nltems Specifies the number of items to add.

nBytes Specifies the amount of memory, in bytes, to allocate for item strings.

Allocates memory for storing list-box items. Call this function before adding a large
number of items to a CListBox.

This function helps speed up the initialization of list boxes that have a large number
of items (more than 100). It preallocates the specified amount of memory so that
subsequent AddString, InsertString, and Dir functions take the shortest possible
time. You can use estimates for the parameters. If you overestimate, some extra
memory is allocated; if you underestimate, the normal allocation is used for items
that exceed the preallocated amount.

Windows 95 only: The nltems parameter is limited to 16-bit values. This means list
boxes cannot contain more than 32,767 items. Although the number of items is
restricted, the total size of the items in a list box is limited only by available memory.

See Also CListBox::CListBox, CListBox::Create, CListBox::ResetContent,
LB_INITSTORAGE

CListBox: : MeasureItem

CListBox: : InsertString
int InsertString(int nlndex, LPCTSTR lpszltem);

Return Value
The zero-based index of the position at which the string was inserted. The return
value is LB_ERR if an error occurs; the return value is LB_ERRSPACE if
insufficient space is available to store the new string.

Parameters

Remarks

nlndex Specifies the zero-based index of the position to insert the string. If this
parameter is -1, the string is added to the end of the list.

lpszltem Points to the null-terminated string that is to be inserted.

Inserts a string into the list box. Unlike the AddString member function,
InsertString does not cause a list with the LBS_SORT style to be sorted.

See Also CListBox::AddString, LB_INSERTSTRING

CListBox: : ItemFromPoint
UINT ltemFromPoint(CPoint pt, BOOL& bOutside) const;

Return Value
The index of the nearest item to the point specified in pt.

Parameters

Remarks

pt Point for which to find the nearest item, specified relative to the upper-left comer
of the client area of the list box.

bOutside Reference to a BOOL variable which will be set to TRUE if pt is outside
the client area of the list box, FALSE if pt is inside the client area of the list box.

Call this function to determine the list-box item nearest the point specified in pt.
You could use this function to determine which list-box item the mouse cursor
moves over.

See Also CListBox: : GetltemRect, LB_ITEMFROMPOINT

CListBox: :MeasureItem
virtual void Measureltem(LPMEASUREITEMSTRUCT lpMeasureltemStruct);

Parameters
lpMeasureltemStruct A long pointer to a MEASUREITEMSTRUCT structure.

797

CListBox: :ResetContent

Remarks
Called by the framework when a list box with an owner-draw style is created.

By default, this member function does nothing. Override this member function and
fill in the MEASUREITEMSTRUCT structure to inform Windows of the list-box
dimensions. If the list box is created with the LBS_OWNERDRAWVARIABLE
style, the framework calls this member function for each item in the list box.
Otherwise, this member is called only once.

For further information about using the LBS_OWNERDRAWFIXED style in an
owner-draw list box created with the SubclassDlgltem member function of CWnd,
see the discussion in Technical Note 14 under MFC in Books Online.

See CWnd::OnMeasureltem for a description of the MEASUREITEMSTRUCT
structure.

See Also CListBox: :Compareltem, CWnd: :OnMeasureltem,
CListBox: :Drawltem, CListBox: :Deleteltem

CListBox: : ResetContent
void ResetContent();

Remarks
Removes all items from a list box.

See Also LB_RESETCONTENT

CListBox:: SelectString
int SelectString(int nStartAfter, LPCTSTR lpszltem);

Return Value
The index of the selected item if the search was successful. If the search was
unsuccessful, the return value is LB_ERR and the current selection is not changed.

Parameters

798

nStartAfter Contains the zero-based index of the item before the first item to be
searched. When the search reaches the bottom of the list box, it continues from the
top of the list box back to the item specified by nStartAfter. If nStartAfter is -1, the
entire list box is searched from the beginning.

Ipszltem Points to the null-terminated string that contains the prefix to search for.
The search is case independent, so this string may contain any combination of
uppercase and lowercase letters.

CListBox: :SetAnchorIndex

Remarks
Searches for a list-box item that matches the specified string, and if a matching item
is found, it selects the item.

The list box is scrolled, if necessary, to bring the selected item into view.

This member function cannot be used with a list box that has the
LBS_MULTIPLESEL style. For a list of list-box styles, see "List-Box Styles" in the
"Styles Used by MFC" section.

An item is selected only if its initial characters (from the starting point) match the
characters in the string specified by lpsz]tem.

Use the FindString member function to find a string without selecting the item.

See Also CListBox::FindString, LB_SELECTSTRING

CListBox:: SelItemRange
int SelItemRange(BOOL bSelect, int nFirstltem, int nLastItem);

Return Value
LB_ERR if an error occurs.

Parameters

Remarks

bSelect Specifies how to set the selection. If bSelect is TRUE, the string is selected
and highlighted; if FALSE, the highlight is removed and the string is no longer
selected.

nFirstItem Specifies the zero-based index of the first item to set.

nLastItem Specifies the zero-based index of the last item to set.

Selects multiple consecutive items in a multiple-selection list box.

Use this member function only with multiple-selection list boxes. If you need to select
only one item in a multiple-selection list box-that is, if nFirstlem is equal to
nLastItem-call the SetSel member function instead.

See Also LB_SELITEMRANGE, CListBox::GetSelItems

CListBox:: SetAnchorIndex
void SetAnchorIndex(int nlndex);

Parameters
nlndex Specifies the zero-based index of the list-box item that will be the anchor.

799

CListBox: :SetCaretIndex

Remarks
Sets the anchor in a multiple-selection list box to begin an extended selection. In a
multiple-selection list box, the anchor item is the first or last item in a block of
contiguous selected items.

See Also CListBox::GetAnchorIndex

CListBox:: SetCaretIndex
int SetCaretIndex(int nlndex, BOOL bScroll = TRUE);

Return Value
LB _ERR if an error occurs.

Parameters

Remarks

nlndex Specifies the zero-based index of the item to receive the focus rectangle in
the list box.

bScroli If this value is 0, the item is scrolled until it is fully visible. If this value is
not 0, the item is scrolled until it is at least partially visible.

An application calls the SetCaretIndex member function to set the focus rectangle to
the item at the specified index in a multiple-selection list box. If the item is not
visible, it is scrolled into view.

See Also CListBox::GetCaretIndex, LB_SETCARETINDEX

CListBox:: SetColumn Width
void SetColumnWidth(int cxWidth);

Parameters

Remarks

cxWidth Specifies the width in pixels of all columns.

Sets the width in pixels of all columns in a multicolumn list box (created with the
LBS_MULTICOLUMN style). For more information on list-box styles, see "List
Box Styles" in the "Styles Used by MFC" section.

See Also LB_SETCOLUMNWIDTH

CListBox: : SetCurSel
int SetCurSel(int nSelect);

Return Value
LB_ERR if an error occurs.

800

CListBox: :SetltemData

Parameters

Remarks

nSelect Specifies the zero-based index of the string to be selected. If nSelect is -1,
the list box is set to have no selection.

Selects a string and scrolls it into view, if necessary. When the new string is selected,
the list box removes the highlight from the previously selected string.

Use this member function only with single-selection list boxes. It cannot be used to
set or remove a selection in a multiple-selection list box.

See Also LB_SETCURSEL, CListBox: : GetCurSel

CListBox:: SetHorizontalExtent
void SetHorizontalExtent(int cxExtent);

Parameters

Remarks

cxExtent Specifies the number of pixels by which the list box can be scrolled
horizontally.

Sets the width, in pixels, by which a list box can be scrolled horizontally. If the size
of the list box is smaller than this value, the horizontal scroll bar will horizontally
scroll items in the list box. If the list box is as large or larger than this value, the
horizontal scroll bar is hidden.

To respond to a call to SetHorizontalExtent, the list box must have been defined
with the WS_HSCROLL style. For a list of window styles, see "Window Styles" in
the "Styles Used by MFC" section.

This member function is not useful for multicolumn list boxes. For multicolumn list
boxes, call the SetColumn Width member function.

See Also CListBox: : GetHorizontalExtent, CListBox: :SetColumn Width,
LB_SETHORIZONTALEXTENT

CListBox: : SetItemData
int SetItemData(int nlndex, DWORD dwltemData);

Return Value
LB_ERR if an error occurs.

Parameters
nlndex Specifies the zero-based index of the item.

dwltemData Specifies the value to be associated with the item.

801

CListBox: :SetItemDataPtr

Remarks
Sets a 32-bit value associated with the specified item in a list box.

See Also CListBox::SetltemDataPtr, CListBox::GetltemData,
LB_SETITEMDATA

CListBox: : SetItemDataPtr
int SetItemDataPtr(int nlndex, void* pData);

Return Value
LB_ERR if an error occurs.

Parameters

Remarks

nlndex Specifies the zero-based index of the item.

pData Specifies the pointer to be associated with the item.

Sets the 32-bit value associated with the specified item in a list box to be the specified
pointer (void*). This pointer remains valid for the life of the list box, even though the
item's relative position within the list box might change as items are added or
removed. Hence, the item's index within the box can change, but the pointer remains
reliable.

See Also CListBox: :SetItemData, CListBox: : GetItemData,
CListBox::GetltemDataPtr, LB_SETITEMDATA

CListBox:: SetItemHeight
int SetltemHeight(int nlndex, UINT cyltemHeight);

Return Value
LB_ERR if the index or height is invalid.

Parameters

Remarks

802

nlndex Specifies the zero-based index of the item in the list box. This parameter is
used only if the list box has the LBS_OWNERDRAWVARIABLE style;
otherwise, it should be set to O.

cyltemHeight Specifies the height, in pixels, of the item.

An application calls the SetltemHeight member function to set the height of items in
a list box. If the list box has the LBS_OWNERDRAWVARIABLE style, this
function sets the height of the item specified by nlndex. Otherwise, this function sets
the height of all items in the list box.

See Also CListBox::GetltemHeight, LB_SETITEMHEIGHT

CListBox::SetTabStops

CListBox:: SetLocale
LCID SetLocale(LCID nNewLocale);

Return Value
The previous locale identifier (LCID) value for this list box.

Parameters

Remarks

nNewLocale The new locale identifier (LCID) value to set for the list box.

Sets the locale identifier for this list box. If SetLocale is not called, the default locale
is obtained from the system. This system default locale can be modified by using
Control Panel's Regional (or International) application.

See Also CListBox::GetLocale

CListBox::SetSel
int SetSel(int nlndex, BOOL bSelect = TRUE);

Return Value
LB_ERR if an error occurs.

Parameters

Remarks

nlndex Contains the zero-based index of the string to be set. If -1, the selection is
added to or removed from all strings, depending on the value of bSelect.

bSelect Specifies how to set the selection. If bSelect is TRUE, the string is selected
and highlighted; if FALSE, the highlight is removed and the string is no longer
selected. The specified string is selected and highlighted by default.

Selects a string in a multiple-selection list box.

Use this member function only with multiple-selection list boxes.

See Also CListBox: :GetSel, LB_SETSEL

CListBox: : SetTabStops
void SetTabStops();
BOOL SetTabStops(const int& cxEachStop);
BOOL SetTabStops(int nTabStops, LPINT rgTabStops);

Return Value
Nonzero if all the tabs were set; otherwise O.

803

CListBox: :SetTopIndex

Parameters

Remarks

cxEachStop Tab stops are set at every cxEachStop dialog units. See rgTabStops for
a description of a dialog unit.

nTabStops Specifies the number of tab stops to have in the list box.

rgTabStops Points to the first member of an array of integers containing the tab-stop
positions in dialog units. A dialog unit is a horizontal or vertical distance. One
horizontal dialog unit is equal to one-fourth of the current dialog base width unit,
and one vertical dialog unit is equal to one-eighth of the current dialog base height
unit. The dialog base units are computed based on the height and width of the
current system font. The GetDialogBaseUnits Windows function returns the
current dialog base units in pixels. The tab stops must be sorted in increasing
order; back tabs are not allowed.

Sets the tab-stop positions in a list box.

To set tab stops to the default size of 2 dialog units, call the parameterless version of
this member function. To set tab stops to a size other than 2, call the version with the
cxEachStop argument.

To set tab stops to an array of sizes, use the version with the rgTabStops and
nTabStops arguments. A tab stop will be set for each value in rgTabStops, up to the
number specified by nTabStops.

To respond to a call to the SetTabStops member function, the list box must have been
created with the LBS_USETABSTOPS style.

See Also LB_SETTABSTOPS, ::GetDialogBaseUnits

CListBox: : SetTopIndex
int SetTopIndex(int nlndex);

Return Value
Zero if successful, or LB_ERR if an error occurs.

Parameters

Remarks

804

nlndex Specifies the zero-based index of the list-box item.

Ensures that a particular list-box item is visible.

The system scrolls the list box until either the item specified by nlndex appears at the
top of the list box or the maximum scroll range has been reached.

See Also CListBox::GetTopIndex, LB_SETTOPINDEX

CListBox:: VKeyToltem

CListBox:: V KeyToItem
virtual int VKeyToItem(UINT nKey, UINT nlndex);

Return Value
Returns -2 for no further action, -1 for default action, or a nonnegative number to
specify an index of a list box item on which to perform the default action for the
keystroke.

Parameters

Remarks

nKey The virtual-key code of the key the user pressed.

nlndex The current position of the list-box caret.

This function is called by the framework when the list box's parent window receives a
WM_ VKEYTOITEM message from the list box. The WM_ VKEYTOITEM
message is sent by the list box when it receives a WM_KEYDOWN message, but
only if the list box meets both of the following:

• Has the LBS_ WANTKEYBOARDINPUT style set.

• Has at least one item.

You should never call this function yourself. Override this function to provide your
own custom handling of keyboard messages.

You must return a value to tell the framework what action your override performed. A
return value of - 2 indicates that the application handled all aspects of selecting the
item and requires no further action by the list box. Before returning - 2, you could set
the selection or move the caret or both. To set the selection, use SetCurSel or SetSel.
To move the caret, use SetCaretIndex.

A return value of -1 indicates that the list box should perform the default action in
response to the keystroke. The default implementation returns -1.

A return value of 0 or greater specifies the index of an item in the list box and
indicates that the list box should perform the default action for the keystroke on the
given item.

See Also CListBox: :CharToItem, CListBox: :SetCurSel, CListBox: :SetSel,
CListBox: :SetCaretIndex

805

CListCtrl

CListCtrl

Views

806

The CListCtrl class encapsulates the functionality of a "list view control," which
displays a collection of items each consisting of an icon and a label. List views
provide several ways of arranging items and displaying individual items. For
example, additional information about each item can be displayed in colums to the
right of the icon and label.

The CListCtrl class provides the functionality of the Windows common list view
control. This control (and therefore the CListCtri class) is available only to programs
running under Windows 95, Windows NT version 3.51 and later, and Win32s®
version 1.3.

List view controls can display their contents in four different ways, called "views."
The current view is specified by the control's window style. Additional window styles
specify the alignment of items and control-specific aspects of the list view control's
functionality. Information about the four views follows.

View

Icon view

Small icon view

List view

Report view

Description

Specified by the LVS_ICON window style.

Each item appears as a full-sized icon with a label below it. The user
can drag the items to any location in the list view window.

Specified by the LVS_SMALLICON window style.

Each item appears as a small icon with the label to the right of it.
The user can drag the items to any location.

Specified by the LVS_LIST window style.

Each item appears as a small icon with a label to the right of it.
Items are arranged in columns and cannot be dragged to any arbitrary
location by the user.

Specified by the LVS_REPORT window style.

Each item appears on its own line with information arranged in
columns. The leftmost column contains the small icon and label, and
subsequent columns contain subitems as specified by the application.
Unless the L VS_NOCOLUMNHEADER window style is also
specified, each column has a header.

To change the view and alignment style after creating the control, use the Windows
functions GetWindowLong and SetWindowLong.

You can control the way items are arranged in icon or small icon view by specifying a
window style of LVS_ALIGNTOP (the default style) or LVS_ALIGNLEFT. You
can change the alignment after a list view control is created. To isolate the window
styles that specify the alignment of items, use the LVS_ALIGNMASK value.

Additional window styles control other options-for example, whether a user can
edit labels in place, whether more than one item can be selected at a time, and so on.

Image Lists
The icons for list view items are contained in image lists, which you create and
assign to the list view control. One image list contains the full-sized icons used in
icon view, and a separate image list contains smaller versions of the same icons for
use in other views. You can also specify a third image list that contains state images,
which are displayed next to an item's icon to indicate an application-defined state.

You assign an image list to a list view control by using the CListCtrl::SetImageList
function, specifying whether the image list contains large icons, small icons, or state
images. You can retrieve the handle of an image list currently assigned to a list view
control by using the CListCtrl: : GetImageList function.

The large and small icon image lists typically contain icons for each type of list view
item. You need not create both of these image lists if only one is used-for example,
if a list view control is never in icon view. If you create both image lists, they must
contain the same images in the same order because a single value is used to identify a
list view item's icon in both image lists.

The large and small icon image lists can also contain overlay images, which are
designed to be superimposed on item icons. A nonzero value in bits 8 through 11 of a
list view item's state specifies the one-based index of an overlay image (zero indicates
no overlay image). Because a 4-bit, one-based index is used, overlay images must be
among the first 15 images in the image lists.

If a state image list is specified, a list view control reserves space to the left of each
item's icon for a state image. An application can use state images, such as checked
and cleared check boxes, to indicate application-defined item states. A nonzero value
in bits 12 through 15 specifies the one-based index of a state image (zero indicates no
state image). State images are typically not used in icon view.

By default, a list view control destroys the image lists assigned to it when it is
destroyed. If a list view control has the LVS_SHAREIMAGELISTS window style,
however, the application is responsible for destroying the image lists when they are
no longer in use. You should specify this style if you assign the same image lists to
multiple list view controls; otherwise, more than one control might try to destroy the
same image list.

CListCtrl

807

CListCtrl

Items and Subitems
Each item in a list view control consists of an icon, a label, a current state, and an
application-defined value. One or more subitems can also be associated with each
item. A "subitem" is a string that, in report view, can be displayed in a column to the
right of an item's icon and label. All items in a list view control have the same
number of subitems. By using list view messages, you can add, modify, retrieve
information about, and delete items. You can also find items with specific attributes.

The LV_ITEM structure defines a list view item or subitem. The iItem member is
the zero-based index of the item. The iSubltem member is the one-based index of
a subitem, or zero if the structure contains information about an item. Additional
members specify the item's text, icon, state, and item data. "Item data" is an
application-defined value associated with a list view item. For more information
about the LV_ITEM structure, see CListCtrl::GetItem.

Callback Items

808

A "callback item" is a list view item for which the application - rather than the
control-stores the text, icon, or both. Although a list view control can store these
attributes for you, you may want to use callback items if your application already
maintains some of this information. The callback mask specifies which item state bits
are maintained by the application, and it applies to the whole control rather than to a
specific item. The callback mask is zero by default, meaning that the control tracks
all item states. If an application uses callback items or specifies a nonzero callback
mask, it must be able to supply list view item attributes on demand.

You can define a callback item by specifying appropriate values for the pszText
and iImage members of the LV_ITEM structure (see CListCtrl::Getltem).
If the application maintains the item's or subitem's text, specify the
LPSTR_TEXTCALLBACK value for the pszText member. If the application
keeps track of the icon for the item, specify the I_IMAGECALLBACK value
for the iImage member.

#include <afxcmn.h>

See Also CImageList

Construction

ListCtrl

Create

Attributes

GetBkColor

SetBkColor

GetImageList

SetlmageList

Constructs a CListCtrl object.

Creates a list control and attaches it to a CListCtrl object.

Retrieves the background color of a list view control.

Sets the background color of the list view control.

Retrieves the handle of an image list used for drawing list
view items.

Assigns an image list to a list view control.

GetItemCount

GetItem

GetItemData

SetItem

SetItemData

GetCallbackMask

SetCallbackMask

GetNextItem

GetItemRect

SetltemPosition

GetItemPosition

GetStringWidth

GetEditControl

GetColumn

SetColumn

GetColumn Width

SetColumn Width

GetViewRect

GetTextColor

SetTextColor

GetTextBkColor

SetTextBkColor

GetToplndex

GetCountPerPage

GetOrigin

SetltemState

GetItemState

GetItemText

SetltemText

SetItemCount

GetSelectedCount

Retrieves the number of items in a list view control.

Retrieves a list view item's attributes.

Retrieves the application-specific value associated with
an item.

Sets some or all of a list view item's attributes.

Sets the item's application-specific value.

Retrieves the callback mask for a list view control.

Sets the callback mask for a list view control.

Searches for a list view item with specified properties and
with specified relationship to a given item.

Retrieves the bounding rectangle for an item.

Moves an item to a specified position in a list view control.

Retrieves the position of a list view item.

Determines the minimum column width necessary to display
all of a given string.

Retrieves the handle of the edit control used to edit an
item's text.

Retrieves the attributes of a control's column.

Sets the attributes of a list view column.

Retrieves the width of a column in report view or list view.

Changes the width of a column in report view or list view.

Retrieves the bounding rectangle of all items in the list view
control.

Retrieves the text color of a list view control.

Sets the text color of a list view control.

Retrieves the text background color of a list view control.

Sets the background color of text in a list view control.

Retrieves the index of the topmost visible item.

Calculates the number of items that can fit vertically in a list
view control.

Retrieves the current view origin for a list view control.

Changes the state of an item in a list view control.

Retrieves the state of a list view item.

Retrieves the text of a list view item or subitem.

Changes the text of a list view item or subitem.

Prepares a list view control for adding a large number of
items.

Retrieves the number of selected items in the list view
control.

CListCtrl

809

CListCtrl: : Arrange

Operations

Insertltem

Deleteltem

DeleteAlIltems

Findltem

Sortltems

HitTest

Ensure Visible

Scroll

Redrawltems

Update

Arrange

EditLabel

InsertColumn

DeleteColumn

CreateDraglmage

Overridables

Drawltem

Inserts a new item in a list view control.

Deletes an item from the control.

Deletes all items from the control.

Searches for a list view item having specified characteristics.

Sorts list view items using an application-defined
comparison function.

Determines which list view item is at a specified position.

Ensures that an item is visible.

Scrolls the content of a list view control.

Forces a list view control to repaint a range of items.

Forces the control to repaint a specified item.

Aligns items on a grid.

Begins in-place editing of an item's text.

Inserts a new column in a list view control.

Deletes a column from the list view control.

Creates a drag image list for a specified item.

Called when a visual aspect of an owner-draw control
changes.

Member Functions
CListCtrl: : Arrange

BOOL Arrange(UINT nCode);

Return Value
Nonzero if successful; otherwise zero.

Parameters

810

nCode Specifies the alignment style for the items. It can be one of the following
values:

• LVA_ALIGNLEFT Aligns items along the left edge of the window .

• LVA_ALIGNTOP Aligns items along the top edge of the window.

CListCtrl::Create

Remarks

• LV A_DEFAULT Aligns items according to the list view's current alignment
styles (the default value).

• LVA_SNAPTOGRID Snaps all icons to the nearest grid position.

The alignment code can be combined with an optional sort flag:

• LVA_SORTASCENDING Sorts items in ascending order.

• LVA_SORTDESCENDING Sorts items in descending order.

Call this function to reposition items in an icon view so that they align on a grid. The
nCode parameter specifies the alignment style and an optional sort order. If no sort
flag is included with nCode, this function does not change the items' indexes.

See Also CListCtrl: : Ensure Visible

~~ist~trl::~~ist~trl

Remarks

CListCtrl();

Constructs a CListCtrl object.

See Also CListCtrl::Create

~~ist~trl: :~reate
BOOL Create(DWORD dwStyle, const RECT & reet, CWnd* pParentWnd, UINT nID);

Return Value
Nonzero if successful; otherwise zero.

Parameters

Remarks

dwStyle Specifies the list control's style. Apply any combination of list control styles
to the control. See the "Remarks" section for a list of possible styles.

reet Specifies the list control's size and position. It can be either a CRect object or a
RECT structure.

pParentWnd Specifies the list control's parent window, usually a CDialog. It must
not be NULL.

nID Specifies the list control's ID.

You construct a CListCtrl in two steps. First call the constructor, then call Create,
which creates the list view control and attaches it to the CListCtrl object.

811

CListCtrl: : Create

812

The dwStyle parameter can be a combination of the following values:

• LVS_ALIGNLEFT Specifies that items are left-aligned in icon and small
icon view.

• LVS_ALIGNTOP Specifies that items are aligned with the top of the control in
icon and small icon view.

• LVS_AUTOARRANGE Specifies that icons are automatically kept arranged in
icon view and small icon view.

• LVS_BUTTON Specifies that item icons look like buttons in large icon view.

• LVS_EDITLABELS Allows item text to be edited in place. The parent window
must process the LVN_ENDLABELEDIT notification message.

• LVS_ICON Specifies icon view.

• LVS_LIST Specifies list view.

• LVS_NOCOLUMNHEADER Specifies that a column header is not displayed
in report view. By default, columns have headers in report view.

• LVS_NOITEMDATA Allocates only enough space to store the state of each
item, not the label, icon, subitem strings, or application-defined data. The parent
window must process the LVN_GETDISPINFO notification message to provide
this information to the list view control on demand.

• LVS_NOLABELWRAP Displays item text on a single line in icon view. By
default, item text can wrap in icon view.

• LVS_NOSCROLL Disables scrolling. All items must be within the client area.

• LVS_NOSORTHEADER Specifies that column headers do not work like
buttons. This style is useful if clicking a column header in report view does not
carry out an action, such as sorting.

• LVS_OWNERDRAWFIXED Enables the owner window to paint items in
report view. The list view control sends a WM_DRAWITEM message to paint
each item; it does not send separate messages for each subitem. The itemData
member of the DRAWITEMSTRUCT structure contains the item data for the
specified list
view item.

• LVS_REPORT Specifies report view.

• LVS_SHAREIMAGELISTS Specifies that the control does not take ownership
of the image lists assigned to it (that is, it does not destroy the image lists when it
is destroyed). This style enables the same image lists to be used with multiple list
view controls.

• LVS_SINGLESEL Allows only one item at a time to be selected. By default,
multiple items can be selected.

• LVS_SMALLICON Specifies small icon view.

CListCtrl: :DeleteColumn

• LVS_SORTASCENDING Sorts items based on item text in ascending order.

• LVS_SORTDESCENDING Sorts items based on item text in descending order.

See Also CListCtrl::CListCtrl

CListCtrl: :CreateDragImage
CImagelist* CreateDragImage(int nltem, LPPOINT IpPoint);

Return Value
A pointer to the drag image list if successful; otherwise NULL.

Parameters

Remarks

nltem Index of the item whose drag image list is to be created.

IpPoint Address of a POINT structure that receives the initial location of the upper
left corner of the image, in view coordinates.

Call this function to create a drag image list for the item specified by nltem.

See Also CImageList, CListCtrl::GetImageList, CListCtrl::SetImageList

CListCtrl: : DeleteAllItems
BOOL DeleteAllltems();

Return Value

Remarks

Nonzero if successful; otherwise zero.

Call this function to delete all items from the list view control.

See Also CListCtrl: :InsertItem, CListCtrl: : Deleteltem

CListCtrl: : DeleteColumn
BOOL DeleteColumn(int nCol);

Return Value
Nonzero if successful; otherwise zero.

Parameters
nCol Index of the column to be deleted.

813

CListCtrl: : DeleteItem

Remarks
Call this function to delete a column from the list view control.

See Also CListCtrl: : InsertColumn, CListCtrl: :DeleteAIlItems

CListCtrl: : DeleteItem
BOOL DeleteItem(int nltem);

Return Value
Nonzero if successful; otherwise zero.

Parameters

Remarks

nltem Specifies the index of the item to be deleted.

Call this function to delete an item from a list view control.

See Also CListCtrl: : Insertltem, CListCtrl: :DeleteAIlItems

CListCtrl: : Draw Item
virtual void Drawltem(LPDRAWITEMSTRUCT lpDrawltemStruct);

Parameters

Remarks

814

lpDrawltemStruct A long pointer to a DRAWITEMSTRUCT structure that
contains information about the type of drawing required.

Called by the framework when a visual aspect of an owner-draw list view control
changes. The itemAction member of the DRAWITEMSTRUCT structure defines
the drawing action that is to be performed.

By default, this member function does nothing. Override this member function to
implement drawing for an owner-draw CListViewCtrl object.

The application should restore all graphics device interface (GDI) objects selected for
the display context supplied in lpDrawltemStruct before this member function
terminates.

See Also CWnd::OnDrawItem

CListCtrl: :EditLabel
CEdit* EditLabel(int nltem);

Return Value
If successful, a pointer to the CEdit object that is used to edit the item text;
otherwise NULL.

Parameters

Remarks

nltem Index of the list view item that is to be edited.

A list view control that has the LVS_EDITLABELS window style enables a user to
edit item labels in place. The user begins editing by clicking the label of an item that
has the focus.

Use this function to begin in-place editing of the specified list view item's text.

See Also CListCtrl::GetEditControl

CListCtrl: : Ensure Visible
BOOL EnsureVisible(int nltem, BOOL bPartialOK);

Return Value
Nonzero if successful; otherwise zero.

Parameters

Remarks

nltem Index of the list view item that is to be visible.

bPartialOK Specifies whether partial visibility is acceptable.

Call this function to ensure that a list view item is at least partially visible. The list
view control is scrolled if necessary. If the bPartialOK parameter is nonzero, no
scrolling occurs if the item is partially visible.

See Also CListCtrl: : Scroll

CListCtrl: : FindItem
int FindItem(LV _FINDINFO* pFindlnfo, int nStart = -1) const;

Return Value
The index of the item if successful or -1 otherwise.

Parameters
pFindlnfo A pointer to a LV _FINDINFO structure containing information about

the item to be searched for.

CListCtrl: :Findltem

815

CListCtrl: : GetBkColor

Remarks

nStart Index of the item to begin the search with, or -1 to start from the beginning.
The item at nStart is excluded from the search if nStart is not equal to -1.

Use this function to search for a list view item having specified characteristics.

The pFindlnfo parameter points to an LV _FINDINFO structure, which contains
information used to search for a list view item:

typedef struct _LV_FINDINFO {
UINT flags; //see below
LPCSTR psz; //see below
LPARAM lParam; //see below

} LV_FINDINFO;

The members are as follows:

flags Type of search to perform. It can be one or more of these values:

• LVFI_PARAM Searches based on the IParam member. The IParam member
of the matching item's LV_ITEM structure must match the IParam member of
this structure. (For information on the LV _ITEM structure, see
CListCtrl::GetItem.) If this value is specified, all other values are ignored.

• LVFI_PARTIAL Matches if the item text begins with the string pointed to by
the psz member. This value implies use of the LVFI_STRING value.

• LVFI_STRING Searches based on item text. Unless additional values are
specified, the item text of the matching item must exactly match the string
pointed to by the psz member.

• LVFI_ WRAP Continues the search at the beginning if no match is found.

• LVFI_NEARESTXY Finds the item nearest the specified position in the
specified direction.

psz Address of a null-terminated string to compare with item text if the flags
member specifies the LVFI_STRING or LVFI_PARTIAL value.

IParam Value to compare with the IParam member of a list view item's LV_ITEM
structure if the flags member specifies the LVFI_PARAM value.

See Also CListCtrl::SortItems

CListCtrl: : GetBkColor
COLORREF GetBkColor() const;

Return Value
A 32-bit value used to specify an RGB color.

816

CListCtrl: : GetColumn

Remarks
Retrieves the background color of a list view control.

See Also CListCtrl: :SetBkColor

In the Win32 Programmer's Reference: COLORREF

CListCtrl: : GetCallbackMask
UINT GetCallbackMask() const;

Return Value

Remarks

The list view control's callback mask.

Retrieves the callback mask for a list view control.

A "callback item" is a list view item for which the application-rather than the
control-stores the text, icon, or both. Although a list view control can store these
attributes for you, you may want to use callback items if your application already
maintains some of this information. The callback mask specifies which item state bits
are maintained by the application, and it applies to the whole control rather than to a
specific item. The callback mask is zero by default, meaning that the control tracks
all item states. If an application uses callback items or specifies a nonzero callback
mask, it must be able to supply list view item attributes on demand.

See Also CListCtrl: :SetCallbackMask

CListCtrl:: GetColumn
BOOL GetColumn(int nCol, LV _COLUMN* pColumn) const;

Return Value
Nonzero if successful; otherwise zero.

Parameters

Remarks

nCol Index of the column whose attributes are to be retrieved.

pColumn Address of an LV_COLUMN structure that specifies the information
to retrieve and receives information about the column. The mask member
specifies which column attributes to retrieve. If the mask member specifies the
LVCF _TEXT value, the pszText member must contain the address of the buffer
that receives the item text and the cchTextMax member must specify the size of
the buffer.

Retrieves the attributes of a list view control's column.

817

CListCtrl: : GetColumn Width

The LV _COLUMN structure contains information about a column in report view:

typedef struct _LV_COLUMN {
UINT mask; II see below
int fmt; II see below
int cx; II width of the column, in pixels
LPSTR pszText; I I see below
int cchTextMax; II see below
int iSubltem; II index of subitem associated with column

LV_COLUMN;

The members are as follows:

mask Variable specifying which members contain valid information. It can be zero
or one or more of these values (combine values with the bitwise-OR operator):

• LVCF_FMT The rmt member is valid.

• LVCF _SUBITEM The iSubItem member is valid.

• LVCF _TEXT The pszText member is valid.

• LVCF _WIDTH The ex member is valid.

rmt Alignment of the column. It can be one of these values: LVCFMT_LEFT,
LVCFMT_RIGHT, or LVCFMT_CENTER.

pszText Address of a null-terminated string containing the column heading if the
structure contains information about a column. If the structure is receiving
information about a column, this member specifies the address of the buffer that
receives the column heading.

cchTextMax Size of the buffer pointed to by the pszText member. If the structure is
not receiving information about a column, this member is ignored.

See Also CListCtrl: :SetColumn, CListCtrl: : GetColumn Width

CListCtrl: : GetColumn Width
int GetColumnWidth(int nCol) const;

Return Value
The width, in pixels, of the column specified by nCol.

Parameters
nCol Specifies the index of the column whose width is to be retrieved.

Remarks
Retrieves the width of a column in report view or list view.

See Also CListCtrl: :SetColumn Width, CListCtrl: : GetColumn

818

CListCtrl: : GetlmageList

CListCtrl:: GetCountPerPage
int GetCountPerPage() const;

Return Value

Remarks

The number of items that can fit vertically in the visible area of a list view control
when in list view or report view.

Calculates the number of items that can fit vertically in the visible area of a list view
control when in list view or report view.

See Also CListCtrl: : GetToplndex

CListCtrl:: GetEditControl
CEdit* GetEditControl() const;

Return Value

Remarks

If successful, a pointer to the CEdit object that is used to edit the item text;
otherwise NULL.

Retrieves the handle of the edit control used to edit a list view item's text.

See Also CListCtrl: :EditLabel

CListCtrl: : GetImageList
CImageList* GetImageList(int nlmageList) const;

Return Value
A pointer to the image list used for drawing list view items.

Parameters

Remarks

nlmageList Value specifying which image list to retrieve. It can be one of these
values:

• LVSIL_NORMAL Image list with large icons.

• LVSIL_SMALL Image list with small icons.

• LVSIL_STATE Image list with state images.

Retrieves the handle of an image list used for drawing list view items.

See Also CImageList, CListCtrl: :SetImageList

819

CListCtrl: : Getltem

CListCtrl: : GetItem
B~OL GetItem(LV _ITEM* pltem) const;

Return Value
Nonzero if successful; otherwise zero.

Parameters

Remarks

820

pltem Pointer to an LV _ITEM structure that receives the item's attributes.

Retrieves some or all of a list view item's attributes.

The LV_ITEM structure specifies or receives the attributes of a list view item:

typedef struct _ LV_ITEM {

UINT mask; II see below
int i Item; II see below
int i Sub Item; II see below
UINT state; II see below
UINT stateMask; II see below
LPSTR pszText; II see below
int cchTextMax; II see below
int iImage; II see below \
LPARAM 1 Param; II 32-bit value to a\sociate with item \

} LV_ITEM;

Members are as follows:

mask Variable specifying which members contain valid data or which members are
to be filled in. It can be one or more of these values:

• LVIF _TEXT The pszText member is valid.

• LVIF _IMAGE The iImage member is valid

• LVIF _PARAM The IParam member is valid.

• LVIF _STATE The state member is valid.

item Index of the item this structure refers to.

iSubItem A "subitem" is a string that, in report view, can be displayed in a column
to the right of an item's icon and label. All items in a list view have the same
number of subitems. This member is the one-based index of a subitem, or zero if
the structure contains information about an item.

state and stateMask Current state of the item, and the valid states of the item.
These members can be any valid combination of the following state flags:

• LVIS_CUT The item is marked for a cut and paste operation.

• LVIS_DROPHILITED The item is highlighted as a drag and drop target.

CListCtrl: : GetltemData

• LVIS_FOCUSED The item has the focus, so it is surrounded by a standard
focus rectangle. Although more than one item may be selected, only one item
can have the focus .

• LVIS_SELECTED The item is selected. The appearance of a selected item
depends on whether it has the focus and on the system colors used for selection.

pszText Address of a null-terminated string containing the item text if the structure
specifies item attributes. If this member is the LPSTR_TEXTCALLBACK value,
the item is a callback item. If the structure is receiving item attributes, this
member is the address of the buffer that receives the item text.

cchTextMax Size of the buffer pointed to by the pszText member if the structure is
receiving item attributes. If the structure specifies item attributes, this member is
ignored.

iImage Index of the list view item's icon in the large icon and small icon image
lists. If this member is the I_IMAGECALLBACK value, the item is a callback
item.

See Also CListCtrl: :SetItem

CListCtrl: : GetItemCount
int GetltemCount();

Return Value
The number of items in the list view control.

Remarks
Retrieves the number of items in a list view control.

See Also CListCtrl: :SetltemCount, CListCtrl: : GetSelectedCount

CListCtrl: : GetItemData
DWORD GetItemData(int nltem) const;

Return Value
A 32-bit application-specific value associated with the specified item.

Parameters
nltem Index of the list item whose data is to be retrieved.

821

CListCtrl: : GetltemPosition

Remarks
This function retrieves the 32-bit application-specific value associated with the item
specified by nltem. This value is the IParam member of the LV_ITEM structure; for
more information on this structure, see GetItem.

See Also CListCtrl: :SetltemData

CListCtrl: : GetItemPosition
BOOL GetItemPosition(int nltem, LPPOINT lpPoint) const;

Return Value
Nonzero if successful; otherwise zero.

Parameters

Remarks

nltem The index of the item whose position is to be retrieved.

lpPoint Address of a POINT structure that receives the position of the item's upper
left comer, in view coordinates.

Retrieves the position of a list view item.

See Also CListCtrl: :SetltemPosition, CListCtrl: : GetOrigin

CListCtrl: : GetItemRect
BOOL GetltemRect(int nltem, LPRECT lpRect, UINT nCode) const;

Return Value
Nonzero if successful; otherwise zero.

Parameters

822

nltem The index of the item whose position is to be retrieved.

lpRect Address of a RECT structure that receives the bounding rectangle.

nCode Portion of the list view item for which to retrieve the bounding rectangle. It
can be one of these values:

• LVIR_BOUNDS Returns the bounding rectangle of the entire item, including
the icon and label.

• LVIR_ICON Returns the bounding rectangle of the icon or small icon.

• LVIR_LABEL Returns the bounding rectangle of the item text.

Remarks
Retrieves the bounding rectangle for all or part of an item in the current view.

See Also CListCtrl::GetItemPosition, CListCtrl::SetItemPosition,
CListCtrl: : GetOrigin

CListCtrl: : GetItemState
UINT GetItemState(int nltem, UINT nMask) const;

Return Value
The state flags for the specified list view item.

Parameters

Remarks

nltem The index of the item whose position is to be retrieved.

nMask Mask specifying which of the item's state flags to return.

Retrieves the state of a list view item.

An item's state is specified by the state member of the LV_ITEM structure. When
you specify or change an item's state, the stateMask member specifies which state
bits you want to change. For more information on the LV_ITEM structure, see
CListCtrl: : GetItem.

See Also CListCtrl: :SetItemState, CListCtrl: : GetItem

CListCtrl: : GetItemText
int GetItemText(int nltem, int nSubltem, LPTSTR /pszText, int nLen) const;
CString GetItemText(int nltem, int nSubltem) const;

Return Value
The version returning int returns the length of the retrieved string.

The version returning a CString returns the item text.

Parameters
nltem The index of the item whose text is to be retrieved.

nSubltem Specifies the subitem whose text is to be retrieved.

/pszText Pointer to a string that is to receive the item text.

nLen Length of the buffer pointed to by /pszText.

CListCtrl::GetItemText

823

CListCtrl: :GetNextltem

Remarks
Retrieves the text of a list view item or subitem. If nSubltem is zero, this function
retrieves the item label; if nSubltem is nonzero, it retrieves the text of the subitem.
For more information on the subitem argument, see the discussion of the LV_ITEM
structure in CListCtrl: : GetItem.

See Also CListCtrl::Getltem

CListCtrl: : GetN extItem
int GetNextltem(int nltem, int nFlags) const;

Return Value
The index of the next item if successful, or -1 otherwise.

Parameters

Remarks

824

nltem Index of the item to begin the searching with, or -1 to find the first item that
matches the specified flags. The specified item itself is excluded from the search.

nFlags Geometric relation of the requested item to the specified item, and the state
of the requested item. The geometric relation can be one of these values:

• LVNI_ABOVE Searches for an item that is above the specified item.

• LVNI_ALL Searches for a subsequent item by index (the default value).

• LVNI_BELOW Searches for an item that is below the specified item.

• LVNI_TOLEFT Searches for an item to the left of the specified item.

• LVNI_TORIGHT Searches for an item to the right of the specified item.

The state can be zero, or it can be one or more of these values:

• LVNI_DROPHILITED The item has the LVIS_DROPHILITED state
flag set.

• LVNI_FOCUSED The item has the LVIS_FOCUSED state flag set.

• LVNI_HIDDEN The item has the LVIS_HIDDEN state flag set.

• LVNI_MARKED The item has the LVIS_MARKED state flag set.

• LVNI_SELECTED The item has the LVIS_SELECTED state flag set.

If an item does not have all of the specified state flags set, the search continues
with the next item.

Searches for a list view item that has the specified properties and that bears the
specified relationship to a given item.

See Also CListCtrl::GetItem

CListCtrl: : GetStringWidth

CListCtrl: : GetOrigin
BOOL GetOrigin(LPPOINT lpPoint) const;

Return Value
Nonzero if successful; otherwise zero.

Parameters
lpPoint Address of a POINT structure that receives the view origin.

Remarks
Retrieves the current view origin for a list view control.

See Also CListCtrl: : GetItemPosition, CListCtrl: :SetItemPosition

CListCtrl: : GetSelectedCount
UINT GetSelectedCount() const;

Return Value
The number of selected items in the list view control.

Remarks
Retrieves the number of selected items in the list view control.

See Also CListCtrl: :SetItemCount, CListCtrl: : GetItemCount

CListCtrl:: GetString Width
int GetStringWidth(LPCTSTR lpsz) const;

Return Value
The width, in pixels, of the string pointed to by lpsz.

Parameters

Remarks

lpsz Address of a null-terminated string whose width is to be determined.

Determines the minimum column width necessary to display all of a given string.

The returned width takes into account the control's current font and column margins,
but not the width of a small icon.

See Also CListCtrl: : GetColumn Width, CListCtrl: :SetColumn Width

825

CListCtrl: : GetTextBkColor

CListCtrl: : GetTextBkColor
COLORREF GetTextBkColor() const;

Return Value

Remarks

A 32-bit value used to specify an ROB color.

Retrieves the text background color of a list view control.

See Also CListCtrl::SetTextBkColor, CListCtrl::GetTextColor

In the Win32 Programmer ~ Reference: COLORREF

CListCtrl: : GetTextColor
COLORREF GetTextColor() const;

Return Value

Remarks

A 32-bit value used to specify an ROB color.

Retrieves the text color of a list view control.

See Also CListCtrl::SetTextColor, CListCtrl::GetTextBkColor

In the Win32 Programmer's Reference: COLORREF

CListCtrl: : GetTopIndex
int GetTopIndex() const;

Return Value

Remarks

The index of the topmost visible item.

Retrieves the index of the topmost visible item when in list view or report view.

See Also CListCtrl: : GetCountPerPage

CListCtrl: : GetViewRect
BOOL GetViewRect(LPRECT IpRect) const;

Return Value
Nonzero if successful; otherwise zero.

Parameters
IpRect Address of a RECT structure.

826

Remarks
Retrieves the bounding rectangle of all items in the list view control. The list view
must be in icon view or small icon view.

See Also CListCtrl: : GetTopIodex

~~ist~trl::lIit1Lest
int HitTest(LV _IDTTESTINFO* pHitTestlnfo) const;
int HitTest(CPoint pt, UINT* pFlags = NULL) const;

Return Value
The index of the item at the position specified by pHitTestlnfo, if any, or -1
otherwise.

Parameters

Remarks

pHitTestlnfo Address of a LV _HITTESTINFO structure that contains the position
to hit test and that receives information about the results of the hit test.

pt Point to be tested.

pFlags Pointer to an integer that receives information about the results of the test.
See the explanation of the flags member of the LV _HITTESTINFO structure
under Remarks.

Determines which list view item, if any, is at a specified position.

The LV _HITTESTINFO structure contains information about a hit test:

typedef struct _LV_HITTESTINFO {
POINT pt; II position to hit test. in client coordinates
UINT flags; II see below
int iltem; II receives the index of the matching item

} LV_HITTESTINFO;

Its members are as follows:

flags Variable that receives information about the results of a hit test. It can be one
or more of these values:

• LVHT_ABOVE The position is above the client area of the control.

• LVHT_BELOW The position is below the client area of the control.

• LVHT_NOWHERE The position is inside the list view control's client
window but is not over a list item.

• LVHT_ONITEMICON The position is over a list view item's icon.

• LVHT_ONITEMLABEL The position is over a list view item's text.

CListCtrl: : HitTest

827

CListCtrl: :InsertColumn

• LVHT_ONITEMSTATEICON The position is over the state image of a list
view item.

• LVHT_TOLEFT The position is to the left of the list view control's client
area.

• LVHT_TORIGHT The position is to the right of the list view control's client
area.

You can use the LVHT_ABOVE, LVHT_BELOW, LVHT_TOLEFT, and
LVHT_TORIGHT values to determine whether to scroll the contents of a list view
control. Two of these flags can be combined, for example, if the position is above and
to the left of the client area.

You can test for the LVHT_ONITEM value to determine whether a given position is
over a list view item. This value is a bitwise-OR operation on the
LVHT_ONITEMICON, LVHT_ONITEMLABEL, and
LVHT_ONITEMSTATEICON values.

See Also CListCtrl: :SetltemPosition, CListCtrl: : GetltemPosition

CListCtrl: : InsertColumn
int InsertColumn(int nCol, const LV _ COLUMN* pColumn);
int InsertColumn(int nCol, LPCTSTR IpszColumnHeading, int nFormat = LVCFMT_LEFT,

int nWidth = -1, int nSubltem = -1);

Return Value
The index of the new column if successful or -1 otherwise.

Parameters

Remarks

828

nCol The index of the new column.

pColumn Address of an LV _COLUMN structure that contains the attributes of the
new column.

IpszColumnHeading Address of a string containing the column's heading.

nF ormat Integer specifying the alignment of the column. It can be one of these
values: LVCFMT_LEFT, LVCFMT_RIGHT, or LVCFMT_CENTER.

n Width Width of the column, in pixels. If this parameter is -1, the column width is
not set.

nSubltem Index of the subitem associated with the column. If this parameter is -1,
no subitem is associatied with the column.

Inserts a new column in a list view control.

CListCtrl: : InsertItem

The LV_COLUMN structure contains the attributes of a column in report view. It is
also used to receive information about a column. For more information on the
LV_COLUMN structure, see CListCtrl::GetColumn.

See Also CListCtrl: : DeleteColumn

CListCtrl: : InsertItem
int InsertItem(const LV _ITEM* pltem);
int Insertltem(int nltem, LPCTSTR lpsz/tem);
int Insertltem(int nltem, LPCTSTR lpsz/tem, int nlmage);
int Insertltem(UINT nMask, int nltem, LPCTSTR lpsz/tem, UINT nState, UINT nStateMask,

int nlmage, LPARAM lParam);

Return Value
The index of the new item if successful or -1 otherwise.

Parameters

Remarks

pltem Pointer to an LV _ITEM structure that specifies the item's attributes. For
information on the LV_ITEM structure, see CListCtrl::Getltem.

nltem Index of the item to be inserted.

lpszltem Address of a string containing the item's label, or
LPSTR_TEXTCALLBACK if the item is a callback item. For information on
callback items, see CListCtrl: : GetCallbackMask.

nlmage Index of the item's image, or I_IMAGECALLBACK if the item is a
callback item. For information on callback items, see
CListCtrl: : GetCallbackMask.

nMask Specifies which attributes are valid (see the Remarks).

nState Specifies values for states to be changed (see the Remarks).

nStateMask Specifies which states are valid (see the Remarks).

nlmage Index of the item's image within the image list.

lParam A 32-bit application-specific value associated with the item.

Inserts an item into the list view control.

The nMask parameter specifies which item attributes are valid. It can have one of two
values:

• LVIF _TEXT The lpsz/tem parameter is the address of a null-terminated string.

• LVIF _STATE The nStateMask parameter specifies which item states are valid
and the nState parameter contains the values for those states.

See Also CListCtrl: :DeleteItem, CListCtrl: : DeleteAllltems

829

CListCtrl: : Redrawltems

CListCtrl: : Redraw Items
BOOL RedrawItems(int nFirst, int nLast);

Return Value
Nonzero if successful; otherwise zero.

Parameters

Remarks

nFirst Index of the first item to be repainted.

nLast Index of the last item to be repainted.

Forces a list view control to repaint a range of items.

The specified items are not actually repainted until the list view window receives a
WM_PAINT message. To repaint immediately, call the Windows Update Window
function after using this function.

See Also CListCtrl: :DrawItem

CListCtrl:: Scroll
BOOL Scroll(CSize size);

Return Value
Nonzero if successful; otherwise zero.

Parameters

Remarks

size A CSize object specifying the amount of horizontal and vertical scrolling, in
pixels. The y member of size is divided by the height, in pixels, of the list view
control's line, and the control is scrolled by the resulting number of lines.

Scrolls the content of a list view control.

See Also CListCtrl: : Ensure Visible

CListCtrl:: SetBkColor
BOOL SetBkColor(COLORREF cr);

Return Value
Nonzero if successful; otherwise zero.

830

Parameters

Remarks

cr Background color to set, or the CLR_NONE value for no background color. List
view controls with background colors redraw themselves significantly faster than
those without background colors. For information, see COLORREF in the Win32
Programmer's Reference.

Sets the background color of the list view control.

See Also CListCtrl::GetBkColor

CListCtrl: : SetCallbackMask
BOOL SetCallbackMask(UINT nMask);

Return Value
Nonzero if successful; otherwise zero.

Parameters

Remarks

nMask New value of the callback mask.

Sets the callback mask for a list view control.

See Also CListCtrl::GetCallbackMask

CListCtrl:: SetColumn
BOOL SetColumn(int nCol, const LV _COLUMN* pColumn);

Return Value
Nonzero if successful; otherwise zero.

Parameters

Remarks

nCol Index of the column whose attributes are to be set.

pColumn Address of an LV_COLUMN structure that contains the new column
attributes. The mask member specifies which column attributes to set. If the mask
member specifies the LVCF _TEXT value, the pszText member is the address of a
null-terminated string and the cchTextMax member is ignored. For more
information on the LV_COLUMN structure, see CListCtrl::GetColumn.

Sets the attributes of a list view column.

See Also CListCtrl::GetColumn

CListCtrl: :SetColumn

831

CListCtrl::SetColumn Width

CListCtrl:: SetColumn Width
BOOL SetColumnWidth(int nCol, int ex);

Return Value
Nonzero if successful; otherwise zero.

Parameters

Remarks

nCol Index of the column whose width is to be set. In list view, this parameter
must be -1.

ex The new width of the column.

Changes the width of a column in report view or list view.

See Also CListCtrl::GetColumnWidth, CListCtrl::GetStringWidth

CListCtrl:: SetImageList
ClmageList* SetlmageList(ClmageList* plmageList, int nlmageList);

Return Value
A pointer to the previous image list.

Parameters
plmageList Pointer to the image list to assign.

nlmageList Type of image list. It can be one of these values:

• LVSIL_NORMAL Image list with large icons.

• LVSIL_SMALL Image list with small icons.

• LVSIL_STATE Image list with state images.

Remarks
Assigns an image list to a list view control.

See Also CImageList, CListCtrl: : GetlmageList

CListCtrl:: SetItem
BOOL Setltem(coost LV _ITEM* pltem);
BOOL Setltem(int nltem, int nSubltem, UINT nMask, LPCTSTR lpsz[tem, int nlmage,

UINT nState, UINT nStateMask, LPARAM lParam);

Return Value
Nonzero if successful; otherwise zero.

832

CListCtrl: :SetltemCount

Parameters

Remarks

pltem Address of an LV_ITEM structure that contains the new item attributes. The
iItem and iSubltem members identify the item or subitem, and the mask member
specifies which attributes to set. For more information on the mask member, see
the Remarks. For more information on the LV_ITEM structure, see
CListCtrl: : Getltem.

nltem Index of the item whose attributes are to be set.

nSubltem Index of the subitem whose attributes are to be set.

nMask Specifies which attributes are to be set (see the Remarks).

lpsz/tem Address of a null-terminated string specifying the item's label.

nlmage Index of the item's image within the image list.

nState Specifies values for states to be changed (see the Remarks).

nStateMask Specifies which states are to be changed (see the Remarks).

lParam A 32-bit application-specific value to be associated with the item.

Sets some or all of a list view item's attributes.

The iItem and iSubltem members of the LV_ITEM structure and the nltem and
nSubltem parameters identify the item and subitem whose attributes are to be set.

The mask member of the LV _ITEM structure and the nMask parameter specify
which item attributes are to be set:

• LVIF _TEXT The pszText member or the lpsz/tem parameter is the address of a
null-terminated string; the cchTextMax member is ignored.

• LVIF _STATE The stateMask member or nStateMask parameter specifies which
item states to change and the state member or nState parameter contains the
values for those states.

See Also CListCtrl: : Getltem

CListCtrl: :SetItemCount
void SetltemCount(int nltems);

Parameters
nltems Number of items that the control will ultimately contain.

Remarks
Prepares a list view control for adding a large number of items.

833

CListCtrl: :SetItemData

By calling this function before adding a large number of items, you enable a list view
control to reallocate its internal data structures only once rather than every time you
add an item.

See Also CListCtrl: : GetltemCount, CListCtrl: : GetSelectedCount

CListCtrl:: SetItemData
BOOL SetltemData(int nltem, DWORD dwData);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

nltem Index of the list item whose data is to be set.

dwData A 32-bit value to be associated with the item.

This function sets the 32-bit application-specific value associated with the item
specified by nltem. This value is the IParam member of the LV_ITEM structure;
for more information on this structure, see GetItem.

See Also CListCtrl: : GetItemData

CListCtrl:: SetItemPosition
BOOL SetItemPosition(int nltem, POINT pt);

Return Value
Nonzero if successful; otherwise zero.

Parameters

Remarks

834

nltem Index of the item whose position is to be set.

pt A POINT structure specifying the new position, in view coordinates, of the
item's upper-left corner.

Moves an item to a specified position in a list view control. The control must be in
icon or small icon view.

If the list view control has the LVS_AUTOARRANGE style, the list view is
arranged after the position of the item is set. This function cannot be used for list
views that have the LVS_NOITEMDATA style.

See Also CListCtrl: : GetltemPosition, CListCtrl: : GetOrigin

CListCtrl: :SetltemText

CListCtrl:: SetItemState
BOOL SetItemState(int nltem, LV _ITEM* pltem);
BOOL SetItemState(int nltem, UINT nState, UINT nMask);

Return Value
Nonzero if successful; otherwise zero.

Parameters

Remarks

nltem Index of the item whose state is to be set.

pltem Address of an LV_ITEM structure. The stateMask member specifies which
state bits to change, and the state member contains the new values for those bits.
The other members are ignored. For more information on the LV_ITEM
structure, see CListCtrl: : GetItem.

nState New values for the state bits.

nMask Mask specifying which state bits to change.

Changes the state of an item in a list view control.

An item's "state" is a value that specifies the item's availability, indicates user
actions, or otherwise reflects the item's status. A list view control changes some state
bits, such as when the user selects an item. An application might change other state
bits to disable or hide the item, or to specify an overlay image or state image.

See Also CListCtrl::GetItemState

CListCtrl:: SetItem Text
BOOL SetItemText(int nltem, int nSubltem, LPTSTR lpszText);

Return Value
Nonzero if successful; otherwise zero.

Parameters

Remarks

nltem Index of the item whose text is to be set.

nSubltem Index of the subitem, or zero to set the item label.

lpszText Pointer to a string that contains the new item text.

Changes the text of a list view item or subitem.

See Also CListCtrI::GetItemText

835

'CListCtrl: :SetTextBkColor

CListCtrl: : SetTextBkColor
BOOL SetTextBkColor(COLORREF cr);

Return Value
Nonzero if successful; otherwise zero.

Parameters

Remarks

cr A COLORREF specifying the new text background color. For information, see
COLORREF in the Win32 Programmer's Reference.

Sets the background color of text in a list view control.

See Also CListCtrl::GetTextBkColor

CListCtrl:: SetTextColor
BOOL SetTextColor(COLORREF cr);

Return Value
Nonzero if successful; otherwise zero.

Parameters

Remarks

cr A COLORREF specifying the new text color. For information, see
COLORREF in the Win32 Programmer's Reference.

Sets the text color of a list view control.

See Also CListCtrl: :SetTextBkColor

CListCtrl:: SortItems
BOOL Sortltems(PFNLVCOMPARE pjnCompare, DWORD dwData);

Return Value
Nonzero if successful; otherwise zero.

Parameters

Remarks

836

pjnCompare Address of the application-defined comparison function. The
comparison function is called during the sort operation each time the relative
order of two list items needs to be compared.

dwData Application-defined value that is passed to the comparison function.

Sqrts list view items using an application-defined comparison function. The index of
each item changes to reflect the new sequence.

The comparison function has the following form:

int CALLBACK CompareFunc(LPARAM lParaml, LPARAM lParam2,
LPARAM lParamSort);

The comparison function must return a negative value if the first item should precede
the second, a positive value if the first item should follow the second, or zero if the
two items are equivalent.

The lParami and lParam2 parameters specify the item data for the two items being
compared. The lParamSort parameter is the same as the dwData value.

See Also CListCtrl: :FindItem

CListCtrl:: Update
BOOL Update(int nltem);

Return Value
Nonzero if successful; otherwise zero.

Parameters

Remarks

nltem Index of the item to be updated.

Call this function to force the list view control to repaint the item specified by nltem.
This function also arranges the list view control if it has the LVS_AUTOARRANGE
style.

See Also CListCtrl: :DrawItem

CListCtrl::Update

837

CListView

CListView

The CListView class simplifies use of the list control and of CListCtrl, the class that
encapsulates list-control functionality, with MFC's document-view architecture. For
more information on this architecture, see the overview for the CView class and the
cross-references cited there.

#include <afxcview.h>

See Also CView, CCtrlView, CListCtrl

Construction

CListView Constructs a CListView object.

Attributes

GetListCtrl Returns the list control associated with the view.

Member Functions
CList View: :CList View

CListView();

Remarks

838

Constructs a CListView object. The framework calls the constructor when a new
frame window is created or a window is split. Override CView: :OnlnitialUpdate to
initialize the view after the document is attached. Call CWnd::Create or
CWnd::CreateEx to create the Windows object.

CListView: : GetListCtrl
CListCtrl& GetListCtrl() const;

Return Value

Remarks

A reference to the list control associated with the view.

Call this member function to get a reference to the list control associated with
the view.

See Also CListCtrl

CList View: : GetListCtrl

839

CLongBinary

CLongBinary

840

Class CLongBinary simplifies working with very large binary data objects (often
called BLOBs, or "binary large objects") in a database. For example, a record field in
an SQL table might contain a bitmap representing a picture. A CLongBinary object
stores such an object and keeps track of its size.

Note In general, it is better practice now to use CByteArray in conjunction with the
DFX_Binary function. You can still use CLongBinary; but in general CByteArray provides
more functionality under Win32, since there is no longer the size limitation encountered with
16-bit CByteArray. This advice applies to programming with Data Access Objects (DAO) as
well as Open Database Connectivity (ODBC).

To use a CLongBinary object, declare a field data member of type CLongBinary in
your recordset class. This member will be an embedded member of the recordset class
and will be constructed when the recordset is constructed. After the CLongBinary
object is constructed, the record field exchange (RFX) mechanism loads the data
object from a field in the current record on the data source and stores it back to the
record when the record is updated. RFX queries the data source for the size of the
binary large object, allocates storage for it (via the CLongBinary object's m_hData
data member), and stores an HGLOBAL handle to the data in m_hData. RFX also
stores the actual size of the data object in the m_dwDataLength data member. Work
with the data in the object through m_hData, using the same techniques you would
normally use to manipulate the data stored in a Windows HGLOBAL handle.

When you destroy your recordset, the embedded CLongBinary object is also
destroyed, and its destructor deallocates the HGLOBAL data handle.

For more information about large objects and the use of CLongBinary, see the
articles "Recordset (ODBC)" and "Recordset: Working with Large Data Items
(ODBC)" in Programming with MPC.

#include <afxdb.h>

See Also crecordset

Data Members

m_dwDataLength

Construction

CLongBinary

Contains the actual size in bytes of the data object whose
handle is stored in m_hData.

Contains a Windows HGLOBAL handle to the actual image
object.

Constructs a CLongBinary object.

Member Functions
CLongBinary: :CLongBinary

CLongBinary();

Remarks
Constructs a CLongBinary object.

Data Members
CLongBinary::m_dwDataLength
Remarks

Stores the actual size in bytes of the data stored in the HGLOBAL handle in
m_hData. This size may be smaller than the size of the memory block allocated for
the data. Call : : GlobalSize to get the allocated size.

CLongBinary: :m_hData
Remarks

Stores a Windows HGLOBAL handle to the actual binary large object data.

CLongBinary: :m_hData

841

CMap

CMap

template< class KEY, class ARG_KEY, class VALUE,
class ARG_ VALUE >class CMap : public CObject

Parameters

Remarks

842

KEY Class of the object used as the key to the map.

ARG_KEY Data type used for KEY arguments; usually a reference to KEY.

VALUE Class of the object stored in the map.

ARG_ VALUE Data type used for VALUE arguments; usually a reference to VALUE.

CMap is a dictionary collection class that maps unique keys to values. Once you have
inserted a key-value pair (element) into the map, you can efficiently retrieve or delete
the pair using the key to access it. You can also iterate over all the elements in the
map.

A variable of type POSITION is used for alternate access to entries. You can use a
POSITION to "remember" an entry and to iterate through the map. You might think
that this iteration is sequential by key value; it is not. The sequence of retrieved
elements is indeterminate.

Certain member functions of this class call global helper functions that must be
customized for most uses of the CMap class. See "Collection Class Helpers" in the
"Macros and Globals" section of the MFC Reference.

CMap incorporates the IMPLEMENT_SERIAL macro to support serialization and
dumping of its elements. Each element is serialized in tum if a map is stored to an
archive, either with the overloaded insertion «<) operator or with the Serialize
member function.

If you need a diagnostic dump of the individual elements in the map (the keys and the
values), you must set the depth of the dump context to 1 or greater.

When a CMap object is deleted, or when its elements are removed, the keys and
values both are removed.

Map class derivation is similar to list derivation. See the article "Collections" in
Programming with MFC for an illustration of the derivation of a special-purpose
list class.

#include <afxtempl.h>

See Also "Collection Class Helpers"

Construction

CMap

Operations

Lookup

SetAt

operator []

RemoveKey

RemoveAll

GetStartPosition

GetNextAssoc

GetHashTableSize

InitHashTable

Status

GetCount

IsEmpty

Constructs a collection that maps keys to values.

Looks up the value mapped to a given key.

Inserts an element into the map; replaces an existing element if
a matching key is found.

Inserts an element into the map-operator substitution for
SetAt.

Removes an element specified by a key.

Removes all the elements from this map.

Returns the position of the first element.

Gets the next element for iterating.

Returns the size (number of elements) of the hash table.

Initializes the hash table and specifies its size.

Returns the number of elements in this map.

Tests for the empty-map condition (no elements).

Member Functions
CMap::CMap

CMap(int nBlockSize = 10);

Parameters

Remarks

nBlockSize Specifies the memory-allocation granularity for extending the map.

Constructs an empty map. As the map grows, memory is allocated in units of
nBlockSize entries.

CMap: : GetCount
int GetCount() const;

Return Value
The number of elements.

CMap: : GetCount

843

CMap::GetHashTableSize

Remarks
Call this member function to retrieve the number of elements in the map.

See Also CMap: :IsEmpty

CMap: : GetHashTableSize
UINT GetHashTableSize() const;

Return Value

Remarks

The number of elements in the hash table.

Call this member function to determine the number of elements in the hash table for
the map.

See Also CMap::InitHashTable

CMap: : GetN extAssoc
void GetNextAssoc(POSITION& rNextPosition, KEY& rKey, VALUE& rValue) const;

Parameters

Remarks

844

rNextPosition Specifies a reference to a POSITION value returned by a previous
GetNextAssoc or GetStartPosition call.

KEY Template parameter specifying the type of the map's key.

rKey Specifies the returned key of the retrieved element (a string).

VALUE Template parameter specifying the type of the map's value.

rValue Specifies the returned value of the retrieved element (a CObject pointer).

Retrieves the map element at rNextPosition, then updates rNextPosition to refer to
the next element in the map. This function is most useful for iterating through all the
elements in the map. Note that the position sequence is not necessarily the same as
the key value sequence.

If the retrieved element is the last in the map, then the new value of rNextPosition is
set to NULL.

See Also CMap: : GetStartPosition

CMap: : GetStartPosition
POSITION GetStartPosition() const;

Return Value

Remarks

A POSITION value that indicates a starting position for iterating the map; or NULL
if the map is empty.

Starts a map iteration by returning a POSITION value that can be passed to a
GetNextAssoc call. The iteration sequence is not predictable; therefore, the "first
element in the map" has no special significance.

See Also CMap::GetNextAssoc

CMap: : InitHashTable
void InitHashTable(UINT hashSize);

Parameters

Remarks

hashSize Number of entries in the hash table.

Initializes the hash table. For best performance, the hash table size should be a prime
number. To minimize collisions the size should be roughly 20 percent larger than the
largest anticipated data set.

See Also CMap::GetHashTableSize

CMap: : IsEmpty
BOOL IsEmpty() coost;

Return Value
Nonzero if this map contains no elements; otherwise O.

Remarks
Call this member function to determine whether the map is empty.

Example
See the example for CMapStriogToOB::RemoveAII.

See Also CMap: : GetCouot

CMap: : IsEmpty

845

CMap::Lookup

CMap: : Lookup
BOOL Lookup(ARG_KEY key, VALUE& rValue) const;

Return Value
Nonzero if the element was found; otherwise O.

Parameters

Remarks

ARG _KEY Template parameter specifying the type of the key value.

key Specifies the string key that identifies the element to be looked up.

VALUE Specifies the type of the value to be looked up.

rValue Receives the looked-up value.

Lookup uses a hashing algorithm to quickly find the map element with a key that
exactly matches the given key.

See Also CMap::operator []

CMap: : RemoveAll
void RemoveAII();

Remarks
Removes all the values from this map by calling the global helper function
DestructElements.

The function works correctly if the map is already empty.

See Also CMap: : RemoveKey, DestructElements

CMap: :RemoveKey
BOOL RemoveKey(ARG_KEY key);

Return Value
Nonzero if the entry was found and successfully removed; otherwise O.

846

Parameters

Remarks

ARG _KEY Template parameter specifying the type of the key.

key Key for the element to be removed.

Looks up the map entry corresponding to the supplied key; then, if the key is found,
removes the entry.

The DestructElements helper function is used to remove the entry.

See Also CMap::RemoveAII

CMap::SetAt
void SetAt(ARG_KEY key, ARG_ VALUE new Value);

Parameters

Remarks

ARG _KEY Template parameter specifying the type of the key parameter.

key Specifies the string that is the key of the new element.

ARG_ VALUE Template parameter specifying the type of the new Value parameter.

new Value Specifies the value of the new element.

The primary means to insert an element in a map. First, the key is looked up. If the
key is found, then the corresponding value is changed; otherwise a new key-value
pair is created.

See Also CMap::Lookup, CMap::operator []

Operators
CMap::operator []

VALUE& operator[](ARG _KEY key);

Parameters
VALUE Template parameter specifying the type of the map value.

ARG _KEY Template parameter specifying the type of the key value.

key The key used to retrieve the value from the map.

CMap::operator []

847

CMap::operator []

Remarks

848

This operator is a convenient substitute for the SetAt member function. Thus it can
be used only on the left side of an assignment statement (an I-value). If there is no
map element with the specified key, then a new element is created.

There is no "right side" (r-value) equivalent to this operator because there is a
possibility that a key may not be found in the map. Use the Lookup member function
for element retrieval.

See Also CMap::SetAt, CMap::Lookup

CMapPtrToPtr

The CMapPtrToPtr class supports maps of void pointers keyed by void pointers.

The member functions of CMapPtrToPtr are similar to the member functions of
class CMapStringToOb. Because of this similarity, you can use the
CMapStringToOb reference documentation for member function specifics.
Wherever you see a CObject pointer as a function parameter or return value,
substitute a pointer to void. Wherever you see a CString or a const pointer to char as
a function parameter or return value, substitute a pointer to void.

BOOl CMapStringToOb::lookup(const char* <key>,
CObject*& <rValue>) const;

for example, translates to

BOOl CMapPtrToPtr::lookup(void* <key>, void*& <rValue>) const;

CMapPtrToPtr incorporates the IMPLEMENT_DYNAMIC macro to support run
time type access and dumping to a CDumpContext object. If you need a dump of
individual map elements (pointer values), you must set the depth of the dump context
to 1 or greater.

Pointer-to-pointer maps may not be serialized.

When a CMapPtrToPtr object is deleted, or when its elements are removed, only the
pointers are removed, not the entities they reference.

For more information on CMapPtrToPtr, see the article "Collections" in
Programming with MPC.

#include <afxcoIl.h>

See Also CMapStringToOb

CMapPtrToPtr

849

CMapPtrToPtr

850

Construction

CMapPtrToPtr

Operations

Lookup

SetAt

operator []

RemoveKey

RemoveAll

GetStartPosition

GetNextAssoc

Status

GetCount

IsEmpty

Constructs a collection that maps void pointers to void pointers.

Looks up a void pointer based on the void pointer key. The
pointer value, not the entity it points to, is used for the key
comparison.

Inserts an element into the map; replaces an existing element if a
matching key is found.

Inserts an element into the map-operator substitution for
SetAt.

Removes an element specified by a key.

Removes all the elements from this map.

Returns the position of the first element.

Gets the next element for iterating.

Returns the number of elements in this map.

Tests for the empty-map condition (no elements).

CMapPtrTo Word

The CMapPtrToWord class supports maps of 16-bit words keyed by void pointers.

The member functions of CMapPtrToWord are similar to the member functions of
class CMapStringToOb. Because of this similarity, you can use the
CMapStringToOb reference documentation for member function specifics.
Wherever you see a CObject pointer as a function parameter or return value,
substitute WORD. Wherever you see a CString or a const pointer to char as a
function parameter or return value, substitute a pointer to void.

BOOl CMapStringToOb::lookup(const char* <key>.
CObject*& <rValue>) canst;

for example, translates to

BOOl CMapPtrTaWard::laakup(canst vaid* <key>. WORD& <rValue>) canst;

CMapWordToPtr incorporates the IMPLEMENT_DYNAMIC macro to support
run-time type access and dumping to a CDumpContext object. If you need a dump of
individual map elements, you must set the depth of the dump context to 1 or greater.

Pointer-to-word maps may not be serialized.

When a CMapPtrToWord object is deleted, or when its elements are removed, the
pointers and the words are removed. The entities referenced by the key pointers are
not removed.

For more information on CMapPtrToWord, see the article "Collections" in
Programming with MFC.

#include <afxcoll.h>

See Also CMapStringToOb

CMapPtrTa Ward

851

CMapPtrTo Word

852

Construction

CMapPtrTo Word

Operations

Lookup

SetAt

operator []

RemoveKey

RemoveAlI

GetStartPosition

GetNextAssoc

Status

GetCount

IsEmpty

Constructs a collection that maps void pointers to 16-bit words.

Returns a WORD using a void pointer as a key. The pointer
value, not the entity it points to, is used for the key comparison.

Inserts an element into the map; replaces an existing element if a
matching key is found.

Inserts an element into the map-operator substitution for
SetAt.

Removes an element specified by a key.

Removes all the elements from this map.

Returns the position of the first element.

Gets the next element for iterating.

Returns the number of elements in this map.

Tests for the empty-map condition (no elements).

CMapStringToOb

CMapStringToOb is a dictionary collection class that maps unique CString objects
to CObject pointers. Once you have inserted a CString-CObject* pair (element)
into the map, you can efficiently retrieve or delete the pair using a string or a
CString value as a key. You can also iterate over all the elements in the map.

A variable of type POSITION is used for alternate entry access in all map variations.
You can use a POSITION to "remember" an entry and to iterate through the map.
You might think that this iteration is sequential by key value; it is not. The sequence
of retrieved elements is indeterminate.

CMapStringToOb incorporates the IMPLEMENT_SERIAL macro to support
serialization and dumping of its elements. Each element is serialized in tum if a map
is stored to an archive, either with the overloaded insertion «<) operator or with the
Serialize member function.

If you need a diagnostic dump of the individual elements in the map (the CString
value and the CObject contents), you must set the depth of the dump context to 1 or
greater.

When a CMapStringToOb object is deleted, or when its elements are removed, the
CString objects and the CObject pointers are removed. The objects referenced by the
CObject pointers are not destroyed.

Map class derivation is similar to list derivation. See the article "Collections" in
Programming with MFC for an illustration of the derivation of a special-purpose
list class.

#include <afxcoll.h>

See Also CMapPtrToPtr, CMapPtrToWord, CMapStringToPtr,
CMapStringToString, CMap WordToOb, CMap WordToPtr

Construction

CMapStringToOb Constructs a collection that maps CString values to CObject
pointers.

CMapStringToOb

853

CMapStringToOb::CMapStringToOb

Operations

Lookup

SetAt

operator []

RemoveKey

RemoveAll

GetStartPosition

GetNextAssoc

Status

GetCount

IsEmpty

Returns a CObject pointer based on a CString value.

Inserts an element into the map; replaces an existing element if a
matching key is found.

Inserts an element into the map-operator substitution for
SetAt.

Removes an element specified by a key.

Removes all the elements from this map.

Returns the position of the first element.

Gets the next element for iterating.

Returns the number of elements in this map.

Tests for the empty-map condition (no elements).

Member Functions
CMapStringToOb: :CMapStringToOb

CMapStringToOb(int nBlockSize = 10);

Parameters

Remarks

Example

nBlockSize Specifies the memory-allocation granularity for extending the map.

Constructs an empty CString-to-CObject* map. As the map grows, memory is
allocated in units of nBlockSize entries.

II example for CMapStringToOb::CMapStringToOb

See CObList::CObList for a listing of the CAge class used in all collection examples.

CMapStringToOb map(20); II Map on the stack with blocksize of 20

CMapStringToOb* pm = new CMapStringToOb; II Map on the heap
II with default blocksize

CMapStringToOb:: GetCount
int GetCount() const;

Return Value
The number of elements in this map.

854

CMapStringToOb: :GetNextAssoc

Remarks

Example

Call this member function to determine how many elements are in the map.

II example for CMapStringToOb::GetCount
CMapStringToOb map;

map.SetAt("Bart", new CAge(13));
map.SetAt("Homer", new CAge(36));
ASSERT(map.GetCount() == 2);

See Also CMapStringToOb: :IsEmpty

CMapStringToOb: : GetN extAssoc
void GetNextAssoc(POSITION& rNextPosition, CString& rKey, CObject*& rValue) const;

Parameters

Remarks

Example

rNextPosition Specifies a reference to a POSITION value returned by a previous
GetNextAssoc or GetStartPosition call.

rKey Specifies the returned key of the retrieved element (a string).

rValue Specifies the returned value of the retrieved element (a CObject pointer).
See "Remarks" for more about this parameter.

Retrieves the map element at rNextPosition, then updates rNextPosition to refer to
the next element in the map. This function is most useful for iterating through all the
elements in the map. Note that the position sequence is not necessarily the same as
the key value sequence.

If the retrieved element is the last in the map, then the new value of rNextPosition is
set to NULL.

For the rValue parameter, be sure to cast your object type to CObject*&, which is
what the compiler requires, as shown in the following example:

CMyObject* ob;
map.GetNextAssoc(pos, key, (CObject*&)ob);

This is not true of GetNextAssoc for maps based on templates.

II example for CMapStringToOb::GetNextAssoc and CMapStringToOb::GetStartPosition
CMapStringToOb map;
POSITION pos;
CString key;
CAge* pa;

map.SetAt("Bart", new CAge(13));
map.SetAt("Lisa", new CAge(11));
map.SetAt("Homer", new CAge(36));

855

CMapStringToOb: : GetStartPosition

map.SetAt("Marge". new CAge(35));
II Iterate through the entire map. dumping both name and age.
fore pos - map.GetStartPosition(); pos !- NULL;)
{

map.GetNextAssoc(pos. key. (CObject*&)pa);
Iii fdef _DEBUG

Ilendi f
}

afxDump « key « " : " « pa « "\n";

The results from this program are as follows:

Lisa: a CAge at $4724 11
Marge : a CAge at $47A8 35
Homer : a CAge at $4766 36
Bart : a CAge at $4504 13

See Also CMapStringToOb: : GetStartPosition

CMapStringToOb: : GetStartPosition
POSITION GetStartPosition() const;

Return Value

Remarks

A POSITION value that indicates a starting position for iterating the map; or NULL
if the map is empty.

Starts a map iteration by returning a POSITION value that can be passed to a
GetNextAssoc call. The iteration sequence is not predictable; therefore, the "first
element in the map" has no special significance.

CMapStringToOb: : IsEmpty
BOOL IsEmpty() const;

Return Value
Nonzero if this map contains no elements; otherwise O.

Remarks
Call this member function to determine whether the map is empty.

Example
See the example for RemoveAU.

856

CMapStringToOb: :RemoveAll

CMapStringToOb: : Lookup
BOOL Lookup(LPCTSTR key, CObject*& rValue) const;

Return Value
Nonzero if the element was found; otherwise O.

Parameters

Remarks

Example

key Specifies the string key that identifies the element to be looked up.

rValue Specifies the returned value from the looked-up element.

Lookup uses a hashing algorithm to quickly find the map element with a key that
matches exactly (CString value).

II example for CMapStringToOb::LookUp
CMapStringToOb map;
CAge* pa;

map.SetAt("Bart", new CAge(13));
map.SetAt("Lisa", new CAge(11));
map.SetAt("Homer", new CAge(36));
map.SetAt("Marge", new CAge(35));
ASSERT(map.Lookup("Lisa", (CObject*&) pa)); II Is "Lisa" in the map?
ASSERT(*pa == CAge(11)); II Is she II?

See Also CMapStringToOb::operator []

CMapStringToOb: : RemoveAl1

Remarks

Example

void RemoveAII();

Removes all the elements from this map and destroys the CString key objects. The
CObject objects referenced by each key are not destroyed. The RemoveAII function
can cause memory leaks if you do not ensure that the referenced CObject objects are
destroyed.

The function works correctly if the map is already empty.

II example for CMapStringToOb::RemoveAll
{

CMapStringToOb map;

CAge age1(13); II Two objects on the stack
CAge age2(36);
map.SetAt("Bart", &agel);
map.SetAt("Homer", &age2);

857

CMapStringToOb::RemoveKey

ASSERT(map.GetCount() == 2);
map.RemoveAll(); II CObject pointers removed; objects not removed.
ASSERT(map.GetCount() == 0);
ASSERT(map.lsEmpty());

II The two CAge objects are deleted when they go out of scope.

See Also CMapStringToOb: :RemoveKey

CMapStringToOb: : RemoveKey
BOOL RemoveKey(LPCTSTR key);

Return Value
Nonzero if the entry was found and successfully removed; otherwise O.

Parameters

Remarks

Example

858

key Specifies the string used for map lookup.

Looks up the map entry corresponding to the supplied key; then, if the key is found,
removes the entry. This can cause memory leaks if the CObject object is not deleted
elsewhere.

II example for CMapStringToOb: : RemoveKey
CMapStringToOb map;

map.SetAt("Bart", new CAge(13));
map.SetAt("Lisa", new CAge(11));
map.SetAt("Homer", new CAge(36));
map.SetAt("Marge", new CAge(35));
map.RemoveKey("Lisa"); II Memory leak: CAge object not

II deleted.
IIi fdef _DEBUG

afxDump.SetDepth(1);
afxDump « "RemoveKey example: " « &map « "\n";

/lendif

The results from this program are as follows:

RemoveKey example: A CMapStringToOb with 3 elements
[Marge] = a CAge at $49A0 35
[Homer] = a CAge at $495E 36
[Bart] = a CAge at $4634 13

See Also CMapStringToOb: : RemoveAIl

CMapStringToOb: :SetAt

CMapStringToOb: :SetAt
void SetAt(LPCTSTR key, CObject* new Value);

throw(CMemoryException);

Parameters

Remarks

Example

key Specifies the string that is the key of the new element.

new Value Specifies the CObject pointer that is the value of the new element.

The primary means to insert an element in a map. First, the key is looked up. If the
key is found, then the corresponding value is changed; otherwise a new key-value
element is created.

II example for CMapStringToOb::SetAt
CMapStringToOb map;
CAge* pa;

map.SetAt("Bart", new CAge(13
map.SetAt("Lisa", new CAge(11

lIifdef _DEBUG
afxDump.SetDepth(1);

) ;

); II Map contains 2
II elements.

afxDump « "before Lisa's birthday: " « &map « "\n";
Ilend; f

if(map.Lookup("Lisa", pa))
{ II CAge 12 pointer replaces CAge 11 pointer.

map.SetAt("Lisa", new CAge(12));
delete pa; II Must delete CAge 11 to avoid memory leak.

}

Iii fdef _DEBUG
afxDump « "after Lisa's birthday: " « &map « "\n":

lIendif

The results from this program are as follows:

before Lisa's birthday: A CMapStringToOb with 2 elements
[Lisa] = a CAge at $493C 11
[Bart] = a CAge at $4654 13

after Lisa's birthday: A CMapStringToOb with 2 elements
[Lisa] = a CAge at $49C0 12
[Bart] = a CAge at $4654 13

See Also CMapStringToOb::Lookup, CMapStringToOb::operator []

859

CMapStringToOb: :operator []

Operators
CMapStringToOb: : operator []

CObject*& operator [](LPCTSTR key);

Return Value

Remarks

Example

860

A reference to a pointer to a CObject object; or NULL if the map is empty or key is
out of range.

This operator is a convenient substitute for the SetAt member function. Thus it can
be used only on the left side of an assignment statement (an I-value). If there is no
map element with the s{Jecified key, then a new element is created.

There is no "right side" (r.,value) equivalent to this operator because there is a
possibility that a key may not be found in the map. Use the Lookup member function
for element retrieval.

II example for CMapStringToOb::operator[]
CMapStringToOb map;

map["Bart"] = new CAge(13);
map["Lisa"J = new CAge(11);

/lifdef _DEBUG
afxDump.SetDepth(1);
afxDump « "Operator [] example: " « &map « "\n";

41endif

The results from this program are as follows:

Operator [] ~xample: A CMapStringToOb with 2 elements
[Lisa] = a CAge at $4A02 11
[Bart] = a CAge at $497E 13

See Also CMapStringToOb::SetAt, CMapStriIlgToOb::Lookup

CMapStringToPtr

The CMapStringToPtr class supports maps of void pointers keyed by CString
objects.

The member functions of CMapStringToPtr are similar to the member functions of
class CMapStringToOb. Because of this similarity, you can use the
CMapStringToOb reference documentation for member function specifics.
Wherever you see a CObject pointer as a function parameter or return value,
substitute a pointer to void.

BOOl CMapStringToOb::lookup(const char* <key>.
CObject*& <rValue>) const;

for example, translates to

BOOl CMapStringToPtr::lookup(lPCTSTR <key>. void*& <rValue>)
const;

CMapStringToPtr incorporates the IMPLEMENT_DYNAMIC macro to support
run-time type access and dumping to a CDumpContext object. If you need a dump of
individual map elements, you must set the depth of the dump context to 1 or greater.

String-to-pointer maps may not be serialized.

When a CMapStringToPtr object is deleted, or when its elements are removed, the
CString key objects and the words are removed.

#include <afxcoll.h>

See Also CMapStringToOb

CMapStringToPtr

861

CMapStringToPtr

862

Construction

CMapStringToPtr

Operations

Lookup

SetAt

operator []

RemoveKey

RemoveAIl

GetStartPosition

GetNextAssoc

Status

GetCount

IsEmpty

Constructs a collection that maps CString objects to void
pointers.

Returns a void pointer based on a CString value.

Inserts an element into the map; replaces an existing element if
a matching key is found.

Inserts an element into the map-operator substitution for
SetAt.

Removes an element specified by a key.

Removes all the elements from this map.

Returns the position of the first element.

Gets the next element for iterating.

Returns the number of elements in this map.

Tests for the empty-map condition (no elements).

CMapStringToString

The CMapStringToString class supports maps of CString objects keyed by CString
objects.

The member functions of CMapStringToString are similar to the member functions
of class CMapStringToOb. Because of this similarity, you can use the
CMapStringToOb reference documentation for member function specifics.
Wherever you see a CObject pointer as a return value or "output" function
parameter, substitute a pointer to char. Wherever you see a CObject pointer as an
"input" function parameter, substitute a pointer to char.

BOOl CMapStringToOb::lookup(const char* <key>.
CObject*& <rValue>) const;

for example, translates to

BOOl CMapStringToString::lookup(lPCTSTR <key>.
CString& <rValue>) const;

CMapStringToString incorporates the IMPLEMENT _SERIAL macro to support
serialization and dumping of its elements. Each element is serialized in tum if a map
is stored to an archive, either with the overloaded insertion «<) operator or with the
Serialize member function.

If you need a dump of individual CString-CString elements, you must set the depth
of the dump context to 1 or greater.

When a CMapStringToString object is deleted, or when its elements are removed,
the CString objects are removed as appropriate.

For more information on CMapStringToString, see the article "Collections" in
Programming with MFC.

#include <afxcoIl.h>

See Also CMapStringToOb

CMapStringToString

863

CMapStringToString

864

Construction

CMapStringToString

Operations

Lookup

SetAt

operator []

RemoveKey

RemoveAIl

GetStartPosition

GetNextAssoc

Status

GetCount

IsEmpty

Constructs a collection that maps CString objects to
CString objects.

Returns a CString using a CString value as a key.

Inserts an element into the map; replaces an existing
element if a matching key is found.

Inserts an element into the map-operator substitution for
SetAt.

Removes an element specified by a key.

Removes all the elements from this map.

Returns the position of the first element.

Gets the next element for iterating.

Returns the number of elements in this map.

Tests for the empty-map condition (no elements).

CMap WordToOb

The CMap WordToOb class supports maps of CObject pointers keyed by
16-bit words.

The member functions of CMapWordToOb are similar to the member functions of
class CMapStringToOb. Because of this similarity, you can use the
CMapStringToOb reference documentation for member function specifics.
Wherever you see a CString or a const pointer to char as a function parameter or
return value, substitute WORD.

BOOl CMapStringToOb::lookup(const char* <key>.
CObject*& <rValue>) const;

for example, translates to

BOOl CMapWordToOb::lookup(WORD <key>. CObject*& <rValue>) const;

CMap WordToOb incorporates the IMPLEMENT_SERIAL macro to support
serialization and dumping of its elements. Each element is serialized in tum if a map
is stored to an archive, either with the overloaded insertion «<) operator or with the
Serialize member function.

If you need a dump of individual WORD-CObject elements, you must set the depth
of the dump context to 1 or greater.

When a CMapWordToOb object is deleted, or when its elements are removed, the
CObject objects are deleted as appropriate.

For more information on CMapWordToOb, see the article "Collections" in
Programming with MFC.

#include <afxcoll.h>

See Also CMapStringToOb

CMapWordToOb

865

CMapWordToOb

866

Construction

CMapWordToOb

Operations

Lookup

SetAt

operator []

RemoveKey

RemoveAll

GetStartPosition

GetNextAssoc

Status

GetCount

IsEmpty

Constructs a collection that maps words to CObject pointers.

Returns a CObject pointer using a word value as a key.

Inserts an element into the map; replaces an existing element if a
matching key is found.

Inserts an element into the map-operator substitution for
SetAt.

Removes an element specified by a key.

Removes all the elements from this map.

Returns the position of the first element.

Gets the next element for iterating.

Returns the number of elements in this map.

Tests for the empty-map condition (no elements).

CMap WordToPtr

The CMapWordToPtr class supports maps of void pointers keyed by 16-bit words.

The member functions of CMapWordToPtr are similar to the member functions of
class CMapStringToOb. Because of this similarity, you can use the
CMapStringToOb reference documentation for member function specifics.
Wherever you see a CObject pointer as a function parameter or return value,
substitute a pointer to void. Wherever you see a CString or a const pointer to char as
a function parameter or return value, substitute WORD.

Baal CMapStringToOb::lookup(const char* <key),
CObject*& <rValue>) const;

for example, translates to

Baal CMapWordToPtr::lookup(WORD <key), void*& <rValue>) const;

CMapWordToPtr incorporates the IMPLEMENT_DYNAMIC macro to support
run-time type access and dumping to a CDumpContext object. If you need a dump of
individual map elements, you must set the depth of the dump context to 1 or greater.

Word-to-pointer maps may not be serialized.

When a CMapWordToPtr object is deleted, or when its elements are removed, the
words and the pointers are removed. The entities referenced by the pointers are not
removed.

For more information on CMapWordToPtr, see the article "Collections" in
Programming with MFC.

#include <afxcoll.h>

See Also CMapStringToOb

CMap WordToPtr

867

CMap WordToPtr

868

Construction

CMapWordToPtr

Operations

Lookup

SetAt

operator []

RemoveKey

RemoveAll

GetStartPosition

GetNextAssoc

Status

GetCount

IsEmpty

Constructs a collection that maps words to void pointers.

Returns a void pointer using a word value as a key.

Inserts an element into the map; replaces an existing element if a
matching key is found.

Inserts an element into the map-operator substitution for
SetAt.

Removes an element specified by a key.

Removes all the elements from this map.

Returns the position of the first element.

Gets the next element for iterating.

Returns the number of elements in this map.

Tests for the empty-map condition (no elements).

CMDIChildWnd

The CMDIChildWnd class provides the functionality of a Windows multiple
document interface (MDI) child window, along with members for managing the
window.

An MDI child window looks much like a typical frame window, except that the MDI
child window appears inside an MDI frame window rather than on the desktop. An
MDI child window does not have a menu bar of its own, but instead shares the menu
of the MDI frame window. The framework automatically changes the MDI frame
menu to represent the currently active MDI child window.

To create a useful MDI child window for your application, derive a class from
CMDIChildWnd. Add member variables to the derived class to store data specific to
your application. Implement message-handler member functions and a message map
in the derived class to specify what happens when messages are directed to the
window.

There are three ways to construct an MDI child window:

• Directly construct it using Create.

• Directly construct it using LoadFrame.

• Indirectly construct it through a document template.

Before you call Create or LoadFrame, you must construct the frame-window object
on the heap using the C++ new operator. Before calling Create you can also register
a window class with the AfxRegisterWndClass global function to set the icon and
class styles for the frame.

Use the Create member function to pass the frame's creation parameters as
immediate arguments.

LoadFrame requires fewer arguments than Create, and instead retrieves most of its
default values from resources, including the frame's caption, icon, accelerator table,
and menu. To be accessible by LoadFrame, all these resources must have the same
resource ID (for example, IDR_MAINFRAME).

CMDIChildWnd

869

CMDIChildWnd

870

When a CMDIChildWnd object contains views and documents, they are created
indirectly by the framework instead of directly by the programmer. The
CDocTemplate object orchestrates the creation of the frame, the creation of the
containing views, and the connection of the views to the appropriate document. The
parameters of the CDocTemplate constructor specify the CRuntimeClass of the
three classes involved (document, frame, and view). A CRuntimeClass object is used
by the framework to dynamically create new frames when specified by the user (for
example, by using the File New command or the MDI Window New command).

A frame-window class derived from CMDIChildWnd must be declared with
DECLARE_DYNCREATE in order for the above RUNTIME_CLASS mechanism
to work correctly.

The CMDIChildWnd class inherits much of its default implementation from
CFrameWnd. For a detailed list of these features, please refer to the CFrameWnd
class description. The CMDIChildWnd class has the following additional features:

• In conjunction with the CMuItiDocTemplate class, multiple CMDIChildWnd
objects from the same document template share the same menu, saving Windows
system resources.

• The currently active MDI child window menu entirely replaces the MDI frame
window's menu, and the caption of the currently active MDI child window is
added to the MDI frame window's caption. For further examples of MDI child
window functions that are implemented in conjunction with an MDI frame
window, see the CMDIFrameWnd class description.

Do not use the C++ delete operator to destroy a frame window. Use
CWnd::DestroyWindow instead. The CFrameWnd implementation of
PostNcDestroy will delete the C++ object when the window is destroyed. When the
user closes the frame window, the default OnClose handler will call
DestroyWindow.

For more information on CMDIChildWnd, see "Frame Windows" in Chapter 3 of
Programming with MFC.

#include <afxwin.h>

See Also CWnd, CFrameWnd, CMDIFrameWnd

Construction

CMDIChildWnd

Initialization

Create

Constructs a CMDIChildWnd object.

Creates the Windows MDI child window associated with the
CMDIChildWnd object.

CMDIChildWnd::Create

Operations

MDIDestroy

MDIActivate

MDIMaximize

MDIRestore

GetMDIFrame

Destroys this MDI child window.

Activates this MDI child window.

Maximizes this MDI child window.

Restores this MDI child window from maximized or minimized
size.

Returns the parent MDI frame of the MDI client window.

Member Functions
CMDIChildWnd::CMDIChildWnd

Remarks

CMDIChildWnd();

Call to construct a CMDIChildWnd object. Call Create to create the visible window.

See Also CMDIChildWnd::Create

CMDIChildWnd: : Create
BOOL Create(LPCTSTR IpszClassName, LPCTSTR IpszWindowName,

Return Value

DWORD dwStyle = WS_CHILD I WS_ VISIBLE I WS_OVERLAPPEDWINDOW,
const RECT & reet = rectDefault, CMDIFrame Wnd* pParentWnd = NULL,
CCreateContext* pContext = NULL);

Nonzero if successful; otherwise O.

Parameters
IpszClassName Points to a null-terminated character string that names the Windows

class (a WNDCLASS structure). The class name can be any name registered with
the AfxRegisterWndClass global function. Should be NULL for a standard
CMDIChildWnd.

IpszWindowName Points to a null-terminated character string that represents the
window name. Used as text for the title bar.

dwStyle Specifies the window style attributes. The WS_ CHILD style is required.
For a list of window styles, see "Window Styles" in the "Styles Used by MFC"
section.

reet Contains the size and position of the window. The rectDefault value allows
Windows to specify the size and position of the new CMDIChildWnd.

871

CMDIChildWnd: :GetMDIFrame

Remarks

pParentWnd Specifies the window's parent. If NULL, the main application window
is used.

pContext Specifies a CCreateContext structure. This parameter can be NULL.

Call this member function to create a Windows MDI child window and attach it to
the CMDIChildWnd object.

The currently active MDI child frame window can determine the caption of the
parent frame window. This feature is disabled by turning off the
FWS_ADDTOTITLE style bit of the child frame window.

The framework calls this member function in response to a user command to create a
child window, and the framework uses the pContext parameter to properly connect
the child window to the application. When you call Create, pContext can be NULL.

See Also CMDIChildWnd::CMDIChildWnd, CWnd::PreCreateWindow

CMDIChildWnd::GetMDIFrame
CMDIFrameWnd* GetMDIFrame();

Return Value

Remarks

A pointer to the MDI parent frame window.

Call this function to return the MDI parent frame. The frame returned is two parents
removed from the CMDIChildWnd and is the parent of the window of type
MDICLIENT that manages the CMDIChildWnd object. Call the GetParent
member function to return the CMDIChildWnd object's immediate MDICLIENT
parent as a temporary CWnd pointer.

See Also CWnd::GetParent

CMDIChildWnd::MDIActivate
void MDIActivate();

Remarks

872

Call this member function to activate an MDI child window independently of the
MDI frame window. When the frame becomes active, the child window that was last
activated will be activated as well.

See Also CMDIFrame Wnd: :MDIGetActive, CWnd: :OnNcActivate,
CMDIFrameWnd::MDINext, WM_MDIACTIVATE

CMDIChildWnd::MDIRestore

CMDIChildWnd: :MDIDestroy
void MDIDestroy();

Remarks
Call this member function to destroy an MOl child window.

The member function removes the title of the child window from the frame window
and deactivates the child window.

See Also WM_MDIDESTROY, CMDIChildWnd::Create

CMDIChildWnd: :MDIMaximize

Remarks

void MDIMaximize();

Call this member function to maximize an MOl child window. When a child window
is maximized, Windows resizes it to make its client area fill the client area of the
frame window. Windows places the child window's Control menu in the frame's
menu bar so that the user can restore or close the child window and adds the title of
the child window to the frame-window title.

See Also WM_MDIMAXIMIZE, CMDIChildWnd::MDIRestore

CMDIChildWnd: :MDIRestore
void MDIRestore();

Remarks
Call this member function to restore an MOl child window from maximized or
minimized size.

See Also CMDIChildWnd::MDIMaximize, WM_MDIRESTORE

873

CMDIFrameWnd

CMDIFrameWnd

874

The CMDIFrameWnd class provides the functionality of a Windows multiple
document interface (MDI) frame window, along with members for managing the
window.

To create a useful MDI frame window for your application, derive a class from
CMDIFrameWnd. Add member variables to the derived class to store data specific
to your application. Implement message-handler member functions and a message
map in the derived class to specify what happens when messages are directed to the
window.

You can construct an MDI frame window by calling the Create or LoadFrame
member function of CFrameWnd.

Before you call Create or LoadFrame, you must construct the frame window object
on the heap using the C++ new operator. Before calling Create you can also register
a window class with the AfxRegisterWndClass global function to set the icon and
class styles for the frame.

Use the Create member function to pass the frame's creation parameters as
immediate arguments.

LoadFrame requires fewer arguments than Create, and instead retrieves most of its
default values from resources, including the frame's caption, icon, accelerator table,
and menu. To be accessed by LoadFrame, all these resources must have the same
resource ID (for example, IDR_MAINFRAME).

Though MDIFrameWnd is derived from CFrameWnd, a frame window class
derived from CMDIFrameWnd need not be declared with
DECLARE_DYNCREATE.

The CMDIFrame Wnd class inherits much of its default implementation from
CFrameWnd. For a detailed list of these features, refer to the CFrameWnd class
description. The CMDIFrameWnd class has the following additional features:

• An MDI frame window manages the MDICLIENT window, repositioning it in
conjunction with control bars. The MDI client window is the direct parent of MDI

child frame windows. The WS_HSCROLL and WS_ VSCROLL window styles
specified on a CMDIFrameWnd apply to the MDI client window rather than the
main frame window so the user can scroll the MDI client area (as in the Windows
Program Manager, for example).

• An MDI frame window owns a default menu that is used as the menu bar when
there is no active MDI child window. When there is an active MDI child, the
MDI frame window's menu bar is automatically replaced by the MDI child
window menu.

• An MDI frame window works in conjunction with the current MDI child window,
if there is one. For instance, command messages are delegated to the currently
active MDI child before the MDI frame window.

• An MDI frame window has default handlers for the following standard Window
menu commands:

• ID_WINDOW_TILE_VERT

• ID_WINDOW_TILE_HORZ

• ID_WINDOW_CASCADE

• ID_WINDOW_ARRANGE

• An MDI frame window also has an implementation of ID_ WINDOW_NEW,
which creates a new frame and view on the current document. An application can
override these default command implementations to customize MDI window
handling.

Do not use the C++ delete operator to destroy a frame window. Use
CWnd::DestroyWindow instead. The CFrameWnd implementation of
PostNcDestroy will delete the C++ object when the window is destroyed. When the
user closes the frame window, the default OnClose handler will call
DestroyWindow.

For more information on CMDIFrameWnd, see "Frame Windows" in Chapter 3 of
Programming with MFC.

#include <afxwin.h>

SeeAlso CWnd, CFrameWnd, CMDIChildWnd

Construction

CMDIFrameWnd

Operations

MDIActivate

MDIGetActive

Constructs a CMDIFrameWnd.

Activates a different MDI child window.

Retrieves the currently active MDI child window, along
with a flag indicating whether or not the child is
maximized.

CMDIFrameWnd

875

CMDIFrameWnd::CMDIFrameWnd

MDIIconArrange

MDIMaximize

MDINext

MDIRestore

MDISetMenu

MDITile

MDICascade

Overridables

Create Client

GetWindowMenuPopup

Arranges all minimized document child windows.

Maximizes an MDI child window.

Activates the child window immediately behind the
currently active child window and places the currently
active child window behind all other child windows.

Restores an MDI child window from maximized or
minimized size.

Replaces the menu of an MDI frame window, the
Window pop-up menu, or both.

Arranges all child windows in a tiled format.

Arranges all child windows in a cascaded format.

Creates a Windows MDICLIENT window for this
CMDIFrameWnd. Called by the OnCreate member
function of CWnd.

Returns the Window pop-up menu.

Member Functions
CMDIFrame Wnd: :CMDIFrame Wnd

Remarks

CMDIFrameWnd();

Call this member function to construct a CMDIFrameWnd object. Call the Create
or LoadFrame member function to create the visible MDI frame window.

See Also CFrameWnd::Create, CFrameWnd::LoadFrame

CMDIFrame Wnd: :CreateClient
virtual BOOL CreateClient(LPCREATESTRUCT IpCreateStruct, CMenu* pWindowMenu);

Return Value
Nonzero if successful; otherwise O.

Parameters
IpCreateStruct A long pointer to a CREATESTRUCT structure.

pWindowMenu A pointer to the Window pop-up menu.

876

CMDIFrame Wnd: :MDIActivate

Remarks
Creates the MDI client window that manages the CMDIChildWnd objects.

This member function should be called if you override the OnCreate member
function directly.

See Also CMDIFrameWnd::CMDIFrameWnd

CMDIFrameWnd::GetWindowMenuPopup
virtual HMENU GetWindowMenuPopup(HMENU hMenuBar);

Return Value
The Window pop-up menu if one exists; otherwise NULL.

Parameters

Remarks

hM enuBar The current menu bar.

Call this member function to obtain a handle to the current pop-up menu named
"Window" (the pop-up menu with menu items for MDI window management).

The default implementation looks for a pop-up menu containing standard Window
menu commands such as ID_ WINDOW _NEW and ID_ WINDOW _TILE_HORZ.

Override this member function if you have a Window menu that does not use the
standard menu command IDs.

See Also CMDIFrame Wnd: :MDIGetActive

CMDIFrame Wnd: :MDIActivate
void MDIActivate(CWnd* p WndActivate);

Parameters

Remarks

p WndActivate Points to the MDI child window to be activated.

Call this member function to activate a different MDI child window. This member
function sends the WM_MDIACTIVATE message to both the child window being
activated and the child window being deactivated.

This is the same message that is sent if the user changes the focus to an MDI child
window by using the mouse or keyboard.

877

CMDIFrameWnd::MDICascade

Note An MDI child window is activated independently of the MDI frame window.
When the frame becomes active, the child window that was last activated is sent a
WM_NCACTIVATE message to draw an active window frame and caption bar, but
it does not receive another WM_MDIACTIVATE message.

See Also CMDIFrameWnd::MDIGetActive, CMDIFrameWnd::MDINext,
WM_ACTIVATE, WM_NCACTIVATE

CMDIFrame Wnd: :MDICascade
void MDICascade();
void MDICascade(int nType);

Parameters

Remarks

nType Specifies a cascade flag. Only the following flag can be specified:
MDITILE_SKIPDISABLED, which prevents disabled MDI child windows from
being cascaded.

Call this member function to arrange all the MDI child windows in a cascade format.

The first version of MDICascade, with no parameters, cascades all MDI child
windows, including disabled ones. The second version optionally does not cascade
disabled MDI child windows if you specify MDITILE_SKIPDISABLED for the
nType parameter.

See Also CMDIFrameWnd::MDIIconArrange, CMDIFrameWnd::MDITile,
WM_MDICASCADE

CMDIFrame Wnd: :MDIGetActive
CMDIChildWnd* MDIGetActive(BOOL* pbMaximized = NULL) const;

Return Value
A pointer to the active MDI child window.

Parameters

Remarks

878

pbMaximized A pointer to a BOOL return value. Set to TRUE on return if the
window is maximized; otherwise FALSE.

Retrieves the current active MDI child window, along with a flag indicating whether
the child window is maximized.

See Also CMDIFrameWnd::MDIActivate, WM_MDIGETACTIVE

CMDIFrameWnd::MDINext

CMDIFrame Wnd: :MDIIconArrange

Remarks

void MDIIconArrange();

Arranges all minimized document child windows. It does not affect child windows
that are not minimized.

See Also CMDIFrameWnd::MDICascade, CMDIFrameWnd::MDITile,
WM_MDIICONARRANGE

CMDIFrame Wnd: :MDIMaximize
void MDIMaximize(CWnd* p Wnd);

Parameters

Remarks

p Wnd Points to the window to maximize.

Call this member function to maximize the specified MDI child window. When a
child window is maximized, Windows resizes it to make its client area fill the client
window. Windows places the child window's Control menu in the frame's menu bar
so the user can restore or close the child window. It also adds the title of the child
window to the frame-window title.

If another MDI child window is activated when the currently active MDI child
window is maximized, Windows restores the currently active child and maximizes
the newly activated child window.

See Also WM_MDIMAXIMIZE, CMDIFrameWnd::MDIRestore

CMDIFrame Wnd: :MDINext
void MDINext();

Remarks
Activates the child window immediately behind the currently active child window
and places the currently active child window behind all other child windows.

If the currently active MDI child window is maximized, the member function restores
the currently active child and maximizes the newly activated child.

See Also CMDIFrame Wnd: :MDIActivate, CMDIFrame Wnd: :MDIGetActive,
WM_MDINEXT

879

CMDIFrameWnd::MDIRestore

CMDIFrame Wnd: :MDIRestore
void MDIRestore(CWnd* pWnd);

Parameters
p Wnd Points to the window to restore.

Remarks
Restores an MDI child window from maximized or minimized size.

See Also CMDIFrameWnd::MDIMaximize, WM_MDlRESTORE

CMDIFrame Wnd: :MDISetMenu
CMenu* MDISetMenu(CMenu* pFrameMenu, CMenu* pWindowMenu);

Return Value
A pointer to the frame-window menu replaced by this message. The pointer may be
temporary and should not be stored for later use.

Parameters

Remarks

880

pFrameMenu Specifies the menu of the new frame-window menu. If NULL, the
menu is not changed.

pWindowMenu Specifies the menu of the new Window pop-up menu. If NULL, the
menu is not changed.

Call this member function to replace the menu of an MDI frame window, the Window
pop-up menu, or both.

After calling MDISetMenu, an application must call the DrawMenuBar member
function of CWnd to update the menu bar.

If this call replaces the Window pop-up menu, MDI child-window menu items are
removed from the previous Window menu and added to the new Window pop-up
menu.

If an MDI child window is maximized and this call replaces the MDI frame-window
menu, the Control menu and restore controls are removed from the previous frame
window menu and added to the new menu.

Do not call this member function if you use the framework to manage your MDI child
windows.

See Also CWnd::DrawMenuBar, WM_MDISETMENU

CMDIFrame Wnd: :MDITile

CMDIFrame Wnd: :MDITile
void MDITile();
void MDITile(int nType);

Parameters

Remarks

nType Specifies a tiling flag. This parameter can be anyone of the following flags:

• MDITILE_HORIZONTAL Tiles MDI child windows so that one window
appears above another.

• MDITILE_SKIPDISABLED Prevents disabled MDI child windows from
being tiled.

• MDITILE_ VERTICAL Tiles MDI child windows so that one window
appears beside another.

Call this member function to arrange all child windows in a tiled format.

The first version of MDITile, without parameters, tiles the windows vertically under
Windows versions 3.1 and later. The second version tiles windows vertically or
horizontally, depending on the value of the nType parameter.

See Also CMDIFrameWnd::MDICascade,
CMDIFrameWnd::MDIIconArrange, WM_MDITILE

881

CMernFile

CMemFile

882

CMemFile is the CFile-derived class that supports memory files. These memory files
behave like disk files except that the file is stored in RAM rather than on disk. A
memory file is useful for fast temporary storage or for transferring raw bytes or
serialized objects between independent processes.

CMemFile objects can automatically allocate their own memory or you can attach
your own memory block to the CMemFile object by calling Attach. In either case,
memory for growing the memory file automatically is allocated in nGrowBytes-sized
increments if nGrowBytes is not zero.

The memory block will automatically be deleted upon destruction of the CMemFile
object if the memory was originally allocated by the CMemFile object; otherwise,
you are responsible for de allocating the memory you attached to the object.

You can access the memory block through the pointer supplied when you detach it
from the CMemFile object by calling Detach.

The most common use of CMemFile is to create a CMemFile object and use it by
calling CFile member functions. Note that creating a CMemFile automatically opens
it: you do not call CFile: : Open, which is only used for disk files. Because CMemFile
doesn't use a disk file, the data member CFile::m_hFile is not used and has no
meaning.

The CFile member functions Duplicate, LockRange, and UnlockRange are not
implemented for CMemFile. If you call these functions on a CMemFile object, you
will get a CNotSupportedException.

CMemFile uses the run-time library functions malloc, realloc, and free to allocate,
reallocate, and deallocate memory; and the intrinsic memcpy to block copy memory
when reading and writing. If you'd like to change this behavior or the behavior when
CMemFile grows a file, derive your own class from CMemFile and override the
appropriate functions.

For more information on CMemFile, see the article "Files" in Programming with
MFC and "File Handling" in the Run-Time Library Reference.

#include <afx.h>

See Also CFile, CMemFile::CMemFile, CMemFile::Attach, CMemFile::Detach

Construction

CMemFile

Operations

Attach

Detach

Advanced Overridables

Alloc

Free

Realloc

Memcpy

GrowFile

Constructs a memory file object.

Attaches a block of memory to CMemFile.

Detaches the block of memory from CMemFile and returns a pointer
to the block of memory detached.

Override to modify memory allocation behavior.

Override to modify memory deallocation behavior.

Override to modify memory reallocation behavior.

Override to modify memory copy behavior when reading and writing
files.

Override to modify behavior when growing a file.

Member Functions
CMemFile: :Alloc

BYTE * Alloe(DWORD nBytes);

Return Value
A pointer to the memory block that was allocated, or NULL if the allocation failed.

Parameters

Remarks

nBytes Number of bytes of memory to be allocated.

This function is called by CMemFile member functions. Override this function to
implement custom memory allocation. If you override this function, you'll probably
want to override Free and Realloe as well.

The default implementation uses the run-time library function malloe to allocate
memory.

See Also CMemFile::Free, CMemFile::Realloe, malloe

CMemFile: : Attach
void Attaeh(BYTE* lpBuffer, UINT nBufferSize, UINT nGrowBytes = 0);

Parameters
lpBuffer Pointer to the buffer to be attached to CMemFile.

CMemFile: : Attach

883

CMemFile::CMemFile

Remarks

nBufferSize An integer that specifies the size of the buffer in bytes.

nGrowBytes The memory allocation increment in bytes.

Call this function to attach a block of memory to CMemFile. This causes CMemFile
to use the block of memory as the memory file.

If nGrowBytes is 0, CMemFile will set the file length to nBufferSize. This means that
the data in the memory block before it was attached to CMemFile will be used as the
file. Memory files created in this manner cannot be grown.

Since the file cannot be grown, be careful not to cause CMemFile to attempt to grow
the file. For example, don't call the CMemFile overrides of CFile:Write to write
past the end or don't call CFile:SetLength with a length longer than nBufferSize.

If nGrowBytes is greater than 0, CMemFile will ignore the contents of the memory
block you've attached. You'll have to write the contents of the memory file from
scratch using the CMemFile override of CFile:: Write. If you attempt to write past
the end of the file or grow the file by calling the CMemFile override of
CFile::SetLength, CMemFile will grow the memory allocation in increments of
nGrowBytes. Growing the memory allocation will fail if the memory block you pass
to Attach wasn't allocated with a method compatible with Alloc. To be compatible
with the default implementation of Alloc, you must allocate the memory with the run-
time library function malloc or calloc. \

See Also CMemFile::CMemFile, CMemFile::Detach, CMemFile::Alloc,
CFile:: Write, CFile: :SetLength

CMemFile: :CMemFile
CMemFile(UINT nGrowBytes = 1024);
CMemFile(BYTE* IpBuffer, UINT nBufferSize, UINT nGrowBytes = 0);

Parameters

Remarks

884

nGrowBytes The memory allocation increment in bytes.

IpBuffer Pointer to a buffer that receives information of the size nBufferSize.

nBufferSize An integer that specifies the size of the file buffer, in bytes.

The first overload opens an empty memory file. Note that the file is opened by the
constructor and that you should not call CFile::Open.

The second overload acts the same as if you used the first constructor and
immediately called Attach with the same parameters. See Attach for details.

Example
II example for CMemFile::CMemFile
CMemFile f; II Ready to use - no Open necessary.

BYTE * pBuf - (BYTE *)new char [1024];
CMemFile g(pBuf. 1024. 256);
II same as CMemFile g; g.Attach(pBuf. 1024. 256);

See Also CMemFile: : Attach

CMemFile: : Detach
BYTE * Detach();

Return Value

Remarks

A pointer to the memory block that contains the contents of the memory file.

Call this function to get a pointer to the memory block being used by CMemFile.

Calling this function also closes the CMemFile. You can reattach the memory block
to CMemFile by calling Attach. If you want to reattach the file and use the data'in it,
you should call CFile::GetLength to get the length·of the file before calling Detach.
Note that if you attach a memory block to CMemFile so that you can use its data
(nGrowBytes == O),then you won't be able to grow the memory file.

See Also CMemFile: :Attach, CFile: : GetLength

CMemFile: :Free
void Free(BYTE * IpMem);

Parameters

Remarks

IpMem Pointer to the memory to be deall<;>cated.

This function is called by CMemFile member functions. Override this function to
implement custom memory deallocation. If you override this function, 'you'll probably
want to override Alloc and Realloc as well:

See Also CMemFile: :AlIoc, CMemFile: : Realloc

CMemFile:: Grow File
void GrowFile(DWORD dwNewLen);

Parameters
dwNewLen New size of the memory file.

CMemFile::GrowFile

885

CMernFile::Memcpy

Remarks
This function is called by several of the CMemFile member functions. You can
override it if you want to change how CMemFile grows its file. The default
implementation calls Realloc to grow an existing block (or Alloc to create a memory
block), allocating memory in multiples of the nGrowBytes value specified in the
constructor or Attach call.

See Also CMemFile::Alloc, CMemFile::Realloc, CMemFile::CMemFile,
CMemFile::Attach

CMemFile: : Memcpy
BYTE * Memcpy(BYTE* lpMemTarget, BYTE* lpMemSource, UINT nBytes);

Return Value
A copy of lpMemTarget.

Parameters

Remarks

lpMemTarget Pointer to the memory block into which the source memory will be
copied.

lpMemSource Pointer to the source memory block.

nBytes Number of bytes to be copied.

This function is called by the CMemFile overrides of CFile: :Read and CFile:: Write
to transfer data to and from the memory file. Override this function if you want to
change the way that CMemFile does these memory copies.

See Also CFile: : Read, CFile:: Write

CMemFile: : Realloc
BYTE * Realloc(BYTE* lpMem, DWORD nBytes);

Return Value
A pointer to the memory block that was reallocated (and possibly moved), or NULL
if the reallocation failed.

Parameters
lpMem A pointer to the memory block to be reallocated.

nBytes New size for the memory block.

886

Remarks
This function is called by CMemFile member functions. Override this function to
implement custom memory reallocation. If you override this function, you'll probably
want to override Alloc and Free as well.

See Also CMemFile: :Alloc, CMemFile: : Free

CMemFile: : Rea110c

887

CMemoryException

CMemoryException

A CMemoryException object represents an out-of-memory exception condition. No
further qualification is necessary or possible. Memory exceptions are thrown
automatically by new. If you write your own memory functions, using malloc, for
example, then you are responsible for throwing memory exceptions.

For more information on CMemoryException, see the article "Exceptions" in
Programming with MFC.

#include <afx.h>

See Also

Construction

CMemoryException Constructs a CMemoryException object.

Member Functions
CMemory Exception: :CMemory Exception

CMemoryException();

Remarks

888

Constructs a CMemoryException object. Do not use this constructor directly, but
rather call the global function AfxThrowMemoryException. This global function
can succeed in an out-of-memory situation because it constructs the exception object
in previously allocated memory. For more information about exception processing,
see the article "Exceptions" in Programming with MFC.

See Also AfxThrowMemoryException, Exception Processing

CMemoryState
CMemoryState provides a convenient way to detect memory leaks in your program.
A "memory leak" occurs when memory for an object is allocated on the heap but not
deallocated when it is no longer required. Such memory leaks can eventually lead to
out-of-memory errors. There are several ways to allocate and deallocate memory in
your program:

• Using the malloc/free family of functions from the run-time library.

• U sing the Windows API memory management functions, LocalAlloclLocalFree
and GlobalAlloc/GlobalFree.

• U sing the C++ new and delete operators.

The CMemoryState diagnostics only help detect memory leaks caused when memory
allocated using the new operator is not deallocated using delete. The other two
groups of memory-management functions are for non-C++ programs, and mixing
them with new and delete in the same program is not recommended. An additional
macro, DEBUG_NEW, is provided to replace the new operator when you need file
and line-number tracking of memory allocations. DEBUG_NEW is used whenever
you would normally use the new operator.

As with other diagnostics, the CMemoryState diagnostics are only available in
debug versions of your program. A debug version must have the _DEBUG constant
defined.

If you suspect your program has a memory leak, you can use the Checkpoint,
Difference, and DumpStatistics functions to discover the difference between the
memory state (objects allocated) at two different points in program execution. This
information can be useful in determining whether a function is cleaning up all the
objects it allocates.

If simply knowing where the imbalance in allocation and deallocation occurs does riot
provide enough information, you can use the DumpAIIObjectsSince function to
dump all objects allocated since the previous call to Checkpoint. This dump shows
the order of allocation, the source file and line where the object was allocated (if you
are using DEBUG_NEW for allocation), and the derivation of the object, its address,
and its size. DumpAIIObjectsSince also calls each object's Dump function to
provide information about its current state.

For more information about how to use CMemoryState and other diagnostics, see
the article "Diagnostics: Detecting Memory Leaks" in Programming with MFC.

Note Declarations of objects of type CMemoryState and calls to member functions should be
bracketed by /Ii f defi ned (_DEBUG) I/lendi f directives. This causes memory
diagnostics to be included only in debugging builds of your program.

CMemoryState

889

CMemoryState: : Checkpoint

Construction

CMemoryState

Checkpoint

Operations

Difference

DumpAllObjectsSince

DumpStatistics

Constructs a class-like structure that controls memory
checkpoints.

Obtains a snapshot or "checkpoint" of the current memory
state.

Computes the difference between two objects of type
CMemoryState.

Dumps a summary of all currently allocated objects since
a previous checkpoint.

Prints memory allocation statistics for a CMemoryState
object.

Member Functions
CMemoryState: : Checkpoint

Remarks

Example

void Checkpoint();

Takes a snapshot summary of memory and stores it in this CMemoryState object.
The CMemoryState member functions Difference and DumpAllObjectsSince use
this snapshot data.

See the example for the CMemoryState constructor.

CMemoryState: :CMemoryState

Remarks

Example

890

CMemoryState();

Constructs an empty CMemoryState object that must be filled in by the Checkpoint
or Difference member function.

II example for CMemoryState::CMemoryState
II Includes all CMemoryState functions
CMemoryState msOld. msNew. msDif;
msOld.Checkpoint();
CAge* pagel = new CAge(21);
CAge* page2 = new CAge(22);
msOld.DumpAllObjectsSince();

CMemoryState: :DumpAllObjectsSince

msNew.Checkpoint();
msDif.Difference(msOld, msNew);
msDif.DumpStatistics();

The results from this program are as follows:

II The results of this program are as follows:
Dumping objects -)
{2} a CObject at $190A
{I} a CObject at $18EA
Object dump complete.
o bytes in 0 Free Blocks
8 bytes in 2 Object Blocks
o bytes in 0 Non-Object Blocks
Largest number used: 8 bytes
Total allocations: 8 bytes

CMemoryState: : Difference
BOOL Difference(const CMemoryState& oldState, const CMemoryState& newState);

Return Value
Nonzero if the two memory states are different; otherwise O.

Parameters

Remarks

Example

oldState The initial memory state as defined by a CMemoryState checkpoint.

newState The new memory state as defined by a CMemoryState checkpoint.

Compares two CMemoryState objects, then stores the difference into this
CMemoryState object. Checkpoint must have been called for each of the two
memory-state parameters.

See the example for the CMemoryState constructor.

CMemoryState: :DumpAIIObjectsSince

Remarks

Example

void DumpAlIObjectsSince() const;

Calls the Dump function for all objects of a type derived from class CObject that
were allocated (and are still allocated) since the last Checkpoint call for this
CMemoryState object.

Calling DumpAlIObjectsSince with an uninitialized CMemoryState object will
dump out all objects currently in memory.

See the example for the CMemoryState constructor.

891

CMemoryState: :DumpStatistics

CMemoryState: : DumpS tatistics
void DumpStatistics() const;

Remarks

Example

892

Prints a concise memory statistics report from a CMemoryState object that is filled
by the Difference member function. The report, which is printed on the afxDump
device, shows the following:

• Number of "object" blocks (blocks of memory allocated using CObject::operator
new) still allocated on the heap.

• Number of nonobject blocks still allocated on the heap.

• The maximum memory used by the program at anyone time (in bytes).

• The total memory currently used by the program (in bytes).

A sample report looks like this:

o bytes in 0 Free Blocks
8 bytes in 2 Object Blocks
o bytes in 0 Non-Object Blocks
Largest number used: 8 bytes
Total allocations: 8 bytes

• The first line describes the number of blocks whose deallocation was delayed if
afxMemDF was set to delayFreeMemDF. For more information, see
afxMemDF, in the "Macros and Globals" section.

• The second line describes how many object blocks still remain allocated on
the heap.

• The third line describes how many nonobject blocks (arrays or structures allocated
with new) were allocated on the heap and not deallocated.

• The fourth line gives the maximum memory used by your program at anyone
time.

• The last line lists the total amount of memory used by your program.

See the example for the CMemoryState constructor.

CMenu

The CMenu class is an encapsulation of the Windows HMENU. It provides member
functions for creating, tracking, updating, and destroying a menu.

Create a CMenu object on the stack frame as a local, then call CMenu's member
functions to manipulate the new menu as needed. Next, call CWnd::SetMenu to set
the menu to awindow, followed immediately by a call to the CMenu object's Detach
member function. The CWnd::SetMenu member function sets the window's menu to
the new menu, causes the window. to be redrawn to reflect the menu change, and also
passes ownership of the menu to the window. The call to Detach detaches the
HMENU from the CMenu object, so that when the local CMenu variable passes out
of scope, the CMenu object destructor does nqt attempt to destroy a menu it no
longer owns. The menu itself is automatically destroyed when the window is
destroyed.

You can use the LoadMenulndirect member function to create a menu from a
template in memory, but a menu created from a resource by a call to LoadMenu is
more easily maintained, and the menu resource itself can be created and modified by
the menu editor.

#include <afxwin.h>

See Also CObject

Data Members

Construction

eMenu

Initialization

Attach

Detach

FromHandle

GetSafeHmenu

DeleteTempMap

Specifies the handle to the Windows menu attached to the
eMenu object.

Constructs a eMenu object.

Attaches a Windows menu handle to a eMenu object.

Detaches a Windows menu handle from a eMenu object and
returns the handle.

Returns a pointer to a eMenu object given a Windows menu
handle.

Returns the m_hMenu wrapped by this eMenu object.

Deletes any temporary eMenu objects created by the
FromHandle member function.

CMenu

893

CMenu

894

CreateMenu

CreatePopupMenu

LoadMenu

LoadMenulndirect

DestroyMenu

Menu Operations

DeleteMenu

TrackPopupMenu

Menu Item Operations

AppendMenu

CheckMenuItem

CheckMenuRadioltem

EnableMenuItem

GetMenultemCount

GetMenultemID

GetMenuState

GetMenuString

GetSubMenu

InsertMenu

ModifyMenu

RemoveMenu

Creates an empty menu and attaches it to a CMenu object.

Creates an empty pop-up menu and attaches it to a CMenu
object.

Loads a menu resource from the executable file and attaches it
to a CMenu object.

Loads a menu from a menu template in memory and attaches it
to a CMenu object.

Destroys the menu attached to a CMenu object and frees any
memory that the menu occupied.

Deletes a specified item from the menu. If the menu item has
an associated pop-up menu, destroys the handle to the pop-up
menu and frees the memory used by it.

Displays a floating pop-up menu at the specified location and
tracks the selection of items on the pop-up menu.

Appends a new item to the end of this menu.

Places a check mark next to or removes a check mark from a
menu item in the pop-up menu.

Places a radio button next to a menu item and removes the
radio button from all of the other menu items in the group.

Enables, disables, or dims (grays) a menu item.

Determines the number of items in a pop-up or top-level menu.

Obtains the menu-item identifier for a menu item located at the
specified position.

Returns the status of the specified menu item or the number of
items in a pop-up menu.

Retrieves the label of the specified menu item.

Retrieves a pointer to a pop-up menu.

Inserts a new menu item at the specified position, moving other
items down the menu.

Changes an existing menu item at the specified position.

Deletes a menu item with an associated pop-up menu from the
specified menu.

CMenu: : AppendMenu

Overridables

DrawItem

MeasureItem

Called by the framework when a visual aspect of an owner
drawn menu changes.

Called by the framework to determine menu dimensions when
an owner-drawn menu is created.

Member Functions
CMenu: : AppendMenu

BOOL AppendMenu(UINT nFlags, UINT nIDNewltem = 0, LPCTSTR lpszNewltem = NULL);
BOOL AppendMenu(UINT nFlags, UINT nIDNewltem, const CBitmap* pBmp);

Return Value
Nonzero if the function is successful; otherwise O.

Parameters
nFlags Specifies information about the state of the new menu item when it is added

to the menu. It consists of one or more of the values listed in the Remarks section
in Books Online.

nIDNewltem Specifies either the command ID of the new menu item or, if nFlags is
set to MF _POPUP, the menu handle (HMENU) of a pop-up menu. The
nIDNewltem parameter is ignored (not needed) if nFlags is set to
MF _SEPARATOR.

lpszNewltem Specifies the content of the new menu item. The nFlags parameter is
used to interpret lpszNewltem in the following way:

nFlags Interpretation of IpszNewltem

Contains an application-supplied 32-bit value that the
application can use to maintain additional data
associated with the menu item. This 32-bit value is
available to the application when it processes
WM_MEASUREITEM and WM_DRA WITEM
messages. The value is stored in the itemData member
of the structure supplied with those messages.

Contains a pointer to a null-terminated string. This is
the default interpretation.

The IpszNewltem parameter is ignored (not needed).

pBmp Points to a CBitmap object that will be used as the menu item.

895

CMenu: :AppendMenu

Remarks

896

Appends a new item to the end of a menu. The application can specify the state of the
menu item by setting values in nFlags. When nIDNewltem specifies a pop-up menu,
it becomes part of the menu to which it is appended. If that menu is destroyed, the
appended menu will also be destroyed. An appended menu should be detached from a
CMenu object to avoid conflict. Note that MF _STRING and MF _OWNERDRAW
are not valid for the bitmap version of AppendMenu.

The following list describes the flags that may be set in nFlags.

• MF _CHECKED Acts as a toggle with MF _UNCHECKED to place the default
check mark next to the item. When the application supplies check-mark bitmaps
(see the SetMenuItemBitmaps member function), the "check mark on" bitmap is
displayed.

• MF _UNCHECKED Acts as a toggle with MF _CHECKED to remove a check
mark next to the item. When the application supplies check-mark bitmaps (see the
SetMenultemBitmaps member function), the "check mark off' bitmap is
displayed.

• MF _DISABLED Disables the menu item so that it cannot be selected but does
not dim it.

• MF _ENABLED Enables the menu item so that it can be selected and restores it
from its dimmed state.

• MF _GRAYED Disables the menu item so that it cannot be selected and dims it.

• MF _MENUBARBREAK Places the item on a new line in static menus or in a
new column in pop-up menus. The new pop-up menu column will be separated
from the old column by a vertical dividing line.

• MF _MENUBREAK Places the item on a new line in static menus or in a new
column in pop-up menus. No dividing line is placed between the columns.

• MF _OWNERDRAW Specifies that the item is an owner-draw item. When the
menu is displayed for the first time, the window that owns the menu receives a
WM_MEASUREITEM message, which retrieves the height and width of the
menu item. The WM_DRA WITEM message is the one sent whenever the owner
must update the visual appearance of the menu item. This option is not valid for a
top-level menu item.

• MF _POPUP Specifies that the menu item has a pop-up menu associated with it.
The ID parameter specifies a handle to a pop-up menu that is to be associated with
the item. This is used for adding either a top-level pop-up menu or a hierarchical
pop-up menu to a pop-up menu item.

• MF _SEPARATOR Draws a horizontal dividing line. Can only be used in a pop
up menu. This line cannot be dimmed, disabled, or highlighted. Other parameters
are ignored.

• MF _STRING Specifies that the menu item is a character string.

Each of the following groups lists flags that are mutually exclusive and cannot be
used together:

• MF _DISABLED, MF _ENABLED, and MF _GRAYED

• MF_STRING, MF_OWNERDRAW, MF_SEPARATOR, and the bitmap
version

• MF _MENUBARBREAK and MF _MENUBREAK

• MF _CHECKED and MF _UNCHECKED

Whenever a menu that resides in a window is changed (whether or not the window is
displayed), the application should call CWnd::DrawMenuBar.

See Also CWnd: :DrawMenuBar, CMenu: :InsertMenu, CMenu::RemoveMenu,
CMenu::SetMenultemBitmaps, CMenu: : Detach , : :AppendMenu

CMenu: : Attach
BOOL Attach(HMENU hMenu);

Return Value
Nonzero if the operation was successful; otherwise O.

Parameters

Remarks

Example

hMenu Specifies a handle to a Windows menu.

Attaches an existing Windows menu to a CMenu object. This function should not be
called if a menu is already attached to the CMenu object. The menu handle is stored
in the m_hMenu data member.

If the menu you want to manipulate is already associated with a window, you can use
the CWnd::GetMenu function to get a handle to the menu.

CMenu mnu;
HMENU hmnu = pWnd->GetMenu();
mnu.Attach(hmnu);
II Now you can manipulate the window's menu as a CMenu
II object ...

See Also CMenu::Detach, CMenu::CMenu, CWnd::GetMenu

CMenu: : Attach

897

CMenu: :CheckMenultem

CMenu: :CheckMenuItem
UINT CheckMenuItem(UINT nIDCheckltem, UINT nCheck);

Return Value
The previous state of the item: MF _CHECKED or MF _UNCHECKED, or -1 if the
menu item did not exist.

Parameters

Remarks

nIDCheckltem Specifies the menu item to be checked, as determined by nCheck.

nCheck Specifies how to check the menu item and how to determine the item's
position in the menu. The nCheck parameter can be a combination of
MF _CHECKED or MF _UNCHECKED with MF _BYPOSITION or
MF _BY COMMAND flags. These flags can be combined by using the bitwise OR
operator. They have the following meanings:

• MF _BY COMMAND Specifies that the parameter gives the command ID of
the existing menu item. This is the default.

• MF _BYPOSITION Specifies that the parameter gives the position of the
existing menu item. The first item is at position O.

• MF_CHECKED Acts as a toggle with MF_UNCHECKED to place the
default check mark next to the item.

• MF _UNCHECKED Acts as a toggle with MF _CHECKED to remove a
check mark next to the item.

Adds check marks to or removes check marks from menu items in the pop-up menu.
The nIDCheckltem parameter specifies the item to be modified.

The nIDCheckltem parameter may identify a pop-up menu item as well as a menu
item. No special steps are required to check a pop-up menu item. Top-level menu
items cannot be checked. A pop-up menu item must be checked by position since it
does not have a menu-item identifier associated with it.

See Also CMenu: : GetMenuState, ::CheckMenuItem,
CMenu::CheckMenuRadioItem

CMenu: :CheckMenuRadioItem
BOOL CheckMenuRadioItem(UINT nIDFirst, UINT nIDLast, UINT nIDltem, UINT nFlags);

Return Value
Nonzero if successful; otherwise 0

898

Parameters

Remarks

nIDFirst Specifies (as an ID or offset, depending on the value of nFlags) the first
menu item in the radio button group.

nIDLast Specifies (as an ID or offset, depending on the value of nFlags) the last
menu item in the radio button group.

nIDItem Specifies (as an ID or offset, depending on the value of nFlags) the item in
the group which will be checked with a radio button.

nFlags Specifies interpretation of nIDFirst, nIDLast, and nIDItem in the following
way:

nFlags

MF _BYPOSITION

Interpretation

Specifies that the parameter gives the command ID of
the existing menu item. This is the default if neither
MF _BYCOMMAND nor MF _BYPOSITION is set.

Specifies that the parameter gives the position of the
existing menu item. The first item is at position O.

Checks a specified menu item and makes it a radio item. At the same time, the
function unchecks all other menu items in the associated group and clears the radio
item type flag for those items. The checked item is displayed using a radio button (or
bullet) bitmap instead of a check mark bitmap.

See Also CMenu: :CheckMenultem, CMenu: : GetMenuState,
: :CheckMenuRadioltem

CMenu: :CMenu
CMenu();

Remarks
The menu is not created until you call one of the create or load member functions of
CMenu, as listed in "See Also."

See Also CMenu::CreateMenu, CMenu::CreatePopupMenu,
CMenu::LoadMenu, CMenu::LoadMenuIndirect, CMenu: :Attach

CMenu: :CreateMenu
BOOL CreateMenu();

Return Value
Nonzero if the menu was created successfully; otherwise O.

CMenu::CreateMenu

899

CMenu::CreatePopupMenu

Remarks
Creates a menu and attaches it to the CMenu object.

The menu is initially empty. Menu items can be added by using the AppendMenu or
InsertMenu member function.

If the menu is assigned to a window, it is automatically destroyed when the window is
destroyed.

Before exiting, an application must free system resources associated with a menu if
the menu is not assigned to a window. An application frees a menu by calling the
DestroyMenu member function.

See Also CMenu: :CMenu, CMenu: :DestroyMenu, CMenu: :InsertMenu,
CWnd::SetMenu, ::CreateMenu, CMenu::AppendMenu

CMenu: :CreatePopupMenu
BOOL CreatePopupMenu();

Return Value

Remarks

Nonzero if the pop-up menu was successfully created; otherwise O.

Creates a pop-up menu and attaches it to the CMenu object.

The menu is initially empty. Menu items can be added by using the AppendMenu or
InsertMenu member function. The application can add the pop-up menu to an
existing menu or pop-up menu. The TrackPopupMenu member function may be
used to display this menu as a floating pop-up menu and to track selections on the
pop-up menu.

If the menu is assigned to a window, it is automatically destroyed when the window is
destroyed. If the menu is added to an existing menu, it is automatically destroyed
when that menu is destroyed.

Before exiting, an application must free system resources associated with a pop-up
menu if the menu is not assigned to a window. An application frees a menu by calling
the DestroyMenu member function.

See Also CMenu::CreateMenu, CMenu::lnsertMenu, CWnd::SetMenu,
CMenu::TrackPopupMenu, : :CreatePopupMenu, CMenu: : AppendMenu

CMenu: : DeleteMenu
BOOL DeleteMenu(UINT nPosition, UINT nFlags);

Return Value
Nonzero if the function is successful; otherwise O.

900

CMenu: : DestroyMenu

Parameters

Remarks

nPosition Specifies the menu item that is to be deleted, as determined by nFlags.

nFlags Is used to interpret nPosition in the following way:

nFlags

MF _BYCOMMAND

MF _BYPOSITION

Interpretation of nPosition

Specifies that the parameter gives the command ID of
the existing menu item. This is the default if neither
MF _BYCOMMAND nor MF _BYPOSITION is set.

Specifies that the parameter gives the position of the
existing menu item. The first item is at position O.

Deletes an item from the menu. If the menu item has an associated pop-up menu,
DeleteMenu destroys the handle to the pop-up menu and frees the memory used by
the pop-up menu.

Whenever a menu that resides in a window is changed (whether or not the window is
displayed), the application must call CWnd::DrawMenuBar.

See Also CWnd::DrawMenuBar, ::DeleteMenu

CMenu: : DeleteTempMap
static void PASCAL DeleteTempMap();

Remarks
Called automatically by the CWinApp idle-time handler, DeleteTempMap deletes
any temporary CMenu objects created by the FromHandle member function.
DeleteTempMap detaches the Windows menu object attached to a temporary
CMenu object before deleting the CMenu object.

CMenu: :Destroy Menu
BOOL DestroyMenu();

Return Value

Remarks

Nonzero if the menu is destroyed; otherwise O.

Destroys the menu and any Windows resources that were used. The menu is detached
from the CMenu object before it is destroyed. The Windows DestroyMenu function
is automatically called in the CMenu destructor.

See Also ::DestroyMenu

901

CMenu: :Detach

CMenu: : Detach
HMENU Detach();

Return Value

Remarks

The handle, of type HMENU, to a Windows menu, if successful; otherwise NULL.

Detaches a Windows menu from a CMenu object and returns the handle. The
m_hMenu data member is set to NULL.

See Also CMenu: :Attach

CMenu: : Draw Item
virtual void DrawItem(LPDRAWITEMSTRUCT lpDrawltemStruct);

Parameters

Remarks

lpDrawltemStruct A pointer to a DRAWITEMSTRUCT structure that contains
information about the type of drawing required.

Called by the framework when a visual aspect of an owner-drawn menu changes. The
itemAction member oftheDRAWITEMSTRUCT structure defines the drawing
action that is to be performed. Override this member function to implement drawing
for an owner-draw CMenu object. The application should restore all graphics device
interface (GDI) objects selected for the display context supplied in lpDrawltemStruct
before the termination of this member function.

See CWnd::OnDrawItem for a description of the DRAWITEMSTRUCT structure.

CMenu: : EnableMenuItem
UINT EnableMenultem(UINT nIDEnableItem, UINT nEnable);

Return Value
Previous state (MF _DISABLED, MF _ENABLED, or MF _GRAYED) or -1 if not
valid.

Parameters
nIDEnableltem Specifies the menu item to be enabled, as determined by nEnable.

This parameter can specify pop-up menu items as well as standard menu items.

902

Remarks

nEnable Specifies the action to take. It can be a combination of MF _DISABLED,
MF _ENABLED, or MF _GRAYED, with MF _BYCOMMAND or
MF_BYPOSITION. These values can be combined by using the bitwise OR
operator. These values have the following meanings:

• MF _BY COMMAND Specifies that the parameter gives the command ID of
the existing menu item. This is the default.

• MF _BYPOSITION Specifies that the parameter gives the position of the
existing menu item. The first item is at position O.

• MF _DISABLED Disables the menu item so that it cannot be selected but
does not dim it.

• MF _ENABLED Enables the menu item so that it can be selected and restores
it from its dimmed state.

• MF _GRAYED Disables the menu item so that it cannot be selected and
dims it.

Enables, disables, or dims a menu item. The CreateMenu, InsertMenu,
ModifyMenu, and LoadMenuIndirect member functions can also set the state
(enabled, disabled, or dimmed) of a menu item.

Using the MF _BYPOSITION value requires an application to use the correct
CMenu. If the CMenu of the menu bar is used, a top-level menu item (an item in the
menu bar) is affected. To set the state of an item in a pop-up or nested pop-up menu
by position, an application must specify the CMenu of the pop-up menu.

When an application specifies the MF _BY COMMAND flag, Windows checks all
pop-up menu items that are subordinate to the CMenu; therefore, unless duplicate
menu items are present, using the CMenu of the menu bar is sufficient.

See Also CMenu: : GetMenuState, : : EnableMenuItem

CMenu: :FromHandle
static CMenu* PASCAL FromHandle(HMENU hMenu);

Return Value
A pointer to a CMenu that may be temporary or permanent.

Parameters

Remarks

hMenu A Windows handle to a menu.

Returns a pointer to a CMenu object given a Windows handle to a menu. If a CMenu
object is not already attached to the Windows menu object, a temporary CMenu
object is created and attached.

CMenu: : FromHandle

903

CMenu: : GetMenuContextHelpId

This temporary CMenu object is only valid until the next time the application has
idle time in its event loop, at which time all temporary objects are deleted.

CMenu: : GetMenuContextHelpId
DWORD GetMenuContextHelpld() const;

Return Value

Remarks

The context help ID currently associated with CMenu if it has one; zero otherwise.

Call this function to retrieve the context help ID associated with CMenu.

See Also CMenu: :SetMenuContextHelpID, : : GetMenuContextHelpld

CMenu:: GetMenuItemCount
UINT GetMenuItemCount() const;

Return Value

Remarks

The number of items in the menu if the function is successful; otherwise -1.

Determines the number of items in a pop-up or top-level menu.

See Also CWnd::GetMenu, CMenu::GetMenuItemID, CMenu::GetSubMenu,
: : GetMenuItemCount

CMenu: : GetMenuItemID
UINT GetMenuItemID(int nPos) const;

Return Value
The item ID for the specified item in a pop-up menu if the function is successful. If
the specified item is a pop-up menu (as opposed to an item within the pop-up menu),
the return value is -1. If nPos corresponds to a SEPARATOR menu item, the return
value is O.

Parameters

904

nPos Specifies the position (zero-based) of the menu item whose ID is being
retrieved.

CMenu: : GetMenuState

Remarks
Obtains the menu-item identifier for a menu item located at the position defined by
nPos.

See Also CWnd::GetMenu, CMenu::GetMenuItemCount,
CMenu::GetSubMenu, ::GetMenuItemID

CMenu: : GetMenuState
UINT GetMenuState(UINT nID, UINT nFlags) const;

Return Value
The value -1 if the specified item does not exist. If nld identifies a pop-up menu, the
high-order byte contains the number of items in the pop-up menu and the low-order
byte contains the menu flags associated with the pop-up menu. Otherwise the return
value is a mask (Boolean OR) of the values from the following list (this mask
describes the status of the menu item that nld identifies):

• MF _CHECKED Acts as a toggle with MF _UNCHECKED to place the default
check mark next to the item. When the application supplies check-mark bitmaps
(see the SetMenultemBitmaps member function), the "check mark on" bitmap is
displayed.

• MF J)ISABLED Disables the menu item so that it cannot be selected but does
not dim it.

• MF _ENABLED Enables the menu item so that it can be selected and restores it
from its dimmed state. Note that the value of this constant is 0; an application
should not test against 0 for failure when using this value.

• MF _GRAYED Disables the menu item so that it cannot be selected and dims it.

• MF _MENUBARBREAK Places the item on a new line in static menus or in a
new column in pop-up menus. The new pop-up menu column will be separated
from the old column by a vertical dividing line.

• MF _MENUBREAK Places the item on a new line in static menus or in a new
column in pop-up menus. No dividing line is placed between the columns.

• MF _SEPARATOR Draws a horizontal dividing line. Can only be used in a pop
up menu. This line cannot be dimmed, disabled, or highlighted. Other parameters
are ignored.

• MF_UNCHECKED Acts as a toggle with MF_CHECKED to remove a check
mark next to the item. When the application supplies check-mark bitmaps (see the
SetMenultemBitmaps member function), the "check mark off' bitmap is
displayed. Note that the value of this constant is 0; an application should not test
against 0 for failure when using this value.

905

CMenu: : GetMenuString

Parameters

Remarks

nID Specifies the menu item ID, as determined by nFlags.

nFlags Specifies the nature of nID. It can be one of the following values:

• MF _BY COMMAND Specifies that the parameter gives the command ID of
the existing menu item. This is the default.

• MF _BYPOSITION Specifies that the parameter gives the position of the
existing menu item. The first item is at position O.

Returns the status of the specified menu item or the number of items in a pop-up
menu.

See Also : : GetMenuState, CMenu: :CheckMenuItem, CMenu: :EnableMenuItem

CMenu: : GetMenuString
int GetMenuString(UINT nIDltem, LPTSTR lpString, int nMaxCount, UINT nFlags) const;
int GetMenuString(UINT nIDltem, CString& rString, UINT nFlags) const;

Return Value
Specifies the actual number of bytes copied to the buffer, not including the null
terminator.

Parameters

906

nIDltem Specifies the integer identifier of the menu item or the offset of the menu
item in the menu, depending on the value of nFlags.

lpString Points to the buffer that is to receive the label.

rString A reference to a CString object that is to receive the copied menu string.

nMaxCount Specifies the maximum length (in bytes) of the label to be copied. If the
label is longer than the maximum specified in nMaxCount, the extra characters
are truncated.

nFlags Specifies the interpretation of the nIDltem parameter. It can be one of the
following values:

nFlags

MF _BYCOMMAND

MF _BYPOSITION

Interpretation of nlDltem

Specifies that the parameter gives the command ID of
the existing menu item. This is the default if neither
MF _BY COMMAND nor MF _BYPOSITION is set.

Specifies that the parameter gives the position of the
existing menu item. The first item is at position O.

Remarks
Copies the label of the specified menu item to the specified buffer.

The nMaxCount parameter should be one larger than the number of characters in the
label to accommodate the null character that terminates a string.

See Also CMenu: : GetMenuState, CMenu: :ModifyMenu, : : GetMenuString

CMenu: : GetSubMenu
CMenu* GetSubMenu(int nPos) const;

Return Value
A pointer to a CMenu object whose m_hMenu member contains a handle to the pop
up menu if a pop-up menu exists at the given position; otherwise NULL. If a CMenu
object does not exist, then a temporary one is created. The CMenu pointer returned
should not be stored.

Parameters

Remarks

nPos Specifies the position of the pop-up menu contained in the menu. Position
values start at 0 for the first menu item. The pop-up menu's identifier cannot be
used in this function.

Retrieves the CMenu object of a pop-up menu.

See Also CWnd::GetMenu, CMenu::GetMenuItemID, ::GetMenuString

CMenu: : GetSafeHmenu
HMENU GetSafeHmenu() const;

Remarks
Returns the HMENU wrapped by this CMenu object, or a NULL CMenu pointer.

See Also : : GetSubMenu

CMenu: : InsertMenu
BOOL InsertMenu(UINT nPosition, UINT nFlags, UINT nIDNewltem = 0,

LPCTSTR lpszNewltem = NULL);

CMenu: : InsertMenu

BOOL InsertMenu(UINT nPosition, UINT nFlags, UINT nIDNewltem, const CBitmap* pBmp);

Return Value
Nonzero if the function is successful; otherwise O.

907

CMenu::InsertMenu

Parameters

Remarks

908

nPosition Specifies the menu item before which the new menu item is to be inserted.
The nFlags parameter can be used to interpret nPosition in the following ways:

nFlags

MF _BYCOMMAND

MF _BYPOSITION

Interpretation of nPosition

Specifies that the parameter gives the command ID of
the existing menu item. This is the default if neither
MF _BY COMMAND nor MF _BYPOSITION is set.

Specifies that the parameter gives the position of the
existing menu item. The first item is at position O. If
nPosition is -1, the new menu item is appended to the
end of the menu.

nFlags Specifies how nPosition is interpreted and specifies information about the
state of the new menu item when it is added to the menu. For a list of the flags
that may be set, see the AppendMenu member function. To specify more than one
value, use the bitwise OR operator to combine them with the
MF _BY COMMAND or MF _BYPOSITION flag.

nIDNewltem Specifies either the command ID of the new menu item or, if nFlags is
set to MF _POPUP, the menu handle (HMENU) of the pop-up menu. The
nIDNewltem parameter is ignored (not needed) if nFlags is set to
MF _SEPARATOR.

lpsiNewltem Specifies the content of the new menu item. nFlags can be used to
interpret lpsiNewltem in the following ways:

nFlags Interpretation of IpszNewltem

Contains an application-supplied 32-bit value that the
application can use to maintain additional data
associated with the menu item. This 32-bit value is
available to the application in the itemData member of
the structure supplied by the WM_MEASUREITEM
and WMJ)RA WITEM messages. These messages are
sent when the menu item is initially displayed or is
changed.

Contains a long pointer to a null-terminated string. This
is the default interpretation.

The lpsiNewltem parameter is ignored (not needed).

pBmp Points to a CBitmap object that will be used as the menu item.

Inserts a new menu item at the position specified by nPosition and moves other items
down the menu. The application can specify the state of the menu item by setting
values in nFlags.

Whenever a menu that resides in a window is changed (whether or not the window is
displayed), the application should call CWnd::DrawMenuBar.

When nIDNewltem specifies a pop-up menu, it becomes part of the menu in which it
is inserted. If that menu is destroyed, the inserted menu will also be destroyed. An
inserted menu should be detached from a CMenu object to avoid conflict.

If the active multiple document interface (MDI) child window is maximized and an
application inserts a pop-up menu into the MDI application's menu by calling this
function and specifying the MF _BYPOSITION flag, the menu is inserted one
position farther left than expected. This happens because the Control menu of the
active MDI child window is inserted into the first position of the MDI frame
window's menu bar. To position the menu properly, the application must add 1 to the
position value that would otherwise be used. An application can use the
WM_MDIGETACTIVE message to determine whether the currently active child
window is maximized.

See Also CMenu::AppendMenu, CWnd::DrawMenuBar,
CMenu: :SetMenuItemBitmaps, CMenu: : Detach , : : InsertMenu

CMenu: : LoadMenu
BOOL LoadMenu(LPCTSTR IpszResourceName);
BOOL LoadMenu(UINT nIDResource);

Return Value
Nonzero if the menu resource was loaded successfully; otherwise O.

Parameters

Remarks

IpszResourceName Points to a null-terminated string that contains the name of the
menu resource to load.

nIDResource Specifies the menu ID of the menu resource to load.

Loads a menu resource from the application's executable file and attaches it to the
CMenu object.

Before exiting, an application must free system resources associated with a menu if
the menu is not assigned to a window. An application frees a menu by calling the
DestroyMenu member function.

See Also CMenu: :AppendMenu, CMenu: :DestroyMenu,
CMenu: :LoadMenulndirect, ::LoadMenu

eMenu: : LoadMenu

909

CMenu::LoadMenulndirect

CMenu: : LoadMenuIndirect
BOOL LoadMenulndirect(const void* IpMenuTemplate);

Return Value
Nonzero if the menu resource was loaded successfully; otherwise O.

Parameters

Remarks

910

lpMenuTemplate Points to a menu template (which is a single
MENUITEMTEMPLATEHEADER structure and a collection of one or more
MENUITEMTEMPLATE structures).

The MENUITEMTEMPLATEHEADER structure has the following generic
form:

typedef struct {
UINT versionNumber;
UINT offset;

} MENUITEMTEMPLATEHEADER;

The MENUITEMTEMPLATE structure has the following generic form:

typedef struct {
UINT mtOption;
UINT mtID;
char mtString[l];

} MENUITEMTEMPLATE;

For more information on the above two structures, see the Windows Software
Development Kit (SDK).

Loads a resource from a menu template in memory and attaches it to the eMenu
object. A menu template is a header followed by a collection of one or more
MENUITEMTEMPLATE structures, each of which may contain one or more menu
items and pop-up menus.

The version number should be o.
The mtOption flags should include MF _END for the last item in a pop-up list and
for the last item in the main list. See the AppendMenu member function for other
flags. The mtld member must be omitted from the MENUITEMTEMPLATE
structure when MF _POPUP is specified in mtOption.

The space allocated for the MENUITEMTEMPLATE structure must be large
enough for mtString to contain the name of the menu item as a null-terminated
string.

CMenu::ModifyMenu

Before exiting, an application must free system resources associated with a menu if
the menu is not assigned to a window. An application frees a menu by calling the
DestroyMenu member function.

See Also CMenu: :DestroyMenu, CMenu: : LoadMenu, : :LoadMenulndirect,
CMenu::AppendMenu

CMenu: :MeasureItem
virtual void Measureltem(LPMEASUREITEMSTRUCT lpMeasureltemStruct);

Parameters

Remarks

lpMeasureltemStruct A pointer to a MEASUREITEMSTRUCT structure.

Called by the framework when a menu with the owner-draw style is created. By
default, this member function does nothing. Override this member function and fill in
the MEASUREITEMSTRUCT structure to inform Windows of the menu's
dimensions.

See CWnd::OnMeasureltem for a description of the MEASUREITEMSTRUCT
structure.

CMenu: :ModifyMenu
BOOL ModifyMenu(UINT nPosition, UINT nFlags, UINT nIDNewltem = 0,

LPCTSTR lpszNewltem = NULL);
BOOL ModifyMenu(UINT nPosition, UINT nFlags, UINT nIDNewltem, const CBitmap* pBmp);

Return Value
Nonzero if the function is successful; otherwise O.

Parameters
nPosition Specifies the menu item to be changed. The nFlags parameter can be used

to interpret nPosition in the following ways:

nFlags

MF _BYPOSITION

Interpretation of nPosition

Specifies that the parameter gives the command ID of
the existing menu item. This is the default if neither
MF _BYCOMMAND nor MF _BYPOSITION is set.

Specifies that the parameter gives the position of the
existing menu item. The first item is at position O.

nFlags Specifies how nPosition is interpreted and gives information about the
changes to be made to the menu item. For a list of flags that may be set, see the
AppendMenu member function.

911

CMenu: :RemoveMenu

Remarks

nIDNewltem Specifies either the command ID of the modified menu item or, if
nFlags is set to MF _POPUP, the menu handle (HMENU) of a pop-up menu. The
nIDNewltem parameter is ignored (not needed) if nFlags is set to
MF _SEPARATOR.

lps'lNewltem Specifies the content of the new menu item. The nFlags parameter can
be used to interpret lps'lNewltem in the following ways:

nFlags

MF_STRING

Interpretation of IpszNewltem

Contains an application-supplied 32-bit value that the
application can use to maintain additional data
associated with the menu item. This 32-bit value is
available to the application when it processes
MF _MEASUREITEM and MF _DRA WITEM.

Contains a long pointer to a null-terminated string or to
a CString.

The lpsiNewltem parameter is ignored (not needed).

pBmp Points to a CBitmap object that will be used as the menu item.

Changes an existing menu item at the position specified by nPosition. The
application specifies the new state of the menu item by setting values in nFlags. If
this function replaces a pop-up menu associated with the menu item, it destroys the
old pop-up menu and frees the memory used by the pop-up menu.

When nIDNewltem specifies a pop-up menu, it becomes part of the menu in which it
is inserted. If that menu is destroyed, the inserted menu will also be destroyed. An
inserted menu should be detached from a CMenu object to avoid conflict.

Whenever a menu that resides in a window is changed (whether or not the window is
displayed), the application should call CWnd::DrawMenuBar. To change the
attributes of existing menu items, it is much faster to use the CheckMenuItem and
EnableMenuItem member functions.

See Also CMenu::AppendMenu, CMenu: :InsertMenu,
CMenu::CheckMenuItem, CWnd::DrawMenuBar, CMenu::EnableMenuItem,
CMenu::SetMenuItemBitmaps, CMenu: :Detach, : :ModifyMenu

CMenu: :RemoveMenu
BOOL RemoveMenu(UINT nPosition, UINT nFlags);

Return Value
Nonzero if the function is successful; otherwise O.

912

CMenu: :SetMenultemBitmaps

Parameters

Remarks

nPosition Specifies the menu item to be removed. The nFlags parameter can be used
to interpret nPosition in the following ways:

nFlags

MF _BYCOMMAND

MF _BYPOSITION

Interpretation of nPosition

Specifies that the parameter gives the command ID of
the existing menu item. This is the default if neither
MF _BY COMMAND nor MF _BYPOSITION is set.

Specifies that the parameter gives the position of the
existing menu item. The first item is at position O.

nFlags Specifies how nPosition is interpreted.

Deletes a menu item with an associated pop-up menu from the menu. It does not
destroy the handle for a pop-up menu, so the menu can be reused. Before calling this
function, the application may call the GetSubMenu member function to retrieve the
pop-up CMenu object for reuse.

Whenever a menu that resides in a window is changed (whether or not the window is
displayed), the application must call CWnd::DrawMenuBar.

See Also CWnd::DrawMenuBar, CMenu::GetSubMenu, ::RemoveMenu

CMenu:: SetMenuContextHelpId
BOOL SetMenuContextHeipld(DWORD dwContextHelpld);

Return Value
Nonzero if successful; otherwise 0

Parameters

Remarks

dwContextHelpld Context help ID to associate with CMenu.

Call this function to associate a context help ID with CMenu. All items in the menu
share this identifier-it is not possible to attach a help context identifier to the
individual menu items.

See Also CMenu: : GetMenuContextHeipID, : :SetMenuContextHeipld

CMenu:: SetMenuItemBitmaps
BOOL SetMenultemBitmaps(UINT nPosition, UINT nFlags, const CBitmap* pBmpUnchecked,

const CBitmap* pBmpChecked);

Return Value
Nonzero if the function is successful; otherwise O.

913

CMenu::TrackPopupMenu

Parameters

Remarks

nPosition Specifies the menu item to be changed. The nFlags parameter can be used
to interpret nPosition in the following ways:

nFlags

MF_BYCOMMAND

MF _BYPOSITION

Interpretation of nPosition

Specifies that the parameter gives the command ID of
the existing menu item. This is the default if neither
MF _BY COMMAND nor MF _BYPOSITION is set.

Specifies that the parameter gives the position of the
existing menu item. The first item is at position O.

nFlags Specifies how nPosition is interpreted.

pBmpUnchecked Specifies the bitmap to use for menu items that are not checked.

pBmpChecked Specifies the bitmap to use for menu items that are checked.

Associates the specified bitmaps with a menu item. Whether the menu item is
checked or unchecked, Windows displays the appropriate bitmap next to the
menu item.

If either pBmpUnchecked or pBmpChecked is NULL, then Windows displays
nothing next to the menu item for the corresponding attribute. If both parameters are
NULL, Windows uses the default check mark when the item is checked and removes
the check mark when the item is unchecked.

When the menu is destroyed, these bitmaps are not destroyed; the application must
destroy them.

The Windows GetMenuCheckMarkDimensions function retrieves the dimensions
of the default check mark used for menu items. The application uses these values to
determine the appropriate size for the bitmaps supplied with this function. Get the
size, create your bitmaps, then set them.

See Also ::GetMenuCheckMarkDimensions, ::SetMenuItemBitmaps

CMenu: : TrackPopupMenu
BOOL TrackPopupMenu(UINT nFlags, int x, int y, CWnd* p Wnd, LPCRECT lpRect = 0);

Return Value
Nonzero if the function is successful; otherwise O.

Parameters

914

nFlags Specifies a screen-position flag and a mouse-button flag. The screen-position
flag can be one of the following:

• TPM_CENTERALIGN Centers the pop-up menu horizontally relative to the
coordinate specified by x.

Remarks

CMenu: :TrackPopupMenu

• TPM_LEFTALIGN Positions the pop-up menu so that its left side is aligned
with the coordinate specified by x.

• TPM_RIGHTALIGN Positions the pop-up menu so that its right side is
aligned with the coordinate specified by x.

The mouse-button flag can be either of the following:

• TPM_LEFTBUTTON Causes the pop-up menu to track the left mouse
button.

• TPM_RIGHTBUTTON Causes the pop-up menu to track the right mouse
button.

x Specifies the horizontal position in screen coordinates of the pop-up menu.
Depending on the value of the nFlags parameter, the menu can be left-aligned,
right-aligned, or centered relative to this position.

y Specifies the vertical position in screen coordinates of the top of the menu on the
screen.

p Wnd Identifies the window that owns the pop-up menu. This window receives all
WM_COMMAND messages from the menu. In Windows versions 3.1 and later,
the window does not receive WM_COMMAND messages until
TrackPopupMenu returns. In Windows 3.0, the window receives
WM_COMMAND messages before TrackPopupMenu returns.

IpRect Points to a RECT structure or CRect object that contains the screen
coordinates of a rectangle within which the user can click without dismissing the
pop-up menu. If this parameter is NULL, the pop-up menu is dismissed if the user
clicks outside the pop-up menu. This must be NULL for Windows 3.0.

For Windows 3.1 and later, you can use the following constants:

• TPM_CENTERALIGN

• TPM_LEFTALIGN

• TPM_RIGHTALIGN

• TPM_RIGHTBUTTON

Displays a floating pop-up menu at the specified location and tracks the selection of
items on the pop-up menu. A floating pop-up menu can appear anywhere on the
screen.

See Also CMenu::CreatePopupMenu, CMenu::GetSubMenu,
::TrackPopupMenu

915

CMenu::m_hMenu

Data Members
CMenu: :m_hMenu
Remarks

Specifies the HMENU handle of the Windows menu attached to the eMenu object.

916

CMetaFileDC

A Windows metafile contains a sequence of graphics device interface (GDI)
commands that you can replay to create a desired image or text.

To implement a Windows metafile, first create a CMetaFileDC object. Invoke the
CMetaFileDC constructor, then call the Create member function, which creates a
Windows metafile device context and attaches it to the CMetaFileDC object.

Next send the CMetaFileDC object the sequence of CDC GDI commands that you
intend for it to replay. Only those GDI commands that create output, such as MoveTo
and LineTo, can be used.

After you have sent the desired commands to the metafile, call the Close member
function, which closes the metafile device contexts and returns a metafile handle.
Then dispose of the CMetaFileDC object~

CDC::PlayMetaFile can then use the metafile handle to play the metafile repeatedly.
The metafile can also be manipulated by Windows functions such as CopyMetaFile,
which copies a metafile to disk.

When the metafile is no longer needed, delete it from memory with the
DeleteMetaFile Windows function.

You can also implement the CMetaFileDC object so that it can handle both output
calls and attribute GDI calls such as GetTextExtent. Such a metafile is more flexible
and can more easily reuse general GDI code, which often consists of a mix of output
and attribute calls. The CMetaFileDC class inherits two device contexts, m_hDC
and m_hAttrihDC, from CDC. The m_hDC device context handles all CDC GDI
output calls and the m_hAttrihDC device context handles all CDC GDI attribute
calls. Normally, these two de~ice contexts refer to the same device. In the case of
CMetaFileDC, the attribute DC is set to NULL by default.

Create a second device context that points to the screen, a printer, or device other
than a metafile, then call the SetAttrihDC member function to associate the new
device context with m_hAttrihDC. GDI calls for information will now be directed to
the new m_hAttrihDC. Output GDI calls will go to m_hDC, which represents the
metafile.

CMetaFileDC

917

CMetaFileDC::Close

For more information on CMetaFileDC, see "Device Contexts" in Chapter 1 of
Programming with MFC. .

#include <afxext.h>

SeeAlso CDC

Construction

CMetaFileDC

Initialization

Create

CreateEnhanced

Operations

Close

CloseEnhanced

Constructs a CMetaFileDC object.

Creates the Windows metafile device context and attaches it to
the CMetaFileDC object.

Creates a metafile device context for an enhanced-format
metafile.

Closes the device context and creates a metafile handle.

Closes an enhanced-metafile device context and creates an
enhanced-metafile handle.

Member Functions
CMetaFileDC: :Close

HMETAFILE Close();

Return Value

Remarks

918

A valid HMETAFILE if the function is successful; otherwise NULL.

Closes the metafile device context and creates a Windows metafile handle that can be
used to play the metafile by using the CDC: :PlayMetaFile member function. The
Windows metafile handle can also be used to manipulate the metafile with Windows
functions such as CopyMetaFile.

Delete the metafile after use by calling the Windows DeleteMetaFile function.

See Also CDC: :PlayMetaFile, : :CloseMetaFile, : : GetMetaFileBits,
::CopyMetaFile, ::DeleteMetaFile

CMetaFileDC::CMetaFileDC

CMetaFileDC: :CloseEnhanced
HENHMETAFILE CloseEnhanced();

Return Value

Remarks

A handle of an enhanced metafile, if successful; otherwise NULL.

Closes an enhanced-metafile device context and returns a handle that identifies an
enhanced-format metafile. An application can use the enhanced-metafile handle
returned by this function to perform the following tasks:

• Display a picture stored in an enhanced metafile

• Create copies of the enhanced metafile

• Enumerate, edit, or copy individual records in the enhanced metafile

• Retrieve an optional description of the metafile contents from the enhanced-
metafile header

• Retrieve a copy of the enhanced-metafile header

• Retrieve a binary copy of the enhanced metafile

• Enumerate the colors in the optional palette

• Convert an enhanced-format metafile into a Windows-format metafile

When the application no longer needs the enhanced metafile handle, it should release
the handle by calling the : : DeleteEnhMetaFile function.

See Also CDC::PlayMetaFile, CMetaFileDC::CreateEnhanced,
: : DeleteEnhMetaFile

CMetaFileDC: :CMetaFileDC

Remarks

CMetaFileDC();

Construct a CMetaFileDC object in two steps. First, call CMetaFileDC, then call
Create, which creates the Windows metafile device context and attaches it to the
CMetaFileDC object.

See Also CMetaFileDC: : Create

919

CMetaFileDC::Create

CMetaFileDC: : Create
BOOL Create(LPCTSTR lpszFilename = NULL);

Return Value
Nonzero if the function is successful; otherwise O.

Parameters

Remarks

lpszFilename Points to a null-terminated character string. Specifies the filename of
the metafile to create. If lpszFilename is NULL, a new in-memory metafile is
created.

Construct a CMetaFileDC object in two steps. First, call the constructor
CMetaFileDC, then call Create, which creates the Windows metafile device context
and attaches it to the CMetaFileDC object.

See Also CMetaFileDC::CMetaFileDC, CDC::SetAttribDC, ::CreateMetaFile

CMetaFileDC: :CreateEnhanced
BOOL CreateEnhanced(CDC* pDCRej, LPCTSTR lpszFileName, LPCRECT lpBounds,

LPCTSTR lpszDescription);

Return Value
A handle of the device context for the enhanced metafile, if successful;
otherwise NULL.

Parameters

Remarks

920

pDCRej Identifies a reference device for the enhanced metafile.

lpszFileName Points to a null-terminated character string. Specifies the filename for
the enhanced metafile to be created. If this parameter is NULL, the enhanced
metafile is memory based and its contents lost when the object is destroyed or
when the: :DeleteEnhMetaFile function is called.

lpBounds Points to a RECT data structure or a CRect object that specifies the
dimensions in HIMETRIC units (in .OI-millimeter increments) of the picture to
be stored in the enhanced metafile.

lpszDescription Points to a zero-terminated string that specifies the name of the
application that created the picture, as well as the picture's title.

Creates a device context for an enhanced-format metafile. This DC can be used to
store a device-independent picture.

CMetaFileDC: :CreateEnhanced

Windows uses the reference device identified by the pDCRej parameter to record the
resolution and units of the device on which a picture originally appeared. If the
pDCRej parameter is NULL, it uses the current display device for reference.

The left and top members of the RECT data structure pointed to by the lpBounds
parameter must be smaller than the right and bottom members, respectively. Points
along the edges of the rectangle are included in the picture. If lpBounds is NULL, the
graphics device interface (GDI) computes the dimensions of the smallest rectangle
that can enclose the picture drawn by the application. The lpBounds parameter
should be supplied where possible.

The string pointed to by the lpszDescription parameter must contain a null character
between the application name and the picture name and must terminate with two null
characters -for example, "XYZ Graphics Editor\OBald Eagle\O\O," where \0
represents the null character. If lpszDescription is NULL, there is no corresponding
entry in the enhanced-metafile header.

Applications use the DC created by this function to store a graphics picture in an
enhanced metafile. The handle identifying this DC can be passed to any GDI
function.

After an application stores a picture in an enhanced metafile, it can display the
picture on any output device by calling the CDC: :PlayMetaFile function. When
displaying the picture, Windows uses the rectangle pointed to by the lpBounds
parameter and the resolution data from the reference device to position and scale the
picture. The device context returned by this function contains the same default
attributes associated with any new DC.

Applications must use the: : GetWinMetaFileBits function to convert an enhanced
metafile to the older Windows metafile format.

The filename for the enhanced metafile should use the .EMF extension.

See Also CMetaFileDC::CloseEnhanced, CDC::PlayMetaFile,
: :CloseEnhMetaFile, : :DeleteEnhMetaFile, : : GetEnhMetaFileDescription,
: : GetEnhMetaFileHeader, : : GetWinMetaFileBits, : :PlayEnhMetaFile

921

CMiniFrame Wnd

CMiniFrame W nd

A CMiniFrameWnd object represents a half-height frame window typically seen
around floating toolbars. These mini-frame windows behave like normal frame
windows, except that they do not have minimize/maximize buttons or menus and
you only have to single-click on the system menu to dismiss them.

To use a CMiniFrameWnd object, first define the object. Then call the Create
member function to display the mini-frame window.

For more information on how to use CMiniFrameWnd objects, see the article
"Toolbars: Docking and Floating" in Programming with MFC.

#include <afxwin.h>

SeeAlso CFrameWnd

Construction

CMiniFrameWnd

Create

Constructs a CMiniFrameWnd object.

Creates a CMiniFrameWnd object after construction.

Member Functions
CMiniFrame Wnd: :CMiniFrame Wnd

Remarks

922

CMiniFrameWnd();

Constructs a CMiniFrameWnd object, but does not create the window. To create the
window, call CMiniFrameWnd::Create.

See Also CFrameWnd

CMiniFrame Wnd: : Create

CMiniFrame W nd: : Create
BOOL Create(LPCTSTR lpClassName, LPCTSTR lp WindowName, DWORD dwStyle,

const RECT & reet, CWnd* pParentWnd = NULL, UINT nID = 0);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

lpClassName Points to a null-terminated character string that names the
Windows class. The class name can be any name registered with the global
AfxRegisterWndClass function. If NULL, the window class will be registered
for you by the framework.

lpWindowName Points to a null-terminated character string that contains the
window name.

dwStyle Specifies the window style attributes. These can include standard window
styles and one or more of the following special styles:

• MFS_MOVEFRAME Allows the mini-frame window to be moved by
clicking on any edge of the window, not just the caption.

• MFS_ 4THICKFRAME Disables resizing of the mini-frame window.

• MFS_SYNCACTIVE Synchronizes the activation of the mini-frame window
to the activation of its parent window.

• MFS_THICKFRAME Allows the mini-frame window to be sized as small as
the contents of the client area allow.

See CWnd::Create for a description of possible window style values. The typical
combination used for mini-frame windows is
WS_POPUPIWS_CAPTIONIWS_SYSMENU.

reet A RECT structure specifying the desired dimensions of the window.

pParentWnd Points to the parent window. Use NULL for top-level windows.

nID If the mini-frame window is created as a child window, this is the identifier of
the child control; otherwise O.

Creates the Windows mini-frame window and attaches it to the CMiniFrameWnd
object. Create initializes the window's class name and window name and registers
default values for its style and parent.

See Also CFrameWnd::Create, CWnd::Create, CWnd::CreateEx, CFrameWnd

923

CMultiDocTemplate

CMultiDocTemplate

924

The CMultiDocTempiate class defines a document template that implements the
mUltiple document interface (MDI). An MDI application uses the main frame
window as a workspace in which the user can open zero or more document frame
windows, each of which displays a document. For a more detailed description of the
MDI, see The Windows Inteiface: An Application Design Guide.

A document template defines the relationships among three types of classes:

• A document class, which you derive from CDocument.

• A view class, which displays data from the document class listed above. You can
derive this class from CView, CScrollView, CFormView, or CEditView. (You
can also use CEditView directly.)

• A frame window class, which contains the view. For an MDI document template,
you can derive this class from CMDIChildWnd, or, if you don't need to
customize the behavior of the document frame windows, you can use
CMDIChildWnd directly without deriving your own class.

An MDI application can support more than one type of document, and documents of
different types can be open at the same time. Your application has one document
template for each document type that it supports. For example, if your MDI
application supports both spreadsheets and text documents, the application has two
CMultiDocTempiate objects.

The application uses the document template(s) when the user creates a new
document. If the application supports more than one type of document, then the
framework gets the names of the supported document types from the document
templates and displays them in a list in the File New dialog box. Once the user has
selected a document type, the application creates a document object, a frame window
object, and a view object and attaches them to each other.

You do not need to call any member functions of CMultiDocTemplate except the
constructor. The framework handles CMultiDocTemplate objects internally.

CMultiDocTemplate: :CMultiDocTemplate

For more information on CMuitiDocTemplate, see "Document Templates" in
Chapter 1 of Programming with MFC.

include# <afxwin.h>

See Also CDocTemplate, CDocument, CMDIChildWnd, CSingleDocTemplate,
CView, CWinApp

Construction

CMultiDocTemplate Constructs a CMultiDocTemplate object.

Member Functions
CMultiDocTemplate: :CMultiDocTemplate

CMuitiDocTemplate(UINT nIDResource, CRuntimeClass* pDocClass, CRuntimeClass*
pFrameClass, CRuntimeClass* p ViewClass);

Parameters
nIDResource Specifies the ID of the resources used with the document type.

This may include menu, icon, accelerator table, and string resources.

The string resource consists of up to seven substrings separated by the '\n'
character (the '\n' character is needed as a place holder if a substring is
not included; however, trailing '\n' characters are not necessary); these
substrings describe the document type. For information on the substrings,
see CDocTemplate::GetDocString. This string resource is found in the
application's resource file. For example:

II MYCALC.RC
STRINGTABLE PRELOAD DISCARDABLE
BEGIN

IDR_SHEETTYPE "\nSheet\nWorksheet\nWorksheets (*.myc)\n.myc\n
MyCalcSheet\nMyCalc Worksheet"
END

Note that the string begins with a '\n' character; this is because the first substring
is not used for MDI applications and so is not included. You can edit this string
using the string editor; the entire string appears as a single entry in the String
Editor, not as seven separate entries.

For more information about these resource types, see the Visual C++ User~
Guide, Chapter 5, "Working with Resources."

pDocClass Points to the CRuntimeClass object of the document class. This class is
a CDocument-derived class you define to represent your documents.

925

CMultiDocTemplate::CMultiDocTemplate

Remarks

Example

926

pFrameClass Points to the CRuntimeClass object of the frame-window class. This
class can be a CMDIChildWnd-derived class, or it can be CMDIChildWnd itself
if you want default behavior for your document frame windows.

p ViewClass Points to the CRuntimeClass object of the view class. This class is a
CView-derived class you define to display your documents.

Constructs a CMultiDocTemplate object. Dynamically allocate one
CMultiDocTemplate object for each document type that your application supports
and pass each one to CWinApp::AddDocTemplate from the Ini tInstance member
function of your application class.

Ilexample for CMultiDocTemplate
BOOl CMyApp::InitInstance()
{

}

II
II Establish all of the document types
II supported by the application

AddDocTemplate(new CMultiDocTemplate(IDR_SHEETTYPE.
RUNTIME_ClASS(CSheetDoc).
RUNTIME_ClASS(CMDIChildWnd).
RUNTIME_ClASS(CSheetView))):

AddDocTemplate(new CMultiDocTemplate(IDR_NOTETYPE.

II ...

RUNTIME_ClASS(CNoteDoc).
RUNTIME_ClASS(CMDIChildWnd).
RUNTIME_ClASS(CNoteView))):

See Also CDocTemplate::GetDocString, CWinApp::AddDocTemplate,
CWinApp::lnitInstance, CRuntimeClass

CMultiLock
A object of class CMultiLock represents the access-control mechanism used in
controlling access to resources in a multithreaded program. To use the
synchronization classes CSemaphore, CMutex, CCriticalSection, and CEvent, you
can create either a CMultiLock or CSingleLock object to wait on and release the
synchronization object. Use CMultiLock when there are multiple objects that you
could use at a particular time. Use CSingleLock when you only need to wait on one
object at a time.

To use a CMultiLock object, first create an array of the synchronization objects that
you wish to wait on. Next, call the CMultiLock object's constructor inside a member
function in the controlled resource's class. Then call the Lock member function to
determine if a resource is available (signaled). If one is, continue with the remainder
of the member function. If no resource is available, either wait for a specified amount
of time for a resource to be released, or return failure. After use of a resource is
complete, either call the Unlock function if the CMultiLock object is to be used
again, or allow the CMultiLock object to be destroyed.

CMultiLock objects are most useful when a thread has a large number of CEvent
objects it can respond to. Create an array containing all the CEvent pointers, and call
Lock. This will cause the thread to wait until one of the events is signaled.

For more information on how to use CMultiLock objects, see the article
"Multithreading: How to Use the Synchronization Classes" in Programming
withMFC.

#include <afxmt.h>

Construction

CMultiLock

Methods

IsLocked

Lock

Unlock

Constructs a CMultiLock object.

Determines if a specific synchronization object in the array is
locked.

Waits on the array of synchronization objects.

Releases any owned synchronization objects.

CMultiLock

927

CMultiLock: :CMultiLock

Member Functions
CMultiLock: :CMultiLock

CMultiLock(CSyncObject* ppObjects[], DWORD dwCount, BOOL blnitialLock = FALSE);

Parameters

Remarks

ppObjects Array of pointers to the synchronization objects to be waited on.
Cannot be NULL.

dwCount Number of objects in ppObjects. Must be greater than O.

blnitialLock Specifies whether to initially attempt to access any of the supplied
objects.

Constructs a CMultiLock object. This function is called after creating the array of
synchronization objects to be waited on. It is usually called from within the thread
that must wait for one of the synchronization objects to become available.

CMultiLock: : IsLocked
BOOL IsLocked(DWORD dwObject);

Return Value
Nonzero if the specified object is locked; otherwise O.

Parameters

Remarks

dwObject The index in the array of objects corresponding to the object whose state
is being queried.

Determines if the specified object is nonsignaled (unavailable).

CMultiLock: :Lock
DWORD Lock(DWORD dwTimeOut = INFINITE, BOOL bWaitForAll = TRUE,

DWORD dwWakeMask = 0);

Return Value

928

If Lock fails, it returns -1. If successful, it returns one of the following values:

• Between WAIT_OBJECT_O and WAIT_OBJECT_O + (number of objects - 1)

If bWaitForAll is TRUE, all objects are signaled (available). If bWaitForAll is
FALSE, the return value - WAIT_OBJECT_O is the index in the array of objects
of the object that is signaled (available).

• WAIT_OBJECT_O + (number of objects)

An event specified in dwWakeMask is available in the thread's input queue.

• Between WAIT_ABANDONED_O and WAIT_ABANDONED_O + (number of
objects - 1)

If bWaitForAll is TRUE, all objects are signaled, and at least one of the
objects is an abandoned mutex object. If bWaitForAll is FALSE, the return
value - WAIT_ABANDONED_O is the index in the array of objects of the
abandoned mutex object that satisfied the wait.

• WAIT_TIMEOUT

The timeout interval specified in dwTimeOut expired without the wait succeeding.

Parameters

Remarks

dwTimeOut Specifies the amount of time to wait for the synchronization object to be
available (signaled). If INFINITE, Lock will wait until the object is signaled
before returning.

bWaitForAIl Specifies whether all objects waited on must become signaled at the
same time before returning. If FALSE, Lock will return when anyone of the
objects waited on is signaled.

dwWakeMask Specifies other conditions that are allowed to abort the wait. For a full
list of the available options for this parameter, see MsgWaitForMultipleObjects
in the Win32 Programmer's Reference.

Call this function to gain access to one or more of the resources controlled by the
synchronization objects supplied to the CMuItiLock constructor. If bWaitForAIl is
TRUE, Lock will return successfully as soon as all the synchronization objects
become signaled simultaneously. If bWaitForAIl is FALSE, Lock will return as soon
as one or more of the synchronization objects becomes signaled.

If Lock is not able to return immediately, it will wait for no more than the number of
milliseconds specified in the dwTimeOut parameter before returning. If dwTimeOut is
INFINITE, Lock will not return until access to an object is gained or a condition
specified in dwWakeMask was met. Otherwise, if Lock was able to acquire a
synchronization object, it will return successfully; if not, it will return failure.

CMultiLock:: Unlock
BOOL Unlock();
BOOL Unlock(LONG [Count, LPLONG [PrevCount = NULL);

Return Value
Nonzero if the function was successful; otherwise o.

CMultiLock:: Unlock

929

CMultiLock:: Unlock

Parameters

Remarks

930

lCount Number of reference counts to release. Must be greater than O. If the
specified amount would cause the object's count to exceed its maximum, the count
is not changed and the function returns FALSE.

lPrevCount Points to a variable to receive the previous count for the synchronization
object. If NULL, the previous count is not returned.

Releases the synchronization object owned by CMultiLock. This function is called by
CMultiLock's destructor.

CMutex

An object of class CMutex represents a "mutex"-a synchronization object that
allows one thread mutually exclusive access to a resource. Mutexes are useful when
only one thread at a time can be allowed to modify data or some other controlled
resource. For example, adding nodes to a linked list is a process that should only be
allowed by one thread at a time. By using a CMutex object to control the linked list,
only one thread at a time can gain access to the list.

To use a CMutex object, construct the CMutex object when it is needed. Specify the
name of the mutex you wish to wait on, and that your application should initially own
it. You can then access the mutex when the constructor returns. Call
CSyncObject::Unlock when you are done accessing the controlled resource.

An alternative method for using CMutex objects is to add a variable of type CMutex
as a data member to the class you wish to control. During construction of the
controlled object, call the constructor of the CMutex data member specifying if the
mutex is initially owned, the name of the mutex (if it will be used across process
boundaries), and desired security attributes.

To access resources controlled by CMutex objects in this manner, first create a
variable of either type CSingleLock or type CMultiLock in your resource's access
member function. Then call the lock object's Lock member function (for example,
CSingleLock::Lock). At this point, your thread will either gain access to the
resource, wait for the resource to be released and gain access, or wait for the resource
to be released and time out, failing to gain access to the resource. In any case, your
resource has been accessed in a thread-safe manner. To release the resource, use the
lock object's Unlock member function (for example, CSingleLock::Unlock), or
allow the lock object to fall out of scope.

For more information on using CMutex objects, see the article "Multithreading: How
to Use the Synchronization Classes" in Programming with MFC.

#include <afxmt.h>

Construction

CMutex Constructs a CMutex object.

CMutex

931

CMutex::CMutex

Member Functions
CMutex: :CMutex

CMutex(BOOL blnitiallyOwn = FALSE, LPCTSTR lpsiName = NULL,
LPSECURITY _ATTRIBUTES lpsaAttribute = NULL);

Parameters

Remarks

932

blnitiallyOwn Specifies if the thread creating the CMutex object initially has access
to the resource controlled by the mutex.

lpsiName Name of the CMutex object. If another mutex with the same name exists,
lpsiName must be supplied if the object will be used across process boundaries. If
NULL, the mutex will be unnamed. If the name matches an existing mutex, the
constructor builds a new CMutex object which references the mutex of that name.
If the name matches an existing synchronization object that is not a mutex, the
construction will fail.

lpsaAttribute Security attributes for the mutex object. For a full description of this
structure, see SECURITY_ATTRIBUTES in the Win32 Programmer s
Reference.

Constructs a named or unnamed CMutex object. To access or release a CMutex
object, create a CMultiLock or CSingleLock object·and call its Lock and Unlock
member functions. If the CMutex object is being used stand-alone, call its Unlock
member function to release it.

eN otSupportedException

eN otSupportedException

A CNotSupportedException object represents an exception that is the result of a
request for an unsupported feature. No further qualification is necessary or possible.

For more information on using CNotSupportedException, see the article
"Exceptions" in Programming with MFC.

#include <afx.h>

Construction

CNotSupportedException Constructs a CNotSupportedException object.

Member Functions
CN otSupportedException:: CN otSupportedException

CNotSupportedException();

Remarks
Constructs a CNotSupportedException object.

Do not use this constructor directly, but rather call the global function
AfxThrowNotSupportedException. For more information about exception
processing, see the article "Exceptions" in Programming with MFC.

See Also AfxThrowNotSupportedException

933

CObArray

CObArray

934

The CObArray class supports arrays of CObject pointers. These object arrays are
similar to C arrays, but they can dynamically shrink and grow as necessary.

Array indexes always start at position O. You can decide whether to fix the upper
bound or allow the array to expand when you add elements past the current bound.
Memory is allocated contiguously to the upper bound, even if some elements are null.

Under Win32, the size of a CObArray object is limited only to available memory.

As with a C array, the access time for a CObArray indexed element is constant and
is independent of the array size.

CObArray incorporates the IMPLEMENT_SERIAL macro to support serialization
and dumping of its elements. If an array of CObject pointers is stored to an archive,
either with the overloaded insertion operator or with the Serialize member function,
each CObject element is, in tum, serialized along with its array index.

If you need a dump of individual CObject elements in an array, you must set the
depth of the CDumpContext object to 1 or greater.

When a CObArray object is deleted, or when its elements are removed, only the
CObject pointers are removed, not the objects they reference.

Note Before using an array, use SetSize to establish its size and allocate memory for it. If
you do not use SetSize, adding elements to your array causes it to be frequently reallocated
and copied. Frequent reallocation and copying are inefficient and can fragment memory.

Array class derivation is similar to list derivation. For details on the derivation of a
special-purpose list class, see the article "Collections" in Programming with MFC.

Note You must use the IMPLEMENT_SERIAL macro in the implementation of your derived
class if you intend to serialize the array.

#include <afxcoll.h>

See Also CStringArray, CPtrArray, CByteArray, CWordArray,
CDWordArray

Construction

CObArray

Bounds

GetSize

GetUpperBound

SetSize

Operations

FreeExtra

RemoveAll

Element Access

GetAt

SetAt

ElementAt

Growing the Array

SetAtGrow

Add

Insertion/Removal

InsertAt

RemoveAt

Operators

operator []

Constructs an empty array for CObject pointers.

Gets the number of elements in this array.

Returns the largest valid index.

Sets the number of elements to be contained in this array.

Frees all unused memory above the current upper bound.

Removes all the elements from this array.

Returns the value at a given index.

Sets the value for a given index; array not allowed to grow.

Returns a temporary reference to the element pointer within the
array.

Sets the value for a given index; grows the array if necessary.

Adds an element to the end of the array; grows the array if
necessary.

Inserts an element (or all the elements in another array) at a
specified index.

Removes an element at a specific index.

Sets or gets the element at the specified index.

Member Functions
CObArray: :Add

int Add(CObject* newElement);
throw(CMemoryException);

Return Value
The index of the added element.

CObArray: :Add

935

CObArray::CObArray

Parameters

Remarks

Example

newElement The CObject pointer to be added to this array.

Adds a new element to the end of an array, growing the array by 1. If SetSize has
been used with an nGrowBy value greater than 1, then extra memory may be
allocated. However, the upper bound will increase by only 1.

II example for CObArray::Add
CObArray array;

array.Add(new CAge(21); II Element 0
array.Add(new CAge(40); II Element 1

IIi fdef _DEBUG
afxDump.SetDepth(1);
afxDump « "Add example: " « &array « "\n";

Ilendif

The results from this program are as follows:

Add example: A CObArray with 2 elements
[0] = a CAge at $442A 21
[1] = a CAge at $4468 40

See Also CObArray::SetAt, CObArray::SetAtGrow, CObArray::lnsertAt,
CObArray::operator []

CObArray: :CObArray
CObArray();

Remarks
Constructs an empty CObject pointer array. The array grows one element at a time.

Example
CObArray array(20); IIArray on the stack with blocksize = 20
CObArray* pArray = new CObArray; IIArray on the heap with default blocksize

See Also CObList::CObList

CObArray: : ElementAt
CObject*& ElementAt(int nlndex);

Return Value
A reference to a CObject pointer.

936

Parameters

Remarks

nlndex An integer index that is greater than or equal to 0 and less than or equal to
the value returned by GetUpperBound.

Returns a temporary reference to the element pointer within the array. It is used to
implement the left-side assignment operator for arrays. Note that this is an advanced
function that should be used only to implement special array operators.

See Also CObArray: : operator []

CObArray: : FreeExtra

Remarks

void FreeExtra();

Frees any extra memory that was allocated while the array was grown. This function
has no effect on the size or upper bound of the array.

CObArray: : GetAt
CObject* GetAt(int nlndex) const;

Return Value
The CObject pointer element currently at this index; NULL if no element is stored
at the index.

Parameters

Remarks

Example

nlndex An integer index that is greater than or equal to 0 and less than or equal to
the value returned by GetUpperBound.

Returns the array element at the specified index.

II example for CObArray: :GetAt
CObArray array;

array.Add(new CAge(21)); II Element 0
array.Add(new CAge(40)); II Element 1
ASSERT(*(CAge*) array.GetAt(0) == CAge(21));

See Also CObArray: :SetAt, CObArray: : operator []

CObArray: : GetAt

937

CObArray: : GetSize

CObArray: : GetSize

Remarks

int GetSize() const;

Returns the size of the array. Since indexes are zero-based, the size is 1 greater than
the largest index.

See Also CObArray: : GetUpperBound, CObArray: :SetSize

CObArray: : GetUpperBound
int GetUpperBound() const;

Return Value

Remarks

Example

The index of the upper bound (zero-based).

Returns the current upper bound of this array. Because array indexes are zero-based,
this function returns a value 1 less than GetSize.

The condition GetUpperBound() = -1 indicates that the array contains no elements.

II example for CObArray::GetUpperBound
CObArray array;

array.Add(new CAge(21)); II Element 0
array.Add(new CAge(40)); II Element 1
ASSERT(array.GetUpperBound() == 1); II Largest index

See Also CObArray: : GetSize, CObArray: :SetSize

CObArray: : InsertAt
void InsertAt(int nlndex, CObject* newElement, int nCount = 1);

throw(CMemoryException);
void InsertAt(int nStartlndex, CObArray* pNewArray);

throw(CMemoryException);

Parameters

938

nlndex An integer index that may be greater than the value returned by
GetUpperBound.

newElement The CObject pointer to be placed in this array. A newElement of value
NULL is allowed.

CObArray::RemoveAll

Remarks

Example

nCount The number of times this element should be inserted (defaults to 1).

nStartlndex An integer index that may be greater than the value returned by
GetUpperBound.

pNewArray Another array that contains elements to be added to this array.

The first version of InsertAt inserts one element (or multiple copies of an element) at
a specified index in an array. In the process, it shifts up (by incrementing the index)
the existing element at this index, and it shifts up all the elements above it.

The second version inserts all the elements from another CObArray collection,
starting at the nStartlndex position.

The SetAt function, in contrast, replaces one specified array element and does not
shift any elements.

II example for CObArray::lnsertAt
CObArray array;

array.Add(new CAge(21)); II Element 0
array.Add(new CAge(40)); II Element 1 (will become 2).
array.lnsertAt(1. new CAge(30)); II New element 1

f!ifdef _DEBUG
afxDump.SetDepth(1);
afxDump « "InsertAt example: " « &array « "\n";

f!endif

The results from this program are as follows:

InsertAt example: A CObArray with 3 elements
[0] - a CAge at $45C8 21
[1] = a CAge at $4646 30
[2] = a CAge at $4606 40

See Also CObArray: :SetAt, CObArray: :RemoveAt

CObArray: : RemoveAl1
void RemoveAIl();

Remarks
Removes all the pointers from this array but does not actually delete the CObject
objects. If the array is already empty, the function still works.

The RemoveAIl function frees all memory used for pointer storage.

939

CObArray::RemoveAt

Example
II example for CObArray::RemoveAll
CObArray array:
CAge* pal:
CAge* pa2:

array.Add(pal = new CAge(21)): II Element 0
array.Add(pa2 = new CAge(40)): II Element 1
ASSERT(array.GetSize() == 2):
array.RemoveAll(): II Pointers removed but objects not deleted.
ASSERT(array.GetSize() == 0):
delete pal:
delete pa2: II Cleans up memory.

CObArray: : RemoveAt
void RemoveAt(int nlndex, int nCount = 1 };

Parameters

Remarks

Example

940

nlndex An integer index that is greater than or equal to 0 and less than or equal to
the value returned by GetUpperBound.

nCount The number of elements to remove.

Removes one or more elements starting at a specified index in an array. In the
process, it shifts down all the elements above the removed element(s}. It decrements
the upper bound of the array but does not free memory.

If you try to remove more elements than are contained in the array above the removal
point, then the Debug version of the library asserts.

The RemoveAt function removes the CObject pointer from the array, but it does not
delete the object itself.

II example for CObArray::RemoveAt
CObArray array:
CObject* pa:

array.Add(new CAge(21)): II Element 0
array.Add(new CAge(40)): II Element 1
if((pa = array.GetAt(0)) != NULL)
{

}

array.RemoveAt(0): II Element 1 moves to 0.
delete pa: II Delete the original element at 0.

l1ifdef _DEBUG
afxDump.SetDepth(1):
afxDump « "RemoveAt example: " « &array « "\n":

flendi f

The results from this program are as follows:

RemoveAt example: A CObArray with 1 elements
[0] = a CAge at $4606 40

See Also CObArray::SetAt, CObArray::SetAtGrow, CObArray::lnsertAt

CObArray:: SetAt
void SetAt(int nlndex, CObject* newElement);

Parameters

Remarks

Example

nlndex An integer index that is greater than or equal to 0 and less than or equal to
the value returned by GetUpperBound.

newElement The object pointer to be inserted in this array. A NULL value is
allowed.

Sets the array element at the specified index. SetAt will not cause the array to grow.
Use SetAtGrow if you want the array to grow automatically.

You must ensure that your index value represents a valid position in the array. If it is
out of bounds, then the Debug version of the library asserts.

II example for CObArray::SetAt
CObArray array;
CObject* pa;

array.Add(new CAge(21)); II Element 0
array.Add(new CAge(40)); II Element 1
if((pa = array.GetAt(0)) 1= NULL)
{

}

array.SetAt(0, new CAge(30)); II Replace element 0.
delete pa; II Delete the original element at 0.

Iii fdef _DEBUG
afxDump.SetDepth(1);
afxDump « "SetAt example: " « &array « "\n";

tlendif

The results from this program are as follows:

SetAt example: A CObArray with 2 elements
[0] = a CAge at $47E0 30
[1] = a CAge at $47A0 40

See Also CObArray::GetAt, CObArray::SetAtGrow, CObArray::ElementAt,
CObArray: : operator []

CObArray::SetAt

941

CObArray::SetAtGrow

CObArray: : SetAtGrow
void SetAtGrow(int nlndex, CObject* newElement);

throw(CMemoryException);

Parameters

Remarks

Example

nlndex An integer index that is greater than or equal to O.

newElement The object pointer to be added to this array. A NULL value is allowed.

Sets the array element at the specified index. The array grows automatically if
necessary (that is, the upper bound is adjusted to accommodate the new element).

II example for CObArray::SetAtGrow
CObArray array;

array.Add(new CAge(21)); II Element 0
array.Add(new CAge(40)); II Element 1
array.SetAtGrow(3, new CAge(65)); II Element 2 deliberately

II skipped.
/!ifdef _DEBUG

afxDump.SetDepth(1);
afxDump « "SetAtGrow example: " « &array « "\n";

/!endif

The results from this program are as follows:

SetAtGrow example: A CObArray with 4 elements
[0] = a CAge at $47C0 21
[1] = a CAge at $4800 40
[2] = NULL
[3] = a CAge at $4840 65

See Also CObArray: : GetAt, CObArray: :SetAt, CObArray: :ElementAt,
CObArray: : operator []

CObArray:: SetSize
void SetSize(int nNewSize, int nGrowBy = -1);

throw(CMemoryException);

Parameters

942

nNewSize The new array size (number of elements). Must be greater than or
equal to O.

nGrowBy The minimum number of element slots to allocate if a size increase is
necessary.

CObArray::operator []

Remarks
Establishes the size of an empty or existing array; allocates memory if necessary. If
the new size is smaller than the old size, then the array is truncated and all unused
memory is released. For efficiency, call SetSize to set the size of the array before
using it. This prevents the need to reallocate and copy the array each time an item is
added.

The nGrowBy parameter affects internal memory allocation while the array is
growing. Its use never affects the array size as reported by GetSize and
GetUpperBound.

Operators
CObArray: : operator []

Remarks

Example

CObject*& operator [](int nlndex);
CObject* operator [](int nlndex) const;

These subscript operators are a convenient substitute for the SetAt and GetAt
functions.

The first operator, called for arrays that are not const, may be used on either the right
(r-value) or the left (I-value) of an assignment statement. The second, called for const
arrays, may be used only on the right.

The Debug version of the library asserts if the subscript (either on the left or right
side of an assignment statement) is out of bounds.

II example for CObArray::operator []
CObArray array;
CAge* pa;

array.Add(new CAge(21)); II Element 0
array.Add(new CAge(40)); II Element 1
pa = (CAge*)array[0]; II Get element 0
ASSERT(*pa == CAge(21)); II Get element 0
array[0] = new CAge(30); II Replace element 0
delete pa;
ASSERT(*(CAge*) array[0] == CAge(30)); II Get new element 0

See Also CObArray::GetAt, CObArray::SetAt

943

CObject

CObject

944

CObject is the principal base class for the Microsoft Foundation Class Library. It
serves as the root not only for library classes such as CFile and CObList, but also for
the classes that you write. CObject provides basic services, including

• Serialization support

• Run-time class information

• Object diagnostic output

• Compatibility with collection classes

Note that CObject does not support multiple inheritance. Your derived classes can
have only one CObject base class, and that CObject must be leftmost in the
hierarchy. It is permissible, however, to have structures and non-CObject-derived
classes in right-hand multiple-inheritance branches.

You will realize major benefits from CObject derivation if you use some of the
optional macros in your class implementation and declarations.

The first-level macros, DECLARE_DYNAMIC and IMPLEMENT_DYNAMIC,
permit run-time access to the class name and its position in the hierarchy. This, in
turn, allows meaningful diagnostic dumping.

The second-level macros, DECLARE_SERIAL and IMPLEMENT_SERIAL,
include all the functionality of the first-level macros, and they enable an object to be
"serialized" to and from an "archive."

For information about deriving Microsoft Foundation classes and C++ classes in
general and using CObject, see the articles "CObject Class" and "Serialization
(Object Persistence)" in Programming with MFC.

#include <afx.h>

Construction

CObject

CObject

operator new

operator delete

operator =

Diagnostics

AssertValid

Dump

Default constructor.

Copy constructor.

Special new operator.

Special delete operator.

Assignment operator.

Validates this object's integrity.

Produces a diagnostic dump of this object.

Serialization

IsSerializable

Serialize

Miscellaneous

GetRuntimeClass

IsKindOf

Tests to see whether this object can be serialized.

Loads or stores an object from/to an archive.

Returns the CRuntimeClass structure corresponding to
this object's class.

Tests this object's relationship to a given class.

Member Functions
CObject: :Assert Valid

Remarks

Example

virtual void AssertValid() CORst;

AssertValid performs a validity check on this object by checking its internal state.
In the Debug version of the library, AssertValid may assert and thus terminate the
program with a message that lists the line number and filename where the assertion
failed.

When you write your own class, you should override the AssertValid function to
provide diagnostic services for yourself and other users of your class. The overridden
AssertValid usually calls the AssertValid function of its base class before checking
data members unique to the derived class.

Because AssertValid is a CORst function, you are not permitted to change the object
state during the test. Your own derived class AssertVaiid functions should not throw
exceptions but rather should assert whether they detect invalid object data.

The definition of "validity" depends on the object's class. As a rule, the function
should perform a "shallow check." That is, if an object contains pointers to other
objects, it should check to see whether the pointers are not null, but it should not
perform validity testing on the objects referred to by the pointers.

II example for CObject::AssertValid

See CObList::CObList for a listing of the CAge class used in all CObject examples.

void CAge::AssertValid() const
{

}

CObject::AssertValid();
ASSERT(m-years > 0);
ASSERT(m-years < 105);

CObject: :AssertValid

945

CObject: : CObject

CObject: :CObject
CObject();
CObject(constCObject& objeetSre);

Parameters

Remarks

objeetSre A reference to another CObject

These functions are the standard CObject constructors. The default version is
automatically called by the constructor of your derived class.

If your class is serializable (it incorporates the IMPLEMENT_SERIAL macro),
then you must have a default constructor (a constructor with no arguments) in your
class declaration. If you do not need a default constructor, declare a private or
protected "empty" constructor. For more information, see the article "CObject Class"
in Programming with MFC.

The standard C++ default class copy constructor does a member-by-member copy.
The presence of the private CObject copy constructor guarantees a compiler error
message if the copy constructor of your class is needed but not available. You must
therefore provide a copy constructor if your class requires this capability.

CObject: : Dump
virtual void Dump(CDumpContext& de) const;

Parameters

Remarks

946

de The diagnostic dump context for dumping, usually afxDump.

Dumps the contents of your object to a CDumpContext object.

When you write your own class, you should override the Dump function to provide
diagnostic services for yourself and other users of your class. The overridden Dump
usually calls the Dump function of its base class before printing data members unique
to the derived class. CObject: :Dump prints the class name if your class uses the
IMPLEMENT_DYNAMIC or IMPLEMENT_SERIAL macro.

Note Your Dump function should not print a newline character at the end of its output.

Dump calls make sense only in the Debug version of the Microsoft Foundation Class
Library. You should bracket calls, function declarations, and function
implementations with #ifdef _DEBUG/#endif statements for conditional
compilation.

CObject: : GetRuntimeClass

Example

Since Dump is a const function, you are not permitted to change the object state
during the dump.

The CDumpContext insertion «<) operator calls Dump when a CObject pointer
is inserted.

Dump permits only "acyclic" dumping of objects. You can dump a list of objects, for
example, but if one of the objects is the list itself, you will eventually overflow the
stack.

II example for CObject::Dump
void CAge::Dump(CDumpContext &dc) const

{

CObject::Dump(de);
de « "Age = " « m-years;
}

CObject: : GetRuntimeClass
virtual CRuntimeClass* GetRuntimeClass() const;

Return Value

Remarks

A pointer to the CRuntimeClass structure corresponding to this object's class;
never NULL.

There is one CRuntimeClass structure for each CObject-derived class. The structure
members are as follows:

• const char* m_pszClassName A null-terminated string containing the ASCII
class name.

• int m_nObjectSize The actual size of the object. If the object has data members
that point to allocated memory, the size of that memory is not included.

• WORD m_wSchema The schema number (-1 for nonserializable classes). See
the IMPLEMENT_SERIAL macro for a description of schema number.

• void (*m_pfnConstruct)(void* p) A pointer to the default constructor of your
class (valid only if the class is serializable).

• CRuntimeClass* m_pBaseClass A pointer to the CRuntimeClass structure that
corresponds to the base class.

This function requires use of the IMPLEMENT_DYNAMIC or
IMPLEMENT_SERIAL macro in the class implementation. You will get incorrect
results otherwise.

947

CObject: :IsKindOf

Example
II example for CObject::GetRuntimeClass
CAge a(21);
CRuntimeClass* prt = a.GetRuntimeClass();
ASSERT(strcmp(prt->m~pszClassName. "CAge") = ... 0);

See Also CObject: :IsKindOf, RUNTIME_CLASS Macro

CObject: : IsKindOf
BOOL IsKindOf(const CRuntimeClass* pClass) const;

Return Value
Nonzero if the object corresponds to the class; otherwise O.

Parameters

Remarks

Example

pClass A pointer to a CRuntimeClass structure associated with your
CObject-derived class.

Tests pClass to see if (l) it is an object of the specified class or (2) it is an object of a
class derived from the specified class. This function works only for classes declared
with the DECLARE_DYNAMIC or DECLARE_SERIAL macro.

Do not use this function extensively because it defeats the C++ polymorphism
feature. Use virtual functions instead.

II example for CObject::IsKindOf
CAge a(21); II Must use IMPLEMENT_DYNAMIC or IMPLEMENT_SERIAL
ASSERT(a.IsKindOf(RUNTIME_CLASS(CAge)));
ASSERT(a.IsKindOf(RUNTIME_CLASS(CObject)));

See Also CObject: : GetRuntimeClass, RUNTIME_CLASS

CObject: : IsSerializable
BOOL IsSerializable() const;

Return Value

Remarks

948

Nonzero if this object can be serialized; otherwise O.

Tests whether this object is eligible for serialization. For a class to be serializable, its
declaration must contain the DECLARE_SERIAL macro, and the implementation
must contain the IMPLEMENT_SERIAL macro.

Note Do not override this function.

Example
II example for CObject::IsSerializable
CAge a(21);
ASSERT(a.IsSerializable());

See Also CObject: : Serialize

CObj ect: : Serialize
virtual void Serialize(CArchive& ar);

throw(CMemoryException);
throw(CArchiveException);
throw(CFileException);

Parameters

Remarks

Example

ar A CArchive object to serialize to or from.

Reads or writes this object from or to an archive.

You must override Serialize for each class that you intend to serialize. The
overridden Serialize must first call the Serialize function of its base class.

You must also use the DECLARE_SERIAL macro in your class declaration, and
you must use the IMPLEMENT_SERIAL macro in the implementation.

Use CArchive::IsLoading or CArchive::IsStoring to determine whether the archive
is loading or storing.

Serialize is called by CArchive: : ReadObject and CArchive:: WriteObject. These
functions are associated with the CArchive insertion operator «<) and extraction
operator (»).

For serialization examples, see the article "Serialization (Object Persistence)" in
Programming with MFC.

II example for CObject::Serialize
void CAge::Serialize(CArchive& ar

{

CObject::Serialize(ar);
if(ar.IsStoring())
ar « m-years;
else
ar » m-years;

CObject: :Serialize

949

CObject::operator =

Operators
CObject::operator =

void operator =(const CObject& src);

Remarks
The standard C++ default class assignment behavior is a member-by-member copy.
The presence of this private assignment operator guarantees a compiler error message
if you assign without the overridden operator. You must therefore provide an
assignment operator in your derived class if you intend to assign objects of your
derived class.

CObject::operator delete

Remarks

void operator delete(void* p);

For the Release version of the library, operator delete simply frees the memory
allocated by operator new. In the Debug version, operator delete participates in an
allocation-monitoring scheme designed to detect memory leaks. If you override
operators new and delete, you forfeit the diagnostic capability.

See Also CObject: :operator new

CObject::operator new

Remarks

950

void* operator new(size_t nSize);
throw(CMemoryException);

void* operator new(size_t nSize, LPCSTR lpszFileName, int nLine);
throw(CMemoryException);

For the Release version of the library, operator new performs an optimal memory
allocation in a manner similar to malloc. In the Debug version, operator new
participates in an allocation-monitoring scheme designed to detect memory leaks.

If you use the code line

#define new DEBUG_NEW

before any of your implementations in a .CPP file, then the second version of new
will be used, storing the filename and line number in the allocated block for later
reporting. You do not have to worry about supplying the extra parameters; a macro
takes care of that for you.

Even if you do not use DEBUG_NEW in Debug mode, you still get leak detection,
but without the source-file line-number reporting described above.

Note If you override this operator, you must also override delete. Do not use the standard
library _new_handler function.

See Also CObject: : operator delete

CObject::operator new

951

CObList

CObList

952

The CObList class supports ordered lists of nonunique CObject pointers accessible
sequentially or by pointer value. CObList lists behave like doubly-linked lists.

A variable of type POSITION is a key for the list. You can use a POSITION
variable both as an iterator to traverse a list sequentially and as a bookmark to hold a
place. A position is not the same as an index, however.

Element insertion is very fast at the list head, at the tail, and at a known POSITION.
A sequential search is necessary to look up an element by value or index. This search
can be slow if the list is long.

CObList incorporates the IMPLEMENT _SERIAL macro to support serialization
and dumping of its elements. If a list of CObject pointers is stored to an archive,
either with an overloaded insertion operator or with the Serialize member function,
each CObject element is serialized in turn.

If you need a dump of individual CObject elements in the list, you must set the depth
of the dump context to 1 or greater.

When a CObList object is deleted, or when its elements are removed, only the
CObject pointers are removed, not the objects they reference.

You can derive your own classes from CObList. Your new list class, designed to hold
pointers to objects derived from CObject, adds new data members and new member
functions. Note that the resulting list is not strictly type safe, because it allows
insertion of any CObject pointer.

Note You must use the IMPLEMENT_SERIAL macro in the implementation of your derived
class if you intend to serialize the list.

For more information on using CObList, see the article "Collections" in
Programming with MFC.

#include <afxcoll.h>

See Also CStringList, CPtrList

Construction

CObList

HeadlTaii Access

GetHead

GetTail

Operations

RemoveHead

RemoveTail

AddHead

AddTail

RemoveAll

Iteration

GetHeadPosition

GetTailPosition

GetNext

GetPrev

Retrieval/Modification

GetAt

SetAt

RemoveAt

Insertion

InsertBefore

InsertAfter

Searching

Find

Findlndex

Status

GetCount

IsEmpty

Constructs an empty list for CObject pointers.

Returns the head element of the list (cannot be empty).

Returns the tail element of the list (cannot be empty).

Removes the element from the head of the list.

Removes the element from the tail of the list.

Adds an element (or all the elements in another list) to the head
of the list (makes a new head).

Adds an element (or all the elements in another list) to the tail of
the list (makes a new tail).

Removes all the elements from this list.

Returns the position of the head element of the list.

Returns the position of the tail element of the list.

Gets the next element for iterating.

Gets the previous element for iterating.

Gets the element at a given position.

Sets the element at a given position.

Removes an element from this list, specified by position.

Inserts a new element before a given position.

Inserts a new element after a given position.

Gets the position of an element specified by pointer value.

Gets the position of an element specified by a zero-based index.

Returns the number of elements in this list.

Tests for the empty list condition (no elements).

CObList

953

CObList: : AddHead

Member Functions
CObList: : AddHead

POSITION AddHead(CObject* newElement);
throw(CMemoryException);

void AddHead(CObList* pNewList);
throw(CMemoryException);

Return Value
The first version returns the POSITION value of the newly inserted element.

Parameters

Remarks

Example

newElement The CObject pointer to be added to this list.

pNewList A pointer to another CObList list. The elements in pNewList will be
added to this list.

Adds a new element or list of elements to the head of this list. The list can be empty
before the operation.

CObList list;
list.AddHead(new CAge(21); II 21 is now at head.
list.AddHead(new CAge(40); II 40 replaces 21 at head.

iti fdef _DEBUG
afxDump.SetDepth(1);
afxDump « "AddHead example: " « &list « "\n";

itendi f

The results from this program are as follows:

Add Head example: A CObList with 2 elements
a CAge at $44A8 40
a CAge at $442A 21

See Also CObList: : GetHead, CObList: :RemoveHead

CObList::AddTail
POSITION AddTail(CObject* newElement);

throw(CMemoryException);
void AddTail(CObList* pNewList);

throw(CMemoryException);

Return Value
The first version returns the POSITION value of the newly inserted element.

954

Parameters

Remarks

Example

newElement The CObject pointer to be added to this list.

pNewList A pointer to another CObList list. The elements in pNewList will be
added to this list.

Adds a new element or list of elements to the tail of this list. The list can be empty
before the operation.

CObList list;
list.AddTail(new CAge(21
list.AddTail(new CAge(40

Iii fdef _DEBUG
afxDump.SetDepth();

) ;

); II List now contains (21, 40).

afxDump « "AddTail example: " « &list « "\n";
Ilendif

The results from this program are as follows:

AddTail example: A CObList with 2 elements
a CAge at $444A 21
a CAge at $4526 40

See Also CObList::GetTail, CObList::RemoveTaii

CObList: :CObList
CObList(int nBlockSize = 10);

Parameters

Remarks

Example

nBlockSize The memory-allocation granularity for extending the list.

Constructs an empty CObject pointer list. As the list grows, memory is allocated in
units of nBlockSize entries. If a memory allocation fails, a CMemoryException is
thrown.

Below is a listing of the CObject-derived class CAge used in all the collection
examples:

II Simple CObject-derived class for CObList examples
class CAge: public CObject
{

DECLARE_SERIAL(CAge)
private:

i nt m-yea rs;
public:

CAge() { m-years = 0; }
CAge(int age) {m-years age;}

CObList: :CObList

955

CObList: :Find

CAge(const CAge& a) { m-years = a.m-years; } II Copy constructor
void Serialize(CArchive& ar);
void AssertValid() const;
const CAge& operator-(const CAge& a)
{

m-years - a.m-years; return *this;
}

BOOl operator==(CAge a)
{

return m-years == a.m-years;
}

IIi fdef _DEBUG
void Dump(CDumpContext& dc) const
{

}

Ilendi f
} ;

CObject::Dump(dc);
dc « m-years;

Below is an example of CObList constructor usage:

COblist list(20); II list on the stack with blocksize - 20.

COblist* plist = new COblist; II list on the heap with default
II blocksize.

CObList: : Find
POSITION Find(CObject* search Value, POSITION startAfter = NULL) const;

Return Value
A POSITION value that can be used for iteration or object pointer retrieval; NULL
if the object is not found.

Parameters

Remarks

Example

956

search Value The object pointer to be found in this list.

startAfter The start position for the search.

Searches the list sequentially to find the first CObject pointer matching the specified
CObject pointer. Note that the pointer values are compared, not the contents of the
objects.

CObList list;
CAge* pal;
CAge* pa2;
POSITION pos;
list.AddHead(pal = new CAge(21);
list.AddHead(pa2 = new CAge(40); II list now contains (40, 21).

if((pos - list.Find(pal)) !- NULL) II Hunt for pal
{ II starting at head by default.

ASSERT(*(CAge*) list.GetAt(pos) -- CAge(21));

See Also CObList::GetNext, CObList::GetPrev

CObList: : FindIndex
POSITION FindIndex(int nlndex) const;

Return Value
A POSITION value that can be used for iteration or object pointer retrieval; NULL
if nlndex is too large. (The framework generates an assertion if nlndex is negative.)

Parameters

Remarks

Example

nlndex The zero-based index of the list element to be found.

Uses the value of nlndex as an index into the list. It starts a sequential scan from the
head of the list, stopping on the nth element.

CObList list;
POSITION pos;

list.AddHead(new CAge(21));
list.AddHead(new CAge(40)); II List now contains (40, 21).
if((pos - list.FindIndex(0 » !- NULL)
{

ASSERT(*(CAge*) list.GetAt(pos) -= CAge(40));

See Also CObList::Find, CObList::GetNext, CObList::GetPrev

CObList: : GetAt
CObject*& GetAt(POSITION position);
CObject* GetAt(POSITION position) const;

Return Value
See the return value description for GetHead.

Parameters
position A POSITION value returned by a previous GetHeadPosition or Find

member function call.

CObList: : GetAt

957

CObList: :GetCount

Remarks

Example

A variable of type POSITION is a key for the list. It is not the same as an index, and
you cannot operate on a POSITION value yourself. GetAt retrieves the CObject
pointer associated with a given position.

You must ensure that your POSITION value represents a valid position in the list. If
it is invalid, then the Debug version of the Microsoft Foundation Class Library
asserts.

See the example for FindIndex.

See Also CObList: :Find, CObList: :SetAt, CObList: : GetNext,
CObList: : GetPrev, CObList: : GetHead

CObList: : GetCount
int GetCount() const;

Return Value

Remarks

Example

An integer value containing the element count.

Gets the number of elements in this list.

CObList list;

list.AddHead(new CAge(21));
list.AddHead(new CAge(40)); II List now contains (40. 21).
ASSERT(list.GetCount() == 2);

See Also CObList: :IsEmpty

CObList: : GetHead
CObject*& GetHead();
CObject* GetHead() const;

Return Value

958

If the list is accessed through a pointer to a const CObList, then GetHead returns a
CObject pointer. This allows the function to be used only on the right side of an
assignment statement and thus protects the list from modification.

CObList: : GetHeadPosition

Remarks

Example

If the list is accessed directly or through a pointer to a CObList, then GetHead
returns a reference to a CObject pointer. This allows the function to be used on
either side of an assignment statement and thus allows the list entries to be modified.

Gets the CObject pointer that represents the head element of this list.

You must ensure that the list is not empty before calling GetHead. If the list is
empty, then the Debug version of the Microsoft Foundation Class Library asserts. Use
IsEmpty to verify that the list contains elements.

The following example illustrates the use of GetHead on the left side of an
assignment statement.

const CObList* cplist;

CObList* plist = new CObList:
CAge* pagel new CAge(21):
CAge* page2 = new CAge(30):
CAge* page3 = new CAge(40):
plist->AddHead(pagel);
plist->AddHead(page2): II List now contains (30. 21).
II The following statement REPLACES the head element.
plist->GetHead() = page3: II List now contains (40. 21).
ASSERT(*(CAge*) plist->GetHead() == CAge(40)):
cplist = plist: II cplist is a pointer to a const list.

II cplist->GetHead() = page3: II Does not compile!
ASSERT(*(CAge*) plist->GetHead() == CAge(40)); II OK

delete pagel:
delete page2:
delete page3:
delete plist: II Cleans up memory.

See Also CObList: : GetTail, CObList: : GetTailPosition, CObList: :AddHead,
CObList: : RemoveHead

CObList: : GetHeadPosition
POSITION GetHeadPosition() const;

Return Value
A POSITION value that can be used for iteration or object pointer retrieval; NULL
if the list is empty.

959

CObList: : GetNext

Remarks

Example

Gets the position of the head element of this list.

CObList list:
POSITION pos:

list.AddHead(new CAge(21)):
list.AddHead(new CAge(40)): II List now contains (40. 21).
if((pos = list.GetHeadPosition()) != NULL)
{

ASSERT(*(CAge*) list.GetAt(pos) == CAge(40)):
}

See Also CObList::GetTailPosition

CObList: : GetNext
CObject*& GetNext(POSITION& rPosition);
CObject* GetNext(POSITION& rPosition) const;

Return Value
See the return value description for GetHead.

Parameters

Remarks

Example

960

rPosition A reference to a POSITION value returned by a previous GetNext,
GetHeadPosition, or other member function call.

Gets the list element identified by rPosition, then sets rPosition to the POSITION
value of the next entry in the list. You can use GetNext in a forward iteration loop if
you establish the initial position with a call to GetHeadPosition or Find.

You must ensure that your POSITION value represents a valid position in the list. If
it is invalid, then the Debug version of the Microsoft Foundation Class Library
asserts.

If the retrieved element is the last in the list, then the new value of rPosition is set
to NULL.

It is possible to remove an element during an iteration. See the example for
RemoveAt.

CObList list:
POSITION pos:
list.AddHead(new CAge(21)):
list.AddHead(new CAge(40)): II List now contains (40. 21).
II Iterate through the list in head-to-tail order.

!lifdef _DEBUG
for(pos = list.GetHeadPosition(): pos != NULL:)

afxDump « list.GetNext(pos) « "\n";
}

1Iendif

The results from this program are as follows:

a CAge at $479C 40
a CAge at $46C0 21

See Also CObList::Find, CObList::GetHeadPosition, CObList::GetTailPosition,
CObList: : GetPrev , CObList: : GetHead

CObList: : GetPrev
CObject*& GetPrev(POSITION& rPosition);
CObject* GetPrev(POSITION & rPosition) const;

Return Value
See the return value description for GetHead.

Parameters

Remarks

Example

rPosition A reference to a POSITION value returned by a previous GetPrev or
other member function call.

Gets the list element identified by rPosition, then sets rPosition to the POSITION
value of the previous entry in the list. You can use GetPrev in a reverse iteration loop
if you establish the initial position with a call to GetTailPosition or Find.

You must ensure that your POSITION value represents a valid position in the list. If
it is invalid, then the Debug version of the Microsoft Foundation Class Library
asserts.

If the retrieved element is the first in the list, then the new value of rPosition is set
to NULL.

CObList list;
pas IT! ON pos;

list.AddHead(new CAge(21));
list.AddHead(new CAge(40)); II List now contains (40. 21).
II Iterate through the list in tail-to-head order.
for(pos = list.GetTailPosition(); pos 1= NULL;)
{

1/i fdef _DEBUG
afxDump « list.GetPrev(pos) « "\n";

1Iendif
}

CObList: : GetPrev

961

CObList: : GetTail

The results from this program are as follows:

a CAge at $421C 21
a CAge at $421C 40

See Also CObList::Find, CObList::GetTailPosition, CObList::GetHeadPosition,
CObList: : GetNext, CObList: : GetHead

CObList: : GetTail
CObject*& GetTail();
CObject* GetTail() const;

Return Value

Remarks

Example

See the return value description for GetHead.

Gets the CObject pointer that represents the tail element of this list.

You must ensure that the list is not empty before calling GetTaii. If the list is empty,
then the Debug version of the Microsoft Foundation Class Library asserts. Use
IsEmpty to verify that the list contains elements.

CObList list;

list.AddHead(new CAge(21));
list.AddHead(new CAge(40)); II List now contains (40, 21).
ASSERT(*(CAge*) list.GetTail() == CAge(21));

See Also CObList: :AddTail, CObList: :AddHead, CObList: : RemoveHead,
CObList: : GetHead

CObList: : GetTailPosition
POSITION GetTailPosition() const;

Return Value

Remarks

962

A POSITION value that can be used for iteration or object pointer retrieval; NULL
if the list is empty.

Gets the position of the tail element of this list; NULL if the list is empty.

Example
CObList list:
POSITION pos:

list.AddHead(new CAge(21)):
list.AddHead(new CAge(40)): II List now contains (40. 21).
if((pos - list.GetTailPosition()) 1- NULL)
{

ASSERT(*(CAge*) list.GetAt(pos) == CAge(21)):

See Also CObList: : GetHeadPosition, CObList: : GetTail

CObList: : InsertAfter
POSITION InsertAfter(POSITION position, CObject* newElement);

throw (CMemoryException);

Parameters

Remarks

Example

position A POSITION value returned by a previous GetNext, GetPrev, or Find
member function call.

newElement The object pointer to be added to this list.

Adds an element to this list after the element at the specified position.

CObList list:
POSITION pos1. pos2:
list.AddHead(new CAge(21)):
list.AddHead(new CAge(40)); II List now contains (40. 21).
if((pos1 = list.GetHeadPosition()) 1= NULL)
{

pos2 = list.InsertAfter(pos1. new CAge(65)):
}

lIifdef _DEBUG
afxDump.SetDepth(1):
afxDump « "InsertAfter example: " « &list « "\n":

flendi f

The results from this program are as follows:

InsertAfter example: A CObList with 3 elements
a CAge at $4A44 40
a CAge at $4A64 65
a CAge at $4968 21

See Also CObList: :Find, CObList: :InsertBefore

CObList: : InsertAfter

963

CObList: :InsertBefore

CObList: : InsertBefore
POSITION InsertBefore(POSITION position, CObject* newElement);

throw (CMemoryException);

Return Value
A POSITION value that can be used for iteration or object pointer retrieval; NULL
if the list is empty.

Parameters

Remarks

Example

position A POSITION value returned by a previous GetNext, GetPrev, or Find
member function call.

newElement The object pointer to be added to this list.

Adds an element to this list before the element at the specified position.

CObList list;
POSITION pos1, pos2;
list.AddHead(new CAge(21));
list.AddHead(new CAge(40)); II List now contains (40, 21).
if((pos1 = list.GetTailPosition()) 1= NULL
{

pos2 = list.InsertBefore(pos1, new CAge(65));
}

lIifdef _DEBUG
afxDump.SetDepth(1);
afxDump « "InsertBefore example: " « &list « "\n";

flendi f

The results from this program are as follows:

InsertBefore example: A CObList with 3 elements
a CAge at $4AE2 40
a CAge at $4B02 65
a CAge at $49E6 21

See Also CObList: :Find, CObList: :InsertAfter

CObList: : IsEmpty
BOOL IsEmpty() const;

Return Value
Nonzero if this list is empty; otherwise O.

Remarks
Indicates whether this list contains no elements.

964

Example
See the example for RemoveAII.

See Also CObList: : GetCount

CObList: : RemoveAll

Remarks

Example

void RemoveAlI();

Removes all the elements from this list and frees the associated CObList memory.
No error is generated if the list is already empty.

When you remove elements from a CObList, you remove the object pointers from the
list. It is your responsibility to delete the objects themselves.

CObList list;
CAge* pal;
CAge* pa2;
ASSERT(list.lsEmpty(»; II Yes it is.
list.AddHead(pal = new CAge(21));
list.AddHead(pa2 = new CAge(40)); II List now contains (40, 21).
ASSERT(!list.lsEmpty(»; II No it isn't.
list.RemoveAll(); II CAge's aren't destroyed.
ASSERT(1 i st. IsEmpty(); I I Yes it is.
delete pal; II Now delete the CAge objects.
delete pa2;

CObList: : RemoveAt
void RemoveAt(POSITION position);

Parameters

Remarks

position The position of the element to be removed from the list.

Removes the specified element from this list.

When you remove an element from a CObList, you remove the object pointer from
the list. It is your responsibility to delete the objects themselves.

You must ensure that your POSITION value represents a valid position in the list. If
it is invalid, then the Debug version of the Microsoft Foundation Class Library
asserts.

CObList: :RemoveAt

965

CObList::RemoveHead

Example
Be careful when removing an element during a list iteration. The following example
shows a removal technique that guarantees a valid POSITION value for GetNext.

CObList list;
POSITION pos1, pos2;
CObject* pa;

list.AddHead(new CAge(21);
list.AddHead(new CAge(40);
list.AddHead(new CAge(65); II List now contains (65 40. 21).
fore pos1 = list.GetHeadPosition(); pos2 = pos1 1= NULL;)
{

if(*(CAge*) list.GetNext(pos1
{

CAge(40

pa = list.GetAt(pos2); II Save the old pointer for
Iideletion.

list.RemoveAt(pos2);
delete pa; II Deletion avoids memory leak.

}

lIifdef _DEBUG
afxDump.SetDepth(1);
afxDump « "RemoveAt example: " « &list « "\n";

lIendif

The results from this program are as follows:

RemoveAt example: A CObList with 2 elements
a CAge at $4C1E 65
a CAge at $4B22 21

CObList: : RemoveHead
CObject* RemoveHead();

Return Value

Remarks

966

The CObject pointer previously at the head of the list.

Removes the element from the head of the list and returns a pointer to it.

You must ensure that the list is not empty before calling RemoveHead. If the list is
empty, then the Debug version of the Microsoft Foundation Class Library asserts. Use
IsEmpty to verify that the list contains elements.

Example
CObList list;
CAge* pal;
CAge* pa2;

list.AddHead(pal = new CAge(21));
list.AddHead(pa2 = new CAge(40)); II List now contains (40. 21).
ASSERT(*(CAge*) list.RemoveHead() == CAge(40 »; II Old head
ASSERT(*(CAge*) list.GetHead() == CAge(21 »; II New head
delete pal;
delete pa2;

See Also CObList: : GetHead, CObList: :AddHead

CObList: : RemoveTail
CObject* RemoveTail();

Return Value

Remarks

Example

A pointer to the object that was at the tail of the list.

Removes the element from the tail of the list and returns a pointer to it.

You must ensure that the list is not empty before calling RemoveTaii. If the list is
empty, then the Debug version of the Microsoft Foundation Class Library asserts. Use
IsEmpty to verify that the list contains elements.

CObList list;
CAge* pal;
CAge* pa2;

list.AddHead(pal = new CAge(21));
list.AddHead(pa2 = new CAge(40)); II List now contains (40. 21).
ASSERT(*(CAge*) list.RemoveTail() == CAge(21 »; II Old tail
ASSERT(*(CAge*) list.GetTail() == CAge(40 »; II New tail
delete pal;
delete pa2; II Clean up memory.

See Also CObList:: GetTail, CObList: : Add Tail

CObList:: SetAt
void SetAt(POSITION pas, CObject* newElement);

Parameters
pas The POSITION of the element to be set.

newElement The CObject pointer to be written to the list.

CObList: :SetAt

967

CObList: :SetAt

Remarks

Example

968

A variable of type POSITION is a key for the list. It is not the same as an index, and
you cannot operate on a POSITION value yourself. SetAt writes the CObject
pointer to the specified position in the list.

You must ensure that your POSITION value represents a valid position in the list. If
it is invalid, then the Debug version of the Microsoft Foundation Class Library
asserts.

CObList list;
CObject* pa;
POSITION pos;

list.AddHead(new CAge(21));
list.AddHead(new CAge(40)); II List now contains (40,,21).
if((pos = list.GetTailPosition(» 1= NULL)
{

}

pa = list.GetAt(pos); II Save the old pointer for
Ildeletion.

list.SetAt(pos. new CAge(65 »; II Replace the tail
Ilelement.

delete pa; II Deletion avoids memory leak.

Ifi fdef _DEBUG
afxDump.SetDepth(1);
afxDump « "SetAt example: " « &list « "\n";

Ifendi f

The results from this program are as follows:

SetAt example: A CObList with 2 elements
a CAge at $4098 40
a CAge at $4088 65

See Also CObList: :Find, CObList: : GetAt, CObList: : GetNext,
CObList: : GetPrev

COleBusyDialog

The COleBusyDialog class is used for the OLE Server Not Responding or Server
Busy dialog boxes. Create an object of class COleBusyDialog when you want to call
these dialog boxes. After a COleBusyDialog object has been constructed, you can use
the m_bz structure to initialize the values or states of controls in the dialog box. The
m_bz structure is of type OLEUIBUSY. For more information about using this
dialog class, see the DoModal member function.

Note AppWizard-generated container code uses this class.

For more information, see the OLEUIBUSY structure in the OLE 2.01 User
Inteiface Library.

For more information on OLE-specific dialog boxes, see the article "Dialog Boxes in
OLE" in Programming with MFC.

#include <afxodlgs.h>

See Also COleDialog

Data Members

Construction

COleBusyDialog

Operations

DoModal

GetSelectionType

Structure of type OLEUIBUSY that controls the behavior of the
dialog box.

Constructs a COleBusyDialog object.

Displays the OLE Server Busy dialog box.

Determines the choice made in the dialog box.

COleBusyDialog

969

COleBusyDialog::COleBusyDialog

Member Functions
COleBusyDialog::COleBusyDialog

COleBusyDialog(HTASK htaskBusy, BOOL bNotResponding = FALSE, DWORD dwFlags = 0,
CWnd* pParentWnd = NULL);

Parameters

Remarks

htaskBusy Handle to the server task that is busy.

bNotResponding If TRUE, call the Not Responding dialog box instead of the Server
Busy dialog box. The wording in the Not Responding dialog box is slightly
different than the wording in the Server Busy dialog box, and the Cancel button is
disabled.

dwFlags Creation flag. Can contain zero or more of the following values combined
with the bitwise-OR operator:

• BZ_DISABLECANCELBUTTON Disable the Cancel button when calling
the dialog box.

• BZ_DISABLESWITCHTOBUTTON Disable the Switch To button when
calling the dialog box.

• BZ_DISABLERETRYBUTTON Disable the Retry button when calling the
dialog box.

pParentWnd Points to the parent or owner window object (of type CWnd) to which
the dialog object belongs. If it is NULL, the parent window of the dialog object is
set to the main application window.

This function only constructs a COleBusyDialog object. To display the dialog box,
call DoModai.

For more information, see the OLEUIBUSY structure in the OLE 2.01 User
Interface Library.

See Also COleBusyDialog: :DoModal

COleBusy Dialog: :DoModal
virtual int DoModal() const;

Return Value
Completion status for the dialog box. One of the following values:

• IDOK if the dialog box was successfully displayed.

• IDCANCEL if the user canceled the dialog box.

970

COleB usy Dialog: : GetS election Type

Remarks

• IDABORT if an error occurred. If IDABORT is returned, call the
COleDialog::GetLastError member function to get more information about the
type of error that occurred. For a listing of possible errors, see the OleUIBusy
function in the OLE 2.01 User Interface Library.

Call this function to display the OLE Server Busy or Server Not Responding
dialog box.

If you want to initialize the various dialog box controls by setting members of the
m_bz structure, you should do this before calling DoModal, but after the dialog
object is constructed.

If DoModal returns IDOK, you can call other member functions to retrieve the
settings or information that was input by the user into the dialog box.

See Also COleDialog: : GetLastError , CDialog: :DoModal,
COleBusyDialog: : GetSelectionType, COleBusyDialog: :m_bz

COleBusyDialog::GetSelectionType
UINT GetSelectionType();

Return Value

Remarks

Type of selection made.

Call this function to get the selection type chosen by the user in the Server Busy
dialog box.

The return type values are specified by the Selection enumeration type declared in
the COleBusyDialog class.

enum Selection
{

} ;

switchTo.
retry.
callUnblocked

Brief descriptions of these values follow:

• COleBusyDialog::switchTo Switch To button was pressed.

• COleBusyDialog::retry Retry button was pressed.

• COleBusyDialog::caIlUnblocked Call to activate the server is now unblocked.

See Also COleBusyDialog: : DoModal

971

COleBusyDialog::m_hz

Data Members
COleBusyDialog: :m_bz
Remarks

972

Structure of type OLEUIBUSY used to control the behavior of the Server Busy
dialog box. Members of this structure can be modified directly or through member
functions.

For more information, see the OLEUIBUSY structure in the OLE 2.01 User
Inteiface Library.

See Also COleBusyDialog: :COleBusyDialog, COleBusyDiaIog: :DoModal

COleCbangeIconDialog

COleChangelconDialog

The COleChangelconDialog class is used for the OLE Change Icon dialog box.
Create an object of class COleChangelconDialog when you want to call this dialog
box. After a COleChangelconDialog object has been constructed, you can use the
m_ci structure to initialize the values or states of controls in the dialog box. The m_ci
structure is of type OLEUICHANGEICON. For more information about using this
dialog class, see the DoModal member function.

For more information, see the OLEUICHANGEICON structure in the OLE 2.01
User Interface Library.

For more information about OLE-specific dialog boxes, see the article "Dialog Boxes
in OLE" in Programming with MFC.

#include <afxodlgs.h>

See Also COleDialog

Data Members

m_ci

Construction

COleChangelconDialog

Operations and Attributes

DoModal

DoChangelcon

GetIconicMetafile

A structure that controls the behavior of the dialog box.

Constructs a COleChangelconDialog object.

Displays the OLE 2 Change Icon dialog box.

Performs the change specified in the dialog box.

Gets a handle to the metafile associated with the iconic
form of this item.

973

COleChangeIconDialog: :COleChangeIconDialog

Member Functions
COleChangelconDialog: :COleChangelconDialog

COleChangelconDialog (COleClientltem* pItem, DWORD dwFlags = CIF _SELECTCURRENT,
CWnd* pParentWnd = NULL);

Parameters

Remarks

pItem Points to the item to be converted.

dwFlags Creation flag, which contains any number of the following values
combined using the bitwise-or operator:

• CIF _SELECTCURRENT Specifies that the Current radio button will be
selected initially when the dialog box is called. This is the default.

• CIF _SELECTDEFAULT Specifies that the Default radio button will be
selected initially when the dialog box is called.

• CIF _SELECTFROMFILE Specifies that the From File radio button will be
selected initially when the dialog box is called.

• CIF _SHOWHELP Specifies that the Help button will be displayed when the
dialog box is called.

• CIF _USEICONEXE Specifies that the icon should be extracted from the
executable specified in the szlconExe field of m_ci instead of retrieved from
the type. This is useful for embedding or linking to non-OLE files.

pParentWnd Points to the parent or owner window object (of type CWnd) to which
the dialog object belongs. If it is NULL, the parent window of the dialog box will
be set to the main application window.

This function constructs only a COleChangelconDialog object. To display the dialog
box, call the DoModal function.

For more information, see the OLEUICHANGEICON structure in the OLE 2.01
User Interface Library.

See Also COleClientItem, COleChangelconDialog: :DoModal

COleChangelconDialog: : DoChangelcon
BOOL DoChangeIcon(COleClientltem* pItem);

Return Value
Nonzero if change is successful; otherwise O.

974

COleChangelconDialog: : GetlconicMetafile

Parameters

Remarks

pItem Points to the item whose icon is changing.

Call this function to change the icon representing the item to the one selected in the
dialog box after DoModal returns IDOK.

See Also COleChangelconDialog: :DoModal

COleChangeIconDialog: : DoModal
virtual int DoModal();

Return Value

Remarks

Completion status for the dialog box. One of the following values:

• IDOK if the dialog box was successfully displayed.

• IDCANCEL if the user canceled the dialog box.

• IDABORT if an error occurred. If IDABORT is returned, call the
COleDialog::GetLastError member function to get more information about the
type of error that occurred. For a listing of possible errors, see the
OleUIChangelcon function in the OLE 2.01 User Interface Library.

Call this function to display the OLE Change Icon dialog box.

If you want to initialize the various dialog box controls by setting members of the
m_ci structure, you should do this before calling DoModal, but after the dialog object
is constructed.

If DoModal returns IDOK, you can call other member functions to retrieve the
settings or information that was input by the user into the dialog box.

See Also COleDialog: : GetLastError , CDialog: :DoModal,
COleChangelconDialog: :m_ci, COleChangelconDialog: :DoChangelcon,
COleChangelconDialog: : GetIconicMetatile

COleChangeIconDialog:: GetIconicMetafile
HGLOBAL GetIconicMetatile() const;

Return Value
The handle to the metafile containing the iconic aspect of the new icon, if the dialog
box was dismissed by choosing OK; otherwise, the icon as it was before the dialog
was displayed.

975

COleChangeIconDialog: :m_ci

Remarks
Call this function to get a handle to the metafile that contains the iconic aspect of the
selected item.

See Also COleChangelconDialog: :DoModal,
COleChangeIconDialog: :COleChangelconDialog,
COleChangelconDialog: :DoChangelcon

Data Members
COleChangeIconDialog: :m_ci
Remarks

976

Structure of type OLEUICHANGEICON used to control the behavior of the Change
Icon dialog box. Members of this structure can be modified either directly or through
member functions.

For more information, see the OLEUICHANGEICON structure in the OLE 2.01
User Interface Library.

See Also COleChangelconDialog: :COleChangelconDialog

COleChangeSourceDialog

COleChangeSourceDialog

The COleChangeSourceDialog class is used for the OLE Change Source dialog box.
Create an object of class COleChangeSourceDialog when you want to call this
dialog box. After a COleChangeSourceDialog object has been constructed, you can
use the m_cs structure to initialize the values or states of controls in the dialog box.
The m_cs structure is of type OLEUICHANGESOURCE. For more information
about using this dialog class, see the DoModal member function.

For more information, see the OLEUICHANGESOURCE structure in the OLE 2.01
User Interface Library.

For more information about OLE-specific dialog boxes, see the article "Dialog Boxes
in OLE" in Programming with MFC.

#include <afxodlgs.h>

See Also COleDialog

Constructor

COleChangeSourceDialog Constructs a COleChangeSourceDialog object.

Operations

DoModal

Attributes

IsValidSource

GetFileName

GetDisplayName

GetItemName

GetFromPrefix

GetToPrefix

Displays the OLE Change Source dialog box.

Indicates if the source is valid.

Gets the filename from the source name.

Gets the complete source display name.

Gets the item name from the source name.

Gets the prefix of the previous source.

Gets the prefix of the new source

977

COleChangeSourceDialog::COleChangeSourceDialog

Data Member

A structure that controls the behavior of the dialog box.

Member Functions
COleChangeSourceDialog: :COleChangeSourceDialog

COleChangeSourceDialog(COleClientltem* pltem, CWnd* pParentWnd = NULL);

Parameters

Remarks

pltem Pointer to the linked COleClientltem whose source is to be updated.

pParentWnd Points to the parent or owner window object (of type CWnd) to which
the dialog object belongs. If it is NULL, the parent window of the dialog box will
be set to the main application window.

This function constructs a COleChangeSourceDialog object. To display the dialog
box, call the DoModal function.

For more information, see the OLEUICHANGESOURCE structure and
OleUIChangeSource function in the OLE 2.01 User Inteiface Library.

COleChangeSourceDialog: :DoModal
virtual int DoModal();

Return Value

Remarks

978

Completion status for the dialog box. One of the following values:

• IDOK if the dialog box was successfully displayed.

• IDCAN CEL if the user canceled the dialog box.

• IDABORT if an error occurred. If IDABORT is returned, call the
COleDialog::GetLastError member function to get more information about the
type of error that occurred. For a listing of possible errors, see the
OleUIChangeSource function in the OLE 2.01 User Inteiface Library.

Call this function to display the OLE Change Source dialog box.

If you want to initialize the various dialog box controls by setting members of the
m_cs structure, you should do this before calling DoModal, but after the dialog object
is constructed.

COleChangeSourceDialog::GetFrornPrefix

If DoModal returns IDOK, you can call member functions to retrieve user-entered
settings or information from the dialog box. The following list names typical query
functions:

• GetFileName

• GetDisplayName

• GetltemName

See Also COleChangeSourceDialog: :COleChangeSourceDialog

COleChangeSourceDialog: : GetDisplay N arne
CString GetDisplayName();

Return Value

Remarks

The complete source display name (moniker) for the COleClientItem specified in the
constructor.

Call this function to retrieve the complete display name for the linked client item.

See Also COleChangeSourceDialog::GetFileName,
COleChangeSourceDialog: : GetltemName

COleChangeSourceDialog:: GetFileN arne
CString GetFileName();

Return Value

Remarks

The file moniker portion of the source display name for the COleClientItem
specified in the constructor.

Call this function to retrieve the file moniker portion of the display name for the
linked client item. The file moniker together with the item moniker gives the
complete display name.

See Also COleChangeSourceDialog: : GetDisplayName,
COleChangeSourceDialog: : GetItemName

COleChangeSourceDialog:: GetFrornPrefix
CString GetFromPrefix();

Return Value
The previous prefix string of the source.

979

COleChangeSourceDialog::GetitemName

Remarks
Call this function to get the previous prefix string for the source. Call this function
only after DoModal returns IDOK.

This value comes directly from the IpszFrom member of the
OLEUICHANGESOURCE structure.

For more information, see the OLEUICHANGESOURCE structure in the OLE 2.01
User Interface Library.

See Also COleChangeSourceDialog: : GetToPrefix

COleChangeSourceDialog: : GetItemN arne
CString GetltemName();

Return Value

Remarks

The item moniker portion of the source display name for the COleClientItem
specified in the constructor.

Call this function to retrieve the item moniker portion of the display name for the
linked client item. The file moniker together with the item moniker gives the
complete display name.

See Also COleChangeSourceDialog: : GetFileName,
COleChangeSourceDialog: : GetDisplayName

COleChangeSourceDialog::GetToPrefix
CString GetToPrefix();

Return Value

Remarks

980

The new prefix string of the source.

Call this function to get the new prefix string for the source. Call this function only
after DoModal returns IDOK.

This value comes directly from the IpszTo member of the
OLEUICHANGESOURCE structure.

For more information, see the OLEUICHANGESOURCE structure in the OLE 2.01
User Interface Library.

See Also COleChangeSourceDialog::GetFromPrefix

COleChangeSourceDialog: :m_cs

COleChangeSourceDialog: :Is ValidSource
BOOL IsValidSource();

Return Value

Remarks

Nonzero if the new source is valid, otherwise O.

Call this function to determine if the new source is valid. Call this function only after
DoModal returns IDOK.

For more information, see the OLEUICHANGESOURCE structure in the OLE 2.01
User Interface Library.

See Also COleChangeSourceDialog: : DoModal

Data Members
COleChangeSourceDialog: :m_cs
Remarks

This data member is a structure of type OLEUICHANGESOURCE.
OLEUICHANGESOURCE is used to control the behavior of the OLE Change
Source dialog box. Members of this structure can be modified directly.

For more information, see the OLEUICHANGESOURCE structure the in OLE 2.01
User Interface Library.

See Also COleChangeSourceDialog: :COleChangeSourceDialog

981

COleClientItem

COleClientItem

982

The COleClientItem class defines the container interface to OLE items. An OLE
item represents data, created and maintained by a server application, which can be
"seamlessly" incorporated into a document so that it appears to the user to be a single
document. The result is a "compound document" made up of the OLE item and a
containing document.

An OLE item can be either embedded or linked. If it is embedded, its data is stored as
part of the compound document. If it is linked, its data is stored as part of a separate
file created by the server application, and only a link to that file is stored in the
compound document. All OLE items contain information specifying the server
application that should be called to edit them.

COleClientItem defines several overridable functions that are called in response to
requests from the server application; these overridables usually act as notifications.
This allows the server application to inform the container of changes the user makes
when editing the OLE item, or to retrieve information needed during editing.

COleClientItem can be used with either the COleDocument, COleLinkingDoc, or
COleServerDoc class. To use COleClientItem, derive a class from it and implement
the OnChange member function, which defines how the container responds to
changes made to the item. To support in-place activation, override the
OnGetItemPosition member function. This function provides information about the
displayed position of the OLE item.

For more information about using the container interface, see the articles
"Containers: Implementing a Container" and "Activation" in Programming
withMFC.

Note The OLE documentation refers to embedded and linked items as "objects" and refers to
types of items as "classes." This reference uses the term "item" to distinguish the OLE entity
from the corresponding C++ object and the term "type" to distinguish the OLE category from
the C++ class.

#include <afxole.h>

See Also COleDocument, COleLinkingDoc, COleServerItem

Construction

COleClientItem

Creation

CreateFromClipboard

CreateFromData

CanCreateFromData

CreateFromFile

CreateStaticFromClipboard

CreateStaticFromData

CreateLinkFromClipboard

CreateLinkFromData

CanCreateLinkFromData

CreateLinkFromFile

CreateNew Item

CreateCloneFrom

Status

GetLastStatus

GetType

GetExtent

GetCachedExtent

GetClassID

GetUserType

GetIconicMetafile

SetIconicMetafile

GetDraw Aspect

SetDraw Aspect

GetItemState

GetActive View

IsModified

IsRunning

Constructs a COleClientItem object.

Creates an embedded item from the Clipboard.

Creates an embedded item from a data object.

Indicates whether a container application can create
an embedded object.

Creates an embedded item from a file.

Creates a static item from the Clipboard.

Creates a static item from a data object.

Creates a linked item from the Clipboard.

Creates a linked item from a data object.

Indicates whether a container application can create
a linked object.

Creates a linked item from a file.

Creates a new embedded item by launching the
server application.

Creates a duplicate of an existing item.

Returns the status of the last OLE operation.

Returns the type (embedded, linked, or static) of the
OLE item.

Returns the bounds of the OLE item's rectangle.

Returns the bounds of the OLE item's rectangle.

Gets the present item's class ID.

Gets a string describing the item's type.

Gets the metafile used for drawing the item's icon.

Caches the metafile used for drawing the item's
icon.

Gets the item's current view for rendering.

Sets the item's current view for rendering.

Gets the item's current state.

Gets the view on which the item is activated in
place.

Returns TRUE if the item has been modified since
it was last saved.

Returns TRUE if the item's server application is
running.

COleClientItem

983

COleClientltem

984

IsInPlaceActive

IsOpen

Data Access

GetDocument

AttachDataObject

Object Conversion

ConvertTo

ActivateAs

Reload

Clipboard Operations

CanPaste

CanPasteLink

DoDragDrop

CopyToClipboard

GetClipboardData

General Operations

Close

Release

Delete

Draw

Run

SetPrintDevice

Activation

Activate

DoVerb

Deactivate

Returns TRUE if the item is in-place active.

Returns TRUE if the item is currently open in the
server application.

Returns the COleDocument object that contains the
present item.

Accesses the data in the OLE object.

Converts the item to another type.

Activates the item as another type.

Reloads the item after a call to ActivateAs.

Indicates whether the Clipboard contains an
embeddable or static OLE item.

Indicates whether the Clipboard contains a linkable
OLE item.

Performs a drag-and-drop operation.

Copies the OLE item to the Clipboard.

Gets the data that would be placed on the Clipboard
by calling the CopyToClipboard member function.

Closes a link to a server but does not destroy the
OLE item.

Releases the connection to an OLE linked item and
closes it if it was open. Does not destroy the client
item.

Deletes or closes the OLE item if it was a linked
item.

Draws the OLE item.

Runs the application associated with the item.

Sets the print-target device for this client item.

Opens the OLE item for an operation and then
executes the specified verb.

Executes the specified verb.

Deactivates the item.

DeactivateUI

ReactivateAndUndo

SetItemRects

GetInPlace Window

Embedded Object Operations

SetHostNames

SetExtent

Linked Object Operations and Status

GetLinkUpdateOptions

SetLinkUpdateOptions

UpdateLink

IsLinkUpToDate

Overridables

OnChange

OnGetClipboardData

OnlnsertMenus

OnSetMenu

OnRemoveMenus

OnUpdateFrameTitle

OnShowControlBars

OnGetItemPosition

OnScrollBy

OnDeactivateUI

Restores the container application's user interface
to its original state.

Reactivates the item and undoes the last in-place
editing operation.

Sets the item's bounding rectangle.

Returns a pointer to the item's in-place editing
window.

Sets the names the server displays when editing the
OLE item.

Sets the bounding rectangle of the OLE item.

Returns the update mode for a linked item
(advanced feature).

Sets the update mode for a linked item (advanced
feature).

Updates the presentation cache of an item.

Returns TRUE if a linked item is up to date with its
source document.

Called when the server changes the OLE item.
Implementation required.

Called by the framework to get the data to be copied
to the Clipboard.

Called by the framework to create a composite
menu.

Called by the framework to install and remove a
composite menu.

Called by the framework to remove the container's
menus from a composite menu.

Called by the framework to update the frame
window's title bar.

Called by the framework to show and hide control
bars.

Called by the framework to get the item's position
relative to the view.

Called by the framework to scroll the item into
view.

Called by the framework when the server has
removed its in-place user interface.

COleClientItem

985

COleClientltem: :Activate

OnDiscardUndoState

OnDeactivateAndUndo

OnShowltem

OnGetClipRect

CanActivate

OnActivate

OnActivateUI

OnGetWindowContext

OnDeactivate

OnChangeltemPosition

Called by the framework to discard the item's undo
state information.

Called by the framework to undo after activation.

Called by the framework to display the OLE item.

Called by the framework to get the item's c1ipping
rectangle coordinates.

Called by the framework to determine whether in
place activation is allowed.

Called by the framework to notify the item that it is
activated.

Called by the framework to notify the item that it is
activated and should show its user interface.

Called by the framework when an item is activated
in place.

Called by the framework when an item is
deactivated.

Called by the framework when an item's position
changes.

Member Functions
COleClientItem: : Activate

void Activate(LONG nVerb, CView* pView, LPMSG lpMsg = NULL);

Parameters

986

n Verb Specifies the verb to execute. It can be one of the following:

Value Meaning Symbol

0 Primary verb OLEIVERB_PRIMARY

1 Secondary verb (None)

-1 Display item for editing OLEIVERB_SHOW

-2 Edit item in separate window OLEIVERB_OPEN

-3 Hide item OLEIVERB_HIDE

The -1 value is typically an alias for another verb. If open editing is not supported,
-2 has the same effect as -1. For additional values, see IOleObject::DoVerb in
the OLE documentation.

p View Pointer to the container view window that contains the OLE item; this is used
by the server application for in-place activation. This parameter should be NULL
if the container does not support in-place activation.

lpMsg Pointer to the message that caused the item to be activated.

COleClientltem: :ActivateAs

Remarks
Call this function to execute the specified verb instead of Do Verb so that you can do
your own processing when an exception is thrown.

If the server application was written using the Microsoft Foundation Class Library,
this function causes the OnDo Verb member function of the corresponding
COleServerItem object to be executed.

If the primary verb is Edit and zero is specified in the n Verb parameter, the server
application is launched to allow the OLE item to be edited. If the container
application supports in-place activation, editing can be done in place. If the container
does not support in-place activation (or if the Open verb is specified), the server is
launched in a separate window and editing can be done there. Typically, when the
user of the container application double-clicks the OLE item, the value for the
primary verb in the n Verb parameter determines which action the user can take.
However, if the server supports only one action, it takes that action, no matter which
value is specified in the n Verb parameter.

For more information, see IOleObject::DoVerb in the OLE documentation.

See Also COleClientItem: :Do Verb, COleServerItem: :OnDo Verb

COleClientItem: : ActivateAs
BOOL ActivateAs(LPCTSTR lpszUserType, REFCLSID clsidOld, REFCLSID clsidNew);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

lpszUserType Pointer to a string representing the target user type, such as "Word
Document."

clsidOld A reference to the item's current class ID. The class ID should represent
the type of the actual object, as stored, unless it is a link. In that case, it should be
the CLSID of the item to which the link refers. The COleConvertDialog
automatically provides the correct class ID for the item.

clsidN ew A reference to the target class ID.

Uses OLE's object conversion facilities to activate the item as though it were an item
of the type specified by clsidNew. This is called automatically by
COleConvertDialog::DoConvert. It is not usually called directly.

See Also COleConvertDialog, COleClientItem: :ConvertTo,
COleClientItem: : Reload

987

COleClientltem: :AttachDataObject

COleClientItem: :AttachDataObject
void AttachDataObject(COleDataObject& rDataObject) const;

Parameters

Remarks

rDataObject Reference to a COleDataObject object that will be initialized to allow
access to the data in the OLE item.

Call this function to initialize a COleDataObject for accessing the data in the
OLE item.

See Also COleDataObject

COleClientItem: :CanActivate
virtual BOOL CanActivate();

Return Value

Remarks

Nonzero if in-place activation is allowed; otherwise O.

Called by the framework when the user requests in-place activation of the OLE item;
this function's return value determines whether in-place activation is allowed. The
default implementation allows in-place activation if the container has a valid window.
Override this function to implement special logic for accepting or refusing the
activation request. For example, an activation request can be refused if the OLE item
is too small or not currently visible.

For more information, see IOlelnPlaceSite::CanlnPlaceActivate in the OLE
documentation.

COleClientItem: :CanCreateFromData
static BOOL PASCAL CanCreateFromData(const COleDataObject* pDataObject);

Return Value
Nonzero if the container can create an embedded object from the COleDataObject
object; otherwise O.

Parameters

988

pDataObject Pointer to the COleDataObject object from which the OLE item is to
be created.

COleClientItem: :CanPaste

Remarks
Checks whether a container application can create an embedded object from the
given COleDataObject object. The COleDataObject class is used in data transfers
for retrieving data in various formats from the Clipboard, through drag and drop, or
from an embedded OLE item.

Containers can use this function to decide to enable or disable their Edit Paste and
Edit Paste Special commands.

For more information, see the article "Data Objects and Data Sources (OLE)" in
Programming with MFC.

See Also COleDataObject

COleClientItem: :CanCreateLinkFromData
static BOOL PASCAL CanCreateLinkFromData(const COleDataObject* pDataObject);

Return Value
Nonzero if the container can create a linked object from the COleDataObject object.

Parameters

Remarks

pDataObject Pointer to the COleDataObject object from which the OLE item is to
be created.

Checks whether a container application can create a linked object from the given
COleDataObject object. The COleDataObject class is used in data transfers for
retrieving data in various formats from the Clipboard, through drag and drop, or
from an embedded OLE item.

Containers can use this function to, decide to enable or disable their Edit Paste Special
and Edit Paste Link commands. ~

For more information, see the article "Data Objects and Data Sources (OLE)" in
Programming with MFC.

See Also COleDataObject

COleClientItem: :CanPaste
static BOOL PASCAL CanPaste();

Return Value

Remarks

Nonzero if an embedded OLE item can be pasted from the Clipboard; otherwise O.

Call this function to see whether an embedded OLE item can be pasted from the
Clipboard.

989

COleClientltem: :CanPasteLink

For more information, see OleGetClipboard and OleQueryCreateFromData in the
OLE documentation.

See Also COleClientItem::CanPasteLink,
COleClientItem: :CreateFromClipboard,
COleClientItem::CreateStaticFromClipboard, COleDocument

COleClientItem: :CanPasteLink
static BOOL PASCAL CanPasteLink();

Return Value

Remarks

Nonzero if a linked OLE item can be pasted from the Clipboard; otherwise O.

Call this function to see whether a linked OLE item can be pasted from the
Clipboard.

For more information, see OleGetClipboard and OleQueryLinkFromData in the
OLE documentation.

See Also COleClientItem::CanPaste,
COleClientItem: :CreateLinkFromClipboard

COleClientItem: :Close
void Close(OLE CLOSE dwCloseOption = OLECLOSE_SAVEIFDIRTY);

Parameters

Remarks

990

dwCloseOption Flag specifying under what circumstances the OLE item is saved
when it returns to the loaded state. It can have one of the following values:

• OLECLOSE_SA VEIFDIRTY Save the OLE item.

• OLECLOSE_NOSAVE Do not save the OLE item.

• OLECLOSE_PROMPTSAVE Prompt the user on whether to save the
OLE item.

Call this function to change the state of an OLE item from the running state to the
loaded state, that is, loaded with its handler in memory but with the server not
running. This function has no effect when the OLE item is not running.

For more information, see IOleObject::Close in the OLE documentation.

See Also COleClientItem:: UpdateLink

COleClientItem::ConvertTo

COleClientItem: :COleClientItem
COleClientltem(COleDocument* pContainerDoc = NULL);

Parameters

Remarks

pContainerDoc Pointer to the container document that will contain this item. This
can be any COleDocument derivative.

Constructs a COleClientltem object and adds it to the container document's
collection of document items, which constructs only the C++ object and does not
perform any OLE initialization. If you pass a NULL pointer, no addition is made to
the container document. You must explicitly call COleDocument::AddItem.

You must call one of the following creation member functions before you use the
OLE item:

• CreateFromClipboard

• CreateFromData

• CreateFromFile

• CreateStaticFromClipboard

• CreateStaticFromData

• CreateLinkFromClipboard

• CreateLinkFromData

• CreateLinkFromFile

• CreateNevvItem

• CreateCloneFrom

See Also COleDocument, COleDocument: :AddItem

COleClientItem: :ConvertTo
BOOL ConvertTo(REFCLSID clsidNew);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

clsidNew The class ID of the target type.

Call this member function to convert the item to the type specified by clsidNew. This
is called automatically by COleConvertDialog. It is not necessary to call it directly.

See Also COleClientItem: :ActivateAs, COleConvertDialog

991

COleClientItem: :CopyToClipboard

COleClientItem: :CopyToClipboard
void CopyToClipboard(BOOL blncludeLink = FALSE);

Parameters

Remarks

blncludeLink TRUE if link information should be copied to the Clipboard, allowing
a linked item to be pasted; otherwise FALSE.

Call this function to copy the OLE item to the Clipboard. Typically, you call this
function when writing message handlers for the Copy or Cut commands from the
Edit menu. You must implement item selection in your container application if you
want to implement the Copy or Cut commands.

For more information, see OleSetClipboard in the OLE documentation.

COleClientItem: :CreateCloneFrom
BOOL CreateCloneFrom(const COleClientItem* pSrcltem);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

pSrcltem Pointer to the OLE item to be duplicated.

Call this function to create a copy of the specified OLE item. The copy is identical to
the source item. You can use this function to support undo operations.

See Also COleClientItem::CreateNewItem

COleClientItem: :CreateFromClipboard
BOOL CreateFromClipboard(OLERENDER render = OLERENDER_DRAW,

CLIPFORMAT cfFormat = 0, LPFORMATETC /pFormatEtc = NULL);

Return Value
Nonzero if successful; otherwise O.

Parameters

992

render Flag specifying how the server will render the OLE item. For the possible
values, see OLERENDER in the OLE documentation.

cfFormat Specifies the Clipboard data format to be cached when creating the
OLE item.

COleClientltem: :CreateFromData

Remarks

lpFormatEtc Pointer to a FORMATETC structure used if render is
OLERENDER_FORMAT or OLERENDER_DRAW. Provide a value for this
parameter only if you want to specify additional format information beyond the
Clipboard format specified by cfFormat. If you omit this parameter, default values
are used for the other fields in the FORMATETC structure.

Call this function to create an embedded item from the contents of the Clipboard. You
typically call this function from the message handler for the Paste command on the
Edit menu. (The Paste command is enabled by the framework if the CanPaste
member function returns nonzero.)

For more information, see OLERENDER and FORMATETC in the OLE
documentation.

See Also COleDataObject: :AttachClipboard,
COleClientItem: :CreateFromData, COleClientItem: :CanPaste

COleClientItem: :CreateFromData
BOOL CreateFromData(COleDataObject* pDataObject,

OLERENDER render = OLERENDER_DRAW, CLIPFORMAT cfFormat = 0,
LPFORMATETC lpFormatEtc = NULL);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

pDataObject Pointer to the COleDataObject object from which the OLE item is to
be created.

render Flag specifying how the server will render the OLE item. For the possible
values, see OLERENDER in the OLE documentation.

cfFormat Specifies the Clipboard data format to be cached when creating the
OLE item.

lpFormatEtc Pointer to a FORMATETC structure used if render is
OLERENDER_FORMAT or OLERENDER_DRAW. Provide a value for this
parameter only if you want to specify additional format information beyond the
Clipboard format specified by cfFormat. If you omit this parameter, default values
are used for the other fields in the FORMATETC structure.

Call this function to create an embedded item from a COleDataObject object. Data
transfer operations, such as pasting from the Clipboard or drag-and-drop operations,
provide COleDataObject objects containing the information offered by a server
application. It is usually used in your override of CView:OnDrop.

993

COleClientltem: :CreateFromFile

For more information, see OleCreateFromData, OLERENDER, and
FORMATETC in the OLE documentation.

See Also COleDataObject: :AttachClipboard,
COleClientltem::CreateFromClipboard, COleDataObject

COleClientItem: :CreateFrornFile
BOOL CreateFromFile(LPCTSTR IpszFileName, REFCLSID clsid = CLSID_NULL,

OLERENDER render = OLERENDER_DRAW, CLIPFORMAT cfFormat = 0,
LPFORMATETC IpFormatEtc = NULL);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

994

IpszFileName Pointer to the name of the file from which the OLE item is to be
created.

clsid Reserved for future use.

render Flag specifying how the server will render the OLE item. For the possible
values, see OLERENDER in the OLE documentation.

cfF ormat Specifies the Clipboard data format to be cached when creating the
OLE item.

IpFormatEtc Pointer to a FORMATETC structure used if render is
OLERENDER_FORMAT or OLERENDER_DRAW. Provide a value for this
parameter only if you want to specify additional format information beyond the
Clipboard format specified by cfF ormat. If you omit this parameter, default values
are used for the other fields in the FORMATETC structure.

Call this function to create an embedded OLE item from a file. The framework calls
this function from COleInsertDialog::Createltem if the user chooses OK from the
Insert Object dialog box when the Create from File button is selected.

For more information, see OleCreateFromFile, OLERENDER, and
FORMATETC in the OLE documentation.

See Also COleInsertDialog:: Createltem

COleClientItem: :CreateLinkFromData

COleClientItem: :CreateLinkFromClipboard
BOOL CreateLinkFromClipboard(OLERENDER render = OLERENDER_DRAW,

CLIPFORMAT cfFormat = 0, LPFORMATETC lpFormatEtc = NULL);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

render Flag specifying how the server will render the OLE item. For the possible
values, see OLERENDER in the OLE documentation.

cfFormat Specifies the Clipboard data format to be cached when creating the
OLE item.

lpFormatEtc Pointer to a FORMATETC structure used if render is
OLERENDER_FORMAT or OLERENDER_DRAW. Provide a value for this
parameter only if you want to specify additional format information beyond the
Clipboard format specified by cfFormat. If you omit this parameter, default values
are used for the other fields in the FORMATETC structure.

Call this function to create a linked item from the contents of the Clipboard. You
typically call this function from the message handler for the Paste Link command on
the Edit menu. (The Paste Link command is enabled in the default implementation of
COleDocument if the Clipboard contains an OLE item that can be linked to.)

For more information, see OLERENDER and FORMATETC in the OLE
documentation.

See Also COleClientltem:: CanPasteLink,
COleClientltem: :CreateLinkFromData, COleDataObject: :AttachClipboard

COleClientItem:: CreateLinkFromData
BOOL CreateLinkFromData(COleDataObject* pDataObject,

Return Value

OLERENDER render = OLERENDER_DRAW, CLIPFORMAT cfFormat = 0,
LPFORMATETC lpFormatEtc = NULL);

Nonzero if successful; otherwise o.
Parameters

pDataObject Pointer to the COleDataObject object from which the OLE item is to
be created.

render Flag specifying how the server will render the OLE item. For the possible
values, see OLERENDER in the OLE documentation.

995

COleClientltem: :CreateLinkFromFile

Remarks

cfFormat Specifies the Clipboard data format to be cached when creating the
OLE item.

lpFormatEtc Pointer to a FORMATETC structure used if render is
OLERENDER_FORMAT or OLERENDER_DRAW. Provide a value for this
parameter only if you want to specify additional format information beyond the
Clipboard format specified by cfFormat. If you omit this parameter, default values
are used for the other fields in theFORMATETC structure.

Call this function to create a linked item from a COleDataObject object. Call this
during a drop operation when the user indicates a link should be created. It can also
be used to handle the Edit Paste command. It is called by the framework in
COleClientlteni::CreateLinkFromClipboard and in
COlePasteSpeciaIDialog::CreateItem when the Link option has been selected.

For more information, see OleCreateLinkFromData, OLERENDER, and
FORMATETC in the OLE documentation.

See Also COleDataObject: :AttachClipboard, COleDataObject,
COleClientItem: :CreateLinkFromClipboard

COleClientItem: :CreateLinkFromFile
BOOL CreateLinkFromFile(LPCTSTR lpszFileName,

OLERENDER render = OLERENDER_DRAW, CLIPFORMAT cfFormat = 0,
LPFORMATETC lpFormatEtc = NULL);

Return Value
Nonzero if successful; otherwise O.

Parameters

996

lpszFileName Pointer to the name of the file from which the OLE item is to be
created.

render Flag specifying how the server will render the OLE item. For the possible
values, see OLERENDER in the OLE documentation.

cfFormat Specifies the Clipboard data format to be cached when creating the
OLE item.

lpFormatEtc Pointer to a FORMATETC structure used if render is
OLERENDER_FORMAT or OLERENDER_DRAW. Provide a value for this
parameter only if you want to specify additional format information beyond the
Clipboard format specified by cfFormat. If you omit this parameter, default values
are used for the other fields in the FORMATETC structure.

COleClientltem: :CreateNew Item

Remarks
Call this function to create a linked OLE item from a file. The framework calls this
function if the user chooses OK from the Insert Object dialog box when the Create
from File button is selected and the Link check box is checked. It is called from
COlelnsertDialog:: CreateItem.

For more information, see OleCreateLinkToFile, OLERENDER, and
FORMATETC in the OLE documentation.

See Also COlelnsertDialog:: CreateItem

COleClientItem: :CreateN ew Item
BOOL CreateNewItem(REFCLSID clsid, OLERENDER render = OLERENDER_DRAW,

CLIPFORMAT cfFormat = 0, LPFORMATETC lpFormatEtc = NULL);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

clsid ID that uniquely identifies the type of OLE item to create.

render Flag specifying how the server will render the OLE item. For the possible
values, see OLERENDER in the OLE documentation.

cfFormat Specifies the Clipboard data format to be cached when creating the
OLE item.

lpFormatEtc Pointer to a FORMATETC structure used if render is
OLERENDER_FORMAT or OLERENDER_DRAW. Provide a value for this
parameter only if you want to specify additional format information beyond the
Clipboard format specified by cfFormat. If you omit this parameter, default values
are used for the other fields in the FORMATETC structure.

Call this function to create an embedded item; this function launches the server
application that allows the user to create the OLE item. The framework calls this
function if the user chooses OK from the Insert Object dialog box when the Create
New button is selected.

For more information, see OleCreate, OLERENDER, and FORMATETC in the
OLE documentation.

See Also COlelnsertDialog:: CreateItem

997

COleClientltem::CreateStaticFromClipboard

COleClientItem: :CreateStaticFromClipboard
BOOL CreateStaticFromClipboard(OLERENDER render = OLERENDER_DRAW,

CLIPFORMAT cfFormat = 0, LPFORMATETC lpFormatEtc = NULL);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

render Flag specifying how the server will render the OLE item. For the possible
values, see OLERENDER in the OLE documentation.

cfF ormat Specifies the Clipboard data format to be cached when creating the
OLE item.

lpFormatEtc Pointer to a FORMATETC structure used if render is
OLERENDER_FORMAT or OLERENDER_DRAW. Provide a value for this
parameter only if you want to specify additional format information beyond the
Clipboard format specified by cfF ormat. If you omit this parameter, default values
are used for the other fields in the FORMATETC structure.

Call this function to create a static item from the contents of the Clipboard. A static
item contains the presentation data but not the native data; consequently it cannot be
edited. You typically call this function if the CreateFromClipboard member
function fails.

For more information, see OLERENDER and FORMATETC in the OLE
documentation.

See Also COleDataObject: :AttachClipboard, COleClientItem: :CanPaste,
COleClientItem: :CreateStaticFromData

COleClientItem::CreateStaticFromData
BOOL CreateStaticFromData(COleDataObject* pDataObject,

OLERENDER render = OLERENDER_DRAW, CLIPFORMAT cfFormat = 0,
LPFORMATETC lpFormatEtc = NULL);

Return Value
Nonzero if successful; otherwise O.

Parameters

998

pDataObject Pointer to the COleDataObject object from which the OLE item is to
be created.

render Flag specifying how the server will render the OLE item. For the possible
values, see OLERENDER in the OLE documentation.

COleClientitem: : Deactivate

Remarks

cjFormat Specifies the Clipboard data format to be cached when creating the
OLE item.

lpFormatEtc Pointer to a FORMATETC structure used if render is
OLERENDER_FORMAT or OLERENDER_DRAW. Provide a value for this
parameter only if you want to specify additional format information beyond the
Clipboard format specified by cjFormat. If you omit this parameter, default values
are used for the other fields in the FORMATETC structure.

Call this function to create a static item from a COleDataObject object. A static item
contains the presentation data but not the native data; consequently, it cannot be
edited. This is essentially the same as CreateStaticFromClipboard except that a
static item can be created from an arbitrary COleDataObject, not just from the
Clipboard.

Used in COlePasteSpeciaIDialog::Createltem when Static is selected.

For more information, see OleCreateStaticFromData, OLERENDER, and
FORMATETC in the OLE documentation.

See Also COleDataObject: :AttachClipboard, COleDataObject

COleClientItem: : Deactivate

Remarks

void Deactivate();

Call this function to deactivate the OLE item and free any associated resources. You
typically deactivate an in-place active OLE item when the user clicks the mouse on
the client area outside the bounds of the item. Note that deactivating the OLE item
will discard its undo state, making it impossible to call the ReactivateAndUndo
member function.

If your application supports undo, do not call Deactivate; instead, call DeactivateUI.

For more information, see IOleInPlaceObject: : InPlaceDeactivate in the OLE
documentation.

See Also COleClientltem: : ReactivateAndUndo, COleClientltem: :DeactivateUI

999

COleClientItem: : DeactivateUI

COleClientItem: : DeactivateUI

Remarks

void DeactivateUI();

Call this function when the user deactivates an item that was activated in place. This
function restores the container application's user interface to its original state, hiding
any menus and other controls that were created for in-place activation.

This function does not flush the undo state information for the item. That information
is retained so that ReactivateAndUndo can later be used to execute an undo
command in the server application, in case the container's undo command is chosen
immediately after deactivating the item.

For more information, see IOlelnPlaceObject: : InPlaceDeactivate in the OLE
documentation.

See Also COleClientItem: : ReactivateAndUndo, COleClientItem: :Activate

COleClientItem: : Delete
void Delete(BOOL bAutoDelete = TRUE);

Parameters

Remarks

bAutoDelete Specifies whether the item is to be removed from the document.

Call this function to delete the OLE item from the container document. This function
calls the Release member function, which in tum deletes the C++ object for the item,
permanently removing the OLE item from the document. If the OLE item is
embedded, the native data for the item is deleted. It always closes a running server;
therefore, if the item is an open link, this function closes it.

See Also COleClientItem: : Release

COleClientItem: : DoDragDrop
DROPEFFECT DoDragDrop(LPCRECT lpltemRect, CPoint ptOjfset,

BOOL blncludeLink = FALSE,
DWORD dwEjfects = DROPEFFECT_COPY I DROPEFFECT_MOVE,
LPCRECT lpRectStartDrag = NULL);

Return Value

1000

A DROPEFFECT value. If it is DROPEFFECT_MOVE, the original data should
be removed.

COleClientItem: :Do Verb

Parameters

Remarks

lpltemRect The item's rectangle on screen in client coordinates (pixels).

ptOffset The offset from lpltemRect where the mouse position was at the time of
the drag.

blncludeLink Set this to TRUE if the link data should be copied to the Clipboard.
Set it to FALSE if your server application does not support links.

dwEffects Determines the effects that the drag source will allow in the drag
operation.

lpRectStartDrag Pointer to the rectangle that defines where the drag actually starts.
For more information, see the following "Remarks" section.

Call the DoDragDrop member function to perform a drag-and-drop operation. The
drag-and-drop operation does not start immediately. It waits until the mouse cursor
leaves the rectangle specified by lpRectStartDrag or until a specified number of
milliseconds have passed. If lpRectStartDrag is NULL, the size of the rectangle is
one pixel. The delay time is specified by the DragDelay value in the [Windows]
section of WIN .IN!. If this value is not in WIN .INI, the default value of 200
milliseconds is used.

See Also COleDataSource: :DoDragDrop, COleClientltem: :CopyToClipboard

COleClientItem: :Do Verb
virtual BOOL DoVerb(LONG nVerb, CView* pView, LPMSG lpMsg = NULL);

Return Value
Nonzero if the verb was successfully executed; otherwise o.

Parameters
n Verb Specifies the verb to execute. It can include one of the following:

Value Meaning Symbol

0 Primary verb OLEIVERB_PRIMARY

Secondary verb (None)

-1 Display item for editing OLEIVERB_SHOW

-2 Edit item in separate window OLEIVERB_OPEN

-3 Hide item OLEIVERB_HIDE

The -1 value is typically an alias for another verb. If open editing is not supported,
-2 has the same effect as -1. For additional values, see IOleObject::DoVerb in
the OLE documentation.

1001

COleClientltem: :Draw

Remarks

p View Pointer to the view window; this is used by the server for in-place activation.
This parameter should be NULL if the container application does not allow in
place activation.

lpMsg Pointer to the message that caused the item to be activated.

Call Do Verb to execute the specified verb. This function calls the Activate member
function to execute the verb. It also catches exceptions and displays a message box to
the user if one is thrown.

If the primary verb is Edit and zero is specified in the n Verb parameter, the server
application is launched to allow the OLE item to be edited. If the container
application supports in-place activation, editing can be done in place. If the container
does not support in-place activation (or if the Open verb is specified), the server is
launched in a separate window and editing can be done there. Typically, when the
user of the container application double-clicks the OLE item, the value for the
primary verb in the n Verb parameter determines which action the user can take.
However, if the server supports only one action, it takes that action, no matter which
value is specified in the n Verb parameter.

See Also COleClientItem: :Activate

COleClientItern: : Draw
BOOL Draw(CDC* pDC, LPCRECT lpBounds, DVASPECT nDrawAspect = (DVASPECT)-l);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

1002

pDC Pointer to a CDC object used for drawing the OLE item.

lpBounds Pointer to a CRect object or RECT structure that defines the bounding
rectangle in which to draw the OLE item (in logical units determined by the
device context).

nDrawAspect Specifies the aspect of the OLE item, that is, how it should be
displayed. If nDrawAspect is -1, the last aspect set by using SetDrawAspect is
used. For more information about possible values for this flag, see
SetDraw Aspect.

Call this function to draw the OLE item into the specified bounding rectangle using
the specified device context. The function may use the metafile representation of the
OLE item created by the OnDraw member function of COleServerItem.

Typically you use Draw for screen display, passing the screen device context as pDC.
In this case, you need to specify only the first two parameters.

COleClientltem: : GetCachedExtent

The IpBounds parameter identifies the rectangle in the target device context (relative
to its current mapping mode). Rendering may involve scaling the picture and can be
used by container applications to impose a view that scales between the displayed
view and the final printed image.

For more information, see IViewObject: :Draw in the OLE documentation.

See Also COleClientltem: :SetExtent, COleServerItem: :OnDraw

COleClientItem: : GetActive View
CView* GetActive View() const;

Return Value
A pointer to the view; otherwise NULL if the item is not in-place activated.

Remarks
Returns the view on which the item is in-place activated.

See Also COleClientItem: :IsInPlaceActive, COleClientltem: : GetDocument

COleClientItem: : GetCachedExtent
BOOL GetCachedExtent(LPSIZE IpSize, DVASPECT nDrawAspect = (DVASPECT)-l);

Return Value
Nonzero if successful; 0 if the OLE item is blank.

Parameters

Remarks

IpSize Pointer to a SIZE structure or a CSize object that will receive the size
information.

nDrawAspect Specifies the aspect of the OLE item whose bounds are to be retrieved.
For possible values, see SetDraw Aspect.

Call this function to retrieve the OLE item's size. This function provides the same
information as GetExtent. However, you can call GetCachedExtent to get extent
information during the processing of other OLE handlers, such as OnChange. The
dimensions are in MM_HIMETRIC units.

This is possible because GetCachedExtent uses the IViewObject2 interface rather
than use the IOleObject interface to get the extent of this item. The IViewObject2
COM object caches the extent information used in the previous call to
IViewObject: :Draw.

1003

COleClientItem: :GetClassID

For more information, see IViewObject2: : GetExtent in the OLE documentation.

See Also COleClientltem: : GetExtent, COleClientltem: :SetExtent,
COleServerItem::OnGetExtent

COleClientItem:: GetClassID
void GetClassID(CLSID* pClassID) const;

Parameters

Remarks

pClassID Pointer to a structure of type CLSID to retrieve the class ID. For
information on the CLSID structure, see the OLE documentation.

Returns the class ID of the item into the memory pointed to by pClassID. The class
ID is a 128-bit number that uniquely identifies the application that edits the item.

For more information, see IPersist::GetClassID in the OLE documentation.

COleClientItem: : GetClipboardData
void GetClipboardData(COleDataSource* pDataSource, BOOL blncludeLink = FALSE,

LPPOINT lpOffset = NULL, LPSIZE lpSize = NULL);

Parameters

Remarks

1004

pDataSource Pointer to a COleDataSource object that will receive the data
contained in the OLE item.

blncludeLink TRUE if link data should be included; otherwise FALSE.

lpOffset The offset of the mouse cursor from the origin of the object in pixels.

lpSize The size of the object in pixels.

Call this function to get a COleDataSource object containing all the data that would
be placed on the Clipboard by a call to the CopyToClipboard member function.

Override GetClipboardData only if you want to offer data formats in addition to
those offered by CopyToClipboard. Place those formats in the COleDataSource
object before or after calling CopyToClipboard, and then pass the COleDataSource
object to the COleDataSource: :SetClipboard function. For example, if you want the
OLE item's position in its container document to accompany it on the Clipboard, you
would define your own format for passing that information and place it in the
COleDataSource before calling CopyToClipboard.

See Also COleDataSource, COleClientltem: :CopyToClipboard,
COleDataSource: :SetClipboard

COleClientItem: : GetExtent

COleClientItem: : GetDocument
COleDocument* GetDocument() const;

Return Value

Remarks

A pointer to the document that contains the OLE item. NULL if the item is not part
of a document.

Call this function to get a pointer to the document that contains the OLE item. This
pointer allows access to the document object that you passed as an argument to the
COleClientItem constructor.

See Also COleClientItem: :COleClientItem, COleDocument, COleLinkingDoc

COleClientItem: : GetDraw Aspect
DVASPECT GetDraw Aspect() const;

Return Value

Remarks

A value from the DVASPECT enumeration, whose values are listed in the reference
for SetDraw Aspect.

Call the GetDrawAspect member function to determine the current "aspect," or
view, of the item. The aspect specifies how the item is to be rendered.

See Also COleClientItem: :SetDraw Aspect, COleClientItem: :Draw

COleClientItem: : GetExtent
BOOL GetExtent(LPSIZE lpSize, DVASPECT nDrawAspect = (DVASPECT)-l);

Return Value
Nonzero if successful; 0 if the OLE item is blank.

Parameters

Remarks

lpSize Pointer to a SIZE structure or a CSize object that will receive the size
information.

nDrawAspect Specifies the aspect of the OLE item whose bounds are to be retrieved.
For possible values, see SetDrawAspect.

Call this function to retrieve the OLE item's size.

If the server application was written using the Microsoft Foundation Class Library,
this function causes the OnGetExtent member function of the corresponding
COleServerItem object to be called. Note that the retrieved size may differ from the

1005

COleClientltem: : GetlconicMetafile

size last set by the SetExtent member function; the size specified by SetExtent is
treated as a suggestion. The dimensions are in MM_HIMETRIC units.

Note Do not call GetExtent during the processing of an OLE handler, such as OnChange.
Call GetCachedExtent instead.

For more information, see IOleObject::GetExtent in the OLE documentation.

See Also COleClientItem: :SetExtent, COleClientltem: : GetCachedExtent,
COleServerItem: :OnGetExtent

COleClientItem: : GetIconicMetafile
HGLOBAL GetlconicMetafile();

Return Value

Remarks

A handle to the metafile if successful; otherwise NULL.

Retrieves the metafile used for drawing the item's icon. If there is no current icon, a
default icon is returned. This is called automatically by the MFC/OLE dialogs and is
usually not called directly.

This function also calls SetlconicMetafile to cache the metafile for later use.

See Also COleClientltem: :SetlconicMetafile

COleClientItem: : GetInPlace Window
CWnd* GetlnPlaceWindow();

Return Value

Remarks

1006

A pointer to the item's in-place editing window; NULL if the item is not active or if
its server is unavailable.

Call the GetlnPlace Window member function to get a pointer to the window in
which the item has been opened for in-place editing. This function should be called
only for items that are in-place active.

See Also COleClientltem: : Activate, COleClientltem: : Deactivate,
COleClientltem::SetItemRects

COleClientItem::GetLinkUpdateOptions

COleClientItem:: GetItemState
UINT GetItemState() const;

Return Value

Remarks

A COleClientItem: : itemS tate enumerated value, which can be one of the following:
emptyState, loadedState, openState, activeState, activeUIState. For information
about these states, see the article "Containers: Client-Item States" in Programming
withMFC.

Call this function to get the OLE item's current state. To be notified when the OLE
item's state changes, use the On Change member function.

For more information, see the article "Containers: Client-Item States" in
Programming with MFC.

See Also COleClientltem::OnChange

COleClientItem: : GetLastStatus
SCODE GetLastStatus() const;

Return Value

Remarks

An SCODE value.

Returns the status code of the last OLE operation. For member functions that return a
BOOL value of FALSE, or other member functions that return NULL,
GetLastStatus returns more detailed failure information. Be aware that most OLE
member functions throw exceptions for more serious errors. The specific information
on the interpretation of the SCODE depends on the underlying OLE call that last
returned an SCODE value.

For more information on SCODE, see "Structure of OLE Error Codes" in the OLE
documentation.

COleClientItem: : GetLinkUpdateOptions
OLEUPDATE GetLinkUpdateOptions();

Return Value
One of the following values:

• OLEUPDATE_ALWAYS Update the linked item whenever possible. This
option supports the Automatic link-update radio button in the Links dialog box.

1007

COleClientItem: : GetType

Remarks

• OLEUPDATE_ONCALL Update the linked item only on request from the
container application (when the UpdateLink member function is called). This
option supports the Manual link-update radio button in the Links dialog box.

Call this function to get the current value of the link-update option for the OLE item.
This is an advanced operation.

This function is called automatically by the COleLinksDialog class.

For more information, see IOleLink: : GetUpdateOptions in the OLE
documentation.

See Also COleClientItem: :SetLinkUpdateOptions, COleLinksDialog

COleClientItem: : GetType
OLE_OBJTYPE GetType() const;

Return Value

Remarks

An unsigned integer with one of the following values:

• OT_LINK The OLE item is a link.

• OT_EMBEDDED The OLE item is embedded.

• OT_STATIC The OLE item is static, that is, it contains only presentation data,
not native data, and thus cannot be edited.

Call this function to determine whether the OLE item is embedded or linked, or
static.

See Also COleClientItem::GetUserType

COleClientItem: : GetU serType
void GetUserType(USERCLASSTYPE nUserClassType, CString& rString);

Parameters

1008

nUserClassType A value indicating the desired variant of the string describing the
OLE item's type. This can have one of the following values:

• USERCLASSTYPE_FULL The full type name displayed to the user.

• USERCLASSTYPE_SHORT A short name (15 characters maximum) for
use in pop-up menus and the Edit Links dialog box.

• USERCLASSTYPE_APPNAME Name of the application servicing
the class.

COleClientltem: :IsLinkUpToDate

Remarks

rString A reference to a CString object to which the string describing the OLE
item's type is to be returned.

Call this function to get the user-visible string describing the OLE item's type, such
as "Word document." This is often the entry in the system registration database.

If the full type name is requested but not available, the short name is used instead. If
no entry for the type of OLE item is found in the registration database, or if there are
no user types registered for the type of OLE item, then the user type currently stored
in the OLE item is used. If that user type name is an empty string, "Unknown
Object" is used.

For more information, see IOleObject::GetUserType in the OLE documentation.

See Also COleClientItem::GetType

COleClientItem: : IsInPlaceActive
BOOL IsInPlaceActive() const;

Return Value

Remarks

Nonzero if the OLE item is in-place active; otherwise O.

Call this function to see whether the OLE item is in-place active. It is common to
execute different logic depending on whether the item is being edited in place. The
function checks whether the current item state is equal to either the activeState or
the activeUIState.

See Also COleClientItem: : GetItemState

COleClientItem::IsLinkUpToDate
BOOL IsLinkUpToDate() const;

Return Value

Remarks

Nonzero if the OLE item is up to date; otherwise O.

Call this function to see whether the OLE item is up to date. A linked item can be out
of date if its source document has been updated. An embedded item that contains
links within it can similarly become out of date. The function does a recursive check
of the OLE item. Note that determining whether an OLE item is out of date can be as
expensive as actually performing an update.

This is called automatically by the COleLinksDialog implementation.

For more information, see IOleObject: :IsUpToDate in the OLE documentation.

1009

COleClientItem: : IsModified

COleClientItem: : IsModified
BOOL IsModified() const;

Return Value

Remarks

Nonzero if the OLE item is dirty; otherwise O.

Call this function to see whether the OLE item is dirty (modified since it was
last saved).

For more information, see IPersistStorage: :IsDirty in the OLE documentation.

COleClientItem: :IsOpen
BOOL IsOpen() const;

Return Value

Remarks

Nonzero if the OLE item is open; otherwise O.

Call this function to see whether the OLE item is open; that is, opened in an instance
of the server application running in a separate window. It is used to determine when
to draw the object with a hatching pattern. An open object should have a hatch
pattern drawn on top of the object. You can use a CRectTracker object to
accomplish this.

See Also COleClientItem: : GetItemState, CRectTracker

COleClientItem: : IsRunning
BOOL IsRunning() const;

Return Value

Remarks

1010

Nonzero if the OLE item is running; otherwise O.

Call this function to see whether the OLE item is running; that is, whether the item is
loaded and running in the server application.

For more information, see OleIsRunning in the OLE documentation.

COleClientItem::OnChange

COleClientItem: :OnActivate

Remarks

virtual void OnActivate();

Called by the framework to notify the item that it has just been activated in place.
Note that this function is called to indicate that the server is running, not to indicate
that its user interface has been installed in the container application. At this point,
the object does not have an active user interface (is not activeUIState). It has not
installed its menus or toolbar. The OnActivateUI member function is called when
that happens.

The default implementation calls the OnChange member function with
OLE_CHANGEDSTATE as a parameter. Override this function to perform custom
processing when an item becomes in-place active.

See Also COleClientItem: :OnDeactivate, COleClientItem: :OnDeactivateUI,
COleClientItem: :OnActivateUI, COleClientItem:: CanActivate

COleClientItem:: OnActivate VI

Remarks

virtual void OnActivateUI();

The framework calls OnActivateUI when the object has entered the active UI state.
The object has now installed its tool bar and menus.

The default implementation remembers the server's HWND for later
GetServerWindow calls.

See Also COleClientItem: :OnDeactivate, COleClientItem: :OnDeactivateUI,
COleClientItem: :OnActivate, COleClientItem:: CanActivate

COleClientItem: :OnChange
virtual void OnChange(OLE_NOTIFICATION nCode, DWORD dwParam);

Parameters
nCode The reason the server changed this item. It can have one of the following

values:

• OLE_CHANGED The OLE item's appearance has changed.

• OLE_SAVED The OLE item has been saved.

• OLE_CLOSED The OLE item has been closed.

• OLE_CHANGED_STATE The OLE item has changed from one state to
another.

1011

COleClientltem: :OnChangeltemPosition

Remarks

dwParam If nCode is OLE_SAVED or OLE_CLOSED, this parameter is not used.
If nCode is OLE_CHANGED, this parameter specifies the aspect of the OLE
item that has changed. For possible values, see the dwParam parameter of
COleClientItem::Draw. If nCode is OLE_CHANGED_STATE, this parameter
is a COleClientltem: :ItemState enumerated value and describes the state being
entered. It can have one of the following values: emptyState, loadedState,
openState, activeState, or activeUIState.

Called by the framework when the user modifies, saves, or closes the OLE item. (If
the server application is written using the Microsoft Foundation Class Library, this
function is called in response to the Notify member functions of COleServerDoc or
COleServerItem.) The default implementation marks the container document as
modified if nCode is OLE_CHANGED or OLE_SAVED.

For OLE_CHANGED_STATE, the current state returned from GetltemState will
still be the old state, meaning the state that was current prior to this state change.

Override this function to respond to changes in the OLE item's state. Typically you
update the item's appearance by invalidating the area in which the item is displayed.
Call the base class implementation at the beginning of your override.

See Also COleClientltem: : GetltemState, COleServerItem: :NotifyChanged,
COleServerDoc::NotifyChanged, COleServerDoc::NotifyClosed,
COleServerDoc: :NotifySaved

COleClientItem:: OnChangeItemPosition
virtual BOOL OnChangeItemPosition(const CRect& rectPos);

Return Value
Nonzero if the item's position is successfully changed; otherwise O.

Parameters

Remarks

1012

rectPos Indicates the item's position relative to the container application's
client area.

Called by the framework to notify the container that the OLE item's extent has
changed during in-place activatjon. The default implementation determines the new
visible rectangle of the OLE item and calls SetltemRects with the new values. The
default implementation calculates the visible rectangle for the item and passes that
information to the server.

COleClientItem::OnDeactivateAndUndo

Override this function to apply special rules to the resize/move operation. If the
application is written in MFC, this call results because the server called
COleServerDoc: : RequestPositionChange.

See Also COleServerDoc: : RequestPositionChange

COleClientItem:: OnDeactivate

Remarks

virtual void OnDeactivate();

Called by the framework when the OLE item transitions from the in-place active state
(activeState) to the loaded state, meaning that it is deactivated after an in-place
activation. Note that this function is called to indicate that the OLE item is closed,
not that its user interface has been removed from the container application. When
that happens, the OnDeactivateUI member function is called.

The default implementation calls the OnChange member function with
OLE_CHANGEDSTATE as a parameter. Override this function to perform custom
processing when an in-place active item is deactivated. For example, if you support
the undo command in your container application, you can override this function to
discard the undo state, indicating that the last operation performed on the OLE item
cannot be undone once the item is deactivated.

See Also COleClientltem: :OnGetWindowContext,
COleClientltem: :OnDeactivateUI, COleClientltem: :OnActivateUI,
COleClientltem: :OnActivate, COleClientltem:: CanActivate,
CDocTemplate: :SetContainerInfo

COleClientItem:: OnDeacti vateAndU ndo

Remarks

virtual void OnDeactivateAndUndo();

Called by the framework when the user invokes the undo command after activating
the OLE item in place. The default implementation calls DeactivateUI to deactivate
the server's user interface. Override this function if you are implementing the undo
command in your container application. In your override, call the base class version
of the function and then undo the last command executed in your application.

For more information, see IOlelnPlaceSite::DeactivateAndUndo in the OLE
documentation.

See Also COleClientltem::DeactivateUI

1013

COleClientltem: :OnDeactivateUI

COleClientItem: :OnDeacti v ate UI
virtual void OnDeactivateUI(BOOL bUndoable);

Parameters

Remarks

bUndoable Specifies whether the editing changes are undoable.

Called when the user deactivates an item that was activated in place. This function
restores the container application's user interface to its original state, hiding any
menus and other controls that were created for in-place activation.

If bUndoable is FALSE, the container should disable the undo command, in effect
discarding the undo state of the container, because it indicates that the last operation
performed by the server is not undoable.

See Also COleClientItem: :OnActivateUI,
COleClientItem: :OnDeactivateAndUndo, COleClientItem: :OnDeactivate

COleClientItem: :OnDiscardUndoState

Remarks

virtual void OnDiscardUndoState();

Called by the framework when the user performs an action that discards the undo
state while editing the OLE item. The default implementation does nothing. Override
this function if you are implementing the undo command in your container
application. In your override, discard the container application's undo state.

If the server was written with the Microsoft Foundation Class Library, the server can
cause this function to be called by calling COleServerDoc: :DiscardUndoState.

For more information, see IOlelnPlaceSite::DiscardUndoState in the OLE
documentation.

See Also COleServerDoc: :DiscardUndoState

COleClientItem: :OnGetClipboardData
virtual COleDataSource* OnGetClipboardData(BOOL blncludeLink, LPPOINT lpOffset,

LPSIZE lpSize);

Return Value
A pointer to a COleDataSource object containing the Clipboard data.

Parameters

1014

blncludeLink Set this to TRUE if link data should be copied to the Clipboard. Set
this to FALSE if your server application does not support links.

COleClientltem::OnGetItemPosition

Remarks

IpOjJset Pointer to the offset of the mouse cursor from the origin of the object
in pixels.

IpSize Pointer to the size of the object in pixels.

Called by the framework to get a COleDataSource object containing all the data that
would be placed on the Clipboard by a call to either the CopyToClipboard or the
DoDragDrop member function. The default implementation of this function calls
GetClipboardData.

See Also COleDataSource, COleClientltem: :CopyToClipboard,
COleClientltem: : GetClipboardData, COleDataSource: :SetClipboard

COleClientItem: :OnGetClipRect
virtual void OnGetClipRect(CRect& rClipRect);

Parameters

Remarks

rClipRect Pointer to an object of class CRect that will hold the clipping-rectangle
coordinates of the item.

The framework calls the OnGetClipRect member function to get the clipping
rectangle coordinates of the item that is being edited in place. Coordinates are in
pixels relative to the container application window's client area.

The default implementation simply returns the client rectangle of the view on which
the item is in-place active.

See Also COleClientltem: :OnActivate

COleClientItem: : OnGetItemPosition
virtual void OnGetltemPosition(CRect& rPosition);

Parameters

Remarks

rPosition Reference to the CRect object that will contain the item's position
coordinates.

The framework calls the OnGetltemPosition member function to get the coordinates
of the item that is being edited in place. Coordinates are in pixels relative to the
container application window's client area.

The default implementation of this function does nothing. Applications that support
in-place editing require its implementation.

See Also COleClientltem: :OnActivate, COleClientltem: :OnActivateUI

1015

COleClientltem: :OnGetWindowContext

COleClientItem: :OnGetWindowContext
virtual BOOL OnGetWindowContext(CFrameWnd** ppMainFrame,

CFrameWnd** ppDocFrame, LPOLEINPLACEFRAMEINFO lpFramelnfo);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

ppMainFrame Pointer to a pointer to the main frame window.

ppDocFrame Pointer to a pointer to the document frame window.

lpFrameInfo Pointer to an OLEINPLACEFRAMEINFO structure that will receive
frame window information.

Called by the framework when an item is activated in place. This function is used to
retrieve information about the OLE item's parent window.

If the container is an MDI application, the default implementation returns a pointer
to the CMDIFrameWnd object in ppMainFrame and a pointer to the active
CMDIChildWnd object in ppDocFrame. If the container is an SDI application, the
default implementation returns a pointer to the CFrame Wnd object in ppMainFrame
and returns NULL in ppDocFrame. The default implementation also fills in the
members of lpFramelnfo.

Override this function only if the default implementation does not suit your
application; for example, if your application has a user-interface paradigm that differs
from SDI or MDI. This is an advanced overridable.

For more information, see IOlelnPlaceSite::GetWindowContext and the
OLEINPLACEFRAMEINFO structure in the OLE documentation.

COleClientItem: :OnInsertMenus
virtual void OnlnsertMenus(CMenu* pMenuShared,

LPOLEMENUGROUPWIDTHS lpMenuWidths);

Parameters

1016

pMenuShared Points to an empty menu.

lpMenuWidths Points to an array of six LONG values indicating how many menus
are in each of the following menu groups: File, Edit, Container, Object, Window,
Help. The container application is responsible for the File, Container, and Window
menu groups, corresponding to elements 0, 2, and 4 of this array.

COleClientltem::OnRemoveMenus

Remarks
Called by the framework during in-place activation to insert the container
application's menus into an empty menu. This menu is then passed to the server,
which inserts its own menus, creating a composite menu. This function can be called
repeatedly to build several composite menus.

The default implementation inserts into pMenuShared the in-place container menus;
that is, the File, Container, and Window menu groups.
CDocTemplate::SetContainerInfo is used to set this menu resource. The default
implementation also assigns the appropriate values to elements 0, 2, and 4 in
lpMenuWidths, depending on the menu resource. Override this function if the default
implementation is not appropriate for your application; for example, if your
application does not use document templates for associating resources with document
types. If you override this function, you should also override OnSetMenu and
OnRemoveMenus. This is an advanced overridable.

For more information, see IOlelnPlaceFrame::lnsertMenus in the OLE
documentation.

See Also COleClientItem: :OnRemoveMenus, COleClientltem: :OnSetMenu

COleClientItem: :OnRemoveMenus
virtual void OnRemoveMenus(CMenu* pMenuShared);

Parameters

Remarks

pMenuShared Points to the composite menu constructed by calls to the
OnlnsertMenus member function.

Called by the framework to remove the container's menus from the specified
composite menu when in-place activation ends.

The default implementation removes from pMenuShared the in-place container
menus, that is, the File, Container, and Window menu groups. Override this function
if the default implementation is not appropriate for your application; for example, if
your application does not use document templates for associating resources with
document types. If you override this function, you should probably override
OnlnsertMenus and OnSetMenu as well. This is an advanced overridable.

The submenus on pMenuShared may be shared by more than one composite menu if
the server has repeatedly called OnlnsertMenus. Therefore you should not delete any
submenus in your override of OnRemoveMenus; you should only detach them.

For more information, see IOlelnPlaceFrame::RemoveMenus in the OLE
documentation.

See Also COleClientItem: :OnlnsertMenus, COleClientItem: :OnSetMenu

1017

COleClientItem: :OnScrollBy

COleClientItem::OnScroIIBy
virtual BOOL OnScrollBy(CSize sizeExtent);

Return Value
Nonzero if the item was scrolled; 0 if the item could not be scrolled.

Parameters

Remarks

size Extent Specifies the distances, in pixels, to scroll in the x and y directions.

Called by the framework to scroll the OLE item in response to requests from the
server. For example, if the OLE item is partially visible and the user moves outside
the visible region while performing in-place editing, this function is called to keep
the cursor visible. The default implementation does nothing. Override this function to
scroll the item by the specified amount. Note that as a result of scrolling, the visible
portion of the OLE item can change. Call SetltemRects to update the item's visible
rectangle.

For more information, see IOleInPlaceSite::Scroll in the OLE documentation.

See Also COleClientltem: :SetltemRects

COleClientItem: :OnSetMenu
virtual void OnSetMenu(CMenu* pMenuShared, HOLEMENU holemenu,

HWND hwndActiveObject);

Parameters

Remarks

1018

pMenuShared Pointer to the composite menu constructed by calls to the
OnInsertMenus member function and the : : InsertMenu function.

holemenu Handle to the menu descriptor returned by the
: :OleCreateMenuDescriptor function, or NULL if the dispatching code is to be
removed.

hwndActiveObject Handle to the editing window for the OLE item. This is the
window that will receive editing commands from OLE.

Called by the framework two times when in-place activation begins and ends; the
first time to install the composite menu and the second time (with holemenu equal to
NULL) to remove it. The default implementation installs or removes the composite
menu and then calls the OleSetMenuDescriptor function to install or remove the
dispatching code. Override this function if the default implementation is not
appropriate for your application. If you override this function, you should probably
override OnInsertMenus and OnRemoveMenus as well. This is an advanced
overridable.

COleClientItem: :OnShow Item

For more information, see OleCreateMenuDescriptor, OleSetMenuDescriptor,
and IOlelnPlaceFrame::SetMenu in the OLE documentation.

See Also COleClientltem: :OnlnsertMenus, COleClientltem: :OnRemoveMenus

COleClientItem: :OnShowControlBars
virtual BOOL OnShowControlBars(CFrameWnd* pFrameWnd, BOOL bShow);

Return Value
Nonzero if the function call causes a change in the control bars' state; 0 if the call
causes no change, or if pFrameWnd does not point to the container's frame window.

Parameters

Remarks

pFrameWnd Pointer to the container application's frame window. This can be either
a main frame window or an MDI child window.

bShow Specifies whether control bars are to be shown or hidden.

Called by the framework to show and hide the container application's control bars.
This function returns 0 if the control bars are already in the state specified by bShow.
This would occur, for example, if the control bars are hidden and bShow is FALSE.

The default implementation removes the toolbar from the top-level frame window.

See Also COleClientltem::OnlnsertMenus, COleClientltem::OnSetMenu,
COleClientltem: :OnRemoveMenus, COleClientltem: :OnUpdateFrameTitie

COleClientItem: :OnShow Item

Remarks

virtual void OnShowltem();

Called by the framework to display the OLE item, making it totally visible during
editing. It is used when your container application supports links to embedded items
(that is, if you have derived your document class from COleLinkingDoc). This
function is called during in-place activation or when the OLE item is a link source
and the user wants to edit it. The default implementation activates the first view on
the container document. Override this function to scroll the document so that the
OLE item is visible.

See Also COleLinkingDoc

1019

COleClientltem::OnUpdateFrameTitle

COleClientItem:: On UpdateFrameTitle
virtual BOOL OnUpdateFrameTitle();

Return Value

Remarks

Nonzero if this function successfully updated the frame title, otherwise zero.

Called by the framework during in-place activation to update the frame window's
title bar. The default implementation does not change the frame window title.
Override this function if you want a different frame title for your application, for
example "server app - item in docname" (as in, "Microsoft Excel- spreadsheet in
REPORT.DOC"). This is an advanced overridable.

COleClientItem: : Reacti vateAndU ndo
BOOL ReactivateAndUndo();

Return Value

Remarks

Nonzero if successful; otherwise O.

Call this function to reactivate the OLE item and undo the last operation performed
by the user during in-place editing. If your container application supports the undo
command, call this function if the user chooses the undo command immediately after
deactivating the OLE item.

If the server application is written with the Microsoft Foundation Class Libraries, this
function causes the server to call COleServerDoc: :OnReactivateAndUndo.

For more information, see IOlelnPlaceObject::ReactivateAndUndo in the OLE
documentation.

See Also COleServerDoc: :OnReactivateAndUndo,
COleClientItem: :OnDeactivateAndUndo

COleClientItem: : Release
virtual void Release(OLECLOSE dwCloseOption = OLECLOSE_NOSAVE);

Parameters

1020

dwCloseOption Flag specifying under what circumstances the OLE item is saved
when it returns to the loaded state. For a list of possible values, see
COleClientItem:: Close.

COleClientItem: :SetDraw Aspect

Remarks
Call this function to clean up resources used by the OLE item. Release is called by
the COleClientltem destructor.

For more information, see IUnknown::Release in the OLE documentation.

See Also COleClientltem: : Close, COleClientltem: :Delete

COleClientItem: : Reload
BOOL Reload();

Return Value

Remarks

Nonzero if successful; otherwise O.

Closes and reloads the item. Call the Reload function after activating the item as an
item of another type by a call to ActivateAs.

See Also COleClientltem: :ActivateAs

COleClientItem: : Run

Remarks

void Run();

Runs the application associated with this item.

Call the Run member function to launch the server application before activating the
item. This is done automatically by Activate and DoVerb, so it is usually not
necessary to call this function. Call this function if it is necessary to run the server in
order to set an item attribute, such as SetExtent, before executing DoVerb.

See Also COleClientltem: : IsRunning

COleClientItem: : SetDraw Aspect
void SetDrawAspect(DVASPECT nDrawAspect);

Parameters
nDrawAspect A value from the DVASPECT enumeration. This parameter can have

one of the following values:

• DVASPECT _CONTENT Item is represented in such a way that it can be
displayed as an embedded object inside its container.

• DVASPECT _THUMBNAIL Item is rendered in a "thumbnail"
representation so that it can be displayed in a browsing tool.

1021

COleClientltem: :SetExtent

Remarks

• DVASPECT_ICON Item is represented by an icon .

• DVASPECT_DOCPRINT Item is represented as if it were printed using the
Print command from the File menu.

Call the SetDrawAspect member function to set the "aspect," or view, of the item.
The aspect specifies how the item is to be rendered by Draw when the default value
for that function's nDrawAspect argument is used.

This function is called automatically by the Change Icon (and other dialogs that call
the Change Icon dialog directly) to enable the iconic display aspect when requested
by the user.

See Also COleClientItem: : GetDraw Aspect, COleClientltem: : Draw

CO leClientItem: : SetExtent
void SetExtent(const CSize& size, DVASPECT nDrawAspect = DVASPECT_CONTENT);

Parameters

Remarks

size A CSize object that contains the size information.

nDrawAspect Specifies the aspect of the OLE item whose bounds are to be set. For
possible values, see SetDraw Aspect.

Call this function to specify how much space is available to the OLE item. If the
server application was written using the Microsoft Foundation Class Library, this
causes the OnSetExtent member function of the corresponding COleServerItem
object to be called. The OLE item can then adjust its display accordingly. The
dimensions must be in MM_HIMETRIC units. Call this function when the user
resizes the OLE item or if you support some form of layout negotiation.

For more information, see IOleObject: :SetExtent in the OLE documentation.

See Also COleClientltem: : GetExtent, COleClientltem: : GetCachedExtent,
COleServerItem: :OnSetExtent

COleClientItem:: SetHostN ames
void SetHostNames(LPCTSTR lpszHost, LPCTSTR lpszHostObj);

Parameters

1022

lpszHost Pointer to the user-visible name of the container application.

lpszHostObj Pointer to an identifying string of the container that contains the
OLE item.

COleClientltem: :SetltemRects

Remarks
Call this function to specify the name of the container application and the container's
name for an embedded OLE item. If the server application was written using the
Microsoft Foundation Class Library, this function calls the OnSetHostNames
member function of the COleServerDoc document that contains the OLE item. This
information is used in window titles when the OLE item is being edited. Each time a
container document is loaded, the framework calls this function for all the OLE items
in the document. SetHostNames is applicable only to embedded items. It is not
necessary to call this function each time an embedded OLE item is activated for
editing.

This is also called automatically with the application name and document name when
an object is loaded or when a file is saved under a different name. Accordingly, it is
not usually necessary to call this function directly.

For more information, see IOleObject::SetHostNames in the OLE documentation.

See Also COleServerDoc: :OnSetHostNames

COleClientItem:: SetIconicMetafile
BOOL SetlconicMetafile(HGLOBAL hMetaPict);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

hMetaPict A handle to the metafile used for drawing the item's icon.

Caches the metafile used for drawing the item's icon. Use GetlconicMetafile to
retrieve the metafile.

The hMetaPict parameter is copied into the item; therefore, hMetaPict must be freed
by the caller.

See Also COleClientltem: : GetlconicMetafile

COleClientItem:: SetItemRects
BOOL SetltemRects(LPCRECT IpPosRect = NULL, LPCRECT IpClipRect = NULL);

Return Value
Nonzero if successful; otherwise, O.

Parameters
IprcPosRect Pointer to the rectangle containing the bounds of the OLE item relative

to its parent window, in client coordinates.

1023

COleClientltem: :SetLinkUpdateOptions

Remarks

lprcClipRect Pointer to the rectangle containing the bounds of the visible portion of
the OLE item relative to its parent window, in client coordinates.

Call this function to set the bounding rectangle or the visible rectangle of the OLE
item. This function is called by the default implementation of the
OnChangeItemPosition member function. You should call this function whenever
the position or visible portion of the OLE item changes. Usually this means that you
call it from your view's OnSize and OnScrollBy member functions.

For more information, see IOlelnPlaceObject: : SetObjectRects in the OLE
documentation.

See Also COleClientItem: :OnChangeItemPosition,
COleClientItem: :OnGetItemPosition

COleClientItem:: SetLink U pdateOptions
void SetLinkUpdateOptions(OLEUPDATE dwUpdateOpt);

Parameters

Remarks

dwUpdateOpt The value of the link-update option for this item. This value must be
one of the following:

• OLEUPDATE_ALWAYS Update the linked item whenever possible. This
option supports the Automatic link-update radio button in the Links dialog box .

• OLEUPDATE_ONCALL Update the linked item only on request from the
container application (when the UpdateLink member function is called). This
option supports the Manual link-update radio button in the Links dialog box.

Call this function to set the link-update option for the presentation of the specified
linked item. Typically, you should not change the update options chosen by the user
in the Links dialog box.

For more information, see IOleLink::SetUpdateOptions in the OLE documentation.

See Also COleClientItem: : GetLinkUpdateOptions, COleLinksDialog

COleClientItem: : SetPrintDevice
BOOL SetPrintDevice(const DVTARGETDEVICE* ptd);
BOOL SetPrintDevice(const PRINTDLG* ppd);

Return Value
Nonzero if the function was successful; otherwise o.

1024

COleClientltem:: UpdateLink

Parameters

Remarks

ptd Pointer to a DVTARGETDEVICE data structure, which contains information
about the new print-target device. Can be NULL.

ppd Pointer to a PRINTDLG data structure, which contains information about the
new print-target device. Can be NULL.

Call this function to change the print-target device for this item. This function
updates the print-target device for the item but does not refresh the presentation
cache. To update the presentation cache for an item, call UpdateLink.

The arguments to this function contain information that the OLE system uses to
identify the target device. The PRINTDLG structure contains information that
Windows uses to initialize the common Print dialog box. After the user closes the
dialog box, Windows returns information about the user's selections in this structure.
The m_pd member of a CPrintDialog object is a PRINTDLG structure.

For more information about this structure, see PRINTDLG in the Win32
documentation.

For more information, see DVTARGETDEVICE in the OLE documentation.

See Also COleClientItem:: UpdateLink, CPrintDialog

COleClientItem:: UpdateLink
BOOL UpdateLink();

Return Value

Remarks

Nonzero on success; otherwise O.

Call this function to update the presentation data of the OLE item immediately. For
linked items, the function finds the link source to obtain a new presentation for the
OLE item. This process may involve running one or more server applications, which
could be time-consuming. For embedded items, the function operates recursively,
checking whether the embedded item contains links that might be out of date and
updating them. The user can also manually update individual links using the Links
dialog box.

For more information, see IOleLink::Update in the OLE documentation.

See Also COleLinksDialog

1025

COleControl

COleControl

1026

The COleControl class is a powerful base class for developing OLE controls.
Derived from CWnd, this class inherits all the functionality of a Windows window
object plus additional functionality specific to OLE, such as event firing and the
ability to support methods and properties.

OLE controls can be inserted into OLE container applications and communicate with
the container by using a two-way system of event firing and exposing methods and
properties to the container. Note that standard OLE containers only support the basic
functionality of an OLE control. They are unable to support extended features of an
OLE control. Event firing occurs when events are sent to the container as a result of
certain actions taking place in the control. In turn, the container communicates with
the control by using an exposed set of methods and properties analogous to the
member functions and data members of a C++ class. This approach allows the
developer to control the appearance of the control and notify the container when
certain actions occur.

For more information on developing an OLE control framework, see the articles
"Developing OLE Controls," "OLE Controls," and "OLE ControlWizard" in
Programming with MFC. For more information on adding functionality beyond the
basic framework, see the Circle Sample Tutorial in Tutorials.

#include <afxctl.h>

See Also COlePropertyPage, CFontHolder, CPictureHolder

Construction/Destruction

COleControl

RecreateControlWindow

Initialization

InitializeIIDs

SetlnitialSize

Creates a COle Control object.

Destroys and re-creates the control's window.

Informs the base class of the lIDs the control will use.

Sets the size of an OLE control when first displayed in a
container.

Control Modification Functions

IsModified

SetModifiedFlag

Persistence

ExchangeExtent

ExchangeStockProps

Exchange Version

IsConvertingVBX

SetModifiedFlag

WillAmbientsBe ValidDuring
Load

Update/Painting Functions

DoSuperclassPaint

InvalidateControl

SelectFontObject

SelectStockFont

TranslateColor

Dispatch Exceptions

GetNotSupported

SetNotPermitted

SetNotSupported

ThrowError

Ambient Property Functions

AmbientBackColor

AmbientDisplayName

AmbientForeColor

AmbientFont

AmbientLocaleID

AmbientScaleUnits

AmbientShowGrabHandles

AmbientShowHatching

Determines if the control state has changed.

Changes the modified state of a control.

Serializes the control's width and height.

Serializes the control's stock properties.

Serializes the control's version number.

Allows specialized loading of an OLE control.

Changes the modified state of a control.

Determines whether ambient properties will be available
the next time the control is loaded.

Redraws an OLE control that has been subc1assed from a
Windows control.

Invalidates an area of the displayed control, causing it to
be redrawn.

Selects a custom Font property into a device context.

Selects the stock Font property into a device context.

Converts an OLE_COLOR value to a COLORREF
value.

Prevents access to a control's property value by the user.

Indicates that an edit request has failed.

Prevents modification to a control's property value by the
user.

Signals that an error has occurred in an OLE control.

Returns the value of the ambient BackColor property.

Returns the name of the control as specified by the
container.

Returns the value of the ambient ForeColor property.

Returns the value of the ambient Font property.

Returns the container's locale ID.

Returns the type of units used by the container.

Determines if grab handles should be displayed.

Determines if hatching should be displayed.

COleControl

1027

COleControl

1028

Ambient Property Functions

AmbientTextAlign

AmbientUIDead

AmbientUserMode

GetAmbientProperty

Event Firing Functions

FireClick

FireDblClick

FireError

FireEvent

FireKeyDown

FireKeyPress

FireKeyUp

FireMouseDown

FireMouseMove

FireMouseUp

Stock Methods/Properties

DoClick

Refresh

GetBackColor

SetBackColor

GetBorderStyle

SetBorderStyle

GetEnabled

SetEnabled

GetForeColor

SetForeColor

GetFont

GetFontTextMetrics

GetStockTextMetrics

InternalGetFont

SetFont

SelectStockFont

Returns the type of text alignment specified by the
container.

Determines if the control should respond to user-interface
actions.

Determines the mode of the container.

Returns the value of the specified ambient property.

Fires the stock Click event.

Fires the stock DblClick event.

Fires the stock Error event.

Fires a custom event.

Fires the stock KeyDown event.

Fires the stock KeyPress event.

Fires the stock KeyUp event.

Fires the stock MouseDown event.

Fires the stock MouseMove event.

Fires the stock MouseUp event.

Implementation of the stock DoClick method.

Forces a repaint of a control's appearance.

Returns the value of the stock BackColor property.

Sets the value of the stock BackColor property.

Returns the value of the stock BorderStyle property.

Sets the value of the stock BorderStyle property.

Returns the value of the stock Enabled property.

Sets the value of the stock Enabled property.

Returns the value of the stock ForeColor property.

Sets the value of the stock ForeColor property.

Returns the value of the stock Font property.

Returns the metrics of a CFontHolder object.

Returns the metrics of the stock Font property.

Returns a CFontHolder object for the stock Font property.

Sets the value of the stock Font property.

Selects the control's stock Font property into a device
context.

Stock Methods/Properties

GetHwnd

GetText

InternalGetText

SetText

OLE Control Sizing Functions

GetControlSize

SetControlSize

GetRectInContainer

SetRectInContainer

OLE Data Binding Functions

BoundPropertyChanged

BoundProperty RequestEdit

Simple Frame Functions

EnableSimpleFrame

OLE Control Site Functions

ControlInfoChanged

GetExtendedControl

LocklnPlaceActive

TransformCoords

Modal Dialog Functions

PreModalDialog

PostModalDialog

Overridables

DisplayError

DoPropExchange

GetClassID

GetMessageString

Returns the value of the stock hWnd property.

Returns the value of the stock Text or Caption property.

Retrieves the stock Caption or Text property.

Sets the value of the stock Text or Caption property.

Returns the position and size of the OLE control.

Sets the position and size of the OLE control.

Returns the control's rectangle relative to its container.

Sets the control's rectangle relative to its container.

Notifies the container that a bound property has been
changed.

Requests permission to edit the property value.

Enables simple frame support for a control.

Call this function after the set of mnemonics handled by
the control has changed.

Retrieves a pointer to an extended control object belonging
to the container.

Determines if your control can be deactivated by the
container.

Transforms coordinate values between a container and the
control.

Notifies the container that a modal dialog box is about to
be displayed.

Notifies the container that a modal dialog box has been
closed.

Displays stock Error events to the control's user.

Serializes the properties of a COleControl object.

Retrieves the OLE class ID of the control.

Provides status bar text for a menu item.

COleControl

1029

COleControl

1030

Overridables

IsSubclassedControl

OnClick

OnDoVerb

OnDraw

OnDrawMetafile

OnEdit

OnEnum Verbs

OnEventAdvise

OnGetColorSet

OnKeyDownEvent

OnKeyPressEvent

OnKeyUpEvent

OnProperties

OnResetState

Change Notification Functions

OnBackColorChanged

OnBorderStyleChanged

OnEnabledChanged

OnFontChanged

OnForeColorChanged

OnTextChanged

OLE Interface Notification Functions

OnAmbientPropertyChange

OnFreezeEvents

OnGetControlInfo

OnMnemonic

OnRenderData

Called to determine if the control subclasses a Windows
control.

Called to fire the stock Click event.

Called after a control verb has been executed.

Called when a control is requested to redraw itself.

Called by the container when a control is requested to
redraw itself using a metafile device context.

Called by the container to UI Activate an OLE control.

Called by the container to enumerate a control's verbs.

Called when event handlers are connected or disconnected
from a control.

Notifies the control that IOleObject::GetColorSet has
been called.

Called after the stock KeyDown event has been fired.

Called after the stock KeyPress event has been fired.

Called after the stock KeyUp event has been fired.

Called when the control's "Properties" verb has been
invoked.

Resets a control's properties to the default values.

Called when the stock BackColor property is changed.

Called when the stock BorderStyle property is changed.

Called when the stock Enabled property is changed.

Called when the stock Font property is changed.

Called when the stock ForeColor property is changed.

Called when the stock Text or Caption property is
changed.

Called when an ambient property is changed.

Called when a control's events are frozen or unfrozen.

Provides mnemonic information to the container.

Called when a mnemonic key of the control has been
pressed.

Called by the framework to retrieve data in the specified
format.

COleControl::AmbientBackColor

OLE Interface Notification Functions

OnRenderFileData

OnRenderGlobalData

OnSetClientSite

OnSetData

OnSetExtent

OnSetObjectRects

In-Place Activation Functions

OnGetInPlaceMenu

OnHideToolBars

OnShowToolBars

Property Browsing Functions

OnGetDisplayString

OnGetPredefinedStrings

OnGetPredefinedValue

OnMapPropertyToPage

Called by the framework to retrieve data from a file in the
specified format.

Called by the framework to retrieve data from global
memory in the specified format.

Notifies the control that IOleControl::SetClientSite has
been called.

Replaces the control's data with another value.

Called after the control's extent has changed.

Called after the control's dimensions have been changed.

Requests the handle of the control's menu that will be
merged with the container menu.

Called by the container when the control is VI deactivated.

Called when the control has been VI activated.

Called to obtain a string to represent a property value.

Returns strings representing possible values for a property.

Returns the value corresponding to a predefined string.

Indicates which property page to use for editing a property.

Member Functions
COleControl: :AmbientBackColor

OLE_COLOR AmbientBackColor();

Return Value

Remarks

The current value of the container's ambient BackColor property, if any. If the
property is not supported, this function returns the system-defined Windows
background color.

The ambient BackColor property is available to all controls and is defined by the
container. Note that the container is not required to support this property.

1031

COleControl: : AmbientDisplayN arne

See Also COleControl::TranslateColor, COleControl::GetBackColor,
COleControl: :AmbientForeColor

COleControl: : ArnbientDisplay N arne
CString AmbientDisplayName();

Return Value

Remarks

The name of the OLE control. The default is a zero-length string.

The name the container has assigned to the control can be used in error messages
displayed to the user. Note that the container is not required to support this property.

COleControl: : ArnbientFont
LPFONTDISP AmbientFont();

Return Value

Remarks

A pointer to the container's ambient Font dispatch interface. The default value is
NULL. If the return is not equal to NULL, you are responsible for releasing the font
by calling its IUnknown: :Release member function.

The ambient Font property is available to all controls and is defined by the container.
Note that the container is not required to support this property.

See Also COleControl::GetFont, COleControl::SetFont

COleControl: : ArnbientForeColor
OLE_COLOR AmbientForeColor();

Return Value

Remarks

1032

The current value of the container's ambient ForeColor property, if any. If not
supported, this function returns the system-defined Windows text color.

The ambient ForeColor property is available to all controls and is defined by the
container. Note that the container is not required to support this property.

See Also COleControl: :AmbientBackColor, COleControl: : GetForeColor,
COleControl: : TranslateColor

COleControl: :AmbientShowGrabHandles

COleControl: : AmbientLocaleID
LCID AmbientLocaleID();

Return Value

Remarks

The value of the container's LocaleID property, if any. If this property is not
supported, this function returns O.

The control can use the LocaleID to adapt its user interface for specific locales. Note
that the container is not required to support this property.

COleControl: : AmbientScaleUnits
CString AmbientScaleUnits();

Return Value

Remarks

A string containing the ambient ScaleUnits of the container. If this property is not
supported, this function returns a zero-length string.

The container's ambient ScaleUnits property can be used to display positions or
dimensions, labeled with the chosen unit, such as twips or centimeters. Note that the
container is not required to support this property.

See Also COleControl: : TransformCoords

COleControl: : AmbientShowGrabHandles
BOOL AmbientShowGrabHandles();

Return Value

Remarks

Nonzero if grab handles should be displayed; otherwise O. If this property is not
supported, this function returns nonzero.

Call this function to determine whether the container allows the control to display
grab handles for itself when active. Note that the container is not required to support
this property.

See Also COleControl: :AmbientShowHatching

1033

COleControl: :AmbientShowHatching

COleControl: : AmbientS how Hatching
BOOL AmbientShowHatching();

Return Value

Remarks

Nonzero if the hatched pattern should be shown; otherwise O. If this property is not
supported, this function returns nonzero.

Call this function to determine whether the container allows the control to display
itself with a hatched pattern when DI active. Note that the container is not required to
support this property.

See Also COleControl: :AmbientShowGrabHandles

COleControl: : AmbientTextAlign
short AmbientTextAlign();

Return Value

Remarks

The status of the container's ambient TextAlign property. If this property is not
supported, this function returns O.

The following is a list of valid return values:

Return Value

o

2

3

Meaning

General alignment (numbers to the right, text to the left).

Left justify

Center

Right justify

Call this function to determine the ambient text alignment preferred by the control
container. This property is available to all embedded controls and is defined by the
container. Note that the container is not required to support this property.

COleControl: : AmbientUIDead
BOOL AmbientUIDead();

Return Value

1034

Nonzero if the control should respond to user-interface actions; otherwise O. If this
property is not supported, this function returns O.

COleControl::BoundPropertyRequestEdit

Remarks
Call this function to determine if the container wants the control to respond to user
interface actions. For example, a container might set this to TRUE in design mode.

See Also COleControl: :AmbientUserMode

COleControl: : AmbientU serMode
BOOL AmbientUserMode();

Return Value

Remarks

Nonzero if the container is in user mode; otherwise 0 (in design mode). If this
property is not supported, this function returns O.

Call this function to determine if the container is in design mode or user mode. For
example, a container might set this to FALSE in design mode.

See Also COleControl: :AmbientUIDead

COleControl: : BoundPropertyChanged
void BoundPropertyChanged(DISPID dispid);

Parameters

Remarks

dispid The dispatch ID of a bound property of the control.

Call this function to signal that the bound property value has changed. This must be
called every time the value of the property changes, even in cases where the change
was not made through the property Set method. Be particularly aware of bound
properties that are mapped to member variables. Any time such a member variable
changes, BoundPropertyChanged must be called.

See Also COleControl::BoundPropertyRequestEdit

COleControl: :BoundProperty RequestEdit
BOOL BoundPropertyRequestEdit(DISPID dispid);

Return Value
Nonzero if the change is permitted; otherwise O. The default value is nonzero.

Parameters
dispid The dispatch ID of a bound property of the control.

1035

COleControl: :COleControl

Remarks
Call this function to request permission from the IPropChangeNotify interface to
change a bound property value provided by the control. If permission is denied, the
control must not let the value of the property change. This can be done by ignoring or
failing the action that attempted to change the property value.

See Also COleControl::BoundPropertyChanged

COleControl: :COleControl

Remarks

COleControl();

Constructs a COleControl object. This function is normally not called directly.
Instead the OLE control is usually created by its class factory.

COleControl: :ControlInfoChanged
void ControlInfoChanged();

Remarks
Call this function when the set of mnemonics supported by the control has changed.
Upon receiving this notification, the control's container obtains the new set of
mnemonics by making a call to IOleControl::GetControlInfo. Note that the
container is not required to respond to this notification. For more information on
IOleControl::GetControlInfo, see "IOleControl and IOleControISite," in Appendix
A of Programming with MFC.

COleControl: : DisplayError
virtual void DisplayError(SCODE scode, LPCTSTR lpszDescription, LPCTSTR lpszSource,

LPCTSTR lpszHelpFile, UINT nHelpID);

Parameters

1036

scode The status code value to be reported. For a complete list of possible codes, see
the article "OLE Controls: Advanced Topics" in Programming with MFC.

lpszDescription The description of the error being reported.

lpszSource The name of the module generating the error (typically, the name of the
OLE control module).

lpszHelpFile The name of the help file containing a description of the error.

nHelpID The Help Context ID of the error being reported.

COleControl: : DoPropExchange

Remarks
Called by the framework after the stock Error event has been handled (unless the
event handler has suppressed the display of the error). The default behavior displays a
message box containing the description of the error, contained in IpszDescription.

Override this function to customize how errors are displayed.

See Also COleControl: : FireError

COleControl: :DoClick
void DoClick();

Remarks
Call this function to simulate a mouse click action on the control. The overridable
COleControl::OnClick member function will be called, and a stock Click event will
be fired, if supported by the control.

This function is supported by the COleControl base class as a stock method,
called DoClick. For more information, see the article "Methods" in Programming
withMFC.

See Also COleControl::OnClick

COleControl: : DoPropExchange
virtual void DoPropExchange(CPropExchange* pPX);

Parameters

Remarks

pPX A pointer to a CPropExchange object. The framework supplies this object to
establish the context of the property exchange, including its direction.

Called by the framework when loading or storing a control from a persistent storage
representation, such as a stream or property set. This function normally makes calls
to the PX_ family of functions to load or store specific user-defined properties of an
OLE control.

If Control Wizard has been used to create the OLE control project, the overridden
version of this function will serialize the stock properties supported by COleControl
with a call to the base class function, COleControl: : DoPropExchange. As you add
user-defined properties to your OLE control you will need to modify this function to
serialize your new properties. For more information on serialization, see the article
"OLE Controls: Serializing" in Programming with MFC.

See Also PX_Bool, PX_Short

1037

C01eControl::DoSuperclassPaint

COleControl: :DoSuperclassPaint
void DoSuperclassPaint(CDC* pDC, const CRect& reBounds);

Parameters

Remarks

pDC A pointer to the device context of the control container.

reBounds A pointer to the area in which the control is to be drawn.

Call this function to properly handle the painting of a nonactive OLE control. This
function should only be used if the OLE control subclasses a Windows control and
should be called in the 0 nOr a w function of your control.

For more information on this function and subclassing a Windows control, see the
article "OLE Controls: Subclassing a Windows Control" in Programming with MFC.

See Also COleControl: :OnDraw

COleControl: : DrawContent
void DrawContent(CDC* pDC, CRect& re);

Parameters

Remarks

pDC Pointer to the device context.

re Rectangular area to be drawn in.

Called by the framework when the control's appearance needs to be updated. This
function directly calls the overridable OnDraw function.

See Also COleControl: :OnDraw, COleControl: :DrawMetafile,
COleControl::OnDrawMetafile

COleControl::DrawMetafile
void DrawMetafile(CDC* pDC, CRect& re);

Parameters

Remarks

1038

pDC Pointer to the metafile device context.

re Rectangular area to be drawn in.

Called by the framework when the metafile device context is being used.

See Also COleControl::OnDraw, COleControl::DrawContent,
COleControl::OnDrawMetafile

COleControl: :ExchangeStockProps

COleControl: : EnableSimpleFrame
void EnableSimpleFrame();

Remarks
Call this function to enable the simple frame characteristic for an OLE control. This
characteristic allows a control to support visual containment of other controls, but not
true OLE containment. An example would be a group box with several controls
inside. These controls are not OLE contained, but they are in the same group box.

COleControl: : ExchangeExtent
BOOL ExchangeExtent(CPropExchange* pPX);

Return Value
Nonzero if the function succeeded; 0 otherwise.

Parameters

Remarks

pPX A pointer to a CPropExchange object. The framework supplies this object to
establish the context of the property exchange, including its direction.

Call this function to serialize or initialize the state of the control's extent (its
dimensions in HIMETRIC units). This function is normally called by the default
implementation of COleControl: :DoPropExchange.

See Also COleControl: :DoPropExchange

COleControl: : ExchangeStockProps
void ExchangeStockProps(CPropExchange* pPX);

Parameters

Remarks

pPX A pointer to a CPropExchange object. The framework supplies this object to
establish the context of the property exchange, including its direction.

Call this function to serialize or initialize the state of the control's stock properties.
This function is normally called by the default implementation of
COleControl: :DoPropExchange.

See Also COleControl: :DoPropExchange

1039

COleControl: :Exchange Version

COleControl: : Exchange Version
BOOL Exchange Version(CPropExchange* pPX, DWORD dwVersionDefault,

BOOL bConvert = TRUE);

Return Value
Nonzero of the function succeeded; 0 otherwise.

Parameters

Remarks

pPX A pointer to a CPropExchange object. The framework supplies this object to
establish the context of the property exchange, including its direction.

dwVersionDefault The current version number of the control.

bConvert Indicates whether persistent data should be converted to the latest format
when saved, or maintained in the same format that was loaded.

Call this function to serialize or initialize the state of a control's version information.
Typically, this will be the first function called by a control's override of
COleControl: :DoPropExchange. When loading, this function reads the version
number of the persistent data, and sets the version attribute of the CPropExchange
object accordingly. When saving, this function writes the version number of the
persistent data.

For more information on persistence and versioning, see the article "OLE Controls:
Serializing" in Programming with MFC.

See Also COleControl: :DoPropExchange

COleControl: : FireClick

Remarks

1040

void FireClick();

Called by the framework when the mouse is clicked over an active control. If this
event is defined as a custom event, you determine when the event is fired.

For automatic firing of a Click event to occur, the control's Event map must have a
stock Click event defined.

See Also COleControl: :FireDbIClick, COleControl: :FireMouseDown,
COleControl: :FireMouseUp

COleControl: : FireEvent

COleControl: : FireDblClick

Remarks

void FireDbIClick();

Called by the framework when the mouse is double-clicked over an active control. If
this event is defined as a custom event, you determine when the event is fired.

For automatic firing of a DblClick event to occur, the control's Event map must have
a stock DblClick event defined.

See Also COleControl: :FireClick, COleControl: : FireMouseDown,
COleControl: : FireMouseUp

COleControl: :FireError
void FireError(SCODE scode, LPCTSTR lpszDescription, UINT nHelpID = 0);

Parameters

Remarks

scode The status code value to be reported. For a complete list of possible codes, see
the article "OLE Controls: Advanced Topics" in Programming with MFC.

lpszDescription The description of the error being reported.

nHelpID The Help ID of the error being reported.

Call this function to fire the stock Error event. This event provides a way of
signalling, at appropriate places in your code, that an error has occurred within your
control. Unlike other stock events, such as Click or MouseMove, Error is never fired
by the framework.

To report an error that occurs during a property get function, property set function, or
automation method, call COleControl::ThrowError.

See Also COleControl: :DisplayError

COleControl: : FireEvent
void FireEvent(DISPID dispid, BYTE FAR* pbParams, •••);

Parameters

Remarks

dispid The dispatch ID of the event to be fired.

pbParams A descriptor for the event's parameter types.

Call this function, with any number of optional arguments, to fire a user-defined
event from your control. Usually this function should not be called directly. Instead

1041

COleControl::FireKeyDown

you will call the event-firing functions generated by ClassWizard in the event map
section of your control's class declaration.

The pbParams argument is a space-separated list of VTS_. One or more of these
values, separated by spaces (not commas), specifies the function's parameter list.
Possible values are as follows:

Symbol Parameter Type

VTS_COLOR OLE_COLOR

VTS_FONT IFontDisp*

VTS_HANDLE HWND

VTS_PICTURE IPictureDisp*

VTS_OPTEXCLUSIVE OLE_OPTEXCLUSIVE*

VTS_TRISTATE OLE_TRISTATE

VTS_XPOS_HIMETRIC OLE_XPOS_HIMETRIC

VTS_ YPOS_HIMETRIC OLE_YPOS_HIMETRIC

VTS_XPOS_PIXELS OLE_XPOS_PIXELS

VTS_ YPOS_PIXELS OLE_ YPOS_PIXELS

VTS_XSIZE_PIXELS OLE_XSIZE_PIXELS

VTS_ YSIZE_PIXELS OLE_XSIZE_PIXELS

VTS_XSIZE_HIMETRIC OLE~SIZE_HIMETRIC

VTS_YSIZE_HIMETRIC OLE_XSIZE_HIMETRIC

Note Additional variant constants have been defined for all variant types, with the exception
of VTS_FONT and VTS_PICTURE, that provide a pointer to the variant data constant. These
constants are named using the VTS_Pconstantname convention. For example, VTS_PCOLOR
is a pointer to a VTS_COLOR constant.

COleControl: : FireKey Down
void FireKeyDown(USHORT* pnChar, short nShijtState);

Parameters
pnChar Pointer to the virtual-key code value of the pressed key.

nShijtState Contains a combination of the following flags:

• SHIFT_MASK The SHIFT key was pressed during the action.

• CTRL_MASK The CTRL key was pressed during the action.

• ALT_MASK The ALT key was pressed during the action.

1042

COleControl: :FireKeyUp

Remarks
Called by the framework when a key is pressed while the control is VI active. If this
event is defined as a custom event, you determine when the event is fired.

For automatic firing of a KeyDown event to occur, the control's Event map must have
a stock KeyDown event defined.

See Also COleControl::FireKeyUp, COleControl::FireKeyPress,
COleControl::OnKeyPressEvent

COleControl: : Fire Key Press
void FireKeyPress(USHORT* pnChar);

Parameters

Remarks

pnChar A pointer to the character value of the key pressed.

Called by the framework when a key is pressed and released while the custom control
is VI Active within the container. If this event is defined as a custom event, you
determine when the event is fired.

The recipient of the event may modify pnChar, for example, convert all lowercase
characters to uppercase. If you want to examine the modified character, override
OnKeyPressEvent.

For automatic firing of a KeyPress event to occur, the control's Event map must have
a stock KeyPress event defined.

See Also COleControl: :OnKeyPressEvent, COleControl: : FireKeyDown,
COleControl: :FireKeyUp

COleControl: : Fire KeyUp
void FireKeyUp(USHORT* pnChar, short nShijtState);

Parameters
pnChar Pointer to the virtual-key code value of the released key.

nShijtState Contains a combination of the following flags:

• SHIFT_MASK The SHIFf key was pressed during the action.

• CTRL_MASK The CTRL key was pressed during the action.

• ALT_MASK The ALT key was pressed during the action.

1043

COleControl: :FireMouseDown

Remarks
Called by the framework when a key is released while the custom control is UI Active
within the container. If this event is defined as a custom event, you determine when
the event is fired.

For automatic firing of a KeyUp event to occur, the control's Event map must have a
stock Key Up event defined.

See Also COleControl: :FireKeyDown, COleControl: :FireKey Press,
COleControl: :OnKeyUpEvent

COleControl: :FireMouseDown
void FireMouseDown(short nButton, short nShijtState, OLE_XPOS_PIXELS x,

OLE_ YPOS_PIXEL y);

Parameters

Remarks

1044

nButton The numeric value of the mouse button pressed. It can contain one of the
following values:

• LEFT_BUTTON The left mouse button was pressed down.

• MIDDLE_BUTTON The middle mouse button was pressed down.

• RIGHT_BUTTON The right mouse button was pressed down.

nShijtState Contains a combination of the following flags:

• SHIFT_MASK The SHIFf key was pressed during the action.

• CTRL_MASK The CTRL key was pressed during the action.

• ALT_MASK The ALT key was pressed during the action.

x The x-coordinate of the cursor when a mouse button was pressed down. The
coordinate is relative to the upper-left comer of the control window.

y The y-coordinate of the cursor when a mouse button was pressed down. The
coordinate is relative to the upper-left comer of the control window.

Called by the framework when a mouse button is pressed over an active custom
control. If this event is defined as a custom event, you determine when the event is
fired.

For automatic firing of a MouseDown event to occur, the control's Event map must
have a stock MouseDown event defined.

See Also COleControl: :FireMouseUp, COleControl: :FireMouseMove,
COleControl: : Fire Click

COleControl: :FireMouseUp

COleControl: : FireMouseMove
void FireMouseMove(short nButton, short nShijtState, OLE_XPOS_PIXELS x,

OLE_YPOS_PIXELS y);

Parameters

Remarks

nButton The numeric value of the mouse buttons pressed. Contains a combination of
the following values:

• LEFT_BUTTON The left mouse button was pressed down during the action.

• MIDDLE_BUTTON The middle mouse button was pressed down during the
action.

• RIGHT_BUTTON The right mouse button was pressed down during the
action.

nShijtState Contains a combination of the following flags:

• SHIFT_MASK The SHIFT key was pressed during the action.

• CTRL_MASK The CTRL key was pressed during the action.

• ALT_MASK The ALT key was pressed during the action.

x The x-coordinate of the cursor. The coordinate is relative to the upper-left comer
of the control window.

y The y-coordinate of the cursor. The coordinate is relative to the upper-left comer
of the control window.

Called by the framework when the cursor is moved over an active custom control. If
this event is defined as a custom event, you determine when the event is fired.

For automatic firing of a MouseMove event to occur, the control's Event map must
have a stock MouseMove event defined.

COleControl::FireMouseUp
void FireMouseUp(short nButton, short nShijtState, OLE_XPOS_PIXELS x,

OLE_ YPOS_PIXELS y);

Parameters
nButton The numeric value of the mouse button released. It can have one of the

following values:

• LEFT_BUTTON The left mouse button was released.

• MIDDLE_BUTTON The middle mouse button was released.

• RIGHT_BUTTON The right mouse button was released.

1045

COleControl: :GetAmbientProperty

Remarks

nShijtState Contains a combination of the following flags:

• SHIFT_MASK The SHIFf key was pressed during the action.

• CTRL_MASK The CTRL key was pressed during the action.

• ALT_MASK The ALT key was pressed during the action.

x The x-coordinate of the cursor when a mouse button was released. The coordinate
is relative to the upper-left comer of the control window.

y The y-coordinate of a cursor when a mouse button was released. The coordinate is
relative to the upper-left comer of the control window.

Called by the framework when a mouse button is released over an active custom
control. If this event is defined as a custom event, you determine when the event is
fired.

For automatic firing of a MouseUp event to occur, the control's Event map must have
a stock MouseUp event defined.

See Also COleControl: :FireMouseDown, COleControl: : FireClick,
COleControl: :FireDblClick

COleControl: : GetAmbientProperty
BOOL GetAmbientProperty(DISPID dwDispid, VARTYPE vtProp, void* pvProp);

Return Value
Nonzero if the ambient property is supported; otherwise O.

Parameters

1046

dwDispid The dispatch ID of the desired ambient property.

vtProp A variant type tag that specifies the type of the value to be returned in
pvProp.

pvProp A pointer to the address of the variable that will receive the property value
or return value. The actual type of this pointer must match the type specified by
vtProp.

vtProp Type of pvProp

VT_BOOL BOOL*

VT_BSTR CString*

VT_I2 short*

VT_I4 long*

VT_R4 float*

VT_RS double*

COIeControI: : GetBorderS ty Ie

Remarks

vtProp

VT_CY

VT_COLOR

VT_DISPATCH

VT_FONT

Type of pvProp

CY*

OLE_COLOR*

LPDISPATCH*

LPFONTDISP*

Call this function to get the value of an ambient property of the container. If you use
GetAmbientProperty to retrieve the ambient DisplayName and ScaleUnits
properties, set vtProp to VT_BSTR and pvProp to CString*. If you are retrieving the
ambient Font property, set vtProp to VT_FONT and pvProp to LPFONTDISP*.

Note that functions have already been provided for common ambient properties, such
as AmbientBackColor and AmbientFont.

See Also COleControl: :AmbientForeColor, COleControl: :AmbientScaleUnits,
COleControl: :AmbientShowGrabHandles

COleControl: : GetBackColor
OLE_COLOR GetBackColor();

Return Value

Remarks

The return value specifies the current background color as a OLE_COLOR value, if
successful. This value can be translated to a COLORREF value with a call to
TranslateColor.

This function implements the Get function of your control's stock BackColor
property.

See Also COleControl: :AmbientBackColor, COleControl: : TranslateColor ,
COleControl: : SetBack Color , COleControl: : GetForeColor

COleControl: : GetBorderStyle
short GetBorderStyle();

Return Value

Remarks

1 if the control has a normal border; 0 if the control has no border.

This function implements the Get function of your control's stock BorderStyle
property.

See Also COleControl::SetBorderStyle, COleControl::OnBorderStyleChanged

1047

COleControl::GetClassID

COleControl: : GetClassID
virtual HRESULT GetClassID(LPCLSID pclsid) = 0;

Return Value
Nonzero if the call was not successful; otherwise O.

Parameters

Remarks

pclsid Pointer to the location of the class ID.

Called by the framework to retrieve the OLE class ID of the control. Usually
implemented by the IMPLEMENT_OLE CREATE_EX macro.

COleControl: : GetControlSize
void GetControlSize(int* pcx, int* pcy);

Parameters

Remarks

pcx Specifies the width of the control in pixels.

pcy Specifies the height of the control in pixels.

Call this function to retrieve the size of the OLE control window.

Note that all coordinates for control windows are relative to the upper-left corner of
the control.

See Also COleControl: : GetRectInContainer , COleControl: :SetControlSize

COleControl:: GetEnabled
BOOL GetEnabled();

Return Value

Remarks

1048

Nonzero if the control is enabled; otherwise O.

This function implements the Get function of your control's stock Enabled property.

See Also COleControl: :SetEnabled, COleControl: :OnEnabledChanged

COleControl: : GetFontTextMetrics

COleControl: : GetExtendedControl
LPDISPATCH GetExtendedControl();

Return Value

Remarks

A pointer to the container's extended control object. If there is no object available,
the value is NULL.

This object may be manipulated through its IDispatch interface. You can also use
Querylnterface to obtain other available interfaces provided by the object. However,
the object is not required to support a specific set of interfaces. Note that relying on
the specific features of a container's extended control object limits the portability of
your control to other arbitrary containers.

Call this function to obtain a pointer to an object maintained by the container that
represents the control with an extended set of properties. The function that calls this
function is responsible for releasing the pointer when finished with the object. Note
that the container is not required to support this object.

COleControl: : GetFont
LPFONTDISP GetFont();

Return Value

Remarks

A pointer to the font dispatch interface of the control's stock Font property.

This function implements the Get function of the stock Font property. Note that the
caller must release the object when finished. Within the implementation of the
control, use InternalGetFont to access the control's stock Font object. For more
information on using fonts in your control, see the article "OLE Controls: Using
Fonts in Your Control" in Programming with MFC.

See Also COleControl: :SetFont, COleControl: :AmbientFont,
COleControl: : InternalGetFont

COleControl: : GetFontTextMetrics
void GetFontTextMetrics(LPTEXTMETRIC lptm, CFontHolder& fontHolder);

Parameters
lptm Pointer to a TEXTMETRIC structure.

fontHolder Reference to a CFontHolder object.

1049

COleControl: : GetForeColor

Remarks
Call this function to measure the text metrics for any CFontHolder object owned by
the control. Such a font can be selected with the COleControl: :SelectFontObject
function. GetFontTextMetrics will initialize the TEXTMETRIC structure pointed
to by lptm with valid metrics information aboutfontHolder's font if successful, or fill
the structure with zeros if not successful. You should use this function instead of
::GetTextMetrics when painting your control because controls, like any embedded
OLE object, may be required to render themselves into a metafile.

The TEXTMETRIC structure for the default font is refreshed when the
SelectFontObject function is called. You should call GetFontTextMetrics only after
selecting the stock Font property to assure the information it provides is valid.

COleControl: : GetForeColor
OLE_COLOR GetForeColor();

Return Value

Remarks

The return value specifies the current foreground color as a OLE_COLOR value, if
successful. This value can be translated to a COLORREF value with a call to
TranslateColor. For more information on the OLE_COLOR data type, see
"Standard Color Type," in Appendix A of Programming with MFC.

This function implements the Get function of the stock ForeColor property.

See Also COleControl: :AmbientForeColor, COleControl: : TranslateColor ,
COleControl: : GetBackColor , COleControl: :SetForeColor

COleControl: : GetHwnd
OLE_HANDLE GetHwnd();

Return Value
The OLE control's window handle, if any; otherwise NULL.

Remarks
This function implements the Get function of the stock hWnd property.

COleControl: : GetMessageString
virtual void GetMessageString(UINT nID, CString& rMessage) const;

Parameters
nID A menu item ID.

rMessage A reference to a CString object through which a string will be returned.

1050

COleControl: : GetStockTextMetrics

Remarks
Called by the framework to obtain a short string that describes the purpose of the
menu item identified by nID. This can be used to obtain a message for display in a
status bar while the menu item is highlighted. The default implementation attempts
to load a string resource identified by nID.

CO leControl: : GetN otSupported

Remarks

void GetNotSupported();

Call this function in place of the Get function of any property where retrieval of the
property by the control's user is not supported. One example would be a property that
is write-only.

See Also COleControl::SetNotSupported

COleControl:: GetRectInContainer
BOOL GetRectInContainer(LPRECT lpRect);

Return Value
Nonzero if the control is in-place active; otherwise o.

Parameters

Remarks

lpRect A pointer to the rectangle structure into which the control's coordinates will
be copied.

Call this function to obtain the coordinates of the control's rectangle relative to the
container, expressed in device units. The rectangle is only valid if the control is in
place active.

See Also COleControl: :SetRectInContainer, COleControl: : GetControlSize

COleControl: : GetStockTextMetrics
void GetStockTextMetrics(LPTEXTMETRIC lptm);

Parameters

Remarks

lptm A pointer to a TEXTMETRIC structure.

Call this function to measure the text metrics for the control's stock Font property,
which can be selected with the SelectStockFont function. The GetStockTextMetrics
function will initialize the TEXTMETRIC structure pointed to by lptm with valid

1051

COleControl: : GetText

metrics information if successful, or fill the structure with zeros if not successful. Use
this function instead of ::GetTextMetrics when painting your control because
controls, like any embedded OLE object, may be required to render themselves into a
metafile.

The TEXTMETRIC structure for the default font is refreshed when the
SelectStockFont function is called. You should call this function only after selecting
the stock font to assure the information it provides is valid.

COleControl: : GetText
BSTR GetText();

Return Value

Remarks

The current value of the control text string or a zero-length string if no string is
present.

Note For more information on the BSTR data type, see "Data Types" in the "Macros and
Globals" section.

This function implements the Get function of the stock Text or Caption property.
Note that the caller of this function must call SysFreeString on the string returned in
order to free the resource. Within the implementation of the control, use
InternalGetText to access the control's stock Text or Caption property.

See Also COleControl: :InternaIGetText, COleControl: :SetText

COleControl: : InitializeIIDs
void InitializeIIDs(const IID* piidPrimary, const IID* piidEvents);

Parameters

Remarks

piidPrimary Pointer to the interface ID of the control's primary dispatch interface.

piidEvents Pointer to the interface ID of the control's event interface.

Call this function in the control's constructor to inform the base class of the interface
IDs your control will be using.

COleControl: : IntemalGetFont
CFontHolder& InternalGetFont();

Return Value
A reference to a CFontHolder object that contains the stock Font object.

1052

COleControl: :IsConverting VBX

Remarks
Call this function to access the stock Font property of your control

See Also COleControl::GetFont, COleControl::SetFont

COleControl: : InternalGetText
const CString& InternalGetText();

Return Value

Remarks

A reference to the control text string.

Call this function to access the stock Text or Caption property of your control.

See Also COleControl: : GetText, COleControl: :SetText

COleControl: : InvalidateControl
void InvalidateControl(LPCRECT IpRect = NULL);

Parameters

Remarks

IpRect A pointer to the region of the control to be invalidated.

Call this function to force the control to redraw itself. If IpRect has a NULL value,
the entire control will be redrawn. If IpRect is not NULL, this indicates the portion of
the control's rectangle that is to be invalidated. In cases where the control has no
window, or is currently not active, the rectangle is ignored, and a call is made to the
client site's IAdviseSink::OnViewChange member function. Use this function
instead of CWnd::lnvalidateRect or ::InvalidateRect.

See Also COleControl::Refresh

COleControl: : IsConverting VBX
BOOL IsConvertingVBX();

Return Value

Remarks

Nonzero if the control is being converted; otherwise o.

When converting a form that uses VBX controls to one that uses OLE controls,
special loading code for the OLE controls may be required. For example, if you are
loading an instance of your OLE control, you might have a call to PX_Font in your
DoPropExchange:

PX_Font(pPx, "Font", m_MyFont, pDefaultFont);

1053

COleControl: :IsModified

However, VBX controls did not have a Font object; each font property was saved
individually. In this case, you would use IsConvertingVBX to distinguish between
these two cases:

if (IsConvertingVBX()==FALSE)
PX_Font(pPX, "Font", m_MyFont, pDefaultFont):

else
{

}

PX_String(pPX, "FontName", tempString, DefaultName):
m_MyFont->put_Name(tempString):
PX_Bool(pPX, "FontUnderline", tempBool, DefaultValue):
m_MyFont->put_Underline(tempBool):

Another case would be if your VBX control saved proprietary binary data (in its
VBM_SAVEPROPERTY message handler), and your OLE control saves its binary
data in a different format. If you want your OLE control to be backward-compatible
with the VBX control, you could read both the old and new formats using the
IsConvertingVBX function by distinguishing whether the VBX control or the OLE
control was being loaded.

In your control's DoPropExchange function, you can check for this condition and if
true, execute load code specific to this conversion (such as the previous examples). If
the control is not being converted, you can execute normal load code. This ability is
only applicable to controls being converted from VBX counterparts.

See Also COleControl: :DoPropExchange

COleControl: : IsModified
BOOL IsModified();

Return Value

Remarks

Nonzero if the control's state has been modified since it was last saved; otherwise O.

Call this function to determine if the control's state has been modified. The state of a
control is modified when a property changes value.

See Also COleControl: :SetModifiedFlag

COleControl: : IsSubclassedControl
virtual BOOL IsSubclassedControl();

Return Value
Nonzero if the control is subc1assed; otherwise O.

1054

COleControl: :OnBackColorChanged

Remarks
Called by the framework to determine if the control subclasses a Windows control.
You must override this function and return TRUE if your OLE control subclasses a
Windows control.

COleControl: : LocklnPlaceActive
BOOL LockInPlaceActive(BOOL bLock);

Return Value
Nonzero if the lock was successful; otherwise O.

Parameters

Remarks

bLock TRUE if the in-place active state of the control is to be locked; FALSE if it is
to be unlocked.

Call this function to prevent the container from deactivating your control. Note that
every locking of the control must be paired with an unlocking of the control when
finished. You should only lock your control for short periods, such as while firing an
event.

COleControl:: OnAmbientPropertyChange
virtual void OnAmbientPropertyChange(DISPID dispID);

Parameters

Remarks

dispID The dispatch ID of the ambient property that changed, or
DISPID_UNKNOWN if mUltiple properties have changed.

Called by the framework when an ambient property of the container has changed
value.

See Also COleControl: : GetAmbientProperty

COleControl: : OnB ackColorChanged
virtual void OnBackColorChanged();

Remarks
Called by the framework when the stock BackColor property value has changed.

Override this function if you want notification after this property changes. The
default implementation calls InvalidateControl.

See Also COleControl::GetBackColor, COleControl::InvalidateControl

1055

COleControl: :OnBorderStyleChanged

COleControl:: OnBorderSty leChanged
virtual void OnBorderStyleChanged();

Remarks
Called by the framework when the stock BorderStyle property value has changed.
The default implementation calls InvalidateControl.

Override this function if you want notification after this property changes.

See Also COleControl: :SetBorderStyle, COleControl: :InvalidateControl

COleControl: :OnClick
virtual void OnClick(USHORT iButton);

Parameters

Remarks

iButton Index of a mouse button. Can have one of the following values:

• LEFT_BUTTON The left mouse button was clicked.

• MIDDLE_BUTTON The middle mouse button was clicked.

• RIGHT_BUTTON The right mouse button was clicked.

Called by the framework when a mouse button has been clicked or the DoClick stock
method has been invoked. The default implementation calls
COleControl: :FireClick.

Override this member function to modify or extend the default handling.

See Also COleControl: :DoClick, COleControl: : Fire Click

COleControl: :OnDo Verb
virtual BOOL OnDoVerb(LONG iVerb, LPMSG IpMsg, HWND hWndParent, LPCRECT IpRect);

Return Value
Nonzero if call was successful; otherwise O.

Parameters

1056

iVerb The index of the control verb to be invoked.

IpMsg A pointer to the Windows message that caused the verb to be invoked.

h WndParent The handle to the parent window of the control. If the execution of the
verb creates a window (or windows), h WndParent should be used as the parent.

IpRect A pointer to a RECT structure into which the coordinates of the control,
relative to the container, will be copied.

COleControl::OnDrawMetafile

Remarks
Called by the framework when the container calls the IOleObject: :Do Verb member
function. The default implementation uses the ON_OLEVERB and
ON_STDOLEVERB message map entries to determine the proper function to
invoke.

Override this function to change the default handling of verb.

See Also ON_OLEVERB, ON_STDOLEVERB, COleControl::OnEnum Verbs

COleControl: :OnDraw
virtual void OnDraw(CDC* pDC, const CRect& reBounds, const CRect& relnvalid);

Parameters

Remarks

pDC The device context in which the drawing occurs.

reBounds The rectangular area of the control, including the border.

rclnvalid The rectangular area of the control that is invalid.

Called by the framework to draw the OLE control in the specified bounding rectangle
using the specified device context.

OnDraw is typically called for screen display, passing a screen device context as pDC.
The reBounds parameter identifies the rectangle in the target device context (relative
to its current mapping mode). The rcInvalid parameter is the actual rectangle that is
invalid. In some cases this will be a smaller area than reBounds.

See Also COleControl::OnDrawMetafile, COleControl::DrawContent,
COleControl: :DrawMetafile

COleControl: : OnDraw Metafile
virtual void OnDrawMetafile(CDC* pDC, const CRect& reBounds);

Parameters

Remarks

pDC The device context in which the drawing occurs.

reBounds The rectangular area of the control, including the border.

Called by the framework to draw the OLE control in the specified bounding rectangle
using the specified metafile device context. The default implementation calls the
OnDraw function.

See Also COleControl: :OnDraw, COleControl: :DrawContent,
COleControl: :DrawMetafile

1057

COleControl: :OnEdit

COleControl: : OnEdit
virtual BOOL OnEdit(LPMSG IpMsg, HWND hWndParent, LPCRECT IpRect);

Return Value
An OLE result code where the value is nonzero if the call is not successful;
otherwise o.

Parameters

Remarks

IpMsg A pointer to the Windows message that invoked the verb.

h WndParent A handle to the parent window of the control.

IpRect A pointer to the rectangle used by the control in the container.

Call this function to cause the control to be VI activated. This has the same effect as
invoking the control's OLEIVERB_UIACTIVATE verb.

This function is typically used as the handler function for an ON_OLEVERB
message map entry. This makes an "Edit" verb available on the control's "Object"
menu. For example:

ON_OLEVERBCAFX_IDS_VERB_EDIT, OnEdit)

COleControl: : OnEnabledChanged
virtual void OnEnabledChanged();

Remarks
Called by the framework when the stock Enabled property value has changed.

Override this function if you want notification after this property changes. The
default implementation calls InvalidateControl.

See Also COleControl: :SetEnabled, COleControl: : GetEnabled

COleControl: :OnEnum Verbs
virtual BOOL OnEnumVerbs(LPENUMOLEVERB FAR* ppenumOleVerb);

Return Value
Nonzero if verbs are available; otherwise O.

Parameters

1058

ppenumOle Verb A pointer to the IEnumOLEVERB object that enumerates the
control's verbs.

COleControl: :OnForeColorChanged

Remarks
Called by the framework when the container calls the IOleObject: : Enum Verbs
member function. The default implementation enumerates the ON_OLEVERB
entries in the message map.

Override this function to change the default way of enumerating verbs.

See Also ON_OLEVERB, ON_STDOLEVERB

COleControl: :OnEventAdvise
virtual void OnEventAdvise(BOOL bAdvise);

Parameters

Remarks

bAdvise TRUE indicates that an event handler has been connected to the control.
FALSE indicates that an event handler has been disconnected from the control.

Called by the framework when an event handler is connected to or disconnected from
an OLE control.

COleControl: :OnFontChanged

Remarks

virtual void OnFontChanged();

Called by the framework when the stock Font property value has changed. The
default implementation calls COleControl: : InvalidateControl. If the control is
subc1assing a Windows control, the default implementation also sends a
WM_SETFONT message to the control's window.

Override this function if you want notification after this property changes.

See Also COleControl: : GetFont, COleControl: : InternalGetFont,
COleControl: :InvalidateControl

COleControl: :OnForeColorChanged

Remarks

virtual void OnForeColorChanged();

Called by the framework when the stock ForeColor property value has changed. The
default implementation calls InvalidateControl.

Override this function if you want notification after this property changes.

See Also COleControl::SetForeColor, COleControl::lnvalidateControl

1059

COleControl: :OnFreezeEvents

COleControl::OnFreezeEvents
virtual void OnFreezeEvents(BOOL bFreeze);

Parameters

Remarks

bFreeze TRUE if the control's event handling is frozen; otherwise FALSE.

Called by the framework after the container calls IOleControl: :FreezeEvents. The
default implementation does nothing.

Override this function if you want additional behavior when event handling is frozen
or unfrozen.

COleControl: :OnGetColorSet
virtual BOOL OnGetColorSet(DVTARGETDEVICE FAR* ptd, HDC hicTargetDev,

LPLOGPALETTE FAR* ppColorSet);

Return Value
Nonzero if a valid color set is returned; otherwise O.

Parameters

Remarks

1060

ptd Points to the target device for which the picture should be rendered. If this value
is NULL, the picture should be rendered for a default target device, usually a
display device.

hicTargetDev Specifies the information context on the target device indicated by
ptd. This parameter can be a device context, but is not one necessarily. If ptd is
NULL, hicTargetDev should also be NULL.

ppColorSet A pointer to the location into which the set of colors that would be used
should be copied. If the function does not return the color set, NULL is returned.

Called by the framework when the container calls the IOleObject::GetColorSet
member function. The container calls this function to obtain all the colors needed to
draw the OLE control. The container can use the color sets obtained in conjunction
with the colors it needs to set the overall color palette. The default implementation
returns FALSE.

Override this function to do any special processing of this request.

COleControl::OnGetlnPlaceMenu

COleControl:: OnGetControlInfo
virtual void OnGetControlInfo(LPCONTROLINFO pControlInfo);

Parameters

Remarks

pControlInfo Pointer to a CONTROLINFO structure to be filled in. For more
information on this structure, see "Keyboard Interface" in Appendix A of
Programming with MFC.

Called by the framework when the control's container has requested information
about the control. This information consists primarily of a description of the control's
mnemonic keys. The default implementation fills pControlInfo with default
information.

Override this function if your control needs to process mnemonic keys.

COleControl: :OnGetDisplayString
virtual BOOL OnGetDisplayString(DISPID dispid, CString& strValue);

Return Value
Nonzero if a string has been returned in strValue; otherwise O.

Parameters

Remarks

dispid The dispatch ID of a property of the control.

strValue A reference to a CString object through which a string will be returned.

Called by the framework to obtain a string that represents the current value of the
property identified by dispid.

Override this function if your control has a property whose value cannot be directly
converted to a string and you want the property's value to be displayed in a container
supplied property browser.

See Also COleControl: :OnMapPropertyToPage

COleControl::OnGetInPlaceMenu
virtual HMENU OnGetInPlaceMenu();

Return Value
The handle of the control's menu, or NULL if the control has none. The default
implementation returns NULL.

1061

COleControl: :OnGetPredefinedStrings

Remarks
Called by the framework when the control is VI activated to obtain the menu to be
merged into the container's existing menu.

For more information on merging OLE resources, see the article "Menus and
Resources" in Programming with MFC.

COleControl:: OnGetPredefinedStrings
virtual BOOL OnGetPredefinedStrings(DISPID dispid, CStringArray* pStringArray,

CDWordArray* pCookieArray);

Return Value
Nonzero if elements have been added to pStringArray and pCookieArray.

Parameters

Remarks

dispid The dispatch ID of a property of the control.

pStringArray A string array to be filled in with return values.

pCookieArray A DWORD array to be filled in with return values.

Called by the framework to obtain a set of predefined strings representing the
possible values for a property.

Override this function if your control has a property with a set of possible values that
can be represented by strings. For each element added to pStringArray, you should
add a corresponding "cookie" element to pCookieArray. These "cookie" values may
later be passed by the framework to the COleControl::OnGetPredefinedValue
function.

See Also COleControl: :OnGetPredefinedValue,
COleControl: :OnGetDisplayString

COleControl: :OnGetPredefinedValue
virtual BOOL OnGetPredefinedValue(DISPID dispid, DWORD dwCookie,

VARIANT FAR* lpvarOut);

Return Value
Nonzero if a value has been returned in lpvarOut; otherwise O.

Parameters
dispid The dispatch ID of a property of the control.

1062

COleControl::OnKeyDownEvent

Remarks

dwCookie A cookie value previously returned by an override of
COleControl: :OnGetPredefinedStrings.

IpvarOut Pointer to a VARIANT structure through which a property value will be
returned.

Called by the framework to obtain the value corresponding to one of the predefined
strings previously returned by an override of
COleControl: :OnGetPredefinedStrings.

See Also COleControl: :OnGetPredefinedStrings,
COleControl:: OnGetDisplayString

COleControl::OnHideTooIBars

Remarks

virtual void OnHideTooIBars();

Called by the framework when the control is VI deactivated. The implementation
should hide all toolbars displayed by OnShowToolbars.

See Also COleControl: :OnShowToolbars

COleControl: :OnKeyDownEvent
virtual void OnKeyDownEvent(USHORT nChar, USHORT nShijtState);

Parameters

Remarks

nChar The virtual-key code value of the pressed key.

nShijtState Contains a combination of the following flags:

• SHIFT_MASK The SHIFT key was pressed during the action.

• CTRL_MASK The CTRL key was pressed during the action.

• ALT_MASK The ALT key was pressed during the action.

Called by the framework after a stock KeyDown event has been processed.

Override this function if your control needs access to the key information after the
event has been fired.

See Also COleControl: :OnKeyUpEvent, COleControl: :OnKeyPressEvent

1063

COleControl: :OnKeyPressEvent

COleControl: :OnKeyPressEvent
virtual void OnKeyPressEvent(USHORT nChar);

Parameters

Remarks

nChar Contains the virtual-key code value of the key pressed.

Called by the framework after the stock KeyPress event has been fired. Note that the
nChar value may have been modified by the container.

Override this function if you want notification after this event occurs.

See Also COleControl::FireKeyPress

COleControl: :OnKeyUpEvent
virtual void OnKeyUpEvent(USHORT nChar, USHORT nShijtState);

Parameters

Remarks

nChar The virtual-key code value of the pressed key.

nShijtState Contains a combination of the following flags:

• SHIFT_MASK The SHIff key was pressed during the action.

• CTRL_MASK The CTRL key was pressed during the action.

• ALT_MASK The ALT key was pressed during the action.

Called by the framework after a stock KeyDown event has been processed.

Override this function if your control needs access to the key information after the
event has been fired.

See Also COleControl::OnKeyDownEvent, COleControl::OnKeyPressEvent

COleControl: :OnMapPropertyToPage
virtual BOOL OnMapPropertyToPage(DISPID dispid, LPCLSID lpclsid,

BOOL* pbPageOptional);

Return Value
Nonzero if a class ID has been returned in lpclsid; otherwise O.

Parameters
dispid The dispatch ID of a property of the control.

lpclsid Pointer to a CLSID structure through which a class ID will be returned.

1064

COleControl::OnRenderData

Remarks

pbPageOptional Returns an indicator of whether use of the specified property page
is optional.

Called by the framework to obtain the class ID of a property page that implements
editing of the specified property.

Override this function to provide a way to invoke your control's property pages from
the container's property browser.

See Also COleControl: :OnGetDisplayString

COleControl: :OnMnemonic
virtual void OnMnemonic(LPMSG pMsg);

Parameters

Remarks

pMsg Pointer to the Windows message generated by a mnemonic key press.

Called by the framework when the container has detected that a mnemonic key of the
OLE control has been pressed.

COleControl: :OnProperties
virtual BOOL OnProperties(LPMSG IpMsg, HWND hWndParent, LPCRECT IpRect);

Return Value
An OLE result code. Therefore nonzero if the call is not successful; otherwise O.

Parameters

Remarks

IpMsg A pointer to the Windows message that invoked the verb.

h WndParent A handle to the parent window of the control.

IpRect A pointer to the rectangle used by the control in the container.

Called by the framework when the control's properties verb has been invoked by the
container. The default implementation displays a modal property dialog box.

COleControl::OnRenderData
virtual BOOL OnRenderData(LPFORMATETC IpFormatEtc, LPSTGMEDIUM IpStgMedium);

Return Value
Nonzero if successful; otherwise o.

1065

COleControl::OnRenderFileData

Parameters

Remarks

IpFormatEtc Points to the FORMATETC structure specifying the format in which
information is requested.

IpStgMedium Points to a STGMEDIUM structure in which the data is to be
returned.

Called by the framework to retrieve data in the specified format. The specified format
is one previously placed in the control object using the DelayRenderData or
DelayRenderFileData member functions for delayed rendering. The default
implementation of this function calls OnRenderFileData or OnRenderGlobalData,
respectively, if the supplied storage medium is either a file or memory. If the
requested format is CF _METAFILEPICT or the persistent property set format, the
default implementation renders the appropriate data and returns nonzero. Otherwise,
it returns 0 and does nothing.

If IpStgMedium->tymed is TYMED_NULL, the STGMEDIUM should be allocated
and filled as specified by IpFormatEtc->tymed. If not TYMED_NULL, the
STGMEDIUM should be filled in place with the data.

Override this function to provide your data in the requested format and medium.
Depending on your data, you may want to override one of the other versions of this
function instead. If your data is small and fixed in size, override
OnRenderGlobalData. If your data is in a file, or is of variable size, override
OnRenderFileData.

For more information, see the FORMATETC and STGMEDIUM structures in the
OLE documentation.

See Also COleControl: :OnRenderFileData,
COleControl: :OnRenderGlobalData

COleControl:: OnRenderFileData
virtual BOOL OnRenderFileData(LPFORMATETC IpFormatEtc, CFile* pFile);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

1066

IpFormatEtc Points to the FORMATETC structure specifying the format in which
information is requested.

pFile Points to a CFile object in which the data is to be rendered.

Called by the framework to retrieve data in the specified format when the storage
medium is a file. The specified format is one previously placed in the control object

COleControl: :OnRenderGlobalData

using the DelayRenderData member function for delayed rendering. The default
implementation of this function simply returns FALSE.

Override this function to provide your data in the requested format and medium.
Depending on your data, you might want to override one of the other versions of this
function instead. If you want to handle multiple storage mediums, override
OnRenderData. If your data is in a file, or is of variable size, override
OnRenderFileData.

For more information, see the FORMATETC structure in the OLE documentation.

See Also COleControl: :OnRenderData, COleControl: :OnRenderGlobalData

COleControl: :OnRenderGlobalData
virtual BOOL OnRenderGlobalData(LPFORMATETC IpFormatEtc, HGLOBAL* phGlobal);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

IpFormatEtc Points to the FORMATETC structure specifying the format in which
information is requested.

phGlobal Points to a handle to global memory in which the data is to be returned. If
no memory has been allocated, this parameter can be NULL.

Called by the framework to retrieve data in the specified format when the specified
storage medium is global memory. The specified format is one previously placed in
the control object using the DeiayRenderData member function for delayed
rendering. The default implementation of this function simply returns FALSE.

If ph Global is NULL, then a new HGLOBAL should be allocated and returned in
phGlobal. Otherwise, the HGLOBAL specified by ph Global should be filled with
the data. The amount of data placed in the HGLOBAL must not exceed the current
size of the memory block. Also, the block cannot be reallocated to a larger size.

Override this function to provide your data in the requested format and medium.
Depending on your data, you may want to override one of the other versions of this
function instead. If you want to handle multiple storage mediums, override
OnRenderData. If your data is in a file, or is of variable size, override
OnRenderFileData.

1067

COleControl::OnResetState

For more information, see the FORMATETC structure in the OLE documentation.

See Also COleControl: :OnRenderFileData, COleControl: :OnRenderData

COleControl: :OnResetState

Remarks

virtual void OnResetState();

Called by the framework when the control's properties should be set to their default
values. The default implementation calls DoPropExchange, passing a
CPropExchange object that causes properties to be set to their default values.

The control writer can insert initialization code for the OLE control in this
overridable. This function is called when IPersistStream: :Load or
IPersistStorage: :Load fails, or IPersistStreamlnit: :InitNew or
IPersistStorage::lnitNew is called, without first calling either
IPersistStream: : Load or IPersistStorage: :Load.

See Also COleControl: :OnSetClientSite

COleControl:: OnSetClientSite

Remarks

virtual void OnSetClientSite();

Called by the framework when the container has called the control's
IOleControl: :SetClientSite function.

Override this function to do any special processing of this function.

COleControl: :OnSetData
virtual BOOL OnSetData(LPFORMATETC lpFormatEtc,

LPSTGMEDIUM lpStgMedium, BOOL bRelease);

Return Value
Nonzero if successful; otherwise O.

Parameters

1068

lpFormatEtc Pointer to a FORMATETC structure specifying the format of the
data.

lpStgMedium Pointer to a STGMEDIUM structure in which the data resides.

bRelease TRUE if the control should free the storage medium; FALSE if if the
control should not free the storage medium.

COleControl: :OnSetObjectRects

Remarks
Called by the framework to replace the control's data with the specified data. If the
data is in the persistent property set format, the default implementation modifies the
control's state accordingly. Otherwise, the default implementation does nothing. If
bRelease is TRUE, then a call to ReleaseStgMedium is made; otherwise not.

Override this function to replace the control's data with the specified data.

For more information, see the FORMATETC and STGMEDIUM structures in the
OLE documentation.

See Also COleControl: :DoPropExchange

COleControl: :OnSetExtent
virtual BOOL OnSetExtent(LPSIZEL lpSizeL);

Return Value
Nonzero if the size change was accepted; otherwise O.

Parameters

Remarks

lpSizeL A pointer to the SIZEL structure that uses long integers to represent the
width and height of the control, expressed in HIMETRIC units.

Called by the framework when the control's extent needs to be changed, as a result of
a call to IOleObject: :SetExtent. The default implementation handles the resizing of
the control's extent. If the control is in-place active, a call to the container's
OnPosRectChanged is then made.

Override this function to alter the default resizing of your control.

COleControl::OnSetObjectRects
virtual BOOL OnSetObjectRects(LPCRECT lpRectPos, LPCRECT IpRectClip);

Return Value
Nonzero if the repositioning was accepted; otherwise O.

Parameters
lpRectPos A pointer to a RECT structure indicating the control's new position and

size relative to the container.

lpRectClip A pointer to a RECT structure indicating a rectangular area to which
the control is to be clipped.

1069

COleControl::OnShowToolBars

Remarks
Called by the framework to implement a call to
IOlelnPlaceObject::SetObjectRects. The default implementation automatically
handles the repositioning and resizing of the control window and returns TRUE.

Override this function to alter the default behavior of this function.

COleControl: :OnShowToolBars

Remarks

virtual void OnShowTooIBars();

Called by the framework when the control has been UI activated. The default
implementation does nothing.

See Also COleControl::OnHideToolbars

COleControl: : OnTextChanged

Remarks

virtual void OnTextChanged();

Called by the framework when the stock Caption or Text property value has changed.
The default implementation calls InvalidateControl.

Override this function if you want notification after this property changes.

See Also COleControl: :SetText, COleControl: : InternalGetText,
COleControl: : InvalidateControl

COleControl: :PreModalDialog
void PreModaIDialog();

Remarks

1070

Call this function prior to displaying any modal dialog box. You must call this
function so that the container can disable all its top-level windows. After the modal
dialog box has been displayed, you must then call PostModalDialog.

See Also COleControl: :PostModalDialog

COleControl::SelectFontObject

COleControl: :PostModalDialog

Remarks

void PostModaIDialog();

Call this function after displaying any modal dialog box. You must call this function
so that the container can enable any top-level windows disabled by PreModalDialog.
This function should be paired with a call to PreModalDialog.

See Also COleControl: :PreModalDialog

COleControl: : RecreateControlWindow

Remarks

void RecreateControlWindow();

Call this function to destroy and re-create the control's window. This may be
necessary if you need to change the window's style bits.

COleControl: : Refresh

Remarks

void Refresh();

Call this function to force a repaint of the OLE control.

This function is supported by the COleControl base class as a stock method, called
Refresh. This allows users of your OLE control to repaint the control at a specific
time. For more information on this method, see the article "Methods" in
Programming with MPC.

See Also COleControl: :InvalidateControl

COleControl::SelectFontObject
CFont* SelectFontObject(CDC* pDC, CFontHolder& fontHolder);

Return Value
A pointer to the previously selected font. When the caller has finished all drawing
operations that use fontHolder, it should reselect the previously selected font by
passing it as a parameter to CDC::SelectObject.

Parameters
pDC Pointer to a device context object.

fontHolder Reference to the CFontHolder object representing the font to be
selected.

1071

COleControl: :SelectStockFont

Remarks
Call this function to select a font into a device context.

COleControl:: SelectStockFont
CFont* SelectStockFont(CDC* pDC);

Return Value
A pointer to the previously selected CFont object. You should use
CDC::SelectObject to select this font back into the device context when you are
finished.

Parameters

Remarks

pDC The device context into which the font will be selected.

Call this function to select the stock Font property into a device context.

See Also COleControl: : GetFont, COleControl: :SetFont

COleControl:: SetBackColor
void SetBackColor(OLE_COLOR dwBackColor);

Parameters

Remarks

dwBackColor An OLE_COLOR value to be used for background drawing of your
control.

Call this function to set the stock BackColor property value of your control. For more
information on using this property and other related properties, see Chapter 22,
"Adding a Custom Notification Property," in the Circle Sample Tutorial in Tutorials
and the article "Properties" in Programming with MFC.

See Also COleControl: :SetForeColor, COleControl: : GetBackColor ,
COleControl: :OnBackColorChanged

COleControl: : SetBorderSty Ie
void SetBorderStyle(short sBorderStyle);

Parameters

1072

sBorderStyle The new border style for the control; 0 indicates no border and 1
indicates a normal border.

Remarks
Call this function to set the stock BorderStyle property value of your control. The
control window will then be re-created and OnBorderStyleChanged called.

See Also COleControl::GetBorderStyle, COleControl::OnBorderStyleChanged

COleControl:: SetControlSize
BOOL SetControlSize(int ex, int ey);

Return Value
Nonzero if the call was successful; otherwise O.

Parameters

Remarks

ex Specifies the new width of the control in pixels.

ey Specifies the new height of the control in pixels.

Call this function to set the size of the OLE control window and notify the container
that the control site is changing. This function should not be used in your control's
constructor.

Note that all coordinates for control windows are relative to the upper-left corner of
the control.

See Also COleControl: : GetControlSize, COleControl: : GetRectInContainer

COleControl:: SetEnabled
void SetEnabled(BOOL bEnabled);

Parameters

Remarks

bEnabled TRUE if the control is to be enabled; otherwise FALSE.

Call this function to set the stock Enabled property value of your control. After
setting this property, OnEnabledChange is called.

See Also COleControl: : GetEnabled, COleControl: :OnEnabledChanged

COleControl: :SetFont
void SetFont(LPFONTDISP pFontDisp);

Parameters
pF ontDisp A pointer to a Font dispatch interface.

COleControl: :SetFont

1073

COleControl::SetForeColor

Remarks
Call this function to set the stock Font property of your control.

See Also COleControl: : GetFont, COleControl: :InternaIGetText,
COleControl: :OnFontChanged

COleControl:: SetForeColor
void SetForeColor(OLE_COLOR dwForeColor);

Parameters

Remarks

dwForeColor A OLE_COLOR value to be used for foreground drawing of your
control.

Call this function to set the stock ForeColor property value of your control. For more
information on using this property and other related properties, see Chapter 22,
"Adding a Custom Notification Property," in the Circle Sample Tutorial in Tutorials
and the article "Properties" in Programming with MFC.

See Also COleControl: : SetBack Color , COleControl: : GetFore Color ,
COleControl: :OnForeColorChanged

COleControl: : SetInitialDataFormats

Remarks

virtual void SetlnitialDataFormats();

Called by the framework to initialize the list of data formats supported by the control.

The default implementation specifies two formats: CF _METAFILEPICT and the
persistent property set.

COleControl:: SetInitialSize
void SetlnitialSize(int ex, int ey);

Parameters

Remarks

1074

ex The initial width of the OLE control in pixels.

ey The initial height of the OLE control in pixels.

Call this function in your constructor to set the initial size of your control. The initial
size is measured in device units, or pixels. It is recommended that this call be made
in your control's constructor.

COleControl: :SetRectInContainer

COleControl:: SetModifiedFlag
void SetModifiedFlag(BOOL bModified = TRUE);

Parameters

Remarks

bModified The new value for the control's modified flag. TRUE indicates that the
control~s state has been modified; FALSE indicates that the control~s state has just
been saved.

Call this function whenever a change occurs that would affect your control's
persistent state. For example~ if the value of a persistent property changes, call this
function with bModified TRUE.

See Also COleControl: : IsModified

COleControl: : SetN otPermitted

Remarks

void SetNotPermitted();

Call this function when BoundPropertyRequestEdit fails. This function throws an
exception of type COleDispScodeException to indicate that the set operation was not
permitted.

See Also COleControl: :BoundPropertyRequestEdit

COleControl: : SetN otSupported

Remarks

void SetNotSupported();

Call this function in place of the Set function of any property where modification of
the property value by the control's user is not supported. One example would be a
property that is read-only.

See Also COleControl::GetNotSupported

COleControl: :SetRectInContainer
BOOL SetRectlnContainer(LPRECT IpRect);

Return Value
Nonzero if the call was successful; otherwise O.

1075

COleControl: :SetText

Parameters

Remarks

lpRect A pointer to a rectangle containing the control's new coordinates relative to
the container.

Call this function to set the coordinates of the control's rectangle relative to the
container, expressed in device units. If the control is open, it is resized; otherwise the
container's OnPosRectChanged function is called.

See Also COleControl::GetRectlnContainer, COleControl::GetControISize

COleControl: : SetText
void SetText(LPCTSTR pszText);

Parameters

Remarks

pszText A pointer to a character string.

Call this function to set the value of your control's stock Caption or Text property.

Note that the stock Caption and Text properties are both mapped to the same value.
This means that any changes made to either property will automatically change both
properties. In general, a control should support either the stock Caption or Text
property, but not both.

See Also COleControl: : GetText, COleControl: :InternaIGetText,
COleControl: :OnTextChanged

COleControl: : ThrowError
void ThrowError(SCODE sc, UINT nDescriptionID, UINT nHeipID = -1);
void ThrowError(SCODE sc, LPCTSTR pszDescription = NULL, UINT nHeipID = 0);

Parameters

1076

sc The status code value to be reported. For a complete list of possible codes, see the
article "OLE Controls: Advanced Topics" in Programming with MFC.

nDescriptionID The string resource ID of the exception to be reported.

nHeipID The help ID of the topic to be reported on.

pszDescription A string containing an explanation of the exception to be reported.

COleControl: : TranslateColor

Remarks
Call this function to signal the occurrence of an error in your control. This function
should only be called from within a Get or Set function for an OLE property, or the
implementation of an OLE automation method. If you need to signal errors that occur
at other times, you should fire the stock Error event.

See Also COleControl: : FireError , COleControl: :DisplayError

COleControl: : TransformCoords
void TransformCoords(POINTL FAR* IpptlHimetric, POINTF FAR* IpptjContainer,

DWORD flags);

Parameters

Remarks

IpptlHimetric Pointer to a POINTL structure containing coordinates in
HIMETRIC units.

IpptjContainer Pointer to a POINTF structure containing coordinates in the
container's unit size.

flags A combination of the following values:

• XFORMCOORDS_POSITION A position in the container.

• XFORMCOORDS_SIZE A size in the container.

• XFORMCOORDS_HIMETERICTOCONTAINER Transform
HIMETRIC units to the container's units.

• XFORMCOORDS_CONTAINERTOHIMETERIC Transform the
container's units to HIMETRIC units.

Call this function to transform coordinate values between HIMETRIC units and the
container's native units.

The first two flags, XFORMCOORDS_POSITION and XFORMCOORDS_SIZE,
indicate whether the coordinates should be treated as a position or a size. The
remaining two flags indicate the direction of transformation.

See Also COleControl: :AmbientScaleUnits

COleControl: : TranslateColor
COLORREF TranslateColor(OLE_COLOR clrColor, HPALETTE hpal = NULL);

Return Value
An RGB (red, green, blue) 32-bit color value that defines the solid color closest to the
clrColor value that the device can represent.

1077

COleControl:: Wi1lAmbientsBe ValidDuringLoad

Parameters

Remarks

clrColor A OLE_COLOR data type. For more information on the OLE_COLOR
data type, see "Standard Color Type," in Appendix A of Programming with MFC.

hpal A handle to an optional palette; can be NULL.

Call this function to convert a color value from the OLE_COLOR data type to the
COLORREF data type. This function is useful to translate the stock ForeColor and
BackColor properties to COLORREF types used by CDC member functions.

See Also COleControl::GetForeColor, COleControl::GetBackColor

COleControl:: WillAmbientsBe ValidDuringLoad
BOOL WillAmbientsBeValidDuringLoad();

Return Value

Remarks

1078

Nonzero indicates that ambient properties will be valid; otherwise ambient properties
will not be valid.

Call this function to determine whether your control should use the values of ambient
properties as default values, when it is subsequently loaded from its persistent state.

In some containers, your control may not have access to its ambient properties during
the initial call to the override of COleControl::DoPropExchange. This is the case if
the container calls IPersistStreamlnit::Load or IPersistStorage::Load prior to
calling IOleObject::SetClientSite (that is, if it does not honor the
OLEMISC_SETCLIENTSITEFIRST status bit).

See Also COleControl: :DoPropExchange, COleControl: : GetAmbientProperty

COleControlModule

The COleControlModule class is the base class from which you derive an OLE
control module object. This class provides member functions for initializing your
control module. Each OLE control module that uses the Microsoft Foundation classes
can only contain one object derived from COleControlModule. This object is
constructed when other C++ global objects are constructed. Declare your derived
COleControlModule object at the global level.

For more information on using the COleControlModule class, see the CWinApp
class in this book and the article "OLE Controls" in Programming with MFC.

#include <afxctl.h>

See Also CWinApp

COleControlModule

1079

COleConvertDialog

COleConvertDialog

1080

The COleConvertDialog class is used for the OLE Convert dialog box. Create an
object of class COleConvertDialog when you want to call this dialog box. After a
COleConvertDialog object has been constructed, you can use the m_cv structure to
initialize the values or states of controls in the dialog box. The m_cv structure is of
type OLEUICONVERT. For more information about using this dialog class, see the
DoModal member function.

Note AppWizard-generated container code uses this class.

For more information, see the OLEUICONVERT structure in the OLE
documentation.

For more information about OLE-specific dialog boxes, see the article "Dialog Boxes
in OLE" in Programming with MFC.

#include <afxodlgs.h>

See Also COleDialog

Data Members

Construction

COleConvertDialog

Operations and Attributes

DoModal

DoConvert

GetSelectionType

GetClassID

A structure that controls the behavior of the dialog box.

Constructs a COleConvertDialog object.

Displays the OLE Change Item dialog box.

Performs the conversion specified in the dialog box.

Gets the type of selection chosen.

Gets the CLSID associated with the chosen item.

COleConvertDialog::COleConvertDialog

GetDraw Aspect

GetlconicMetafile

Specifies whether to draw item as an icon.

Gets a handle to the metafile associated with the iconic form of
this item.

Member Functions
COleConvertDialog: :COleConvertDialog

COleConvertDialog (COleClientItem* pltem, DWORD dwFlags = CF _SELECTCONVERTTO,
CLSID FAR* pClasslD = NULL, CWnd* pParentWnd = NULL);

Parameters

Remarks

pltem Points to the item to be converted or activated.

dwFlags Creation flag, which contains any number of the following values
combined using the bitwise-or operator:

• CF _SELECTCONVERTTO Specifies that the Convert To radio button will
be selected initially when the dialog box is called. This is the default.

• CF_SELECTACTIVATEAS Specifies that the Activate As radio button will
be selected initially when the dialog box is called.

• CF_SETCONVERTDEFAULT Specifies that the class whose CLSID is
specified by the clsidConvertDefault member of the m_cv structure will be
used as the default selection in the class list box when the Convert To radio
button is selected.

• CF _SETACTIVATEDEFAULT Specifies that the class whose CLSID is
specified by the clsidActivateDefault member of the m_cv structure will be
used as the default selection in the class list box when the Activate As radio
button is selected.

• CF _SHOWHELPBUTTON Specifies that the Help button will be displayed
when the dialog box is called.

pClasslD Points to the CLSID of the item to be converted or activated. If NULL,
the CLSID associated with pltem will be used.

pParentWnd Points to the parent or owner window object (of type CWnd) to which
the dialog object belongs. If it is NULL, the parent window of the dialog box is set
to the main application window.

Constructs only a COleConvertDialog object. To display the dialog box, call the
DoModal function.

1081

COleConvertDialog::DoConvert

For more information, see the CLSm and OLEUICONVERT structures and
"Object Class Conversion and Emulation Functions" in the OLE documentation.

See Also COleConvertDialog: :DoModal, COleConvertDialog: :m_cv

COleConvertDialog: : DoConvert
BOOL DoConvert(COleClientltem* pltem);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

pltem Points to the item to be converted or activated. Cannot be NULL.

Call this function, after returning successfully from DoModal, either to convert or to
activate an object of type COleClientltem. The item is converted or activated
according to the information selected by the user in the Convert dialog box.

See Also COleClientltem, COleConvertDialog: :DoModal,
COleConvertDialog: : GetSelectionType, COleClientltem: :ConvertTo,
COleClientltem: :ActivateAs

COleConvertDialog: :DoModal
virtual int DoModal();

Return Value

Remarks

1082

Completion status for the dialog box. One of the following values:

• IDOK if the dialog box was successfully displayed.

• meAN CEL if the user canceled the dialog box.

• IDABORT if an error occurred. If IDABORT is returned, call the
COleDialog::GetLastError member function to get more information about the
type of error that occurred. For a listing of possible errors, see the OleUIConvert
function in the OLE documentation.

Call this function to display the OLE Convert dialog box.

If you want to initialize the various dialog box controls by setting members of the
m_cv structure, you should do this before calling DoModal, but after the dialog
object is constructed.

COleConvertDialog: : GetDraw Aspect

If DoModal returns IDOK, you can call other member functions to retrieve the
settings or information that was input by the user into the dialog box.

See Also COleDialog::GetLastError, CDialog::DoModal,
COleConvertDialog: :m_cv, COleConvertDialog: :DoConvert,
COleConvertDialog: : GetSelectionType, COleConvertDialog: : GetClassID,
COleConvertDialog: :GetDraw Aspect, COleConvertDialog: : GetIconicMetafile

COleConvertDialog::GetClassID
const CLSID& GetClassID() const;

Return Value

Remarks

The CLSID associated with the item that was selected in the Convert dialog box.

Call this function to get the CLSID associated with the item the user selected in the
Convert dialog box. Call this function only after DoModal returns IDOK.

For more information, see CLSID in the OLE documentation.

See Also COleConvertDialog: : DoModal

COleConvertDialog: : GetDraw Aspect
DVASPECT GetDrawAspect() const;

Return Value

Remarks

The method needed to render the object.

• DVASPECT_CONTENT Returned if the Display As Icon check box was not
checked .

• DVASPECT_ICON Returned if the Display As Icon check box was checked.

Call this function to determine whether the user chose to display the selected item as
an icon. Call this function only after DoModal returns IDOK.

For more information on drawing aspect, see the FORMATETC data structure in
the OLE documentation.

See Also COleConvertDialog: :DoModal,
COleConvertDialog: :COleConvertDialog

1083

COleConvertDialog: : GetlconicMetafile

COleConvertDialog: : GetIconicMetafile
HGLOBAL GetIconPicture() const;

Return Value

Remarks

The handle to the metafile containing the iconic aspect of the selected item, if the
Display As Icon check box was checked when the dialog was dismissed by choosing
OK; otherwise NULL.

Call this function to get a handle to the metafile that contains the iconic aspect of the
selected item.

See Also COleConvertDialog: :DoModal,
COleConvertDialog: :COleConvertDialog, COleConvertDialog: : GetDraw Aspect

COleConvertDialog:: GetSelectionType
UINT GetSelectionType() const;

Return Value

Remarks

1084

Type of selection made.

Call this function to determine the type of conversion selected in the Convert
dialog box.

The return type values are specified by the Selection enumeration type declared in
the COleConvertDialog class.

enum Selection
{

} ;

noConversion,
convertltem,
activateAs

Brief desccriptions of these values follow:

• COleConvertDialog: :noConversion Returned if either the dialog box was
canceled or the user selected no conversion. If COleConvertDialog: :DoModal
returned IDOK, it is possible that the user selected a different icon than the one
previously selected.

• COleConvertDialog: :convertItem Returned if the Convert To radio button was
checked, the user selected a different item to convert to, and DoModal returned
roOK.

• COleConvertDialog::activateAs Returned if the Activate As radio button
was checked, the user selected a different item to activate, and DoModal
returned IDOK.

See Also COleConvertDialog: :DoModal,
COleConvertDialog: :COleConvertDialog

Data Members
COleConvertDialog: :m_cv
Remarks

Structure of type OLEUICONVERT used to control the behavior of the Convert
dialog box. Members of this structure can be modified either directly or through
member functions.

For more information, see the OLEUICONVERT structure in the OLE
documentation.

See Also COleConvertDialog: :COleConvertDialog,
COleConvertDialog: :DoModal

COleConvertDialog::m3V

1085

COleCurrency

COleCurrency

1086

A COle Currency object encapsulates the CURRENCY data type of OLE
automation. CURRENCY is implemented as an 8-byte, two's-complement integer
value scaled by 10,000. This gives a fixed-point number with 15 digits to the left of
the decimal point and 4 digits to the right. The CURRENCY data type is extremely
useful for calculations involving money, or for any fixed-point calculation where
accuracy is important. It is one of the possible types for the VARIANT data type of
OLE automation.

COleCurrency also implements some basic arithmetic operations for this fixed-point
type. The supported operations have been selected to control the rounding errors
which occur during fixed-point calculations.

For more information, see the CURRENCY and VARIANT entries in Chapter 5 of
the OLE 2 Programmers Reference, Volume 2.

#include <afxdisp.h>

See Also COle Variant

Construction

COleCurrency

Attributes

GetStatus

SetStatus

Operations

SetCurrency

Format

Parse Currency

Operators

operator CURRENCY

operator =
operator +, •

operator +=, .=

Constructs a COleCurrency object.

Gets the status (validity) of this COle Currency object.

Sets the status (validity) for this COleCurrency object.

Sets the value of this COle Currency object.

Generates a formatted string representation of a
COle Currency object.

Reads a CURRENCY value from a string and sets the value
of COleCurrency.

Converts a COleCurrency value into a CURRENCY.

Copies a COleCurrency value.

Add, subtract, and change sign of COleCurrency values.

Adds and subtracts a COleCurrency value from this
COleCurrency object.

COleCurrency: :COleCurrency

operator *, I
operator *=,1=

operator ==, <, <=, etc.

Data Members

Archive/Dump

operator«

operator »

Scales a COle Currency value by an integer value.

Scales this COleCurrency value by an integer value.

Compares two COleCurrency values.

Contains the underlying CURRENCY for this
COle Currency object.

Contains the status of this COleCurrency object.

Outputs a COleCurrency value to CArchive or
CDumpContext.

Inputs a COleCurrency object from CArchive.

Member Functions
COleCurrency: :COleCurrency

COleCurrency();
COleCurrency(CURRENCY cySrc);
COleCurrency(const COleCurrency& curSrc);
COleCurrency(const VARlANT& varSrc);
COleCurrency(long nUnits, long nFractionaIUnits);

Parameters

Remarks

cySrc A CURRENCY value to be copied into the new COleCurrency object.

curSrc An existing COleCurrency object to be copied into the new COleCurrency
object.

varSrc An existing VARIANT data structure (possibly a COleVariant object) to be
converted to a currency value (VT _ CY) and copied into the new COleCurrency
object.

nUnits, nFractionalUnits Indicate the units and fractional part (in 1II0,000's) of the
value to be copied into the new COleCurrency object.

All of these constructors create new COleCurrency objects initialized to the
specified value. A brief description of each of these constructors follows. Unless
otherwise noted, the status of the new COleCurrency item is set to valid.

• COleCurrency() Constructs a COle Currency object initialized to 0 (zero).

• COleCurrency(cySrc) Constructs a COleCurrency object from a
CURRENCY value.

1087

COleCurrency: :Format

Example

• COleCurrency(curSrc) Constructs a COle Currency object from an existing
COleCurrency object. The new object has the same status as the source object.

• COleCurrency(varSrc) Constructs a COleCurrency object. Attempts to
convert a VARIANT structure or COle Variant object to a currency (VT _ CY)
value. If this conversion is successful, the converted value is copied into the new
COleCurrency object. If it is not, the value of the COleCurrency object is set to
zero (0) and its status to invalid.

• COleCurrency(nUnits, nFractionalUnits) Constructs a COle Currency object
from the specified numerical components. If the absolute value of the fractional
part is greater than 10,000, the appropriate adjustment is made to the units. Note
that the units and fractional part are specified by signed long values.

For more information, see the CURRENCY and VARIANT entries in Chapter 5 of
the OLE 2 Programmer s Reference, Volume 2.

The following examples show the effects of the zero-parameter and two-parameter
constructors:

COleCurrency curZero; II value: 0.0000
COleCurrency curA(4. 500) ; II value: 4.0500
COleCurrency curB(2. 11000) ; II value: 3.1000
COleCurrency curC(2. -50) ; II value: 1. 9950

See Also COleCurrency::SetCurrency, COleCurrency::operator =,
COleCurrency: : GetStatus, COleCurrency::m_cur, COleCurrency: :m_status

COleCurrency: :Format
CString Format(DWORD dwFlags = 0, LCID lcid = LANG_USER_DEFAULT);

Return Value
A CString that contains the formatted currency value.

Parameters

Remarks

1088

dwFlags Indicates flags for locale settings, possibly the following flag:

• LOCALE_NOUSEROVERRIDE Use the system default locale settings,
rather than custom user settings.

lcid Indicates locale ID to use for the conversion.

Call this member function to create a formatted representation of the currency value.
It formats the value using the national language specifications (locale IDs) for
currency. If the status of this COleCurrency object is null, the return value is an
empty string. If the status is invalid, the return string is specified by the string
resource IDS_INVALID_CURRENCY.

COleCurrency: :GetStatus

Note For a discussion of locale ID values, see the section "Supporting Multiple National
Languages" in the OLE 2 Programmer's Reference, Volume 2.

See Also COleCurrency::ParseCurrency, COleCurrency::GetStatus

COleCurrency: : GetStatus
CurrencyStatus GetStatus() const;

Return Value

Remarks

Returns the status of this COleCurrency value.

Call this member function to get the status (validity) of a given COle Currency
object.

The return value is defined by the CurrencyStatus enumerated type which is defined
within the COleCurrency class.

enum CurrencyStatus{
valid = 0.
invalid = 1.
null = 2.

} :

For a brief description of these status values, see the following list:

• COleCurrency: : valid Indicates that this COleCurrency object is valid.

• COleCurrency: :invalid Indicates that this COleCurrency object is invalid; that
is, its value may be incorrect.

• COleCurrency: : null Indicates that this COleCurrency object is null, that is,
that no value has been supplied for this object. (This is "null" in the database
sense of "having no value," as opposed to the C++ NULL.)

The status of a COleCurrency object is invalid in the following cases:

• If its value is set from a VARIANT or COle Variant value that could not be
converted to a currency value.

• If this object has experienced an overflow or underflow during an arithmetic
assignment operation, for example += or *=.

• If an invalid value was assigned to this object.

• If the status of this object was explicitly set to invalid using SetStatus.

For more information on operations that may set the status to invalid, see the
following member functions:

• COleCurrency

• operator =
1089

COleCurrency: :ParseCurrency

• operator +, -

• operator +=, -=

• operator *, 1

• operator *=, 1=

See Also C Ole Currency: :SetStatus, COleCurrency: :m_status

COleCurrency: :ParseCurrency
BOOL ParseCurrency(LPCTSTR IpszCurrency,

DWORD dwFlags = 0, LCID lcid = LANG_USER_DEFAULT);
throw(CMemoryException);
throw(COleException);

Return Value
Nonzero if the string was successfully converted to a currency value, otherwise O.

Parameters

Remarks

1090

IpsZCurrency A pointer to the null-terminated string which is to be parsed.

dwFlags Indicates flags for locale settings, possibly the following flag:

• LOCALE_NOUSEROVERRIDE Use the system default locale settings,
rather than custom user settings.

lcid Indicates locale ID to use for the conversion.

Call this member function to parse a string to read a currency value. It uses national
language specifications (locale IDs) for the meaning of nonnumeric characters in the
source string.

For a discussion of locale ID values, see the section "Supporting Multiple National
Languages" in the OLE 2 Programmer's Reference, Volume 2.

If the string was successfully converted to a currency value, the value of this
COle Currency object is set to that value and its status to valid.

If the string could not be converted to a currency value or if there was a numerical
overflow, the status of this COle Currency object is invalid.

If the string conversion failed due to memory allocation errors, this function throws a
CMemoryException. In any other error state, this function throws a
COleException.

See Also COleCurrency: :Format, COleCurrency: : GetStatus

COleCurrency: :SetStatus

COleCurrency:: SetCurrency
void SetCurrency(long nUnits, long nFractionaIUnits);

Parameters

Remarks

Example

nUnits, nFractionalUnits Indicate the units and fractional part (in 1II0,000's) of the
value to be copied into this COleCurrency object.

Call this member function to set the units and fractional part of this
COleCurrency object.

If the absolute value of the fractional part is greater than 10,000, the appropriate
adjustment is made to the units, as shown in the third of the following examples.

Note that the units and fractional part are specified by signed long values. The fourth
of the following examples shows what happens when the parameters have
different signs.

COleCurrency curA; II value: 0.0000
curA.SetCurrency(4. 500) ; II value: 4.0500
curA.SetCurrency(2. 11000) ; II value: 3.1000
curA.SetCurrency(2. -50); II value: 1.9950

See Also COleCurrency::COleCurrency, COleCurrency::operator =,
COleCurrency: :m_cur

COleCurrency: :SetStatus
void SetStatus(CurrencyStatus nStatus);

Parameters

Remarks

nStatus The new status for this COleCurrency object.

Call this member function to set the status (validity) of this COleCurrency object.
The nStatus parameter value is defined by the CurrencyStatus enumerated type,
which is defined within the COleCurrency class.

enum CurrencyStatus{
valid = 0.
invalid = 1.
null = 2.

} ;

1091

COleCurrency::operator =

For a brief description of these status values, see the following list:

• COleCurrency: :valid Indicates that this COle Currency object is valid.

• COleCurrency: : invalid Indicates that this COleCurrency object is invalid; that
is, its value may be incorrect.

• COleCurrency: : null Indicates that this COleCurrency object is null, that is,
that no value has been supplied for this object. (This is "null" in the database
sense of "having no value," as opposed to the C++ NULL.)

Caution This function is for advanced programming situations. This function does not alter
the data in this object. It will most often be used to set the status to null or invalid. Note that
the assignment operator (operator =) and SetCurrency do set the status to of the object
based on the source value(s).

See Also COleCurrency: : GetStatus, COleCurrency: : operator =,
COleCurrency: :SetCurrency, COleCurrency: :m_status

Operators
COleCurrency: : operator =

Remarks

1092

const COleCurrency& operator =(CURRENCY cySrc);
const COleCurrency& operator =(const COleCurrency& curSrc);
const COleCurrency& operator =(const VARIANT& varSrc);

These overloaded assignment operators copy the source currency value into this
COleCurrency object. A brief description of each operator follows:

• operator =(cySrc) The CURRENCY value is copied into the COleCurrency
object and its status is set to valid.

• operator =(curSrc) The value and status of the operand, an existing
COleCurrency object are copied into this COleCurrency object.

• operator =(varSrc) If the conversion of the VARIANT value (or COle Variant
object) to a currency (VT_CY) is successful, the converted value is copied into
this COle Currency object and its status is set to valid. If the conversion is not
successful, the value of the COle Currency object is set to 0 and its status to
invalid.

For more information, see the CURRENCY and VARIANT entries in Chapter 5 of
the OLE 2 Programmer s Reference, Volume 2.

See Also COleCurrency: :COleCurrency, COleCurrency: :SetCurrency,
COleCurrency: : GetStatus

COleCurrency::operator +=, -=

COleCurrency::operator +, -

Remarks

COleCurrency operator +(const COleCurrency& cur) const;
COleCurrency operator -(const COleCurrency& cur) const;
COleCurrency operator -() const;

These operators allow you to add and subtract two COle Currency values to and from
each other and to change the sign of a COle Currency value.

If either of the operands is null, the status of the resulting COleCurrency value
is null.

If the arithmetic operation overflows, the resulting COleCurrency value is invalid.

If the operands is invalid and the other is not null, the status of the resulting
COleCurrency value is invalid.

For more information on the valid, invalid, and null status values, see the m_status
member variable.

See Also COleCurrency::operator +=, -=, COleCurrency::GetStatus

COleCurrency::operator +=, -=

Remarks

const COleCurrency& operator +=(const COleCurrency& cur);
const COleCurrency& operator -=(const COleCurrency& cur);

These operators allow you to add and subtract a COleCurrency value to and from
this COleCurrency object.

If either of the operands is null, the status of this COleCurrency object is set to null.

If the arithmetic operation overflows, the status of this COle Currency object is set to
invalid.

If either of the operands is invalid and the other is not null, the status of this
COleCurrency object is set to invalid.

For more information on the valid, invalid, and null status values, see the m_status
member variable.

See Also COleCurrency::operator +, -, COleCurrency::GetStatus

1093

COleCurrency::operator *, /

COleCurrency: : operator *, /

Remarks

COleCurrency operator *(long nOperand) const;
COle Currency operator I(long nOperand) const;

These operators allow you to scale a COle Currency value by an integral value.

If the COleCurrency operand is null, the status of the resulting COle Currency
value is null.

If the arithmetic operation overflows or underflows, the status of the resulting
COleCurrency value is invalid.

If the COleCurrency operand is invalid, the status of the resulting COleCurrency
value is invalid.

For more information on the valid, invalid, and null status values, see the ID_status
member variable.

See Also COleCurrency::operator *=,1=, COleCurrency::GetStatus

COleCurrency::operator *=, /=

Remarks

1094

const COleCurrency& operator *=(long nOperand);
const COleCurrency& operator 1=(long nOperand);

These operators allow you to scale this COleCurrency value by an integral value.

If the COleCurrency operand is null, the status of this COleCurrency object is
set to null.

If the arithmetic operation overflows, the status of this COleCurrency object is set to
invalid.

If the COleCurrency operand is invalid, the status of this COleCurrency object is
set to invalid.

For more information on the valid, invalid, and null status values, see the ID_status
member variable.

See Also COleCurrency::operator *, I, COleCurrency::GetStatus

COleCurrency Relational Operators

COleCurrency:: operator CURRENCY
operator CURRENCY() const;

Remarks
This operator returns a CURRENCY structure whose value is copied from this
COleCurrency object.

For more information, see the CURRENCY entry in Chapter 5 of the OLE 2
Programmer s Reference, Volume 2.

See Also COleCurrency::m_cur, COleCurrency::SetCurrency

COleCurrency Relational Operators

Remarks

Example

BOOL operator ==(const COleCurrency& cur) const;
BOOL operator !=(const COleCurrency& cur) const;
BOOL operator « const COleCurrency& cur) const;
BOOL operator >(const COleCurrency& cur) const;
BOOL operator <=(const COleCurrency & cur) const;
BOOL operator >=(const COleCurrency& cur) const;

These operators compare two currency values and return nonzero if the condition is
true; otherwise O.

Note The return value of the ordering operations «, <=, >, >=) is undefined if the status of
either operand is null or invalid. The equality operators (==, !=) consider the status of the
operands.

COleCurrency curOne(3, 5000);
COleCurrency curTwo(curOne);
BOOl b;
b = curOne == curTwo;

curTwo.SetStatus(COleCurrency::lnvalid);
b = curOne == curTwo;
b = curOne != curTwo;
b = curOne < curTwo;
b = curOne > curTwo;
b = curOne <= curTwo;
b = curOne >= curTwo;

II 3.5
II 3.5

I I TRUE

II FALSE, different status
II TRUE, different status
II FALSE, same value
II FALSE, same value
II TRUE, same value
II TRUE, same value

Note The last four lines of the preceding example will ASSERT in debug mode.

See Also COleCurrency::GetStatus

1095

COleCurrency::operator «, »

COleCurrency::operator «, »

Remarks

friend CDumpContext& operator «(CDumpContext& dc, COle Currency curSrc);
friend CArchive& operator «(CArchive& ar, COleCurrency curSrc);
friend CArchive& operator »(CArchive& ar, COleCurrency& curSrc);

The COleCurrency insertion «<) operator supports diagnostic dumping and storing
to an archive. The extraction (») operator supports loading from an archive.

See Also CDumpContext, CArchive

Data Members
COleCurrency: :m_cur
Remarks

The underlying CURRENCY structure for this COleCurrency object.

Caution Changing the value in the CURRENCY structure accessed by the pointer returned
by this function will change the value of this COleCurrency object. It does not change the
status of this COleCurrency object.

For more information, see the CURRENCY entry in Chapter 5 of the OLE 2
Programmer's Reference, Volume 2.

See Also COleCurrency:: COleCurrency, COleCurrency: : operator ,
CURRENCY, COleCurrency: :SetCurrency

COleCurrency: :m_status
Remarks

1096

The type of this data member is the enumerated type CurrencyStatus, which is
defined within the COleCurrency class.

enum CurrencyStatus{
valid = 0.
invalid = 1.
null = 2.

} ;

For a brief description of these status values, see the following list:

• COleCurrency: : valid Indicates that this COleCurrency object is valid.

• COleCurrency: : invalid Indicates that this COle Currency object is invalid; that
is, its value may be incorrect.

COleCurrency: :m_status

• COleCurrency::null Indicates that this COleCurrency object is null, that is,
that no value has been supplied for this object. (This is "null" in the database
sense of "having no value," as opposed to the c++ NULL.)

The status of a COleCurrency object is invalid in the following cases:

• If its value is set from a VARIANT or COleVariant value that could not be
converted to a currency value.

• If this object has experienced an overflow or underflow during an arithmetic
assignment operation, for example += or *=.

• If an invalid value was assigned to this object.

• If the status of this object was explicitly set to invalid using SetStatus.

For more information on operations that may set the status to invalid, see the
following member functions:

• COleCurrency

• operator =
• operator +, -

• operator +=, -=

• operator *, 1

• operator *=, 1=

Caution This data member is for advanced programming situations. You should use the inline
member functions GetStatus and SetStatus. See SetStatus for further cautions regarding
explicitly setting this data member.

See Also COleCurrency: : GetStatus , COleCurrency: :SetStatus

1097

COleDataObject

COleDataObject

1098

The COleDataObject class is used in data transfers for retrieving data in various
formats from the Clipboard, through drag and drop, or from an embedded OLE item.
These kinds of data transfers include a source and a destination. The data source is
implemented as an object of the COleDataSource class. Whenever a destination
application has data dropped in it or is asked to perform a paste operation from the
Clipboard, an object of the COleDataObject class must be created.

This class enables you to determine whether the data exists in a specified format. You
can also enumerate the available data formats or check whether a given format is
available and then retrieve the data in the preferred format. Object retrieval can be
accomplished in several different ways, including the use of a CFile, an HGLOBAL,
or an STGMEDIUM structure.

For more information, see the STGMEDIUM structure in the OLE 2 Programmer's
Reference, Volume 1.

For more information about using data objects in your application, see the article
"Data Objects and Data Sources" in Programming with MPC.

#include <afxole.h>

See Also COleDataSource, COleClientItem, COleServerItem,
COleDataSource: :DoDragDrop, CView: :OnDrop

Construction

COleDataObject

Operations

AttachClipboard

IsDataA vailable

GetData

GetFileData

GetGlobalData

BeginEnumFormats

GetNextFormat

Constructs a COleDataObject object.

Attaches the data object that is on the Clipboard.

Checks whether data is available in a specified format.

Copies data from the attached OLE data object in a
specified format.

Copies data from the attached OLE data object into a
CFile pointer in the specified format.

Copies data from the attached OLE data object into an
HGLOBAL in the specified format.

Prepares for one or more subsequent GetNextFormat
calls.

Returns the next data format available.

COleDataObject: : AttachClipboard

Attach

Release

Detach

Attaches the specified OLE data object to the
COleDataObject.

Detaches and releases the associated IDataObject
object.

Detaches the associated IDataObject object.

Member Functions
COleDataObject: : Attach

void Attach(LPDATAOBJECT IpDataObject, BOOL bAutoRelease = TRUE);

Parameters

Remarks

IpDataObject Points to an OLE data object.

bAutoRelease TRUE if the OLE data object should be released when the
COleDataObject object is destroyed; otherwise FALSE.

Call this function to associate the COleDataObject object with an OLE data object.

For more information, see IDataObject in the OLE 2 Programmer's Reference,
Volume 1.

See Also COleDataObject: :AttachClipboard, COleDataObject: :Detach,
COleDataObject: : Release

COleDataObject: : AttachClipboard
BOOL AttachClipboard();

Return Value

Remarks

Nonzero if successful; otherwise O.

Call this function to attach the data object that is currently on the Clipboard to the
COleDataObject object.

Note Calling this function locks the Clipboard until this data object is released. The data
object is released in the destructor for the COleDataObject. For more information, see
OpenClipboard and CloseClipboard in the Win32 documention.

See Also COleDataObject: : Attach , COleDataObject: : Detach,
COleDataObject: : Release

1099

COleDataObject::BeginEnumFormats

COleDataObject: :BeginEnumFormats
void BeginEnumFormats();

Remarks
Call this function to prepare for subsequent calls to GetNextFormat for retrieving a
list of data formats from the item.

After a call to BeginEnumFormats, the position of the first format supported by this
data object is stored. Successive calls to GetNextFormat will enumerate the list of
available formats in the data object.

To check on the availability of data in a given format, use
COleDataObject: :IsDataAvaiiable.

For more information, see IDataObject::EnumFormatEtc in the OLE 2
Programmer's Reference, Volume 1.

See Also COleDataObject::GetNextFormat, COleDataObject::IsDataAvaiiable

COleDataObject: :COleDataObject

Remarks

COleDataObject();

Constructs a COleDataObject object. A call to COleDataObject: :Attach or
COleDataObject::AttachClipboard must be made before calling other
COleDataObject functions.

Note Since one of the parameters to the drag-and-drop handlers is a pOinter to a
COleDataObject, there is no need to call this constructor to support drag and drop.

See Also COleDataObject: : Attach , COleDataObject: :AttachClipboard,
COleDataObject: : Release

COleDataObject: : Detach
LPDATAOBJECT Detach();

Return Value

Remarks

1100

A pointer to the OLE data object that was detached.

Call this function to detach the COleDataObject object from its associated OLE data
object without releasing the data object.

See Also COleDataObject: : Attach , COleDataObject: : Release

COleDataObject: : GetFileData

COleDataObject: : GetData
BOOL GetData(CLIPFORMAT cfFonnat, LPSTGMEDIUM lpStgMedium,

LPFORMATETC lpFormatEtc = NULL);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

cfF onnat The format in which data is to be returned. This parameter can be one of
the predefined Clipboard formats or the value returned by the native Windows
RegisterClipboardFormat function.

lpStgMedium Points to a STGMEDIUM structure that will receive data.

IpFonnatEtc Points to a FORMATETC structure describing the format in which
data is to be returned. Provide a value for this parameter if you want to specify
additional format information beyond the Clipboard format specified by cfFormat.
If it is NULL, the default values are used for the other fields in the
FORMATETC structure.

Call this function to retrieve data from the item in the specified format.

For more information, see IDataObject::GetData, STGMEDIUM, and
FORMATETC in the OLE 2 Programmer's Reference, Volume 1.

For more information, see RegisterClipboardFormat in the Win32 documentation.

See Also COleDataObject: : GetFileData, COleDataObject: : GetGlobalData,
COleDataObject: :IsDataA vailable

COleDataObject:: GetFileData
CFile* GetFileData(CLIPFORMAT cfFonnat, LPFORMATETC lpFormatEtc = NULL);

Return Value
Pointer to the new CFile or CFile-derived object containing the data if successful;
otherwise NULL.

Parameters
cfF onnat The format in which data is to be returned. This parameter can be one of

the predefined Clipboard formats or the value returned by the native Windows
RegisterClipboardFormat function.

lpFonnatEtc Points to a FORMATETC structure describing the format in which
data is to be returned. Provide a value for this parameter if you want to specify
additional format information beyond the Clipboard format specified by cfFormat.
If it is NULL, the default values are used for the other fields in the
FORMATETC structure.

1101

COleDataObject: : GetGlobalData

Remarks
Call this function to create a CFile or CFile-derived object and to retrieve data in the
specified format into a CFile pointer. Depending on the medium the data is stored in,
the actual type pointed to by the return value may be CFile, CSharedFile, or
COleStreamFile.

Note The CFile object accessed by the return value of this function is owned by the caller. It
is the responsibility of the caller to delete the CFile object, thereby closing the file.

For more information, see FORMATETC in the OLE 2 Programmer's Reference,
Volume 1.

For more information, see RegisterClipboardFormat in the Win32 documentation.

See Also COleDataObject: : GetData, COleDataObject: : GetGlobalData,
COleDataObject: :IsDataA vailable

COleDataObject: : GetGlobalData
HGLOBAL GetGlobalData(CLIPFORMAT cfFormat, LPFORMATETC IpFormatEtc = NULL);

Return Value
The handle of the global memory block containing the data if successful; otherwise
NULL.

Parameters

Remarks

1102

cfF ormat The format in which data is to be returned. This parameter can be one of
the predefined Clipboard formats or the value returned by the native Windows
RegisterClipboardFormat function.

IpFormatEtc Points to a FORMATETC structure describing the format in which
data is to be returned. Provide a value for this parameter if you want to specify
additional format information beyond the Clipboard format specified by cfFormat.
If it is NULL, the default values are used for the other fields in the
FORMATETC structure.

Call this function to allocate a global memory block and to retrieve data in the
specified format into an HGLOBAL.

For more information, see FORMATETC in the OLE 2 Programmer's Reference,
Volume 1.

For more information, see RegisterClipboardFormat in the Win32 documentation.

See Also COleDataObject: : GetData, COleDataObject: : GetFileData,
COleDataObject: :IsDataAvaiiable

COleDataObject: :IsDataA vailable

COleDataObject::GetNextFormat
BOOL GetNextFormat(LPFORMATETC lpFormatEtc);

Return Value
Nonzero if another format is available; otherwise O.

Parameters

Remarks

lpFormatEtc Points to the FORMATETC structure that receives the format
information when the function call returns.

Call this function repeatedly to obtain all the formats available for retrieving data
from the item.

After a call to COleDataObject::BeginEnumFormats, the position of the first
format supported by this data object is stored. Successive calls to GetNextFormat
will enumerate the list of available formats in the data object. Use these functions to
list the available formats.

To check for the availability of a given format, call
COleDataObject: :IsDataAvaiiable.

For more information, see IEnumX::Next in the OLE 2 Programmer's Reference,
Volume 1.

See Also COleDataObject: : BeginEnumFormats, COleDataObject: : GetData,
COleDataObject:: GetFileData, COleDataObject: : GetGlobalData

COleDataObject: : IsDataAvailable
BOOL IsDataAvaiiable(CLIPFORMAT cfFonnat, LPFORMATETC lpFormatEtc = NULL);

Return Value
Nonzero if data is available in the specified format; otherwise O.

Parameters
cfF onnat The Clipboard data format to be used in the structure pointed to by

lpFormatEtc. This parameter can be one of the predefined Clipboard formats or
the value returned by the native Windows RegisterClipboardFormat function.

lpFonnatEtc Points to a FORMATETC structure describing the format desired.
Provide a value for this parameter only if you want to specify additional format
information beyond the Clipboard format specified by cfFormat. If it is NULL, the
default values are used for the other fields in the FORMATETC structure.

1103

COleDataObject: : Release

Remarks
Call this function to determine if a particular format is available for retrieving data
from the OLE item. This function is useful before calling GetData, GetFileData, or
GetGlobalData.

For more information, see IDataObject::QueryGetData and FORMATETC in the
OLE 2 Programmer's Reference, Volume 1.

For more information, see RegisterClipboardFormat in the Win32 documentation.

See Also COleDataObject: :BeginEnumFormats, COleDataObject: : GetData,
COleDataObject: : GetFileData, COleDataObject: : GetGlobalData,
COleDataObject::GetNextFormat

COleDataObject: :Release

Remarks

1104

void Release();

Call this function to release ownership of the IDataObject object that was previously
associated with the COleDataObject object. The IDataObject was associated with
the COleDataObject by calling Attach or AttachClipboard explicitly or by the
framework. If the bAutoRelease parameter of Attach is FALSE, the IDataObject
object will not be released. In this case, the caller is responsible for releasing the
IDataObject by calling IUnknown::Release.

See Also COleDataObject: :Attach, COleDataObject: :COleDataObject,
COleDataObject: : Detach

COleDataSource

The COleDataSource class acts as a cache into which an application places the data
that it will offer during data transfer operations, such as Clipboard or drag-and-drop
operations.

You can create OLE data sources directly. Alternately, the COleClientItem and
COleServerltem classes create OLE data sources in response to their
CopyToClipboard and DoDragDrop member functions. See
COleServerItem::CopyToClipboard for a brief description. Override the
OnGetClipboardData member function of your client item or server item class to
add additional Clipboard formats to the data in the OLE data source created for the
CopyToClipboard or DoDragDrop member function.

Whenever you want to prepare data for a transfer, you should create an object of this
class and fill it with your data using the most appropriate method for your data. The
way it is inserted into a data source is directly affected by whether the data is supplied
immediately (immediate rendering) or on demand (delayed rendering). For every
Clipboard format in which you are providing data by passing the Clipboard format to
be used (and an optional FORMATETC structure), call DelayRenderData.

For more information about data sources and data transfer, see the article "Data
Objects and Data Sources (OLE)." In addition, the article "Clipboard" describes the
OLE Clipboard mechanism. Both articles are in Programming with MPC.

#include <afxole.h>

See Also COleClientItem, COleDataObject, COleServerItem

Construction

COleDataSource

Operations

CacheData

CacheGlobalData

DoDragDrop

SetClipboard

Empty

Constructs a COleDataSource object.

Offers data in a specified format using a STGMEDIUM
structure.

Offers data in a specified format using an HGLOBAL.

Performs drag-and-drop operations with a data source.

Places a COleDataSource object on the Clipboard.

Empties the COleDataSource object of data.

COleDataSource

1105

COleDataSource: :CacheData

FlushClipboard

GetClipboardOwner

OnRenderData

OnRenderFileData

OnRenderGlobalData

OnSetData

DelayRenderData

DelayRenderFileData

DelaySetData

Renders all data to the Clipboard.

Verifies that the data placed on the Clipboard is still there.

Retrieves data as part of delayed rendering.

Retrieves data into a CFile as part of delayed rendering.

Retrieves data into an HGLOBAL as part of delayed
rendering.

Called to replace the data in the COleDataSource object.

Offers data in a specified format using delayed rendering.

Offers data in a specified format in a CFile pointer.

Called for every format that is supported in OnSetData.

Member Functions
COleDataSource: : CacheData

void CacheData(CLIPFORMAT cfFormat, LPSTGMEDIUM lpStgMedium,
LPFORMATETC lpFormatEtc = NULL);

Parameters

Remarks

1106

cfFormat The Clipboard format in which the data is to be offered. This parameter
can be one of the predefined Clipboard formats or the value returned by the native
Windows RegisterClipboardFormat function.

lpStgMedium Points to a STGMEDIUM structure containing the data in the format
specified.

lpFormatEtc Points to a FORMATETC structure describing the format in which
the data is to be offered. Provide a value for this parameter if you want to specify
additional format information beyond the Clipboard format specified by cfFormat.
If it is NULL, default values are used for the other fields in the FORMATETC
structure.

Call this function to specify a format in which data is offered during data transfer
operations. You must supply the data, because this function provides it by using
immediate rendering. The data is cached until needed.

Supply the data using a STGMEDIUM structure. You can also use the
CacheGlobalData member function if the amount of data you are supplying is small
enough to be transferred efficiently using an HGLOBAL.

After the call to CacheData the ptd member of lpFormatEtc and the contents of
IpStgMedium are owned by the data object, not by the caller.

COleDataSource: :CacheGlobalData

To use delayed rendering, call the DelayRenderData or DelayRenderFileData
member function. For more information on delayed rendering as handled by MFC,
see the article "Data Objects and Data Sources (OLE)" in Programming with MFC.

For more information, see the STGMEDIUM and FORMATETC structures in the
OLE 2 Programmer:S Reference, Volume 1.

For more information, see RegisterClipboardFormat in the Win32 documentation.

See Also COleDataSource::CacheGlobaIData,
COleDataSource: :DelayRenderData, COleDataSource: :DelayRenderFileData,
COleDataSource: : SetClipboard , COleDataSource: :DoDragDrop

COleDataSource: :CacheGlobalData
void CacheGlobalData(CLIPFORMAT cfFormat, HGLOBAL hGlobal,

LPFORMATETC IpFormatEtc = NULL);

Parameters

Remarks

cfFormat The Clipboard format in which the data is to be offered. This parameter
can be one of the predefined Clipboard formats or the value returned by the native
Windows RegisterClipboardFormat function.

hGlobal Handle to the global memory block containing the data in the format
specified.

IpFormatEtc Points to a FORMATETC structure describing the format in which
the data is to be offered. Provide a value for this parameter if you want to specify
additional format information beyond the Clipboard format specified by cfFormat.
If it is NULL, default values are used for the other fields in the FORMATETC
structure.

Call this function to specify a format in which data is offered during data transfer
operations. This function provides the data using immediate rendering, so you must
supply the data when calling the function; the data is cached until needed. Use the
CacheData member function if you are supplying a large amount of data or if you
require a structured storage medium.

To use delayed rendering, call the DelayRenderData or DelayRenderFileData
member function. For more information on delayed rendering as handled by MFC,
see the article "Data Objects and Data Sources (OLE)" in Programming with MFC.

For more information, see the FORMATETC structure in the OLE 2 Programmer's
Reference, Volume 1.

For more information, see RegisterClipboardFormat in the Win32 documentation.

See Also COleDataSource: :CacheData, COleDataSource: :DelayRenderData,
COleDataSource: :Delay RenderFileData

1107

COleDataSource: :COleDataSource

COleDataSource: :COleDataSource
COleDataSource();

Remarks
Constructs a COleDataSource object.

COleDataSource: : DelayRenderData
void DelayRenderData(CLIPFORMAT cfFormat, LPFORMATETC IpFormatEtc = NULL);

Parameters

Remarks

1108

cfF ormat The Clipboard format in which the data is to be offered. This parameter
can be one of the predefined Clipboard formats or the value returned by the native
Windows RegisterClipboardFormat function.

IpFormatEtc Points to a FORMATETC structure describing the format in which
the data is to be offered. Provide a value for this parameter if you want to specify
additional format information beyond the Clipboard format specified by cfF ormat.
If it is NULL, default values are used for the other fields in the FORMATETC
structure.

Call this function to specify a format in which data is offered during data transfer
operations. This function provides the data using delayed rendering, so the data is not
supplied immediately. The OnRenderData or OnRenderGlobalData member
function is called to request the data.

Use this function if you are not going to supply your data through a CFile object. If
you are going to supply the data through a CFile object, call the
DelayRenderFileData member function. For more information on delayed rendering
as handled by MFC, see the article "Data Objects and Data Sources (OLE)" in
Programming with MFC.

To use immediate rendering, call the CacheData or CacheGlobalData member
function.

For more information, see the FORMATETC structure in the OLE 2 Programmer's
Reference, Volume 1.

For more information, see RegisterClipboardFormat in the Win32 documentation.

See Also COleDataSource:: CacheData, COleDataSource:: CacheGlobalData,
COleDataSource: : DelayRenderFileData, COleDataSource: :OnRenderData,
COleDataSource: :OnRenderGlobalData

COleDataSource: :DelaySetData

COleDataSource: :Delay RenderFileData
void DelayRenderFileData(CLIPFORMAT cfFormat, LPFORMATETC lpFormatEtc = NULL);

Parameters

Remarks

cfFormat The Clipboard format in which the data is to be offered. This parameter
can be one of the predefined Clipboard formats or the value returned by the native
Windows RegisterClipboardFormat function.

lpFormatEtc Points to a FORMATETC structure describing the format in which
the data is to be offered. Provide a value for this parameter if you want to specify
additional format information beyond the Clipboard format specified by cfFormat.
If it is NULL, default values are used for the other fields in the FORMATETC
structure.

Call this function to specify a format in which data is offered during data transfer
operations. This function provides the data using delayed rendering, so the data is not
supplied immediately. The OnRenderFileData member function is called to request
the data.

Use this function if you are going to use a CFile object to supply the data. If you are
not going to use a CFile object, call the DelayRenderData member function. For
more information on delayed rendering as handled by MFC, see the article "Data
Objects and Data Sources (OLE)" in Programming with MFC.

To use immediate rendering, call the CacheData or CacheGlobalData member
function.

For more information, see the FORMATETC structure in the OLE 2 Programmer's
Reference, Volume 1.

For more information, see RegisterClipboardFormat in the Win32 documentation.

See Also COleDataSource: :CacheData, COleDataSource: :CacheGlobaIData,
COleDataSource: :DelayRenderData, COleDataSource: :OnRenderFileData

COleDataSource: : DelaySetData
void DelaySetData(CLIPFORMAT cfFormat, LPFORMATETC IpFormatEtc = NULL) const;

Parameters
cfF ormat The Clipboard format in which the data is to be placed. This parameter

can be one of the predefined Clipboard formats or the value returned by the native
Windows RegisterClipboardFormat function.

1109

COleDataSource::DoDragDrop

Remarks

IpFormatEtc Points to a FORMATETC structure describing the format in which
the data is to be replaced. Provide a value for this parameter if you want to specify
additional format information beyond the Clipboard format specified by cfFormat.
If it is NULL, default values are used for the other fields in the FORMATETC
structure.

Call this function to support changing the contents of the data source. OnSetData
will be called by the framework when this happens. This is only used when the
framework returns the data source from COleServerItem::GetDataSource. If
DelaySetData is not called, your OnSetData function will never be called.
DelaySetData should be called for each Clipboard or FORMATETC format you
support.

For more information, see the FORMATETC structure in the OLE 2 Programmer's
Reference, Volume 1.

For more information, see RegisterClipboardFormat in the Win32 documentation.

See Also COleServerItem::GetDataSource, COleDataSource: :OnSetData

COleDataSource::DoDragDrop
DROPEFFECT DoDragDrop(DWORD dwEffects =

DROPEFFECT_COPYIDROPEFFECT_MOVEIDROPEFFECT_LINK,
LPCRECT IpRectStartDrag = NULL, COleDropSource* pDropSource = NULL);

Return Value
Drop effect generated by the drag-and-drop operation; otherwise
DROPEFFECT_NONE if the operation never begins because the user released the
mouse button before leaving the supplied rectangle.

Parameters

1110

dwEffects Drag-and-drop operations that are allowed on this data source. Can be
one or more of the following:

• DROPEFFECT_COPY A copy operation could be performed.

• DROPEFFECT _MOVE A move operation could be performed.

• DROPEFFECT_LINK A link from the dropped data to the original data
could be established.

• DROPEFFECT_SCROLL Indicates that a drag scroll operation could occur.

IpRectStartDrag Pointer to the rectangle that defines where the drag actually starts.
For more information, see the following "Remarks" section.

COleDataSource: :FlushClipboard

Remarks

pDropSource Points to a drop source. If NULL then a default implementation of
COleDropSource will be used.

Call the DoDragDrop member function to perform a drag-and-drop operation for
this data source, typically in an CWnd: :OnLButtonDown handler.

The drag-and-drop operation does not start immediately. It waits until the mouse
cursor leaves the rectangle specified by IpRectStartDrag or until a specified number
of milliseconds have passed. If IpRectStartDrag is NULL, the size of the rectangle is
one pixel. The delay time is specified by the DragDelay value in the [Windows]
section of WIN.IN!. If this value is not in WIN.INI, the default value of 200
milliseconds is used.

For more information, see the article "Drag and Drop; Implementing a Drop Source"
in Programming with MFC.

See Also COleDropSource: :OnBeginDrag, COleDropSource

COleDataSource: :Empty

Remarks

void Empty();

Call this function to empty the COleDataSource object of data. Both cached and
delay render formats are emptied so they can be reused.

For more information, see ReleaseStgMedium in the OLE 2 Programmer's
Reference, Volume 1.

COleDataSource: : FlushClipboard
static void FlushClipboard();

Remarks
Removes data from the Clipboard that was placed there by a previous call to
SetClipboard. This function also causes any data still on the Clipboard to be
immediately rendered. Call this function when it is necessary to delete the data object
last placed on the Clipboard from memory. Calling this function ensures that OLE
will not require the original data source to perform Clipboard rendering.

See Also COleDataSource::GetClipboardOwner,
COleDataSource: :SetClipboard

1111

COleDataSource: : GetClipboardOwner

COleDataSource: : GetClipboardOwner
static COleDataSource* GetClipboardOwner();

Return Value

Remarks

The data source currently on the Clipboard, or NULL if there is nothing on the
Clipboard or if the Clipboard is not owned by the calling application.

Determines whether the data on the Clipboard has changed since SetClipboard was
last called and, if so, identifies the current owner.

See Also COleDataSource: :FlushClipboard, COleDataSource: :SetClipboard

COleDataSource: :OnRenderData
virtual BOOL OnRenderData(LPFORMATETC IpFormatEtc, LPSTGMEDIUM IpStgMedium);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

1112

IpFormatEtc Points to the FORMATETC structure specifying the format in which
information is requested.

IpStgMedium Points to a STGMEDIUM structure in which the data is to be
returned.

Called by the framework to retrieve data in the specified format. The specified format
is one previously placed in the COleDataSource object using the DelayRenderData
or DelayRenderFileData member function for delayed rendering. The default
implementation of this function will call OnRenderFileData or
OnRenderGlobalData if the supplied storage medium is either a file or memory,
respectively. If neither of these formats are supplied, then the default implementation
will return 0 and do nothing. For more information on delayed rendering as handled
by MFC, see the article "Data Objects and Data Sources (OLE)" in Programming
withMFC.

If IpStgMedium->tymed is TYMED_NULL, the STGMEDIUM should be allocated
and filled as specified by IpFormatEtc->tymed. If it is not TYMED_NULL, the
STGMEDIUM should be filled in place with the data.

COleDataSource: :OnRenderFileData

This is an advanced overridable. Override this function to supply your data in the
requested format and medium. Depending on your data, you may want to override
one of the other versions of this function instead. If your data is small and fixed in
size, override OnRenderGlobalData. If your data is in a file, or is of variable size,
override OnRenderFileData.

For more information, see the STGMEDIUM and FORMATETC structures, the
TYMED enumeration type, and IDataObject::GetData in the OLE 2 Programmer's
Reference, Volume 1.

See Also COleDataSource: : DelayRenderData,
COleDataSource::DelayRenderFileData, COleDataSource::OnRenderFileData,
COleDataSource: :OnRenderGlobaIData, COleDataSource: :OnSetData

COleDataSource: :OnRenderFileData
virtual BOOL OnRenderFileData(LPFORMATETC IpFormatEtc, CFile* pFile);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

IpFormatEtc Points to the FORMATETC structure specifying the format in which
information is requested.

pFile Points to a CFile object in which the data is to be rendered.

Called by the framework to retrieve data in the specified format when the specified
storage medium is a file. The specified format is one previously placed in the
COleDataSource object using the DelayRenderData member function for delayed
rendering. The default implementation of this function simply returns FALSE.

This is an advanced overridable. Override this function to supply your data in the
requested format and medium. Depending on your data, you might want to override
one of the other versions of this function instead. If you want to handle multiple
storage media, override OnRenderData. If your data is in a file, or is of variable
size, override OnRenderFileData. For more information on delayed rendering as
handled by MFC, see the article "Data Objects and Data Sources (OLE)" in
Programming with MFC.

For more information, see the FORMATETC structure and IDataObject::GetData
in the OLE 2 Programmer's Reference, Volume 1.

See Also COleDataSource: : DelayRenderData,
COleDataSource: : DelayRenderFileData , COleDataSource: :OnRenderData,
COleDataSource: :OnRenderGlobaIData, COleDataSource: :OnSetData, CFile

1113

COleDataSource: :OnRenderGlobalData

COleDataSource:: OnRenderGlobalData
virtual BOOL OnRenderGlobalData(LPFORMATETC IpFormatEtc, HGLOBAL* phGlobal);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

IpFormatEtc Points to the FORMATETC structure specifying the format in which
information is requested.

phGlobal Points to a handle to global memory in which the data is to be returned. If
one has not yet been allocated, this parameter can be NULL.

Called by the framework to retrieve data in the specified format when the specified
storage medium is global memory. The specified format is one previously placed in
the COleDataSource object using the DelayRenderData member function for
delayed rendering. The default implementation of this function simply returns
FALSE.

If ph Global is NULL, then a new HGLOBAL should be allocated and returned in
phGlobal. Otherwise, the HGLOBAL specified by phGlobal should be filled with
the data. The amount of data placed in the HGLOBAL must not exceed the current
size of the memory block. Also, the block cannot be reallocated to a larger size.

This is an advanced overridable. Override this function to supply your data in the
requested format and medium. Depending on your data, you may want to override
one of the other versions of this function instead. If you want to handle multiple
storage media, override OnRenderData. If your data is in a file, or is of variable
size, override OnRenderFileData. For more information on delayed rendering as
handled by MFC, see the article "Data Objects and Data Sources (OLE)" in
Programming with MFC.

For more information, see the FORMATETC structure and IDataObject: : GetData
in the OLE 2 Programmer's Reference, Volume 1.

See Also COleDataSource::DelayRenderData,
COleDataSource: :DelayRenderFileData, COleDataSource: :OnRenderData,
COleDataSource: :OnRenderFileData, COleDataSource: :OnSetData

COleDataSource: :OnSetData
virtual BOOL OnSetData(LPFORMATETC IpFormatEtc, LPSTGMEDIUM IpStgMedium,

BOOL bRelease);

Return Value
Nonzero if successful; otherwise O.

1114

COleDataSource::SetClipboard

Parameters

Remarks

IpFormatEtc Points to the FORMATETC structure specifying the format in which
data is being replaced.

IpStgMedium Points to the STGMEDIUM structure containing the data that will
replace the current contents of the COleDataSource object.

bRelease Indicates who has ownership of the storage medium after completing the
function call. The caller decides who is responsible for releasing the resources
allocated on behalf of the storage medium. The caller does this by setting
bRelease. If bRelease is nonzero, the data source takes ownership, freeing the
medium when it has finished using it. When bRelease is 0, the caller retains
ownership and the data source can use the storage medium only for the duration of
the call.

Called by the framework to set or replace the data in the COleDataSource object in
the specified format. The data source does not take ownership of the data until it has
successfully obtained it. That is, it does not take ownership if OnSetData returns 0. If
the data source takes ownership, it frees the storage medium by calling the
ReleaseStgMedium function.

The default implementation does nothing. Override this function to replace the data
in the specified format. This is an advanced overridable.

For more information, see the STGMEDIUM and FORMATETC structures and the
ReleaseStgMedium and IDataObject::GetData functions in the OLE 2
Programmer's Reference, Volume 1.

See Also COleDataSource: :DelaySetData, COleDataSource: :OnRenderData,
COleDataSource: :OnRenderFileData, COleDataSource: :OnRenderGlobaIData,
COleServerItem: :OnSetData

COleDataSource:: SetClipboard

Remarks

void SetClipboard();

Puts the data contained in the COleDataSource object on the Clipboard after calling
one of the following functions: CacheData, CacheGlobalData, DelayRenderData,
or DelayRenderFileData.

See Also COleDataSource::GetClipboardOwner,
COleDataSource: :FlushClipboard

1115

COleDateTime

COleDateTime

1116

A COleDateTime object encapsulates the DATE data type used in OLE automation.
It is one of the possible types for the VARIANT data type of OLE automation. A
COleDateTime value represents an absolute date and time value.

The DATE type is implemented as a floating-point value, measuring days from
midnight, 30 December 1899. So, midnight, 31 December 1899 is represented by 1.0.
Similarly, 6 AM, 1 January 1900 is represented by 2.25, and midnight, 29 December
1899 is -1.0. However, 6 AM, 29 December 1899 is -1.25.

Note To interpret the time portion, take the absolute value of the fractional part of the number.

The COleDateTime class handles dates from 1 January 100-31 December 9999.

This type is also used to represent date-only or time-only values. By convention, the
date 0 (30 December 1899) is used for time-only values. Similarly, the time 0:00
(midnight) is used for date-only values.

Basic arithmetic operations for the COleDateTime values use the companion class
COleDateTimeSpan. COleDateTimeSpan values represent relative time, an
interval. The relation between these classes is analogous to the one between CTime
and CTimeSpan.

For more information on the COleDateTime and COleDateTimeSpan classes, see
the article "Date and Time: OLE Automation Support" in Programming in MFC.

#include <afxdisp.h>

See Also VARIANT, COle Variant, COleDateTimeSpan, CTime

Construction

COleDateTime

GetCurrentTime

Attributes

GetStatus

SetStatus

GetYear

GetMonth

GetDay

GetHour

Constructs a COleDateTime object.

Creates a COleDateTime object that represents the current
time (static member function).

Gets the status (validity) of this COleDateTime object.

Sets the status (validity) of this COleDateTime object.

Returns the year this COleDateTime object represents.

Returns the month this COleDateTime object represents
(1-12).

Returns the day this COleDateTime object represents
(1-31).

Returns the hour this COleDateTime object represents
(0-23).

GetMinute

GetSecond

GetDayOtWeek

GetDayOfY ear

Operations

SetDateTime

SetDate

SetTime

Format

ParseDateTime

Operators

operator DATE

operator DATE*

operator =
operator +, •

operator +=, .=

operator ==, <, <=, etc.

Data Members

Archive/Dump

operator «

operator »

Returns the minute this COleDateTime object represents
(0-59).

Returns the second this COleDateTime object represents
(0-59).

Returns the day of the week this COleDateTime object
represents (Sunday = 0).

Returns the day of the year this COleDateTime object
represents (Jan 1 = 1).

Sets the value of this COleDateTime object to the specified
date/time value.

Sets the value of this COleDateTime object to the specified
date-only value.

Sets the value of this COleDateTime object to the specified
time-only value.

Generates a formatted string representation of a
COleDateTime object.

Reads a date/time value from a string and sets the value of
COleDateTime.

Converts a COleDateTime value into a DATE.

Converts a COleDateTime value into a DATE*.

Copies a COleDateTime value.

Add and subtract COleDateTime values.

Add and subtract a COleDateTime value from this
COleDateTime object.

Compare two COleDateTime values.

Contains the underlying DATE for this COleDateTime
object.

Contains the status of this COleDateTime object.

Outputs a COleDateTime value to CArchive or
CDumpContext.

Inputs a COleDateTime object from CArchive.

COleDateTime

1117

COleDateTime::COleDateTime

Member Functions
COleDateTime: :COleDateTime

COleDateTime();
COleDateTime(const COleDateTime& dateSrc);
COleDateTime(const VARIANT& varSrc);
COleDateTime(DATE dtSrc);
COleDateTime(time_t timeSrc);
COleDateTime(const SYSTEMTIME& systimeSrc);
COleDateTime(const FILETIME& filetimeSrc);
COleDateTime(int nYear, int nMonth, int nDay, int nHour, int nMin, int nSec);
COleDateTime(WORD wDosDate, WORD wDosTime);

Parameters

Remarks

1118

dateSrc An existing COleDateTime object to be copied into the new
COleDateTime object.

varSrc An existing VARIANT data structure (possibly a COleVariant object) to be
converted to a date/time value (VT_DATE) and copied into the new
COleDateTime object.

dtSrc A date/time (DATE) value to be copied into the new COleDateTime object.

timeSrc A time_t value to be converted to a date/time value and copied into the new
COleDateTime object.

systimeSrc A SYSTEMTIME structure to be converted to a date/time value and
copied into the new COleDateTime object.

filetimeSrc A FILETIME structure to be converted to a date/time value and copied
into the new COleDateTime object.

nYear, nMonth, nDay, nHour, nMin, nSec Indicate the date and time values to be
copied into the new COleDateTime object.

wDosDate, wDosTime MS-DOS date and time values to be converted to a date/time
value and copied into the new COleDateTime object.

All of these constructors create new COleDateTime objects initialized to the
specified value. A brief description of each of these constructors follows:

• COleDateTime() Constructs a COleDateTime object initialized to 0 (midnight,
30 December 1899).

• COleDateTime(dateSrc) Constructs a COleDateTime object from an existing
COleDateTime object.

COleDateTirne: : Forrnat

• COleDateTime(varSrc) Constructs a COleDateTime object. Attempts to
convert a VARIANT structure or COleVariant object to a date/time (VT_DATE)
value. If this conversion is successful, the converted value is copied into the new
COleDateTime object. If it is not, the value of the COleDateTime object is set to
o (midnight, 30 December 1899) and its status to invalid.

• COleDateTime(dtSrc) Constructs a COleDateTime object from a DATE value.

• COleDateTime(timeSrc) Constructs a COleDateTime object from a time_t
value.

• COleDateTime(systimeSrc) Constructs a COleDateTime object from a
SYSTEMTIME value.

• COleDateTime(filetimeSrc) Constructs a COleDateTime object from a
FILETIME value.

• COleDateTime(nYear, nMonth, nDay, nHour, nMin, nSec) Constructs a
COleDateTime object from the specified numerical values.

• COleDateTime(wDosDate, wDosTime) Constructs a COleDateTime object
from the specified MS-DOS date and time values.

For more information, see the VARIANT entry in Chapter 5 of the OLE 2
Programmer's Reference, Volume 2.

For more information on the time_t data type, see the time function in the Run-Time
Library Reference.

For more information, see the SYSTEMTIME and FILETIME structures in the
Win32 SDK documentation.

For more information on MS-DOS date and time values, see
DosDateTimeToVariantTime in the Win32 SDK documentation.

For more information about the bounds for COleDateTime values, see the article
"Date and Time: OLE Automation Support" in Programming with MFC.

See Also COleDateTime: :SetDateTime, COleDateTime: : operator =,
COleDateTime: :GetStatus, COleDateTime: :m_dt, COleDateTime: :m_status

COleDateTime: : Format
CString Format(DWORD dwFlags = 0, LCID lcid = LANG_USER_DEFAULT);
CString Format(LPCTSTR IpszFormat) const;
CString Format(UINT nFormatID) const;

Return Value
A CString that contains the formatted date/time value.

1119

COleDateTime::Format

Parameters

Remarks

1120

dwFlags Indicates flags for locale settings, possibly the following flag:

• LOCALE_NOUSEROVERRIDE Use the system default locale settings,
rather than custom user settings.

• VAR_TIMEVALUEONLY Ignore the date portion during parsing.

• VAR_DATEVALUEONLY Ignore the time portion during parsing.

lcid Indicates locale ID to use for the conversion.

IpszForrnat The format-control string.

nFormatID The resource ID for the format-control string.

Call this member function to create a formatted representation of the date/time value.
If the status of this COleDateTime object is null, the return value is an empty string.
If the status is invalid, the return string is specified by the string resource
IDS_INVALID_DATETlME.

A brief description of the three forms for this function follows:

Format(dwFlags, lcid) This form formats the value using the national language
specifications (locale IDs) for date/time. Using the default parameters, this form
will print a time only if the date portion of the date/time value is date 0 (30
December 1899). Similarly, with the default parameters, this form will print a date
only if the time portion of the date/time value is time 0 (midnight). If the date/time
value is 0 (30 December 1899, midnight), this form with the default parameters
will print midnight.

Format(IpszFormat) This form formats the value using the format string which
contains special formatting codes that are preceded by a percent sign (%), as in
printf. The formatting string is passed as a parameter to the function. For more
information about the formatting codes, see the entry strftime, wcsftime in the
Run-Time Library Reference.

Format(nFormatID) This form formats the value using the format string which
contains special formatting codes that are preceded by a percent sign (%), as in
printf. The formatting string is a resource. The ID of this string resource is passed
as the parameter. For more information about the formatting codes, see the entry
strftime, wcsftime in the Run-Time Library Reference.

For a listing of locale ID values, see the section "Supporting Multiple National
Languages" in the OLE 2 Programmer's Reference, Volume 2.

See Also COleDateTime: :ParseDateTime, COleDateTime: : GetStatus

COleDateTime: : GetCurrentTime
static COleDateTime PASCAL GetCurrentTime();

Remarks
Call this static member function to return the current date/time value.

Example
COleDateTime dateTest:

II dateTest value - midnight 30 December 1899

dateTest = COleDateTime::GetCurrentTime():
II dateTest value = current date and time

COleDateTime: : GetDay
int GetDay() const;

Return Value

Remarks

The day of the month represented by the value of this COleDateTime object.

Call this member function to get the day of the month represented by this date/time
value.

Valid return values range between I and 31. If the status of this COleDateTime
object is not valid, the return value is AFX_DATETIME_ERROR.

For information on other member functions that query the value of this
COleDateTime object, see the following member functions:

• GetMonth

• GetYear

• GetHour

• GetMinute

• GetSecond

• GetDayOtWeek

• GetDayOfYear

See Also COleDateTime: :COleDateTime, COleDateTime: :SetDateTime,
COleDateTime: : operator =, COleDateTime: : GetStatus

COleDateTime::GetDay

1121

COleDateTime: : GetDayOtW eek

COleDateTime: : GetDayOfWeek
int GetDayOfWeek() const;

Return Value

Remarks

The day of the week represented by the value of this COleDateTime object.

Call this member function to get the day of the month represented by this date/time
value.

Valid return values range between 0 and 6, where Sunday = O. If the status of this
COleDateTime object is not valid, the return value is AFX_DATETIME_ERROR.

For information on other member functions that query the value of this
COleDateTime object, see the following member functions:

• GetDay

• GetMonth

• GetYear

• GetHour

• GetMinute

• GetSecond

• GetDayOfYear

See Also COleDateTime: :COleDateTime, COleDateTime: :SetDateTime,
COleDateTime: : operator =, COleDateTime: : GetStatus

COleDateTime: : GetDayOfY ear
int GetDayOfYear() const;

Return Value

Remarks

1122

The day of the year represented by the value of this COleDateTime object.

Call this member function to get the day of the year represented by this date/time
value.

Valid return values range between 1 and 366, where January 1 = 1. If the status of
this COleDateTime object is not valid, the return value is
AFX_DATETIME_ERROR.

For information on other member functions that query the value of this
COleDateTime object, see the following member functions:

• GetDay

• GetMonth

• GetYear

• GetHour

• GetMinute

• GetSecond

• GetDayOtWeek

See Also COleDateTime: :COleDateTime, COleDateTime: :SetDateTime,
COleDateTime: :operator =, COleDateTime: : GetStatus

COleDateTime: : GetHour
int GetHour() const;

Return Value

Remarks

The hour represented by the value of this COleDateTime object.

Call this member function to get the hour represented by this date/time value.

Valid return values range between 0 and 23. If the status of this COleDateTime
object is not valid, the return value is AFX_DATETIME_ERROR.

For information on other member functions that query the value of this
COleDateTime object, see the following member functions:

• GetDay

• GetMonth

• GetYear

• GetMinute

• GetSecond

• GetDayOtWeek

• GetDayOfYear

See Also COleDateTime::COleDateTime, COleDateTime::SetDateTime,
COleDateTime: : operator =, COleDateTime: : GetStatus

COleDateTime::GetHour

1123

COleDateTime::GetMinute

COleDateTime: : GetMinute
int GetMinute() const;

Return Value

Remarks

The minute represented by the value of this COleDateTime object.

Call this member function to get the minute represented by this date/time value.

Valid return values range between 0 and 59. If the status of this COleDateTime
object is not valid, the return value is AFX_DATETIME_ERROR.

For information on other member functions that query the value of this
COleDateTime object, see the following member functions:

• GetDay

• GetMonth

• GetYear

• GetHour

• GetSecond

• GetDayOtWeek

• GetDayOfYear

See Also COleDateTime: :COleDateTime, COleDateTime: :SetDateTime,
COleDateTime: : operator =, COleDateTime: : GetStatus

COleDateTime: : GetMonth
int GetMonth() const;

Return Value

Remarks

1124

The month represented by the value of this COleDateTime object.

Call this member function to get the month represented by this date/time value.

Valid return values range between 1 and 12. If the status of this COleDateTime
object is not valid, the return value is AFX_DATETIME_ERROR.

For information on other member functions that query the value of this
COleDateTime object, see the following member functions:

• GetDay

• GetYear

• GetHour

COleDateTime: :GetSecond

• GetMinute

• GetSecond

• GetDayOfWeek

• GetDayOfYear

See Also COleDateTime: :COleDateTime, COleDateTime: :SetDateTime,
COleDateTime: : operator =, COleDateTime: : GetStatus

COleDateTime: : GetSecond
int GetSecond() const;

Return Value

Remarks

The second represented by the value of this COleDateTime object.

Call this member function to get the second represented by this date/time value.

Valid return values range between 0 and 59. If the status of this COleDateTime
object is not valid, the return value is AFX_DATETIME_ERROR.

Note The COleDateTime class does not support leap seconds.

For more information about the implementation for COleDateTime, see the article
"Date and Time: OLE Automation Support" in Programming with MFC.

For information on other member functions that query the value of this
COleDateTime object, see the following member functions:

• GetDay

• GetMonth

• GetYear

• GetHour

• GetMinute

• GetDayOfWeek

• GetDayOfYear

See Also COleDateTime::COleDateTime, COleDateTime::SetDateTime,
COleDateTime: : operator =, COleDateTime: : GetStatus

1125

COleDateTime: : GetStatus

COleDateTime: : GetStatus
DateTimeStatus GetStatus() const;

Return Value

Remarks

1126

Returns the status of this COleDateTime value.

Call this member function to get the status (validity) of a given COleDateTime
object.

The return value is defined by the DateTimeStatus enumerated type, which is
defined within the COleDateTime class.

enum DateTimeStatus{
valid = 0.
invalid = 1.
null = 2.

} ;

For a brief description of these status values, see the following list:

• COleDateTime: : valid Indicates that this COleDateTime object is valid.

• COleDateTime: : invalid Indicates that this COleDateTime object is invalid;
that is, its value may be incorrect.

• COleDateTime: :null Indicates that this COleDateTime object is null, that is,
that no value has been supplied for this object. (This is "null" in the database
sense of "having no value," as opposed to the c++ NULL.)

The status of a COleDateTime object is invalid in the following cases:

• If its value is set from a VARIANT or COle Variant value that could not be
converted to a date/time value.

• If its value is set from a time_t, SYSTEMTIME, or FILETIME value that could
not be converted to a valid date/time value.

• If its value is set by SetDateTime with invalid parameter values.

• If this object has experienced an overflow or underflow during an arithmetic
assignment operation, namely, += or -=.

• If an invalid value was assigned to this object.

• If the status of this object was explicitly set to invalid using SetStatus.

For more information about the operations that may set the status to invalid, see the
following member functions:

• COleDateTime

• SetDateTime

COleDateTime::ParseDateTime

• operator +, -

• operator +=, -=

For more information about the bounds for COleDateTime values, see the article
"Date and Time: OLE Automation Support" in Programming with MFC.

See Also COleDateTime: :SetStatus, COleDateTime: :m_status

COleDateTime::GetYear
int GetYear() const;

Return Value

Remarks

The year represented by the value of this COleDateTime object.

Call this member function to get the year represented by this date/time value.

Valid return values range between 100 and 9999, which includes the century. If the
status of this COleDateTime object is not valid, the return value is
AFX_DATETIME_ERROR.

For information on other member functions that query the value of this
COleDateTime object, see the following member functions:

• GetDay

• GetMonth

• GetHour

• GetMinute

• GetSecond

• GetDayOfWeek

• GetDayOfYear

For more information about the bounds for COleDateTime values, see the article
"Date and Time: OLE Automation Support" in Programming with MFC.

See Also COleDateTime::COleDateTime, COleDateTime::SetDateTime,
COleDateTime: : operator =, COleDateTime: : GetStatus

COleDateTime: :ParseDateTime
BOOL ParseDateTime(LPCTSTR IpszDate, DWORD dwFlags = 0,

LCID lcid = LANG_USER_DEFAULT);
throw(CMemoryException);
throw(COleException);

1127

COleDateTime: :SetDate

Return Value
Nonzero if the string was successfully converted to a date/time value, otherwise O.

Parameters

Remarks

lpszDate A pointer to the null-terminated string which is to be parsed.

dwFlags Indicates flags for locale settings and parsing. One or more of the
following flags:

• LOCALE_NOUSEROVERRIDE Use the system default locale settings,
rather than custom user settings.

• VAR_TIMEVALUEONLY Ignore the date portion during parsing.

• VAR_DATEVALUEONLY Ignore the time portion during parsing.

lcid Indicates locale ID to use for the conversion.

Call this member function to parse a string to read a date/time value. If the string was
successfully converted to a date/time value, the value of this COleDateTime object is
set to that value and its status to valid.

Note Year values less than 100 are interpreted as 20th-century values.

In the case ofVAR_DATEVALUEONLY, the time value is set to time 0, midnight.
In the case ofVAR_TIMEVALUEONLY, the date value is set to date 0,30
December 1899.

If the string could not be converted to a date/time value or if there was a numerical
overflow, the status of this COleDateTime object is invalid.

If the string conversion failed due to memory allocation errors, this function throws a
CMemoryException. In any other error state, this function throws a
COleException.

For a listing of locale ID values, see the section "Supporting Multiple National
Languages" in the OLE 2 Programmer's Reference, Volume 2.

For more information about the bounds and implementation for COleDateTime
values, see the article "Date and Time: OLE Automation Support" in Programming
withMFC.

See Also COleDateTime: :Format, COleDateTime: : GetStatus

COleDateTime: :SetDate
BOOL SetDate(int nYear, int nMonth, int nDay);

Return Value
Nonzero if the value of this COleDateTime object was set, otherwise O.

1128

COleDateTime: :SetDate

Parameters

Remarks

nYear, nMonth, nDay Indicate the date components to be copied into this
COleDateTime object.

Call this member function to set the date and time of this COleDateTime object. The
date is set to the specified values. The time is set to time 0, midnight.

See the following table for bounds for the parameter values:

Parameter

nYear

nMonth

nDay

Bounds

0-999

1-12

1-31

Note Year values less than 100 are interpreted as 20th-century values.

The actual upper bound for nDay values varies based on the month and year. For
months 1,3,5, 7, 8, 10, and 12, the upper bound is 31. For months 4,6,9, and 11, it
is 30. For month 2, it is 28, or 29 in a leap year.

If the date value specified by the parameters is not valid, the status of this object is set
to invalid and the value of this object is not changed.

Here are some examples of date values:

nYear nMonth nOay Value

95 4 15 15 April 1995

1976 8 15 15 August 1976

1789 7 14 17 July 1789

25 2 30 Invalid

10000 Invalid

To set both date and time, see COleDateTime: :SetDateTime.

For information on member functions that query the value of this COleDateTime
object, see the following member functions:

• GetDay

• GetMonth

• GetYear

• GetHour

1129

COleDateTime::SetDateTime

• GetMinute

• GetSecond

• GetDayOfWeek

• GetDayOfYear

For more information about the bounds for COleDateTime values, see the article
"Date and Time: OLE Automation Support" in Programming with MFC.

See Also COleDateTime: :COleDateTime, COleDateTime::SetDateTime,
COleDateTime: : operator =, COleDateTime: : GetStatus, COleDateTime: :m_dt

COleDateTime:: SetDateTime
BOOL SetDateTime(int nYear, int nMonth, int nDay, int nHour, int nMin, int nSec);

Return Value
Nonzero if the value of this COleDateTime object was set, otherwise 0.

Parameters

Remarks

1130

nYear, nMonth, nDay, nHour, nMin, nSec Indicate the date and time components to
be copied into this COleDateTime object.

Call this member function to set the date and time of this COleDateTime object.

See the following table for bounds for the parameter values:

Parameter Bounds

nYear 0-9999

nMonth 1-12

nDay 1-31

nHour 0-23

nMin 0-59

nSec 0-59

Note Year values less than 100 are interpreted as 20th-century values.

The actual upper bound for nDay values varies based on the month and year. For
months 1, 3,5, 7, 8, 10, and 12, the upper bound is 31. For months 4,6,9, and 11, it
is 30. For month 2, it is 28, or 29 in a leap year.

If the date or time value specified by the parameters is not valid, the status of this
object is set to invalid and the value of this object is not changed.

COleDateTime: :SetDateTime

Here are some examples of time values:

nHour nMin

1 3

23 45

25 30

9 60

Here are some examples of date values:

nYear nMonth

95 4

1976 8

1789 7

25 2

10000

nSec

3

0

0

0

nDay

15

15

14

30

1

Value

01:03:03

23:45:00

Invalid

Invalid

Value

15 Apri11995

15 August 1976

17 July 1789

Invalid

Invalid

To set the date only, see COleDateTime::SetDate. To set the time only, see
COleDateTime: :SetTime.

For information on member functions that query the value of this COleDateTime
object, see the following member functions:

• GetDay

• GetMonth

• GetYear

• GetHour

• GetMinute

• GetSecond

• GetDayOfWeek

• GetDayOfYear

For more information about the bounds for COleDateTime values, see the article
"Date and Time: OLE Automation Support" in Programming with MFC.

See Also COleDateTime: :COleDateTime, COleDateTime: :SetDate,
COleDateTime: :SetTime, COleDateTime: : operator =,
COleDateTime: :GetStatus, COleDateTime: :m_dt

1131

COleDateTime: :SetStatus

COleDateTime:: SetStatus
void SetStatus(DateTimeStatus nStatus);

Parameters

Remarks

nStatus The new status value for this COleDateTime object.

Call this member function to set the status of this COleDateTime object. The nStatus
parameter value is defined by the DateTimeStatus enumerated type, which is defined
within the COleDateTime class.

enum DateTimeStatus{
valid = 0.
invalid = I,
null = 2.

} ;

For a brief description of these status values, see the following list:

• COleDateTime: :valid Indicates that this COleDateTime object is valid.

• COleDateTime: : invalid Indicates that this COleDateTime object is invalid;
that is, its value may be incorrect.

• COleDateTime: :null Indicates that this COleDateTime object is null, that is,
that no value has been supplied for this object. (This is "null" in the database
sense of "having no value," as opposed to the C++ NULL.)

Caution This function is for advanced programming situations. This function does not alter
the data in this object. It will most often be used to set the status to null or invalid. Note that
the assignment operator (operator =) and SetDateTime do set the status of the object based
on the source value(s).

See Also COleDateTime::GetStatus, COleDateTime::operator =,
COleDateTime: :SetDateTime, COleDateTime::m_dt

COleDateTime: :SetTime
BOOL SetTime(int nHour, int nMin, int nSec);

Return Value
Nonzero if the value of this COleDateTime object was set, otherwise O.

Parameters

1132

nHour, nMin, nSec Indicate the time components to be copied into this
COleDateTime object.

Remarks

COleDateTime: :SetTime

Call this member function to set the date and time of this COleDateTime object. The
time is set to the specified values. The date is set to date 0, 30 December 1899.

See the following table for bounds for the parameter values:

Parameter Bounds

nHour

nMin

nSec

0-23

0-59

0-59

If the time value specified by the parameters is not valid, the status of this object is set
to invalid and the value of this object is not changed.

Here are some examples of time values:

nHour nMin nSec Value

3 3 01:03:03

23 45 0 23:45:00

25 30 0 Invalid

9 60 0 Invalid

To set both date and time, see COleDateTime: :SetDateTime.

For information on member functions that query the value of this COleDateTime
object, see the following member functions:

• GetDay

• GetMonth

• GetYear

• GetHour

• GetMinute

• GetSecond

• GetDayOfWeek

• GetDayOfYear

For more information about the bounds for COleDateTime values, see the article
"Date and Time: OLE Automation Support" in Programming with MFC.

See Also COleDateTime: :COleDateTime, COleDateTime: :SetDateTime,
COleDateTime: : operator =, COleDateTime: : GetStatus, COleDateTime: :m_dt

1133

COleDateTime: : operator =

Operators
COleDateTime: : operator =

Remarks

1134

const COleDateTime& operator =(const COleDateTime& dateSrc);
const COleDateTime& operator =(const VARIANT& varSrc);
const COleDateTime& operator =(DATE dtSrc);
const COleDateTime& operator =(const time_t& timeSrc);
const COleDateTime& operator =(const SYSTEMTIME& systimeSrc);
const COleDateTime& operator =(const FILETIME&filetimeSrc);

These overloaded assignment operators copy the source date/time value into this
COleDateTime object. A brief description of each these overloaded assignment
operators follows:

• operator =(dateSrc) The value and status of the operand are copied into this
COleDateTime object.

• operator =(varSrc) If the conversion of the VARIANT value (or COleVariant
object) to a date/time (VT_DATE) is successful, the converted value is copied into
this COleDateTime object and its status is set to valid. If the conversion is not
successful, the value of this object is set to zero (30 December 1899, midnight) and
its status to invalid.

• operator =(dtSrc) The DATE value is copied into this COleDateTime object
and its status is set to valid.

• operator =(timeSrc) The time_t value is converted and copied into this
COleDateTime object. If the conversion is successful, the status of this object is
set to valid; if unsuccessful, it is set to invalid.

• operator =(systimeSrc) The SYSTEMTIME value is converted and copied into
this COleDateTime object. If the conversion is successful, the status of this object
is set to valid; if unsuccessful, it is set to invalid.

• operator =(filetimeSrc) The FILETIME value is converted and copied into this
COleDateTime object. If the conversion is successful, the status of this object is
set to valid; if unsuccessful, it is set to invalid.

For more information, see the VARIANT entry in Chapter 5 of the OLE 2
Programmer's Reference, Volume 2.

For more information on the time_t data type, see the time function in the Run-Time
Library Reference.

For more information, see the SYSTEMTIME and FILETIME structures in the
Win32 SDK documentation.

COleDateTime::operator +=,-=

For more information about the bounds for COleDateTime values, see the article
"Date and Time: OLE Automation Support" in Programming with MFC.

See Also COleDateTime: :COleDateTime, COleDateTime: :SetDateTime,
COleDateTime: : GetStatus

COleDateTime::operator +, -

Remarks

COleDateTime operator +(const COleDateTimeSpan& dateS pan) const;
COleDateTime operator -(const COleDateTimeSpan& dateS pan) const;
COleDateTimeSpan operator -(const COleDateTime& date) const;

COleDateTime objects represent absolute times. COleDateTimeSpan objects
represent relative times. The first two operators allow you to add and subtract a
COleDateTimeSpan value from a COleDateTime value. The third operator allows
you to subtract one COleDateTime value from another to yield a
COleDateTimeSpan value.

If either of the operands is null, the status of the resulting COleDateTime value
is null.

If the resulting COleDateTime value falls outside the bounds of acceptable values,
the status of that COleDateTime value is invalid.

If either of the operands is invalid and the other is not null, the status of the resulting
COleDateTime value is invalid.

For more information on the valid, invalid, and null status values, see the m_status
member variable.

For more information about the bounds for COleDateTime values, see the article
"Date and Time: OLE Automation Support" in Programming with MFC.

See Also COleDateTime::operator +=, -=, COleDateTime::GetStatus,
COleDateTimeSpan

COleDateTime: : operator +=, --

Remarks

const COleDateTime& operator +=(const COleDateTimeSpan dateS pan);
const COleDateTime& operator -=(const COleDateTimeSpan dateSpan);

These operators allow you to add and subtract a COleDateTimeSpan value to and
from this COleDateTime.

If either of the operands is null, the status of the resulting COleDateTime value
is null.

1135

COleDateTime::operator DATE

If the resulting COleDateTime value falls outside the bounds of acceptable values,
the status of this COleDateTime value is set to invalid.

If either of the operands is invalid and other is not null, the status of the resulting
COleDateTime value is invalid.

For more information on the valid, invalid, and null status values, see the m_status
member variable.

For more information about the bounds for COleDateTime values, see the article
"Date and Time: OLE Automation Support" in Programming with MFC.

See Also COleDateTime::operator +,., COleDateTime::GetStatus

COleDateTime: : operator DATE
operator DATE() const;

Remarks
This operator returns a DATE object whose value is copied from this COleDateTime
object.

For more information about the implementation of the DATE object, see the article
"Date and Time: OLE Automation Support" in Programming with MFC.

See Also COleDateTime::m_dt

COleDateTime Relational Operators

Remarks

1136

BOOL operator ==(const COleDateTime& date) const;
BOOL operator !=(const COleDateTime& date) const;
BOOL operator « const COleDateTime& date) const;
BOOL operator >(const COleDateTime& date) const;
BOOL operator <=(const COleDateTime& date) const;
BOOL operator >=(const COleDateTime& date) const;

These operators compare two date/time values and return nonzero if the condition is
true; otherwise O.

Note The return value of the ordering operations «, <=, >, >=) is undefined if the status of
either operand is null or invalid. The equality operators (==, !=) consider the status of the
operands.

COleDateTime::m_dt

Example
COleDateTime dateOne(95. 3. 15. 12. 0. 0);
COleDateTime dateTwo(dateOne);
BOOl b;
b = dateOne == dateTwo;

dateTwo.SetStatus(COleDateTime::invalid);
b = dateOne == dateTwo;
b = dateOne != dateTwo;
b = dateOne < dateTwo;
b = dateOne) dateTwo;
b = dateOne <= dateTwo;
b = dateOne)= dateTwo;

II 15 March 1995 12 noon
II 15 March 1995 12 noon

II TRUE

II FALSE. different status
II TRUE. different status
II FALSE. same value
II FALSE. same value
II TRUE. same value
II TRUE. same value

Note The last four lines of the preceding example will ASSERT in debug mode.

See Also COleDateTime:: GetStatus

COleDateTime::operator «, »

Remarks

friend CDumpContext& AFXAPI operator «(CDumpContext& dc, COleDateTime timeSrc);
friend CArchive& AFXAPI operator «(CArchive& ar, COleDateTime dateSrc);
friend CArchive& AFXAPI operator »(CArchive& ar, COleDateTime& dateSrc);

The COleDateTime insertion «<) operator supports diagnostic dumping and storing
to an archive. The extraction (») operator supports loading from an archive.

See Also CDumpContext, CArchive

Data Members
COleDateTime: :m_dt
Remarks

The underlying DATE structure for this COleDateTime object.

Caution Changing the value in the DATE object accessed by the pointer returned by this
function will change the value of this COleDateTime object. It does not change the status of
this COleDateTime object.

For more information about the implementation of the DATE object, see the article
"Date and Time: OLE Automation Support" in Programming with MFC.

See Also COleDateTime: :COleDateTime, COleDateTime: :SetDateTime,
COleDateTime: :SetDate, COleDateTime: :SetTime, COleDateTime: : operator,
DATE

1137

COleDateTime: :m_status

COleDateTime: :m_status
Remarks

1138

The type of this data member is the enumerated type DateTimeStatus, which is
defined within the COleDateTime class.

enum DateTimeStatus{
valid = 0,
invalid = 1,
null = 2,

} ;

For a brief description of these status values, see the following list:

• COleDateTime: : valid Indicates that this COleDateTime object is valid.

• COleDateTime::invalid Indicates that this COleDateTime object is invalid;
that is, its value may be incorrect.

• COleDateTime: :null Indicates that this COleDateTime object is null, that is,
that no value has been supplied for this object. (This is "null" in the database
sense of "having no value," as opposed to the C++ NULL.)

The status of a COleDateTime object is invalid in the following cases:

• If its value is set from a VARIANT or COle Variant value that could not be
converted to a date/time value.

• If its value is set from a time_t, SYSTEMTIME, or FILETlME value that could
not be converted to a valid date/time value.

• If its value is set by SetDateTime with invalid parameter values.

• If this object has experienced an overflow or underflow during an arithmetic
assignment operation, namely, += or -=.

• If an invalid value was assigned to this object.

• If the status of this object was explicitly set to invalid using SetStatus.

For more information about the operations that may set the status to invalid, see the
following member functions:

• COleDateTime

• SetDateTime

• operator +, -

• operator +=, -=

COleDateTime: :m_status

Caution This data member is for advanced programming situations. You should use the inline
member functions GetStatus and SetStatus. See SetStatus for further cautions regarding
explicitly setting this data member.

For more information about the bounds for COleDateTime values, see the article
"Date and Time: OLE Automation Support" in Programming with MFC.

See Also COleDateTime: : GetStatus, COleDateTime: :SetStatus

1139

COleDateTimeSpan

COleDateTimeSpan

1140

A COleDateTimeSpan object represents a relative time, a time span. A
COleDateTimeSpan keeps time in days.

COleDateTimeSpan is used with its companion class COleDateTime.
COleDateTime encapsulates the DATE data type of OLE automation.
COleDateTime represents absolute time values. All COleDateTime calculations
involve COleDateTimeSpan values. The relation between these classes is analogous
to the one between CTime and CTimeSpan.

For more information on the COleDateTime and COleDateTimeSpan classes, see
the article "Date and Time: OLE Automation Support" in Programming with MFC.

#include <afxdisp.h>

See Also CTimeSpan, COleDateTime

Constructor

COleDateTimeSpan

Attributes

GetStatus

SetStatus

GetDays

GetHours

GetMinutes

GetSeconds

GetTotalDays

GetTotalHours

GetTotalMinutes

GetTotalSeconds

Constructs a COleDateTimeSpan object.

Gets the status (validity) of this COleDateTimeSpan object.

Sets the status (validity) of this COleDateTimeSpan object.

Returns the day portion of the span this COleDateTimeSpan
object represents.

Returns the hour portion of the span this COleDateTimeSpan
object represents.

Returns the minute portion of the span this COleDateTimeSpan
object represents.

Returns the second portion of the span this COleDateTimeSpan
object represents.

Returns the number of days this COleDateTimeSpan object
represents.

Returns the number of hours this COleDateTimeSpan object
represents.

Returns the number of minutes this COleDateTimeSpan object
represents.

Returns the number of seconds this COleDateTimeSpan object
represents.

COleDateTimeSpan::COleDateTimeSpan

Operations

SetDateTimeSpan

Format

Operators

operator double

operator =

operator +, -

operator +=, -=

operator ==, <, <=

Data Members

Dump/Archive

operator«

operator »

Sets the value of this COleDateTimeSpan object.

Generates a formatted string representation of a
COleDateTimeSpan object.

Converts this COleDateTimeSpan value to a double.

Copies a COleDateTimeSpan value.

Add, subtract, and change sign for COleDateTimeSpan values.

Add and subtract a COleDateTimeSpan value from this
COleDateTimeSpan value.

Compare two COleDateTimeSpan values.

Contains the underlying double for this COleDateTimeSpan
object.

Contains the status of this COleDateTimeSpan object.

Outputs a COleDateTimeSpan value to CArchive or
CDumpContext.

Inputs a COleDateTimeSpan object from CArchive.

Member Functions
COleDateTimeSpan: :COleDateTimeSpan

COleDateTimeSpan();
COleDateTimeSpan(const COleDateTimeSpan& dateSpanSrc);
COleDateTimeSpan(double dblSpanSrc);
COleDateTimeSpan(long IDays, int nHours, int nMins, int nSecs);

Parameters
dateSpanSrc An existing COleDateTimeSpan object to be copied into the new

COleDateTimeSpan object.

dblSpanSrc The number of days to be copied into the new COleDateTimeSpan
object.

IDays, nHours, nMins, nSecs Indicate the day and time values to be copied into the
new COleDateTimeSpan object.

1141

COleDateTimeSpan::Fonnat

Remarks

Example

All of these constructors create new COleDateTimeSpan objects initialized to the
specified value. A brief description of each of these constructors follows:

• COleDateTimeSpan() Constructs a COleDateTimeSpan object initialized to O.

• COleDateTimeSpan(dateSpanSrc) Constructs a COleDateTimeSpan object
from an existing COleDateTimeSpan object.

• COleDateTimeSpan(dblSpanSrc) Constructs a COleDateTimeSpan object
from a floating-point value.

• COleDateTimeSpan(IDays, nHours, nMins, nSecs) Constructs a
COleDateTimeSpan object initialized to the specified numerical values.

The status of the new COleDateTimeSpan object is set to valid.

For more information about the bounds for COleDateTimeSpan values, see the
article "Date and Time: OLE Automation Support" in Programming with MFC.

COleDateTimeSpan spanOne(2.75); II 2 days and 18 hours
COleDateTimeSpan spanTwo(2. 18. 0. 0); II 2 days and 18 hours
COleDateTimeSpan spanThree(3. -6. 0. 0); II 2 days and 18 hours

See Also COleDateTimeSpan::operator =, COleDateTimeSpan::GetStatns,
COleDateTimeSpan::m_span, COleDateTimeSpan::m_statns

COleDateTimeSpan: :Format
CString Format(LPCTSTR pFormat) const;
CString Format(UINT nID) const;

Return Value
A CString that contains the formatted date/time-span value.

Parameters

Remarks

1142

pFormat The format-control string.

nID The resource ID for the format-control string.

Call these functions to create a formatted representation of the time-span value. If the
status of this COleDateTimeSpan object is null, the return value is an empty string.
If the status is invalid, the return string is specified by the string resource
IDS_INVALID_DATETIMESPAN.

A brief description of the forms for this function follows:

Format(pFormat) This form formats the value using the format string which
contains special formatting codes that are preceded by a percent sign (%), as in
printf. The formatting string is passed as a parameter to the function.

COleDateTimeSpan::GetHours

Format(nID) This form formats the value using the format string which contains
special formatting codes that are preceded by a percent sign (%), as in printf. The
formatting string is a resource. The ID of this string resource is passed as the
parameter.

For more information about the formatting codes used in this function, see the entry
strftime, wcsftime in the Run-Time Library Reference. For a listing of locale ID
values, see the section "Supporting MUltiple National Languages" in the OLE 2
Programmer's Reference, Volume 2.

See Also COleDateTimeSpan: : GetStatus

COleDateTimeSpan: : GetDays
long GetDays() const;

Return Value

Remarks

The day portion of this date/time-span value.

Call this member function to retrieve the day portion of this date/time-span value.

The return values from this function range between approximately -3,615,000 and
3,615,000.

For other functions that query the value of a COleDateTimeSpan object, see the
following member functions:

• GetHours

• GetMinutes

• GetSeconds

• GetTotaiDays

• GetTotalHours

• GetTotalMinutes

• GetTotalSeconds

See Also COleDateTimeSpan: :SetDateTimeSpan

COleDateTimeSpan: : GetHours
long GetHours() const;

Return Value
The hours portion of this date/time-span value.

1143

COleDateTimeSpan::GetMinutes

Remarks
Call this member function to retrieve the hour portion of this date/time-span value.

The return values from this function range between -23 and 23.

For other functions that query the value of a COleDateTimeSpan object, see the
following member functions:

• GetDays

• GetMinutes

• GetSeconds

• GetTotaIDays

• GetTotalHours

• GetTotalMinutes

• GetTotalSeconds

See Also COleDateTimeSpan::SetDateTimeSpan

COleDateTimeSpan: : GetMinutes
long GetMinutes() const;

Return Value

Remarks

1144

The minutes portion of this date/time-span value.

Call this member function to retrieve the minute portion of this date/time-span value.

The return values from this function range between -59 and 59.

For other functions that query the value of a COleDateTimeSpan object, see the
following member functions:

• GetDays

• GetHours

• GetSeconds

• GetTotalDays

• GetTotalHours

• GetTotalMinutes

• GetTotalSeconds

See Also COleDateTimeSpan: :SetDateTimeSpan

COleDateTimeSpan::GetStatus

COleDateTimeSpan: : GetSeconds
long GetSeconds() const;

Return Value

Remarks

The seconds portion of this date/time-span value.

Call this member function to retrieve the second portion of this date/time-span value.

The return values from this function range between -59 and 59.

For other functions that query the value of a COleDateTimeSpan object, see the
following member functions:

• GetDays

• GetHours

• GetMinutes

• GetTotalDays

• GetTotalHours

• GetTotalMinutes

• GetTotalSeconds

See Also COleDateTimeSpan: :SetDateTimeSpan

COleDateTimeSpan: : GetStatus
DateTimeSpanStatus GetStatus() const;

Return Value

Remarks

The status of this COleDateTimeSpan value.

Call this member function to get the status (validity) of this COleDateTimeSpan
object.

The return value is defined by the DateTimeSpanStatus enumerated type, which is
defined within the COleDateTimeSpan class.

enum DateTimeSpanStatus{

} ;

valid = 0.
invalid = 1.
null = 2.

For a brief description of these status values, see the following list:

• COleDateTimeSpan: : valid Indicates that this COleDateTimeSpan object is
valid.

1145

COleDateTimeSpan: :GetTotalDays

• COleDateTimeSpan: :invalid Indicates that this COleDateTimeSpan object is
invalid; that is, its value may be incorrect.

• COleDateTimeSpan: : null Indicates that this COleDateTimeSpan object is null,
that is, that no value has been supplied for this object. (This is "null" in the
database sense of "having no value," as opposed to the C++ NULL.)

The status of a COleDateTimeSpan object is invalid in the following cases:

• If th1s object has experienced an overflow or underflow during an arithmetic
assignment operation, namely, += or -=.

• If an invalid value was assigned to this object.

• If the status of this object was explicitly set to invalid using SetStatus.

For more information about the operations that may set the status to invalid, see
COleDateTimeSpan: :operator +, - and COleDateTimeSpan: : operator +=, -=.

For more information about the bounds for COleDateTimeSpan values, see the
article "Date and Time: OLE Automation Support" in Programming with MFC.

See Also COleDateTimeSpan::SetStatus, COleDateTimeSpan::m_status

COleDateTimeSpan: : GetTotalDays
double GetTotalDays() const;

Return Value

Remarks

1146

This date/time-span value expressed in days.

Call this member function to retrieve this date/time-span value expressed in days.

The return values from this function range between approximately -3.65e6 and
3.65e6.

For other functions that query the value of a COleDateTimeSpan object, see the
following member functions:

• GetDays

• GetHours

• GetMinutes

• GetSeconds

• GetTotalHours, GetTotalMinutes

• GetTotaiSeconds

See Also COleDateTimeSpan: :SetDateTimeSpan,
COleDateTimeSpan::operator double

COleDateTimeSpan: : GetTotalMinutes

COleDateTimeSpan: : GetTotalHours
double GetTotalHours() const;

Return Value

Remarks

This date/time-span value expressed in hours.

Call this member function to retrieve this date/time-span value expressed in hours.

The return values from this function range between approximately -S.77e7 and
8.77e7.

For other functions that query the value of a COleDateTimeSpan object, see the
following member functions:

• GetDays

• GetHours

• GetMinutes

• GetSeconds

• GetTotalDays

• GetTotalMinutes

• GetTotalSeconds

See Also COleDateTimeSpan: :SetDateTimeSpan

COleDateTimeSpan: : GetTotalMinutes
double GetTotalMinutes() const;

Return Value

Remarks

This date/time-span value expressed in minutes.

Call this member function to retrieve this date/time-span value expressed in minutes.

The return values from this function range between approximately -5.26e9 and
5.26e9.

For other functions that query the value of a COleDateTimeSpan object, see the
following member functions:

• GetDays

• GetHours

• GetMinutes

• GetSeconds

1147

COleDateTimeSpan: : GetTotalSeconds

• GetTotalDays

• GetTotalHours

• GetTotalSeconds

See Also COleDateTimeSpan: :SetDateTimeSpan

COleDateTimeSpan:: GetTotalSeconds
double GetTotalSeconds() const;

Return Value

Remarks

This date/time-span value expressed in seconds.

Call this member function to retrieve this date/time-span value expressed in seconds.

The return values from this function range between approximately -3.16ell to
3.16ell.

For other functions that query the value of a COleDateTimeSpan object, see the
following member functions:

• GetDays

• GetHours

• GetMinutes

• GetSeconds

• GetTotalDays

• GetTotalHours

• GetTotalMinutes

See Also COleDateTimeSpan: :SetDateTimeSpan

COleDateTimeSpan:: SetDateTimeSpan
void SetDateTimeSpan(long lDays, int nHours, int nMins, int nSecs);

Parameters

Remarks

1148

lDays, nHours, nMins, nSecs Indicate the date-span and time-span values to be
copied into this COleDateTimeSpan object.

Call this member function to set the value of this date/time-span value.

COleDateTimeSpan: :SetStatus

Example

For functions that query the value of a COleDateTimeSpan object, see the following
member functions:

• GetDays

• GetHours

• GetMinutes

• GetSeconds

• GetTotalDays

• GetTotalHours

• GetTotalMinutes

• GetTotalSeconds

COleDateTimeSpan spanOne;
COleDateTimeSpan spanTwo;
spanOne.SetDateTimeSpan(0. 2. 45. 0): II 2 hours and 45 seconds
spanTwo.SetDateTimeSpan(0. 3. -15. 0): II 2 hours and 45 seconds

See Also COleDateTimeSpan::GetStatus, COleDateTimeSpan::m_span

COleDateTimeSpan:: SetStatus
void SetStatus(DateTimeSpanStatus nStatus);

Parameters

Remarks

nStatus The new status value for this COleDateTimeSpan object.

Call this member function to set the status (validity) of this COleDateTimeSpan
object. The nStatus parameter value is defined by the DateTimeSpanStatus
enumerated type, which is defined within the COleDateTimeSpan class.

enum DateTimeSpanStatus{

} :

valid = 0.
invalid = 1.
null = 2.

For a brief description of these status values, see the following list:

• COleDateTimeSpan: : valid Indicates that this COleDateTimeSpan object is
valid.

• COleDateTimeSpan::invaiid Indicates that this COleDateTimeSpan object is
invalid; that is, its value may be incorrect.

1149

COleDateTimeSpan: : operator =

• COleDateTimeSpan: :null Indicates that this COleDateTimeSpan object is null,
that is, that no value has been supplied for this object. (This is "null" in the
database sense of "having no value," as opposed to the C++ NULL.)

Caution This function is for advanced programming situations. This function does not alter
the data in this object. It will most often be used to set the status to null or invalid. Note that
the assignment operator (operator =) and SetDateTimeSpan do set the status of the object
based on the source value(s).

See Also COleDateTimeSpan: : GetStatus, COleDateTimeSpan::m_status

Operators
COleDateTimeSpan: : operator =

Remarks

const COleDateTimeSpan& operator=(double dbISpanSrc);
const COleDateTimeSpan& operator=(const COleDateTimeSpan& dateSpanSrc);

These overloaded assignment operators copy the source date/time-span value into this
COleDateTimeSpan object.

See Also COleDateTimeSpan::COleDateTimeSpan

COleDateTimeSpan::operator +, -

Remarks

1150

COleDateTimeSpan operator+(const COleDateTimeSpan& dateS pan) const;
COleDateTimeSpan operator-(const COleDateTimeSpan& dateS pan) const;
COleDateTimeSpan operator-() const;

The first two operators let you add and subtract date/time-span values. The third lets
you change the sign of a date/time-span value.

If either of the operands is null, the status of the resulting COleDateTimeSpan value
is null.

If either of the operands is invalid and the other is not null, the status of the resulting
COleDateTimeSpan value is invalid.

For more information on the valid, invalid, and null status values, see the m_status
member variable.

See Also COleDateTimeSpan: : operator +=, -=

COleDateTimeSpan Relational Operators

COleDateTimeSpan: : operator +=, -

Remarks

const COleDateTimeSpan& operator+=(const COleDateTimeSpan dateS pan);
const COleDateTimeSpan& operator-=(const COleDateTimeSpan dateS pan);

These operators let you add and subtract date/time-span values from this
COleDateTimeSpan object.

If either of the operands is null, the status of the resulting COleDateTimeSpan value
is null.

If either of the operands is invalid and the other is not null, the status of the resulting
COleDateTimeSpan value is invalid.

For more information on the valid, invalid, and null status values, see the m_status
member variable.

See Also COleDateTimeSpan: :operator +, -

COleDateTimeSpan: : operator double

Remarks

operator double() const;

This operator returns the value of this COleDateTimeSpan value as a floating-point
number of days.

See Also COleDateTimeSpan: : GetTotalDays,
COleDateTimeSpan::SetDateTimeSpan, COleDateTimeSpan::m_span

COleDateTimeSpan Relational Operators

Remarks

BOOL operator==(const COleDateTimeSpan& dateSpan) const;
BOOL operator!=(const COleDateTimeSpan& dateS pan) const;
BOOL operator« const COleDateTimeSpan& dateS pan) const;
BOOL operator>(const COleDateTimeSpan& dateS pan) const;
BOOL operator<=(const COleDateTimeSpan& dateS pan) const;
BOOL operator>=(const COleDateTimeSpan& dateS pan) const;

These operators compare two date/time-span values and return nonzero if the
condition is true; otherwise o.
Note The return value of the ordering operations «, <=, >, >=) is undefined if the status of
either operand is null or invalid. The equality operators (==, !=) consider the status of the
operands.

1151

COleDateTimeSpan::operator «, »

Example
COleDateTimeSpan spanOne(3, 12, 0, 0); II 3 days and 12 hours
COleDateTimeSpan spanTwo(spanOne); II 3 days and 12 hours
BOOl b;
b = spanOne == spanTwo; II TRUE

spanTwo.SetStatus(COleDateTimeSpan::invalid);
b - spanOne == spanTwo; II FALSE, different status
b = spanOne 1= spanTwo; II TRUE, different status
b = spanOne < spanTwo; II FALSE, same value
b = spanOne) spanTwo; II FALSE, same value
b = spanOne <= spanTwo; II TRUE, same value
b = spanOne)= spanTwo; II TRUE, same value

Note The last four lines of the preceding example will ASSERT in debug mode.

COleDateTimeSpan::operator «, »

Remarks

friend CDumpContext& AFXAPI operator«(CDumpContext& dc,
COleDateTimeSpan dateS pan);

friend CArchive& AFXAPI operator«(CArchive& ar, COleDateTimeSpan dateS pan);
friend CArchive& AFXAPI operator»(CArchive& ar,· COleDateTimeSpan& dateS pan);

The COleDateTimeSpan insertion «<) operator supports diagnostic dumping and
storing to an archive. The extraction (») operator supports loading from an archive.

See Also CDumpContext, CArchive

Data Members
COleDateTimeSpan: :m_span
Remarks

1152

The underlying double value for this COleDateTime object. This value expresses the
date/time span in days.

Caution Changing the value in the double data member will change the value of this
COleDateTimeSpan object. It does not change the status of this COleDateTimeSpan object.

See Also COleDateTimeSpan: :COleDateTimeSpan,
COleDateTimeSpan: :SetDateTimeSpan, COleDateTimeSpan::operator double

COleDateTimeSpan: :m_status

COleDateTimeSpan: :m_status
Remarks

The type for this data member is the enumerated type DateTimeSpanStatus, which
is defined within the COleDateTimeSpan class.

enum DateTimeSpanStatus{

} ;

valid'" 0.
invalid'" 1.
null - 2.

For a brief description of these status values, see the following list:

• COleDateTimeSpan: : valid Indicates that this COleDateTimeSpanQbject is
valid.

• COleDateTimeSpan: :invalid Indicates that this COleDateTimeSpan object is
invalid; that is, its value may be incorrect.

• COleDateTimeSpan::null Indicates that this COleDateTimeSpan object is null,
that is, that no value has been supplied for this object. (This is "null" in the
database sense of "having no value," as opposed to the C++ NULL.)

The status of a COleDateTimeSpan object is invalid in the following cases:

• If this object has experienced an overflow or underflow during an arithmetic
assignment operation, namely, += or -=.

• If an invalid value was assigned to this object.

• If the status of this object was explicitly set to invalid using SetStatus.

For more information about the operations that may set the status to invalid, see
COleDateTimeSpan: : operator +, - and COleDateTimeSpan: : operator +=, -=.

Caution This data member is for advanced programming situations. You should use the inline
member functions GetStatus and SetStatus. See SetStatus for further cautions regarding
explicitly setting this data member.

For more information about the bounds for COleDateTimeSpan values, see the
article "Date and Time: OLE Automation Support" in Programming with MFC.

See Also COleDateTimeSpan: : GetStatus, COleDateTimeSpan: :SetStatus

1153

COleDialog

COleDialog

1154

The COleDialog class provides functionality common to dialog boxes for OLE. The
Microsoft Foundation Class Library provides several classes derived from
COleDialog.

These are:

• COlelnsertDialog

• COleConvertDialog

• COleChangelconDialog

• COleLinksDialog

• COleBusyDialog

• COleUpdateDialog

• COlePasteSpecialDialog

• COlePropertiesDialog

• COleChangeSourceDialog

For more information about OLE-specific dialog boxes, see the article "Dialog Boxes
in OLE" in Programming with MFC.

#include <afxodlgs.h>

See Also COleBusyDialog, COleChangelconDialog, COleChangeSourceDialog,
COleConvertDialog, COlePropertiesDialog, COlelnsertDialog,
COleLinksDialog, COlePasteSpecialDialog, COlePropertiesDialog,
COleUpdateDialog

Operations

GetLastError Gets the error code returned by the dialog box.

COleDialog: : GetLastError

Member Functions
COleDialog: : GetLastError

UINT GetLastError() const;

Return Value

Remarks

The error codes returned by GetLastError depend on the specific dialog box
displayed.

Call the GetLastError member function to get additional error information when
DoModal returns IDABORT. See the DoModal member function in the derived
classes for information about specific error messages.

See Also COleBusyDialog::DoModal, COleCbangelconDialog::DoModal,
COleCbangeSourceDialog: : DoModal, COleConvertDialog::DoModal,
COlelnsertDialog: :DoModal, COleLinksDialog: :DoModal,
COlePasteSpecialDialog: :DoModal, COlePropertiesDialog: :DoModal,
COleUpdateDialog::DoModal

1155

COleDispatchDriver

COleDispatchDriver

1156

The COleDispatchDriver class implements the client side of OLE automation. OLE
dispatch interfaces provide access to an object's methods and properties. Member
functions of COleDispatchDriver attach, detach, create, and release a dispatch
connection of type IDispatch. Other member functions use variable argument lists to
simplify calling IDispatch::Invoke.

For more information, see IDispatch and IDispatch::lnvoke in the OLE 2
Programmer's Reference, Volume 2.

This class can be used directly, but it is generally used only by classes created by
Class Wizard. When you create new C++ classes by importing a type library,
ClassWizard derives the new classes from COleDispatchDriver.

For more information on using COleDispatchDriver, see the following articles in
Programming with MFC:

• "Automation Clients"

• "Automation Servers"

• "Class Wizard: OLE Automation Support"

• "AppWizard: OLE Support"

#include <afxdisp.h>

See Also CCmdTarget

Data Members

m_bAutoRelease

Construction

COleDispatchDriver

Operations

CreateDispatch

AttachDispatch

DetachDispatch

ReleaseDispatch

InvokeHelper

Specifies whether to release the IDispatch during
ReleaseDispatch or object destruction.

Indicates the pointer to the IDispatch interface attached to
this COleDispatchDrlver.

Constructs a COleDispatchDrlver object.

Creates an IDispatch connection and attaches it to the
COleDispatchDriver object.

Attaches an IDispatch connection to the
COleDispatchDrlver object.

Detaches an IDispatch connection, without releasing it.

Releases an IDispatch connection.

Helper for calling automation methods.

COleDispatchDri ver: :CreateDispatch

SetProperty

GetProperty

Sets an automation property.

Gets an automation property.

Member Functions
COleDispatchDri ver: : AttachDispatch

void AttachDispatch(LPDISPATCH lpDispatch, BOOL bAutoRelease = TRUE);

Parameters

Remarks

lpDispatch Pointer to an OLE IDispatch object to be attached to the
COleDispatchDriver object.

bAutoRelease Specifies whether the dispatch is to be released when this object goes
out of scope.

Call the AttachDispatch member function to attach an IDispatch pointer to the
COleDispatchDriver object. This function releases any IDispatch pointer that is
already attached to the COleDispatchDriver object.

See Also COleDispatchDriver: : DetachDispatch,
COleDispatchDriver: :ReleaseDispatch, COleDispatchDriver:: CreateDispatch,
COleDispatchDriver: :m_lpDispatch, COleDispatchDriver: :m_bAutoRelease

COleDispatchDri ver:: COleDispatchDri ver
COleDispatchDriver();

Remarks
Constructs a COleDispatchDriver object. Before using this object, you should
connect an IDispatch to it using either COleDispatchDriver::CreateDispatch or
COleDispatchDriver: :AttachDispatch.

See Also COleDispatchDriver: :AttachDispatch,
COleDispatchDriver: :CreateDispatch

COleDispatchDri ver:: CreateDispatch
BOOL CreateDispatch(REFCLSID cisid, COleException* pError = NULL);
BOOL CreateDispatch(LPCTSTR lpszProgID, COleException* pError = NULL);

Return Value
Nonzero on success; otherwise O.

1157

COleDispatchDriver: :DetachDispatch

Parameters

Remarks

clsid Class ID of the IDispatch connection object to be created.

pError Pointer to an OLE exception object, which will hold the status code resulting
from the creation.

lpszProglD Pointer to the programmatic identifier, such as "Excel.Document.5", of
the automation object for which the dispatch object is to be created.

Creates an IDispatch object and attaches it to the COleDispatchDriver object.

See Also COleDispatchDriver: :DetachDispatch,
COleDispatchDriver: :ReleaseDispatch, COleDispatchDriver: :AttachDispatch,
COleException, COleDispatchDriver::m_lpDispatch

COleDispatchDri ver: : DetachDispatch
LPDISPATCH DetachDispatch();

Return Value

Remarks

A pointer to the previously attached OLE IDispatch object.

Detaches the current IDispatch connection from this object. The IDispatch is not
released.

For more information about the LPDISPATCH type, see IDispatch in the OLE 2
Programmer's Reference, Volume 2.

See Also COleDispatchDriver: : ReleaseDispatch,
COleDispatchDriver: :CreateDispatch, COleDispatchDriver: :AttachDispatch,
COleDispatchDriver: :m_lpDispatch

COleDispatchDri ver:: GetProperty
void GetProperty(DISPID dwDisplD, VARTYPE vtProp, void* pvProp) const;

Parameters

1158

dwDispID Identifies the property to be retrieved. This value is usually supplied by
ClassWizard.

vtProp Specifies the property to be retrieved. For possible values, see the "Remarks"
section for COleDispatchDriver: : InvokeHelper .

pvProp Address of the variable that will receive the property value. It must match
the type specified by vtProp.

COleDispatchDriver: : InvokeHelper

Remarks
Gets the object property specified by dwDispID.

See Also COleDispatchDriver: : InvokeHelper,
COleDispatchDriver: :SetProperty

COleDispatchDri ver: : InvokeHelper
void InvokeHelper(DISPID dwDispID, WORD wFlags, VARTYPE vtRet,

void* pvRet, const BYTE FAR* pbParamlnfo, 000);
throw(COleException);
throw(COleDispatchException);

Parameters

Remarks

dwDispID Identifies the method or property to be invoked. This value is usually
supplied by Class Wizard.

wFlags Flags describing the context of the call to IDispatch::lnvoke. For possible
values, see the OLE 2 Programmer's Reference, Volume 1.

vtRet Specifies the type of the return value. For possible values, see the "Remarks"
section.

pvRet Address of the variable that will receive the property value or return value. It
must match the type specified by vtRet.

pbParamlnfo Pointer to a null-terminated string of bytes specifying the types of the
parameters following pbParamlnfo .

... Variable list of parameters, of types specified in pbParamlnfo.

Calls the object method or property specified by dwDispID, in the context specified by
wFlags. The pbParamlnfo parameter specifies the types of the parameters passed to
the method or property. The variable list of arguments is represented by 000 in the
syntax declaration.

Possible values for the vtRet argument are taken from the VARENUM enumeration.
Possible values are as follows:

Symbol Return Type

VT_EMPTY void

VT_I2 short

VT_I4 long

VT_R4 float

VT_RS double

1159

COleDispatchDriver: :InvokeHelper

1160

Symbol

VT_CY

VT_DATE

VT_BSTR

VT_DISPATCH

VT_ERROR

VT_BOOL

VT_VARIANT

VT_UNKNOWN

Return Type

CY

DATE

BSTR

LPDISPATCH

SCODE

BOOL

VARIANT

LPUNKNOWN

The pbParamlnfo argument is a space-separated list of VTS_, One or more of these
values, separated by spaces (not commas), specifies the function's parameter list.
Possible values are as follows:

Symbol Parameter Type

VTS_I2 short

VTS_I4 long

VTS_R4 float

VTS_RS double

VTS_CY const CY*

VTS_DATE DATE

VTS_BSTR const char*

VTS_DISPATCH LPDISPATCH

VTS_SCODE SCODE

VTS_BOOL BOOL

VTS_ VARIANT const V ARIANT*

VTS_UNKNOWN LPUNKNOWN

VTS_PI2 short*

VTS_PI4 long*

VTS_PR4 float*

VTS_PRS double*

VTS_PCY CY*

VTS_PDATE DATE

VTS_PBSTR BSTR*

VTSYDISPATCH LPDISPATCH*

VTS_PSCODE SCODE*

COleDispatchDriver: :SetProperty

Symbol

VTS_PBOOL

VTS_PVARIANT

VTS_PUNKNOWN

Parameter Type

BOOL*

VARIANT*

LPUNKNOWN*

This function converts the parameters to VARIANTARG values, then invokes the
IDispatch: :Invoke method. If the call to Invoke fails, this function will throw an
exception. If the SCODE (status code) returned by IDispatch::Invoke is
DISP _E_EXCEPTION, this function throws a COleException object; otherwise it
throws a COleDispatchException.

For more information, see VARIANTARG, IDispatch, IDispatch: : Invoke, and
"Structure of OLE Error Codes" in the OLE 2 Programmer's Reference, Volume 2.

See Also COleException, COleDispatchException

COleDispatchDri ver: : ReleaseDispatch

Remarks

void ReleaseDispatch();

Releases the IDispatch connection. If auto release has been set for this connection,
this function calls IDispatch::Release before releasing the interface.

See Also COleDispatchDriver: :DetachDispatch,
COleDispatchDriver: :CreateDispatch, COleDispatchDriver: :AttachDispatch,
COleDispatchDriver: :m_lpDispatch, COleDispatchDriver: :m_bAutoRelease

COleDispatchDriver:: SetProperty
void SetProperty(DISPID dwDispID, VARTYPE vtProp, •••);

Parameters

Remarks

dwDispID Identifies the property to be set. This value is usually supplied by
Class Wizard.

vtProp Specifies the type of the property to be set. For possible values, see the
"Remarks" section for COleDispatchDriver::InvokeHelper .

... A single parameter of the type specified by vtProp.

Sets the OLE object property specified by dwDispID.

See Also COleDispatchDriver: : InvokeHelper ,
COleDispatchDriver: : GetProperty

1161

COleDispatchDriver: :m_bAutoRelease

Data Members
COleDispatchDriver: :m_bAutoRelease
Remarks

Specifies whether the COM object accessed by m_lpDispatch should be
automatically released when ReleaseDispatch is called or when this
COleDispatchDriver object is destroyed.

For more information on releasing COM objects, see "Implementing Reference
Counting" and IUnknown::Release in the OLE 2 Programmer's Reference,
Volume 1.

See Also COleDispatchDriver: :AttachDispatch,
COleDispatchDriver: :ReleaseDispatch, COleDispatchDriver: :m_lpDispatch

COleDispatchDriver: :m_IpDispatch
Remarks

1162

The pointer to the IDispatch interface attached to this COleDispatchDriver. The
m_lpDispatch data member is a public variable of type LPDISPATCH.

For more information, see IDispatch in the OLE 2 Programmer s Reference,
Volume 2.

See Also COleDispatchDriver: :AttachDispatch,
COleDispatchDriver: : ReleaseDispatch, COleDispatchDriver:: CreateDispatch,
COleDispatchDriver: : DetachDispatch

A
ABC structure 2210
ABCFLOAT structure 2211
Ability to transact, Recordset 1383
Ability to update records, Recordset 1384
Abort member function, CFile class 657
AbortDoc member function, CDC class 425
Aborting database transactions 403
AbortPath member function, CDC class 426
Accept member function, CAsyncSocket class 70
Action queries

defined 225
described 251
executing 225

Activate member function
COleClientItem class 986
CToolTipCtrl class 1720

ActivateAs member function, COleClientItem
class 987

ActivateFrame member function, CFrameWnd
class 721

ActivateInPlace member function, COleServerDoc
class 1242

ActivateNext member function, CSplitterWnd
class 1572

Activation 1242
Add member function

CArray class 60
CImageList class 756
CObArray class 935

AddBitmap member function, CToolBarCtrl
class 1699

AddButtons member function, CToolBarCtrl
class 1699

AddDocTemplate member function, CWinApp
class 1798

AddDocument member function, CDocTemplate
class 568

AddFormat member function, COlePasteSpecialDialog
class 1219

AddHead member function
CList class 770
CObList class 954

Adding new records 1381

Index

AddItem member function, COleDocument class 1167
AddMetaFileComment member function, CDC

class 427
AddNew member function

CDaoRecordset class 277
CRecordset class 1381

AddOtherClipboardData member function,
COleServerltem class 1258

AddPage member function, CPropertySheet class 1359
AddStandardFormats member function,

COlePasteSpecialDialog class 1220
AddString member function

CComboBox class 168
CListBox class 784
CToolBarCtrl class 1701

AddTail member function
CList class 771
CObList class 954

AddTool member function, CToolTipCtrl class 1720
AddToParameterList, Record field exchange (DFX)

described 247
PARAMETERS clause, SQL 247

AddToRecentFileList member function, CWinApp
class 1798

AddToSelectList, Record field exchange (DFX)
described 247
SELECT clause, SQL 247

AddView member function, CDocument class 581
AdjustDialogPosition member function,

CRichEditView class 1495
AdjustRect member function

CRectTracker class 1436
CTabCtrl class 1648

AFX_DAO_ALL_INFO
for database objects 380
querydefs 229
tabledefs 233
workspaces 385

Index

AFX_DAO_ERROR_DFX_BIND, error code 242
AFX_DAO_ERROR_ENGINE_INITIALIZATION,

error code 242
AFX_DAO_ERROR_OBJECT_NOT_OPEN error

code 242
AFXJ)AO_PRIMARY_INFO

for database objects 380
querydefs 229
relations 231
tabledefs 233
workspaces 385

AFX_DAO_SECONDARY _INFO
for database objects 380
querydefs 229
relations 231
tabledefs 233
workspaces 385

AFX_DATA, ClassWizard comment 2203
AFX_DATA_INIT, ClassWizard comment 2203
AFX_DATA_MAP, ClassWizard comment 2203
AFX_DISP, ClassWizard comment 2204
AFX_DISP _MAP, Class Wizard comment 2204
AFX_EVENT, ClassWizard comment 2204
AFX_EVENT_MAP, Class Wizard comment 2205
AFX_FIELD, Class Wizard comment 2205
AFX_FIELD _INIT, Class Wizard comment 2205
AFX_FIELD _MAP, ClassWizard comment 2206 ,
AFX_MANAGE_STATE, global function/macro 2082
AFX_MSG, ClassWizard comment 2206
AFX_MSG_MAP, ClassWizard comment 2206
AFX_SQL_ASYNC global function/macro 2061,2095
AFX_SQL_ERROR codes 413
AFX_SQL_SYNC global function/macro 2061,2096
AFX_ VIRTUAL, ClassWizard comment 2207
AfxAbort global function/macro 2070
AfxBeginThread global function/macro 2071
AfxCheckMemory global function/macro 2072
AfxConnectionAdvise global function/macro 2073
AfxConnectionUnadvise global function/macro 2074
AfxDoForAllClasses global function/macro 2074
AfxDoForAllObjects global function/macro 2075
afxDump global function/macro 2075-2076
AfxEnableControlContainer global

function/macro 2076
AfxEnableMemoryTracking global

function/macro 2077
AfxEndThread global function/macro 2077
AfxFormatString1 global function/macro 2077
AfxFormatString2 global function/macro 2078

AfxGetApp global function/macro 2078
AfxGetAppName global function/macro 2079
AfxGetlnstanceHandle global function/macro 2079
AfxGetMainWnd global function/macro 2079
AfxGetResourceHandle global function/macro 2080
AfxGetThread global function/macro 2080
AfxIsMemoryBlock global function/macro 2080
AfxIs ValidAddress global function/macro 2081
AfxIs ValidString global function/macro 2081
afxMemDF global function/macro 2082
AfxMessageBox global function/macro 2083
AfxOleCanExitApp global function/macro 2084
AfxOleGetMessageFilter global function/macro 2084
AfxOleGetUserCtrl global function/macro 2085
AfxOleInit global function/macro 2085
AfxOleLockApp global function/macro 2085
AfxOleRegisterControlClass global

function/macro 2086
AfxOleRegisterPropertyPageClass global

function/macro 2087
AfxOleRegisterServerClass global

function/macro 2088
AfxOleRegisterTypeLib global function/macro 2089
AfxOleSetEditMenu global function/macro 2090
AfxOleSetUserCtrl global function/macro 2091
AfxOleTypeMatchGuid global function/macro 2091-

2092
AfxOleUnlockApp global function/macro 2092
AfxOleUnregisterTypeLib global function/macro 2092
AfxRegisterClass global function/macro 2093
AfxRegisterWndClass global function/macro 2093
AfxSetAllocHook global function/macro 2094
AfxSetResourceHandle global function/macro 2094
AfxSocketlnit global function/macro 2095
AfxThrow ArchiveException global

function/macro 2097
AfxThrowDaoException global function/macro 239,

2097
AfxThrowDBException global function/macro 2098
AfxThrowFileException global function/macro 2098
AfxThrowMemoryException global

function/macro 2099
AfxThrowNotSupportedException global

function/macro 2099
AfxThrowOleDispatchException global

function/macro 2099
AfxThrowOleException global function/macro 2100
AfxThrowResourceException global

function/macro 2100

AfxThrow U serException global function/macro 2100
afxTraceEnabled global function/macro 2101
afxTraceFlags global function/macro 2101
Afx VerifyLicFile global function/macro 2102
Aggregate data

collection classes 136,609,849,851,853,861,
863,865,867,934

template-based classes 58, 769, 842, 1754, 1757,
1763

Alloc member function, CmemFile class 883
AllocCache, Record field exchange (DFX) 247
AllocSysString member function, CString class 1617
AmbientBackColor member function, COleControl

class 1031
AmbientDisplayName member function, COleControl

class 1032
AmbientFont member function, COleControl

class 1032
AmbientForeColor member function, COleControl

class 1032
AmbientLocaleID member function, COleControl

class 1033
AmbientScaleUnits member function, COleControl

class 1033
AmbientShowGrabHandles member function,

COleControl class 1033
AmbientShowHatching member function, COleControl

class 1034
AmbientTextAlign member function, COleControl

class 1034
AmbientUIDead member function, COleControl

class 1034
AmbientUserMode member function, COleControl

class 1035
AND_CATCH global function/macro 2103
AND _CATCH_ALL global function/macro 2103
AngleArc member function, CDC class 427
AnimatePalette member function, CPalette class 1304
Animation control 33
AnsiToOem member function, CString class 1617
Append member function

CArray class 60
CDaoQueryDef class 253
CDaoTableDef class 348
CDaoWorkspace class 374

Append query 251
Appendability, determining recordset 1382

Appending
querydefs 253
workspaces 374

Index

AppendMenu member function, CMenu class 895
Application architecture classes, listed 4
Application control functions, OLE 2062
Application framework, Microsoft Foundation Class

Library 3
Application information, management 2056
Applications, management information 2056
ApplyPrintDevice member function, COleDocument

class 1168
Arc member function, CDC class 428
Archive operators

COleCurrency 1096
COleDateTime 1137
COleDateTimeSpan 1152
COleVariant 1291

ArcTo member function, CDC class 429
argv, MFC encapsulation 189
Arrange member function, CListCtrl class 810
ArrangeIconic Windows member function, CWnd

class 1865
Arrays, collection classes

CArray 58
CByteArray 136
CDWordArray 609
CObArray 934
CTypedPtrArray 1754

ASSERT global function/macro 2104
ASSERT_VALID global function/macro 2105
AssertValid member function, CObject class 945
Assignment operator, COleVariant 1289
Asynchronous access

canceling 1383
default mode 403
disabling 403
enabling 403
mode, setting 403

Asynchronous operations, canceling 395
AsyncSelect member function, CAsyncSocket class 71
Attach member function

CAsyncSocket class 72
CDC class 430
CGdiObject class 737
CImageList class 757
CMemFile class 883
CMenu class 897
COleDataObject class 1099

Index

Attach member function (continued)
COleStreamFile class 1278
CSocket class 1555
CWnd class 1866

AttachClipboard member function, COleDataObject
class 1099

AttachDataObject member function, COleClientItem
class 988

AttachDispatch member function, COleDispatchDriver
class 1157

Attaching data objects to Clipboard 1099
AutoLoad member function, CBitmapButton class 114
AutoSize member function, CToolBarCtrl class 1702

B
BASED_CODE global function/macro 2105
BEGIN_CONNECTION_MAP global

function/macro 2106
BEGIN_CONNECTION_P ART global

function/macro 2106
BEGIN_DISPATCH_MAP global

function/macro 2106
BEGIN_EVENT_MAP global function/macro 2107
BEGIN_EVENTS INK_MAP global

function/macro 2107
BEGIN_MESSAGE_MAP global function/macro 2108
BEGIN_OLEFACTORY global function/macro 2109
BEGIN_PROPPAGEIDS global function/macro 2109
BeginBusyState member function, COleMessageFilter

class 1205
BeginDrag member function

CDragListBox class 601
ClmageList class 757

BeginEnumFormats member function, COleDataObject
class 1100

BeginModalState member function, CFrameWnd
class 721

BeginPaint member function, CWnd class 1866
BeginPath member function, CDC class 431
BeginTrans member function

CDaoWorkspace class 374
CDatabase class 394

Begin WaitCursor member function, CCmdTarget
class 146

Binary Large Object, CLongBinary class 840
Bind member function, CAsyncSocket class 73
BindField, Record field exchange (DFX) 247
BindParam, Record field exchange (DFX) 247

BitBlt member function, CDC class 431
BITMAP structure 2211
BITMAP TOOLTIPTEXT 1693
BITMAPINFO structure 2212
Bitmaps as data, CLongBinary class 840
BLOB, CLongBinary class 840
BOOL, DDX field exchange 2134
Boolean

DFX field exchange 2148
RFX field exchange 2190

BottomRight member function, CRect class 1420
Bound fields, RecorcJ.set 1408
BoundPropertyChanged member function, COleControl

class 1035
BoundPropertyRequestEdit member function,

COleControl class 1035
BringWindowToTop member function, CWnd

class 1867
Bulk query 251
Button styles 2270
BYTE

DDX field exchange 2134
DFX field exchange 2149
Float field exchange 2134
RFX field exchange 2190

Byte array

c

DFX field exchange 2147
RFX field exchange 2189

C language API, relationship of Microsoft Foundation
Class Library to 3

CacheData member function, COleDataSource
class 1106

CacheGlobalData member function, COleDataSource
class 1107

CalcDynamicLayout member function, CControlBar
class 202

CalcFixedLayout member function, CControlBar
class 203

CalcWindowRect member function, CWnd class 1867
Callback functions for MFC member functions

CDC 2208-2209
described 2208

CanActivate member function, COleClientItem
class 988

CanActivateNext member function, CSplitterWnd
class 1572

CanAppend member function
CDaoRecordset class 278
CRecordset class 1382

CanBookmark member function, CDaoRecordset
class 279

Cancel member function
CDatabase class 395
CRecordset class 1383

CancelBlockingCall member function, CSocket
class 1556

CancelDrag member function, CDragListBox
class 601

Canceling
Asynchronous access 1383
long recordset operations 1400
operations 401

CancelToClose member function, CPropertyPage
class 1351

CancelToolTips member function, CWnd class 1868
CancelUpdate member function, CDaoRecordseat

class 279
CanCloseFrame member function, CDocument

class 583
CanCreateFromData member function, COleClientItem

class 988
CanCreateLinkFromData member function,

COleClientltem class 989
CAnimateCtrl class

described 33
member functions

CAnimateCtrl 34
Close 34
Create 35
Open 36
Play 36
Seek 37
Stop 37

CAnimateCtrl constructor 34
CAnimateCtrl member function, CAnimateCtrl

class 34
CanPaste member function

COleClientItem class 989
CRichEditView class 1496

CanPasteLink member function, COleClientItem
class 990

CanRestart member function
CDaoRecordset class 280
CRecordset class 1383

CanS croll member function
CDaoRecordset class 280
CRecordset class 1383

CanTransact member function
CDaoDatabase class 219
CDaoRecordset class 281
CDatabase class 395
CRecordset class 1383

CanUndo member function
CEdit class 614
CRichEditCtrl class 1464

CanUpdate member function
CDaoDatabase class 219
CDaoQueryDef class 254
CDaoRecordset class 281
CDaoTableDef class 348
CDatabase class 396
CRecordset class 13 84

CArchive class
data members, m_pDocument 55
described 38
member functions

CArchive 39
Close 41
Flush 41
GetFile 41
GetObjectSchema 42
IsBufferEmpty 43
IsLoading 43
IsStoring 44
MapObject 44
operator« 53
operator» 54
Read 46
ReadClass 46
ReadObject 47
ReadString 48
SerializeClass 48
SetLoadParams 49
SetObjectSchema 50
SetStoreParams 50
Write 51
WriteClass 52
WriteObject 52
WriteString 53

CArchive member function, CArchive class 39

Index

Index

CArchiveException class
data members, m_cause 57
described 56
member functions, CArchiveException 56

CArchiveException constructor 56
CArchiveException member function,

CArchiveException class 56
CArray class

described 58
member functions

Add 60
Append 60
CArray 61
Copy 61
ElementAt 61
FreeExtra 62
GetAt 62
GetData 62
GetSize 63
GetUpperBound 63
InsertAt 63
operator [] 67
RemoveAll 64
RemoveAt 64
SetAt 65
SetAtGrow 65
SetSize 66

CArray member function, CArray class 61
Cascades, database relation 224
CAsyncSocket class

data members
described 10 1
m_hSocket 10 1

described 68
member functions 70

Accept 70
AsyncSelect 71
Attach 72
Bind 73
CAsyncSocket 74
Close 74
Connect 74
Create 76
Detach 77
FromHandle 78
GetLastError 78
GetPeerName 78
GetSockName 79
GetSockOpt 80

CAsyncSocket class (continued)
member functions 70 (continued)

IOCtl 82
Listen 84
OnAccept 85
OnClose 85
OnConnect 86
OnOutOfBandData 87
OnReceive 88
OnSend 88
Receive 89
ReceiveFrom 90
Send 93
SendTo 94
SetSockOpt 97
ShutDown 100

members 68
CAsyncSocket member function, CAsyncSocket

class 70, 74
CATCH global function/macro 2109
CATCH macro, use in DAO 239
CATCH_ALL global function/macro 2110
Categories, macros and globals 2046
CBitmap class

described 102
member functions

CBitmap 103
CreateBitmap 103
CreateBitmapIndirect 104
CreateCompatibleBitmap 105
CreateDiscardableBitmap 106
FromHandle 106
GetBitmap 107
GetBitmapBits 107
GetBitmapDimension 108
LoadBitmap 108
LoadMappedBitmap 109
LoadOEMBitmap 109
operator HBITMAP 110
SetBitmapBits 111
SetBitmapDimension 111

CBitmap member function, CBitmap class 103
CBitmapButton class

described 112
member functions

AutoLoad 114
CBitmapButton 114
LoadBitmaps 115
SizeToContent 116

CBitmapButton member function, CBitmapButton
class 114

CBrush class
described 117
member functions

CBrush 118
CreateBrushIndirect 119
CreateDIBPattemBrush 119
CreateHatchBrush 121
CreatePattemBrush 122
CreateSolidBrush 122
CreateSysColorBrush 123
FromHandle 124
GetLogBrush 124-125

CBrush member function, CBrush class 118
CButton class

described 126
member functions

CButton 128
Create 128
Drawltem 129
GetBitmap 129
GetButtonStyle 130
GetCheck 130
GetCursor 130
Getlcon 131
GetState 131
SetBitmap 132
SetButtonStyle 132
SetCheck 133
SetCursor 133
Setlcon 134
SetState 135

CButton member function, CButton class 128
CByteArray class 136
CCheckListBox class

described 138
member functions

CCheckListBox 139
Create 139
Enable 140
GetCheck 140
GetCheckStyle 141
IsEnabled 141
OnGetCheckPosition 141
SetCheck 142
SetCheckStyle 142

CCheckListBox constructor 139

Index

CCheckListBox member function, CCheckListBox
class 139

CClientDC class
data members, m_hWnd 144
described 143
member functions, CClientDC 143

CClientDC member function, CClientDC class 143
CCmdTarget class

described 145
member functions

BeginWaitCursor 146
EnableAutomation 148
EndWaitCursor 148
FromIDispatch 149
GetiDispatch 150
IsResultExpected 150
OnCmdMsg 151
OnFinalRelease 152
RestoreWaitCursor 153

CCmdUI class
described 155
member functions

ContinueRouting 156
Enable 156
SetCheck 157
SetRadio 157
SetText 157

CColorDialog class
data members, m3C 162
described 158
member functions

CColorDialog 159
DoModal 160
GetColor 160
GetSavedCustomColors 160
OnColorOK 161
SetCurrentColor 161

CColorDialog member function, CColorDialog
class 159

CComboBox class
described 163
member functions

AddString 168
CComboBox 168
Clear 168
CompareItem 169
Copy 169
Create 169
Cut 171

Index

CComboBox class (continued)
member functions (continued)

DeleteItem 171
DeleteString 171
Dir 172
DrawItem 172
FindString 173
FindStringExact 173
GetCount 174
GetCurSel 174
GetDroppedControlRect 175
GetDroppedState 175
GetDroppedWidth 175
GetEditSel 176
GetExtendedUI 176
GetHorizontalExtent 176
GetItemData 177
GetItemDataPtr 177
GetItemHeight 178
GetLBText 178
GetLBTextLen 179
GetLocale 179
GetTopIndex 179
InitStorage 180
InsertString 180
LimitText 181
MeasureItem 181
Paste 182
ResetContent 182
SelectString 182
SetCurSel 183
SetDroppedWidth 184
SetEditSel 184
SetExtendedUI 185
SetHorizontalExtent 185
SetItemData 186
SetItemDataPtr 186
SetItemHeight 187
SetLocale 187
SetTopIndex 188
ShowDropDown 188

CComboBox member function, CComboBox class 168
CCommandLineInfo class

data members
described 191
m_bRunAutomated 191
m_bRunEmbedded 192
m_bShowSplash 192
m_nShellCommand 192

CCommandLineInfo class (continued)
data members (continued)

m_strDriverNarne 193
m_strFileName 193
m_strPortNarne 194
m_strPrinterN arne 194

member functions
CCommandLineInfo 190
described 190
ParsePararn 190

CCommandLineInfo constructor 190
CCommandLineInfo member function,

CCommandLineInfo class 190
CCommonDialog class

described 195
member functions, CCommonDialog 195

CCommonDialog constructor 195
CCommonDialog member function, CCommonDialog

class 195
CConnectionPoint class

described 197
member functions

GetConnection 199
GetContainer 199
GetIID 199
GetMaxConnections 200
OnAdvise 200

CControlBar class
data members, m_bAutoDelete 207
described 201
member functions

CalcDynamicLayout 202
CalcFixedLayout 203
EnableDocking 204
GetBarSty Ie 205
GetCount 205
GetDockingFrame 205
IsFloating 206
OnUpdateCmdUI 206
SetBarStyle 206

CCreateContext structure 209
CCriticalSection class

described 211
member functions

CCriticalSection 212
Lock 212
Unlock 213

CCriticalSection constructor 212

CCriticalSection member function, CCriticalSection
class 212

CCtrlView class
data members

m_dwDefaultStyle 215
m_strClass 215

described 214
member functions, CCtrlView 214

CCtrlView constructor 214
CCtrlView member function, CCtrlView class 214
CDaoDatabase class

data members
m_pDAODatabase 237
m_pWorkspace 238

described 216
member functions

CanTransact 219
CanUpdate 219
CDaoDatabase 219
Close 220
Create 221
CreateRelation 223
DeleteQueryDef 224
DeleteRelation 225
DeleteTableDef 225
Execute 225
GetConnect 227
GetName 227
GetQueryDefCount 228
GetQueryDeflnfo 229
GetQueryTimeout 230
GetRecordsAffected 230
GetRelationCount 231
GetRelationInfo 231
GetTableDefCount 232
GetTableDeflnfo 233
GetVersion 234
IsOpen 234
Open 235
SetQueryTimeout 237

CDaoDatabase constructor 219
CDaoDatabase member function, CDaoDatabase

class 219
CDaoDatabaseInfo structure 380,2214
CDaoErrorInfo structure

overview of structure members 243
use of 243, 2217

CDaoException class
data members

m_nAfxDaoError 242
m_pErrorInfo 243
m_scode 244

described 239
member functions

CDaoException 240
GetErrorCount 241
GetErrorInfo 241

CDaoException constructor 240
CDaoException member function, CDaoException

class 240
CDaoFieldExchange

FieldType values
outputColumn 245
param 245

operations 245
purpose of 245

CDaoFieldExchange class
data members

m_nOperation 247
m_prs 249

described 245
member functions

Is ValidOperation 246
SetFieldType 247

CDaoFieldInfo structure 2218
CDaoIndexFieldInfo structure 2225
CDaoIndexInfo structure 2222
CDaoParameterInfo structure 2226
CDaoQueryDef class

data members
m_pDAOQueryDef 270
m_pDatabase 269

described 250
member functions

Append 253
CanUpdate 254
CDaoQueryDef 254
Close 255
Create 255
Execute 256
GetConnect 257
GetDateCreated 258
GetDateLastUpdated 258
GetFieldCount 259
GetFieldInfo 259
GetName 260

Index

Index

CDaoQueryDef class (continued)
member functions (continued)

GetODBCTimeout 260
GetParameterCount 261
GetParameterInfo 261
GetParam Value 262
GetRecordsAffected 263
GetRetumsRecords 263
GetSQL 263
GetType 264
IsOpen 265
Open 265
SetConnect 266
SetName 266
SetODBCTimeout 267
SetParam Value 267
SetRetumsRecords 268
SetSQL 269

CDaoQueryDef constructor 254
CDaoQueryDef member function, CDaoQueryDef

class 254
CDaoQueryDeflnfo structure 229,2227
CDaoRecordset class

data members
described 336
m_bCheckCacheForDirtyFields 336
m_nParams 336
m_pDAORecordset 337
m_pDatabase 337
m_strFilter 337
m_strSort 338

deriving classes 272
described 271
member functions

AddNew 277
CanAppend 278
CanBookmark 279
CancelUpdate 279
CanRestart 280
CanS croll 280
CanTransact 281
CanUpdate 281
CDaoRecordset 282
Close 282
Delete 283
DoFieldExchange 284
Edit 285
FillCache 286
Find 288

CDaoRecordset class (continued)
member functions (continued)

FindFirst 288
FindLast 290
FindNext 291
FindPrev 292
GetAbsolutePosition 294
GetBookmark 294
GetCacheSize 295
GetCacheStart 296
GetCurrentlndex 296
GetDateCreated 297
GetDateLastUpdated 297
GetDefaultDBName 297
GetDefaultSQL 298
GetEditMode 299
GetFieldCount 299
GetFieldInfo 300
GetFieldValue 301
GetlndexCount 301
GetIndexInfo 302
GetLastModifiedBookmark 303
GetLockingMode 303
GetName 304
GetParam Value 304
GetPercentPosition 305
GetRecordCount 306
GetSQL 307
GetType 307
GetValidationRule 308
GetValidationText 308
IsBOF 309
IsDeleted 310
IsEOF 311
IsFieldDirty 312
IsFieldNull 313
IsFieldNullable 314
IsOpen 315
Move 315
MoveFirst 316
MoveLast 317
MoveNext 318
MovePrev 319
Open 320
Requery 323
Seek 324
SetAbsolutePosition 325
SetBookmark 326
SetCacheSize 327-328

CDaoRecordset class (continued)
member functions (continued)

SetCurrentlndex 328
SetFieldDirty 329
SetFieldNull 330
SetFieldValue 331
SetFieldValueNull 332
SetLockingMode 332
SetPararn Value 333
SetPararnValueNull 334
SetPercentPosition 334
Update 335

using CDaoRecordset without deriving 272
CDaoRecordset member function, CDaoRecordset

class 277, 282
CDaoRecordView

described 339
member functions, CDaoRecordView 341

CDaoRecordView class, member functions
IsOnFirstRecord 342
IsOnLastRecord 342
OnGetRecordset 343
OnMove 343

CDaoRecordView member function, CDaoRecordView
class 341

CDaoRelationFieldInfo structure 2232
CDaoRelationInfo structure 231, 2230
CDaoTableDef

described 345
member functions, Append 348

CDaoTableDef class
data members

described 368
m_DAOTableDef 369
m_pDatabase 368

member functions
CanUp date 348
CDaoTableDef 349
Close 349
Create 350
CreateField 351
CreateIndex 352
DeleteField 353
DeleteIndex 354
GetAttibutes 354
GetConnect 355
GetDateCreated 357
GetDateLastUpdated 357
GetFieldCount 358

CDaoTableDef class (continued)
member functions (continued)

GetFieldInfo 358
GetlndexCount 359
GetindexInfo 359
GetNarne 360
GetRecordCount 361
GetSourceTableNarne 361
GetValidationRule 362
GetValidationText 362
IsOpen 363
Open 363
RefreshLink 364
SetAttributes 364
SetConnect 365
SetNarne 366
SetSourceTableN arne 367
SetValidationRule 367
SetValidationText 368

CDaoTableDef member functions
Append 348
CDaoTableDef class 349

CDaoTableDeflnfo structure 233,2233
CDao Workspace class

See also Workspace
data members, m_pDAOWorkspace 393
described 370
member functions

Append 374
BeginTrans 374
CDao Workspace 375
Close 375
CommitTrans 376
Create 377
GetDatabaseCount 380
GetDatabaseInfo 380
GetiniPath 381
GetisolateODBCTrans 382
GetLoginTimeout 382
GetName 383
GetUserNarne 383
GetVersion 384
GetWorkspaceCount 384
GetWorkspaceInfo 385
Idle 386
IsOpen 386
Open 387
Rollback 388
SetDefaultPassword 389

Index

Index

CDaoWorkspace class (continued)
member functions (continued)

SetDefaultUser 390
SetIniPath 391
SetIsolateODBCTrans 391
SetLoginTimeout 392

CDaoWorkspace constructor 375
CDao Workspace member function, CDao Workspace

class 375
CDaoWorkspaceInfo structure 385,2235
CDatabase class

data members, m_hdbc 405
member functions

BeginTrans 394
Cancel 395
CanTransact 395
CanUpdate 396
CDatabase 396
Close 397
CommitTrans 397
ExecuteSQL 398
GetConnect 399
GetDatabaseName 399
In W aitForDataSource 399
IsOpen 400
OnSetOptions 400
On WaitForDataSource 401
Open 401
Rollback 403
SetLoginTimeout 404
SetQueryTimeout 404
SetSynchronousMode 403

CDatabase constructor 396
CDatabase member function, CDatabase class 396
CDatabase object

closing 397
creating 396

CDataExchange class
described 408
Dialog data exchange (DDX) 408
member functions

described 411
Fail 408
m_bSaveAndValidate 410
PrepareCtrl 409
PrepareEditCtrl 410

members 408

CDBException class
data members

m_nRetCode 413
m_strError 415
m_strStateNativeOrigin 415

described 412
CDC class

data members
m_hAttribDC 548
m_hDC 548

described 416
member functions

AbortDoc 425
AbortPath 426
AddMetaFileComment 427
AngleArc 427
Arc 428
ArcTo 429
Attach 430
BeginPath 431
BitBlt 431
CDC 434
Chord 434
CloseFigure 435
CreateCompatibleDC 435
CreateDC 436
CreateIC 437
DeleteDC 438
DeleteTempMap 438
Detach 439
DPtoHIMETRIC 439
DPtoLP 439
Draw3dRect 440
DrawDragRect 441
DrawEdge 441
DrawEscape 443
DrawFocusRect 444
DrawFrameControl 444
DrawIcon 446
DrawState 446
DrawText 448
Ellipse 450
EndDoc 451
EndPage 452
EndPath 452
EnumObjects 452
Escape 454
ExcludeClipRect 455
ExcludeUpdateRgn 456

CDC class (continued)
member functions (continued)

ExtFloodFill 456
ExtTextOut 457
FillPath 458
FillRect 459
FillRgn 459
FillSolidRect 460
FlattenPath 460
FloodFill 461
FrameRect 461
FrameRgn 462
FromHandle 462
GetArcDirection 463
GetAspectRatioFilter 463
GetBkColor 463
GetBkMode 464
GetBoundsRect 464
GetBrushOrg 465
GetCharABCWidths 465
GetCharWidth 466
GetClipBox 467
GetColorAdjustment 468
GetCurrentBitmap 468
GetCurrentBrush 468
GetCurrentFont 468
GetCurrentPalette 469
GetCurrentPen 469
GetCurrentPosition 469
GetDeviceCaps 470
GetFontData 474
GetGlyphOutline 475
GetHalftoneBrush 477
GetKemingPairs 477
GetMapMode 478
GetMiterLimit 478
GetNearestColor 478
GetOutlineTextMetrics 479
GetOutputCharWidth 479
GetOutputTabbedTextExtent 480
GetOutputTextExtent 481
GetOutputTextMetrics 482
GetPath 482
GetPixel 483
GetPolyFillMode 484
GetROP2484
GetSafeHdc 484
GetStretchBltMode 485
GetTabbedTextExtent 485

CDC class (continued)
member functions (continued)

GetTextAlign 486
GetTextCharacterExtra 487
GetTextColor 487
GetTextExtent 488
GetTextFace 488
GetTextMetrics 489
GetViewportExt 489
GetViewportOrg 490
GetWindow 490
GetWindowExt 490
GetWindowOrg 490
GrayString 491
HIMETRICtoDP 492
HIMETRICtoLP 493
IntersectClipRect 493
InvertRect 494
InvertRgn 494
IsPrinting 495
LineTo 495
LPtoDP 495
LPtoHIMETRIC 496
MaskBlt 496
MoveTo 498
OffsetClipRgn 498
OffsetViewportOrg 499
OffsetWindowOrg 499
PaintRgn 500
PatBlt 500
Pie 501
PlayMetaFile 502
PIgBlt 503
PolyBezier 505
PolyBezierTo 506
PolyDraw 506
Polygon 507
Polyline 508
PolylineTo 508
PolyPolygon 509
PolyPolyline 510
PtVisible 510
Query Abort 511
RealizePalette 511
Rectangle 512
RectVisible 512
ReleaseAttribDC 513
ReleaseOutputDC 513
ResetDC 513

Index

Index

CDC class (continued)
member functions (continued)

RestoreDC 514
RoundRect 514
SaveDC 515
ScaleViewportExt 516
ScaleWindowExt 516
ScrollDC 517
SelectClipPath 518
SelectClipRgn 519
SelectObject 520
SelectPalette 521
SelectStockObject 522
SetAbortProc 523
SetArcDirection 524
SetAttribDC 525
SetBkColor 525
SetBkMode 526
SetBoundsRect 526
SetBrushOrg 527
SetColorAdjustment 528
SetMapMode 528
SetMapperFlags 530
SetMiterLimit 530
SetOutputDC 530
SetPixel 531
SetPixelV 531
SetPolyFillMode 532
SetROP2 533
SetStretchBltMode 534
SetTextAlign 535
SetTextCharacterExtra 536
SetTextColor 537
SetTextJustification 537
SetViewportExt 538
SetViewportOrg 539
SetWindowExt 540
SetWindowOrg 541
StartDoc 541
StartPage 542
StretchBlt 542
StrokeAndFillPath 544
StrokePath 545
TabbedTextOut 545
TextOut 546
UpdateColors 547
WidenPath 547

CDC class, callback functions for See Callback
functions for MFC member functions

CDC member function, CDC class 434
CDialog class

described 549
member functions

CDialog 552
Create 552
CreateIndirect 553
DoModal 554
EndDialog 555
GetDefID 555
GotoDlgCtrl 556
InitModalIndirect 556
MapDialogRect 557
NextDIgCtrl 557
OnCancel 558
OnInitDialog 558
OnOK 559
OnSetFont 559
PrevDIgCtrl 559
SetDefID 560
SetHelpID 560

CDialog member function, CDialog class 552
CDialogBar class

described 561
member functions

CDialogBar 562
Create 562

CDialogBar member function, CDialogBar class 562
CDocItem class

described 564
member functions

GetDocument 565
IsBlank 564

CDocTemplate class
described 566
member functions

AddDocument 568
CDocTemplate 568
CloseAllDocuments 569
CreateNewDocument 570
CreateNewFrame 570
CreateOleFrame 571
GetDocString 571
GetFirstDocPosition 572
GetNextDoc 573
InitialUpdateFrame 573
LoadTemplate 574
MatchDocType 574
OpenDocumentFile 575

CDocTemplate class (continued)
member functions (continued)

RemoveDocument 576
SaveAllModified 576
SetContainerInfo 576
SetDefaultTitle 577
SetServerInfo 577

CDocTemplate member function, CDocTemplate
class 568

CDocument class
described 579
member functions

AddView 581
CanCloseFrame 583
CDocument 584
DeleteContents 584
GetDocTemplate 585
GetFile 585
GetFirstViewPosition 586
GetNextView 586
GetPathName 587
GetTitle 587
IsModified 588
OnChangedViewList 588
OnCloseDocument 588
OnFileSendMail 589
OnNewDocument 589
OnOpenDocument 591
OnSaveDocument 593
OnUpdateFileSendMail 593
PreCloseFrame 594
ReleaseFile 594
Remove View 594
ReportSaveLoadException 596
SaveModified 597
SetModifiedFlag 597
SetPathName 598
SetTitle 598
UpdateAllViews 598

CDocument member function, CDocument class 584
CDragListBox class

described 600
member functions

BeginDrag 601
CancelDrag 601
CDragListBox 602
Dragging 602
DrawInsert 602

CDragListBox class (continued)
member functions (continued)

Dropped 603
ItemFromPt 603

CDragListBox member function, CDragListBox
class 602

CDumpContext class
described 604
member functions

CDumpContext 605
Flush 605
GetDepth 606
HexDump 606
operator < < 607
SetDepth 607

CDumpContext member function, CDumpContext
class 605

CDWordArray class 609
CEdit class

member functions
CanUndo 614
CEdit 615
CharFromPos 615
Clear 615
Copy 616
Create 616
Cut 617
EmptyUndoBuffer 617
FmtLines 618
GetFirstVisibleLine 618
GetHandle 619
GetLimitText 619
GetLine 620
GetLineCount 620
GetMargins 621
GetModify 621
GetPasswordChar 621
GetRect 622
GetSel 622
LimitText 623
LineFromChar 623
LineIndex 624
LineLength 624
LineScroll 625
Paste 625
PosFromChar 626
ReplaceSel 626
SetHandle 627
SetLimitText 627

Index

Index

CEdit class (continued)
member functions (continued)

SetMargins 628
SetModify 628
SetPasswordChar 629
SetReadOnly 629
SetRect 630
SetRectNP 630
3SetSei 631
SetTabStops 631
Undo 632

overview 611
CEdit member function, CEdit class 615
CEditView class

described 633
member functions

CEditView 635
dwStyleDefault 642
FindText 635
GetBufferLength 636
GetEditCtrl 636
GetPrinterFont 636
GetSelectedText 637
LockBuffer 637
OnFindNext 637
OnReplaceAll 638
OnReplaceSel 639
OnTextNotFound 639
PrintlnsideRect 640
SerializeRaw 640
SetPrinterFont 641
SetTabStops 641
UnlockBuffer 641

CEditView member function, CEditView class 635
CenterWindow member function, CWnd class 1868
CEvent class

described 643
member functions

CEvent 644
PulseEvent 645
ResetEvent 645
SetEvent 645
Unlock 646

CEvent constructor 644
CEvent member function, CEvent class 644
CException class

described 647
member functions, GetErrorMessage 648

CFieldExchange class
described 652
member functions

IsFieldType 653
SetFieldType 653

CFile class
data members, m_hFile 672
described 655
member functions

Abort 657
CFile 657
Close 659
Duplicate 660
Flush 660
GetFileName 660
GetFilePath 660
GetFileTitle 661
GetLength 661
GetPosition 661
GetStatus 662
LockRange 663
Open 664
Read 665
ReadHuge 666
Remove 666
Rename 667
Seek 667
SeekToBegin 668
SeekToEnd 668
SetFilePath 669
SetLength 669
SetStatus 670
UnlockRange 670
Write 671
WriteHuge 671

CFile member function, CFile class 657
CFileDialog class

data members, m_ofn 681
described 673
member functions

CFileDialog 675
DoModal 676
GetFileExt 676
GetFileName 677
GetFileTitle 677
GetNextPathName 678
GetPathName 678
GetReadOnlyPref 679
GetStartPosition 679

CFileDialog class (continued)
member functions (continued)

OnFileNameOK 679
OnLBSelChangedNotify 680
OnShare Violation 680

CFileDialog member function, CFileDialog class 675
CFileException class

data members
m_cause 685
m_IOsError 686

described 682
member functions

CFileException 683
ErrnoToException 683
OsErrorToException 684
ThrowErrno 684
ThrowOsError 684

CFileException member function, CFileException
class 683

CFindReplaceDialog class
data members, mjr 693
described 687
member functions

CFindReplaceDialog 689
Create 689
FindNext 690
GetFindString 690
GetNotifier 691
GetReplaceString 691
IsTerminating 691
MatchCase 692
Match Whole Word 692
ReplaceAll 692
ReplaceCurrent 693
SearchDown 693

CFindReplaceDialog member function,
CFindReplaceDialog class 689

CFont class
described 694
member functions

CFont 695
CreateFont 695
CreateFontIndirect 699
CreatePointFont 700-701
FromHandle 701
GetLogFont 702
operator HFONT 702

CFont member function, CFont class 695

CFontDialog class
data members, m_cf 708
described 703
member functions

CFontDialog 704
DoModal 705
GetColor 705
GetCurrentFont 706
GetFaceName 706
GetSize 706
GetStyleName 707
GetWeight 707
IsBold 707
IsItalic 707
IsStrikeOut 708
IsUnderline 708

Index

CFontDialog member function, CFontDialog class 704
CFontHolder class

data members, m_pFont 712
described 709
member functions

CFontHolder 709
GetDisplayString 710
GetFontDispatch 710
GetFontHandle 710
InitializeFont 711
ReleaseFont 711
Select 712
SetFont 712

CFontHolder member function, CFontHolder class 709
CForm View class

described 713
member functions, CFormView 716

CForm View member function, CForm View class 716
CFrameWnd class

data members, m_bAutoMenuEnable 735
described 717
member functions

ActivateFrame 721
BeginModalState 721
CFrameWnd 721
Create View 723
DockControlBar 723
EnableDocking 724
EndModalState 724
FloatControlBar 724
GetActiveDocument 725
GetActiveFrame 726
GetActive View 726

Index

CFrameWnd class (continued)
member functions (continued)

GetControlBar 726
GetDockState 727
GetMessageBar 727
GetMessageString 727
InitialUpdateFrame 727
InModalState 728
IsTracking 728
LoadAccelTable 728
LoadBarState 729
LoadFrame 729
NegotiateBorderSpace 730
OnContextHelp 731
OnCreateClient 731
OnSetPreviewMode 732
RecalcLayout 732
rectDefault 735
SaveBarState 733
SetActive View 733
SetDockState 733
SetMessageText 734
ShowControlBar 734
ShowOwnedWindows 734

CFrameWnd member function, CFrameWnd class 721
CGdiObject class

data members, m_hObject 743
described 736
member functions

Attach 737
CGdiObject 737
CreateStockObject 737
DeleteObject 739
DeleteTempMap 739
Detach 739
FromHandle 740
GetObject 740
GetObjectType 741
GetSafeHandle 742
UnrealizeObject 742

CGdiObject member function, CGdiObject class 737
Change notifications, in-place editing 1247
ChangeClipboardChain member function, CWnd

class 1868
ChangeType member function, Cole Variant class 1288
CharFromPos member function, CEdit class 615
CharToItem member function, CListBox class 784

CHeaderCtrl class
described 744
member functions

CHeaderCtrl 745
Create 745
DeleteItem 747
DrawItem 747
GetItem 747
GetItemCount 749
InsertItem 749
Layout 749
SetItem 750

CHeaderCtrl constructor 745
CHeaderCtrl member function, CHeaderCtrl class 745
CheckButton member function, CToolBarCtrl

class 1702
CheckDIgButton member function, CWnd class 1869
CheckMenuItem member function, CMenu class 898
CheckMenuRadioItem member function, CMenu

class 898
Checkpoint member function, CMemoryState

class 890
CheckRadioButton member function, CWnd

class 1869
ChildWindowFromPoint member function, CWnd

class 1870
Chord member function, CDC class 434
CHotKeyCtrl class

described 751
member functions

CHotKeyCtrl 752
Create 752
GetHotKey 753
SetHotKey 753
SetRules 754

CHotKeyCtrl constructor 752
CHotKeyCtrl member function, CHotKeyCtrl

class 752
CImageList class

data members, m_hImageList 768
described 755
member functions

Add 756
Attach 757
BeginDrag 757
CImageList 758
Create 758
DeleteObject 759
Detach 759

CImageList class (continued)
member functions (continued)

DragEnter 759
DragLeave 760
DragMove 760
DragShowNolock 761
Draw 761
EndDrag 762
ExtractIcon 762
GetBkColor 763
GetDragImage 763
GetImageCount 763
GetImageInfo 764
GetSafeHandle 764
Read 765
Remove 765
Replace 765
SetBkColor 766
SetDragCursorImage 766
SetOverlayImage 767
Write 767

CImageList constructor 758
CImageList member function, CImageList class 758
Class design philosophy 2
Class factories and licensing 2069
Class Library Reference, overview xi
Class Overview class 1
Classes

See also specific class
document/view, listed 7
hierarchy charts xi

Class Wizard comment
AFX_DATA_INIT 2203
AFX_DATA_MAP 2203
AFX_DATA 2203
AFX_DISP _MAP 2204
AFX_DISP 2204
AFX_EVENT_MAP 2205
AFX_EVENT 2204
AFX_FIELD_INIT 2205
AFX_FIELD _MAP 2206
AFX_FIELD 2205
AFX_MSG_MAP 2206
AFX_MSG 2206
AFX_ VIRTUAL 2207

Class Wizard comment delimiters 2202
Clear member function

CComboBox class 168
CEdit class 615

Clear member function (continued)
COleVariant 1289
CRichEditCtrl class 1464

Index

ClearSel member function, CSliderCtrl class 1543
ClearTics member function, CSliderCtrl class 1544
ClientToScreen member function, CWnd class 1870
Clipboard

determining owner 1112
emptying 1111
formats 1258
providing data 1115

CList class
described 769
member functions

AddHead 770
AddTail 771
Find 771
FindIndex 772
GetAt 772
GetCount 773
GetHead 773
GetHeadPosition 773
GetNext 774
GetPrev 774
GetTail 775
GetTailPosition 776
InsertAfter 776
InsertBefore 776
IsEmpty 777
RemoveAll 777
RemoveAt 777
RemoveHead 778
RemoveTail 778
SetAt 778

CListBox class
described 780
member functions

AddString 784
CharToItem 784
CListBox 785
CompareItem 785
Create 786
DeleteItem 787
DeleteString 787
Dir 788
Drawltem 788
FindString 789
FindStringExact 789
GetAnchorIndex 790

Index

CListBox class (continued)
member functions (continued)

GetCaretIndex 790
GetCount 791
GetCurSel 791
GetHorizontalExtent 791
GetltemData 792
GetItemDataPtr 792
GetltemHeight 792
GetItemRect 793
GetLocale 793
GetSel 794
GetSelCount 794

____________________________________ GetS_elItemLI9A_____ _ _____________ _________ _
GetText 795
GetTextLen 795
GetToplndex 796
InitStorage 796
InsertString 797
ItemFromPoint 797
Measureltem 797
ResetContent 798
SelectString 798
SelItemRange 799
SetAnchorIndex 799
SetCaretIndex 800
SetColumn Width 800
SetCurSel 800
SetHorizontalExtent 801
SetItemData 801
SetltemDataPtr 802
SetItemHeight 802
SetLocale 803
SetSel 803
SetTabStops 803
SetToplndex 804
VKeyToltem 805

CListBox member function, CListBox class 785
CListCtrl class

described 806
member functions

Arrange 810
CListCtrl 811
Create 811
CreateDragImage 813
DeleteAllItems 813
DeleteColumn 813
Deleteltem 814
Drawltem 814

CListCtrl class (continued)
member functions (continued)

EditLabel 815
Ensure Visible 815
Findltem 815
GetBkColor 816
GetCallbackMask 817
GetColumn 817
GetColumn Width 818
GetCountPerPage 819
GetEditControl 819
GetImageList 819
Getltem 820

__ _________________ _____ GetItemCount 821
GetltemData 821
GetltemPosition 822
GetltemRect 822
GetItemState 823
GetItemText 823
GetNextItem 824
GetOrigin 825
GetSelectedCount 825
GetStringWidth 825
GetTextBkColor 826
GetTextColor 826
GetToplndex 826
GetViewRect 826
HitTest 827
InsertColumn 828
InsertItem 829
Redrawltems 830
Scroll 830
SetBkColor 830
SetCallbackMask 831
SetColumn 831
SetColumnWidth 832
SetImageList 832
SetItem 832
SetItemCount 833
SetItemData 834
SetItemPosition 834
SetItemState 835
SetItemText 835
SetTextBkColor 836
SetTextColor 836
Sortltems 836
Update 837

CListCtrl constructor 811
CListCtrl member function, CListCtrl class 811

CListView class
described 838
member functions

CListView 838
GetListCtrl 839

CListView constructor 838
CListView member function, CListView class 838
CLongBinary class

Binary Large Object 840
BLOB 840
data handle 841
data length 841
data members

m_dwDataLength 841
m_hData 841

described 840
DFX field exchange 2154
Large data objects 840
member functions, CLongBinary 841
RFX field exchange 2194

CLongBinary constructor 841
CLongBinary member function, CLongBinary

class 841
Close member function

CAnimateCtrl class 34
CArchive class 41
CAsyncSocket class 74
CDaoDatabase class 220
CDaoQueryDef class 255
CDaoRecordset class 282
CDaoTableDef class 349
CDaoWorkspace class 375
CDatabase class 397
CFile class 659
CMetaFileDC class 918
COleClientltem class 990
CRecordset class 1384

CloseAllDocuments member function
CDocTemplate class 569
CWinApp class 1799

CloseEnhanced member function, CMetaFileDC
class 919

CloseFigure member function, CDC class 435
Closing

CDatabase objects 397
database objects 220
Recordset 1384
workspaces, DAO 375

CMap class
described 842
member functions

CMap 843
GetCount 843
GetHashTableSize 844
GetNextAssoc 844
GetStartPosition 845
InitHashTable 845
IsEmpty 845
Lookup 846
operator [] 847
RemoveAll 846
RemoveKey 846
SetAt 847

CMap member function, CMap class 843
CMapPtrToPtr class 849
CMapPtrTo Word class 851
CMapStringToOb class

described 853
member functions

CMapStringToOb 854
GetCount 854
GetNextAssoc 855
GetStartPosition 856
IsEmpty 856
Lookup 857
operator [] 860
RemoveAll 857
RemoveKey 858
SetAt 859

Index

CMapStringToOb member function, CMapStringToOb
class 854

CMapStringToPtr class 861
CMapStringToString class 863
CMap WordToOb class 865
CMapWordToPtr class 867
CMDIChildWnd class

described 869
member functions

CMDIChildWnd 871
Create 871
GetMDIFrame 872
MDIActivate 872
MDIDestroy 873
MDIMaximize 873
MDIRestore 873

CMDIChildWnd member function, CMDIChildWnd
class 871

Index

CMDIFrame Wnd class
described 874
member functions

CMDIFrameWnd 876
CreateClient 876
GetWindowMenuPopup 877
MDIActivate 877
MDICascade 878
MDIGetActive 878
MDIIconArrange 879
MDIMaximize 879
MDINext 879
MDIRestore 880

_____ MI?ISe.!Me1!!!_~_~~t __ _
MDITile 881

CMDIFrameWnd member function, CMDIFrameWnd
class 876

CMemFile class
described 882
member functions

Alloc 883
Attach 883
CMemFile 884
Detach 885
Free 885
GrowFile 885
Memcpy 886
Realloc 886

CMemFile member function, CMemFile class 884
CMemoryException class

described 888
member functions, CMemoryException 888

CMemoryException member function,
CMemoryException class 888

CMemoryState class
described 889-890
member functions

Checkpoint 890
CMemoryState 890
Difference 891
DumpAllObjectsSince 891
DumpStatistics 892

CMemoryState member function, CMemoryState
class 890

CMenu class
data members, llChMenu 916
described 893

CMenu class (continued)
member functions

AppendMenu 895
Attach 897
CheckMenultem 898
CheckMenuRadioltem 898
CMenu 899
CreateMenu 899
CreatePopupMenu 900
DeleteMenu 900
DeleteTempMap 901
DestroyMenu 901
Detach 902
Drawltem 902
EnableMenultem 902
FromHandle 903
GetMenuContextHelpld 904
GetMenultemCount 904
GetMenultemID 904
GetMenuState 905
GetMenuString 906
GetSafeHmenu 907
GetSubMenu 907
InsertMenu 907
LoadMenu 909
LoadMenuIndirect 910
Measureltem 911
ModifyMenu 911
RemoveMenu 912
SetMenuContextHelpId 913
SetMenultemBitmaps 913
TrackPopupMenu 914

CMenu member function, CMenu class 899
CMetaFileDC class

described 917
member functions

Close 918
CloseEnhanced 919
CMetaFileDC 919
Create 920
CreateEnhanced 920

CMetaFileDC member function, CMetaFileDC
class 919

CMiniFrame Wnd class
described 922
member functions

CMiniFrameWnd 922
Create 923

CMiniFrame Wnd constructor 922

CMiniFrameWnd member function, CMiniFrameWnd
class 922

CMultiDocTemplate class
described 924
member functions, CMultiDocTemplate 925

CMultiDocTemplate member function,
CMultiDocTemplate class 925

CMultiLock class
described 927
member functions

CMultiLock 928
IsLocked 928
Lock 928
Unlock 929

CMultiLock constructor 928
CMultiLock member function, CMultiLock class 928
CMutex class

described 931
member functions, CMutex 932

CMutex constructor 932
CMutex member function, CMutex class 932
CN otSupportedException class

described 933
member functions 933

CNotSupportedException member function,
CNotSupportedException class 933

CObArray class
described 934
member functions

Add 935
CObArray 936
ElementAt 936
FreeExtra 937
GetAt 937
GetSize 938
GetUpperBound 938
InsertAt 938
operator [] 943
RemoveAll 939
RemoveAt 940
SetAt 941
SetAtGrow 942
SetSize 942

CObArray member function, CObArray class 936
CObject class

described 944
member functions

AssertValid 945
CObject 946

CObject class (continued)
member functions (continued)

Dump 946
GetRuntimeClass 947
IsKindOf 948
IsSerializable 948
operator = 950
operator delete 950
operator new 950
Serialize 949

CObject member function, CObject class 946
CObList class

described 952
member functions

AddHead 954
AddTail 954
CObList 955
Find 956
Findlndex 957
GetAt 957
GetCount 958
GetHead 958
GetHeadPosition 959
GetNext 960
GetPrev 961
GetTail 962
GetTailPosition 962
InsertAfter 963
InsertBefore 964
IsEmpty 964
RemoveAll 965
RemoveAt 965
RemoveHead 966
RemoveTail 967
SetAt 967

CObList member function, CObList class 955
COleBusyDialog class

data members, m_bz 972
described 969-970
member functions

COleBusyDialog 970
DoModal 970
GetSelectionType 971

COleBusyDialog constructor 970

Index

COleBusyDialog member function, COleBusyDialog
class 970

COleChangeIconDialog class
data members, m_ci 976
described 973

Index

COleChangeIconDialog class (continued)
member functions

COleChangeIconDialog 974
DoChangeIcon 974
DoModal 975
GetlconicMetafile 975

COleChangeIconDialog constructor 974
COleChangeIconDialog member function,

COleChangeIconDialog class 974
COleChangeSourceDialog class

data members
described 981
m_cs 981

described 977
member functions

COleChangeSourceDialog 978
described 978
DoModal 978
GetDisplayName 979
GetFileName 979
GetFromPrefix 979
GetltemName 980
GetToPrefix 980
Is V alidSource 981

COleChangeSourceDialog constructor 978
COleChangeSourceDialog member function,

COleChangeSourceDialog class 978
COleClientltem class 1239

described 982
member functions

Activate 986
ActivateAs 987
AttachDataObject 988
CanActivate 988
CanCreateFromData 988
CanCreateLinkFromData 989
CanPaste 989
CanPasteLink 990
Close 990
COleClientltem 991
ConvertTo 991
CopyToClipboard 992
CreateCloneFrom 992
CreateFromClipboard 992
CreateFromData 993
CreateFromFile 994
CreateLinkFromClipboard 995
CreateLinkFromData 995
CreateLinkFromFile 996

COleClientltem class 1239 (continued)
member functions (continued)

CreateNewItem 997
CreateStaticFromClipboard 998
CreateStaticFromData 998
Deactivate 999
DeactivateUI 1000
Delete 1000
DoDragDrop 1000
DoVerb 1001
Draw 1002
GetActive View 1003
GetCachedExtent 1003
GetClassID 1004
GetClipboardData 1004
GetDocument 1005
GetDraw Aspect 1005
GetExtent 1005
GetIconicMetafile 1006
GetlnPlace Window 1006
GetltemState 1007
GetLastStatus 1007
GetLinkUpdateOptions 1007
GetType 1008
GetUserType 1008
IsInPlaceActive 1009
IsLinkUpToDate 1009
IsModified 1010
IsOpen 1010
IsRunning 10 10
OnActivate 10 11
OnActivateUI 1011
OnChange 10 11
OnChangeltemPosition 1012
OnDeactivate 1013
OnDeactivateAndUndo 1013
OnDeactivateUI 1014
OnDiscardUndoState 1014
OnGetClipboardData 1014
OnGetClipRect 1015
OnGetltemPosition 1015
OnGetWindowContext 1016
OnInsertMenus 1016
OnRemoveMenus 10 17
OnScrollBy 1018
OnSetMenu 10 18
OnShowControlBars 1019
OnShowltem 1019
OnUpdateFrameTitle 1020

COleClientItem class 1239 (continued)
member functions (continued)

ReactivateAndUndo 1020
Release 1020
Reload 1021
Run 1021
SetDraw Aspect 1021
SetExtent 1022
SetHostNames 1022
SetlconicMetafile 1023
SetltemRects 1023
SetLinkUpdateOptions 1024
SetPrintDevice 1024
UpdateLink 1025

COleClientItem constructor 991
COleClientItem member function, COleClientItem

class 991
COleControl class

described 1026
member functions

AmbientBackColor 1031
AmbientDisplayName 1032
AmbientFont 1032
AmbientForeColor 1032
AmbientLocaleID 1033
AmbientScaleU nits 1033
AmbientShowGrabHandles 1033
AmbientShowHatching 1034
AmbientTextAlign 1034
AmbientUIDead 1034
AmbientU serMode 1035
BoundPropertyChanged 1035
BoundPropertyRequestEdit 1035
COleControl 1036
ControlInfoChanged 1036
DisplayError 1036
DoClick 1037
DoPropExchange 1037
DoSuperClassPaint 1038
DrawContent 1038
DrawMetaFile 1038
EnableSimpleFrame 1039
ExchangeExtent 1039
ExchangeStockProps 1039
Exchange Version 1040
FireClick 1040
FireDblClick 1041
FireError 1041
FireEvent 1041

COleControl class (continued)
member functions (continued)

FireKeyDown 1042
FireKeyPress 1043
FireKeyUp 1043
FireMouseDown 1044
FireMouseMove 1045
FireMouseUp 1045
GetAmbientProperty 1046
GetBackColor 1047
GetBorderStyle 1047
GetClassID 1048
GetControlSize 1048
GetEnabled 1048
GetExtendedControl 1049
GetFont 1049
GetFontTextMetrics 1049
GetForeColor 1050
GetHwnd 1050
GetMessageString 1050
GetNotSupported 1051
GetRectlnContainer 1051
GetStockTextMetrics 1051
GetText 1052
InitializeIIDs 1052
InternalGetFont 1052
InternalGetText 1053
InvalidateControl 1053
IsConvertingVBX 1053
IsModified 1054
IsSubclassedControl 1054
LocklnPlaceActive 1055
OnAmbientPropertyChange 1055
OnBackColorChanged 1055
OnBorderStyleChanged 1056
OnClick 1056
OnDoVerb 1056
OnDraw 1057
OnDrawMetafile 1057
OnEdit 1058
OnEnabledChanged 1058
OnEnumVerbs 1058
OnEventAdvise 1059
OnFontChanged 1059
OnForeColorChanged 1059
OnFreezeEvents 1060
OnGetColorSet 1060
OnGetControlInfo 1061
OnGetDisplayString 1061

Index

Index

COleControl class (continued)
member functions (continued)

OnGetInPlaceMenu 1061
OnGetPredefinedStrings 1062
OnGetPredefinedValue 1062
OnHideToolbars 1063
OnKeyDownEvent 1063
OnKeyPressEvent 1064
OnKeyUpEvent 1064
OnMapPropertyToPage 1064
OnMnemonic 1065
OnProperties 1065
OnRenderData 1065
OnRenderFileData 1066

COleConvertDialog class
data members, m_cv 1085
described 1080
member functions

COleConvertDialog 1081
DoConvert 1082
DoModal 1082
GetClassID 1083
GetDraw Aspect 1083
GetIconicMetafile 1084
GetSelectionType 1084

COleConvertDialog constructor 1081
COleConvertDialog member function,

COleConvertDialog class 1081
.. -------.------........ - -------···--···_····_---------O-n-R-e-nd-e-rG-IObil-D-a-ta --1067------· -------.----... -.---- .. ---- -- ------"--·---·······COleCurrency-------·-----·---·---"_ .. _-----

OnResetState 1068 data members
OnSetClientSite 1068 described 1096
OnSetData 1068 m_cur 1096
OnSetExtent 1069 m_status 1096
OnSetObjectRects 1069 member functions
OnShowToolbars 1070 COleCurrency 1087
OnTextChanged 1070 Constructor 1087
PostModalDialog 1071 described 1087
PreModalDialog 1070 Format 1088
RecreateControlWindow 1071 GetStatus 1089
Refresh 1071 operator + 1093
SelectFontObject 1071 operator - 1093
SelectStockFont 1072 ParseCurrency 1090
SetBackColor 1072 SetCurrency 1091
SetBorderStyle 1072 SetStatus 1091
SetControlSize 1073 operators
SetEnabled 1073 Archive 1096
SetFont 1073 described 1092
SetForeColor 1074 Dump 1096
SetInitialDataFormats 1074 operator!= 1095
SetInitialSize 1074 operator *= 1094
SetModifiedFlag 1075 operator * 1094
SetNotPermitted 1075 operator += 1093
SetNotSupported 1075 operator /= 1094
SetRectInContainer 1075 operator / 1094
SetText 1076 operator« 1096
ThrowError 1076 operator <= 1095
TransformCoords 1077 operator < 1095
TranslateColor 1077 operator == 1095
WillAmbientsBe ValidDuringLoad 1078 operator = 1092-1093

COleControl member function, COleControl operator >= 1095
class 1036 operator» 1096

COleControlModule class 1079 operator> 1095

COleCurrency (continued)
operators (continued)

operator CURRENCY 1095
Relational 1095

COleCurrency class 1086
COleCurrency data, DFX field exchange 2150
COleCurrency member function, COleCurrency

class 1087
COleDataObject class

described 1098
member functions

Attach 1099
AttachClipboard 1099
BeginEnumFormats 1100
COleDataObject 1100
Detach 1100
GetData 110 1
GetFileData 110 1
GetGlobalData 1102
GetNextFormat 1103
IsDataA vailable 1103
Release 1104

COleDataObject constructor 1100
COleDataObject member function, COleDataObject

class 1100
COleDataSource class

described 1105, 1258
member functions

CacheData 1106
CacheGlobalData 1107
COleDataSource 1108
DelayRenderData 1108
DelayRenderFileData 1109
DelaySetData 1109
DoDragDrop 1110
Empty 1111
FlushClipboard 1111
GetClipboardOwner 1112
OnRenderData 1112
OnRenderFileData 1113
OnRenderGlobalData 1114
OnSetData 1114
SetClipboard 1115

COleDataSource constructor 1108
COleDataSource member function, COleDataSource

class 1108

COleDateTime class
data members

m_dt 1137
m_status 1138

described 1116
member functions

COleDateTime 1118
Constructor 1118
described 1118
Format 1119
GetCurrentTime 1121
GetDay 1121
GetDayOtweek 1122
GetDayOfY ear 1122
GetHour 1123
GetMinute 1124
GetMonth 1124
GetSecond 1125
GetStatus 1126
GetYear 1127
ParseD ate Time 1127
SetDate 1128
SetDateTime 1130
SetStatus 1132
SetTime 1132

operators
Archive 1137
Dump 1137
operator!= 1136
operator += 1135
operator + 1135
operator - 1135
operator« 1137
operator <= 1136
operator < 1136
operator == 1136
operator = 1134-1135
operator >= 1136
operator» 1137
operator> 1136
operator DATE 1136
relational 1136

COleDateTime data, DFX field exchange 2151
COleDateTime member function, COleDateTime

class 1118
COleDateTimeSpan

data members
m_span 1152
m_status 1153

Index

Index

COleDateTimeSpan (continued)
member functions

COleDateTimeSpan 1141
Constructor 1141
described 1141
Format 1142
GetDays 1143
GetHours 1143
GetMinutes 1144
GetSeconds 1145
GetStatus 1145
GetTotalDays 1146
GetTotalHours 1147
GetTotalMinutes 1147
GetTotalSeconds 1148
SetDateTimeSpan 1148
SetStatus 1149

operators
Archive 1152
Dump 1152
operator!= 1151
operator += 1151
operator + 1150
operator - 1150
operator« 1152
operator <= 1151
operator < 1151
operator == 1151
operator = 1150-1151
operator >= 1151
operator» 1152
operator> 1151
operator double 1151
relational 1151

COleDateTimeSpan class 1140
COleDateTimeSpan member function,

COleDateTimeSpan class 1141
COleDialog class

described 1154
member functions, GetLastError 1155

COleDispatchDriver class
data members

m_bAutoRelease 1162
m_IpDispatch 1162

described 1156
member functions

AttachDispatch 1157
COleDispatchDriver 1157
CreateDispatch 1157

COleDispatchDriver class (continued)
member functions (continued)

DetachDispatch 1158
GetProperty 1158
InvokeHelper 1159
ReleaseDispatch 1161
SetProperty 1161

COleDispatchDriver constructor 1157
COleDispatchDriver member function,

COleDispatchDriver class 1157
COleDispatchException class

data members
m_dwHelpContext 1164
m_strDescription 1164

-----------·-----------m_strHelpFile 1164 -------------.--- ---- -_ __ .. __ .. -._-_ .. _ __ .. --" -----" ..

m_strSource 1164
m_wCode 1165

described 1163
COleDocument class

described 1166
member functions

AddItem 1167
ApplyPrintDevice 1168
COleDocument 1169
EnableCompoundFile 1169
GetInPlaceActiveltem 1169
GetNextClientltem 1170
GetNextItem 1170
GetNextServerItem 1171
GetPrimarySelectedltem 1172
GetStartPosition 1172
HasBlankItems 1172
OnFileSendMail 1173
OnShowViews 1173
Removeltem 1173
UpdateModifiedFlag 1174

COleDocument constructor 1169
COIeDocument member function, COleDocument

class 1169
COleDropSource class

described 1175
member functions

COleDropSource 1176
GiveFeedback 1176
OnBeginDrag 1177
QueryContinueDrag 1177

COleDropSource constructor 1176
COleDropSource member function, COleDropSource

class 1176

COleDropTarget class
described 1179
member functions

COleDropTarget 1180
OnDragEnter 1180
OnDragLeave 1181
OnDragOver 1181
OnDragScroll 1182
OnDrop 1183
OnDropEx 1184
Register 1185
Revoke 1185

COleDropTarget constructor 1180
COleDropTarget member function, COleDropTarget

class 1180
COleException class

data members, m_sc 1187
described 1186
member functions, process 1186

COleInsertDialog class
data members, m_io 1193
described 1188
member functions

COleInsertDialog 1189
CreateItem 1190
DoModal 1190
GetClassID 1191
GetDraw Aspect 1191
GetIconicMetafile 1192
GetPathName 1192
GetSelectionType 1192

COleInsertDialog constructor 1189
COleInsertDialog member function, COleInsertDialog

class 1189
COleIPFrameWnd class

described 1194
member functions

COleIPFrameWnd 1194
OnCreateControlBars 1195
RepositionFrame 1195

COleIPFrameWnd constructor 1194
COleIPFrame Wnd member function,

COleIPFrameWnd class 1194
COleLinkingDoc class

described 1197
member functions

COleLinkingDoc 1198
OnFindEmbeddedItem 1199
OnGetLinkedItem 1199

COleLinkingDoc class (continued)
member functions (continued)

Register 1200
Revoke 1200

COleLinkingDoc constructor 1198

Index

COleLinkingDoc member function, COleLinkingDoc
class 1198

COleLinksDialog class
data members, m_el 1203
described 1201
member functions

COleLinksDialog 1202
DoModal 1202

COleLinksDialog constructor 1202
COleLinksDialog member function, COleLinksDialog

class 1202
COleMessageFilter class

described 1204
member functions

BeginBusyState 1205
COleMessageFilter 1206
EnableBusyDialog 1206
EnableNotRespondingDialog 1206
EndBusyState 1207
OnMessagePending 1207
Register 1208
Revoke 1208
SetBusyReply 1208
SetMessagePendingDelay 1209
SetRetryReply 1209

COleMessageFilter constructor 1206
COleMessageFilter member function,

COleMessageFilter class 1206
COleObjectFactory class

described 1211
member functions

COleObjectFactory 1212
GetClassID 1213
IsRegistered 1213
OnCreateObject 1214
Register 1214
RegisterAll 1214
Revoke 1215
RevokeAll 1215
UpdateRegistry 1215
UpdateRegistryAll 1216
Verify U serLicense 1217

COleObjectFactory constructor 1212

Index

COleObjectFactory member function,
ColeObjectFactory class 1212

COleObjectFactoryEx class
member functions

GetLicenseKey 1213
VerifyLicenseKey 1216

COlePasteSpecialDialog class
data members, m_ps 1224
described 1218
member functions

AddFormat 1219
AddStandardFormats 1220
COlePasteSpecialDialog 1220
Createltem 1221

--- ----- _. -_ .. _----- -_ ... _- --- ._-------_ .. _--------------------_ .. _----_ .. _----------------------

DoModal 1222
GetDrawAspect 1222
GetIconicMetafile 1223
GetPasteIndex 1223
GetSelectionType 1223

COlePasteSpecialDialog constructor 1220
COlePasteSpecialDialog member function,

COlePasteSpecialDialog class 1220
COlePropertiesDialog class

data members
m~ 1228
m_Ip 1228
m_op 1229
m_psh 1229
m_vp 1229

described 1225
member functions

COlePropertiesDialog 1226
DoModal 1227
OnApplyScale 1227

COlePropertiesDialog member function,
COlePropertiesDialog class 1226

COlePropertyPage class
described 1230
member functions

COlePropertyPage 1231
GetControlStatus 1231
GetObjectArray 1232
GetPageSite 1232
IgnoreApply 1233
IsModified 1233
OnEditProperty 1233
OnHelp 1234
OnInitDialog 1234
OnObjectsChanged 1234

COlePropertyPage class (continued)
member functions (continued)

OnSetPageSite 1235
SetControlStatus 1235
SetDialogResource 1235
SetHelpInfo 1236
SetModifiedFlag 1236
SetPageName 1236

COlePropertyPage member function,
COlePropertyPage class 1231

COleResizeBar class
described 1237
member functions

COleResizeBar 1238
Create 1237

COleResizeBar constructor 1238
COleResizeBar member function, COleResizeBar

class 1238
COleServerDoc class

described 1239
member functions

ActivateInPlace 1242
COleServerDoc 1242
CreateInPlaceFrame 1243
DeactivateAndUndo 1242
Destroy InPlaceFrame 1243
DiscardUndoState 1244
GetEmbeddedltem 1244
GetltemClipRect 1244
GetltemPosition 1245
GetZoomFactor 1245
IsEmbedded 1246
IsInPlaceActive 1246
NotifyChanged 1247
N otifyClosed 1247
NotifyRename 1247
NotifySaved 1248
OnClose 1248
OnDeactivate 1249
OnDeactivateUI 1249
OnDocWindowActivate 1249
OnFrame Window Activate 1250
OnGetEmbeddedltem 1250
OnReactivateAndUndo 1250
OnResizeBorder 1251
OnSetHostNames 1251
OnSetltemRects 1252
OnShowControlBars 1252
OnShowDocument 1253

COleServerDoc class (continued)
member functions (continued)

OnUpdateDocument 1253
RequestPositionChange 1254
SaveEmbedding 1254
ScrollContainerBy 1254
UpdateAllItems 1255

COleServerDoc constructor 1242
COleServerDoc member function, COleServerDoc

class 1242
COleServerItem class 1239

data members, m_sizeExtent 1276
described 1256
member functions

AddOtherClipboardData 1258
COleServerItem 1258
CopyToClipboard 1259
DoDragDrop 1259
GetClipboardData 1260
GetDataSource 1261
GetDocument 1261
GetEmbedSourceData 1261
GetltemName 1262
GetLinkSourceData 1262
GetObjectDescriptorData 1263
IsConnected 1263
IsLinkedItem 1264
NotifyChanged 1264
OnDo Verb 1265
OnDraw 1265
OnDrawEx 1266
OnGetClipboardData 1267
OnGetExtent 1267
OnHide 1268
OnInitFromData 1268
OnOpen 1269
OnQueryUpdateltems 1269
OnRenderData 1270
OnRenderFileData 1271
OnRenderGlobalData 1271
OnSetColorScheme 1272
OnSetData 1273
OnSetExtent 1273
OnShow 1274
OnUpdate 1274
OnUpdateltems 1275
SetltemName 1275

COleServerItem constructor 1258

Index

COleServerItem member function, COleServerItem
class 1258

COleStreamFile class
described 1277
member functions

Attach 1278
COleStreamFile 1278
CreateMemoryStream 1 ~78
CreateStream 1279
Detach 1279
OpenStream 1280

COleStreamFile constructor 1278
COleStreamFile member function, COleStreamFile

class 1278
COleTemplateServer class

described 1281
member functions

COleTemplateServer 1282
ConnectTemplate 1282
UpdateRegistry 1282

COleTemplateServer constructor 1282
COleTemplateServer member function,

COleTemplateServer class 1282
COleUpdateDialog class

described 1284
member functions

COleUpdateDialog 1284
DoModal 1285

COleUpdateDia1og constructor 1284
COleUpdateDia1og member function,

COleUpdateDialog class 1284
COle Variant class

described 1286
member functions

ChangeType 1288
Clear 1289
COleVariant 1287
Constructor 1287
described 1287
Detach 1289

operators
Archive 1291
Assignment 1289
described 1289
Dump 1291
operator« 1291
operator == 1290
operator = 1289
operator» 1291

Index

COle Variant class (continued)
operators (continued)

operator LPCV ARIANT 1291
operator LPV ARIANT 1291

COleVariant member function, COleVariant 1287
Collate member function, CString class 1617
Collating order, specifying 221
Collection class helpers 2058
Collection classes

arrays
CByteArray 136
CDWordArray 609
CObArray 934

Combo box
DDX field exchange 2111,2126,2128

Combo-Box styles 2271
Command IDs 2057
Command-related classes, listed 6
CommandToIndex member function

CStatusBar class 1596
CToolBar class 1682
CToolBarCtrl class 1703

Committing
database transactions 397
transactions (DAO) 376

CommitTrans member function
__________________ <;::!!yte~a.Y_J]..L _________ _ __ _ _ _____ ________ _________________ Q)a<? Worl(~pace ~~~_}Z~ _______ ______________ _

CDatabase class 397 CDWordArray 609
CMap 842
CMapPtrToPtr 849
CMapPtrTo Word 851
CMapStringToOb 853
CMapStringToPtr 861
CMapStringToString 863
CMapWordToOb 865
CMapWordToPtr 867
CObArray 934
listed 19
maps

CCMapStringToPtr 861
CMapPtrToPtr 849
CMapPtrToWord 851
CMapStringToOb 853
CMapStringToString 863
CMapWordToOb 865
CMapWordToPtr 867

storing aggregate data 136,609,849,851, 853,
861,863,865,867,934

template-based
CArray 58
CList 769
CTypedPtrArray 1754
CTypedPtrList 1757
CTypedPtrMap 1763

Collections (DAO)
QueryDefs 217
Recordsets 217
Relations 217
TableDefs 217
where stored in MFC 217

COLORADJUSTMENT structure 2236
CombineRgn member function, CRgn class 1446

Common controls
Rich Edit, MFC Encapsulation 1461
Windows

CAnimateCtrl 33
CHeaderCtrl 744
CHotKeyCtrl 751
CImageList 755
CListCtrl 806
CProgressCtrl 1346
CRichEditCtrl 1461
CSliderCtrl 1542
CSpinButtonCtrl 1562
CStatusBarCtrl 1602
CTabCtrl 1647
CToolBarCtrl 1691
CToolTipCtrl 1719
CTreeCtrl 1727

Compacting databases 377
Compare member function, CString class 1618
CompareElements global function/macro 2111
CompareItem member function

CComboBox class 169
CListBox class 785

COMPAREITEMSTRUCT structure 2238
CompareNoCase member function, CString class 1618
Comparison operators member function

CString class 1639
CTime class 1670

Comparison operators member function, CTimeSpan
class 1677

Completing add, Recordsets 1407
Completing edit, Recordsets 1407
Concurrency, supprt for cursor 1399
Connect member function, CAsyncSocket class 74

Connect strings
defined 227
for ISAM databases 227
for ODBC databases 227
not used for Jet databases 227
queryDef 257

Connecting to databases 401
Connection handle 405
Connection maps 2067
Connection strings

database
described 401
getting 399

default
getting 1389
Recordset 1389

CONNECTION_lID global function/macro 2112
CONNECTION_PART global function/macro 2112
ConnectTemplate member function,

COleTemplateServer class 1282
Consistent updates, defined 225
Construct member function

CPropertyPage class 1352
CPropertySheet class 1360

ConstructElements global function/macro 2111
Constructing

CDaoDatabase objects 219
Data Objects 1100
Recordsets 1385

Constructors
CAnimateCtrl 34
CArchiveException 56
CCheckListBox 139
CCommandLinelnfo 190
CCommonDialog 195
CCriticalSection 212
CCtrlView 214
CDaoDatabase 219
CDaoException 240
CDaoQueryDef 254
CDaoWorkspace 375
CDatabase 396
CEvent 644
CHeaderCtrl 745
CHotKeyCtrl 752
ClmageList 758
CListCtrl 811
CListView 838
CLongBinary 841

Constructors (continued)
CMiniFrameWnd 922
CMultiLock 928
CMutex 932
COleBusyDialog 970
COleChangelconDialog 974
COleChangeSourceDialog 978
COleClientItem 991
COleConvertDialog 1081
COleDataObject 1100
COleDataSource 1108
COleDispatchDriver 1157
COleDocument 1169
COleDropSource 1176
COleDropTarget 1180
COlelnsertDialog 1189
COlelPFrameWnd 1194
COleLinkingDoc 1198
COleLinksDialog 1202
COleMessageFilter 1206
COleObjectFactory 1212
COlePasteSpecialDialog 1220
COleResizeBar 1238
COleServerDoc 1242
COleServerItem 1258
COleStreamFile 1278
COleTemplateServer 1282
COleUpdateDialog 1284
CProgressCtrl 1347
CPropertyPage 1352
CPropertySheet 1360
CRecordset 1385
CRecordView 1414
CRectTracker 1436
CRichEditCntrltem 1460
CRichEditCtrl 1466
CRichEditView 1496
CSemaphore 1531
CSingleLock 1536
CSliderCtrl 1545
CSpinButtonCtrl 1564
CStatusBarCtrl 1604
CSyncObject 1645
CTabCtrl 1650
CToolBarCtrl 1705
CToolTipCtrl 1721
CTreeCtrl 1730
CTreeView 1752
CWinThread 1841

Index

Index

ContinueModal member function, Cwnd class 1871
ContinueRouting member function, CCmdUI class 156
Control classes, listed 14
ControlInfoChanged member function, COleControl

class 1036
Controls

Edit 611
multi-line edit 611

ConvertTo member function, COleClientltem
class 991

Copy member function
CArray class 61
CComboBox class 169
CEdit class 616
CRichEditCtrl class 1465

CopyRect member function, CRect class 1420
CopyRgn member function, CRgn class 1447
CopyToClipboard member function

COleClientltem class 992
COleServerItem class 1259

Counting errors in DAO Errors collection 241
Counting fields in a querydef 259
Counting querydefs 228
Counting relations 231
Counting tabledefs 232
Counting workspaces 384
CPageSetupDialog class

data members, m_psd 1300
described 1292
member functions

CPageSetupDialog 1293
CreatePrinterDC 1295
DoModal 1295
GetDeviceName 1296
GetDevMode 1296
GetDriverMode 1296
GetMargins 1297
GetPaperSize 1297
GetPortName 1297
OnDrawPage 1298
PreDrawPage 1299

CPageSetupDialog member function,
CPageSetupdialog class 1293

CPaintDC class
data members

m_hWnd 1302
m_ps 1302

described 1301
member functions, CPaintDC 1301

CPaintDC member function, CPaintDC class 1301
CPalette class

described 1303
member functions

AnimatePalette 1304
CPalette 1305
CreateHalftonePalette 1305
CreatePalette 1305
FromHandle 1306
GetEntryCount 1306
GetN earestPaletteIndex 1307
GetPaletteEntries 1307
operator HP ALETTE 1307
ResizePalette 1308
SetPaletteEntries 1308

CPalette member function, CPalette class 1305
CPen class

described 1310
member functions

CPen 1310
CreatePen 1313
CreatePenIndirect 1314
FromHandle 1315
GetExtLogPen 1315
GetLogPen 1316
operator HPEN 1317

CPen member function, CPen class 1310
CPictureHolder class

data members, m_pPict 1323
described 1318
member functions

CPictureHolder 1318-1319
CreateEmpty 1319
CreateFromBitmap 1319
CreateFromIcon 1320
CreateFromMetafile 1320
GetDisplayString 1321
GetPictureDispatch 1321
GetType 1322
Render 1322
SetPictureDispatch 1322

CPictureHolder member function, CPictureHolder
class 1318-1319

CPoint class
described 1324
member functions

CPoint 1325
Offset 1325
operator- 1328

CPoint class (continued)
member functions (continued)

operator -= 1327
operator!= 1326
operator += 1326
operator + 1327
operator == 1326

CPoint member function, CPoint class 1325
CPrintDialog class

data members, m_pd 1338
described 1330
member functions

CPrintDialog 1332
CreatePrinterDC 1333
DoModal 1333
GetCopies 1334
GetDefaults 1334
GetDeviceName 1334
GetDevMode 1335
GetDriverName 1335
GetFromPage 1335
GetPortName 1336
GetPrinterDC 1336
GetToPage 1336
PrintAll 1337
PrintCollate 1337
PrintRange 1337
PrintS election 1337

CPrintDialog member function, CPrintDialog
class 1332

CPrintInfo class
data members

m_bContinuePrinting 1342
m_bDirect 1343
m_bPreview 1343
m_lpUserData 1343
m_nCurPage 1343
m_nNumPreviewPages 1344
m_pPD 1344
m_rectDraw 1344
m_strPageDesc 1345

described 1339
member functions

GetFromPage 1340
GetMaxPage 1340
GetMinPage 1341
GetToPage 1341
SetMaxPage 1341
SetMinPage 1342

CProgressCtrl class
described 1346
member functions

CProgressCtrl 1347
Create 1347
OffsetPos 1348
SetPos 1348
SetRange 1348
SetStep 1349
StepIt 1349

CProgressCtrl constructor 1347
CProgressCtrl member function, CProgressCtrl

class 1347
CProperty Page class

data members, m_psp 1357
described 1350
member functions

CancelToClose 1351
CPropertyPage 1352
OnApply 1353
OnCancel 1353
OnKillActive 1354
OnOK 1354
OnQueryCancel 1354
OnReset 1355
OnSetActive 1355
On WizardBack 1355
On WizardFinish 1356
OnWizardNext 1356
QuerySiblings 1356
SetModified 1357

CPropertyPage constructor 1352
CPropertyPage member function, CpropertyPage

class 1352
CPropertySheet class

data meember, m_psh 1368
described 1358
member functions

AddPage 1359
Construct 1360
CPropertySheet 1361
Create 1361
DoModal 1362
EndDialog 1363
GetActiveIndex 1363
GetActivePage 1363
GetPage 1364
GetPageCount 1364
GetPageIndex 1364

Index

Index

CPropertySheet class (continued)
member functions (continued)

GetTabControl 1365
PressButton 1365
RemovePage 1366
SetActivePage 1366
SetFinishText 1366
SetTitle 1367
SetWizardButtons 1367
SetWizardMode 1368

CPropertySheet constructor 1360
CPropertySheet member function, CPropertySheet

class 1361

Create member function (continued)
CPropertySheet class 1361
CRichEditCtrl class 1465
CScrollBar class 1516
CSliderCtrl class 1544
CSocket class 1556
CSpinButtonCtrl class 1563
CSplitterWnd class 1572
CStatic class 1588
CStatusBar class 1596
CStatusBarCtrl class 1603
CTabCtrl class 1649
CToolBar class 1682
CToolBarCtrl class 1703 CPropExchange class

------------ ----------described 1369 ------.---.------------- --.---------... --.. -- --- ----- _. --- --'------._-_.- ---·---cTOOlTip-CtrlClass-1-72-1---------·--·~-----·----·----··.'-- ..

member functions
ExchangeBlobProp 1370
ExchangeFontProp 1370
ExchangePersistentProp 1371
ExchangeProp 1372
ExchangeVersion 1373
GetVersion 1373
IsLoading 1373

CPtrArray class 1374
CPtrList class 1376
Create member function

CAnimateCtrl class 35
CAsyncSocket 76
CButton class 128
CCheckListBox class 139
CComboBox class 169
CDaoDatabase class 221
CDaoQueryDef class 255
CDaoTableDef class 350
CDao Workspace class 377
CDialog class 552
CDialogBar class 562
CEdit class 616
CFindReplaceDialog class 689
CHeaderCtrl class 745
CHotKeyCtrl class 752
CImageList class 758
CListBox class 786
CListCtrl class 811
CMDIChildWnd class 871
CMetaFileDC class 920
CMiniFrame Wnd class 923
COleResizeBar class 1237
CProgressCtrl class 1347

CTreeCtrl class 1729
CWnd class 1871

CreateBitmap member function, CBitmap class 103
CreateBitmapIndirect member function, CBitmap

class 104
CreateBrushIndirect member function, CBrush

class 119
CreateCaret member function, CWnd class 1872
CreateClient member function, CMDIFrame Wnd

class 876
CreateClientItem member function, CRichEditDoc

class 1491
CreateCloneFrom member function, COleClientltem

class 992
CreateCompatibleBitmap member function, CBitmap

class 105
CreateCompatibleDC member function, CDC

class 435
CreateControl member function, Cwnd class 1872
CreateDC member function, CDC class 436
CreateDIBPattemBrush member function, CBrush

class 119
CreateDiscardableBitmap member function, CBitmap

class 106
CreateDispatch member function, COleDispatchDriver

class 1157
CreateDragImage member function

CListCtrl class 813
CTreeCtrl class 1730

CreateEllipticRgn member function, CRgn class 1448
CreateEllipticRgnIndirect member function, CRgn

class 1448
CreateEmpty member function, CPictureHolder

class 1319

CreateEnhanced member function, CMetaFileDC
class 920

CreateEx member function, CWnd class 1874
CreateField member function, CDaoTableDef

class 351
CreateFont member function, CFont class 695
CreateFontindirect member function, CFont class 699
CreateFromBitmap member function, CPictureHolder

class 1319
CreateFromClipboard member function,

COleClientltem class 992
CreateFromData member function, COleClientltem

class 993
CreateFromData member function, CRgn class 1449
CreateFromFile member function, COleClientltem

class 994
CreateFromIcon member function, CPictureHolder

class 1320
CreateFromMetafile member function, CPictureHolder

class 1320
CreateFromPath member function, CRgn class 1449
CreateGrayCaret member function, CWnd class 1875
CreateHalftonePalette member function, CPalette

clss 1305
CreateHatchBrush member function, CBrush class 121
CreateIC member function, CDC class 437
Createlndex member function, CDaoTableDef

class 352
Createlndirect member function, CDialog class 553
CreatelnPlaceFrame member function, COleServerDoc

class 1243
Createltem member function

COlelnsertDialog class 1190
COlePasteSpecialDialog class 1221

CreateLinkFromClipboard member function,
COleClientitem class 995

CreateLinkFromData member function,
COleClientitem class 995

CreateLinkFromFile member function, COleClientitem
class 996

CreateMemoryStream member function,
COleStreamFile class 1278

CreateMenu member function, CMenu class 899
CreateNewDocument member function, CDocTemplate

class 570
CreateNewFrame member function, CDocTemplate

class 570
CreateNewltem member function, COleClientitem

class 997

CreateOleFrame member function, CDocTemplate
class 571

Index

CreatePalette member function, CPalette class 1305
CreatePattemBrush member function, CBrush

class 122
CreatePen member function, CPen class 1313
CreatePenlndirect member function, CPen class 1314
CreatePointFont member function, CFont class 700-

701
CreatePolygonRgn member function, CRgn class 1450
CreatePolyPolygonRgn member function, CRgn

class 1451
CreatePopupMenu member function, CMenu class 900
CreatePrinterDC member function

CPageSetupDialog class 1295
CPrintDialog class 1333
CWinApp class 1799

CreateRectRgn member function, CRgn class 1452
CreateRectRgnlndirect member function, CRgn

class 1452
CreateRelation member function, CDaoDatabase

class 223
CreateRoundRectRgn member function, CRgn

class 1453
CreateScrollBarCtrl member function, CSplitterWnd

class 1574
CreateSolidBrush member function, CBrush class 122
CreateSolidCaret member function, Cwnd class 1876
CreateStatic member function, CSplitterWnd

class 1574
CreateStaticFromClipboard member function,

COleClientltem class 998
CreateStaticFromData member function,

COleClientItem class 998
CreateStockObject member function, CGdiObject

class 737
CreateStream member function, COleStreamFile

class 1279
CREATESTRUCT structure 2239
CreateSysColorBrush member function, CBrush

class 123
CreateThread member function, CWinThread

class 1841
Create View member function

CFrameWnd class 723
CSplitterWnd class 1575

Creating
CDatabase objects 396
CStreamFile objects 1279

Index

Creating (continued)
database objects 221
Recordset 1385
relations between tables 223
workspaces 379

CRecordset class
data members

m_hstmt 1407
m_nFields 1408
m_nParams 1408
m_pDatabase 1409
m_strFilter 1409
m_strSort 1410

described 1378
member functions

AddNew 1381
CanAppend 1382
Cancel 1383
CanRestart 1383
CanScroll 1383
CanTransact 1383
CanUp date 1384
Close 1384
CRecordset 1385
Delete 1385
DoFieldExchange 1386
Edit 1387
GetDefaultConnect 1389
GetDefaultSQL 1389
GetRecordCount 1390
GetSQL 1391
GetStatus 1390
GetTableName 1392
IsBOF 1392
IsDeleted 1393
IsEOF 1393
IsFieldDirty 1394
IsFieldNull 1394
IsFieldNullable 1395
IsOpen 1396
Move 1396
MoveFirst 1397
MoveLast 1398
MoveNext 1398
MovePrev 1399
OnSetOptions 1399
On WaitForDataSource 1400
Open 1400
Requery 1403

CRecordset class (continued)
member functions (continued)

SetFieldDirty 1404
SetFieldNull 1405
SetLockingMode 1406
Update 1407

CRecordset constructor 1385
CRecordset member function, CRecordset class 1385
CRecordView class

associated recordset, getting with
Class Wizard 1416

described 1412
dialog template resource 1414
forms, database 1412

-----------inemoerIunctlons-----------------

CRecordView 1414
IsOnFirstRecord 1415
IsOnLastRecord 1415
OnGetRecordset 1416
OnMove 1416

moving through records 1416
navigating 1416
record views 1412
scrolling 1416
whether on first record 1415
whether on last record 1415

CRecordView constructor 1414
CRecordView member function, CRecordView

class 1414
CRect class

described 1418
member functions

BottomRight 1420
CopyRect 1420
CRect 1420
EqualRect 1422
Height 1422
InflateRect 1423
IntersectRect 1423
IsRectEmpty 1424
IsRectNull 1424
NormalizeRect 1425
OffsetRect 1425
operator- 1433
operator!= 1430
operator &= 1431
operator & 1433
operator += 1430
operator + 1432

CRect class (continued)
member functions (continued)

operator == 1430
operator = 1429, 1431
operator 1= 1432
operator 1 1434
operator LPCRECT 1429
operator LPRECT 1429
PtInRect 1425
SetRect 1426
SetRectEmpty 1426
Size 1426
SubtractRect 1427
TopLeft 1428
UnionRect 1428
Width 1428

CRect member function, CRect class 1420
CRectTracker class

data members
m_nHandleSize 1442
m_nStyle 1443
m_rect 1443
m_sizeMin 1443

described 1435
member functions

AdjustRect 1436
CRectTracker 1436
Draw 1437
DrawTrackerRect 1437
GetHandleMask 1438
GetTrueRect 1439
HitTest 1439
NormalizeHit 1440
OnChangedRect 1440
SetCursor 1441
Track 1441
TrackRubberBand 1442

usage 1435
CRectTracker constructor 1436
CRectTracker member function, CRectTracker

class 1436
CResourceException class

described 1444
member functions, CResourceException 1444

CResourceException member function,
CResourceException class 1444

CRgn class
described 1445
member functions

CombineRgn 1446
CopyRgn 1447
CreateEllipticRgn 1448
CreateEllipticRgnIndirect 1448
CreateFromData 1449
CreateFromPath 1449
CreatePolygonRgn 1450
CreatePolyPolygonRgn 1451
CreateRectRgn 1452
CreateRectRgnlndirect 1452
CreateRoundRectRgn 1453
CRgn 1454
EqualRgn 1454
FromHandle 1454
GetRegionData 1455
GetRgnBox 1455
OffsetRgn 1456
operator HRGN 1458
PtInRegion 1457
RectInRegion 1457
SetRectRgn 1458

CRgn member function, CRgn class 1454
CRichEditCntrItem class

described 1459
member functions

CRichEditCntrItem 1460
described 1460
SyncToRichEditObject 1460

CRichEditCntrItem constructor 1460
CRichEditCntrItem member function,

CRichEditCntrlItem class 1460
CRichEditCtrl class

described 1461
member functions 1464

CanUndo 1464
Clear 1464
Copy 1465
Create 1465
CRichEditCtrl 1466
Cut 1466
DisplayBand 1467
EmptyUndoBuffer 1467
FindText 1467
FormatRange 1468
GetCharPos 1468
GetDefaultCharFormat 1469

Index

Index

CRichEditCtrl class (continued)
member functions 1464 (continued)

GetEventMask 1469
GetFirst VisibleLine 1470
GetIRichEditOle 1470
GetLimitText 1470
GetLine 1471
GetLineCount 1471
GetModify 1472
GetParaFormat 1472
GetRect 1473
GetSel 1473
GetSelectionCharFormat 1474
GetSelectionType 1474

-------GetSeITeiT I47~----- -------------

GetTextLength 1475
HideSelection 1476
LimitText 1476
LineFromChar 1477
Linelndex 1477
LineLength 1478
LineScroll 1478
Paste 1479
PasteSpecial 1479
ReplaceSel 1479
RequestResize 1480
SetBackgroundColor 1480
SetDefaultCharFormat 1481
SetEventMask 1481
SetModify 1481
SetOLECa1lback 1482
SetOptions 1482
SetParaFormat 1483
SetReadOnly 1484
SetRect 1484
SetSel 1485
SetSelectionCharFormat 1485
SetTargetDevice 1486
SetWordCharFormat 1486
StreamIn 1487
StreamOut 1487
Undo 1488

CRichEditCtrl constructor 1466
CRichEditCtrl member function, CRichEditCtrl

class 1466
CRichEditDoc class

data members
described 1492
ffi_bRTF 1492

CRichEditDoc class (continued)
described 1490
member functions 1491

CreateClientItem 1491
GetStreamFormat 1491
GetView 1492

CRichEditView class
data members

described 1513
m_nBulletIndent 1513
m_nWordWrap 1513

described 1493
member functions

AdjustDialogPosition 1495
-- - ------TafiPasre-149o-------- -------------

CRichEditView 1496
described 1495
DoPaste 1496
FindText 1497
FindTextSimple 1497
GetCharFormatSelection 1498
GetClipboardData 1498
GetContextMenu 1499
GetDocument 1500
GetInPlaceActiveltem 1500
GetMargins 1500
GetPageRect 1501
GetPaperSize 1501
GetParaFormatSelection 1501
GetPrintRect 1502
GetPrintWidth 1502
GetRichEditCtrl 1502
GetSelectedltem 1503
GetTextLength 1503
InsertFileAsObject 1503
InsertItem 1504
IsRichEditFormat 1504
IsSelected 1504
OnCharEffect 1505
OnFindNext 1505
OnlnitialUpdate 1506
OnParaAlign 1506
OnPasteNativeObject 1506
OnPrinterChanged 1507
OnReplaceAll 1507
OnReplaceSe1 1508
OnTextNotFound 1508
OnUpdateCharEffect 1508
OnUpdateParaAlign 1509

CRichEditView class (continued)
member functions (continued)

PrintInsideRect 1509
PrintPage 1510
Query AcceptData 1510
SetCharFormat 1511
SetMargins 1511
SetPaperSize 1512
SetParaFormat 1512
WrapChanged 1512

CRichEditView constructor 1496
CRichEditView member function, CRichEditView

class 1496
Cross-tab queries 251
CRuntimeClass class 1514
CScrollBar class

described 1515
member functions

Create 1516
CScrollBar 1517
EnableScrollBar 1517
GetScrollInfo 1517
GetScrollLirnit 1518
GetScrollPos 1519
GetScrollRange 1519
SetScrollInfo 1519
SetScrollPos 1520
SetScrollRange 1520
ShowScrollBar 1521

CScrollBar member function, CScrollBar class 1517
CScrollView class

described 1522
member functions

CScrollView 1524
FillOutsideRect 1524
GetDeviceScrollPosition 1525
GetDeviceScrollSizes 1525
GetScrollPosition 1526
GetTotalSize 1526
ResizeParentToFit 1526
ScrollToPosition 1527
SetScaleToFitSize 1527
SetScrollSizes 1528

CScrollView member function, CScrollView
class 1524

CSemaphore class
described 1530
member functions, CSemaphore 1531

CSemaphore constructor 1531

CSemaphore member function, CSemaphore
class 1531

CSingleDocTemplate class
described 1532
member functions, CSingleDocTemplate 1533

CSingleDocTemplate member function,
CSingleDocTemplate class 1533

CSingleLock class
described 1535
member functions

CSingleLock 1536
IsLocked 1536
Lock 1536
Unlock 1537

CSingleLock constructor 1536
CSingleLock member function, CSingleLock

class 1536
CSize class

described 1538
member functions

CSize 1538
operator - 1540
operator -= 1540
operator!= 1539
operator += 1539
operator + 1540
operator == 1539

CSize member function, CSize class 1538
CSliderCtrl class

described 1542
member functions

ClearSel 1543
ClearTics 1544
Create 1544
CSliderCtrl 1545
GetChannelRect 1545
GetLineSize 1546
GetNumTics 1546
GetPageSize 1546
GetPos 1547
GetRange 1547
GetRangeMax 1547
GetRangeMin 1547
GetSelection 1548
GetThumbRect 1548
GetTic 1548
GetTicArray 1549
GetTicPos 1549
SetLineSize 1549

Index

Index

CSliderCtrl class (continued) CSpinButtonCtrl member function, CSpinButtonCtrl
member functions (continued) class 1564

SetPageSize 1550 CSplitterWnd class
SetPos 1550 describled 1569
SetRange 1550 member functions
SetRangeMax 1551 ActivateNext 1572
SetRangeMin 1551 CanActivateNext 1572
SetS election 1551 Create 1572
SetTic 1552 CreateScrollBarCtrl 1574
SetTicFreq 1552 Create Static 1574
VerifyPos 1553 CreateView 1575

CSliderCtrl constructor 1545 CSplitterWnd 1576
CSliderCtrl member function, CSliderCtrl class 1545 DeleteColumn 1576
CSocket class DeleteRow 1576

... ----'--... _-_ ... _----_._- .---··.·-----···--described 15~4'---- -_ - .. --------- ----- ._---- -_. __ _ ... __ __ _ ... _._". __ .- ----- -------------DelcteView 1-577--------------------·····---_·

member functions DoKeyboardSplit 1577
Attach 1555 DoScroll 1578
CancelBlockingCall 1556 DoScrollBy 1578
Create 1556 GetActivePane 1579
CSocket 1557 GetColumnCount 1579
FromHandle 1557 GetColumnlnfo 1580
IsBlocking 1558 GetPane 1580
OnMessagePending 1558 GetRowCount 1580

members 1554 GetRowlnfo 1580
CSocket member function, CSocket class 1555, 1557 GetScrollStyle 1581
CSocketFile class IdFromRowCol 1581

described 1560 IsChildPane 1582
member functions OnDrawSplitter 1582

CSocketFile 1561 OnlnvertTracker 1583
described 1561 RecalcLayout 1583

members 1560 SetActivePane 1584
CSocketFile member function, CSocketFile class 1561 SetColumnlnfo 1584
CSpinButtonCtrl class SetRowlnfo 1584

described 1562 SetScrollStyle 1585
member functions SplitColumn 1585

Create 1563 SplitRow 1586
CSpinButtonCtrl 1564 CSplitterWnd member function, CSplitterWnd
GetAccel 1564 class 1576
GetBase 1565 CStatic class
GetBuddy 1565 described 1587
GetPos 1565 member functions
GetRange 1566 Create 1588
SetAccel 1566 CStatic 1589
SetBase 1567 GetBitmap 1589
SetBuddy 1567 GetCursor 1589
SetPos 1567 GetEnhMetaFile 1590
SetRange 1568 Getlcon 1590

CSpinButtonCtrl constructor 1564 SetBitmap 1590
SetCursor 1591

CStatic class (continued)
member functions (continued)

SetEnhMetaFile 1592
SetIcon 1592

CStatic member function, CStatic class 1589
CStatusBar class

described 1594
member functions

CommandToIndex 1596
Create 1596
CStatusBar 1597
GetItemID 1597
GetItemRect 1597
GetPaneInfo 1598
GetPaneStyle 1598
GetPaneText 1598
GetStatusBarCtrl 1599
ReportError 650
SetIndicators 1599
SetPaneInfo 1600
SetPaneStyle 1600
SetPaneText 1601

CStatusBar member function, CStatusBar class 1597
CStatusBarCtrl class

described 1602
member functions

Create 1603
CStatusBarCtrl 1604
Draw Item 1604
GetBorders 1605
GetParts 1605
GetRect 1606
GetText 1606
GetTextLength 1607
SetMinHeight 1607
SetParts 1608
SetSimple 1608
SetText 1609

CStatusBarCtrl constructor 1604
CStatusBarCtrl member function, CStatusBarCtrl

class 1604
CStdioFile class

data members, m_pStream 1613
described 1610
member functions

CStdioFile 1611
ReadString 1612
WriteString 1613

CStdioFile member function, CStdioFile class 1611

CStreamFile objects
attaching to LPSTREAM objects 1278
creating 1279
detaching from LPSTREAM objects 1279
memory, opening 1278
opening 1280

CString
DDX field exchange 2134
DFX field exchange 2157
RFX field exchange 2195

CString class
described 1614
member functions

AllocSysString 1617
AnsiToOem 1617
Collate 1617
Compare 1618
CompareNoCase 1618
comparions operators 1639
CString 1619
Empty 1620
Find 1621
FindOneOf 1621
Format 1622
FormatMessage 1623
FreeExtra 1623
GetAt 1623
GetBuffer 1624
GetBufferSetLength 1625
GetLength 1626
IsEmpty 1626
Left 1627
LoadString 1627
LockBuffer 1628
MakeLower 1629
MakeReverse 1629
MakeUpper 1629
Mid 1630
OemToAnsi 1630
operator += 1638
operator + 1637
operator «,» 1637
operator = 1636
operator [] 1640
operator LPCTSTR () 1636
ReleaseBuffer 1631
ReverseFind 1631
Right 1632
SetAt 1632

Index

Index

CString class (continued)
member functions (continued)

SetSysString 1633
SpanExcluding 1633
SpanIncluding 1634
TrimLeft 1635
TrimRight 1635
UnlockBuffer 1635

usage 1614
CString member function, CString class 1619
CString objects, formatting message-box display 2053
CStringArray class 1641
CStringList class 1643

CTabCtrl class (continued)
member functions (continued)

SetPadding 1659
SetTooltips 1659

CTabCtrl constructor 1650
CTabCtrl member function, CTabCtrl class 1650
CTime class

described 1660
member functions

comparison operators 1670
CTime 1661
Format 1663
FormatGmt 1664
GetCurrentTime 1664 CSyncObject class

described 1645 ---- -- ----- - -- -- ----------------(JeIDay r6OS-------- - - ---- ------------------------ --- -------- -----

member functions
CSyncObject 1645
Lock 1646
Unlock 1646

CSyncObject constructor 1645
CSyncObject member function, CSyncObject

class 1645
CTabCtrl class

described 1647
member functions

AdjustRect 1648
Create 1649
CTabCtrl 1650
DeleteAllItems 1650
DeleteItem 1651
DrawItem 1651
GetBkColor 1651
GetCurFocus 1652
GetCurSel 1652
GetlmageList 1652
Getltem 1653
GetltemCount 1654
GetltemRect 1654
GetRowCount 1655
GetTooltips 1655
HitTest 1655
InsertItem 1656
RemoveImage 1656
SetBkColor 1657
SetCurSel 1657
SetlmageList 1657
SetItem 1658
SetltemExtra 1658
SetItemSize 1659

GetDayOfWeek 1665
GetGmtTm 1665
GetHour 1666
GetLocalTm 1666
GetMinute 1667
GetMonth 1667
GetSecond 1668
GetTime 1668
GetYear 1668
operator +, - 1669
operator +=, -= 1669
operator = 1668
operators «,» 1670

CTime member function, CTime class 1661
CTime, RFX field exchange 2191
CTimeSpan class

described 1671
member functions

comparison operators 1677
CTimeSpan 1672
Format 1673
GetDays 1674
GetHours 1674
GetMinutes 1674
GetSeconds 1675
GetTotalHours 1675
GetTotalMinutes 1675
GetTotalSeconds 1675
operator +,- 1676
operator +=, -= 1676
operator = 1676
operators «,» 1677

CTimeSpan member function, CTimeSpan class 1672

Member functions (continued)
CDatabase class 394
CDataExchange class 408
CDC class 425,427,464,496, 530
CDialog class 552
CDialogBar class 562
CDocItem class 564
CDocTemplate class 568
CDocument class 581
CDragListBox class 601-603
CDumpContext class 605
CEdit class 614
CEditView class 635
CEvent class 644
CException class 648
CFieldExchange class 653
CFileclass 657
CFileDialog class 675
CFileException class 683
CFindReplaceDialog class 689
CFont class 695
CFontDialog class 704
CFontHolder class 709
CFormView class 716
CFrameWnd class 721, 735
CGdiObject class 737
CHeaderCtrl class 745
CHotKeyCtrl class 752
CImageList class 756
CList class 770
CListBox class 784
CListCtrl class 810
CListView class 838
CLongBinary class 841
CMap class 843
CMapStringToOb class 854
CMDIChildWnd class 871
CMDIFrameWnd class 876
CMemFile class 883
CMemoryException class 888
CMemoryState class 890
CMenu class 895
CMetaFileDC class 918
CMiniFrameWnd class 922
CMultiDocTemplate class 925
CMultiLock class 928
CMutex class 932
CNotSupportedException class 933
CObArray class 935

Member functions (continued)
CObject class 945
CObList class 954
COleBusyDialog class 970
COleChangeIconDialog class 974
COleChangeSourceDialog class 978
COleClientltem class 986
COleControl class 1031
COleConvertDialog class 1081
COleCurrency 1087
COleDataObject class 1099
COleDataSource class 1106
COleDateTime 1118
COleDateTimeSpan 1141
COleDialog class 1155
COleDispatchDriver class 1157
COleDocument class 1167
COleDropSource class 1176
COleDropTarget class 1180
COleInsertDialog class 1189
COleIPFrameWnd class 1194
COleLinkingDoc class 1198
COleLinksDialog class 1202
COleMessageFilter class 1205
COleObjectFactory class 1212
COlePasteSpecialDialog class 1219
COlePropertiesDialog class 1226
COlePropertyPage class 1231
COleResizeBar class 1237
COleServerDoc class 1242
COleServerItem class 1258
COleStreamFile class 1278
COleTemplateServer class 1282
COleUpdateDialog class 1284
COleVariant 1287
CPageSetupDialog class 1293
CPaintDC class 1301
CPalette class 1304
CPen class 1310
CPictureHolder class 1318
CPoint class 1325
CPrintDialog class 1332
CPrintInfo class 1340
CProgressCtrl class 1347
CPropertyPage class 1351
CPropertySheet class 1359
CPropExchange class 1370
CRecordset class 1381
CRecordView class 1414

Index

Index

Member functions (continued)
CRect class 1420
CRectTracker class 1436
CResourceException class 1444
CRgn class 1446
CRichEditCntrItem class 1460
CRichEditCtrl 1464
CRichEditDoc class 1491
CRichEditView class 1495
CScrollBar class 1516
CScrollView class 1524
CSemaphore class 1531
CSingleDocTemplate class 1533
CSingleLock class 1536
CSize class 1538
CSliderCtrl class 1543
CSpinButtonCtrl class 1563
CSplitterWnd class 1572
CStatic class 1588
CStatusBar class 1596
CStatusBarCtrl class 1603
CStdioFile class 1611
CString class 1617
CSyncObject class 1645
CTabCtrl class 1648
CTime class 1661
CTimeSpan class 1672
CToolBar class 1682
CToolBarCtrl class 1699
CToolTipCtrl class 1720
CTreeCtrl class 1729
CTreeView class 1752
CTypedPtrArray class 1755
CTypedPtrList class 1758
CTypedPtrMap class 1764
CView class 1773
CWaitCursor class 1791
CWinApp class 1798
CWindowDC class 1837
CWinThread class 1841
CWnd class 1865-1866, 1889, 1909, 1934, 1959,

1982,2008,2041
Memcpy member function, CMemFile class 886
Memory leaks

and GlobalAlloc and GlobalFree 889
and LocalAlloc and LocalFree 889
and malloc and free 889
DEBUG_NEW macro 889

Memory leaks (continued)
detecting 889
new operator 889

Menu classes (list) 10
Message maps 2054
Message-box display, CString object formatting 2053
Message-box styles 2274
MessageBox member function, Cwnd class 1925
Messaging API See MAPI
Microsoft Foundation Class Library

application framework 3
introduction, overview xi
overview 1
relationship to Windows API 2-3

Microsoft Jet database engine See Database engine
Mid member function, CString class 1630
MINMAXINFO structure 2257
Modifying data source data 1109
Modifying drag and drop cursors 1176
ModifyMenu member function, CMenu class 911
ModifyStyle member function, Cwnd class 1926
ModifyStyleEx member function, CWnd class 1927
Move member function

CDaoRecordset class 315
CRecordset class 1396

MoveFirst member function
CDaoRecordset class 316
CRecordset class 1397

MoveLast member function
CDaoRecordset class 317
CRecordset class 1398

MoveNext member function
CDaoRecordset class 318
CRecordset class 1398

MovePrev member function
CDaoRecordset class 319
CRecordset class 1399

MoveTo member function, CDC class 498
MoveWindow member function, CWnd class 1927
Moving

through records, CRecordView class 1416
to first Recordset record 1397
to last Recordset record 1398
to new Recordset records 1396
to next Recordset record 1398
to previous Recordset record 1399

N
Names

user (default), setting 390
user-defined workspace 383

Native ODBC error strings 415
Navigating

class CRecordView 1416
Recordsets 1396-1399

NCCALCSIZE_PARAMS structure 2258
NegotiateBorderSpace member function, CFrameWnd

class 730
New operator, memory leaks 889
NextDlgCtrl member function, CDialog class 557
NMHDR structure 1695
NO_AFX_DAO_ERROR error code 242
NormalizeHit member function, CRectTracker

class 1440
NormalizeRect member function, CRect class 1425
NotifyChanged member function

COleServerDoc class 1247
COleServerItem class 1264

NotifyClosed member function, COleServerDoc
class 1247

NotifyRename member function, COleServerDoc
class 1247

NotifySaved member function, COleServerDoc
class 1248

Null, determining whether recordset fields 1394
Nullable, determining whether recordset fields 1395

o
Obtaining information

about DAO errors 241
about database relations 231
about tabledefs 233
about workspaces 385

ODBC
Dialog data exchange (DDX) 2060
error codes 413
error string 415
HDBC handle 405
HSTMT handle 1407
MFC database macros 2061
Record field exchange (RFX) 2058
timeout value, in DAO 260

ODBC functions, calling database class 2095-2096

ODBC transactions
isolating 391
isolating with DAO 382

ODBCvs.DAO
described 216,239,250
role of DAO database objects 217

ODBC with DAO
islolating ODBC transactions 382
isolating ODBC transactions 391
Login timeout property 392

Index

OemToAnsi member function, CString class 1630
Offset member function, CPoint class 1325
OffsetClipRgn member function, CDC class 498
OffsetPos member function, CProgressCtrl class 1348
OffsetRect member function, CRect class 1425
OffsetRgn member function, CRgn class 1456
Offset ViewportOrg member function, CDC class 499
OffsetWindowOrg member function, CDC class 499
OLE

Activation 1242
application control functions 2062
base classes (list) 24
client items, COleClientItem class 982
compound documents 982
data transfer classes (list) 27
Data transfer 1098, 1105
dialog box classes (list) 27
embedded items 1244
In-place editing

activation 986-987, 1249
deactivation 1249-1250
resizing 1251

initialization 2061
linked items 1239
miscellaneous classes (list) 29
server documents

closure notifications 1247
notifications 1248

server items
creation 1250
described 1256

Uniform data transfer 1098, 1105
verbs 986
visual editing

container classes listed 25
server classes described 26

Index

OLE Automation
dispatch maps described 2062
Event sink maps described 2067
Parameter Type, MFC encapsulation 1286

OLE Change Source dialog box 977
OLE classes, overview 24
OLE container

described 1026
Rich edit as 1459
Rich edit 1490, 1493

OLE controls extended features of 1026
OleUIChangeSource function, MFC encapsulation 977
OLEUICHANGESOURCE structure, MFC

encapsulation 977
ON_COMMAND global function/macro 2170
ON_COMMAND_RANGE global

function/macro 2171
ON_CONTROL global function/macro 2172
ON_CONTROL_RANGE global function/macro 2172
ON_EVENT global function/macro 2173
ON_EVENT_RANGE global function/macro 2174
ON_MESSAGE global function/macro 2174
ON_OLEVERB global function/macro 2175
ON_PROPNOTIFY global function/macro 2176
ON_PROPNOTIFY _RANGE global

function/macro 2176
ON_REGISTERED _MESSAGE global

function/macro 2177
ON_STDOLEVERB global function/macro 2178
ON_UPDATE_COMMAND_UI global

function/macro 2178
ON_UPDATE_COMMAND_UCRANGE global

function/macro 2179
OnAccept member functionCAsyncSocket class 85
OnActivate member function

COleClientItem class 1011
CWnd class 1928

OnActivateApp member function, CWnd class 1929
OnActivateFrame member function, CView class 1774
OnActivateUI member function, COleClientltem

class 1011
OnActivateView member function, CView class 1775
OnAdvise member function, CConnectionPoint

class 200
OnAmbientProperty member function, CWnd

class 1930
OnAmbientPropertyChange member function,

COleControl class 1055-1056
OnApply member function, CPropertyPage class 1353

OnApplyScale member function, COlePropetiesDialog
class 1227

OnAskCbFormatName member function, CWnd
class 1930

OnBackColorChanged member function, COleControl
class 1055

OnBeginDrag member function, COleDropSource
class 1177

OnBeginPrinting member function, CView class 1776
OnCancel member function

CDialog class 558
CPropertyPage class 1353

OnCancelMode member function, Cwnd class 1931
OnCaptureChanged member function, CWnd

class 1931
OnChange member function, COleClientItem

class 1011
OnChangeCbChain member function, CWnd

class 1932
OnChangedRect member function, CRectTracker

class 1440
OnChangedViewList member function, CDocument

class 588
OnChangeltemPosition member function,

COleClientItem class 1012
OnChar member function, CWnd class 1932
OnCharEffect member function, CRichEditView

class 1505
OnCharToltem member function, Cwnd class 1933
OnChildActivate member function, CWnd class 1934
OnChildNotify member function, CWnd class 1934
OnClick member function, COleControl class 1056
OnClose member function

CAsyncSocket class 85
COleServerDoc class 1248
CWnd class 1935

OnCloseDocument member function, CDocument
class 588

OnCmdMsg member function, CCmdTarget class 151
OnColorOK member function, CColorDialog class 161
OnCommand member function, CWnd class 1935
OnCompacting member function, CWnd class 1936
OnCompareltem member function, CWnd class 1937
OnConnect member function, CAsyncSocket class 86
OnContextHelp member function

CFrameWnd class 731
CWinApp class 1813

OnContextMenut member function, CWnd class 1938
OnCreate member function, CWnd class 1938

OnCreateClient member function, CFrameWnd
class 731

OnCreateControlBars member function,
COleIPFrameWnd class 1195

OnCreateObject member function, COleObjectFactory
class 1214

OnCtlColor member function, CWnd class 1939
OnDDECommand member function, CWinApp

class 1813
OnDeactivate member function

COleClientltem class 1013
COleServerDoc class 1249

OnDeactivateAndUndo member function,
COleClientItem class 1013

OnDeactivateUI member function
COleClientItem class 1014
COleServerDoc class 1249

OnDeadChar member function, CWnd class 1940
OnDeleteItem member function, CWnd class 1941
OnDestroy member function, CWnd class 1942
OnDestroyClipboard member function, CWnd

class 1942
OnDeviceChange member function, CWnd class 1943
OnDevModeChange member function, CWnd

class 1944
OnDiscardUndoState member function,

COleClientltem class 1014
OnDoc Window Activate member function,

COleServerDoc class 1249
OnDo Verb member function

COleControl class 1056
COleServerItem class 1265

OnDragEnter member function
COleDropTarget class 1180
CView class 1776

OnDragLeave member function
COleDropTarget class 1181
CView class 1777

OnDragOver member function
COleDropTarget class 1181
CView class 1778

OnDragScroll member function
COleDropTarget class 1182
CView class 1779

OnDraw member function
COleControl class 1057
COleServerItem class 1265
CView class 1780

OnDrawClipboard member function, CWnd class 1944

OnDrawEx member function, COleServerItem
class 1266

OnDrawItem member function, CWnd class 1945
OnDrawMetafile member function, COleControl

class 1057

Index

OnDrawPage member function, CPageSetupDialog
class 1298

OnDrawSplitter member function, CSplitterWnd
class 1582

OnDrop member function
COleDropTarget class 1183
CView class 1780

OnDropEx member function
COleDropTarget class 1184
CView class 1781

OnDropFiles member function, CWnd class 1945
OnEdit member function, COleControl class 1058
OnEditProperty member function, COlePropertyPage

class 1233
OnEnable member function, CWnd class 1946
OnEnabledChanged member function, COleControl

class 1058
OnEndPrinting member function, CView class 1782
OnEndPrintPreview member function, CView

class 1783
OnEndSession member function, CWnd class 1946
OnEnterIdle member function, CWnd class 1947
OnEnterMenuLoop member function, CWnd

class 1948
OnEnum Verbs member function, COleControl

class 1058
OnEraseBkgnd member function, CWnd class 1948
OnEventAdvise member function, COleControl

class 1059
OnExitMenuLoop member function, CWnd class 1949
OnFileNameOK member function, CFileDialog

class 679
OnFileNew member function, CWinApp class 1814
OnFileOpen member function, CWinApp class 1815
OnFilePrintSetup member function, CWinApp

class 1816
OnFileSendMail member function

CDocument class 589
COleDocument class 1173

OnFinalRelease member function, CCmdTarget
class 152

OnFindEmbeddedItem member function,
COleLinkingDoc class 1199

Index

OnFindNext member function
CEditView class 637
CRichEditView class 1505

OnFontChange member function, CWnd class 1950
OnFontChanged member function, COleControl

class 1059
OnForeColorChanged member function, COleControl

class 1059
OnFrame Window Activate member function,

COleServerDoc class 1250
OnFreezeEvents member function, COleControl

class 1060
OnGetCheckPosition member function,

CCheckListBox class 141
OnGetClipboardData member function

COleClientItem class 1014
COleServerItem class 1267

OnGetClipRect member function, COleClientltem
class 1015

OnGetColorSet member function, COleControl
class 1060

OnGetControlInfo member function, COleControl
class 1061

OnGetDisplayString member function, COleControl
class 1061

OnGetDIgCode member function, CWnd class 1950
OnGetEmbeddedltem member function,

COleServerDoc class 1250
OnGetExtent member function, COleServerItem

class 1267
OnGetInPlaceMenu member function, COleControl

class 1061
OnGetltemPosition member function, COleClientltem

class 1015
OnGetLinkedItem member function, COleLinkingDoc

class 1199
OnGetMinMaxlnfo member function, CWnd

class 1951
OnGetPredefinedStrings member function,

COleControl class 1062
OnGetPredefinedValue member function, COleControl

class 1062
OnGetRecordset member function

CDaoRecordView class 343
CRecordView class 1416

OnGetWindowContext member function,
COleClientltem class 1016

OnHelp member function
COlePropertyPage class 1234
CWinApp class 1817

OnHelpFinder member function, CWinApp class 1818
OnHelplndex member function, CWinApp class 1818
OnHe1plnfo member function, CWnd class 1951
OnHelpUsing member function, CWinApp class 1818
OnHide member function, COleServerltem class 1268
OnHideToolbars member function, COleControl

class 1063
OnHScroll member function, CWnd class 1952
OnHScrollClipboard member function, CWnd

class 1953
OnIconEraseBkgnd member function, CWnd

class 1954
Onldle member function

CWinApp class 1819
CWinThread class 1844

OnlnitDialog member function
CDialog class 558
COlePropertyPage class 1234

OnlnitFromData member function, COleServerItem
class 1268

OnlnitialUpdate member function
CRichEditView class 1506
CView class 1783

OnlnitMenu member function, CWnd class 1954
OnlnitMenuPopup member function, CWnd class 1955
OnlnsertMenus member function, COleClientItem

class 1016
OnlnvertTracker member function, CSplitterWnd

class 1583
OnKeyDown member function, CWnd class 1956
OnKeyDownEvent member function, COleControl

class 1063
OnKeyPressEvent member function, COleControl

class 1064
OnKeyUp member function, CWnd class 1957
OnKeyUpEvent member function, COleControl

class 1064
OnKillActive member function, CPropertuPage

class 1354
OnKillFocus member function, CWnd class 1958
OnLBSelChangedNotify member function, CFileDialog

class 680
OnLButtonDblClk member function, CWnd class 1958
OnLButtonDown member function, CWnd class 1959
OnLButtonUp member function, CWnd class 1960

OnMapPropertyToPage member function, COleControl
class 1064

OnMButtonDblClk member function, CWnd
class 1961

OnMButtonDown member function, CWnd class 1962
OnMButtonUp member function, CWnd class 1962
OnMDIActivate member function, CWnd class 1963
OnMeasureltem member function, CWnd class 1964
OnMenuChar member function, CWnd class 1965
OnMenuSelect member function, CWnd class 1966
OnMessagePending member function

COleMessageFilter class 1207
CSocket class 1558

OnMnemonic member function, COleControl
class 1065

OnMouseActivate member function, CWnd class 1967
OnMouseMove member function, CWnd class 1968
OnMove member function

CDaoRecordView class 343
CRecordView class 1416
CWnd class 1968

OnMoving member function, CWnd class 1969
OnNcActivate member function, CWnd class 1969
OnNcCa1cSize member function, CWnd class 1970
OnNcCreate member function, CWnd class 1971
OnNcDestroy member function, CWnd class 1971
OnNcHitTest member function, CWnd class 1972
OnNcLButtonDblClk member function, CWnd

class 1973
OnNcLButtonDown·member function, CWnd

class 1974
OnNcLButtonUp member function, CWnd class 1974
OnNcMButtonDblClk member function, CWnd

class 1975
OnNcMButtonDown member function, CWnd

class 1975
OnNcMButtonUp member function, CWnd class 1976
OnNcMouseMove member function, CWnd class 1976
OnNcPaint member function, CWnd class 1977
OnNcRButtonDblClk member function, CWnd

class 1977
OnNcRButtonDown member function, CWnd

class 1978
OnNcRButtonUp member function, CWnd class 1978
OnNewDocument member function, CDocument

class 589
OnObjectsChanged member function,

COlePropertyPage class 1234

OnOK member function
CDialog class 559
CPropertyPage class 1354

Index

OnOpen member function, COleServerItem class 1269
OnOpenDocument member function, CDocument

class 591
OnOutOfBandData member function, CAsyncSocket

class 87
OnPaint member function, CWnd class 1979
OnPaintClipboard member function, CWnd class 1980
OnPaletteChanged member function, CWnd

class 1982
OnPalettelsChanging member function, CWnd

class 1981
OnParaAlign member function, CRichEditView

class 1506
OnParentNotify member function, CWnd class 1982
OnPasteNativeObject member function,

CRichEditView class 1506
OnPrepareDC member function, CView class 1784
OnPreparePrinting member function, CView

class 1785
OnPrint member function, CView class 1786
OnPrinterChanged member function, CrichEditView

class 1507
OnProperties member function, COleControl

class 1065
OnQueryCancel member function, CPropertyPage

class 1354
OnQueryDragIcon member function, CWnd class 1983
OnQueryEndSession member function, CWnd

class 1984
OnQueryNewPalette member function, CWnd

class 1984
OnQueryOpen member function, CWnd class 1984
OnQueryUpdateltems member function,

COleServerItem class 1269
OnRButtonDblClk member function, CWnd

class 1985
OnRButtonDown member function, CWnd class 1986
OnRButtonUp member function, CWnd class 1986
OnReactivateAndUndo member function,

COleServerDoc class 1250
OnReceive member function, CAsyncSocket class 88
OnRemoveMenus member function, COleClientltem

class 1017
OnRenderAllFormats member function, CWnd

class 1987

Index

OnRenderData member function
COleControl class 1065
COleDataSource class 1112
COleServerItem class 1270

OnRenderFileData member function
COleControl class 1066
COleDataSource class 1113
COleServerItem class 1271

OnRenderFormat member function, CWnd class 1987
OnRenderGlobalData member function

COleControl class 1067
COleDataSource class 1114
COleServerItem class 1271

OnReplaceAll member function
CEditView class 638
CRichEditView class 1507

OnReplaceSel member function
CEditView class 639
CRichEditView class 1508

OnReset member function, CPropertyPage class 1355
OnResetState member function, COleControl

class 1068
OnResizeBorder member function, COleServerDoc

class 1251
OnSaveDocument member function, CDocument

class 593
OnScroll member function, CView class 1787
OnScrollBy member function

COleClientltem class 1018
CView class 1788

OnSend member function, CAsyncSocket class 88
OnSetActive member function, CPropertyPage

class 1355
OnSetClientSite member function, COleControl

class 1068
OnSetColorScheme member function, COleServerItem

class 1272
OnSetCursor member function, CWnd class 1988
OnSetData member function

COleControl class 1068
COleDataSource class 1114
COleServerItem class 1273

OnSetExtent member function, COleServerItem
class 1273

OnSetExtentmember function, COleControl class 1069
OnSetFocus member function, CWnd class 1989
OnSetFont member function, CDialog class 559
OnSetHostNames member function, COleServerDoc

class 1251

OnSetItemRects member function, COleServerDoc
class 1252

OnSetMenu member function, COleClientltem
class 1018

OnSetObjectRects member function, COleControl
class 1069

OnSetOptions member function
CDatabase class 400
CRecordset class 1399

OnSetPageSite member function, COlePropertyPage
class 1235

OnSetPreview Mode member function, CFrame Wnd
class 732

OnShare Violation member function, CFileDialog
class 680

OnShow member function, COleServerItem class 1274
OnShowControlBars member function

COleClientltem class 1019
COleServerDoc class 1252

OnShowDocument member function, COleServerDoc
class 1253

OnShowltem member function, COleClientltem
class 1019

OnShowToolbarsmember function, COleControl
class 1070

OnShowViews member function, COleDocument
class 1173

OnShowWindow member function, CWnd class 1989
OnSize member function, CWnd class 1990
OnSizeClipboard member function, CWnd class 1991
OnSizing member function, CWnd class 1991
OnSpoolerStatus member function, CWnd class 1992
OnStyleChanged member function, CWnd class 1992
OnStyleChanging member function, CWnd class 1993
OnSysChar member function, CWnd class 1993
OnSysColorChange member function, CWnd

class 1995
OnSysCommand member function, CWnd class 1995
OnSysDeadChar member function, CWnd class 1997
OnSysKeyDown member function, CWnd class 1997
OnSysKeyUp member function, CWnd class 1999
OnTCard member function, CWnd class 2000
OnTextChanged member function, COleControl

class 1070
OnTextNotFound member function

CEditView class 639
CRichEditView class 1508

OnTimeChange member function, CWnd class 2001
OnTimer member function, CWnd class 2001

OnToolHitTest member function, CWnd class 2002
OnUpdate member function

COleServerItem class 1274
CView class 1788

OnUpdateCharEffect member function,
CRichEditView class 1508

OnUpdateCmdUI member function, CControlBar
class 206

OnUpdateDocument member function, COleServerDoc
class 1253

On U pdateFileSendMail member function, CDocument
class 593

OnUpdateFrameTitle member function,
COleClientItem class 1020

OnUpdateItems member function, COleServerItem
class 1275

OnUpdateParaAlign member function, CRichEditView
class 1509

On VKeyToltem member function, CWnd class 2003
On VScroll member function, CWnd class 2003
OnVScrollClipboard member function, CWnd

class 2004
On WaitForDataSource member function

CDatabase class 401
CRecordset class 1400

On WindowPosChanged member function, CWnd
class 2005

On WindowPosChanging member function, CWnd
class 2006

OnWinlniChange member function, CWnd class 2007
On WizardBack member function, CPropertyPage

class 1355
OnWizardFinish member function, CPropertyPage

class 1356
OnWizardNext member function, CPropertyPage

class 1356
OnWndMsg member function, CWnd class 2007
Open databases (DAO)

counting 380
obtaining information about 380

Open member function
CAnimateCtrl class 36
CDaoDatabase class 235
CDaoQueryDef class 265
CDaoRecordset class 320
CDaoTableDef class 363
CDaoWorkspace class 387
CDatabase class 401

Open member function (continued)
CFile class 664
CRecordset class 1400

Index

Open status, obtaining workspace 386
OpenClipboard member function, CWnd class 2008
OpenDocumentFile member function

CDocTemplate class 575
CWinApp class 1821

Opening
CStreamFile objects 1280
data source connections 401
databases

described 235,401
Jet vs. ODBC 235

recordsets 1400
workspaces 387

OpenStream member function, COleStreamFile
class 1280

Operations, validity of DFX 246
operator - member function

CPoint class 1328
CRect class 1433
CSize class 1540

operator !=
COleCurrency 1095
COleDateTime 1136
COleDateTimeSpan 1151

operator != member function
CPoint class 1326
CRect class 1430
CSize class 1539

operator & member function, CRect class 1433
operator &= member function, CRect class 1431
operator *, COleCurrency class 1094
operator *=, COleCurrency class 1094
operator + member function

COleCurrency 1093
CReect class 1432
CSize class 1540
CString class 1637

operator + member function, CPoint class 1327
operator +,-member function

CTime class 1669
CTimeSpan class 1676

operator +=
COleCurrency 1093
COleDateTime 1135
COleDateTimeSpan 1151

Index

operator += member function
CPoint class 1326
CRect class 1430
CSize class 1539
CString class 1638

operator +=, -= member function
CTime class 1669
CTimeSpan class 1676

operator -
COleDateTime class 1135
COleDateTimeSpan class 1150

operator - member function
COleCurrency 1093

operator I, COleCurrency class 1094
operator 1=, COleCurrency class 1094
operator <, COleCurrency class 1095
operator <, COleDateTime class 1136
operator <, COleDateTimeSpan class 1151
operator «

COleCurrency 1096
COleDateTime 1137
COleDateTimeSpan 1152
COleVariant 1291

operator « member function
CArchive class 53
CDumpContext class 607

operator «, »member function, CString class 1637
operator <=

COleCurrency 1095
COleDateTime 1136
COleDateTimeSpan 1151

operator =
COleCurrency 1092
COleDateTime 1134
COleDateTimeSpan 1150
COleVariant class 1289

operator = member function
CObject class 950
CPoint class 1327
CRect class 1429, 1431
CSize class 1540
CString class 1636
CTime class 1668
CTimeSpan class 1676

operator ==
COleCurrency 1095
COleDateTime 1136
COleDateTimeSpan 1151
COleVariant class 1290

operator == member function
CPoint class 1326
CRect class 1430
CSize class 1539

operator>
COleCurrency 1095
COleDateTime 1136
COleDateTimeSpan 1151

operator >=
COleCurrency 1095
COleDateTime 1136
COleDateTimeSpan 1151

operator»
COleCurrency 1096
COleDateTime 1137
COleDateTimeSpan 1152
COleVariant 1291

operator » member function, CArchive class 54
operator [] member function

CArray class 67
CMap class 847
CMapStringToOb class 860
CObArray class 943
CString class 1640
CTypedPtrArray class 1756
CTypedPtrMap class 1765

operator 1 member function, CRect class 1434
operator 1= member function, CRect class 1432
operator CURRENCY, COleCurrency class 1095
operator DATE, COleDateTime class 1136
operator delete member function, CObject class 950
operator double, COleDateTimeSpan class 1151
operator HBITMAP member function, CBitmap

class 110
operator HFONT member function, CFont class 702
operator HPALETTE member function, CPalette

class 1307
operator HPEN member function, CPen class 1317
operator HRGN member function, CRgn class 1458
operator LPCRECT member function, CRect

class 1429
operator LPCTSTR () member function, CString

class 1636
operator LPCV ARIANTmember function, COle Variant

class 1291
operator LPRECT member function, CRect class 1429
operator LPV ARIANT member function, COle Variant

class 1291
operator new member function, CObject class 950

operator+
COleDateTime 1135
COleDateTimeSpan 1150

operator-=
COleCurrency 1093
COleDateTime 1135
COleDateTimeSpan 1151

Operators
COleCurrency 1092
COleVariant class 1289

operators «,» member function
CTime class 1670
CTimeSpan class 1677

Options, setting
data source connections 400
recordsets 1399

OsErrorToException member function, CFileException
class 684

OutputColumn, CDaoFieldExchange class 245

p
PaintRgn member function, CDC class 500
P AINTSTRUCT structure 2259
param, CDaoField Exchange class 245
Parameter object (DAO), obtaining information

about 2226
Parameters, getting querydef 262, 267
ParseCommandLine member function, CWinApp

class 1822
ParseCurrency member function, COleCurrency

class 1090
ParseDateTime member function, COleDateTime

class 1127
ParseParam member function, CCommandLineInfo

class 190
Pass-through queries

defined 225
executing 225
SAL 251
SQL 251

Passwords
setting default 389
setting for DAO workspace 379

Paste member function
CComboBox class 182
CEdit class 625
CRichEditCtrl class 1479

PasteSpecial member function, CRichEditCtrl
class 1479

PatBlt member function, CDC class 500
Persistence of OLE controls 2070
Pie member function, CDC class 501
Play member function, CAnimateCtrl class 36
PlayMetaFile member function, CDC class 502
PlgBlt member function, CDC class 503
POINT structure 2259
PolyBezier member function, CDC class 505
PolyBezierTo member function, CDC class 506
PolyDraw member function, CDC class 506
Polygon member function, CDC class 507
Polyline member function, CDC class 508
PolylineTo member function, CDC class 508
Poly Polygon member function, CDC class 509
PolyPolyline member function, CDC class 510
PosFromChar member function, CEdit class 626
PostMessage member function, CW nd class 2008
PostModalDialog member function, COleControl

class 1071

Index

PostNcDestroy member function, CWnd class 2009
PreCloseFrame member function, CDocument

class 594
PreCreateWindow member function, CWnd class 2009
PreDrawPage member function, CPageSetupDialog

class 1299
PreModalDialog member function, COleControl

class 1070
PrepareCtrl member function, CDataExchange

class 409
PrepareEditCtrl member function, CDataExchange

class 410
PressButton member function

CPropertySheet class 1365
CToolBarCtrl class 1712

PreSubclass Window member function, CWnd
class 2010

PreTranslateMessage member function
CWinApp class 1823
CWinThread class 1845
CWnd class 2010

PrevDlgCtrl member function, CDialog class 559
Print member function, CWnd class 2010
PrintAll member function, CPrintDialog class 1337
PrintClient member function, CWnd class 2011
PrintCollate member function, CPrintDialog

class 1337

Index

PrintInsideRect member function
CEditView class 640
CRichEditView class 1509

PrintPage member function, CRichEditView
class 1510

PrintRange member function, CPrintDialog class 1337
PrintS election member function, CPrintDialog

class 1337
Process member function, COleException class 1186
ProcessMessageFilter member function

CWinApp class 1823
CWinThread class 1845

Process Shell Command member function, CWinApp
class 1824

Process WndProcException member function
CWinApp class 1825
CWinThread class 1846

Progress bar control 1346
Property Pages 2064
Property sheet classes (list) 12
PROPPAGEID global function/macro 2179
Providing data

Clipboard 1115
data transfer 1105

PtInRect member function, CRect class 1425
PtInRegion member function, CRgn class 1457
PtVisible member function, CDC class 510
PulseEvent member function, CEvent class 645
PX_Blob global function/macro 2179
PX_Bool global function/macro 2180
PX_Color global function/macro 2181
PX_Currency global function/macro 2181
PX_Double global function/macro 2182
PX_Float global function/macro 2183
PX_Font global function/macro 2183
PX_IUnknown global function/macro 2184
PX_Long global function/macro 2185
PX_Picture global function/macro 2185
PX_Short global function/macro 2186
PX_String global function/macro 2186
PX_ULong global function/macro 2187
PX_UShort global function/macro 2188
PX_ VBXFontConvert global function/macro 2188

Q
Query timeouts

DAO 230
setting 237
values, setting 404

Query, database See QueryDef; Recordsets
Query Abort member function, CDC class 511
Query AcceptData member function, CRichEditView

class 1510
QueryContinueDrag member function,

COleDropSource class 1177
Querydef object (DAO), obtainaing information

about 2227
QueryDefs

action queries 251
and recordsets 251
andSQL

described 251,255
getting SQL statement 263
setting SQL statement 269

automatic rollback on error 256
closing 255
connect string (ODBC) 257, 266
consistent updates 256
constructing 254
counting fields in 259
counting parameters in 261
counting 228
creating with MS Access 250
creating 255
creation date 258
database owned by 269
date created 258
date last updated 258
defined 250
deleting 224
Execute member function 256
executing SQL directly 256
fields in 259
forODBC 251
Inconsistent updates 256
m_pDAOQueryDef pointer 270
m_pDatabase pointer 269
name of 260, 266
obtaining information about 229
ODBC timeout property 260, 267
on external data sources 251
open status of 265

QueryDefs (continued)
opening 265
options

dbConsistent 256
dbDenyWrite 256
dbFailOnError 256
dbInconsistent 256
dbSeeChanges 256
dbSQLPassThrough 256

parameters
described 261
getting value 262
value, setting 267

pass-through query, SQL 251
pointer to parent database 269
pointer to underlying DAO object 270
purposes 251
query type

action 251, 264
append 251, 264
bulk 251, 264
cross-tab 251,264
data definition (DDL) 251,264
delete 251, 264
make-table 251, 264
pass-through, SQL 251, 264
select 251, 264
SQL pass-through 251, 264
union 251, 264
update 251, 264

records affected by Execute 263
referential integrity 256
RetumsRecords property 263,268
saved/stored queries 254
setting attributes of 254
SQL pass-through query 251,256
SQL, executing directly 256
temporary 250, 254-255
timeout, ODBC 260, 267
type of query 264
underlying DAO object, pointer to 270
usage 250
write permission 256

QuerySiblings member function, CPropertyPage
class 1356

Index

R
Radio button, DDX field exchange 2132
ReactivateAndUndo member function, COleClientitem

class 1020
Read locks, DAO 386
Read member function

CArchive class 46
CFile class 665
CImageList class 765

ReadClass member function, CArchive class 46
ReadHuge member function, CFile class 666
ReadObject member function, CArchieve class 47
ReadString member function

CArchive class 48
CStdioFile class 1612

RealizePalette member function, CDC class 511
Realloc member function, CMemFile class 886
Rebuilding recordsets 1403
Reca1cLayout member function

CFrameWnd class 732
CSplitterWnd class 1583

Receive member function, CAsyncSocket class 89
ReceiveFrom member function, CAsyncSocket

class 90
Record field exchange (DFX)

class CDaoFieldExchange 245
DoFieldExchange mechanism 1386
field exchange operations listed 247
field types, setting 247
functions 2058
IsFieldType function 653
m_prs data member 249
operations, validity of 246
PSEUDO_NULL values 247
recordset, pointer to 249
Recordset 1386
SetFieldType function 653

Record views, CRecordView class 1412
Records

adding new 1381
deleting 1385
editing 1387
updating 1387

Records affected by Execute 230
Recordsets

ability to transact 1383
ability to update records 1384
and querydefs 251

Index

Recordsets (continued)
asynchronous operation, canceling 1383
beginning of, detecting 1392
bound fields 1408
canceling long operations 1400
closing 13 84
columns selected, number 1408
completing add 1407
completing edit 1407
constructing 1385
creating 1385
cursor concurrency, support for 1399
customizing SQL 1400
default connection string 1389
deleting records 1385
determining ability to scroll 1383
determining appendability 1382
determining whether dirty 1394
determining whether field can be set Null 1395
determining whether Null 1394
determining whether open 1396
editing records 1387
end of, detecting 1393
exchanging data with data source 1386
fields

setting dirty 1404
setting null 1405

filter string 1409
HSTMT handle 1407
locking mode, setting 1406
moving to a new record 1396
moving to first record 1397
moving to last record 1398
moving to next record 1398
moving to previous record 1399
navigating 1396-1399
opening 1400
operations

binding dynamically 272
differences between recordset types 272
using DoFieldExchange 272

options, setting 1399
rebuilding 1403
record field exchange 1386
refreshing 1403
requerying 1403
RFX 1386
scrollable cursors, support for 1399
setting null 1405

Recordsets (continued)
similarities between ODBC and DAO 271
sort string 1410
SQL statement, getting 1391
status, getting 1390
table name, getting 1389, 1392
updating 1387, 1407
waiting for data source 1400
whether deleted, determining 1393
yielding processing time 1400

RecreateControlWindow member function,
COleControl class 1071

RECT structure 2260
Rectangle member function, CDC class 512
RectDefault member function, CFrameWnd class 735
RectInRegion member function, CRgn class 1457
RectVisible member function, CDC class 512
RedrawItems member function, CListCtrl class 830
RedrawWindow member function, CWnd class 2012
Referential integrity

described 256
enforcing database relations 223

ReflectChildNotify member function, CWnd
class 2014

ReflectLastMsg member function, CWnd class 2014
Refresh member function, COleControl class 1071
Refreshing recordsets 1403
RefreshLink member function, CDaoTableDef

class 364
Register member function

COleDropTarget class 1185
COleLinkingDoc class 1200
COleMessageFilter class 1208
COleObjectFactory class 1214

RegisterAll member function, COleObjectFactory
class 1214

Registering OLE controls 2068
RegisterShellFileTypes member function, CWinApp

class 1825
Registry key settings

database engine 381
setting 391

Relation field object (DAO), obtaining information
about 2232

Relation object (DAO), obtaining information
about 2230

Relational operators
COleCurrency 1095
COleDateTime 1136
COleDateTimeSpan 1151

Relations (database)
cascades 224
counting 231
creating 223
deleting 225
obtaining information about 231
referential integrity, enforcing 223

RelayEvent member function, CToolTipCtrl
class 1724

Release member function
COleClientItem class 1020
COleDataObject class 1104

ReleaseAttribDC member function, CDC class 513
ReleaseBuffer member function, CString class 1631
ReleaseDC member function, CWnd class 2015
ReleaseDispatch member function,

COleDispatchDriver class 1161
ReleaseFile member function, CDocument class 594
ReleaseFont member function, CFontHolder class 711
ReleaseOutputDC member function, CDC class 513
Releasing data objects 1100, 1104
Reload member function, COleClientItem class 1021
Remove member function

CFile class 666
CImageList class 765

RemoveAll member function
CArray class 64
CList class 777
CMap class 846
CMapStringToOb class 857
CObArray class 939
CObList class 965

RemoveAt member function
CArray class 64
CList class 777
CObArray class 940
CObList class 965

RemoveDocument member function, CDocTemplate
class 576

RemoveHead member function
CList class 778
CObList class 966
CTypedPtrList class 1761

RemoveImage member function, CTabCtrl class 1656

RemoveItem member function, COleDocument
class 1173

RemoveKey member function
CMap class 846
CMapStringToOb class 858

Index

RemoveMenu member function, CMenu class 912
RemovePage member function, CPropertySheet

class 1366
RemoveTail member function

CList class 778
CObList class 967
CTypedPtrList class 1762

Remove View member function, CDocument class 594
Rename member function, CFile class 667
Render member function, CPictureHolder class 1322
Repairing databases 388
Replace member function, CImageList class 765
ReplaceAll member function, CFindReplacedialog

class 692
ReplaceCurrent member function, CFindReplaceDialog

class 693
ReplaceSel member function

CEdit class 626
CRichEditCtrl class 1479

ReportError member function, CException class 650
ReportSaveLoadException member function,

CDocument class 596
RepositionBars member function, CWnd class 2015
RepositionFrame member function, COleIPFrame Wnd

class 1195
Requery member function

CDaoRecordset class 323
CRecordset class 1403

Requerying recordsets 1403
RequestPositionChange member function,

COleServerDoc class 1254
RequestResize member function, CRichEditCtrl

class 1480
ResetContent member function

CComboBox class 182
CListBox class 798

ResetDC member function, CDC class 513
ResetEvent member function, CEvent class 645
ResizePalette member function, CPalette class 1308
ResizeParentToFit member function, CScrollView

class 1526
Restore member function, CWaitCursor class 1792
RestoreDC member function, CDC class 514

Index

RestoreState member function, CToolBarCtrl
class 1713

Restore WaitCursor member function, CCmdTarget
clzass 153

ResumeThread member function, CWinThread
class 1847

RETCODE
defined 413
values 413

Retrieving data from data objects 1101-1102
Return codes, values for ODBC 413
ReverseFind member function, CString class 1631
Revoke member function

COleDropTarget class 1185
COleLinkingDoc class 1200
COleMessageFilter class 1208
COleObjectFactory class 1215

RevokeAll member function, COleObjectFactory
class 1215

RFX
See also Record Field Exchange
IsFieldType function 653
Recordset 1386
SetFieldType function 653
vs. DFX 245

RFX field exchange
Boolean 2190
Byte array 2189
Byte 2190
CLongBinary 2194
CString 2195
CTime 2191
Double 2192
Long integer 2193
Short integer 2192
Single precision float 2194

RFX_Binary global function/macro 2189
RFX_Bool global function/macro 2190
RFX_Byte global function/macro 2190
RFX_Date global function/macro 2191
RFX_Double global function/macro 2192
RFX_Int global function/macro 2192
RFX_Long global function/macro 2193
RFX_LongBinary global function/macro 2194
RFX_Single global function/macro 2194
RFX_Text global function/macro 2195
RGNDATA structure 2260

Rich Edit
as OLE container 1459-1490, 1493
DocumentlView version 1490, 1493

Rich Edit Control, MFC encapsulation 1461
RichEdit window class, MFC encapsulation 1461
Right member function, CString class 1632
Rollback member function

CDaoWorkspace class 388
CDatabase class 403

Rolling back database transactions 388,403
Root classes (list) 4
RoundRect member function, CDC class 514
RTF controls, MFC encapsulation 1461
Run member function

COleClientltem class 1021
CWinApp class 1826
CWinThread class 1847

Run-time object model services 2048
RunAutomated member function, CWinApp

class 1826
RunEmbedded member function, CWinApp class 1827
RunModalLoop member function, CWnd class 2016
RUNTIME_CLASS global function/macro 2196

s
SaveAllModified member function

CDocTemplate class 576
CWinApp class 1827

SaveBarState member function, CFrameWnd class 733
SaveDC member function, CDC class 515
SaveEmbedding member function, COleServerDoc

class 1254
SaveModified member function, CDocument class 597
SaveState member function, CToolbarCtrl class 1714
ScaleViewportExt member function, CDC class 516
ScaleWindowExt member function, CDC class 516
SCODE, information about 244
ScreenToClient member function, CWnd class 2016
Scroll Bar styles 2275
Scroll member function, CListCtrl class 830
Scroll-bar control, DDX field exchange 2133
Scrollable cursors, recordset 1399
ScrollContainerBy member function, COleServerDoc

class 1254
ScrollDC member function, CDC class 517
Scrolling

class CRecordView 1416
determining ability to scroll 1383

ScrollToPosition member function, CScrollView
class 1527

ScrollWindow member function, CWnd class 2017
ScrollWindowEx member function, CWnd class 2018
SearchDown member function, CFindReplaceDialog

class 693
Security support, DAO database 371
Seek member function

CAnimateCtrl class 37
CDaoRecordset class 324
CFile class 667

SeekToBegin member function, CFile class 668
SeekToEnd member function, CFile class 668
Select member function

CFontHolder class 712
CTreeCtrl class 1745

Select query 251
SelectClipPath member function, CDC class 518
SelectClipRgn member function, CDC class 519
SelectDropTarget member function, CTreeCtrl

class 1746
SelectFontObject member function, COleControl

class 1071
Selectltem member function, CTreeCtrl class 1746
SelectObject member function, CDC class 520
SelectPalette member function, CDC class 521
SelectPrinter member function, CWinApp class 1827
SelectStockFont member function, COleControl

class 1072
SelectStockObject member function, CDC class 522
SelectString member function

CComboBox class 182
CListBox class 798

SelItemRange member function, CListBox class 799
Send member function, CAsyncSocket class 93
SendChildNotifyLastMsg member function, CWnd

class 2019
SendDIgltemMessage member function, CWnd

class 2020
SendMessage member function, CWnd class 2020
SendMessageToDescendants member function, CWnd

class 2021
SendNotifyMessage member function, CWnd

class 2022
SendTo member function, CAsyncSocket class 94
Serialize member function, CObject class 949
SerializeClass member function, CArchive class 48
SerializeElements global function/macro 2197
SerializeRaw member function, CEditView class 640

Server documents, COleServerDoc class 1239
SetAbortProc member function, CDC class 523
SetAbortProc, callback function for See Callback

Index

functions for MFC member functions
SetAbsolutePosition member function, CDaoRecordset

class 325
SetAccel member function, CSpinButtonCtrl

class 1566
SetActivePage member function, CPropertySheet

class 1366
SetActivePane member function, CSplitterwnd

class 1584
SetActiveView member function, CFrameWnd

class 733
SetActiveWindow member function, CWnd class 2022
SetAnchorIndex member function, CListBox class 799
SetArcDirection member function, CDC class 524
SetAt member function

CArray class 65
CList class 778
CMap class 847
CMapStringToOb class 859
CObArray class 941
CObList class 967
CString class 1632

SetAtGrow member function
CArray class 65
CObArray class 942

SetAttribDC member function, CDC class 525
SetAttributes member function, CDaoTableDef

class 364
SetBackColor member function, COleControl

class 1072
SetBackgroundColor member function, CRichEditCtrl

class 1480
SetBarStyle member function, CControlBar class 206
SetBase member function, CSpinButtonCtrl class 1567
SetBitmap member function

CButton class 132
CStatic class 1590
CToolBar class 1687

SetBitmapBits member function, CBitmap class 111
SetBitmapDimension member function, CBitmap

class 111
SetBitmapSize member function, CToolBarCtrl

class 1714
SetBkColor member function

CDC class 525
CImageList class 766

Index

SetBkColor member function (continued)
CListCtrl class 830
CTabCtrl class 1657

SetBkMode member function, CDC class 526
SetBookmark member function, CDaoRecordset

class 326
SetBorderStyle member function, COleControl

class 1072
SetBoundsRect member function, CDC class 526
SetBrushOrg member function, CDC class 527
SetBuddy member function, CSpinButtonCtrl

class 1567
SetBusyReply member function, COleMessageFilter

class 1208
SetButtonInfo member function, CToolBar class 1687
SetButtons member function, CToolBar class 1688
SetButtonSize member function, CToolBarCtrl

class 1715
SetButtonStructSize member function, CToolBarCtrl

class 1715
SetButtonStyle member function

CButton class l32
CToolBar class 1688

SetButtonText member function, CToolBar class 1689
SetCacheSize member function, CDaoRecordset

class 327-328
SetCallbackMask member function, CListCtrl

class 831
SetCapture member function, CWnd class 2023
SetCaretIndex member function, CListBox class 800
SetCaretPos member function, CWnd class 2023
SetCharFormat member function, CRichEditView

class 1511
SetCheck member function

CButton class l33
CCheckListBox class 142
CCmdUI class 157

SetCheckStyle member function, CCheckListBox
class 142

SetClipboard member function, COleDataSource
class 1115

SetClipboardViewer member function, CWnd
class 2023

SetCmdID member function, CToolBarCtrl class 1715
SetColorAdjustment member function, CDC class 528
SetColumn member function, CListCtrl class 831
SetColumnInfo member function, CSplitterWnd

class 1584

SetColumn Width member function
CListBox class 800
CListCtrl class 832

SetConnect member function
CDaoQueryDef class 266
CDaoTableDef class 365

SetContainerInfo member function, CDocTemplate
class 576

SetControlSize member function, COleControl
class 1073

SetControlStatus member function, COlePropertyPage
class 1235

SetCurrency member function, COleCurrency 1091
SetCurrentColor member function, CColorDialog

class 161
SetCurrentIndex member function, CDaoRecordset

class 328
SetCurSel member function

CComboBox class 183
CListBox class 800
CTabCtrl class 1657

SetCursor member function
CButton class l33
CRectTracker class 1441
CStatic class 1591

SetDate member function, COleDateTime class 1128
SetDateTime member function, COleDateTime

class 1130
SetDateTimeSpan member function,

COleDateTimeSpan class 1148
SetDefaultCharFormat member function,

CRichEditCtrl class 1481
SetDefaultPassword member function,

CDaoWorkspace class 389
SetDefaultTitle member function, CDocTemplate

class 577
SetDefaultUser member function, CDao Workspace

class 390
SetDeflD member function, CDialog class 560
SetDelayTime member function, CToolTipCtrl

class 1725
SetDepth member function, CDumpContext class 607
SetDialogBkColor member function, CWinApp

class 1828
SetDialogResource member function,

COlePropertyPage class 1235
SetDirtyField, Record field exchange (DFX) 247
SetDlgCtrlID member function, CWnd class 2024
SetDlgltemInt member function, CWnd class 2024

SetDlgItemText member function, CWnd class 2025
SetDockState member function, CFrameWnd

class 733
SetDragCursorImage member function, ClmageList

class 766
SetDraw Aspect member function, COleClientItem

class 1021
SetDroppedWidth member function

CComboBox class 184
SetEditSel member function, CComboBox class 184
SetEnabled member function, COleConrol class 1073
SetEnhMetaFile member function, CStatic class 1592
SetEvent member function, CEvent class 645
SetEventMask member function, CRichEditCtrl

class 1481
SetExtendedUI member function, CComboBox

class 185
SetExtent member function, ColeClientItem

class 1022
SetFieldDirty member function

CDaoRecordset class 329
CRecordset class 1404

SetFieldNull member function
CDaoRecordset class 330
CRecordset class 1405
Record field exchange (DFX) 247

SetFieldType function
example 653
Record Field Exchange 653

SetFieldType member function
CDaoFieldExchange class 247
CFieldExchange class 653

SetFieldValue member function, CDaoRecordset
class 331

SetFieldValueNull member function, CDaoRecordset
class 332

SetFilePath member function, CFile class 669
SetFinishText member function, CPropertySheet

class 1366
SetFocus member function, CWnd class 2026
SetFont member function

CFontHolder class 712
COleControl class 1073
CWnd class 2026

SetForeColor member function, COleControl
class 1074

SetForegroundWindow member function, CWnd
class 2025

SetHandle member function, CEdit class 627

SetHeight member function, CToolBar class 1689
SetHeipID member function, CDialog class 560
SetHelpInfo member function, COlePropertyPage

class 1236
SetHorizontalExtent member function

CComboBox class 185
CListBox class 801

SetHostNames member function, COleClientltem
class 1022

Index

SetHotKey member function, CHotKeyCtrl class 753
Setlcon member function

CB utton class 134
CStatic class 1592
CWnd class 2026

SetlconicMetafile member function, COleClientItem
class 1023

SetImageList member function
CListCtrl class 832
CTabCtrl class 1657
CTreeCtrl class 1747

SetIndent member function, CTreeCtrl class 1747
Setlndicators member function, CStatusBar class 1599
SetlniPath member function, CDaoWorkspace

class 391
SetlnitialDataFormats member function, COlecontrol

class 1074
SetlnitialSize member function, COleControl

class 1074
SetIsolateODBCTrans member function,

CDaoWorkspace class 391
SetItem member function

CHeaderCtrl class 750
CListCtrl class 832
CTabCtrl class 1658
CTreeCtrl class 1748

SetItemCount member function, CListCtrl class 833
SetItemData member function

CComboBox class 186
CListBox class 801
CListCtrl class ·834
CTreeCtrl class 1748

SetltemDataPtr member function
CComboBox class 186
CListBox class 802

SetItemExtra member function, CTabCtrl class 1658
SetltemHeight member function

CComboBox class 187
CListBox class 802

SetlternImage member function, CTreeCtrl class 1749

Index

SetItemName member function, COleServerItem
class 1275

SetItemPosition member function, CListCtrl class 834
SetltemRects member function, COleClientItem

class 1023
SetltemSize member function, CTabCtrl class 1659
SetItemState member function

CListCtrl class 835
CTreeCtrl class 1749

SetltemText member function
CListCtrl class 835
CTreeCtrl class 1750

SetLength member function, CFile class 669
SetLimitText member function, CEdit class 627
SetLineSize member function, CSliderCtrl class 1549
SetLinkUpdateOptions member function,

COleClientItem class 1024
SetLoadParams member function, CArchive class 49
SetLocale member function

CComboBox class 187
CListBox class 803

SetLockingMode member function
CDaoRecordset class 332
CRecordset class 1406

SetLoginTimeout member function
CDaoWorkspace class 392
CDatabase class 404

SetMapMode member function, CDC class 528
SetMapperFlags member function, CDC class 530
SetMargins member function

CEdit class 628
CRichEditView class 1511

SetMaxPage member function, CPrintInfo class 1341
SetMenu member function, CWnd class 2027
SetMenuContextHelpld member function, CMenu

class 913
SetMenuItemBitmaps member function, CMenu

class 913
SetMessagePendingDelay member function,

COleMEssageFilter class 1209
SetMessageText member function, CFrameWnd

class 734
SetMinHeight member function, CStatusBarCtrl

class 1607
SetMinPage member function, CPrintInfo class 1342
SetMiterLimit member function, CDC class 530
SetModified member function, CPropertyPage

class 1357

SetModifiedFlag member function
CDocument class 597
COleControl class 1075
COlePropertyPage class 1236

SetModify member function
CEdit class 628
CRichEditCtrl class 1481

SetName member function
CDaoQueryDef class 266
CDaoTableDef class 366

SetNotPermitted member function, COleControl
class 1075

SetNotSupported member function, COlecontrol
class 1075

SetObjectSchema member function, CArchive class 50
SetODBCTimeout member function, CDaoQueryDef

class 267
SetOLECallback member function, CRichEditCtrl

class 1482
SetOptions member function, CRichEditCtrl

class 1482
SetOutputDC member function, CDC class 530
SetOverlaylmage member function, ClmageList

class 767
SetOwner member function

CToolBarCtrl class 1716
CWnd class 2027

SetPadding member function, CTabCtrl class 1659
SetPageName member function, COlePropertyPage

class 1236
SetPageSize member function, CSliderCtrl class 1550
SetPaletteEntries member function, CPalette

class 1308
SetPanelnfo member function, CStatusBar class 1600
SetPaneStyle member function, CStatusBar class 1600
SetPaneText member function, CStatusBar class 1601
SetPaperSize member function, CRichEditView

class 1512
SetParaFormat member function

CRichEditCtrl class 1483
CRichEditView class 1512

SetParam Value member function
CDaoQueryDef class 267
CDaoRecordset class 333

SetParam ValueNull member function, CDaoRecordset
class 334

SetParent member function, CWnd class 2028
SetParts member function, CStatusBarCtrl class 1608
SetPasswordChar member function, CEdit class 629

SetPathName member function, CDocument class 598
SetPercentPosition member function, CDaoRecordset

class 334
SetPictureDispatch member function, CPictureHolder

class 1322
SetPixel member function, CDC class 531
SetPixelV member function, CDC class 531
SetPolyFillMode member function, CDC class 532
SetPos member function

CProgressCtrl class 1348
CSliderCtrl class 1550
CSpinButtonCtrl class 1567

SetPrintDevice member function, COleClientItem
class 1024

SetPrinterFont member function, CEditView class 641
SetProperty member function

COleDispatchDriver class 1161
CWnd class 2028

SetQueryTimeout member function
CDaoDatabase class 237
CDatabase class 404

SetRadio member function, CCmdUI class 157
SetRange member function

CProgressCtrl class 1348
CSliderCtrl class 1550
CSpinButtonCtrl class 1568

SetRangeMax member function, CSliderCtrl
class 1551

SetRangeMin member function, CSliderCtrl
class 1551

SetReadOnly member function
CEdit class 629
CRichEditCtrl class 1484

SetRect member function
CEdit class 630
CRect class 1426
CRichEditCtrl class 1484

SetRectEmpty member function, CRect class 1426
SetRectlnContainer member function, COleControl

class 1075
SetRectNP member function, CEdit class 630
SetRectRgn member function, CRgn class 1458
SetRedraw member function, CWnd class 2029
SetRegistryKey member function, CWinApp

class 1828
SetRetryReply member function, COleMessageFilter

class 1209
SetRetumsRecords member function, CDaoQueryDef

class 268

SetROP2 member function, CDC class 533
SetRowInfo member function, CSplitterWnd

class 1584

Index

SetRows member function, CToolBarCtrl class 1716
SetRules member function, CHotKeyCtrl class 754
SetScaleToFitSize member function, CScrollView

class 1527
SetScrollInfo member function

CScrollBar class 1519
CWnd class 2029

SetScrollPos member function
CScrollBar class 1520
CWnd class 2030

SetScrollRange member function
CScrollBar class 1520
CWnd class 2031

SetScrollSizes member function, CScrollView
class 1528

SetScrollStyle member function, CSplitterWnd
class 1585

SetSel member function
CEdit class 631
CListBox class 803
CRichEditCtrl class 1485

SetSelection member function, CSliderCtrl class 1551
SetSelectionCharFormat member function,

CRichEditCtrl class 1485
SetServerInfo member function, CDocTemplate

class 577
SetSimple member function, CStatusBarCtrl

class 1608
SetSize member function

CArray class 66
CObArray class 942

SetSizes member function, CToolBar class 1690
SetSockOpt member function, CAsyncSocket class 97
SetSourceTableName member function, CDaoTableDef

class 367
SetSQL member function, CDaoQueryDef class 269
SetState member function

CButton class 135
CToolBarCtrl class 1717

SetStatus member function
CFile class 670
COleCurrency 1091
COleDateTime 1132
COleDateTimeSpan 1149

SetStep member function, CProgressCtrl class 1349
SetStoreParams member function, CArchive class 50

Index

SetStretchBltMode member function, CDC class 534
SetSynchronousMode member function, CDatabase

class 403
SetSysString member function, CString class 1633
SetTabStops member function

CEdit class 631
CEditView class 641
CListBox class 803

SetTargetDevice member function, CRichEditCtrl
class 1486

SetText member function
CCmdUI class 157
COleControl class 1076
CStatusBarCtrl class 1609

SetTextAlign member function, CDC class 535
SetTextBkColor member function, CListCtrl class 836
SetTextCharacterExtra member function, CDC

class 536
SetTextColor member function

CDC class 537
CListCtrl class 836

SetTextJustification member function, CDC class 537
SetThreadPriority member function, CWinThread

class 1847
SetTic member function, CSliderCtrl class 1552
SetTicFreq member function, CSliderCtrl class 1552
SetTime member function, COleDateTime 1132
SetTimer member function, CWnd class 2032
Setting

default passwords (DAO) 389
default user names 390
DFX field types 247
login timeout values 404
null, recordset 1405
query timeout values 237, 404
workspace passwords (DAO) 379
worspace user names (DAO) 379

SetTitle member function
CDocument class 598
CPropertySheet class 1367

SetToolInfo member function, CToolTipCtrl
class 1725

SetToolRect member function, CToolTipCtrl
class 1725

SetTooltips member function, CTabCtrl class 1659
SetToolTips member function, CToolBarCtrl

class 1718

SetTopIndex member function
CComboBox class 188
CListBox class 804

SetValidationRule member function, CDaoTableDef
class 367-368

SetViewportExt member function, CDC class 538
SetViewportOrg member function, CDC class 539
SetWindowContextHelpId member function, CWnd

class 2032
SetWindowExt member function, CDC class 540
SetWindowOrg member function, CDC class 541
SetWindowPlacement member function, CWnd

class 2033
SetWindowPos member function, CWnd class 2033
SetWindowText member function, CWnd class 2036
SetWizardButtons member function, CPropertySheet

class 1367
SetWizardMode member function, CPropertySheet

class 1368
SetWordCharFormat member function, CRichEditCtrl

class 1486
Short integer

DFX field exchange 2155
RFX field exchange 2192

ShowCaret member function, CWnd class 2036
ShowControlBar member function, CFrame Wnd

class 734
ShowDropDown member function, CComboBox

class 188
ShowOwnedPopups member function, CWnd

class 2037
ShowOwnedWindows member function, CFrame Wnd

class 734
ShowScrollBar member function

CScrollBar class 1521
CWnd class 2037

ShowWindow member function, CWnd class 2037
ShutDown member function, CAsyncSocket class 100
Single precision float

DFX field exchange 2156
RFX field exchange 2194

Size member function, CRect class 1426
SIZE structure 2261
SizeToContent member function, CBitmapButton

class 116
Slider control 1542
SOCKADDR structure 2261
SOCKADDR_IN structure 2262
Sort strings, recordset 1410

SortChildren member function, CTreeCtrl class 1750
SortChildrenCB member function, CTreeCtrl

class 1750
SortItems member function, CListCtrl class 836
SpanExcluding member function, CString class 1633
SpanIncluding member function, CString class 1634
Spin button control 1562
SplitColumn member function, CSplitterWnd

class 1585
SplitRow member function, CSplitterWnd class 1586
SQL

executing SQL statements directly (DAO) 225
pass-through queries 251

defined 225
executing 225

setting SQL statement of querydef 269
statements

customizing 1400
described 251
directly executing 398
getting default 1389
getting recordset 1391
querydef, getting 263
recordset, getting 1391

SQL_ERROR codes 413
SQLError function, native error strings 415
SQLSTATE, native error strings 415
Standard cvommand, window IDs 2057
Standard OLE container 1026
StartDoc member function, CDC class 541
StartPage member function, CDC class 542
Static control styles 2276
Status bar control 1602
Status, getting recordset 1390
StepIt member function, CProgressCtrl class 1349
Stop member function, CAnimateCtrl class 37
StoreField, Record field exchange (DFX) 247
StreamIn member function, CRichEditCtrl class 1487
StreamOut member function, CRichEditCtrl

class 1487
StretchBlt member function, CDC class 542
StrokeAndFillPath member function, CDC class 544
StrokePath member function, CDC class 545
Structured storage, CFile implementation 1277
Structures, called from MFC function descriptions

ABC structure 2210
ABCFLOAT structure 2211
BITMAP structure 2211
BITMAPINFO structure 2212

Structures, called from MFC function descriptions
(continued)

CDaoDatabaseInfo structure 2214
CDaoErrorlnfo structure 2217
CDaoFieldInfo structure 2218
CDaoIndexFieldInfo structure 2225
CDaoIndexInfo structure 2222
CDaoParameterInfo structure 2226
CDaoQueryDefinfo structure 2227
CDaoRelationFieldInfo structure 2232
CDaoRelationInfo structure 2230
CDaoTableDefinfo structure 2233
CDao WorkspaceInfo structure 2235
COLORADJUSTMENT structure 2236
COMPAREITEMSTRUCT structure 2238
CREATESTRUCT structure 2239
DELETEITEMSTRUCT structure 2240
described 2210
DEVMODE structure 2241
DEVNAMES structure 2246
DOCINFO structure 2247
DRAWITEMSTRUCT structure 2247
FILETIME structure 2249
HD _ITEM structure 747
HD_LAYOUT structure 749
IMAGEINFO structure 764
LINGER structure 2250
LOGBRUSH structure 2250
LOGFONT structure 2251
LOGPEN structure 2255
LV_COLUMN structure 817
LV _FINDINFO structure 815
LV _HITTESTINFO structure 827
LV_ITEM structure 820
MEASUREITEMSTRUCT structure 2256
MINMAXINFO structure 2257
NCCALCSIZE_P ARAMS structure 2258
NMHDR structure 1695
PAINSTSTRUCT structure 2259
POINT structure 2259
RECT structure 2260
RGNDATA structure 2260
SIZE structure 2261
SOCKADDR structure 2261
SOCKADDR_IN structure 2262
SYSTEMTIME structure 2263
TBBUTTON structure 1699
TBNOTIFY structure 1695
TC_HITTESTINFO structure 1655

Index

Index

Structures, called from MFC function descriptions
(continued)

TC_ITEM structure 1653
TC_ITEMHEADER structure 1653
TEXTMETRIC structure 2263
TOOLINFO structure 1722
TOOLTIPTEXT structure 1693
TTHITTESTINFO structure 1724
TV _HITTESTINFO structure 1742
TV _INSERTSTRUCT structure 1744
TV_ITEM structure 1735
TV_SORTCB structure 1750
WINDOWPLACEMENT structure 2264
WINDOWPOS structure 2266
WSADAT A structure 2267
XFORM structure 2268

Styles
button 2270
combo-box 2271
edit 2272
list-box 2273
message-box 2274
scroll-bar 2275
specified with dwstyle parameter 2270
static control 2276
window

described 2270,2277
extended 2279

SubclassDlgJtem member function, CWnd class 2038
SubclassWindow member function, CWnd class 2039
SubtractRect member function, CRect class 1427
Support classes, miscellaneous (list) 18
SuspendThread member function, CWinThread

class 1848
Synchronous access

disabling 403
enabling 403
mode, setting 403

SyncToRichEditObject member function,
CRichEditCntrlItem class 1460

SYSTEMTIME structure 2263

T
Tab control 1647
TabbedTextOut member function, CDC class 545
Table names

getting Recordset 1392
getting 1389

Tabledef object (DAO), obtaining information
about 2233

TableDefs
counting 232
deleting 225

TBBUTTON structure 1699
TBNOTIFY structure 1695
TC_HITTESTINFO structure 1655
TC_ITEM structure 1653
TC_ITEMHEADER structure 1653
Template collection classes (list) 20
Templates, collection classes

CArray 58
CList 769
CMap 842
CTypedPtrArray 1754
CTypedPtrList 1757
CTypedPtrMap 1763

TEXTMETRIC structure 2263
TextOut member function, CDC class 546
THIS_FILE global function/macro 2197
Threading base class, listed 5
THROW global function/macro 2197
THROW_LAST global function/macro 2198
ThrowError member function

CFileException class 684
COleControl class 1076

ThrowOsError member function, CFileException
class 684

Timeouts
ODBC 260
query

described 230
setting 237

Tool tip control 1719
Toolbar control 1691
TOOLINFO structure 1722
TopLeft member function, CRect class 1428
TRACE global function/macro 2198
TRACEO global function/macro 2199
TRACEI global function/macro 2199
TRACE2 global function/macro 2200
TRACE3 global function/macro 2200
Track member function, CRectTracker class 1441
TrackPopupMenu member function, CMenu class 914
TrackRubberBand member function, CRectTracker

class 1442
Transaction log file 388

Transactions
beginning 374
CanTransact member function (DAO) 219
committing 376
DAO support 371
determining whether allowed 219
isolating ODBC 382,391
role of DAO database objects 217
rolling back 388
separate 371

Transactions, database
beginning, described 394
committing 397
determining whether allowed 395
determining whether available 1383
rolling back 403

TransformCoords member function, COleControl
class 1077

TranslateColor member function, COleControl
class 1077

Tree view control 1727
TrimLeft member function, CString class 1635
TrimRight member function, CString class 1635
TRY global function/macro 2201
TTHITTESTINFO structure 1724
TV _HITTESTINFO structure 1742
TV _INSERTSTRUCT structure 1744
TV_ITEM structure 1735
TV _SORTCB structure 1750
Type library access 2064

u
UINT, DDX field exchange 2134
Undo member function

CEdit class 632
CRichEditCtrl class 1488

Undo support, COleServerDoc class 1242
Uniform data transfer, OLE 1098, 1105
Union queries 251
UnionRect member function, CRect class 1428
Unlock member function

CCriticalSection class 213
CEvent class 646
CMultiLock class 929
CSingleLock class 1537
CSyncObject class 1646

UnlockBuffer member function
CEditView class 641
CString class 1635

UnlockRange member function, CFile class 670
UnrealizeObject member function, CGdiObject

class 742
UnSubclassWindow member function, CWnd

class 2039
Update member function

CDaoRecordset class 335
CListCtrl class 837
CRecordset class 1407

Update queries 251
UpdateAllItems member function, COleServerDoc

class 1255
UpdateAllViews member function, CDocument

class 598
UpdateColors member function, CDC class 547
UpdateData member function, CWnd class 2040
UpdateDialogControls member function, CWnd

class 2040
UpdateLink member function, COleClientItem

class 1025

Index

UpdateModifiedFlag member function, COleDocument
class 1174

UpdateRegistry member function
COleObjectFactory class 1215
COleTemplateServer class 1282

UpdateRegistryAll member function,
COleObjectFactory class 1216

Updates, database
determining whether allowed 219,396
determining whether available 1384

UpdateTipText member function, CToolTipCtrl
class 1726

UpdateWindow member function, CWnd class 2041
Updating

records 1387
Recordsets 1387, 1407

User commands, disabling database 399
User Interface Issues, Drag and Drop 1176
User names

setting default (DAO) 390
setting for DAO workspaces 379
workspace 383

Using database objects 216

Index

V
ValidateRect member function, CWnd class 2041
ValidateRgn member function, CWnd class 2042
Validation failures, dealing with 408
Variant parameter type constants 2063
VARIANT, MFC encapsulation 1286
VERIFY global function/macro 2201
VerifyLicenseKeymember function,

COleObjectFactoryEx class 1216
VerifyPos member function, CSliderCtrl class 1553
VerifyUserLicense member function,

COleObjectFactory class 1217
Version, getting database engine 234, 384
View classes (list) 11
VKeyToltem member function, CListBox class 805

w
Waiting for data sources

described 401
determining status 399
Recordset 1400

WidenPath member function, CDC class 547
Width member function, CRect class 1428
WillAmbientsBe ValidDuringLoad member function,

COleControl class 1078
Window application classes (list) 5
Window classes, RichEdit, MFC encapsulation 1461
Window IDs described 2057
Window styles

described 2277
extended 2279

WindowFromPoint member function, CWnd
class 2042

WINDOWPLACEMENT structure 2264
WINDOWPOS structure 2266
WindowProc member function, CWnd class 2043
Windows Common controls

CAnimateCtrl 33
CHeaderCtrl 744
CHotKeyCtrl 751
CImageList 755
CListCtrl 806
CProgressCtrl 1346
CRichEditCtrl 1461
CSliderCtrl 1542
CSpinButtonCtrl 1562
CStatusBarCtrl 1602

Windows Common controls (continued)
CTabCtrl 1647
CToolBarCtrl 1691
CToolTipCtrl 1719
CTreeCtrl 1727

Windows, yielding time to other other
applications 401

WinHelp member function, CWinApp class 1829
Workspace

accessing database workspaces 238
accessing underlying DAO objects 393
callable functions before Open 387
capabilities of

access to Databases collection 370
access to default workspace 370
access to Workspaces collection 370
database engine properties 370
transaction management 370

closing, consequences of 375
compacting databases 377

database engine version options 377
dbLangGeneral option 377
language options 377

constructing C++ object 375
creating 371,379
DAO database 370
database engine properties 387
database sessions 370
Databases collection 370
database engine version, getting 384
defined 370
getting number of databases open 380
initialization settings 391
isolating ODBC transactions 382,391
Login timeout property, setting 392
multiple, need for 370
name, user-defined 383
obtaining information about open databases 380
obtaining information about workspaces 385
open databases, counting 380
open status, obtaining 386
opening 387
password, setting 379
persistence 371,375
registry key settings 391
repairing a database 388
rolling back transactions 388
setting default password 389
setting default user name 390

Workspace (continued)
setting user name 379
static member functions 387
transaction log file 388
transaction manager 370
transaction space 370
usage tips

creating new workspaces 371
explicitly opening default workspace 371
opening existing workspaces 371

user name 383
W orkspaces collection

appending to 374
workspaces in 384

Workspace count, getting 384
Workspace object (DAO), obtaining information

about 2235
Workspace, using default implicitly 371
WrapChanged member function, CRichEditView

class 1512
Write member function

CArchive class 51
CFile class 671
ClmageList class 767

WriteClass member function, CArchive class 52
WriteHuge member function, CFile class 671
WriteObject member function, CArchive class 52
WriteProfilelnt member function, CWinApp

class 1830
WriteProfileString member function, CWinApp

class 1831
WriteString member function

CArchive class 53
CStdioFile class 1613

WSADA TA structure 2267

x
XFORM structure 2268

v
Yielding processing time

described 401
Recordset 1400

*Insert existing text here and delete this text. Do not
remove the following paragraph.

Index

Volume ThreeA Six

PART ONE

This six-volume collection is the complete printed product documentation for Microsoft Visual C++ version 4, the development system for Win32®.
In book form, this information is portable and easy to access and browse, a comprehensive alternative to the substantial online help system in Visual C++.
Although the volumes are numbered as a set, you have the convenience and savings of buying only the volumes you need, when you need them.

Volume 1: MICROSOFT VISUAL C++ USER'S GUIDE
You'll get vital information on the Visual C++ development environment in this four-part tutorial. It
provides detailed information on wizards, the Component Gallery, and the Microsoft Developer Studio
with its integrated debugger and code browser - all essential instruments for building and using prebuilt
applications in Visual C++. A comprehensive reference for all the command-line tools is included.

Volume 2: MICROSOFT VISUAL C++ PROGRAMMING WITH MFC
This comprehensive tutorial gives you valuable information for programming with the Microsoft Foundation
Class Library (MFC) and Microsoft Win32, plus details on building OLE Controls. You'll find out how MFC
works with an in-depth overview and a valuable compilation of over 300 articles on MFC programming.
Win32 topics cover exception handling, templates, DLLs, and multithreading with a Visual C++ perspective.

Volume J: MICROSOFT FOUNDATION CLASS LIBRARY REFERENCE, PART 1
Volume 4: MICROSOFT FOUNDATION CLASS LIBRARY REFERENCE, PART 2
This two-volume reference is your Rosetta stone to Visual (++, providing a thorough introduction to Mf(,
a class library overview, and the alphabetical listing of all the classes used in MfC. In-depth class descriptions
summarize members by category and list member functions, operators, and data members. Entries for member functions include return values, parameters,
related classes, important comments, and source code examples. Valuable information on macros and globals, structures, styles, callbacks, and message
maps is included at the end of Volume 4.

Volume 5: MICROSOFT VISUAL C++ RUN-TIME LIBRARY REFERENCE
Combining the information of two books, this volume contains complete descriptions and alphabetical listings of all the functions and parameters in both
the run-time and iostream class libraries, and includes helpful source code examples. You'll also get full details on the 27 new debug run-time functions.

Volume 6: MICROSOFT VISUAL C++ LANGUAGE REFERENCE
Three books in one, the C and C++ references in this volume guide you through the two languages: terminologies and concepts, programming structures,
functions, declarations, and expressions. The C++ section also covers Run-Time Type Information (RTII) and Namespaces, important new language features
added to this version of Visual C++. The final section of this valuable resource discusses the preprocessor and translation phases, integral to C and C++
programming, and includes an alphabetical listing of preprocessor directives.

U.S.A.
u.K.
Canada

$29.95
£27.49
$39.95

[Recommended)

ISBN 1-556 15-922-6

90000

Microsoft'Press

