

Developers
Workshop

Frank Crockett,
with Jocelyn, Garner

Microsoft Press

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright ©1997 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or
transmitted in any form or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Crockett, Frank, 1968-

MFC Developer's Workshop I Frank Crockett.
p. cm.

Includes index.
ISBN 1-57231-511-3
1. Application software-Development. 2. Microsoft foundation

class library. 3. Microsoft Visual C++. I. Title.
QA76.76.A65C76 1997
0005.26'8--dc21 97-7751

CIP

Printed and bound in the United States of America.

123456789 MLML 210987

Distributed to the book trade in Canada by Macmillan of Canada, a division of
Canada Publishing Corporation.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors.worldwide. For further
information about international editions, contact your local Microsoft Corporation office. Or
contact Microsoft Press International directly at fax (206) 936-7329.

FoxPro, Microsoft, Microsoft Press, the Microsoft Press logo, Visual Basic, Visual C++, Win32,
Windows, and Windows NT are registered trademarks and ActiveX, Developer Studio, the Microsoft
Internet Explorer logo, Visual FoxPro, Visual InterDev, and Visual Studio are trademarks of
Microsoft Corporation. Other product and company names mentioned herein may be the trade
marks of their respective owners. Companies, names, and/or data used in screens and sample
output are fictitious unless otherwise noted.

Acquisitions Editor: Eric Stroo
Project Editor: Sigrid Anne Strom
Technical Editor: Jim Fuchs

CONTENTS

Acknowledgments . ix

Introduction ... xi

PA AT I: WORKSHOP
CHAPTER ONE

AppWizard and the MFC Library 3
Background ... 4
Adding a Docking Toolbar and a Status Bar to an Existing

MFC Application .. 18
Adding an MRU List to an Existing MFC Application 23
Adding Print Preview to an Existing MFC Application 24
Adding MAPI and Windows Sockets Support to an Existing

MFC Application ... 28
Converting an Existing MFC SDI Application to MDI 31

CHAPTER TWO

Application and Frame Window Architecture 45
Modifying the System Menu of an MFC Application 46
Modifying the Initial State of an MFC Application 53
Adding a Progress Indicator to the Status Bar 57
Adding Tooltips for Modal Dialog Box Controls 60
Animating a Bitmap in the Status Bar ... 65

CHAPTER THREE

Document Templates 75
Overview of Document Templates ... 76
The Default Mechanics of Document Templates 77
Customizing the Document Template ... 80

iii

MFC DEVELOPER'S WORKSHOP

iv

Choosing a Document Template Without
the New Document Dialog Box .. 88

Adding a Second View to a Document .. 97
Implementing Switchable Views for a Single Document 101

CHAPTER FOUR

Dialog Boxes 111
Implementing a Custom DDX Function ... 111
Customizing Common Dialog Boxes .. 116
Using Bitmaps as the Background in a Dialog Box 133
Modifying the Attributes of Dialog Box Controls 143

CHAPTER FIVE

Controls 151
Sharing the Main Frame Window Menu Between

MDI Children 152
Transferring Strings Between a List Box and a

CStringArray Object ... 158
Tabbing Between Child Window Controls in a

Non-Dialog Box View ... 162
Adding Tooltips for View Regions and Child Windows 169
Enabling a Nested Pop-Up Menu .. . 176

CHAPTER· SIX

ActiveX Controls and OLE 1 a1
Making an ActlveX Control Safe for Scripting

and Initializing ... 182
Loading an ActlveX Control Property Asynchronously 193
Implementing a Custom Interface Using an MFC

Out-of-Process Server ... 202
Exposing the Acceierator Table of an ActiveX Control to

Visual Basic Applications .. 216
Exposing MFC Collections to a Visual Basic Application 220

CHAPTER SEVEN

Bits and Pieces 233

Contents

Bulldlng an MFC Resource-Only DLL ... 234
Implementing Drag and Drop Capablllty

Between Chlld Windows .. 238
Using a Custom Class Factory In an MFC Appllcatlon 249
Saving the State of an MDI Application upon Exiting 253

CHAPTER EIGHT

MFC Database Classes 265
Comparing the MFC Database Classes .. 266
Understanding the DAO SOK Classes ... 268
Using the MFC Database Classes ... 268
Stretching the MFC Database Classes .. 270
Opening a FoxPro Database Directly with DAO Database

Classes ... 272
Opening SQL Server Directly with DAO Database

Classes .. 280
Opening Oracle Directly with DAO Database Classes 284
Attaching FoxPro to an Access Database Using DAO

Database Classes ... 287
Attaching SQL Server to an Access Database Using DAO

Database Classes ... 293
Attaching Oracle to an Access Database in DAO Database

Appllcatlons .. 299
Mixing Static and Dynamic Binding In DAO Database

Classes .. 299
Opening a Recordset on a Stored Procedure Using ODBC

Database Classes ... 305
Using Output Parameters with the ODBC API and ODBC

Database Classes ... 314

v

MFC DEVELOPER'S WORKSHOP

vi

PART II: REFERENCE SECTION
Knowledge Base Articles 325
Using CFormViewin SDI and MDI Applications 326
How to Change an MFC-Based

MDI Child Window's Frame Text .. 329
Displaying the Current Time in a CStatusBar Pane 333
Switching Views in a Single Document Interface Program 337
Create Additional Views with CreateNewFrame Function 340
Setting First Pane of CStatusBar ... 343
How to Create New Documents Without CWinApp::OnFileNew 346
Changing the Background Color of an MFC Edit Control 348
How to Detect an Empty CRecordset Object 352
Format of the Document Template String ... 353
How to Remove the System Menu

from an lconized Application ... 357
How to Subclass the MDIClient by Using MFC 361
Avoiding Error LNK2001

Unresolved External Using DEFINE_GUID 364
How to Create MFC Applications

That Do Not Have a Menu Bar .. 366
How to Change the Mouse Pointer for a Window in MFC 369
How to Customize the Common Print Dialog 373
How to Detect Mouse Clicks on

Client Area of MDI Frame Windows .. 377
SAMPLE: Using MFC OLE Drag & Drop

to Drag Text Between Windows ... 380
How to Use Dynasets with Microsoft SQL Server Version 6.x 383
MFC ODBC Classes and Parameterized Pre-Defined Queries 385
SAMPLE: VSWAP32 Demos Multiple-View Switching in SDI 390
SAMPLE: DLGDB32 CDialog Sharing a CRecordset Object 393
SAMPLE: VWRPLC32, Replacing a View

in a CMDIChildWnd Window .. 394
SAMPLE: Adding Control Bars to Dialog Boxes in MFC 397
How to Add Tooltips to OLE Controls ... 400

Contents

How to Handle OCM_CTLCOLORxxx Reflected Messages 404
PRB: MFC Loads Wrong Resource in Extension DU. 406
DRAGD95.EXE:SAMPLE:OLE Drag/Drop

in Windows 95 Common Controls ... 409
PRB: Opening a Dynaset on a SQL Server Stored Procedure 411

APPENDIX

Searching for Articles in
the Microsoft Knowledge Base 413
Major and Minor Keywords in the Languages Collectlon 413
Product-Specific Keywords .. 417
Knowledge Base-Wide Keywords ... 417

Index .. 418

vii

ACKNOWLEDGMENTS

Without contributions and support from the following people, you would
not be holding this book. My sincere thanks to all of them.

To Grandfather for his support and gifts.
To Kathy Swihart, who was always there to support me, even when every

thing else seemed to be spinning out of control.
To the excellent people who make up the Microsoft Technical Support

teams for Visual C++ for their technical expertise and advice, with special thanks
to Dan Kirby,Joel Krist,Joe Massoni, Ed Dore, and Kelly Ward.

To Mike Blaszczak (did I spell it right?), John Elsbree (a man who doesn't
have to drink to have a good time!), and Michael Malone (a pretty good pilot
and sorcerer) for their advice and assistance in some of the more technical ar
eas ofMFC.

To Chuck Sphar, an excellent mentor who was always there (sort of <g>)
to keep me writing.

To Jocelyn Garner, who rounded out this book nicely with a chapter on
database classes and MFC.

And finally, to my parents for letting me read my books, instead of mak
ing me go out and play (like "normal" kids).

ix

INTRODUCTION

AfFc Deve!,oper's Workshop is part of a series of task-centered books that focus
on solutions to common programming tasks. The purpose of this book is to
assist developers in quickly implementing common features found in Mi
crosoft Foundation Class (MFC) applications. It is intended as a solution set
for intermediate developers, not as an introduction to the MFC library.

What's in This Book
This book consists of a collection of programming tasks that center around
the MFC library. The tasks presented in the collection are problems com
monly encountered during the development of Microsoft Windows applica
tions using Microsoft Visual C++ and their solutions. Each task presents the
steps and information needed to implement a particular feati.ire or behavior.

How This Book Is Organized
This book is designed to demonstrate the modularity of the MFC library
through a series of focused programming tasks. The structure of the book is
itself modular; each chapter includes a discussion of the general topic to be
covered (usually an area of program functionality or an area of the MFC li
brary) and several common tasks that illustrate various details of the topic be
ing discussed (for instance, document-view architecture, dialog boxes, and
menus and controls). Each chapter (and each task within the chapter) is self
contained. The only common thread from one task to another is that all tasks
implement a solution to a problem using components of the MFC library.
Having said this, however, I recommend you read Chapter I before jumping
into the rest of the book because it introduces the modular approach that
clarifies the relationships among the various components of the MFC library.

Is This Book for You?
This book is intended for people who have had at least one year of experi
ence developing MFC applications for Windows or who have developed one
or two small applications using MFC. It will also be helpful if you understand

xi

MFC DEVELOPER'S WORKSHOP

the basic concepts of C++ programming, such as class inheritance and over
riding member functions.

What You Need to Use This Book
To use this book, you will need version 2 or later of the MFC library. The con
tents of the book are based on the MFC library and not on the development
mterface, so you don't have to have Visual C++ or Microsoft Developer Studio.
However, I recommend using either Visual C++ version 2 or later or Developer
Studio because they are tightly integrated with the MFC library and greatly
simplify programming for Windows.

Overview of Chapters

Chapter 1
In Chapter 1, I demonstrate the functionality of AppWizard and the modular
ity of the MFC library through a series of five tasks. Each task addresses the
addition of a specific feature (available via AppWizard) to an existing MFC ap
plication-a good introduction to using the class.

Chapter 2
In Chapter 2, I focus on MFC tasks from an application-wide perspective.
Each of the seven tasks demonstrates a feature that affects the entire applica
tion, such as customizing the system menu or implementing tooltips for vari
ous types of tools.

Chapter 3
In Chapter 3, the life cycle of a document-view pair in an MFC application is
discussed in detail. In the discussion, I walk you through the steps to create
the document, frame, and view elements and discuss the various points at
which you can customize the process. The three tasks in the chapter demon
strate creating multiple views on a single document, creating switchable views,
and customizing the interface for choosing a new document.

Chapter 4

xii

The four tasks of Chapter 4 address the topic of dialog boxes and illustrate
the techniques you can use to implement various features for them. Among

Introduction

the topics discussed are customizing the background of a dialog box, custom
izing common dialog boxes, and implementing custom DDX functions.

Chapter 5
The five tasks included in Chapter 5 address the use of various Windows con
trols in your application-for example, modifying the application menu that
is based on the current open child window, moving list box data to and from a
CStringArray object, and implementing tooltips for dialog controls.

Chapter 6
The four tasks in this chapter deal with various aspects of using Microsoft Ac
tiveX controls and implementing OLE in MFC applications. Some of the is
sues I address include marking a control as safe for scripting and initializing
when used in Microsoft Internet Explorer, implementing a custom OLE inter
face, and loading an ActiveX control property asynchronously.

Chapter 7
This chapter consists of a group of miscellaneous tasks related to MFC appli
cations, their components, and their interactions with the system. Some ex
amples include saving the system state from one program session to the next,
implementing resource-only DLLs, and implementing drag and drop sup
port for an MDI application.

Chapter 8
Six of the eight tasks presented in this chapter address using DAO database
classes and sample databases to link data sources to Microsoft Access, to open
data sources directly, and to mix static and dynamic binding in an application.
The remaining two tasks address using output parameters with the ODBC
API and using ODBC database classes to open a recordset on a stored procedure.
Nondatabase techniques that are discussed within these tasks include using
Developer Studio components from the Gallery and using ActiveX controls.

Comments and Questions
If you have comments or questions regarding this book or ideas for other tasks
you would like to see addressed in future editions, contact me at the address
provided below:

http://mspress.microsoft.com/mspress/products/1066

xiii

P A R T I

WORKSHOP

C H A P T E R 0 N E

AppWizard and the MFC Library
AppWizard was developed by the same people who developed the Microsoft
Foundation Class (MFC) library, for which reason it's the best and most effi
cient starting place for your MFC development. AppWizard is like the framer
of a new house; it knows its materials (the elements of the MFC library) and
what's needed to set up the basic structure (in this case, an MFC application).

AppWizard initially uses a series of six dialog boxes to create a blueprint
for your project. The first dialog box helps you set up your application frame
work (single document interface or multiple document interface), set up sev
eral basic features whose scope is application-wide (such as OLE abilities and
Data Access Objects), and set up several common features (such as print pre
view and context-sensitive help). After you have made your choices, AppWizard
shows you the current plan. Unlike designing a house, where you must pay an
architect for every change to the initial plan, you can jump back and forth at
will between pages and change options until you're satisfied. Once you are
satisfied, you can examine the framework objects (each represented by adass)
and modify basic features (such as derivation from a certain parent class, file
name, and so forth). AppWizard designs the pad (the underlying architecture)
and the frame (OLE or database) on the basis of your choices.

After you click OK, AppWizard builds the application framework using
various objects from the MFC library, such as frame windows, documents,
control bars, and views. When it is finished, you have a fully functioning frame
work application, that is, you can build and execute the project without er
rors and without crashing. Granted, its functionality is limited, but how many
people build just the frame of their new home and then move in? At this point,
you start adding the floors, windows, doors, and siding.

This chapter is not intended either as a tutorial for using AppWizard or
as a broad overview of the library. I focus on the modularity of the MFC library
and how AppWizard uses it to generate a framework application. We will break
down a project that has been created with AppWizard in a modular fashion in
stead of breaking it down exclusively by classes or files.

3

PA RT I: WORKSHOP

Background
One of the primary purposes of this discussion, and of the book in general, is
to describe the way components implemented by MFC classes are put togeth
er, pulled apart, or customized with relative ease by AppWizard or by you. In
the tasks that are included in this chapter, I will demonstrate this modularity
by customizing several common features offered by AppWiz_ard and then
show exactly what AppWizard creates to implement your project's desired fea
tures. The discussion covers the following major topics:

• General architecture of a framework application
The general framework components of an MFC application gen•

erated by AppWizard are described, using a model of layering to dis
cuss each basic type of MFC application: dialog box-based, single
document interface (SDI), and multiple document interface (MDI).

II Application types created by AppWizard
The concept of modularity is used to describe the three types of

basic applications created by AppWizard: dialog box-based, SDI, and
MDI. Each type of application is described and broken into its respec
tive elements; the classes that AppWizard generated are then used to
implement the elements of the framework.

II Application-wide options provided by AppWizard
This is a brief discussion of how OLE compound document and

database support options affect the basic application framework.

II Customizing application features .
This is a brief discussion of the ways an application created with

AppWizard can be customized.

General Architecture of a Framework Application

4

The typical MFC application consists of three layers (Figure 1-1): primary,
secondary, and tertiary.

The Primary Layer
The primary (or innermost) application layer contains objects that make up
the framework of the application (Figure 1-2 on page 6). In most cases, this
layer is created solely by AppWizard. Using your input, AppWizard creates a
project that contains classes that implement the four base elements of your
application:

II An application element An element that is implemented by a CWin
App-derived class. The application element is the first thing created

Figure 1-1.

.
' .

' ,
' ' .

' .
'

' ' '

'

,
' ,

.. //····

The three layers of a typical MFG application.

0 N E : AppWizard and the MFC Library

when your application executes. It is responsible for initializing the
application data and creating the remaining application framework
elements.

• A frame window element An element that is commonly implemented
by a CFrameWnd-derived (or CMDIFrameWnd-derived) class. The
frame window element acts as the container for the interface ele
ments of the application: the windows and the controls of your appli
cation. The frame window element is the second thing that is created
when your application executes. This element is primarily responsi
ble for creating the document and view elements of the application '
and managing the control bars of the window object. Sometimes the
frame window element is referred to as the glue of the application be
cause it creates and links the other application framework el.ements
together. However, it is also one of the least often modified elements
of an MFC application.

5

PART I: WORKSHOP

6

r--· I . · ...•...•
. ,, ,,·· ; ..

Figure 1·2.
The primary /,ayer of a typical MFC application.

Ill A document element An element that is commonly implemented by
a CDocument-derived class. The document element contains the data
of the application and is half of a document-view pair. It is responsi
ble for storing and retrieving data from external sources, modifying
application data, and notifying all view objects related to the docu
ment when changes have occurred. It is one of the most misunder
stood elements of the MFC application. (For more details on the
document-view pair, see the discussion in Chapter 3, "Document
Templates."

II A view element An element that is implemented by a CView-derived
class. This element implements the graphical side of the document-view
relationship. It is responsible for rendering a graphical representation
of the document element and the state of the document or applica
tion. Because MFC applications run on the Microsoft Windows oper
ating system, the "view" is the workhorse of an MFC application and
the most heavily modified element. Like the document element, the
view element is often misunderstood.

0 N E : AppWizard and the MFC Library

These four elements are the "parents" of the second and third applica
tion layers. For example, if you want an application with a single document
interface that can display bitmaps, AppWizard generates an application
framework consisting of these four basic elements, on which you later build.

Note that not all applications created with AppWizard have these four
elements of the primary layer. Dialog box-based applications have only an
application element and a dialog box element. The dialog box element takes
the place of the frame window, document, and view elements.

The Secondary Layer
The secondary application layer (Figure 1-3) includes additional application
elements that represent the data or items used by the application. These ele
ments are the objects with which an element of the primary layer, such as the
document element, interacts closely.

-_J

Figure 1-3.
The secondary layer of a typical MFG application.

7

PA RT I : WORKSHOP

8

The elements can be implemented by classes created with ClassWizard
or added from other projects. The secondary layer is usually where the bulk
of the implementation code can be found whether it is added manually or
with ClassWizard. In an application that displays bitmaps, for example, this
layer might consist of an element class of type CBitmap that stores the bitmap
currently being displayed. Another class derived from CPalette might store the
bitmap's palette. In most cases, this layer is implemented after you have cre
ated the application framework using AppWizard but before you implement
the tertiary layer. However, at other times the secondary and tertiary layers
are implemented simultaneously.

The Tertiary Layer
The final, or tertiary, application layer (Figure 1-4) provides the final touches
and specific details of the application-that is, the items that are manipulated
by elements of the secondary layer. Because the tertiary layer interacts with the
application to varying degrees, depending on the application, it is not con
sidered a "true" framework layer.

...

Figure 1-4.
The tertiary layer of a typical MFG application.

.
/

/

0 N E : AppWizard and the MFC Library

In an application that displays bitmaps, the tertiary layer might provide
functionality for control bars beyond the functionality provided by AppWizard;
or it might provide a dialog box that shows the statistics of the current bitmap
in graphical form. In some cases, these details can be provided by overriding
a function of an existing parent class or by adding a new data member to
track a common value. In other cases, such as when you add a new dialog box,
this layer might consist of an entire class that is used by the view element to
display bitmap information. Implementation of the tertiary layer is usually
the last thing completed before testing or release. Sometimes the layer is not
completed. After all, you must have something for the next release!

Applicatlon Types Created by AppWizard
AppWizard can build three "houses": dialog box-based, SDI-based, and MDI
based. Using a modular method of development, you can build on these frame
works with little modification to the underlying code. To use the house-building
analogy again, not using a modular approach would be like hacking holes in
interior walls and putting in windows for quick access, putting doors on the
second floor because the existing doors just don't work, or ... , well, you get
the idea. If you don't have a solid understanding of the underlying architec
ture, you will have problems adding elements without damaging the existing
framework. Keeping the modular method of development in mind, let's look
at the three possible types of applications AppWizard can build for us.

N 0 T E : If you choose OLE compound document support or
database support when using AppWizard to create an application,
the primary and secondary layers of your application will be modi
fied. These changes consist mainly of the addition of elements that
implement either OLE or database support and changes in the deri
vation of some classes. For more information, see "OLE Options"
on page 14.

Dialog Box-Based Applications
The dialog box-based application is the simplest of the three types of applica
tions to create because it only takes two classes to implement all four primary
elements. The application element is still the core of the application. How
ever, the framework, document, and view elements are replaced by a dialog
box element. Because the dialog box class, which implements the dialog box
element, is derived from CWnd, the dialog box object inherits the functional
ity of a window object. In addition, the dialog box object takes the place of a
document-view pair by storing both the data and the graphical interface in

9

PA RT I: WORKSHOP

10

the dialog box class. Therefore, in this element model the application element
is implemented with a CWinApp-derived class and the other three elements
with a CDialog-derived class. You might have to add another class or two for
additional functionality, but most of your work will be contained within the dia
log box element. Figure 1-5 illustrates the primary layer of the framework cre
ated by AppWizard for a dialog box-based application.

Application Element
(derived from CWinApp)

Frame Window, Document,
and View Element
(derived from CDialog)

Figure 1-5.
The framework of a typical MFG dialog box-based application.

The table on the next page relates each application framework element
to its respective MFG class.

SDI Applications
The SDI application is a more modularized version of the application frame
work created by AppWizard (Figure 1-6 on page 13). In an SDI application,
the application element handles the initialization of the other primary ele
ments and interacts with the system. The application uses just one frame window

0 N E : AppWizard and the MFC Library

Element Class Comments

Application CWinApp-derived The application element initializes
any application data and performs
any actions before the application
becomes visible.

Frame window CDialog-derived The frame window element mani-
pulates and displays data using a
dialog box. Other elements can
be added as members to the dia-
log box class.

Document CDialog-derived Dialog box controls are the main
and also other interface, and they handle the
classes majority of the work. Data mem-

hers can be added to store infor-
mation from the user.

View CDialog-derived Controls are the main interface,
and they handle the majority of
the work.

element that contains the document and view elements and that is the glue of
the document-view pair. In an SDI application, the majority of code creates and
manages any control bars of the frame window. Because this is an SDI appli
cation, all application control bars are managed by the frame window. More
code can be added for initialization purposes. And you can also have the
frame window store application data that directly affects both the document
and the view elements.

However, the real workers in the application are the document and view
elements. In the MFC library, these two elements are implemented by two
closely related classes derived from CDocument and CView. These classes can
access each other with pre-implemented member functions. (For more infor
mation on the mechanics of documents, views, and document templates, see
the discussion in Chapter 3, "Document Templates.")

In the SDI element model, the application element is implemented once
again with a CWinApp-derived class. The frame window element is implemented
with a CFrameWnd-derived class, and the document and view elements are
implemented with CDocument-derived and CView-derived classes,·respectively.
Figure 1-6 on the following page illustrates the primary and secondary layers of
the framework created by AppWizard for an SDI-based application. The table on
the following page relates each framework element to its respective MFC class.

11

PA RT I : WORKSHOP

Document Element
{derived from CDocument)

View Element
{derived from CView)

Figure 1-6.

Application Element
{derived from CWinApp)

Frame Window (SDI)
{derived from CFrameWnd)

The framework of a typical MFG SDI application.

Element Class Comments

Application CWinApp- Initializes any application data and per-
derived forms any actions before the application

becomes visible.

Frame CFrameWnd- Manages the creation of the application's
window derived control bars and some message handling.

Document CDocument- Contains the application's data in the
derived and form of data members or pointers to user-
also other derived classes. Closely tied to the view
classes element through member functions.

View CView- Graphically displays the state of the docu-
derived and ment data and of the application. Closely
also other tied to the document element through
classes member functions.

12

O N E : AppWizard and the MFC Library

MDI Applications
The primary layer of an MDI application is exactly the same as the primary
layer of an SDI framework except for the presence of an additional frame
window object. This additional object contains the document-view pairs of
the MDI application. Figure 1-7 illustrates the primary and secondary layers
of the framework created by AppWizard for an MDI application.

Document Element
(derived from CDocument)

View Element
(derived from CView)

Figure 1·7.

Application Element
(derived from CWinApp)

Frame Window (MDI)
(derived from CMD/FrameWnd)

Chlld Window Element
(derived from CMD/ChildWnd)

The framework of a typical MFG MDI application.

13

PA RT I: WORKSHOP

In an MDI application, unlike an SDI application, you can have multiple
child windows open, each of which contains a different view of the same
document or which contain views of different documents. If you look at the
MDI application as an element framework, this ability adds an extra object
between the main application frame window and the view. Instead of the
main frame window having direct access to the view, it must now query for the
active child window of the application and then, with that object, query for
the attached view. Within an MDI application, you can almost think of each
child window as a mini-application.

In the MDI element model, the application element is implemented the
same way as an SDI application except that the main frame window element is
implemented with a CMDIFrameWnd-derived class, which contains additional
code for handling MDI child windows within the application. The additional
frame Window object for the MDI application, the child window, is implemented
with a CMDIChildWnd-derived class. Once again, code was added to function
properly in an MDI environment. The document and view elements are im
plemented with CDocument-derived and CView-derived classes, respectively.

As the name suggests, an MDI application can contain multiple docu
ments. Each document is part of a document template that contains a frame
window, a document, and a view object. If the application has more than one
document template and the user wants to create a new document, a dialog
box displays the available document types to the user. The table on the next
page relates each application framework element to its respective MFC class.

Application-Wide Options Provided by AppWizard

14

When we create an application with AppWizard, there are two steps that affect
the structure of the application framework. The effects include the addition
of classes that provide OLE compound document support and database sup
port. In addition, the parents of some application framework elements can
change, depending on what options are selected.

OLE Options
By default, AppWizard does not automatically include OLE compound docu
ment or database support. If you choose to include these (which are found
on the second and third steps of AppWizard), the primary and secondary lay
ers of the application will change significantly. There .. are four possible varia
tions of OLE compound document support: container, mini-server (for SDI

Element

Application

Application's
frame window

Child window

Document

View

Class

CWinApp-derived

CMD/FrameWnd
derived

CMD/ChildWnd
derived

CDocument-derived
and also other
classes

CView-derived and
also other classes

0 NE: AppWizard and the MFC Library

Comments

Initializes any application data
and performs any actions before
the application becomes visible.

Manages the creation of the ap
plication's control bars, all MDI
child windows, and some message
handling.

Used to manage control bars and
to handle certain messages. Like
the main frame window, this ele
ment is the glue of each docu
ment type.

Contains the application's data in
the form of data members or
pointers to user-derived classes.
Closely tied to the view element
through member functions.

Graphically displays the state of
the document data and the appli
cation. Closely tied to the docu
ment element through member
functions.

applications only), full-server, and container/server. (For a complete descrip
tion of these types of support, see online documentation for AppWizard.)

Container support If you choose to include container support, your docu
ment class is derived from COleDocument. This class includes extra support for
the activation of objects called clients in an OLE document. In addition, a new
element called a client (or client item) is added to the secondary layer. The

· client item is implemented using a COleClientltem-derived class and acts as an
intermediary between the OLE item and the client.

Mini-server support (for SDI applications only) If you choose to include
mini-server support, your document class is derived from COleScrvcrDoc in
stead of CDocument. This class includes server support for interaction with

15

PA RT I : WORKSHOP

16

server items. Visual editing for the items, within the document-view architec
ture, is also supported. In addition, two new elements are added to the sec
ondary layer. The first element, implemented with a COleServerltem-derived
class, represents the server items of your application. The second element,
implemented with a COlelPFrameWnd-derived class, is the frame window of a
server item that has been activated within your application. The following
table relates each element to its respective class.

Element

Server
item
In-place
frame
window

Class

COleServerltem
derived
COleIPFrameWnd
derived

Comments

Acts as an intermediary between the
OLE item and the server.
Handles the placement of toolbars with
in the container's application window.
Also handles notifications when the in
place window is resized.

Full-server support If you choose to include full-server support, the same
derivation changes and element additions are made that are made for a mini
server. The only difference is in the implementation code.

Container/server support Support for a container/server is basically pro
vided by a combination of the container and server elements. Once again,
the derivation of your document class is COleServer. The new elements are
classes that implement the client item, the server item, and an in-place frame
window. This implementation is specified in the following table.

Element

Client item

Server item

In-place
frame
window

Class

COleClientltem
derived
COleServerltem
derived
COleIPFrameWnd
derived

Comments •
Acts as an intermediary between the
OLE item and the client.
Acts as an intermediary between the
OLE item and the server.
Handles the placement of toolbars
within the container's application
window. Also handles notifications
when the in-place window is resized.

0 N E : AppWizard and the MFC Library

Database Support Options
The database support options are simpler to implement than other options
because they require fewer modifications to the primary layer. The first op
tion simply adds the header files to your project. The second and third op
tions change the derivation of the view element from CView to CRecordView.
& I mentioned earlier in the chapter, support is added to the view class for
easily displaying database records. A new element, derived from CRecordSet, is
added to the second layer of the MFC application. This class implements the
database query function of your application and stores information about
database queries performed in your application. (See Chapter 8 for informa
tion about MFC and databases.)

Customizing Application Features
Besides using AppWizard to set up the core elements of your application, you
can choose from a variety of application-wide features to customize your
framework application. These features range from fundamental application
wide elements to the small user-interface details that always seem to be left
until the end of the project. AppWizard, for the most part, plays it safe by us
ing a default customization that includes most of the cooler user interface
features (such as control bars, print preview, and so on) and stays away from
the more fundamental features (such as OLE compound document support).

To demonstrate the modularity of an application created with AppWizard,
I have included five tasks in this chapter that show how to retrofit several of
the most common AppWizard features to an existing application.

• Adding a <lockable toolbar and a status bar to an existing MFC
application

• Adding an MRU list to an existing MFC application

II Adding print preview to an existing MFC application

Ill Adding MAPI and Windows Sockets support to an existing MFC
application

• Converting an existing MFC SDI application to MDI

For a complete discussion of the features of AppWizard, see the
AppWizard article family in Programming with MFC Encyclopedia and "Creating
Applications Using AppWizard" in VC++ User Guide.

17

PA RT I : WORKSHOP

Adding a Docking Toolbar and a
Status Bar to an Existing MFC Application

The purpose of this task is to add a docking toolbar and a status bar to the
main frame window of an existing MFC application. A docking toolbar con
tains buttons for common tasks, such as opening and saving files, editing, and
printing. It can be docked on any side of the application's main frame win
dow or can be dismissed, as the user chooses. The status bar, positioned at the
bottom of the application's main frame window, displays descriptive text for
toolbar buttons and idle-time messages. A status bar requires only a parent
class and code that creates and initializes the status bar. An MFC docking
toolbar, on the other hand, requires several elements:

8 A bitmap that represents the toolbar buttons

8 Code that maps each toolbar button to a command ID

8 A CWnd-derived class in the application that will function as the par
ent of the toolbar

Ill Code that creates and initializes the toolbar

The task of adding a docking toolbar and a status bar to an application
consists of three steps:

1. Importing a bitmap resource to an application

2. Adding member variables and message map entries

3. Adding initialization and implementation code for the control bars

The requirement for this task is a bitmap resource for the toolbar. (A
default toolbar bitmap resource can be found in the DEFAULT.RC file on the
companion CD-ROM, located in the \Projects\Default directory.)

After you have completed the task, the application will have a docking
toolbar and a status bar exactly as if you had chosen the toolbar and status bar
option in AppWizard.

Step 1: Importing a Bitmap Resource into an Application

18

For simplicity's sake, only the bitmap resources will be added in this step. The
status bar code will be added later. There are two methods for creating a bitmap

O N E : AppWizard and the MFC Library

resource for an application: importing a resource from another project and
inserting a new toolbar with the Resource editor. Because we will be adding
an entire toolbar-a toolbar bitmap and command mappings for each but
ton-it is easier to import an existing bitmap resource. To prevent conflicts as
much as possible, we will use the toolbar generated by AppWizard (Figure 1-8).

Figure 1-8.
Default toolhar generated by App Wizard.

The default toolbar generated by AppWizard has eight buttons, each
mapped to a task. To import an existing toolbar into an application, follow
these steps:

1. Load your project into Microsoft Visual C++ and select the Resource
View pane.

2. Open the resource file (with the extension of RC) containing the
toolbar you will import. A resource file containing the default toolbar
can be found in the DEFAULT.RC file, located in the \PROJECTS\DE
FAULT directory on the companion CD-ROM.

3. Expand the toolbar node by double-clicking the Toolbar folder icon.

19

PART I: WORKSHOP

4. Drag the IDR_MAINFRAME object to the Resource View pane, and
drop it onto the resource folder object.

5. Save the resource file.

Your project should now have a toolbar folder that contains
IDR_MAINFRAME. Your resource script has been modified to include a bit
map resource (the toolbar bitmap) and a toolbar. In addition, the bitmap has
been copied into your application's \RES subdirectory.

TI P: If your application does not support Print Preview, be sure
you remove the Print Preview button.

Step 2: Adding Member Variables and Message Map Entries

20

Now you have to modify portions of the application code. The application's
main frame window normally is the parent of any control bars, so you will
now have to add member variables to the application's main frame window
class for both the toolbar and the status bar. Specifically, you need to modify
the CMainFrame class (derived from CFrameWnd pr CMDIFrameWnd) by add
ing two protected member variables to the header file of class CMainFrame
(MAINFRAME.H) as shown below. These two variables contain the toolbar
and the status bar objects after the application creates them.

protected: II Control bar embedded members
CStatusBar m_wndStatusBar:
CToolBar m_wndToolBar:

You also need a place to create and initialize the control bars before the
application is used. Use the handler for the WM_CREATE message to do this.
At this point, just add this handler to your CMainFrame class, either manually or
using ClassWizard. The new code (in bold) should look similar to the follow
ing examples.

• In the header file:

afx_msg int OnCreateCLPCREATESTRUCT lpCreateStruct);
II NOTE - the ClassWizard will add and remove member
II functions here.

II In the implementation file:

ON_WM_CREATE()
ll}}AFX_MSG_MAP

0 N E : AppWizard and the MFC Library

Now modify the CMainFrame implementation file to add the status bar.
Add the following lines of code immediately after the end of the message
map declaration:

static UINT indicators[]
{

} :

ID_SEPARATOR,
ID_INDICATOR...CAPS,
ID_INDICATOR...NUM,
ID_INDICATOR...SCRL,

II Status line indicator

This code creates a static array, named indicators, that stores a common
set of flags. These flags indicate the state of certain keys (such as Scroll Lock)
in the status bar. (For more information on status bar indicators, see Techni
cal Note 22 in the Visual C++ oriline documentation.)

Step 3: Adding Initialization and
Implementation Code for the Control Bars

Now create and initialize the control bars in the WM_CREATE handler. To
add control bar code, follow this procedure:

1. Add the code below to the WM_CREATE handler after the call to the
base class OnCreate function:

if (!m_wndToolBar.Create(this) I I
!m_wndToolBar.LoadToolBar(IDR...MAINFRAME))

{

TRACE0("Failed to create toolbar\n"):
return -1: II Fail to create

}

if C!m_wndStatusBar.Create(this) I I
!m_wndStatusBar.Setindicators(indicators,

sizeof(indicators)/sizeof(UINT)))
{

TRACE0("Failed to create status bar\n"):
return -1: II Fail to create

}

2. To display tooltips and make the toolbar resizeable, include the fol
lowing code lines after the code that creates the control bars in the
OnCreate function of CMainFrame:

m_wndToolBar.SetBarStyle(m_wndToolBar.GetBarStyle() I
CBRS_TOOLTIPS I CBRS_FLYBY I CBRS_SIZE_DYNAMIC):

21

PA RT I: WORKSHOP

3. To make the toolbar dockable, add the following code lines after the
code that creates the control bars in the OnCreate function of CMain
Frame:

m_wndToolBar.EnableDocking(CBRS_ALIGN_ANY):
EnableDocking(CBRS_ALIGN__ANYl:
DockControlBarC&m_wndToolBar):

Your application's main frame window now has a docking toolbar and a
status bar.

Additional Information

22

A common feature of control bars is the ability to determine whether to dis
play them or not. This ability to display or hide the control bars is accom
plished by making use of two standard command IDs. To add the ability for
users to toggle control bars on and off, follow these steps:

1. Switch to your project's Resource View pane, and open the main
menu resource, commonly named IDR_MAINFRAME.

2. Add a top-level menu named View. (If you already have this menu,
skip to the next step.)

3. Add a command named Toolbar to the View menu. This command
should have the resource ID ID_VIEW_TOOLBAR.

4. Add a command, named Status Bar, to the View menu. This com
mand should have the resource ID ID_VIEW_STATUS_BAR.

5. Save your project's resource file.

You can also use CFrameWnd::ShowControlBarto display or hide your ap
plication's control bars. This function can be called from any menu com
mand handler or can be called directly as the result of some action-for
example, the appearance of a certain type of window. (For more information
on using CFrameWnd::ShowControlBar, see the CTRLBARS MFC sample that is
located in the Visual C++ section of Books Online.)

The following articles in the Microsoft Knowledge Base contain infor
mation related to toolbars and status bars:

1111 SAMPLE: Adding Control Bars to Dialog Boxes in MFC: Ql41751

1111 Setting First Pane of CStatusBar: QI 10505

1111 Displaying the Current Time in a CStatusBar Pane: Q99198

0 N E : AppWizard and the MFC Library

Adding an MRU List to
an Existing MFC Application

The purpose of this task is to enable an existing MFC application to display a
most recently used (MRU) list in the File menu. An MRU list is a common fea
ture of most Windows applications, as shown in the example in Figure 1-9.
The list, commonly found on the File menu, allows the user to select from the
last n files accessed. It is enabled by a call to LoadStdPro.fileSettings and modifi
cation of the application's menu resource.

Figure 1-9.
The MRU list of an application created with App Wizard.

The following procedure modifies a menu resource by adding an entry
for the MRU list under the File menu. To add a menu entry for an MRU list,
follow these steps:

1. Use Visual C++ to open the RC file of the target project.

2. Open the main menu resource of the project, which is commonly
named IDR_MAINFRAME.

3. Add a new command named Recent File with the ID
ID_FILE_MRU_FILEI to the File menu, and check the grayed check
box in the Properties dialog box for the new menu item. This ID is

23

PA RT I : WORKSHOP

predefined by the MFC library, and the command will be disabled un
til the MRU list has one or more entries. If you want, you can add a
separator menu item to differentiate the MRU list from the preced
ing menu entries.

Once this command has been added, a call to CWinApp::Load
StdProfikSettings can be made in the application's Initlnstance func
tion. The call can be made in the beginning of the function as
follows:

BOOL CProjNaApp::Initlnstance()
{

II Load standard INI file options (including MRU)
LoadStdProfileSettings();

This function loads the default settings for an application of this type
and maintains an MRU list for the application. You can disable the
MRU list by passing 0 to LoadStdProfileSettings.

When you enable the MRU list for your application, you will notice that
the file list never exceeds 4 entries. This is the default number of entries speci
fied by the MFC library. However, the framework can handle a list of up to 16
entries. To increase the number of items in the MRU list, pass the number to
the application's call to LoadStdProfileSettings. For example, for an MRU list
that contains ten filenames, make the following call in your application's Init
Instance:

LoadStdProfileSettings(10); II Load standard INI file options
II (including MRUJ

To learn.more about this command handler and other handlers, see
Technical Note 22 in the Visual C++ online documentation.

Adding Print Preview to
an Existing MFC Application

24

The purpose of this task is to add print preview to an existing MFC applica
tion. When you have completed the task, your application will have a Print
Preview menu item and the user will be able to preview the application's cur
rent document. The task has two steps:

I. Adding new menu resources to an application

2. Adding handlers for the new print commands

O N E : AppWizard and the MFC Library

The requirement for this task is a main frame window menu with addi
tional submenus.

Step 1: Adding New Menu Resources to an Application
In this first step, add the Print and Print Preview menu items to the applica
tion's File menu. This allows easy access to print preview and printing as well
as supporting the code that handles the Print and Print Preview requests.
The end result is similar to the menu pictured below in Figure 1-10:

Figure 1-1 O.
The top-level File menu of a standard MFG application.

In most cases, when an application requires printing resources (such as
buttons or views), it gets them from a resource file named AFXPRINT.RC,
which contains common MFC printing resources, such as dialog boxes and
resource strings. For your application to have access to these resources, you
must include this resource file in your project's RC file. This can be done ei
ther by adding the RC file manually or by adding the resource file using the
Resource Includes dialog box. If you want to add resource files using the Re
source Includes dialog box, follow this procedure:

1. Load your project's workspace.

2. Choose Resource Includes from the View menu.

25

PART I: WORKSHOP

3. In the Compile-Time Directives list box, scroll down until the follow
ing line appears:

#include afxres.rc // Standard Components

4. Enter the code line below immediately after the line in the preceding
step.

#include afxprint.rc // printing/print preview resources

5. Click OK to dismiss the dialog box.

You will get a second dialog box that warns you of dire consequences if
you didn't enter the code correctly. This is just one of many instances in
which Microsoft Developer Studio is making sure you know what you are do
ing. Because you arethe daring type, go ahead and click OK. Now add the
Print, Print Preview, and Print Setup commands to the File menu of your ap
plication. I assume that you are familiar with adding menu items, so I will give
you just the properties for each item. Be sure you insert a separator item just
before the Print menu item.

Print Menu Properties

ID

ID_FILE_PRINT

ID_FILE_PRINT_PREVIEW

ID_FILE_PRINT_SETUP

Caption

&Print. .. \t
Ctrl+P

Print Pre&view

P&rint Setup ...

Prompt

Print the active docu
ment\nPrint

Display full pages\n
Print Preview

Change the printer and
printing options\n
Print Setup

The last items you need to add to the RC file are two strings that are
used as explanatory text on the status bar. Because you are familiar with add
ing string resources to an application, I will provide you only with the values
you need in the table on the next page. The position of the values is not impor
tant in the string table.

Once you have made modifications, save the resource file.

Step 2: Adding Handlers for the New Print Commands

26

Now that you've added the graphic front end for printing to your applica
tion, you have to add command handlers for the new commands. You will

0 N E : AppWizard and the MFC Library

String Table Properties

ID Caption

ID_FILE_PAGE_SETUP

AFX_IDS_PREVIEW_CLOSE

Change the printing options\nPage Setup

Close print preview mode\nCancel Preview

add two standard sets of handlers, which will match the handlers created by
AppWizard if Print Preview is chosen. I divided the handlers into two sets be
cause one set must be added by hand, although you can use ClassWizard to
add the other. (For more information on these standard command handlers,
see Technical Note 22 in the Visual C++ online documentation.)

The first set of handlers, consisting of four print commands, just calls
the default command handler of the base class. Of course, because you are
working with C++ classes, you can remove the existing handlers and add your
own, using Class Wizard, if the default behavior isn't good enough. To add the
first set of command handlers, follow these steps:

1. Open the implementation file of the application class.

2. Add the following line of code after the handlers for ID_FILE_NEW
and ID_FILE_OPEN:

II Standard print setup command
ON_COMMAND(ID_FILE_PRINT_SETUP, CWinApp::OnFilePrintSetup)

This function invokes the standard Print Setup dialog box.

3. Add the remaining handlers-ID_FILE_PRINT, ID_FILE_PRINT
_DIRECT, and ID_FILE_PRINT_PREVIEW-to the view class mes
sage map. In the implementation file of the view class, add the follow
ing lines of code (shoWll in bold) after the end of the Class Wizard
portion of the message map:

I!} }AFX_MSG_MAP
II Standard printing commands
ON_COMMANDCID_FILE_PRINT, CV1ew::OnFilePr1nt)
N_COMMAND(ID_FILE_PRINT_DIRECT, CView::OnF1lePrint)
ON_COMMAND(ID_FILE_PRINT_PREVIEW, CV1ew::OnF1lePr1ntPreview)

END_MESSAGE_MAP()

Respectively, these handlers print the current document using the
Print dialog box, print the current document bypassing the Print dia
log box, and enter Print Preview mode for the current document.

27

PART I: WORKSHOP

Because the code for handling the next set of commands is implemented
in the application's view class, you can use ClassWizard. Follow these steps:

1. Open ClassWizard for your project. From the Message Maps page of
ClassWizard, choose the view class.

2. From the listing of messages on the right, add the OnBeginPrinting,
OnEndPrinting, and OnPreparePrintingfunctions.

3. Click OK to exit ClassWizard.

You should end up with three declarations in your view class's header
file similar to the ones below:

protected:
virtual BOOL OnPreparePrintingCCPrintinfo* plnfo);
virtual void OnBeginPrinting(CDC* pDC, CPrintinfo* plnfo);
virtual void OnEndPrintingCCDC* pDC, CPrintinfo* plnfo);
I!} }AFLVIRTUAL

And you should have three function bodies in your view class's implementa
tion file as shown below:

II CPPrevView printing
BOOL CPPrevView::OnPreparePrintingCCPrintinfo* plnfo)
{

II default preparation
return DoPreparePrinting(plnfo);

}

void CPPrevView::OnBeginPrintingCCDC* pDC, CPrintinfo*pinfo)
{

II TODD: add extra initialization before printing
}

void CPPrevView::OnEndPrinting(CDC* pDC, CPrintinfo* plnfo
{

II TODD: add cleanup after printing
}

After adding these print handlers, add specific code to each function to
fully implement them.

Adding MAPI and Windows Sockets
Support to an Existing MFC Application

28

The purpose of this task is to enable an e}!isting MFC application to support
the Microsoft Messaging application programming interface (MAPI) and
Windows Sockets. MAPI provides your application with the ability to create,

0 N E : AppWizard and the MFC Library

send, and otherwise manipulate mail messages. It is commonly seen in MFC
applications as a Send Mail option on the File menu. MFC support for this
API is not complete, but the basic functionality is available through the CDocu
ment class. Even though the MFC support is incomplete, all MAPI functions
can be called directly from a MAPI-enabled application. (For more informa
tion about MAPI support and for answers to more MAPI-specific questions,
see the articles "MAPI" and "MAPI Support in MFC'' in the Visual C++ online
documentation.)

Windows Sockets enables an MFC application to support a socket (an
end point of communication across a network). Sockets are used to send and
receive data. MFC uses two classes to implement support for sockets: CAsync
Socket (implemented with minimal wrapping) and CSocket (implemented with
a "heavier" wrapping for ease of use). (For more information on Windows
Sockets, see the articles "Windows Sockets in MFC: Overview" and "Windows
Sockets: Background" in the Visual C++ online documentation.)

After you complete this task, your application will have the same sup
port for MAPI and Windows Sockets that it would have had if you had used
AppWizard to add it when you created the application. This task has two steps:

1. Adding the Send Mail command and string resources

2. Adding support code

Step 1: Adding a New Menu Item and String Resources
First add a command that allows the user to send mail messages, and also add
some strings for informational prompts and error messages to the File menu.~
I assume that you are familiar with adding menu items, so I will just provide
you with the properties and let you do the rest. Be sure you insert a separator
item right after the Send menu item.

Send Menu Item Property

ID

ID_FILE_SEND_MAIL

Caption

Sen&d
Mail...

Prompt

Send the active document
through electronic mail\n
Send Mail

Now insert a string that provides explanatory text on the status bar into
the application's string table. I assume you are also familiar with adding string

29

PA RT I: WORKSHOP

resources to an application, so I'll provide you only the values you need. The
position of the values is not important in the string table. After you have
made these additions, save the resource file.

String Table Properties

ID Caption

IDP_SOCKETS_INIT_FAILED Windows Sockets initialization failed.

Step 2: Adding Support Code

30

Now you have to add code to a few of the project's files. Because the features
to be added are related to the document class and the main frame window
class, we work mainly with the classes CProjNameDoc and CMainFrame. To add
support code for Windows Sockets, follow this procedure:

1. Add the following include file-which consists of standard code that
initializes and implements Windows Sockets support-to the end of
your project's STDAFX.H header file:

#include <afxsock.h> II MFC socket extensions

2. Add the resource symbol IDP_SOCKETS_INIT_FAILED, which tells
the framework if the application fails to initialize the Windows
Sockets.

Follow the procedure below to add the resource symbol using the Re
source Includes dialog box. When you are finished, save the resource file.

1. Load your project's workspace.

2. Choose Resource Symbols from the View menu.

3. Click New.

4. For Name, enter IDP_SOCKETS_INIT_FAILED, and for Value, enter
104.

5. Click OK to dismiss the New Symbol dialog box, and click Close to
dismiss the Resource Symbols dialog box.

The last modification related to MAPI support involves the manual addi
tion of command handlers for the new Send command. You will have to add

0 N E : AppWizard and the MFC Library

an ON_COMMAND_UPDATE_UI handler as well as an ON_COMMAND han
dler. The ON_COMMAND handler sends the current document to a mail ap
plication specified by Windows. The ON_COMMAND_UPDATE_UI handler
updates the menu item, whether a mail application is available or not. Add
the following code immediately after the AFX_MSG_MAP portion map of
the document's class. The message map can be found in the document's im
plementation file:

ON_COMMAND(ID_FILE_SEND_MAIL, OnFileSendMail)
ON_UPDATE_COMMAND_Ul(ID_FILE_SEND_MAIL, OnUpdateFileSendMail)

At this point, you have completed installing MAPI support. To complete
the support for Windows Sockets, add initialization code to the application.
A good place to do this is in the Initlnstance function of the CMainFrame class,
which was derived from CFrameWnd. Add the following code to the beginning
of Initlnstance:

if (!AfxSocketlnit())
{

}

AfxMessageBox(IDP_SOCKETS_INIT_FAILED):
return FALSE:

Notice that the new resource string displays a message box if the Windows
Sockets initialization fails.

Additional Information
Now that you have Windows Sockets support, you might want to read a few ar
ticles about implementing a socket client or server. In the Visual C++ online
documentation, read the Windows Sockets in MFG family of articles in "Pro
gramming with MFG."

Converting an Existing
MFC SDI Application to MDI

The purpose of this task is to convert an existing application's interface from
SDI to MDI. (This task does not apply to dialog box-based applications.) The
task has six steps:

1. Creating a new child frame menu and add resources

2. Modifying the main frame menu

3. Replacing the main frame window

31

PA RT I: WORKSHOP

4. Adding child windows to the project

5. Modifying the initialization code of the main frame window

6. Modifying the application's execution

W A R N I N G : This task makes significant structural changes to
the SDI application that is being converted. I cannot guarantee
that the application will function properly after you make the con
version, so I recommend that a copy of the project be used in case
the conversion does not work.

When I refer to a "target project" in this task, I am referring to the project
you are converting. When a project name is needed for the examples, the proj
ect name PROJNA is used.

Step 1: Creating a New Child Frame Menu and Adding Resources
The main difference between SDI and MDI applications is that MDI applica
tions can support multiple child frame windows. Because of this difference,
MDI applications need two menu resources. The first menu, which is often
called IDR_MAINFRAME, is used when no child windows are open. The ex
isting menu resource of the target project (Figure 1-11) will be used for this
purpose. This menu is basically a shorter version of the standard SDI menu
without the Save operations of either the File menu or the Edit menu that are
generated by AppWizard.

32

The second menu, or child frame menu, is used when one or more
child windows are open (Figure 1-12). This menu resource (whose ID is often
IDR_<name of project> TYPE-for example, IDR_PROJNATYPE) has the Edit
menu, a Windows menu that can perform common MDI operations (such as
creating a new window or arranging multiple child windows) and possibly other
commands that are specific to the child windows as well.

To make things as easy as possible, make a copy of the application's ex
isting menu (named IDR_MAINFRAME) and then modify the copy. For this
task, the child frame menu resource will have the ID IDR_PROJNATYPE. To
create the child frame menu, follow these steps:

1. Go to the target project's Resource pane, and expand the Menu
node.

2. Right-dick the IDR_MAINFRAME menu, and drag and drop a copy
into the same node. You should now have a copy of the IDR_MAIN
FRAME menu named IDR_MAINFRAMEl.

0 NE: AppWizard and the MFG Library

Figure 1-11.
The default main frame window menu of an MDI application.

Figure 1-12.
The default child frame menu of an MDI application.

33

PA RT I : WORKSHOP

34

3. Rename the new menu resoiirce IDR_PROJNATYPE.

4. From the File menu of the IDR_MAINFRAME resource, remove the
Close, Save, Save As, Print, and Print Preview commands.

5. Remove the entire Edit menu of the IDR_MAINFRAME resource.

6. Confirm the menu changes by saving the resource file of the target
project.

7. Add a Window menu between the View and Help menus.
This menu allows the user to manipulate open child windows in vari
ous ways, such as cascading or tiling them. I assume you are familiar
with adding menu resources to a project, so I will provide you with
just the ID, the caption, and the prompt for each command.

Information for Window Menu Items

Resource ID Caption Prompt

ID_WINDOW_NEW &New Open another window
Window for the active docu-

ment\nNew Window

ID_WINDOW_CASCADE &Cascade Arrange windows so
they overlap\nCascade
Windows

ID_WINDOW_TILE_HORZ &Tile Arrange windows as
non-overlapping
tiles\nTile Windows

ID_WINDOW_ARRANGE &Arrange Arrange icons at the bot-
Icon tom of the window\n

Arrange Icons

You can also copy a Windows menu from another project, but be
sure it has only the following four commands: New Window, Cascade,
Tile, and Arrange Icons.

Adding a String Resource
Because the second menu resource, IDR_PROJNATYPE, requires a resource
string of the same name, this resource string must be added to the project.
The following string is an example of a new string resource:

\nProjna\nProjna\n\n\nProjna.Document\nProjna Document

0 N E : AppWizard and the MFC Library

Replace all occurrences of Projna with the name of your project. This
string will be used in a later piece of code to tie resources to the modified
document template that uses the MDI child window class.

Adding Other Child Frame Icons
The child frame window also needs an icon resource. This icon can be copied
from another source or created. However, for the icon to be used for the ap
propriate child frame window, it must have the same ID as the child window
menu and string resource. In this case, the ID is IDR_PROJNATYPE.

Step 2: Modifying the Main Frame Menu
The purpose of this step is to modify the main frame menu so that all com
mands that depend on an open document or an active window are moved to
the child frame menu IDR_PROJNATYPE. This ensures that any commands
of this type are available only when a child window is open.

In this step, ifthe target project's main frame menu has changed signifi
cantly from the standard version generated by AppWizard, the potential ex
ists for resource ID conflicts and confusion. For the purposes of this
discussion at this point, I will assume that the existing main frame menu has
not changed significantly from the standard generated by AppWizard. If the
menu does not have the commands being discussed, skip to the next step.
Once again, it is a good idea to back up the project you are converting in case
you have to restore the project to its initial state. To modify the main frame
menu, follow this procedure:

1. Open your menu resource, and remove the Save and Save As com
mands from the File menu.

2. Move any other commands that require an open document or an active
window from the File menu to a corresponding place on your child
frame menu resource. You can move these items to a corresponding
place in the IDR_PROJNATYPE menu by cutting and pasting each
menu item to the child frame menu. A quick way to move these menu
items is to drag each (while holding down the right mouse button) to
the proper place on the child frame and drop it. A context menu
should appear when the command is dropped. To move the menu
item, choose the Move option.

3. If the main frame menu has an Edit menu, expand it.

4. If the Edit menu contains only the Undo, Cut, Copy, and Paste com
mands, remove the entire menu. If the Edit menu contains more

35

PA RT I: WORKSHOP

·than these four commands, remove the Undo, Cut, Copy, and Paste
commands and also all other commands that require an open docu
ment or an active window. Commands that do not fall under this cate
gory can remain.

5. For each remaining menu, move any commands that require an
open document or an active window to their corresponding location
on the child frame menu. These menu items depend on a window
(such as a child window) being open; if you don't move them, they
will be available when the application has no child windows open.
Thus, if the user chooses menu items that depend on an open child
window, the application could crash in a big way because there are no
MDI child windows with which to interact at this point.

6. After you finish modifying any additional commands, save the project's
RC file. At this point, you should have two menu resources: IDR
_MAINFRAME and IDR_PROJNATYPE.

Step 3: Replacing the Main Frame Window

36

There is a fundamental difference between the main frame window of an SDI
application and the main frame window of an MDI application. In order to
support the additional functionality of child windows, the main frame win
dow's class should be derived from CMDIFrameWnd instead of CFrameWnd.
The following procedure changes the parent of the main frame window class
to CMDIFrameWnd.

• In the MAINFRM.H header file, change the following line

class CMainFrame : public CFrameWnd

to

class CMainFrame public CMDIFrameWnd

and replace

protected: // create from serialization only
CMai nFrameC):
DECLARE_DYNCREATECCMainFrame)

with

DECLARE_DYNAMIC(CMainFrame)
public:

CMainFrame();

0 NE : AppWizard and the MFC Library

• In the MAINFRM.CPP file, search for CFrameWnd and replace it with
CMDIFrameWnd. In the same file, replace the following line

IMPLEMENT_DYNCREATE(CMainFrame, CFrameWnd)

with

IMPLEMENT_DYNAMIC(CMainFrame, CMDIFrameWnd)

If you are the inquisitive kind, you might be wondering why the main
frame window class is modified to use DECLARE_DYNAMIC instead of
DECLARE_DYNCREATE. There are two reasons for this change-one root
ed in the actual code generated by AppWizard, the other in the architecture
of the two application types.

The Architectural Reason
In an SDI MFC application generated by AppWizard, the main frame window
class is related to a specific document and view via a document template. For
the application to start, a main frame window and a document-view pair must
both be dynamically created simultaneously. This dynamic creation is made
possible by the DECLARE_DYNCREATE macro. However, in the case of
MDI applications, the main frame window is not related to any document
template and can be created explicitly without its also having to create a
matching document-view pair. Instead of being related to the main frame
window, the document-view pairs are related to a child window. This sepa
rates the creation process and allows us to create just the main frame window
initially. Therefore, the DECLARE_DYNAMIC macro is sufficient.

The Code Reason
In both SDI and MDI applications, the main frame window is created in the
Initlnstance function of the application class. However, in an SDI application,
we don't actually create the main frame window. The main frame window is
created because of a "request" from the document template of the applica
tion. And it just so happens that the DECLARE_DYNCREATE macro enables
the creation of the frame window in this manner.

In the creation of an MDI application, the main frame window is created
explicitly in the Initlnstance function. Therefore, the class doesn't need the
ability to be created dynamically. We can instead use the macro
DECLARE_DYNAMIC. This macro enables the main frame window class to
return run-time class information to other classes upon request.

37

. PA RT I: WORKSHOP

Step 4: Adding Child Windows to the Project
For your MFC application to display child windows, you must have a class that
implements an MDI child window. This class, derived from CMDIChildWnd,
implements frame window capabilities, along with some enhancements re
lated to MDI support. Either you can use Class Wizard to add a CMDJChildWnd
derived class to the target project for this step, or you can copy an existing
MDI child window class. If you use ClassWizard, the template class is similar
to the one created by AppWizard when the MDI option is chosen. If you use .
an existing class, copy both the header and implementation files (in this ex
ample, CHILDFRM.H and CHILDFRM.CPP) to the target project's main direc
tory, and add them to the target project using the Files Into Project command
from the Insert menu of Developer Studio.

After you have added the files to the project, include the header file of
the new child window class in the implementation file of the project's appli
cation class. This allows the application's class access to the CChildFrame class
when initializing the document templates of your project in the Initlnstance
function. In addition, change the following line (near the top in the new
child window class) to point to the application class's header file in your
project:

#include "projname.h"

Step 5: Modifying the Initialization Code
of the Main Frame Window

38

Now that you have added a new class and resources and have changed the
derivation of the frame window, the initialization code must be updated to
use this new functionality. Make these modifications in the Initlnstance func
tion of the project's application class. The Initlnstancefunction is responsible
for registering and initializing all of the application's document templates.
There are three parts to this process: modifying the document template ini
tialization, creating the main frame window, and showing the window.

1. To modify the document template initialization, change the follow
ing lines in the implementation file of the project's application class

CSingleDocTemplate* pDocTemplate;
pDocTemplate = new CSingleDocTemplate(

to

IDR_MAINFRAME,
RUNTIME_CLASS(CMyProjDoc),

0 N E : AppWizard and the MFC Library

CMultfDocTemplate• pDocTemplate;
pDocTemplate = new CMultfDocTemplate(

IDR....PROJNATYPE,
RUNTIME_CLASSCCMyProjDoc),

The bold code lines indicate where the code has changed. This code
performs the first part of document template initialization (pDocTem
plate). It sets up a relationship between a document class (CMyProjDoc),
a view class (CMyProjView), and a frame window class (CChildFrame).
This relationship is used by the application framework when a new
window needs to be created. The template tells the application frame
work what view class goes with the document class and the frame win
dow class.

Now change the frame window class from your original SDI type
of class (CMainFrame) to the new MDI class (CChildFrame). In the im
plementation file, change the following lines

RUNTIME_CLASSCCMainFrame),
RUNTIME_CLASSCCMyProjView));

AddDocTemplate(pDocTemplate);

to

II Main SDI frame window

RUNTIME_CLASS(CCh1ldFrame), // Custom .MDI chfld frame
RUNTIME_CLASSCCMyProjView));

AddDocTemplate(pDocTemplate);

2. Immediately after these modifications, replace these lines of code

II Parse command line for standard shell commands, DOE, file open
CCommandLineinfo cmdinfo;
ParseCommandLine(cmdinfo);

II Dispatch commands specified on the command line
if C!ProcessShellCommand(cmdinfo))

return FALSE;

with these lines of code:

II Create main MDI frame window
CMainFrame* pMainFrame = new CMainFrame;
if (!pMainFrame->LoadFrameCIDR....MAINFRAME))

return FALSE;
m_pMainWnd = pMainFrame;

This code creates the "container" for your MDI child windows and
initializes the default menu for the application.

39

PART I: WORKSHOP

3. Finally,just before the end of the Initlnstancefunction, add the follow
ing lines:

II The main window has been initialized, so show and update it
pMainFrame->ShowWindow(m_nCmdShow);
pMainFrame->UpdateWindow();

This code simply shows the main frame window and repaints it to
update it.

Step 6: Modifying the Application's Execution

40

After you've made all of the recommended modifications, it's a good idea to
build the project and fix any compilation and linking errors that occur.
When you have a clean compilation, you can move on to the final step, modi
fying the application's execution, which is the most difficult step of the entire
task. Because you have modified the fundamental structure of your applica
tion by converting it to an MDI application, the following assumptions that
were made by the developer in the SDI version are no longer correct:

• The application's client window is always open and active. (It might
not be.)

Ill The application's active frame window is the main window
m_pMainWnd. (Its active frame window can be either the application
frame window or a child frame window.)

• The main frame window is used to retrieve the client window. (You
must call GetActiveFrame and then call GetActiveView to retrieve the cli
ent window.)

The original assumptions for an SDI application will now produce many as
sertions and errors, and in some cases they might cause immediate termina
tion of the application. However, if you correct the sources of assumptions
one at a time, you should be able to eliminate the majority of errors quickly.

One example of this is to check for any message handling that is sent im
mediately upon application initialization. Good examples of this are the mes
sage handlers for the WM_IDLE and WM_QUERYNEWPALETTE messages.
If you are handling any messages of this type, check the code for assumptions
regarding the application state (such as the existence of a document object or
an active and visible child window). For every case, you must modify the code to
check for these situations and handle them appropriately. For example, the

0 N E : AppWizard and the MFC Library

following WM_IDLE message handler was taken from an SDI sample pro
gram; it updates a status bar pane with the current cursor location in the
document.

BOOL CNotepadApp::Onldle(LONG lCount)
{

}

CMainFrame* pFrame = CCMainFrame*) AfxGetMainWnd():
CStatusBar* pStatusBar = (CStatusBar*) pFrame->
GetDescendantWindowCAFX_IDW_STATUS_BARl:

if (pStatusBar)
{

}

CEdit &edit= ((CEditView*)pFrame->GetActiveView())->
GetEditCtrl();

CString sl:
UINT i = edit.LineFromChar():
sl.Format(_T("Ln %u"), ++il:
pStatusBar->SetPaneText(pStatusBar->

CommandTolndex(ID_INDICATOR_LINE), sl):

return CWinApp::Onldle(lCountl;

The following line of code from the example above indicates that the
application assumes there will always be an active view:

CEdit &edit = CCCEditView*lpFrame->GetActiveView())->
GetEditCtrl ();

This is a bad assumption in an MDI application because at times there might
not be any child windows open. If you were to execute this code, you would
get an assertion when the LineFromCharfunction is called. To make the code
work properly, format the status bar only if an active view is present. The
modified code (shown in bold) might look something like this:

BOOL CNotepadApp::Onldle(LONG lCount)
{

CMainFrame* pFrame = CCMainFrame*) AfxGetMainWnd():
CStatusBar* pStatusBar = (CStatusBar*) pFrame->

GetDescendantWindowCAFX_IDW_STATUS_BAR);

II If no active child frame windows are open,
II a pointer to the main frame window is returned
CChildFrame• pChildFrm= CCChildFrame•)pFrame->

GetAct1veFrame();
CEditV1ew• pV1ew= CCEd1tView•)

CpCh1ldFrm->GetAct1veV1ew()):

(continued)

41

PART I: WORKSHOP

42

}

if CpStatusBar && pView != NULL)
{

}

CEdit &edit= pView->GetEditCtrl();
CString sl;
UINT i = edit.LineFromChar();
sl.Format(_T("Ln %u"). ++i);
pStatusBar->SetPaneText(pStatusBar->

CommandToindex(ID_INDICATOR_LINE), sl);

return CWinApp::OnidleClCount);

If the status bar or the view objects aren't present, you should probably
call the message handler of the parent class and fall out without performing
any action. Notice the call to GetActiveFrame; you will probably use this call
when checking for the presence of child windows. It returns the active MDI
frame window and, if there is no active MDI child, returns the implicit this
pointer.

A second assumption of an SDI application is that the active frame win
dow of the application is the main window; it fails in an MDI application be
cause of the additional level of indirection regarding frame windows. In the
case of your converted application, there are now two possible frame win
dows-an application frame window and a child frame window. In the SDI
version of the application, the frame window was used either to access mem
bers of the frame window, such as the control bars, or to access the active
view. However, in the MDI version of the application, you must determine
whether you are accessing members of the main frame window or accessing
views of the application. In the preceding code sample where the status bar is
being updated, the first few lines work properly because the application's
control bars are being accessed. However, the next few lines do not work be
cause the code is trying to access the active view via the application's frame
window. In MDI applications, you will never get an active view from the appli
cation's main frame window. You must go down one more level using GetAc
tiveFrame, and then retrieve the view.

This leads nicely into a third assumption in SDI applications: that the
active frame and view are retrieved using the main frame window. This can
not work in an MDI application. In most cases, the code that assumes this can
be found easily by searching the source files for instances of AfxGetMainWnd
and m_pMainWnd. These calls will function properly only if the control bars
or the data members of the main frame window class are being accessed. If

0 N E : AppWizard and the MFC Library

the active view or related object is being accessed, you have to address the
added level of indirection by making a call to the GetActiveFrame function of the
frame object and then using GetActiveView or similar calls to retrieve the active
view. Once again, check for the presence of an active view before handing off
the result.

To recap, check your application's code for the following:

• Message handlers that are called upon initialization

• Situations in which a view is assumed to exist

• Code that retrieves the active view using AfxGetMainWnd or
m_pMainWnd

In each case, ensure that the additional level of indirection regarding frame
windows in MDI applications is addressed or that return values from calls are
checked for valid views.

T I P : Search the source code files for occurrences of active,
frame, and view code because this is usually code that was affected
in some way by the conversion from SDI to MDI.

If you have successfully completed the conversion of your application,
you should now be able to build and run it. In most cases, it should run with .
few or no problems. However, I highly recommend that you test the function
ality of your application extensively.

43

C H A P T E R T W 0

Application and
Frame Window Architecture
The focus of this chapter is the application and frame window classes of an
MFC application. As I mentioned in Chapter 1, the application object is the
"core" of an MFC application. It is located in the primary layer and works
closely with the document, view, and frame window objects. Although it is "in
visible," it has features that are of interest to us. The frame window is a pri
mary object that is more visible. It's more closely related to the application
than either the document object or the view object and interacts with both the
application and the document-view pair-it can be viewed as the "interface"
between the application and the document-view pair.

The tasks included in this chapter relate in some way to either the appli
cation object or the frame window object. The following is a listing and brief
description of the tasks:

Ill Modifying the system menu of an MFC application Modifies the sys
tem menu in various ways, including adding new menu commands
and modifying existing menu commands.

8 Modifying the initial state of an MFC application Demonstrates spe
cific methods for initially minimizing or maximizing the application
when ifs first displayed and for altering the size and placement of the
main frame window of the application.

• Adding a progress indicator to the status bar Demonstrates the im
plementation of a progress indicator in the first pane of the applica
tion's status bar.

Ill Adding tooltips for modal dialog box controls Demonstrates the im
plementation of tooltips for controls in a modal dialog box. Also
demonstrates routing messages with respect to tooltips for controls
in a modal dialog box using a nonstandard approach.

45

PART I : WORKSHOP

II Animating a bitmap in the status bar Demonstrates the implementa
tion of an animated 16-color bitmap in the status bar of an MFC ap
plication. This bitmap, a spinning CD, is animated in its own pane
using a four-step process.

Modifying the System
Menu of an MFC Application

The purpose of this task is to modify the system menu (sometimes referred to
as the control menu) of an MFC application and to demonstrate some of the
more popular types of system menu modifications. Modifying the system
menu can provide additional information or attributes when the application
(or child window) is minimized. For example, you can add a command that
indicates the status of the application or a command that accesses a dialog
box without having to restore the application and go through the main menu.
I will discuss two types of modifications: modifications that are made to the
system menu during initialization of the application and dynamic modifica
tions that can occur whenever the system menu is accessed. Specifically, I will
demonstrate how to add new commands, modify existing commands, and
perform dynamic modifications. In MDI applications, the child window sys
tem menu also can be modified. Although the approach to modifying a child
window system menu is similar to the approach to modifying the main system
menu, there are some important differences, which are discussed in step 2 of
this task.

Modifying the system menu of an MFC application consists of three steps:

1. Modifying the main system menu

2. Modifying the child window system menu

3. Handling the WM_SYSCOMMAND message

This task's project name is SYSMENU, and there are no requirements.

Step 1: Modifying the Main System Menu

46

The primary reason for modifying the main system menu is to expose the ap
plication attributes or the status of some task while the application is mini
mized so that the user can access commands without restoring the application.
For example, the user might need to see the status of a lengthy process or a
command that invokes a dialog box while the application remains minimized.

T W 0 : Application and Frame Window Architecture

There are many other examples, but I leave those to the reader to discover as
an exercise.

N 0 T E : The procedure for modifying the main system menu is
the same for both SDI and MDI applications.

Initial Modification
Commands that are not dynamic or that do not change have to be modified
only once. For example, you would modify a command string, such as chang
ing "Restore" to "My Restore" just once. Similarly, you would add a command
that is available at all times, such as the command that invokes the About dia
log box of the application, just once. Your first chance to modify the main sys
tem menu occurs after the main frame window has been created. In both SDI
and MDI applications, this occurs in the OnCreate function.

You can retrieve a copy of the system menu with a call to the CMenu::Get
SystemMenu function. This function takes a BOOL value as the only parame
ter. Because you want to m0dify the menu, you pass a value of FALSE. When
you have a copy, make any desired modifications using member functions of
the CMenu class.

An example of initial modification is the following: In the SYSMENU
project, I modify the main system menu by changing the first command and
appending a command that invokes the About box of the application. These
modifications are made in a function named ModifySysMenu, which is called
in the main frame's OnCreatefunction. The following code is taken from the
body of the ModifySysMenu function:

CMenu* pSysMenu = GetSystemMenuCFALSE):
CMenu* pFrameMenu = GetMenuC):
CString tmpStr:
UINT curPosID:

II· Change the Restore command string
pSysMenu->GetMenuString(0, tmpStr, MF_BYPOSITION);
tmpStr = "My "+ tmpStr:
curPosID = pSysMenu->GetMenuitemID(0);
pSysMenu->ModifyMenu(0, MF_BYPOSITION I MF_STRING, curPosID,

tmpStr):

II Append the About box command
pSysMenu->AppendMenuCMF_SEPARATOR);
pFrameMenu->GetMenuStringCID_APP_ABOUT, tmpStr, MF_BYCOMMAND);
pSysMenu->AppendMenuCMF_STRING, ID_APP_ABOUT, CLPCTSTR)tmpStr);

47

PART I: WORKSHOP

48

In the first section of the preceding code, I retrieve the system menu and
the main frame window menu. In the second section of code, I modify the first
command by adding the prefix "My" to the Restore command. The result, "My
Restore," replaces the original string. The menu ID remains unchanged. In the
final section, I append the About box command to the menu, which allows
the user to invoke the About dialog box with one click when the application
is minimized.

N 0 T E : For new commands to execute properly, you must han
dle the WM_SYSCOMMAND message. This is discussed in step 3 of
this task.

Dynamic Modification
Dynamic modification is useful for commands that must be checked before
the system menu is displayed. These commands are available or disabled, de
pending on the changing conditions in the application. Examples include
disabled Maximize or Minimize commands or applications that close only
when certain conditions are met, such as the completion of a form or other
action. Because these conditions can change at any time, they must be
checked every time a user requests the system menu.

MFC provides a message (WM_INITMENU) that indicates the system
menu is about to be accessed. The message is sent before the system menu is
shown. To modify the system menu, add a handler for the WM_INITMENU
message to your main frame class. In most cases, this class is CMainFrame. Af
ter you have installed the handler, you can access the system menu and make
the necessary modifications. Or you can restore the default system menu by
calling GetSystemMenu with a parameter value of TRUE. The following code sam
ple is taken from the WM_INITMENU handler ofSYSMENU's main frame class:

CMDIFrameWnd::OnlnitMenu(pMenu);

II Retrieve copy of system menu
CMenu* pSysMenu = GetSystemMenu(FALSE):
UINT curPosID:

II Disable Maximize command
II To complete disablement, handle WM_SYSCOMMAND
curPosID = pSysMenu->GetMenultemlD(4):
pSysMenu->EnableMenultem(curPosID, MF_GRAYED):

This code sample disables the Maximize command. However, to ensure that
the user cannot maximize the application, you must also handle the case of

T W 0 : Application and Frame Window Architecture

SC_MAXIMIZE in the handler for WM_SYSCOMMAND. The handler is dis
cussed in step 3 of this task.

Step 2: Modifying the Child Window System Menu
In MDI applications, another system menu appears on every MDI child win
dow. The same types of modifications that can be made to the main system
menu also can be made to child system menus; and, with some small changes,
the same procedures can be used to make these modifications.

Initial Modification
The system menu of a child window is first accessible after the child frame has
processed the WM_CREATE message. To access the menu at this time, add a
handler to your child frame window class for the WM_CREATE message. Any
modification of the child window system menu must occur after the call to
the base class's OnCreate function. To improve the readability of the SYS
MENU project, all modifications are made with a call to ModifySysMenu. The
following example, taken from the child frame class, demonstrates this:

int CChildFrame::OnCreate(LPCREATESTRUCT lpCreateStruct)
{

}

if (CMDIChildWnd::OnCreate(lpCreateStruct) == -1)
return -1;

ModifySysMenu();
return 0;

An example of an initial modification is the following: the code shown
below is taken from the child frame's ModifySysMenu, and it demonstrates
some of the ways to initially modify the child frame system menu:

CMenu* pSysMenu = GetSystemMenu(FALSE);
CString tmpStr;

II Add Next window command
pSysMenu->AppendMenu(MF_SEPARATOR);
tmpStr = "Nex&t\tCtrl+F6";
pSysMenu->AppendMenu(MF_STRING, SC_NEXTWINDOW, tmpStr);
pSysMenu->AppendMenu(MF_SEPARATOR);

II Add tiling and cascading commands
tmpStr = "Casca&de All":
pSysMenu->AppendMenu(MF_BYPOSITION I MF_STRING,

(continued)

49

PA RT I : WORKSHOP

50

ID_WINDOW_CASCADE, tmpStr):
tmpStr = "Ti&le All":
pSysMenu->AppendMenu(MF_BYPOSITION ' I MF_STRING,

ID_WINDOW_TILE_HORZ, tmpStr):

In the first section of this example, I retrieve the system menu. In the second
section, I add the Next command to my copy of the system menu, which allows
the user to activate the next child window. This is necessary because retrieving a
copy of the system menu with FALSE as the argument to GetSystemMenu erases
this command. In the third section, I add two commands from the main menu:
Cascade and Tile. I modify the menu strings slightly by adding ''All" to the
end of each string. The new strings are appended to the system menu, along
with a separator that makes the menu more legible. Note that the command
IDs for these two items are exact copies of the IDs for the Cascade and Tile
commands.

Dynamic Modification
The reasons for making dynamic modifications to the main system menu ap
ply also to child frame syste.m menus. The following code sample is taken
from the WM_INITMENU handler ofSYSMENU's main frame class:

CMDIChildWnd::OnlnitMenu(pMenu):

CMenU* pSysMenu = GetSystemMenuCFALSE):
UINT curPosID:
if (lslconic()) II Disable tiling and cascading when

II minimized
{

}

curPosID = pSysMenu->GetMenultemlD(10):
pSysMenu->EnableMenultem(curPoslD, MF_GRAYED):
curPosID = pSysMenu->GetMenultemlD(ll):
pSysMenu->EnableMenultem(curPoslD, MF_GRAYED):

else II Enable if window is normal or maximized
{

}

curPosID = pSysMenu->GetMenultemIDC10):
pSysMenu->EnableMenultem(curPoslD, MF_ENABLED):
curPosID = pSysMenu->GetMenultemlD(ll);
pSysMenu->EnableMenultem(curPosID, MF_ENABLEDl:

The main item of interest here is the if-else block, which disables the Cascade
All and Tile All commands only when the child window of the system menu be
ing accessed is minimized. If the child window is normal or maximized, the
Cascade All and Tile All commands are enabled.

TWO : Application and Frame Window Architecture

N 0 T E : For new commands to execute properly, you must han
dle the WM_SYSCOMMAND message. This is discussed in step 3.

Step 3: Handling the WM_SYSCOMMAND Message
Unlike what occurs with standard menu commands, a WM_SYSCOMMAND
message is sent every time the user chooses an item from the system menu.
And every time a user chooses the maximize or minimize button, a WM_SYS
COMMAND message is posted. One of the message parameters is the com
mand ID of the command chosen. To intercept events from the system menu,
you must handle the WM_SYSCOMMAND message and take appropriate ac
tion for both custom commands and items that you have modified, such as a
disabled Maximize command. If you do not handle these customizations, the
command will be handled by the framework, which knows nothing about
your modifications.

Now add the handler if you have made any changes beyond modifying
command strings. For main system commands, the handler must be imple
mented in the main frame class; for child window system commands, the han
dler must be implemented in the child frame class. In the SYSMENU project,
the code handles WM_SYSCOMMAND for both frame window objects.

After you have added the handler, check for your modified or new com
mands. To do this, compare the ID passed in against your set of modified or
new command IDs. For example, in the SYSMENU project, I added an About
SysMenu command; therefore, I had to check for the command ID (ID_APP
_ABOUT) and then make a call to CSysMenuApp::OnAppAbout to make the
About SysMenu dialog box appear. The following code, taken from the body
of CM.ainFrame::OnSysCommand, demonstrates the basic process:

CSysMenu2App* pApp = (CSysMenu2App*)AfxGetApp():

switch (n ID)
{

}

case SC_MAXIMIZE:
break:

case ID__APP__ABOUT:
{

}

pApp->OnAppAbout():
break:

default:
CMDIFrameWnd::OnSysCommand(nID, lParam):

51

PA R T I : WORKSHOP

In the preceding example, I checked for the Maximize (SC_MAXIMIZE)
command and the About SysMenu (ID_APP_ABOUT) command. In the case of
SC_MAXIMIZE, I ignore the command and return nothing because I disabled
the Maximize command for the application. This prevents the user from
maximizing the application with either the system menu or the Maximize but
ton. In the case ofID_APP_ABOUT, I get a pointer to the application and call
the appropriate function. In all other cases, I relay the message to the parent
window. ·

I use the same procedure for the system menu of the child window. The
following code checks for the Cascade All and Tile All commands and calls the
appropriate functions. The code is taken from the body of the CChildWnd::
OnSysCommand function:

II Handle the tiling and cascading commands
switch (n ID)
{

}

case ID_WINDOW_TILE_HORZ:
{

GetMDIFrame()->MDITileCMDITILE_HORIZONTAL);
break;

}

case ID_WINDOW_CASCADE:
{

GetMDIFrame()->MDICascade();
break;

}

default:
CMDIChildWnd::OnSysCommand(nID, lParam);

In this example, I check for the Cascade All (ID_WINDOW_CASCADE) com
mand and the Tile All (ID_WINDOW_TILE_HORZ) command. In both cases,
I retrieve a pointer to the main frame window and call the appropriate function.

Additional Information

52

An additional modification to the CMainFrame::ModijySysMenu function can
be made that inserts a pop-up menu into your application's system menu.
Add the following code to the end of your ModijySysMenu function:

II Set up a Window State pop-up menu item
CMenu popMenu;
popMenu.CreatePopupMenu();

pSysMenu->GetMenuString(SC_MAXIMIZE, tmpStr, MF_BYCOMMAND);

T W 0 : Application and Frame Window Architecture

popMenu.InsertMenu(0, MF_BYPOSITION, SC_MAXIMIZE, tmpStr);
pSysMenu->GetMenuString(SC_MINIMIZE, tmpStr, MF_BYCOMMAND);
popMenu.InsertMenu(0, MF_BYPOSITION, SC_MINIMIZE, tmpStr);

pSysMenu->InsertMenu(3, MF_BYPOSITION I MF_POPUP,
(UINT)popMenu.GetSafeHmenu(), "Window States"):

pSysMenu->RemoveMenu(4, MF_BYPOSITION);
pSysMenu->RemoveMenu(4, MF_BYPOSITION);

In the first section of this code, I create a blank pop-up menu. In the next sec
tion, I copy the existing menu strings for the Minimize and Maximize menu
commands into the new pop-up menu. Finally, I insert the new menu, named
Window States, into the system menu and then remove the original Minimize
and Maximize items to prevent duplication.

Modifying the Initial State of an MFC Application
The purpose of this task is to modify the initial appearance of an application
and its related windows. Attributes that can be modified include the auto
matic minimizing or maximizing of an application and the size and place
ment of application windows. In addition to demonstrating how to modify
the main frame window, I will also demonstrate how to make these same modi
fications on MDI child windows. To fully demonstrate possible customiza
tions, I will use an MDI application. The name of the project is CUSTOM, and
there are no requirements.

Modifications to SDI Applications
For SDI applications, you can modify the attributes of the main frame (or ap
plication) window. Common customizations include modifying the initial state
of the main frame window (whether the window is minimized or maximized)
and changing the size and the position of the window on the desktop.

Minimized or Maximized?
The initial state of the main frame window (maximized or minimized) can be
customized by modifying the Initlnstance function of the main frame class.
The main purpose of this function is to display the main frame window. The
window style of the window object determines how the main frame window
appears when it is displayed, with the default being WS_SHOWNORMAL. This
style is stored in the public variable m_nCmdShow and can be modified easily
to display the main frame window in many ways. Make the modification im
mediately after the call to ParseCommandLine of the main frame's Initlnstance

53

PA RT I: WORKSHOP

function. The following code adds the SW_SHOWMAXIMIZED style to the
main frame window's styles:

II Maximizes main window automatically
m_nCmdShow = SW_SHOWMAXIMIZED;

The code shown below adds the SW_SHOWMINIMIZED style to the main
frame window's styles:

II Minimizes main window automatically
m_nCmdShow = SW_SHOWMINIMIZED;

After you've changed the style, the application takes care of the rest. More styles
can be found in the online documentation for Microsoft Visual C++ version 5.

Modifying the Initial Size and Position of the Main Frame Window
In addition to modifying the initial state of the main frame window, you can
customize the size and the position of the window before the application first
appears. The size and the position, along with other window characteristics,
are stored in a CREATESTRUCT structure, which is used to create the new
window object. In applications created by AppWizard, the PreCreateWindow
member function of the main frame and view windows is automatically over
ridden by AppWizard. This provides access to the CREATESTRUCT structure
before the window is created.

The following code sample sets the window size to half the screen size
using ::GetSystemMetrics, and then it centers the window:

II Size the window to 112 screen size. and center it
cs.cy = ::GetSystemMetricsCSM_CYSCREEN) I 2;
cs.ex= ::GetSystemMetricsCSM_CXSCREEN) I 2;
cs.y = cy I 2;
cs.x = cs.ex I 2;

This type of code is usually found before the call to the base member function.

Modifications to MDI Applications

54

In addition to the main frame and view objects, MDI applications also have
child window objects. Therefore, in addition to modifying attributes of the
main frame window, you also can modify attributes of the child window. How
ever, MDI applications have a client area, generally referred to as the MDI
CLIENT area, where the child windows appear. The addition of the client
area and the child window objects in an MDI application requires changing
the procedures used to modify SDI applications so they will work for an MDI .
application. A self-centering MDI application is shown in Figure 2-1.

T W 0 : Application and Frame Window Architecture

Figure2-1.
A centered MDI application using screen size calculations.

Minimized or Maximized?
The procedure for automatically minimizing or maximizing the main frame
window of an MDI application is identical to the procedure used for an SDI
application except that the code is placed in a different location. Instead of
placing the minimize/maximize code after the call to the ParseCommandLine
function of the application's Initlnstancefunction, place it just before the call
to ShowWindow that shows the main frame window.

However, if you want the same effect for child windows, a little more
work is required. The easiest way to customize the initial state of a child win
dow is to override the ActivateFrame function of the child window class, which
is usually named CChildFrame. This function is called by the framework before
the frame window is visible. In your override of the ActivateFrame function,
add the following code right before the call to the base class version:

nCmdShow = SW_SHOWMINIMIZED:

This causes all child windows to appear minimized initially. To display maxi
mized child windows, use SW_SHOWMAXIMIZED.

Initial Size and Position of the Main Frame and Child Windows
Because of the similarities between the architectures, you can use the same
procedures you used for SDI applications to customize the MDI main frame

55

PART I : WORKSHOP

56

window and the MDI child windows. Because applications created with App
Wizard automatically override the main frame and child window PreCre
ateWindow functions, all that's left to do is to add code exactly like the SDI size
and position code that sets the size and the position of the main frame or child
windows. However, be careful when calculating the client area of the main
frame window. Once again, the MDI architecture is the reason behind this
warning. As with SDI applications, there is a client area bounded by the main
frame window. In a typical SDI application, the client area is completely cov
ered by the view window object, hence, the name single document interface.

However, the client area of an MDI application can be partially or com
pletely visible at certain times, depending on the state of the child windows
and any control bars. This means that a call to the GetClientRect function of
the frame window returns a rectangle that does not account for the presence
of tool or status bars. Therefore, if you try to center a child window using the
normal calculations (in the child's PreCreateWindowfunction), the child will not
be centered because the client area is calculated only after the application
becomes visible:

CRect client;
CMDIFrameWnd• pFram~ = CCMDIFrameWnd•l AfxGetMainWnd();

II Size the window to 112 screen size, and center it
pFrm->GetClientRect(&clientl;
cs.cy =client.Height() I 2;
cs.ex= client.Width() I 2;
cs.y = ((cs.cy • 2) - cs.cy) I 2;
cs.x = ((cs.ex • 2) - cs.ex) I 2;

To get a centered child window, you must calculate the actual client area:
the client area minus the area of any visible control bars. Fortunately, the CM
DIFrameWnd class has a public member, m_hWndMDIClient, that helps do just
that. Therefore, you can modify the calculation code slightly, as shown below.
The sample will then calculate the actual client area, taking into account the
presence of control bars.

CRect client;
CMDIFrameWnd• pFrame = CCMDIFrameWnd•l AfxGetMainWnd();

II Size the window to 112 screen size, and center it
::GetClientRect(pFrame->m_hWndMDIClient, &client):
cs.cy =client.Height() I 2:
cs.ex= client.Width() I 2:
cs.y ((cs.cy • 2) - cs.cy) I 2;
cs.x = ((cs.ex• 2) - cs.ex) I 2;

T W 0 : Application and Frame Window Architecture

Unfortunately, there is still a slight problem with the code sample. The
m_hWndMDIClient data member is undocumented. This means that the be
havior of this code could change in the future, so use it at your own risk. For
a related method of calculating the available client area, subclass the client
area and access the dimensions through the subclassed window. The Knowl
edge Base article "How to SubClass the MDIClient by Using MFC'': Ql29471
describes this procedure clearly and completely.

Adding a Progress Indicator to the Status Bar
The purpose of this task is to add a progress indicator to the status bar of an
application. A progress indicator can be used to indicate the time (or bytes)
remaining for the current process or as a visual indicator that the application
has not frozen or silently crashed. The progress indicator is implemented
with a CProgressCtrl class object and, when activated, covers the application
status bar's first pane, which is reserved for status messages.

N 0 T E : To clearly demonstrate the implementation of the
progress indicator, this task (and the sample project) uses a simple
for loop to demonstrate the implementation of a progress control

. in the status bar. I refer to this for loop as the "Lengthy Process."
The loop, and the related interface, are used here purely for dem
onstration purposes only and are not intended as an example of a
"real world" situation.

In the sample project, you can view the progress indicator by choosing
the Lengthy Process command. When this occurs, the handler for the
Lengthy Process command retrieves the dimensions of the first pane and cre
ates the common progress control within this area, as shown in Figure 2-2 on
the following page. When the for loop completes, the progress indicator is de
stroyed and control of the first pane returns to the application.

The task consists of two steps:

1. Implementing the user interface

2. Creating and displaying the progress indicator

The Lengthy Process menu command, which invokes the progress indi
cator control, is designed to demonstrate the progress indicator and is not a
required step in this task. In a standard application, the progress indicator is
invoked when a certain event, determined by the developer, begins. For this
reason, you can skip step 1, which sets up the interface used in the sample

57

PA RT I: WORKSHOP

,,r. Untitled Status F F F-
, ' '

~fl!fllllill!F-"'' --.-- ''' '----~' ' -----'

Figure 2-2.

A progress indicator, located in the first pane of the status bar.

project, and begin with step 2, which describes the code needed to implement
the progress indicator. The name of the sample project is STATUS, and there
are no requirements.

Step 1: Implementing the User Interface

58

Just for demonstration purposes, the sample project invokes the progress
indicator when the user chooses the Lengthy Process menu command. To add
the Lengthy Process command to the main i;nenu, follow these steps:

1. Using the Resource Editor, add a menu command with the ID of
ID_LENGTHY_PROCESS to the View menu of your application's
main menu. This menu item, when chosen by the user, starts the fake
process.

Properties of the Lengthy Process Menu Item

ID

ID_LENGTHY_PROCESS

Caption

&Lengthy
Process

2. Add a separator right after the new command.

Prompt

Invokes the progress
indicator in the status
bar\nLengthy pro
cess.

T W 0 : Application and Frame Window Architecture

3. Add a command handler for the new command to your application's
CMainFrameclass. The CMainFrame::OnLengthyProcfunction is the
handler used by the sample project.

4. Save the resource file.

Step 2: Creating and Displaying the Progress Indicator
The creation and display of the progress indicator in the application's status
bar is fairly simple. First you retrieve the status bar of the application, and
then you calculate the size of the status bar's first pane and create the progress
control and position it so that it covers the entire first pane. After the process
is finished, you destroy the control.

The code for displaying a progress indicator, found in the OnLengthyProc
function of the sample project, assumes that the status bar object of the main
frame window is accessible. In applications generated by AppWizard, the sta
tus bar object (a protected data member of CMainFrame) is accessible only
from the CMainFrame class or a friend of the CMainFrame class. For this rea
son, the code shown below must be added to the new command handler,
CMainFrame: :OnLengthyProc.

II Create CProgressCtrl as a child of the status bar
II positioned over the first pane
RECT re;
m_wndStatusBar.GetitemRect(0, &re);
CProgressCtrl wndProgress;
VERIFY (wndProgress.Create(WS_CHILD I WS_VISIBLE, re,

&m_wndStatusBar, 1));
wndProgress.SetRange(0, 50);
wndProgress.SetStep(l);

II Perform some lengthy process, simulated here with a for loop
II and the Sleep function
for (i n t i =0 ; i < 5 0 ; i ++)
{

}

Sleep(50);
wndProgress.Stepit();

In the first section of this code, I retrieve the dimensions of the status bar's
first pane. I then create the progress indicator control, using the area of the first
pane and setting the parent of the progress control equal to the frame win
dow. I set the range and the step sizes based on the for loop, which has 50 parts.
In the next code section, I use a for loop of 50 cycles to imitate a lengthy pro
cess and step the progress indicator once for each for loop cycle.

59

PA R T I : WORKSHOP

After you add the code on the preceding page, re build your project. You
should now be able to display a progress indicator in the first pane of your ap
plication's status bar.

Adding Tooltips for Modal Dialog Box Controls

60

The purpose of this task is to add tooltips to the controls of a modal dialog
box. Tooltips for the OK button, a static control, and the dialog box itself will
be implemented using the CToolTipCtrl class. By default, MFC provides tool
tips for descendants of any frame window class derived from CFrameWnd. If
you want tooltips for other types of tools, such as other windows or rectangu
lar regions, you'll have to roll your own.

The method used to provide tooltip support in an MFC application uses
the common control class CToolTipCtrl. This class wraps the tooltip common
control and provides an adequate amount of default support (even though
the documentation is somewhat spare) to implement the common tooltips.
We will add a CToolTipCtrl class that is responsible for three "tools"-a tool bar
button, an embedded child window, or a rectangular region-to the applica
tion class. To provide a more complete demonstration, we will add tooltips
for a button control, a static region, and the About dialog box. After the task
has been completed, the user will see the tooltips for the dialog box or any
controls inside automatically when the mouse cursor pauses over one of
them, as shown in Figure 2-3.

Figure 2·3.
Tooltip for a static control.

The task consists of three steps:

1. Modifying the modal dialog box

2. Modifying the OnlnitDialogand PostNcDestroy functions

3. Modifying the application class

T W 0 : Application and Frame Window Architecture

The project is named DLGTIPS, and the requirement is a modal dialog
box class used by the application. The sample project uses the About dialog box
generated by AppWizard.

Background
To implement a functioning tooltip in an MFC application, you must do all of
the following:

111111 Define the tools that will be monitored by the tooltip control.

1111 Activate the tooltip control(s).

II Determine when to display the tooltip.

Ill Provide text to display in the tooltip window when text is requested
by the system.

The default support for tooltips is available only for controls (or tools)
embedded in a CFrameWnd-derived class or for a descendant of a CFrameWnd
derived class. The reason for this is that CFrameWnd is the only class that pro
vides a handler function for the TTN_NEEDTEXT notification. This notifi
cation is sent by the framework when the mouse has remained on the same
point for about a half second and when there is a registered tool (usually a
toolbar button or a menu item) that includes the current mouse position.
When this situation exists, a TOOLINFO structure is initialized and passed
on to the default notification handler, which in this case is CWnd::OnToolTip
Text. The handler retrieves the ID of the tool and any tooltip text associated
with it. After the text has been retrieved, the tooltip window will be displayed.
If the tool has no tooltip text, the window opens, but it is invisible.

To implement tooltips for tools inside windows that are not derived
from CFrameWnd, you must do two things: determine when the tooltip should
be displayed and provide text for the tooltip. If you implement tooltips using
the CToolTipCtrl class, all you have to do is register the tools and provide the
text for them.

Another feature of MFC that makes adding tooltips a little bit easier is
the ability to manage tooltips for multiple controls using just one CToolTipCtrl
derived object. I demonstrate this feature in this task by adding three tools to
the CToolTipCtrl object.

61

PART I: WORKSHOP

Step 1: Modifying the Modal Dialog Box

62

To implement tooltips for dialog box controls, you have to modify the dialog
box class by doing three things:

• Adding member variables for the dialog box tools and the common
tooltip control

• Adding a destructor if one does not already exist

• Overriding the OnlnitDialog and PostNcDestrfl) functions

Adding Member Variables for Each Tool in the Dialog Box
To add tools to the tooltip common control, you must add one member vari
able to the dialog box class for each dialog box control. You then use the
member variables when initializing the common tooltip control. A quick way
to add member variables to your dialog box is to use the Resource editor and
Class Wizard.

Repeat the following procedure for each dialog box control that will have
a tooltip.

1. Open the dialog box resource in the Resource editor.

2. Double-click any control to which you want to add a tooltip while
holding down the Ctrl key. This invokes ClassWizard and automati
cally opens the Member Variables page for your dialog box class.

3. Enter a name for the member variable, and select Control from the
Category drop-down list box.

4. Click OK to close the dialog box.

5. Click OK to close ClassWizard, which saves your changes.

N 0 T E : If you want to provide tooltips for a static control (or
controls), you must set the Notify style for the static control. This
style allows the control to send notification messages to its parent
(the dialog box), alerting the dialog box to display the tooltip for
the static control.

In your dialog box class, declare a member variable pointer of type
CToolTipCtr~ named m_pToolTip. In your dialog box constructor, add the fol
lowing line:

m_pToolTip = NULL;

T W 0 : Application and Frame Window Architecture

This initializes the pointer of the common tooltip control to NULL. You
will use this value in the destructor to determine whether the pointer needs
to be freed.

Adding a Destructor
Because memory for the m_pToolTip pointer was allocated in the constructor
of the dialog box class, you will need a destructor to free that memory. Create
one now, and add the following code, which frees up the memory you allocat
ed for the common tooltip control:

if (m_pToolTip != NULL)
delete m_pToolTip;

Overriding the OnlnitDia/og and PostNcDestroy Functions
The last modification to the dialog box class is to override the OnlnitDialog
and PostNcDestroy functions. You can use the Message Maps tab of Class Wizard
to add these overrides.

Step 2: Modifying the OnlnitDialog and PostNcDestroy Functions
Now that you have overrides of OnlnitDialog and PostNCDestroy, you will have
to add code to create and initialize·the tooltip control. In the OnlnitDialog
function, create and initialize the common tooltip control. After all of the
dialog box tools have been added, activate the common tooltip control and
exit the function. Add the following code to your dialog box's OnlnitDialog
function after the call to the base class and before the return statement:

if (!m_pToolTip)
{

int rt:
m_pToolTip = new CToolTipCtrl:
rt= m_pToolTip->Create(this);
ASSERT(rt != 0);
((CDlgTipsApp*)AfxGetApp())->m_gpToolTip = m_pToolTip;

CRect rc(ll,17,29,37);
MapDialogRect(rc);
rt= m_pToolTip->AddTool(this, "Default MFC icon", re,

IDC_MFCICON);
ASSERT(rt != 0);

rt= m_pToolTip->AddTool(this, "About Box");
ASSERT(rt != 0);

(continued)

63

PART I: WORKSHOP

}

rt= m_pToolTip->AddTool(&m_btnOK, "OK Button");
ASSERT(rt != 0);

m_pToolTip->Activate(TRUE);

((CDlgTipsApp*)AfxGetApp())->m_hwndDialog = m_hWnd;

In the first section of code, I create the common tooltip control and assign
the result to the m_gpToolTip pointer, a data member of the application class.
In the next section, I initialize a CRect object with the client coordinates of
the static control. I then use this CRect object to add the dialog box icon to
the common tooltip control, m_pToolTipCtrl. In the next section, I add the di
alog box and the OK button to the list of tools. Finally, I activate the common
tooltip control and assign the HWND of the dialog box to a data member
(m_hwndDialog) of the application class.

In the PostNcDestroy function (called after the dialog box object has been
destroyed), set the m_hwndDialog and m_gpToolTip data members of the appli
cation class to NULL. Add the following code to your dialog's PostNcDestroy
function after the call to the base class:

((CDlgTipsApp*)AfxGetApp())->m_hwndDialog =NULL;
((CDlgTipsApp*)AfxGetApp())->m_gpToolTip = NULL;

The NULL value indicates to the application object that the modal dialog box
has been dismissed.

Step 3: Modifying the Application Class

64

Because you are using a modal dialog box, you have to check for mouse mes
sages in the application class. To do this, declare two data members in your
application class: a pointer to the common tooltip control (m_gpToolTip) and
the handle to the dialog box object (m_hwndDialog). The code below is taken
from the sample project's application class. These data members give you ac
cess to the dialog box and to the common tooltip control of the dialog box.
Be sure you set both of these data members to NULL in the constructor of
the application class.

HWND m_hwndDialog;
CToolTipCtrl* m_gpToolTip;

In addition to declaring the data members, you have to override the Pro
cessMessageFilter function in the application class, which relays all messages
sent to the dialog box to the common tooltip control. Override this function
now. After you have done this, add the following code to the function body:

T W 0 : Application and Frame Window Architecture

if (m_hwndDialog != NULL)
if (lpMsg->hwnd == m_hwndDialog I I
::IsChild(m_hwndDialog. lpMsg->hwnd))

if (m_gpToolTip != NULL)
m_gpToolTip->RelayEvent(lpMsg);

return CWinApp::ProcessMessageFilter(code. lpMsg);

In the first section of the code, I check to see whether the dialog box has
been created. If the check returns TRUE, I compare the handle of the mes
sage to the handle of the dialog; if there is a match, I pass on the message with
a call to RelayEvent to the common tooltip control. If this check fails, I check
whether the handle of the message matches the handle of any children of the
dialog box (that is, dialog box controls). If there is a match, I pass on the mes
sage with a call to RelayEvent to the common tooltip control. If there is no
match, I return the result of a call to the ProcessMessageFilter of the base class.

After you have completed these modifications, rebuild the project. You
should now have tooltips for all tools, including the dialog box itself, in your
dialog box.

Additional Information
For more information on providing tooltips for dialog box controls, see "Pro
viding Tooltips for Dialog Controls" in Chapter 5. You might also want to
read the related Knowledge Base article "How to Add Tooltips to OLE Con
trols": Q141871.

Animating a Bitmap in the Status Bar
The purpose of this task is to animate a 16-color bitmap in the status bar of an
MFC application. This bitmap will be displayed in a new pane immediately
preceding the three default panes (the Caps Lock, Num Lock, and Scroll Lock
panes) of the MFC application. Animation is accomplished by loading a
slightly different bitmap (from a series of four bitmaps) in the same status bar
pane every quarter second using a system timer. The task consists of six steps:

1. Adding a CStatusBar-derived class to your project

2. Modifying the status bar class

3. Implementing the Drawltem member function of the status bar class

65

PA RT I: WORKSHOP

4. Modifying the CMainFrame class

5. Creating a new pane for the bitmap

6. Implementing a WM_TIMER message handler

To complete this task, you will need the following:

II An SDI or MDI MFC application with a status bar

!ii Several 16-color bitmaps to display in a status bar pane

Because this task animates the bitmaps by displaying them in a fixed se
quence, the animation effect is best achieved by slightly modifying each bit
map in the sequence. The sample project, ANIMBAR, uses a sequence of four
bitmaps that represents a spinning CD-ROM.

N 0 T E : This discu.ssion assumes you are using a version of MFC
later than 4.0. If you are using an earlier version ofMFC, see the side
bar information "MFC Versions 4.x and Later."

Step 1: Adding a CStatusSar-Derived Class to Your Project

66

In a default MFC application created by AppWizard, a status bar is provided
with basic features:

II An area for text messages

II State indicators for the Caps Lock, Num Lock, and Scroll Lock keys

II The ability to toggle the visibility of the toolbar

In most applications, this functionality is sufficient, but there are always cases
in which it is just not good enough. Animating a bitmap in a status bar pane
happens to be one of these cases. Because we are using a class library, we can
implement the functionality needed by deriving our own class from CStatusBar.
In this step, you will add a new status bar class and implement the bitmap fea
ture in the later steps.

Add a class derived from CStatusBar to your project, using your favorite
method. The status bar class in the sample project is named CMyStatusBar.
While you are adding stuff to your project, add the bitmaps (16-color only)
you will be animating. Because the width and the height of the status bar pane
are fixed values, the dimensions of the bitmap must be 26 pixels wide by 13 pix
els high. The ANIMBAR project uses a four-element array of CBitmap objects
(IDB_BMAPO-IDB_BMAP3) that represents a spinning CD-ROM.

T W 0 : Application and Frame Window Architecture

Step 2: Modifying the Status Bar Class
Now that you have a CStatusBar-derived class, you can begin to implement the
bitmap feature. In this step, you will add two data members and modify the
constructor. To modify the status bar class, follow these steps:

1. Add the lines of code shown below to the definition of your new sta
tus bar class:

II Attributes
private:

CBitmap m_bmpArray[4]:
int m_curBmap;

2. Add the following lines of code to the constructor of your new status
bar class:

VERIFY(m_bmpArray[0].LoadBitmap(IDB_BMAP0));
VERIFY(m_bmpArray[l].LoadBitmap(IDB_BMAPl));
VERIFY(m_bmpArray[2].LoadBitmap(IDB_BMAP2));
VERIFY(m_bmpArray[3].LoadBitmap(IDB_BMAP3));

m_curBmap = 0;

In this step, the bitmap array m_bmpArraywas set up to store the bitmaps used
in the animation sequence. In step 3, you will modify the constructor of the sta
tus bar to load the four bitmaps that will be displayed.

Step 3: Implementing the Drawltem
Member Function of the Status Bar Class

In this step, you will complete the modifications to the status bar class and
add the code used to render the bitmap in the status bar pane. Once again,
you can override a member function and place the rendering code there.
This member function, CStatusBar::Drawltem, is called by the framework when
ever the status bar items need to be redrawn. You'll have to customize the be
havior of this function to properly animate your bitmap in the second status
bar pane. However, because you have to control only the painting of the bit
map pane, you pass off the rest of the panes to the default function.

Class Wizard does not allow you to override the default function, so you
add the function by hand. First add the following line to the public section of
your status bar class declaration, which is located in the header file:

virtual void Drawltem(LPDRAWITEMSTRUCT lpDrawltemStructl;

Now add the function body shown on the following page to the implementa
tion file of your status bar class.

67

PART I: WORKSHOP

68

void CMyStatusBar::Drawitem(LPDRAWITEMSTRUCT lpDrawitemStruct)
{

}

switchClpDrawitemStruct->itemID)
{

case 1:

}

II Attach to a CDC object
CDC de;
dc.Attach(lpDrawitemStruct->hDC);

II Get the pane rectangle, and calculate
II text coordinates
CRect rect(&lpDrawitemStruct->rcitem);
II Select current bitmap into a compatible CDC
CDC srcDC;
srcDC.CreateCompatibleDC(NULL);

CBitmap* pOldBitmap;

switch(m_curBmap)
{

case 0:
pOldBitmap srcDC.SelectObject(&m_bmpArray[0]);
break;

case 1:
pOldBitmap srcDC.SelectObject(&m_bmpArray[lJ);
break;

case 2:
pOldBitmap srcDC.SelectObject(&m_bmpArray[2J);
break;

case 3:

}

pOldBitmap srcDC.SelectObject(&m_bmpArray[3J);
break;

dc.BitBlt(rect.left, rect.top, rect.Width(), rect.Height(),
&srcDC, 0, 0, SRCCOPY); II BitBlt to pane rect
srcDC.SelectObject(pOldBitmap);

II Detach from the CDC object: otherwise, the hDC will be
II destroyed when the CDC object goes out of scope
de.Detach();

return;

T W 0 : Application and Frame Window Architecture

If you have done any bitmap painting in the past, most of the preceding
code will be pretty familiar to you. Basically, the logic of the function first deter
mines the ID of the pane being notified (of the need to render itself). Because
the bitmap pane is the second in a zero-based array, I check for an ID of 1. If
the ID is a match, I grab the device context for the status bar and calculate the
coordinates of the bitmap pane. I then create a compatible device context
and, depending on where we are in the animation sequence (m_curBmap),
load the proper bitmap. The bitmap is then copied to the compatible device
context. Finally I detach from the status bar device context and return from
the Drawltem function. However, if the ID is not a match, I simply fall through
the switch statement and pass the notification on to the default Drawltem
function.

At this point, you have completed the implementation of the custom
ized status bar. In the remaining steps, you will modify the frame window class
so that it will use your custom status bar and create a new pane for the bitmap.

Step 4: Modifying the CMainFrame Class
To see the new status bar, you have to add the include file for the new status
bar class and then make two modifications that affect the behavior of the
main frame window object. First add the following line to the top of your
CMainFrame header file so that you can use the CMyStatusBar class.

#include "MyStatusBar.h"

Now move on to the modifications for the CMainFrame class. The first
modification involves the type of status bar class used by the main frame win
dow. Currently the main frame window uses a default status bar class of type
CStatusBar. This default status bar class has to be changed so that the new, cus
tomized status bar class is used instead. This is easily done by changing the
following line

CStatusBar m_wndStatusBar:

in the header file of the main frame window class to

CMyStatusBar m_wndStatusBar:

The second modification involves the OnCreate function of CMainFrame.
After the status bar has been created, it's necessary to modify the attributes of
the pane containing the bitmap so that painting notifications are automati
cally sent to the bitmap pane when this pane needs to be repainted. In addi
tion, you have to set the system timer for a 250-millisecond interval. This will
drive the animation sequence by displaying the next bitmap in the sequence

69

PA RT I: WORKSHOP

70

T W 0 : Application and Frame Window Architecture

in the new bitmap pane. (The actual handler for the WM_TIMER messages
will be added in step 6.) Add the following code right after the call to the Cre
ate function of the status bar:

UINT nID, nStyle;
int cxWidth;
m_wndStatusBar.GetPaneinfo(l, nID. nStyle, cxWidth);
m_wndStatusBar.SetPaneinfo(l, nID. nStyle I SBT_OWNERDRAW, 23);

if (!SetTimer(100, 250, NULL))
AfxMessageBox("No timer available");

In the first section of code, I retrieve the attributes of the bitmap pane, set the
owner-draw attribute of the bitmap pane, and set the pane width to 26 pixels.
I then attempt to start a system timer. However, because system timers are a
limited resource, it's possible that no timers will be available. Therefore, if the
attempt fails, I display a message box stating the failure.

Step 5: Creating a New Pane for the Bitmap
In step 5, you create a new pane for the bitmap animation. If one is not cre
ated, the animation will be rendered in the Caps Lock indicator pane. To cre
ate a new pane, follow these steps:

1. Add a new resource string named ID_INDICATOR_BMAP to the
string table of your project with the caption BMAP.

2. In the implementation file of the CMainFrame class, modify the indi
cators array declaration to match the following:

static UINT indicators[] =
{

} ;

ID_SEPARATOR, // Status line indicator

ID_INDICATOR_BMAP. // Add this line
ID_INDICATOR_CAPS,
ID_INDICATOR_NUM,
ID_INDICATOR_SCRL,

By adding an entry (ID_INDICATOR_BMAP) to the array of "indicator" panes,
you have created a new pane that is located immediately after the separator
of the first pane.

Step 6: Implementing a WM_TIMER Message Handler
The last step in this task involves implementing a WM_TIMER message han
dler. In this handler, the current bitmap counter m_curBmap will be advanced

71

PA RT I : WORKSHOP

and the bitmap pane invalidated, which causes a new bitmap to be drawn that
is slightly different from the previous one. Because a WM_TIMER message is
received every quarter second, four bitmaps will be drawn, resulting in a spin
ning CD.

First add a handler for WM_TIMER messages to your CMainFrame class
using your favorite method. Now replace the CMainFrame::OnTimerfunction
body with the following code:

CRect rect:

if (m_wndStatusBar.m_curBmap == 3)
m_wndStatusBar.m_curBmap = 0:

else
m_wndStatusBar.m_curBmap++:

m_wndStatusBar.GetitemRect(l, &rect): //Get pane rect
m_wndStatusBar.InvalidateRect(rect, FALSE):

CFrameWnd::OnTimer(nIDEvent):

In the first section of code, I check the value of m_wndStatusBar.m_curBmap
and, depending on the value, reset it to 0 or increment it by 1. I then retrieve the
region occupied by the bitmap pane and pass it on to the CStatusBar::Invali
dateRect function, which causes a repaint of my bitmap pane. Finally I pass on
the timer event to the parent class and exit the function.

N 0 TE: The call to CFrameWnd::OnTimer assumes that you are
working with an SDI application. If the application is an MDI appli
cation, you should make a call instead to CMDIFrameWnd::OnTimer.

You have now completed all of the steps required for displaying an ani
mated bitmap in the status bar. Rebuild your project, and you will see a new
pane with an animated bitmap in your application.

Additional Information

72

The procedure above can be modified to display only a 16-color bitmap in the
status bar of an MFC application. The necessary modifications are as follows:

Ill In step 2, use a CBitmap member function instead of a CBitmap array,
and load only the single bitmap in the status bar's constructor. In ad
dition, the m_curBmap member variable is not required.

T W 0 : Application and Frame Window Architecture

• The Draw/tern function in step 3 does not need a switch statement to
determine the proper bitmap to load. Just load the single bitmap
stored in the CBitmap member variable of your status bar.

• The Create function in step 4 should not create a timer.

• Step 6 should be dropped because the timer resource was removed
in step 4.

73

C H A P T E R T H R E E

Document Templates
The document-view model is one of the more essential and at the same time
most misunderstood features of the MFC library. After providing MFC tele
phone support for an extended period of time, I came to realize that, in most
cases, people who do not like the document-view model do not understand
two key points:

• The document-view model is only a model and cannot be applied to
all programming questions. Therefore, in some cases, this model will
not support the purpose of the developer's application.

• The document template is used to create the three necessary ele
ments of a document type: the frame window, the document, and the
view. All of these elements are created automatically by the document
template and can be customized to some degree to fit your own
needs. If you don't fully understand the mechanics of the document
template, you will be forced to use the default template style.

In this chapter, I explain the basics of document templates-what they
are, how they are used in an MFC application framework, and so forth. In addi
tion, I explain each stage of the document creation process and describe what
areas can be customized and why you might want to customize them. This chap
ter is not a detailed overview of document templates but an intermediate-level
discussion of document template mechanics. I assume that you understand
the general process of document creation. (For a complete, detailed overview
of the document creation process, see "Document Templates" under "Using the
Classes to Write Applications for Windows" in "Programming with MFC" in the
online documentation.)

In the context of this discussion, access point is defined as any member
function that can be overridden from a local class or as any function defined
by a local class that is called automatically (by the framework) during normal

75

PA R T I : WORKSHOP

program execution-specifically, a function that either is overridable or is called
during the creation of a document and view with a framing window. For the
purpose of this discussion, I use the member functions of a class as access
points to customize or to poll the current process, such as document creation.

The chapter is broken into three general areas of discussion and three
specific tasks related to document templates. The areas of general discussion
are the following:

• Overview of document templates Highlights of the process for us
ing a document template to create or open a document.

• The default mechanics of document templates A detailed descrip
tion of the default mechanics of document templates in SDI and MDI
applications. In addition, I discuss certain functions generated by
AppWizard that allow safe customization of the document creation
process ..

II Customizing the document template An analysis of MFC functions
that can be used to safely customize the default mechanics of the
document template process.

Overview of Document Templates

76

Every MFC SDI application created by AppWizard has at least one document
template. This template (referred to as the document type) creates and de
fines the relationships between the document, frame window, and view ele
ments. When a new document is created or an existing document is opened,
this template is used to create the elements in this order: document, frame
window, and view.

For MFC MDI applications, an extra step is required to create the top
level frame window of the application before a document can be created. Af
ter this step is completed, the process used for an SDI application is used to
create the requested document.

The document template, as its name suggests, maps the document,
frame window, and view elements to the actual MFC classes in an application.
When a user requests an application to supply a document (either existing or
new), this request is passed to the appropriate document template. The docu
ment template, in turn, "requests" that each element defined by the template
create itself in a specific sequence. These requests are the main purpose of
the document template. All other details, such as frame window titles and the

TH R E E : Document Templates

size of the view, are determined by the respective elements of the document
type. Once these elements have been created, the frame window displays a view
with the document's data.

The Default Mechanics of Document Templates
By default, an application created by AppWizard contains at least one docu
ment template. Because this template is responsible for creating the classes
of a specific document type, the constructor requires three class names and a
resource ID, as shown in the following example:

CSingleDocTemplate* pDocTemplate:
pDocTemplate = new CSingleDocTemplate(

IDILMAI NFRAME,
RUNTIME_CLASS(CSdiDoc),
RUNTIME_CLASS(CMainFrame), //Main SDI frame window
RUNTIME_CLASS(CSdiView));

AddDocTemplate(pDocTemplate);

In this example, CSdiDocis the document class, CMainFrameis the main frame
window of the application (because the application type is SDI), and CSdiView
is the view element. The shared resource for this document type is IDR
_MAINFRAME. This shared resource usually contains a menu and icons,
which are used by all three document elements. When a template is created,
it is registered with the application by a call to AddDocTemplate; this is the only
way the application knows what document types it supports.

In addition to supplying a registered document template, the SDI appli
cation framework provides several access points (in the form of member
functions) in the document-view creation process. The default support can
be examined with respect to the creation of three main document type ele
ments: the document element, the frame window element, and the view ele
ment. Because member functions for frame window and view classes are
similar, I will discuss them at the same time.

One final note-in addition to the default access points of an SDI appli
cation, MDI applications have access to the creation process of the main
frame window. The access points in this step (which occurs before the docu
ment element is created) are similar to the access points in the frame window
and view creation steps.

77

PART I : WORKSHOP

Creating the Document Element

78

When a document is created or opened, the first task of its template is to cre
ate the document element. This is accomplished at the first access point, the
document element's constructor. In an SDI application, the constructor is
called only once because the framework "recycles" the document element
whenever a new file is created or an existing document is opened. In an MDI
application, the constructor is called every time a document is created or
opened because the MDI architecture creates a separate child window for
each document that is open in the application.

The second access point, CDocument::OnNewDocument, notifies the appli
cation each time a new document is created. You can use this function to ini
tialize data that is common to all documents or to perform other actions,
such as cleanup, before the document is created. For more information, see
CDocument::OnNewDocument in the next task, "Customizing the Document
Template" on page 80.

Figure 3-1 is the first part of a timeline that shows the functions that are
called and the other events that occur when a document is created. The func
tions shown in bold are referred to as access points and are added automati
cally to the applications created by AppWizard.

Figure 3-1.

The basic process of creating a document in an MFG application.

TH R E E : Document Templates

Creating the Frame Window and View Elements
After the document is created, the frame window, which contains the view ele
ment, is created. As in creation of the document element, the constructor is
the first access point called by the framework. In most cases, this constructor
does nothing beyond initializing its member variables. Figure 3-2 illustrates
the second stage of the document creation timeline, showing the functions
called and the other events that occur while the frame window and view are
being created. The events in bold (the default access points) are created by
AppWizard.

Figure 3-2.
The basic process for creating a frame window and view in an MFG application.

The next access point, the PreCreateWindow function, is more useful be
cause you can modify the characteristics of the window using the CREATE
STRUCT structure that is attached to the frame window or view of the
function. The CREATESTRUCT structure determines the characteristics of
this object and also, among other things, the class name, styles, initial size, and
menu used by the window. MFC automatically calls the PreCreateWindow func
tion prior to creating the window (hence, the name of the function). As a re
sult, this function is a good place to modify the characteristics of your window
object because you do not call the Create function directly if you are using a
document template.

The usual modification of window characteristics calls the base class im
plementation, properly initializing the contents. You then modify the struc
ture values to achieve a desired effect, such as controlling the size of the
frame window or registering a custom window class. The modified structure is
used by the framework to create a frame window (or view) with the desired
characteristics.

79

PART I: WORKSHOP

Customizing the Document Template
As I mentioned earlier, AppWizard creates several access points for the crea
tion process of document, frame window, and view elements. In most cases,
these are adequate for the typical document. In those cases in which a more
flexible document type is needed, MFC fortunately provides additional access
points where you can "plug in" your own code.

In this discussion, customizations are grouped according to the class to
which they belong and the order in which they are used in the creation process.
The following sections cover how to customize these elements using class library
functions. A handful of functions can be used in several areas and are discussed
under ''Additional Functions" on page 87.

Application-Related Functions

80

Application-related functions include the following:

• CWinApp::OnFileNew

• CWinApp: :openDocumentFile

CWinApp::OnFileNew .
The first access point you can customize for new documents is the
ID_FILE_NEW command handler. The default handler calls CWinApp::On
FileNew, which in turn calls CWinApp::openDocumentFile. If there is only one
registered template, CWinApp::OnFileNew tells the document template to cre
ate a new document type. If there is more than one template, the application
displays a dialog box that lists the known templates. The user must choose
the proper document type, which then is created by the respective document
template.

If you want to customize this process (perhaps hiding the selection pro
cess from the user, for example), add a command handler for ID_FILE_NEW
using ClassWizard. This causes the ID_FILE_NEW command to be sent ini
tially to your application's OnFileNew handler. In the OnFileNew handler, you
might add some code that finds the proper template (determined by you)
and creates a document-view pair. You also can create handler functions in
your application's class that handle requests individually for a certain docu
ment type. (For more information on this topic, see "Choosing a Document
Template Without the New Document Dialog Box" later in this chapter.) An
other method for customizing the creation of new doctunents is described in

T H R E E : Document Templates

the Microsoft Knowledge Base article "How to Create New Documents Without
CWinApp::OnFileNew": Ql 13257.

N 0 T E : In addition to overriding OnFileNew, you also can over
ride OnFileopen to customize the opening of existing documents.

CWinApp::OpenDocumentFile
If you know the filename for the document you are opening, call CWinApp::
openDocumentFile (passing the filename) to create a document-view pair. This
function is commonly used in the Initlnstance function to open a file or to by
pass the New Document Type dialog box automatically. The first parameter of
the command line, if the command line is not empty, can be passed via a call
to openDocumentFile. If the application has only one template, a document-view
pair is created using that template. If multiple document templates exist, the
function tries to match the filename's extension to a template in the applica
tion's template list. If the function finds a match, a document, a frame window,
and a view object are created.

Document Template-Related Functions
The primary purpose of document templates is to provide a plan for creating
a specific document type. This is a one-to-one relationship: one document
template produces one type of document. However, in order for an applica
tion to access document templates, it must be registered with a call to AddDoc
Template, usually from the application's Initlnstance function. Any templates
that are not registered with the application must be managed by the developer.

If you want to customize any part of the document creation process, you
might quickly end up handling document templates and perhaps various
parts of the creation process yourself. In these cases, you have access to the
template list from any part of your application just by grabbing the application
object and making a few calls to the GetFirstDocTemplatePosition function and the
GetNextDocTemplate function. The following sample code demonstrates a com
mon way to gain access to the list:

CWinApp* pApp = AfxGetApp();

POSITION curTemplatePos = GetFirstDocTemplatePositionC>:

while CcurTemplatePos != NULL)
{

(continued)

81

PA RT I: WORKSHOP

82

}

CDocTemplate* curTemplate =
pApp->GetNextDocTemplate(curTemplatePos);

CString str;
curTemplate->GetDocString(str, CDocTemplate::docName);
if (str == "Bounce")
{

}

curTemplate->OpenDocumentFile(NULL);
return;

The following functions can be used to manage or to customize various
parts of the document-view creation:

• CDocTemplate: :OpenDocumentFile
Use this function when you need to create a document-view pair

from a specific template. This function is also called by CWinApp::
OpenDocumentFile.

iii CDocTemplate::CreateNewFrame
Use this function to create a new frame window that contains a

view based on the document class managed by the document tem
plate. In addition to creating a new frame window, you can base the
new window on an existing document or frame window by passing an
existing frame window object via this function. The result of this call
is similar to the result of choosing New from the Window menu of the
application. (For more information on working with CreateNewFrame,
see the Knowledge Base article "Create Additional Views with Create
NewFrame ()Function": Ql00993.)

iii CDocTemplate::CreateNewDocument
Use this function to create a new document. The frame window

and the view must be created in a separate step.

iii CDocTemplate::InitialUpdateFrame
After you have created a new frame using CreateNewFrame, you

should call InitialUpdateFrame to send WM_INITIALUPDATE mes
sages to all children within the newly created frame. This allows all
children to perform any one-time initialization or actions needed be
fore becoming visible. If there are no active views, the primary view of
the frame window becomes the active view. This member function is
defined in both the CDocTemplate and CFrameWnd classes. The Knowl
edge Base article "Create Additional Views with CreateNewFrame()
Function": Q100993 describes how to create additional views using
CreateNewFrame and InitialUpdateFrame.

T H R E E : Document Templates

Document-Related Functions
Document-related functions include the following:

• CDocument: :OnNewDocument

• CDocument: :DeleteContents

• CDocument::SetModifiedFlag, CDocument::IsModified, and CDocu
ment: :SaveModified

CDocument::OnNewDocument
As mentioned under "The Default Mechanics of Document Templates," CDocu
ment: :OnNewDocument is called when a new document is created. This func
tion is commonly used to initialize the document's data members.

N 0 T E : If the user chooses the File New command in an SDI ap
plication, the framework uses the CDocument::OnNewDocument func
tion to re-initialize the existing document element rather than create
a new one. Therefore, to ensure data member initialization, place
your initialization code in this function instead of in the document
constructor.

CDocument::DeleteContents
This little-known function provides a useful way to receive notifications that
the current document is about to be destroyed. Because the default imple
mentation of DeleteContents does nothing, override it in your document's class
to free up any memory allocated by the document, to save any modifications
to the document, or to execute other tasks that need to run before the docu
ment closes. This function is very useful in SDI applications, in which the
document element is reused when a new document is opened or created.

CDocument::SetModifiedF/ag,
CDocument::lsModified, and CDocument::SaveModified
Because the document is responsible for its own data, it should check for any
modifications and query whether the user wants to save the document when
it has been modified; the CDocument class provides three functions and a :rp.em
ber variable for this purpose. The member variable, named m_bModified, con
tains the modified flag; the member functions SetModifiedFlag and IsModified
set and check the value of the member variable.

SaveModified calls IsModified, which then checks to see whether the docu
ment has been modified. If it has been modified, IsModified displays an MB
_ YESNOCANCEL message box and handles each possible return value. If the

83

PART I: WORKSHOP

user clicks Cancel, SaveModified returns FALSE, letting the calling function
know to cancel the current operation.

For the user to be prompted to save the document in all possible situa
tions, you must set the m_bModified flag (by calling SetModifiedFlag(TRVE))
when the user modifies the document. If this is done correctly, SaveModifiedis
called no matter how your application is closed. This allows you to cancel the
current operation. The list below shows the various ways in which SaveModified
can be called.

Action

Exit is chosen from the
top-level File menu.

Close is chosen from the
MDI child's File menu.

Close is chosen from the
MDI system menu.

Close is chosen from the
system menu.

Called By

CWinApp::OnAppExit

CDocument: :OnFileClose

CFrameWnd: :OnFileClose

CFrameWnd::OnFileClose

Frame Window-Related Functions

84

Frame window-related functions include the following:

• CFrameWnd::LoadFrame

II CFrameWnd: :PreCreateWindow

• CFrameWnd::ActivateFrame

CFrameWnd::LoadFrame
This function, which calls CFrameWnd::Create, can be used either to create and
display a frame window that is based on a document template or to create a
frame with a document and view without using a document template. By de
fault, the document/frame/view object is created by the document template
by filling a CCreateContext object and calling CFrameWnd: :LoadFrame. To associ
ate the frame window that is to be created with a document-view pair, pass a
CCreateContext structure (with the desired document and view types) as the
last argument. For example, the code sample on the next page initializes a
CCreateContext structure with the current active document, pDoc, and the
proper view, pView. Note that m_pNewViewClass is a pointer of type CRuntime
Class and that it allows you to specify the type of view class you want to use.

T H R E E : Document Templates

CCreateContext newContext:
newContext.m_pNewViewClass = pView:
newContext.rn_pNewDocTemplate = NULL:
newContext.m_pLastView = NULL:
newContext.m_pCurrentFrame = NULL;
newContext.rn_pCurrentDoc = pDoc;

"How to Create MFC Applications That Do Not Have a Menu Bar," Knowl
edge Base article Q131368, describes an advanced task using CFrameWnd::Load
Frame. The task demonstrates the steps for creating an MDI application without
a menu bar. Although this method is not recommended in most cases, it is
sometimes beneficial when the developer does not need menu bars for child
windows.

CFrameWnd::PreCreateWindow
This member function, found in both CFrameWnd and CViei.q is useful when
you are customizing the appearance of your frame and view windows. Over
riding this function allows you to tap into the creation process of the docu
ment template window. Without this function, there would be no way to
customize the creation of the window by altering the values for the CREATE
STRUCT structure, which is passed in as a parameter to PreCreateWindow. The
CREATESTRUCT structure is used by MFC as a template for building the ac
tual window. In this structure, you have access to, among other attributes, the
menu resource, the initial display size, and the name of the class on which the
Microsoft Windows object is based. For a complete description of CREATE
STRUCT, see the Microsoft Visual C++ version 5 online documentation.

Overriding CFrameWnd::PreCreateWindow is usually done to customize
attributes that are separate from the client area, such as the system menu,
window title, and menu resources. Some of the more common modifications
that can be made to these attributes are listed below:

• Removing the application's system menu either temporarily or per
manently. For details, see the Knowledge Base article "How to Re
move the System Menu from an Iconized Application": Q129224.

Ill Changing window attributes, such as size and window styles.

Ill Creating an application without a menu bar. For details, see the
Knowledge Base article "How to Create MFC Applications That Do
Not Have a Menu Bar": Q131368.

Ill Changing the frame window title of an MDI child window. For de
tails, see the Knowledge Base article "How to Change an MFC-Based
MDI Child Window's Frame Text": Q99182.

85

PA RT I : WORKSHOP

Ill Modifying frame windows that have a CFormView-derived view. For de
tails, see the Knowledge Base article "Using CFormView in SDI and
MDI Applications": Q98598.

CFrameWnd::ActivateFrame
Override this function to create an initially minimized or maximized docu
ment in an MDI application. In your override, call the parent's ActivateFrame
function, passing SW_SHOWMINIMIZED or SW_SHOWMAXIMIZED as the
parameter.

View-Related Functions

86

View-related functions include the following:

Ill CView: :PreCreateWindow

Ill CView: :SetActiveView

Ill CView::OnAdiveFrame

CView::PreCreateWindow
Override CView: :PreCreateWindow to customize the client area of the frame win
dow. An example of customizing the client area is specifying a custom window
class that is used to create the actual window object. This function dynami
cally creates a class name, with the attributes specified by you. These at
tributes include the window styles used, the cursor resource used by the
window, and the background brush color. For more information on custom
classes, see the online documentation, the Knowledge Base article "How to
Change the Mouse Pointer for a Window in MFC": Ql31991, and the task
"Choosing a Document Template Without the New Document Dialog Box"
later in this chapter.

CView::SetActiveView
The CView::SetActiveView function is commonly used when dynamically switching
views from the current active view to a hidden or newly created view. For an
example of switching views dynamically, check out the task "Implementing
Switchable Views for a Single Document" later in this chapter. There is also a
Knowledge Base article, "Switching Views in a Single Document Interface
Program": Q99562, that demonstrates dynamically switching a view in an SDI
application and in an MDI application, respectively.

CView::OnActivateFrame
The CView::OnActivateFrame function, which is called whenever CFrameWnd::
OnActivate is called, can be used as an indicator for the gain or loss of view

TH R E E : Document Templates

activation. In an MDI application, the OnActivateFrame function is called after
the view receives a WM_INITIALUPDATE message.

Additional Functions
An additional relevant function and structure include the following:

II CWnd::SendMessageToDescendants

II CCreateContext structure

CWnd::SendMessageToDescendants
This function is often used to send notification messages to descendants of
the frame window. One useful application is sending WM_INITIALUPDATE
or WM_IDLEUPDATECMDUI to control bars or to other windows (such as
individual dialog box controls) created outside the normal document-view
creation process.

N 0 T E : Because the messages WM_INITIALUPDATE and WM
_IDLEUPDATECMDUI are private MFC messages, only windows
handled by an MFC class will be able to react to them. Standard
controls are not affected.

Sending WM_INITIALUPDATE or WM_IDLEUPDATECMDUI mes
sages gives the descendants a chance to do one-time initialization. This noti
fication simulates the traditional process of document-view creation.

CCreateContext structure
The main purpose of this structure is to provide a "context" whenever a frame
window, a document, or a view element is created dynamically. The context
structure is used here, just as it is for a document template, to determine what
document, view, or frame window class should be created with the new ele
ment. The context structure is used most often when you dynamically create
an additional view or frame element or switch views on a single document.
The following example (creating a new view in an MDI application) demon
strates this use, with pNewView as the pointer to the view class that is being cre
ated and pDoc as the current active document:

context.m_pNewViewClass = pNewView;
context.m_pCurrentDoc = pDoc;
context.m_pNewDocTemplate = NULL;
context.m_pLastView = NULL;
context.m_pCurrentFrame = pFrame;

In most cases, only one or two members of the context need initializa
tion, depending on which element is being created. Because the example is

87

PA RT I: WORKSHOP

creating a new view to display the current document and to be a child of the
frame window (accessed using pFrame), the document, view, and frame are
initialized. However, the other members can be used at any time for your own
needs. For examples of using CCreateContext, see the following Knowledge Base
articles:

• Switching Views in a Single Document Interface Program: Q99562

Ill Replacing a View in a CMDIChildWnd Window: QI 02829. (Article in
its updated form was not available for inclusion in Part II of this book
at press time; see the online version.)

Ill How to Create MFC Applications That Do Not Have a Menu Bar:
Q131368

Conclusion
My purpose in this discussion of document templates has been to shed some
light on the process of creating and opening documents in your MFC appli
cation. By understanding how and when the default document template is
used, you can make better decisions with respect to when the default behav
ior is enough for the job and when it is more appropriate to customize it. In
addition, you now know about a large group of functions that can enable you
to customize a document template to fit your needs.

I hope you see that the document template is just another type of frame
work (similar to the MFC library itself) that has a large amount of default sup
port and is easy to customize. Use the ideas in this discussion (and the functions
contained in it) to dismantle the mystery of the document creation process.
Make the template work for you, not against you.

To demonstrate some of the ways you can customize the document-view
architecture, I have included three tasks in this chapter:

• Choosing a document template without the new document dialog box

Ill Adding a second view to a document

Ill Implementing switchable views for a single document

Choosing a Document Template
Without the New Document Dialog Box

88

The purpose of this task is to provide a different interface for choosing new
documents either automatically from a template list or graphically with a
group of toolbar buttons. By default, in applications with more than one

TH R E E : Document Templates

document template, a dialog box (referred to as the New Document dialog
box) is displayed whenever the user opens a new document. This dialog box
lists all of the available document templates for the application. After the
user chooses the template type, a new document is created. However, you
might prefer a more graphical interface to this list of templates, perhaps a de
scriptive toolbar button for each template. Or maybe you need more control
over the process. For example, your application might have a document type
that, when created, requires an additional document type to be created. In
stead of the user having to create the second document type, your application
can automatically create the additional document when the user chooses the
proper document type.

In this task, I implementa command handling mechanism that searches
the list of available templates and then creates a new document from the
proper template. The task has five steps:

1. Adding a new type of document template

2. Modifying the application's resources

3. Modifying the application's Initlnstancefunction

4. Installing the new command handlers

5. Implementing the new command handlers

WARNING: If you are modifying an SDI-type application, you
must create a new, empty document before the application displays
itself. For more information, see '~dditional Information" at the
end of this task.

The project is an MDI application, and its name is NEWfMPL. The re
quirements for this task are:

Iii A new document type consisting of a document, a frame window, a
view class, and associated resources (such as an icon and a menu)

Iii One or more command handlers for creating a new document

Step 1: Adding a New Type of Document Template
The defaultAppWizard project (either SDI or MDI) includes a fully function
ing document template. This document template, which consists of frame
window, document, and view elements, is automatically created and added to
the application's document template list. The template list exists in the appli
cation object, and it contains all document types known by the application.

89

PA RT I: WORKSHOP

New document templates are added with a call to AddDocTemplate; this usually
occurs in the Initlnstance function of the application class.

In this step, you will add three new classes to provide a second docu
ment template that creates a document of type NewType. In this task, I use
the following class names:

Document Template (NewType) Classes

Class Name

CNewFrame

CNewDocument

CNewView

Description

The new template's frame window element
derived from CMDIChildWnd

The new template's document element
derived from CDocument

The new template's view element-derived
from CView

N 0 T E : It's not necessary to derive the second child frame win
dow class from CMDIChildWnd; you can use the base class directly
by substituting CMDIChildWnd for CNewFrame in the document tem
plate definition.

Create three new classes of the types specified above using the New
Class command of ClassWizard. If you already have three classes of these
types, copy the header and implementation files to the directory of the
project to be modified and add them to the project using the Files Into
Project command on the Insert menu. These classes make up the majority of
the NewType document template. In addition to these classes, you will need
several resources, such as a menu, icons, and a string table entry.

Step 2: Modifying the Application's Resources

90

In addition to classes, each document template usually contains a set of re
sources that share a common resource ID. For instance, in the MDI applica
tion framework created by AppWizard, the resource ID is the name of the
project with the suffix TYPE. In most cases, the resources consist of a menu,
an icon for the child object, and a string that describes the various elements
of the document template.

For this task, you can use a set of predefined resources, with the ID
IDR_DEFAULTYPE. These predefined resources can be copied from the DE
FAULT.RC file, located in the \PROJECTS\DEFAULT directory on the com
panion disc. The resources are made up of an icon, a menu that is based on

T H R E E : Document Templates

the default menu generated by AppWizard, and the following string resource
(using IDR_DEFAULTYPE as the resource ID):

Defaul\n\nDefaul\n\n\nDefaul .Document\Defaul Document

If you want to create your own resources, you will need an icon, a menu
that has at a minimum all commands from the main menu resource, and a
string table entry similar to the default above. For more information on
strings of this type, see the Knowledge Base article "Format of the Document
Template String": Ql29095.

N 0 T E : Another option for new document template resources
is to copy existing resources in your application's project and then
modify them. For example, if your project is an MDI application,
you should have resources for the original document template.
Copy the icon, menu, and string entry resources into similar types
using a new resource ID.

After you have the menu resource for the new template, add menu
items to create each document template. For example, if the project has a
Hello document and a Bounce document, add two menu items-New Hello
and New Bounce-to the File menu on all of the menu resources of the
project. Be sure you assign separate and distinct IDs for each item, such as
ID_FILE_NEWHELLO and ID_FILE_NEWBOUNCE; you will write com
mand handlers for these later in the task. As you edit the menu resource,
there should be a New menu item or items with the ID ID_FILE_NEW that
you must remove. This is the default ID used by the framework to generate
new document types. Because you are bypassing this functionality, you don't
need it anymore.

Step 3: Modifying the Application's lnitlnstance Function
If your application was created by AppWizard, the Initlnstance function per
forms two chores that are important to this task: initializing the document tem
plate list and creating a new, empty, document type. In applications created
by AppWizard, the document template list is initialized with the default docu
ment template in the first part of the application class's Initlnstancefunction.
The following code, taken from a default MDI application, adds the only docu
ment template that is used by the application:

CMultiDocTemplate* pDocTemplate;
pDocTemplate = new CMultiDocTemplate(

IDR_MYPROJTYPE,

(continued)

91 .

PART I: WORKSHOP

92

RUNTIME_CLASS(CProjDoc),
RUNTIME_CLASS(CNewFrame), II Custom MDI child frame
RUNTIME_CLASS(CProjView));

AddDocTemplate(pDocTemplate):

You can add your new document template right after the code above.
First add the include files for the three new classes to the top of the applica
tion's implementation file. For example, if you are using CNewFrame, CNewDoc,
and CNewView, the new code (in bold) will look like this:

#include "MainFrm.h"
#include "ChildFrm.h"
#include "NewTmplDoc.h"
#include "NewTmplView.h"

#include "NewFrame.h"
#include "NewDoc.h"
f/i ncl ude "NewVi ew. h"

Add the following code right after the existing call to AddDocTemplate:

CMultiDocTemplate* pNewTemplate:
pNewTemplate = new CMultiDocTemplate(

IDR_NEWTYPE,
RUNTIME_CLASS(CNewDoc),
RUNTIME_CLASS(CNewFrame), II Custom MDI child frame
RUNTIME_CLASS(CNewView));

AddDocTemplate(pNewTemplate):

Notice that a new CMultiDocTemplate pointer (named pNewTemplate) is
initialized with the new resource ID and the three new classes you added ear
lier. After the pointer is initialized, it is added to your application's template
list with the call to AddDocTemplate.

N 0 TE: If your application is an SDI-type application, use CSingle
DocTemplate instead of CMultiDocTemplate.

The Initlnstance function is also where the new empty document is cre
ated. In the default application framework, the command line is parsed for any
commands. These commands are then executed by the framework. If no
commands are found, the ID_FILE_NEW command is handled, which usually
causes a new document to be displayed in the application window. First, a
cmdlrifo object is initialized with any commands found:

II Parse command line for standard shell commands, DDE, file open
CCommandlineinfo cmdinfo:
ParseCommandline(cmdinfo):

Then, in a call to ProcessShellCommand, the cmdlrifo object is read. If no
commands are found, a call to OnFileNew is made:

T H R E E : Document Templates

II Dispatch commands specified on the command line
if (!ProcessShellCommand(cmdlnfo})

return FALSE;

In MDI applications, you can remove this code to prevent the creation
of an empty document. The application then comes up with an empty appli
cation frame, and the user must then create a new document of his or her
choice using the new command handlers added in the next step. However, in
SDI applications, you must create a new window before exiting the Initln
stance function. Therefore, you should leave in this code or implement an
other method for creating a new window before exiting Initlnstance.

Step 4: Installing the New Command Handlers
It's time to add some new handlers for creating new document types using a
cool trick provided by the Resource editor. The following procedure for add
ing new command handlers will install unique handlers for each document
type.

1. Open any menu resource that contains the File New commands for
your document type.

2. Expand the File menu (or other top-level menu that contains your
new document menu items).

3. While holding down the Ctrl key, double-click one of the new docu
ment menu items. Class Wizard should then come up with the Mes
sage Maps tab on top.

4. Add a command handler for the menu ID associated with the menu
item you chose in the main frame class-in this case, CMainFrame. Re
peat this step to add handlers for all menu items that you added in
step 2. When all of the handlers have been added, save the project.

N 0 T E : The class associated with this menu will be chosen by
ClassWizard to handle the commands. If you want a different
class (perhaps the application class), choose it from the Class
Name list box and then add the handler. If the application class
is chosen, the template traversal code is slightly easier to read be
cause you have eliminated the need for an application pointer.

Because you created a unique command handler for each document
type, you already know which document template should be used to create
the new document. All that is left to do is to search the document template
list for the proper template.

93

PART I: WORKSHOP

There is also an alternative method for using only one command han
dler for all New menu items; it parses the current message for the document
type. Details about this method can be found under ''Additional Information"
at the end of this task.

Step 5: Implementing the New Command Handlers

94

You now have a command handler for each new document type, but you still
have to find the right document template to create a functioning document
view pair. Fortunately, the application class contains a complete list of tem
plates. All you have to do is traverse this list, grab the right one, and call its
OpenDocument function.

Because the new document handlers are members of the main frame
window class, you will need to get a pointer to the application object and use
that pointer to access the document template list unless you chose a different
class. The following code uses a call to AfxGetApp to accomplish this:

CNewTemplApp* pApp;
pApp = (CNewTemplApp *)AfxGetApp();
POSITION curTemplatePos = pApp->GetFirstDocTemplatePosition();

Now use curTemplatePos to run through the available templates and grab
the proper one. The following code uses a call to GetDocString to match the
target string with the current template's document name. If the match suc
ceeds, you have the right one and can call OpenDocument. If there is no match,
continue traversing the list:

while(curTemplatePos != NULL)
{

}

CDocTemplate* curTemplate
pApp->GetNextDocTemplate(curTemplatePos);

CString str;
curTemplate->GetDocString(str. CDocTemplate::fileNewName);
if (str == "NewType")
{

}

curTemplate->OpenDocumentFile(NULL);
return;

N 0 T E : In addition to CDocTemplate::docName, GetDocString can
return any one of the seven elements of the document type's string
resource. However, in some cases, certain values will work only in
MDI-type applications. Check out GetDocString in the online docu
mentation for details.

TH R E E : Document Templates

The target string (in this case, NewType) is determined by the proper
document template resource string-in this case, the NewType document.
Each of the template strings should have a different set of string elements,
which allows you to distinguish between template types. I used CDocTemplate::
docName because it works for both SDI- and MDI-type applications.

Now that you have completed one of the handlers, use similar code for
the others by changing the comparison to the new document type for which
you are searching. After you have built the project, the user will be able to
choose the document type he or she wants to create by executing the proper
menu command.

Additional Information
Here is some additional information to help you.

Alternative Methods for Handling New Document Commands
As I mentioned earlier, there are alternative methods for installing command
handlers for each document type. In one method, you have only one com
mand handler, which contains all of the code for creating a new document.
In the future, if changes to the new document logic are needed, you need
modify only one function. Instead of installing a unique handler for each docu
ment type, you map every New Document menu item to the same handler
(perhaps named OnMyNewDocument); then, before traversing the template list,
determine the command ID with the following line of code:

idVal= LOWORD(GetCurrentMessage()->wParam);

You can then set up a case statement that sets the target value to the
proper string value. The modified traverse function would look something
like this:

CNewTemplApp* pApp;
pApp = (CNewTemplApp *)AfxGetApp();
POSITION curTemplatePos = pApp->GetFirstDocTemplatePosition();
II Grab the ID of the menu choice
CString targetVal;
idVal = LOWORD(GetCurrentMessage()->wParam);
switch(idVal)
{

case ID_FILE_NEWTYPE:
targetVal = 'NewType';

case ID_FILE_OLDTYPE:
targetVal = 'OldType';

(continued)

95

PART I: WORKSHOP

96

II Traverse the list to find the proper template
while (curTemplatePos != NULL)
{

CDocTemplate* curTemplate =
pApp->GetNextDocTemplate(curTemplatePos);

CString str;
curTemplate->GetDocString(str. CDocTemplate::docName);
if (str == targetVal)
{

}

curTemplate->OpenDocumentFile(NULL);
return;

In the two methods discussed thus far, the document template variable
is created on the stack. Therefore, it exists only within the scope of the Initln
stance function. Because of this and because the order of the document tem
plates in the document template list cannot be assumed, you must search for
the proper template every time a new document is created. As it turns out,
this search is unnecessary if you keep a pointer to all document templates
used in the application. When placed in the application's class, these point
ers allow permanent access from anywhere in the application at any time. In
stead of searching, you can simply call the OpenDocumentFile function of the
appropriate template using the stored pointer.

Modifying SDI-Type Applications
Before an SDI-type application is visible, the m_pMainWnd data member must
point to the main frame window of the application. This means that a new,
empty document must be created in order to create a valid frame window ob
ject. Unfortunately, one result of this task is that the application appears with
no new document. In order for an SDI application to become visible, you
must create a new, empty document during startup. After the empty docu
ment is created, the user can create new documents of his or her choice.

Additional Reading
Technical Note 22 in the Visual C++ online documentation provides an excel
lent description of handling standard MFC commands. There is also men
tion of other customizations for handling new document requests. The
Knowledge Base article "How to Create New Documents Without CWinApp::
OnFileNew": Ql 13257 discusses yet another method of bypassing the default
handling of OnFileNew.

T H R E E : Document Templates

The Source Code Is Your Friend!
I found the procedure used in this task (document template traversal) by step
ping through the source code of ProcessShellCommand. In addition, the reason
why OnFileNewis called is obvious if you continue to step through with a little
patience.

Adding a Second View to a Document
The purpose of this task is to implement two different view types for a single
document. The two views are shown simultaneously in a static splitter window
(Figure 3-3)-each pane displaying a different view of the document data.
The first view is a graphical representation derived from CView; the second is
a control view derived from CFormView. Each view is able to notify the docu
ment when data is changed by the user, which "prompts" the document to up
date all views automatically.

Figure 3-3.
Application with both panes visible.

This type of application is commonly referred to as a multiple view
interface (MVI) application. All MVI applications must use splitter windows
that come as one of two types-dynamic splitter windows, which must use the
same view class for each pane, or static splitter windows, which can use different
view classes for each pane. This task demonstrates the implementation of a
static splitter window, which is the more complex of the two types of windows.

97

PA R T I : WORKSHOP

The task consists of two steps:

1. Adding a second view class

2. Modifying the main frame window class

The project name is SPLITR, and the requirement is a CView-<lerived
class, which is used as the second view.

N 0 T E : Just to keep you from getting confused: in the sample
project I have provided for this task, one of the data types for the
document is a custom class named CMyRect, which has its own
header and implementation files, MYRECT.H and MYRECT.CPP,
respectively. In addition, the second type of view class (CDlgView) is
derived from CFormView and has its own header and implementa
tion files, DLGVIEW.H and DLGVIEW.CPP, respectively. All refer
ences to these classes are for the sample project only.

Step 1: Adding a Second View Class
Because the sample implementation uses a static splitter window, derive a sec
ond view class from CView (the sample derives the second view class from
CFormView) and add it to your project. If you have an existing view class, you
can simply add the files to the project by choosing the Add To Project/Files
command from the Project menu. If you create the class with Class Wizard,
the files are added automatically, plus you get a basic class frame with which
to work. As I mentioned above, the second view class, CDlgView, is derived
from CFormView. The form view contains a set of controls that allows the user
to select one of five MyRect objects displayed in the left pane and to manipu
late its values.

Step 2: Modifying the Main Frame Window Class

98

Now that you have two view classes, you have to modify the main frame window
class, usually CMainFrame, to create a splitter window with two panes that dis
play the different views. These are the modifications you will have to make:

Ill Adding a CSplitterWnd data member to the CMainFrame class. The
data member is used later to point to the new splitter window.

Ii Adding the header files for the document and new view classes to the
CMainFrameimplementation file. This allows us to use the document
and new view class types in the implementation code for the splitter
window.

T H R E E : Document Templates

• Overriding the OnCreateClient function in the CMainFrame class (if it
is not already overidden), and adding code for creating the splitter
window and its panes. This function provides a handy place to create
the splitter window and its two panes.

To modify the main frame window, follow this procedure:

1. Add the splitter window data member by adding the following line to
the CMainFrame header file:

II Attributes
protected:

CSplitterWnd m_wndSplitter;

Declaring the data member "protected" is not required, but it does
strengthen the modularity of the class.

2. In the implementation file of CMainFrame, add the header files for
your application's document class and the view classes.

N 0 TE: Including the header file of the document class (in
this case, SPLITRDOC.H) is optional. In most cases, however,
your second view interacts with the document, which requires
the document's header file to resolve document references.

The example below shows the lines you would add to the imple
mentation file of the main frame class to include the SPLITR project
header files for the document and two view classes:

#include "splitrDoc.h"
#include "splitrView.h"
#include "DlgView.h"

3. To properly create the splitter window and panes, override the OnCre
ateClient function using Class Wizard in the CMainFrame class. The re
sult is shown below. The lines in bold were added by ClassWizard.

ll{{AFX_VIRTUAL(CMainFrame)
public:
virtual BOOL OnCreateClient(LPCREATESTRUCT lpcs,

CCreateContext* pContext):

(continued)

99

PART I: WORKSHOP

100

virtual BOOL PreCreateWindow(CREATESTRUCT& cs);

In the implementation file of MAINFRM.CPP, the body of the
OnCreateClient function looks like this:

BOOL CMainFrame::OnCreateClient(LPCREATESTRUCT l*lpCS*I,
CCreateContext* pContext)

return CMainFrame::OnCreateClient(lpcs, pContext):
}

4. Add code to the OnCreateClient function to create and initialize the
splitter panes. Because I am creating a static splitter window, I use
CSplitterWnd::CreateStatic and CSplitterWnd::CreateView. The following
code added to the OnCreateClient function creates a splitter window
with one row and two columns. The left pane is created using CSplitr
View (the initial project's class) as the view class. The second pane is
created using CDlgView as the view class.

II Create a splitter with 1 row, 2 columns
if (!m_wndSplitter.CreateStatic(this, 1, 2))
{

}

TRACE0("Failed to create static splitters\n"):
return FALSE:

II Add the first splitter pane--the default view in column 0
if (!m_wndSplitter.CreateView(0, 0,

{

}

RUNTIME_CLASS(CSplitrView), CSize(590, 50), pContext))

TRACE0("Failed to create first pane\n"):
return FALSE:

II Add the second splitter pane--an input view in column 1
if (!m_wndSplitter.CreateView(0, 1,

}

RUNTIME_CLASS(CDlgView), CSize(0, 0), pContext))

TRACE0("Failed to create second pane\n"):
return FALSE:

II Activate the input view
SetActiveView((CVieW*)m_wndSplitter.GetPane(0,l)):

return TRUE;

TH R E E : Document Templates

After you add the new view class and implement CMainFrame::OnCreate
Client, your application should have a splitter window with two panes. The
content of each pane depends on the OnDraw code in your view classes. If you
have nothing in the OnDraw functions, these panes will be blank.

Additional Information
The SPLITR project contains additional code that synchronizes the view and
document classes, specifically, code for the following functions:

II CSplitrView::OnlnitialUpdate()

II CDlgView::GetDocument()

• CDlgView::DoDataExchange(CDataExchange* pDX)

II CDlgView::OnlnitialUpdate()

Ill CDlgView::OnUpdate

• CDlgView::OnUpdateRect()

Another method for implementing multiple views on a single document
(described in detail in the next task) allows a user to switch views at any time.

Implementing Switchable
Views for a Single Document

The purpose of this task is to implement switchable views for the same docu
ment in an existing SDI application. In the sample application, the default
view (shown in Figure 3-4 on the following page) is derived from CView and
the second view (shown in Figure 3-5 on the following page) is derived from
CFormView. The second view contains controls that allow the user to modify
the attributes of the document's data. The document's data consists ofa group
of rectangles randomly generated and colored, which are drawn in the initial
view and can be modified in the second view. In the procedure presented here,
I use the AddView and RemoveView member functions of CDocument.

Initially, the document has one view-the existing view provided by the
application. The user can switch the views using either the toolbar or the
View menu options. The main frame window, CMainFrame, handles the re
quest to switch views by creating a second view if necessary and then swap
ping the view IDs, hiding the current view, and showing the second view. The
frame window keeps track of both views, including which of the views is the

101

PA R T I : WORKSHOP

Figure 3-4.
Application with graphical view.

Figure 3-5.
Application with common controls view.

102

T H R E E : Document Templates

current one. It also handles the destruction of the second view and restora
tion of the initial view when the application ends or when a new document is
created. The task has five steps:

1. Adding the new view class

2. Modifying the frame window class

3. Implementing the On ViewSwitch function

4. Re-initializing the document

5. Adding resources for switching views

The name of the project is SWITCH, and these are the requirements:

Ill A CView-derived class, which will be used as the second view

II A function, for this task named On ViewSwitch, that switches the cur
rent view with a hidden view

II A function, for this task named CleanUpViews, that resets the state of
the document when a new document is requested

ill Graphical resources, such as buttons or a toolbar, to switch between
the views

Step 1: Adding the New View Class
The first step is to add the view to which and from which you will be switch
ing. You can create a new view class or use an existing view class. If you are go
ing to use an existing CView-derived class, you should copy the header and
implementation files to the project directory and add them to the project.
There are probably references (for example, #include directives, obsolete
classes, and so on) that should be modified or removed; a quick way to track
these down is to rebuild the project and fix all of the errors that pop up.

If you created the new view class with ClassWizard, modify the view's
header file by changing the access specifier for the constructor, the destruc
tor, and the OnlnitialUpdate function from "protected" to "public." This al
lows the class to be created directly by other classes. You can rebuild the
project, but it isn't required yet. Because the new view class will be interacting
with the existing document class, it's a good idea to implement some type of
GetDocument function in your new view class. If you access the document from
the view class by name, add the document's header file to either the header
or the implementation file of the view class.

103

PART I: WORKSHOP

T I P : If your project was created by App Wizard, you already have
a working function, GetDocument. Make this a member function of
your new view class by copying over the Debug and Release ver
sions of the function. Make sure you grab the inline function,
which is found in the header file of the view class, and the release
version, which is found near the diagnostic functions.

For the second view to display the document data correctly, some type of
synchronization with the document data is needed. Because the sample
project uses a form view as the second view, I override CFormView::Onlnitial
Update and CFormView~·:OnUpdate for one-time initialization and synchroniza
tion with the document data. Use this method if your second view is derived
from CFormView.

If your view is derived from CVi~ override the OnlnitialUpdate and
OnActivateView functions of your view's class. In addition to activating the
view, OnAdivateView is called when the view is being deactivated; therefore,
check for this possibility and update the data only when the view is activated.

Step 2: Modifying the Frame Window Class

104

In a typical SDI application, switching between views is done easily in only two
classes-the application class and the main frame window class. Either class is
able to switch views, but if you choose the main frame window class, you save
yourself a bit of typing. The sample project switches the views from the
CMainFrame class, so I am assuming that you also are choosing CMainFrame.
After you have chosen the class, make these modifications:

Ii Add the header file of the new view class to the implementation file
of the chosen class.

ill Add data members that will store the existing views and track the cur
rent view.

Because the switching function uses the new operator to create a second view,
include the header file for the second view class in the implementation file of
CMainFrame.

N 0 T E : Because I've used a form view in the sample project,
AFXPRIV.H was included by class CMainFrame. This allows the class
to send WM_INITIALUPDATE messages.

CMainFrame also needs a way to access both views easily. This is accom
plished by adding two pointers (of type CView) to CMainFrame. These data

TH R E E : Document Templates

members should be "public." To make it easier to see which view is current,
add another variable named m_currentView of type int:

public:
II Attributes

CVieW* m_pViewl;
CVieW* m_pView2;
CView m_currentView;

In the CMainFrame constructor, initialize both view pointers to NULL
and m_currentView to 1. This indicates that the current view is the original
project view; the numeral 2 indicates that the current view is the new view.

CMainFrame::CMainFrame()
{

}

m_pViewl = NULL;
m_pView2 = NULL;
m_currentView = 1:

Now you can implement the handler function for switching views, On
ViewSwitch.

Step 3: Implementing the OnViewSwitch Function
This is the key activity of the task. To switch views successfully, the On ViewSwitch
function must do the following:

II Create a second view if one is needed.

II Switch the IDs of both views.

II Display the alternate view and hide the current view.

II Modify the document's list of views.

Because of the size of the On ViewSwitch function, I split the function
into four parts for the purpose of this discussion. I will list the parts in the or
der in which they appear in the On ViewSwitch function and then discuss what
they do. You can either add the body of the entire function now or add each
part as it's discussed.

1. Add the code on the following page to the beginning of the On View
Switch function.

105

PART I: WORKSHOP

106

CView* pViewAdd;
CView* pViewRemove;
CDocument* pDoc = GetActiveDocument();
BOOL bCreated = FALSE;
UINT nCmdID;

nCmdID = LOWORD(GetCurrentMessage()->wParam);

if ((nCmdID
return;

if ((nCmdID
return;

ID_VIEW_VIEWl) && (m_currentView == 1))

ID_VIEW_VIEW2) && (m_currentView == 2))

In the first section of code, I retrieve a pointer to the document and
the command ID of the current message. I then use the command ID
to determine whether the current view is the one chosen by the user.
If so, the function returns, doing nothing. If the request is valid, the
switch is initiated.

2. Add the code below immediately after the code in section I above:

if (nCmdID == ID_VIEW_VIEW2)
{

}

else
{

}

if (m_pView2 == NULL)
{

}

m_pViewl GetActiveView();
_m_pVi ew2 new CMyVi ew2;

m_pView2->Create(NULL, NULL, AFX_WS_DEFAULT_VIEW,
rectDefault, this, AFX_IDW_PANE_FIRST + 1, NULL);

bCreated = TRUE;

pViewAdd = m_pView2;
pViewRemove = m__pViewl;
m_currentView = 2;

pViewAdd = m_pViewl;
pViewRemove = m_pView2;
m_currentView = 1;

In this section of code, if the view to which you are switching is the
second view and the pointer (m_pView2) is NULL, the view is created
and bCreated is set to TRUE. When both views exist, the pointers are
set to their proper values.

T H R E E : Document Templates

3. Add the code below immediately after the code in section 2:

int nSwitchChildID = pViewAdd->GetDlgCtrlID();
pViewAdd->SetDlgCtrlID(AFX_IDW_PANE_FIRST);
pViewRemove->SetDlgCtrlID(nSwitchChildID);

II Show the newly active view, and hide the inactive view

pViewAdd->ShowWindow(SW_SHOW);
pViewRemove->ShowWindow(SW_HIDE);

In this section of code, I set the view ID of the newly active view to
AFX_IDW_PANE_FIRST so that CFrameWnd::RecalcLayoutwill allo
cate to this "first pane" the portion of the frame window's client area
not allocated to control bars. After the IDs have been switched, I show
the newly active view and hide the other view.

4. Add the code below immediately after the code in section 3 above:

pDoc->AddView(pViewAdd);
pDoc->RemoveView(pViewRemove);

SetActiveView(pViewAdd);
Recal clayout();

5. Finally, I replace the old view in the active document's list of views
with the new view. Then I notify the new view and readjust the layout.

N 0 T E : If you step through the Debug version of the On View
Switch function, you will see the following warning: "Creating a pane
with no CDocument." This warning is generated when the call to
CMyView2::Create occurs before the call to initialize a document.
The view has no document until the call to CDocument::AddView is ··
made later in the function. This warning does not indicate a mem
ory leak, illegal accessing, or any other dangerous behavior.

Step 4: Re-Initializing the Document
The application framework behaves a little differently when a new document
is created in an MDI application than when it is created in an SDI applica
tion. In an SDI application, only one document, view, and frame window can
be open at any one time. However, in the case of the application used in this
task (which uses splitter windows), the splitter window occupies the client
area of the main frame window. Each pane of the splitter has a different
CWnd-derived object. This allows an SDI application to have more than one

107

PART I : WORKSHOP

108

CView-derived object. When a new document is requested in an SDI applica
tion, the framework reuses the existing components. This means that the ex
isting document, view, and frame objects are wiped clean and then used to set
up the new document-view pair.

Because the framework reuses the existing components in an SDI appli
cation, you must be very careful to return the document, view, and frame win
dow objects to their original state. If you were to build your modified project
right now (assuming you have a user interface for switching), you could dem
onstrate this need for extra care quite easily. Just start the application, switch
to the second view (forcing a creation of the view), and then request a new
document. You then will get a large, nasty assertion error because the de
tached view tried to access its document and came up with nothing. There
fore, you need to check for a couple of things before letting the application
create a new document. If the second view was not created, everything is fine.
If the second view was created and is the current view, you should switch views
and then destroy the second view. If the second view was created and is cur
rently detached, simply destroy the second view.

With SDI application architecture, there is really only one place to put
this code, and that is in the document's override of OnNewDocument. It is the
only place that gets called every time a new document is created. To keep the
code neat and readable, the SWITCH project makes a call to CleanUpViews in
OnNewDocument that determines and executes the proper action. The Clean
Up Views function is as follows:

void CSwitchDoc::CleanUpViews()
{

}

CMainFrame* pFrm;
pFrm = (CMainFrame*)AfxGetMainWnd();

if (pFrm->m_pView2 !=NULL) II Was second view created?
{

}

if (pFrm->m_currentView == 2) II Do we need to swap in
II the default view?

pFrm->SendMessage(WM_COMMAND, ID_VIEW_VIEWl);
pFrm->m_pView2->DestroyWindow();
pFrm->m_pView2 NULL; II Restore defaults
m_bViewCreated = FALSE;

The first thing I do is determine whether the second view was created. If
so, I switch views by switching to the default view (in this case, View 1) and clean
up the second view. After this is done, I can destroy the window and restore

TH R E E : Document Templates

the document state by setting the pointer to the second view to NULL and
the view creation flag to FALSE. The architecture takes over and reuses the
document-view pair with no assertions or memory leaks.

Step 5: Adding Resources for Switching Views
The remaining item in this task is providing access to view switching for the
application user. I will present two possibilities but leave the implementation
details up to you.

The first alternative is a graphical interface that allows the user to
choose the current view at any time. The SWITCH program provides the fol
lowing interface-two menu commands (View 1 and View 2) and a pair of
toolbar buttons that represent these two possible views. The current view is
indicated by a check mark next to the appropriate menu command and a de
pressed button that represents the current view. You can get an idea of how
the interface works by looking at the resources for the SWITCH project and
the following functions:

ii CMainFrame::OnUpdateViewl
This function updates the View 1 menu item.

II CMainFrame::OnUpdateViewl
This function updates the View 2 menu item.

ii CMainFrame::On ViewSwitch
This function is the handler for the View 1 and View 2 menu items.

Instead of allowing the user to switch views, the second alternative de
termines when the views need to be switched according to the occurrence or
nonoccurrence of a specific event. For instance, let's say a user is changing
rectangle values using the form view. When the Update Rectangle button is
clicked, the application updates the document's data automatically and
switches to the graphical view. If the user chooses a hypothetical Modify Val
ues menu command to modify the current values, the view is switched to the
form. When the user clicks the Update Rectangle button, the view switching
function in the BN_CLICKED command handler of the form view is called.
When the user chooses the Modify Values menu command, the view switch
ing function in the Modify Values command handler is called.

After implementing the user interface of your choice, rebuild your
project. You now have two views that can be switched and that display the data
of a document.

109

PA RT I : WORKSHOP

Additional Information

110

In addition to the AddView/RemoveView method that has been described
here, there is also a method that switches the views by manipulating the win
dow IDs of the alternate views. This second method is discussed in detail in the
Knowledge Base article "SAMPLE: VSWAP32 Demos Multiple-View Switching
in SDI": Q141334.

C H A P T E R F 0 U R

Dialog Boxes

The focus of this chapter is on MFC dialog boxes. I have organized the four
tasks in the chapter according to the amount of modification to the dialog box
that is required. The first two tasks are examples of general modifications of
the dialog box; the last two are examples of specific modifications to the vari
ous dialog box attributes. These are the tasks included in this discussion:

II Implementing a custom DDX function Demonstrates how to imple
ment a custom dialog data exchange (DDX) function that displays
float and double type values in an edit control without using scientific
notation.

II Customizing common dialog boxes Demonstrates how to customize
both modal and modeless MFC common dialog boxes. The task modi
fies the File Open dialog box (both Microsoft Windows 3.x style and
Windows Explorer style) and the Find Text dialog box.

!Ill Using bitmaps as the background in a dialog box Demonstrates how
to modify the background of a dialog box using bitmaps (or a pat
terned brush) to customize the appearance. In addition, I handle the
WM_CTLCOLOR message to blend the dialog box controls into the
dialog box background.

Ill Modifying the attributes of dialog box controls Demonstrates how
to modify the attributes of various common dialog box controls such
as the text color used by a radio button group, the font used by a static
control, and the visibility of a control.

Implementing a Custom DDX Function
The purpose of this task is to discuss and demonstrate the requirements for
implementing a custom DDX function. Standard DDX functions implemented
by the MFC library provide a safe way to exchange data between a control in a

111

PA RT I: WORKSHOP

dialog box and a data member of the class that represents the dialog box. But
despite the wide range of data types supported by these functions, you might
still need to design your own customized DDX functions. Common reasons for
extending the standard DDX functions include the need to exchange differ
ent data types, to add new exchange and validation procedures, and to provide
custom handling for standard data types (demonstrated by this task). When
implementing custom DDX functions, the hardest part is developing the code
(usually divided into helper functions) that does the calculating and formatting
of the data, if that is required.

The task has two steps:

Ill Declaring the custom DDX function

Ill Implementing the custom DDX function

In addition, I describe a custom DDX function that displays float values
and double values without exponential notation in an edit control. The float
version of the DDX_Text function found in the MFC library occasionally dis
plays scientific notation.

The name of the project is CUSTDDX, and the requirement is a dialog
box class with an edit control.

N 0 T E : This task uses multiple functions to demonstrate clear
ly the inner workings of DDX_MyFloatText and DDX_MyDoubleText.
However, there is no rule that says your custom DDX function must
have helper functions.

Step 1: Declaring the Custom DDX Function

112

The standard form of a custom DDX declaration is as follows:

DDX_function_name(pDX, nIDC, value);

There are three parameters to this function:

Ill pDX A pointer to a CDataExchange object. The framework supplies
this object to establish the context of the data exchange, including its
direction.

Ill nIDC The ID of the control in the dialog box, form view, or control
view object that is exchanging data.

Ill value A reference to a data member in the dialog box, form view, or
control view object.

F 0 U R : Dialog Boxes

Declare your custom DDX function, following the standard format; this
makes the customized DDX function easier to identify and use. In the inter
est of modularity, it's a good idea to contain the declaration and implemen
tation code in two files-a header file and an implementation file. The
sample project demonstrates this modularity by declaring the custom func
tions in MYDDX.H and their implementation in MYDDX.CPP. In the follow
ing code sample, the custom DDX functions used in CUSTDDX are declared:

II Custom DDX functions
void AFXAPI DDX_MyFloatText(CDataExchange* pDX, int nIDC,

float& value);
void AFXAPI DDX_MyDoubleText(CDataExchange* pDX, int nIDC,

double& value);

Now that you have declared the custom DDX functions, move on to the
real work-the actual implementation of the custom DDX functions.

Step 2: Implementing the Custom DDX Function
Another reason to keep the declaration and implementation of the custom DDX
function (and any helpers) in two files is to "hide" those functions that are
used internally. For example, the CUSTDDX project declares three additional
functions that are used internally by the custom DDX functions; these func
tions are declared as follows:

static BOOL AFXAPI SimpleFloatParse(LPCTSTR lpszText, double& d);
static void AFXAPI MyTextFloatFormat(CDataExchange* pDX,

int nIDC, void* pData, double value, int nSizeGcvt, int
nSizeType);

static void StripZeros(LPTSTR szNumber);

The use of these functions is explained (on page 114).
The function body of a custom DDX function is broken into two parts:

code that moves data from the dialog box class to the actual dialog box con
trol, and code that moves data from the actual dialog box control to the dia
log box class. Your custom function can determine the direction of transfer
by checking the value of a data member (in this case, m_bSaveAndValidate) of
the CDataExchange class. The following example shows the framework of a
typical DDX function:

static void AFXAPI MyDDXFunction(CDataExchange* pDX,

{

int nIDC, void* pData, double value, int nSizeGcvt, int
nSizeType)

(continued)

113

PART I : WORKSHOP

II Initialization code
if (pDX->m_bSaveAndValidatel
{

}

else
{

}

II Transfer data from the control to the class

II Transfer data from the class to the control

At this point, I leave the actual implementation of your custom DDX
function to you and continue with a discussion of the DDX_MyFloatText cus
tom DDX function in the CUSTDDX project.

Discussion of the DDX_MyF/oatText Custom DDX Function

114

As I mentioned before, the custom DDX functions of the CUSTDDX project
are modularized. The entire body of the custom DDX functions consists of a
call to MyTextFloatFormat, which is where the real work is done. The following
is the declaration of MyTextFloatFormat: ·

static void AFXAPI MyTextFloatFormat(CDataExchange* pDX,
int nIDC, void* pData. double value, int nSizeGcvt. int
nSi zeType l:

The code sections from the MyTextFloatFormat function are discussed
here in the order in which they appear in the function. In the code section
below, some initialization and checking is done. First I check to see whether
there is any data to be transferred (the assertion on pData); then I allocate a
buffer to store the data string from the edit control of the dialog box.

ASSERT(pData !=NULL);

HWND hWndCtrl = pDX->PrepareEditCtrl(nIDC);

II Make sure your buffer is big enough. Strings returned by
II _stprintf() using the "f" specifier tend to be longer
II than those returned using the "g" specifier.
TCHAR szBuffer[64];

The next code sample handles the transfer of data from the dialog box
control to the class. It is executed only if m_bSaveAndValidateis TRUE, indicat
ing that the transfer is from the control to the class. First the text is retrieved
with a call to ::GetWindowText. Then I call an internal helper function, Simple
FloatParse, to parse the text string. If the parsing fails (a valid float is not found),

F 0 U R : Dialog Boxes

a message box is displayed and an exception is thrown. (For more details on
the SimpleFloatParse function, see the MYDDX.CPP file in the CUSTDDX proj
ect.) If the parsing succeeds (a valid float is found), the value is cast to the
proper data type (based on nSizeType) of the dialog box class. The transfer is
then complete.

: : GetWi ndowText(hWndCtrl , szBuffer, _countof (szBuffer));
double di
if (!SimpleFloatParse(szBuffer, d))
{

AfxMessageBox(AFX_IDP_PARSE_REAL);
pDX->Fail(); //Throws exception

if (nSizeType == FLT_DIG)
((float)pData) = (float)d;

else
((double)pData) = d;

The following code sample handles the other half of the transfer: the
transfer of data from the dialog box class to the dialog box control. First the
szBufferis loaded with the current data value according to the format control
string. The string is then cleaned up by calling another internal helper func
tion, StripZeros. (For the implementation of this function, see the MYDDX.CPP
file in the CUSTDDX project.) This function removes any trailing zeros from
the value. (A single zero is left after the decimal if the number has no frac
tional value.) The value is then transferred to the edit control of the dialog
box with a call to SetWindowText. The transfer is then complete.

_stprintf(szBuffer, _T("%.*f"), nSizeGcvt, value);
StripZeros(szBuffer);
SetWindowText(hWndCtrl, szBuffer);

Additional Information
Some of the more common DDX functions in MFC are DDX_Text, DDX_Radio,
and DDX_Control. For a complete listing of DDX functions, search for the
string "DDX_" in the Microsoft Visual C++ version 5 online documentation. For
more information on the mechanics ofDDX, see Technical Note 26 in the
Visual C++ online documentation.

There is another aspect of exchanging data between a dialog box con
trol and a data member-dialog box data validation (DDV). DDV is respon
sible for validating the data entered into dialog box controls. Depending on
the data type, the developer provides a proper range for the value or for acer
tain type of format. For instance, numbers of type float can have only one

115

PA RT I: WORKSHOP

decimal point. (For more information on DDV, see Technical Note 26 in the
Visual C++ online documentation.)

Customizing Common Dialog Boxes
The purpose of this task is to customize Microsoft Windows common dialog
boxes using MFC classes. Windows common dialog boxes can be divided into
two types:

Ill Modal dialog boxes Dialog boxes that require the user to respond
before continuing the program. They include the File Open, File
Save As, Print, Color, and Font common dialog boxes.

Iii Modeless dialog boxes Dialog boxes that do not require the user to
respond before the program continues. The Find and Replace Text
common dialog boxes are the only modeless types of dialog boxes
available.

Common dialog boxes, whether they are modal or modeless, can be cus
tomized in two ways. The first type of customization changes the functionality
of the dialog box without changing the appearance. The second type of
modification adds or removes controls from the dialog box.

I
The latter type of modification alters the dialog box: template and dis-

plays the modified version. For example, when you open a file using the File
Open common dialog box, you can request more information from the user
regarding the properties of the file. Modifications of this type can be made by
deriving the class of the dialog box that is used in the File Open procedure
from an MFC common dialog box class and adding code that requests addi
tional information from the user. In this task, I demonstrate how to make the
second type of modification to both modal and modeless dialog boxes by
adding controls to the File Open and Find Text dialog boxes and by remov
ing existing controls from them. This task also demonstrates how to customize
both the Windows Explorer style and the earlier Windows 3. x style of the File
Open dialog box. One example demonstrated by this task uses the class
CFileDialog to customize the File Open dialog box. The name of the project is
CMNDLGS, and the requirement is two dialog box classes derived from MFC
common dialog classes, such as CFileDialog and CFindReplaceDialog.

Customizing Modal Common Dialog Boxes

116

Modal dialog boxes interrupt the flow of execution in a program because the
user must dismiss the dialog box by clicking OK or Cancel before the program

F 0 U R : Dialog Boxes

can continue. For this reason, the life cycle of the dialog box is contained
within the scope of the function that invokes it. An example that is familiar to
anyone who has developed an MFC application is the MFC application About
dialog box created by AppWizard.

MFC supports many types of modal common dialog boxes. This task
adds either a Windows 3.x style or a Windows Explorer style File Open dialog
box. The basic procedure for implementing a customized modal common
dialog box includes these steps:

1. Copying the common dialog box template

2. Customizing the common dialog box template

3. Initializing and invoking the customized dialog box

4. Handling requests from the customized dialog box

5. Providing Help for the customized dialog box

N 0 T E : In the interest of brevity and focus, the results of the
procedures in this task differ from what is implemented in the
project. If you follow the procedures in this task, your project will
implement either the Windows 3.x style or Windows Explorer style
of the File Open dialog box and a Find Text dialog box. However,
the project ·example implements both styles of File Open dialog
boxes. The Windows 3.x style File Open dialog box is highly modi
fied to allow the user to select a directory instead of a file. The Win
dows Explorer style File Open dialog box is only slightly modified
by adding a bitmap and a text string.

Step 1: Copying the Common Dialog Box Template
Each common dialog box is based on a dialog box template. Unless you are
planning extensive modifications to the dialog box's appearance, customizing
the original common dialog box template saves time and provides some simi
larity between the original version of the dialog box and your modified version.

Copy the dialog box template to your project. All common dialog box
templates are stored in the Visual C++ INCLUDE directory. The Windows 3.x
style File Open dialog box template named FILEOPENORD can be found in
the FILEOPEN.DLG file. To insert a copy of the FILEOPENORD dialog box
template into your project, follow this procedure:

1. Open your project's resource file (in the case of the sample project,
CMNDLGS.RC) as a text file in Microsoft Developer Studio.

117

PART I: WORKSHOP

118

2. Open FILEOPEN.DLG as a text file in Developer Studio.

3. In FILEOPEN.DLG, go to the following line of text (line 7):

FILEOPENORD DIALOG DISCARDABLE 109, 35, 165, 134

4. Copy lines 7 through 84. The last line you copy should be this one:

END

5. Insert the copied text into the Dialogs section of your project's RC file.

6. Because the FILEOPENORD template contains several resource IDs,
you must include the DLGS.H file in your project's RC file. The fol
lowing lines of code, which are located near the top of the resource
file, demonstrate the finished result:

#include "afxres.h"
#include "dlgs.h"

7. After pasting the File Open dialog box template into your project's
RC file, save the changes. You should now see a new dialog box re
source named FILEOPENORD.

Customizing a Windows Explorer style modal dialog box requires a pro
cedure slightly different from the one used for customizing a Windows 3.x
style dialog box. The Windows Explorer style dialog box does not use a stan
dard dialog box template. Instead, you must create a new dialog box resource
and allocate an area in the dialog box that will contain the controls of the dia
log box. Follow the procedure below to create a new dialog resource for the
Windows Explorer style dialog box.

1. To your project's resource file, add a new dialog box resource with
the following styles: DS_3DLOOK, WS_CHILD, WS_CLIPSIBLINGS,
DS_CONTROL, and a Border Style of none. The sample project uses
the name IDD_W95_FILEOPEN for the dialog box resource.

2. Remove the OK and Cancel buttons from the new dialog box resource.

3. Add a static control of reasonable size, with an ID of stc32 and no cap
tion, to the dialog box template. (A rectangle of 115 by 200 pixels is
sufficient.) The area of this static control should be fairly large so
that the controls of the Microsoft Windows 95 File Open dialog box
can be placed inside. This static control is needed only if you must
have the common dialog controls placed in a certain area.

F 0 U R : Dialog Boxes

4. After you have finished customizing the dialog box resource, save the
resource file.

Step 2: Customizing the Common Dialog Box Template
Now that you have a copy of the File Open dialog box in your project, you can
customize it to suit your needs. Common customizations include adding, hid
ing, or rearranging the dialog box controls and changing other attributes of
the dialog box. At this point, make any necessary modifications to the new
dialog box resource.

N 0 T E : If you are adding a Windows Explorer style File Open
dialog box, you can hide existing controls in the dialog box template
by sending the CDM_HIDECONTROL message to the Send Message
function of the control or controls to be hidden in the OnlnitDialog
of your customized dialog box class. CDM_HIDECONTROL is dis
cussed in the Microsoft Win32 SDK online documentation.

The Windows 3.x style File Open dialog box used in the project example
was customized (Figure 4-1) to allow the user to select a directory instead of
a file. The modifications included removing the File Name edit and list box
es, the Read-Only check box, and the List Files Of Type list box.

Figure 4-1.
The modified Windows 3.x style File open common dialog box.

119

PA RT I: WORKSHOP

120

The Windows Explorer style File Open dialog box that is used in the proj
ect example was customized slightly by adding a bitmap and some text as shown
in Figure 4-2.

Figure 4-2.
The modified Windows Explmer style File open common dialog box.

Step 3: Initializing and Invoking the Customized Dialog Box
After you have modified the dialog box template, you have to set up some
type of interface that invokes the File Open dialog box. When you are using
common dialog boxes, it is best to follow interface conventions-a File Open
menu command that invokes the File Open (Windows 3.x) dialog box and an
accelerator for the menu command. The menu command should be on the
File menu of the application. In this task the following value is used for the
menu command, which is located in the File menu:

ID Caption

ID_CMNDLG_FILE_OPEN &Open ... \+Ctrl+O

Prompt

Open an
existing docu
ment\nOpen

F 0 U R : Dialog Boxes

The following value is used for the File Open accelerator:

ID Modifier Key

ID_CMNDLG_FILEOPEN Select the Ctrl checkbox. 0

N 0 T E : If you have a toolbar button that invokes the common
File Open dialog box, change the ID to match the ID you use for the
menu command. If you do not change the ID, a noncustomized File
Open dialog box will appear.

You now use ClassWizard to create the class for the dialog box and to add
a handler named OnCmndlgFilefor the new menu command. OnCmndlgFileini
tializes and displays the customized dialog box. The following code, found in
the header file of CMainFrame, declares the handler function (OnCmndlgFile)
as a member of the CMainFrame class:

II Generated message map functions
protected:

afx_msg void OnCmndlgFile():

The following code, located in the implementation file of CMainFrame, de
fines the handler function:

void CMainFrame::OnCmndlgFile()
{

CMyFileOpenDlg cfdlg(TRUE, NULL, NULL, OFN_SHOWHELP
OFN_HIDEREADONLY I OFN_OVERWRITEPROMPT I
OFN_ENABLETEMPLATE, NULL, this):

cfdlg.m_ofn.hlnstance = AfxGetlnstanceHandle();
cfdlg.m_ofn.lpTemplateName = MAKEINTRESOURCE(FILEOPENORD):
cfdlg.m_ofn.Flags &= ~OFN_EXPLORER:

if (!DOK== cfdlg.DoModal())
{

WORD wFileOffset:
char szBuffer[128J:

wFileOffset = cfdlg.m_ofn.nFileOffset:

(continued)

121

PA RT I: WORKSHOP

122

}

}

cfdlg.m_ofn.lpstrFile[wFileOffset-1] = 0;

wsprintf(szBuffer, "Selected directory was %s",
(LPSTR)cfdlg.m_ofn.lpstrFile);

AfxMessageBoxCCLPSTR)szBuffer, MB_OK);

In the first section of code in the OnCmndlgFile function, I create an instance
of the CMyFileGpenDlg-derived class with the necessary flags. In the second
section of code, I assign the File Open (Windows 3.x) dialog box template to
the FILEOPEN structure, FILEOPENORD, and properly initialize the instance
handle. This is done to ensure that the application that created the dialog
box receives all messages from the dialog box. I then remove the OFN
_EXPLORER flag because I am using the Windows 3.x style for the File Open
dialog box. In the last section of code, I check the return of the call to DoModal.
If the user has clicked OK, I display a message box that shows the name of the
directory selected by the user.

One final note regarding the creation of dialog boxes: it is common
practice to override the On/nitDialog member function of the dialog box
class. This allows you to handle any initialization issues before the dialog box
appears to the user.

In this task, I used the On/nitDialogfunction to add a particular window
style, WS_EX_CONTEXTHELP, to the dialog box. This adds a question mark
to the title bar of the dialog box, which allows the user to invoke the context
help for the dialog box. I also hid all unused windows so that the tab order of
the dialog box would not be disrupted. The following code demonstrates this:

CFileDialog::OninitDialog();

CenterWindow();

ModifyStyleEx(0, WS_EX_CONTEXTHELP);

GetDlgitem(stc2)->ShowWindowCSW_HIDE);
GetDlgitem(stc3)->ShowWindowCSW_HIDE);
GetDlgitem(edtl)->ShowWindowCSW_HIDEl:
GetDlgitem(lstl)->ShowWindowCSW_HIDE);
GetDlgitem(cmbl)->ShowWindowCSW_HIDE);
GetDlgitem(chxl)->ShowWindow(SW_HIDEl;

SetDlgitemText(edtl, "Junk");

F 0 U R : Dialog Boxes

To initialize and invoke the File Open (Windows Explorer style) common
dialog box, use code similar to the code in the CMainFrame::OnCmndlgFile95
function:

void CMainFrame::OnCmndlgFile95()
{

}

CMyFileOpen95Dlg cfdlg(TRUE. NULL, NULL, OFN_HIDEREADONLY I
OFN_EXPLORER I OFN_OVERWRITEPROMPT I
OFN_ENABLETEMPLATE, NULL, this):

cfdlg.rn_ofn.hlnstance = AfxGetlnstanceHandleO:
cfdlg.m_ofn.lpTemplateName =

MAKEINTRESOURCE(IDD_W95_FILEOPEN):

if (IDOK == cfdlg.DoModal())
{

}

WORD wFileOffset:
char szBuffer[128J:

wFileOffset = cfdlg.rn_ofn.nFileOffset: // For convenience
wsprintf(szBuffer, "Selected file was %s",

(LPSTR)cfdlg.m_ofn.lpstrFile):

AfxMessageBox((LPSTR)szBuffer, MB_OK):

The only difference between the code for initializing and invoking the File
Open (Windows Explorer style) dialog box and the code for initializing and
invoking the File Open (Windows 3.x style) dialog box is found in the first
section of code. The OFN_EXPLORER flag is now included because we are
creating a Windows Explorer style of File Open dialog box, and the template
name has changed to use the new dialog box template created in step 1.

Step 4: Handling Requests from the Customized Dialog Box
When the modal dialog box appears, you will have to handle all of the events
from the dialog box controls that you've added to the template. In addition,
you will have to retrieve information from the dialog box if the user has closed
the dialog box by clicking OK. For an example, see the control event handler
CMyFRDlg::OnFindAll in the file MYDLGS.CPP, located in the CMNDLGS
project.

To add a control event handler using Class Wizard, follow this procedure:

1. Load your project into Developer Studio, and open ClassWizard.

123

PA R T I : WORKSHOP

124

2. Click the Message Maps tab, and select your dialog box class from the
list of available classes.

3. Select the object ID of the control whose event you want to handle.

4. From the list on the right, select the message for the event you want
to handle. For example, you could add a handler for the BN_CLICK
message of a common button control.

5. Click Add Function.

6. Click OK.

7. Repeat this procedure for all of the other controls that were added to
the dialog box template.

Check the return value from the call to the dialog box's DoModal func
tion to determine what action the user chose. For example, if the return value
is equal to IDOK, the user has clicked OK. In this case, collect any needed in
formation from the dialog box and perform the appropriate tasks. The follow
ing code is taken from the last part of the CMainFrame::OnCmndlgFile function
and demonstrates code that executes when OK is clicked:

if CIDOK==cfdlg.DoModal())
{

}

WORD wFileOffset:
char szBuffer[128J:

wFileOffset = cfdlg.m_ofn.nFileOffset:
cfdl g. m_ofn. l pstrFil e[wFi l eOffset-1]=0:
wsprintf(szBuffer, "Selected directory is %s",

CLPSTR)cfdlg.m_ofn.lpstrFile);

AfxMessageBox((LPSTR)szBuffer, MB_OK):

Step 5: Providing H~lp for the Customized Dialog Box
The last step in adding a customized common dialog box to your application
is to provide help for the dialog box. For Windows 3.x style modal dialog boxes,
you will have to add two kinds of help-help for the entire. dialog box and
context help for individual controls. For modal dialog boxes in the Windows
Explorer style, you will have to add only one kind of help-context help for
individual controls.

N 0 T E : Under Windows 95, common dialog boxes provide only
context-sensitive help.

F 0 U R : Dialog Boxes

Both context-sensitive help and help for the entire dialog box require
the project to have its own Help file. The default Help file support (including
a basic Help file) installed by AppWizard is sufficient for this task. For the re
mainder of this discussion, it is assumed that you have default help support
for the application. (For information about adding context-sensitive help to
an existing project, see ''Adding Context-Sensitive Help" in the Scribble tu
torial, which can be found in the online documentation for Developer Studio.)

Adding Help for the entire dialog box Help for the entire dialog box is re
quired only if you are adding common dialog boxes of the Windows 3.x style.
In this case, you have to add a Help button and an associated Help topic to
your dialog box. If the application's default Help support was created by App
Wizard, topics already exist in the Help file for each of the common dialog
boxes. In addition, this Help file opens automatically to the proper topic
when the user clicks Help in your customized common dialog box. For in
stance, if the user chooses Help in your customized File Open dialog box, the
application Help file opens to the Open File dialog box topic. The only thing
you have to do is update the appropriate Help topic in the RTF file (the source
text used to build the Help file) of the application by adding the information
on the new controls and removing the information on the controls that you
deleted from the common dialog box template. When you are done, your
Help topic will provide full support for your customized common dialog box.

N 0 T E : If your application's Help file was not created by App
Wizard, you must manually add a Help topic for your dialog box.

Adding context-sensitive Help for dialog box controls The method for add
ing context-sensitive Help is a four-step process:

1. Adding the context-sensitive style to the common dialog box

2. Generating help IDs for new controls in the common dialog box

3. Handling the WM_HELPINFO message

4. Displaying the appropriate topic in your application's Help file

Adding the context-sensitive style can be performed in two ways. The
first opportunity occurs when you add the dialog box resource to your
project's RC file. After you have added the dialog box resource, you can open
the properties for the dialog box resource and select the Context Help style
check box found on the Extended Styles tab. The second opportunity occurs

125

PART I: WORKSHOP

126

when you initialize the dialog box itself. In the OnlnitDialogfunction of your
dialog box class, place the following code after the call to the base class:

ModifyStyleEx(0, WS_EX_CONTEXTHELP);

Help IDs for controls are used to map the Help request to an existing
Help topic in the application's Help file. You can create a Help ID for a con
trol by bringing up the properties for the control in your dialog box and se
lecting the Help ID check box on the General page. Save the file; a new Help
ID for the control is genei:ated automatically by the Resource editor and add
ed to the project's RESOURCES.HM file. This file contains the Help IDs gen
erated by the Resource editor. After you have added Help IDs for all new
controls in the dialog box, save the RC file.

You must include the RESOURCES.HM file in the HPJ file of the appli
cation so that the Help IDs can be used by the Help file. Assuming that RE
SOURCES.HM is located in the application's root directory, add the following
line in the [MAP] section of the application's HPJ file:

#include < .. \resource.hm>

This line adds the IDs generated by the Resource editor to the existing IDs of
the Help file, which are then used by the Help compiler when building the
application's Help file. For the mapping to work, there has to be a related
Help topic for each control. Therefore, add a topic for each new control, using
its associated Help ID for the context string, to the source file AFXCORE.RTF.
If the application was created with AppWizard, the file should be located in
the HLP subdirectory of your project.

Now use ClassWizard to add the WM_HELPINFO message handler to
your common dialog box class. Add code to the WM_HELPINFO message
handler that opens the correct topic in your application's Help file. Gener
ally, your code should check each Help ID for a match with the Help IDs of
your new controls. If a match is found, call WinHelp with the Help ID. If no
match is found, pass the message to the parent class. The following code sample,
which is taken from the CMNDLGS sample program, demonstrates this:

BOOL CMyFile95Dlg::OnHelpinfo(HELPINFO* pHelpinfo)
{

UINT helpContext = pHelpinfo->dwContextid;

if ((helpContext == 0x808203e9))
{

WinHelp(helpContext):

F OU R : Dialog Boxes

return TRUE;
}

else
return CFileDialog::OnHelplnfo(pHelplnfoJ:

}

The first line sets helpContext equal to the Help ID of the topic being requested.
This makes the function more readable. Next, I use an if statement to check
the Help ID against the Help ID of a new control. If the IDs match, I make a
call to WinHelp, passing along the proper ID. If the Help ID does not match
the new control, it is passed along to the parent class for proper handling.

Customizing Modeless Common Dialog Boxes
As I mentioned earlier, the primary difference between modal and modeless
dialog boxes is that modeless dialog boxes, although they are visible, allow
the program to continue execution. Because of this flexibility, the modeless
dialog box object is constructed using the new operator, which allocates
memory from the application's heap for the object. Therefore, the scope of
the object is extended beyond the function in which it was created. Extend
ing the scope is necessary because we don't know when the dialog box will be
dismissed by the user.

The basic procedure for implementing a customized common dialog box
of the modeless type is similar to the procedure used for a modal dialog box
except for some variation in step 3 (initializing and invoking the customized
dialog box) and step 4 (handling requests from the customized dialog box).
Because of this similarity, steps 1, 2, and 5 below will mostly just reference the
corresponding step in the customization procedure for the modal dialog box.
The Find Text common dialog box will be used as an example of customizing
a modeless common dialog box.

Step 1: Copying the Common Dialog Box Template
The only difference in this step between customizing a modeless dialog box
and customizing a modal dialog box is what dialog box template you use. The
Find Text template we are using for a modeless dialog box can be found in
the FINDTEXT.DLG file. To insert a copy of this resource into your project,
follow this procedure:

1. Open your project's resource file (in the case of the sample project,
CMNDLGS.RC) as a text file in Developer Studio.

127

PART I: WORKSHOP

128

2. Open FINDTEXT.DLG as a text file in Developer Studio.

3. In FINDTEXT.DLG, locate line 8:

FINDDLGORD DIALOG LOADONCALL MOVEABLE DISCARDABLE

4. Copy lines 8 through 53. The last line copied should be the following:

END

5. Insert the copied text into the dialogs section of your project's RC
file, and save the changes. You should now see a new dialog box re
source named FINDDLGORD.

Step 2: Customizing the Common Dialog Box Template
You can now customize the dialog box resource as you like. (See "Step 2: Cus
tomizing the Common Dialog Box Template" under the task "Customizing
Common Dialog Boxes" on page 119 for details.) The sample project makes
the following additions to the Find Text dialog box: a new button and two
static strings that display the number of occurrences for a particular string in
the current file. A common push button control (named Find All) with an ID
of IDC_FINDALL was added. Two Static Text controls also were added: the
first, IDC_FOUND, displays the number of occurrences of a string of text; the
other, IDC_STATIC, is used as a label. The result is shown in Figure 4-3.

Figure4-3.
The modified Find Text common dialog box.

F 0 U R : Dialog Boxes

N 0 T E : If you run the CMNDLGS sample program, you will no
tice that the number of occurrences always is shown as 45. Obviously,
this is not true; in the interest of time, I simply handled the event
and updated the strings. This illustrates sufficiently the point of the
customization.

Step 3: Initializing and Invoking the Customized Dialog Box
After the dialog box template has been modified, you will have to set up some
type of interface that invokes the Find Text dialog box. When you are using
common dialog boxes, it is best to follow existing interface conventions-a
Find menu command with the Ctrl-F accelerator that invokes the Find Text
dialog box. The menu command should be on the Edit menu of the applica
tion. The task uses the following value for the Find menu command, which is
located in the Edit menu:

ID Caption

ID_CMNDLG_EDIT_FIND &Find ... \tCtrl+F

The following value is used for the Find Text accelerator:

ID

ID_CMNDLG_EDIT_FIND

Modifier

Select the Ctrl
checkbox.

Prompt

Finds the specified
text\Find

Key

F

Now add a handler named OnCmndlgFind to the CMainFrame class using
ClassWizard. This handler initializes and displays the Find Text dialog box.
The following code, found in the header file of CMainFrame, declares the han
dler function (OnCmndlgFind) as a member of the CMainFrame class.

II Generated message map functions
protected:

afx_msg void OnCmndlgFind();

129

PA RT I: WORKSHOP

130

And the following code, found in the implementation file for CMainFrame,
defines the handler function:

void CMainFrame::OnCmndlgFind()
{

}

m_pFindDlg= new CMyFRDlg;
m_pFindDlg->m_fr.hlnstance = AfxGetlnstanceHandle();

m_pFindDlg->m_bFindDialog= TRUE;
m_pFindDlg->m_fr.lpTemplateName =
MAKEINTRESOURCE(FINDDLGORD);
m_pFindDlg->Create(TRUE, NULL, NULL, FR__DOWN

FR__ENABLETEMPLATE I FR__SHOWHELP, this);

In the first section of code, I create an instance of the CFindReplaceDialog-derived
class from the application's memory heap. Then I assign the Find Text dialog
box template to the FINDREPLACE structure, FINDDLGORD, and create the
dialog box with a call to the Create member function.

One final note regarding the creation of dialog boxes: it is common
practice to override the OnlnitDialog member function of your dialog box
class. This allows you to handle any initialization issues before the dialog box
appears to the user. In this task, I used the OnlnitDialogfunction to add acer
tain window style (WS_EX_CONTEXTHELP) to the dialog box. This adds a
question mark button on the right side of the title bar in the dialog box,
which allows the user to invoke the context help for the dialog box. In addi
tion, I disabled the Find All button. The disabled state of the Find All button
mimics the behavior of the Find button by being enabled only when text is
present in the Find What edit box. The following code sample, taken from the
CMyFRDlg::OnlnitDialog function, demonstrates adding the WS_EX_CON
TEXTHELP style and disabling the Find All button:

CFindReplaceDialog::OnlnitDialog();

ModifyStyleEx(0, WS_EX_CON1EXTHELP);

GetDlgltem(IDC_FINDALLl->EnableWindow(FALSE);

return TRUE;

Step 4: Handling Requests from the Customized Dialog Box
After the modeless dialog box is up, you have to handle all of the events from
the dialog box controls that were added to the template. (See step 4 of the

F 0 U R : Dialog Boxes

modal dialog box procedure for details.) The following code sample, taken
from the CMyFRDlg::OnFindall handler, demonstrates one method of han
dling control notifications by modifying a static text control when the Find
All button is clicked.

CEdit* pFindEdit= CCEdit*)GetDlgitem(edtl);
CString findStr:

pFindEdit->GetWindowTextCfindStrl;
II Search the current document or other processing
II For test purposes, output a fake number

GetDlgitemCIDC_FOUNDl->SetWindowText("45");

However, because the modeless dialog box is invoked with a call to Crer
ate (not DoModal), there is no return value from a call to DoModal that you can
check. Instead, you must implement a way to be notified of find/replace re
quests-referred to as a callback function. Notification can be implemented
by handling a registered message named WM_FINDREPLACE; you can then
call any member function of the CFindReplaceDialog class from this c;allback
function and take the appropriate action. To implement this callback func
tion, follow this procedure:

1. Add the boldface line below to the header file of your mainframe
class, preferably in the protected message section:

II Generated message map functions
protected:
afx__msg LRESULT OnF1ndReplace(WPARAM wParam, LPARAM lParam):

2. Add the following lines to the implementation file of your mainframe
class, somewhere after the #include lines:

static UINT NEAR WM_FINDREPLACE =
::RegisterWindowMessage(FINDMSGSTRINGl;

3. Add the following line to the main frame window's message map,
which is located in the implementation file of the mainframe class:

ON_REGISTERED_MESSAGE C WM_FINDREPLACE, On Fi ndRepl ace)

4. Add the function body shown on the following page to the implemen
tation file of your mainframe class.

131

PA RT I: WORKSHOP

LRESULT CMainFrame::OnFindReplace(WPARAM wParam, LPARAM
l Pa ram)

{

}

CFindReplaceDialog* dlg
~ CFindReplaceDialog::GetNotifier(lParam);

II Add any code for handling Find and/or Replace requests
II here
return CLRESULT)0;

The first section of the code retrieves a pointer to the Find Text dialog
box object. Use this pointer to gather information about a search request or
about the condition of the dialog box object by accessing member functions
of the CFindRepl,aceDialog class. Some examples of information you can ob
tain include the following:

m Whether the dialog box is exiting

m When a search request is made

m What type of replacement to make when the search text is found

Because there is no MFC support for searching and replacing text, you
must support these requests yourself. For more information, see the CFind
Repl,aceDialog overview in the Visual C++ online documentation.

Step 5: Providing Help for the Customized Dialog Box
You should now provide both general dialog box help and context-sensitive
help for each new control added. See step 5 of the modal dialog box proce
dure for details. The main difference for a modeless dialog box is the context
IDs of the controls added to the dialog box resource. In the task project, I
generate a Help ID for the Find All button. I then check for this ID in the On
Helplnfo function of the CMyFRDlgclass. The code for doing this is essentially
the same as the code found in step 5 of the modal dialog box procedure.

Additional Information

132

For additional reading on comm.on dialog boxes, search for the string "Com
mon Dialog Box Library" in the Microsoft Win32 SDK online documentation.
In addition, Technical Note 50, also found in the online documentation, dis
cusses common OLE and MFC dialog box resources. The Microsoft Knowledge
Base article "How to Customize the Common Print Dialog": Q132909 also pro
vides additional information on common dialogs.

F 0 U R : Dialog Boxes

Using Bitmaps as the Background in a Dialog Box
The purpose of this task is to demonstrate how to use a bitmap for the back
ground of a dialog box. I demonstrate three methods of using bitmaps for
doing this:

. • The StretchBlt method, which simply places the bitmap in the dialog box
without regard to centering. The bitmap will fill the entire background.

• The BitBlt method, which centers the bitmap in the dialog box. This
approach is a variation of the StretchBlt method, and it uses a smaller
bitmap.

• The bitmap brush method, which uses the bitmap as a brush object
to paint the background. It produces a patterned background.

In addition to bitmap manipulation, I also demonstrate a method for ren
dering common dialog box controls "transparent." I use 16-color bitmaps as
examples because you can create this type of bitmap with the Resource editor
or with Paintbrush, the Windows application. The name of the sample project
is BKBMPS. To perform the following procedures, you will need these things:

Ill Three 16-color bitmaps of any size

111 Handler functions for the WM_ERASEBKGND, WM_INITDIALOG,
and WM_CTLCOLOR messages

Because the bitmaps used in this task do not change at any time, I can
save time (and unnecessary work) by loading them only once (during crea
tion of the main frame window).

VERIFY(m_bkBmap.LoadBitmap(IOB_BKBMAP));
VERIFY(m_bmapBrush.LoadBitmap(IOB_BMAPBRUSH));
VERIFY(m_bmapCentered.LoadBitmap(IOB_BMAPCENTER));

After the three bitmaps (IDB_BKBMAP, IDB_BMAPBRUSH, and IDB
_BMAPCENTER) have been loaded, they are stored in three data members of
the CMainFrame class, defined as follows:

II Attributes
public:

CBitmap m_bkBmap;
CBitmap m_bmapBrush;
CB.i tmap m_bmapCentered;

133

PA RT I: WORKSHOP

The StretchB/t Method

134

The StretchBlt method has three main steps:

1. Adding supporting code for the bitmap

2. Initializing the attributes of the bitmap object

3. Handling the WM_ERASEBKGND message and making a call to the
StretchBlt function

Handling the WM_ERASEBKGND message, which is called when the
dialog box background needs repainting, allows you to customize the paint
ing of the dialog box background. The handler function for the message
CWnd::OnEraseBkgnd provides a device context representing the object you
are painting, which, in this case, is the background of the dialog box. Inside
the handler for the WM_ERASEBKGND message, you will make the call to
StretchBlt. Figure 4-4 shows the finished result.

Figure 4·4.
A dialog box that shows the StretchBlt method.

Step 1: Adding Supporting Code for the Bitmap
Let's begin by first setting up the support for the bitmap that will be used as
the background. The bitmap should be monochrome, 8-color or 16-color.
Bitmaps of 256 colors or more need additional palette support, which is dis
cussed under ''Additional Information" on page 142. For the purpose of this

F 0 U R : Dialog Boxes

discussion, I assume that you will be using this bitmap in an existing dialog
box class, although the method can be used in other ways, such as display in
a CView-derived class. The task uses a dialog box class, CBmapDlg, for the dis
play of the bitmap.

In the header file for the target dialog box class (the one displaying the
bitmap), add the following data members:

II Attributes
protected:

CDC m_dcMem;
CBrush m_brush;

BITMAP 11Lbmlnfo;
CPoint m_pt;

CSize m_size;

II Compatible memory DC for dialog
II Handle of null brush

II Bitmap information structure
II Position for upper left corner of
II bitmap in dialog
II Size (width and height) of bitmap
II in dialog

The access level of the bitmap attributes (data members) can be either public
or protected. In this task, they are declared protected because the dialog box
is the only class accessing them. As the comments describe, these data mem
bers represent the different aspects of the bitmap that are needed by the
StretchBlt function.

Step 2: Initializing the Attributes of the Bitmap Object
The data attributes of the bitmap object must be initialized before the dialog
box appears. A good place to do this is in the handler function for the
WM_INITDIALOG message. Add this handler function (named OnlnitDia
log) to your dialog box class, either by using ClassWizard or by manually add
ing the code. After the handler function has been added, add the following
code to the body of the function:

CMainFrame* pFrm = (CMainFrame*)AfxGetMainWnd();
CBitmap* dlgBmap;

dlgBmap = &(pFrm->m_bkBmap);
RECT rectClient;
II Load null brush;
m_brush.CreateStockObject(NULL_BRUSH);

First I access the main frame window to retrieve a pointer to the bitmap that is
to be used. I keep the bitmap in the CMainFrame object so that I only have to
load once-during the creation of the main frame window. (Loading the bit
map is a somewhat expensive action in terms of executfon time.) I could just
as easily load the bitmap during the creation of the dialog box, but this would

135

PA RT I: WORKSHOP

136

result in a slower display of the dialog box, plus wasted work because the bit
map never changes content. The brush being created is used to blend the com
mon controls of the dialog box into the background bitmap.

The following code, found in the CBmapDlg::OnlnitDialog function, ini
tializes the various attributes of the bitmap object:

II Get bitmap information
dlgBmap->GetObject(sizeof{BITMAP), &m_bmlnfo);

GetClientRectC&rectClient);

m_size.cx = rectClient.right; II Zero based
m_size.cy = rectClient.bottom; II Zero based
m_pt.x = rectClient.left;
m_pt.y = rectClient.top;

II Get temporary DC for dialog--will be released in DC
II destructor
CClientDC dc(this);

II Create compatible memory DC using the dialog's DC
VERIFY(m_dcMem.CreateCompatibleDCC&dc));

m_dcMem.SelectObject(dlgBmap);

First, I store the bitmap information and retrieve the dimensions of the client
area of the dialog box. Then I store the bitmap size (which is used in the call to
StretchBlt) in the m_size data member and the coordinates of the upper left
corner of the client area in the m_pt data member. Finally, I create a device
context for the bitmap that is compatible with the device context of the dia
log box and select the bitmap into the compatible device context. This allows
the call to StretchBlt to make use of the background bitmap.

Step 3: Handling the WM_ERASEBKGND
Message and Making a Call to the StretchB/t Function
The final step provides a handler for the WM_ERASEBKGND message. As
you would for the WM_INITDIALOG handler, add this message handler to
the class representing the bitmap background dialog box. In the body of the
message handler OnEraseBkgnd, add the following call to StretchBlt.

pDC->StretchBlt(m_pt.x, m_pt.y, m_size.cx, m_size.cy,
&m_dcMem, 0, 0, m_bmlnfo.bmWidth-1,
m_bmlnfo.bmHeight-1, SRCCOPY);

return TRUE;

F 0 U R : Dialog Boxes

This call uses the information from the data members m_size, m_dcMem, m_pt,
and m_bmlnfo to properly stretch the bitmap to the edges of the dialog box
client area. If you are curious about the purpose of the hollow brush, check
out the information on transparent controls in ''Additional Information" on
page 142.

After you have added the code to the OnEraseBkgnd handler, rebuild the
project; you now should have a dialog box with a bitmap background.

N 0 TE: Instead of CDC::StretchBlt, we could have used a call to
CDC::BitBltin the WM_ERASEBKGND handler. However, because
the bitmap is not stretched or shrunk to cover the entire client
area when you use CDC::BitBlt, there might be areas that never
would be updated. This results in a very confusing dialog box back
ground. The BitBlt method discussed in the next section provides
one solution to this problem.

The BitB/t (or Centered Bitmap) Method
The BitBlt method is similar to the StretchBlt method. But the BitBlt method
adds some code that centers the bitmap and paints the area of the client area
not covered by the bitmap. As for all of the methods in this task, the BitBlt
method is independent of other methods. Like the StretchBltmethod, the Bit
Blt method has three main steps:

1. Adding supporting code for the bitmap

2. Initializing the attributes of the bitmap object

3. Handling the WM_ERASEBKGND message and making a call to the
BitBlt function

The task uses the dialog box class CBmapCenterDlg to demonstrate this
method. Figure 4-5 on the following page shows the finished result.

Step 1: Adding Supporting Code for the Bitmap
In addition to the data members that are added in the StretchBlt method, an
other data member (m_bkBrush) must be added to store the background brush.
The following is the resultant block of necessary data members:

II Attributes
protected:

CDC m_dcMem:
CBrush m_brush;
CBrush m_bkBrush:

II Compatible memory DC for dialog
II Handle of hollow brush
II Handle of background brush

(continued)

137

PART I: WORKSHOP

138

BITMAP m_bminfo;
CPoint m_pt;

CSize m_size;

II Bitmap information structure
II Position for upper left corner of
II bitmap
II Size (width and height) of bitmap

~ RRR

·w-·r=[-rm-- ~im~~~~~_
Centered b1~map R

Figure 4-5.
A dialog box that shows the BitBlt method.

Step 2: Initializing the Attributes of the Bitmap· Object
The data members are initialized in the handler for the WM_INITDIALOG
message, as they are in the StretchBlt method. Add this handler now.

Because some of the same techniques are used in both the StretchBlt and
BitBlt methods, the code for initializing the attributes is similar for both meth
ods. However, instead of modifying the bitmap size to fit the entire client area,
you must figure out the values for the size and for the coordinates of the up
per left corner of the dialog box client area. In addition, the background brush,
m_bkBrush, must be initialized. The code below should be added to the body of
your newly added OnlnitDialogfunction. The modified code is shown in bold
face type.

CMainFrame* pFrm = (CMainFrame*)AfxGetMainWnd();
CBitmap* dlgBmap;

dlgBmap = &CpFrm->m_bmapCentered):

RECT rectClient;

F O U R : Dialog Boxes

II Load a hollow brush and create another
II brush with the default background color
m_brush.CreateStockObject(NULL_BRUSH);
RLbkBrush.CreateSol1dBrushC::GetSysColor(COLOR....WINDOW)):

II Get bitmap information
dlgBmap->GetObject(sizeof(BITMAP), &m_bminfo);

GetClientRectC&rectClient);
//Check to see whether bitmap 1s larger than target area
1f CRLbminfo.bmW1dth > rectC11ent.r1ght)

RLs1ze.cx = rectC11ent.r1ght;
else

RLS1ze.cx = RLbminfo.bmW1dth; II Zero based

1f CRLbminfo.bmHe1ght > rectC11ent.bottom)
RLs1ze.cy = rectC11ent.bottom:

else
RLs1ze.cy = RLbminfo.bmHe1ght; II Zero based

QLPt.x = CrectC11ent.r1ght - RLs1ze.cx) I 2;
QLPt.y = CrectC11ent.bottom - RLS1ze.cy) I 2;

II Get temporary DC for dialog, will be released in DC
II destructor
CClientDC dc(this);

II Create compatible memory DC using the dialog's DC
VERIFY(m_dcMem.CreateCompatibleDCC&dc));

m_dcMem.SelectObject(dlgBmap);

return TRUE;
II Return TRUE unless you set the focus to a
II control. EXCEPTION: OCX Property Pages should
II return FALSE.

The first modification simply creates a brush with the color defined by the
system for a dialog box background. The ::GetSysColor function is used to re
trieve the exact color needed. The second modification is to the size and lo
cation of the bitmap. I use values from the call to GetClientRect to center the
bitmap. In addition, if the bitmap is larger than the client area of the dialog
box, the width and height of the bitmap are set to the width and height of the
client area and the upper left corner of the bitmap is set to (0, 0).

139

PART I: WORKSHOP

Step 3: Handling the WM_ERASEBKGND
Message and Making a Call to the BitB/t Function
The final component is the handler for the WM_ERASEBKGND message.
Add this message handler to the class representing the bitmap background
of the dialog box. In most cases, the bitmap will be smaller than the client
area of the dialog box. This means that the area surrounding the bitmap
must also be painted in the WM_ERASEBKGND handler. This is where the
m_bkBrush member comes in handy. The background is painted in a two-step
process. First the client area is painted using the current system color for win
dow client areas; then the bitmap is displayed in the center. The result is a
centered bitmap with a background of the current window client color. The
following code should be added to the OnEraseBkgnd handler after the call to
the base class function:

RECT rectClient:
CBrush bkBrush:

GetClientRectC&rectClient);
pDC->FillRectC&rectClient, &m_bkBrush);

pDC->BitBlt(m_pt.x, m_pt.y, m_size.cx, m_size.cy,
&m_dcMem, 0, 0, SRCCOPY);

After you have added the code to the OnEraseBkgnd handler, rebuild the
project. You should have a centered bitmap in the background of the dialog box.

The Bitmap Brush Method

140

The bitmap brush method is very useful if you want a patterned background.
Instead of using a single bitmap to partially or completely cover the back
ground area, I will use a patterned brush that has been created using an 8x8,
16-color bitmap. Bitmaps of other sizes can be used, but the patterned brush
will initialize using only the upper left grid of 8x8 pixels of the bitmap. This
method is also the easiest of the three, requiring only a CBrush data member,
an 8x8 pixel bitmap, and two handler functions. The bitmap brush method
consists of three steps:

1. Adding supporting code for the bitmap

2. Initializing the attributes of the bitmap object

3. Handling the WM_CTLCOLOR message

F 0 U R : Dialog Boxes

The task uses the CBmapBrushDlg dialog box class to demonstrate this
method. Figure 4-6 shows the finished result.

Figure 4-6.
A dialog box that shows the bitmap brush method.

Step 1: Adding Supporting Code for the Bitmap
Add the CBrush data member to the dialog box class that will be using the
background brush. The m_brush data member stores the pattern brush once
it is created.

II Attributes
CBrush TTLbrush; II Background brush

Step 2: Initializing the Attributes of the Bitmap Object
Add a handler for the WM_INITDIALOG message to the dialog box class of
your application. In the body of the OnlnitDialogfunction, add the following
code:

CMainFrame* pFrm = (CMainFrame*)AfxGetMainWnd();
CBitmap* oDlgBmap;

pDlgBmap = &(pFrmc>m_bmapBrush);

II Create bitmap brush;
m_brush.CreatePatternBrush(pDlgBmap);

141

PART I: WORKSHOP

In the code on the preceding page, I first retrieve the loaded bitmap from the
main frame window class. Then I use the bitmap to create a patterned brush
with a call to CreatePatternBrush.

Step 3: Handling the WM_CTLCOLOR Message
Add a handler to the same dialog box class for the WM_CTLCOLOR mes
sage. I use this message instead ofWM_ERASEBKGND because it expects a
brush for the background painting. In the body of the handler function
OnCtlColor, I simply return the handle of my newly created brush and let MFC
do the rest of the work:

return (HBRUSH)m_brush:

After you have added this last piece of code, rebuild the project. You
should now have a dialog box with a patterned background.

Additional Information

142

Every control in a dialog box can be thought of as being rendered in two sur
faces: a foreground surface and a background surface. If you can control the
rendering of these surfaces, you can create some interesting effects. The BK
BMPS project demonstrates one such effect for static controls--a "transparent"
control. Basically, this means that the background of the control is the same
as the background of the dialog box. This effect is achieved in three steps:

Ill Creating the null brush

111 Handling the WM_CTLCOLOR message

Ill Making a call to CDC::SetBkMode

In some of the code samples for the three methods that have been dis
cussed here, you might have noticed the presence of a brush object. Created
by a call to CreateStockObject, the brush object is a "null" brush, which means
that any surface painted by the brush will not change its current color or pat
tern. You can think of it as a paint brush that uses transparent paint. The pro
cess is as follows.

1. Create a null brush. The BKBMPS project declares an object of type
CBrush as a data member of the dialog box class:

II Attributes
protected:

CBrush m.J>rush:
CBrush m_bkBrush:

II Null brush for control blending
II Background brush

F 0 U R : Dialog Boxes

2. Initialize the brush object with a call to CreateStockObject. This can be
done in the OnlnitDialogfunction of your dialog box class. The BK
BMPS project initializes the brush with the following code, which is
located in OnlnitDialog:

m_brush.CreateStockObject(NULL_BRUSH);

3. Add a handler for the WM_CTLCOLOR message to the dialog box
class, and modify the handler function to match the code below:

HBRUSH CMyDlg::OnCtlColor(CDC* pDC, CWnd* pWnd, UINT nCtlColor)
{

}

pDC->SetBkMode(TRANSPARENT);
return CHBRUSH)m_brush;

Now you should be able to build the project and have any static text con
trols in your dialog box use the background of the dialog box as the .back
ground of the control, whatever that background is. You also can change the
appearance of other control types using this method. For information on
changing the appearance of other controls, see these Knowledge Base articles:

18 How to Handle OCM_CTLCOLOREDIT Reflected Messages:
Ql48242

Ill Changing the Background Color of an MFC Edit Control: QI 17778

Modifying the Attributes of Dialog Box Controls
The purpose of this task is to demonstrate three types of modifications to dia
log box controls.

II Coloring individual controls

II Modifying the font used by a control or controls

18 Hiding static text and common controls

In most cases, these modifications can be applied to either child controls em
bedded in a view or to controls in a form view. In addition, I will demonstrate
the instant updating of control states. All of the modifications can be used ei
ther separately or together; however, each type is completely independent of
the others. ·

143

PART I: WORKSHOP

The name of the task project is DLGCTRL, and the requirement is a dia
log box class containing several common controls.

Coloring Individual Controls

144

In this procedure, the text color of a group of radio buttons is modified ac
cording to the choice of the user and the color change occurs immediately af
ter the user chooses the color. The procedure also can be used to change the
text color of other common controls that contain text. The following four
steps provide a basic framework for coloring individual dialog box controls:

1. Implementing user interface

2. Notifying the dialog box of a color change by the user

3. Processing and storing the color choice

4. Dynamically updating the control group

Step 1: Implementing the User Interface
The first step is to create an obvious interface that allows the user to modify
an attribute of the control. In this case, the attribute I use is the text color for
a group of radio buttons. Each radio button has a different caption-black,
red, green, or blue. The user chooses the color he or she wants, and then the
entire set is updated to display its text in the chosen color.

Step 2: Notifying the Dialog Box of a Color Change by the User
After you have an interface in place, you can set up some type of notification
for the dialog box of a color change. This allows you to update the controls
immediately after the user chooses a different color. The easiest way to set up
notification is to create a notification handler using ClassWizard for each
control in which you are interested. Your notification handler then should
retrieve the choice and implement the color change immediately or imple
ment it the next time the dialog box is visible. This handler (or handlers) is
usually found in the class representing the dialog box.

T I P : If you do not want the color change to be updated imme
diately, you can skip this step and proceed to the next step, "Pro
cessing and Storing the Color Choice."

The DLGCTRL project has a BN_CLICKED notification handler for
each radio button, which I added using ClassWizard. For clarity, I routed all
notifications to the same handler. The following code fragment is taken from
the message map of the dialog box class:

BEGIN_MESSAGE_MAPCCMyDlg, CDialog)
ll{{AFX_MSG_MAP(CMyDlg)

ON_BN_CLICKED(IDC_BLACK, OnColorChange)
ON_BN_CLICKEDCIDC_BLUE, OnColorChange)
ON_BN_CLICKEDCIDC_GREEN, OnColorChange)
ON_BN_CLICKED(IDC_RED, OnColorChange)

11} }AFx_MSG_MAP
END_MESSAGE_MAP()

Step 3: Processing and Storing the Color Choice

F 0 U R : Dialog Boxes

When you receive a BN_CLICKED message, which indicates that the user has
chosen a color, you have to determine what color was chosen and then do
one of two things: change the color immediately or store the new color and
use it the next time the dialog box is visible. Depending on the type of inter
face you have implemented for your dialog box, add code that retrieves the
color and then either immediately changes it or stores it for later use.

In this task I use a group of radio buttons. Whenever I receive a
BN_CllCKED message, I change the color of the radio button text immediately
and store the current color for later use. To implement the storage of the col
or, I declared a data member of type int in the CMainFrame class:

II Attributes
public:

int m_BtnTextColor:

In addition, I declare two data members in the CMyDlgclass of the task
project that will store the color value in the dialog box class and initialize the
radio button group when the dialog box is displayed:

COLORREF m_curColor:

II Dialog Data
ll{{AFX_DATACCMyDlg)
enum { IDD = IDD_DIALOGl };
int m_color:
I/} JAFx_DATA

After the user chooses a color (in this case, clicks a button), the OnCol
orChange function is called. This function retrieves the color and computes
the respective COLORREF value by calling UpdateData, stores the new value

145

PART I: WORKSHOP

146

for future use, and then updates the radio button group with the new color.
The function is as follows:

void CMyDlg::OnColorChange()
{

UpdateData(TRUEJ:
SetRadioBtnColor():
PaintRadioBtns():

}

For full details of the helper functions SetRadioBtnColor and PaintRar
dioBtns, see MYDLGS.CPP in the CTRLDLG project.

Step 4: Dynamically Updating the Control Group
At this point, I have implemented an interface that allows the user to choose the
color of a radio button group. In addition, with the help of PaintRadioBtns, I am
updating the color of the controls immediately after the user chooses a color.
However, I still have no way of painting individual controls with the proper
color. To do this, I have to be able to modify the default behavior of painting
for that control (or controls). Fortunately, there is a message perfectly suited
to this need-WM_CTLCOLOR, which is sent by a child control that is about
to be drawn. The message handler OnCtlColorprovides the ID of the control
making the request, the device context of the control, and the type of eontrol
(such as a button control or an edit control). Therefore, to modify the radio
buttons dynamically, I have to handle the WM_CTLCOLOR message in the
dialog box class. This is done easily with ClassWizard. The resultant handler
function, OnCtlColor, is as follows:

HBRUSH CMyDlg::OnCtlColor(CDC* pDC, ·CWnd* pWnd, UINT nCtlColor)
{

}

HBRUSH hbr = CDialog::OnCtlColor(pDC, pWnd, nCtlColor);

II TODD: Change any attributes of the DC here

II TODD: Return a different brush if the default is not desired
return hbr:

Because I want to modify the appearance of specific controls, I will mod
ify the function to set the text color of only the controls with the proper ID.
The result is as follows:

HBRUSH CMyDlg::OnCtlColor(CDC* pDC, CWnd* pWnd, UINT nCtlColor)
{

HBRUSH hbr = CDialog::OnCtlColor(pDC, pWnd, nCtlColor);

}

if (lsRadioButton(pWnd->GetDlgCtrllD(J))
{

pDC->SetTextColor(m_curColorJ:

return hbr:

F 0 U R : Dialog Boxes

/sRadioButton is another function of CMyDlg, which returns TRUE if the
given ID matches the ID of a radio button. All other IDs are ignored, and the
remaining controls are painted using the default method of the application
framework.

At this point, you can rebuild the project, and you'll be able to modify
the color of the text in your dialog box controls.

Modifying the Font Used by a Control or Controls
The following steps provide a basic framework for changing the font of indi
vidual controls:

1. Loading a different font

2. Modifying the On/nitDialogfunction

3. Changing the font for the window

Step 1: Loading a Different Font
There are many different ways to load a font, depending on the type of infor
mation that is available to you. The simplest way to load a font for MFC appli
cations is to create a CFont object and then initialize the object with a call to
the CreateFontlndirectfunction. The CMyDlg::LoadFontfunction is used by the
CTRLDLG project to load the font specified by m_JontName, a data member
of the dialog box class CMyDlg.

BOOL CMyDlg::LoadFont()
{

LOGFONT logFont:

logFont.lfHeight = -12:
logFont.lfWidth = 0:
logFont.lfWeight = FW_NORMAL:
logFont.lfltalic =FALSE:
logFont.lfUnderline =FALSE:
logFont.lfStrikeOut =FALSE:
logFont.lfEscapement = 0:
logFont.lfOrientation = 0:

(continued)

147

PART I: WORKSHOP

148

}

lstrcpy(logFont.lfFaceName, m_fontName):
return m_curFont.CreateFontindirect(&logFont):

Step 2: Modifying the OnlnltDlalog Function
A good place to initialize the attributes of a dialog box, such as the font of a
control, is in the WM_INITDIALOG message handler function (OnlnitDialog)
because, before the dialog box is visible, the dialog box object and its controls
are created and available to you. You can add this function to your dialog box
class using ClassWizard. After you have added this handler, make a call to
LoadFont, and if the return is successful, the font can be used by any control
in the dialog box.

Now that you have the font, you need access to the control that will use
the font. This is done by making a call to the CWnd::GetDlgltem function and
passing the ID of the control that is desired as the parameter, as shown below:

CWnd* pWnd = GetDlgitem(IOC_FONTTEXT):

N 0 T E : The CWnd pointer that is returned from the call to Get
Dlgltem is a temporary pointer. This means it should be used only
within the function where GetDlgltem was called. The destruction of
these temporary pointers is handled in the idle time processing of
the application. When the application is idle, the CWinApp::Onldle
function is called, which destroys all temporary pointers.

Step 3: Changing the Font for the Window
Now that you have a pointer to the window of the control, you can call SetFont
for that window, passing in the newly created font object.

The following code, which demonstrates all three steps of changing a
font used by a control, is taken from the body of CMyDlg::OnlnitDialog:

CDialog::OninitDialog():

if (LoadFont())
{

}

else

CWnd* pWnd = GetDlgitem(IDC_FONTTEXT):
pWnd->SetFont(&m_curFont, FALSE):

AfxMessageBox("Font creation failed!"):

II Additional initialization

return TRUE:

F 0 U R : Dialog Boxes

After you have completed these modifications, you can rebuild the
project and change the font of any dialog box control.

Hiding Static Text and Common Controls
The method for changing a font for a specific control demonstrated in step 2 of
the previous procedure also can be used to hide the common controls of a dia
log box. For example,-in the OnlnitDialogfunction of the dialog box class, check
to see whether controls should be visible or hidden. If you want the controls to
be visible, retrieve the window of each control and call ShowWindow with the
value SW_SHOW. If you want the controls to be hidden, call ShowWindowwith
the value SW_HIDE. When the necessary controls have been hidden or re
vealed, the dialog box can be displayed.

In the CTRLDLG project, I make a call to SetVisibleTextState in the On/nit
Dialog function CMyDlg. This function checks the Boolean value CMyDlg::
m_visible; if the value is FALSE, it hides two controls (with the respective ID
values IDC_STATICI and IDC_STATIC2). If the value is TRUE, the two con
trols are visible. The following code for showing and hiding the controls is
taken from the body of CMyDlg::SetVisibleTextState:

CWnd* pCtrl;
CWnd* pCtrl2;

pCtrl = GetDlgltemCIDC_STATICl);
pCtrl2 = GetDlgltemCIDC_STATIC2);

if (m_visible)
{

}

else
{

}

pCtrl->ShowWindow(SW_SHOW);
pCtrl2->ShowWindowCSW_SHOW);

pCtrl->ShowWindowCSW_HIDE);
pCtrl2->ShowWindowCSW_HIDE);

At this point, you can rebuild the project and show or hide the static
text of a dialog box.

149

C H A P T E R F I V E

Controls

The focus of this chapter is the customization and extension of MFC applica
tions in relation to Microsoft Windows common controls. Each task demon
strates a way to either customize the default behavior of some control-related
aspect of an MFC application (for example, sharing menu resources between
child windows) or extend the default behavior in some way (for example, pro
viding tooltips for view regions), The chapter includes thefollowing tasks:

Ill Sharing the main frame window menu between MDI children This
task modifies the default management of child menu resources by
sharing a menu resource between child windows. Instead ofloading a
menu resource for each child window, the existing main menu is
modified for the needs of the active child window.

Ill 'Il:ansferring strings between a list box and a CStringArray object
This task extends the common dialog box list box controls by adding
the ability to transfer strings to and from a list box. An array of strings
is used to initialize and later store strings from the list box control.
This technique can also be used, with modification, for combo boxes.

Ill Tabbing between child window controls in a non-dialog box view
This task demonstrates extending the default behavior of child win
dow controls in a view by adding the ability to tab between child con
trols in a CView-derived class.

Ill Adding tooltips for view regions and child windows This task ex
tends the tooltip capabilities of an MFC application by implementing
tooltips for controls and rectangular regions embedded in a child
window.

Ill Enabling a nested pop-up menu This task demonstrates a technique
that enables a nested pop-up menu only if one or more menu items
are enabled. The pop-up menu is otherwise disabled.

151

PA AT I : WORKSHOP

Sharing the Main Frame
Window Menu Between MDI Children

The purpose of this task is to share the main frame window menu resource
between MDI child windows. Instead of loading a new menu resource for
each type of MDI child window, the existing menu resource can be dynami
cally modified by adding and removing menu commands, based on the needs
of the individual MDI child window. Sharing one menu resource is suited for
child windows that are similar in functionality yet require unique menu com
mands. By using one main menu resource instead of a unique menu for each
type of child window, you can conserve the amount of resources needed by the
application. The task consists of four steps:

1. Adding a new document template class

2. Modifying the application class

3. Modifying the main frame window class

4. Modifying the child frame window class

The sample project is named MDIMENU, and there are two requirements:

11111 An MDI application with two or more document templates

11111 A menu resource that will be used as the main menu by two or more
child windows

In the MDIMENU sample project, I use two document types: Rect (which
draws four random rectangles) and Ellipse (which ·draws four random ellip
ses). The menu resource shared by these document templates is named IDR
_SHAREDMENU. For demonstration purposes, I modify the shared menu
resource by displaying either the About Ellipse or the About Rect command
on the application's Help menu (Figure 5-1), depending on which document
type is active at the time.

Step 1: Adding a New Document Template Class

152

One of the main functions of a document template is to collect the resources
for its specific document type. When a new document is created, the docu
ment's template is responsible for creating and loading the resources for that
document. When the last open document of the specific document type is de
stroyed, the template automatically frees up all memory and resources that were
associated with the document type. However, this presents a problem if another

F I V E : Controls

,.: .. MDIMnm B(•d ~ I Ht r H

111

!! -~ r-. - ~~~~-=-=-=--=--~~~-===-1.f, flect J FFF

I

I •

Figure 5-1.
The two versions of the Help menu for the MDIMENU application.

document type is sharing the same menu resource and is still active. There
fore, to share a menu resource successfully, you must prevent the menu re
source from being deleted until all active documents are closed. The solution
is to derive your own document template class from CM'LltltiDocTempl,ate and
modify the template's destructor so the menu resource is deleted only when
the last active document sharing that menu is closed.

1. Add a new class derived from CMultiDocTempl,ate to your project. This
new class will implement the shared resource template. (In the sam
ple project, I call my derived class CSharedTempl,ate).

153

PA RT I : WORKSHOP

2. Now modify the destructor of the new class by adding this line:

m_hMenuShared = NULL;

This line of code sets the m_hMenuShared data member of the docu
ment template to NULL. If m_hMenuSharedwere not set to NULL, the
base class would delete the menu resource (not knowing that it is be
ing shared), causing the application to assert immediately. However,
when the value is NULL, the base class assumes that there is no menu
resource to delete. The actual deletion of the menu resource is han
dled in the next step.

N 0 T E : Don't waste time trying to find some. documentation on
m_hMenuShared because it's not documented. As is true for all of the
undocumented data members and functions I've used in this book,
the use of undocumented class members by MFC is subject to change
without warning and should be done with caution.

Step 2: Modifying the Application Class

154

When an MFC application shuts down, the application object is the last object
that is destroyed. For this reason, the application class is an ideal place for
managing document templates. Use this class to store the pointers to all regi
stered document templates and the handle of the shared menu resource.
Then when the user exits the application, it's safe to delete the shared menu
resource. The modifications to the application class include adding new data
members and functions and modifying an existing function.

Adding New Data Members and a Function
In this section, we add data members to the application class and override
the CWinApp::Exitlnstance function.

To store the handle of the menu resource, add the following lines of code
to the declaration of your application's class, which is found in the header file
of the application class:

public:
HMENU m_sharedMenu;

Right after this declaration, declare a pointer of type CSharedTemplate
(or the name used when you created the new template class in step 1) for each
document template you want to register in your application. Don't forget to in
clude the header file for the new shared template class in the header file of the
application class. The following code sample, from the header file of the sample

F I V E : Controls

project's application class, declares two pointers to the registered document
templates of the application:

CMultiDocTemplate* m_pEllipse:
CMultiDocTemplate* m_pRect:

In addition to adding new data members, you also have to override the
Exitlnstance function in your application class. Do this now. Then add the fol
lowing line of code to your Exitlnstancefunction right before the call to CWin
App: :Exitlnstance:

::DestroyMenu(m_sharedMenu):

This line of code deletes the shared menu resource.

Modifying the lnitlnstance Function
In this section, we modify the Initlnstance function of the application class by
loading the shared menu resource and using the CSharedTemplate class to regi
ster the document templates used by the application.

In the Initlnstance function of your application class, add the lines of code
shown below before any document templates are registered. Be sure you use
the ID of your shared menu resource instead ofIDR_SHAREDMENU in the
call to : :LoadMenu.

II Initialize shared menu resource
m_sharedMenu = ::LoadMenu(m_hinstance,

MAKEINTRESOURCE(IDR_SHAREDMENU)):

After loading the menu resource, modify the method by which the docu
ment template is registered with the application using the CSharedTcmplate class.
The resulting document templates will be stored in the appropriate template
pointers of your application class. To modify the registering of the document
template:

1. Change the template class used to create the document template to
CSharedTcmplate (or whatever name you used in step 1).

2. Store the result of the document template creation in the appropri-
/; ate template pointer, which is located in the application class.

3. Set the m_hSharedMenu data member of the template pointer used in
step 2 equal to m_sharedMenu.

Use this procedure to modify the registration of any remaining document
templates in your application. The code for your single document template

155

PA R T I : WORKSHOP

should be similar to the following example, which is taken from the Initln
stance function of the sample project's application class:

m_pEllipse = new CSharedTemplate(
IDR_MDIMENTYPE,
RUNTIME_CLASS(CMDIMenuDoc),
RUNTIME_CLASS(CChildFrame), // Custom MDI child frame
RUNTIME_CLASS(CMDIMenuView));

m_pEllipse->m_hMenuShared = m_sharedMenu;

Step 3: Modifying the Main Frame Window Class

156

Because the main frame window class is the owner of the main menu, it is a
good place to modify the menu and to handle commands that appear in all
variations of th1e main frame window menu. To allow modification of the menu
at any time, we have to add a group of functions that, when called, modify the
main menu for each document type sharing the main menu resource.

In the header file of your main frame class, declare a public member
function in a manner similar to the following declaration:

void FuncName();

For each additional document type that shares the main menu resource, de
clare a similar function.

For the two document templates used in the sample project, I declared
the following two functions in the header file of the main frame window class:

void ModifyEllipseMenu();
void ModifyRectMenu();

Note that these functions will be called from the MDLACTIVATE message
handlers of each child window class, which you will add in step 4.

In the body of each menu modification function that you have declared,
add the code that will modify the main frame window menu. The code below
is taken from the CMainFrame::ModifyEllipseMenu function of the sample project:

CMenu* pMenu = GetMenu();
CMenu* pAbtMenu = pMenu->GetSubMenu(3);

if (pAbtMenu->GetMenuitemID(0) == ID_APP_ABTRECT)
{

}

pAbtMenu->DeleteMenu(0, MF_BYPOSITION);
pAbtMenu->DeleteMenu(0, MF_BYPOSITION);

if (pAbtMenu->GetMenuitemID(0) != ID_APP_ABTELLIPSE)
{

F I V E : Controls

pAbtMenu->InsertMenu(0, MF_BYPOSITION, MF_SEPARATOR);
pAbtMenu->InsertMenu(0, MF_BYPOSITION, ID_APP_ABTELLIPSE,

"About &Ellipse ... ");

In the first section of this code, I retrieve the l:Ielp menu of the main frame
window. In the second section of code, I check for the presence of the About
Rect menu command. If the check succeeds, I delete the first two menu com
mands in preparation for adding Ellipse-specific menu commands. Finally, I
check for the absence of the About Ellipse menu command. If the check fails,
I add the necessary menu items and exit the function.

The last modification to the main frame window class is adding han
dlers for any menu commands that were added as a result of modifying the
main menu. In your main frame window class, use your favorite method to
implement handlers for menu commands that are dynamically added to the
main menu. In the sample project, I added handlers for two new menu com
mands: About Rect and About Ellipse. The following code is the handler for
the About Rect command and is taken from the implementation file of class
CMainFrame:

CAboutRectDlg aboutDlg;
aboutDlg.DoModal();

This handler creates a CAboutRectDlg object and then displays it for the user.

Step 4: Modifying the Child Frame Window Class
Whenever a new child window is actiVa.ted in standard MFC applications, the
main menu is updated by swapping the main menu resource with the menu
resource of the child window. Because the same menu resource is used for all
child windows, the main menu must be updated at the appropriate time. You
can easily determine the appropriate time by handling the WM_MDIACTIVATE
message in the child windows of your application; the message is sent when a
child window is about to be activated.

· 1. Add a handler for the WM_MDIACTIVATE message to the child
frame window class. You will use this handler to modify the main
menu, depending on which child window is being activated.

2. Modify the main menu by adding a call to the appropriate function
from the group you added when you modified the main frame win
dow class.

157

PART I: WORKSHOP

3. Repeat these two steps for the other document templates in your
application.

N 0 T E : Because the method for modifying the main menu of a
child window is the same for all child windows, I will modify one
type of child window and leave modification of the remaining class
es as an exercise for the reader.

The following example, taken from the sample project, demonstrates
the WM_MDIACTIVATE message handler for the CRectFrameclass:

CMDICh1ldWnd::OnMDIActivate(bActivate, pActivateWnd,
pDeactivateWndl;

if CbActivate)
{

}

CMa1nFrame* pFrm:

pFrm = CCMainFrame*)GetMDIFrame();
if (pFrm != NULL)

pFrm->ModifyRectMenu();

In the first section of this code, I call the base class handler. I then check to
see whether the child window is being activated. If the check succeeds, I re
trieve a handle to the main frame window, which contains the menu modifi
cation functions. I then call the appropriate function for the Rect document
type, in this case ModifyRectMenu.

After you have made all the necessary modifications to each child frame
window class, rebuild the project. Your child windows will now share one com
mon menu resource, which is modified dynamically for each type of child
window.

Transferring Strings Between
a List Box and a CStringArray Object

158

The purpose of this task is to implement a function that transfers character
strings of type CString to and from the list box control of a modal dialog box.
A CStringArray object, initialized in the sample project's CDlgxmplDoc con
structor, stores the list box strings. The data transfer is accomplished with the
StringTransfer function. To transfer strings at the proper time (before the
modal dialog box is displayed and after the user chooses the OK button), we

F I V E : Controls

override and modify the OnlnitDialog and OnOK functions in the dialog box
class containing the list box control.

In this task, I use a CStringArray object to store the strings being trans
ferred. I chose this data type because a CStringArray object provides a clean, high
level interface to basic functions on arrays containing strings. With some minor
modifications of the StringTransferfunction (which are not addressed in this
task), other data types and storage methods can be used with equal success.

The task consists of three steps:

1. Adding the StringTransferfunction to the project

2. Overriding and modifying the OnlnitDialogfunction

3. Overriding and modifying the OnOK function

N 0 T E : This task demonstrates data transfer with a list box con
trol. However, with some slight modifications, a combo box control
can be used as discussed in step 1 below.

The sample project name is DLGXMPL, and there are two requirements:

• A modal dialog box with either a combo box or a list box control

• A data member of type CStringArray (In the task, this data member,
m_lstBoxArray, is part of the CDlgxmplDocclass.)

Step 1: Adding the StringTransfer Function
The StringTransfer function is the workhorse of this task; it is responsible for
transferring an array of CStringobjects (in this task, a CStringArray object) ei
ther to or from a list box control. Inside this function, an if statement deter
mines the direction of transfer and transfers CString objects, one string at a
time. The StringTransferfunction takes two parameters: a pointer to a list box
control, and a Boolean value that indicates the direction of transfer. In the
sample project, this function is declared as a member of the CDlgxmplDoc class.

T I P : The StringTransfer function also can be modified to use a
combo box instead of a list box. Because of the similarity between
the CListBoxand CComboBoxclasses, substitute a CComboBoxpointer
for every occurrence of a CListBox pointer in the StringTransfer
function. After making this substitution, you can then use the func
tion to transfer CString objects to and from a combo box.

159

PA RT I: WORKSHOP

160

1. In the header file of your document class, add the following definition:

void StringTransfer(ClistBox* plistBox,
BOOL bDir);

2. In the implementation file of your document class, add the following
function declaration:

void DlgxmplDoc::StringTransfer(ClistBox* plistBox, BOOL bDir)
{

}

CString str;
int count;

if (bDir) II Transfer array contents to list box
{

}

for (int i = 0; i < m_lstBoxArray.GetSize(); i++)
{

}

str = m_lstBoxArray[i];
plistBox->AddString((LPCTSTR)str):

else II Transfer list box contents to array
{

}

int count:
count= plistBox->GetCount();

m_lstBoxArray.RemoveAll():
for (int i = 0: i < count: 1++)
{

}

plistBox->GetText(i. str):
m_lstBoxArray.Add(str):

The first thing the StringTransfer function does is determine the direc
tion of data transfer. This is accomplished by checking the value of the bDir
parameter. If bDiris TRUE, strings are transferred from the string array to the
list box control. In this case, I add each string array element to the list box
control that is pointed to by pListBox with a call to the AddString function.
However, if bDiris FALSE, strings are transferred from the list box control to
the string array. First I determine the number of strings contained by the list
box. I retrieve each string from the list box, starting with the first listed string,
and set the ith array element (which is determined by the current for loop in
dex) equal to the current string value. Then I increment the index of the
string array and read the next string. After the last string of the list box control
has been read and stored, the program control exits the function.

F I V E : Controls

Step 2: Overriding and Modifying the OnlnitDialog Function
Now that you have added the StringTransJerfunction to the application, you
have to determine when and how it should be called. Because the list box
control is located in a modal dialog box, the best method for initializing the
contents is to override the OnlnitDialog function in your dialog box class. If
your dialog box class does not override this function, override it now. After
you override the function, modify the function body by adding the following
code (after the initial call to OnlnitDialog) :

CDlgxmplDoc* pDoc;
CFrameWnd* pFrm = CCFrameWnd*)AfxGetMainWnd();
pDoc = CCDlgxmplDoc*)pFrm->GetActiveDocumentC);

pDoc->StringTransferC&m_listBox, TRUE);

return TRUE;

In the first section of code, I retrieve a pointer to the document object. This
pointer is used in the next line to make a call to the StringTransferfunction. In
addition to the address of the dialog box's list box control (m_listBox), I pass
a value of TRUE, indicating that the array will be used to initialize the list
box control.

This completes one side of the data transfer. The other side of the data
transfer involves transferring the list box strings to the CStringArray, as dem
onstrated in the next step.

Step 3: Overriding and Modifying the OnOK Function
Modal dialog boxes can be dismissed by clicking either OK or Cancel. To
properly update the array of strings, you should accept changes to the array
only if the user dismisses the dialog box by clicking OK. You can determine
when the user clicks OK by overriding the OnOK function in your dialog box
class. If your dialog box class does not override this function, override it now.

In the OnOK function of your dialog box class, add the following code
before the call to the base class OnOK function:

CDlgxmplDoc* pDoc;
CFrameWnd* pFrm = CCFrameWnd*)AfxGetMainWnd();
pDoc = CCDlgxmplDoc*)pFrm->GetActiveDocument();

pFrm->StringTransfer(&m__listBox, FALSE);

161

PART I: WORKSHOP

The preceding code is similar to the code of the OnlnitDialog function
that you added in step 1. A pointer to the document is retrieved and used to call
the StringTran.iferfunction. Notice that the Boolean value is FALSE, which in
dicates that strings from the list box control will be transferred to the string array.

After you have modified the OnOK function, rebuild the project. Your
list box control now initializes itself with strings from your array and transfers
any changes (additions or deletions) when the user clicks OK.

Additional Information
The procedure presented in this task for modal dialog boxes also can be used
for modeless dialog boxes,

Tabbing Between Child Window
Controls in a Non-Dialog Box View

162

The purpose of this task is to enable tabbing between child window controls
outside a dialog box or form view, where common window controls provide
minimal functionality. One of the more useful features that isn't available
outside these environments is the ability to tab from one control to the next,
just as you· can among a group of controls in a dialog box.

In this task, I use a custom notification method to implement tabbing
and assume that the controls will be used in some CView-derived object. Each
control class is derived from an MFC control class, and the WM_CHAR mes
sage is added to the control's message map. When the Tab key is pressed, the
control with the focus sends a user-defined message to the parent view. The
parent view determines which control has the current focus and switches the
focus to the next control in line.

The task consists of four steps:

1. Adding new control classes to the project

2. Adding WM_CHAR handlers to the control classes

3. Modifying the existing view class

4. Adding a user-defined message handler to the view class

The sample application is an SDI application that uses button, edit, and
slider control types. The name of the project is TABVW, and there are no
requirements.

F I V E : Controls

T I P : The same functionality can be achieved by an override and
a call to IsDialogMessage! If you want to use the quick method, skip
to ''Additional Information." I present the long version here to illus
trate how to use custom messages and to demonstrate various tech
niques for embedding common controls.

Step 1: Adding New Control Classes to the Project
One standard approach for placing a functional Windows common control
(or controls) in a CView-derived class is to implement each control as a child
window of the view class. You can do this by having the view construct the con
trol type that is needed and then by calling the control's Create function. This
function creates the proper control and attaches it to the control object in
the view. For more information on this topic, see "Using Common Controls as a
Child Window" in Technical Note 60 of the Visual C++ online documentation.

However, if you need the control to act as a notifier for custom events,
the standard approach is inadequate. What you need is your own control
class that is able to handle WM_CHAR messages and notify its parent (the
view class) when the Tab character is received. This new control class can be
derived from any one of the MFC common control classes, such as CButton or
CSliderCtrL

Because I don't know your intended purpose in following this task, I am
assuming the simplest case for the purpose of this discussion-that you have
one or more control classes derived from CButton or the like and that you
want to place them directly in the main view of an SDI application. If you al
ready have control classes that have been derived from MFC common control
classes, feel free to substitute them for the sample classes used here. First add
the control classes that you will be using to your project. Now, using your favor
ite method, add the data members of various types from your new control
classes to either the project's main view class or a CView-derived class of your
choice.

N 0 T E : If you use ClassWizard to create the new control classes,
they will be added to the. project automatically. In addition, you
can choose the existing files in the project in which the class is de
clared and defined.

In the sample project, three different control types (button, edit, and
slider) are implemented in two files, MYCTRLS.H and MYCTRLS.CPP. The

163

PART I: WORKSHOP

code shown in bold in the following code fragment, which is taken from the
declaration of the CTabVwViewclass, declares five controls as data members of
CTabVwView:

II Attributes
public:

CTabVwDoc* GetDocument();

II Embedded controls
CMyButton• m_pCtrll:
CMyEdit• m_pCtrl2:
CMyButton• m_pCtrl3:
CMyEd1t• m_pCtrl4:
CMyS11der• m_pCtrl5:

At this point, each control has very little functionality beyond what it in
herits from its parent. In the next step, the functionality is improved by add
ing the WM_CHAR handler.

Step 2: Adding WM_CHAR Handlers to the Control Classes

164

Now that you've added the controls, you can add the ability to both check for
the Tab key and somehow notify the parent when this event occurs. The par
ent is responsible for switching focus because it is the only class that has
knowledge of all the child window controls. Notification should occur only if
one of the controls has input focus and the Tab key is pressed. This imitates
the behavior of controls in a dialog box or form view. Because the user can
tab from any control, each control must check for the Tab event. A good way
to detect Tab keypresses is with a WM_CHAR handler. Therefore, for each
new corltrol in the view, add a handler for the WM_CHAR message.

After you have added the handler to every control class, add the follow
ing code, or if you used Class Wizard, replace the existing handler code with the
following:

CWnd* pParentWnd = GetParent();

if CnChar == 0x09) II Tab key pressed, notify parent
pParentWnd->PostMessage(WM_SWITCHFOCUS,

CWPARAM)((CWnd*)this), 0);
else

CEdit::OnChar(nChar, nRepCnt, nFlags);

In this code, I retrieve a pointer to the control's parent class, which in this case
is the view class of the application. Next I check the character received for a
match against the Tab character. If there is a match, I notify the parent with a

F I V E : Controls

call to PostMessage. Because this is a custom event, there are no predefined
messages to use as a parameter for the PostMessage function. I use the message
WM_SWITCHFOCUS, which is a custom message I discuss later in step 4. For
now, assume that the view object knows what to do when the user-defined
message is received. If there is no match, the character is passed on to the
parent's handler and no action is taken.

N 0 T E : I use PostMessage because it allows me to send the mes
sage and immediately return without waiting for the handling of
the message. If you want to wait for the window that received the
message to handle the message and then return, call SendMessage.

Step 3: Modifying the Existing View Class
You can now modify the intended parent class to properly create, store, and
destroy the new controls. The simplest method, used in the sample project,
makes use of the public pointers we declared in step 2:

II Attributes
public:

CMyButton* m_pCtrll:
CMyEdit* m_pCtrl2:
CMyButton* m_pCtrl3:
CMyEdit* m_pCtrl4:
CMySlider* m_pCtrl5;

In the view's constructor, initialize these pointers to NULL. This allows
you to quickly determine (in the destructor) which pointers need cleaning up
by checking the pointer state:

CTabviewV1ew::-CTabviewView()
{

if (m_pCtrl 1)
delete m_pCtrll:

if (m_pCtrl2)
delete m_pCtrl2:

II Check remaining control pointers

}

Now create each instance of the control type using the new operator. A
good place to do this is in the view class's override of OnlnitialUpdate. Using
your favorite method, override OnlnitialUpdate in your view class and create
each control, using the new operator and the control's Create function. The

165

PA RT I : WORKSHOP

following example is from the override of the OnlnitialUpdate function in the
TABVW sample project. The rect variable is used to align the controls in col
umns and rows, with each control the same size.

void CTabVwView::OninitialUpdate()
{

CView::OninitialUpdate():

CRect rect(50, 50, 125, 80):

m_pCtrll = new CMyButton():
m_pCtrll->CreateLTC"Button 1"), BS_PUSHBUTTON I WS_CHILD

I WS_VISIBLE, rect, this, 1010):

rect.left = rect.left+95:
rect.right = rect.right+95:
m_pCtrl2 = new CMyEdit():
m_pCtrl2->CreateCES_AUTOHSCROLL I WS_BORDER I WS_CHILD

I WS_VISIBLE, rect, this, 1020):
II Remaining controls created

Now that the controls have been placed in the view and can clean up af
ter themselves, it's time to add message handlers that will be used for notify-
ing the parent view class. ·

Step 4: Adding a User-Defined Message Handler to the View Class
In step 2, I mentioned that the control notifies the parent with a user-defined
message, WM_SWITCHFOCUS. Even though MFC has an incredible list of
message types, it would be impossible for Microsoft to foresee the needs of ev
ery application developed with MFC. Therefore, Microsoft has added sup
port for user-defined messages to handle the rest. In this case, I wanted to
notify the view to change focus via the control's message maps. There isn't a
message that fits that need, so I created one.

166

User-defined messages are any messages that are not standard Windows
WM_MESSAGE messages. There should be an ON_MESSAGE macro statement
in the message map for each user-defined message that must be mapped to a
message-handler function. In addition, these messages must be defined in
the range WM_USER through Ox7FFF; in this task, I use a i::andom number
for the value. Even though the custom message is being used only by the view
and control classes, I made the message available application-wide. The pro
cedure on the facing page demonstrates how to define and handle a user
defined message.

F I V E : Controls

1. Define the user-defined message by adding the following lines to the
header file of the application object:

II User-defined messages
lllllllllllllllllllllllllllllllllll
#define WM_SWITCHFOCUS (WM_USER + 119)

2. Add a handler for the custom message in the implementation file of
the control's parent class (probably a view) by adding the following
line to the message map of the control's parent class (which should
be CView-derived):

ON_MESSAGECWM_SWITCHFOCUS, OnSwitchFocus)

3. Declare the handler function, OnSwitchFocus, of the custom message
in the header file of the view class as follows:

afx_msg LRESULT OnSwitchFocus(WPARAM wParam, LPARAM lParaml:

4. Define the body of the handler function:

LRESULT CTabVwView::OnSwitchFocus(WPARAM WParam, LPARAM LParam)
{

return (LRESULT)0;
}

Now that the custom message (and its handler) have been defined and
declared, complete the job by adding logic to the body of OnSwitchFocus to
switch between controls. OnSwitchFocus has to determine which control has
the focus and, on the basis of that result, switch to the next control in line.
Add the following code to OnSwitchFocus, right before the return statement:

CWnd* pFocusWnd = (CWnd*)WParam:
CWnd* pNextWnd = pFocusWnd->GetNextW1ndow();
if (!pNextWndl

pNextWnd = GetWindow(GW_CHILDl:

if CpNextWndl
{

}

pNextWnd->SetFocus();
return 0L:

AfxMes~ageBox("Tab received but no control has focus");

return (LRESULT)0;

167

PA RT I : WORKSHOP

The first section of the preceding code makes the second section a little
easier to read by casting the control that fired off the notification to a CWnd
pointer. I then set the focus to the next window in the Z-order. If necessary,
the focus is automatically wrapped around to the first control.

Now that you have successfully built the project, you should have dialog
box-like behavior in your view window.

Additional Information

168

If you don't have the time or energy for the preceding procedure, give this
one a whirl.

1. In the view class that will contain the controls, add "public" pointer
members of various control types, such as CSliderCtrland CButton.

2. In your constructor and destructor, initialize and clean up the point
ers. (For an example, see above under "Step 3: Modifying the Exist
ing View Class.")

N 0 T E : For this method to work properly, each control must
have the WS_TABSTOP style; otherwise, it will be ignored in the
tabbing order.

3. Override the PreTranslateMessagefunction in the view's class.

4. In the override of PreTranslateMessage, replace the code in the func
tion body with the following code:

if (!::IsDialogMessage(m_hWnd, pMsg))
return CView::PreTranslateMessage(pMsg);

else
return TRUE;

This code hands off the messages that are received to IsDialogMessage.
If the message contains keyboard events, IsDialogMessage handles them
as if the view were a dialog box, in which case the function tabs to the
next control. If a message does not contain any keyboard events, the
message is handed off to the parent class. As noted in the online docu
mentation, a message processed by IsDialogMessage must not be passed
to either the TranslateMessage function or the DispatchMessage func
tion because IsDialogMessage performs all necessary translating and
dispatching of messages.

Adding Tooltips for View
Regions and Child Windows

F I V E : Controls

The purpose of this task is to add tooltips for four child window items-two
standard button controls and two rectangular regions. These items (shown in
Figure 5-2) are implemented as members of an MDI child window. By default,
tooltips are provided only in CFrameWnd-derived windows because CFrameWnd
handles the TTN_NEEDTEXT notifications and loads the string resources
according to the ID of the window or the ID of the tool in a tool bar. If you
want tooltips for other types of tools, such as other windows or rectangular re
gions, you have to roll your own.

--

Figure5-2.
Tooltip for a rectangular regfon.

There are two methods you can use to provide tooltip support in an
MFC application:

II Using the OnToolHitTest function and TIN_NEEDTEXT notification
Overrides CWnd::OnToolHitTest and tests for hits on tools in the appli
cation. If the tooltip test is successful, the text for the tooltip is then
provided by handling the TTN_NEEDTEXT notification.

169

PART I: WORKSHOP

• Using the CToolTipCtrl class Uses the CToolTipCtrlclass to create and
manage a list of tool tips for an application.

The first of these methods is the one used in this task. For information on the
second method, see "Adding Tooltips for Modal Dialog Controls" in Chapter 2.

The task consists of four steps:

1. Adding tools to the application

2. Modifying the OnlnitialUpdatefunction

3. Overriding the CWnd::OnToolHitTest function

4. Handling the TTN_NEEDTEXT notification

The name of the project is TLTIP, and the requirement is one or more tools
(regions, controls, and so forth) that will be embedded in the view class.

Background

170

To implement a functioning tooltip in an MFC application, you must per
form some (or all) of the following steps:

• Define the tools that will be monitored by the tooltip control.

• Activate the tooltip control(s).

• Determine when to display the tooltip.

• Provide text to display in the tool tip window when text is requested
by the system.

The default support for tooltips is available only for controls (or tools)
embedded in a CFrameWnd-derived class or for a descendant of a CFrameWnd
derived class because CFrameWnd is the only class that provides a handler
function for the TTN_NEEDTEXT notification. This notification is sent by
the framework when the mouse has remained on the same point for about
half a second and there is a registered tool (usually a tool bar button or menu
item) that includes the current mouse position. When this happens, a
TOOLINFO structure is initialized and passed on to the default notification
handler, which in this case.is CWnd::OnToolTipText. The handler retrieves the
ID of the tool and the string resource, if any, with the same ID. After the text
is retrieved, the tooltip window is displayed. If the tool has no tooltip text, the
window still opens, but it's invisible.

To implement tooltips for tools inside windows that are not derived
from CFrameWnd, you must do two things: determine when the tooltip should

F I V E : Controls

be displayed (by overriding CWnd::OnToolHitTest) and provide text for the
tooltip if text is needed (handling the TTN_NEEDTEXT notification).

Step 1: Adding Tools to the Application
Tooltips can be used for a variety of tools-all types of Windows controls or
regions in a view. For this task, I assume you will use tools that are embedded
in a CView-derived class.

The first step is to add the necessary tools to your project. For example,
you might choose to add new button classes, or you might choose simply to
declare one or more CRect-type data members to represent rectangular re
gions in the view class.

After you have added your tools to the project, add a string for each new
tool to the string table of your project. Remember the IDs of the new strings
because they will be used to identify the tooltip text for the new tools. In this
sample project, I created two strings:

• IDS_RECT, with the caption "Region 1"

• IDS_RECT2, with the caption "Region 2"

For this task, I used two common button controls and two regions. I de
fine the tools (in TLTIPVIEW.H) as members of class CTlTipView:

II Attributes
public:

II Child window controls
CButton* m__pBtnl;
CButtOn* m__pBtn2;

II Rectangular regions
CRect m_rectl;
CRect m_rect2;

In the constructor for CTlTipView, I initialize both CButton pointers to NULL.
In the destructor for CTlTipView, I check the value of each pointer and call
the delete operator if the value is not equal to NULL.

Step 2: Modifying the Onlnitia/Update Function
A good place to initialize and to enable tooltips for the embedded tools is
in the OnlnitialUpdatefunction of your view class. Because AppWizard doesn't
override this function, you should override it now. After overriding the func
tion in your view class, add code that creates the two common button controls

171

PA RT I: WORKSHOP

and then enables tooltips for the view. The following is an example of how
this might be done:

CView::OnlnitialUpdate();

CRect rect(50, 50, 125, 75):
m_pBtnl = new CButton:
m_pBtnl->Create(_ T("Button 1"), BS_PUSHBUTTON I WS_CHI LO I

WS_VISIBLE, rect, this, IOS_BTNl);
rect.left += 100:

.rect.right += 100:
m_pBtn2 = new CButton:
m_pBtn2->CreateL T("Button 2"), BS_PUSHBUTTON I WS_CHI LO I

WS_VISIBLE, rect, this, IOS_BTN2);

II Initialize regions
m_rectl.SetRect(100, 100, 200, 200);
m_rect2.SetRect(250, 100, 350, 200);

EnableToolTips(TRUE);

In the first section of the code, after calling CView::OnlnitialUpdate, I create
the button controls, using the rect variable to make both buttons the same
size. In the second section, I initialize the values for the two rectangular re
gions used by the class CTlTipView. And finally, I make a call to EnableToolTips.
Just as the name suggests, this function enables tooltips for the view window
of the application.

Step 3: Overriding the CWnd::OnToo/HitTest Function

172

Now that you have four tools created and initialized by the view object, you
have to override the CWnd::OnToolHitTest function to provide tooltips when
the user pauses the mouse cursor over one of the four tools. The default be
havior of CWnd::OnToolHitTest, which is found in the MFC source file WIN
CORE.CPP, checks only for the presence of a child window. If the function
does not find a child window, disabled or otherwise, that contains the point
being checked, it returns the value -1.

Because you also want to provide tooltips for the two rectangular re
gions, you must customize the behavior of this function to check for rectangu
lar regions in addition to child windows. The following procedure overrides the
OnToolHitTest function in the application's view class.

1. In the "protected" section of your view class's header file, add the fol
lowing declaration:

F I V E : Controls

protected:

int OnToolHitTest(CPoint point, TOOLINFO* pTI)
const;

2. In the implementation file of your view class, add this definition:

int CTlTipView::OnToolHitTest(CPoint point, TOOLINFO* pTI)
const

{

II Code will be added later
}

3. After you override the OnToolHitTest function, you can add code that
checks for hits on the two tool regions. If the check comes back neg
ative, you call the base class implementation to check for hits on the
two embedded buttons. Add the following code to the body of the
overridden OnToolHitTest function:

II Check for hits on the rectangles
if ((m_rectl.PtlnRect(point)) I I (m__rect2.PtlnRect(point)))
{

}

II Set up TOOLINFO structure
ASSERT(pTI != NULL);
pTI->hwnd = m__hWnd:
if (m__rectl.PtlnRect(point))
{

}

else
{

}

pTI->rect = m__rectl:
pTI->uld = IDS_RECTl;

pTI->rect = m_rect2;
pTI->uid = IDS_RECT2:

pTI->lpszText = LPSTR_TEXTCALLBACK;
return 1;

return CView::OnToolHitTest(point, pTI);

In the first section of code, I check to see whether point, passed in by the
framework, is contained in either region. If point is contained in either region,
I initialize a TOOLINFO structure with information on the tool that is cur
rently being queried. This information includes the handle of the parent
window (the application's view), the area of the tool, the ID of the tool, and

173

PA RT I: WORKSHOP

finally, the text for the tool. Because I am handling the TTN_NEEDTEXT no
tification, I pass the value LPSTR_TEXTCALLBACK, which sends a TTN
_NEEDTEXT notification to the parent of the tool, in this case m_hWnd. If
point is not contained by the two regions, I call the base class implementation.

Step 4: Handling the TTN_NEEDTEXT Notification

174

If you rebuilt your project at this point in the procedure, you would get tool
tips for all four tools. However, you wouldn't be able to see the tool tip window
because no tooltip text has been given to the framework to display. To fix this,
you must handle the TTN_NEEDTEXT notification and provide tooltip text
for the appropriate control. The following procedure overrides the CWnd::On
ToolTipNotify function and installs a notification handler for TTN_NEEDTEXT
in the message map of your application's view class.

1. In the "protected" section of your view class (found in the header
file), add the following declaration:

protected:

BOOL CTlTipView::OnToolTipNotify(UINT id, NMHOR *PNMH, LRESULT
*pResult);

2. In the implementation file of your view class, add the line of code
shown in bold to the message map of your view class:

BEGIN_MESSAGE_MAPCCTlTipView, CView)
II {{AFX_MSG_MAPCCTlTipView)

II }}AFX_MSG_MAP
ON_NOTIFY (TTN_NEEDTEXT,0,0nToolTipNot1fy)

END_MESSAGE_MAP()

This code maps the TTN_NEEDTEXT notification to the handler
function CTlTipView: :OnToolTipNotify.

3. In the impleme.ntation file of your view class, add the following
definition:

void CTlTipView::OnToolTipNotify(NMHDR *pNMH, LRESULT
*pResult)

{

II Code will be added later
}

FI V E : Controls

4. Now that you have a handler function for the TTN_NEEDTEXT no
tification, you must add code to the handler that supplies each tool
with its related text. The related text is determined by examining the
NMHDR structure passed to the OnToolTipNotify function. Add the
code below to the body of the overridden OnToolTipNotify function:

TOOLTIPTEXT *PTTT = CTOOLTIPTEXT *)pNMH;
UINT nID = pNMH->idFrom:
if (pTTT->uFlags & TTF_IDISHWND)
{

}

else
{

}

II idFrom is actually the HWND of the tool
nID = ::GetDlgCtrlIDCCHWND)nlD);
ASSERT(nlD != 0);
pTTT->lpszText = MAKEINTRESOURCE(nlD);
pTTT->hinst = AfxGetResourceHandle();

pTTT->lpszText = MAKEINTRESOURCE(nlD);
pTTT->hinst = AfxGetlnstanceHandle();

In the first section of code, I attempt to retrieve the ID of the tool (as
suming that it is a child window) from the NMHDR structure. Ifl am
successful, I retrieve the string that matches the ID of the control, set
the instance of the application, and exit the function. If there is no
control ID, I check for the IDs of the regions IDS_RECTI and IDS
_RECT2. If either region is found, I retrieve the string that matches
the ID of the region, set the instance of the application, and exit the
function.

N 0 T E : In the preceding handler code, the string resources
added in step 1 were used by passing the string ID to the MAKE
INTRESOURCE macro. I could just as easily have used a string con
stant for the lpszText member.

Additional Information
For more information on providing tooltips for dialog box controls, see the
section '~dding Tooltips for Modal Dialog Controls" in Chapter 2. You might
also want to read one or more of the Microsoft Knowledge Base articles listed
on the following page.

175

PART I: WORKSHOP

• DOCERR: How to Display Tool Tips After Calling EnableToolTips:
QI 40595 (Article in its updated form was not available for inclusion
in Part II of this book at press time; see the online version.)

• How to Add Tooltips to OLE Controls: QI4I871

• How to Add Tooltips for Controls on an MFC Modal Dialog Box:
QI 4I 758 (Article in its updated form was not available for inclusion
in Part II of this book at press time; see the online version.)

Enabling a Nested Pop-Up Menu

176

In an MFC application, each item in a menu or submenu can be either en
abled or disabled by calling its related command-update handler through the
ON_UPDATE_UI macro. Usually, this message handler is called only once
before the menu item is displayed to the user. Inside the menu items handler,
you determine whether the menu item is enabled or disabled. However, in the
case of nested pop-up menus, the handler for the first menu item in the pop
up can be called in two different cases. (See the example in Figure 5-3.) This
can cause the nested pop-up to be enabled, even if there are no enabled
menu items on the pop-up menu itself. Therefore, you have to take steps to en
sure that the pop-up menu is enabled only under the appropriate conditions.

Figure5·3.
The nested pop-up menu of the sample project POPUP.

This task (with the sample project POPUP) demonstrates a technique
that enables the nested pop-up menu but only if one or more items on the

F I V E : Controls

pop-up menu are enabled. If no menu items are enabled, the nested pop-up
menu is disabled. The task consists of two steps:

I. Modifying the CMainFrame window class

2. Implementing the command-update handler

To complete this task, you will need an SDI or MDI MFC application
with a nested pop-up menu containing one or more menu items.

Step 1: Modifying the CMainFrame Window Class
In this step, we modify the main frame window class by adding Boolean data
members for each pop-up menu item in the project and modifying the
CMainFrame constructor. These data members (which are named m_bSublevell
and m_bSublevel2 in this example) are used to track whether the pop-up menu
item should be enabled (a value of TRUE) or disabled (a value of FALSE).

Add a data member for each menu item in your nested pop-up menu.
After you have added these variables, initialize the new data members in the
constructor of the CMainFrame class by adding the following code to your
CMainFrame constructor:

m_bSublevell = FALSE:
rn_bSublevel2 = FALSE:

N 0 T E : For this update technique to work properly, you will
have to keep the Boolean variables that represent each pop-up
menu item up-to-date. For instance, if a pop-up menu item is dis
abled by some event, you should immediately update the Boolean
variable related to the menu item. (See the POPUP sample project
for an example.)

Step 2: Implementing the Command-Update Handler
Now you can implement the command-update handler for the first pop-up
menu item. The logic used in this handler enables the pop-up menu, de
pending on the state of its menu items. However, before you get into imple
menting the actual code, I should explain a few things about pop-up menus
and the ON_UPDATE_COMMAND_UI macro.

The ON_UPDATE_COMMAND_UI macro maps command-update com
mand messages to an appropriate message handler. For the first item in the
nested pop-up menu, this handler is called in two different cases. In the first
case, the command-update handler is called for the pop-up menu itself. This

177

PART I: WORKSHOP

178

is necessary because the pop-up menu does not have its own ID; therefore,
the ID of the first menu item is used to refer to the entire pop-up menu. In
the second case, the handler is called just before the pop-up menu items are
to be drawn. In this case, the ID (passed into the handler function) refers to
just the first menu item.

Now comes the important part. If you look at the CCmdUI object passed
in as a parameter to the handler function, you will notice that the value of the
m_pSubMenu data member differs, depending on which case you are dealing
with. In the first case (updating the pop-up menu), the m_pSubMenu member
variable of the CCmdUI object is non-NULL and points to the pop-up menu
to be displayed. In the second case (updating the individual menu items of
the pop-up menu), the m_pSubMenu member variable of the CCmdUI object is
NULL. You can use this difference to properly enable or disable the nested
pop-up menu by checking the value of the m_pSubMenu member variable.
For instance, if there are no enabled items in the nested pop-up menu and
m_pSubMenu is non-NULL, the pop-up menu should not be enabled. Howev
er, if one or more items are enabled and m_pSubMenu is non-NULL, the pop
up menu should be enabled.

The first thing you have to do is add a command-update handler for the
first menu item of the nested pop-up menu. So add a handler and the ON
_UPDATE_COMMAND_UI macro now, using your favorite method. After you
add the handler, modify the function by replacing the current body of the
handler function with the following:

if (pCmdUI->m_pSubMenu != NULL)
{

}

II Enable entire pop-up if Sub level 1 and Sub level 2
II are enabled
BOOL bEnable = m_bSublevell 11 m_bSublevel2:

II Check to see whether we need to enable the pop-up menu.
pCmdUI->m_pMenu->EnableMenuitemCpCmdUI->m_nindex,

MF_BYPOSITION I CbEnable ? MF_ENABLED
(MF_DISABLED I MF_GRAYED)));

return:

II Otherwise, enable just the Sub level 1 command
pCmdUI->Enable(m_bSublevell);

The main part of th~ logic is contained in the if statement. If pCmdUl->m_pSub
Menu is not equal to NULL, the program is displaying the menu, which contains

--"· - ·- ~-~----------------~~-_....-............. -------------------
F I V E : Controls

the nested pop-up menu. In this case, you will have to determine whether any
pop-up menu items are enabled. You can do this by setting a local variable,
bEnable, to the result of ORing the menu item variables. The result is then
used in a call to the EnableMenultem function of the pop-up menu. After up
dating the pop-up menu item, exit the function. If the if test fails, which indi
cates that the pop-up menu items need to be updated, simply update the first
item in the pop-up menu using the current value of the m_bSublevell variable.

Additional Information
For additional information on the ON_UPDATE_COMMAND_UI macro and
the routing of other default messages, see Technical Note 21 in the Microsoft
Visual C++ online documentation.

179

C H A P T E R S I X

ActiveX Controls and OLE
In this chapter, we take a quick peek at the world of Microsoft ActiveX con
trols. Over the last year, through Microsoft's commitment to Internet program
ming, a wealth of functionality has been exposed through the MFC library.
One of the major components of the library is the ActiveX control support. Us
ing MFC and also Microsoft Developer Studio, you can have an ActiveX control
framework up and running in no time. To properly discuss all of the possibili
ties of ActiveX control development is far beyond the scope of this book. How
ever, here I hope to provide you with a few interesting tasks that you can use
when developing ActiveX controls. I am including four ActiveX tasks as well
as one task (exposing MFC collections to a Microsoft Visual Basic applica
tion) that is extremely useful for developers who need to share collections of
objects between Visual Basic applications and MFC applications.

• Making an ActiveX control safe for scripting and initlalizing Demon
strates the steps for implementing the IObjectSafety interface for an
ActiveX control. The IObjectSafety interface is used by Microsoft Inter
net Explorer to determine whether a control is safe for scripting or
initializing.

• Loading an ActiveX control property asynchronously Demonstrates
the asynchronous loading of a bitmap using a custom property (Image
Path) of an ActiveX control.

• Implementing a Custom Interface Using an MFC Out-of-Process
Server Demonstrates the required steps for implementing a custom
interface.

• Exposing the accelerator table of an ActiveX control to VJSUal Basic
applications Shows how Visual Basic containers differ from MFC con
tainers when determining the mnemonics supported by an ActiveX

181

PA RT I : WORKSHOP

control. It then shows how to detail the workaround that allows a con
trol to return an accelerator table that works for both Visual Basic and
MFC containers.

• Exposing MFC collections to a Visual Basic application Shows how
to implement an automation method for a document object that re
turns a collection of the current objects in the document. The collec
tion consists of an enumerated array of VARIANT-type objects that
can be used by Visual Basic applications.

Making an ActiveX Control
Safe for Scripting and Initializing

182

The purpose of this task is to enable an ActiveX control to be safe for script
ing and initializing when queried by its container. Being safe for scripting
and initializing is needed when the control is used within Microsoft Internet

. Explorer versions 3 and later. Every control contained in an HTML page that
is loaded by Internet Explorer is checked for support of the IObjectSafety inter
face. The process that Internet Explorer uses to query the control is shown in
Figure 6-1. If the IObjectSafety interface is not supported, the user is warned by
Internet Explorer that the control could be malicious and is asked whether
the user still wants to download the control. By implementing this interface,
an ActiveX control can state which of the interfaces it implements are safe for
scripting, initializing, or both.

ll>is~tch

IPropf:!J•.tyBag
lObjectSatety;

i! i------~._4...__ __ ~~10--
Explorer Safety Control

1. Query for /Dispatch.
2. If present, ask to enable scripting safety.

Internet Explorer

3. Query for /PropertyBag.
4. If present, try to set initializing safety.

Figure 6-1.
Initial interaction between Internet Explorer and an ActiveX control that
supports the IObjectSafety interface.

This task consists of four steps:

1. Adding the IObjectSafety interface

2. Modifying the control class

S I X : ActiveX Controls and OLE

3. Implementing the AddRef, Release, and Qy,erylnterface functions

4. Implementing the Get/SetlnterfaceSafetyoptions functions

The name of the sample project is IMAGE, and it requires an ActiveX
control project.

Step 1: Adding the /ObjectSafety Interface
Because the !ObjectSafety interface is already defined by the ActiveX SDK, all you
have to do to use the interface in your control is include the header file that de
fines the interface (OBJSAFE.H), which is found in the MFC\INCLUDE direc
tory. In addition, you have to include the header file INITGUID.H, which is
used in step 2 of this task. You won't be modifying the header files; therefore,
you should include them in STDAFX.H because STDAFX.H is a precompiled
header file and is compiled only when its state changes. The first build that oc"
curs after you add the header files will compile OBJSAFE.H and INITGUID.H
into the precompiled header. Successive builds will then use the precompiled
header instead of recompiling everything.

In the STDAFX.H header file of your project, add the following lines:

#include "objsafe.h"
#include "initguid.h"

Now that you have included the appropriate header files, you can add
the IObjectSafety interface to the control class of the project.

Step 2: Modifying the Control Class
In this step, we declare the !ObjectSafety interface, four protected member vari
ables, and an enumerated type in the control class. The following list describes
the purpose of each member variable and the enumerated type:

II m_supportedScripti:ngOptfrms Stores the safety options that are related
to scripting and are supported by the control

II m_supportedlnitOpnmis Stores the safety options that are related to
initializing and are supported by the control

II m_enabledScripnngOpnmis Stores the safety options that are related
to the scripting currently enabled by the control

II m_enabledlnitOpnmis Stores the safety options that are related to the
initializing currently enabled by the control

II Safetyopnoos An enumerated type that stores the current safety op
tions that are supported by the control

183

PART I: WORKSHOP

184

Follow the procedure below to modify the control class:

1. In the "public" section of your control class, add the following lines
of code:

DWORD rn_supportedScriptingOptions;
DWORD rn_supportedlnit0pt1ons;
DWORD rn_enabledScriptingOptions;
DWORD m_enabledlnitOptions;

The first two lines of code declare the variables that store the script·
ing and initializing options the control supports. The second two
lines declare the variables that store the scripting and initializing op
tions currently enabled for the control.

2. In the "public" section of your control class declaration, add the fol
lowing lines of code:

enum SafetyOptions
{

}

SupportedScriptingOptions
INTERFACESAFE_FOR_UNTRUSTED_CALLER.

SupportedlnitOptions =
INTERFACESAFE_FOR_UNTRUSTED_DATA

This enumerated type stores the safety options for scripting and ini·
tializing that are currently supported by the control:

o INTERFACESAFE_FOR_UNTRUSTED_CAlLER:
This option, which indicates safe for scripting, declares that no

matter how malicious a script is, the automation model of the con·
trol does not allow any harm to the user, either in the form of data
corruption or in the form of security leaks.

o INTERFACESAFE_FOR_UNTRUSTED_DATA:
This option, which indicates safe for initialization, declares

that the control is guaranteed to do nothing bad, no matter what
type of data is used to initialize the control.

3. Save your changes to this file.

4. Add the following lines of code to your control's constructor, which is
found in the implementation file:

m_supportedScr1pt1ngOpt1ons = SupportedScr1pt1ngOpt1ons;
m_supportedln1t0ptions = 0;

S I X : ActiveX Controls and OLE

m_enabledScriptingOptions = 0;
m_enabledinitOptions = 0;

The first two lines of code allow your control to be marked as safe for
scripting but not safe for initializing. The second two lines of code set
m_enabledScriptingOptions and m_enabledlnitDptions to zero, which in
dicates that the control has not yet been queried for safety options.

N 0 T E : For the purpose of discussion, the task and sample
project implement support for the INTERFACESAFE_FOR_UN
TRUSTED_CALLER safety option only. When implementing
IObjectSafety for your control, you must decide what options to
support.

5. Save your changes to this file.

After declaring the four protected member variables, declare the IOb
jectSafety interface using the following procedure:

1. Add the following lines of code to the header file of the control class
in the "protected" section:

BEGIN_INTERFACE_PART(MySafetyObj, IObjectSafety)
INIT_INTERFACE_PART(CimageCtrl, MySafetyObj)

STDMETHOD(GetinterfaceSafetyOptionslCREFIID, DWORD*,
DWORD*);

STDMETHOD(SetinterfaceSafetyOptions)(REFIID, DWORD,
DWORD);

END_INTERFACE_PART(MySafetyObj)

DECLARE_JNTERFACE_MAP()

N 0 TE: Substitute the name of your control class for Clmage
Ctrl and the new name of the nested class for MySafetyObj.

2. Save these changes to your header file.

In this, the BEGIN_INTERFACE_PART and END_INTERFACE_PART macros
define a nested class, in this case XMySafety0/1. The X in XMySafety0/1 is used
only to differentiate nested classes from global classes (which start with "C")
and from interface classes (which start with "I"). A nested member of this
class is now created: m_xMySafety0/1. Because the BEGIN_INTERFACE_PART
and END_INTERFACE_PART macros automatically declare the AddRef, Release,
and Qy,erylnterface functions, you have to declare only the two functions spe
cific to this interface: GetlnterfaceSafetyoptions and SetlnterfaceSafetyDptions. (For

185

PA AT I: WORKSHOP

· more information on the macros and other related topics, see Technical Note
38 in the Microsoft Visual C++ online documentation.)

After you declare the IObjectSafety interface, you have to define the glob
ally unique identifier (GUID) of the interface and map the interface to your
control. Define the GUID in the control's implementation file using the
DEFINE_GUID macro. I usually add this line after the declaration of the two
interfaces exposed by the control. The following code sample defines the
GUID for the IObjectSafety interface:

DEFINE_GUIDCIID_IObjectSafety, 0xcb5bdc81, 0x93cl, 0xllcf, 0x8f,
0x20, 0x0, 0x80, 0x5f, 0x2c, 0xd0, 0x64):

N 0 T E : Each interface and type of COM object are accessed by
a universally unique identifier (UUID), also known as a GUID. A
UUID is a 128-bit value used for identifying an entity uniquely
within COM/OLE. Interface identifiers (IIDs) and class identifiers
(CLSIDs) are two of the most important kinds ofUUIDs. OLE defines
an interface ID for each interface; the ID is used in manipulating the
interfaces. For more information, see IUnknown::Qy,erylnterjace in
OLE 2 Programmer's Reference, Volume 1 (Microsoft Press, 1995).

Remember the INITGUID.H file you included in step 1? Even though
you defined the GUID for the IObjectSafety interface using the DEFINE_GUID
macro, it still needs initializing. This is what the INITGUID.H file does for
you. (Check out the Microsoft Knowledge Base article ''Avoiding Error LNK2001
Unresolved External Using DEFINE_GUID": Q130869 for more information
on how this is achieved.) And although you have declared the IObjectSafety
interface as part of your control, you must still map the IObjectSafety interface
(which you declared earlier in this step) to the nested class of your control. Do
this by adding the following lines of code to your control's implementation
file right after the declaration of your control's dispatch map:

BEGIN_INTERFACE_MAPCCimageCtrl, COleControl)
INTERFACE_PARTCCimageCtrl, IID_IObjectSafety, MySafetyObj)

END_INTERFACE_MAPC)

Substitute the names used by your control for the control name and the nested
class that implements the IObjectSafety interface.

Step 3: Implementing the AddRef,
Release, and Query/nterface Functions

186

The three functions automatically declared when you declare the new interface
(AddRef, Release, and Qy,crylnterface) are part of an important OLE interface:

S I X : ActiveX Controls and OLE

!Unknown. !Unknown enables clients (objects using your control) to retrieve
pointers to other interfaces supported by your control and to manage the
existence of the object through the !Unknown: :AddRef and !Unknown: :Release
functions. All other COM interfaces are inherited, directly or indirectly, from
!Unknown. Therefore, the AddRef, Release, and Qµerylnterface functions are the
first entries in the virtual table for every interface.

Your control is derived (eventually) from CCmdTarget, so you can dele
gate the implementation of AddRef, Release, and Qµerylnterface to CCmdTarget.
This is made possible by three functions in MFC: Externa'/A.ddRef, ExternalRe
lease, and ExternalQµerylnterface. Each function provides the standard data
driven implementation based on your object's interface map. In other words,
you pass on the cost of implementation to CCmdTarget. The following proce
dure for implementing the !Unknown interface adds this functionality to your
control class.

1. Add the following lines to the implementation file of your control
class after any handler function definitions:

STDMETHODIMP_(ULONG) CimageCtrl::XMySafetyObj::AddRef()
{

}

METHOD_MANAGE_STATECCimageCtrl, MySafetyObj)
ASSERT_VALID(pThis):

return pTh1s->ExternalAddRef();

This defines the AddReffunction of the !Unknown interface. Substi
tute the name of your nested class for XMySafetyObj and MySafetyObj
and the name of your control class for ClmageCtrl.

2. Add the following lines after the AddRef definition to the implemen
tation file of your control class:

STDMETHODIMP_(ULONG) CimageCtrl::XMySafetyObj::Release()
{

}

METHOD_MANAGE_STATECCimageCtrl, MySafetyObj)
ASSERT_VALIDCpThis);

return pThis->ExternalRelease();

This defines the Release function of the !Unknown interface. Once
again, substitute the name of your nested class for XMySafetyObj and
MySafetyObj and the name of your control class for ClmageCtrl.

187

PART I: WORKSHOP

3. Add the following lines after the Release definition to the implemen
tation file of your control class:

STDMETHODIMP CimageCtrl ::XMySafetyObj::Queryinterface(
REFIID iid, LPVOID FAR* ppvObj)

{

}

METHOD_MANAGE_STATECCimageCtrl, MySafetyObj)
ASSERT_VALIDCpThis);

return pThis->ExternalQueryinterface((void *)&iid, ppvObj);

This defines the Qy,erylnterface function of the /Unknown interface.
OK, all together now: substitute the name of your nested class for
XM.ySafetyObj and MySafetyObj and the name of your control class for
CimageCtrL

4. Save these changes to your implementation file.

You've now finished implementing the /Unknown interface. In reality,
you did little more than delegate the work. But that is the point of using a class
library-if your parent class can do the work, let it!

Step 4: Implementing the
Get/SetlnterfaceSafetyOptions Functions

188

In this step, you will implement the GetlnterfaceSafetyoptions function, which
indicates the current safety options supported by your control, and learn about
the issues related to implementing the SetlnterfaceSafetyoptions function. To
correctly implement GetlnterfaceSafetyoptions, you have to return the options
that the control can support (in this case, only those safe for scripting) and
the current values of m_enabledScriptingOptions and m_enabledlnitoptions when
the client requests the current safety options.

Returning the Current Safety Options for Your Control
The GetlnterfaceSafetyoptions function is called when the client requests the
current safety options that are supported. Add the following code to your con
trol's GetlnterfaceSajetyoptions function:

STDMETHODIMP ClmageCtrl::XMySafetyObj::GetlnterfaceSafetyOptions(
REFIID riid, DWORD __ RPC_FAR *pdwSupportedOptions,
DWORD __ RPC_FAR *pdwEnabledOptions)

{

METHOD_MANAGE_STATECCimageCtrl, MySafetyObj)

}

S I X : ActiveX Controls and OLE

ASSERT_VALID(pThis);

if (!pdwSupportedOptions I I !pdwEnabledOptions)
return E_POINTER:

if (riid == IID_IDispatch)
{

}

*pdwSupportedOptions = pThis->m_supportedScriptingOptions:
*pdwEnabledOptions = pThis->m_enabledScriptingOptions;
return 5-0K:

else if (riid == IID_IPersistPropertyBag)
{

*pdwSupportedOptions = pThis->m_supportedlnitOptions:
*pdwEnabledOptions = pThis->m_enabledlnitOptions:
return S_OK:

}

else
{

}

*pdwSupportedOptions *pdwEnabledOptions 0:
return E_FAIL:

N 0 T E : Replace CSafeCtrl with the name of your control class
and MySafetyObj with the name of your nested class in the call to
METHOD_MANAGE_STATE. Note that the code only checks the
!Dispatch and IPropertyBaginterfaces, which vary depending on the
type of control.

In the first section of code, the control's module-specific information is stored
in the MFC global state using METHOD_MANAGE_STATE, and the pThis
pointer is checked for validity. The interface passed in is then checked to see
whether it is one that the control supports (either !Dispatch or !PropertyBag). If
it is, the option allowed (m_supportedScriptingOptions or m_supportedlnitoptions)
and the option currently enabled (m_enabledScriptingOptions or m_enabledlnit
Dptions) are returned. If the interface passed in is not !Dispatch or !Property
Bag, E_FAlL is returned.

Setting the Current Safety Options for the Image Control
You will have to do three things when you implement the SetlnterfaceSafety-.
options functfon:

II Determine what safety options the control can support: none, safe
for scripting, safe for initializing, or safe for both scripting and
initializing.

189

PA RT I : WORKSHOP

190

Ill Allow external clients to enable the safety options supported by the
control using the SetlnterfaceSafetyoptions function.

Ill Modify the actions of the control if one or more of the safety options
are enabled.

Let's tackle these in order.

Determining what safety options are supported by the control This task is
difficult to discuss with authority at this time because the criteria for what
makes an ActiveX control safe for scripting or for initializing are still in devel
opment. The situation is complicated by the fact that for each control there
will be a unique solution for making that control safe for scripting or for initial
izing. However, in a discussion of this issue, John Elsbree (a Microsoft MFC
developer) and I came up with a few commonsense guidelines you can use
until more specific criteria are published by Microsoft's MFC group.

To be safe for scripting, a control must not do any of the following:

Ill Delete, modify, or add files located on the control user's system with
out first asking permission.

Ill Allocate or lock overly large amounts of system resources for its own
use.

To be safe for initializing, a control must not do either of the followillg:

Ill Make use of data for initialization purposes without first verifying
that the data comes from a "safe" source.

Ill Perform any action on the control user's system, such as deleting or
adding files, without first asking permission.

Now, having said all of that, let me add one more thing: the bottom line
is that you, as the control developer, are the only one who can determine
whether your control can be marked as safe for scripting or initializing.

Allowing modification of safety options by external clients After you have
determined what safety options you support, if any, you must add code to the
SetlnterfaceSafetyoptions function that will enable these options when this is re
quested by the client. You can use the following code sample as a guideline
for your implementation of SetlnterfaceSafetyoptions. The code is taken from
ClmageCtrl::SetlnterfaceSafetyoptions.

S I X : ActiveX Controls and OLE

STDMETHODIMP ClmageCtrl::XMySafetyObj::SetlnterfaceSafetyOptions(
REFIID riid, DWORD dwOptionSetMask,

}

DWORD dwEnabledOptions)

METHOD_MANAGE_STATE(ClmageCtrl, MySafetyObj)
ASSERT_ VA LI DC pThi s);

if (riid == IID_IDispatch)
.{

}

if ((dwOptionSetMask & pThis->m_supportedScriptingOptions)
== dwOptionSetMask)

}

else

DWORD dwNewOptions = dwOptionSetMask & dwEnabledOptions;
pThis->m_enabledScriptingOptions =

(pThis->m_enabledScriptingOptions &
-dwOptionSetMask) I dwNewOptions;

return S_OK;

return E_FAIL:

else if (riid == IID_IPersistPropertyBag)
{

}

else

if ((dwOptionSetMask & pThis->m_supportedlnitOptions)
== dwOptionSetMaskl

{

}

else

DWORD dwNewOptions = dwOptionSetMask &
dwEnabledOptions;

pThis->m_enabledlnitOptions =
CpThis->m_enabledlnitOptions &
-dwOptionSetMaskl I dwNewOptions:

return S_OK:

return E_FAI L:

return E_FAIL;

In the first section of code, I again store the control's module-specific infor
mation in the JMFC global state using METHOD_MANAGE_STATE and check
the pThis pointer for validity. I then check the interface that has been passed
in to see whether it is an interface I support (either !Dispatch or IPcrsistProperty
Bag). Ifit is, I perform a little sleight-of-hand (using bitwise AND operators)
to determine whether the options being changed are supported by my con
trol (in this case, options that are safe for scripting). If the safety option is not

191

PA RT I: WORKSHOP

192

equal to safe for scripting, I return E_FAIL, informing the client that it is
unsafe for scripting. However, if the safety option is safe for scripting, I set
m_enabledScriptingOptions to the option requested and return S_OK. If the
interface passed in is not !Dispatch or IPersistPropertyBag, I return E_FAIL.

Modifying control actions that could compromise safety Now that you al
low your safety options to be changed, you must ensure that any action per
formed by your control, such as file access, file modification, or allocation of
resources, are within the guidelines of the current safety options of the con
trol. Examine your control code, looking for any areas that are potentially un
safe. Such areas are commonly found in the handlers for your control's
properties or methods and in the internal code that accesses resources out
side the control's own resources, such as an external bitmap or text file. If
you find a potentially unsafe area, encapsulate it with a conditional that
checks the current safety options of the control. If the area in question can
be executed without compromising the safety of the control, execute it. If it
cannot, either disable the functionality or modify the code so that the safety
of the control is maintained.

An example of this type of modification can be found in the implemen
tation of the ImagePath property, which is a custom property of the sample
project. The ImagePath property accepts a string that describes the location
of the bitmap to be loaded. To be able to mark the control as safe for script
ing, I accept, for example, only images found on other Web sites (that is, hav
ing an http://prefix)-well, it's a pretty weak example, but it is an example
nonetheless! This is done by checking the path for the prefix "http://"; if the
prefix is found, the path is valid. If the control has not been marked as safe
for scripting, the check is not performed and any path is accepted. This
check is done before setting the property and loading the bitmap by making
a call to ClmageCtrl::ValidlmagePath.

N 0 T E : Because bitmaps are static images, they cannot contain
viruses (yet!), and they are thus unable to do anything except be dis
played. Therefore, a bitmap is safe for loading even ifthe control is
not marked as safe for scripting or for initializing.

The following code is from the ClmageControl:: ValidlmagePath function:

II If control is not marked as SfS, accept any path;
II else accept only paths that have the http://
II prefix
CString strPath = path;

S I X : ActiveX Controls and OLE

if (!m_enabledScr1pt1ngOpt1ons)
return TRUE;

else
{

int retVal = strPath.Find("http://");
if CretVal == 0)

return TRUE;
else

return FALSE;

The first section of code initializes a temporary CString object with the value
of the path to be checked. The next section is an if statement that checks the
status of the control's safety options. If the control has not been marked as
safe for scripting, m_enabledScriptingOptions is equal to 0, no check is per
formed, and ValidlmagePath returns TRUE. However, if the control has been
marked, the string is tested for the presence of the "http://" prefix. If the pre
fix is found, ValidlmagePath returns TRUE. If no prefix is found, the path is in
valid and ValidlmagePath returns FALSE.

After you have modified any unsafe areas of your control code, rebuild
the project. Your control can now mark itself as safe for scripting or for ini
tializing or both.

Loading an ActiveX
Control Property Asynchronously

The purpose of this task is to asynchronously load a 16-color bitmap image
(represented by the custom ImagePath property) of an ActiveX control. Asyn
chronous loading is designed for properties that are downloaded in a large
stream, such as bitmaps and video data. Because the data can be retrieved
from the source in an incremental or progressive fashion, the control works
cooperatively with other controls that also might be retrieving data. The sam
ple program, IMAGE, demonstrates this by loading a bitmap image file when
the control's client sets the ImagePath property. The task consists of nine steps:

1. Adding a class derived from CCachedDataPathPropcrty

2. Adding attributes for the bitmap property

3. Implementing the ResetData function

4. Implementing the OnDataAvailable function

193

PART I: WORKSHOP

5. Adding data members and functions to the control class

6. Modifying the Get and Set functions for the ImagePath property

7. Modifying the DoPropExchangefunction

8. Overriding and modifying the OnResetState function

9. Calling IntcrnalSetReadyState at the correct times

The name of the project is IMAGE. The requirement for the task is an
ActiveX control project.

W A R N I N G : If you are using variable names other than the
ones I use in this task, you must modify the four functions copied
in step 4.

Step 1: Adding a Class Derived from CCachedDataPathProperty
For an ActiveX control to implement an asynchronous property correctly, the
property must be implemented with a class derived from CCachedDataPath
Property. This MFC class provides several functions and overrides that make im
plementing asynchronous properties a little easier. It even provides a CMemFile
data member for storing the image you will download. Using your favorite
method, add a class derived from CCachedDataPathProperty to your ActiveX
control project. In the sample project, this class is named CBitmapProperty.

Step 2: Adding Attributes for the Bitmap Property

194

Because you are downloading a bitmap, you have to customize the CBitmap
Property class to store important information about the bitmap file. Add the
following code to the "public" section of the CBitmapProperty class:

CBitmap m_Bitmap; II Class for the bitmap
CSize m_BitmapSize; II Size of the bitmap, in bytes
BITMAPINF0256 m_bm!nfo; II Structure derived from

II BITMAP INFO
enum DLState
{

dlNone, II Not downloading
dl Fil eHeader, II Downloading file header
dlinfoHeader, II Downloading BITMAPINFO
dlColorTable, II Downloading color table
dlDone II Downloading complete

} m_dlState; II ENUM type representing the
II current download state

int m_nScanline; II Height (in lines) of bitmap

S I X : ActiveX Controls and OLE

In the header file CBitmapProperty, add the following code before the dec
laration of the CBitmapProperty class:

struct BITMAPINF0256 : public BITMAPINFO
{

RGBQUAD bmi0therColors[255];
} ;

This declares a structure, derived from BITMAPINFO, that will be used to
store information about the bitmap.

Step 3: Implementing the ResetData Function
In some cases, the ImagePath property can be interrupted during download
ing. If the property is interrupted during downloading, it should be cleared
and reloaded. The CCachedDataPathProperty class provides a function (Reset
Data) that, when called, notifies the container that the control properties
have changed and all information loaded asynchronously (in our case, the
ImagePath property) is no longer useful. Override the ResetData function
now, and replace the function body with the following code:

CCachedDataPathProperty::ResetData();
m_dlState = dlNone;
if (m_Bitmap.m_hObject != NULL)

m_Bitmap.DeleteObject();

m_cache.SetLength(0);
m_cbRead = 0;
m_nScanLine = 0;

In this code, I call the base class's ResetDatafunction, reset the download state
(m_dlState) to 0, and delete the m_bitmap object if it is not equal to NULL. I then
reset the cache (m_cache), the number of bytes read (m_cbRead), and the cur
rent line being read (m_nScanLine) back to 0. After I exit ResetData, the Image
Path property is ready to be reloaded.

Step 4: Implementing the OnDataAvailable Function
The OnDataAvailable function is one of the most important functions avail
able to classes derived from CCachedDataPathProperty. This function is called
by the framework to provide data to the client as soon as the data becomes
available during asynchronous binding operations. The default implementation
does nothing, so you have to override OnDataAvailable and then provide your
own implementation. (Because OnDataAvailableis a large function, the following
discussion about implementing it is not a comprehensive one. For more detail,

195

PART I: WORKSHOP

196

see the CBitmapProperty::OnDataAvailablefunction in the sample project.) To
successfully download the bitmap file, you have to do several things when you
implement OnDataAvailable:

1. Initialize the property attributes by calling ResetData if this is the first
time OnDataAvailable has been called.

2. Check to see whether any new data from the bitmap file has been
downloaded. If there is no new data, exit OnDataAvailable. If there is
new data to read, proceed.

3. Depending on the current state of the download (not started, read
ing file header, reading info header, reading color table), attempt to
read the next section of the bitmap file.

4. If you can read the next section of the bitmap file, store the data in the
cache file, initialize the appropriate attributes of the CBitmapProperty
class with the new data, and increment the download state flag. If these
operators are not successful (the current section being read was not
downloaded completely), set a flag indicating the failure.

5. Check the download state flag. If the value indicates that download
ing is not complete and the current section of the file has been read,
return to step 3 of this list.

6. Continue until either the file read fails or the file has been down
loaded completely.

7. Just before exiting OnDataAvailable, inform the control of the current
state of the download.

N 0 T E : To give you an idea of why I don't just show you the actual
implementation of OnDataAvailable, it took about 100 lines of code
to implement the seven steps in this list correctly! And that's not all.
The OnDataAvailable function makes use of three additional helper
functions that I didn't even mention-quite a chunk of code!

Override OnDataAvailable now, and complete the procedure on the next
page, which walks you through copying the necessary functions from the sam
ple project into your project.

WA R N I N G : If you have not followed the same naming con
ventions for member variables, classes, and functions that I've used
in this task, you must modify the names used in the four functions
that you will copy over. If you do not do this, you will be buried in
a mountain of errors!

S I X : ActiveX Controls and OLE

1. From your project, open the header file that contains the declaration
of the CBitmapProperty class.

2. Add the following lines to your declaration of CBitmapProperty:

II Operations
public:

BOOL ReadStruct(DWORD& rdwSize, void* pb, int clen);
int ReadArray(DWORD& rdwSize, void** pb, int cElem, int

cMax);

3. Save your changes, and close the file.

4. From your project, open the implementation file of the CBitmapProp
erty class.

5. Open the BITMAPPROPERTY.CPP file from the IMAGE sample
project.

6. Copy CBitmapProperty::OnDataAvailable from the IMAGE sample
project, and paste it into the implementation file of your CBitmap
Property class.

7. Copy AfxTransfCTFileContent from the IMAGE sample project, and
paste it into the implementation file of your CBitmapProperty class.

8. Copy CBitmapProperty::ReadStruct from the IMAGE sample project,
and paste it into the implementation file of your CBitmapProperty
class.

9. Copy CBitmapProperty::ReadArray from the IMAGE sample project,
and paste it into the implementation file of your CBitmapProperty
class.

10. Save your changes, and close the file.

After you complete this procedure, continue on and modify the existing
ActiveX control class.

Step 5: Adding Data Members and-Functions to the Control Class
Now that you have implemented the cached bitmap object, you have to mod
ify the existing ActiveX control class to expose and manage this property. In
this step, you will add a data member for CCachedDataPathProperty, the Get/
Set ImagePath property, and a stock event named ReadyStateChange. To add
new members to the control class, follow the procedure on page 198.

197

PART I: WORKSHOP

1. In the header file of your control class, add a "public" data member
named m_bmProp, of type CBitmapProperty.

2. Add the ReadyStateChange stock event to your control class using
Class Wizard.

3. Add a custom property using the following parameters:

O External name: ImagePath

o Type: BSTR

0 Implementation: Get/Set methods

0 Get function: default value

0 Set function: default value

0 Parameter list: lpszNewValue, type LPCTSTR

4. Save all changes.

Step 6: Modifying the Get and Set
Functions for the lmagePath Property

Currently the Get/Set functions of the ImagePath property do nothing. You
have to modify the GetlmagePath function to return the current value oflmage
Path and modify the SetlmagePath function to update the ImagePath property
with the new path given by the control's client. In the GetlmagePath function
of your control, replace all code with the following:

return m_bmProp.GetPath().AllocSysString();

In the SetlmagePath function of your control, replace all code with the
following:

Load(lpszNewValue, m_bmProp);
Invalidate(FALSE);
SetModifiedFlag();

The first thing I do is call the Load function, which initiates the asynchronous
transfer. I invalidate the control to force a repaint and then set the control's
modified flag to indicate that the property value has changed.

Step 7: Modifying the DoPropExchange Function

198

Because the ImagePath property is asynchronous and is implemented with
CCachedDataPathProperty, you have to modify the DoPropExchange function of
the control. Add the following lines to your control's DoPropExchange func
tion after the call to the base class DoPropExchange function:

S I X : ActiveX Controls and OLE

if CpPX->Isloading())
InternalSetReadyStateCREADYSTATE_LOADING);

PX_DataPathCpPX, _T(''ImagePath"). m_bmProp):

This code accomplishes two things. When the ImagePath property begins to
load, the control's internal state is changed automatically with a call to lnternal
SetReadyState. This updates the clients of the control with respect to the cur
rent state. (This is discussed in detail in step 9.) Also, the ImagePath property
is correctly serialized with a call to PX_DataPath.

Step 8: Overriding and Modifying the OnResetState Function
In step 3, I discussed the reason behind overriding the ResetData function for
the asynchronous bitmap property. Similar reasoning also applies to the in
ternal state of your control. Overriding the OnResetState function allows you

. to be notified when the properties of the control should be set to their de
fault values. It turns out to be a simple override because all you have to do is
let the bitmap object know that it needs to reset its data and then make a call
the base class function. Override this function in your control class, and re
place the existing code with the following code:

m_bmProp.ResetData();
COleControl::OnResetState(); II Resets defaults found in

II DoPropExchange

Step 9: Calling /nterna/SetReadyState at the Correct Times
The last thing you have to do is update the state of the control with regard to
the asynchronous ImagePath property. This allows the client (or clients) of
the control to be notified when the state of the control changes. When a con
trol is first loaded, it is not ready for interaction automatically-perhaps a
critical property has to be loaded, or some calculations have to be performed.
In any case, after the control has accomplished the minimal requirements to
become interactive (as determined by the control developer), it must notify
the client by making a call to lnternalSetReadyState. Depending on what pa
rameter is passed to this function, the client can determine to some degree
the current state of the control. The parameter of the InternalSetReadyState
function can have the following values:

II READYSTATE_UNINITIALIZED
This is the default initialization state.

11 READYSTATE_LOADING
The control is loading its properties.

199

PART I: WORKSHOP

II READYSTATE_LOADED
The control has been initialized.

11 READYSTATE_INTERACTIVE
The control has enough data to be interactive, but not all asyn

chronous properties have been loaded.

11 READYSTATE_COMPLETE
The control has all of its data.

At this point, examine your control and determine the points at which
the control changes state (the five values above). Keep in mind that your con
trol does not need to inform the client (or clients) of all five state changes.
However, from the client's point of view, the point at which the control first
becomes interactive (able to communicate and to accept limited commands
from the client) is the most important state change. You must inform the cli
ent when this change occurs. Figure 6-2 shows how the ImagePath property is
loaded and the points at which the sample control changes state.

After you have determined the points at which the state changes, add calls
to InternalSetReadyStateusing the appropriate parameter for each call. Be sure
that you make at least one call to the IntcrnalSetReadyState function at some
point in your project using READYSTATE_INTERACTIVE for the value.

After adding code for each state change in the control, save your chang
es and rebuild the project. Your control now exposes an asynchronous prop
erty named ImagePath. When the user changes the value of this property by
supplying a path to the image, the file is asynchronously retrieved.

Additional. Information

200

Because rendering the downloaded image was not related to the task at hand,
I have not discussed it. For the code that does this, check out the ClmageCtrl::
OnDraw function, which is found in the implementation file of the CBitmap
Property class. In this function, if the ImagePath property is uninitialized, the
client area of the control is painted black. When the control receives the proper
path, the bitmap is rendered in the client area of the control. The Image control
also exposes a custom property named AutoSize. If this property is enabled,
the size of the control is set automatically to the size of the bitmap. If the prop
erty is disabled, the control does not resize the new image when it is loaded.

Flow of Execution

+1
·"''Cfoftt~ ·

. . .t~!~J.-1Jp II• . .

+

Figure 6-2.

S I X : ActiveX Controls and OLE

1. Jnterna/SetReadyState called with the value

READYSTATE_UNINITIALIZED.

2. /nterna/SetReadyState called with the value

READYSTATE_LOADING.

3. Jnterna/SetReadyState called with the value

READYSTATE_INTERACTIVE.

4. fnterna/SetReadyState called with the value

READYSTATE_DONE.

Process for loading the ImagePath property.

201

PA RT I: WORKSHOP

Implementing a Custom Interface
Using an MFC Out-of-Process Server

The purpose of this task is to implement a custom interface, derived from
!Unknown, from a CCmdTarget-derived class. Unlike COM interfaces, custom
interfaces are not supported by the system. The main reason for developing
one is to expose other interfaces that are specific to a user-defined object or
data type. Because a custom interface is implemented from an out-of-process
server (which means that it is a stand-alone executable), it also makes use of
a marshaling DLL. This DLL is responsible for routing information from the
external client to the custom interface of the CCmdTarget-derived object, which
is found in the out-of-process server.

The MYPT sample used in this task contains a creatable OLE Automation
object (CMyPointObj) that wraps a CPoint-type class. In the first part of this
task, the interface exposes three methods that allow an external client to get
and set the current value of a point object and to perform a translation on
that point. In the second part of this task, a marshaling DLL (MYPTDLL) is
created to act as a proxy between the CMyPointObj object and the external cli
ent. The task consists of nine steps:

1. Declaring the custom interface

2. Generating the GUID for the custom interface

3. Adding include files to the project

4. Adding a CCmdTarget-derived class to the project

5. Modifying the new CCmdTarget-derived class

6. Implementing the !Unknown portion of the custom interface

7. Implementing the IMyPointportion of the custom interface

8. Creating the marshaling DLL

9. Using the custom interface and the marshaling DLL

To complete this task, you will need an MFC application.

Step 1: Declaring the Custom Interface

202

Declaring a custom MFC interface is similar to declaring a custom C++ class.
MFC provides three macros that make the declaration fairly straightforward
and painless:

S I X : ActiveX Controls and OLE

• DECLARE_INTERFACE_ Begins the declaration of a custom inter
face. Use this macro to declare a name for your custom interface and
the base interface from which you are deriving it (for example, /Un
known or /Dispatch).

• STDMETHOD Declares an interface function whose return is of
type HRESULT (the standard return type for OLE-related functions).
Use this macro to declare interface methods that will return an
HRESULT, such as NOERROR.

• STDMETHOD_ Declares an interface function whose return is not
of type HRESULT. Use this macro to declare interface methods that
return a type other than HRESULT, such as long.

It's good practice to declare the interface in a separate header file. This
makes it easy to include the interface in the project wherever it's needed. Add
the following code to a new text file, and save it in your project's directory as
IMYPT.H:

#ifndef _IMYPT_H
#define _IMYPT_H

#undef INTERFACE
#define INTERFACE IMyPoint

DECLARE_INTERFACE_(IMyPoint, !Unknown)
{

} :

If** !Unknown methods **
STDMETHOD(Queryinterface) (THIS_ REFIID riid,

LPVOID FAR* ppvObj) PURE:
STDMETHOD_(ULONG, AddRef) (THIS) PURE:
STDMETHOD_(ULONG, Release) (THIS) PURE:

If** IMyPoint methods **
STDMETHOD(GetValues) (long* xVal, long* yVal) PURE:
STDMETHOD(SetValues) (long xVal, long yVal) PURE:
STDMETHOD(TranslatePoint) (long translationVal) PURE:

typedef IMyPoint FAR *LPMyPoint:

1fendif

The first section of this code redefines INTERFACE as equal to /MyPoint. This
redefinition ensures that the declaration of the interface structure is proper

203

PART I: WORKSHOP

for both C and C++. In C source files, this redefinition allows forward refer
ences (as a substitute for the implicit this pointer) of the class name (in this
case, IMyPoint). However, in C++ source files this redefinition is not needed
because the implicit this pointer already exists in the C++ language. There
fore, the whole redefinition becomes a null operation. If you really want to
dig into this stuff, check out OBJBASE.H, which is located in the \DEVSTU
DIO\ VC\INCLUDE directory.

In the next section of code, the DECLARE_INTERFACE_ macro is used
to begin a new interface named IMyPoint, which is derived from the !Unknown
interface. After the DECLARE_INTERFACE_ macro, I declare the !Unknown
portion of the custom interface. The !Unknown interface functions are re
quired for every OLE interface.

In the final section of code, I declare the three IMyPoint functions:
GetValues, SetValues, and TranslatePoint (Figure 6-3). Finally, I close the declara
tion of the custom interface and define a pointer of type far for the interface.
This defines a convenient method of access for the application. In step 5 of this
task, you will use IMYPT.H to implement the IMyPoint interface for your new
automation class, which is added in step 4.

Figure 6-3.
The IMyPoint custom interface.

Step 2: Generating the GUID for the Custom Interface

204

In addition to the interface declaration performed in step 1, one more item
is required to complete the interface declaration-the interface's GUID.
This ID is used by external clients to request a specific interface. You can
think of it as a kind of kind of baggage claim ticket. You don't get your bag
unless you have the ticket. Because there are many custom interfaces floating
around, we need a method of generating GUIDs that avoids an ID conflict. It
just so happens that Microsoft's Win32 SDK has a cool little application,
GUIDGEN.EXE, that does exacdy this. The program guarantees a unique

S I X : ActiveX Controls and OLE

identifier in the format that is needed. In your case, you need a GUID for use
in a call to DEFINE_GUID.

Using GUIDGEN, create a unique identifier for the IMyPoint interface
now. Copy the DEFINE_GUID option of the new GUID, and paste it to the end
of the IMYPT.H file before #endif. The result should look like this:

II {8F8FEFB0-23A7-lld0-B694-00AA00574A50}
DEFINE_GUID(llD_IMyPoint,
0x8f8fefb0, 0x23a7. 0xlld0, 0xb6, 0x94, 0x0, 0xaa, 0x0, 0x57, 0x4a,

0x50l;

typedef IMyPoint FAR *LPMyPoint;

1faendi f

Unless GUIDGEN is broken, your GUID should differ from the GUID
above (hence its name, globally unique identifier).

Step 3: Adding Include Files to the Project
In this step, you'll be adding two include files to the project. These files (AFX
OLE.H and INITGUID.H) add OLE support to the project and initialize the
GUID used by the custom interface. You won't be modifying these files at all, so
include them in the STDAFX.H file, which is the source for the precompiled
header file.

Add the following two lines to the end of your project's STDAFX.H file:

#include <afxole.h>
#include <initguid.h>

The declaration of the custom interface is now complete.

N 0 T E : If the INITGUID.H file is not included, you will get a
LNK2001 error, which can cause quite a bit of frustration. (I speak
from experience!) The text for the LNK2001 error is not very help
ful until you figure out that the DEFINE_GUID macro is generating
an external reference to the GUID of the IMyPointinterface. This is
a result of not including the INITGUID.H include file, which actu
ally initializes the GUID. For a more detailed explanation of this
behavior, check out the Knowledge Base article ''Avoiding Error
LNK2001 Unresolved External Using DEFINE_GUID": Q130869.

205

PA RT I: WORKSHOP

Step 4: Adding a CCmdTarget-Derived Class to the Project
Now that you have declared the custom interface, you need something from
which to hang the interface. A CCmdTarget-derived class will do nicely. There
is not a lot to say about this step; just add a new class with the following prop
erties to your project using Class Wizard:

II Name: CMyPointObj

II Base class: CCmdTarget

Ill OLE Automation: creatable by type ID

Step 5: Modifying the New CCmdTarget-Derived Class

. 206

Before you modify the CMyPointObj class, let me briefly hit the high points of
how MFG implements additional interfaces on a CCmdTarget-derived object.
Through the magic of several macros, which you will be using later, a nested
class can be defined for any class derived from CCmdTarget. This nested class,
which is a friend of the outer class, represents the custom interface and han
dles all requests from external clients. You can access the nested class from the
outer class through a member variable (m_xMyPointObj), which also is auto
matically declared by the interface macros. Figure 6-4 illustrates this class.

/MyPoint interface

Figure 6-4.
The MyPointObj class structure.

In this step, you will include the IMYPT.H file, a data member, and a
nested class that implements the IMyPoint interface within the class CMy
PointObj. Follow the procedure below to add the IMyPoint interface.

1. Add the following line to the top of the header file for the CMy
PointObj class:

#include "IMyPt.h"

This allows you to use the interface in the CMyPointObj class .

S I X : ActiveX Controls and OLE

2. Add a "public" data member to the declaration of the CMyPointObj
class:

CPoint m_pt;

This variable stores the current x and y values of the point object.

3. Modify the constructor for the CMyPointObj class by initializing m_pt
to(O,O):

CMyPointObj::CMyPointObj()
:m_pt(0, 0)

4. Add the custom IMyPoint interface to the CMyPointObj class:

II IMyPoint interface
BEGIN_INTERFACE_PART(MyPointObj, IMyPoint)

STDMETHOD(GetValues) (long*, long*);
STDMETHOD(SetValues) (long, long);
STDMETHOD(TranslatePoint) (long);

END_INTERFACE_PART(MyPointObj)

This code defines an embedded class that implements the custom
IMyPoint interface for your automation object. (For details on what
this chunk of code does, see "Making an ActiveX Control Safe for
Scripting and Initializing" on page 182 of this chapter.)

5. Save your changes to this file.

At this point, you have completed the declaration of the custom inter
face. Now you have to implement the !Unknown (step 6) and IMyPoint (step 7)
functions of the custom interface.

Step 6: Implementing the /Unknown
Portion of the Custom Interface

One of the more involved steps in this type of task is the implementation of
the custom interface functions. One of the main benefits of using predefined
COM interfaces is that you are customizing only those functions whose de
fault behavior is not adequate for your needs. Unfortunately, you will also be
responsible for developing the default behavior of each of these customized
functions. One of the benefits of being the author is that I can make the ex
amples as hard or as easy as I deem necessary; so for this task, the interface
code is going to be pretty simple because the point is to implement a custom
interface-not design the ultimate custom interface.

207

PART I: WORKSHOP

208

In this step, you have to declare an additional interface map for the
CMyPointObj class and implement the !Unknown functions of the IMyPoint
interface. (The actual IMyPoint functions-GetValues, SetValues, and Translate
Point-are implemented in step 7.) But before you tear off to implement the
!Unknown interface functions, define the interface for the CMyPointObj class.
Add the following lines to the implementation file of CMyPointObj inside the
definition of the interface map for the new CMyPointObj:

INTERFACE_PARTCCMyPointObj, IID_IMyPoint, MyPointObj)

This code hooks the interface you declared in step 5 to the actual CMyPointObj
class, which means that all calls to this interface will be handled by the nested
XMyPointObj object.

N 0 T E : If you don't hook the interface to the automation class,
the result can be quite amusing, albeit frustrating at first. While I
was coding the sample for a similar task, I declared and implemented
the interface but forgot to hook it to the object. The result: a suc
cessful build and several minutes of head-scratching, trying to fig-
ure out why the heck my interface functions weren't getting called.

When you ar.e implementing the !Unknown interface, you can reap one
·of the many benefits of MFG. Because the CMyPointObj class is derived (even
tually) from CCmdTarget, you can delegate the implementation of the AddRef,
Release, and Qy,erylnterface functions to CCmdTarget. This is easily accomplished
by using, three MFG functions: ExternalA.ddRef, ExternalRelease, and External
Qy,erylnterface. Each of these functions provides the standard data-driven im
plementation based on your object's interface map. In other words, you pass
on the cost of implementation to CCmdTarget. The following procedure for
implementing the !Unknown interface functions adds this support to the
CMyPointObj class.

1. Add the following lines to the implementation file of the CMyPointObj
class after any handler function definitions:

STDMETHODIMP_(ULONG) CMyPointObj::XMyPointObj::AddRef()
{

}

METHOD_PROLOGUECCMyPointObj, MyPointObj)
ASSERT_VALIDCpThis);

return pThis->ExternalAddRef();

S I X : ActiveX Controls and OLE

2. Add the following lines after the AddRej definition:

STDMETHODIMP_(ULONG) CMyPointObj::XMyPointObj::Release()
{

}

METHOD_PROLOGUECCMyPointObj, MyPointObj)
ASSERT_VALIDCpThis);

return pThis->ExternalRelease();

3. Add the following lines to the implementation file of your control
class after the Release definition:

STDMETHODIMP CMyPointObj::XMyPointObj::QuerylnterfaceCREFIID
iid, LPVOID FAR* ppvObj)

{

METHOD_PROLOGUECCMyPointObj, MyPointObj)
ASSERT_VALIDCpThis);

return pThis->ExternalQuerylnterface((void *)&iid, ppvObj);
}

4. Save your changes.

Now you have implemented the !Unknown interface functions, and once
again, the parent class did the work. In the next step, you will implement the re
maining functions, which are the custom part of the IMyPoint interface.

Step 7: Implementing the /MyPoint Portion of the Custom Interface
In step 6, you handed off the majority of work to predefined functions of the
CCmdTarget class. Unfortunately, implementing the custom functions of the
IMyPoint interface requires a little more effort. The following procedure for
implementing the IMyPoint interface functions adds the definitions and func
tion bodies for all three of its functions.

' 1. Add the following code to the implementation file of the CMyPointObj
class:

STDMETHODIMP CMyPointObj::XMyPointObj::GetValues(long* pXVal,
long* pYVal)

{

METHOD_PROLOGUECCMyPointObj, MyPointObj)
ASSERT_VALIDCpThis);

(continued)

209

PART I: WORKSHOP

210

}

*PXVal = pThis->m_pt.x:
*PYVal = pThis->m_pt.y:

return NOERROR:

I retrieve a valid this pointer to the outer class so that I can access the
m_pt member. Then I initiali.ze the pointers passed in with their re
spective values from m_pt. Finally, I exit the function and return NO
ERROR.

2. Add the following code to the implementation file of the CMyPoint
Obj class after the GetValues function:

STDMETHODIMP CMyPointObj::XMyPointObj::SetValues(long xVal,
long yVal l

{

}

METHOD_PROLOGUE(CMyPointObj, MyPointObj)
ASSERT_VALID(pThis):

pThis->m_pt.x = xVal:
pThis->m_pt.y = yVal:

return NOERROR:

This code is just the reverse of the GetValues function. I accept two val
ues from the client and set the m_pt member to these values.

3. Add the following code to the implementation file of the CMyPoint
Obj class after the SetValues function:

STDMETHODIMP CMyPointObj::XMyPointObj::TranslatePoint(long
value)

{

}

METHOD_PROLOGUE(CMyPointObj, MyPointObj)
ASSERLVALID(pThisl:.

pThis->m_pt.x += value:
pThis->m_pt.y += value:

return NOERROR:

This code performs a mathematical translation of the m_pt member
by adding the value passed in to both the x and y values of m_pt.

4. Save your changes.

S I X : ActiveX Controls and OLE

You now have completed the implementation of the custom interface.
The remaining portion of the task involves the implementation of the mar
shaling DLL.

Step 8: Creating the Marshaling DLL
In the introduction to this task, I briefly mentioned a marshaling DLL. It is
pertinent at this point to explain why you should care about marshaling
DLLs. So let's assume that you have two applications: an out-of-process server
(the server for CMyPointObj) and an external client that wants an instance of
CMyPointObj. Because the server is an out-of-process server, its process space
is different than the process space of the external client. This is a problem if
the client and the server want to interact because the addresses of the data
members and functions in each application are different. It's impossible for
either the server or the client to access the data members or functions of the
other. The situation has be fixed so that the code for the interaction between
them uses the proper offsets with respect to data member and function ad
dresses. (Boy, talk about an obvious lead-in!)

Thankfully, there is a technique called marshaling that does exactly the
type of address fixup you require. Unfortunately, the marshaling DLL respon
sible for the interaction between the server and the client is not strictly an
MFC thing, and the process for building a marshaling DLL is pretty involved.
'Let's take a look at what it takes to create one. The process can be divided
into four parts:

1. Creating the IDL file

2. Compiling the IDL file ·

3. Building the marshaling DLL project

4. Creating the REG file and registering the marshaling DLL

Because this book is about MFC tasks, not marshaling DLLs, I'll discuss only
parts I, 2, and 4 because they are closely related to the MFC side of things. I'll
leave the discussion of part 3 for Kraig Brockschmidt's Inside 01.E 2, Second
Edition (Microsoft Press, 1995).

N 0 T E : Because you will be building a DLL project that is sepa
rate from the automation object's project, it's a good idea to make a
directory for the DLL source code. The source code for the sample's
marshaling DLL is in the MYPTDLL directory.

211

PA RT I : WORKSHOP

212

Creating the IDL File
We begin the process of creating a marshaling DLL by creating an Interface
Description Language (IDL) file for the custom interface, in this case IMy
Point. The lDL file describes the interface by defining the interface's GUID
and the number of methods the interface exposes. If you have worked with Ob
ject Description Language (ODL) files and type libraries, you will recogni.Ze
much of the syntax used in the IDL file. The two languages are very similar.
The IDL file needs a section for each custom interface that is exposed by the
server. It also needs a section that describes the incoming and outgoing pa
r.ameters for each function of each custom interface. For example, if the ser
ver implements two custom interfaces, IMylnterfaceOne and IMylnterfaceTwo,
there will be four sections in the IDL: two sections for the interface IDs and
two for the custom interface functions. For this task, you will create a simple
IDL file that contains information for the IMyPoint interface. The procedure
is described below.

1. In the directory of your marshaling DLL, create a new text file.

2. Describe the ID of the custom interface:

]

object,
uuid(8F8FEFB0-23A7-lld0-B694-00AA00574A50),
pointer_default(unique)

Note that the UUID you just added matches the ID of the IMyPoint
custom interface.

3. After the object section, describe the attributes of the IMyPoint
interface:

interface IMyPoint: !Unknown
{

}

import "unknwn.idl":

HRESULT GetValues([out, ref] long* xVal,
[out, ref] long* yVal):

HRESULT SetValues([in] long xVal, [in] long yVal):

HRESULT TranslatePointC[in] long translationVal):

4. Save the new text file as MYPOINT.IDL.

S I X : ActiveX Controls and OLE

Compiling the IDL File
Just as you would for ODL files, you have to compile a new IDL file to gener
ate the source code used by the marshaling DLL. Visual C++ provides a pro
gram that uses IDL files to create some of the source files for the marshaling
project-MIDL.EXE. You provide the remaining files for the DLL project.

To compile the IDL file, execute the following command (in the direc
tory of the IDL file) from a command prompt:

midl MyPoint.idl

During the compilation, four files are generated:

II DLLDATA.C Source file that contains additional information on
the marshaling DLL

II MYPOINT.H Header file that defines the custom interface for both
C and Visual C++ compilers

II MYPOINT_I.C Source file that contains additional interface
information

II MYPOINT_P.C Source file that contains code for the interface
proxy and stubs

In addition to the newly generated files, you will need two files, RCSUP
PORT.H and RCSUPPORT.CPP, for building the DLL. They can be found in
the \CHAP6\TASKDIR2\MYPTDLL directory on the companion CD-ROM.
These two files automatically cause the remote procedure call (RPC) libraries
to be linked with your DLL. If they aren't included in the project, you will get
several errors relating to unresolved externals. These files, and others refer
enced in Brockschmidt's book, will be used to create the marshaling DLL.

Building the Marshaling DLL Project
To build the DLL, you will have to do a little extracurricular reading. The two
best sources I have found are these:

llllll Inside OLE 2, by Kraig Brockschmidt (Chapter 6), which is the best
reference for building the actual marshaling DLL-very good stuff.

II Object Linking and Embedding (OLE) Programmer's Reference (Microsoft
Press, 1992), "OLE Custom Interfaces Appendix," which is a good

213

PART I: WORKSHOP

214

reference for the Win32 API side of things when marshaling. Be fore
warned: the discussion is quite dense and not MFG-related in any way.

There are also some technical notes in the Visual C++ online documentation
and a reference section in the Windows NT 3.5 SDK that might be helpful:

II MFC Technical Note 11: "Using MFC as Part ofa DLL"

II MFC Technical Note 33: "DLL Version ofMFC"

II MFC Technical Note 38: "MFC/OLE !Unknown Implementation"

II MFC Technical Note 39: "MFC/OLE Automation Implementation"

II Windows NT 3.5 SDK, RPC Reference

After you have successfully built the DLL, proceed on to the next step to
create the REG file and register the marshaling DLL.

Creating the REG File for the Marshaling DLL
Now it's time to create the REG file for the marshaling DLL. The purpose of
the REG file is to register the marshaling DLL with the system registry. This
ensures that the system will be able to find and invoke the DLL whenever an
external client attempts to create an instance of the CMyPointObj object. The
REG file describes the IMyPoint custom interface (the ID of the interface, the
class ID of the proxy stub, and the number of functions-including the !Un
known functions-implemented by the interface) and the marshaling DLL
(the interface it implements and the location of the DLL). To create the REG
file, follow this procedure:

1. In your marshaling DLL directory, create a new text file.

2. Provide registry key values for different attributes of the interface us
ing the GUID generated for your custom IMyPoint interface:

REG EDIT
HKEY_CLASSES_ROOT\Interface\{8F8FEFB0-23A7-lld0-B694-

00AA00574A50} = IMyPoint
HKEY_CLASSES_ROOT\Interface\{8F8FEFB0-23A7-lld0-B694-

00AA00574A50}\ProxyStubClsid32 = {8F8FEFB0-23A7-lld0-
B694-00AA00574A50}

HKEY_CLASSES_ROOT\Interface\{8F8FEFB0-23A7-lld0-B694-
00AA00574A50}\NumMethods = 6

S I X : ActiveX Controls and OLE

3. Immediately after the interface attributes section, provide registry
key values for the marshaling DLL using the GUID generated for
your custom IMyPoint interface:

HKEY_CLASSES_ROOT\CLSID\{8F8FEFB0-23A7-lld0-B694-00AA00574A50}
IMyPoint Proxy/Stub Factory

HKEY_CLASSES_ROOT\CLSID\{8F8FEFB0-23A7-lld0-B694-
00AA00574A50} \InprocServer32 = d:\projects\MarshTst\Debug\
MarshTst.dll

Please note that your DLL path and GUID will differ from the above
examples.

4. Save the file as MYPTDLL.REG.

After you have successfully built the DLL, register it by executing the
MYPTDLL.REG file.

Step 9: Using the Custom Interface and the Marshaling DLL
You have now created a stand-alone server for the CMyPointObj object that im
plements a custom interface IMyPoint. This server (MYPT.EXE) and the cus
tom interface are dependent on the marshaling DLL (MYPTDLL) that you
have built. (See Figure 6-5.) When you distribute the custom interface, you
have to provide three items: the stand-alone server, the marshaling DLL, and
the REG file for the marshaling DLL. Your customer will register th~ marshal
ing DLL by double-clicking the REG file and then will use an external client
(which he or she probably developed) to create and manipulate an instance
of the CMyPointObj object, or whatever object you end up developing.

External Client

CTestDrvrJ

Figure 6-5.
Client/Proxy/Custom Interface interaction.

For the purposes of this demonstration, I have created an external cli
ent-a dialog box-based application named TESTDRVR.EXE (Figure 6-6 on
the following page)-that you can use to test the IMyPoint interface.

215

PA RT I : WORKSHOP

Figure 6·6.
The TestDrvr application.

The current values of the CMyPointObj object are displayed in the edit
fields and can be changed by entering new values and clicking Set Values. In
addition, you can invoke the TranslatePointfunction using a predefined value
by clicking Translate Point. The x and y edit fields are updated automatically
with the new function value.

Additional Information
For more information on implementing a COM interface, check out "Mak
ing an ActiveX Control Safe for Scripting and Initializing" on page 2 of this
chapter, which describes how to implement a COM interface (that is, an
interface supported by the operating system).

Exposing the Accelerator Table of an
ActiveX Control to Visual Basic Applications

216

Visual Basic and MFC have different requirements for the entries in their ac
celerator tables. The purpose of this task is to demonstrate how you can cre
ate an accelerator table that allows both MFC control containers and Visual
Basic control containers to understand the accelerator table format. Accom
modating the different requirements ofMFC and Visual Basic accelerator table
entries means a departure from the standard method of handling mnemonic
keys. In this task, I demonstrate a method for accommodating these require
ments through customizing the OnGetControUnfo, PreTranslateMessage, and On
Mnemonic functions of the ActiveX control class and for handling the "m"
mnemonic key in both MFC and Visual Basic control containers. The task
consists of three steps:

1. OverridingOnGetControllnfo, PreTranslateMessage, and OnMnemonic for
the control

S I X : ActiveX Controls and OLE

2. Modifying the OnGetControllnfo function

3. Modifying the PreTranslateMessage and OnMnemonic functions

The name of the sample project is ACCEL, arid you will need these items:

• An MFC application that implements an ActiveX control

• One or more mnemonics supported by the control

Background
An ActiveX control overrides the virtual COleControl::OnGetControllnfo func
tion to allow the control's container to get a description of the mnemonic
key commands for the control. When it is called, the OnGetControllnfo func
tion returns, among other things, an initialized structure of type CONTROL
INFO. This structure contains a handle to an accelerator table that is used by
the container to check for mnemonic keys handled by the control. The accel
erator table consists of accelerator keys, each of which is defined by the AC
CEL structure. The ACCEL structure contains the following members: JVirt,
key, and cmd. One of the differences between Visual Basic containers and MFC
containers is the contents of these ACCEL data members as shown in the fol
lowing table.

Requirements for
MFC Containers

The JVirt member must be
FALT or 0.

The key member must be
lowercase.

The cmd member is
ignored.

Requirements for
Visual Basic Containers

The JVirt member must be a combination
of (FVIRTKEY I FALT) or (FVIRTKEY I
FALT I FSHIFT).

The key member must be uppercase.

The cmd member must not be equal to 0.

N 0 T E : For more information on the ACCEL structure, see the
Visual C++ online documentation.

MFC and Visual Basic ActiveX control containers also differ in the way
they handle mnemonic processing when a control is UI active. When handling

217

PA RT I : WORKSHOP

keyboard input, MFC containers check first to see whether an ActiveX control
has the focus. If it has the focus, the framework calls the control's PreTrans
lateMessage function. For an ActiveX control's mnemonics to function cor
rectly when it is UI active, it must override the PreTranslateMessage function
and check for special key combinations that the control supports.

Step 1: Overriding the OnGetControl/nfo, PreTranslateMessage,
and OnMnemonic Functions for the Control

The first step in providing an accelerator table for Visual Basic and MFC con
tainers is to override the PreTranslateMessage, OnMnemonic, and OnControllnfo
functions in your ActiveX control. Override these functions now using Class
Wizard or by opening the control's implementation file and using the Wizard
bar at the top of the edit window. After you override these functions, you will
add code to each function that correctly sets up the accelerator table and
handles mnemonic key events.

Step 2: Modifying the OnGetControllnfo Function

218

As I've already mentioned, the control's OnGetControllnjofunction is called by
the container to retrieve a description of the control's mnemonic keys. This
is where you must initialize the accelerator table eriiries requested by the con
tainer. The following procedure for implementing OnGetControllnfo adds the
necessary code to the body of the OnGetControllnfo function.

Add the following code to the control's implementation file right after
the opening brace of the OnGetControllnfo function:

HACCEL hAccel = NULL;
TCHAR ch = 'm';
ACCEL accKey[4];

accKey[0].fVirt = FVIRTKEY I FALT;
accKey[l].fVirt = FVIRTKEY I FALT I FSHIFT;
accKey[0].key = accKey[l].key = LOBYTE(VkKeyScan(ch));
accKey[0].cmd = accKey[l].cmd = 1;

accKey[2].fVirt = FALT;
accKey[3].fVirt = 0;
accKey[2].key = accKey[3].key =ch;
accKey[2].cmd = accKey[3].cmd = l;

hAccel = CreateAcceleratorTable(accKey, 4);
if (hAccel != NULL)
{

else

S I X : ActiveX Controls and OLE

II Fill in the CONTROLINFO structure passed in
pControllnfo-> hAccel = hAccel;
pControllnfo-> cAccel = 4;
pControl Info-» dwFlags = 0;

COleControl ::OnGetControllnfo(pControllnfo);

The first three lines of code declare an accelerator table handle, a TCHAR
(for the mnemonic key value), and an array of four ACCEL structures. For the
purpose of this demonstration, I have hardcoded an "m" as the mnemonic key
of the control. Lines 4-7 of the code initialize the first two entries in the ac
celerator table for use by Visual Basic control containers. Lines 8-11 of the
code initialize the last two entries in the accelerator table for use by MFC con
trol containers. The remaining code creates the accelerator table and, if the
creation of the table is successful, fills in the CONTROLINFO structure that
was passed in. If the accelerator table is not created, the base class implemen
tation is called instead.

· Step 3: Modifying the PreTranslateMessage
and OnMnemonic Functions

The final step in this task ensures that the mnemonics of an ActiveX control
function properly when the control is UI active. Use the following procedure
to modify these functions:

1. Modify the PreTranslateMessage function by replacing the body of the
function with the following code:

if (pMsg->message == WM_SYSKEYDOWN)
{

}

if ((pMsg->wParam == 'm') I I (pMsg->wParam == 'M'))
{

}

II Do mnemonic key processing here
return TRUE:

return COleControl ::PreTranslateMessage(pMsg);

The code first checks for the Alt-M (or Alt-m) key combination, which
indicates that a mnemonic is being accessed. If the test is successful,
any processing of the mnemonic is done. This is where you, the de
veloper, take over. The function then returns TRUE, indicating that

219

PART I: WORKSHOP

the key was handled. If the test was not successful, pass the call on to
the base class.

2. Now modify the OnMnemonicfunction by replacing the body of the
function with the following code:

if (pMsg->message == WM_SYSKEYDOWN I I
(pMsg->message == WM_SYSKEYDOWN))

{

}

if ((pMsg->wParam == 'm') I I (pMsg->wParam == 'M'))
{

}

II Do mnemonic key processing here
return;

COleControl::OnMnemonic(pMsg);

This code is nearly the same as the PreTranslateMessage code that you
added except that if the test fails, the OnMnemonic function of the ·
base class is called (because, obviously, you are in the override of the
OnMnemonic function).

After you have saved your changes and recompiled, your control will
handle the "m" mnemonic key correctly in both Visual Basic and MFC control
containers.

Exposing MFC Collections
to a Visual Basic Application

220

The purpose of this task is to enable Visual Basic applications to retrieve a col
lection (an array of data objects, such as numeric data or strings) from an
MFC document object that supports OLE Automation. When you are sharing
data between Visual Basic and MFC applications, the major problem is find
ing a data type that is understood by both types of applications.

In this task, I will demonstrate how to add an OLE Automation method
to a document object, which will allow external clients (other applications) to
retrieve a collection from the MFC document object. The collection, which is
implemented by CMyColledion, then creates an enumerated array of CString
objects. The !Dispatch interface of the collection is passed back to the client,
which allows access to the document's collection, as shown in Figure 6-7. The
collection that you will add to your project contains an enumerated array
(implemented by class CEnumVARIANT) of VARIANT objects. The array is
enumerated to allow the client to step through the collection or make copies

1, 5

2

4

S I X : ActiveX Controls and OLE

1. Ask for a collection.

2. Create a new collection.

3. Create a new

CEnumVARIANTobject.
4. Return a pointer to the newly

created object.

5. Return an /Unknown pointer.

/EnumVARIANT

Figure 6-7.
The creation and handoff of a collection object.

of the collection. (For more information on the VARIANT data type, see the
Visual C++ online documentation.)

N 0 TE: Actually, the array is composed of COleVariant objects,
but they can emulate a VARIANT data type when necessary.

The sample project (VBCOLL) exposes a collection with the following
elements:

• A collection object implemented by class CMyCollection and derived
from CCmdTarget.

• An enumerated array object of CString-type values implemented by
CEnumVARIANI'. Each value is packed into a VARIANT data type us
ing the COleVariant class.

II A document object implemented by class CVBCollDoc, which exposes
the collection via an OLE Automation property (collection).

The task consists of six steps:

1. Adding the enumerated array class

2. Adding the collection class

3. Modifying the collection class

4. Adding the _NewEnum property

221

PART I: WORKSHOP

5. Adding other properties and methods to the collection class

6. Modifying the document class

The name of the sample project is VBCOLL, and you will need the fol
lowing items:

Ill An MFC application with a document object that supports OLE
Automation •

!Ill An array of data that is suitable for exposure as a collection

Step 1: Adding the Enumerated Array Class

222

The implementation of the enumerated array (which in this task is CEnum
VARIANT) is made simple by deriving it from an undocumented class, in this
case CEnumArray. The CEnumArray class, declared in DEVSTUDIO\MFC\SRC
\OLEIMPL2.H, is also used as a base class for other enumerated array classes
in MFC. As it happens, these other enumerated classes are undocumented as
well! In any event, the CEnumArray class provides an enumerated array of void*
pointers and a COM interface (IEnumVoid) with several useful methods for
array use. You will derive an enumerated array of COleVariant objects from the
CEnumArray class and also add a modified destructor and OnNext function to
the class. I use COleVariant objects because they provide a convenient C++ inter
face between MFC objects and VARIANT structures. As usual, when using
undocumented classes, the implementation of CEnumArray can be modified
at anytime.

To implement this functionality, you must include the header file that
declares the CEnumArray class and tell Developer Studio where to look for the
file. The following procedure shows the steps involved in defining the CEnum
Array class in a project.

N 0 T E : To include the OLEIMPL2.H header file in your project,
you must install the MFC source code on your hard drive.

1. Append the following lines to your project's STDAFX.H header file:

#include "afxole.h"
#include "oleimpl2.h"

2. Save your changes.

3. Choose Settings from the Project menu.

4. Click the C/C++ tab.

S I X : ActiveX Controls and OLE

5. Choose Preprocessor from the Category drop-down list box.

6. In the Additional Include Directories edit box, enter the full path of
the directory in which the MFC source code was installed.

7. Click OK.

Now that you have defined the base class you are using, you can add the
CEnumVARIANT class. Because it is a small class, I will show you just the class
declaration (and implementation); you then can save them in separate text
files in your project. The declaration of CEnumVARIANTis as follows:

class CEnumVARIANT: public CEnumArray
{

public:

CEnumVARIANT(const COleVariant* pVAR, UINT nSize) :
CEnumArray(sizeof(COleVariant), pVAR. nSize, FALSE) {}

-CEnumVARIANT();

protected:
virtual BOOL OnNext(void* pv);

public:
DECLARE_INTERFACE_MAP()

} ;

This code declares a constructor that passes its parameters to the CEnumArray
constructor. A destructor and a virtual function, OnNext, are also declared. Fi
nally, I declare an interface map (which will be defined later). Save this code
in a text file in the project directory as ENUMVAR.H.

The implementation of CEnumVARIANTis as follows:

#include "stdafx.h"
#include "EnumVar.h"

BEGIN_INTERFACE_MAPCCEnumVARIANT, CEnumArray)
INTERFACE_PART(CEnumVARIANT, IID_IEnumVARIANT, EnumVOID)

END_INTERFACE_MAP()

CEnumVARIANT::-CEnumVARIANT()
{

if (m_pClonedFrom == NULL)
delete [] (COleVariant*)m_pvEnum;

}

(continued)

223

PART I: WORKSHOP

BOOL CEnumVARIANT::OnNext(void* pv)
{

}

VARIANT var:
if (!CEnumArray::OnNext(&var))

return FALSE:

VariantCopy((VARIANT*)pv, &var):
return TRUE:

In the first section of code, I define an interface (JEnumVoid) that will be used
by the enumerated array. In the next section of code, the destructor is de
fined. In this destructor, I first check whether th.e object has been used for
making copies. If it hasn't (which means it's safe to destroy it), I delete the ar
ray using the delete operator. Finally, I define the OnNext function, which cop
ies the next array element, if there is one, into the parameter (pv) passed in.
Save this code in a text file in the project directory as ENUMVAR.CPP. When
you have saved both files, add them to your project.

Step 2: Adding the Collection Class
Now that you have a valid enumerated array object, you need a collection ob
ject that contains the enumerated array. The main purpose of the collection
object is to control access to the array through the collection object's inter
face. Because the collection class is also a fairly simple class, use ClassWizard
to add it to your project. Call the class CMyColledion, derive it from CCmdTar
get, and then enable OLE Automation. In step 3, you will make the class more
useful by adding some functionality.

Step 3: Modifying the Collection Class

224

In this step, you will modify the constructor of the CMyColledion class slightly.
To modify the CMyCollection class, follow this procedure:

1. In the header file (H) of the CMyColledion class, change the line

CMyCollection();

to the following:

CMyCollection(CVBCollDoc* pDoc);

2. Add a document pointer of the appropriate type, named m_pDoc, to
the collection class.

S I X : ActiveX Controls and OLE

3. Save your changes to this file.

4. In the implementation file (CPP) of the CMyCollection class, replace
the constructor declaration with the following code:

CMyCollection::CMyCollection(CVBCollDoc* pDoc)
{

rn_pDoc = pDoc:

EnableAutomation();
}

This code accepts a document pointer and uses its value to initialize
the member variable that you added above. Note that you should
change the type of the document pointer to the type you use in your
project.

5. Include the header file of your document object in the implementa
tion file of the collection class; make sure it precedes the header file
of the collection class. The following code is taken from the sample
project:

finclude "VBCollDoc.h"
/fi ncl ude "MyColl. h"

6. Save your changes to this file.

Step 4: Adding the _NewEnum Property
In this step, you add the _NewEnum property, which is an important part of
the collection class object. It allows Visual Basic applications to step through
each item of the exposed collection using a for loop. (For more information
on this special property, see "Implementing the _NewEnum Property" in the
SDK online documentation of Visual C++.) You can't add the property using
ClassWizard because the property now has two requirements that make this
impossible:

II It must be named _NewEnum and must not be localized.

11 It must have DISPID = DISPID_NEWENUM (-4).

The procedure on the following page shows how to add the _NewEnum prop
erty to your project.

225

PA RT I: WORKSHOP

226

1. In the header file of the CMyCollection class, modify the dispatch map
declaration to match the code below. (The new code is shown in bold.)

DECLARE_MESSAGE_MAP()
II Generated OLE dispatch map functions
ll{{AFX_DISPATCH(CMyCollection)
afx_msg short GetCount();
ll}}AFX_DISPATCH
afx_msg LPUNKNOWN GetNewEnum():

2. In the implementation file of the CMyCollection class, modify the dis
patch map definition to match the code below. (The new code is
shown in bold.)

BEGIN_DISPATCH_MAPCCMyCollection, CCmdTarget)
ll{{AFX_DISPATCH_MAPCCMyCollection)
DISP_PROPERTLEXCCMyCollection, "Count", GetCount,

SetNotSupported, VT_I2)
ll}}AFX_DISPATCH_MAP
DISP_PROPERTLEJLIDCCMyCollect1on, "NewEnum",

DISPID_NEWENUM, GetNewEnum, SetNotSupported,
VT_UNKNOWN)

END_DISPATCH_MAP()

3. In the same file, add the following definition of the GetNewEnum
function:

LPUNKNOWN CMyCollection::GetNewEnum()
{

}

II Create and fill array of COleVariant objects here
COleVariant* pVar =new COleVariant[m_pDoc->m_nElts];
for (int i = 0; i < m_pDoc->m_nElts; i++)

pVar[i] = m_pDoc->m_Elts[i];

CEnumVARIANT* pEnum = new CEnumVARIANT(pVar,
m_pDoc->m_nElts);

return &pEnum->m_xEnumVOID;

This function creates an array of COleVariant-type objects and ini
tializes each element with a CString value from the document object.
It then creates an enumerated array using the COleVariant array and
passes back a pointer to the !Unknown interface of the enumerated
array.

S I X : ActiveX Controls and OLE

N 0 TE: In case you're wondering how the CStringobjects are
destroyed (and if you aren't, you should be), the destructor for
the COleVariant class makes a call to VariantClear. Because CString
objects are stored in a VARIANT as a BSTR, VariantClear will free
the string automatically. (It's features like this that make using a
class library pretty nice!)

4. In the ODL file of the project, add the following line after the initial
comments:

#define DISPID_NEWENUM (-4)

This defines the ID of the _NewEnum property.

5. In the same file, locate the dispatch interface declaration of the col
lection object. It should look similar to the code shown here:

dispinterface IMyCollection
{

properties:
II NOTE - ClassWizard will maintain property
II information here.
II Use extreme caution when editing this section.
ll{{AFX_ODL_PROP(CMyCollection)
[id(l)] short Count:
ll}}AFX_ODL_PROP

6. Immediately after the //}}AFX_ODL_PROP comment, add the fol
lowing line:

[id(DISPID_NEWENUM)] !Unknown* _NewEnum;

This defines the _NewEnum property.

7. Save all changes to your project.

At this point, the _NewEnum property is implemented.

Step 5: Adding Other Properties
and Methods to the Collection Class

It's now time to add two properties (Count and Item) and a method (Add) to
the collection class.

227

PART I: WORKSHOP

228

The Count Property
The Count property (of type Get/Set) returns the number of objects in the
collection. Because the document object is the only one that should change
the object count, the Set function is not supported. Use ClassWizard to add
this custom property to your collection class specifying the values below.

Ill External name: Count

Ill Type: short

Ill Implementation: Get/Set methods

Ill Get function: default value

• Set function: no value

Ill Parameter list: none

Replace the existing function body for the GetCount function (found in
the implementation file of the CMyCollection class) with the following line:

return m_pDoc->m_Elts.GetSize{);

The Item Property
The Item property (of type Get/Set) returns the item at the specified loca
tion in the collection. Use ClassWizard to add this custom property to your
collection class specifying the values below.

• External name: Item

111 Type: BSTR

Ill Implementation: Get/Set methods

• Get function: default value

Ill Set function: no value

Ill Parameter list: nlndex, type long

Replace the existing function body for the Getltem function (found in
the implementation file of the CMyCollection class) with the following code:

Checklndex{nlndex):
return m_pDoc->m_Elts.ElementAt{{int)

nindex).AllocSysString{);

For the Item property to function properly, you must check the index
passed in to the method with a call to Checklndex. This helper function deter
mines whether the index value is greater than 0 and less than or equal to the

S IX : ActiveX Controls and OLE

index of the last item in the collection. The following procedure adds the
Checklndex function to your CMyCollection class.

1. In the header file of the CMyCollection class, add the following code to
the "public" section of CMyCollection:

void Checklndex(long nlndex);

2. In the implementation file of the CMyCollection class, add the follow
ing code to define the Checklndex function:

void CMyCollection::Checklndex(long nindex)
{

}

if (nlndex <= 0 11 nlndex >= m_pDoc->m_Elts.GetSize())
AfxThrowOleDispatchException(l0000,

T("Index value out of range"));

The Add Method
The Add method allows the external client to add items to the collection. Use
ClassWizard to add this custom property to your collection class and specify
the values below.

Ill External name: Add

Ill Internal name: Add

Ill Return type: long

Ill Parameter list: newVal, LPCTSTR

Replace the existing function body for the Add method (found in the
implementation file of the CMyCollection class) with the following code:

m_pDoc->m_Elts.Add(newVal);
return m_pDoc->m_Elts.GetSize();

Step 6: Modifying the Document Class
In this task, the document's role is to store the data objects (in this case, of
type CString) and, when requested, return a collection of these objects for
use by external clients. To expose this collection to external clients, the docu
ment object must support OLE Automation and must expose a Get/Set cus
tom property that returns a collection on demand. To add this functionality,
the document class is modified by defining two new member variables and a
custom Get/Set property, named Collection.

229

PART I: WORKSHOP

230

Add the following lines of code to the "protected" section of your docu
ment class located in the header file:

friend class CMyCollection:
CStringArray m_Elts:

The first line of code declares the CMyCollection class as a friend of your docu
ment class. This allows CMyCollection to access the document's "protected" and
"private" members-which is useful when creating a collection. The remain
ing line declares an array of CStringobjects, m_Elts.

The last item of business is to implement the custom Collection prop
erty, which is used by external clients for requesting a collection of the cur
rent objects in the document object. This custom property will not allow the
client to "set" a collection, only to retrieve one. First add the custom Collec
tion property to your document class with the following properties using
Class Wizard:

Ill External name: Collection

111 Type: LPDISPATCH

Ill Implementation: Get/Set methods

Ill Get function: default value

1111 Set function: no value

Ill Parameter list: none

Now modify the GetCollection function by replacing the existing body of
code with the following code:

CMyCollection* pCollection =new CMyCollection(this);
return GetIDispatch(FALSE);

Basically, the function creates a collection, passing in a pointer to itself, and
then returns the /Dispatch of the new collection. The parameter of the Get/
Dispatch call is FALSE because you don't want the reference count of the /Dis
patch interface to be incremented. You are returning only the interface of the
collection object and not creating an instance of the object, so you should not
increment the reference count.

After you have made these changes, rebuild the project; your document
will expose a collection method that can be used by external clients for re
trieving a collection of current document objects.

S I X : ActiveX Controls and OLE

Additional Information
I have included two Visual Basic files (VBTEST.FRM and VBTEST.VBP) on the
companion CD-ROM that you can use for adding new items to the collection
and viewing the contents of an item at a given index in the collection. To use
the test form (VBTEST.FRM), load the VBTEST.FRM or VBTEST.VBP file into
Visual Basic version 4. The form will load, and you can then retrieve and in
teract with the enumerated collection.

231

C H A P T E R S E V E N

Bits and Pieces

This chapter is a grab bag of tasks. There are a couple tasks relating to OLE,
one about resource-only DLLs, and one about saving the state of an applica
tion, as you will see in the list below. Enjoy!

II Building an MFC resource-only DLL Demonstrates a technique for
building an MFC-extension DLL that contains only resources and a
process for using resources from a DLL in an MFC application.

II Implementing drag and drop capability between child windows
Demonstrates implementation of OLE drag and drop capabilities in
the child windows of a typical MDI application. Each child window al
lows you to drag and drop selected text strings either in other areas of
the same client window or in a separate child window of the applica
tion. This technique can be adapted to work with Microsoft Windows
common controls that use text as input/output data.

II Using a custom class factory in an MFC application Demonstrates
how to customize versions of the DECLARE_OLECREATE and
IMPLEMENT_OLECREATE macros. The macros have been custom
ized by changing the class factory class from COleO!JjectFactory to a
COleO!JjectF actory-derived class.

II Saving the state of an MDI application upon exiting Demonstrates
how to create or update a Registry key so that it will store various as
pects of an MFC application upon exiting. Examples of application
information to be stored in the Registry include the size and the po
sition of the main window and the state (maximized or normal) of
any active child windows.

233

PART I: WORKSHOP

Building an MFC Resource-Only DLL
The purpose of this task is to create an MFC-extension DLL that contains
only resources. Such an approach provides several advantages:

• It reduces the size of the MFC executable by moving large, expensive
(in terms of size) resources into a separate DLL.

• It makes it possible for you to create localized copies of the resources
in separate DLLs-for example, converting all of the English strings
of an MFC application to French and then storing tfie converted
strings in a French resource DLL.

• It provides an efficient way of updating the resources in an applica
tion. Instead of revising an entire application and its resources, you
can revise just the resources, which are in the DLL, and then just
hand out new copies of the DLL.

I use the sample projects MAIN (the calling application) and MYRES
(the DLL) to demonstrate how resources are retrieved from the DLL and
used by the application. This is done by moving all of the resources except
the version number from the MAIN project into the MYRES DLL project. I
then redirect the location of the resources for the MAIN project to an in
stance of the MYRES DLL. The task consists of four steps:

1. Creating the DLL project

2. Adding resources to the DLL project

3. Modifying thelnitlnstance function of the calling application

4. Implementing the Exitlnstance function of the calling application

To complete this task, you will need an SDI, MDI, or dialog box-based
MFC application.

N 0 T E : If you don't want to mess around with the Visual C++
IDE, copy the MYRES project (Chap7\TaskDirl\MyRes) from the
companion CD-ROM and use it as your framework.

Step 1: Creating the DLL Project

234

Creating the framework of the DLL project is simple if you don't mind using
the Microsoft Visual C++ Integrated Development Environment. Basically,
you create an MFC extension DLL using the following procedure:

S E V E N : Bits and Pieces

1. Choose New from the File menu in the Microsoft Developer Studio IDE.

2. Click the Projects tab in the New dialog box.

3. Double-click MFC AppWizard (DLL).

4. Enter a name for your project. In the sample, I use MYRES. Click OK.

5. Click Finish in the MFC AppWizard dialog box to create the project
framework.

The project is, indeed, a framework. It contains no classes, just a few
source files and some resources. In step 2, you will flesh out the project by
adding resources taken from the application MAIN.

Step 2: Adding Resources to the DLL Project
Now that you have created the DLL project, you can add other resources.
Here are the most common methods for doing this:

11111 Adding other RC files to your DLL project (If you add other resource
files to the project, don't forget to add the include files used by these
new resources.)

II Creating new resources for the DLL project

II Copying resources from a project's RC file to your DLL's RC file

For the MYRES sample project, I copied the RC file (and the \RES di
rectory) from the MAIN project to the MYRES project. I then added the RC
file to the DLL project and deleted all resources except the version number
from the MAIN project. I did this to show that the resources used by the
MAIN application come from the DLL and not from the application. I also
changed the name of the output file for the Debug build from MYRES.DLL
to MYRESD.DLL. This was done to distinguish between the Debug and Re
lease versions of the DLL. You can make this change by clicking the Link tab
of the Project Settings dialog box inside the Developer Studio IDE and then
modifying the Output File value.

N 0 T E : If you are using the Developer Studio IDE, you must
have an RC file for the project or all access to ClassWizard will be
disabled.

You should now be able to build the DLL with no problems. The result
ant DLL can be found in either the \DEBUG or the \RELEASE subdirectory of

235

PA R T I : WORKSHOP

your DLL project directory, depending on the version you have built. Copy
the DLL to the \SYSTEM subdirectory of Microsoft Windows 95 or the
\SYSTEM32 directory of Microsoft Windows NT version 4 so that your calling
application can use this DLL. In the next step, you will redirect the source of
the resources used by your application to the resource-only DLL.

Step 3: Modifying the lnitlnstance
Function of the Calling Application

236

Under normal circumstances, an MFC application contains all of its own re
sources. However, in this case, you have moved the resources into a separate
DLL (MYRES). Now you need some way to tell your application to look in the
DLL for whatever resource it needs. Doing this requires some modification of
the Initlnstance function of the calling application-specifically, by adding a
data member to the class (m_hlnstRes) and by making calls to AfxSetResource
Handle (sets the default resource location of an application) and LoadLibrary
(loads the specified DLL into memory). This redirects all resource requests
from the application to the DLL.

N 0 T E : In this task, I assume that all resources for the applica
tion are located in a single DLL. It is also possible to switch be
tween locations for specific resources when needed by resetting
the resource handle with another call to AfxSetResourceHandle.

To modify the Initlnstance function, follow this procedure:

I. Define the m_hlnstRes data member by adding the following line to
the header file of the application class:

HINSTANCE m_hinstRes;

2. Add the following lines to the beginning of your application's Initln
stance function:

Iii fdef _DEBUG
II Load the Debug version of the localized resources

m_hinstRes = LoadLibrary("MyResd.dll");
flel se
II Load the Release version of the localized resources

m_hinstRes = LoadLibrary("MyRes.dll");
/lendi f
ASSERT(m_hinstRes !=NULL);
AfxSetResourceHandle(m_hinstRes);

In this code, I check to see whether the application is a Debug version or a
Release version. I then make a call to the LoadLibrary function, passing the

S EVE N : Bits and Pieces

name of the appropriate DLL. (For a Debug build, this is MYRESD.DLL; for
a Release build, this is MYRES.DLL.) I then reset the resource handle of the
application to the DLL by making a call to the AfxSetResourceHandle function,
passing the handle of the DLL. From now on, the application will always look
in the DLL for the required resources.

N 0 T E : The preceding code assumes that the DLL is named
MYRESD/MYRES.DLL and that different builds (Debug and Re
lease) of the DLL exist. If this is not true for your application, modify
the code accordingly.

Step 4: Implementing the Exitlnstance
Function of the Calling Application

The final step in this task is to override the Exitlnstance function of your applica
tion class and add some code that frees the DLL before the application exits.

Override the Exitlnstance function of your application class now. Replace
the function body with the following· code:

II In case you load multiple DLLs, be sure you free them,
II and avoid calling FreeLibrary with a NULL pointer
FreeLibrary(rn__hinstRes);

return CWinApp::Exitinstance();

After you have made these changes, rebuild the project. If you have cop
ied the resource DLL to the appropriate system directory, your application will
now retrieve all needed resources from the loaded DLL.

Additional Information
For details of how to localize resources in separate DLLs, check out Technical
Note 57: "Localization ofMFC Components" in the Developer Studio online
documentation. For details of how to export MFC classes from a DLL, see Tech
nical Note 11: "Using MFC as Part of a DLL" in the Developer Studio online
documentation.

The Microsoft Knowledge Base also contains articles that are related to
this topic:

a How to Localize Application Resources with Foundation Classes:
Ql 4 7149 (Article in its updated form was not available at press time;
see the online version.)

• PRB: MFC Loads Wrong Resource in Extension DLL: Q150121

237

PART I: WORKSHOP

Implementing Drag and Drop
Capability Between Child Windows

238

The purpose of this task is to implement the ability to drag and drop text
strings between two child windows of an existing MDI application. This proce
dure uses the OLE drag and drop functionality provided by the COleDropTar
get class as well as several virtual functions related to OLE drag and drop:
OnDragEnter, OnDragOver, OnDrop, and OnDragLeave. Note that this procedure
can also be used with some modification to allow dragging and dropping be
tween any two window objects, such as two common controls. For more infor
mation about this option, see ''Additional Information" at the end of this task.

A drag and drop operation has two parts: handling the source of the
drag and drop operation and handling the drop target. For a drag and drop
operation to be successful, there are several small tasks that must be complet
ed for each part. To handle the source of a drag and drop operation, the fol
lowing tasks must be completed by the data source (the object where the drag
and drop operation starts):

II Determining the start of a valid drag and drop operation

II Packing the data to be dragged into a COleDataSource object and call
ing its DoDragDrop member function

To handle the drop target, the following tasks must be completed:

Ill Adding a aJleDropTarget data member to the view class and registering
it as a drop target with the operating system. ·

II Overriding the OnDragEnter, OnDragOver, and OnDragLeave functions
of the drop target class and returning a value other than the default
value DROPEFFECT_NONE, which indicates no drop allowed. You
can use either the DROPEFFECT_MOVE return value or the DROP
EFFECT_COPY return value to indicate the proper action to be taken
by the data source.

Ill Overriding the OnDrop function of the drop target class to unpack and
insert the data upon completion of a drag and drop operation.

Because MFC's implementation of OLE drag and drop is very flexible,
there are many possible types of drag and drop operations, each with differ
ent attributes. For example, both copying or moving entire classes and just

S EV E N : Bits and Pieces

copying or moving a single numeric value can be implemented by the code
that packs and unpacks the data source object. For this task, the drag and
drop operation has the following attributes:

Ill Some text must be selected in the source window.

ii The user must press and hold the left mouse button over the selected
text and drag the selection outside of a 5x5 pixel region to initiate a
drag and drop operation. This region is centered on the location of
the cursor when the left mouse button is pressed.

II The contents (the selected text) are inserted at the nearest text index
of the drop target when the item is dropped (Figure 7-1).

II The operation can be canceled at any time during the drag operation
either by pressing the Esc key or by clicking the right mouse button.

Figure 7-1.
Dropped text inserted between the words "red" and 'Jumped."

The task consists of nine steps:

1. Initializing the OLE system libraries

2. Adding data members to the project's view class

3. Implementing the OnLButtonDown function

4. Adding the InSelRegion helper function

5. Implementing the OnMouseMovefunction

239

PA RT I: WORKSHOP

6. Implementing the OnLButtonUp function

7. Registering the application's drop target

8. Implementing the OnDragEnter and OnDragOver functions

9. Implementing the OnDrop function

The name of the sample project is MDIDROP; to complete this task you
will need the following things:

II An MDI MFC application

Ii The application's view class derived from CEditView

Step 1: Initializing the OLE System Libraries
For OLE drag and drop operations to function within your application, you
must include AFXOLE.H and initialize the OLE system libraries. To include
the AFXOLE.H file in your project, add the following line to the project's
STADAFX.H file:

#include <afxole.h>

Initialize the OLE system libraries by making a call to the global func
tion AfxOlelnit. A good place for this call is in your application's Initlnstance
function, so add the following lines to the beginning of that function:

II Initialize the OLE libraries
if (!AfxOleinit())
{

AfxMessageBox("Ole Initialization Failed");
return FALSE;

This code attempts to initialize the OLE libraries. If it fails, a message box is
displayed, indicating the failure. ·

Step 2: Adding Data Members to the Project's View Class

240

Begin implementing the data source by adding eight data members to the
project's view class. The data members store several values that will indicate
the status of the drag and drop operation. (More detail about these data
members will be provided in the appropriate steps of the task.) Add the fol
lowing code to the header file of your view class:

COleDataSource m_dataSrc;
COleDropTarget m_dropTarget;

II Source of data for operation
JI The drop target for the
JI operation

S E V E N : Bits and Pieces

CRect m_dragRect; II must be outside this area
II before a drop is accepted

CString m_dragString; II The string being dragged

BOOL m_bLBDown; II Was the WM_LBUTTONDOWN message
II handled?

BOOL m_bisTextSelected; II Is there any selected text?
BOOL m_bValidDragStart; II A valid drag and drop operation

II has been started
BOOL m_bCheckForDrop; II Have we checked for a valid

II drop?

Typically, you initialize these data members in the constructor of the
view class. Add the code shown below to your view class's constructor. The val
ues of these data members represent the state of the data source before a drag
and drop operation has been initiated. The Boolean values are all FALSE,
which indicates that no operation has been initiated and that the area and its
contents are cleared:

m_bLBDown = FALSE;
m_bisTextSelected = FALSE;
m_bValidDragStart = FALSE;
m_bCheckForDrop = FALSE;
m_dragRect.SetRect(0, 0, 0, 0);
m_dragString = '"';

The next four steps are where the real work of implementing the data
source occurs.

Step 3: Implementing the OnLButtonDown Function
Because every drag and drop. operation is initiated by the user pressing the
left mouse button, a good place to start setting up the drag and drop opera
tion is in the WM_LBUTTONDOWN event handler (OnLButtonDown).

Before jumping into the code that you will need to add, let's review the
logic you will have to implement in this handler. For a drag and drop opera
tion to be valid, two things must be true:

Ill Some or all of the text in a child window has been selected.

Ill The user has pressed the left mouse button somewhere within the
selected text area.

If these two conditions are true, the user possibly has started a new drag and
drop operation. I say "possibly" because the user must drag the selection out
side the m_dragRect region before the drag is actually accepted as a drag and

241

PA R T I : WORKSHOP

242

drop action. However, after the initial requirements of a drag and drop opera
tion have been met, set some flags (indicating that a possible drag and drop
operation has started) and capture the mouse input until the operation is
complete or has been canceled. Now that you're clear on the logic, add the
code. Add a handler to your view's class to handle the WM_LBUTTONDOWN
message, and then add the following lines of code to your new OnLButtonDown
function:

BOOL ptinRegion = FALSE; II Is the cursor over the selected

CEdit&
HLOCAL
CHAR*
CHAR*
DWORD
int

II text?
tmpEdit = GetEditCtrl();
hBuff = tmpEdit.GetHandle();
szBuff = (CHAR*)Locallock(hBuff);
szDragString;
PtPos:
ptindex, nStartChar, nEndChar, nlen:

tmpEdit.GetSel(nStartChar, nEndChar):
nlen = nEndChar - nStartChar;
szDragString = m_dragString.GetBufferSetlength(nlen);
memcpy(szDragString, szBuff + nStartChar, nlen);
LocalUnlock(hBuff);
m_dragString.ReleaseBuffer();
m_bLBDown = TRUE;

if (nlen > 0) II Possible drag operation
{

}

else

II Check to see whether LBDown is in seltext region
PtPos = tmpEdit.CharFromPos(point);
ptindex = LOWORD(PtPos);
m_bValidDragStart = InSelRegion(point, ptindex);

if (!m_bValidDragStart) II Clicked outside selected region
CEditView::OnLButtonDown(nFlags, point);

else
{

}

SetCapture();
m_dragRect.SetRect(point.x - 5, point.y - 5,

point.x + 5, point.y + 5);
m_bCheckForDrop = TRUE;

CEditView::OnLButtonDown(nFlags, point);

In the first section of code, I initialize the ptlnRegfon flag to FALSE and re
trieve a handle to the edit control that is embedded in the view object. I then

S EV E N : Bits and Pieces

lock a local buffer (hBujf), which causes the entire contents of the edit con
trol to be loaded into szBuff In the next section of code, I retrieve the start
and end positions of the selected text. The pointer to a local string buffer
(szDragString) is then set to the m_dragString member variable and the selected
contents of the edit control are copied into szDragString, which automatically
copies the same text into m_dragString. Finally, the m_dragString buffer is un
locked, and m_LBDown is set to TRUE. I then check to see whether the string
containing the selected text is empty (indicating that no text is selected). If
no text is selected, I can safely ignore this event and pass it on to the default
handler. If text is selected, I proceed to the second part of validation: has the
user clicked within the selected text region?

Because I am working with edit controls that are embedded in each
child window, I am able to calculate the dimensions of the rectangle contain
ing the selected text and determine whether the mouse click occurred within
the text string. This is accomplished in the next section of code (an if state
ment) by determining the text index of the string and making a call to a help
er function (lnSelRegion), which will be added in step 4. If InSelRegion returns
FALSE, the user has not clicked within the selected text rectangle. This means
that a drag operation has not started; therefore, I can safely ignore the
WM_LBUTTONDOWN event and pass the event on to the default handler.
However, if InSelRegion returns TRUE, a valid drag operation has been started;
then I proceed to the else body of the if statement.

In the else body of code, I capture all further input from the mouse and
set the m_dragRect data member to a 5x5 pixel region, centered on the point
in the region where the left mouse button was pressed. I use this region in the
WM_MOUSEMOVE handler to determine whether the drag and drop opera
tion should be completed. (This is discussed further in step 6.) Finally, I set
another flag that tells me to allow drop attempts to be made.

Step 4: Adding the /nSe/Region Helper Function
In the previous step, you made a call to the InSelRegion helper function. The
purpose of this function is to check the location of the cursor when the left
mouse button is pressed against the selected text region. If there is an in tersec
tion, TRUE is returned. If there is no intersection, FALSE is returned. Add this
function now by adding the following line in the header file of your view class:

BOOL InSelRegion(CPoint pt, int ptindex);

243

PART I: WORKSHOP

In the implementation file of your view class, add the following code:

BOOL CMDIDropView::InSelRegion(CPoint pt, int ptlndex)
{

CEdit& tmpEdit = GetEditCtrl();
DWORD txtPos;
int startlndex, endlndex;

txtPos = tmpEdit.GetSel();
startlndex = LOWORD(txtPos);
endlndex = HIWORD(txtPos) - 1;

if ((ptlndex >= startlndex) && (ptlndex <= endlndex))
return TRUE;

else
return FALSE;

In the first section of this code, I retrieve the embedded edit control and de
clare some local variables. In the next section of code, I retrieve the current
selection and calculate the start and end indexes of the selected text. Finally,
I compare this range against ptlndex, the index of the mouse click. If ptlndex
is within the range, I return TRUE. If it is outside the range, I return FALSE.

Step 5: Implementing the OnMouseMove Function

244

In the previous step, you determined at what point a valid drag and drop
operation was initiated by the user. Now you have to implement the "drop
ping" of the item being dragged. To make the code easier to read, I use the WM
_MOUSEMOVE handler (OnMouseMove) to implement dropping the dragged
item. I have seen other methods that place the "drop code" in the WM
_LBUTTONDOWN handler, but the placement of this code seems to be a
matter of choice. In any event, at this point you have to implement the follow
ing logic: if you are checking for a drop event (m_CheckForDrop is TRUE) and
the current location of the cursor is outside the valid drop region
(m_dragRect), copy or move the selected text to the valid drop target by calling
DoDragDrop. However, if you aren't checking for a drop event (m_CheckForDrop
is FALSE) or if the current cursor location is inside the valid drop region, ig
nore this event and call the default handler.

Add a handler to your view's class to handle the WM_MOUSEMOVE
message, and add the following lines of code to the beginning of your new
OnMouseMove function:

S E V E N : Bits and Pieces

DWORD numBytes:
HGLOBAL hgData:
LPTSTR lpData;
DROPEFFECT dropEffect;

if (m_bCheckForDrop && !(m_dragRect.PtinRect(point)))
II Valid drag, do drop

}

else

ReleaseCapture();
m_bCheckForDrop = FALSE;

numBytes = (DWORD)m_dragString.GetLength();
II Create global memory for sharing drag and drop text
hgData = GlobalAlloc(GPTR,numBytes + l);
ASSERT(hgData !=NULL):

II Lock global data (get pointer)
lpData = (LPTSTR)GlobalLock(hgData);
ASSERT(lpData !=NULL);

strcpy(lpData, m_dragString);
GlobalUnlock(hgData);

m_dataSrc.CacheGlobalData(CF_TEXT, hgData);
dropEffect = m_dataSrc.DoDragDrop(

DROPEFFECT_COPY I DROPEFFECT_MOVE, NULL);
if ((dropEffect&DROPEFFECT_MOVE) == DROPEFFECT_MOVE)

GetEditCtrl{).Clear();
m_dataSrc.Empty();

CEditView::OnMouseMove(nFlags, point);

In the first section of code, I declare some local variables. In the if statement
that follows the declarations, if m_bCheckForDrop is TRUE and the current
drop location is outside the valid drop region, I have a valid drop. Next I allo
cate enough global memory to store the selected string and retrieve a pointer
to it. In the next section, I copy the selected string into the global memory
pointer. I then cache the data in the data source object (m_dataSrc) and call
the DoDragDrop function of m_dataSrc. Finally, I use an if statement check to
see whether the drag and drop operation was a copy or a move. If it was a
move, I clear the selected text from the source with a call to the view object's
Clear function.

245

PART I: WORKSHOP

Step 6: Implementing the OnLButtonUp Function
Because the end of a valid drag and drop operation is indicated by the user re
leasing the left mouse button, the WM_LBUTTONUP handler (OnLButtonUp)
is a great place to re-initialize the drag and drop data members you added in
step 2. This allows your child windows to look for the next possible drag and
drop operation. Implement this cleanup now. Add a handler to your view's
class to handle the WM_LBUTTONUP message, and add the following lines
of code to your new OnLButtonUp function:

m_bLBDown = FALSE;
if (m_bCheckForDrop)
{

} ;

CEdit& tmpEdit = GetEditCtrl();
DWORD ptCha r;
int ptindex;

ReleaseCapture();
m_bCheckForDrop = FALSE;
ptChar = tmpEdit.CharFromPos(point);
ptindex = LOWORD(ptChar);
tmpEdit.SetSel(ptindex, ptindex);

CEditView::OnLButtonUp(nFlags, point);

In the first section of this code, I set m_lbDown to FALSE; then, if m_bCheckFor
Drop is TRUE, I release the mouse capture, set m_bCheckForDrop to FALSE, and
clear any current text selection. IfI am not checking for a drop event, the de
fault handler is called.

This concludes the implementation of the drop source. In the remain
ing three steps, you will implement the drop target side of things.

Step 7: Registering the Application's Drop Target

246

For a Windows object to be a valid drop target, it must contain a COleDropTarget
data member or a data member derived from COleDropTarget; the object must be
registered. This means that for this task each child window object must have
a data member of this type (completed in step 2) and the drop target must be
registered with Windows. You register your child windows by making a call to
the Register function of the drop target data member that you added in step 2.

Register the child window now by adding the following code line to the
OnCreate function of your view class after the call to the base class's OnCreate
function:

m_dropTarget.Register(this);

S E V E N : Bits and Pieces

N 0 TE: There is a function, COleDropTarget::Reuoke, that removes
the window from the list of valid drop targets. However, because
both drop targets are valid child window objects, Revoke is auto
matically called by the OnC'lose function of each child window when
the window is destroyed.

Step 8: Implementing the OnDragEnter and OnDragOver Functions
In step 5, you made a call to the drop source's DoDragDrop function. You
might remember that you also checked the return value to see whether the
original data should be moved (DROPEFFECT_MOVE) or should be copied
(DROPEFFECT_COPY). This return value is determined by three functions
of the view class-OnDragEnter, OnDragOver, and OnDragLeave.

The default behavior for OnDragEnterand OnDragOverreturns the value
DROPEFFECT_NONE, which indicates that the current target is not valid for
dropping. However, if these two functions are overridden in the application's
view class, drop operations will be allowed in any child window of the appli
cation. The overrides of these functions are the same, so you can tackle both
at once.

N 0 TE: For this task, there is no need to override the OnDrag
Leave function.

To implement OnDragEnter and OnDragOver, follow this procedure:

1. In your application's view class, override the OnDragEnterand On
DragOver functions using your favorite method.

2. Replace the body of each overridden function with the following
code:

II Check whether the control key was pressed
if ((dwKeyState & MK_CONTROL) == MK_CONTROL)

return DROPEFFECT_COPY: II Copy the source text
else

return DROPEFFECT_MOVE: II Move the source text

3. Save your changes.

The code you just added checks the dwKeyState variable for the value of
MK_CONTROL, which indicates that the user pressed the Ctrl key before
starting the drag and drop operation. According to the Windows style guide,
this indicates a copy operation, not a move. Therefore, you should return
DROPEFFECT_COPY. Going back to the code you added in step 5, you can

247

PART I: WORKSHOP

. see that the return value is compared to DROPEFFECT_MOVE and, if true,
the original text is deleted:

m_dataSrc.CacheGlobalDataCCF_TEXT, hgData):
dropEffect = m_dataSrc.DoDragDrop(

DROPEFFECT_COPY I DROPEFFECT_MOVE, NULL):
if CCdropEffect&DROPEFFECT_MOVE) == DROPEFFECT_MOVE)

GetEditCtrl().ClearC):
m_dataSrc.Empty():

Step 9: Implementing the OnDrop Function

248

You have now implemented all of the drag and drop capability except for one
part-the code that handles the drop event. Once again, MFC saves the day
by providing a handy little virtual function (CView::OnDrop) that you can over
ride to handle drop events for a window. By default, OnDrop does nothing and
returns FALSE. You are going to need better results than that if you want
drag and drop capability! First override OnDrop in your application's view
class. Then replace the body of that override with the following code:

HGLOBAL hGlobal:
LPCSTR pData;
int charPos, charlndex:
CEdit& tmpEdit = GetEditCtrl();
DWORD oldSel:

II Get text data from COleDataObject
hGlobal = pDataObject->GetGlobalDataCCF_TEXT):

II Get pointer to data
pData = CLPCSTR)GlobalLock(hGlobal);
ASSERTCpData !=NULL);

II Set text in dropped window
charPos = tmpEdit.CharFromPosCpoint);
charlndex = LOWORDCcharPos):

oldSel = tmpEdit.GetSel();
tmpEdit.SetSel(charlndex, charlndex);
tmpEdit.ReplaceSelCpData);
tmpEdit.SetSel(oldSel);

II Unlock memory
GlobalUnlock(hGlobal):

return TRUE;

S E V E N : Bits and Pieces

Let's quickly run through the code and see what it does. In the first sec
tion, I declare some local variables and retrieve a reference to the embedded
edit control. Next I retrieve the text with a call to GetGlobalData. Then I get a
pointer to the text and drop the text into the current window. I determine
the location of the text by choosing the closest text index to the current posi
tion of the pointer. Finally, I unlock the global memory and exit the function.

After this code has been added and the project rebuilt, you can drag
and drop selected text from one child window to another.

Additional Information
In a sense, this task has already demonstrated dragging text between two
common controls. The data source and drop target are CView-derived win
dows, each of which contains an embedded edit control. This means that the
procedure for implementing drag and drop between child windows can be
used, with some modification, for implementing drag and drop between oth
er types of common controls. To find out how to implement this functionality
for common controls on non-Windows 95 platforms, see the Knowledge
Base article "SAMPLE: Using MFC OLE Drag & Drop to Drag Text Between
Windows": Ql35299. The article also contains a sample that demonstrates
the procedure discussed.

With the introduction of Windows 95, the underlying implementation
for common controls changed significantly. An article in the Knowledge Base
has a sample that addresses these changes: "DRAGD95.EXE:SAMPLE:OLE
Drag/Drop in Windows 95 Common Controls": Q152092.

Using a Custom Class
Factory in an MFC Application

The purpose of this task is to customize the creation process of a creatable
OLE Automation object that can be created at run time in an MFC applica
tion. The task deals specifically with OLE Automation objects that are creat
able by type ID-a method of creation that makes use of the macros
DECLARE_OLECREATE and IMPLEMENT_OLECREATE.

N 0 T E : The declaration and definition of these macros can be
found in the header file AFXDISP.H, which is located in the
\MFC\INCLUDE directory.

249

PART I: WORKSHOP

In this task, I will demonstrate how to customize the DECLARE
_OLECREATE and IMPLEMENT_OLECREATE macros using a class derived
from COleObjectFactory. These macros automatically use an instance of the
COleObjectFactory class to create an instance of your Automation object for ex
ternal clients. You can then customize various default aspects of the class fac
tory (the object that is implemented by the COleObjectFactory-derived class) by
overriding virtual functions of the COleObjectFactory base class. The task con
sists of four steps:

1. Defining custom macros in the project

2. Using the custom macros in the Automation object

3. Adding a new class factory class to the project

4. Modifying the class factory class

An OLE Automation object (CMyAutoObj) is contained in the sample
project MWACT; external clients can create this object using a set of custom
ized macros. These macros, MYDECLARE_OLECREATE and MYIMPLEMENT
_OLECREATE, use a class factory class derived from COleObjectFactory (CMy
Factory) instead of the COleObjectFactory class. To complete the task, you will
need the following things:

II An MFC application project that provides OLE support.

II A creatable OLE Automation object that will use the custom class fac
tory. Objects of this type can be created by external clients and can
make use of the DECLARE_OLECREATE and IMPLEMENT_OLE
CREATE macros.

Step 1: Defining Custom Macros in the Project

250

As I mentioned above, the DECLARE_OLECREATE and IMPLEMENT
_OLECREATE macros allow an instance of your OLE Automation object to
be dynamically created. To customize this dynamic creation process, you
must implement an exact copy of each macro, with the following exception:
instead of using the COleObjectFactory class, use your own class derived from
COleObjectFactory. First define the custom versions of the DECLARE_OLE
CREATE and IMPLEMENT_OLECREATE macros in the header file of the
Automation object. Then add the following lines to the top of the header file:

S E V E N : Bits and Pieces

#define MYDECLARE_OLECREATE(class_name) \
public: \

static AFX_DATA CMyFactory factory; \
static AFX_DATA const GUID guid; \

#define MYIMPLEMENT_OLECREATE(class_name, external_name, \
l, wl, w2. bl, b2, b3, b4, b5, b6, b7, b8) \
AFX_DATADEF CMyFactory class_name::factory(class_name::guid, \

RUNTIME_CLASS(class_name), FALSE, _T(external_name>>: \
const AFX_DATADEF GUID class_name::guid = \

{ l, wl, w2, {bl, b2, b3, b4, b5, b6, b7, b8} }; \

This code is an exact copy of the code found in AFXDISP.H except for the
class factory name and custom macro names. The class that is referenced in
the macros, CMyFactory, will be derived from COleObjectFactory in step 3 below.

Now that the macros have been defined, you can modify the Automa
tion object class to make use of them.

Step 2: Using the Custom Macros in the Automation Object
This step is fairly easy because all you need to do is change two lines of code.
In the header file of the Automation object class, locate the macro
DECLARE_OLECREATE and change its name to MYDEClARE_OLECREATE.
In the implementation file of the Automation object class, locate the macro
IMPLEMENT_OLECREATE and change its name to MYIMPLEMENT_OLE
CREATE. After you have made these changes, you can add the class factory
that is used by the MYDECLARE_OLECREATE and MYIMPLEMENT_OLE
CREATE macros.

Step 3: Adding a New Class Factory Class to the Project
The final piece of this task adds and implements the class factory class used
by your Automation object. I divide this step into two parts, deriving the class
factory class from CCmdTarget and modifying the new class, because Class Wiz
ard does not support adding classes derived directly from COleObjectFactory. I
suggest using ClassWizard to add the class because you can get a usable frame
work by deriving from CCmdTarget, which saves some typing.

So add a new class derived from CCmdTarget using ClassWizard. (Class
and source filenames can be of your choosing.) Now that you have an actual
class factory class, you will have to fix a little problem that was skipped over in

251

PART I: WORKSHOP

step 2. If you recall, the MYDECLARE_OLECREATE and MYIMPLEMENT
_OLECREATE macros make references to the CMyFactory class. At the time,
you didn't have a header file that defined the CMyFactory class. Now that you
do, include the CMyFactory header file right after the custom macro declara
tions in the implementation file of your OLE Automation object. This pre
vents any compilation errors that might result from a lack of definition for
CMyFactory.

N 0 T E : The name of the class used in the sample is CMyFactory.
The header file is named MYFACTORYH, and the implementation
file is named MYFACTORYCPP.

Step 4: Modifying the Class Factory Class

252

Because you had to derive the class factory class from CCmdTarget, you must
now modify the derivation of that class to COleObjectFactory. Use the following
procedure to modify the class factory class. All changes are confined to the
header and implementation files of the new class.

1. Change all occurrences of CCmdTarget to COleObjectFactory.

2. Delete the DECLARE_DYNCREATE macro from the header file.

3. Change the declaration of the constructor, located in the header file,
to the following:

public:
CMyFactory(REFCLSID clsid,

CRuntimeClass* pRuntimeClass, BOOL bMultiinstance,
LPCTSTR lpszProgID);

4. Change the access specifier of the destructor, located in the header
file, from "protected" to "public."

5. Delete the IMPLEMENT_DYNCREATE macro from the implemen
tation file.

6. Change the definition of the constructor, located in the implementa
tion file, to the following:

CMyOleObjectFactory::CMyOleObjectFactory(REFCLSID clsid,
CRuntimeClass* pRuntimeClass, BOOL bMultiinstance,
LPCTSTR lpszProgID):

{

}

COleObjectFactory(clsid, pRuntfmeClass,
bMultiinstance, lpszProgID)

S E V E N : Bits and Pieces

7. Save your changes to the source files.

After you have completed these changes, rebuild your project. When
creating an instance of itself, the Automation object will now use a class fac
tory derived from COleObjectFactory, and you will now be able to modify the
class factory as you see fit.

Saving the State of an MDI
Application upon Exiting

The purpose of this task is to enable an MFC MDI application to save the state
of its various attributes (such as the size and the position of the main frame
window) to the system Registry before the application exits. When the appli
cation is reopened, the saved information is used to restore application at
tributes to their previous state.

N 0 T E : For information about implementing this same func
tionality for SDI and dialog box-based applications, see ''.Addi
tional Information" at the end of this task.

Attributes that are commonly saved range from application-wide infor
mation (such as what control bars were docked or visible) to specific items
(such as the value for a specific control in a dialog box). For the purpose of
this demonstration, the following attributes are stored by the sample project
(INIFILE) in the system Registry under the key RedRoad Inc.:

11111 The size and position of the main frame window.

11111 The state of the child window (maximized or normal).

11111 The state (docked or undocked, visible or hidden) of the status bar
and the toolbar. If the toolbar is undocked, the current position is
also saved.

This task consists of nine steps:

1. Modifying the Initlnstance function of the application class

2. Overriding the Exitlnstance function of the application class

3. Implementing the InitialShowWindow function

4. Adding helper functions for the InitialShowWindow function

5. Implementing the OnClose function of the main frame window

253

PART I: WORKSHOP

6. Adding data members to a child window

7. Adding the Initialize and Terminate functions to a child frame window

8. Implementing the ActivateFrame function of a child frame window

9. Implementing the OnSize function of a child frame window

To complete this task, you will need an MFC MDI application.

Step 1: Modifying the lnitlnstance
Function of the Application Class

254

You will be storing attributes related to both the main frame and child frame
windows, so the application object is a good place to notify both the main
frame window and the child frame windows of their creation. This notifica
tion allows the windows to retrieve any attribute values that can affect the
appearance of the windows. Use the following procedure to modify the Init
Instance function.

1. Add the following lines of code to the implementation file of your ap
plication class right after the message map declaration:

static TCHAR szCompanyName[] = _T("RedRoad Inc.");

This code defines the name of a key in the system Registry that your
application uses to store attributes. This key is located in the HKEY
_CURRENT_USER\Software directory of the system Registry. Storing
attributes in the system Registry is essential for applications that are
Windows 95 compliant. If you are modifying a non-Windows 95 appli
cation, however, and want to use an INI file instead of the system Reg
istry, see "Additional Information" at the end of this task. Naturally,
you should replace the szCompanyName string with the name of your
company.

2. Add the following lines of code to the beginning of the application's
Initlnstance function:

SetRegistryKey(szCompanyName);
CChildFrame::Initialize();

This code sets the Registry key to szCompanyName and notifies the
child frame window object of its creation. At this point, the Initialize
function has not yet been added to the child frame class. It will be
added in step 7.

S E V E N : Bits and Pieces

3. In the Initlnstance function, find the line of code that makes a call to
the ShowWindow function. Replace it with the following code:

pMainFrame->InitialShowWindow(m_nCmdShow);

This code causes the main frame window to retrieve its size and state
attributes from the Registry key and to use these values to display it
self. At this point, the InitialShowWindow function has not yet been
added to the main frame class. It will be added in step 3.

4. Save your changes.

Now that you have set up a framework for notifying the window objects
before their creation, add code that notifies the child frame window of its ter
mination. (The mechanism for notifying the main frame window to save its
attributes is discussed in step 5.)

Step 2: Overriding the Exitlnstance
Function of the Application Class

The purpose of this step is to provide a mechanism for notifying the child
window of its termination so that it can save its current attributes to the sys
tem Registry before termination. The simplest method involves overriding
and modifying the Exitlnstance function. Using your favorite method, override
the function now, and then replace the existing function code with the fol
lowing code:

CChildFrame::Terminate();
return CWinApp::Exitinstance();

This code simply calls the Terminate function of the child window object (which
is added in step 7) and then returns the value of the call to CWinApp::Exit
Instance.

This completes the modifications to the application class.

Step 3: Implementing the lnitia/ShowWindow Function
It's now time to implement the InitialShowWindow function. This function,
called from the newly modified Initlnstance function of the application class,
reads main frame window attributes and toolbar states from the Registry key
and then displays the main frame window and its control bars using the val
ues from the Registry key. Use the procedure on the following page to add
the InitialShowWindow function to your project.

255

PA R T I : WORKSHOP

256

1. Add this code to the header file of the main frame window class:

public:
void InitialShowWindowCUINT nCmdShow>:

2. Save your changes.

3. Add the following lines to the implementation file of your main
frame window class (position is not important):

///////////////////////////////////l///l///I//
II Helpers for saving/restoring window state
static TCHAR szSection[J = _T("Settings"):
static TCHAR szWindowPos[J = _T("WindowPos"):
static TCHAR szCBarSection[J = _T("Control Bars"):
static TCHAR szFormat[J = _T("%u,%u,%d,%d,%d,%d,%d,%d,%d,%d"):

The first three lines define three strings, each representing a section
in the Registry key. The fourth string defines a format that will con
tain the size and position of the main frame window.

4. Add the following code to the implementation file of your main
frame window class:

void CMainFrame::InitialShowWindowCUINT nCmdShow)
{

}

II Retrieve position of the window before displaying
WINDOWPLACEMENT wp:
wp.length = sizeof CWINDOWPLACEMENT):
if C!ReadWindowPlacementC&wp))
{

}

ShowWindowCnCmdShow):
return:

if CnCmdShow != SW_SHOWNORMAL)
wp.showCmd = nCmdShow:

WriteWindowPlacementC&wpl:
LoadBarState(szCBarSection):
SetWindowPlacementC&wpl:

ShowWindow(wp.showCmd):

This code first reads the attributes from the Registry key and initializ
es a WINDOWPLACEMENT structure, wp. The state of the control
bars is then read, the size of the main frame window is restored, and
finaily, a call is made to ShowWindow, which displays the main frame
window using the wp variable.

5. Save your changes.

S E V E N : Bits and Pieces

Step 4: Adding Helper Functions
for the lnitia/ShowWindow Function

Did you notice the calls the InitialShowWindow function made to the ReadWin
dowPlacement and WriteWindowPlat:ement functions? In case you were wonder
ing about them, you haven't added them yet. The InitialShowWindow function
uses these two helper functions to read and write entries to and from the Reg
istry key. For InitialShowWindow to work properly, you must add the ReadWin
dowPlacement and WriteWindowPlacement helper functions to the main frame
window class. To add them, follow this procedure:

1. Add the following lines of code to the implementation file of the
main frame window class:

static BOOL ReadWindowPlacement(LPWINDOWPLACEMENT pwp)
{

}

CString strBuffer = AfxGetApp()->
GetProf1leString(szSection, szWindowPos):

1f CstrBuffer.IsEmpty{))
return FALSE:

WINDOWPLACEMENT wp;
int nRead = _stscanf(strBuffer, szFormat,

&wp.flags, &wp.showCmd,
&wp.ptMinPos1tion.x, &wp.ptMinPosition.y,
&wp.ptMaxPos1tion.x, &wp.ptMaxPosition.y,
&wp.rcNormalPosit1on.left, &wp.rcNormalPos1tion.top,
&wp.rcNormalPosition.right,
&wp.rcNormalPosition.bottom):

if CnRead != 10)
return FALSE:

wp.length = sizeof wp:
*PWP = wp;
return TRUE:

The first section of this code retrieves the size and the position of the
main frame window from the Registry key using the strings szSection
and szWindowPos. If the buffer is empty (indicating that no informa
tion was found), the ReadWindowPlat:ement function returns FALSE, in
dicating failure. The second section of the code uses the size and

257

PART I: WORKSHOP

position values from the szFormat string to initialize a temporary
WINDOWPLACEMENT variable. If the initialization is successful,
pwp is set equal to wp and the function returns TRUE, indicating
success.

2. Add the following lines of code to the implementation file of the
. main frame window class:

static void WriteWindowPlacement(LPWINDOWPLACEMENT pwp)
{

}

TCHAR szBuffer[sizeof("-32767") * 8 +
sizeof("65535") * 2 + 1]:

wsprintf(szBuffer, szFormat,
pwp->flags, pwp->showCmd,
pwp->ptMinPosition.x, pwp->ptMinPosition.y,
pwp->ptMaxPosition.x, pwp->ptMaxPosition.y,
pwp->rcNormalPosition.left, pwp->rcNormalPosition.top,
pwp->rcNormalPosition.right,
pwp->rcNormalPosition.bottom):

AfxGetApp()->WriteProfileString(szSection,
szWindowPos, szBuffer):

The first section of this code allocates a temporary character buffer
to store the string retrieved from the Registry key. The buffer is then
initialized with values from the WINDOWPLACEMENT pointer that
was passed in. Once initialized, the buffer is written to the Registry
key in the szSection section under the szWindowPos heading.

3. Save your changes.

Now that you have added the ability to read values from the applica
tion's Registry key, you have to add the ability to store the attributes of the
main frame window (and the control bars) in the application's Registry key at
the proper time.

Step 5: Implementing the OnC/ose
Function of the Main Frame Window

258

To save the current state of the main frame window, you need a way to store
its attributes before its termination. You can do this by overriding the OnClose
function of the main frame window object and then adding code that writes
the values to the system Registry. Using your favorite method, override the
OnClose function of the main window class.

S E V E N : Bits and Pieces

After you override the OnClose function, replace any existing function
code with the following code:

void CMainFrame::OnClose()
{

} ;

II Before it is destroyed, save the position of the
II window
WINDOWPLACEMENT wp;
wp.length = sizeof CWINDOWPLACEMENT):
if (GetWindowPlacementC&wp))
{

}

wp.flags = 0;
if (Is Zoomed())

wp.flags I= WPF_RESTORETOMAXIMIZED;
II And write it to the Registry
WriteWindowPlacement(&wp):

SaveBarState(szCBarSection);

CMDIFrameWnd::OnClose();

The first section of this code initializes a temporary WINDOWPLACEMENT
structure with a call to the GetWindowP/,acement function. If this call is success
ful, the code checks to see whether the main window is maximized and adds
the WPF_RESTORETOMAXIMIZED flag if it is needed. A call is then made
with these new values to the WriteWindowP/,acement helper function that was
added in step 4. Finally, the state of the control bars is saved, and the OnClose
function of the base class is called.

This completes the modifications to the main frame window class.

Step 6: Adding Data Members to the Child Window
For child windows, there are several attributes that can be saved from session
to session:

• The state of the child window (maximized, minimized, or normal)

II The type of child window that is open

Ill The last file viewed

Unfortunately, I have room here to demonstrate the tracking of only
one attribute-the state of the child window. This tracking is accomplished
using two data members (m_nDeJCmdShow and m_nDeJCmdShowOld) and four

259

PART I: WORKSHOP

functions (Initialize, Terminate, OnActivate, and OnSize). The data members
store the current state and the previously saved state of the child window.
One group of functions, which consists of the Initialize and Terminate func
tions, reads and writes the child window state from the application's Registry
key. The second group of functions, which consists of the OnActivateFrame
and OnSize functions, tracks changes in the child window state and ensures
that new child windows always use the current value, m_deJShowCmd.

To implement this functionality, add several data members to the child
frame window class, as described below:

1. Add the following lines of code to the "protected" section of the child
window class, which is found in the header file of the child frame win
dow class:

static int m_nDefCmdShow:
static int m_nDefCmdShowOld:

These two members store the current and previous values of the
child window state.

2. Save your changes.

3. In the implementation file of your child window class, add the follow
ing lines of code after the message map declaration:

int CChildFrame::m_nDefCmdShow = SW_SHOWMAXIMIZED:
int CChildFrame::m_nDefCmdShowOld = SW_SHOWMAXIMIZED;

static TCHAR szSec[J = _T("Settings"):
static TCHAR szShowCmd[J = _T("ShowCmd"):

The first section of this code initializes the two static data members
(CChi/,dFrame: :m_nDefCmdShow and CChildFrame: :m_nDefCmdShow
Old) to SW_SHOWMAXIMIZED. This forces all child windows to be
displayed initially as maximized. In the second section of code, the
szSec and szShowCmd strings are defined. These strings contain the
name of the Registry key section and the attribute name, respectively.

4. Save your changes.

Step 7: Adding the Initialize and Terminate
Functions to the Child Frame Window

260

You might recall that at one point you modified the Initlnstance function in
the application class to make a call to a function of the child window class,

S EVE N : Bits and Pieces

named Initialize. In addition, you modified the Exitinstance function to make
a call to a function of the main frame window class, named Terminate. Well, you
are now ready to implement these functions.

The purpose of the Initialize function is to retrieve the default state of
child windows from the application's Registry key and to initialize the static
data members that were declared in step 6. The purpose of the Terminate func
tion is to check the current child window state against the value in the appli
cation's Registry key and, if the values differ, to store the new value in the
Registry key. Because both of these functions are custom functions, you add
them to the child window class manually. To implement the Initialize and Termi
nate functions, follow this procedure:

1. Add the following code to the header file of the child window class:

II Operations
public:

static void Initialize();
static void Terminate();

2. Save your changes.

3. In the implementation file of the child window class, add the following
code:

void CChildFrame::Initialize()
{

}

m_nDefCmdShow = AfxGetApp()->GetProfileint(szSec,
szShowCmd, m_nDefCmdShow);

m_nDefCmdShowOld = m_nDefCmdShow;

This code retrieves the default state of the child window from the ap
plication's Registry key and initializes m_nDefCmdShowOld with this
value. ·

4. Immediately after the Initialize function body, add the code below:

void CChildFrame::Terminate()
{

}

if (m_nDefCmdShow != m_nDefCmdShowOld)
{

}

AfxGetApp()->WriteProfileint(szSec, szShowCmd,
m_nDefCmdShow):

m_nDefCmdShowOld = m_nDefCmdShow:

261

PA RT I : WORKSHOP

This code first checks the current default state of the child window
object (m_nDeJCmdShow) against the previously saved state (m_nDef
CmdShowOld). If there is a difference, the new value is written to the
application's Registry key and m_nDeJCmdShowOld is updated with
the current value.

5. Save your changes.

You can now initialize m_nDefCmdShowand m_nDefCmdShowOldwith the
value that is found in the application's Registry key. When the application exits,
check the current value (which has possibly been changed by the user) and, if
it differs from the Registry key value, update the Registry key value.

Step 8: Implementing the ActivateFrame
Function of the Child Frame Window

Because you are tracking the child window state, it would be a good idea to
use it when creating new child windows. A good way to do this is to override
the ActivateFrame function. You can use the override to ensure that any new
child window initially appears in the proper state-that is, either maximized
or normal. Override the function now, and replace the existing body of code
with the following code:

void CChildFrame::ActivateFrame(int nCmdShow)
{

}

if (nCmdShow == -1)
nCmdShow = m_nDefCmdShow: // Use our default

CMDIChildWnd::ActivateFrame(nCmdShow);

This code checks the current value of nCmdShow and, when the values don't
match, uses the stored value (m_nDefCmdShow). The child window is then dis
played with a call to the ActivateFrame function of the base class.

Step 9: Implementing the OnSize
Function of the Child Frame Window

262

At this point, you have code that saves the current value of the child frame
window upon exit and then uses this value when creating new child frame
windows. However, it would be nice if it were possible to update the value of
the child window state whenever the user restores a maximized child window
or maximizes a child window. This can be done by overriding another func
tion (OnSize) in the child window class. The OnSize function is called every

S E V E N : Bits and Pieces

time the state of the child window is changed. Override the OnSize function
now, and replace the existing body of code with the following code:

void CChildFrame::OnSize(UINT nType, int ex, int cy)
{

}

CMDIChildWnd::OnSizeCnType, ex, cy);
if C!IsWindowVisible())

return;

switch (nType)
{

}

case SIZE_MAXIMIZED:
m_nDefCmdShow = SW_SHOWMAXIMIZED;
break;

case SIZE_RESTORED:
m_nDefCmdShow = SW_SHOWNORMAL;
break;

This code first calls the default handler and then checks to see whether the
window is visible. When the window isn't visible, there isn't any need to track
the state of the child window, so the function exits immediately. However,
when the window is visible, a switch statement is used to determine the cur
rent state of the child window (maximized or normal). The switch statement
then stores the current value in m_defCmdShow and exits the function.

Rebuild the project. Your application will now save the size and the po
sition of the main frame window, the state of the child window (maximized or
normal), and the state (docked or undocked, visible or hidden) of the status
bar and the toolbar in a key of the system Registry.

Additional Information
For an MDI application, you must use the system Registry to achieve this func
tionality if the application is to be Windows 95 compliant. However, if your
MDI application doesn't have to be Windows 95 compliant, you can use the
INI file approach. The only change you have to make is to remove the call to
the SetRegi,stry&yfunction in the Initlnstancefunction of the application. This
causes an INI file to be created automatically for the application (if one does
not already exist) and all attributes to be automatically written to and read
from this file.

For an SDI application, you will have to modify the procedure that has
been described in this task to achieve this functionality. The code that saves

263

PART I: WORKSHOP

264

the size, position, and state of the control bars-the bulk of which is found in
step 3 and step 5-remains the same. If you want to save the state of the main
frame window, modify the procedure and code found in steps 6 through 9. Of
course you should make all changes to the main frame window class instead
of the child frame witldow class. I leave the details as an exercise for the reader.

Because the structure of a dialog box-based application is different from
the structure of an SDI or MDI application, the only useful information
that can be taken from this chapter is how to set up the Registry key (using a
call to the SetRegi,stryKey function) and the use of the WriteProfilelnt and Get
Profilelnt function calls.

C H A P T E R E I G H T

MFC Database Classes
When the Data Access Objects (DAO) database classes were first introduced
in MFC version 4, users began to ask a logical question: which set of classes is
used in what circumstances? The answer to that question depends entirely on
what is to be implemented, so it is impossible to answer the question without
going into a lot of detail for each individual case. Nevertheless, I can com
ment briefly on the subject here.

The set of choices you have for creating database applications is vast. It
is actually a continuum of choices, with desktop database applications at one
end and strict client/server database applications at the other end. Probably
the only two choices that might seem obvious are using the MFC DAO data
base classes with Microsoft Access 97 MDB data and using the MFC ODBC
database classes with Microsoft SQL Server version 6.x. The members of each
of these two pairings were for the most part designed to work together, and
both pairings are very efficient. But you probably already knew about these
choices-what about everything else? Briefly, here is a process for making
your decision:

II Decide what data source you have to use. How robust does your data
base have to be? How many people will need access to the data at one
time? The data source you select often determines what database classes
you'll use.

II Decide what tool you'll use to create the interface. The more flexibil
ity your users need in the interface, the more careful you have to be
in designing it. Designing an interface in which the user clicks buttons
to print predetermined reports is completely different from one in
which the user creates his or her own queries and prints the results.
For example, if you have to use list boxes filled with data that doesn't
change much and you've selected a server-based data source, it would
make more sense to store the data locally rather than on the server.

265

PART I: WORKSHOP

II Decide what network you're going to use, if any. There are a number
of types of networks in use today, and each one has an effect on how
data moves across the network. I don't have room to discuss networks
in this chapter, but understanding how to optimize your database appli
cation is necessary if you are to avoid pitfalls in your network schema.

II Create prototype applications before starting down an implementa
tion path. There is so much to plan in advance of any implementation
that developing a prototype becomes an essential part of the process,
not merely an option. It will require a significant amount of time to
construct your prototype application in such a way that the elements
that work can be transferred easily to start the actual application
you might do well in the prototyping stage, but the job isn't finished
until your solution works in the actual implementation.

Comparing the MFC Database Classes

266

Let's focus first on the common database functionality in the two sets of classes:

II Both sets of classes support scrolling through recordsets.

II ODBC classes rely on the underlying driver.

II DAO classes have better support for MDB, which is good for install
able ISAMs, and which is the same support as the ODBC database
classes for server-based data.

II Both sets of classes support transactions:

D ODBC classes support transactions at the database level.

D DAO classes support transactions at the workspace level.

II The recordset update functions of the two classes are almost identical.

II Both sets of classes support locking records during updates.

B Both sets of classes support detection of field data changes.

B Both sets of classes have Move operations.

II Both CDatabase and CDaoDatabase can detect whether a data source
accepts transactions. Transaction requirements have been consider
ably relaxed in the ODBC database classes as ofMFC version 4.2.

B Database objects in both classes allow you to set a predetermined
query timeout period.

B Both classes can execute direct SQL statements.

E I G HT: MFC Database Classes

In addition, the ODBC database classes have functionality that is not in
cluded in the DAO database classes:

• The ODBC database classes are multithreaded as ofMFC version 4.2.
To take advantage of this capability, you must use a multithreaded
ODBC driver. DAO 3.5 is apartment-model threaded.

• The bulk row fetching functionality is new in MFC version 4.2. Addi
tional navigation capabilities have been added.

• In response to many requests, the Visual C++ team has added better
support for console database applications. These are the new options
in CDatabase: :openEx:.

D CDatabase::noOdbcDiawg: Does not display the ODBC connection
dialog box, regardless of whether enough connection information
is supplied.

D CDatabase::forceOdbcDiawg: Always displays the ODBC connection
dialog box.

In turn, the DAO database classes have functionality that is not included
in the ODBC database classes:

• The Workspace, TableDef, and QueryDef objects are unique to the
DAO database classes. There are no direct equivalents for them in
the ODBC database classes.

• CDaoTableDeJ and CDaoQy,eryDeJ functionality can generally be repro
duced with direct ODBC calls, such as those found in the CATALOG2
sample.

• CDaoDatabase supports the creation of TableDefs, QueryDefs, and
Relations.

• CDaoRecordset has slightly better navigation functionality, including
these operations:

D Find

D Percent position

D Seek

• The ability to create fields and indexes at run time using a CDaoTableDeJ
object is a wonderful advantage, as is the data validation that supports it

267

PART I: WORKSHOP

Ill CDaoQueryDef objects can be created using fields and indexes and
then stored for repeated use.

Ill CDaoQy,eryDefobjects can also control ODBC timeouts.

Understanding the DAO SOK Classes
The DAO SDK includes some C++ database classes that are separate and dis
tinct from the MFC DAO database classes and encapsulate the individual ob
jects in the DAO hierarchy. Although you can mix DAO SDK C++ classes with
MFC DAO database classes, the DAO SDK C++ classes do not follow the MFC
guidelines for operator overloading. Please exercise caution when using the
classes together. (For more information on this topic, see the article "The DAO
of Databases: Using Data Access Objects and the Jet Engine in C++" in Micro
soft Systems journal, January, 1996.) The following table compares features of the
DAO SDK and MFC DAO database classes.

DAO SDK Database Classes

Simple migration from Visual Basic

Direct mappings to DAO's OLE
Automation objects

More Jet/DAO functionality

Doesn't conform to MFC standard
two-phase construction

MFC DAO Database Classes

Simple migration from MFC
ODBC database classes

Conforms to MFC standard
two-phase construction

AppWizard and ClassWizard
support

Hides more difficult DAO
functionality

Using DAO SDK classes is easier for developers accustomed to writing ap
plications with Microsoft Visual Basic. Developers who already use MFC ODBC
database classes will find the architecture and use of MFC DAO classes more
familiar.

Using the MFC Database Classes

268

When you write applications using the MFC ODBC classes, you can connect
to any data source for which you have an ODBC driver. The operation of ODBC
Driver Manager and ODBC drivers is transparent in applications you write with
these classes, but the individual driver capabilities affect the functionality of

EI G HT: MFC Database Classes

an application. Generally, MFC dynasets require an ODBC driver with level 2
API conformance. You can use updatable and read-only snapshots and for
ward-only recordsets if your data source driver conforms to the level I API
set, but you can't use dynasets. However, if a level I driver supports extended
fetching and keyset-driven cursors, it will also support dynasets.

When you write applications using the MFC DAO classes, your best per
formance will be with the Microsoft Access databases because they are native
to Microsoft Jet. Microsoft Access 97 for Microsoft Windows 95 has a database
format that is native to DAO version 3.5. You'll get the fastest performance
when you use a Microsoft Access 97 database. A separate DLL does provide
access to Microsoft Jet version 1.x and version 2 databases. But in Microsoft
Jet version 3, the storage engine and format were completely revised. Given
the large number of structural changes, Jet version 3 treats version 2 databases
as external indexed sequential access method databases (ISAMs). This has an
impact on performance, so if you have not already considered upgrading
your Access database, this is a good reason to think about doing so.

You also can access installable ISAM databases and ODBC data sources.
ISAM databases such as Microsoft Visual FoxPro and Borland dBASE can be
opened directly or attached to Access databases for the best performance. Re
member that Access version 1.x and version 2 databases fall into this category.
You can reach ODBC data sources such as Microsoft SQL Server and Oracle
Server through ODBC, so you have the option of using DAO for those data
sources also. An ODBC data source is any database management system (DBMS)
for which you have the appropriate ODBC driver. For Microsoft Visual C++ ver
sions 2 and later, you need 32-bit ODBC drivers-except on Win32s, where you
need 16-bit ODBC drivers.

If you like, you can use the new DAO 3.5 ODBCDirect objects through di
rect calls to these OLE objects, but MFC does not have wrapper classes for them.

Here are some general principles to follow as you decide which set of
database classes to use:

II ODBC database classes work best with server-based data such as SQL
Server and Oracle Server.

II ODBC database classes work best with an application that has to be
written in a generic enough form that it can be used with a wide range
of data sources; this is one of ODBC's strengths.

II DAO database classes are-best used with desktop databases, and then
only sparingly if you are using server-based data. Queries for server
based data must be carefully optimized.

269

PART I: WORKSHOP

Ill Attaching external tables to Access provides faster performance than
opening data sources directly when you are using the DAO database
classes. Tests show slightly faster performance with desktop data and
dramatically increased performance with server-based data.

Ill With· desktop data, DAO database classes can be faster than ODBC
database classes with some operations but slower with others. There
is usually no clear winner, so creating prototypes with both sets of
classes for your specific data sources might be the only way to deter
mine which type of database class works best for your project.

The time you spend creating prototypes is time well spent. You are
more likely to find and correct problems early in the product cycle when you
take the time to plan and create a prototype for your application.

Stretching the MFC Database Classes

270

MFC database classes were designed with specific uses in mind. The ODBC
database classes let you get data from any data source type for which you have
an ODBC driver. The DAO database classes are generally more suited for use
with desktop data sources, although they have greater built-in functionality.
However, there might be many occasions when you want to stretch the origi
nal intent of each set of database classes. For example, you might want to
open a SQL Server database directly instead of attaching it to an Access data
base as the documentation recommends. I've included some of these types of
tasks in this chapter, but be aware that you must evaluate carefully whether using
them will give you optimal results for your individual situation.

Some of the tasks are documented in the Visual C++ online help, but
step-by-step instructions might not be supplied for them in the documenta
tion, or the instructions might not be easily inferred. Some of the tasks will be
easier to accomplish if you have Visual C++ Enterprise Edition, but this edition
is not required to complete the task.

I decided to rely heavily on AppWizard for the tasks presented in this
chapter because it saves so much time when you set up the field data mem
bers for your database. In nearly all of the sample applications, I use the
record view and demonstrate its flexibility for a variety of situations. For two of
the tasks, I use a CDialog. Rather than trying to supply a single database for all
of these tasks, I decided to take advantage of the sample databases included
with the data source types used in this chapter. All of these sample databases
are included on the companion CD-ROM, with the exception of the SQL Ser
ver and Oracle Server sample databases.

E I G HT: MFC Database Classes

This chapter includes the following tasks:

• Opening a FoxPro database directly with DAO database classes
The Jet database engine includes an internal driver for reading

FoxPro data sources. I've included sample applications for the three
most recent releases of Microsoft Visual FoxPro that contrast the use
of the different releases.

• Opening SQL Server directly with DAO database classes
This is a task that is frequently requested by developers, but I em

phasize again that performance might not be optimal with this method
of getting data from the database. Nevertheless, it is useful in some
situations to be able to open the SQL Server data source directly, such
as when you are creating temporary tables.

• Opening Oracle directly with DAO database classes
With the release of Microsoft ODBC Driver for Oracle, you might

want to try this task just to get the default ODBC connect string that you
can use in this task and the other applications for Oracle Server.

• Attaching FoxPro to an Access database using DAO database classes
This handy task creates a utility for creating blank Access MDB

files and attaching FoxPro and Visual FoxPro DBF tables to the MDB
file programmatically. Gallery components make up the bulk of the
code, and they are sure to save you a lot of time in creating the utility.
The dialog box for this application has edit controls for each element
of the connect string that is required for attaching a FoxPro table.

• Attaching SQL Server to an Access database using DAO database
classes

This handy task creates a utility for creating blank Access MDB
files and attaching SQL Server tables to the MDB file programmatically.
Gallery components also make up the bulk of the code for this task.
The dialog box for this application has edit controls for each element
of the connect string that is required for attaching a SQL Server table.

II Attaching Oracle to an Access database in DAO database applications
This task briefly discusses how to attach an Oracle database to an

Access MDB file.

• Mixing static and dynamic binding in DAO database classes
This task shows how to create a standard AppWizard-generated

application that uses CRecordset::DoFieldExchangewith calls to CRecord
set::GetFieldValue for populating a Microsoft ActiveX control with

271

. PA RT I: WORKSHOP

employees' photos. The method is similar to the one demonstrated
in the first task of the chapter, "Opening a FoxPro Database Directly
with DAO Database Classes."

• Opening a recordset on a stored procedure using ODBC database
classes

Stored procedures can be wonderfully useful for returning 1

recordsets of all sizes. In this example, I use a standard AppWizard
generated database application and supplement it with a second dia
log box whose edit controls are populated by records returned from
the stored procedure.

• Using output parameters with the ODBC API and ODBC database
classes

This task builds on the project code of the preceding task and
adds another button to the record view. This new button runs a
stored procedure that does not return records; rather, it calculates a
figure and displays the results to the user in a message box.

Opening a FoxPro Database
Directly with DAO Database Classes

272

The purpose of this task is to demonstrate how to open a FoxPro database di
rectly without first attaching it to an Access table. DAO can read FoxPro DBF
files rather easily; but reading Visual FoxPro database container (DBC) files
requires a little more work.

The task consists of twelve steps:

1. Preparing the FoxPro database

2. Attaching the table to Access

3. Building the ACCSPICT control from the MFC DAOCTL sample

4. Running AppWizard on the MDB file

5. Removing the Photo field from DoFieMExchange using ClassWizard

6. Designing the record view

7. Inserting the ACCSPICT control

8. Changing GetDefaultDBName for the recordset

9. Adding a function to the document header

10. Adding code to OnlnitialUpdateto open the recordset

EI G HT: MFC Database Classes

11. Adding code to display the Employee Photo field

12. Compiling and running the application

Step 1: Preparing the FoxPro Database
If you are using FoxPro version 2.6, use the Customer database in the CATA
LOG sample for this step. You will need all of the sample files in the subdirec
tory in which you intend your application to be used. For this data source,
you can now skip to step 2.

If you are using Visual FoxPro version 3, use the Customer table in the
TASTRADE sample database and export it to a Visual FoxPro version 3 DBF
format as described below. If you are using Visual FoxPro version 5, use the
Employee table in the TASTRADE database and export it to a Visual FoxPro
version 3 DBF format as described below. In both versions of Visual FoxPro,
the table is bound to the DBC file.

1. Start Visual FoxPro version 3 or version 5, and open the TASTRADE
sample project.

2. Export the Customer database for Visual FoxPro version 3 or the Em
ployee database for Visual FoxPro version 5 as a Visual FoxPro version 3
DBF file to a temporary directory.

3. Copy the accompanying FPT (memo) and CDX (index) files to that
temporary directory, but do not include any INF files. Ultimately,
you'll also need the DBC file and any other tables in that file because
your DAO database application will open the DBC file directly.

Step 2: Attaching ~he Table to an Access Database
Use Access to attach the DBF table to the MDB file.

1. Start Access, and create a blank database.

2. Choose Get External Data/Link Tables from the File menu. Select
Microsoft FoxPro Database (DBF) from the Files Of Type drop-down
list box, and navigate to your data source.

3. Select the DBF file, and click Link. Then select the index file from the
next dialog box.

D For FoxPro version 2.5, select CNO as the unique identifier for the
index.

273

PA R T I : WORKSHOP

0 For Visual FoxPro version 3, select the CUSTOMER_ID as the
unique identifier for the index.

0 For Visual FoxPro version 5, select LAST_NAME as the unique
identifier for the index.

Click OK when Access has successfully linked the table.

4. Open the linked table in design mode. Access warns you that this
table is a linked table and you will not be able to modify its proper
ties. That's OK, because you're just going to look at the structure of
the table. You also will not be able to open the table in datasheet
mode, but that's not necessary anyway because you're going to use
the record view form to display your data.

5. Notice that Access has truncated some of the field names to ten char
acters. Leave them that way-if you lengthen the names, your DAO
database application won't find the fields in your table. If you attach
the table to Access first, this will help you determine what DAO will
expect.

Step 3: Building the ACCSPICT OLE
Control from the MFC DAOCTL Sample

You can skip this step if you have already built and registered this control. If
not, continue as described below.

1. Load the Visual C++ version 5 Professional or Enterprise distribution
CD, and copy all of the files for the DAOCTL sample.

2. Open the ACCSPICT ActiveX control project, and build a Release
version of the control. Building this control registers the OCX with
your system and adds it to the Component And Controls Gallery.
Close the project workspace.

If you copy the OCX to your Windows 95 or Microsoft Windows NT direc
tory and register the OCX there using REGSRV32, you can remove the sample
files and still have the OCX available. But I encourage you to build the other con
trol and sample container and study the code. It's an excellent sample.

Step 4: Running AppWizard on the MOB File

274

In this task, you can create any one of three applications, depending on the
sample database you're using: FoxPro version 2.6, Visual FoxPro version 3, or
Visual FoxPro version 5. Just follow the directions for your version.

E I G HT: MFC Database Classes

1. Start Microsoft Visual Studio, and create a new MFC AppWizard (EXE)
project. Name it DirFox2, DirFox3, or DirFox5, as appropriate.

2. In AppWizard Step 1, choose Single Document interface.

3. In AppWizard Step 2, choose A Database View Without File Support.
For the data source, select DAO, and click the browse button (...).
Select the MDB file you have just created, and then select Table as the
recordset type.

D For FoxPro version 2.6 and Visual FoxPro version 3, select the Cus
tomer table from the next dialog box.

D For Visual FoxPro version 5, select the Employee table from the
next dialog box.

4. For Visual FoxPro version 5 only, selectActiveX controls in AppWizard
Step 3 to provide container support.

5. Accept the defaults on the remaining AppWizard steps (or, if you like,
make changes), and then click OK to create the files.

Step 5: Removing the Photo Field
from DoFieldExchange Using ClassWizard

For FoxPro version 2.6 or Visual FoxPro version 3, skip to step 6; the Customer
table in the sample database that comes with these software packages doesn't
have a photo field.

For Visual FoxPro version 5, first look at the CDirFox5Set class; notice that
the data members have the same names (preceded by m_) and field name
truncation that they have .in Access. You can change the names of the data
members if you like, but you must then also change them elsewhere in the
code, and it's probably not worth the effort to do so.

To display the Photo field from this database, you have to use the Ac
cessPict control from the Components And Controls Gallery. You won't be using
the DoFieldExchange mechanism to retrieve the value from each field, so you
have to remove it from the DoFieldExchange code using Class Wizard.

1. Start ClassWizard; then click the Member Variables tab. In the Class
Name drop-down list box, select the CDirFox5Setclass.

2. Scroll down until you see the [PHOTO] field. Select it, and then click
Delete Variable. Click OK to close ClassWizard.

You'll add code that retrieves the Photo field a little later on. In the con
structor for the recordset, notice that the data member m_nFields has been

275

PART I: WORKSHOP

decremented from 19 to 18. You'll see also that data members for the two
Memo fields are not initialized because it's not necessary to .do so.

Step 6: Designing the Record View
Use the Resource editor to design the record view. For ideas on how to lay out
the information, see the layout for this sample on the companion CD-ROM.

1. Lay out static controls in the dialog box for the field titles and edit
controls for the fields from the Employee table in whatever format
you like. In Visual FoxPro version 5, leave room for the control that
will display the employee's photo.

2. When you're satisfied with the layout; hold down Ctrl and double-dick
each edit control. Then select the member variable that corresponds
to the field name from the Member Variable Name drop-down list box
in Class Wizard. In the Visual FoxPro version 5 Notes fields, under the
Styles tab in the Edit Properties box, add the Multiline, Vertical Scroll,
and AutoVScroll properties.

Step 7: Inserting the ACCSPICT Control

276

If you're using FoxPro version 2.6 or Visual FoxPro version 3, skip this step. If
not, continue with the procedure below.

1. Choose Add To Project/Components And Controls from the Project
menu. Choose Registered ActiveX Controls. Select AccessPict control,
and then click Insert. Then click OK. The list of classes to be added
to the project is displayed. Click OK to add the control to your Re
source editor toolbox and the code to your project. Close the Com
ponents And Controls Gallery dialog box.

2. Click and drag the OCX toolbox button to your form, and give the
control proportions normally associated with an ID photo. Hold down
Alt and double-dick the control to open the Properties dialog box (if
you don't already have it open), and click the Control tab. Click the
Stretch To Fit and Preserve Ratio options, and remove the text from
the Caption property.

3. Hold down Ctrl and double-dick the control to bring up the Class
Wizard Add Member Variable dialog box. Name the control m_ctlr

Picture. Notice that Control is already selected in the Category drop
down list box and that the Variable type is CAccessPict. Click OK to
add the variable.

EI G HT: MFC Database Classes

Step 8: Changing GetDefaultDBName for the Recordset
You're now going to change the data source from the MDB file you used with
AppWizard to one of the following: the FoxPro version 2.6 DBF file, the Visual
FoxPro version 3 DBC file, or the Visual FoxPro version 5 DBC file.

1. In the Class View pane, double-dick the GetDefaultDBName member
function from the recordset class.

2. Remove the reference to the physical file location, and leave only the
following line:

return _T('"'):

You'll open the recordset directly in the view's OnlnitalUpdate mem
ber function.

Step 9: Adding a Function to the Document Header
To open a table directly, you have to be able to get a pointer to the database
from the document header file. In the 11 Attributes section under "public:", add
the following code:

CDaoDatabase m_database:
CDaoDatabase* GetDatabase()
{

return &m_database;
}

Having a CDaoDatabase data member in the view makes it easy to specifi
cally open a database; the GetDatabase function returns the needed reference
to the data member.

Step 1 O: Adding Code to Onlnitia/Update to Open the Recordset
Using the appropriate class names and file locations for your project, replace
the default implementation of the OnlnitialUpdate member function with the
appropriate code, as shown below.

For FoxPro version 2.6, use the following code:

CDirFox26Doc* pDoc = CCDirFox26Doc*)GetDocument();
CDaoDatabase* pDatabase = pDoc->GetDatabase();

m_pSet = &GetDocument()->m_dirFox26Set;
m_pSet->m_pDatabase = pDatabase;
m_pSet->m_pDatabase->Open(

(cmtinued)

277

PART I: WORKSHOP

_ T("C: \ \MFC Workshop\ \Chap8\ \Di rFox26\ \Cata l og26"),
FALSE, FALSE, _T("FoxPro 2.6"));

CDaoRecordView::OnlnitialUpdate();

For Visual FoxPro versions 3 and 5, use the code below. (If you are using
version 3, substitute "Fox3" for "Fox 5" in the code.)

CDirFox5Doc* pDoc = (CDirFox5Doc*)GetDocument();
CDaoDatabase* pDatabase = pDoc->GetDatabase();

m_pSet = &GetDocument()->m_dirFox5Set:
m_pSet->rn_pDatabase = pDatabase;
m_pSet->rn_pDatabase->Open(

_T("C:\\MFC Workshop\\Chap8\\DirFox5\\tastrade5\\tastrade.dbc"),
FALSE, FALSE, _T("FoxPro DBC"));

CDaoRecordView::OnlnitialUpdate();

The first two lines of code for each example create a pointer to the document
object and obtain a pointer to the database object. The third line of code is the
standard implementation for a record view. The fourth line of code sets the
data members to the correct pointers, and the fifth line opens the DBF or DBC
file. Notice that for FoxPro version 2.6, you're pointing to the directory in which
the table's files are located; for Visual FoxPro version 3 and version 5, you're
supplying the path to the DBC file. DAO uses the DBC file to find the correct
table to open.

By explicitly opening a database and then a recordset, you can specify
the necessary connection information to open the table directly. The default
implementation of CDaoRecordView::OnlnitialUpdate checks to see whether a
database or a recordset is already open. If you do not create and open the data
base object yourself, the framework implicitly creates and opens the database
object for you.

If you like, you can compile the application at this point and see the
data in the form you've created. For Visual FoxPro version 5, you can see all of
the data with the exception of the photo. (You'll add the code for the photo in
the next step.) If you're using FoxPro version 2.6 or Visual FoxPro version 3,
you're now finished with the application.

Step 11: Adding Code to Display the Employee Photo Field

278

As you scroll through the recordset, the DoFieldExchange member function re
trieves the values for each field. Because you eliminated the [PHOTO] field
from that list, the value is not being retrieved as you scroll. It's possible to re
trieve the value by calling CDaoRecordset::GetFieldValue and using the picture
control's member functions to put the photo in the control. This retrieval has
to occur twice:

EI G HT: MFC Database Classes

• When the record view first initializes (so that the photo for the first
record is displayed)

• After each move to the next record

Add a data member to the view to store the value for each photo.

1. In the view's header file just below the //}}AFX_DATA section, add
the following line of code:

COleVariant m_varPhoto;

2. In the implementation for the record view's OnlnitialUpdate, add the
following code after the call to CDaoRecordView::OnlnitialUpdate:

try
{

}

m_varPhoto = m_pSet->GetFieldValue("[photo]");
m_ctlPicture.SetData(&m_varPhoto);

catch (COleException* e)
{

e->Delete();
}

3. Start Class Wizard, and then click the Message Maps tab. Select the view
class name from the Object IDs list. Scroll down until you find the On
Move member function, and double-dick it to add it to the list of mem
ber functions. Then click Edit Code.

4. Replace the call to CDaoRecordView::OnMove between the braces with
the following code:

CDaoRecordView::OnMove(nIDMoveCommand);

m_varPhoto = m_pSet->GetFieldValue("[photo]");
try
{

}

m_varPhoto = m_pSet->GetFieldValue("[photo]");
m_ctlPicture.SetData(&m_varPhoto);
return TRUE;

catch (COleException* e)
{

}

e->Delete();
return FALSE;

279

PART I: WORKSHOP

Step 12: Compiling and Running the Application
Now compile and run the application. You will see the photo for each record
appear when you scroll through the data. The default implementation of
CDaoRecordView takes care of populating the record view with fields from the
database; the separate call to GetFieldValue and SetData displays the photo as
you scroll through the database.

Additional Information
It's essential that the memo field files for any database reside in the same sub
directory as the table files. MFC throws an exception if it cannot locate the
memo files.

Opening SQL Server Directly
with DAO Database Classes

280

The purpose of this task is to. demonstrate how to open a SQL Server data
base table directly without first attaching it to an Access table. I don't recom
mend as a rule that you open a SQL Server database directly because the
performance is not optimal. However, it is possible to do this, and there are
occasions when it makes sense to do it. Therefore, I've included the steps for
the procedure here. You could easily substitute another server-based data
source in these steps, provided you have the correct ODBC connect string. To
open an Oracle Server database directly, see the next task, "Opening Oracle
Directly with DAO Database Classes." Also, be sure you read the ''.Additional
Information" section at the end of this task.

The task consists of seven steps:

1. Attaching the table to Access

2. Running AppWizard on the MDB file

3. Designing the record view

4. Changing GetDefaultDBName for the recordset

5. Adding a function to the document header

6. Adding code to OnlnitialUpdate to open the recordset

7. Compiling and running the application

E I G HT: MFC Database Classes

Step 1: Attaching the Table to an Access Database
This procedure assumes that you have already created a data source name
(DSN) for your SQL Server data source with ODBC Administrator. (See the
Visual C++ online help for instructions on how to create a DSN.) Use Access to
attach the DBF table to the MDB.

1. Start Access, and create a blank database.

2. Choose Get External Data/Link Tables from the File menu. Select
ODBC Databases() from the Files Of Type drop-down list box. A list
of ODBC data sources will appear.

3. Select your ODBC data source, and supply a user ID and a password
(if one is required). Select dbo.Authors from the list of tables that ap
pears. Click OK when Access has successfully linked the table.

4. Open the linked table in design mode. Access warns you that the table
is a linked table and that you will not be able to modify its properties.
That's OK because you're just going to look at the structure of the table.

5. Access might truncate some of the field names to ten characters. Leave
them that way-if you lengthen the names, your DAO database appli
cation might not be able to find the fields in your table. If you attach
the table to Access first, this will help you determine what DAO will
expect.

Step 2: Running AppWizard on the MOB File
Now you'll run AppWizard and use the Access database you created; after
ward you can delete the database.

1. Start Developer Studio, and create a new MFC AppWizard (EXE)
project (and workspace). Name it SSDir.

2. In AppWizard Step 1, choose Single Document interface.

3. In AppWizard Step 2, choose A Database View Without File Support.
Select DAO for the data source, and click the browse button (...).
Select the MDB file you have just created, and then select Dynaset as
the recordset type.

4. Select the dbo.Authors table from the next dialog box.

5. Accept the defaults on the remaining AppWizard steps (or, if you like,
make changes), and click OK to create the files.

281

PA RT I: WORKSHOP

Step 3: Designing the Record View
Use the Resource editor to design the record view. For ideas on how to lay out
the information, see the layout for this sample on the companion CD-ROM.

1. Lay out static controls for the field titles and edit controls for the
fields from the EMPLOYEES table in whatever order you prefer.

2. When you're satisfied with the layout, hold down Ctrl and double-dick
each edit control.Then select the member function that corresponds
to the field name from the Member Variable Name drop-down list box
in ClassWizard.

Step 4: Changing GetDefaultDBName for the Recordset
You're now going to change the data source from the MDB file you used with
AppWizard to the SQL Server table.

1. In the Class View pane, double-dick the GetDejaultDBName member
function from the recordset class.

2. Remove the reference to the physical file location, and leave only the
following line:

return _T(""):

You'll open the recordset directly in the view's On/nitalUpdate mem-
ber function. 0

Step 5: Adding a Function to the Document Header

282

To open a table directly, you have to be able to get a pointer to the database
from the document header file. In the// Attributes section under "public:",
add the following code:

CDaoDatabase m_database:
CDaoDatabase* GetDatabase()
{

return &m_database:
}

Having a CDaoDatabase data member in the view makes it easy to specifi
cally open a database; the GetDatabase function returns the needed reference
to the data member.

E I G HT: MFC Database Classes

Step 6: Adding Code to Onlnitia/Update to Open the Recordset
Using the appropriate class names and file locations for your project, replace
the default implementation of the On/nitialUpdate member function with the
following code (between the existing braces):

CSSDirDoC* pDoc = (CSSDirDoc*lGetDocument();
CDaoDatabase* pDatabase = pDoc->GetDatabase();

m_pSet = &GetDocument(l->m_sSDirSet;
m_pSet->m_pDatabase = pDatabase;
m_pSet->m_pDatabase->Open(NULL, FALSE, FALSE,

_T("ODBC; DATABASE=PUBS; UID=sa; PWD=; DSN=SQLServerPubs; "l l;
CDaoRecordView::OnlnitialUpdate();

The first two lines of code create a pointer to the document object and obtain
a pointer to the database object. The third line of code is the standard imple
mentation for a record view. The fourth line of code sets the data members to
the correct pointers, and the fifth line opens the table. The last line of code is
the standard implementation for On/nitialUpdate.

By explicitly opening a dC;ltabase and then a recordset, you can specify
the necessary connection information to open the table directly. The default
implementation of CDaoRecordView::OnlnitialUpdate checks to see whether a
database or a recordset is already open. If you do not create and open the
database object yourself, the framework implicitly creates and opens the data
base object for you.

Step 7: Compiling and Running the Application
Compile the application using the Win32 Debug configuration, and put a
breakpoint on the OnlnitialUpdate member function. Step through the code
to see how the new implementation supplies the database pointer and opens
the database in advance of CRecordView's calls to open the database.

Additional Information
Opening a table directly is an attractive option for desktop data sources. By
opening a table using a CDaoTableDef, you can take advantage of several mem
ber functions available only to TableDef objects. You can only open dynasets
and snapshots on an ODBC data source directly, however, so _these advantages
could be lost. In addition, performance might not be optimal if your queries
cause DAO to do local processing before sending the query to the server. For
more information on the impact of local processing on queries, consult the
Microsoft Jet Database Engi,ne Programmer's Guide (Microsoft Press, 1995).

283

PART I: WORKSHOP

Be wary also of creating joins between different types of database. Al
though it is possible to do this with DAO, it is one of the slowest types of queries
to run. Optimize your joined tables as much as possible, and limit the num
ber of fields in each half of the join.

Opening Oracle Directly
with DAO Database Classes

The purpose of this task is to demonstrate how to open an Oracle Server
database table directly without first attaching it to an Access table. Typically,
you'll find that performance is better if you use ODBC database classes with
Oracle server, but there might be occasions when you need to use the DAO
database classes instead.

The most difficult step in opening any server-based data source is set
ting up the correct ODBC connect string. Even if the connect string is docu
mented in your ODBC driver's Help file, you might have to experiment with
the string until you find the right combination of elements. Be persistent
you'll figure it out.

The new ODBC Driver for Oracle ships with Visual C++ version 5, and
I've used that driver in this example. Be sure to study the driver help file for
additional information on connecting to an Oracle data source.

The sample database used here is the DEMO database, which can be ac
cessed using the default user schema SCOTT and the password TIGER. The
connect string you'll add to the application uses SCOTT and TIGER to get to
the EMPLOYEE table.

The task consists of seven steps:

1. Attaching the table to Access

2. Running AppWizard in the MDB file

3. Designing the record view

4. Changing GetDefaultDBName for the recordset

5. Adding a function to the document header

6. Adding code to OnlnitialUpdate to open the recordset

7. Compiling and running the application

Step 1: Attaching the Table to an Access Database
Use Access to attach the DBF table to the MDB file.

1. Start Access, and create a blank database.

284

EI G HT: MFC Database Classes

2. Choose Get External Data/Link Tables from the File menu. Select
ODBC Databases() from the Files Of Type drop-down list box. A list
of ODBC data sources will appear.

3. Select your ODBC data source, and supply a user ID and a password
(if one is required). From the list of tables that appears, select the EM
PLOYEE table. (The prefix on the table name might vary.) Click OK
when Access has successfully linked the table.

4. Open the linked table in design mode. Access warns you that the table
is a linked table and that you will not be able to modify its properties.
That's OK, because you're just going to look at the structure of the table.

5. Access might truncate some of the field names to ten characters. Leave
them that way-if you lengthen the names, your DAO database might
not be able to find the fields in your table. If you attach the table to
Access first, this will help you determine what DAO will expect.

Step 2: Running AppWizard on the MOB File
Now you'll run AppWizard and use the Access database you created; after
ward you can delete the database.

1. Start Visual Studio, and create a new MFC AppWizard (EXE) project.
Name it OrclDir.

2. In AppWizard Step 1, choose Single Document interface.

3. In AppWizard Step 2, choose A Database View Without File Support.
For the data source, select DAO; then click the browse button (...).
Select the MDB file you have just created, and then select Dynaset as
the recordset type.

4. Select the DEMO.EMPLOYEE table from the next dialog box. (The
prefix on the table might vary.)

5. Accept the defaults on the remaining AppWizard steps (or, if you like,
makechanges), and then click OK to create the files.

Step 3: Designing the Record View
Use the Resource editor to design the record view. For ideas on how to lay out
the information, see the layout for this sample on the companion CD-ROM.

1. Lay out static controls for the field titles and edit controls for the
fields from the DEMO.EMPLOYEE table in whatever format you like.

285

PART I: WORKSHOP

2. When you're satisfied with the layout, hold down Ctrl and double-dick
each edit control. Then select the member variable that corresponds
to the field name from the Member Variable Name drop-down list box
in ClassWizard.

Step 4: Changing GetDefaultDBName for the Recordset
You're now going to change the data source from the MDB file you used with
AppWizard to the SQL Server table.

1. In the Class View pane, double-dick the GetDefaultDBName member
function from the recordset class.

2. Remove the reference to the physical file location, and leave only the
following line:

return _T(""l:

You'll open the recordset directly in the view's OnlnitalUpdatemem
ber function.

Step 5: Adding a Function to the Document Header
To open a table directly, you have to be able to get a pointer to the database
from the document header file. In the //Attributes section under "public:",
add the following code:

CDaoDatabase m_database;
CDaoDatabase* GetDatabase()
{

return &m_database;
}

Having a CDaoDatabase data member in the view makes it easy to specifi
cally open a database; the GetDatabase function returns the needed reference
to the data member.

Step 6: Adding Code to Onlnitia/Update to Open the Recordset
Using the appropriate class names and file locations for your project, replace
the default implementation of the OnlnitialUpdatemember function with the
following code (between the existing braces):

286

COrclDirDoc* pDoc = (COrclDirDoc*)GetDocument();
CDaoDatabase* pDatabase = pDoc->GetDatabaseCl:

m_pSet = &GetDocument(J->m_orclDirSet;

EIGHT: MFC Database Classes

m_pSet->m_pDatabase = pDatabase;
m_pSet->m_pDatabase->Open(NULL, FALSE, FALSE,

_T("DSN=OracleServer;CONNECTSTRING=server;PWD=tiger;UID=scott;"));
m_pSet->Open (dbOpenDynaset, _ T("Select * from Employee"));
CDaoRecordView::OnlnitialUpdate();

The first two lines of code create a pointer to the document object and obtain
a pointer to the database object. The third line of code is the standard imple
mentation for a record view. The fourth line of code sets the data members to
the correct pointers, and the fifth line opens the table. The sixth line of code
opens the recordset as a dynaset with a specific SELECT statement. The last
line of code is the standard implementation for OnlnitialUpdate.

By explicitly opening a database and then a recordset, you can specify
the necessary connection information to open the table directly. The default
implementation of CDaoRecordView::OnlnitialUpdate checks to see whether a
database or a recordset is already open. If you do not create and open the data
base object yourself, the framework implicitly creates and opens the database
object for you.

Step 7: Compiling and Running the Application
Compile the application using the Win32 Debug configuration, and put a
breakpoint on the OnlnitialUpdate member function. Step through the code to
see how the new implementation supplies the database pointer and opens the
database in advance of the CRecordView calls to open the database.

Additional Information
MFC database classes were designed primarily with Microsoft data sources in
mind, but they are flexible in their implementation. The MFC database classes
work well with Oracle, and AppWizard handles the mapping of field data types
well. You probably won't have to make adjustments to data types after you use
AppWizard with the Oracle table attached to Access. For a list of the Oracle and
ODBC data type mappings, see "Mapping Data Types" in the Microsoft ODBC
Driver For Oracle Help file (MSORCLIO.HLP).

Attaching FoxPro to an Access
Database Using DAO Database Classes

The purpose of this task is to create a utility that attaches external data sources
to a blank MDB programmatically. This dialog box-based application can be
constructed quickly using the Gallery components supplied on the companion

287

PART I: WORKSHOP

CD-ROM. The overall process of attaching a table involves two, or sometimes
three, operations:

1. Creating the blank database.

2. Attaching the external table to the database.

3. [Optional.] Displaying the newly created database and its attached
tables in the MFC sample DAOVIEW. The DAOVIEW application can
be launched directly from your application.

The MFC sample DAOTABLE already had the necessary code to create
a blank database, so I used several files from that project and designed a dia
log box that is based on the data source type. Rather than reinvent an appli
cation to display the results of the utility, I used DAOVIEW. I created Gallery
components and exported them to OGX files, which are located on the com
panion CD-ROM. Setting up these dialog boxes took a bit of time, so use the
components to construct the utility. Then study the code at your leisure. The
task consists of nine steps:

1. Creating the DAOVIEW application

2. Creating the dialog box-based application

3. Inserting the dialog component

4. Inserting the AddDBDlg component

5. Inserting the support files

6. Inserting the ExecButton component

7. Adding the database header files and #defines

8. Adjusting the initialization for the ExecButton command

9. Compiling and running the application

Step 1: Creating the DAOVIEW Application

288

You can skip this step if you have already built this sample. Otherwise, follow
the procedure below.

1. Load the Visual C++ version 5 Professional or Enterprise Edition distri
bution CD-ROM, and copy all of the files for the DAOVIEW sample.

2. Open the DAOVIEW project, and build a Release version of the sam
ple. Close the project workspace. For ease of use, I suggest that you
place a copy of the EXE file in your Microsoft Windows directory.

EIGHT: MFC Database Classes

Step 2: Creating the Dialog Box-Based Application
You'll create a utility that makes an empty Access MDB file and attaches a Fox
Pro table to the MDB file.

1. Create a new MFC AppWizard (EXE) project (with a workspace), and
name it AcCFox. Then, in AppWizard Step 1, select Dialog Box-based
application.

2. In AppWizard Step 2, select a title for your dialog box.

3. Accept the defaults for the remainder of the AppWizard steps. Then
click OK to create the application.

Step 3: Inserting the Dialog Box Component
The dialog box you add in this step replaces the dialog box that was supplied
by AppWizard when you created the application. It contains all of the controls
that are necessary for gathering information from the user in preparation for
attaching a FoxPro or Visual FoxPro table. To save yourself time setting up this
utility, use the ACCFOXDLG.OGX Developer Studio component included in
the source code found on the distribution CD-ROM.

1. Choose Add To Project/Components And Controls from the Project
menu.

2. Navigate to the location of the OGX file, select the file, and then click
Import. Because the OGX components that are added to the project
have the same name as your project, Developer Studio appends a nu
meral 1 to your filenames.

3. Open the Resource editor, and delete the default dialog box supplied
by AppWizard. Rename the new dialog box by removing the numeral 1
from the end of the resource ID. Do a global search for the IDD_ACC
FOX_DIALOG 1 resource ID, and remove the numeral 1 from any other
references. The compiler will then automatically pick up the correct
resource IDs and other elements of the dialog box.

The top third of the dialog box provides a place to enter a database path
for the MDB file. If the MDB does not yet exist, the utility programmatically
creates it (see step 4 below). If the database exists, the utility opens the MDB.
When the MDB is open, the controls in the middle third of the dialog box are
enabled. Here the user enters the database path and table name and clicks At
tach Table To MDB. A CDaoTableDef object is created, the table is appended,

289

PA RT I: WORKSHOP

and the tabledef is closed. The code for the dialog box is found in class CAcc
FoxDlg, which is also inserted into the project.

The Visual FoxPro version 3 and version 5 tables that are contained in a
DBC file are considered "bound" tables and must be exported from the DBC
file before they can be attached to an MDB file. You must use Visual FoxPro
(either version 3 or version 5) to export the table as a "Visual FoxPro 3.0 (DBF)."
FoxPro 2.x (DBF) tables are not bound tables and can be attached to an MDB
without any preparation.

Step 4: Inserting the AddDBDlg Component
Now add a second dialog box and its corresponding class. This component is
borrowed from the DAOTABLE sample.

1. Choose Add To Project/Components And Controls from the Project
menu.

2. Navigate to the location of the ADDDBDLG.OGX file, select the file,
and then click Import. The header file, the implementation file, and
the dialog box resource are added to your project.

This dialog box collects the information required to programmatically create
an empty MDB file and supplies the information as parameters to CDaoData
base: :Create. DAO version 3 (on which the MFG DAO database classes are based)
is selected by default. This dialog box appears only if the user elects to create
an empty database rather than open an existing MDB.

Step 5: Inserting the Support Files

290

There are two support files for this application that are also borrowed from
the DAOTABLE sample-DATABASE.Hand DATABASE.CPP.

1. Choose Add To Project/Files from the Project menu.

2. Navigate to the location of the DATABASE.Hand DATABASE.CPP
files on the companion CD-ROM.

3. Select these files, and then click OK.

The DATABASE.Hand DATABASE.CPP files contain global helper functions
that can create, open, and close a DAO database specified by the user in the
first edit control. Error handling checks for the existence of an MDB file and
then offers the user a chance to create the database if it doesn't exist. No re
sources are associated with these files.

E I G HT: MFC Database Classes

Step 6: Inserting the ExecButton Component
The CExecButton class contained in this Gallery component uses the WinExec
API function to launch DAOVIEW from the application you're creating.

1. Choose Add To Project/Components And Controls from the Project
menu.

2. Navigate to the location of the EXECBUTTON.OGX file, select the
file, and then click Import. The header file and the implementation
files will be added to your project. Close the Components And Con-
trols Gallery dialog box. ·

The CExecButton class is based on the CButton class. Using MFC's support
for message reflection, you can launch another application by clicking a but
ton resource associated with this class. Message reflection lets you reuse your
CWnd-derived classes more readily; it works via CWnd::OnChildNotify, using
ON_XXX_REFLECT message map entries. Message reflection allows the no
tification messages to be handled in either the child control window or the
parent window, or in both windows, which eliminates the need to have the
message handler code duplicated in every class that has to handle that mes
sage. (MFC Technical Note 62 describes message reflection in detail.)

It is possible to start the DAOVIEW application while the utility is active.
The CExecButton class has a data member named m_command that is initial
ized in CAccFoxDlg::OnlnitDiawg to contain the path to DAOVIEW.EXE. When
the user closes the MDB, the name of the database is appended to the m_com
mand data member, and the Open MDB in DAOVIEW button is enabled. If
the user clicks this button, the database is ready for browsing when DAO
VIEW starts.

Step 7: Adding the Database Header Files and #defines
These #defines make it easy to follow the logic in the code for these support files.

1. Open the STDAFX.H file, and add the following line of code:

#include <afxdao.h> II MFC support for DAO

This adds the DAO database class support for your application.

2. Open the ACCFOX.H file, and add the #defines on the following
page just below the include statement for RESOURCE.H.

291

PA RT I: WORKSHOP

#define SUCCESS 1
#define FAILURE 0
#define FATAL -1

3. Choose Update All Dependencies from the Build menu for both the
Debug and Release build configurations.

Step 8: Adjusting the Initialization for the ExecButton Command
I've used my Windows directory plus the DAOVIEW.EXE file to initialize the
value for the m_daoView.m_commandmembervariable. If you place DAOVIEW
.EXE in a different location, you will have to adjust this variable to match your
configuration.

1. Open the ACCFOXDLGI.CPP file, and locate the OnlnitDialogmem
ber function.

2. Find the following line, and adjust it if necessary. Be sure you leave in
the double backslashes.

II Initialize CExecButton command
m_daoView.m_command = _T("C:\\win95\\daoview.exe "):

Step 9: Compiling and Running the Application

292

Now that all of the components, support files, and #defines are in place you're
ready to compile.

1. Compile the application, and fix the errors if there are any.

2. Run the application in Debug mode if you like, and step through the
code.

3. Follow the instructions in the dialog box for creating and attaching
tables. Insert the data without quotes or other delimiters.

4. After you have either opened or created an MDB file, you can attach
tables using a name for the table and the path to the subdirectory
containing the table files. Internally, this application uses the table
name to retrieve the correct table from the database and gives the
TableDef object the same name.

5. Click Attach Table. The application locates the path you've entered
and uses the DBC file or the DBF table name to open a CDaoTableDef
and append the table to the TableDefs collection.

E I G HT: MFC Database Classes

6. To view the database with its newly attached tables in DAOVIEW, you
must first close the database by clicking Close MDB.

7. Click Open MDB In DAOVIEW. DAOVIEW appears with the MDB
displayed. You can look at the contents of the table, show the data,
and even create new queries.

8. Click Exit to close the ACCFOX application.

Additional Information
The dialog box for this application reminds you that DAO requires FoxPro
version 2.6 free tables (DBF) format or Visual FoxPro version 3 DBC files to
open the database. If you use a DBC file, be sure the tables for the entire data
base are in the same subdirectory, but do not include any INF files. DAO will
accept the default values and expect to find the index (CDX) files, memo (FPT)
files, and related files in the same subdirectory as the DBF or DBC files.

Attaching SQL Server to an.Access
Database Using DAO Database Classes

The purpose of this task is to create a utility that attaches external data sources
to a blank MDB programmatically. This dialog box-based application is cus
tomized to the requirements for attaching Microsoft SQL Server 6. x to .the MDB
file. The overall process of attaching a table involves two or three operations:

I. Creating the blank database

2. Attaching the external table to the database

3. [Optional.] Displaying the newly created database and its attached
tables in the MFC sample DAOVIEW (The DAOVIEW application can
be launched directly from your application.)

After you've been working a long time on a particular piece of an appli
cation, it's useful to be able to save that component and to be able to reuse it.
You'll most likely want to add components to the Gallery when you add a re
source to your application, refine the resource (such as a dialog box), and
associate a class with it.

For this task, I created Gallery components and exported them to OGX
files, which are located on the companion CD-ROM. Setting up the dialog
boxes took some time, so again, use the Gallery components to construct the

293

PART I: WORKSHOP

utility. Then study the code at your leisure. I'll explain the code that is added
by each component as you add components to the project.

The task consists of nine steps:

1. Creating the DAOVIEW application

2. Creating the dialog box-based application

3. Inserting the dialog box component

4. Inserting the AddDBDlg component

5. Inserting the support files

6. Inserting the ExecButton component

7. Adding the database header files and #defines

8. Adjusting the initialization for the ExecButton command

9. Compiling and running the application

Step 1: Creating the DAOVIEW Application
You can skip this step if you have already built this sample. Otherwise, follow
this procedure.

1. Load the Visual C++ version 5 Professional or Enterprise Edition dis
tribution CD-ROM, and copy all of the files for the DAOVIEW sample.

2. Open the DAOVIEW project, and then build a Release version of the
sample. Close the project workspace. For ease of use, I suggest that
you place a copy of the EXE file in your Windows directory.

Step 2: Creating the Dialog ·eox-Based Application
You'll create a utility that makes an empty Access MDB file and attaches a
SQL Server table to the MDB file.

1. Create a new MFC AppWizard (EXE) project (with a workspace), and
name it AccSql. In AppWizard Step 2, select a title for your dialog box.

2. Accept the defaults for the remainder of the AppWizard steps, and
then click OK to create the application.

Step 3: Inserting the Dialog Box Component

294

The dialog box you add in this step replaces the dialog box that was supplied by
AppWizard when you created the application. It contains all of the controls

EIGHT: MFC Database Classes

that are necessary for gathering information from the user in preparation for
attaching a FoxPro or Visual FoxPro table. To save yourself time setting up this
utility, use the ACCSQLDLG.OGX Developer Studio component included in
the source code found on the distribution CD-ROM.

1. Choose Add To Project/Components And Controls from the Project
menu.

2. Navigate to the location of the OGX file, select the file, and then click
Import. Because the OGX components added to the project have the
same name as your project, Developer Studio appends a numeral 1 to
your filenames.

3. Open the Resource editor, and delete the empty dialog box supplied
by AppWizard. Rename the new dialog by removing the numeral 1
from the end of the resource ID. Now do a global search for the IDD
_ACCSQL_DIALOG 1 resource ID, and remove the numeral 1 from
any other references in your project. The compiler then will automati
cally pick up the correct resource IDs and other elements of the dialog
box.

The top third of the dialog box provides a place to enter a database path
for the MDB file. If the MDB does not yet exist, the utility programmatically
creates it (see step 4 below). If the database exists, the utility opens the MDB.
When the MDB is open, the controls in the middle third of the dialog box are
enabled. Here the user enters the database path and table name and clicks
Attach Table To MDB. A CDaoTableDefobject is created, the table is appended,
and the tabledef is closed. The code for the dialog box is found in class CAcc
SqlDlg, which is also inserted into the project.

Step 4: Inserting the AddDBDlg Component
Now add a second dialog box and its corresponding class. This component is
borrowed from the DAOTABLE sample.

1. Choose Add To Project/Components And Controls from the Project
menu.

2. Navigate to the location of the ADDDBDLG.OGXfile, select the file,
and then click Import. The header file, the implementation file, and
the dialog box resource are added to your project.

This component, the support files inserted in step 5 below, and the CExec
Button component inserted in step 6 are the same ones used in the previous

295

PA RT I: WORKSHOP

task (''Attaching FoxPro to an Access Database Using DAO Database Classes")
except that the correct #include files are supplied for this version of the utility.

The Database Definition dialog box collects the information required
to programmatically create an empty MDB file and supplies the information
as parameters to CDaoDatabase::Create. DAO version 3 (on which the MFG
DAO database classes are based) is selected by default. This dialog box ap
pears only if the user elects to create an empty database rather than open an
existing MDB.

Step 5: Inserting the Support Files
There are also two support files for this application that are borrowed from
the DAOTABLE sample-DATABASE.H and DATABASE.CPP.

1. Choose Add To Project/Files from the Project menu.

2. Navigate to the location of the DATABASE.Hand DATABASE.CPP
files on the companion CD-ROM.

3. Select these files, and then click OK.

The DATABASE.H and DATABASE.CPP files contain global helper func
tions that can create, open, and close a DAO database specified by the user in
the first edit control. Error handling checks for the existence of an MDB file
and then offers the user a chance to create the database if it doesn't exist. No
resources are associated with these files.

Step 6: Inserting the ExecButton Component

296

The CExecButton class contained in this Gallery component uses the WinExec
API function to launch DAOVIEW from the application you're creating.

1. Choose Add To Project/Components And Controls from the Project
menu.

2. Navigate to the location of the EXECBUTTON.OGX file, select the
file, and then click Import. Developer Studio adds the header file
and the implementation files to your project.

The CExecButton class is based on the CButton class. Using MFC's support
for message reflection, you can launch another application by clicking a button
resource associated with this class. Message reflection lets you reuse your CWnd
derived classes more readily; it works via CWnd::OnChildNotify, using ON_XXX
_REFLECT message map entries. Message reflection allows these notification

EI G HT: MFC Database Classes

messages to be handled in either the child control window or the parent win
dow, or in both windows, which eliminates the need to have the message handler
code duplicated in every class that has to handle that message. (MFC Techni
cal Note 62 describes message reflection in detail.)

It is possible to start the DAOVIEW application while the utility is active.
The CExecButton class has a data member named m_command that is initial
ized in CAccSqlDlg::OnlnitDialogto contain the path to DAOVIEW.EXE. When
the user closes the MDB, the name of the database is appended to the m_com
mand data member and the Open MDB In DAOVIEW button is enabled. If the
user clicks this button, the database is ready for browsing when DAOVIEW starts.

Step 7: Adding the Database Header Files and #defines
These #defines make it easy to follow the logic in the code for these support files.

1. Open the STDAFX.H file, and add the following line of code:

#include <afxdao.h> II MFC support for DAO

This adds the DAO database class support for your application.

2. Open the ACCSQL.H file, and add the following #defines right after
the include statement for RESOURCE.H:

#define SUCCESS 1
#define FAILURE 0
#define FATAL -1

3. Choose Update All Dependencies from the Build menu for both the
Debug and Release build configurations.

Step 8: Adjusting the Initialization for the ExecButton Command
I've used my Windows directory plus the DAOVIEW.EXE file to initialize the
value for the m_daoView.m_command member variable. If you place DAOVIEW
.EXE in a different location, you will have to adjust this variable to match your
configuration.

1. Open the ACCSQLDLGl.CPP file, and locate the OnlnitDialogmem
ber function.

2. Navigate to the following line, and adjust it if necessary. Be sure you
leave in the double backslashes.

II Initialize CExecButton command
m_daoView.m_command = _T("C:\\win95\\daoview.exe ");

297

PA RT I: WORKSHOP

Step 9: Compiling and Running the Application
Now that all of the components, support files, and #defines are in place, you're
ready to compile.

1. Compile the application, and fix the errors if there are any.

2. Set up an ODBC DSN for your SQL Server database using ODBC
Administrator.

3. Run the application in debug mode if you like, and step through the
code.

4. Follow the instructions in the dialog box for creating and attaching
tables. Insert the data without quotes or other delimiters.

5. After you have either opened or created an MDB file, you can attach
tables using the information from ODBC Administrator for the DSN.

6. Click Attach Table. The application constructs the connect string and
uses the table name to open a CDaoTableDejand append the table to
the TableDefs collection.

7. To view the database with its newly attached tables in DAOVIEW, you
first must close the database by clicking Close MDB.

8. Click Open MDB In DAOVIEW. DAOVIEW appears with the MDB
displayed. You can look at the contents of the table, show the data,
and even create new queries.

9. Click Exit to close the ACCSQL application.

Additional Information

298

The class CExecButton is a subclassed button control that uses message reflec
tion to launch the DAOVIEW application. Because the application adds tables
to an MDB file, the database is opened automatically with an administrative
lock on the database. It is necessary to first close the database; then you can
look at it in DAOVIEW. By enabling and disabling the buttons in the correct
sequence, the application guides you through the process of creating the
database and attaching the tables. The ACCSQL application stays open in case
you want to go back and add more tables. Type in the name ofthe database,
and click Connect To MDB to continue the process.

E I G H T: MFC Database Classes

Attaching Oracle to an Access
Database in DAO Database Applications

You can attach an Oracle data source to an Access database by using the Access
DBMS. Access works with ODBC to request the necessary information for
connecting to the data source, and then it obtains a list of all available data
sources. To connect properly to an Oracle data source, you will have to know
the database alias (usually the server name), the user ID, the password, and the
data source name. The Microsoft ODBC Driver For Oracle Help file (MSORClr
10.HLP) has good information about connecting to this data source type
through ODBC. See also "Opening Oracle Directly with DAO Database Classes"
on page 284 in this chapter for an example of an ODBC connect string to the
Oracle sample database Employee.

Mixing Static and Dynamic
Binding in DAO Database Classes

The purpose of this task is to demonstrate the mixing of static and dynamic
binding by retrieving only part of a record, instead of an entire record, to im
prove efficiency in an application. Because of the greater size of some fields
(a binary field, for example), it isn't always a good idea to retrieve a value for
the fields each time you move through a recordset. Using DAO database classes,
you can bind fields dynamically (that is, on demand) in combination with the
static field binding that AppWizard provides.

The data source for this procedure contains a binary field in the form of
an employee photo. Even though it is possible to retrieve the value of the
field using DoFieldExchange, it isn't very useful if you can't display it. The MFC
sample DAOCTL uses an ActiveX control named AccessPict that you can build
and use in an ActiveX container. You'll use functions from that control to dis
play the data in the control.

The task consists of eleven steps:

1. Building the ACCSPICT OLE control from the MFC DAOCTL sample

2. Creating the application

3. Removing the Photo data member

4. Designing the record view

299

PA RT I: WORKSHOP

5. Inserting the ACCSPICT control

6. Adding the Photo dialog box

7. Creating the dialog box class for the Photo dialog box

8. Adding the #include references for the Photo dialog box and the
recordset

9. Creating the message handler for the Photo dialog box button

10. Overriding the WM_INITDIALOG message for the CPhotoDlgclass

11. Compiling and running the application

Step 1: Building the ACCSPICT OLE
Control from the MFC DAOCTL Sample

Build the picture control before creating the sample application. You can
skip this step if you have already built and registered this control.

1. Load the Visual C++ version 5 Professional or Enterprise Edition dis
tribution CD-ROM, and copy all of the files for the DAOCTL sample.

2. Open the ACCSPICT ActiveX control project, and build a Release ver
sion of the control. Building this control registers the OCX with your
system and adds it to Component Gallery. Close the project workspace.

If you copy the OCX to your Windows 95 or Windows NT directory and
register the OCX there (using REGSRV32), you can remove the sample files and
still have the OCX available. But I encourage you to build the other control
and the sample container and to study the code. It's an excellent sample.

Step 2: Creating the Application

300

You'll create an application named StatDyn using AppWizard.

1. Start Visual Studio, and create a new MFC AppWizard (EXE) project
(with a workspace). Name it StatDyn.

2. In AppWizard Step 1, choose Single Document interface.

3. In AppWizard Step 2, choose A Database View Without File Support.
For the data source, select DAO and then click the browse button (...).
Select the Microsoft Access For Windows 97 Northwind database, and
select Table as the recordset type.

EIGHT: MFG Database Classes

4. Select the Employees table from the next dialog box, and click OK.

5. In AppWizard Step 3, select ActiveX Controls to provide container
support.

6. Accept the defaults on the remaining AppWizard steps (or, if you like,
make changes), and click OK to create the files.

Step 3: Removing the Photo Data Member
When you selected Table-type recordset, the framework used the fields in the
table to create a list of fields in the DoFieldExchangemember function. You're
going to dynamically retrieve the value of the Photo field, so you don't want
the DoFieldExchangefunction to retrieve it for you. Use GetFieldValueto put the
photo in a separate dialog box.

TIP: I like to use Class Wizard because I prefer to see everything
in one dialog box. Most of the time, you can accomplish the same
tasks with the WizardBar, and it's a lot more convenient.Just substi
tute WizardBar actions wherever I mention Class Wizard.

1. Open Class Wizard, click the Member Variables tab, and select CStat
DynSet.

2. Delete the member variable for the [PHOTO] field (m_Photo), and
click OK.

If you forgot to select Table when you used AppWizard, don't panic.
Changing the default open type is as simple as changing m_nDefaultType in
the recordset constructor to the following:

m_nDefaultType = dbOpenTable;

Step 4: Designing the Record View
Use the Resource editor to design the record view. For ideas on how to lay out
the information, see the layout for this sample on the companion CD-ROM.

1. Lay out the static controls in the dialog box for the field titles and edit
controls for the fields from the Employees table in whatever format you
like. For the Notes field, under the Styles tab in the Edit Properties
box, add the Multiline, Vertical Scroll, and AutoVScroll properties.

301

PA R T I : WORKSHOP

2. When you're satisfied with the layout, hold down Ctrl and double-click
each edit control. Then select the member variable that corresponds
to the field name from the Member Variable Name drop-down list box.

3. Add a button to the record view. Change the resource ID to IDC
_PHOTOBUTTON, and change the caption to See Photo. (You'll
add the message handler for this button in step 9 on page 304.)

4. Compile the application, and look at it. Make adjustments until
you're satisfied with the layout.

Step 5: Inserting the ACCSPICT Control
The interface for the Gallery has changed slightly, but it's still easy to use.

1. Open Components And Controls Gallery. Then open the Registered
ActiveX Controls folder.

2. Click the AccessPict control, and then click Insert. A list of the classes
that are to be added to the project is displayed.

3. Click OK to add the control to the Resource editor toolbox and the
code to your project. Then click Close.

Step 6: Adding the Photo Dialog Box

302

Create a dialog box just big enough to display the picture.

1. In Resource pane, right-click Dialog, and then choose Insert Dialog.
Give the dialog box a custom resource ID (something like IDD_PHOTO
DIALOG).

2. In the toolbox, click and drag the new ACCSPICT OCX icon to the dia
log box. Increase the size of the picture control to the proportions of a
normal ID photo. (You will probably want to experiment with the size.)

3. Remove the Cancel button, and rename the caption of the OK but
ton to &Close. (I like to center the Close button below the picture
control.)

4. Right-click the ACCSPICT control, and choose Properties to open
the Properties dialog box (if you don't already have it open). Click
the Control tab. Select the Stretch To Fit and Preserve Ratio options,
and remove the text from the Caption property. When you're satis
fied with the layout of the photo dialog box, go on to step 7.

EI G HT: MFG Database Classes

Step 7: Creating the Dialog Box Class for the Photo Dialog
Now add a CDialog-derived class for this dialog resource.

1. Double-dick the photo dialog in the Resource editor to open Class
Wizard. ClassWizard offers you the chance to create a class corre
sponding to this dialog box.

2. Select Create A New Class if it is not already selected, and then click
OK. Name the class CPhotoDlg, and accept the remaining defaults.
Class Wizard now displays the Member Variables tab for this new class.

3. Select the picture control, and click Add Variable. Name the variable
m_ctlPicture. The category is Control, and class CAccessPict is the vari
able type. Click OK to accept the name.

4. Click the Class Info tab for class CPhotoDlg. Under Foreign Class, se
lect CStatDynSet. In the Foreign Variable edit box, enter m_pSet. Click
OK to close ClassWizard.

Step 8: Adding the #include References
for the Photo Dialog and the Recordset

To complete the connection of the photo dialog to the application, you have
to add #include directives for the photo dialog and a forward declaration of
the recordset class.

I. In the header file for the photo dialog class (PHOTODLG.H),just
above the class declaration, add the following code:

class CStatDynSet;

2. In the implementation file for the view (STATDYNVIEW.CPP),just
below the #include for the recordset (STATDYNSET.CPP), add this
line:

#include "PhotoDlg.h"

3. In the implementation file for the photo dialog (PHOTODLG.CPP),
just above the #include for the dialog box header (PHOTODLG.H),
add this line:

#include "StatDynSet.h"

303

PART I : WORKSHOP

Step 9: Creating the Message
Handler for the Photo Dialog Box Button

Add a message handler for the See Photo button. This function calls DoModal,
which then calls OnlnitDialog.

1. With the form view displayed in the Resource editor, hold down Ctrl
and double-dick the photo button to create the handler for the button.

2. Add the following code for the implementation of the function:

CPhotoDlg dlg;
dlg.m_pSet = &GetDocument()->m_statDynSet;
dlg.DoModal ();

This code declares an instance of the dialog box class, initializes the
m_pSet data member to the same recordset the view is using, and calls
DoModaL

Step 10: Overriding the WM_INITDIALOG
Message for the CPhotoD/g class

304

Now add the message handler that retrieves the employee photo.

1. Open ClassWizard, and click the Message Maps tab. From the Class
Name drop-down list box, select CPhotoDlg. Select CPhotoDlgalso·in
the Object IDs list, and scroll down through the list of messages until
you find WM_INITDIALOG.

2. Double-dick WM_INITDIALOG to create the message handler;
then click Edit Code to go to the implementation file.

3. Just below the call to CDialog::OnlnitDialog, replace the //TO DO
comment with the following code:

II Retrieve the photo from the current record. and display it
try
{

}

COleVariant varPhoto =
m_pSet->GetFieldValue("[photoJ");

m_ctlPicture.SetData(&varPhoto);

catch (COleException* e)
{

e->Delete();
AfxMessageBox(T_("Photo unavailable"));

}

E I G HT: MFC Database Classes

This allows you to create and delete the COleVariant object that will
retrieve the employee's photo. The COleVariantis automatically de
leted when the OnlnitDialogfunction returns TRUE. You retrieve the
value only when you want it, which speeds up the retrieval of data.

Step 11: Compiling and Running the Application
You're ready to compile and run the application. Scroll through the data, and
click the See Photo button. You'll see the picture in a separate dialog box.

Additional Information
This example is just a beginning to the possibilities for mixing static and dy
namic binding. You also can create custom DFX routines that conditionally
bind fields as you want to bind them. (See Technical Note 53: "Custom DFX
Routines for DAO Database Classes," which provides more information on
this subject.)

Opening a Recordset on a Stored
Procedure Using ODBC Database Classes

The purpose of this task is to demonstrate the use of a stored procedure for
obtaining frequently updated data and displaying it in a recordset. This proce
dure uses the project code base named SPROC.

The application uses two recordsets. You'll start with a standard AppWizard
generated application and then add a dialog box and also a second recordset
class for handling the stored procedure. The application consists of the usual
record view that displays information about an author, but it has a button
that displays a second dialog box. As you scroll through the records, you can
see the titles for a particular author in the second dialog box by clicking the
button on the record view.

N 0 T E : It is not necessary to use Visual C++ Enterprise Edition
for this procedure; you can accomplish all of the tasks listed using
Visual C++ Professional Edition. In some steps, I have included in
structions specifically for Visual C++ Enterprise Edition.

The task consists of eleven steps:

1. Creating an ODBC database application

2. Designing the record view

305

PART I: WORKSHOP

3. Adding a second recordset

4. Adding to the GetDefaultConnect string for the recordsets

5. Adding data members for the stored procedure parameters

6. Adding the Show Titles dialog box

7. Adding the handlers for the Previous and Next buttons

8. Adding the directives for the Show Titles dialog box

9. Adding the handler for the Show Titles dialog box

10. Adding the stored procedure to the SQL Server PUBS database

11. Compiling and running the application

Step 1: Creating an ODBC Database Application
This procedure assumes that you have already created a DSN for your SQL
Server data source with ODBC Administrator. (See the Visual C++ online help
for instructions on how to create a DSN.)

1. Create a new MFC AppWizard (EXE) project, and name it SProc.

2. In AppWizard Step l, choose Single Document interface.

3. In AppWizard Step 2, choose A Database View Without File Support.
For the data source, select ODBC from the Database Options dialog
box. Then select the DSN you use for SQL Server's PUBS database.
Supply the necessary login information to connect to the data source.

4. Select the dbo.Authors table from the Select Database Tables dialog
box.

5. Accept the defaults on the remaining AppWizard steps (or, if you like,
make changes), and then click OK to create the files.

Step 2: Designing the Record View

306

Use the Resource editor to design the record view. For ideas on how to lay out
the information, see the layout for this sample on the companion CD-ROM.

1. Lay out the static controls for the field titles and edit controls for the
fields from the Authors table in whatever order you prefer. Leave space
for a button that you'll add in step 9 to display the second dialog box.

2. When you're satisfied with the layout, hold down Ctrl and double-dick
each edit control. Then select the member variable that corresponds

EI G HT: MFC Database Classes

to the field name from the Member Variable Name drop-down list
box in ClassWizard.

Step 3: Adding a Second Recordset
Here you will add a second recordset that uses the columns of three tables
found in the stored procedure. The stored procedure uses joins on common
columns in the tables to obtain a list of titles by the author. When you use Class
Wizard, qualifiers are added automatically to distinguish between the com
mon columns in each table. Add the recordset first; then add the dialog box.

1. Choose ClassWizard from the View menu.

2. Click Add Class, and select New. Fill in the class name as CShowTitle
Set. Then choose CRecordset as the base class. Click OK to add the class.

3. Choose ODBC from the Database Options dialog box, and select the
data source name for the PUBS database from the list. Supply the
necessary login information in the Server Login dialog box. Then
click OK.

4. From the Select Database Tables dialog box, select the dbo.Authors,
dbo.Titleauthor, and dbo.Titles tables. Then click OK.

5. Click the Member Variables tab, and select the CShowTitleSet class.
Then delete the member variables for the unneeded columns, leav
ing only the member variables for the following columns: .

l:l Author's First Name from the Authors table (m_au_fname)

l:l Author's Last Name from the Authors table (m_au_lname)

l:l Author's ID from the Authors table (m_authors_au_id)

l:l Title ID from the Titleauthor table (m_titleauthor_title_id)

l:l Title from the Titles table (m_titles_title)

l:l Notes from the Titles table (m_notes)

It's essential that you select the correct columns, but the member
variable names might differ slightly from those shown above.

6. Click OK to add the class, and save your work.

Step 4: Adding to the GetDefau/tConnect String for the Recordsets
AppWizard and ClassWizard both supply a partial connect string for ODBC
data sources. If you follow the instructions below for adding to the recordset

307

PART I: WORKSHOP

connect string for both types of recordset classes, you won't have to supply
connection information each time you run the application.

1. In the Class View pane, select the GetDeJaultConnect member function
for each recordset class. AppWizard supplies part of the login infor
mation for the application ("ODBC;<your DSN here>").

2. Add the UID and PWD parameters to the string. For the SQL Server
PUBS database, this is the final result:

return _T("ODBC; DSN=SQLServerPubs: U ID=sa: PWD=:");

Be sure you adjust this code if your DSN differs from the string shown
here. Notice that there are no spaces around any of the parameters;
if you leave spaces, MFC throws an exception.

Step 5: Adding Data Members
for the Stored Procedure Parameters

308

The stored procedure that creates the second recordset needs two parame
ters supplied to it before it runs the query: the author's first name and.last
name. You need to add the parameters to the CShowTitleSet recordset class.

1. Double-click the CShowTitle&t node in the Class View pane to open
the header file.

2. Just outside the //Field/Parai:n Data section, add the following lines
of code (below the //}}AFX_FIELD comment block) to define the
parameter data members:

CString m_strAuLN:
CString m_strAuFN:

3. Next double-click the constructorin the Class View pane, and add the
following lines of code just below the m_nDeJaultType data member
(snapshot) to initialize the parameter data members.

m_nParams = 2:
m_strAuLN = _T("");

m_strAuFN = _T("");

Parameter data members are added manually. You must also ini
tialize the m_nParams data member so that the DoFieldExchange func
tion knows how many parameters to expect.

4. Now double-click the DoFieldExchange member function in the Class
View pane, and add the field exchange information for the parameter
data member.

E I G HT: MFC Database Classes

pFX->SetFieldTypeCCFieldExchange::param):
RFX_TextCpFX, _T("auLN"), m_strAuLN):
RFLTextCpFX, _T("auFN"), m_strAuFN>:

This SetFieldType call tells DoFieldExchange that there are two parame
ter data members, and it provides the mapping from the parameters
in the stored procedure to the data members.

Step 6: Adding the Show Titles Dialog Box
The second dialog box displays the records from the second recordset based
on the stored procedure. The parameter data member you added in step 5 is
used in the stored procedure to select the records. At this time, you only have
to add the Title ID, Title, and Notes fields to the second dialog box. The code
that you'll add later in step 9 uses the author's first name and last name from
the current record to select the titles.

1. Right-click the Dialog node in the Resource View pane, and choose
Insert Dialog.

2. Add static controls for labels, and then add edit controls for the Title
ID, Title, and Notes fields. Add two buttons for Previous and Next so
that you can scroll through the records. To save space, I deleted the
Cancel button and changed the caption of the IDOK button to Close.

3. Double-click the dialog box. ClassWizard displays the Adding A Class
dialog box, which tells you that you have to create a class for this dia
log box.

4. Select Create A New Class, and name it CSTDlg. The base class CDia
log and the dialog resource ID are already displayed, so click OK to ac
cept the defaults.

5. Click the Class Info tab in ClassWizard. Under Advanced Options, se
lect CShowTitleSetfrom the Foreign Variable drop-down list box. For
the foreign variable, enter m_pSet2, and then click OK.

Step 7: Adding the Handlers for the Previous and Next Buttons
To be able to navigate among the titles for each author in the Show Titles dia
log box, you have to override the default implementation of MovePrev and
MoveNext.

1. Select the Show Titles dialog box in the Resource View pane.

309

PA R T I : WORKSHOP

2. Hold down Ctrl and double-dick Previous to create a message han
dler for the button. Add the following code to the body of the handler:

CRecordset* pSet = m_pSet2:
if CpSet->IsBOF())

return:

pSet->MovePrev():
if CpSet->IsBOF())

pSet->MoveFirst():

II Show results of move operation
UpdateDataCFALSE):

3. Hold down Ctrl and double-dick Next to create a message handler
for the button. Add the following code to the body of the handler:

CRecordset* pSet = m_pSet2:
if (pSet->IsEOF())

return:

pSet->MoveNext();
if CpSet->IsEOF())

pSet->MoveLast():

II Show results of move operation
UpdateDataCFALSE):

The code shown above for the Previous and Next buttons does not include code
for enabling or disabling buttons on the basis of the total number of records
retrieved, but you can certainly add such code later if you like.

Step 8: Adding the Directives for the Show Titles Dialog Box
Although ClassWizard knows about your dialog box, you have to add a for
ward declaration to the dialog box header file and a #include to the imple
mentation file for the view.

310

To add a second recordset to the dialog box header file, double-dick
the CS1Dlg node in the Class View pane to open the header file. Just above the
declaration for the class, add the following line of code:

class CShowTitleSet;

This forward declaration enables the dialog box class to handle the routing
of field data from the recordset class to the controls on the dialog box.

To add the second recordset to the view's header file, double-dick the
view class node in the Class View pane to open the header file. Just above the
declaration for the class, add the following line of code:

E I G HT: MFC Database Classes

class CShowTitleSet;

This forward declaration makes the view class aware of the second recordset
class so that you can obtain the author's first name and last name from the
primary recordset.

To add the directives to the application object's header file, double
click the constructor for the application object in the ClassView pane, and
navigate to the top of the file. Just below the #include for the primary record
set, add the following line of code:

#include "ShowTitleSet.h"

To add the directives to the document's implementation file, double
click the constructor for the document in the ClassView pane, and navigate
to the top of the file. Just below the #include for the primary recordset, add
the following lines of code:

#include "ShowTitleSet.h"
#include "STDlg.h"

To add the directives to the view's implementation file, follow the pro
cedure described below:

1. Double-click the constructor for the view object in the ClassView
pane, and navigate to the top of the file.

2. Just below the #include for the primary recordset, add the following
line of code:

#include "ShowTitleSet.h"

3. Below the #include for the view's header file, add the following line
of code:

#include "stdlg.h"

The view now knows about the second dialog box and will react
appropriately.

4. ·In the section under //Attributes, add a data member for the second
recordset:

CShowTitleSet m_showTitleSet;

To add the directives to the second dialog's implementation file, double
click the constructor for the dialog object in the ClassView pane, and navigate

311

PA RT I : WORKSHOP

to the top of the file. Just below #include for the application object, add the
following line of code:

#include "ShowTitleSet.h"

Step 9: Adding the Handler for the Show Titles Dialog Box
To add the handler for the Show Titles dialog box, follow the procedure de
scribed below.

1. Switch to the record view in the Resource editor, and add a button
that will launch the second dialog box. Give the button the resource
ID IDC_SHOWTITLES.

2. Hold down Ctrl and double-click the button to add the message han
dler for the button.

CString strSQL = _T("{CALL au_titles (?,?)}"}:

CSTDlg dlg;
dlg.m_pSet2 = &GetDocument()->m_sSTSet:

dlg.m_pSet2->m_strAuLN = m_pSet->m_au_lname;
dlg.m_pSet2->rn_strAuFN = m_pSet->m_au_fname;
dlg.rn_pSet2->0pen(CRecordset::snapshot, strSQL,

CRecordset::readOnly);

dlg.DoModal():
dlg.rn_pSet2->Close();

This code creates a dialog box object, initializes the SQL string using
the author's first name and last name from the. current record, creates
a recordset, and opens the recordset that is based on the stored pro
cedure call. The DoModal call opens the dialog box and populates it
with the fields from the recordset.

Step 10: Adding the Stored Procedure
to the SQL Server PUBS Database

312

You're now ready to add the stored procedure to the PUBS database. If you
are not using the Enterprise Edition of Visual C++ 5.x, you can load the
AU_TITLES.SQL file from the companion CD-ROM into the SQL Server client
utility ISQL_W and run the script there. If you do not have SQL Server utili
ties on your computer, ask your database administrator to load the script for
you. If you are using the Enterprise Edition of Visual C++ 5.x, you can insert
a database project into your workspace and create a stored procedure within
your project.

E I G HT: MFC Database Classes

Add the stored procedure as described below.

1. Choose New Database Project from the File menu. Give the sub
project a name, and click Add To Current Workspace.

2. In the Select Data Source dialog box that appears, select the DSN for
'SQL Server's PUBS database from the Machine Data Sources tab.
Then click OK. Supply the necessary login information; the database
subproject will appear in both the Class View and Data View panes that
you added to the project.

3. In the Data View pane, expand the Stored Procedures node. You'll
see several stored procedures that are included in the PUBS data
base.Right-dick the Stored Procedures node, and select New Stored
Procedure.

4. Insert the following code into the body of the stored procedure:

CREATE PROCEDURE au_titles @auLN varchar(20),
@auFN varchar(40) AS

SELECT authors.au_id, authors.au_lname. authors.au_fname,
titleauthor.title_id, titles.title, titles.notes
FROM authors, titleauthor, titles
WHERE authors.au_lname = @auLN
and authors.au_fname = @auFN
and authors.au_id = titleauthor.au_id
and titleauthor.title_id = titles.title_id
order by titleauthor.title_id

Remove the default line below:

return (0)

This stored procedure declares the variables supplied by the current
record and then creates a join between three tables to create the recordset
for the class CShowTitleSet. You use only the last three fields in the secondary
dialog box.

Step 11: Compiling and Running the Application
Now that you've added all of the code and laid out the record view and dialog
box controls, compile and run the application.

• The record view loads the primary recordset; now you can scroll
through the records as much as you like.

313

PART I: WORKSHOP

Ill Click Show Titles to display the secondary dialog box. The stored
procedure AU_TITLES runs and returns a recordset that is based on
the parameters (in this case, the first name and last name of the au
thor). You can use the Previous and Next buttons to scroll through
the records. (There are usually only one or two records per author.)

Additional Information
Parameters for any recordset must be listed in the same order in which the
recordset is retrieved. For more information, see the following topics in the
Visual C++ online help:

Ill Recordset: Declaring a Class for a Predefined Query (ODBC)

Ill Recordset: Parameterizing a Recordset (ODBC)

These Microsoft Knowledge Base articles also have excellent information:

Ill How to Use Dynasets with Microsoft SQL Server Version 6.x: Ql36994

Ill MFC ODBC Classes and Parameterized Pre-Defined Queries: Q137814

111 SAMPLE: DLGDB32 CDialog Sharing a CRecordset Object: Q141445

Ill PRB: Opening a Dynaset on a SQL Server Stored Procedure: Q152520

Using Output Parameters with the
ODBC API and ODBC Database Classes

314

The purpose of this task is to demonstrate how results from a stored proce
dure can be obtained and displayed using ODBC API calls. It is a continua
tion of the previous task, "Opening a Recordset on a Stored Procedure Using
ODBC Database Classes," and it uses the same project code base-SPROC.
Here you'll add another button to the record view for running a second
stored procedure that is based on the CShowTitleSet recordset. This stored
procedure calculates the total number of units sold for each author in the
database by joining three tables and calculating a result.

A SQL SELECT statement based on a join is costly in terms of the total
processing time required, which means it makes sense to run this kind of
stored procedure only on demand rather than recalculating the value each
time a user scrolls through a record. Although it's possible to use an existing
CDatabase::m_hdbc connection and CRecordset::m_hstmt statement to run stored
procedures, the recordset you use must already be open. You also can't use the

E I G HT: MFG Database Classes

existing connection because you're not creating a recordset; rather, you're
merely calculating a result.

The task consists of five steps:

1. Adding a button for the stored procedure

2. Preparing a message handler for the button

3. Adding a message handler for the button

4. Adding the stored procedure to the SQL Server PUBS database

5. Compiling and running the application

Step 1: Adding a Button for the Stored Procedure
If you don't want to repeat all the work you did in the previous task, just copy
the files from the companion CD-ROM and use them as a starting point for
this task.

1. Open the Resource editor, and add another button to the record
view.

2. Right-click the button, and select Properties. Give the control the re
source ID IDC_SUMSOLD. Then change the caption to Calculate
Units Sold.

3. Hold down Ctrl and double-click the button to create a message han
dler for it.

Step 2: Preparing a Message Handler for the Button
The next few steps will describe the process of making a direct ODBC call to
a stored procedure and capturing its output to display to the user. You'll be
gin by adding data members to the view class.

1. Double-click the CS.ProcViewclass node in the ClassView pane to open
the header file.

2. Add the following lines of code to reserve storage for information
that will be reused when the button is clicked:

HENV henvHndl;
HDBC hdbcConn;
HSTMT hstmtStmt;
RETCODE retCode;

II Environment handle for ODBC direct calls
II Connection handle for ODBC direct calls
II Statement handle for ODBC direct calls
II Return code for ODBC functions

315

PA R T I : WORKSHOP

Each time you use the ODBC API, you must allocate and deallocate an
environment handle, a connection handle, and a statement handle. Each call
returns a return code for which you also need storage. These members will
be statically allocated in the body of the function so that they need be stored
only once and are retrievable each time the connection is made.

Next add a parsing member function to the view class. Use the ODBC
API SQLErrorfunction, which returns the result code SQL_SUCCESS_WITH
_INFO and a corresponding message string. During debug operations, it's
useful to have the entire message string because if there is an error, the state
and native error code information is included. However, you don't need to
display that information to the user. Add a member function to parse the mes
sage string, and then remove the information that precedes the results you
want to display. In the header file for the view, add the following code for the
message parser in the //Operations section under "public:".

UCHAR* ParseMsg(UCHAR* pstrMsg);

Now add the parsing message function to the view class implementation
file. This code looks for the third right bracket (]) and returns the starting point
of the remainder of the message that is to be displayed in the message box.

UCHAR* CSProcView::ParseMsg(UCHAR* szErrMsg)
{

}

int cnt = 0;
while(*szErrMsg != '\0')
{

if (*SZErrM~g -- '] ')
{

cnt ++;
if (cnt 3)

return szErrMsg+l;

szErrMsg++;

return NULL;

Step 3: Adding a Message Handler for the Button

316

The body of the message handler is somewhat lengthy because you'll be using
direct ODBC API calls to establish a connection and retrieve results from the
stored procedure.

E I G HT: MFC Database Classes

Copy the following code into the message handler OnSumSold (or what
ever name you've given it):

CWa1tCursor wa1t:

CString strAuID = m_pSet->m_au_id:

static UCHAR szDSN[]
static UCHAR szUID[]
static UCHAR szPWD[]

"SQLServerPubs":
"sa";
""· .

II Allocate a connection handle
retCode = SQLAllocEnvC&henvHndl):

II Allocate environment handle and connection handle
retCode = SQLAllocConnect(henvHndl, &hdbcConn);

II Connect to the data source
retCode = SQLConnect(hdbcConn,

szDSN, SQL_NTS, II Data source & length
szUID, SQL_NTS, II User ID & length
szPWD, SQL_NTS): II Password & length

II Allocate the hstmtStmt & its storage
retCode = SQLAllocStmt(hdbcConn, &hstmtStmt);

II Construct the string from edit box input, and add single quotes
CStrf ng strSum_Sold;
strSum_Sol d = _T("sum_sol d @au ID='"):
strSum_Sold += strAuID:
strSum_Sold += _T('""):

II Execute Sum_Sold. This message returns SQL_SUCCESS_WITH_INFD
II We need a couple of casts of the string to arrive ~t a UCHAR*
retCode = SQLExecDirect(hstmtStmt,

(UCHAR*)(LPSTR)(LPCTSTR)strSum_Sold, SQL_NTS);

II Allocate some storage for the returned message
UCHAR szSqlSt[6];
UCHAR szErrMsg[SQL_MAX_MESSAGE_LENGTH]:
SDWORD pfNativeErr;
SWORD pcbErrMsg;

II Now get the Sum_Sold PRINT message
retCode = SQLError(henvHndl, hdbcConn, hstmtStmt, szSqlSt,

(continued)

317

PA R T I : WORKSHOP

318

&pfNativeErr, szErrMsg, (SQL_MAX_MESSAGE_LENGTH - 1),
&pcbErrMsg);

II Get rid of the header info in the message
UCHAR* pszMsg;
pszMsg = ParseMsg(szErrMsg);

II Display PRINT message
if (pszMsg == NULL)

AfxMessageBox("Author has not sold any books.");
else

AfxMessageBox((char*)pszMsg, MB_OK I MB_ICONINFORMATION);

II Close the connection
retCode = SQLFreeStmt(hstmtStmt, SQL_DROP);
retCode = SQLDisconnect(hdbcConn);
retCode = SQLFreeConnect(hdbcConn);
retCode = SQLFreeEnvC&henvHndl);

Now let's review the code. The first line of code starts a "wait cursor" that
is automatically destroyed when the function ends. Whenever I have an opera
tion that might take more than a second or two, I change the cursor to let the
user know that processing is taking place. You need only one line of code for this:

CWaitCursor wait;

The next line of code initializes a variable by obtaining the current value in
· the Author ID field.

CString strAuID = m_pSet->m_au_id;

When establishing the connection to the data source, I allocate storage
for the DSN, the user ID, and the password using the static keyword. This makes
the storage available the next time the function executes.

static UCHAR szDSN[J "SQLServerPubs";
static UCHAR szUID[] = "sa";
static UCHAR szPWD[J = "";

Next I allocate the handles to the environment, the connection, and the
statement for the ODBC call. The values for retCode should be either 0 for SQL
_SUCCESS or 1 for SQL_SUCCESS_WITH_INFO. These values are defined
in the ODBC header file SQL.H. As I step through the code in Debug mode,
I can check these values.

II Allocate a connection handle
retCode = SQLAllocEnvC&henvHndl);

EIGHT: MFC Database Classes

II Allocate environment handle and connection handle
retCode = SQLAllocConnect(henvHndl, &hdbcConnl;

II Connect to the data source
retCode = SQLConnect(hdbcConn,

szDSN, SQL_NTS,
szUID, SQL_NTS,
szPWD, SQL_NTS);

II Data source and length
II User ID and length
II Password and length

II Allocate the hstmtStmt and its storage
retCode = SQLAllocStmt(hdbcConn, &hstmtStmt);

To run the stored procedure, I assemble the string from the CStringthat
I allocated earlier. I build up the strSumSold and then add apostrophes around
the value.

II Construct the string from edit box input, and add single quotes
CString strSum_Sold;
strSum_Sol d = _ T("sum_sol d @au ID="');
strSum_Sold += strAuID:
strSum_Sold += _T(""');

Then I run the SUM_SOLD stored procedure using SQLExecuteDirect. The re
turn code for this should be a 1 for SQL_SUCCESS_WITH_INFO. It is that
"info" that I want to capture and display to the user.

II Execute Sum_Sold. This message returns SQL_SUCCESS_WITH_INFO
II We need a couple of casts of the string to arrive at a UCHAR*
retCode = SQLExecDirect(hstmtStmt,

(UCHAR*)(LPSTR)(LPCTSTR)strSum_Sold, SQL_NTS);

To retrieve the results of the stored procedure, I allocate some storage
for the parameters of the SQLErrorcall and then retrieve the PRINT message
from the stored procedure. The PRINT message is found in the szErrMsgpa
rameter below.

II Allocate some storage for the returned message
UCHAR szSqlSt[6];
UCHAR szErrMsg[SQL_MAX_MESSAGE_LENGTH];
SDWORD pfNativeErr;
SWORD pcbErrMsg;

II Now get the Sum_Sold PRINT message
retCode = SQLError(henvHndl, hdbcConn, hstmtStmt, szSqlSt,

&pfNativeErr, szErrMsg, (SQL_MAX_MESSAGE_LENGTH - 1),
&pcbErrMsg);

319

PART I: WORKSHOP

To remove header information, I parse the message using the function
I added earlier and display the results-in this case, a number returned as a
string. If the string is null, I provide an alternative message box stating that the
author hasn't sold any books.

II Get rid of the header info in the message
UCHAR* pszMsg:
pszMsg = ParseMsg(szErrMsg):

II Display PRINT message
if (pszMsg == NULL)

AfxMessageBox("Author has not sold any books.");
else

AfxMessageBox((char*)pszMsg, MB_OK I MB_ICONINFORMATION);

The connection is closed after the user acknowledges the message box.

II Close the connection
retCode = SQLFreeStmt(hstmtStmt, SQL_DROP);
retCode = SQLDisconnect(hdbcConn):
retCode = SQLFreeConnect(hdbcConn);
retCode = SQLFreeEnvC&henvHndl);

Step 4: Adding the Stored Procedure
to the SQL Server PUBS Database

320

Now you add the stored procedure to your SQL Server PUBS database.

• If you are not using Visual C++ Enterprise Edition, you can also load
the SUM_SOLD.SQL file from the companion CD-ROM into the
SQL Server client utility ISQL_W and run the script there.

• If you do not have SQL Server utilities on your computer, ask your
database administrator to load the script for you.

• If you are using Visual C++ Enterprise Edition, you can insert a data
base project into your workspace and create the new stored procedure
from within your project.

Follow the procedure described below.

1. Choose New Database Project from the File menu. Give the subproject
a name, and click Add To Current Workspace.

2. In the Select Data Source dialog box, select the correct DSN for SQL
Server's PUBS database from the Machine Data Sources tab. Then
click OK.

E I G HT: MFC Database Classes

Supply the necessary login information; the database subproject
will appear in both the Class View and Data View panes that you added
to the project.

3. In the Data View pane, expand the Stored Procedures node. You'll
see several stored procedures that are included in the PUBS data
base. Right-click the Stored Procedures node, and select New Stored
Procedure.

4. Insert the following code into the body of the stored procedure:

CREATE PROCEDURE SUllLSOld @auID varchar(ll),
@retval int = 0 OUTPUT AS

SELECT @retval = SUM(DISTINCT sales.qty)
FROM authors. titleauthor. titles, sales
WHERE authors.au_id LIKE @auID
and authors.au_id = titleauthor.au_id
and titleauthor.title_id = sales.title_id

DECLARE @convertval char(?)
SELECT @convertval = CONVERT(char(7),@retval)
PRINT @convertval

RETURN

Remove this default line

return (0)

The stored procedure SUM_SOLD needs values from three tables to calcu
late the total number of units sold by this author's work. The variable used to
select the records is the author's ID. It's relatively easy to calculate the value,
but you have to use a PRINT message to return the result-and the PRINT
message takes only strings. The CONVERT function takes care of that prob
lem; it is the converted string that appears in AfxMessageBox.

Step 5: Compiling and Running the Application
You're now ready to compile and run the application. Start by compiling for
Debug mode; put breakpoints in the OnSumSold member function to observe
the process. Scroll through the records. Click Calculate Units Sold to display
either the number of units sold or the "no units sold" message box.

321

PA R T I : WORKSHOP

Additional Information

322

Because opening and closing separate connections to a data source results in
extra overhead, use this capability sparingly. It can be an effective method for
retrieving information you need only occasionally.

As ofMFC version 4.2, output parameters are supported, so it's possible
to accomplish this task without the ODBC API calls. I decided, however, to use
them in this example to demonstrate the minimum number of calls that are
required to establish a connection with a data source using the ODBC APL

Normally, you wouldn't use SQLError to retrieve results from a stored
procedure either, but SQLError is ail API function that is used frequently. So
this is an example you can copy and use in your own code. The calls you typically
would use for retrieving results from a stored procedure using the ODBC API
would look like this:

{

II ... login, password, and so on ...
SQLAllocStmt(...)
SQLExecDirect(...)
SQLBindCol (...)
SQLFetch(...)
SQLFreeStmt(...)
II ... free the handles, and so on ...

}

Consult the ODBC Programmer's Reference if you would like more infor
mation about these APis. Be sure you read the following topics in the Visual
C++ online help.

• SQL: Making Direct SQL Calls (ODBC)

B SQL: Customizing Your Recordset's SQL Statement (ODBC)

II Data Source: Programmatically Creating a Table in an ODBC Data
Source

Ill Recordset: How Recordsets Select Records (ODBC)

The following Knowledge Base article is also useful:

Ill How to Detect an Empty Recordset Object: Q121950

PART II

REFERENCE
SECTION

Knowledge Base Articles

In Part I of this book, several references were made to articles found in the
Microsoft Knowledge Base. The Knowledge Base is a database of technical
support articles about Microsoft products, which usually fall into two catego
ries: how-to articles and bug-related articles. For the most part, the Knowl
edge Base articles referenced in this book fell into the second category.

The main reason for using these existing Knowledge Base articles is a
product of the structure of the book. Before writing up each task, I used a set
of criteria to determine what information would be needed in the task. One
of the main criteria used was this: Is the information absolutely needed to
complete the task or improve the usability of the feature? I wanted to be rig
orous in task focus and clarity because there is nothing I hate more than wad
ing through ten pages of story about a hypothetical parts store of electronic
widgets, when all I wanted to know was how information is being passed be
tween two discrete objects! This kept the tasks tightly focused and concise.
But occasionally, there would be a cool Knowledge Base article that discussed
an alternate approach or presented related information that also would be
useful to read. Therefore, instead of trying to include the information in the
article in the task, I referenced the article.

To save you the time and effort of searching for a referenced article in
the Knowledge Base itself, I collected the articles referenced in the text in a
separate part of the book. However, keep the following in mind when refer
encing these articles:

• Every effort was made to include the latest version of the Knowledge
Base articles. However, due to the "dynamic" nature of the Knowl
edge Base (and the not so dynamic nature of a book), the content of
the referenced articles is subject to change. For the latest version of
an article, please check the online version in the Knowledge Base,
which can be found at the Microsoft World Wide Web site, http://mi
crosoft.com/kb.

• Each article has a query number ("Q" number) as part of its title.
This query number can be used to quickly access the article when
searching on line. Sometimes an article is referenced in two different
chapters. Because of this, the articles are listed here by their query
number in ascending order, not by the chapter in which they were
referenced.

325

PA RT I I : REFERENCE SECTION

Using CFormView in SDI and MDI Applications
(Q98598)

The information in this article applies to the Microsoft Foundation Classes
(MFC) included with:

Ill Microsoft Visual C++ for Windows, versions 1.0, 1.5, 1.51, and 1.52

Ill Microsoft Visual C++ 32-bit edition, versions 1.0, 2.0, 2.1, 4.0, 4.1, 4.2,
and5.0

Summary
The CFormView class provides a convenient method to place controls into a
view that is based on a dialog box template. The general procedure to use a
CFormView is described in the documentation for the class and is illustrated in
the VIEWEX and CHKBOOK sample applications provided with Microsoft
Foundation Classes (MFC) versions 2.x and above. However, these applica
tions do not demonstrate making the initial size of the frame window to be the
same as the initial size of the form.

The following section lists the steps required to support creating a single
document interface (SDI) or multiple document interface (MDI) applica
tion based on a CFormView, sizing the initial frame window around the form,
changing the style of the frame, and closing an MDI document using a button
in the form.

More Information

326

The following four steps describe how to create an AppWizard generated ap
plication using the CFormView as the default view.

l. Use AppWizard to generate an SDI or MDI application skeleton, stop
ping at step six of AppWizard.

2. At step six of AppWizard, select the view class and specify CFormView as
the base class using the Base class combo box. This will insert a dialog
box template with the proper styles set for your project's resource file.

3. Override the OnUpdate member function and call UpdateData as docu
mented in the CFormView documentation to update the member vari
ables with the current document data and to perform dialog data
exchange (DDX). Note: UpdateDatais not virtual and calling the base
class ensures that the derived class DoDataExchange is called through

Knowledge Base Articles

standard polymorphism. The CFormView documentation states to call,
not to override UpdateData.

4. If you would like to set the initial size of the form view, override the
OnlnitialUpdate function. The text below provides additional infor
mation about this step, which is slightly different in an SDI or MDI
application.

Changing the Size of an SDI Main Frame Around a CFormView
To change the size of the main frame of an SDI application (that uses CForm
View as its view class) to be the appropriate size for the form you designed in
App Studio, override the OnlnitialUpdate function in your class derived from
CFormView, as follows:

void CMyFormView::OninitialUpdate()
{

CFormView::OninitialUpdate():
GetParentFrame()->Recalclayout():
ResizeParentToFit(): //default argument is TRUE

}

The ResizeParentTaFitfunction does not prevent the form from changing
size when the user changes the size of the application main frame. (Scroll
bars are added automatically if needed.) To modify the style of the frame win
dow that is the parent of a form view, you can override the PreCreateWindow
function in the CMainFrame class generated by AppWizard. For example, to
remove the WS_THICKFRAME style and prevent the user from changing the
size of the window, declare PreCreateWindow in MAINFRM.H and add the fol
lowing code to MAINFRM.CPP:

BOOL CMainFrame::PreCreateWindow(CREATESTRUCT &cs)
{

cs.style &= -WS_THICKFRAME:
return CFrameWnd::PreCreateWindow(cs):

}

Changing the Size of an MDI Child Frame Around a CFormView
The process of changing the size of an MDI child frame is similar to changing
the size of a main frame for an SDI application, as explained above. However,
the RecalcLayout call is not required.

To change the size of an MDI child frame around a form view, override
the OnlnitialUpdate function in your class derived from CFormView as follows:

327

PA R T I I : REFERENCE SECTION

void CMDIFormView::OnlnitialUpdate()
{

}

CFormView::OnlnitialUpdate();
ResizeParentToFit(); // Default argument is TRUE.

If the application overrides the default argument to the ResizeParent
ToFit function, essentially the same;: consequences occur as for an SDI applica
tion, as explained above. In addition, the child window may be too large for
the enclosing MDI main frame or for the entire screen.

To change the style of the MDI child frame (for example, to remove the
WS_THICKFRAME style so the user cannot change the size of the window), de
rive an MDI child window class and override the PreCreateWindow function as
demonstrated in the SDI example above.

Closing an MDI Form with a Button

328

To create a button on a form that closes the document, use ClassWizard to
add a message handler for the BN_CLICKED message to the CFormView class.
Make sure that the buttons in CFormView do not have the default IDOK or ID
CANCEL identifiers. If they do, ClassWizard creates incorrect entries in the
message map and incorrect functions for the buttons.

Once the message handler is in place, you can simulate the Close com
mand on the File menu with the following code:

void CMyForm::OnClickedButtonl()
{

PostMessage(WM_COMMAND, ID_FILE_CLOSE);
}

This method to close a form prompts the user to save the file if the IsModified
member function associated with the document returns TRUE.

Additional reference words: kbinf 1.00 1.50 1.511.52 2.00 2.10 4.00 4.10
4.20 5.00

KBCategory: kbprg fasttip

KBSubcategory: MfcUI

Knowledge Base Articles

How to Change an MFC-Based
MDI Child Window's Frame Text

(099182)

The information in this article applies to the Microsoft Foundation Classes
(MFC) included with:

Summary

• Microsoft Visual C++ for Windows, versions 1.0, 1.5, 1.51, and 1.52

• Microsoft Visual C++ 32-bitEdition, versions 1.0, 2.0, 2.1, 4.0, 4.1, 4.2,
and5.0

A user may find it desirable to change the title of an MFC-based child window.
To do this, PreCreateWindow must be overridden for the child frame, and On
InitialUpdate must be overridden for the view.

More Information
These are the steps necessary to change the title of a multiple document in
terface (MDI) child window frame. When doing this, follow the rules of "The
Windows Interface: An Application Design Guide" for child frame titles, which
states the following: ·~ document window title bar should contain a caption
that displays the name of the document in the window." Add your customized
information in addition to that.

1. Create an MDI application from AppWizard.

2. Using ClassWizard, create a new class based on CMDIChildWnd.
These steps assume the class is named CMyChildFrame.

3. Choose Project. Scan All Dependencies. This step is not necessary .
with Visual C++ version 4.x or 5.0.

4. Choose the project's main .CPP file and replace the CMDIChildWnd
class in the call to the AddDocTemplate function to the new class you
created.

5. Include the newly created .H file at the top of the project's main .CPP
file.

329

PA R T I I : REFERENCE SECTION

330

6. Choose the .H file from the project list for the newly created class and
add the following line to the protected implementation section:

virtual BOOL PreCreateWindowCCREATESTRUCT &cs);

NOTE: With Visual C++version 4.xor 5.0, you may use Class
Wizard to do the above.

7. Choose the .CPP file from the project list for the newly created class
and add the following to the end of the file:

BOOL CMyChildFrame::PreCreateWindowCCREATESTRUCT &cs)
{

}

II Do default processing.
if CCMDIChildWnd::PreCreateWindow(cs)==0) return

FALSE;
return TRUE;

where CMyChildFrame is the class name of your newly created class.
This function calls the base class's version for the PreCreateWindow
function.

8. Add the following code line to the newly created PreCreateWindow
function immediately following the default call to CMDIChild
Wnd: :PreCreateWindow:

cs.style &= -CLONG)FWS_ADDTOTITLE;

9. Choose the .H file corresponding to your application's view window
and add the following code to the public implementation section:

virtual void OninitialUpdate();

NOTE: WithVisualC++version4.xor5.0,youmayuseClass
Wizard to do the above.

10. Choose the .CPP file corresponding to your application's view win
dow and add the following code to the end of the file:

void CMyAppView::OnlnitialUpdate()
{

}

II Do default processing.
CView::OnlnitialUpdate();

where CMyAppView is the view class for the application.

11. Add your customization code. Remember to follow the rules of "The
Wmdows Interface: An Application Design Guide" for child frame titles.

Knowledge Base Articles

Then add your customized information, in addition to that, immedi
ately following the default call to CView::OnlnitialUpdate. An example
of this is:

GetParent()->SetWindowText(GetDocument()->GetTitle()+
" - This is a test!"):

12. Build the program.

13. Run it and you will see the change implemented. In this example, the
first view will display "Myappl - this is a test!". Additional views will be
identical except for the document name (Myappl).

N 0 T E : It is necessary to override OnlnitialUpdate instead of
OnCreate because the document has not been instantiated, and
therefore calling GetTitlewould return an empty string.

N 0 TE: It may also be necessary to override CDocument::Can
CloseFrame if multiple views of the same document are open.
This is because the CMDIChildWnd member m_nWindow is not
updated if FWS_ADDTOTITLE is not set for the MDI Child
frame. This prevents the "Save File" dialog from coming up
when any view other than the last view open for the document is
closed.

This does NOT apply to Visual C++ for Windows, version 1.52,
and Visual C++ 32-bit Edition, versions 2.10 and above. The behavior
of m_ n Windows was modified in these versions to handle this scenario
properly. The overridden function would look something like this:

BOOL CMyDoc::CanCloseFrame(CFrameWnd* pFrameArg)
{

ASSERT_VALIDCpFrameArg);
UINT iCount = 0;

POSITION pos = GetFirstViewPosition();
while (pos != NULL)
{

CView* pView = GetNextView(pos):
ASSERT_VALID(pView);
CFrameWnd* pFrame = pView->GetParentFrame();
II assume frameless views are ok to close
if (pFrame != NULL)
{

(continued)

331

PA R T I I : REFERENCE SECTION

332

}

}

}

II assumes 1 document per frame
ASSERT_VALID(pFrame);
1Count++;

if C iCount > 1)
return TRUE;

II otherwise only one frame that we know about
return SaveModified();

Additional reference words: kbinf 1.00 1.50 2.00 2.10 2.50 2.512.52 3.00
3.10 4.00 4.10 4.20 5.00

KBCategory: kbprg kbfasttip

KBSubcategory: MfcUI

Knowledge Base Articles

Displaying the Current Time in a CStatusBar Pane
(Q99198)

The information in this article applies to the Microsoft Foundation Classes
(MFC) included with:

• Microsoft Visual C++ for Windows, versions 1.0, 1.5, 1.51, and 1.52

• Microsoft Visual C++, 32-bit Edition, versions 2.0, 2.1, 4.0, and 5.0

Summary
The text below describes a process by which an MFC AppWizard application
can be designed to display the current time on its status bar.

1. Use App Studio, or the Resource View in Visual C++ versions later than
4.0, to edit the application's string tables. Add a new string in the seg
ment that defines ID_INDICATOR_NUM and so on; for example, cre
ate a new string with the ID ID_INDICATOR_TIME. Specify a caption
like 00:00. The status bar uses the specified initial value to calculate
the size of the pane. An application can dynamically change the size
of the pane using the CStatusBar::SetPanelnfo function. With Visual
C++ versions prior to 4.0 or later, close App Studio to save the .RC file.
With Visual C++ version 4.0, use the File menu to Save and Close the
string table resource.

2. Edit the MAINFRM.CPP file. The CStatusBarobject builds the status
bar using the data in the indicators[] array in sequential order. Insert
the ID_INDICATOR_TIME indicator into the array at the desired po
sition. If you compiled the program at this stage, you would see a new
pane in the status bar but it would not contain any text.

3. Edit the message map for the CMainFrameobject to add the following
line (add the line outside the AFX_MSG_MAP comments):

ON_UPDATE_COMMAND_UICID_INDICATOR_TIME, OnUpdateTime)

Because ID_INDICATOR_TIME is an ID, and not an object, you can
not use Class Wizard to make this addition.

4. Edit the MAINFRM.CPP file and create a function similar to the
folloWing:

333

PA R T I I : REFERENCE SECTION

334

void CMainFrame::OnUpdateTime(CCmdUI *pCmdUl)
{

}

CTime t = CTime::GetCurrentTime();
char szTime[6];
int nHour = t.GetHour();
int nMinute = t.GetMinute();

II Base hours on 12 instead of 24
if (nHour > 12)

nHour = nHour - 12;

wsprintf(szTime, "%i:%02i", nHour, nMinute);

II Now set the text of the pane.
ITLWndStatusBar.SetPaneText(

m_wndStatusBar.CommandTolndex(ID_INDICATOR_TIME),
LPCSTR(szTime));

pCmdUI->Enable();

The application calls this function once when it has idle time. Each
time the application empties its message queue, it sends a WM_IDLE
UPDATECMDUI message (new idle time). For more information on
idle time, please refer to Technical Note #24 in the online help or to
the documentation of the CWinApp::Onldlefunction. The application
must call the pCmdUl->Enablefunction to enable the user-interface
item for this command. If the application doesn't enable the user
interface item, the pane appears in the status bar, but it does not dis
play any text.

If you compiled the program at this point, the status bar would
display the current time in one ofits panes. However, one implemen
tation problem would remain. Because the application calls the UI
command handler only once each time the system becomes idle, what
happens if the application runs and the user does not interact with it?
The application does not reset the time until it receives one or more
messages and empties its queue (new idle time). The code in step 5 ad
dresses this situation.

5. Even though there are several methods to accomplish this, the sim
plest method takes advantage of the fact that the application calls the
UI command handler only once when the application's message queue
is emptied. Add the following statement to the CMainFrame::OnCreate
member function:

m_wndStatusBar.SetTimer(l, 1000, NULL);

Knowledge Base Articles

The CWnd::SetTimerevent generates a message in the application's
queue every second. Even if the user does not interact with the appli
cation, the queue empties after processing the timer event, new idle
time is available, and the application updates the time pane in its status
bar. Be sure to call Ki,llTimerwhen the window is destroyed.

More Information
When a modal dialog box is up, the dialog manager manages the application's
message queue. Since the dialog manager's message loop does not include
calls to do idle time processing, the above mentioned OnUpdateTimefunction
never gets called. If you would like to use a modal dialog box, yet still have the
time on the status bar updated, you will have to avoid using the message queue.
The following procedure demonstrates this.

1. Start with the code above.

2. In MAINFRM.H, add the following to the CMainFrame class defini
tion.

UI NT m_nIDTi mer:
static VOID __ export CALLBACK TimerProcCHWND hwnd, UINT uMsg,

UINT uIDEvent, DWORD dwTime):

N 0 T E : In Win32, the " __ export" keyword is obsolete and
will cause the compiler to generate a C4236 warning in Visual
C++ version 4.0 or later. To correct, simply remove the keyword.

3. In MAINFRM.CPP, change the SetTimercall in CMainFrame::OnCreate
to:

m_nIDTimer = ::SetTimerCNULL, 0, 1000, TimerProc);

4. Add a timer procedure:

VOID __ export CALLBACK CMainFrame::TimerProc(HWND hwnd,
UINT uMsg, UINT uIDEvent, DWORD dwTime)
{

CMainFrame *pMainWnd =
CCMainFrame *)AfxGetApp()->m_pMainWnd:

ASSERT(uIDEvent == pMainWnd->m_nIDTimer):

CCmdUI cui:
cui.m_nID = ID_INDICATOR_TIME;
cui.m_nindex = 4;
cui.m_pMenu =NULL;

(continued)

335

PA RT I I : REFERENCE SECTION

336

cu1.m_p0ther = &pMainWnd->m_wndStatusBar;

pMainWnd->OnUpdateT1meC&cu1);
}

5. In the destructor, use

::KillTimerCNULL, m_nIDTimer);

Additional reference words: kbinf 1.00 1.50 2.00 2.50 2.51 2.52 3.00 3.10
4.00 5.00

KBCategory: kbprg

KBSubcategory: MfcUI

Knowledge Base Articles

Switching Views in a
Single Document Interface Program

(Q99562)

The information in this article applies to the Microsoft Foundation Classes
(MFC) included with:

• Microsoft Visual C++ for Windows, versions 1.0, 1.5, 1.51, and 1.52

• Microsoft Visual C++, 32-bit Edition, versions 1.0, 2.0, 2.1, 4.0, and 5.0

Summary
In a single document interface (SDI) application, created with the Microsoft
Foundation Class library, to create an alternate CView and use both the CView
specified in the CDocumentTemplate and the alternate view in the application,
perform the steps listed below.

N 0 T E : These steps assume that the name of the CWinApp-derived
object is CMyWinApp; that CMyWinApp is declared and defined in
MYWINAPP.H and MYWINAPP.CPP, respectively; that CNewView
is the name of the new, CView-derived object; and that CNewView is
declared and defined in NEWVIEW.H and NEWVIEW.CPP, respec
tively. Substitute these with your own class and file names as needed.

1. Add the following members to the declaration of CMyWinApp in MY
WINAPP.H:

CView* m_pOldView:
CVieW* m_pNewView:
CView* SwitchView(CView* pNewViewl:

2. If CNewViewwas created with ClassWizard, modify the CNEWVIEW.H
to change the access specifier for the constructor, destructor, and On
InitialUpdate function from protected to public.

3. Add "#include <AFXPRIV.H>" (without the quotation marks) to the
include section ofMYWINAPP.CPP. This is required to define the
WM_INITIALUPDATE message to be added in step 4.

4. Create a new view and attach it to the document. The following code
fragment creates anewviewin the Initlnstancemember of the CMyWin
App object. In this way, both new and existing views persist for the life-

337

PA R T I I : REFERENCE SECTION

338

time of the application; however, the application could just as easily
create the new view dynamically.

This code requires the main frame window, document, and de
fault view to exist already. In Visual C++ for Windows and Visual C++
32-bit Edition, versions 1.0 through 2.x, insert the following code into
CMy WinApp::Initlnstance after the call to OnFi/,eNew, as OnFi'leNew cre
ates each of these elements. In Visual C++ 32-bit Edition, versions 4.0
or later, insert this code after the call to ProcessShellCommand.

CView* pActiveView = ((CFrameWnd*)
m_pMainWnd)->GetActiveView();

m_pOldView = pActiveView;
rn__pNewView = (CView*) new CNewView;

CDocument* pCurrentDoc = ((CFrameWnd*)
m_pMainWnd)->GetActiveDocument();

II Initialize a CCreateContext to point to the active document.
II With this context, the new view is added to the document
II when the view is created in CView::OnCreate().
CCreateContext newContext;
newContext.m_pNewViewClass = NULL;
newContext.m_pNewDocTemplate = NULL:
newContext.m_pLastView = NULL:
newContext.m_pCurrentFrame = NULL:
newContext.m_pCurrentDoc = pCurrentDoc:

II The ID of the initial active view is AFX_IDW_PANE_FIRST.
II Incrementing this value by one for additional views works
II in the standard document/view case but the technique cannot
II be extended for the CSplitterWnd case.
UINT viewID = AFX_IDW_PANE_FIRST + 1:
CRect rect(0, 0, 0, 0): // gets resized later

II Create the new view. In this example, the view persists for
II the life of the application. The application automatically
II deletes the view when the application is closed.
m_pNewView->Create(NULL, "AnyWindowName", WS_CHILD, rect,

rn__pMa i nWnd, vi ewl D, &newContext): ,

II When a document template creates a view, the
II WM_INITIALUPDATE message is sent automatically.
II However, this code must explicitly send the message,
II as follows.
rn__pNewView->SendMessage(WM_INITIALUPDATE, 0, 0):

Knowledge Base Articles

5. Define the CMyApp::SwitchViewfunction. (Alternatively, SwitchView
could be declared and defined as a member of the main frame class.)

CVieW* CMyWinApp::SwitchView(CVieW* pNewView)
{

}

CVieW* pActiveView =
((CFrameWnd*) m_pMainWnd)->GetActiveView();

II Exchange view window !D's so RecalcLayout() works.
flifndef _WIN32
UINT temp= ::GetWindowWord(pActiveView->m_hWnd, GWW_ID):
::SetWindowWord(pActiveView->m_hWnd, GWW_ID,

::GetWindowWord(pNewView->m_hWnd, GWW_ID));
::SetWindowWord(pNewView->m_hWnd, GWW_ID, temp);
//else
UINT temp= ::GetWindowLong(pActiveView->m_hWnd, GWL_ID):
::SetWindowLong(pActiveView->m_hWnd, GWL_ID,

::GetWindowLong(pNewView->m_hWnd, GWL_ID));
::SetWindowLong(pNewView->m_hWnd, GWL_ID, temp);
//end if

pActiveView->ShowWindow(SW_HIDE);
pNewView->ShowWindow(SW_SHOW);
((CFrameWnd*) m_pMainWndl->SetActiveView(pNewView);
((CFrameWnd*) m_pMainWnd)->RecalcLayout();
pNewView->Invalidate();
return pActiveView:

N 0 T E : This function returns a pointer to the old view so that
the old view can be destroyed if desired. Before destroying the
view though, CDocument::RemoveView should be called so the asso
ciation between the view and the document is removed.

6. Add command handlers or other code to call the Switch View function
when the application needs to switch between views.

Additional reference words: kbinf 1.00 1.50 2.00 2.10 2.50 3.00 3.1O4.00
5.00 constructor destructor multiple

KBCategory: kbprg

KBSubcategory: MfcDocView

339

PART 11 : REFERENCE SECTION

Create Additional Views
with CreateNewFrame Function

(0100993) _______________ _

The information in this article applies to the Microsoft Foundation Classes
(MFC) included with:

Ill Microsoft Visual C++ for Windows, versions 1.0, 1.5, 1.51, and 1.52

Ill Microsoft Visual C++ 32-bit Edition, versions 1.0, 2.0, 2.1, 4.0, 4.1, and
5.0

Summary
The CDocTemplate::CreateNewFrame function creates additional views of a
document in a multiple document interface (MDI) application written using
the Microsoft Foundation Class library. The prototype of the CreateNewFrame
function is as follows:

CFrameWnd * CDocTemplate::CreateNewFrame(CDocument *·
CFrameWnd *)

To call this function, specify a pointer to a CDocument object (the docu
ment for which the function will create a view) and a pointer to a frame win
dow that has properties to duplicate. Typically, the second parameter of the
function is NULL.

When an application calls CreateNewFrame, the function creates a new
frame window and a view in the frame window. The frame window type and
view type depend on the document template (CDocTemplate) associated with
the document specified in the CreateNewFrame call.

More Information

340

To better understand how to use CreateNewFrame, it might be useful to review
two examples. The first example is the WINMDl.CPP file in the Microsoft
Foundation Class library source code. WINMDl.CPP defines the function
CMDIFrameWnd: :OnWindowNew that calls CreateNewFrame to add an additional
frame and view for a specified document. The application calls OnWindowNew
each time the user selects New from the MDI application's Windows menu.

The OnWindowNew function contains two significant lines of code, as
follows:

Knowledge Base Articles

CFrameWnd * pFrame = pTemplate->CreateNewFrame(pDocument,
pActi veChil d):

pTemplate->InitialUpdateFrame(pFrame, pDocument);

This code creates and displays the new frame window and document view.
The other example is the DOCMULTI.CPP file, also in the Microsoft

Foundation Class library source code. The CMultiDocTemplate::openDocument
File function includes the following code:

CFrameWnd * pFrame = CreateNewFrame(pDocument, NULL):

Note that the second parameter is NULL because the design of the DpenDocu
mentFile function assumes that the programmer is not interested in duplicat
ing any of the other frames that contain views of this document.

The CHKBOOK sample also demonstrates creating additional frames
and views for documents. In CHKBOOK.CPP, the CChkBookApp::openDocu
mentFile function includes the following code:

CChkBookDOC* pDoc =
(CChkBookDoc *)CWinApp::OpenDocumentFile(lpszFileName);

if (pDoc == NULL)
return NULL:

CMDIChildWnd* pframe = ((CMDIFrameWnd *)
AfxGetApp()->m_pMainWnd)->MDIGetActive();

CFrameWnd* pNewFrame =
m__pCheckViewTemplate->CreateNewFrame(pDoc, NULL):

if (pNewFrame == NULL)
·return pDoc:

m_pCheckViewTemplate->InitialUpdateFrame(pNewFrame, pDoc);

Here are two points to consider when you use the CreateNewFrame.

B The source code for CDocTemplate::CreateNewFrameis in DOC
TEMPL.CPP. It includes the following code:

if (!pFrame->LoadFrame(m_nIDResource, WS_OVERLAPPEDWINDOW
FWS_ADDTOTITLE, //default frame styles
NULL, &context)

Because this code creates the frame window with a NULL parent win
dow, the Microsoft Foundation Class library uses the application's
main window as the parent window.

Ill CreateNewFrame creates both a frame and a view, not only a view.

341

PA RT 11 : REFERENCE SECTION

342

If, for some reason, CreateNewFrame does not quite address your situa
tion, the source code for CreateNewFrame is quite useful to demon
strate the steps required to create frames and views.

Additional reference words: Kbinf 1.00 1.50 2.00 2.10 2.50 2.51 3.00
3.10 4.00 4.10 5.00 change view

KBCategory: kbprg

KBSubcategory: MfcDocView

Knowledge Base Articles

Setting First Pane of CStatusBar
(Q110505) _______________ _

The information in this article applies to the Microsoft Foundation Classes
(MFC) included with:

• Microsoft Visual C++ for Windows, versions 1.0, 1.5, 1.51, and 1.52

• Microsoft Visual C++ 32-bitEdition, versions 1.0, 2.0, 2.1, 4.0, 4.1, 4.2,
and5.0

Symptoms
If the text in the first pane of a CStatusBarwindow is changed using SetPane
Text and a menu is selected, the text is overwritten by the help prompts for
the menu.

Cause
Setting any but the first pane of the status bar is relatively simple. You just
need to set the pane using SetPaneText and make sure you have added in an
ON_UPDATE_COMMAND_UI handler for the ID of that pane (set in your
MAINFRAME.CPP as an element of an indicators[] array). This handler
should call Enable in the following manner to make sure that the pane is not
erased.

void CMainFrame::OnUpdateMystatCCCmdUI* pCmdUI)
{

pCmdUI->Enable();
}

However, setting the FIRST pane of a status bar using SetPaneText or call
ing SetWindowText on the status bar is a bit more difficult. The problem is that
the framework itself is changing the first pane using some special techniques.
Basically, the framework is passing a WM_SETTEXT command directly to the
status bar, from a number of places within its own code.

Adding ON_UPDATE_COMMAND_UI handlers or calling SetPaneText
for the first pane of the status bar does not permanently set it. The framework
eventually sends a WM_SETTEXT message directly to the status bar, chang
ing the text from what was set.

343

PA R T I I : REFERENCE SECTION

Resolution

344

One way of setting the first pane yourself and keeping it set to what you want
is to derive your own class from CStatusBar (for example CMyStat) and to give
it a WM_SETTEXT handler. (Adding the WM_SETTEXT handler cannot be
done using ClassWizard, so the handler must be added by hand.) The steps to
do this are as follows:

1. Use ClassWizard to add a new class, derived from a generic CWnd.
Now edit the .Hand .CPP files to change the two references to CWnd
to CStatusBar.

2. Add a protected member function of CMyStat:

afx_msg LRESULT OnSetText(WPARAM, LPARAM);

3. Add a message map entry for the function in the .CPP file, as follows:

BEGIN_MESSAGE_MAPCCMyStat, CStatusBar)
ll{{AFX_MSG_MAPCCMyStat)
II NOTE: ClassWizard will add and remove mapping
macros here.
11} }AFX_MSG_MAP
ON_MESSAGE(WM_SETTEXT, OnSetText

END_MESSAGE_MAP()

4. Now implement the function as follows:

LRESULT CMyStat::OnSetText(WPARAM wParam, LPARAM lParam)
{

}

if (!blgnoreSetText)
return CStatusBar::OnSetText(wParam, lParam);

return 0; II Same as CStatusBar::OnSetText success

where blgnoreSetText is true only if you have set your own text in the
status bar with a SetPaneText call.

5. Now just include CMyStat class header file in your MAINFRM.H file
and replace:

CStatusBar m_wndStatusBar:

with the following:

CMyStat m_wndStatusBar;

Now, whenever blgnoreSetText is true, the first pane of the status bar will
be updated only when you update it with SetPaneText. The frameworks

Knowledge Base Articles

WM_SETTEXT messages will be blocked when you have this flag set to a non
zero value. Note that this blocking affects only the first pane of the status bar.

You could also add member functions to your status bar class that both
set the text of the status bar and set the blg;noreSetText flag to lock or unlock
the status bar in one step. You might call them SetPaneOneAndLock and SetPane
OneAndUnlock.

Additional references: 1.00 1.50 1.511.52 2.00 2.10 2.50 2.51 2.52
3.00 3.10 4.00 4.10 4.20 5.00

KBCategory: kbprg kbprb

KBSubcategory: MfcUI

345

PA R T I I : REFERENCE SECTION

How to Create New Documents
Without CWinApp: :OnFileNew

(0113257) _______________ _

The information in this article applies to the Microsoft Foundation Classes
(MFC) included with:

• Microsoft Visual C++ for Windows, versions 1.0, 1.5, 1.51, and 1.52

II Microsoft Visual C++ 32-bit Edition, versions 1.0, 2.0, 2.1, 4.0, 4.1, 4.2,
and5.0

Summary
It is sometimes desirable to create a CMultiDocTemplate based window (in other
words, a CFrameWnd/CDocument/CView combination) without using the mech
anism provided by CWinApp::OnFileNew. For example, if the program has
multiple document templates, CWinApp::OnFileNewwill prompt the user with
a dialog box asking which type of document to open. The programmer may
already know which type of CMultiDocTemplate to use, and therefore may not
want to prompt the user because it would be inappropriate in the given con
text of the application.

More Information

346

Assuming the application was originally created with AppWizard, the undoc
umented CMultiDocTemplate::openDocumentFilefunction can be used to create
a new CMultiDocTemplate based window. There are several steps involved:

1. Add a CMultiDocTemplate pointer to your CWinApp derived class:

class CMyApp : public CWinApp
{

public:
CMultiDocTemplate* m_pDocTemplate;

}

N 0 T E : If you plan to use multiple document types, you must
create a CMultiDocTemplate pointer member variable for each docu
ment type.

Knowledge Base Articles

2. In the call to CWinApp::lnitlnstance, remove the creation of the CMulti
DocTemplate from the call to AddDocTemplate. Set the pointer to point
to the new CMultiDocTemplate. Use the pointer to call AddDocTemplate:

BOOL CMyApp::Initlnstance()
{

}

m_pDocTemplate = new CMultiDocTemplateCIDR._TEXTTYPE,
RUNTIME_CLASSCCMyDoc), .
RUNTIME_CLASSCCMDIChildWnd),
RUNTIME_CLASS(CMyView));

AddDocTemplate(m_pDocTemplate);

3. Use the pointer to call CMultiDocTemplate::openDocumentFilewith a
NULL parameter to create the new window. For this example, assume
there is a button in a CViewwindow. In the BN_CLICKED handler for
the button, we want to create a window based on m_pDocTemplate:

void CMyView::OnNewWindowButtonClicked()
{

}

CMyApp* pApp = CCMyApp*)AfxGetApp():
pApp->m_pDocTemplate->OpenDocumentFileCNULL):

This same technique could be used to create a CSingleDocTemplate based
window in a single document interface (SDI) application. However, it is not
necessary. Because there is only one document template for the application,
calling OnFileNew will create the new window without prompting the user for
the type of document.

Additional reference words: kbinfl.001.50 2.00 2.10 2.50 2.512.523:00
3.10 4.00 4.10 4.20 5.00

KBCategory: kbprg

KBSubcategory: MfcDocView

347

PA A T I I : REFERENCE SECTION

Changing the Background
Color of an MFC Edit Control

(0117778) ______________ _

The information in this article applies to the Microsoft Foundation Classes
(MFC) included with:

Ill Microsoft Visual C++ for Windows, versions 1.0, 1.5, 1.51, and 1.52

Ill Microsoft Visual C++ 32-bit Edition, versions 1.0, 2.0, 2.1, 4.0, 4.1, 4.2,
and5.0

Summary
To change the background color of an edit control in an MFC application, you
must override the OnCtlCol,or message-handling function of the window con
taining the edit control.

In the new OnCtlColor function, set the background color and return a
handle to a brush that will be used for painting the background. This must be
done in response to receiving both the CTLCOLOR_EDIT and CTLCOLOR
_MSGBOX messages in the OnCtlColorfunction.

This is also documented in the Visual C++ online documentation, under
CWnd::OnCtlColor.

More Information

348

The sample code below uses a CDialog-derived class (CEditDialog) to demon
strate the process. Class Wizard was used to generate message-handling func
tions for the WM_CTLCOLOR and WM_DESTROY messages. These functions
are called CEditDialog::OnCtlCol,orand CEditDialog::OnDestroy, respectively.

II editdlg.h : header file
II

lll

II CEditDialog dialog

class CEditDialog : public CDialog
{

II Construction
public:

CEditDialog(CWnd* pParent =NULL);

Knowledge Base Articles

II standard constructor

II Add a CBrush* to store the new background brush for edit
II controls.

CBrush* m_pEditBkBrush:

II Dialog Data
//{{AFX_DATACCEditDialog)
enum { !DD= IDD_EDITDIALOG }:

II NOTE: The ClassWizard will add data members here.
//} }AFLDATA

II Overrides
II ClassWizard generated virtual function overrides
//{{AFX_VIRTUAL(CEd1tD1alog)
protected:
virtual void DoDataExchange(CDataExchange* pDXl: // DDX/DDV

II support
/l}}AFLVIRTUAL

II Implementation
protected:

} :

II Generated message map functions
//{{AFX_MSGCCEditDialog)
afx_msg HBRUSH OnCtlColorCCDC* pDC, CWnd* pWnd,

UINT nCtlColorl:
afx_msg void OnDestroy():
//} }AFX_MSG
DECLARE_MESSAGE_MAPCl

II editdlg.cpp : implementation file
II
finclude "stdafx.h"
finclude "mdi.h"
finclude "editdlg.h"

1/i fdef _DEBUG
fundef THIS_FILE
static char BASED_CODE THIS_FILE[] = __ FILE __ ;
1/endif

////II///
II CEditDialog dialog

(continued)

349

PA RT 11 : REFERENCE SECTION

350

CEditDialog::CEditDialogCCWnd* pParent /*=NULL•/)
: CD1alog(CEditD1alog::IDD, pParent)

{

}

//{{AFX_DATA_INITCCEditDialog)
II NOTE: The ClassWizard will add member initialization
II here.

//}}AFX_DATA_INIT

II Instantiate and initialize the background brush to
II black.
m_pEditBkBrush =new CBrushCRGB(0, 0, 0));

void CEditDialog::DoDataExchange(CDataExchange• pDXJ
{

}

CD1alog::DoDataExchange(pDXJ;
//{{AFX_DATA_MAPCCEd1tD1alog)

II NOTE: The ClassW1zard will add DDX and DOV calls
II here.

//}}AFX_DATA_MAP

BEGIN_MESSAGE_MAPCCEd1tDialog, CDialog)
//{{AFX_MSG_MAPCCEd1tD1alog)
ON_WM_CTLCOLOR(J
ON_WM_DESTROY()
I/} }AFX_MSG_MAP

END_MESSAGE_MAP()

//llllllll//lllllllll/l//l/llllllllllllllllllllllllllllllllllll
II CEditD1alog message handlers

HBRUSH CEditDialog::OnCtlColor(CDC* pDC, CWnd* pWnd, UINT nCtlColor)
{

}

switch (nCtlColorl {

case CTLCOLOR_EDIT:
case CTLCOLOR_MSGBOX:

II Set color to green on black and return the
II background brush.
pDC->SetTextColor(RGBC0, 255, 0));
pDC->SetBkColor(RGBC0, 0, 0));
return CHBRUSH)(m_pEditBkBrush->GetSafeHandle(J);

default:
return CDialog::OnCtlColor(pDC, pWnd, nCtlColor):

}

Knowledge Base Articles

void CEditDialog::OnDestroy()
{

CDialog::OnDestroy();

II Free the space allocated for the background brush
delete m_pEditBkBrush;

Additional reference words: kbinfl.901.501.511.52 2.00 2.10 2.50 2.51
2.52 3.00 2.10 3.10 4.00 4.10 4.20 5.00 CEdit

KBCategory: kbprg

KBSubcategory: MfcUI

351

PA R T I I : REFERENCE SECTION

How to Detect an Empty CRecordset Object
(Q121950) _______________ _

The information in this article applies to the Microsoft Foundation Classes
(MFC) included with:

Ill Microsoft Visual C++ for Windows, versions 1.5 and 1.51

Ill Microsoft Visual C++, 32-bit Edition, versions 2.0, 4.0, 4.1, 4.2, and 5.0

Summary

352

The CRecordset represents a set of records obtained from a data source through
a query. If no records from the data source match the query, there will be no
records in the record set object, so CRecordset::IsEOF and CRecordset::IsBOF
both return a nonzero value. A query is executed during calls to CRecordset::
open and CRecordset::Requery, so empty record sets can be detected calling
CRecordset::IsEOF and/or CRecordset::IsBOF after executing a query. This be
havior is described in the documentation for CRecordset::lsEOF and CRecord
set: :IsBOF.

Additional reference words: kbinf empty recordset 1.50 2.00 2.50 2.51
3.00 4.00 4.10 4.20 5.00

KBCategory: kbprg

KBSubcategory: MfcDatabase

Knowledge Base Articles

Format of the Document Template String
(Q129095) ______________ _

The information in this article applies to the Microsoft Foundation Classes
(MFC) included with:

• Microsoft Visual C++ for Windows, versions 1.0, 1.5, 1.51, and 1.52

• Microsoft Visual C++ 32-bitEdition, versions 1.0, 2.0, 2.1, 4.0, 4.1, 4.2,
and 5.0

Summary
This article explains the format of the document template string.

More Information
The document template string is a string resource consisting of up to nine
substrings separated by the \n character. Each substring contains informa
tion specific to the document template. The document template string is
contained in the document template and can be edited by the Resource edi
tor (App Studio).

Format of the Document Template String

N 0 T E : If a substring is not wanted and therefore not included
in the complete document template string, you must still use the \n

· character as a delimiter. However, trailing \n characters are not
necessary.

IDR.__MAINFRAME <windowTitle>\n<docName>\n<fileNewName>\n<filterName>\n
<filterExt>\n<regFileTypeID>\n<regFileTypeName>\n
<filterMacExt(filterWinExt)>\n
<filterMacNameCfilterWinName)>

The table on the following page defines each of the substrings.
The final two substrings are defined conditionally. When _MAC is de

fined, the substrings are assigned to <filterName> and <filterExt>, while the
two substrings that normally have these names are defined as <filterWinName>
and <filterWinExt>. When _MAC is not defined, the two new substrings are
assigned the names <filterMacName> and <filterMacExt>. These last two sub
strings allow references to filename extensions to be removed from filter
Name and allow the four-character Macintosh file type for your application
to be specified in filterExt.

353

PA RT I I : REFERENCE SECTION

Substring

<windowTitle>

<docName>

<fileNewName>

<filter Name>

<filter Ext>

<regFileTypeid>

<regFileTypeName>

Definition

Name that appears in the application window's title
bar (for example, "Microsoft Excel"). Present only in
the document template for SDI applications.

Root for the default document name (for example,
"Sheet"). This root plus a number is used for the de
fault name of a new document of this type whenever
the user chooses the New command from the File
menu (for example, "Sheetl" or "Sheet2"). If not
specified, "Untitled" is used as the default.

Name of this document type. If the application sup
ports more than one type of document, this string is
displayed in the File New dialog box (for example,
"Worksheet"). If not specified, the document type is
inaccessible using the File New command.

Description of the document type and a wildcard fil
ter matching documents of this type. This string is
displayed in the List Files Of Type drop-down list in
the File Open dialog box (for example, "Worksheets
(*,XLS)"). If not specified, the document type is in
accessible using the File Open command.

Extension for documents of this type (for example,
".XLS"). If not specified, the document type is inac
cessible using the File Open command.

Identifier for the document type to be stored in the
registration database maintained by Windows. This
string is for internal use only (for example, "Excel
Worksheet"). If not specified, the document type can
not be registered with the Windows File Manager.

Name of the document type to be stored in the reg
istration database. This string may be displayed in
dialog boxes of applications that access the registra
tion database (for example, "Microsoft Excel Work
sheet").

Example

354

This example is the document template string used in the Scribble step 4 ex
ample provided with Visual C++ version 2.1.

N 0 T E : _MAC is not defined. Also, the first substring is not used
in MDI applications. Therefore a document template string for an
MDI application begins with the \n character.

Knowledge Base Articles

IDR_SCRIBTYPE \nScrib\nScrib\nScrib Files (*.scr)\n.SCR
\nScribble.Document.1\nScrib Document
\nSCRI\nscri Files

<windowTitle>

<docName>

<fileNewName>

<filter Name>

<filter Ext>

<regFileTypeld>

<regFileTypeName>

<filterMacExt>

<filterMacName>

Platform Differences

Not used due to MDI application

Scrib

Scrib

Scrib Files (*.scr)

.SCR

Scribble.Document. I

Scrib Document

SCRI

scri Files

The string resource is parsed into the following substrings based on the platform:

Win16

windowTitle

docName

fileNewName

filter Name

filter Ext

regFileTypeld

regFileTypeName

Win32

windowTitle

docName

fileNewName

filter Name

filter Ext

regFileTypeld

regFileTypeName

filterMacExt 1

filterMacName 1

1. Not documented in VC 5.00.

default window title

user visible name for default document

user visible name for FileNew

user visible name for FileOpen

user visible extension for FileOpen

REGEDIT visible registered file type identifier

Shell visible registered file type name

default window title

user visible name for default document

user visible name for FileNew

user visible name for FileOpen

user visible extension for FileOpen

REGEDIT visible registered file type identifier

Shell visible registered file type name

Macintosh file type for FileOpen

user visible name for Macintosh FileOpen

355

PA RT 11 : REFERENCE SECTION

Win32 Mac

WindowTitle

docName

fileN ewN ame

filterWinName

filterWinExt

regFileTypeld

regFileTypeName

filter Ext

filter Name

default window title

user visible name for default document

user visible name for FileNew

user visible name for FileOpen

user visible extension for FileOpen

REGEDIT visible registered file type identifier

Shell visible registered file type name

Macintosh file type for FileOpen

user visible name for Macintosh FileOpen

References

356

Search in the Visual C++ online documentation for the following topics:

•.Doc Template Files

• Resource Editors

D CDocTemplate: :GetDocString

D CSingleDocTemplate: :CSingleDocTemplate

D CMultiDocTemplate::CMultiDocTemplate

Additional reference words: appstudio resource 1.001.50 1.511.52 2.00
2.10 2.50 2.51 2.52 3.00 3.10 4.00 4.10 4.20 5.00

KBCategory: kbusage kbprg

KBSubcategory: MfcDocView

Knowledge Base Articles

How to Remove the System
Menu from an lconized Application

(Q129224) _______________ _

The information in this article applies to the Microsoft Foundation Classes
(MFC) included with:

• Microsoft Visual C++ for Windows, versions 1.0, 1.5, 1.51, and 1.52

• Microsoft Visual C++ 32-bit Edition, versions 2.0, 2.1, 4.0, and 5.0

Summary
There are two ways to remove the system menu of an application when a user
clicks an iconized application:

• Override the main frame window's PreCreateWindow function to re
move the WS_SYSMENU from the window's style field. However, this
method removes the system menu altogether from the application.

• Override the main frame window's OnSize method, and change the
window style of the mainframe to either include or exclude the
WS_SYSMENU style bit depending on user action. Use this tech
nique if the user wants to remove the system menu when the applica
tion is iconized and add the system menu back to the application
when the application is restored.

More Information

Method One
To remove the system menu completely from the application, override the
main frame window's PreCreateWindow method as follows:

BOOL CMainFrame::PreCreateWindowCCREATESTRUCT & cs)
{

II Call the base class version of PreCreateWindow, replace
II CMDIFrameWnd with CFrameWnd in the following line
II for an SDI application

if C!CMDIFrameWnd::PreCreateWindow(cs))
return FALSE;

(continued)

357

PA R T I I : REFERENCE SECTION

358

II Remove the system menu style bit from the window

}

cs.style &= -ws_SYSMENU;
return TRUE;

Method Two
The following steps and code fragments show how to remove the system
menu when a user clicks an iconized application. The system menu is re
stored when the application is not iconized.

1. Declare a BOOL public data member in the class declaration of
CMainFrame. This data member determines if the system menu is en
abled or not.

II In an SDI application CMainFrame will be derived from
CFrameWnd

class CMainFrame public CMDIFrameWnd
{

public:
BOOL sys_menu_enabled;

II Existing class declarations

}

2. Modify the CMainFrameconstructor to initialize the sys_menu_enabled
data member function to TRUE.

CMainFrame::CMainFrame()
{

}

//default the system menu to be enabled
sys_menu_enabled = TRUE;

II Continue with normal constructor code, if any

3. Use the Class Wizard to create a message handler for the WM_SIZE
message for the CMainFrame class, and add the following code to the
CMainFrame: :OnSize message handler.

void CMainFrame::OnSize(UINT nType, int ex, int cy)
{

}

Knowledge Base Articles

II declare a local variable to hold the window style

long window_style;

//call base class's OnSize function,
//If SDI application call CFrameWnd::OnSize()

CMDIFrameWnd::OnSize(nType, ex, cy);

//if user is minimizing or iconizing the application

if CnType == SIZE_MINIMIZED)
{

}

else
{

}

II Get the main frame window's style
window_style = GetWindowLong(m_hWnd, GWL_STYLE);

//Remove the system menu from the window's style
window_style &= -ws_SYSMENU;

//toggle the boolean data member to show sys menu
//disabled
sys_menu_enabled = FALSE;

//set the style attribute of the main frame window
SetWindowLong(m_hWnd, GWL_STYLE. window_style);

//if user is restoring the application and his system
//menu
//is disabled,
if CCnType == SIZE_RESTORED) && (!sys_menu_enabled))
{

}

window_style = GetWindowLong(m_hWnd, GWL_STYLE);

//Add the system menu to the window's style
window_style J= WS_SYSMENU;

//toggle the boolean data member to show sys menu
//enabled
sys_menu_enabled = TRUE;

SetWindowLong(m_hWnd, GWL_STYLE, window_style);
SendMessage(WM_NCACTIVATE,TRUE);

359

PA RT I I : REFERENCE SECTION

360

Additional reference words: kbinfl.001.501.511.52 2.00 2.10 2.00 2.50
2.51 2.52 3.00 3.10 4.00 5.00

KBCategory: kbprg kbcode

KBSubcategory: MfcUI

Knowledge Base Articles

How to Subclass the MDIClient by Using MFC
(Q129471) _______________ _

The information in this article applies to the Microsoft Foundation Classes
(MFC) included with:

Summary

• Microsoft Visual C++ for Windows, versions 1.0, 1.5, 1.51, and 1.52

• Microsoft Visual C++, 32-bit Edition, versions 1.0, 2.0, 2.1, 4.0, 4.1,
4.2, and 5.0

In MFC, the MDICLIENT window is stored in a public HWND member vari
able (m_hwndMDIClient) within the CMDIFrameWnd class. CMDIFrameWnd is
the base class of the CMainFrame class in an AppWizard-generated MDI appli
cation. There are three steps required to subclass the MDICLIENT window:

1. Use ClassWizard to derive a class from CWnd called CMDIClientWnd.

2. Add the function, GetSuperWndProcAddr, to CMDIClientWnd.

3. Use CMDIClientWnd to subclass the MDICLIENT window.

Once the MDICLIENT window has been subclassed with CMDIClientWnd,
message handlers and other functions can be placed in the CMDIClientWnd
class.

More Information
Here is more detailed information about each of the steps:

1. Use ClassWizard to derive a class from CWnd called CMDIClientWnd.
For details on how to derive a class using ClassWizard, please see the
User's Guide documentation on ClassWizard, specifically the '~dd
ing a New Class" section.

2. Add the function GetSuperWndProcAddr to CMDIClientWnd.

N 0 TE: This step need only be performed if you are using 16-
bit versions of Visual C++, not 32-bit. The 32-bit versions of Visual
C++ implement this functionality for you.

361

PA RT 11 : REFERENCE SECTION

362

Add the following prototype to the header file, once the class has
been created:

public:
WNDPROC* GetSuperWndProcAddr();

Add the following function to the .CPP file:

WNDPROC* CMDIClientWnd::GetSuperWndProcAddr() {
static WNDPROC NEAR pfnSuper = NULL;
return &pfnSuper;

}

3. Use CMDIClientWnd to subclass the MDICLIENT window in the CM
DIFrameWnd class (usually CMainFrame).

To the CMainFrame class, add a public variable of type CMDICli
entWnd called m_wndMDIClient. Modify OnCreatefor CMainFrameas
follows:

int CMainFrame::OnCreateCLPCREATESTRUCT lpCreateStruct)
{

if CCMDIFrameWnd::OnCreate(lpCreateStruct) == -1)
return -1;

II Add
if (!m_wndMDIClient.SubclassWindow (m_hWndMDIClient)) {

II Add
TRACE ("Failed to subclass MDI client window\n");
II Add

return C-1);
II Add

}

}

After completing these three steps, you can use ClassWizard to add mes
sage handlers to CMDIClientWnd similar to the one below, which changes the
MDICLIENT's background color.

BOOL CMDIClientWnd::OnEraseBkgnd(CDC* pDC)
{

II Set brush to desired background color
CBrush. backBrush(RGBC255, 128, 128));

II Save old brush
CBrush* pOldBrush = pDC->SelectObjectC&backBrush);

}

Knowledge Base Articles

CRect rect;
pDC->GetClipBoxC&rect): II Erase the area needed

pDC->PatBlt(rect.left, rect.top, rect.Width(), rect.Height(),
PATCOPY);

pDC->SelectObjectCpOldBrush);
return TRUE;

Additional reference words: kbinf 1.00 2.00 1.50 2.50 1.51 2.511.52 2.52
2.10 3.00 3.10 4.00 4.10 4.20 5.00

KBCategory: kbprg kbcode

KBSubcategory: MfcMisc

363

PA R T I I : REFERENCE SECTION

Avoiding Error LNK2001
Unresolved External Using DEFINE_GUID

(Q130869) _______________ _

The information in this article applies to the Microsoft Foundation Classes
(MFC) included with:

Ill Microsoft Visual C++ 32-bitEdition, versions 2.0, 2.1, 4.0, 4.1, 4.2, and
5.0

Summary
A GUID must be initialized exactly once. For this reason, there are two differ
ent versions of the DEFINE_GUID macro. One version just declares an exter
nal reference to the symbol name. The other version actually initializes the
symbol name to the value of the GUID. If you receive an LNK.2001 error for the
symbol name of the GUID, the GUID was not initialized. You can make sure
your GUID gets initialized in one of two ways:

Ill If you are using precompiled header files, include the INITGUID.H
header file before defining the GUID in the implementation file
where it should be initialized. (AppWizard-generated MFC projects
use precompiled headers by default.)

Ill If you are not using precompiled headers, define INITGUID before
including OBJBASE.H. (OBJBASE.H is included by OLE2.H.)

More Information

364

Here is the definition of DEFINE_GUID as it appears in OBJBASE.H:

Iii fndef IN ITGU ID
#define DEFINE_GUID(name, l, wl, w2, bl, b2, b3, b4, b5, b6, \

b7, b8) \
EXTERN_C canst GUID FAR name

//else

#define DEFINE_GUID(name, l, wl, w2, bl, b2, b3, b4, b5, b6,
b7, b8) \
EXTERN_C canst GUID name \
= { l, wl, w2, {bl, b2, b3, b4, b5, b6, b7, b8}}

#endif // INITGUID

Knowledge Base Articles

Note that if the symbol INITGUID is not defined, DEFINE_GUID simply de
fines an external reference to the name.

In INITGUID.H, you find (among other things):

#undef DEFINE_GUID

II Other code

#define DEFINE_GUID(name, l, wl, w2, bl, b2, b3, b4, b5, b6, b7, b8) \
EXTERN_C con st GUID __ based (__ segname("_CODE")) name \
= { l, wl, w2, {bl, b2, b3, b4, b5, b6, b7, b8}}

By including INITGUID.H after OBJBASE.H, DEFINE_GUID is modified to ac
tually initialize the GUID.

N 0 T E : It is important to make sure that this is done exactly
once for each DLL or EXE. If you try to initialize the GUID in two
different implementation files and then link them together, you
get this error: LNK2005 <symbol> already defined.

Additional reference words: kbinf 2.00 2.10 4.00 4.10 4.20 5.00

KBCategory: kbole kberrmsg

KBSubcategory: VCGenlss

365

PA RT I I : REFERENCE SECTION

How to Create MFC Applications
That Do Not Have a Menu Bar

(0131368) _______________ _

The information in this article applies to the Microsoft Foundation Classes
(MFC) included with:

Ill Microsoft Visual C++ for Windows, versions 1.5, 1.51, and 1.52

Ill Microsoft Visual C++ 32-bitEdition, versions 1.0, 2.0, 2.1, 4.0, 4.1, 4.2,
and5.0

Summary
For most Windows-based applications, a menu bar is a part of the user inter
face. The menu bar provides a functionality summary for the person using
the program. However, it is not required that every Windows-based applica
tion must contain a menu bar. This article describes how to create an MFC ap
plication that does not have a menu bar.

For Windows-based applications generated by AppWizard, the IDR
_MAINFRAME menu resource is the standard menu resource for both SDI
and MDI applications. It is the only menu resource for an SDI application.
MDI applications contain additional menus for each type of MDI child win
dow they support. Those menu resources are usually named IDR_xxxTYPE,
where xxx is related to the name of the corresponding document type. Thus,
creating an application with no menus is not as easy for an MDI application
as for an SDI application. You basically have to modify all functions related to
loading and switching menus.

More Information

366

Steps to Create SDI Application That Has No Menu Bar

1. Generate an SDI application with AppWizard. Do not delete the
IDR_MAlNFRAME menu resource. If you have an application that
was not generated with AppWizard, do not delete the corresponding
main menu resource. Leaving the menu resource is required to avoid
assertion failures in the MFC code.

2. To prevent the main application window from having a menu bar,
delete the already loaded menu, and set the hMenu field of the

Knowledge Base Articles

CREATESTRUCT structure to NULL in the CFrameWnd::PreCre
ateWindow function:

BOOL CMainFrame::PreCreateWindow(CREATESTRUCT& cs)
{

}

if (cs.hMenu!=NULL)
{

::DestroyMenu(cs.hMenu); II delete menu if loaded
cs.~Menu = NULL; II no menu for this window

}

return CFrameWnd::PreCreateWindow(cs);

Steps to Create MDI Application That Has No Menu Bar

1. Generate an MDI application with AppWizard. Do not delete the
IDR_MAINFRAME menu resource. If you have an application that
was not generated with AppWizard, do not delete the corresponding
main menu resource. Leaving the menu resource is required to avoid
assertion failures in the MFC code.

2. Delete menu resources associated with MDI child windows (IDR
_xxxTYPE). They are not used. By deleting them, you avoid a re
source (memory) leak.

3. Override the PreCreateWindow function for the CMainFrame class:

BOOL CMainFrame::PreCreateWindow(CREATESTRUCT& cs)
{

if (cs.hMenu!=NULL)
{

::DestroyMenu(cs.hMenu);
cs.hMenu = NULL;

II delete menu if loaded
II no menu for this window

}

return CMDIFrameWnd::PreCreateWindow(cs);
}

4. Modify the code responsible for switching menus by overriding the
LoadFrame and OnCreateClient methods of CMainFrame. This is neces
sary because MFC has already loaded and switched menus automati
cally. The following shows what must be done:

II Overridden method declarations for CMainFrame
BOOL LoadFrame(UINT nIDResource,

(continued)

367

PA RT I I : REFERENCE SECTION

368

DWORD dwDefaultStyle = WS_OVERLAPPEDWINDOW I
FWS_ADDTOTITLE, CWnd* pParentWnd = NULL,
CCreateContext* pContext =NULL);

BOOL CMainFrame::OnCreateClientCLPCREATESTRUCT lpcs,
CCreateContext* l*pContext*I);

II Overridden method declarations for CMainFrame
BOOL CMainFrame::LoadFrameCUINT nIDResource, DWORD

dwDefaultStyle,

{

}

CWnd* pParentWnd, CCreateContext* pContext)

return CFrameWnd::LoadFrameCnIDResource,dwDefaultStyle, ·
pParentWnd,pContext);

BOOL CMainFrame::OnCreateClient(LPCREATESTRUCT lpcs,
CCreateContext* l*pContext*I)

{

return CreateClient(lpcs,NULL);
}

N 0 T E : Instead of calling the base class (CMDIFrameWnd) in the
override of LoadFrame, you call its base class, C.FrameWnd, instead.
That way you can avoid the code that deals with MDI menus.

Addltlonal reference words: kbinf 1.50 1.51 1.52 1.00 2.00 2.10 2.5 2.50
2.51 2.52 2.10 3.00 3.10 4.00 4.10 4.20 5.00

KBCategory: kbprg

KBSubcategory: MfcUI

Knowledge Base Articles

How to Change the Mouse
Pointer for a Window in MFC

(Q131991) _______________ _

The information in this article applies to the Microsoft Foundation Classes
(MFC) included with:

• Microsoft Visual C++ for Windows, versions 1.5, 1.51, and 1.52

• Microsoft Visual C++, 32-bit Edition, versions 1.0, 2.0, 2.1, 4.0, and 5.0

Summary
In a Windows-based application, a window is always created based on a win
dow class. The window class identifies several characteristics of the windows
based on it, including the default mouse pointer (cursor). In some cases, an
application may want to change the pointer associated with certain windows
that it creates. This article describes three methods an MFC application can
use to display different pointers at different times.

More Information
Here are some situations when you might want an MFC application to display
different pointers at different times:

• When the default pointer isn't a good user-interface object for a par
ticular application. For example, an I-beam pointer is more suitable
than the arrow for a text editor window in NotePad. This could in
volve changing the pointer for the entire run of the application.

• When an application performs a lengthy operation, such as disk I /0,
an hourglass pointer is more appropriate than the arrow. By chang
ing the pointer to an hourglass, you provide good visual feedback to
the user. This could involve changing the pointer for a limited period
of time.

Three Methods
Here are three ways an application can change the mouse pointer in a window:

• Override the CWnd::OnSetCursorfunction,. Call the Windows API Set
Cursorfunction to change the pointer.

369

PA RT I I : REFERENCE SECTION

370

1111 Register your own window class with the desired mouse pointer, over
ride the CWnd: :PreCreateWindow function, and use the newly regis
tered window class to create the window.

1111 To show the standard hourglass pointer, an application can call the
CCmdTarget::BeginWaitCursor, which displays the hourglass, and call
CmdTarget::EndWaitCursorto revert back to the default pointer. This
scheme works only for the duration of a single message. If the mouse
is moved before a call to EndWaitCursoris made, Windows sends a
WM_SETCURSOR message to the window underneath the pointer.
The default handling of this message resets the pointer to the default
type, the one registered with the class, so you need to override
CWnd::OnSetCursorfor that window, and reset the pointer back to the
hourglass.

Code to Illustrate the Three Methods
The following code shows by example how to change the mouse pointer of a
CView derived class window by using the three methods. m_ChangeCursor is a
member variable of CMy View class and is of type BOOL. It indicates whether
a different pointer type needs to be displayed.

Method One
Change the mouse pointer for the CMyView object by overriding CWnd::On
SetCursor function. Use ClassWizard to establish the message map function
CMyView::OnSetCursor for Windows message WM_SETCURSOR and supply
the body of the function as follows:

BOOL CMyView::OnSetCursor(CWnd* pWnd, UINT nHitTest, UINT

{

}

message)

if (m_ChangeCursor
{

}

::SetCursor(AfxGetApp()->LoadStandardCursor(IDC_WAIT));
return TRUE;

return CView::OnSetCursor(pWnd, nHitTest, message);

Method Two
Register your own window class containing the desired mouse pointer using
either the AfxRegisterClass or AfxRegisterWndClass function. Then create the
view window based on the registered window class. For more information on

Knowledge Base Articles

registering window classes in MFC, please see MFC Tech Note 1, "Window
Class Registration."

BOOL CMyView::PreCreateWindow(CREATESTRUCT& cs)
{

}

cs.lpszClass = AfxRegisterWndClassCCS_DBLCLKS I
CS_HREDRAW I CS_VREDRAW, II use any window styles
AfxGetApp()->LoadStandardCursor(IDC_WAIT),
(HBRUSH) (COLOFLWINDOW + 1)): II background brush

return CView::PreCreateWindow(cs)

Method Three
Call the BeginWaitCursor and EndWaitCursor functions to change the mouse
pointer.

N 0 T E : CWinApp::DoWaitCursor(l) and CWinApp::DoWaitCursor(-1)
work similarly to BeginWaitCursor and EndWaitCursor, respectively.

void CMyView::PerformlengthyOperation()
{

BeginWaitCursor(): II or AfxGetApp()->DoWaitCursor(l)

11 ...

EndWaitCursor(): II or AfxGetApp()->DoWaitCursor(-1)
}

If calls to BeginWaitCursorand EndWaitCursorare not in the same handler,
you must override OnSetCursor as follows:

BOOL CMyView::OnSetCursor(CWnd* pWnd, UINT nHitTest, UINT

{

}

message)

if (m__ChangeCursor)
{

}

RestoreWaitCursor():
retu.rn TRUE:

return CView::OnSetCursor(pWnd, nHitTest, message):

In this example, set m_ChangeCursor to TRUE just before the call to Be
ginWaitCursor, and set it back to FALSE after the call to EndWaitCursor.

371

PA RT I I : REFERENCE SECTION

372

Addltlonal reference words: kbinf 1.52 2.00 2.1 O 2.52 3.00 3.1 O 4.00 5.00

KBCategory: kbprg kbui kbcode

KBSubcategory: MfcUI

Knowledge Base Articles

How to Customize the Common Print Dialog
(Q132909) ______________ _

The information in this article applies to the Microsoft Foundation Classes
(MFC) included with:

Summary

• Microsoft Visual C++ for Windows, versions 1.0, 1.5, 1.51, and 1.52

• Microsoft Visual C++, 32-bit Edition, versions 2.0, 2.1, 2.2, 4.0, 4.1, 4.2
and 5.0

This article explains how the standard print dialog box can be modified and
used in a typical MFC application. Customizing the print dialog involves
modifying Window's default common print dialog box template. When cus
tomizing the common print dialog box, you can add new controls and/or re
move existing controls.

More Information
In some situations, you may find it necessary to customize the standard print
dialog box. This involves modifying the existing print dialog box template
and modifying the views implementation of printing to use this customized
template.

Step-by-Step Procedure
Use this method to implement a customized print dialog box:

1. Copy the PRINTDLGORD dialog box template from COMMDLG.RC
to the application's .RC file. (In Visual C++ 4.x and 5.0, this dialog
box template resides in the \MSDEV\INCLUDE\PRNSETUP.DLG
file.) To do this:

D Open MSVC\MFC\SAMPLES\APSTUDIO\COMMDLG.RC and
your application's resource file by using App Studio (the Resource
editor). This file is in \msdev\samples\mfc\general\clipart under
32-bit Visual C++. If you are using Visual C++ 4.xor 5.0, add the line

#include "windows.h"

to the top of the file \MSDEV\INCLUDE\PRNSETUP.DLG. Save
and close this file. Reopen it as 'Resources'. (See the 'Open As'
combo box in the File Open dialog box.)

373

PA RT I I : REFERENCE SECTION

374

O In the resource browser window of the "from" file, select the
PRINTDLGORD (id 1528) dialog box resource.

0 As you hold down the Ctrl key, drag the resource to the resource
browser window of the "to" file.

N 0 T E : Dragging the resource without holding the Ctrl key
moves the resource rather than copies it.

2. Make the necessary changes to the copied dialog template.

N 0 TE: None of the controls present in the original dialog
template should be deleted. Deleting the controls will cause a
problems in the DoDataExchange function of CPrintDialog. In
stead, the unwanted controls should be disabled and/or hidden
in an overridden OnlnitDialog member function of your CPrint
Dialog-derived class.

3. Use ClassWizard to add a C++ class (say, CMyPrintDialog) for this dia
log box template. Derive this new class from CDialogwith PRINT
DLGORD as the dialog ID. (Note: In Visual C++ 4.xand 5.0 this class
can be derived directly from CPrintDialog.)

4. Change all references from CDialogto CPrintDialogin both the head
er and implementation file of the newly created class. (This step is not
necessary if you have derived your class directly from CPrintDialog.)

5. Because the constructor of CPrintDialogdiffers from CDialog, modify
the constructor of CMyPrintDialogusing this code (this step is not nec
essary if you have derived your class directly from CPrintDialog):

II Header file of CMyPrintDialog
class CMyPrintDialog : public CPrintDialog
{

II Construction
public:

II The arguments to the following constructor closely match
II CPrintDialog. Note the difference in the second argument.
CMyPrintDialog(BOOL bPrintSetupOnly,
II TRUE for Print Setup, FALSE for Print Dialog
DWORD dwFlags = PD_ALLPAGES I PD_USEDEVMODECOPIES

PD_HIDEPRINTTOFILE,
II Combination of flags. Refer to the Windows SOK
II documentation for PRINTDLG structure for a
II description of all the flags that can be used.

Knowledge Base Articles

CWnd* pParentWnd =NULL);

II Rest of the class declaration

DECLARE_MESSAGE_MAP()
} ;

II Implementation file of CMyPrintDialog
CMyPrintDialog::CMyPrintDialog(BOOL bPrintSetupOnly,

DWORD dwFlags I* = PD_ALLPAGES I PD_USEDEVMODECOPIES
PD_HIDEPRINTTOFILE *I, CWnd* pParentWnd I*= NULL *I)
: CPrintDialog(bPrintSetupOnly, dwFlags, pParentWnd)

{

ll{{AFX_DATA_INIT(CMyPrintDialog)
II NOTE: the ClassWizard will add member initialization here
ll}}AFX_DATA_INIT

}

6 Modify the CView-derived class (say, CMy View) to use the customized
print dialog by using this code:

II Implementation file of the view (say, in myview.cpp)

/finclude "myprintd.h" II Include the CMyPrintDialog header
I I file

II Override OnPreparePrinting of the CView-derived class as
II below:
BOOL CMyView::OnPreparePrinting(CPrintinfo* pinfo)
{

II Delete the CPrintDialog object created in the CPrintinfo
II constructor, and substitute with customized print
II dialog.
delete pinfo->m__pPD;

II Construct and substitute with customized print dialog.
pinfo->m_pPD =new CMyPrintDialog(FALSE);

II Set the page range.
pinfo->m_pPD->m_pd.nMinPage

pinfo->m_pPD->m_pd.nMaxPage

l; II one based page
II numbers

0xffff; II how many pages is
II unknown

(continued)

375

PA R T I I : REFERENCE SECTION

II Change the PRINTDLG struct so that the custom print
II dialog will be used.
plnfo->m_pPD->m_pd.hlnstance = AfxGetlnstanceHandle();
plnfo->m_pPD->m_pd.lpPrintTemplateName =

MAKEINTRESOURCECPRINTDLGORD);

II Set the Flags of the PRINTDLG structure as shown, else
II the changes will have no effect
plnfo->m_pPD->m_pd.Flags I= PD_ENABLEPRINTTEMPLATE:

II For details about these flags, refer to the SOK
II documentation on the PRINTDLG structure.

return DoPreparePrintingCplnfo);
}

References

376

For more information, please see the PRINTDLG structure in Windows SDK
documentation and OnPreparePrinting and CPrintDialogin Microsoft Founda
tion Class documentation.

Additional reference words: 1.00 1.50 2.00 2.10 2.51 2.52 3.00 3.10 4.00
4.10 5.00 CFileDialog

KBCategory: kbprg kbprint kbcode

KBSubcategory: MfcPrinting

Knowledge Base Articles

How to Detect Mouse Clicks
on Client Area of MDI Frame Windows

(Q133716) ______________ _

The information in this article applies to the Microsoft Foundation Classes
(MFC) included with:

B Microsoft Visual C++ for Windows, versions 1.5, 1.51, and 1.52

II Microsoft Visual C++, 32-bit Edition, versions 1.0, 2.0, 2.1, 2.2, 4.0,
4.1, 4.2 and 5.0

Summary
You can detect when a user clicks the mouse while the pointer is over the cli
ent area of your main MDI frame window (the area of the client not covered
by any open MDI child windows). To do so, you must first subclass the MDI
Client so you can intercept the mouse messages being sent to it. This article
shows by example how to do it using MFC. You can extend the method out
lined here to handle any messages sent to the MDIClient.

More Information
To manage its MDI child windows, the CMDIFrameWnd class creates a window
of the class "mdiclient" to cover its entire client area (also referred to as the
Application Workspace). MFC stores a handle to this MDIClient window in a
public member variable, m_hWndMDIClient, of the CMDIFrameWnd class.

The MDIClient is a standard Windows window, not an MFC object. How
ever, subclassing it allows you to treat it just as you would any other CWnd, tak
ing advantage of standard MFC features like message maps. For example, you
could use this technique to provide a context menu when the user clicks the
right mouse button. Or, as the Windows 95 desktop does, you could use it to
provide an easy means of selecting a group of iconized MDI child windows,
enclosing them within a tracker rectangle as the user drags with the left
mouse button held down.

Subclassing the MDIClient
Subclassing the MDIClient is actually quite easy as summarized in the follow
ing three steps. For more detailed information about this process, please see
the following article in the Knowledge Base: "How to Subclass the MDIClient
by Using MFC," Ql29471.

377

PA RT 11 : REFERENCE SECTION

1. Derive a class from CWnd, called CMyMDIClient for example, and add
it to your project. You can use ClassWizard to help you do this.

2. If you are creating a 16-bit application, you need to add a public
function called GetSuperWndProcAddr to your new CMyMDIClient class.
Do not do this step when building applications with 32-bit versions of
Visual C++.

WNDPROC* CMyMDIC11ent::GetSuperWndProcAddr()
{

}

static WNDPROC NEAR pfnSuper = NULL:
return &pfnSuper:

3. Include your class header file in MAINFRM.H. Embed a public mem
ber object of your new class in your CMainFrame class, for example
CMyMDIClient m_MyMDIClient. If you have not already done so, over
ride CMDIFrameWnd::OnCreare. In your CMainFrame::OnCreate, first
call the base class implementation, CMDIFrameWnd::OnCreate, which
creates the MDIClient window itself and stores the handle in
m_hWndMDIClient. Then subclass that window to your embedded
member object:

int CMainFrame::OnCreateCLPCREATESTRUCT lpCreateStruct)
{

}

·II Call the base class implementation to create the
II MDIClient window.
if CCMDIFrameWnd::OnCreateClpCreateStruct) == -1)

return -1;

II Subclass the MDIClient window.
if (!m_MyMDIClient.SubclassWindow(m_hWndMDIClient))
{

TRACE ("Failed to subclass MDI client window\n");
return (-1):

}

Code Sample

378

Once you subclass the MDIClient in this way, you can add any needed mes
sage handlers directly to your CMyMDIClient class. To illustrate, the following
code displays your application's File menu as a context menu when the user
clicks the MDIClient using the right mouse button.

Knowledge Base Articles

void CMyMDIClient::DnRButtonDown(UINT nFlags, CPoint point)
{

}

POINT ScreenPoint = point:
CMenu* pMenuTrackPopup:

II Get a pointer to the app's File menu popup.
II AfxGetMainWnd() returns a pointer to the main frame
II window,
II GetMenuCl returns a pointer to the main menu of the
II application,
II and GetSubMenu(0) retrieves the submenu at position 0
II Chere the File menu).
pMenuTrackPopup = CCAfxGetMainWnd())->GetMenu())

->GetSubMenu(0):

II Convert the mouse point to screen coordinates since that
II is what TrackPopupMenu() expects.
ClientToScreen(&ScreenPointJ;

II Draw and track the "floating" popup
pMenuTrackPopup->TrackPopupMenu(TPM_RIGHTBUTTON,

ScreenPoint.x, ScreenPoint.y,
AfxGetMainWnd(), II Use the 'this' pointer if you

II want commands to be handled in your CMyMDIClient class
II instead

NULL);

II NOTE: Do not destroy this menu here!

II Call the base class
CWnd::OnRButtonDown(nFlags, point):

Additional reference words: kbinf 1.501.511.521.00 2.00 2.10 2.50 2.51
2.52 2.10 2.20 3.00 3.10 4.00 4.10 4.20 5.0

KBCategory: kbprg kbcode

KBSubcategory: MfcUI

379

PA R T I I : REFERENCE SECTION

SAMPLE: Using MFC OLE Drag &
Drop to Drag Text Between Windows

(Q135299) _______________ _

The information in this article applies to the Microsoft Foundation Classes
(MFC) included with: '

1111 Microsoft Visual C++ for Windows, versions 1.50, 1.51, 1.52, and
1.52b

1111 Microsoft Visual C++, 32-bit Edition, versions 2.0, 2.10, 2.2, 4.0, 4.1,
4.2, and 5.0

Summary
In a Microsoft Foundation Classes (MFC) application, you may want to en
able the user to drag text between various windows, including those in CWnd
derived objects as well as standard control windows in CListBox and CEdit
derived objects. A sample (LSTDRG) is available that demonstrates how to
add OLE drag-and-drop functionality to a pre-existing MFC application. This
sample demonstrates using OLE drag-and drop functionality to drag text be
tween two list boxes, an edit control, and a CWnd-derived object's window.
You can also use any other application with OLE text drag-and-drop fum;tion
ality enabled as a drag source or a drop target (Word for Windows 6.x is one
such application).

Download LSTDRG.EXE, a self-extracting file, from the Microsoft Soft
ware Library (MSL) on the following services:

1111 Microsoft Download Service (MSDL)
Dial (206) 936-6735 to connect to MSDL
Download LSTDRG.EXE

1111 Internet (anonymous FTP)
ftp ftp.microsoft.com
Change to the SOFTLIB\MSLFILES directory
Get LSTDRG.EXE

More Information

380

To enable OLE for a pre-existing MFC application, you must initialize the
OLE DLLs. This is done in the Initlnstance () of your application object by call
ing AfxOlelnit(). The LSTDRG sample was first created with no OLE support

Knowledge Base Articles

using AppWizard. The code that calls AfxOlelnit() was then cut-and-pasted
from Initlnstance() of the OCLIENT MFC sample application that is supplied
with the above-mentioned products.

OLE drag-and-drop functionality was enabled for each window by fol
lowing the procedure outlined in the MFC version 2.5 OLE 2 Classes docu
mentation. Sections of interest are listed below. You will also want to review
the MFC Classes COleDataSource and COleDropTarget.

B "Drag and Drop: Implementing a Drop Source"

11111 "Drag and Drop: Implementing a Drop Target"

• "Data Objects and Data Sources: Creation and Destruction"

B "Data Objects and Data Sources: Manipulation"

To turn a CWnd-derived object into a drop source, you must instantiate
a COleDataSource object in your CWnd-derived object. You can then call COle
DataSource: :CacheGlobalData() to cache the data (text) that you are going to
drag. Then call COleDataSource::DoDragDrop() to actually initiate the drag drop.
The return value from DoDragDrop() gives you the result of the drag drop oper
ation. The DROPEFFECT return value from DoDragDrop() is a bit field, so you
have to test specific bits of the return value to determine the drag drop results.

Turning a CWnd-derived object into a drop target is a bit more compli
cated. You must derive your own class from COleDropTarget, and instantiate a
member of your COleDropTarget-derived object in the CWnd-derived class. In
your COleDropTarget object you have to, at a minimum, override these four
member functions:

II COleDropTarget::OnDragEnter()

II COleDropTarget: :OnDragLeave()

B COleDropTarget: :OnDragOver()

B COleDropTarget: :OnDrop()

You must also initialize the COleDropTarget derived object as a drop tar
get with the OLE DLLs by calling COleDropTarget::Register(). This would nor
mally be done in the OnCreate member function of a CWnd-derived object (see
the CDDWnd::OnCreate method in LSTDRG).

A problem in dialog box template created classes (CListBox, CEdit, and
so on created by App Studio) is that OnCreate is not called. This is because
control windows associated with the dialog box template are created during

381

PA RT I I : REFERENCE SECTION

the dialog box creation process before their actual CWnd-derived C++ objects
are created. These windows are then attached by using Attached() to the C++
CWnd-derived objects once they are created. To work around this, an Initialr
ize() method was created for the CListBox and CEdit-derived classes where
COleDropTarget::Regi,ster() is called. This Initialize() method is then called for
each template-created control in the CFormView-derived classes OnlnitialUp
date() method (see CListdragView::OnlnitialUpdate() and CDDListBox::Initialr
ize()).

Another interesting aspect of the LSTDRG application is the use of a
burning trash can animation when text is dropped on a window. This anima
tion uses a single bitmap composed of multiple 'cells' or images. The use of
a single bitmap as opposed to multiple bitmaps conserves GDI resources and
is more efficient to paint. It also turns off the mouse pointer (cursor) by load
ing an empty pointer during painting to eliminate pointer flicker on Win
dows version 3.x computers.

References

382

"MFC 2.5 OLE 2 Classes" reference book, available in the Books Online ofVi
sual C++ version 1.5. See sections on Drag and Drop beginning with the sec
tion titled "Drag and Drop." Also review the COleDataSource class and the
COleDataTarget class in the same reference book.

For good background information on how OLE handles drag and drop,
please see Inside OLE 2 by Kraig Brockschmidt, published by Microsoft Press.

Additional reference words: 1.50, 1.51 1.52 l.52b 2.00 2.10 2.20 2.50
2.51 2.52 2.52b 3.00 3.10 3.20 4;00 4.10 4.20 5.00

KBCategory: kbprg kbfile kbcode

KBSubCategory: MfcOLE

Knowledge Base Articles

How to Use Dynasets with
Microsoft SQL Server Version 6.x

(0136994) ______________ _

The information in this article applies to the Microsoft Foundation Classes
(MFC) included with:

Summary

II Microsoft Visual C++, 16-bit Edition, versions 1.51, and 1.52

II Microsoft Visual C++, 32-bit Edition, versions 2.0, 2.1, 2.2, 4.0, 4.1,
4.2, and 5.0

Microsoft SQL Server versions 6.0 and 6.5 support dynasets. To use an updat
able dynaset, you must have a unique index on one or more field(s) in the table.
If there is no such index, the recordset will be read only.

More Information
If you create a dynaset without specifying a unique index on one or more
field (s) in the table and then try to update or add a record, MFC will throw an
exception that says the cursor is read only. Additionally, you will see the fol
lowing errors in the MFC Trace output:·

In Visual C++ version 1.Sx:

Cursor is read only

State:Sl009[Microsoft] [ODBC SQL Server Driver] [SQL Server]

Warning: 0 rows affected by update operation (expected 1).

No rows were affected by the update or delete operation.

In Visual C++ versions 2.x and 4.x:

Error: failure updating record.

Cursor is read only

State:Sl009,Native:l6929,0rigin:[Microsoft] [ODBC SQL Server Driver]
[SQL Server]

383

PA RT 11 : REFERENCE SECTION

384

In Visual C++ 5.0:

Curljor concurrency changed

State:OlS02, Native:O, Origin: [Microsoft] [ODBC SQL Server Driver]

Warning: Concurrency changed by the driver.

Marking CRecordset as not updatable.

Recordset is read-only.

Note that if you use the PRIMARYKEY specification new to SQL Server
version 6.0 when creating your tables, you will automatically generate a
unique index on the primary key. Here is an example of this syntax:

CREATE TABLE Tablel
(cola CHAR(8) PRIMARY KEY NOT NULL,
colb CHAR(8))

If you are using the Microsoft SQL Server ODBC driver, version
2.65.0201, which comes with SQL Server version 6.5, MFC will throw an ex
ception that says "Invalid argument value." Additionally, you will see the fol
lowing errors in the MFC Trace output:

Error: failure updating record

Invalid argument value

State:Sl009,Native:O,Origin:[Microsoft] [ODBC SQL Server Driver]

Additional reference words: kbinfl.511.52 2.00 2.10 2.20 3.00 3.10 3.20
4.00 4.10 4.20 5.00

KBCategory: kbusage

KBSubcategory: MfcDatabase

Knowledge Base Articles

MFC ODBC Classes and
Parameterized Pre-Defined Queries

(Q137814) ______________ _

The information in this article applies to the Microsoft Foundation Classes
(MFC) included with:

Summary

• Microsoft Visual C++ for Windows, versions 1.5, 1.51, and 1.52

• Microsoft Visual C++, 32-bit Edition, versions 2.0, 2.1, 2.2, 4.0, 4.1,
4.2, and5.0

The MFC Encyclopedia article "Recordset: Declaring a Class for a Predefined
Query" describes how to invoke a predefined query that takes parameters
and returns a result set. The instructions in that article will not work for pre
defined queries that take parameters and do not return a result set. Some
possible error messages you may receive when attempting to do this are:

No columns were bound prior to calling SQLExtendedFetch

State:SL009:, NATIVE:O, Origin: [Microsoft] [ODBC Cursor Library]

Invalid cursor state

State:24000, Native:24, Origin:[Microsoft] [ODBC Microsoft Access Driver]

There are two ways that you can use predefined queries that take parame
ters and don't return a result set with the MFC ODBC classes:

1. You can execute the query from the CRecordset::open member func
tion. If you do this, you will have to override the open function to not
try to move to the first record and also not call any recordset member

. functions that expect a result set to be present.

2. You can execute the query using direct ODBC API calls. In this case,
you will have to bind the· parameters yourself rather than letting the
RFX functions do this for you.

More Information
If your SQL command returns a result set, it is preferable to use a CRecordset
derived class, and pass the SQL to the recordset open member function. Using

385

PA R T I I : REFERENCE SECTION

386

CRecordset is preferable when a result set is returned because the database
classes do most of the work of binding the returned data to variables in your
program. The CRecordsetclass will also do most of the work of binding param
eters as well.

If you have a predefined query that takes parameters, you have a choice
between using a CRecordset-derived class to take advantage of its support for
binding the parameters or using the CDatabase: :m_hdbc member variable and
doing the binding yourself.

Using a CRecordset-Derived Class
In the first case, you can use the technique that is shown in the encyclopedia
article "Recordset: Declaring a Class for a Predefined Query." You just have to
make sure that you don't try to manipulate the result set, because there isn't
one. The mandatory step is to override CRecordset::open to prevent calling the
code that moves to the first record once the recordset is opened. This is ac
complished by copying the code from CRecordset::open (in DBCORE.CPP)
and commenting out the code that tries to move to the first record. For ex
ample, in MFC 3.2, you would comment out the MoveFirst call at the end of
the open function:

BOOL CMyRecordset::Open(_)
{

II MoveFirst(); <<<< comment this line out!
}

In addition, you should also not call any function that assumes a result set is
present.

Then, set up the predefined query as mentioned in the encyclopedia ar
ticle. To actually invoke the query, you would do something like this:

CMyRecordset rs;
rs.m_Param = someValue II value for parameter
rs.Open(CRecordset::snapshot,"{CALL MyQuery (?)}",

CRecordset::readOnly);
rs.Close();

However, in Visual C++ 4.0 and 4.1, the implementation of CRecordset
was changed and, as a result, requires four additional steps to be taken to
make this first approach work:

1. You need to use a database object derived from CDatabase that con
tains an accessor function that returns a reference (or pointer) to its

Knowledge Base Articles

m_listRecordsets member. Your CRecordset-derived class needs to use
this reference to add itself to the m_listRecordsets. Here is how you can
define the CDatabase-derived class (you can place this declaration at
the top of your CRecordset-derived class's header file):

class CMyDatabase : public CDatabase
{

public:
CPtrlist& GetRecordsetlist() { return m_listRecordsets: }

} ;

In order to use this function to add your recordset to the data
base's list ofrecordsets, you must construct your CRecordset-derived
class off of a MyDatabase (or whatever you called the derived class)
and replace the following lines in the copy of the CRecordset::open:

II Add to list of CRecordsets with allocated hstmts
m_pDatabase->m_listRecordsets.AddHead(this);

with this:

II Add to list of CRecordsets with allocated hstmts
CPtrlist& listRecordsets =

((CMyDatabase*)m_pDatabase)->GetRecordsetlist();
listRecordsets.AddHead(this);

The reason for this step is that MFC 4.0 and 4.1 declare CRecordset
to be a friend of CDatabasewhich allows it to directly manipulate the
protected m_listRecordsets member. Friendship is not inherited, how
ever, so other measures must be taken to allow the recordset to add it
self to the database's list of recordsets.

2. #include <afXpriv.h> at the top of your CRecordset-derived class's .CPP
file. This is necessary because CRecordset::open that you copied into
your recordset class makes use of the USES_CONVERSION and T2A
macros.

3. Remove the following line from open:.

NO_CPP_EXCEPTIONCstrDefaultConnect.Empty());

· This line is only needed if you are building MFC.

4. Add the following line at the top of your CRecordset-derived class's
.CPP file:

static const TCHAR szDriverNotCapable[J = _T("State:S1C00");

387

PA R T I I : REFERENCE SECTION

388

This line is present in DBCORE.CPP and szDriverNotCapableis used in
CRecordset::open. Since it is static, it is not visible outside ofDB
CORE.CPP, so we must provide it in order to use the code for open.

Using CDatabase::m_hdbc and Doing Your Own Binding
Another possibility is to execute the predefined query using the m_hdbc mem
ber of CDatabase. If you choose this method, you will have to do the parame
ter binding yourself using ODBC API calls:

CDatabase*
RETCODE
HSTMT
SDWORD
SOWORD

pDb:
nRetCode:
hstmt:
cBytes:
nParamValue:

II Construct and open the database object
pDb = new CDatabase:
pDb->Open("My_Datasource"):

II allocate the hstmt
AFX_SQL_SYNC(::SQLAllocStmt(pDb->m_hdbc,&hstmt));
if (!pDb->Check(nRetCode))

AfxThrowDBException(nRetCode,pDb,hstmt):

II bind the parameter
AFX_SQL_SYNC(::SQLBindParameter(hstmt,l,SQL_PARAM_INPUT,

SQL_C_LONG,SQL_INTEGER,10,0,&nParamValue,4,&cBytes));
if CnRetCode != SQL_SUCCESS)

AfxThrowDBException(nRetCode,pDb,hstmt):

II set the parameter value
nParamValue = 3:

II execute the query
AFX_SQL__ASYNC(pOb,::SQLExecDirect(hstmt,

(UCHAR FAR*)"{CALL MyQuery (?)}" ,SQL_NTS)):
if (nRetCode != SQL_SUCCESS && nRetCode !=

SQL_SUCCESS_WITH_INFO)
AfxThrowDBException(nRetCode,pDb,hstmt):

II free the hstmt
AFX_SQL_SYNC(::SQLFreeStmt(hstmt,SQL_DROP));

II Close and destruct the database object
pDb->Cl ose():
delete pDb:

Knowledge Base Articles

References
MFC Encyclopedia Article: "Recordset: Declaring a Class for a Predefined
Query."

Additional reference words: kbinf 1.50 2.00 2.10 2.20 2.50 2.51 2.52
2.52a 2.52b 3.00 3.10 3.20 4.00 4.10 5.00

KBCategory: kbusage kbdocerr kbcode

KBSubcategory: MfcDatabase

389

PA RT I I : REFERENCE SECTION

SAMPLE: VSWAP32 Demos
Multiple-View Switching in SDI

(Q141334) ______________ _

The information in this article applies to the Microsoft Foundation Classes
(MFC) included with:

II Microsoft Visual C++, 32-bit Edition, versions 4.0, 4.1, 4.2, and 5.0

Summary

390

VSWAP32 demonstrates methods of switching between multiple views on a
single document in a single-document interface (SDI) application. VSWAP32
displays two form views and a normal view that displays the list of data collect
ed in the two form views.

N 0 T E : · This is the 32-bit version of this sample. There is also a
16-bit version available called VSWAP.EXE.

This sample application demonstrates using DDX/DDV (dialog data ex
change/dialog data validation), with correct document updating and data
validation when switching between views. It also correctly catches unsaved/
unvalidated data when the application is closed.

Download VSWAP32.EXE, a self-extracting file, from the Microsoft Soft
ware Library (MSL) on the following services:

II Microsoft Download Service (MSDL)
Dial (206) 936-6735 to connect to MSDL. Download

VSWAP32.EXE.

II Microsoft's World Wide Web site on the Internet
On the www.microsoft.com home page, click the Support icon.

In the Microsoft Knowledge Base, search for VSWAP32.EXE. Open
the article, and click the button to download the file.

II Internet (anonymous FTP)
ftp ftp.microsoft.com: Change to the SOFTLIB\MSLFILES direc

tory. Get VSWAP32.EXE. After downloading the file, use the follow
ing command to extract the sample and build the appropriate
directory structure:

VSWAP32.EXE -d

More Information
The most important implementations of this are in:

CVswapApp::Initlnstance
CVswapApp: :SwttchView
CVswapApp: :SaveActiveVtewsData

Knowledge Base Articles

The standard Initlnstance code creates an initial document template,
document, and view during the call to ProcessShellCommand. The code added
to the end of Initlnstance creates the view objects for the extra views used in
this application and stores their pointers in a CVswapApp member array. It
then cycles through a loop which creates the windows for the view objects.
Each view window is created with a unique child window ID and a CCreateCon
text object that associates each view with the same CDocument object, which
was created by ProcessShellCommand. Finally, the sample code triggers the On
InitialUpdate for the extra views. In this sample, both views persist for the life
time of the application; however, the application could create the new view
dynamically.

The Switch View function created in this sample swaps the current view
with a previously hidden view. It accomplishes this by first switching their
child window IDs. This step is necessary because MFC relies on the standard
view pane having the child window ID of AFX_IDW_PANE_FIRST. The rest
of the code hides the current view and tells MFC to repaint and begin using
the new view.

The SaveActiveViewsData is used to save the information from the active
view to the document object. It is called by Switch View whenever a view is
switched. SaveActiveViewsData subsequently calls SetToDoc, which actually up
dates the data from the form view to the document by using MFC's DDX/
DDV mechanisms in DoDataExchange.

Sample Code
The Switch View function is included here as a reference.

CVieW* CVswapApp::SwitchView(UINT nlndex)
{

ASSERT(nlndex >=0 && nlndex < NUMVIEWS);

CView* pNewView = m_pViews[nlndex]:

CVieW* pActiveView =
CCCFrameWnd*) m_pMainWnd)->GetActiveViewC):

(continued)

391

PA R T 11 : REFERENCE SECTION

}

if (!pActiveView
return NULL:

II No currently active view

if (pNewView == pActiveView
return pActiveView:

II Update Doc's data if needed

II Already there

II Don't change view if data valiation fails
if (! SaveActiveViewsData())
{

return pActiveView:
}

m_nCurView = nlndex: II Store the new current view's index

II exchange view window ID's so RecalcLayout() works
UINT temp= ::GetWindowLong(pActiveView->m_hWnd, GWL_ID):
: :SetWindowLong(pActiveView->m_hWnd,_ GWL_IO,

::GetWindowLong(pNewView->m_hWnd, GWL_ID));
::SetWindowLong(pNewView->m_hWnd, GWL_ID, temp):

II Display and ·update the new current view - hide the old one
pActiveView->ShowWindow(SW_HIDE):
pNewView->ShowWindow(SW_SHOW):
((CFrameWnd*) m_pMainWnd)->SetActiveView(pNewView):
((CFrameWnd*) m_pMainWnd)->RecalcLayout();
pNewView->Invalidate();
return pActiveView:

References

392

For other examples of applications that switch views, please refer to the fol
lowing samples:

II COLLECT (SDI)

II ENROLL (SDI)

II VWRPLC32 (MDI)

II SPLIT32 (Splitter)

For more information on DDX and DDV routines, please see Technical
Note 26: "DDX and DDV Routines" in the Visual C++ online documentation.

Additional reference words: 4.00 4.10 4.20 5.00 VSWAP32 Q99562

KBCategory: kbprg kbfile

KBSubcategory: MfcDocView

Knowledge Base Articles

SAMPLE: DLGDB32 CDialog
Sharing a CRecordset Object

(0141445) ______________ _

The information in this article applies to the Microsoft Foundation Classes
(MFC) included with:

• Microsoft Visual C++, 32-bit Edition, versions 4.0, 4.1, 4.2, and 5.0

This is the 32-bit version of this sample. The DLGDB32 code sample demon
strates how to have a CDialog-derived class share a CRecordset object that a CRec
ordView is already using. In addition, when used by itself, the code sample also
demonstrates how to select CRecordset object from a CDocument without hav
ing a CRecordView.

N 0 T E : This sample assumes that ODBC has been installed and
that the Student Registration data source has been configured.

Download DLGDB32.EXE, a self-extracting file, from the Microsoft
Software Library (MSL) on the services shown below. (The file must be decom
pressed by typing DLGDB32 -d.)

Ill The Microsoft Network
On the Edit menu, click Go To, and then click Other Location.
Type mssupport.
Double-dick the MS Software Library icon.
Find the appropriate product area.
Download DLGDB32.EXE.

Ill Microsoft Download Service (MSDL)
Dial (206) 936-6735 to connect to MSDL.
Download DLGDB32.EXE.

Ill Internet (anonymous FTP)
ftp ftp.microsoft.com.
Change to the SOFTLIB\MSLFILES directory.
Get DLGDB32.EXE.

Additional reference words: 4.00 4.10 4.20 5.00

KBCategory: kbprg kbcode kbhowto kbfile

KBSubcategory: MfcDatabase

393

PA R T I I : REFERENCE SECTION

SAMPLE: VWRPLC32, Replacing
a View in a CMD/ChildWndWindow

(Q141499) ______________ _

The information in this article applies to the Microsoft Foundation Classes
(MFC) included with:

Ill Microsoft Visual C++, 32-bit Edition, versions 4.0, 4.1, 4.2, and 5.0

Summary

394

The VWRPLC32 sample demonstrates how, in a Multiple Document Inter
face (MDI) application, a programmer can write a ReplaceView member func
tion for a CMDIChildWnd-derived class. The following samples, which also
replace various views, exist:

Ill SPLIT32 (SDI)

11 COLLECT (MDI)

II ENROLL (SDI)

Ill VSWAP32 (SDI)

VWRPLC32 can be found in the Microsoft Software Library (MSL).
Download VWRPLC32.EXE, a self-extracting file, from MSL on the following
services:

· Ill Microsoft's World Wide Web site on the Internet
On the www.microsoft.com home page, click the Support icon.

In the Microsoft Knowledge Base, search for VWRPLC32.EXE. Open
the article, and click the button to download the file.

II Microsoft Download Service (MSDL)
Dial (206) 936-6735 to connect to MSDL. Download

VWRPLC32.EXE.

II Internet (anonymous FTP)
ftp ftp.microsoft.com: Change to the SOFTLIB\MSLFILES direc

tory. Get VWRPLC32.EXE.

N 0 T E : Use the -d option when running VWRPLC32.EXE to
decompress the ~le and re-create the proper directory structure.

Knowledge Base Articles

More Information
The core of the sample can be found in FRAME.CPP. You will see the follow
ing function:

BOOL CFrame::ReplaceViewCCRuntimeClasS* pViewClass)
{

CCreateContext context:
CView * pCurrentView;

II If no active view for the frame, return FALSE because this
II function retrieves the current document from the active view.
if ((pCurrentView=GetActiveView()) == NULL)

return FALSE:

II If we're already displaying this kind of view, no need to go
II further.
if ((pCurrentView->IsKindOf(pViewClass))==TRUE)

return TRUE:

II Get pointer to CDocument object so that it can be used in the
II creation process of the new view.
CDocument * pDoc= pCurrentView->GetDocument();

II Set flag so that document will not be deleted when view is
II destroyed.
BOOL bAutoDelete=pDoc->m_bAutoDelete:
pDoc->m_bAutoDelete=FALSE;
II Delete existing view
pCurrentView->DestroyWindow();
I I restore flag
pDoc->m_bAutoDelete=bAutoDelete:

II Create new view and redraw.
context.m_pNewViewClass = pViewClass;
context.m_pCurrentDoc = pDoc:
context.m_pNewDocTemplate = NULL:
context.m_pLastView = NULL:
context.m_pCurrentFrame = this:

CVieW* pNewView = CCVieW*) pViewClass->CreateObject();

if CpNewView == NULL)

(continued)

395

PA R T I I : REFERENCE SECTION

396

}

{

}

TRACEl("Warning: Dynamic create of view type %Fs failed\n",
pViewClass->m_lpszClassName);

return FALSE;

if (!pNewView->Create(NULL, NULL, AFX_WS_DEFAULT_VIEW,
CRect(0,0,0,0), this, AFX_IDW_PANE_FIRST, &context))

{

}

TRACE0("Warning: couldn't create view for frame\n");
return FALSE; II Programmer can assume FALSE return value

II from this function means that there
II isn't a view.

II WM_INITIALUPDATE is define in AFXPRIV.H.
pNewView->SendMessage(WM_INITIALUPDATE, 0, 0);

Recal cLayout();

pNewView->UpdateWindow();

SetActiveView(pNewView);

return TRUE;

The function receives a pointer to CRuntimeClass object for the new view
that is desired. It destroys the old view and replaces it with a new view of the
same CDocument. When DestroyWindow is called for the old view, this causes a
"delete this" in the CView::PostNcDestroy function. Also, the CView::-CView de
structor calls CView::RemoveView, which removes the view from the document's
view list.

Additional reference words: kbinf 4.00 4.10 4.20 5.00 Q102829 MDI
CMDIChildWnd

KBCategory: kbprg kbfile kbcode

KBSubcategory: MfcDocView

Knowledge Base Articles

SAMPLE: Adding Control
Bars to Dialog Boxes in MFC

(Q141751) ______________ _

The information in this article applies to the Microsoft Foundation Classes
(MFC) included with:

• Microsoft Visual C++, 32-bit Edition, versions 4.0, 4.1, 4.2, and 5.0

Summary
In a Microsoft Foundation Class (MFC) application, you can attach control
bars such as status bars and toolbars to a frame window. However, for many
applications a simple dialog box-based user interface is sufficient. MFC does
not provide built-in support for adding control bars to dialog boxes.

DLGCBR32 is a sample application that demonstrates how to add a sta
tus bar and toolbar to a dialog box. In addition, it demonstrates a number of
techniques related to using a modeless dialog box as the main window of an
MFC application.

Download DLGCBR32.EXE, a self-extracting file, from the Microsoft
Software Library (MSL) on the following services:

II Microsoft Download Service (MSDL)
Dial (206) 936-6735 to connect to MSDL. Download

DLGCBR32.EXE.

• Internet (anonymous FTP)
ftp ftp.microsoft.com: Change to the SOFTLIB\MSLFILES direc

tory. Get DLGCBR32.EXE.

More Information
To add a control bar to a dialog box, you must create the control bar as usual,
and then make room for the control bar within the client area of the dialog
box. For the control bar to function properly, the dialog box must duplicate
some of the functionality of frame windows. If you want ON_UPDATE_COM
MAND_UI handlers to work for the control bars, you also need to derive new
control bar classes, and handle the WM_IDLEUPDATECMDUI message. If
your dialog box is not the main window of your application, you will also need
to modify its parent frame window to pass the WM_IDLEUPDATECMDUI
message on to the dialog box's control bars.

397

PA R T I I : REFERENCE SECTION

398

To make room for a control bar within the client area of the dialog box,
follow these steps in your dialog box's OnlnitDialogfunction.

1. Create the control bars.

2. Figure out how much room the control bars will take by using the re
posQuery option of RepositionBars:

CRect rcClientStart;
CRect rcClientNow;
GetClientRect(rcClientStart);
RepositionBars(AFX_IDW_CONTROLBAR__FIRST,

AFX_IDW_CONTROLBAR__LAST,
0, reposQuery, rcClientNow);

3. Move all the controls in your dialog box to account for space used by
control bars at the top or left of the client area. If your dialog box
contains a menu, you also need to account for the space used by the
menu:

CPoint ptOffset(rcClientNow.left - rcClientStart.left,
rcClientNow.top - rcClientStart.top);

CRect rcChil d:
CWnd* pwndChild = GetWindow(GW_CHILD);
while (pwndChild)
{

}

pwndChild->GetWindowRect(rcChild);
ScreenToClient(rcChild);
rcChild.OffsetRect(ptOffset);
pwndChild->MoveWindow(rcChild, FALSE):
pwndChild = pwndChild->GetNextWindow();

4. Increase the dialog box window dimensions by the amount of space
used by the control bars:

CRect rcWindow:
GetWindowRect(rcWindow):
rcWindow.right += rcClientStart.Width() - rcClientNow.Width();
rcWindow.bottom += rcClientStart.Height() - rcClient-
Now.Height();
MoveWindow(rcWindow, FALSE);

5. Position the control bars using RepositionBars.

Knowledge Base Articles

To update the first pane of a status bar with menu item text, you must
handle WM_MENUSELECT, WM_ENTERIDLE, and WM_SETMESSAGE
STRING in your dialog box class. You need to duplicate the functionality of the
CFrameWnd handlers for these messages. See the CModelessMain class in the
sample program for examples of these message handlers.

To allow ON_UPDATE_COMMAND_UI handlers to work for other sta
tus bar panes and for toolbar buttons, you must derive new control bar classes
and implement a message handler for WM_IDLEUPDATECMDUI. This is
necessary because the default control bar implementations of OnUpdateCmdUI
assume the parent window is a frame window. However, it doesn't do anything
but pass the parent window pointer on to a function which only requires a
CCmdTarget pointer. Therefore, you can temporarily tell OnUpdateCmdUI that
the parent window pointer you are giving it is a CFrameWnd pointer to meet
the compiler requirements. Here's an example:

LRESULT CDlgToolBar::OnidleUpdateCmdUICWPARAM wParam,
LPARAM lParam)

{

}

if CisWindowVisible{))
{

}

CFrameWnd* pParent = CCFrameWnd*)GetParent();
if {pParent)

OnUpdateCmdUICpParent, CBOOL)wParam):

return 0L:

To pass WM_IDLEUPDATECMDUI messages on to dialog boxes other
than the main window, save dialog pointers in your frame window class and
create a WM_IDLEUPDATECMDUI handler in that class. The handler should
send the WM_IDLEUPDATECMDUI message on to the dialog child windows
by using CWnd::SendMessageToDescendants. Then perform default processing
for the message within the frame window.

Additional reference words: kbinfl.001.50 2.00 2.50 2.513.004.00 4.10
4.20 5.00 CDialog CStatusBar CToolBar

KBCategory: kbprg

KBSubcategory: MfcUI

399

PA RT 11 : REFERENCE SECTION

How to Add Tooltips to OLE Controls
(Q141871) ______________ _

The information in this article applies to the Microsoft Foundation Classes
(MFC) included with:

1111 Microsoft Visual C++, 32-bit Edition, versions 4.0, 4.2, and 5.0

Summary
This article demonstrates how to add a tooltip to an OLE Control.

More Information

400

By default, OLE controls do not support tooltips. The following steps, howev
er, demonstrate how to modify a basic OLE control generated using the OLE
Control Wizard to add this support.

1. Use the MFC ActiveX Control Wizard to generate a basic control
named Basic.

2. Open the Stdafx..h file associated with the project and add the follow
ing line:

#include <afxcmn.h>

The header file Afxcmn.h contains declarations for MFC classes that
serve as wrappers to Windows common controls including CI'oolTip
Ctrl.

3. Add the following lines to COleControl-derived class CBasicCtrllocated
in Basicctl.h:

CToolTipCtrl m_ttip;
void RelayEvent(UINT message, WPARAM wParam, LPARAM lParam):

The RelayEvent method will be used by the mouse message handlers
to relay those messages to the tooltip control.

4. Use ClassWizard to add an OnCreatehandler to the message map. Itis
in this routine that the tooltip control will be created. Add the follow
ing code to this handler:

if (!m_ttip.Create(this))
TRACE0("Unable to create tip window.");

else

Knowledge Base Articles

if (!m_ttip.AddTool(this, LPCTSTR(m_toolTipText)))
TRACE0C"Unable to add tip for the control window.");

else
m_ttip.Activate(m_showToolTip);

5. To relay appropriate messages to the tooltip control, add handlers
for WM_LBUTTONDOWN, WM_LBUTTONUP, and
WM_MOUSEMOVE to the control's message map. The message map
and code for these handlers follows:

II Message maps
ll{{AFX_MSGCCTestpropCtrl)

afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);
afx_msg void OnLButtonDownCUINT nFlags, CPoint point):
afx_msg void OnLButtonUpCUINT nFlags, CPoint point);
afx_msg void OnMouseMoveCUINT nFlags, CPoint point);

11} JAFLMSG
DECLARE_MESSAGE_MAPC)

void CBasicCtrl::OnLButtonDownCUINT nFlags, CPoint point)
{

}

RelayEventCWM_LBUTTONDOWN, CWPARAM)nFlags,
MAKELPARAMCLOWORDCpoint.x), LOWORDCpoint.y)));

COleControl:: OnLButtonDownCnFlags, point);

void CBasicCtrl::OnLButtonUpCUINT nFlags, CPoint point)
{

}

RelayEvent(WM_LBUTTONUP, CWPARAMlnFlags,
MAKELPARAMCLOWORD(point.x), LOWORD(point.y)));

COleControl::OnLButtonUp(nFlags, point);

void CBasicCtrl::OnMouseMove(UINT nFlags, CPoint point)
{

}

RelayEvent(WM_MOUSEMOVE, CWPARAM)nFlags,
MAKELPARAMCLOWORDCpoint.x), LOWORD(point.y)));

COleControl::OnMouseMove(nFlags, point);

II implementation of the CBasicCtrl::RelayEvent method:

(continued)

401

PA R T I I : REFERENCE SECTION

402

void CBasicCtrl::RelayEvent(UINT message, WPARAM wParam,
LPARAM lParam)

{

}

if (NULL != m_ttip.m_hWnd) {
MSG msg:

}

msg.hwnd = m_hWnd:
msg.message = message;
msg.wParam = wParam;
msg.lParam = lParam;
msg.time = 0:
msg.pt.x = LOWORD (lParam):
msg.pt.y = HIWORD (lParam):

rn_ttip.RelayEvent(&msg);

While it might seem reasonable to call CWnd::GetCurrentMessage
instead of manually building a message, the value of the point that is
returned is expressed in screen coordinates. When the tooltip per
forms a hit test to determine if the point of the relayed message falls
within the boundary of the client rectangle of any associated tools,
the test will fail, and the tooltip will not be displayed.

6. Alter CBasicCtrl::DoPropExchange by adding code to initialize the
m_toolTipText and m_showToolTip properties:

PX_Bool (pPX, _T("ShowToolTip"), rn_showToolTip, FALSE);
PLString(pPX, _T("ToolTipText"), m_toolTipText, _T("")):

7. To allow the user of the control some control over the tooltip function
ality, use ClassWizard to add the following OLE automation proper
ties to the CBasicCtrl class:

External Name: ShowToolTip ToolTipText

Type: BOOL CString

Variable name: m_showToolTip m_toolTipText

Notification function: OnShowTool- OnToolTip-
TipChanged TextChanged

ShowToolTip will allow the user to suppress the display of the
tooltip, and ToolTipText will track the text that is to be displayed
when the tooltip is visible.

Knowledge Base Articles

8. Modify the property change notification functions for these proper
ties in the following manner:

void CBasicCtrl::OnToolTipTextChanged()
{

}

if (m_ttip.m_hWnd && AmbientUserMode()) {
m_ttip.UpdateTipTextCLPCTSTR(m_toolTipText), this);
SetModifiedFlag();

}

void CBaseCtrl ::OnShowToolTipChanged()
{

}

Test the Control

if (m_ttip.m_hWnd && AmbientUserMode()) {
m_ttip.Activate(m_showToolTip);
SetModifiedFlag();

}

To test the control, build it, launch the ActiveX Control Test Container and
insert the control into the Test Container. Then follow these steps:

1. On the View menu, click Properties.

2. Pull down the Property combo, set the ShowToolTip property to-1,
and choose Apply.

3. Pull down the Property combo, set the. ToolTipText property to
SomeTip, and choose Apply.

4. Move the pointer over the client area of the control. A tooltip con
taining the text "Some Tip" should be displayed over the client area
of the control.

REFERENCES
Microsoft Visual C++ version 4.0 Books Online: Cluts, Nancy, "Programming
the Windows 95 User Interface," Microsoft Press, 1995, Pages 26-28.

Additional reference words: kbinf 4.00 4.10 4.20 5.00

KBCategory: kbprg kbhowto kbcode

KBSubcategory: MfcOLE

403

PA RT I I : REFERENCE SECTION

How to Handle
OCM_CTLCOLORxxx Reflected Messages

(Q148242) ______________ _

The information in this article applies to the Microsoft Foundation Classes
(MFC) included with:

• Microsoft Visual C++, 32-bit Edition, versions 4.0, 4.1, 4.2, and 5.0

Summary
This article shows you how to change the background color of an OLE con
trol that subclasses a Windows control, with sample code for an Edit control.
This article should apply to Button, Static, ListBox, and ComboBox controls
as well.

More Information

404

Please refer to the following article in the Knowledge Base, "WM_CTL
COLOR:xxx Message Changes for Windows 95" (Q130952) for more about
the exact WM_CTLCOLOR:xxx message sent by each control. If a control
sends the WM_CTLCOLORSTATIC, you have to handle the OCM_CTL
COLORSTATIC message in the OCX and so on.

To change the background color of an OLE control that subclasses an
Edit control, you must handle the OCM_CTLCOLOREDIT (32-bit) messages.
These messages are intercepted by the "reflector window" (created for an OLE
control that subclasses a Windows control) that reflects them back to the OLE
control itself. In respo~se to these reflected messages, you must set the back
ground color (and optionally the foreground color) and return a handle to a
brush initialized with the background color.

Step-by-Step Example
The sample code in this example illustrates how to handle OCM_CTL
COLOREDIT in order to change the background color of an OLE control
that subclasses an Edit control.

1. Generate an MFCActiveX Control Wizard application, and select the
option that allows you to subclass an Edit control.

2. To handle an OCM_CTLCOLOREDIT reflected window message, de
clare the following handler function in the .H file of your control's
class:

Knowledge Base Articles

LRESULT OnOcmCtlColor(WPARAM wParam, LPARAM lParam);

3. In the .CPP file of your control's class, add an ON_MESSAGE entry to
the message map:

ON_MESSAGE(OCM_CTLCOLOREDIT, OnOcmCtlColor)

4. Also in the .CPP file, implement the OnOcmCtlColormember function
to process the reflected message:

//Assuming CEdtclrCtrl is the class for this control
LRESULT CEdtclrCtrl::OnOcmCtlColorCWPARAM wParam, LPARAM

lParaml

//Declare CBrush* rn_pBackBrush in your control's .h file
if (rn_pBackBrush == NULL)

m_pBackBrush = new CBrush(RGB(0,0,0));
CDC* pdc = CDC::FromHandle((HDC)wParam);
pdc->SetBkMode(TRANSPARENT);
pdc->SetBkColor(RGB(0,0,0));
pdc->SetTextColorCRGB(0,255,0));
HBRUSH far* hbr = CHBRUSH far*)rn_pBackBrush->GetSafeHandle();

return ((DWORD)hbr);
}

N 0 T E : In your control's constructor, set m_pBackBrush =NULL,
and in your control's destructor, delete m_pBackBrush.

5. Build and register your control.

6. Insert this control into the ActiveX Control Test Container. Notice
that the background color of your OLE control is changed.

References
Refer to technical article Technical Note 062: "Message Reflection for Win
dows Controls" and the article ''ActiveX Controls: Subclassing a Windows Con
trol in Visual C++ Programmer's Guide."

Additional reference words: 4.00 4.10 4.20 5.00

KBCategory: kbprg kbole kbhowto kbcode

KBSubcategory: MfcOLE

405

PA R T I I : REFERENCE SECTION

PRB: MFC Loads Wrong
Resource in Extension DU.

(Q150121) _______________ _

The information in this article applies to the Microsoft Foundation Classes
(MFC) included with:

II Microsoft Visual C++ for Windows, versions 1.0, 1.5, 1.51, and 1.52

II Microsoft Visual C++, 32-bit Edition, versions 2.0, 2.1, 2.2, 4.0, 4.1,
4.2, and 5.0

Symptoms
The wrong resource is loaded when CBitmap::LoadBitmap, CM.enu::LoadMenu,
CString::LoadString or any other MFC resource-loading function is called in
an MFC extension DLL (AFXDLL). In some cases, a resource in the applica
tion is loaded instead of the appropriate resource in the extension DLL.

Cause
When a resource in the application or another extension DLL gets loaded in
stead of a resource in the current extension DLL, the cause is usually improp
er resource management. An MFC application and all of its extension DLLs
are one global chain of resources. If there are multiple resources with the
same ID value in any of the modules in the chain, MFC uses the first resource
it finds with the desired ID value. The first resource is often found in the ap
plication, which is searched before any of the extension DLLs.

Resolution

406

Change the ID values of any resources that conflict so they are unique in both
the application and any extension DLL that the application uses. These val
ues are stored in the RESOURCE.H file for each project and can be modified
in the Resource editor or Developer Studio with the Resource Symbols com
mand.

To ensure that modules do not use conflicting symbol values, reserve
different ranges of ID values for each module in the 1 through Ox6FFFF
range. Set the _APS_NEXT_RESOURCE_VALUE definition in the RE
SOURCE.H file for each module to the low end of that module's range before
creating any resources. The Resource Editor uses this symbol to determine
the ID value of the next resource created. This technique is documented in

Knowledge Base Articles

MFC Technical Note 35 and in the DLLHUSK sample included with Visual
C++.

More Information
In .EXE or .DLL files that link to MFC dynamically, MFC resource-loading
functions call AfxFindResourceHandle to obtain the handle of the module where
a resource is located. AfxFindResourceHandle searches for resources by type
and symbol value in:

• The module returned by AfxGetResourceHandle. This is usually the
application.

• The extension DLLs through the.chain of CDynLinkLibrary objects.

• Any language-specific resource DLLs.

• Any attached MFC system DLLs (MFCxx.DLL, for example).

N 0 T E : Some 16-bit MFC resource loading functions do not
call AfxFindResourceHandle, but instead use the value returned from
AfxCurrentResourceHandle.

Each extension DLL creates, initializes, and then passes a CDynLinkLi
brary object to AfxlnUExtensionModule that places the DLL in the resource
chain. AfxTerrnExtensionModule removes the DLL from the chain when the
DLL is detached from the application.

A benefit of this design is that MFC automatically locates a resource for
an application or extension DLL, even if that resource is located in a distant
extension DLL or the application itself. All resources in the process are
chained, so ID values are passed between DLLs and the application and the
proper resources are loaded. A disadvantage is that there are no duplicate ID
values between any of the extension DLLs or the application that uses them.

To set the default location where AfxFindResourceHandle first checks for a
resource, use AfxSetResourceHandle. Because AfxFindResourceHandle first checks
the handle set by AfxSetResourceHandle, it can be used to circumvent the chain
and load a resource from one particular DLL or application. The resource
handle is restored to its original value immediately after loading the resources.
The current default resource handle is found with AfxGetResourceHandle. The
DLLHUSK sample included with Visual C++ also illustrates this technique. In
TESTDLL2.CPP, CListOutputFrame::Createsets the resource handle to the mod
ule handle stored in the AFX_EXTENSION_MODULE structure extension
DLL. This structure is initialized with the module handle when it is passed to
the CDynLinkLibrary constructor in InitTestDLL2.

407

PA RT I I : REFERENCE SECTION

Status
This behavior is by design.

References

408

For information on:

Ill Extension DLLs, see the MFC Technical Note 33 and the DLLHUSK
sample.

Ill Resource management in projects, see Technical Note 35.

Additional reference words: 1.00 1.50 1.511.52 2.00 2.10 2.20 4.00 4.10
4.20 5.00

KBCategory: kbprg kbprb

KBSubcategory: MfcDLL

Knowledge Base Articles

DRAGD95.EXE:SAMPLE:OLE
Drag/Drop in Windows 95 Common Controls

(Q152092) ______________ _

The information in this article applies to the Microsoft Foundation Classes
(MFC) included with:

a Microsoft Visual C++, 32-bit Edition, versions 4.0, 4.1, 4.2, and 5.0

Summary
This sample demonstrates implementing OLE drag and drop in Windows 95
common controls. It also demonstrates how the drag image functionality can
be preserved while dragging within the application that is the source of the
data.

You can find DRAGD95.EXE, a self-extracting file, on these services:

a Microsoft's World Wide Web site on the Internet
On the www.microsoft.com home page, click the Support icon.

In the Microsoft Knowledge Base search for DRAGD95.EXE. Open
the article, and click the button to download the file.

a Internet (anonymous FTP)
ftp ftp.microsoft.com: Change to the SOFTLIB/MSLFILES folder.

Get DRAGD95.EXE.

Ill Microsoft Download Service (MSDL)
Dial (206) 936-6735 to connect to MSDL. Download

DRAGD95.EXE.

N 0 T E : Use the -d option when running DRAGD95.EXE to de
compress the file and re-create the proper directory structure. If
you are using Visual C++ 5.0 you may get a message "This project
was generated by a previous version of Developer Studio. Continu
ing will convert it to the new format. Do you want to convert the
project ?"Accept this by clicking "Yes."

More Information
Windows 95 common controls implement their own style of drag and drop.
However, this style of drag and drop does not support dragging to other ap
plications. To enable this functionality, it is possible to implement OLE drag

409

PA R T 11 : REFERENCE SECTION

and drop using the common controls. Unfortunately, when OLE drag and
drop is implemented, the common control drag image is lost.

It is possible, when implementing OLE drag and drop, to preserve the
common control drag image. However, this image will only be displayed
when the pointer is over the application that is the source of the data. This is
because the image is not a system-wide resource and belongs to the application
that is the source of the data. This behavior is consistent with that of the shell
in Windows 95. In Windows 95, you will notice that the drag image is lost over
applications other than the Windows Explorer or the Windows shell. The
shell and any instances of the Explorer that are running are a single instance
of the same application.

OLE drag and drop as implemented by this sample is straightforward.
When a drag is started, a COleDataSource object is loaded with data and COle
DataSource: :DoDragDrop is called. The data source is loaded with a CF_TEXT
format and a private clipboard format that has been registered. Applications
that understand CF_TEXT, such as Microsoft Word, can be a drop target for
the data. You can also implement a COleDropTarget object so that you can be a
drop target for your own custom clipboard format.

Common controls normally begin a drag operation in response to the
LVN_BEGINDRAG message. You can also take advantage of this message to
begin the drag operation. This is where the similarity with common control
drag and drop ends. Common control drag and drop uses mouse messages to
control tracking the drag image and processing the drop. You will not be able
to use mouse messages because, after you begin the drag operation, control is
passed to OLE's DoDragDrop function.

To control the tracking and display of the common control drag image,
you will implement a COleDropSource object and pass it to the DoDragDrop
function. COleDropSource implements a GiveFeedback function that is called to
give feedback about the effect of a drop at the current mouse position as the
mouse is moved over a drop target. Overriding the GiveFeedback function and
obtaining the position of the mouse gives you a chance to control tracking
and display of the drag image.

References

410

Programming with MFC Encyclopedia - Drag and Drop (OLE)

Additional reference words: 4.00 4.10 4.20 5.00

KBCategory: kbole kbfile

KBSubcategory: MfcOLE

Knowledge Base Articles

PRB: Opening a Dynaset on
a SQL Server Stored Procedure

(Q152520) ______________ _

The information in this article applies to the Microsoft Foundation Classes
(MFC) included with:

• Microsoft Visual C++, 32-bit Edition, versions 2.0, 2.1, 2.2, 4.0, 4.1,
4.2, and 5.0

Symptoms
An attempt to call a SQL Server 6.x stored procedure from a dynaset-type
CRecordset throws a CDBException if the procedure has any additional SE
LECT, INSERT, UPDATE or DELETE statement other than a single SELECT
statement. You will see the following error message on recordset Open (DB
Tracing enabled):

Cause

Cannot open a cursor on a stored procedure that has anything other
than a single select statement in it

State:37000,Native:l6937,0rigin:[Microsoft] [ODBC SQL Server Driver]
[SQL Server]

Calling the following stored procedure from a dynaset-type recordset will
cause the error described above:

CREATE PROCEDURE twosel AS
BEGIN

select * from myTable
select * from myTable

End

This is by design as documented in the Help file for SQL Server ODBC driver
version 2.5. You can navigate the Help file in the following way to get to the
description:

What's New
Server Cursors
Using ODBC Cursors

Creating Cursors

411

PA R T I I : REFERENCE SECTION

"You will get a cursor on SQLExecDirect (Exec procedure_name or{Call
procedure_name}) only if the procedure contains one SELECTstatement
and nothing else. Otherwise, SQL Server generates an error message. Be
cause of this restriction, you cannot use server cursors with the ODBC cat
alog functions (which use stored procedures that contain multiple
SELECT statements)."

You will also get the same error message when using dynaset if your stored
procedure has a RETURN statement in addition to a SELECT statement.

Resolution
Use a snapshot or readOnly forwardOnly type recordset when the stored pro
cedure has more data manipulation statements other than a single SELECT
statement.

Status
This behavior is by design.

References

412

MFC Encyclopedia article: "Recordset: Declaring a Class for a Predefined
Query."

Additional reference words: 2.00 2.10 2.20 3.00 3.10 3.20 4.00 4.10 4.20
5.00

KBCategory: kbprg kberrmsg kbusage kbprb

KBSubcategory: MfcDatabase

APPENDIX

Searching for Articles in
the Microsoft Knowledge Base

Keywords are the means used to locate articles in the Microsoft Knowledge
Base. In this appendix, I list the keywords that are specific to articles in the
Languages collection of the Knowledge Base, which includes most of the ar
ticles pertaining to Microsoft Visual C++.

Major and Minor Keywords
in the Languages Collection

Each Knowledge Base article in the Languages collection can contain one or
more product-specific subcategory keywords that place the article in an ap
propriate category within this collection. Some of these keywords (called KB
Subcategory keywords) are a concatenation of major topic keyword and minor
topic keyword. For example, you can find all MFC ODBC database-related
articles by using MfcDatabase as the keyword when you query the Knowledge
Base. In some cases, you can use the asterisk(*) wildcard to find articles that
fall into a general subcategory. For example, to find all articles that apply to
MFC issues, query on Mfc*. An article usually has only one subcategory key
word, but in some cases, it has more.

The topics and corresponding KBSubcategory keywords for the Lan
guages collection are listed on the following pages. The minor topics are in-
dented under each major topic. ·

413

MFC DEVELOPER'S WORKSHOP

Languages Collection Topics and Keywords

414

Topics

Setup/Install

Visual C++ 1.0 32-bit install

Visual C++ 1.5x install

Visual C++ 2.x 32-bit install

Visual C++ Mac-side install issues

Tools

DEVELOPMENT ENVIRONMENT TOOLS:

AppStudio/Resource editor

AppWizard or ClassWizard

Visual Workbench/IDE

Integrated debugger

COMPILER-SPECIFIC:

Non-MASM assembler issues such
as in-line assembler issues

C/C++ compilers

C++ compiler (not C compiler)

Bad-code generation

MACINTOSH TOOLS:

MFILE - File Transfer Utility

MPROF- Profiler

MRC

MPW2LIB

Macintosh Help compiler

PRODUCT-INDEPENDENT TOOLS:

Code View debugger

NMAKE

Linker

Librarian

KBSubcategory Keywords

vclOsetup

vc15setup

vc20setup

vcMacSetup

AppStudiolss

Wizardlss

VWBiss

WBDebug

InlineAsmlss

CLiss

CPPiss

Code Gen

MFILEiss

MPROFiss

MRCiss

MPW2LIBiss

MHELPiss

CVWiss

Nmakelss

Linklss

Li hiss

Topics

MISC TOOLS ISSUES:

Product sample code

Phar Lap DOSXNT extender

All other tools

Programming

C language

C++language

C Run Time

Differences between Mac and
Windows

Standard template library issues

MFG Programming

MFC ODBC/database

MFCDLLs

MFC document/view

MFC file 1/0

MFC Macintosh

MFCOLE

MFC printing

MFC multi-threaded

MFC user interface development

MFCVBX

MFC Sockets issues

MFC context-sensitive Help issues

All other MFC issues

Add-ons

OLE control development kit

APPENDIX

KBSubcategory Keywords

Code Sam

DOSXNTiss

TlsMisc

CLnglss

CPPLngiss

CRTiss

MacPrglss

STLlss

MfcDatabase

MfcDLL

MfcDocView

MfcFileIO

MfcMac

MfcOLE

MfcPrinting

MfcThreadlss

MfcUI

MfcVBX

MfcSockets

MfcHelp

MfcMisc

CDK.Iss

(continued)

415

. MFC DEVELOPER'S WORKSHOP

416

Languages Collection Topics and Keywords continued

Topics

General

General Visual C++ product info

Online Doc tools issues

Issue doesn't apply to all platforms

Applies to Visual C++ for Alpha

Applies to Visual C++ for Macintosh

Applies to Visual C++ for MIPS

Applies to Visual C++ for x86

Applies to Win32s

Bugf,ist Keywords

On the VC++ 4.00

New bug in VC++ 4.10

New bug in VC++ 4.20

Fixed bug in VC++ 4.1

Fixed bug in VC++ 4.2

KBSubcategory Keywords

VCGeniss

OLDoclss

VCAlpha

VCMac

VCMips

VCx86

Win32s

buglist vcbuglist400

vcbuglist410

vcbuglist420

vcfixlist410

vcfixlist420

The following table shows examples of several types of queries using the
keywords listed above.

Information Type

All bugs in VC++ 4.0

All bugs in VC++ 4.1

All bugs in VC++ 4.2

Fixed bug in VC++ 4.1

Fixed bug in VC++ 4.2

Query Syntax

vcbuglist400

(vcbuglist410 and vcbuglist400) not vcfixlist410

(vcbuglist420 and vcbuglist410 and vcbuglist400)
not (vcfixlist410 or vcfixlist420)

vcfixlist410

vcfixlist420

APPENDIX

Product-Specific Keywords
You can use KBSubcategory keywords to organize Languages articles or to
search for specific groups of Languages articles. For information about KB
Subcategory keywords for other Microsoft developer products, please query
the Knowledge Base using the keywords dskbguide and kbkeyword.

Knowledge Base-Wide Keywords
Each article in the Languages collection also contains at least one generic,
Knowledge Base-wide keyword (called a KBCategory keyword). The KBCate
gory keywords are standard throughout the Knowledge Base and appear in all
Knowledge Base articles, regardless of the type of product. You can use KBCate
gory keywords to organize all Knowledge Base articles for viewing or to search
for articles across several Microsoft products. For more information about
these KBCategory keywords, please see the following Knowledge Base article
on line: "Categories and Keywords for All Knowledge Base Articles": Q94671.

417

INDEX

Page numbers in italics ref er to tables, figures, or illustrations.

Symbols and Numbers
'' (apostophes) in SQL data strings, 319
* (asterisk) wildcard in Knowledge Base searches,

413
16-color bitmaps, 133

A
About dialog box, 48
About Ellipse menu command, 157
About Rect menu command, 157
About SysMenu command, checking for, 52
accelerator table of an ActiveX control, 216-20
ACCEL project, 217-20
Access database

attaching DBF tables to, 281
attaching FoxPro to, 271, 287-93
attaching Oracle to, 271, 299
attaching SQL Server to, 271, 293-98
linking DBF tables to, 273-74

AccessPict control, adding, 276
AccessPict OLE control project, building a Release

version of, 274
access points, 75, 78
ACCFOXDLGI.CPP file, 292
ACCFOXDLG.OGX Developer Studio component

(on the companion CD-ROM), 289
ACCFOX.H file, 291
ACCSPICT control, inserting, 302
ACCSPICT OLE control, building, 300
ACCSQLDLGI.CPP file, 297
ACCSQLDLG.OGX Developer Studio component

(on the companion CD-ROM), 295
ACCSQL.H file, 297
ActivateFrame function, 86

implementing for child frame windows, 262
overriding, 55

active frame window in MDI applications, 40
active view in SDI vs. MDI applications, 41-42

418

ActiveX control class, adding data members and
functions to, 197-98

ActiveX controls
checking for unsafe areas, 192
guidelines for scripting or initializing safety, 190
interaction with Internet Explorer, 182
loading properties asynchronously, 193-201
making safe for scripting and initializing, 182-93
overriding the COleControl: :OnGetControUnfo

function, 217
AddDBDlg component, inserting, 290, 295-96
AddDocTemplatefunction, 77, 81, 90
Add method, adding to the collection class, 229
AddReffunction, 186-87, 208, 209
AfXcmn.h .header file, 400
AFXCORE.RTF source file, 126
AfxCurrentResourceHandle function, 407
AFXDISP.H, 249
AfxFindResourceHandle function, 407
AfacGetApp function, 94
AfxGetResourceHandle function, 407
AFXOLE.H file, 205, 240
AfxOlelnit function, 240, 380-81
AFXPRINT.RC resource file, 25
AfacSetResourceHandle function, 407
AfacTermExtensionModule function, 407
Alt-M key combination, 219
ANIMBAR project, 66-73
apostrophes in SQL data strings, 319
application attributes, saving the state of, 233,

253-64
application class, modifying, 64-65, 154-56
application element, 4-5
application layers in MFC

primary, 4-7, 6
secondary, 7, 8
tertiary, 7-8, 9

application object, 45
application-related functions, 79-81

applications. See also MDI applications; MFC
applications; SDI applications

adding an MRU list to existing, 23-24
adding docking toolbars and status bars to, 18-22
adding MAPI to, 28-31
adding new menu resources to, 25-26
adding print preview to existing, 24-28
creating documents in, 78
creating prototype, 266
creating without a menu bar, 85, 366--68
custom class factory in, 233, 249-53
customizing with AppWizard, 17
dialog-based, 9-10, 10, 11
implementing tooltips in, 61
importing bitmap resources, 18-20
modifying resources, 90-91
modifying the execution of, 40-43
modifying the initial appearance of, 53-57
modifying the initial state of, 53-57
modifying the system menu of, 46--53
providing tooltip support in, 169-70
removing the system menu from iconized, 357-60
saving the state of attributes upon exiting, 233,

253-64
sharing data with Visual Basic applications,

220-31,221
application types created by AppWizard, 8-13
application-wide options provided by AppWizard,

13-17
application window title bar, name in, 354
AppStudiolss keyword, 414
AppWizard, 3

application types created by, 8-13
application-wide options provided by, 13-17
creating applications using CFormVieu\ 326--27
customizing applications with, 17
running on MDB files, 274-75, 281-82, 285
toolbar generated by, 19, 19

_APS_NEXT_RESOURCE_vALUE definition,
setting in the RESOURCE.H file, 406

asterisk (*) wildcard in Knowledge Base
searches, 413

asynchronous loading of ActiveX control
properties, 193

attributes, saving the state of application, 253-64
AU_TITLES.SQL file, loading from the companion

CD-ROM, 312
automation class, hooking the interface to, 208

Index

B
background brush, 350
background color

changing for edit controls, 348-51
changing in OLE controls, 404

backgrounds
in dialog boxes, bitmaps as, 111, 133-43
painting in dialog boxes, 134

background surface in dialog boxes, 142
BEGIN_INTERFACE_PART macro, 185
BeginWaitCur.sorfunction, calling, 370, 371
binding

with ODBC API calls, 388
static and dynamic, mixing in DAO database

classes, 271-72, 299-305
BitBlt method, 133, 137-40, 138
bitmap brush method, 133, 140-42, 141
bitmap images, loading asynchronously, 193-201
BITMAPINFO, declaring a structure derived

froin, 195
bitmap objects

initializing the attributes of, 135-36, 138-39,
141-42

loading, 135-36
bitmap resources, importing into applications,

18-20
bitmaps

adding attributes for properties, 194-95
adding supporting code for, 134-35, 137-38, 141
animating, 65-73
as the background in dialog boxes, 111, 133-43
centering, 137
displaying without animation, 71-72
loading and storing, 133

BKBMPS ·project, 133-43
blank database, creating, 288
BN_CLICKED message, adding a message handler

to the CFormView class, 328
BN_CLICKED notification handlers, 144-45
BOOL public data member, declaring in

CMainFrame, 358
bound tables, attaching to an MDB file, 290
brush for background colors, 350
brush objects

creating by calling CreateStockObject, 142
initializing, 143

buglist vcbutlist400 keyword, 416

419

MFC DEVELOPER'S WORKSHOP

bug-related articles, 325
bulk row fetching functionality, 267
burning trash can animation, 382
button control, subclassed, 298
buttons

adding for stored procedures, 315
closing MDI forms with, 328
message handlers for, 315-16

c
C in class names, 185
C4236 warning, 335
CAccessPict class, 303
CacheGlobalData, 381
callback function, 131
CanCloseFramef\mction, 331-32
Cascade All command, checking for, 52
CAsyncSocket class, 29
CBasicCtrl class, adding OLE Automation

properties to, 402
CBitmapProperty class, customizing, 194-95
CBmapBrushDlg dialog box, 141
CBmapCenterDlgdialog box class, 137
CBmapDlgdialog box class, 135
CCachedDawPathProperty class, 194
CChildFrame class, 55
CChildWnd: :OnSysCommand function, 52
CCmdTarget: :BeginWaitCursor function, calling,

370,371
CCmdTarget class, predefined functions in, 208-9
CCmdTarget-derived class, 206-7
CCmdUJ object, 178
CCreateContext structure, 84-85, 87-88
CDaoQp,eryDefobjects, 268
CDaoRecordView::OnlnitialUpdate function, 278
CDaoRecordView::OnMove function, 279
CDaoTableDef object, 267
CDatabase: :DpenEx function, new options in, 267
CDialog-derived class in dialog box-based

applications, 10
CDKiss keyword, 415
CDM_HIDECONTROL message, 119
CDocTemplate: :CreateNewDocument function, 82
CDocTemplate::CreateNewFrame function, 82, 340
CDocTemplate::docNamefunction, 94, 95
CDocTemplate: :DpenDocumentFile function, 82
CDocument::CanCloseFrame function, 331-32

420

CDocument: :DeleteCuntents function, 83
CDocument-derived class, 6, 11
CDocument::IsModified function, 83, 84
CDocument: :OnNewDocument function, 78, 83
CDocument: :SaveModified function, 83, 84
CDocument::SetModifiedFlagfunction, 83, 84
CD-ROM (companion to this book)

ACCFOXDLG.OGX Developer Studio
component, 289

ACCSQLDLG.OGX Developer Studio
component, 295

AU_TITLES.SQL file, 312
Gallery components, 287-88, 293
loading SUM_SOLD.SQL file from, 320
MYRES project, 234
\PROJECTS\DEFAULT directory, 18, 19
sample databases, 270
Visual Basic files, 231

CDynLinkLibrary object, passing to
AfxlnitExtensionModule, 407

CEnumArray class, 222-23
CEnumVARlANI'class, adding, 223-24
CEnumVARIANTobjects, 221
CExecButton class, 291, 296-97, 298
CExecButton command, 292, 297
CFindReplaceDialog class, accessing member

functions, 132
CFormView class

in SDI and MDI applications, 326-28
view derived from, 101, 103

CFrameWnd::ActivateFrame function, 86
CFrameWnd class, 61
CFrameWnd-derived class, 5, 11
CFrameWnd-derived windows, tooltips and, 169, 170
CFrameWnd: :LoadFrame function, 84-85
CFrameWnd::PreCreateWindow function, 85-86
CFrameWnd::ShowControlBar, displaying or hiding

control bars, 22
CF_TEXT format, 410
character strings, transferring between a list box

and a CStringArray object, 151, 158-62
Checklndex helper function, 228-29
child frame, MDI, changing the size of around a

form view, 327-28
child frame menu of an MDI application, 32, 33,

34,34
child frame window class, modifying, 157-58

child frame windows
adding icon resources, 35
adding Initialize and Terminate functions to,

260-62
adding string resources to, 34-35
supporting multiple, 32

child window controls, tabbing between, 151,
162-68

child window frame, changing the title of, 329-32
child windows

activating the next, 50
adding, 38
adding data members to, 259-60
adding tooltips for, 151, 169-76
centering, 56
changing the frame window title of, 85
changing the title of MFG-based, 329-32
customizing the initial state of, 55
displaying initially as maximized, 260
dynamically sharing the main frame window

between,151, 152-58
edit controls embedded in, 243
implementing drag and drop capability between,

233,238-49
modifying attributes in MDI applications, 54-57
modifying the main menu of, 158
multiple in MDI applications, 12
notifying, 255
registering, 246
retrieving the default state from the Registry

key, 261
tracking the state of, 259-60

child window system menu, modifying, 49-51
CHKBOOK sample, 341
ClmageCtrl::OnDraw function, 200
ClmageCtrl: :SetlnterfaceSafetyDptions function, code

sample from, 190-92
ClmageCtrl:: ValidlmagePath function, 192-93
classes, adding new for document templates, 90
class factory class, 251-53
class identifier (CLSIDs), 186
class library, 188
Class Wizard

adding control event handlers, 123-24
adding new classes derived from CCmdTarget,

251-52
adding notification handlers, 144-45
creating new control classes, 163

Index

ClassWizard, continued
invoking, 62
removing the photo field for DoFieldExchange,

275-76
substituting WizardBar for, 301

CleanUpViews function, 108-9
client area

calculating for the main frame window, 56
customizing in frame windows, 86
detecting mouse clicks in, 377-79

client item, 15
Client/Proxy/Custom interface interaction, 215
CLiss keyword, 414
CLnglss keyword, 415
Close command, simulating on the File menu, 328
CLSIDs, 186
CMainFrame class, 48

adding pointers to access views, 104-5
adding the OnCmndlgFindhandler, 129-30
changing to CChildFrame class, 39
declaring handler functions, 121-22
modifying, 20, 69-70
switching views from, 104

CMainFrame::ModifySysMenu function, 52
CMainFrame header files, adding in the

implementation file, 98, 99
CMain.Framewindow class, modifying for pop-up

menus, 177
CMDIChildWnd-derived class, 13, 14, 38
CMDIChildWndwindow, replacing a view in, 394-96
CMDIClientWnd class, deriving, 361
CMDIFrameWnd class; changing the main frame

window to, 36-37
CMDIFrameWruHierived class

element implemented by, 5
implementingthemainframewindow, 12-13, 14

CMDIFrameWnd::OnWindowNew function, 340-41
CmdTarget::EndWaitCursorfunction, 370, 371
CMenu::GetSystemMenu function, 47
CMNDLGS project, 116-32
CMultiDocTemplate-Oased window, creating without

using CWinApp::OnFileNew, 346
CMultiDocTemplate class, deriving a new template

class from, 153
CMultiDocTemplate::DpenDocumentFilefunction, 341
CMyDlg dialog box class, 14 7
CMyDlg::LoadFontfunction, 147, 148
CMyPointObj class, 209-10

421

MFC DEVELOPER'S WORKSHOP

CodeGen keyword, 414
CodeSam keyword, 415
COleClientltem-derived class, 15, 16
COleData&rurce class, 381
COleDocument class, 14
COleDropSource object, 410
COleDropTarget class, 238, 246, 381
COleDropTarget::Regi,sterfunction, 381, 382
COleDropTarget: :Revoke function, 24 7
COlelPFrameWnd-derived class, 16, 16
COleServerDocclass, 15-16
COleServerltem-derived class, 16, 16
COleVariant objects, 222
COleVariant-type objects, creating an array of, 226
collection class

adding and modifying, 224-25
adding properties and methods to, 227-29

Collection custom Get/Set property, 229-30
collection objects, creating and handing off,

220-21,221
collections, 220
color choices, processing and storing for dialog

boxes, 145-46
COLORREF values, computing, 145-46
colors, retrieving exact, 139
combo boxes, modifying with the StringTransfer

function, 159
COM interface, implementing, 216
command handlers

adding for print commands, 26-28
implementing new, 94-95
installing for each document type, 95
installing new, 93-94

commands, moving from main frame to child
frame menus, 35

command-update command messages, mapping to
appropriate message handlers, 177-78

command-update handler, implementing for
pop-up menus, 177-79

COMMDLG.RC, copying the PRINTDLGORD
dialog box from, 373

common control drag image, preserving, 410
common controls, underlying implementation

for, 249
common controls view, 103
common dialog boxes, customizing using MFC

classes, 116-32

422

common dialog box template
copying, 117-19,127-128
customizing, 128-29

companion CD-ROM. See CD-ROM (companion to
this book)

Component And Controls Gallery, adding an OCX
to, 274

connection handle, 316
connect strings, adding to for recordsets, 307-8
constructor of a document element, 78
containe~, creating for MDI child windows, 39
container/server support, 16
container support, 14-15
Context Help style check box on the Extended

Styles tab, 125
context-sensitive Help, adding for dialog box

controls, 125-27
context-sensitive style, adding to the common

dialog box, 125-26
context structure, 87-88
control bars. See al,so status bar; toolbars

adding initialization and implementation code
for, 21-22

adding to dialog boxes, 397-99
displaying or hiding, 22
place for creating and initializing, 20, 21

control classes
adding data members and functions to, 197-98
adding new, 163-64
adding WM_CHAR handles to, 164-65
modifying to add IObjectSafety, 183-86

control event handler, adding with Class Wizard,
123-24

CONTROLINFO structure, 217
control menu. See system menu
cm;itrols, 151

changing fonts for, 147-48, 148
coloring individual dialog box, 144-47
hiding existing, in the dialog box template, 119
underlying implementation for, 249

Count property, adding to the collection class, 228
CPhotoDlgclass, 303

overriding the WM_INITDIALOG message,
304-5

CPPiss keyword, 414
CPPLnglss keyword, 415
CProgressCtrl class object, 57

•

CreateFontlndirect function, 14 7, 148
CreateNewFrame function, 82

creating additional views with, 340-42
CreateStatic function, 100
CreateStockObject function

calling to initialize brush objects, 143
creating brush objects, 142

CREATESTRUCT structure, 54, 79, 85
setting hmenu field to NULL, 366-67

Create View function, 100
"Creating a pane with no CDocument" warning, 107
CRecordset: :IsBOFfunction,, 352
CRecordset::IsEOFfunction, 352
CRecordset objects

detecting empty, 352
sharing, 393

CRecordset: :open function, 352
CRecordset::open member function

executing queries from, 385
overriding, 386-88

CRecordset::Requery function, 352
CRTlss keyword, 415
CSharedTempl,ate class, registering document

templates, 155-56
CShowTitleSet recordset class, adding parameters

to, 308
CSocket class, 29
C source files, allowing forward references, 204
CsplitterWnd::CreateStatic function, 100
CsplitterWnd::CreateView function, 100
CsplitterWnd data member, adding to the

CMainFrame class, 98, 99
CStatusBar class in MFC versions 4 and later, 72-73
CStatusBar-derived class, 66, 67
CStatusBar::Drawltem member function, 67-69
CStatusBarpane, displaying the current time in,

333-36
CStatusBar::SetPanelnfo function, 333
CStatusBarwindow, setting the first pane of, 343-45
CStringArray object, 159

transferring strings between a list box and, 151,
158-62

CStringobjects, destroying, 227
CSysMenuApp::OnAppAbout function, 51-52
CTLCOLOR_EDIT message, 348, 350
CTLCOLOR_MSGBOX message, 348, 350
CTlTipView class, 171

CToolTipCtrl class, 60
implementing tooltips using, 61
providing tooltip support, 170

curTemplatePos, 94
CUSTDDX project, 112-16

Index

custom class factory in an MFC application, 233,
249-53

custom DDX functions, 111-16
custom interface, implementing from an

out-of-process server, 202
customized dialog boxes

handling requests from, 123-24, 130-32
initializing and invoking, 129-30
providing help for, 124-27, 132

customizing the current process, 76
custom macros, defining, 250-51
custom MFC interface, 202-4
CUSTOM project, 53-57
CVBCollDoc class, 221
CView

creating an alternate in an SDI application,
337-39

view derived from, 101, 102
CView-derived class

element implemented by, 6
modifying for a customized print dialog box,

375-76
in SDI applications, 11

CView: :OnActivateFrame function, 86--87
CView: :OnDrop function, 248
CView: :PreCreateWindow function, 86
CView::SetActiveView function, 86
CVWiss keyword, 414
CWinApp-derived class, in dialog box-based

applications, 10
CWinApp-derived class, element implemented.by, 4
CWinApp-derived class, in SDI applications, 11
CWinApp::DoWaitCursorfunction, 371
CWinApp: :OnFileNew function, 80--81

creating new documents without, 346-47
CWinApp::DpenDocumentFile function, 80, 81
CWnd-derived classes, reusing, 291, 296
CWnd-derived objects for splitter window panes,

107--8
CWnd::GetDlgltem function, 148
CWnd::OnCtlColorfunction, 348
CWnd::OnSetCursorfunction, overriding, 369, 370

423

MFC DEVELOPER'S WORKSHOP

CWnd: :OnToolHitTest function, overriding, 172-7 4
CWnd::OnToolTipText handler, 61
CWnd: :OnToolTipText notification handler, 1 70
CWnd pointer, 148
CWnd::PreCreateWindowfunction, overriding, 370
CWnd: :SendMessageToDescendants function, 87

D
DAO classes, comparing to ODBC classes, 26()-4)8
DAOCTL sample

building the ACCSPICT OLE control from, 300
in Visual C++, 274

DAO database applications, attaching Oracle to an
Access database in, 271, 299

DAO database classes
attaching SQL Server to an Access database

using, 271, 293-98
compared to DAO SDK classes, 268
compared to ODBC database classes, 270
functionality not included in ODBC classes,

267-68 .
mixing static and dynamic binding in, 271-72,

299-305
mixing with DAO SDK C++ classes, 268
opening a FoxPro database directly with, 271,

272-80
opening Oracle directly with, 271, 284-87
opening SQL Server directly with, 271, 280-84
using with Microsoft Access 97 MDB data, 265

DAO SDK classes, 268
compared to MFC DAO database classes, 268
mixing with MFC DAO database classes, 268

DAOTABLE sample, 288, 290
DAOVIEW application

creating, 288, 294
launching,291,296-97

Da.ta Access Objects (DAO) database classes. See
DAO database classes

database applications, set of choices for creating,
265-66

database classes
comparing,266-68
stretching the original intent of, 270-72
writing applications using MFC, 268-70

DATABASE.CPP file, 290, 296
DATABASE.H file, 290, 296

424

databases
explicitly opening, 278
sample on the companion CD-ROM, 270

database support options, implementing, 17
data members

adding for stored procedure parameters, 308-9
adding new to the application class, 154-55
adding to child windows, 259-60
adding to dialog boxes, 62-63
adding to the MDIDROP project, 240-41
initializing, 83
undocumented, 154

data source for drag and drop operations, 238
data source name (DSN). See DSN (data source

name)
DBC files, reading, 272
DBF files, linking to Access, 273-74
DBF table, attaching to, 281
DDV, 115-16, 390
DDX/DDV (dialog data exchange/dialog data

validation), 390
DDX functions, 111-16
DDX MyFwatTextcustom DDX function, 114-15
DECLARE_DYNAMIC macro, changing from

DECLARE_DYNCREATE, 37
DECLARE_DYNCREATE macro, changing to

DECLARE_DYNAMIC, 37
DECLARE_INTERFACE macro, 203
DECLARE_OLECREATE macro, customizing,

250-53
default Help file support, 125
DEFAULT.RC file, 18, 19, 90-91
default status bar class, 69
default system menu, restoring, 48
default toolbar generated by AppWizard, 19, 19
DEFINE_GUID macro, 186, 364-65
#defines

adding to ACCFOX.H, 291-92, 297
adding to ACCSQL.H, 297

DeleteContents function, 83
descendants of frame windows, sending messages

to, 87
destructor, adding, 63
development, modular method of, 8-9
dialog-based applications, 9-10, 10, 11
dialog box-based application, creating, 289, 294
dialog box class, 10

dialog box component, inserting, 289-90
dialog box controls, modifying the attributes of,

111, 143-48
dialog box element, 7, 10
dialog boxes

adding a question mark to the title bar of, 122
adding context-sensitive style, 125-26
adding control bars to, 397-99
biunaps as the background in, 111, 133-43
creating patterned backgrounds in, 140-43
customization of, 119 I

customizing the painting of the background, 134
handling requests from, 123-24
invoking customized, 120-23
modal, 116
modeless, 116
modifying, 111
notifying of color changes, 144-45
providing help for, 124-27
surfaces in, 142

dialog box object, 10
dialog data exchange (DDX) function. See DDX

functions
dialog data validation. See DDV
directives, adding to the Show Titles dialog box,

311-12
DLGCBR32 sample application, 397
DLGCTRL project, 144-48
DLGDB32 code sample, 393
DLGTIPS project, 61-65
DLGXMPL project, 159-62
DLLDATA.C source file, 213
DLL projects

adding resources to, 235:-36
creating the framework of, 234-35

DLLs
building marshaling, 213-14
building resource only, 233, 234-37
marshaling, 211

docking toolbar, 18
docking toolbar and a status bar, adding to

applications, 18-22
DOCMULTl.CPP file in the MFC library source

code,341
<docName> substring, 353, 354
docName function, 94, 95
document class, modifying, 229-30

Index

document commands, alternative methods for
handling new, 95-96

document data, synchronizing with a second view,
104

document elements, 6, 78
document header, adding functions to, 282, 286
document name, root for the default, 354
document-related functions, 83
documents

adding a second view to, 97-101
creating new without CWinApp::OnFileNew,

346-47
customizing the opening of, 81
implementing switchable views, 101-10
re-initializing, 107-9

document template initialization, modifying,
38-39

document template list, initializing, 91
document templates, 75

adding new classes for, 90
adding new types of, 89-90
choosing without the New Document dialog box,

88-97
customizing, 79-88
default mechanics of, 77-79
keeping pointers to all, 96
overview of, 76-77
registering, 155-56
related functions, 81-82

document template string, 353-56
document types, 76

creating new, empty, 91
descriptions of and wildcard filters, 354
extensions for, 354
identifiers for, 354
installing unique handlers for, 93
names of, 354
names stored in the registration database, 354

document-view creation functions, managing or
customizing, 82

document-view model, 75
document-view pairs, 12, 81
DoDataExchange class, 326-27
DoDragl>rop function, 244, 245, 381
DaFieldExchange function, 278, 308-9

removing the photo field from, 275-76

425

MFC DEVELOPER'S WORKSHOP

DoModal function, checking the return value from
the call to the dialog box, 124

DoPropExchange function, 198-99
DOSXNTiss keyword, 415
DoWaitCursorfunction, 371
drag and drop capability, implementing between

child windows, 233, 238-49
drag and drop style in Windows 95 common

controls, 409-10
DRAGD95.EXE sample, 409-10
drag drop, initiating, 381
dragged items, implementing the dropping of,

244-45
dragimage,preserving,410
Drawltem member functions, implementing, 67-69
drop code, placement of, 244
DROPEFFECT_COPYvalue, 238, 247-48
DROPEFFECT_MOVE value, 238, 247-48
DROPEFFECLNONE value, 238, 247
DROPEFFECT return value, 381
dropped text, inserting between words, 239-40, 239
drop source, turning a CWnd-derived object

into, 381
drop target

for drag and drop operations, 238
registering, 246-47
turning a CWnd-derived object into, 381

dskbguidekeyword, 416
DSN (data source name), 281, 318
dynamic and static binding, mixing in DAO

database classes, 271-72, 299-305
dynamic modifications

of the child frame system menus, 50
to the system menu, 46, 48-49

dynamic splitter windows, 97
dynasets

opening on SQL Server stored procedures,
411-12

using with Microsoft SQL Server version 6.x,
383-84

E
edit controls

changing the background color of, 348-51
embedded in child windows, 243

EnableToolTips function, calling, 172
END_INTERFACE_PART macro, 185

426

EndWaitCursorfunction, 370, 371
enumerated array class, adding, 222-24
environment handle, 316
error LNK2001, avoiding, 364-65
EXECBUTTON.OGX file, importing, 291, 296
Exitlnstance function

implementing for the calling application, 237
overriding, 255
overriding in the application class, 155

Explorer style modal dialog box, customizing, 118,
120, 120

_export keyword, 335
extension DLLs, calling resource-loading functions

in, 406-8
extension for documents of a type, 354
ExternalAddRef function, 187
external clients, 211

exposing a collection to, 229
ExternalQy,erylnterface function, 187
ExternalRelease function, 187

F
fields, binding dynamically, 299
File All command, checking for, 52
File menu

adding an entry for the MRU list, 23-24
adding Print and Print Preview menu items,

25-26,25
adding Print Setup command, 25, 26

<fileNewName> substring, 353, 354
File Open accelerator value, 121
File Open dialog box

adding, 118
customizing, 119-20
initializing and invoking, 120-23

File Open dialog box template (Windows 3.xstyle),
117

FILEOPEN.DLG file, 117, 118
File Open (Explorer style) common dialog box,

120, 123
<filterExt> substring, 353, 354
<filterMacExt> substring, 353
<filterMacName> substring, 353
<filterName> substring, 353, 354
<filterWinExt> substring, 353
<filterWinName> substring, 353
final application layer, 7-8, 9

Find All button, disabling, 130
Find All push button control, adding, 128
find/replace requests, implementing notification

of, 131
Find Text accelerator, value for, 129
Find Text dialog box, customizing, 128-29, 128
FINDTEXT.DLG file, 127, 128
Find Text template, 127
fonts, 147-48
foreground surface in dialog boxes, 142
jM loop in Visual Basic applications, 225
forward declaration, adding to the dialog box

header file, 310-11
FoxPro database

attaching to an Access database using DAO
database classes, 271, 287-93

opening directly with DAO database classes, 271,
272-80

preparing, 273
FoxPro database DBFfiles, 273-74
frame, 3
frame window class, changing from SDI to MDI, 39
frame window element, 5
frame window-related functions, 84-86
frame windows, 45

creating; 78-79, 80, 82
customizing the client area of, 86
in MDI applications, 42

framework application, general architecture of, 4
framework layer, 4-7
full-server support, 16
functions

applications-related, 79-81
document-related, 83
document template-related, 81-82
frame window-related, 84-86
view-related, 86-87

G
Gallery components on the companion CD-ROM,

287-88,293
GetActiveFrame function in MDI applications, 42
GetClientRectfunction, centering bitmaps from, 139
GetCollection function, modifying, 230
GetDatabase function, adding to a document

header, 277

Index

GetDefaultConnect string, adding to, 307-8
GetDefaultDBName member function, 277, 282, 286
GetDlgltem function, 148
GetDocStringfunction, 94-95
GetFirstDocTemplatePosition function, 81
GetlmagePath function, modifying to return the

current value of ImagePath, 198
GetlnterfaceSafetyoptions function, 188-89
GetNewEnum function, 226
GetNextDocTemplate function, 81
Get/Set custom property, 229-30
Get/Set ImagePath property, 197-98
GetSuperWndProcAddrfunction

adding in 16-bit applications, 378
adding to CMDIClientWnd, 361

::GetSysColorfunction, 139
GetSystemMenu function, 47, 48
: :GetSystemMetrics function, 54
GetValues function, 210
GiveFeedback function, overriding, 410
global classes, differentiating from nested, 185
global helper functions, closing for DAO

databases, 290, 296
globally unique identifier. See GUIDs
graphical view, 102
GUIDGEN.EXE, 204-5
GUIDs (globally unique identifiers)

defining, 186
generating for custom interfaces, 204-5
initializing, 364

H
handler function for TTN_NEEDTEXT, 61
handlers. See also message handlers

for menu items, 93
for print commands, 26-28
for WM_SYSCOMMAND message, 51-52

Help button, adding in dialog boxes, 125
Help file, opening topics with WM_HELPINFO

message handler, 126-27
Help file support, 125
Help IDs, adding for all new controls in dialog

boxes, 126
Help menu for the MDIMENU application, 152,

153
Help topic updating in dialog boxes, 125

427

MFC DEVELOPER'S WORKSHOP

hourglass pointer, showing the standard, 370, 371
how-to articles, 325
HPJ file, including RESOURCES.HM file in, 126
HRESULT type, 203

I
/in class names, 185
iconized applications, removing the system menu

from, 357-60
identifier for the document type, 354
ID_FILE_NEW command, handling, 92
ID_FILE_NEW command handler, 80
ID_INDICATOR_TIME indicator, 333-34
IDL (Interface Description Language) file, 212, 213
idle time, 334
IDR_MAINFRAME menu resource, 366
IDR_MAINFRAME object, 20
IIDs (Interface identifiers), 186
ImagePath property

interrupting during downloading, 195
updating the state of controls, 199-200, 201

IMAGE project, 183-93, 194-201
IMPLEMENT_OLECREATE macro, customizing,

250-53
implicit this pointer, 204
IMyPoint custom interface, 204

adding, 206-7
implementing custom functions of, 209-11
redefining INTERFACE as equal to, 203-4

#include directives, adding for the photo dialog
box,303

include files, adding, 205
indexes, generating unique, 383-84
INI file approach, 263
INITGUID.H header file, 183, 186, 205, 364, 365
initialization code, updating in the main frame

window,38-40
Initialize function, 260-62
InitialShowWindow function

adding helper functions for, 257-58
implementing, 355-56

Initlnstancefunction, 38, 40, 391
adding initialization code to, 31
calling CWinApp::LoadStdProfileSettings, 24
of the main frame class, 53
modifying,91-93, 155-56,254-55
modifying in the calling application, 236-37

428

InlineAsmlss keyword, 414
InSelRegion helper function, adding, 243-44
interface

designing, 265
implementing custom from an out-of-process

server, 202
redefining as equal to IMyPoint, 203-4

Interface Description Language (IDL) file, 212, 213
interface identifiers (IIDs), 186
INTERFACESAFE_FOR_UNTRUSTED_CALLER

option, 184, 185
INTERFACESAFE_FOR_UNTRUSTED_DATA

option, 184
InternalSetReadyStatefunction, parameter values for,

199-200
Internet Explorer

checking for the support of IObjectSafety
interface, 182

interaction with ActiveX controls, 182
Internet programming, 181
IObjectSafety interface, 182, 186

adding, 18~6
declaring, 185
implementing, 181

ISAM databases, accessing, 269
IsBOFfunction, 352
IsDiawgMessage function, 168
/£EOFfunction, 352
IsModified function, 83, 84
IsRadioButton function, 14 7
Item property, adding to the collection class,

228-29
IUriknown::AddReffunction, 187
!Unknown interface, 187-88, 207-9
!Uriknown::Release function, 187

J
Jet. See Microsoft Jet version 3
joins, creating between different database types, 284

K
KBCategory keywords, 417
kbkeywurdkeyword, 416
KBSubcategory keywords, 413

listing of, 414-16

Knowledge Base, 325

L

articles on tooltips for dialog box controls,
175-76

articles related to toolbars and status bars, 22
keywords in, 413

layers of MFC applications, 4-8, 5
left mouse button

ending drag and drop operations, 246
initiating drag and drop operations, 241

Lengthy Process command, 57-58
adding to the main menu, 58-59, 58

Liblss keyword, 414 .
linked tables in Access, 274
Linklss keyword, 414
LNK2001 ERROR, 205
"LNK2005 <symbol> already defined" error

message, 365
LoadFontfunction, 147, 148
LoadFrame function, 84-85
LoadFrame method, overriding, 367-68
Load function, initiating asynchronous transfer, 198
LoadStdProfileSettings, calling, 24
LSTDRG sample, 380
LVN_BEGINDRAG message, responding to, 410

M
MacPrglss keyword, 415
macros, defining custom, 250-51
main frame menu, modifying, 35-36
main frame window

adding a docking toolbar and a status bar to, 18
automatically minimizing or maximizing, 55
calculating the client area of, 56 ·
centering, 54
changing the size of, 327
dynamically sharing, 151, 152-58
implementing the OnClosefunction of, 258-59
modifying,98-101
modifying the initialization code of, 38-.40
modifying the initial size and position of, 54
modifying the initial state of, 53-54
preventing users from changing the size of,

327,328

Index

main frame window, continued
reading attributes and toolbar states from the

Registry key, 255
replacing an SDI, 36-37
retrieving the size and the position of, 257
saving the current state of, 258-59
setting size to half of the screen, 54

main frame window class
changing to CMDIFrameWnd, 36-37
modifying, 156-57
switching between views in, 104

main frame window menu of an MDI application,
32,33

MAIN project, 234-37
main system menu, modifying, 46-49
MAPI, adding to existing applications, 28-29
marshaling DLLs, 211

building, 213-14
creating REG files for, 214-15
providing with custom interfaces, 215

Maximize command
checking for, 52
copying menu strings for, 53
disabling, 48-49

maximizing
child windows, 55
main frame window, 54

m_bModified member variable, 83, 84
MB_ YESNOCANCEL message box, 83
MDB, supporting, 266
MDBfiles

entering a database path for, 289, 295
running AppWizard on, 281-82, 285

MDI application attributes, saving the state of, 233,
253-64

MDI applications, 12-13, 14, 15
CFormView class in, 326-28
converting existing SDI applications to, 31-43
creating without a menu bar, 367-68
first substring in, 354
frame windows in, 42
menu resource for, 366
modifications to, 54-57
replacing a view in a CMDIChildWnd window,

394-96
self-centering, 54-55, 55

429

MFG DEVELOPER'S WORKSHOP

MDI child frame, changing the size of around a
form view, 327-28

MDI child window frame, changing the title of,
329-32

MDI child windows, dynamically sharing the main
frame window between, 151, 152-58

MDIClient window, 377
changing the background color of, 362-63
subclassing, 361, 377-79

MDIDROP project, 240-49
MDI forms, closing with buttons, 328
MDI frame windows, detecting mouse clicks on the

client area of, 377-79
. MDIMENU project, 152-58
member variables

accessing nested classes through, 206
adding to dialog boxes, 62
adding to the main frame window class, 20

Member Variables page, opening, 62
memo field files, location of, 280
menu bar. See MFC applications
menu commands

adding handlers for new, 157
invoking File Open (Windows 3.x) dialog

box, 120
menu items, adding, 29
menu resources

adding to applications, 25-26
deleting shared, 155
for both SDI and MDI applications, 366

menu strings, copying for the Minimize and
Maximize menu commands, 53

message handlers. See also handlers
adding to the Show titles dialog box, 312
for buttons, 315-16
creating for the photo dialog box button, 304

message reflection, 291, 296
messages

building manually, 402
user-defined, 166-67

METHOD_MANAGE_STATE, 188, 189
MFC applications. See also applications

creating without a menu bar, 366-68
layers of, 4-8, 5

MFG-based child window frame, changing the title
of, 329-32

MFC containers, differences from Visual Basic
containers, 217-18, 217

430

MFC control containers, understanding
accelerator table format, 216

MFC DAO classes, writing applications using, 269
MFC database classes, writing applications using,

268-70
MfcDatabase keyword, 415

articles referenced by, 352, 384, 389, 393, 412
MFC dialog boxes. See dialog boxes
MfcDLL keyword, 415

article referenced by, 408
MfcDocView keyword, 415

articles referenced by, 339, 342, 347, 356, 392, 396
MfcFileIO keyword, 415
MfcHelp keyword, 415
MFC Library, 3

ActiveX control support, 181
MfcMac keyword, 415
MfcMisc keyword, 415

article referenced by, 363
MFC ODBC classes, writing applications using,

268-70
MfcOLE keyword, 415

articles referenced by, 382, 403, 405, 410
MfcPrinting keyword, 415

article referenced by, 376
MfcSockets keyword, 415
MfcThreadlss keyword, 415
MFC Trace output, errors in, 383-84

· MfcUI keyword, 415
articles referenced by, 328, 332, 336, 345, 351,

360,368,372,379,399
MfcVBX keyword, 415
MFILEiss keyword, 414
m_hdbc member of CDatabase, executing

predefined queries, 388
MHELPlss keyword, 414
m..:.hMenuShared data member, 154
m_hWndMDIClient "public" member of the

CMDIFrameWnd class, 56-57
Microsoft Access 97, 269
Microsoft ActiveX controls. See ActiveX controls
Microsoft Download Service (MSDL),

downloading VSWAP32.EXE from, 390
Microsoft Foundation Class (MFC) library. See

MFCLibrary
Microsoft FoxPro. See FoxPro database; FoxPro

database DBF files
Microsoft Jet version 3, 269

Microsoft Knowledge Base. See Knowledge Base
Microsoft Messaging Application Interface

(MAPI), 28-29
Microsoft ODBC Driver for Oracle. See ODBC

Driver for Oracle
Microsoft Software Library (MSL)

DLGCBR32.EXE downloading from, 397
DLGDB32.EXE downloading from, 393
LSTDRG.EXE downloading from, 380
VWRPLC32.EXE downloading from, 394

Microsoft SQL Server. See SQL Server
Microsoft Windows 95 File Open dialog box. See

File Open dialog box
Microsoft Windows common controls, 151
Microsoft World Wide Web site, 325
MIDL.EXE program, 213
Minimize menu command, copying menu strings

for, 53
minimizing

child windows, 55
main frame window, 54

mini-server support, 15-16
mnemonic keys, retrieving descriptions of, 218, 219
mnemonic processing in MFC and Visual Basic

ActiveX control containers, 217-18
mnemonics, accessing, 219
modal common dialog boxes, customizing, 116-27
modal dialog boxes, 116

adding help for, 124
adding tooltips to the controls of, 60-65
customizing, 118
customizing Explorer style, 118, 120, 120
dismissing, 161
modifying, 62-63
updating time on the status bar, 335

modeless dialog boxes, 116, 127-32
ModifySysMenufunction, 47-48, 49, 52
modular method of development, 8-9
most recently used (MRU) list, 23-24
mouse clicks, detecting on the client area of MDI

frame windows, 377-79
mouse pointers, 369-72. See also pointers
MPROFlss keyword, 414
MPW2LIBiss keyword, 414
MRCiss keyword, 414
MRU list, 23-24
MSL. See Microsoft Software Library (MSL)
MSORCLIO.HLP file, 287

Index

multiple document interface (MDI) applications.
See MDI applications

multiple view interface (MVI) application, 97
multiple-view switching in SDI applications,

390-92
multithreaded ODBC database classes, 267
MVI applications, 97

• m_xMyPointObj member variable, 206, 206
MYDECLARE_OLECREATE custom macro,

250,251
MYFACT project, 250-53
MYIMPLEMENT_OLECREATE custom macro,

250,251
MYPOINT.H header file, 213
MYPOINT_l.C source file, 213
MyPointObj class structure, 206, 206
MYPOINT_P.C source file, 213
MYPT project, 202-16
MYRES project, 234-37
MyTextFloatFormat function, 114-15

N
\n character in document template strings, 353-56
name

in the application window's title bar, 354
of the document type, 354

nested classes, 185, 206
nested pop-up menus, 151, 176-79, 176
networks, selecting, 266
New Document dialog box, 89

choosing document templates without, 88-97
_NewEnum property, adding, 225-27
new idle time message, 334
NEWTMPL project, 89-97
Next and Previous buttons, adding handlers for,

309-10
Nmakelss keyword, 414
notification handlers, creating for controls,

144-45
Notify style, setting for static controls, 62
null brush, creating, 142-43
NULL parent window, frame window with, 341

0
Object Description Language (ODL) files, 212
OBJSAFE.H header fi~e, 183

431

MFC DEVELOPER'S WORKSHOP

OCLIENT MFC sample application, 381
OCM_CTLCOLORxxx reflected messages,

handling, 404-5
OCX, registering, 274
ODBCAPI

allocating and deallocating, 316
output parameters with, 272, 314-22
retrieving results from a stored procedure

using, 322
ODBC API calls, 322

direct to stored procedures, 316-20
ODBC classes

comparing to DAO classes, 266-68
parameterized pre-defined queries and, 385-89

ODBC connect string, setting up the correct, 284
ODBC database applications, creating, 306
ODBC database classes

compared with DAO database classes, 269
functionality not included in DAO database

classes, 267
with Microsoft SQL Server version 6.x, 265
multithreaded, 267
opening a recordset on a stored procedure

using, 272, 305-14
output parameters with, 272, 314-22

ODBC data sources
accessing, 269
selecting, 281, 285

ODBC Driver for Oracle, 284
Help file, 287

ODBC drivers, 268, 269
ODL (Object Description Language) files, 212
OFN_EXPLORER flag, 123
OK, clicking in dialog boxes, 161
OLDoclss keyword, 416
OLE, enabling for pre-existing MFC

applications, 380
OLE Automation object, dynamic creation of,

250-51
OLE Automation properties, adding to

CBasicCtrl, 402
OLE controls

adding tooltips to, 400-403
changing the background color of, 404

OLE DLLs, initializing, 380
OLE drag-and-drop

dragging text between windows, 380-82
implementing in Windows 95 common

controls, 409

432

OLEIMPL2.H header file, including, 222
OLE options compound document support, 14
OLE system libraries, initializing, 240
OnActivateFramefunction, 86-87, 260
OnBeginPrintingfunction, adding, 28 .
OnClose function, 258-59
OnCmndlgFile handler for customized dialog

boxes, 121
OnCmndlgFind handler, adding to the CMainFrame

class, 129-30
OnColorChange function, 145-46
ON_COMMAND handler, 31
ON_COMMAND_UPDATE_UI handler, 31
OnCreateClient function

adding code to create and initialize splitter
panes, 100

overriding in the CMainFrame class, 98, 99-100
OnCreateClientmethod, overriding, 367-68
OnCtlColorfunction, 318, 350-51
OnCtlColor message handler, 146-4 7
OnDataAvailable function, implementing, 195-97
OnDragEnterfunction, 247-48, 381
OnDragLeavefunction, 247, 381
OnDragOverfunction, 247-48, 381
OnDraw function, 200
OnDrop function, 248-49, 381
OnEndPrintingfunction, adding, 28
OnEraseBkgnd handler, adding code to, 140
OnFileNewfunction, 80-81

creating new documents without, 346-47
OnFileNew handler, sending ID_FILE_NEW

command, 80
OnGetControUnfo function, 217

modifying,218-19
overriding, 218

Onldle function, 148
OnlnitDialogfunction, 63

adding code to, 138-39, 141-42
adding the context-sensitive style in, 126
adding window styles to dialog boxes, 122

· making room for a control bar, 398
modifying, 148
overriding, 130
overriding and modifying, 161

OnlnitDialog handler function, adding, 135
OnlnitialUpdate function

changing from "protected" to "public," 103
default implementation of, 278

OnlnitialUpdate function, continued
modifying for tooltips, 171-72
opening the recordset, 277-78
overriding, 165-66
overriding to change the title of a child window

frame, 331
replacing the default implementation of, 283, 287

OnLButtonDownfunction, 241-43
OnLButtonUp function, 246
OnMnemonic function

modifying,219-20
overriding, 218

OnMouseMove function, 244-45
OnMove function, 279
OnMooe member function, 279
OnNewDocument function, 78, 83

overriding documents in SDI applications, 108
OnOcmCtlColor member function, processing

reflected messages, 405
OnOKfunction, overriding and modifying, 161-62
OnPreparePrintingfunction

adding, 28
of the CView-derived class, overriding, 375-76

OnResetState function, overriding, 199
OnSetCur.sorfunction, overriding, 369, 370
OnSetTextfunction, implementing, 344
OnSize function, 260

implementing for child frame windows, 262-63
OnSize method, overriding the main frame

window's, 357, 35g..,..59
OnSwitchFocus handler function, 167-68
OnSysCommand function, 52
OnToolHitTest function, 169

overriding, 172-74
OnToolTipNotify function, 17 4-75
OnToolTipText handler, 61, 170
ON_UPDATE_COMMAND_UI handlers, 343

for control bars, 397
ON_UPDATE_COMMAND_UI macro, 176,

177-78, 179
OnUpdateTime {unction, 333
On ViewSwitchfunction, implementing for switching

views, 105-7
OnWindowNew function, 340-41
openDocumentFilefunction, 80, 81, 82, 341, 346, 347
openEx function, new options in, 267
open function, 352

Index

open member function
executing queries from, 385
overriding, 386-88

Oracle
attaching to an Access database, 271, 299
ODBC Driver for, 284

Oracle server database table, opening directly, 271,
284-87

outer class, accessing nested classes from, 206
out-of-process server, 202, 211
output parameters

with the ODBC API and ODBC database classes,
272,314-22

support of, 322

p
pad,3
PaintRadioBtns function, 146
panes

creating for bitmap animation, 70
setting the first in a status bar, 343-45

parameter binding with ODBC API calls, 388
parameter data members, initializing, 308
parsing member function, adding, 316
password, storing, 318
patterned backgrounds, creating in dialog boxes,

140-43
photo data member, removing, 301
photo dialog, creating the dialog box class for, 303
photo dialog box, 302, 303
photo dialog box button, creating the message

handler for, 304
photo field

displaying, 278-79
removing from DoFieldExchange, 275-76

photos, displaying in databases, 280
pointer, implicit this, 204
pointers. See al,so mouse pointers

destroying temporary, 148
polling the current process, 76
pop-up menus

creating, 53
enabling nested, 151, 176-79, 176

POPUP project, 176-79
PostMessage function, 165
PostNcDestroy function, 63-64

433

MFC DEVELOPER'S WORKSHOP

PreCreateWindow function, 79, 85-86, 86
overriding,56,85,357-58, 370
overriding for the CMainFrame class, 367
overriding to change the title of a child window

frame, 330
pre-defined queries, MFC ODBC classes and,

385-89
PreTranslateMessage function

calling, 218
inodifying,219-20
overriding, 168,218

Previous and Next buttons, adding handlers for,
309-10

priinary application layer, 4-7, 6
PRIMARY KEY specification in SQL Server

version 6.0, 384
Print coininand, adding to File inenu, 25-26
print coininands, adding handlers for, 26-28
print dialog box, custoinizing, 373-76
PRINTDLGORD dialog box teinplate

copying froin COMMDLG.RC, 373
selecting, 374

PRINTDLG structure, 374
setting the flags of, 376

printing resources, accessing, 25
Print inenu, properties for each itein, 26
PRINT inessage, retrieving froin stored

procedures, 319
print preview, adding to existing applications,

24-28
Print Preview coininand, adding to File inenu,

25-26
Print Setup coininand, adding to the File inenu,

25, 26
Print Setup dialog box, invoking, 27
ProcessMessageFilterfunction, overriding in the

application class, 64
product-specific keywords, 416
progress indicator

adding to the status bar, 57-60
creating and displaying, 59-60

\PROJECT\DEFAULT directory, on the
coinpanion CD-ROM, 18, 19

PROJNA,32
prototype applications, creating, 266
prototypes, creatin,K, 270
PUBS database, 312-13, 320-21

434

Q
Q nuinber, for Knowledge Base articles, 325
queries

with keywords, types of Knowledge Base, 416
parameterized pre-defined and MFC ODBC

classes, 385-89
QueryDef object, 267
Querylnterfacefunction, 186-87, 208
query nuinber (Q nuinber) for Knowledge Base

articles, 325
question inark, adding to the title bar of a dialog

box, 122

R
radio buttons, inodifying the text color of, 144-47
RC files, adding to DLL projects, 235
RCSUPPORT.CPP file, 213
RCSUPPORT.H file, 213
ReadWind-OwPlacement helper function, adding, 257
ReadyStateChange event, adding, 197-98
READYSTATE_COMPLETE value, 200, 201
READYSTATE_INTERACTIVE value, 200, 201
READYSTATE_LOADED value, 200, 201
READYSTATE_LOADING value, 199, 201
READYSTATE parameters of IntemalSetReadyState,

199-200
READYSTATE_UNINITIALIZED value, 199, 201
records, retrieving part of, 299
recordset

adding a second, 307
adding code to OnlnitialUpdate to open, 283, 286
adding to the GetDefaultConnect string for, 307-8
changing GetDefaultDBNamefor, 277, 282, 286
opening on a stored procedure, 272, 305-14

recordset objects, detecting einpty, 352
record view, designing, 276, 282, 285-86, 301-2,

306-7
rectvariable, aligning controls with, 166
reflected inessages, handling

OCM_CTLCOLORxxx, 404-5
reflector window, 404
REG file, 214-15
<regFileTypeld> substring, 353, 354
<regFileTypeName> substring, 353, 354
Registerfunction, 246, 381, 382
registering inarshaling DLLs, 214

registration database, name of the document type
stored in, 354

Registry key
adding the ability to read values from, 258
reading main frame window attributes and

toolbar states from, 255
retrieving the default state of child windows

from, 261
registry key values, providing, 214-15
RelayEvent method, 400
Release function, 186-87, 208, 209
remote procedure call (RPC) libraries, linking

with, 213
RemoveView function, 339
RepfaceView member function, writing for a

CMDIChildWnd-d.erived class, 394, 395-96
RepositionBars function, reposQuery option of, 398
Requcry function, 352
ResetData function, 195
ResizeParentToFit function, 327
Resource editor, changing the ID values of

resources, 406
resource handles, manipulating, 407
Resource Includes dialog box, 25-26, 30
resource-loading functions, calling in an MFC

extension DLL, 406-8
resource-only DLLs, building, 233, 234-37
resource requests, redirecting from the application

to the DLL, 236
resources

articles on localizing, 237
efficient method for updating, 234

RESOURCES.HM file, including in the HPJ file, 126
Revokefunction, 247
root for the default document name, 354

RPC (remote procedure call) libraries, linking
with,213 .

s
safety options

allowing modification by external clients,
190-92

guidelines for determining, 190
Sajetyoptions type, 183, 184
sample databases, 270
SaveActiveViewsData function, 391
SaveModified function, 83, 84

·index

SDI applications, 10-12, 12, 13
CFormView class in, 326-28
changing the size of the main frame, 327
converting to MDI, 31-43
creating an alternate CVIEWin, 337-39
creating without a menu bar, 366-67
implementing switchable views in, 101-10
menu resource for, 366
modifications to, 53--54
multiple-view switching in, 390-92
original assumptions for, 40-43
second views in, 108-9
splitter windows in, 107-8
switching views in, 337-39

SDI-type applications, modifying, 96
searching and replacing text, 132
secondary application layer, 7, 8
second views in SDI applications, 108-9
See Photo button, adding a message handler

for, 304
Send command, adding command handlers for,

30-31
Send menu item property, 29
SendMessagefunction, compared to PostMessage, 165
SendMessageToDescendants function, 87
server-based data, accessing with ODBC database

classes, 269
server support. See mini-server support
SetActiveView function, 86
SetCursorfunction, 369, 370
SetFont function, 148
SetlmagePath function, modifying to update the

ImagePath property, 198
SetlnterfaceSafetyoptions function, 188, 189-91
SetModifiedFTagfunction, 83, 84
SetPanelnfo function, 333
SetPaneText function, 343
SetRadioBtnColorfunction, 146
SetRegistryKey function, 263
SetTimercall, changing in MAINFRM.CPP, 335
SetTimer event, 334-35
SetValues function, 210
Show Titles dialog box

adding, 309
adding directives for, 310-12
adding handlers for, 312

ShowToolTip property, 402-3

435

MFC DEVELOPER'S WORKSHOP

ShowWindow, calling, 256
SimpleFloatParse function, 114-15
single document interface (SDI) applications.

See SDI applications
sockets, supporting, 29
SPLITR project, 98-101
splitter windows

creating with two panes, 98-101
in SDI applications, 107-8
types of, 97

SPROCproject, 305, 306, 314
SQLErrorfunction, 316
SQLExecuteDirect function, 319
SQLServer

attaching to an Access database, 271, 293-98
attaching to the MDB file in versions 6.x, 293
database table, opening directly, 271, 280-84
dynasets with versions 6.0 and 6.5, 383-84
opening dynasets on stored procedures, 411-12

SQLSUCCESS~WITH_INFO result code, 316
stand-alone server, providing with custom

interfaces, 215
statement handle, 316
static and dynamic binding, mixing in DAO

database classes, 271-72, 299-305
static array, 21
static controls

adding, 118
providing tooltips for, 62

static keyword, storing the DSN, userlD, and
password, 318

static splitter windows, 97-98
status bar, 18. See also control bars

adding a progress indicator to, 57-60
adding to dialog boxes, 397
animating bitmaps in, 65-73
displaying the current time in, 333-36
inserting explanatory text for, 29-30
Knowledge Base articles related to, 22
setting the first pane of, 343-45

status bar and a docking toolbar, adding to
applications, 18-22

status bar class, changing the default, 69
Status Bar command, adding to the View menu, 22
status bar object, accessibility of, 59
STATUS project, 58-60
status window common control, 72
STDAFX.H file, adding code to, 291, 297

436

STDAFX.H precompiled header file, 183, 205
STDMETHOD macro, 203
STDMETHOD_ macro, 203
STLiss keyword, 415
stored procedure parameters, adding data

members for, 308-9
stored procedures

adding buttons for, 315
adding to the SQL Server PUBS database,

312-13,320-21
direct ODBC API calls to, 316-20
obtaining and displaying with ODBC API calls,

314-22
opening recordsets on, 272, 305-14
retrieving the results of, 319

StretchBlt function, 134, 136-37
StretchBlt method, 133, 134-37
string entry resources, 91
string resources

adding, 29-30, 30
adding to child frame windows, 34-35

strings, transferring between a list box and a
CStringArray object, 151, 158-62

StringTransferfunction, 158, 159-60, 161
Strip'Zeros function, 115
subclassed button control, 298
substrings, 353, 354
SUM_SOLD.SQL file, loading from the companion

CD-ROM, 320
SUM_SOLD stored procedure, 321

running, 319
support code, adding for Windows Sockets, 30-31
support files, borrowing from the DAOTABLE

sample, 290, 296
surfaces in dialog boxes, 142
switchable views, implementing for a single

document, 101-10
switching views

examples of, 392
providing user access to, 109

SWITCH project, 102-10
Switch View function, 391-92

defining, 339
SW_SHOWMAXIMIZED style, 54, 55
SW_SHOWMINIMIZED style, 54, 55
synchronization of document data and a second

view, 104

sys_menu_enabled data member function,
initializing to TRUE, 358

SYSMENU project, 46-53
system menu

modifying, 46-53
removing, 85
removing from iconized applications, 357-60
retrieving a copy of, 47

system Registry
defining the names of keys in, 254
registering marshaling DLLs with, 214

system timer, setting for bitmap animation, 69-70

T
tabbing between child windows in a non-dialog box

. view, 151, 162-68
Tab keypresses, detecting, 164-65
TableDef object, 267
tables, opening directly, 283
TABVW project, 162-68
target project, 32
template class, adding a new, 152-54
template list, 89

accessing, 81
Terminate function, 260

adding to child frame windows, 260-62
calling for child window objects, 255 ·

tertiary application layer, 7-8, 9
TESTDRVR.EXE, 215, 216
text

dragging between windows using MFC OLE drag
and drop, 380-82

inserting dropped, between words, 239-40, 239
providing, for tooltip display, 174
searching and replacing, 132

text color of radio buttons, modifying, 144-47
this pointer, implicit, 204
time, displaying the current in a CStatusBar pane,

333-36
timer procedure, adding, 335-36
TlsMisc keyword, 415
TLTIP project, 170-76
Toolbar command, adding to the View menu, 22
toolbars. See also control bars; status bar

adding to dialog boxes, 397
generated by AppWizard, 19, 19
Knowledge Base articles related to, 22

TOOLINFO structure, initializing, 173
tooltip properties, initializing, 402
tool tips

Index

adding for modal dialog box controls, 60-65
adding for view regions and child windows, 151,

169-76
adding to OLE controls, 400-403
default support for, 170
implementing functioning, 61
Knowledge Base articles on, 175-76
providing for static controls, 62
providing text for display, 174

ToolTipText property, 402-3
transactions, supporting, 266, 267
TranslatePointfunction, invoking in TestDrvr, 216
transparent control, 142
trash can animation, 382
traverse function, modified, 95-96
TTN_NEEDTEXT notification

handler function for, 61
handling, 169, 174-75

u
UI command handler, application calls to, 334
undocumented classes, 222
undocumented data members, 154
unique identifiers

generating, 204-5
selecting in FoxPro, 273

unique indexes, generating, 383-84
universally unique identifier (UUID). See UUIDs
UpdateData function, calling, 326-27
user-defined messages, 166-67
user ID, storing, 318
user interfaces, for switching views, 109
UUIDs, 186

v
ValidlmagePath function, 192-93
VariantClearfunction, 227
VARIANT data type, 221
VBCOLL project, 221-31
VBTEST.FRM file, 231
VBTEST.VBP file, 231
vclOsetup keyword, 414
vc15setup keyword, 414

437

MFC DEVELOPER'S WORKSHOP

vc20setup keyword, 414
VCAlpha keyword, 416
vcbuglist410 keyword, 416
vcbutlist420 keyword, 416
vcfixlist410 keyword, 416
vcfixlist420 keyword, 416
VCGenlss keyword, 416

Knowledge Base article referenced by, 365
VCMac keyword, 416
vcMacSetup keyword, 414
VCMips keyword, 416 .
VCx86 keyword, 416
view class

adding a new, 103-4
adding a second, 98
adding a user-defined message handler to,

166-68
modifying the existing, 165-66

view elements, 6-7, 78-79, 80
View menu, 22
view pointers, adding to CMainFrameclass, 104-5
view regions, adding tooltips for, 151, 169-76
view-related functions, 86-87
views

adding resources for switching, 109
creating additional with CreateNewFrame

function, 340-42
dynamically switching, 86
examples of switching, 392
in SDI applications, 108-9
switching by specific event, 109 .
switching by user choice, 109
switching in SDI applications, 337-39

view types, implementing for a single document,
97-101

Visual Basic applications, retrieving collections
from MFC documents, 220-31, 221

Visual Basic containers
accelerator table format, 216
differences from MFC containers, 217-18, 217

Visual Basic files on the companion CD-ROM, 231
Visual C++, DAOCTL sample in, 274
Visual FoxPro database container (DBC) files,

reading, 272
VSWAP32 demos, multiple-view switching in,

390-92
VSWAP32.EXE, downloading from the Microsoft

Software Library (MSL), 390

438

VWBiss keyword, 414
VWRPLC32 sample, 394-96

w
wait cursor, starting, 318
WBDebug keyword, 414
wildcard filter for a document type, 354
Win16, document template string, 355
Win32, document template string, 355
Win32 Mac, document template string, 356
Win32s keyword, 416
WINCORE.CPP MFC source file, 172
window attributes, changing, 85
window class, 369

registering your own, 370-71
WINDOWPLACEMENT structure

initializing, 256
initializing a temporary structure, 259

WINDOWPLACEMENT variable, initializing a
temporary, 258

windows
changing the mouse pointer for, 369-72
dragging text between, 380-82

Windows 95 File Open dialog box. See File Open
dialog box

Windows common controls, 151
Windows Sockets, adding to existing applications,

28-29
Windows Sockets, adding support code for, 30-31
<windowTitle> substring, 353, 354
WinExecAPl function, launching DAOVIEW, 291,

296-97
WINMDl.CPP file in the MFC library source

code,340
WizardBar, substituting for ClassWizard, 301
Wizardlss keyword, 414
WM_CHAR handlers, adding to control classes,

164-65
WM_CREATE message, 20, 49
WM_CTLCOLOR message

generating message-handling functions for,
348,350

handling, 142, 143, 146
WM_DESTROY message, generating

message-handling functions for, 348, 350
WM_ENTERIDLE, handling, 399

WM_ERASEBKGND message, handling, 134,
136-37, 140

WM_FINDREPLACE registered message,
handling, 131

WM_HELPINFO message handler, opening topics
in the Help file, 126-27

WM_IDLE message, handler for, 40
WM_IDLEUPDATECMDUI message, 87, 334

handling, 397, 399
WM_INITDIALOG message

handler function for, 148
handling, 141-42
overriding for the CPhotoDlgclass, 304-5

WM_INITIALUPDATE messages, 82, 87
WM_INITMENU message, adding a handler for, 48
WM_LBUTTONDOWN

adding handlers for, 401
event handler, implementing, 241-43

WM_LBUTTONUP
adding handlers for, 401
handler, 246

WM_MDIACTIVATE message, adding handlers
for, 157, 158

WM_MENuSELECT, handling, 399
WM_MOUSEMOVE, adding handlers for, 401
WM_QUERYNEWPALETTE message, handler

for, 40
WM_SETCURSOR message, 370

Index

WM_SETMESSAGESTRING, handling, 399
WM_SETTEXT handler, adding, 344
WM_SWITCHFOCUS user-defined message,

166-67
WM_SYSCOMMAND message, handling, 51-52
WM_TIMER message handler, implementing,

70-71
Workspace object, 267
World Wide Web, Microsoft site on, 325
WriteWindowPlacement helper function, adding, 257
WS_EX_CONTEXTHELP window, adding, 122
WS_EX_CONTEXTHELP window style, adding to

dialog boxes, 130
WS_SHOWNORMAL style, 53
WS_SYSMENU

removing from the window's style field, 357
style bit, including or excluding, 357, 359

WS_TABSTOP style, 168
WS_THICKFRAME style, removing, 327

x
Xin class names, 185

z
zeros, removing trailing, 115

439

U.S.A. $34.99
U.K. £32.99 [V.AJ. included]
Canada $46.99
ISBN 1-57231-349·8

Microsoft Press" products are available worldwide wherever quality computer
books are sold. For more information, contact your book retailer. computer
reseller, or local Microsoft Sales Office.

To locate your nearest source for Microsoft Press products, reach us at
mspress mjcrosoft com, or call 1-800.MSPRESS in the U.S. (in Cenada:
1-800-667-1115 or 416-293-8464).

To order Microsoft Press products, call 1-800.MSPRESS in the U.S. (in Cenada:
1-800-667-1115 or 416-293-8464).

Prices and availability dates are subject to change.

The Component Object Model (COM) isn't just another
standard. It's the basis of Microsoft's approach to distributed
computing. It's also the method for customizing Microsoft•
applications, present and future. And it's the foundation of
OLE and Active:><": In short, COM is a major key to the future
of development. And this is the book that unlocks COM. In it,
you'll discover:

• A clear and simple, practical guide to building elegant,
robust, portable COM components

• An eye-opening presentation of how accessible COM can
be-especially for those already familiar with C++

• An insightful, progressive view of COM design
• Plenty of illustrations in the form of code samples

INSIDE COM is for intermediate to advanced C++ program
mers; beginning to advanced COM, ActiveX, and OLE
programmers; academics with an interest in component
design; and even programmers who want to use COM when
it's ported to UNIX, MVS, and other environments. To put it
simply, if you work with COM, then INSIDE COM was written for
you.

Aficl'OSoft®Press

U.S.A. $39.95
U.K. £37.49 [V.AJ. included]
Canada $54.95
ISBN 1-57231-350-1

ActiveX controls are an important ingredient in

Microsoft's emerging "object model" approach to the
Internet, applications, development tools, and operating
systems. Written by a former data management consult
ant and current program manager at Microsoft in the
Visual Languages group, ACTIVEX CONTROLS INSIDE OUT is
an in-depth guide for c++ and Microsoft® Visual Basic®
programmers who want to build powerful custom controls
and "componentware" using Microsoft's new tools and
revolutionary COM (Component Object Model) technol
ogy. A comprehensive update to the successful first
edition, OLE Controls Inside Out, this book contains the
latest on MFC, changes to OLE, and Visual Basic and
Microsoft Internet Explorer support for hosting ActiveX
controls. It is an indispensable resource for all those
programming for Windows® and the Internet.

Microsoft Press® products are available worldwide wherever quality computer books are sold. For
more information, contact your book retailer, computer reseller, or local Microsoft Sales Office.

To locate your nearest source for Microsoft Press products, reach us at
ms0ress mjcrosofi com, or call 1-800-MSPRESS in the U.S. (in Canada: 1-800-667-1115
or 416-293-8464).

To order Microsoft Press products, call 1-800-MSPRESS in the U.S. (in Canada: 1-800-667-1115
or 416-293-8464).

Prices and availability dates are subject to change. Microsoft® Press

IMPORTANT-READ CAREFULLY BEFORE OPENING SOFTWARE PACKET(S). By opening the sealed packet(s) containing
the software, you indicate your acceptance of the following Microsoft License Agreement.

MICROSOFT UCENSE AGREEMENT
(Book Companion CD)

This is a legal agreement between you (either an individual or an entity) and Microsoft Corporation. By opening the sealed software packet(s)
you are agreeing to be bound by the terms of this agreement. If you do not agree to the terms of this agreement, promptly return the unopened
software packet(s) and any accompanying written materials to the place you obtained them for a full refund.

MICROSOFT SOFTWARE LICENSE
1. GRANT OF LICENSE. Microsoft grants to you theright to use one copy of the Microsoft software program included with this book (the
"SOFTWARE") on a single terminal connected to a single computer. The SOFTWARE is in "use" on a computer when it is loaded into the
temporary memory (i.e., RAM) or installed into the permanent memory (e.g., hard disk, CD-ROM, or other storage device) of that computer.
You may not network the SOFTWARE or otherwise use it on more than one computer or computer terminal at the same time.
2. COPYRIGHT. The SOFTWARE is owned by Microsoft or its suppliers and is protected by United States copyright laws and international
treaty provisions. Therefore, you must treat the SOFTWARE like any other copyrighted material (e.g., a book or musical recording) except
that you may either (a) make one copy of the SOFTWARE solely for backup or archival purposes, or (b) transfer the SOFTWARE to a single
hard disk provided you keep the original solely for backup or archival purposes. You may not copy the written materials accompanying the
SOFTWARE.
3. OTHER RESTRICTIONS. You may not rent or lease the SOFTWARE, but you may transfer the SOFTWARE and accompanying written
materials on a permanent basis provided you retain no copies and the recipient agrees to the terms of this Agreement. You may not reverse
engineer, decompile, or disassemble the SOFTWARE. If the SOFTWARE is an update or has been updated, any transfer must include the
most recent update and all prior versions.
4. DUAL MEDIA SOFTWARE. If the SOFTWARE package contains more than one kind of disk (3.5", 5.25", and CD-ROM), then you
may use only the disks appropriate for your single-user computer. You may not use the other disks on another computer or loan, rent, lease,
or transfer them to another user except as part of the permanent transfer (as provided above) of all SOFTWARE and written materials.
5. SAMPLE CODE. If the SOFTWARE includes Sample Code, then Microsoft grants you a royalty-free right to reproduce and distribute
the sample code of the SOFTWARE provided that you: (a) distribute the sample code only in conjunction with and as a part of your software
product; (b) do not use Microsoft's or its authors' names, logos, or trademarks to market your software product; (c) include the copyright notice
that appears on the SOFTWARE on your product label and as a part of the sign-on message for your software product; and (d) agree to
indemnify, hold harmless, and defend Microsoft and its authors from and against any claims or lawsuits, including attorneys' fees, that arise
or result from the use or distribution of your software product.

DISCLAIMER OF WARRANTY
The SOFTWARE (including instructions for its use) is provided "AS IS" WITHOUT WARRANTY OF ANY KIND. MICROSOFT
FURTHER DISCLAIMS ALL IMPLIED WARRANTIES INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRAN
TIES OF MERCHANTABILITY OR OF FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK ARISING OUT OF
THE USE OR PERFORMANCE OF THE SOFTWARE AND DOCUMENTATION REMAINS WITH YOU.

IN NO EVENT SHALL MICROSOFT, ITS AUTHORS, OR ANYONE ELSE INVOLVED IN THE CREATION, PRODUCTION,
OR DELIVERY OF THE SOFTWARE BE LIABLE FOR ANY DAMAGES WHATSOEVER (INCLUDING, WITHOUT LIMITA
TION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION,
OR OTHER PECUNIARY LOSS) ARISING OUT OF THE USE OF OR INABILITY TO USE THE SOFTWARE OR DOCUMEN
TATION, EVEN IF MICROSOFT HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME
STATES/COUNTRIES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY FOR CONSEQUENTIAL OR
INCIDENTAL DAMAGES, THE ABOVE LIMITATION MAY NOT APPLY TO YOU.

U.S. GOVERNMENT RESTRICTED RIGHTS
The SOFTWARE and documentation are provided with RESTRICTED RIGHTS. Use, duplication, or disclosure by the Government is
subject to restrictions as set forth in subparagraph (c)(l}(ii) of The Rights in Technical Data and Computer Software clause at DFARS
252.227-7013 or subparagraphs (c)(1) and (2) of the Commercial Computer Software - Restricted Rights 48 CFR 52.227-19, as applicable.
Manufacturer is Microsoft Corporation, One Microsoft Way, Redmond, WA 98052-6399.
If you acquired this product in the United States, this Agreement is governed by the laws of the State of Washington. Should you have any
questions concerning this Agreement, or if you desire to contact Microsoft Press for any reason, please write: Microsoft Press, One Microsoft
Way, Redmond, WA 98052-6399.

. .

7

MFC
Developer's

Workshop

The solutlon book
forMFC
MFC DEVELOPER'S WORKSHOP is the first book to provide
developer-driven, task-oriented relief for those using the MFC
library to program for Windows'.® It targets troublesome, frequently
encountered tasks-and provides tested solutions for them. In
addition, carefully selected articles from Microsoft's huge
Knowledge Base supplement the main text and amplify the
topics being discussed. MFC DEVELOPER'S WORKSHOP is an
authoritative response to the wish lists of customers-topics
range from UI and ActiveX~ to database development.

Intended for those with at least one year of experience developing
MFC applications for Windows, MFC DEVELOPER'S WORKSHOP
covers:

• The functionality of AppWizard and the modularity of the
class library

• Frame window architecture

• Document templates

• Dialog boxes-techniques for modifying their attributes and
behavior

• Using Windows common controls

• Using ActiveX controls and the implementation of OLE
features such as drag and drop

• Resource-only DLLs and saving the state of MFC applications

• Database programming with DAO and ODBC

9014515113

U.S.A.
U.K.
Canada

$39.99
£37.49 [V.A.T. included)

$53.99

Includes an array of
sample code and applications
that can be used by
developers to build practical
solutions, plus selected
Knowledge Base articles.

About the Authors:
Frank Crockett is a technical writer
in the Visual C++• User Education
Group. Past credits include
authorship of the guide to
programming OLE custom
controls. Jocelyn Garner is a
software design engineer in the
Visual C++ User Education Group.
She trains developers in MFC,
databases, and the enterprise.

To use the MFC DEVELOPER'S
WORKSHOP CD, you will need
version 2.0 or later of the MFC
library. Although you don't
need Visual C++ 5.0, we
recommend It because It's
tlgl1tly Integrated with the MFC
library and greatly slmpllfles
programming for Windows.

MFC is the choice of developers
for faster applications program
ming for Windows with Visual C++
and other compilers. To write your
own great applications with MFC,
let MFC DEVELOPER'S WORKSHOP
be your guide.

ISBN 1-57231-511-3

9 781572 315112 Tr

