
Designed for

DavidJ.

Microsoft Foundation Class Library Version 4 .21
CObJect ~

Application Architectu re File Services _, .. - I user objects I CFile I
~ CWlnThtead I COocument I Exceptions CMemFile I

l.f ~ nll"ltlJl I -1 COIeOocument I CException I If CSharedFile I
ft COIeControIModule I lfCQIe' o I -l CArchiveException I COleStreamFile I
Lt user application J If COIeServerDoc I 1 CDaoException I If CMonikerFile J

COocTemplate I If CRIchEditOoc I 1 CDBException I ~ CAsyncMonikerFile I
H CSinQleOocTempiatel -{ user documents I 1 CFileException I ~ COataPathProperty I
'i CMultiOocTemplate I COocItem I 1 ClnternetException I If CCachedOataPathProperty ·

H C Factory I COieClientltem I -{ CMemoryException I CSocketFile I
Lf COIeTemplateServerl H CRichEditCntrltem I 1 CNotSupportedException I CStdioFile I

H COIeDataSource I LJ user client items I 1 COIeException I ~ ClnternetFile I
H COIeDropSource I COIeServerltem I H COleDispatchExceptionl H CGopherFile I
H COIeOropTarget I H CDocObjectServerltem I H CResourceException I LJ CHttpFile I
H COle Filter I ~ user server items I Lt CUserException I CRecentFileList I
-1 CConnectionPoint I CDocObjectServer I

Window Suppor t

CWnd I
Fr a m e Windows G Dialog Boxes ~ Views Controls

CFrameWnd I CDialog I CView I H CAnimateCtrl I
-1 CMOIChildWnd I CCommonDialoa I CCtrlView I H CButton I
~ user MOl windows I -1 CColorDialog I CEditView I Lf CBItmapButton I

-1 CMOIFrameWnd I -1 CFileDialog I CListView I CComboBox I
~ user MOl workspacesl -1 CFindRepiaceDialog I CRichEditView I H CEdit I

-1 CMiniFrameWnd I 1 CFontDialog I CTreeView I H CHeaderCtrl I
rl user SOl windows I COIeDialog I CScroliView I CHotKeyCtrl I
-1 COlelPFrameWnd I -1 CO!eBusyDialog I H user scroll views I CListBox I

H CSplitterWnd I 1 C~lconOi8iOQl CFormView I H CCheckListBox I
Con tr ol Bars -1 CQleChangeSourceDiaIog I -1 user form views I l.j CDragListBox I
CControlBar I 1 COleConvertDialog I 1 COaoRecordView I H CListCtrl I

-1 COialogBar I -1 COlelnsertOialog I -{ CRecordView I H COIeControl I
1 COleResizeBar I 1 COIeLinksDialog I If user record views I H CPrograssCtrl I
-l CStatusBar I If COIeUpdateOialog I CRichEditCtrl I
1 CToolBar I -1 COIePasteSpeciaIOIalog I H CScroliBar I
Property Sh eets

CPropertySheet I 1 COIePropertiesOialog I H CSliderCtrl I
-1 CPageSetupOialog I CSpinButtonCtrl I
1 CPrintDialog I CStatic I
COIePropertyPage I CStatusBarCtrl I

H CPropertyPage I CTabCtrl I
Y user dialog boxes I CToolBarCtrl I

CToompGtrl I
CTreeCtri I I

II
Graphical Drawing . -
CDC I
H CClientDC I
~ CMetaFileDC I
H CPaintDC I
~ CWindowDC I
Control Support

CDockState I
ClmageList I

Graphical Drawing Objects

CGdiObject I
-1 CBitmap I
1 CBrush I
-1 CFont I
1 CPalette I
i CPen I
lj CRgn I
Menus

CMenu I
ODBC Database Support

CDatabase I
CRecordset I
~ user recordsets I
CLongBinary I
DAO Database Support

CDaoDatabase I
CDaoQueryDef I
CDaoRecordset I
CDaoTableDef I
CDaoWorkspace I
Synchronization

CSyncObject I
H CCriticalSection I
H CEvent I

CMutex I
lj CSemaphore I
Windows Sockets

CAsyncSocket I
4 CSocket I

i
Arrays

CArrav (template) I
CBvteArrav 1
CDWordArray I
CObArrav I
CPtrArray 1
CStrinaArrav I
CUlntArray 1
CWordArrav I
arrays of user types 1
Lists
CList (template) I
CPtrList 1
COb List I
CStringList 1
lists of user types I
Maps

CMap (template) I
CMapWordToPtr I
CMapPtrToWord 1
CMapPtrToPtr I
CMapWordToOb 1
CMapStrinaToPtr I
CMapStringToOb 1

H CMapStrinaToStrina I
maps of user types 1
Internet Services

ClnternetSession 1
ClnternetConnection I

-1 CFtpConnection I
1 CGopherConnection I
-1 CHttpConnection I
CFileFind 1
~ CFtpFileFind I
4 CGopherFileFind 1
CGopherLocator •

Classes Not Derived from CObject

Internet Server API

CHtmlStream

CHttpFilter

Cl-:lttpFilterContext

CHttpServer

CHttpServerContext

Runtime Object
Model Support

I CArchive

I CDumpContext

I CRuntimeClass

Simple Value Types

I CPoint

I CRect

I CSize

I CString

I CTime

I CTimeSpan

Structures

CCommandLinelnfo

CCreateContext

CMemoryState

COleSafeArray

CPrintlnfo

Support Classes

CCmdUI

COleCmdUI

CDaoFieldExchange

CDataExchange

CDBVariant

CFieldExchange

COleDataObject

COle Dispatch Driver

I CPropExchange

I CRectTracker

I CWaitCursor

Typed Template
Collections

I CTypedPtrArray

I CTypedPtrList

I CTypedPtrMap

ActiveX Type Wrappers

I CFontHolder I
I CPictureHolder

Automation Types

I COleCurrency

I COleDateTime

I COleDateTimeSpan

I COleVariant

Synchronization

I CMultiLock

I CSingleLock

Inside
IC+-f

Fourth Edition

David J. Krugli nski

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 1997 by David]. Kruglinski

All rights reserved. No part of the contents of this book may be reproduced or
transmitted in any form or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Kruglinski, David.

Inside Visual C++ / David]. Kruglinski. -- 4th ed.
p. cm.

Includes index.
ISBN 1-57231-565-2
1. C++ (Computer program language)

I. Title.
2. Microsoft Visual C++.

QA76.73.C153K78 1997
005.13'3--dc21

Printed and bound in the United States of America.

456789 QMQM 21098

97-8034
CIP

Distributed to the book trade in Canada by Macmillan of Canada, a division of Canada
Publishing Corporation.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further
information about international editions, contact your local Microsoft Corporation office. Or
contact Microsoft Press International directly at fax (206) 936-7329.

Macintosh and TrueType fonts are registered trademarks of Apple Computer, Inc. Intel
is a registered trademark of Intel Corporation. FoxPro, FrontPage, Microsoft, Microsoft
Press, MS, MS-DOS, SourceSafe, Visual Basic, Visual C++, Win32, Windows, and Windows
NT are registered trademarks and ActiveX and Visual J ++ are trademarks of Microsoft
Corporation. Java is a trademark of Sun Microsystems, Inc.

Acquisitions Editor: Eric Stroo
Project Editor: Lisa Theobald
Technical Editors: Gary Nelson, Christina Anagnost

CONTENTS SUMMARY

Acknowledgments .. xxxi

Introduction ... xxxiii

PART I: WINDOWS, VISUAL C++, AND
APPLICATION FRAMEWORK
FUNDAMENTALS

CHAPTER ONE

Microsoft Windows and Visual C++

CHAPTER TWO

The Microsoft Foundation Class
Library Application Framework

PART II: THE MFC LIBRARY VIEW CLASS
CHAPTER THREE

3

17

Getting Started with AppWizard-"Hello, world!" 31

CHAPTER FOUR

Basic Event Handling, Mapping Modes,
and a Scrolling View 47

CHAPTER FIVE

The Graphics Device Interface, Colors, and Fonts 77

CHAPTER SIX

The Modal Dialog and Windows Common Controls 107

CHAPTER SEVEN

The Modeless Dialog and
Windows Common Dialogs 151

INSIDE VISUAL C++

CHAPTER EIGHT

Using ActiveX Controls

CHAPTER NINE

Win32 Memory Management

CHAPTER TEN

Bitmaps

CHAPTER ELEVEN

Windows Message Processing
and Multithreaded Programming

171

203

217

253

PART III: THE DOCUMENT-VIEW ARCHITECTURE

iv

CHAPTER TWELVE

Menus, Keyboard Accelerators, the
Rich Edit Control, and Property Sheets

CHAPTER THIRTEEN

Toolbars and Status Bars

CHAPTER FOURTEEN

A Reusable Frame Window Base Class

CHAPTER FIFTEEN

Separating the Document from Its View

CHAPTER SIXTEEN

Reading and Writing Documents
SOl Applications

CHAPTER SEVENTEEN

Reading and Writing Documents
MOl Applications

CHAPTER EIGHTEEN

Printing and Print Preview

CHAPTER NINETEEN

Splitter Windows and Multiple Views

273

311

331

349

395

427

451

473

CHAPTER TWENTY

Context-Sensitive Help

CHAPTER TWENTY-ONE

Dynamic Link Libraries

CHAPTER TWENTY-TWO

Contents Summary

487

509

MFC Programs Without Document or View Classes 539

PART IV: ACTIVEX: COM, AUTOMATION, AND OLE
CHAPTER TWENTY-THREE

The Component Object Model 555

CHAPTER TWENTY-FOUR

Automation 599

CHAPTER TWENTY-FIVE

Uniform Data Transfer-
Clipboard Transfer and OLE Drag and Drop 673

CHAPTER TWENTY-SIX

Structured Storage 701

CHAPTER TWENTY-SEVEN

OLE Embedded Components and Containers 729

PART V: DATABASE MANAGEMENT
CHAPTER TWENTY-EIGHT

Database Management with Microsoft OOBC 785

CHAPTER TWENTY-NINE

Database Management with
Microsoft Data Access Objects 817

PART VI: PROGRAMMING FOR THE INTERNET
CHAPTER THIRTY

TCP/IP, Winsock, and Winlnet 847

v

INSIDE VISUAL C++

vi

CHAPTER THIRTY-ONE

Programming the Microsoft
I nternet I nformation Server 891

CHAPTER THIRTY-TWO

ActiveX Document Servers and the Internet 917

APPENDIX A

Message Map Functions in the
Microsoft Foundation Class Library

APPENDIX B

MFC Library Runtime Class Identification
and Dynamic Object Creation

937

945

Index ... 951

TABLE OF CONTENTS

Acknowledgments .. xxxi

Introduction ... xxxiii

PART I: WINDOWS, VISUAL C++, AND
APPLICATION FRAMEWORK
FUNDAMENTALS

CHAPTER ONE

Microsoft Windows and Visual C++ 3
The Windows Programming Model ... 3

Message Processing .. 3
The Windows Graphics Device Interface 4

Resource-Based Programming .. 5

Memory Management .. 5
Dynamic Link Libraries ... 5

The Win32 Application Programming Interface 6
The Visual C++ Components ... 6

Microsoft Developer Studio 97 and the Build Process 7

The Resource Editors-Workspace ResourceView 9

The C/C++ Compiler .. 10
The Resource Compiler ... 10
The Linker ... 10
The Debugger ... 10
AppWizard .. 11
ClassWizard .. 12
The Source Browser .. 12

Online Help ... 13

Windows Diagnostic Tools ... 14

Source Code Control ... 14
The Gallery .. 14

The Microsoft Foundation Class Library Version 4.21 15

The Microsoft ActiveX Template Library 15

INSIDE VISUAL C++

viii

CHAPTER TWO

The Microsoft Foundation Class
Library Application Framework 17
Why Use the Application Framework? ... 17

The Learning Curve ... 22
What's an Application Framework? .. 22

An Application Framework vs. a Class Library 22
An Application Framework Example .. 23

MFC Library Message Mapping ... 26
Documents and Views ... 27

PART II: THE MFC LIBRARY VIEW CLASS
CHAPTER THREE

Getting Started with AppWizard-"Hello, world!" 31
What's a View? .. 32
Single Document Interface vs. Multiple Document Interface 32
The "Do-Nothing" Application-EX03A ... 32
The CEx03aView View Class ... 37
Drawing Inside the View Window-The Windows Graphics

Device Interface .. 38
The OnDraw Member Function ... 38
The Windows Device Context ... 38
Adding Draw Code to the EX03A Program 39

A Preview of the Resource Editors ... 40
The Contents of ex03a.rc .. 40
Running the Dialog Resource Editor ... 42

Win32 Debug Target vs. Win32 Release farget 43
Enabling the Diagnostic Macros ... 44
Understanding Precompiled Headers .. 44
Two Ways to Run a Program ... 46

CHAPTER FOUR

Basic Event Handling, Mapping Modes,
and a Scrolling View 47

Getting User Input-Message Map Functions 47
The Message Map .. 48
Saving the View's State-Class Data Members 48

Table of Contents

Invalid Rectangle Theory 49
The Window's Client Area ... 50
CRect, CPoint, and CSize Arithmetic 50
Is a Point Inside a Rectangle? .. 51
The CRect LPRECT Operator .. 51
Is a Point Inside an Ellipse? ... 51
The EX04A Example ... 52
Using ClassWizard with EX04A .. 56

Mapping Modes ... 60
The MM_TEXT Mapping Mode ... 61

The Fixed-Scale Mapping Modes 62
The Variable-Scale Mapping Modes 63

Coordinate Conversion ... 64

The EX04B Example-Converting to the MM_H/METR/C
Mapping Mode .. 67

A Scrolling View Window ... 68
A Window Is Larger than What You See 68
Scroll Bars .. 69
Scrolling Alternatives .. 69
The On/nitia/Update Function 69
Accepting Keyboard Input 69
The EX04C Example-Scrolling 70

Other Windows Messages ... 73

The WM_CREATE Message .. 74
The WM_CLOSE Message ... 74
The WM_QUERYENDSESSION Message 74
The WM_DESTROY Message 74
The WM_NCDESTROY Message 75

CHAPTER FIVE

The Graphics Device Interface, Colors, and Fonts 77
The Device Context Classes .. 77

The Display Context Classes CClientDC and CWindowDC 78
Constructing and Destroying CDC Objects 78
The State of the Device Context ... 79
The CPaintDC Class ... 80

GDI Objects .. ~ .. 80
Constructing and Destroying GDI Objects 81

ix

INSIDE VISUAL C++

Tracking GDI Objects .. 82

Stock GDI Objects .. 82

The Lifetime of a GDI Selection 83

Windows Color Mapping .. 84

Standard Video Graphics Array Video Cards 84

256-Color Video Cards .. 85

16-Bit-Color Video Cards 86
24-Bit-Color Video Cards ... 86

Fonts .. 87

Fonts Are GDI Objects ... 87

Choosing a Font ... 87

Print.ing with Fonts .. 88

Displaying Fonts 88

Logical Inches and Physical Inches on the Display 89

Computing Character Height 90
The EX05A Example ... 91

The EX05A Program Elements ... 94

The EX05B Example 95

The EX05B Program Elements ... 99

The EX05C Example-CScrollView Revisited 99
The EX05C Program Elements ... 103

The CScrollView SetScaleToFitSize Mode 105

Using the Logical Twips Mapping Mode
in a Scrolling View ... 105

CHAPTER SIX

The Modal Dialog and Windows Common Controls 107
Modal vs. Modeless Dialogs .. 107

Resources and Controls 108

Programming a Modal Dialog 108

The Dialog That Ate Cincinnati-The EX06A Example 110

Building the Dialog Resource ... 110

ClassWizard and the Dialog Class 119

Connecting the Dialog to the View ... 123

Understanding the EX06A Application 125

Enhancing the Dialog Program 126

Taking Control of the OnOK Exit .. 127

OnCancel Processing 128

x

Table of Contents

Hooking Up the Scroll Bar Controls .. 129
Identifying Controls: CWnd Pointers and Control IDs 131
Setting the Color for the Dialog Background and for Controls 131
Painting Inside the Dialog Window 132
Adding Dialog Controls at Runtime .. 133
Using Other Control Features ... 134
Windows Common Controls 134

The Progress Indicator Control 135
The Trackbar Control 135
The Spin Button Control ... 136
The List Control ... 136
The Tree Control .. 137
The WM_NOTIFY Message .. 137

The EX06B Example 138
Other Windows Common Controls .. 149

CHAPTER SEVEN

The Modeless Dialog and
Windows Common Dialogs 151
Modeless Dialogs ... 151

Creating Modeless Dialogs 151
User-Defined Messages .. 152
Dialog Ownership 152
A Modeless Dialog Example-EX07 A 153

The CForm View Class-A Modeless Dialog Alternative 160
The Windows Common Dialogs 160

Using the CFileDialog Class Directly 161
Deriving from the Common Dialog Classes 161

Nested Dialogs ... 162
A CFileDialog Example-EX07B ... 162
Other Customization for CFileDialog 168

CHAPTER EIGHT

Using ActiveX Controls 171
ActiveX Controls vs. Ordinary Windows Controls 172

Ordinary Controls-A Frame of Reference 172
How ActiveX Controls Are Similar to Ordinary Controls 172

xi

INSIDE VISUAL C++

xii

How ActiveX Controls Are Different from
Ordinary Controls-Properties and Methods 173

Installing ActiveX Controls .. 174
The Calendar Control 175
ActiveX Control Container Programming .. 177

Property Access ... 177
ClassWizard's C++ Wrapper Classes for ActiveX Controls .. 178
AppWizard Support for ActiveX Controls 181
ClassWizard and the Container Dialog 181
Locking ActiveX Controls in Memory 183

The EX08A Example-An ActiveX Control Dialog Container 183
ActiveX Controls in HTML Files 193
Creating ActiveX Controls at Runtime ... 193
The EX08B Example-The Web Browser ActiveX Control 194
The EX08C Example-A Complete Dual-Window Web Browser ... 199
Picture Properties ... 199
Bindable Properties-Change Notifications 200
Other ActiveX Controls .. 201

CHAPTER NINE

Win32 Memory Management 203
Processes and Memory Space 203

The Windows 95 Process Address Space 204
The Windows NT Process Address Space 206

How Virtual Memory Works 206
The VirtualAlloc Function-Committed and Reserved Memory ... 209
The Windows Heap and the GlobalAl/oc Function Family 210
The Small-Block Heap, the C++ new and delete Operators,

and _heapmin ... 211
Memory-Mapped Files .. 212
Accessing Resources .. 214
Some Tips for Managing Dynamic Memory 214
Optimizing Storage for Constant Data ... 215

CHAPTER TEN

Bitmaps 217
GDI Bitmaps and Device-Independent Bitmaps 217

Color Bitmaps and Monochrome Bitmaps 218

Table of Contents

Using GDI Bitmaps ... 218
Loading a GDI Bitmap from a Resource 219
The Effect of the Display Mapping Mode 220
Stretching the Bits ... 220
The EX10A Example ... 220

Using Bitmaps to Improve the Screen Display 223
The EX10B Example ... 224
Windows Animation ... 229

DIBs and the CDib Class ... 229
A Few Words About Palette Programming 229
DIBs, Pixels, and Color Tables 230
The Structure of a DIB Within a BMP File 231
DIB Access Functions 233
The CDib Class ... 233
DIB Display Performance .. 241
The EX10C Example ... 241

Going Further with DIBs .. 245
The Load/mage Function .. 245
The DrawDibDraw Function .. 246

Putting Bitmaps on Push buttons .. 247
The EX10D Example ... 248
Going Further with Bitmap Buttons 251

CHAPTER ELEVEN

Windows Message Processing
and Multithreaded Programming 253
Windows Message Processing ... 253

How a Single-Threaded Program Processes Messages 253
Yielding Control 254
Timers ... 255
The EX11 A Program ... 255

On-Idle Processing 259
Multithreaded Programming 260

Writing the Worker Thread Function and
Starting the Thread .. 260

How the Main Thread Talks to a Worker Thread 261
How the Worker Thread Talks to the Main Thread 262
The EX11 B Program 263

xiii

INSIDE VISUAL C++

xiv

Using Events for Thread Synchronization 264

The EX11 C Program ... 265
Thread Blocking ... 267
Critical Sections ... 268
Mutexes and Semaphores ... 270
User Interface Threads .. 270

PART III: THE DOCUMENT-VIEW ARCHITECTURE
CHAPTER TWELVE

Menus, Keyboard Accelerators, the
Rich Edit Control, and Property Sheets 273
The Main Frame Window and Document Classes 274
Windows Menus .. 275
Keyboard Accelerators .. 276
Command Processing .. 276

Command Message Handling in Derived Classes 278
Update Command User Interface Handlers 278
Commands That Originate in Dialogs 279

The Application Framework's Built-In Menu Items 279
Enabling/Disabling Menu Items ... 280

MFC Text Editing Options .. 280
The CEditView Class ... 280
The CRichEditView Class .. 281
The CRichEditCtrl Class .. 281

The EX12A Example ... 282
Property Sheets .. 288

Building a Property Sheet ... 288
Property Sheet Data Exchange ... 288

The EX12A Example Revisited .. 289
Apply Button Processing .. 306

The CMenu Class .. 306
Creating Floating Pop-Up Menus .. 307
Extended Command Processing .. 308

CHAPTER THIRTEEN

Toolbars and Status Bars 311
Control Bars and the Application Framework 311

Table of Contents

The Toolbar ... 312
The Toolbar Bitmap ... 312
Button States .. 313
The Toolbar and Command Messages 313
Toolbar Update Command UI Message Handlers 314

TooITips ... 315
Locating the Main Frame Window .. 315
The EX13A Toolbar Example 316
The Status Bar .. 321

The Status Bar Definition .. 322
The Message Line 322
The Status Indicator .. 323
Taking Control of the Status Bar .. 323

The EX13B Status Bar Example 324

CHAPTER FOURTEEN

A Reusable Frame Window Base Class 331
Why Reusable Base Classes Are Difficult to Write 331
The CPersistentFrame Class 332
The CFrameWnd Class and the

ActivateFrame Member Function ... 332
The PreCreateWindow Member Function .. 333
The Windows Registry 334
Using the CString Class ... 336
The Position of a Maximized Window .. 339
Control Bar Status and the Registry .. 339
Static Data Members .. 339
The Default Window Rectangle ... 340
The EX14A Example 340
Persistent Frames in MDI Applications .. 347

CHAPTER FIFTEEN

Separating the Document from Its View 349
Document-View Interaction Functions 349

The CView::GetDocument Function ... 350
The CDocument::UpdateAIIViews Function 350
The CView::OnUpdate Function ... 351
The CView::OnlnitiaIUpdate Function 351

xv

INSIDE VISUAL C++

xvi

The CDocument::OnNewDocufTlent Function 352
The Simplest Document-View Application 352
The CForm View Class .. 353
The CObject Class .. 354
Diagnostic Dumping ... 354

The TRACE Macro ... 355
The afxDump Object .. 355
The Dump Context and the CObject Class 356
Automatic Dump of Undeleted Objects 357

The EX15A Example ... 360
A More Advanced Document-View Interaction 367
The CDocument::DeleteContents Function 369
The CObList Collection Class 369

Using the CObList Class for a First-In, First-Out List 370
CObList Iteration-The POSITION Variable 371
The CTypedPtrList Template Collection Class 372
The Dump Context and Collection Classes 373

The EX158 Example ... 374
Resource Requirements 376
Code Requirements ... 377
Protected Virtual Functions 393
Testing the EX158 Application 393

Two Exercises for the Reader ... 394

CHAPTER SIXTEEN

Reading and Writing Documents
SOl Applications 395
Serialization-What Is It? .. 395

Disk Files and Archives ... 396
Making a Class Serializable .. 397
Writing a Serialize Function 397
Loading from an Archive-

Embedded Objects vs. Pointers ... 399
Serializing Collections ... 401
The Serialize Function and the Application Framework 401

The SDI Application .. 402
The Windows Application Object ... 402
The Document Template Class ... 403

Table of Contents

The Document Template Resource .. 406

Multiple Views of an SDI Document ... 406
Creating an Empty Document-

The CWinApp::OnFileNew Function 406

The Document Class's OnNewDocument Function 407
Connecting File Open to Your Serialization Code-

The OnFileOpen Function .. 408
The Document Class's DeieteContents Function 408

Connecting File Save and File Save As
to Your Serialization Code .. 409

The Document's "Dirty" Flag .. 409
The EX16A Example-SDI with Serialization 410

CStudent ... 411

CEx16aApp ... 411

CMainFrame .. 417

CStudentDoc .. 422

CStudentView .. 423

Testing the EX16A Application ... 423
Explorer Launch and Drag and Drop .. 424

Program Registration .. 424

Double-Clicking on a Document ... 425

Enabling Drag and Drop .. 425
Program Startup Parameters .. 426
Experimenting with Explorer Launch and Drag and Drop 426

CHAPTER SEVENTEEN

Reading and Writing Oocuments
MOl Applications 427
The MDI Application .. 427

A Typical MDI Application, MFC Style 427

The MDI Application Object .. 430
The MDI Document Template Class : 431

The MDI Frame Window and the MDI Child Window 431

The Main Frame and Document Template Resources 433

Creating an Empty Document-
The CWinApp::OnFileNew Function 434

Creating an Additional View for an Existing Document 434

Loading and Storing Documents ... 435

xvii

INSIDE VISUAL C++

Multiple Document Templates .. 435

Explorer Launch and Drag and Drop 436

The EX17 A Example ... 437
CEx17aApp .. 437

CMainFrame .. 443

CChildFrame ... 447

Testing the EX17 A Application ... 450

CHAPTER EIGHTEEN

Printing and Print Preview 451
Windows Printing ... 451

Standard Printer Dialogs ... 452
Interactive Print Page Selection ... 453

Display Paaes vs. Printed Pages ... 454
Print Preview ... 454
Programming for the Printer ... 454

The Printer Device Context and the
CView::OnDraw Function ... 454

The CView::OnPrint Function ... 455
Preparing the Device Context-

The CView::OnPrepareDC Function 455

The Start and End of a Print Job .. 456

The EX18A Example-A Wysiwyg Print Program 457
Reading the Printer Rectangle .. 463

Template Collection Classes Revisited-The CArray Class 464

The EX188 Example-A Multipage Print Program 465

CHAPTER NINETEEN

Splitter Windows and Multiple Views 473
The Splitter Window ... 473

View Options ... 474
Dynamic and Static Splitter Windows .. 475
The EX19A Example-

A Single View Class SOl Dynamic Splitter 475

Resources for Splitting ... 476
CMainFrame .. 476
Testing the EX19A Application ... 477

The EX198 Example-A Double View Class SOl Static Splitter 477

xviii

Table of Contents

CHexView .. 478
CMainFrame 478
Testing the EX19B Application ... 479

The EX19C Example-
Switching View Classes Without a Splitter 480

Resource Requirements 480
CMainFrame .. 480
Testing the EX19C Application ... 482

The EX19D Example-A Multiple View Class MOl Application 482
Resource Requirements .. 483
CEx19dApp ... 483
CMainFrame .. 484
Testing the EX19D Application ... 485

CHAPTER TWENTY

Context-Sensitive Help 487
The Windows WinHelp Program ... 487

Rich Text Format 487
Writing a Simple Help File 488
An Improved Table of Contents 493

The Application Framework and WinHelp 494
Calling Win Help .. 495
Using Search Strings 495
Calling WinHelp from the Application's Menu 496
Help Context Aliases 496
Determining the Help Context .. 496
F1 Help .. 497
Shift-F1 Help 497
Message Box Help-The AfxMessageBox Function 498
Generic Help ... 498

A Help Example-No Programming Required 499
The MAKEHELP Process ... 501
Help Command Processing ... 502

F1 Processing ... 503
Shift-F1 Processing ... 503

A Help Command Processing Example-EX20B 504
Header Requirements .. 504

. CStringView .. 504

xix

INSIDE VISUAL C++

xx

CHexView .. 505
Resource Requirements .. 506
Help File Requirements ... 506
Testing the EX20B Application ... 507

CHAPTER TWENTY-ONE

Dynamic Link Libraries 509
Fundamental Dll Theory .. 509

How Imports Are Matched to Exports 510
Implicit Linkage vs. Explicit Linkage 511
Symbolic Linkage vs. Ordinal Linkage 512
The Dll Entry Point-DIIMain .. 512
Instance Handles-loading Resources 513
How the Client Program Finds a Dll 514
Debugging a Dll ... 514

MFC Dlls-Extension vs. Regular .. : ... 514
The Shared MFC Dlls and the Windows Dlls 516
MFC Extension Dlls-Exporting Classes 516
The MFC Extension Dll Resource Search Sequence 517
The EX21 A Example-An MFC Extension Dll 517
The EX21 B Example-A Dll Test Client Program 520
MFC Regular Dlls-The CWinApp Derived Class 521
Using the AFX-MANAGE_STATE Macro 521
The MFC Regular Dll Resource Search Sequence 521
The EX21 C Example-An MFC Regular Dll 522
Updating the EX21 B Example-

Adding Code to Test ex21 c.dll ... 523
A Custom Control Dll ... 525

What Is a Custom Control? ... 525
A Custom Control's Window Class .. 526
The MFC Library and the WndProc Function 527
Custom Control Notification Messages 527
User-Defined Messages Sent to the Control 528
The EX21 D Example-A Custom Control 528
Revising the Updated EX21 B Example-

Adding Code to Test ex21 d.dll ... 535

Table of Contents

CHAPTER TWENTY-TWO

MFC Programs Without Document or View Classes 539
The EX22A Example-A Dialog-Based Application 539

The Application Class Initlnstance Function 542
The Dialog Class and the Program Icon 543

The EX22B Example-An SOl Application 544
The Application Class Initinstance Function 545
The CMainFrame Class .. 546

The EX22C Example-An MOl Application 546
The Application Class Initinstance Function 547
The CMainFrame Class ... 548
The CChiidFrame Class ... 550
Resource Requirements ~ 551

Custom AppWizards ... 551

PART IV: ACTIVEX: COM, AUTOMATION, AND OLE
CHAPTER TWENTY-THREE

The Component Object Model 555
ActiveX Technology Background ... 555
The Component Object Model ... 556

The Problem That COM Solves 556
The Essence of COM ... 557
What Is a COM Interface? .. 557
The IUnknown Interface and the

Querylnterface Member Function .. 562
Reference Counting: The AddRef and Release Functions 565
Class Factories ... 565
The CCmdTarget Class ... 567
The EX23A Example-A Simulated COM 568

Real COM with the MFC Library .. 577
The COM CoGetClassObject Function 577
COM and the Windows Registry ... 578
Runtime Object Registration .. 580
How a COM Client Calls an In-Process Component 580
How a COM Client Calls an Out-of-Process Component 582
The MFC Interface Macros .. 585
The MFC COleObjectFactory Class 586

xxi

INSIDE VISUAL C++

xxii

AppWizard/ClassWizard Support for
COM In-Process Components .. 587

MFC COM Client Programs 588
The EX23B Example-

An MFC COM In-Process Component 589
The EX23C Example-An MFC COM Client 594

Containment and Aggregation vs. Inheritance 596

CHAPTER TWENTY·FOUR

Automation 599
Connecting C++ with Visual Basic for Applications 599
Automation Clients and Automation Components 600
Microsoft Excel-A Better Visual Basic Than Visual Basic 601
Properties, Methods, and Collections .. 604
The Problem That Automation Solves ... 604
The IDispatch Interface 605
Automation Programming Choices 605

The MFC IDispatch Implementation ... 607
An MFC Automation Component 608
An MFC Automation Client Program .. 609
An Automation Client Program Using the

Compiler's #import Oirective .. 612
The VARIANT Type ... 613
The COle Variant Class ... 616

Parameter and Return Type Conversions for Invoke 618
Automation Examples .. 619

The EX24A Automation Component EXE Example-
No User Interface ... 619

The EX248 Automation Component OLL Example 629
The EX24C SOl Automation Component EXE Example-

With User Interface .. 639
The EX240 Automation Client Example 647
The EX24E Automation Client Example 663

VBA Early Binding .. 667
Registering a Type Library .. 667
How a Component Can Register Its Own Type Library 668
The OOL File ... 669
How Excel Uses a Type Library 670

Table of Contents

Why Use Early Binding? ... 672
Faster Client-Component Connections 672

CHAPTER TWENTY-FIVE

Uniform Data Transfer-
Clipboard Transfer and OLE Drag and Drop 673
The IDataObject Interface .. 673

How IDataObject Improves on Standard Clipboard
Support ... 674

The FORMA TETC and STGMEDIUM Structures 674
FORMATETC ... 675
STGMEDIUM ... 676
The IDataObject Interface Member Functions 676

MFC Uniform Data Transfer Support .. 677
The COleDataSource Class ... 678
The COleDataObject Class ... 679
MFC Data Object Clipboard Transfer 680

The MFC CRectTracker Class ... 682
CRectTracker Rectangle Coordinate Conversion 683

The EX25A Example-A Data Object Clipboard 684
The CMainFrame Class ... 685
The CEx25aDoc Class ... 685
The CEx25a View Class .. 685

MFC Drag and Drop .. 694
The Source Side of the Transfer 694
The Destination Side of the Transfer 695
The Drag-and-Drop Sequence 695

The EX25B Example-OLE Drag and Drop 696

The CEx25bDoc Class ... p97
The CEx25b View Class ... 697

Windows Applications and Drag and Drop-Dobjview 700

CHAPTER TWENTY-SIX

Structured Storage 701
Compound Files .. 701
Storages and the IStorage Interface 702

Getting an IStorage Pointer .. 704
Freeing STATSTG Memory ... 704

xxiii

INSIDE VISUAL C++

Enumerating the Elements in a Storage Object 705

Sharing Storages Among Processes 705

Streams and the IStream Interface ... 706
IStream Programming 707

The ILockBytes Interface ... 707

The EX26A Example-Structured Storage 707

The Menu .. 708
The CEx26aV;ew Class .. 708
The Worker Threads ~ .. 708

Structured Storage and Persistent COM Objects 713

The IPers;stStorage Interface ... 714
The IPers;stStream Interface .. 715

IPers;stStream Programming ... 715
The EX268 Example-A Persistent Dll Component 716

The EX26C Example-A Persistent Storage Client Program 722
Compound File Fragmentation ... 727
Other Compound File Advantages ... 727

CHAPTER TWENTY-SEVEN

OLE Embedded Components and Containers 729
Embedding vs. In-Place Activation (Visual Editing) 729

Mini-Servers vs. Full Servers (Components)-Linking 731

The Dark Side of Visual Editing .. 731
Windows Metafiles and Embedded Objects 732

The MFC OLE Architecture for Component Programs 733

The EX27A Example-An MFC In-Place-Activated Mini-Server ... 734

An MDI Embedded Component? .. 740
In-Place Component Sizing Strategy 740

Container-Component Interactions ... 740

Using the Component's IOleObject Interface 741

loading and Saving the Component's Native Data-
Compound Documents ... 742

Clipboard Data Transfers 742
Getting the Component's Metafile .. 743

The Role of the In-Process Handler 743
Component States .. 744

The Container Interfaces ... 745

The Advisory Connection ... 746

xxiv

Table of Contents

A Metafile for the Clipboard .. 747
An Interface Summary ... 747

The IOleObject Interface .. 747
The IViewObject2 Interface ... 748
The IOleClientSite Interface .. 749
The IAdviseSink Interface ... 749

OLE Helper Functions .. 750
An OLE Embedding Container Application 751

MFC Support for OLE Containers .. 751
Some Container Limitations ... 751
Container Features .. 752

The EX27B Example-An Embedding Container 752
The CEx27bView Class .. 753
The CEx27bDoc Class ... 767

The EX27C Example-An OLE Embedded Component 776
The CEx27cViewClass .. 776
The CEx27cDoc Class ... 776

PART V: DATABASE MANAGEMENT
CHAPTER TWENTY-EIGHT

Database Management with Microsoft ODBC 785
The Advantages of Database Management 786
Structured Query Language .. 787
The ODBC Standard ... 787

The ODBC Architecture ... 788
ODBC SDK Programming .. 788

The MFC ODBC Classes-CRecordset and CDatabase 790
Counting the Rows in a Recordset .. 792
Processing ODBC Exceptions .. 793·

The Student Registration Database .. 793
The EX28A Recordset Example .. 794
The EX28A Program Elements .. 801

Connecting the Recordset Class to the Application 801
The CEx28aView Class's OnlnitialUpdate

Member Function ... 801
The CEx28aViewClass's OnDrawMember Function 802

Filter and Sort Strings .. 803

xxv

INSIDE VISUAL C++

xxvi

Joining Two Database Tables ... 803
The MFC CRecordView Class ... 804
The EX28B Record View Example .. 805
Multiple Recordsets ... 811

The EX28C Multiple Recordset Example 812
Parameterized Queries .. 813

ODBC Multithreading ... 814
Bulk Row Fetches ... 814
Using Recordsets Without Binding 814

CHAPTER TWENTY-NINE

Database Management with
Microsoft Data Access Objects 817
DAO, COM, and the Microsoft Jet Database Engine 817
DAO and VBA .. 818
DAO·and MFC .. 819
What Databases Can You Open with DAO? 819
Using DAO in ODBC Mode-Snapshots and Dynasets 820
DAO Table-Type Recordsets ... 821
DAO QueryOefs and TableOefs .. 821
DAO Multithreading .. 822
Displaying Database Rows in a Scrolling Window 822

Scrolling Alternatives .. 822
A Row-View Class ... 822
Dividing the Work Between Base and Derived Classes 824
The CRowView Pure Virtual Member Functions 825
Other CRowView Functions 825

Programming a Dynamic Recordset ... 827
The EX29A Example ... 827

CEx29aApp ... 829
CMainFrame and CChildFrame ... 829
CEx29aOoc ... 829
CEx29a View 836
CTableSelect ... 839

ClsamSelect .. 841
The EX29A Resource File 842
Running the EX29A Program .. 843

Table of Contents

PART VI: PROGRAMMING FOR THE INTERNET
CHAPTER THIRTY

TCP/IP, Winsock, and Winlnet 847
To COM or Not to COM .. 847
Internet Primer .. 848

Network Protocols-Layering .. 848
The Internet Protocol ... 848
The User Datagram Protocol .. 849
IP Address Format-Network Byte Order 851
The Transmission Control Protocol ... 852
The Domain Name System .. 853
HTTP Basics ... 855
FTP Basics .. 858
Internet vs. Intranet .. 858

Build Your Own $99 Intranet ... 858
NT File System vs. File Allocation Table 859
Network Hardware .. 859
Configuring Windows for Networking 859
Host Names for an Intranet-The HOSTS File 860
Testing Your Intranet-The Ping Program 860
An Intranet for One Computer-The TCP/IP

Loopback Address .. 860
Winsock ... 861

Synchronous vs. Asynchronous Winsock Programming 861
The MFC Winsock Classes ... 861
The Blocking Socket Classes ... 861
A Simplified HTTP Server Program ... 871
A Simplified HTTP Client Program ... 873

Building a Web Server with CHttpBlockingSocket 875
EX30A Server Limitations ... 875
EX30A Server Architecture ... 875
Using the Win32 TransmitFile Function 877
Building and Testing EX30A ... 877
Using Telnet .. 878

Building a Web Client with CHttpBlockingSocket 879
The EX30A Winsock Client ... 879
EX30A Support for Proxy Servers .. 879

xxvii

INSIDE VISUAL C++

xxviii

Testing the EX30A Winsock Client .. 880
Winlnet ... 880

Winlnet's Advantages over Winsock 880
The MFC Winlnet Classes ... 881
Internet Session Status Callbacks ... 883
A Simplified Winlnet Client Program 884

Building a Web Client with the MFC Winlnet Classes 886
The EX30A Winlnet Client #1-Using CHttpConnection 886

Testing the Winlnet Client #1 .. 886
The EX30A Winlnet Client #2-Using OpenURL 886
Testing the Winlnet Client #2 887

Asynchronous Moniker Files .. 887
Monikers ... 888
The MFC CAsyncMonikerFile Class .. 888
Using the CAsyncMonikerFile Class in a Program 888
Asynchronous Moniker Files vs. Winlnet Programming 889

CHAPTER THIRTY-ONE

Programming the Microsoft
I nternet I nformation Server 891
liS Alternatives .. 891
Microsoft liS .. 891

Installing and Controlling liS .. 892
Running Internet Service Manager ... 892

Testing liS ... 895
ISAPI Server Extensions .. 895

Common Gateway Interface and ISAPI 895
A Simple ISAPI Server Extension GET Request 896
HTML Forms-GET vs. POST ... 896
Writing an ISAPI Server Extension DLL 898
The MFC ISAPI Server Extension Classes 899

A Practical ISAPI Server Extension-ex31 a.dll 900
The First Step-Getting the Order ... 901
The Second Step-Processing the Confirmation 904
Building and Testing ex31 a.dll ... 905
Debugging the EX31 A DLL ... 906

ISAPI Database Access .. 907
Using HTTP Cookies to Link Transactions ' 907

Table of Contents

How Cookies Work ... 908
How an ISAPI Server Extension Processes Cookies 908
Problems with Cookies ... 909

WWW Authentication ... 909
Basic Authentication ... 909
Windows NT Challenge/Response Authentication 910
The Secure Sockets Layer .. 910

ISAPI Filters .. 911
Writing an ISAPI Filter DLL ... 911
The MFC ISAPI Filter Classes ... 911

A Sample ISAPI Filter-ex31 b.dll, ex31 c.exe 913
Choosing the Notification ... 913
Sending Transaction Data to the Display Program 913
The Display Program ... 915
Building and Testing the EX31 B ISAPI Filter 915

CHAPTER THIRTY-TWO

ActiveX Document Servers and the Internet 917
ActiveX Document Theory ... 917

ActiveX Document Servers vs. OLE Embedded Servers 918
Running an ActiveX Document Server from IE3 919
ActiveX Document Servers vs. ActiveX Controls 920
OLE Interfaces for ActiveX Document Servers and

Containers .. 920
MFC Support for ActiveX Document Servers 921

ActiveX Document Server Example EX32A 922
EX32A Phase 1-A Simple Server .. 923
Debugging an ActiveX Document Server 923
EX32A Phase 2-Adding Winlnet Calls 923

ActiveX Document Server Example EX32B 926
Generating POST Requests Under Program Control 931
The EX32B View Class .. 932
Building and Testing EX32B ... 934
ActiveX Document Servers vs. VB Script 934

GOing Further with ActiveX Document Servers 935

xxix

INSIDE VISUAL C++

xxx

APPENDIX A

Message Map Functions in the
Microsoft Foundation Class Library

APPENDIX B

MFC Library Runtime Class Identification
and Dynamic Object Creation

937

945
Getting an Object's Class Name at Runtime 945
The MFC CRuntimeClass Structure and

the RUNTIME_CLASS Macro 946
Dynamic Creation ... 947
A Sample Program 948

Index ... 951

ACKNOWLEDGMENTS

A new edition of the book. A new team of editors. Greatest thanks goes to
project editor Lisa Theobald, who had to keep me on schedule despite my
constant disappearances to Mexico and other places. Honorable mention goes
to technical editor, Gary Nelson, who analyzed every line of code in each
sample and taught me lots of things I didn't know. Perhaps he can write the
next edition himself. Also deserving praise are Christina Anaghost, the tech
nical editor for the later chapters, and acquisitions editor Eric Stroo, who got
the project started. The talented team of book compositors, led by Peggy
Herman andJeffrey Brendecke, deserve special thanks, as do the Microsoft
Press proofreaders, especially Richard Carey. Electronic artist Michael Victor
created excellent renditions of my roughly drawn illustrations.

Visual C++ Project Manager Walter Sullivan was helpful again in getting
me CDs and information. Other Microsoft technical sources were Jeff Grove,
Sean Kelly, Greg Fowler,Johann Posch, and Gonzalo Isaza. People outside
Microsoft who were kind enough to answer my e-mail were Jeff Richter, Don
Box, and Dave Roberts. Thanks also to those I forgot to mention.

[Editor's Note: Sadly, a day before this book was sent to the printer,
David Kruglinski was killed in a paragliding accident. A tribute to David ap
pears on pages 988-989.]

xxxi

INTRODUCTION

As this book was going to press, I flew to San Francisco to attend Software
Development 97, the leading conference and trade show for software devel
opers. I expected that theJava language would be important at the show, but
when I arrived I was confronted by a veritable 'Java Revolution," with 10,000
enthusiasts who thought that Visual Basic and C++ were now "legacy lan
guages." Should I switch to Java as some other C++ authors have already done?
I decided not to switch-not because of the dozens of Java books already on
the market but because I believe that a compiled language like C++ will be im
portant far into the future.

C++ vs. Java
Why C++ overJava? In the first place, a compiled program will always be faster
than an interpreted program. Think about a high-performance spreadsheet
program with cell formulas and macros. Now imagine theJava virtual machine
interpreting the code that, in turn, interprets the formulas and macros. Not
pretty, is it? Withjust-in-time compilation, it's necessary to compile the pro
gram every time you load it, and will that code be as good as the optimized
output from a C++ compiler?

Execution speed is one factor; access to the operating system is another.
For security reasons, Java applets can't perform such tasks as writing to disk
and accessing serial ports. In order to be platform-independent, Java appli
cation programs are limited to the "lowest common denominator" of oper
ating system features. A C++ program for Microsoft Windows is more flexible
because it can call any Win32 function at any time.

Java will be an important language, but I believe it's '~ust another lan
guage," not a revolution. If you need an Internet applet or a truly platform
independent application, choose Java. If you need efficiency and flexibility,
choose C++.

Who Can Use This Book
The product name "Visual C++" misleads some people. They think they've
bought a pure visual programming system similar to Microsoft Visual Basic,
and for the first few days the illusion persists. Soon, however, people learn that

xxxiii

INSIDE VISUAL C++

they must actually read and write C++ code. The Visual C++ wizards save time
and improve accuracy, but programmers must understand the code that the
wizards generate and, ultimately, the structure of the Microsoft Foundation
Class (MFC) Library and the inner workings of the Windows operating system.

Visual C++, with its sophisticated application framework, is for profes
sional programmers, and so is this book. I assume that you're proficient in
the C language-you can write an if statement without consulting the manual.
And I assume that you've been exposed to the C++ language-that you've at
least taken a course or read a book, but maybe you haven't written much code.
Compare learning C++ to learning the French language. You can study French
in school, but you won't be able to speak fluently unless you go to France and
start talking to people. Reading this book is like taking your trip to France!

I won't assume, however, that you already know Windows programming.
From my teaching experience, I know that proficient C programmers can learn
Windows the MFC way. It's more important to know C++ than it is to know the
Win32 application programming interface (API). You should, however, know
how to run Windows and Windows-based applications.

What if you're already experienced with the Win32 API or with the MFC
library? There's something in this book for you, too. First you'll get some help
making the transition to Win32 programming. Then you'll learn about new
features such as Data Access Objects (DAO), ActiveX control container sup
port, and the new controls introduced with Windows 95. If you haven't already
figured out the Component Object Model (COM), this book presents some
important theory that will get you started on understanding ActiveX Controls.
Finally, you'll learn C++ programming for the Internet.

What's Not Covered

xxxiv

It's not possible to cover every aspect of Windows-based programming in a
single book. I exclude topics that depend on special-purpose hardware and
software, such as MAPI, TAPI, and communications port access. I also exclude
the ActiveX Template Library (ATL), targeting for the Apple Macintosh, and
source code control. I do cover using ActiveX controls in an application, but
I'll defer the subject of writing ActiveX controls to Adam Denning and his
ActiveX Controls Inside Out (Microsoft Press, 1997). I get you started with 32-
bit memory management, DLL theory, and multithreaded programming tech
niques, but you need to get the third edition of Jeffrey Richter's Advanced
Windows (Microsoft Press, 1997) if you're serious about these subjects. Another
useful book is MFC Internals by George Shepherd and Scot Wingo (Addison
Wesley, 1996).

Introduction

How to Use This Book
When you're starting with Visual C++, you can use this book as a tutorial by
going through it sequentially. Later you can use it as a reference by looking
up topics in the table of contents or in the index. Because of the tight inter
relationships among many application framework elements, it wasn't possible
to cleanly isolate each concept in its own chapter, so the book really isn't an
encyclopedia. When you use this book, you'll definitely want to keep the online
help available for looking up classes and member functions. You might want
to purchase the Microsoft Visual C++ MFC Library Reference (Microsoft Press,
1997) if you prefer a printed copy.

If you're experienced with the Win16 version of Visual C++, scan Part I
for an overview of new features. Then skip the first three chapters of Part II,
but read Chapters 6 through 11, which cover elements specific to Win32.

The Organization of This Book
As the table of contents shows, this book has six parts and an appendix
section.

Part I: Windows, Visual C++, and
Application Framework Fundamentals

In this part, I try to strike a balance between abstract theory and practical
application. After a quick review ofWin32 and the Visual C++ components,
you'll be introduced, in a gentle way, to the MFC application framework and
the document-view architecture. You'll look at a simple "Hello, world!" pro
gram, built with the MFC library classes, that requires only 30 lines of code.

Part II: The MFC Library View Class
The MFC library documentation presents all the application framework ele
ments in quick succession, with the assumption that you know the original
Windows API. In Part II, you're confined to one major application framework
component-the view, which is really a window. You'll learn here what expe
rienced Windows programmers know already, but in the context of C++ and
the MFC library classes. You'll use the Visual C++ tools that eliminate much
of the coding drudgery that early Windows programmers had to endure.

Part II covers a lot of territory, including graphics programming with
bitmaps, dialog data exchange, ActiveX control usage, 32-bit memory manage
ment, and multithreaded programming. The exercises will help you to write
reasonably sophisticated Windows-based programs, but those programs won't
take advantage of the advanced application framework features.

xxxv

INSIDE VISUAL C++

Part III: The Document-View Architecture
This part introduces the real core of application framework programming
the document-view architecture. You'll learn what a document is (something
much more general than a word processing document), and you'll see how
to connect the document to the view that you studied in Part II. You'll be
amazed, once you have written a document class, at how the MFC library sim
plifies file I/O and printing.

Along the way, you'll learn about command message processing, toolbars
and status bars, splitter frames, and context-sensitive help. You'll also be intro
duced to the Multiple Document Interface (MDI), the current standard for
Windows-based applications.

Part III also contains a discussion of dynamic link libraries written with
the MFC library. You'll learn the distinction between an extension DLL and
a regular DLL. If you're used to Win16 DLLs, you'll notice some changes in
the move to Win32.

Part IV: ActiveX: COM, Automation, and OLE
COM by itself deserves more than one book. Part IV will get you started in
learning fundamental COM theory from the MFC point of view. You'll
progress to Automation, which is the link between C++ and Visual Basic for
Applications (VBA). You'll also become familiar with unifonn data transfer and
structured storage, and you'll learn the basics of compound documents and
embedded objects.

Part V: Database Management
Windows-based programs often need access to information in large databases.
Visual C++ now supports two separate database management options: Open
Database Connectivity (ODBC) and Data Access Objects (DAO). Part V offers
a chapter on each option. You'll learn about the extensive MFC and wizard
support for both options, and you'll see the differences between and similari
ties ofODBC and DAO.

Part VI: Programming for the Internet

xxxvi

This part is new for the fourth edition. Its starts with a technical Internet tu
torial that covers the TCP/IP protocol plus the Winsock and Winlnet APls.
You'll learn how to write C++ server and client programs for the Internet and
the intranet, and you'll also learn how to write ISAPI DLLs that extend the
Microsoft Internet Information Server.

Introduction

Appendixes
Appendix A contains a list of message map macros and their corresponding
handler function prototypes. ClassWizard usually generates this code for you,
but sometimes you must make manual entries.

Appendix B offers a description of the MFC application framework's
runtime class information and dynamic creation system. This is independent
of the RTTI (runtime type information) feature that is nowa part of ANSI C++.

Win32 vs. Win16
I still get questions about Win16 programming, and lots of old computers out
there are still running Windows 3.1. However, there's not much point in spend
ing money writing new programs for obsolete technology. This edition of
Inside Visual C++ is about 32-bit programming for Microsoft Windows 95 and
Microsoft Windows NT using the Win32 API. If you really need to do 16-bit
programming, find an old copy of the second edition of this book.

Windows 95 vs. Windows NT
Visual C++ version 5.0 requires either Windows 95 or Windows NT version 4.0
or later, both of which have the same user interface. I recommend that you
use Windows NT as your development platform because of its stability-you
can often go for months without rebooting your computer. If you use only the
MFC programming interface, your compiled programs will run under both
Windows 95 and Windows NT, but if a program includes Win32 calls that use
specific Windows NT features, it will run only on Windows NT.

Going Further with Windows:
The "For Win32 Programmers" Sidebars

This book can't offer the kind of detail, tricks, and hidden features found in
the newer, specialized books on Win32. Most of those books are written from
the point of view of a C-Ianguage programmer: In order to use them, you'll
have to understand the underlying Win32 API and its relationship to the MFC
library. In addition, you'll need to know about the Windows message dispatch
mechanism and the role of window classes.

This book's "For Win32 Programmers" sidebars, scattered throughout
the text, help you make the connection to low-level programming for Win
dows. These specially formatted boxes help experienced C programmers re
late new MFC library concepts to principles they're already familiar with. If
you're unfamiliar with low-level programming, you should skip these notes the

xxxvii

INSIDE VISUAL C++

first time through, but you should read them on your second pass through the
book. Even though you may never write a low-level Windows-based program
with a WinMainfunction, for example, you eventually need to know how the
Windows operating system interacts with your program.

Using the Companion CD-ROM

xxxviii

The companion CD-ROM bound inside the back cover of this book contains
the source code files for all the sample programs. The executable program files
are included, so you won't have to build the samples that you're interested in.
To install the companion CD-ROM's files, insert the disc in your CD-ROM
drive and run the Setup program. Follow the on-screen instructions.

NOT E : The Setup program copies about 10 MB of files to your
hard disk. If you prefer, you can manually install only the files for
individual projects. Simply tree-copy the corresponding subdirec
tories from the CD-ROM to c:\vcpp32. Because each project is self
contained, no additional files from other projects are needed.
(You'll need to remove the read-only attribute from these files if you
copy them using Windows Explorer or File Manager.)

NOT E : Many of the files on the companion CD-ROM have long
filenames. If you use Windows 95 and your CD-ROM drive uses a
real-mode driver, you'll see truncated names for these files and you
might not see all of the files or directories. The Setup program will
still work correctly, however, by copying files from a special \SETUP
directory on the CD-ROM and renaming them with their proper
long filenames. You can then browse the files on your hard disk.
Alternatively, you can browse the files using the 8.3 aliases in the
\SETUP directory on the CD-ROM.

With a conventional C-Ianguage program using the Windows API, the
source code files tell the whole story. With the MFC library application frame
work, things are not so simple. Much of the C++ code is generated by App
Wizard, and the resources originate in the resource editors. The examples in
the early chapters of this book include step-by-step instructions for using the
tools to generate and customize the source code files. You'd be well advised
to walk through those instructions for the first few examples; there's very little
code to type. For the middle chapters, use the code from the companion CD
ROM but read through the steps in order to appreciate the role of the resource
editors and the wizards. For the final chapters, not all the source code is listed.
You'll need to examine the companion CD-ROM's files for those examples.

Introduction

For Win32 Programmers: Unicode
Until recently, Windows-based programs have used only the ANSI
character set, which consists of 256 single-byte characters. Developers
targeting the Asian software market are moving to the Unicode char
acter set, which consists of 65,536 2-byte (wide) characters. A third op
tion, the double-byte character set (DBCS), includes both I-byte
characters and 2-byte characters, but DBCS is falling out of favor.

The MFC library and the runtime library support Unicode appli
cations. If you define the constant _UNICODE and follow the steps
described in the online documentation, all your character variables
and constant strings will be wide and the compiler will generate calls
to the wide-character versions of the Win32 functions. This assumes
that you use certain macros when you declare character pointers and
arrays-for example, TCHAR and _T.

You'll hit a snag, though, if you try to run your MFC Unicode
applications under Windows 95 because it does not support Unicode
internally. Even though Windows 95 has wide-character versions of
Win32 functions, those functions return a failure code. Windows NT,
on the other hand, uses Unicode internally and has two versions of the
Win32 functions that deal with characters. If you call a single-byte
version, Windows NT makes the necessary conversions to and from
wide characters.

None of the sample programs in this book are configured for
Unicode. All the programs use single-byte types such as char and single
byte string constants, and they do not define _UNICODE. If you run
the samples under Windows NT, the operating system will do the nec
essary single-to-wide conversions; if you run them under Windows 95,
the interface is pure single-byte.

One area in which you're forced to deal with wide characters
isCOM. All non-MFC COM functions (except DAO functions) that
have string and character parameters require wide (OIECHAR) char
acters. If you write a non-Unicode program,you must do the conver
sions yourse1fwith the help of the MFC CString class and various MFC
macros.

If you want to write Unicode applications, read the Unicode chap
ter inJeffrey Richter's Advanced Windows. You should also read the
Unicode material in the Visual C++ online documentation.

xxxix

INSIDE VISUAL C++

Technical Notes and Sample Programs
The Developer Studio InfoView window contains technical notes and sample
programs that are referenced in this book. The technical notes, identified by
number, are available under the heading:

Developer Products

Visual C++

Microsoft Foundation Class Reference

MFC Technical Notes

The Visual C++ 5.0 CD-ROM contains a number of MFC sample pro
grams also referenced in the book and identified by name. These sample
programs are documented under the heading:

Developer Products

Visual C++

Visual C++ Samples

MFC Samples

Support

xl

Every effort has been made to ensure the accuracy of this book and the con
tents of the companion disc. Microsoft Press provides corrections for books
through the Web at http://mspress.microsoft.com/mspress/support/

If you have comments, questions, or ideas regarding this book or the com-
panion disc, please send them to Microsoft Press using postal mail or e-mail:

Microsoft Press
Attn: Inside Visual C++ Editor
One Microsoft Way
Redmond, WA 98052-6399

MSPINPUT@MICROSOFT.COM

Please note that product support is not offered through the above mail
addresses. For support information regarding Microsoft Visual C++, you can
call the technical support line at (425) 635-7007 weekdays between 6 a.m. and
6 p.m. Pacific time. Microsoft also provides information about Visual C++ at
http://www.microsoft.com/visualc/ and about the Microsoft Developer Network
at http://www.microsoft.com/MSDN/

PAR T I

WINDOWS, VISUAL C++,
AND APPLICATION
FRAMEWORK
FUNDAMENT ALS

C HAP T E R ONE

Microsoft Windows
and Visual C++

Enough has already been written about the acceptance of Microsoft Windows
and the benefits of the graphical user interface (GUI). This chapter summa
rizes the Windows programming model (Win32 in particular) and shows you
how the Visual C++ components work together to help you write applications
for Windows. Along the way, you might learn some new things about Windows.

The Windows Programming Model
No matter which development tools you use, programming for Windows is
different from old-style batch-oriented or transaction-oriented programming.
To get started, you need to know some Windows fundamentals. As a frame of
reference, we'll use the well-known MS-DOS programming model. Even if you
don't currently program for plain MS-DOS, you're probably familiar with it.

Message Processing
When you write an MS-DOS-based application in C, the only absolute require
ment is a function named main. The operating system calls main when the user
runs the program, and from that point on, you can use any programming
structure you want. If your program needs to get user keystrokes or otherwise
use operating system services, it calls an appropriate function, such as getchar,
or perhaps uses a character-based windowing library.

Whci~ the Windows operating system launches a program, it calls the
program's WinMain function. Somewhere your application must have WinMain,
which performs some specific tasks. Its most important task is creating the
application's main window, which must have its own code to process messages
that Windows sends it. An essential difference between a program written for

3

PAR T I: WINDOWS, VISUAL C++, AND APPLICATION FRAMEWORK FUNDAMENTALS

MS-DOS and a program written for Windows is that an MS-DOS-based pro
gram calls the operating system to get user input, but a Windows-based program
processes user input via messages from the operating system.

NOT E : Many development environments for Windows, including
Microsoft Visual C++ version 5.0 with the Microsoft Foundation Class
(MFC) Library version 4.21, simplify programming by hiding the
WinMain function and structuring the message-handling process.
When you use the MFC library, you need not write a WinMain func
tion but it is essential that you understand the link between the oper
ating system and your programs.

Most messages in Windows are strictly defined and apply to all programs.
For example, a WM_CREATE message is sent when a window is being created,
a WM_LBUTTONDOWN message is sent when the user presses the left mouse
button, a WM_CHAR message is sent when the user types a character, and a
WM_CLOSE message is sent when the user closes a window. All messages have
two 32-bit parameters that convey information such as cursor coordinates, key
code, and so forth. Windows sends WM_COMMAND messages to the appro
priate window in response to user menu choices, dialog button clicks, and so
on. Command message parameters vary depending on the window's menu
layout. You can define your own messages, which your program can send to
any window on the desktop. These user-defined messages actually make C++
look a little like Small talk.

Don't worry yet about how these messages are connected to your code.
That's thejob of the application framework. Be aware, though, that the Win
dows message processing requirement imposes a lot of structure on your pro
gram. Don't try to force your Windows programs to look like your old MS-DOS
programs. Study the examples in this book, and then be prepared to start fresh.

The'Windows Graphics Device Interface

4

Many MS-DOS programs wrote directly to the video memory and the printer
port. The disadvantage of this technique was the need to supply driver soft
ware for every video board and every printer model. Windows introduced a
layer of abstraction called the Graphics Device Interface (GDI). Windows pro
vides the video and printer drivers, so your program doesn't need to know the
type of video board and printer attached to the system. Instead of addressing
the hardware, your program calls GDI functions that reference a data struc
ture called a device context. Windows maps the device context structure to a
physical device and issues the appropriate input/output instructions. The GDI
is almost as fast as direct video access, and it allows different applications writ
ten for Windows to share the display.

ONE: Microsoft Windows and Visual C++

Resource-Based Programming
To do data-driven programming in MS-DOS, you must either code the data
as initialization constants or provide separate data files for your program to
read. When you program for Windows, you store data in a resource file using
a number of established formats. The linker combines this binary resource file
with the C++ compiler's output to generate an executable program. Resource
files can include bitmaps, icons, menu definitions, dialog box layouts, and
strings. They can even include custom resource formats that you define.

You use a text editor to edit a program, but you generally use wysiwyg
(what you see is what you get) tools to edit resources. If you're laying out a
dialog box, for example, you select elements (buttons, list boxes, and so forth)
from an array of icons called a control palette, and you position and size the
elements with the mouse. Microsoft Developer Studio 97, the integrated de
velopment environment for Visual C++, has graphics resource editors for all
standard resource formats.

Memory Management
With each new version of Windows, memory management gets easier. If you've
heard horror stories about locking memory handles, thunks, and burgermas
ters, don't worry. That's all in the past. Today you simply allocate the memory
you need and Windows takes care of the details. Chapter 9 describes current
memory management techniques for Win32, including virtual memory and
memory-mapped files.

Dynamic Link Libraries
In the MS-DOS environment, all of a program's object modules are statically
linked during the build process. Windows allows dynamic linking, which means
that specially constructed libraries can be loaded and linked at runtime. Mul
tiple applications can share dynamic link libraries (DLLs), which saves memory
and disk space. Dynamic linking increases program modularity because you
can compile and test DLLs separately.

Designers originally created DLLs for use with the C language, and C++
has added some complications. The MFC developers succeeded in combin
ing all the application framework classes into a few ready-built DLLs. This
means that you can statically or dynamically link the application framework
classes into your application. In addition, you can create your own extension
DLL~ that build on the MFC DLLs. Chapter 21 includes information about
creating MFC extension DLLs and regular DLLs.

5

PAR T I: WINDOWS, VISUAL C++, AND APPLICATION FRAMEWORK FUNDAMENTALS

The Win32 Application Programming Interface
Early Windows programmers wrote applications in C for the Win16 applica
tion programming interface (API). Today, if you want to write 32-bit applica
tions, you must use the new Win32 API, either directly or indirectly. Most
Win16 functions have Win32 equivalents, but many of the parameters are
different-16-bit parameters are often replaced with 32-bit parameters, for
example. The Win32 API offers many new functions, including functions for
disk I/O, which was formerly handled by MS-DOS calls. With the 16-bit ver
sions of Visual C++, MFC programmers were largely insulated from these API
differences because they wrote to the MFC standard, which was designed to
work with either Win16 or Win32 underneath.

The Visual C++ Components

6

Microsoft Visual C++ is two complete Windows application development sys
tems in one product. If you so choose, you can develop C-Ianguage Windows
programs using only the Win32 API. C-Ianguage Win32 programming is de
scribed in Charles Petzold's book Programming Windows 95 (Microsoft Press,
1996). You can use many Developer Studio and Visual C++ tools, including the
resource editors, to make low-level Win32 programming easier.

Visual C++ also includes the ActiveX Template Library (ATL) , which you
can use to develop ActiveX controls for the Internet. ATL programming is
neither Win32 C-Ianguage programming nor MFC programming, and it's
complex enough to deserve its own book.

This book is not about C-Ianguage Win32 programming or ATL pro
gramming. It's about C++ programming within the MFC library application
framework that's part of Visual C++. You'll be using the C++ classes that are
documented in the Microsoft Foundation Class Reference, and you'll also be us
ing application framework-specific Visual C++ tools such as App Wizard and
Class Wizard.

NOT E: Use of the MFC library programming interface doesn't
cut you off from the Win32 functions. In fact, you'll almost always
need some direct Win32 calls in your MFC library programs.

A quick run-through of the Visual C++ components will help you get your
bearings before you zero in on the application framework. Figure 1-1 shows
an overview of the Visual C++ application build process.

ONE: Microsoft Windows and Visual C++

Developer Studio

Figure 1-1.
The Visual C++ application build process.

Microsoft Developer Studio 97 and the Build Process
Developer Studio is a Windows-hosted integrated development environment
(IDE) that's shared by Visual C++, Microsoft VisuaIJ++, Microsoft Visual Basic,
and several other products. This IDE has come a long way from the original
Visual Workbench, which was based on QuickC for Windows. Docking win
dows and configurable toolbars, plus a customizable editor that runs macros,
are now part of Developer Studio. The online help system (InfoViewer) works
like a Web browser. Figure 1-2 on the following page shows Developer Studio
in action.

7

PAR T I: WINDOWS, VISUAL C++, AND APPLICATION FRAMEWORK FUNDAMENTALS

8

WizardBar

Workspace window

Figure 1-2.

Source code
Online documentation

Build target

Compiler and linker output messages

Developer Studio and Visual C++.

If you've used earlier versions of Visual C++ or the Borland IDE, you
already understand how Developer Studio operates. But if you're new to IDEs,
you'll need to know what a project is. A project is a collection of interrelated
source files that are compiled and linked to make up an executable Windows
based program or a DLL. Source files for each project are generally stored in
a separate subdirectory. A project depends on many files outside the project
subdirectory too, such as include files and library files.

Experienced programmers are familiar with makefiles. A makefile stores
compiler and linker options and expresses all the interrelationships among
source files. (A source code file needs specific include files, an executable file
requires certain object modules and libraries, and so forth.) A make program
reads the makefile and then invokes the compiler, assembler, resource com
piler, and linker to produce the final output, which is generally an executable
file. The make program uses built-in inference rules that tell it, for example,
to invoke the compiler to generate an OB] file from a specified CPP file.

ONE: Microsoft Windows and Visual C++

In a Visual C++ 5.0 project, there is no makefile (with a MAK extension)
unless you tell the system to export one. A text-format project file (with a DSP
extension) serves the same purpose. A separate text-format workspace file
(with a DSW extension) has an entry for each project in the workspace. It's
possible to have multiple projects in a workspace, but all the examples in this
book have just one project per workspace. To work on an already existing
project, you tell Developer Studio to open the DSW file and then you can edit
and build the project.

Developer Studio creates some intermediate files too. The following table
lists the files that Developer Studio generates in the workspace:

File Extension

APS
BSC

CLW

DSP

DSW

MAK

NCB

OPT

PLG

Description

Supports Resol'lrceView

Browser information file

Supports ClassWizard

Project file*

Workspace file*

External makefile

Supports ClassView

Holds workspace configuration

Build log file

* Do not delete or edit in a text editor.

The Resource Editors-Workspace ResourceView
When you click on the ResourceView tab in the Visual C++ Workspace window,
you can select a resource for editing. The main window hosts a resource edi
tor appropriate for the resource type. The window can also host a wysiwyg
editor for menus and a powerful graphical editor for dialog boxes, and it in
cludes tools for editing icons, bitmaps, and strings. The dialog editor allows you
to insert ActiveX controls in addition to standard Windows controls and the
new Windows common controls. Chapter 3 shows pictures of the Resource
View page and one of the resource editors (the dialog editor). (See page 42.)

Each project usually has one text-format resource script (RC) file that
describes the project's menu, dialog, string, and accelerator resources. The
RC file also has #include statements to bring in resources from other subdirec
tories. These resources include project-specific items, such as bitmap (BMP)

9

PAR T I: WINDOWS, VISUAL C++, AND APPLICATION FRAMEWORK FUNDAMENTALS

and icon (ICO) files, and resources common to all Visual C++ programs, such
as error message strings. Editing the RC file outside the resource editors is not
recommended. The resource editors can also process EXE and DLL files, so
you can use the clipboard to "steal" resources, such as bitmaps and icons, from
other Windows applications.

The C/C++ Compiler
The Visual C++ compiler can process both C source code and C++ source code.
It determines the language by looking at the source code's filename exten
sion. A C extension indicates C source code, and CPP or CXX indicates C++
source code. The compiler is compliant with all ANSI standards, including the
latest recommendations of a working group on C++ libraries, and has addi
tional Microsoft extensions. Templates, exceptions, and runtime type iden
tification (RTTI) are fully supporte,d in Visual C++ version 5.0. The new C++
Standard Template Library (STL) is also included, although it is not integrated
into the MFC library.

The Resource Compiler
The Visual C++ resource compiler reads an ASCII resource script (RC) file
from the resource editors and writes a binary RES file for the linker.

The Linker
The linker reads the OBJ and RES files produced by the C/C++ compiler and
the resource compiler, and it accesses LIB files for MFC code, runtime library
code, and Windows code. It then writes the project's EXE file. An incremen
tal link option minimizes the execution time when only minor changes have
been made to the source files. The MFC header files contain #pragma state
ments (special compiler directives) that specify the required library files, so
you don't have to tell the linker explicitly which libraries to read.

The Debugger

10

If your program works the first time, you don't need the debugger. The rest
of us might need one from time to time. The Visual C++ debugger has been
steadily improving, but it doesn't actually fix the bugs yet. The debugger works
closely with Developer Studio to ensure that breakpoints are saved on disk.
Toolbar buttons insert and remove breakpoints and control single-step exe
cution. Figure 1-3 illustrates the Visual C++ debugger in action. Note that the
Variables and Watch windows can expand an object pointer to show all data

ONE: Microsoft Windows and Visual C++

members of the derived class and base classes. If you position the cursor on a
simple variable, the debugger shows you its value in a little window. To debug
a program, you must build the program with the compiler and linker options
set to generate debugging information.

Debug tool bar

•

Call stack

vOid CE.OScViev: :OnDra.v(COC- ~DC)

:{ CErush brushHstch(HS_DIlGCJlOSS. RG8(255. O. 0));
::~:~P:~::::i:: ~ ~ :; ~~:::~c: ~ c~_.:\~ .~Ci;E~~05i!1lc~y.!!l! .. r!I, .'-on'-'nll:lltt.'.~IU~od~.~t.~()I!'~.n~. ',,!II-1M! ..
pOC->SotErushOrg(po.nt); ~~ ~I.~ g:i~~~' h~~ ~~~~ '~~d~:~~(~~;i;::~·ln:·:68 ~n~~:i;::.dn I
~~:~~t~~~!~1~!~HG~lr~~USH); // L~~elect llIU~~ ~~~rt~~~:=:~:~~~=~~:HH~::~~~C~~~o:
pOC->Rectangle(CRect(lOO. -100. 200, -200»; .'/ Test ~ CFrueVnd: : In.itulUpdateFrue(CDocullent _ Ox

CDocTe.plate:: InitialUpdateFuae(CFrallellnd -

, .. ~id CExOSciie.: . OnlnitialUpd,ate()
{

CScrollVie.: :OnlnitialUpd"te();

CSingleDocTeaplate: :OpenDocullentFile(char -
CDocHanager: :OnFileNev() line 818

CSize sizeTota1(BOO • 2. BOO. 2); /.' 3-by-B in-=h
CSize sizePage(sizeTotal.cx / 2. slzeTot"l.cy / 2);

• §i.~~!~~~~~~~~~~~:~~.!!~~ :~rh."nAn'A.",/r1;~

CSi'te sizeLine(slzeTot"l.cx / 50. slZeTohl.cy /50);
SetScroIISizes(KILLOENGLISH. slZeTot"l. sizeP"ge. slZeLine);

is for 'C:'UINN1"syste.32'advapiJ2.dll'
is for 'C:'UINiIT'syste.n'rpcrt' dll'
Is for 'C:'tlINN1"syste.32'HFCO'2D.DLL'
Is for 'C:'tlINN1'systea32'CoactlJ2.dll'

Designated watch variables

Variables from current

Memory contents

and previous statements

Figure 1-3.
The Visual C++ debugger window.

AppWizard
App Wizard is a code generator that creates a working skeleton of a Windows
application with features, class names, and source code filenames that you
specify through dialog boxes. You'll use AppWizard extensively as you work
through the examples in this book. Don't confuse AppWizard with older code
generators that generate all the code for an application. App Wizard code is
minimalist code; the functionality is inside the application framework base
classes. App Wizard gets you started quickly with a new application.

11

PAR T I: WINDOWS, VISUAL C++, AND APPLICATION FRAMEWORK FUNDAMENTALS

Advanced developers can now build custom AppWizards. Microsoft Cor
poration has exposed its macro-based system for generating projects. If you
discover that your team needs to develop multiple projects with a telecommu
nications interface, you can build a special wizard that automates the process.

ClassWizard
ClassWizard is a program (implemented as a DLL) that's accessible from
Developer Studio's View menu. ClassWizard takes the drudgery out of main
taining Visual C++ class code. Need a new class, a new virtual function, or a
new message-handler function? ClassWizard writes the prototypes, the func
tion bodies, and (if necessary) the code to link the Windows message to the
function. ClassWizard can update class code that you write, so you avoid the
maintenance problems common to ordinary code generators. Some Class
Wizard features are available on Developer Studio's WizardBar toolbar, shown
in Figure 1-2.

The Source Browser

12

If you write an application from scratch, you probably have a good mental
picture of your source code files, classes, and member functions. If you take
over someone else's application, you'll need some assistance. The Visual C++
Source Browser (the browser, for short) lets you examine (and edit) an appli
cation from the class or function viewpoint instead of from the file viewpoint.
It's a little like the "inspector" tools available with object-oriented libraries such
as Smalltalk. The browser has the following viewing modes:

E11 Definitions and References-You select any function, variable, type,
macro, or class and then see where it's defined and used in your
project.

E11 Call Graph/Caller Graph-For a selected function, you'll see a
graphical representation of the functions it calls or the functions
that call it.

D Derived Class Graph/Base Class Graph-These are graphical class
hierarchy diagrams. For a selected class, you see the derived classes
or the base classes plus members. You can control the hierarchy
expansion with the mouse.

D File Outline-For a selected file, the classes, functions, and data
members appear together with the places in which they're defined
and used in your project.

ONE: Microsoft Windows and Visual C++

A typical browser window is shown on page 37 in Chapter 3.

NOT E : If you rearrange the lines in any source code file, Devel
oper Studio regenerates the browser database when you rebuild the
project. This increases the build time.

In addition to the browser, Developer Studio has a ClassView option that
does not depend on the browser database. You get a tree view of all the classes
in your project, showing member functions and data members. Double-click
on an element, and you see the source code immediately. The ClassView does
not, however, show hierarchy information, whereas the browser does.

Online Help
Developer Studio 97 includes a completely new online help system based on
HTML. Each topic is covered in an individual HTML document; then all are
combined into InfoViewer title (IVT) files with InfoViewer index (IV!) files.
The InfoView window uses code from Microsoft Internet Explorer 3.0, so it
works like the Web browser you already know. Developer Studio can access
the IVT files from the Visual C++ CD-ROM (the default installation option)
or from your hard disk, and it can access HTML files on the Internet.

Developer Studio allows you to access help in four ways:

o By book-When you choose Contents from Developer Studio's Help
menu, the Workspace window switches to InfoView mode. Here
Developer Studio, Visual C++, and Win32 SDK documentation is
organized hierarchically by books and chapters.

o By topic-When you choose Search from Developer Studio's Help
menu and click on the Index tab, you can type a keyword and see
the topics and articles included for that keyword.

o Byword-When you choose Search from Developer Studio's Help
menu and click on the Query tab, you can type a combination of
words to view articles that contain those words.

o FI help-This is the programmer's best friend. Just move the cur
sor inside a function, macro, or class name, and then press the Fl
key and the help system goes to work. If the name is found in several
places-in the MFC and Win32 help files, for example-you choose
the help topic you want from a list window.

Whichever way you access online help, you can copy any help text to the clip
board for inclusion in your program.

13

PAR T I: WINDOWS, VISUAL C++, AND APPLICATION FRAMEWORK FUNDAMENTALS

Windows Diagnostic Tools
Visual c++ contains a number of useful diagnostic tools. SPYXX gives you a
tree view of your system's processes, threads, and windows. It also lets you
view messages and examine the windows of running applications. You'll find
PVIEW (PVIEW95 for Windows 95) useful for killing errant processes that
aren't visible from the Windows 95 task list. (The Windows NT Task Manager,
which you can run by right-clicking the toolbar, is an alternative to PVIEW.)
Visual C++ also includes a whole suite of ActiveX utilities, an ActiveX control
test program, the HCRTF help compiler, a library manager, binary file view
ers and editors, a source code profiler, and other utilities ..

What's missing, however, is the DBWIN utility from the 16-bit version of
Visual C++. If you want to see your program's debug messages, you'll have to
run the program through the debugger.

Source Code Control
Microsoft recently bought the rights to an established source code control
product named SourceSafe. This product is included in the Enterprise Edi
tion of Visual C++, and it is integrated into Developer Studio so that you can
coordinate large software projects. The master copy of the project's source
code is stored in a central place on the network, and programmers can check
out modules for updates. These checked-out modules are usually stored on
the programmer's local hard disk. Mter a programmer checks in modified files,
other team members can synchronize their hard disks to the master copy.
Other source code control systems can also be integrated into Developer
Studio.

The Gallery

14

The Developer Studio Gallery lets you share software components among
different projects. The Gallery manages three types of modules:

II ActiveX controls-When you install an ActiveX control (OCX
formerly OLE control), an entry is made in the Windows Registry.
All registered ActiveX controls appear in the Gallery's window, so
you can select them in any project.

II C++ source modules-When you write a new class, you can add the
code to the Gallery. The code can then be selected and copied into
other projects. You can also add resources to the Gallery.

ONE: Microsoft Windows and Visual C++

rr:J Developer Studio components-The Gallery can contain tools that
let you add features to your project. Such a tool could insert new
classes, functions, data members, and resources into an existing
project. Some component modules are supplied by Microsoft (Idle
time processing, Palette support, and Splash screen, for example)
as part of Visual C++. Others will be supplied by third-party soft
ware firms.

TIP: If you decide to use one of the prepackaged Developer Stu
dio components, try it out first in a dummy project to see ifit's what
you really want. Otherwise, it might be difficult to remove the gen
erated code from your regular project.

All user-generated Gallery items can be imported from and exported
to OGX files. These files are the new distribution and sharing medium for
Visual C++ components.

The Microsoft Foundation Class Library Version 4.21
The Microsoft Foundation Class Library version 4.21 (the MFC library, for
short) is really the subject of this book. It defines the application framework
that you'll be learning intimately. Chapter 2 gets you started with actual code
and introduces some important concepts.

The Microsoft ActiveX Template Library
ATL is a tool, separate from MFC, for building ActiveX controls. You can build
ActiveX controls with either MFC or ATL, butATL controls are much smaller
and quicker to load on the Internet.

15

C HAP T E R TWO

The Microsoft Foundation Class
Library Application Framework

This chapter introduces the Microsoft Foundation Class Library version 4.21
(the MFC library) application framework by explaining its benefits. Starting
on page 23, you'll see a stripped-down but fully operational MFC library pro-'
gram for Microsoft Windows that should help you understand what applica
tion framework programming is all about. Theory is kept to a minimum here,'
but the sections on message mapping and on documents and views contain
important information that will help you with the examples that follow in later
chapters. '

Why Use,the Application Framework?
If you're going to develop applications for Windows, you've got to choose a
development environment. Assuming that you've already rejected non-C
options such as Microsoft Visual Basic and Borland Delphi, here are some of
your remaining options:

Cl Program in C with the Win32 API

!J Write your own C++ Windows class library that uses Win32

Use the MFC application framework

!J Use another Windows-based application framework such as
Borland's Object Windows Library (OWL)

If you're starting from scratch, any option involves a big learning curve.
If you're already a Win16 or Win32 programmer, you'll still have a learning
curve with the MFC library. So what benefits can justify this effort?

17

PAR T I: WINDOWS, VISUAL C++, AND APPLICATION FRAMEWORK FUNDAMENTALS

18

In earlier editions of this book, I ended up sounding like a Microsoft
evangelist. But now MFC has been accepted and even used by other compiler
publishers such as Symantec. It's still a good idea, though, to step through the
features of this programming choice.

The MFC library is the C++ Microsoft Windows API. If you accept the
premise that the C++ language is now the standard for serious application de
velopmen t, you'd have to say that it's natural for Windows to have a C++ pro
gramming interface. What better interface is there than the one produced by
Microsoft, creator of Windows? That interface is the MFC library.

Application framework applications use a standard structure. Any pro
grammer starting on a large project develops some kind of structure for the
code. The problem is that each programmer's structure is different, and it's
difficult for a new team member to learn the structure and conform to it. The
MFC library application framework includes its own application structure
one that's been proven in many software environments and in many projects.
If you write a program for Windows that uses the MFC library, you can safely
retire to a Caribbean island, knowing that your minions can easily maintain
and enhance your code back home.

Don't think that the MFC library's structure makes your programs inflex
ible. With the MFC library, your program can call Win32 functions at any time,
so you can take maximum advantage of Windows.

Application framework applications are small and fast. Back in the 16-bit
days, you could build a self~contained Windows EXE file that was less than 20
kilobytes (KB). Today, Windows programs are larger. One reason is that 32-
bit code is fatter. Even with the large memory model, a Win16 program used
16-bit addresses for stack variables and many globals. Win32 programs use 32-
bit addresses for everything and often use 32-bit integers because they're more
efficient than 16-bit integers. In addition, the new C++ exception-handling
code consumes a lot of memory.

That old 20-KB program didn't have a docking toolbar, splitter windows,
print preview capabilities, or control container support-features that users
expect in modern programs. MFC programs are bigger because they do more
and look better. Fortunately, it's now easy to build applications that dynami
cally link to the MFC code (and to C runtime code), so the size goes back down
again-from 192 KB to about 20 KB! Of course, you'll need some big support
DLLs in the background, but those are a fact of life these days.

TWO: The Microsoft Foundation Class Library Application Framework

As far as speed is concerned, you're working with machine code pro
duced by an optimizing compiler. Execution is fast, but you might notice a
startup delay while the support DLLs are loaded.

The Visual C++ tools reduce coding drudgery. The Developer Studio re
source editors, AppWizard, and ClassWizard significantly reduce the time
needed to write code that is specific to your application. For example, the
resource editor creates a header file that contains assigned values for #define
constants. AppWizard generates skeleton code for your entire application, and
ClassWizard generates prototypes and function bodies for message handlers.

The MFC library application framework is feature-rich. The MFC library
version 1.0 classes, supplied with Microsoft C/C++ version 7.0, included the
following features:

c A C++ interface to the Windows API

El General-purpose (non-Windows-specific) classes, including

o Collection classes for lists, arrays, and maps

o A useful and efficient string class

o Time, time span, and date classes

o File access classes for operating system independence

o Support for systematic object storage and retrieval to and from disk

El A "common root object" class hierarchy

El Streamlined Multiple Document Interface (MDI) application
support

El Some support for OLE version 1.0

The MFC library version 2.0 classes (in Visual C++ version 1.0) picked
up where the version 1.0 classes left off by supporting many user interface
features that are found in current Windows-based applications, plus it intro
duced the application framework architecture. Here's a summary of the im
portant new features:

El Full support for File Open, Save, and Save As menu items and the
most recently used file list

El Print preview and printer support

19

PAR T I: WINDOWS, VISUAL C++, AND APPLICATION FRAMEWORK FUNDAMENTALS

20

Support for scrolling windows and splitter windows

rLl Support for toolbars and status bars

rLl Access to Microsoft Visual Basic controls

[J Support for context-sensitive help

rLl Support for automatic processing of data entered in a dialog box

r:l An improved interface to OLE version 1.0

rLl DLL support

The MFC library version 2.5 classes (in Visual C++ version 1.5) contributed
the following:

t:l ODBC (Open Database Connectivity) support that allows your
application to access and update data stored in many popular data
bases such as Microsoft Access, FoxPro, and Microsoft SQL Server

[J An interface to OLE version 2.01, with support for in-place editing,
linking, drag and drop, and OLE Automation

Visual C++ version 2.0 was the first 32-bit version of the product, which
included support for Microsoft Windows NT version 3.5. It contained MFC
version 3.0, which had the following new features:

t:l Tab dialog (property sheet) support (which was also added to
Visual C++ version 1.51, included on the same CD-ROM)

Docking control bars that were implemented within MFC

Support for thin-frame windows

A separate Control Development Kit (CDK) for building 16-bit and
32-bit OLE controls, although no OLE control container support
was provided

A subscription release, Visual C++ 2.1 with MFC 3.1, added the following:

Support for the new Microsoft Windows 95 (beta) common controls

[1J A new ODBC Level 2 driver integrated with the AccessJet database
engine

Winsock classes for TCP lIP data communication

TWO: The Microsoft Foundation Class Library Application Framework

Microsoft decided to skip Visual C++ version 3.0 and proceeded directly
to 4.0 in order to synchronize the product version with the MFC version. MFC
4.0 contains these additional features:

C New OLE-based Data Access Objects (DAO) classes for use with the
Jet engine

C Use of the Windows 95 docking control bars instead of the MFC
control bars

C Full support for the common controls in the released version of
Windows 95, with new tree view and rich-edit view classes

C New classes for thread synchronization

C OLE control container support

Visual C++ 4.2 was an important subscription release that included MFC
version 4.2. The following new features were included:

C WinInet classes

C ActiveX Documents server classes

C ActiveX synchronous and asynchronous moniker classes

C Enhanced MFC ActiveX Control classes, with features such as win
dowless activation, optimized drawing code, and so forth

C Improved MFC ODBC support, including recordset bulk fetches
and data transfer without binding

The current version 5.0 of Visual C++ includes MFC version 4.21, which
fixes some 4.2 bugs. Visual C++ 5.0 does have some worthwhile features of its
own, however:

C A redesigned IDE, Developer Studio 97, which includes an HTML
based online help system and integration with other languages, in
cludingJava

C The ActiveX Template Library (ATL) for efficient ActiveX Control
construction for the Internet

C C++ language support for COM (Component Object Model) client
programs with the new #import statement for type libraries, as de
scribed in Chapter 24

21

PAR T I: WINDOWS, VISUAL C++, AND APPLICATION FRAMEWORK FUNDAMENTALS

The Learning Curve
All the listed benefits sound great, don't they? You're probably thinking, ''You
don't get something for nothing." Yes, that's true. To use the application
framework effectively, you have to learn it thoroughly, and that takes time. If
you have to learn C++, Windows, and the MFC library (without OLE) all at the
same time, it will take at least six months before you're really productive.
Interestingly, that's close to the learning time for the Win32 API alone.

How can that be if the MFC library offers so much more? For one thing,
you can avoid many programming details that C-Ianguage Win32 program
mers are forced to learn. From my own experience, I can say that an object
oriented application framework makes programming for Windows easier to
learn-that is, once you understand object-oriented programming.

The MFC library won't bring real Windows programming down to the
masses. Programmers of applications for Windows have usually commanded
higher salaries than other programmers, and that situation will continue. The
MFC library's learning curve, together with the application framework's
power, should ensure that MFC library programmers will continue to be in
strong demand.

What's an Application Framework?
One definition of an application framework is "an integrated collection of
object-oriented software components that offers all that's needed for a generic
application." That isn't a very useful definition, is it? If you really want to know
what an application framework is, you'll have to read the rest of this book. The
application framework example that you'll familiarize yourself with later in
this chapter is a good starting point.

An Application Framework vs. a Class Library

22

One reason that C++ is a popular language is that it can be "extended" with
class libraries. Some class libraries are delivered with C++ compilers, others
are sold by third-party software firms, and still others are developed in-house.
A class library is a set of related C++ classes that can be used in an application.
A mathematics class library, for example, might perform common mathemat
ics operations, and a communications class library might support the trans
fer of data over a serial link. Sometimes you construct objects of the supplied
classes; sometimes you derive your own classes-it all depends on the design
of the particular class library.

TWO: The Microsoft Foundation Class Library Application Framework

An application framework is a superset of a class library. An ordinary
library is an isolated set of classes designed to be incorporated into any pro
gram, but an application framework defines the structure of the program it
self. Microsoft didn't invent the application framework concept. It appeared
first in the academic world, and the first commercial version was MacApp for
the Apple Macintosh. Since MFC 2.0 was introduced, other companies, includ
ing Borland, have released similar products.

An Application Framework Example
Enough generalizations. It's time to look at some code-not pseudocode but
real code that actually compiles and runs with the MFC library. Guess what?
It's the good old "Hello, world!" application, with a few additions. (If you've
used version 1.0 of the MFC library, this code will be familiar except for the
frame window base class.) It's about the minimum amount of code for a work
ing MFC library application for Windows. (Contrast it with an equivalent pure
Win32 application such as you would see in a Petzold book!) You don't have
to understand every line now. Don't bother to type it in and test it, because
EX22B on the CD-ROM is quite similar. Wait for the next chapter, where you'll
start using the "real" application framework.

NOT E : By convention, MFC library class names begin with the
letter C.

Following is the source code for the header and implementation files for
our MYAPP application. The classes CMyApp and CMyFrame are each derived
from MFC library base classes. First, here is the MyApp.h header file for the
MYAPP application:

II application class
class CMyApp : public CWinApp
{

public:
virtual BOOl Initlnstance();

} ;

II frame window class
class CMyFrame : public CFrameWnd
{

public:
CMyFrame () ;

(contin ued)

23

PAR T I: WINDOWS, VISUAL C++, AND APPLICATION FRAMEWORK FUNDAMENTALS

24

protected:

} ;

II "afx_msg" indicates that the next two functions are part
II of the MFC library message dispatch system
afx_msg void OnlButtonDown(UINT nFlags. CPoint point);
afx_msg void OnPaint();
DEClARE_MESSAGE_MAf()

And here is the MyApp.cpp implementation file for the MYAPP application:

#include <afxwin.h) II MFC library header file declares base classes
#include "myapp.h"

CMyApp theApp; II the one and only CMyApp object

BOOl CMyApp::lnitlnstance()
{

m_pMainWnd = new CMyFrame();
m_pMainWnd-)ShowWindow(m_nCmdShow);

m_pMainWnd-)UpdateWindow();
return TRUE;

BEGIN_MESSAGE_MAP(CMyFrame. CFrameWnd)
ON_WM_lBUTTONDOWN()
ON_WM_PAI NT()

END_MESSAGE_MAP()

CMyFrame::CMyFrame()
{

Create(NUlL. "MYAPP Application");

void CMyFrame::OnlButtonDown(UINT nFlags. CPoint point)
{

TRACE("Entering CMyFrame::OnlButtonDown - %lx. %d. %d\n".
(long) nFlags. point.x. point.y);

void CMyFrame::OnPaint()

CPaintDC dc(this);
dc.TextOut(0. 0. "Hello. world!");

TWO: The Microsoft Foundation Class Library Application Framework

Here are some of the program elements:

The WinMain function-Remember that Windows requires that your appli
cation have a WinMain function. You don't see WinMain here because it's hid
den inside the application framework.

The CMyApp class-An object of class CMyApp represents an application.
The program defines a single global CMyApp object, theApp. The CWinApp base
class determines most of theApp's behavior.

Application startup-When the user starts the application, Windows calls the
application framework's built-in WinMain function, and WinMain looks for
your globally constructed application object of a class derived from CWinApp.
Don't forget that in a C++ program global objects are constructed before the
main program is executed.

The CMyApp::lnitlnstance member function-When the WinMain function
finds the application object, it calls the virtual Initlnstance member function,
which makes the calls needed to construct and display the application's main
frame window. You must override Initlnstance in your derived application class
because the CWinApp base class doesn't know what kind of main frame window
you want.

The CWinApp::Run member function-The Run function is hidden in the
base class, but it dispatches the application's messages to its windows, thus
keeping the application running. WinMain calls Run after it calls Initlnstance.

The CMyFrameclass-An object of class CMyFrame represents the appli
cation's main frame window. When the constructor calls the Create member
function of the base class CFrame Wnd, Windows creates the actual window
structure and the application framework links it to the C++ object. The
ShowWindow and UpdateWindow functions, also member functions of the base
class, must be called in order to display the window.

The CMyFrame::OnLButtonDown function-This is a sneak preview of the
MFC library'S message-handling capability. We've elected to "map" the left
mouse button down event to a CMyFrame member function. You'll learn the
details of the MFC library's message mapping in Chapter 4. For the time be
ing, accept that this function gets called when the user presses the left mouse
button. The function invokes the MFC library TRACE macro to display a
message in the debugging window.

25

PAR T I: WINDOWS, VISUAL C++, AND APPLICATION FRAMEWORK FUNDAMENTALS

The CMyFrame::OnPaint function-The application framework calls this
important mapped member function of class CMyFrame every time it's neces
sary to repaint the window: at the start of the program, when the user resizes
the window, and when all or part of the window is newly exposed. The
CPaintDC statement relates to the Graphics Device Interface (GDI) and is ex
plained in later chapters. The TextOut function displays "Hello, world!"

Application shutdown-The user shuts down the application by closing the
main frame window. This action initiates a sequence of events, which ends with
the destruction of the CMyFrame object, the exit from Run, the exit from Win
Main, and the destruction of the CMyApp object.

Look at the code example again. This time try to get the big picture. Most
of the application's functionality is in the MFC library base classes CWinApp
and CFrameWnd. In writing MYAPP, we've followed a few simple structure rules
and we've written key functions in our derived classes. C++ lets us "borrow" a
lot of code without copying it. Think of it as a partnership between us and the
application framework. The application framework provided the structure,
and we provided the code that made the application unique.

Now you're beginning to see why the application framework is more than
just a class library. Not only does the application framework define the appli
cation structure but it also encompasses more than C++ base classes. You've
already seen the hidden WinMain function at work. Other elements support
message processing, diagnostics, DLLs, and so forth.

MFC Library Message Mapping

26

Refer to the OnLButtonDown member function in the previous example ap
plication. You might think that OnLButtonDown would be an ideal candidate
for a virtual function. A window base class would define virtual functions for
mouse event messages and other standard messages, and derived window
classes could override the functions as necessary. Some Windows class librar
ies do work this way.

The MFC library application framework doesn't use virtual functions for
Windows messages. Instead, it uses macros to "map" specified messages to
derived class member functions. Why the rejection of virtual functions? Sup
pose MFC used virtual functions for messages. The CWnd class would declare
virtual functions for about 110 messages. C++ requires a virtual function dis
patch table, called a vtable, for each derived class used in a program. Each
vtable needs one 4-byte entry for each virtual function, regardless of whether

TWO: The Microsoft Foundation Class Library Application Framework

the functions are actually overridden in the derived class. Thus, for each dis
tinct type of window or control, the application would need a 440-byte table
to support virtual message handlers.

What about message handlers for menu command messages and mes
sages from button clicks? You couldn't define these as virtual functions in a
window base class because each application might have a different set of menu
commands and buttons. The MFC library message map system avoids large
vtables, and it accommodates application-specific command messages in par
allel with ordinary Windows messages. It also allows selected nonwindow
classes, such as document classes and the application class, to handle com
mand messages. MFC uses macros to connect (or map) Windows messages to
c++ member functions. No extensions to the c++ language are necessary.

An MFC message handler requires a function prototype, a function body,
and an entry (macro invocation) in the message map. ClassWizard helps you
add message handlers to your classes. You select a Windows message ID from
a list box, and the wizard generates the code with the correct function parame
ters and return values.

Documents and Views
The previous example used an application object and a frame window object.
Most of your MFC library applications will be more complex. Typically, they'll
contain application and frame classes plus two other classes that represent the
"document" and the "view." This document-view architecture is the core of
the application framework and is loosely based on the Model/View/Controller
classes from the Small talk world.

In simple terms, the document-view architecture separates data from the
user's view of the data. One obvious benefit is multiple views of the same data.
Consider a document that consists ofa month's worth of stock quotes stored
on disk. Suppose a table view and a chart view of the data are available. The
user updates values through the table view window, and the chart view win
dow changes because both windows display the same information (but in
different views).

In an MFC library application, documents and views are represented by
instances of C++ classes. Figure 2-1 on the following page shows three objects
of class CStockDoc corresponding to three companies: AT&T, IBM, and GM.
All three documents have a table view attached, and one document also has
a chart view. As you can see, there are four view objects-three objects of class
CStockTableView and one of class CStockChartView.

27

PAR T I: WINDOWS, VISUAL C++, AND APPLICATION FRAMEWORK FUNDAMENTALS

28

:'1:csid&kDbC,:::"
;'(,:':i;:,·qbj~ct'.:":i··;··

····IlAT&T' >.

,,]·iC$t,ockDqO.',: .
'. ; ()bject··· .';.
';"IBM"

';"«v>W>."';"'~.J..;.;,.,,,,,,,.,,;.~.,,;"';'h.~.~,,,,~

, StbckDoC';';'
q:~jeqt.··'l::,::

";~'GM'~';

Figure 2-1.

'j j,iiAi#f.\iij4. Ql2ig,xI

:"ost"ckrab!e'Viilw
:::,:9bject'

:Wednesday. 125.6 +6.16
:fThursday. 125.7 +0.10
·!Frlday. 124.5 -1.2

_ i:Monday. 125.0 +0.5

ijAT&T.STK

':C$t6dktabj~Vi~W ~~~a~~ay. HH ~~J~
'</i;q~ject":::"/::.i, .. ll"""""" Monday: 125.0 +0.5

,; ;j,.~:~:~LL;';~0L :.~ ,i:~,;~>~w":;;j IBM.STK

:,6Sfd~kTab;e'Vi~W
',::: .. "·:~bj~,c(:::

Wednesday. 125.6 +6.16
hursday. 125.7 +0.10

Friday. 124.5 -1.2
- Monday. 125.0 +0.5

'GM.STK

·0 x

The document-view relationship.

Table
window

Chart
window

Table
window

Table
window

The document base class code interacts with the File Open and File Save
menu items; the derived document class does the actual reading and writing
of the document object's data. (The application framework does most of the
work of displaying the File Open and File Save dialog boxes and opening,
closing, reading, and writing files.) The view base class represents a window
that is contained inside a frame window; the derived view class interacts with
its associated document class and does the application's display and printer
I/O. The derived view class and its base classes handle Windows messages. The
MFC library orchestrates all interactions among documents, views, frame
windows, and the application object, mostly through virtual functions.

Don't think that a document object must be associated with a disk file
that is read entirely into memory. If a "document" were really a database, for
example, you could override selected document class member functions and
the File Open menu item would bring up a list of databases instead of a list
of files.

PAR T I I

THE MFC
LIBRARY
VIEW CLASS

'\'~Y' .
-."~>~ >, >~_~ <I1i_L>l:;~,~;,:>:,_'h .'_, ,_, •.....• __ _

C HAP T E R T H R E E

Getting Started with
AppWizard-"Hello, world!"

Chapter 2 sketched the MFC library version 4.21 document-view architecture.
This hands-on chapter shows you how to build a functioning MFC library appli
cation, but it insulates you from the complexities of the class hierarchy and
object interrelationships. You'll work with only one document-view program
element, the "view class" that is closely associated with a window. For the time
being, you can ignore elements such as the application class, the frame win
dow, and the document. Of course, your application won't be able to save its
data on disk, and it won't support multiple views, but Part III of this book
provides plenty of opportunity to exploit thos<: features.

Because resources are so important in Microsoft Windows-based appli
cations, you'll use ResourceView to visually explore the resources of your new
program. You'll also get some hints for setting up your Windows environment
for maximum build speed and optimal debugging output.

R E QUI REM EN T S : To compile and run the examples pre
sented in this chapter and in the following chapters, you must have
successfully installed the released version of Microsoft Windows 95
or Microsoft Windows NT version 4.0 or later, plus all the Microsoft
Visual C++ version 5.0 components. Be sure that Developer Studio's
executable, include, and library directories are set correctly. (You
can change the directories by choosing Options from the Tools
menu.) If you have any problems with the following steps, please
refer to your Visual C++ documentation and Readme files for
troubleshooting instructions.

31

PAR T II: THE MFC LIBRARY VIEW CLASS

What's a View?
From a user's standpoint, a view is an ordinary window that the user can size,
move, and close in the same way as any other Windows-based application
window. From the programmer's perspective, a view is a C++ object of a class
derived from the MFC library CViewclass. Like any C++ object, the view object's
behavior is determined by the member functions (and data members) of the
class-both the application-specific functions in the derived class and the
standard functions inherited from the base classes.

With Visual C++, you can produce interesting applications for Windows
by simply adding code to the derived view class that the AppWizard code
generator produces. When your program runs, the MFC library application
framework constructs an object of the derived view class and displays a window
that is tightly linked to the C++ view object. As is customary in C++ program
ming, the view class code is divided into two source modules-the header file
(H) and the implementation file (CPP) ..

Single Document Interface
vs. Multiple Document Interface

The MFC library supports two distinct application types: Single Document
Interface (SDI) and Multiple Document Interface (MDI). An SDI application
has, from the user's point of view, only one window. If the application depends
on disk-file "documents," only one document can be loaded at a time. The
original Windows Notepad is an example of an SDI application. An MDI appli
cation has multiple child windows, each of which corresponds to an individual
document. Microsoft Word is a good example of an MDI application.

When you run AppWizard to create a new project, MDI is the default
application type. For the early examples in this book, you'll be generating SDI
applications because fewer classes and features are involved. Be sure you select
the Single Document option (on the first App Wizard screen) for these examples.
Starting with Chapter 17, you'll be generating MDI applications. The MFC
library application framework architecture ensures that most SDI examples
can be upgraded easily to MDI applications.

The "Do-Nothing" Application-EX03A

32

The App Wizard tool generates the code for a functioning MFC library appli
cation. This working application simply brings up an empty window with a
menu attached. Later you'll add code that draws inside the window. Follow
these steps to build the application:

T H R E E: Getting Started with AppWizard-uHello, world!"

1. Run AppWizard to generate SOl application source code. Choose
New from Developer Studio's File menu, and then click the Projects tab
in the resulting New dialog box, as shown here:

, Fil~s lfi.?~~~~] Workspaces I Other Documents I

Custom AppWizard
" Database Proiect

DevS tudio Add-in Wizard
ISAPI Extension Wizard

qgj M akefile
M FC ActiveX Controrvlizard

~ MFC AppWizard (dill

. ., ~;iff~pe~li~~~l~~eI
3"<0: New Database Wizard
"" Win32 Application

Proieet name:

lex03a

I C: \ vcpp32\ex03a.J

I r. Cleate ne'.'! workspace
r 2,dd to el)ftent workspace

rQependencyof:

Make sure that MFC AppWizard (exe) is highlighted, and then type
C:\vcpP32 \ in the Location edit box. Type ex03a as shown in the Project
Name edit box, and then click the OK button. Now you will step through
a sequence of App Wizard screens, the first of which is shown here:

r.. ~'iii~~~.£~~E.ij
(': Mukiple doc~ents

C Qialog based

Wf):,t].,ngllage would you like YOUI' te~ollfces in?

Be sure to select the Single Document option. Accept the defaults in the
next four screens. The last screen should look like the illustration on the
following page.

33

PAR T II: THE MFC LIBRARY VIEW CLASS

34

Notice that the class names and source-file names have been generated
based on the project name EX03A. You could make changes to these
names at this point if you wanted to. Click the Finish button. Just before
AppWizard generates your code, it displays the New Project Information
dialog box shown here:

When you click the OK button, AppWizard begins to create your appli
cation's subdirectory (ex03a under\vcpp32) and a series of files in that

T H R E E: Getting Started with AppWizard-uHello, world!"

subdirectory. When AppWizard is finished, look in the application's sub
directory. The following files are of interest (for now):

File

ex03a.dsp

ex03a.dsw

ex03a.rc

ex03a View.cpp

ex03a View.h

ex03a.opt

ReadMe.txt

resource.h

Description

A project file that allows Developer Studio to build your
application

A workspace file that contains a single entry for ex03a.dsp

An ASCII resource script file

A view class implementation file that contains CEx03aView
class member functions

A view class header file that contains the CEx03a View class
declaration

A binary file that tells Developer Studio which files are
open for this project and how the windows are arranged

A text file that explains the purpose of the generated files

A header file that contains #define constant definitions

Open the ex03a View.cpp and ex03a View.h files and look at the
source code. Together these files define the CEx03a View class, which
is central to the application. An object of class CEx03aView corresponds
to the application's view window, where all the "action" takes place.

2. Compile and link the generated code. AppWizard, in addition to
generating code, creates custom project and workspace files for your
application. The project file, ex03a.dsp, specifies all the file dependencies
together with the compile and link option flags. Because the new project
becomes Developer Studio's current project, you can now build the appli
cation by choosing Build Ex03a.exe from the Build menu or by clicking
the Build toolbar button shown here:

If the build is successful, an executable program named ex03a.exe
is created in a new Debug subdirectory underneath \vcpp32\ex03a. The
OB] files and other intermediate files are also stored in Debug. Compare
the file structure on disk with the structure in the Workspace window's
FileView page shown on the following page.

35

PAR T II: THE MFC LIBRARY VIEW CLASS

36

~ Workspace 'ex03a': 1 project(s)
El···~ ex03a files

a···a Source Files

: ~Ii~~j
i L [t] Std6.fx.cpp

a···a Header Files
. i······~ ex03a.h

i······~ ex03aDoc.h
i······~ ex03aView.h

i I::::::~ ~:~:::'h
, l... ... ~ Std6.fx.h

a···a Resource Files
; 1······~ ex03a.ico

l._n~~;::o
Or:! ClassView I ~ ResourceViewt ~ FileViewT'fllnfoView I

The FileView page contains a logical view of your project. The
header files show up under Header Files, even though they are in the
same subdirectory as the CPP files. The resource files are stored in the
\res subdirectory.

3. Test the resulting application. Choose Execute Ex03a from the
Build menu. Experiment with the program. It doesn't do much, does it?
(What do you expect for no coding?) Actually, as you might guess, the
program has a lot of features-you simply haven't activated them yet.
Close the program window when you've finished experimenting.

4. Browse the application. Choose Source Browser from the Tools
menu. If your project settings don't specify browser database creation,
Developer Studio will offer to change the settings and recompile the
program for you. (To change the settings yourself, choose Settings from
the Project menu. On the C/C++ page, click Generate Browse Info, and
on the Browse Info page, click Build Browse Info File.)

When the Browse window appears, choose Base Classes And Mem
bers, and then type CEx03a View. Mter you expand the hierarchy, you
should see output similar to this:

T H R E E: Getting Started with AppWizard-"Hello, world!"

r~~~.~:'~~t:~~",;~~~.;'~
:?~Jl!J F,Ynctions: I~~)AII !2J'Djlta: It4] All d

sE:i1 CE ~03aView I
8·E:i CView

8E:i C\\Ind
8· E:i CCmdT arget

i...·CJ CObject

'Public:,. '. i I 'V, CE~03aVlew::-CE~03aVlew vOid
I iV, CE~03aView::AssertValid(void) ::

. d :Sl struct CRuntimeClass const CE~03aView::classCI'

. I ~SJ CEx03aView::CreateObject(void)
: f:Y.l CEx03aView::Dump(class CDumpConte~t 8.)

f CE~03aView::GetDocument(void)
f lYJ CEx03aView::GetRuntimeClass(void)
f Nl CE~03aView::OnDraw(class CDC ')
f :v; CE~03aView::PreCreateWindow(struct tagCREA
Protected:
f CEx03aView::CEx03aView(void)
f [5.1 CE~03aView::_GetBaseClass(void)
f iSJ CEx03aView::_GetBaseMessageMap(void) ';'"

i g:t~~~i;~~:~~~:~:~~;~~-~~ ._r ... '"' ~

Compare the browser output to ClassView in the Workspace window:

El .. ~eK03a classes
$. ..Il1tj CAboutDlg
~ .. J·tj CE~03aApp
riJ···Dtj CE ~03aD DC

$····~:iIt~·Q~~y.ji~]
i I······ ~ AssertValid()
I i .. ····l'~ CE~03aView()
, i······ ~ -CE ~03aView()

1······ ~ Dump(CDumpConte~t 8. dc)
, ~ GetDocument()
1······9~ OnBeginPrinting(CDC' pDC. CPrintlnfo' plnlo)
I······ ~ OnDraw(CDC' pDC)
!··· .. ·9~ OnEndPrinting(CDC' pDC. CPrintinfo' plnfo)
!· 9~ OnPreparePrinting(CPrintlnfo' plnfo)

, 1...... ~ PreCreateWindow(CR EATES TRUCT 8. cs)
~"'~::l CMainFrame
riJ···CJ Globals

,

;o,"TI ill
.'ti.,.-,: .j:. ~ ResOOtCeV~wllil FlfeVtew J 'tt InfoV';w I

ClassView doesn't show the class hierarchy, but it also doesn't involve
the extra overhead of the browser. If ClassView is sufficient for you,
don't bother building the browser database.

The CEx03a View View Class
AppWizard generated the CEx03aViewview class, and this class is specific to
the EX03A application. (App Wizard generates classes based on the project
name you entered in the first AppWizard dialog box.) CEx03aView is at the

37

PAR T II: THE MFC LIBRARY VIEW CLASS

bottom of a long inheritance chain of MFC library classes, as illustrated pre
viously in the Browse window. The class picks up member functions and data
members all along the chain. You can learn about these classes in the Microsoft
Foundation Class Reference (online or printed version), but you must be sure to
look at the descriptions for every base class because the descriptions of inher
ited member functions aren't generally repeated for derived classes.

The most important CEx03a View base classes are CWnd and CView. CWnd
provides CEx03a View's "windowness," and CView provides the hooks to the rest
of the application framework, particularly to the document and to the frame
window, as you'll see in Part III of this book.

Drawing Inside the View Window-
The Windows Graphics Device Interface

Now you're ready to write code to draw inside the view window. You'll be
making a few changes directly to the EX03A source code.

The OnDraw Member Function
Specifically, you'll be fleshing out OnDraw in ex03aView.cpp. OnDraw is a vir
tual member function of the CView class that the application framework calls
every time the view window needs to be repainted. A window needs repainting
if the user resizes the window or reveals a previously hidden part of the win
dow, or if the application changes the window's data. If the user resizes the
window or reveals a hidden area, the application framework calls OnDraw, but
if a function in your program changes the data, it must inform Windows of the
change by calling the view's inherited Invalidate (or InvalidateRect) member
function. This call to Invalidate triggers a later call to OnDraw.

Even though you can draw inside a window at any time, it's recommended
that you let window changes accumulate and then process them all together
in the OnDrawfunction. That way your program can respond both to program
generated events and to Windows-generated events such as size changes.

The Windows Device Context

38

Recall from Chapter 1 that Windows doesn't allow direct access to the display
hardware but communicates through an abstraction called a "device context"
that is associated with the window. In the MFC library, the device context is a
C++ object of class CDC that is passed (by pointer) as a parameter to OnDraw.
After you have the device context pointer, you can call the many CDC mem
ber functions that do the work of drawing.

T H R E E: Getting Started with AppWizard-"Hello, world!"

Adding Draw Code to the EX03A Program
Now let's write the code to draw some text and a circle inside the view window.
Be sure that the project EX03A is open in Developer Studio. You can use the
Workspace window's ClassView to locate the code for the function (double
click on OnDraw) , or you can open the source code file ex03a View.cpp from
FileView and locate the function yourself.

1. Edit the OnDrawfunction in ex03aView.cpp. Find the AppWizard
generated OnDraw function in ex03a View.cpp:

void CEx03aView::OnOraw(COC* pOC)
{

CEx03aOoc* pOoc = GetOocument();
ASSERT_VALIO(pOoc);

II TOOO: add draw code for native data here

The following shaded code (which you type in) replaces the previ
ous code:

void CEx03aView::OnOraw(COC* pOC)
{

pOC->TextOut(O. O. "Hello. world!"); II prints in default font
II & size. top left corner

pOC->SelectStockObject(GRAY_BRUSH); II selects a brush for the
II circle interior

pOC->Ellipse(CRect(O. 20. 100. 120»; II draws a gray circle
II 100 units in diameter

You can safely remove the call to Get Document because we're not
dealing with documents yet. The functions TextOut, SelectStockObject, and
Ellipse are all member functions of the application framework's device
context class cnG. The Ellipse function draws a circle if the bounding
rectangle's length is equal to its width.

The MFC library provides a handy utility class, CRect, for Windows
rectangles. A temporary CRect object serves as the bounding rectangle
argument for the ellipse drawing function. You'll see more of the CRect
class in quite a few of the examples in this book.

2. Recompile and test EX03A. Choose Build from the Project menu,
and, if there are no compile errors, test the application again. Now you
have a program that visibly does something!

39

PAR T II: THE MFC LIBRARY VIEW CLASS

For Win32 Programmers
Rest assured that the standard Windows WinMain and window proce
dure functions are hidden away inside the application framework.
You'll see those functions later in this book, when the MFC library
frame and application classes are examined. In the meantime, you're
probably wondering what happened to the WM-:-PAINT message,
aren't you? You would expect to do your window drawing in response
to this Windows message, and you would expect to get your device
context handle from aPAINTSTRUCTstructure returned by the Win-:
dows BeginPaint function.

It so happens that the application framework has done all the dirty
work for you and served up a device context (in object pointer form)
in the virtual function OnDraw. As explained in Chapter 2, true virtual
functions in window classes are an MFC library rarity. MFC library
message map functions dispatched by the application framework
handle most Windows messages. MFC version 1.0 programmers always
defined an OnPaint message map function for their derived window
classes. Beginning with version 2.5, however, OnPaintwas mapped in
the CView class, and that function made a polymorphic call to OnDraw.
Why? Because. OnDraw needs to· support the printer as well. Both
OnPaint and OnPrint call OnDraw, thus enabling the same drawing
code to accommodate both the printer and the display.

A Preview of the Resource Editors
Now that you have a complete application program, it's a good time for a quick
look at the resource editors. Although the application's resource script,
ex03a.rc, is an ASCII file, modifying it with a text editor is not a good idea.
That's the resource editors' job.

The Contents of ex03a. rc

40

The resource file determines much of the EX03A application's "look and feel."
The file ex03a.rc contains (or points to) the Windows resources listed here:

Resource

Accelerator

Dialog

Icon

Menu

String table

Toolbar

Version

T H R E E: Getting Started with AppWizard-"Hello, world!"

Description

Definitions for keys that simulate menu and toolbar selections.

Layout and contents of dialog boxes. EX03A has only the About
dialog box.

Icons (l6-by-16-pixel and 32-by-32-pixel versions), such as the
application icon you see in Microsoft Windows Explorer and in
the application's About dialog box. EX03A uses the MFC logo
for its application icon.

The application's top-level menu and associated pop-up menus.

Strings that are not part of the C++ source code.

The row of buttons immediately below the menu.

Program description, version number, language, ,and so on.

In addition to the resources listed above, ex03a.rc contains the statements

41include "afxres.h"
/Finclude "afxres.rc"

which bring in some MFC library resources common to all applications. These
resources include strings, graphical buttons, and elements needed for printing
and OLE.

NOT E: If you're using the shared DLL version of the MFC
library, the common resources are stored inside the MFC DLL.

The ex03a.rc file also contains the statement

41 inc 1 u de" res 0 u r c e . h II

This statement brings in the application's three #define constants, which are
IDR_MAINFRAME (identifying the menu, icon, string list, and accelerator
table), IDR_EX03ATYPE (identifying the default document icon, which we
won't use in this program), and IDD_ABOUTBOX (identifying the About dia
log box). This same resource.h file is included indirectly by the application's
source code files. If you use a resource editor to add more constants (symbols),
the definitions ultimately show up in resource.h. Be careful if you edit this file
in text mode because your changes might be removed the next time you use
a resource editor.

41

PAR T II: THE MFC LIBRARY VIEW CLASS

Running the Dialog Resource Editor

42

1. Open the project's RC file. Click the ResourceView button in the
Workspace window. If you expand each item, you will see the following
in the resource editor window:

B· .. 8 ex03a resources
B···8 Accelerator
i L ~ IDR_MAINFRAME
B .. 8Dialog

~ ... ~·!~·Ii.p.:~·~·.Q'.QI~·.Q>"{]
i j .. ··[:jIDR_EX03A TYPE
i L. .. [:jIDR_MAINFRAME

B .. ·8Menu
! L ... ~ IDR_MAINFRAME
~ .. 8 5 bing Table
, ; ~ SbingTable
~ .. 8 Toolbar
i L .. ·@J1IDR_MAINFRAME
8 .. ·8 Version

i.. .. ·trn VS_VERSIONJNFO

2. Examine the application's resources. Now take some time to ex
plore the individual resources. When you select a resource by double
clicking on it, another window opens with tools appropriate for the
selected resource. If you open a dialog resource, the control palette
should appear. If it doesn't, right-click inside any toolbar, and then
check Controls.

3. Modify the IDD_ABOUTBOX dialog box. Make some changes to the
About Ex03a dialog box, shown here:

T H R E E: Getting Started with AppWizard-uHello, ~orld!"

You can change the size of the window by dragging the right and
bottom borders, move the OK button, change the text, and so forth.
Simply click on an element to select it, and then right-click to change
its properties.

4. Rebuild the project with the modified resource file. In Developer
Studio, choose Build Ex03a.exe from the Build menu. Notice that no ac
tual c++ recompilation is necessary. Developer Studio saves the edited
resource file, and then the Resource Compiler (rc.exe) processes ex03a.rc
to produce a compiled version, ex03a.res, which is fed to the linker.
The linker runs quickly because it can link the project incrementally.

5. Test the new version of the application. Run the EX03A program
again, and then choose About from the application's Help menu to
confirm that your dialog box was changed as expected.

Win32 Debug Target vs. Win32 Release Target
If you open the drop-down list on the Build toolbar, you'll notice two items:
Win32 Debug and Win32 Release. (The Build toolbar is not present by default,
but you can choose Customize from the Tools menu to display it.) These items
are targets that represent distinct sets of build options. When AppWizard
generates a project, it creates two default targets with different settings. These
settings are summarized in the following table:

Source code debugging

MEC diagnostic macros

Library linkage

Compiler optimization

Release Build

Disabled

Disabled (NDEBUG
defined)

MFC Release library

Speed optimization
(not available in
Learning Edition)

Debug Build

Enabled for both compiler
and linker

Enabled (_DEBUG
defined)

MFC Debug libraries

No optimization (faster
compile)

You develop your application in Debug mode, and then you rebuild in
Release mode prior to delivery. The Release build EXE will be smaller and
faster, assuming that you have fixed all the bugs. You select the configuration

43

PAR T II: THE MFC LIBRARY VIEW CLASS

from the build target window in the Build toolbar, as shown in Figure 1-2 in
Chapter 1. By default, the Debug output files and intermediate files are stored
in the project's Debug subdirectory; the Release files are stored in the Release
subdirectory. You can change these directories on the General tab in the
Project Settings dialog box.

You can create your own custom configurations if you need to by choos
ing Configurations from Developer Studio's Build menu.

Enabling the Diagnostic Macros
The application framework TRACE macros are particularly useful for moni
toring program activity. They require that tracing be enabled, which is the
default setting. If you're not seeing TRACE output from your program, first
make sure that you are running the debug target from the debugger and then
run the TRACER utility. If you check the Enable Tracing checkbox, TRACER
will insert the statement

TraceEnabled = 1

in the [Diagnostics] section of a file named Mx.ini in your Windows directory.
(No, it's not stored in the Registry.) You can also use TRACER to enable other
MFC diagnostic outputs, including message, OLE, database, and Internet
information.

Understanding Precompiled Headers

44

When AppWizard generates a project, it generates switch settings and files for
precompiled headers. You must understand how the make system processes
precompiled headers in order to effectively manage your projects.

NOT E : Visual C++ has two precompiled header "systems": auto
matic and manual. Automatic precompiled headers, activated with
the /Yx compiler switch, store compiler output in a "database" file.
Manual precompiled headers are activated by the /Yc and /Yu
switch settings and are central to all AppWizard-generated projects.

Precompiled headers represent compiler "snapshots" taken at a particu-
lar line of source code. In MFC library programs, the snapshot is generally
taken immediately after the following statement:

T H R E E: Getting Started with AppWizard-"Hello, world!"

#include "StdAfx.h"

The file StdAfx.h contains #include statements for the MFC library header
files. The file's contents depend on the options that you select when you run
AppWizard, but the file always contains these statements:

#include <afxwin.h>
#include <afxext.h>

If you're using compound documents, StdAfx.h also contains the statement

#include <afxole.h>

and if you're using Automation or ActiveX Controls, it contains

#include <afxdisp.h>

Occasionally you will need other header files-for example, the header for
template-based collection classes that is accessed by the statement

#include <afxtempl.h>

The source file StdAfx.cpp contains only the statement

#include "StdAfx.h"

and is used to generate the precompiled header file in the project directory.
The MFC library headers included by StdAfx.h never change, but they do take
a long time to compile. The compiler switch /Yc, used only with StdAfx.cpp,
causes creation of the precompiled header (PCR) file. The switch /Yu, used
with all the other source code files, causes use of an existing PCR file. The
switch /Fp specifies the PCR filename that would otherwise default to the
project name (with the PCR extension) in the target's output files sub
directory. Figure 3-1 on the following page illustrates the whole process.

AppWizard sets the /Yc and /Yu switches for you, but you can make
changes if you need to. It's possible to define compiler switch settings for
individual source files. On the C/C++ tab in the Project Settings dialog box,
if you select only StdAfx.cpp, you'll see the /Yc setting. This overrides the /Yu
setting that is defined for the target.

Be aware that PCR files are big-5 MB is typical. If you're not careful,
you'll fill up your hard disk. You could keep things under control by periodi
cally cleaning out your projects' Debug directories, or you could use the /Fp
compiler option to reroute PCR files to a common directory.

45

PAR T II: THE MFC LIBRARY VIEW CLASS

l StdAfx.h
f'"","""",¥""',.".· .• ,",""',.,',.·.,.".,'
!#includellafxwin.hH ,
~,#ir1clude • "afxext.h.'1
i·;.;;~v>;~: ~., ; m~.~.~~ .,:~w .~,~ ~~ »,~ .:.~ ;H w~~; " :h:",00

F"""'-<w"«='''<'"'.'-·''~¥'''''''''-"~'''''¥w''''wJ

I StdAfx.cpp MyProg.ccp :
~.",."w"""""'"'' """""""".
r#include Ustdafx.h'l 1 l:'" ,., .. "

t:~:;;,;"L ."L:,,::.:.:~:·' .•. ; ..• ;<~~ .. :.:: J

W=W"'""·""''''''''·'''1

7ii'nCi~de)'stdafx:hit';':'1
#include~'l1lyprog.hl': '

/Yc"stdafx.h" ",
~

Yu"stdafx.h"

StdAfx.pch

/ Fp"path" sets path for this file

Figure 3-1.
The Visual C++ precompiled header process.

Two Ways to Run a Program

46

Developer Studio lets you run your program directly (by pressing Ctrl-F5) or
through the debugger (by pressing F5). Running your program directly is
much faster because Developer Studio doesn't have to load the debugger first.
If you know you don't want to see diagnostic messages or use breakpoints, start
your program by pressing Ctrl-F5 or use the "exclamation point" button on
the Build toolbar.

C HAP T E R F 0 U R

Basic Event Handling, Mapping
Modes, and a Scrolling View

In Chapter 3, you saw how the Microsoft Foundation Class (MFC) Library
application framework called the view class's virtual OnDraw function. Take
a look at the online help for the MFC library now. If you look at the documen
tation for the CView class and its base class, CWnd, you'll see several hundred
member functions. Functions whose names begin with On-such as OnKey
Down and OnLButtonUp-are member functions that the application frame
work calls in response to various Windows "events" such as keystrokes and
mouse clicks.

Most of these application framework-called functions, such as OnKey
Down, aren't virtual functions and thus require more programming steps. This
chapter explains how to use the Visual C++ ClassWizard to set up the message
map structure necessary for connecting the application framework to your
functions' code. You'll see the practical application of message map functions.

The first two examples use an ordinary CView class. In EX04A, you'll learn
about the interaction between user-driven events and the OnDraw function.
In EX04B, you'll see the effects of different Windows mapping modes.

More often than not, you'll want a scrolling view. The last example, EX04C,
uses CScrollView in place of the CView base class. This allows the MFC library
application framework to insert scroll bars and connect them to the view.

Getting User Input-Message Map Functions
Your EX03A application from Chapter 3 did not accept user input (other than
the standard Microsoft Windows resizing and window close commands). The
window contained menus and a toolbar, but these were not "connected" to
the view code. The menus and the toolbarwon't be discussed until Part III of
this book because they depend on the frame class, but plenty of other Windows

47

PAR T II: THE MFC LIBRARY VIEW CLASS

input sources will keep you busy until then. Before you can process any Win
dows event, even a mouse click, however, you must learn how to use the MFC
message map system.

The Message Map
When the user presses the left mouse button in a view window, Windows
sends a message-specifically WM_LBUTTONDOWN-to that window. If
your program needs to take action in response to WM_LBUTTONDOWN,
your view class must have a member function that looks like this:

void CMyView::OnLButtonDown(UINT nFlags. CPoint point)
{

II event processing code here

Your class header file must also have the corresponding prototype:

afx_msg void OnLButtonDown(UINT nFlags. CPoint point);

The afx_msgnotation is a "no-op" that alerts you that this is a prototype for a
message map function. Next, your code file needs a message map macro that
connects your OnLButtonDown function to the application framework:

BEGIN_MESSAGE_MAP(CMyView. CView)
ON_WM_LBUTTONDOWN() II entry specifically for OnLButtonDown
II other message map entries

END_MESSAGE_MAP()

Finally, your class header file needs the statement

DECLARE_MESSAGE_MAP()

How do you know which function goes with which Windows message?
Appendix A (and the MFC library online documentation) includes a table that
lists all standard Windows messages and corresponding member function
prototypes. You can manually code the message-handling functions-indeed,
that is still necessary for certain messages. Fortunately, Visual C++ provides a
tool, ClassWizard, that automates the coding of most message map functions.

Saving the View's State-Class Data Members

48

If your program accepts user input, you'll want the user "to have some visual
feedback. The view's OnDraw function draws an image based on the view's
current "state," and user actions can alter that state. In a full-blown MFC appli
cation, the document object holds the state of the application, but you're not

F 0 U R: Basic Event Handling, Mapping Modes, and a Scrolling View

to that point yet. For now, you'll use two view class data members, In_reetEllipse
and In_nColor. The first is an object of class CReet, which holds the current bound
ing rectangle of an ellipse, and the second is an integer that holds the current
ellipse color value.

NOT E : By convention, MFC library nonstatic class data member
names begin with In_.

You'll make a message-mapped member function toggle the ellipse color
(the view's state) between gray and white. (The toggle is activated by pressing
the left mouse button.) The initial values of In_reetEllipse and In_nColorare set
in the view's constructor, and the color is changed in the OnLButtonDown
member function.

TIP: Why not use a global variable for the view's state? Because
if you did, you'd be in trouble if your application had multiple views.
Besides, encapsulating data in objects is a big part of what object
oriented programming is all about.

Initializing a View Class Data Member
The most efficient place to initialize a class data member is in the constructor,
like this:

CMyView::CMyView() : m_rectEllipse(0. 0, 200, 2(0) { ... }

You could initialize In_nColor with the same syntax. Because we're using a built
in type (integer), the generated code is the same if you use an assignment
statement in the constructor body.

Invalid Rectangle Theory
The OnLButtonDown function could toggle the value of In_nColor all day, but
if that's all it did, the OnDraw function wouldn't get called (unless, for example,
the user resized the view window) . The OnLButtonDown function must call the
InvalidateReet function (a member function that the view class inherits from
CWnd). InvalidateReet triggers a Windows WM_P AINT message, which is mapped
in the CView class to call to the virtual OnDraw function. Ifnecessary, OnDraw
can access the "invalid rectangle" parameter that was passed to InvalidateReet.

There are two ways to optimize painting in Windows. First of all, you must
be aware that Windows updates only those pixels that are inside the invalid
rectangle. Thus, the smaller you make the invalid rectangle (in the OnLButton
Down handler, for instance), the quicker it can be repainted. Second, it's a
waste of time to execute drawing instructions outside the invalid rectangle.

49

PAR T II: THE MFC LIBRARY VIEW CLASS

Your OnDrawfunction could call the CDCmemberfunction GetClipBoxto de
termine the invalid rectangle, and then it could avoid drawing objects outside
h. Remember that OnDraw is being called not only in response to your In
validateRect call but also when the user resizes or exposes the window. Thus,
OnDraw is responsible for all drawing in a window, and it has to adapt to what
ever invalid rectangle it gets.

For Win32 Programmers
The MFC library makes it easy to attach your own state variables to a
windowthrough C++ class data members. In Win32 programming, the
WNDCLASS members cbClsExtra and cb WndExtra are available for this
purpose, but the code forusing this mechanism is so complex that
developers tend to use global variables instead.

The Window's Client Area
A window has a rectangular client area that excludes the border, caption bar,
menu bar, and any docking toolbars. The CWnd member function GetClientRect
supplies you with the client-area dimensions. Normally, you're not allowed to
draw outside the client area, and most mouse messages are received only when
the mouse cursor is in the client area.

CRect, CPoint, and CSize Arithmetic

50

The CRect, CPoint, and CSize classes are derived from the Windows RECT, POINT,
and SIZE structures, and thus they inherit public integer data members as
follows:

CReet left, top, right, bottom

CPoint x, y

CSize ex, ey

If you look in the MicrosoftFoundation Class Reference, you will see that these
three classes have a number of overloaded operators. You can, among other
things, do the following:

m Add a CSize object to a CPoint object

M.I Subtract a CSize object from a CPoint object

m Subtract one CPoint object from another, yielding a CSize object

F 0 U R: Basic Event Handling, Mapping Modes, and a Scrolling View

o Add a CPoint or CSize object to a CRect object

Cl Subtract a CPoint or CSize object from a CRect object

The CRect class has member functions that relate to the CSize and CPoint
classes. For example, the TopLeJt member function returns a CPoint object, and
the Size member function returns a CSize object. From this, you can begin to
see that a CSize object is the "difference between two CPoint objects" and that
you can "bias" a CRect object by a CPoint object.

Is a Point Inside a Rectangle?
The CRect class has a member function PtlnRect that tests a point to see whether
it falls inside a rectangle. The second OnLButtonDown parameter (point) is an
object of class CPoint that represents the cursor location in the client area of
the window. If you want to know whether that point is inside the m_rectEllipse
rectangle, you can use PtInRect in this way:

if Cm_rectEllipse.PtlnRectCpoint))
II point is inside rectangle

As you'll soon see, however, this simple logic applies only if you're working
in device coordinates (which you are at this stage).

The CRect LPRECT Operator
If you read the Microsoft Foundation Class Reference carefully, you will notice that
CWnd::lnvalidateRect takes an LPRECTparameter (a pointer to a RECTstruc
ture) , not a CRect parameter. A CRect parameter is allowed because the CRect
class defines an overloaded operator, LPRECT(), that returns the address of
a CRect object, which is equivalent to the address of a RECT object. Thus, the
compiler converts CRect arguments to LPRECTarguments when necessary. You
call functions as though they had CRect reference parameters. The view mem
ber function code

CRect rectClient;
GetClientRectCrectClient);

retrieves the client rectangle coordinates and stores them in rectClient.

Is a Point Inside an Ellipse?
The EX04A code determines whether the mouse hit is inside the rectangle.
If you want to make a better test, you can find out whether the hit is inside the

51

PAR T II: THE MFC LIBRARY VIEW CLASS

ellipse. To do this, you must construct an object of class CRgn that corresponds
to the ellipse and then use the PtInRegion function instead of PtlnRect. Here's
the code:

CRgn rgn;
rgn.CreateEllipticRgnlndirect(m_rectEllipse);
if (rgn.PtlnRegion(point)) {

// point is inside ellipse

Note that the CreateEllipticRgnlndirect function is another function that
takes an LPRECTparameter. It builds a special region structure within Win
dows that represents an elliptical region inside a window. That structure is then
attached to the C++ CRgn object in your program. (The same type of structure
can also represent a polygon.)

The EX04A Example

52

In the EX04A example, an ellipse (which happens to be a circle) changes color
when the user presses the left mouse button while the mouse cursor is inside
the rectangle that bounds the ellipse. You'll use the view class data members
to hold the view's state, and you'll use the InvalidateRect function to cause the
view to be redrawn.

In the Chapter 3 example, drawing in the window depended on only one
function, OnDraw. The EX04A example requires three customized functions
(including the constructor) and two data members. The complete CEx04a View
header and source code files are listed in Figure 4-1. (The steps for creating
the program are shown after the program listings.) All changes to the original
AppWizard output are shaded in gray.

EX04AVIEW.H

// ex04aView.h : interface of the CEx04aView class
//
///

#if Jdefined(AFX_EX04AVIEW_H __ B188BE41_6377_11D0_8FD4_00C04FC2A0C2 __ INCLUDED_)
#define AFX_EX04AVIEW_H __ B188BE41_6377_11D0_8FD4_00C04FC2A0C2 __ INCLUDED_

#if _MFC_VER >= 1000
#pragma once
#endif // _MFC_VER >= 1000

Figure 4-1.
The CEx04a View header and source code files.

(continued)

F 0 U R: Basic Event Handling, Mapping Modes, and a Scrolling View

Figure 4-1. continued

class CEx04aView : public CView
(

protected: II create from serialization only
CEx04aView():
DEClARE_DYNCREATE(CEx04aView)

II Attributes
public:

CEx04aDoc* GetDocument():

II Operations
public:

II Overrides
II ClassWizard generated virtual function overrides
11{{AFX_VIRTUAl(CEx04aView)
public:
virtual void OnDraw(CDC* pDC): II overridden to draw this view
virtual BOOl PreCreateWindow(CREATESTRUCT& cs):
protected:
virtual BOOl OnPreparePrinting(CPrintInfo* pInfo):
virtual void OnBeginPrinting(CDC* pDC. CPrintInfo* pInfo):
virtual void OnEndPrinting(CDC* pDC. CPrintInfo* pInfo);
I/} JAFX_VIRTUAl

II Implementation
public:

virtual -CEx04aView():
/lifdef _DEBUG

virtual void AssertValid() const:
virtual void Dump(CDumpContext& dc) const:

fiend if

protected:

II Generated message map functions
protected:

11{{AFX_MSG(CEx04aView)
afx_msg void OnlButtonDown(UINT nFlags. CPoint point):
I/} J AFX_MSG
DEClAR,E7~E~SAGE~MAP () ,

pri vate:
i nt m_nColor; ,
CRectm,-r~c::t~JJJp~e;

J:

(continued)

53

PAR T II: THE MFC LIBRARY VIEW CLASS

54

Figure 4-1. continued

#ifndef _DEBUG // debug version in ex04aView.cpp
inline CEx04aDoc* CEx04aView::GetDocument()

{ return (CEx04aDoc*)m_pDocument: }
#endif

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Developer Studio will insert additional declarations
// immediately before the previous line.

#endif // !defined(AFX_EX04AVIEW_H __ B188BE41_6377_ -.
IlD0_8FD4_00C04FC2A0C2 __ INCLUDED_)

EX04AVIEW.CPP

// ex04aView.cpp : implementation of the CEx04aView class
//

#include "stdafx.h"
#include "ex04a.h"

#include "ex04aDoc.h"
#include "ex04aView.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __ FILE __ :
#endif

///

// CEx04aView

IMPLEMENT_DYNCREATE(CEx04aView. CView)

BEGIN_MESSAGE_MAP(CEx04aView. CView)
//{{AFX_MSG_MAP(CEx04aView)
ON_WM_LBUTTONDOWN()
/ /} }AFX_MSG_MAP
// Standard printing commands
ON_COMMAND(ID_FILE_PRINT. CView: :OnFilePrint)
ON_COMMAND(ID_FILE_PRINT_DIRECT. CView::OnFilePrint)
ON_COMMAND(ID_FILE_PRINT_PREVIEW. CView::OnFilePrintPreview)

END_MESSAGE_MAP()

(continued)

F 0 U R: Basic Event Handling, Mapping Modes, and a Scrolling View

Figure 4-1. continued

///

// CEx04aView construction/destruction

CEx04aView::CEx04aView() : m_rectEllipse(0. 0. 200. 200)
(

CEx04aView::-CEx04aView()
{

}

Baal CEx04aView::PreCreateWindow(CREATESTRUCT& cs)
(

// TOOO: Modify the Window class or styles here by modifying
// the CREATESTRUCT cs

return CView::PreCreateWindow(cs);

///

// CEx04aView drawing

void CEx04aView::OnOraw(COC* pOC)
(

pDC->SelectStockObject(m_nColor):
pDC->Ell ipse(m_rectEll ipse);

///

// CEx04aView printing

Baal CEx04aView::OnPreparePrinting(CPrintlnfo* plnfo)
(

// default preparation
return DoPreparePrinting(plnfo);

void CEx04aView::OnBeginPrinting(COC* /*pOC*/, CPrintlnfo* /*plnfo*/)

// TOOO: add extra initialization before printing

void CEx04aView::OnEndPrinting(COC* /*pOC*/. CPrintlnfo* /*plnfo*/)
(

// TOOO: add cleanup after printing

(continued)

55

PAR T II: THE MFC LIBRARY VIEW CLASS

Figure 4-1. continued

///

// CEx04aView diagnostics

/fifdef _DEBUG
void CEx04aView: :AssertValid() const
(

CView::AssertValid();
}

void CEx04aView::Dump(CDumpContext& dc) const

CView::Dump(dc);

CEx04aDoc* CEx04aView: :GetDocument() // non-debug version is inline
(

}

ASSERT(m_pDocument->IsKindOf(RUNTIME_CLASS(CEx04aDoc»);
return (CEx04aDoc*)m_pDocument;

/fendif //_DEBUG

///

// CEx04aView message handlers

void CEx04aView::OnLButtonDown(UINT nFlags, CPoint point)
{

(m_rectEllipse.PtInRect{point»
if (m~nColor == GRAY_BRUSH) {

m_nColor = WHITE_BRUSH;

else {
m_tlColor = GRAY_BRUSH;

Using ClassWizard with EX04A

56

Look at the following ex04a View.h source code:

//({AFX_MSG(CEx04aView)
afx_msg void OnLButtonDown(UINT nFlags, CPoint point);
/ /} }AFX_MSG

F 0 U R: Basic Event Handling, Mapping Modes, and a Scrolling View

Now look at the following ex04aView.cpp source code:

11{{AFX_MSG_MAP(CEx04aView)
ON_WM_LBUTTONDOWNC)
I/} JAFX_MSG_MAP

App Wizard generated the funny-looking comment lines for the benefit
of ClassWizard. ClassWizard adds message handler prototypes between the
AFYLMSG brackets and message map entries between the AFYLMSG_MAP
brackets. In addition, ClassWizard generates a skeleton OnLButtonDown mem
ber function in ex04a View.cpp, complete with the correct parameter decla
rations and return type.

Notice how the AppWizard-ClassWizard combination is different from
a conventional code generator. You run a conventional code generator only
once and then edit the resulting code. You run AppWizard to generate the
application only once, but you can run ClassWizard as many times as neces
sary, and you can edit the code at any time. You're safe as long as you don't
alter what's inside the AFYLMSG and AFYLMSG_MAP brackets.

Using AppWizard and ClassWizard Together
The following steps show how you use AppWizard and ClassWizard together
to create this application:

1. Run AppWizard to create EX04A. Use AppWizard to generate an
SDI project named EX04A in the \vcpp32\ex04a subdirectory. The op
tions and the default class names are shown here:

57

PAR T II: THE MFC LIBRARY VIEW CLASS

58

2. Add the m_rectEllipse and m_nColor data members to CEx04a
View. With the Workspace window set to ClassView, right-click the
CEx04a View class, select Add Member Variable, and then insert the fol
lowing two data members:

h' hU

private:
eRect m_rectEllipse:
int m_nColor:

If you prefer, you could type the above code inside the class declara
tion in the file ex04a View.h.

3. Use ClassWizard to add a CEx04aViewclass message handler.
Choose ClassWizard from the View menu of Developer Studio, or right
click inside a source code window. When the ClassWizard dialog appears,
be sure that the CEx04a View class is selected, as shown in the illustration
below. Now click on CEx04a View at the top of the Object IDs list box, and
then scroll down past the virtual functions in the Messages list box and
double-click on WM_LBUTTONDOWN. The OnLButtonDown function
name should appear in the Member Functions list box, and the message
name should be displayed in bold in the Messages list box. Here's the
ClassWizard dialog box:

F 0 U R: Basic Event Handling, Mapping Modes, and a Scrolling View

NOT E: Instead of using ClassWizard, you can map the function
from the Developer Studio WizardBar (shown in Figure 1-2 in
Chapter 1).

4. Edit the OnLButtonDown code in ex04aView.cpp. Click the Edit
Code button. ClassWizard opens an edit window for ex04aView.cpp in
Developer Studio and positions the cursor on the newly generated OnL
ButtonDown member function. The following shaded code (that you type
in) replaces the previous code:

void CEx04aView::OnLButtonDown(UINT nFlags, CPoint point)
{

if (m_rectEllipse.PtInRect(point»
if (m_nColor == GRAY_BRUSH) {

m_nColor = WHITE_BRUSH;

else {
m_nColor = GRAY_BRUSH;

InvalidateRect(m_rectEllipse);

5. Edit the constructor and the OnDraw function in ex04aView.cpp.
The following shaded code (that you type in) replaces the previous code:

CEx04aView::CEx04aView() .: m_rectEllipse(0. 0,200, 200)
{

void CEx04aView: :OnDraw(CDC* pDC)

pDC->SelectStockObject(m_nColor);
pDC->Ell i pse(m_rectEll ipse);

6. Build and run the EX04A program. Choose Build from the Build
menu, or, on the Build toolbar, click the button shown here:

59

PAR T II: THE MFC LIBRARY VIEW CLASS

Then choose Execute Ex04a.exe from the Build menu. The resulting
program responds to presses of the left mouse button by changing the
color of the circle in the view window. (Don't press the mouse's left but
ton quickly in succession; Windows interprets this as a double click rather
than two single clicks.)

For Win32 Programmers
A conventional Windows-based application registers a series of window
classes (not the same as C++ classes) and, in the process, assigns a
unique function, known as a window procedure, to each class. Each
time the application calls Create Window to create a window, it specifies
a window class as a parameter and thus links the newly created win
dow to a window procedure function. This function, called each time
Windows sends a message to the window, tests the message code that
is passed as a parameter and then executes the appropriate code to
handle the message.

The MFC application framework has a single window class and
window procedure function for most window types. This .window pro
cedure function looks up the window handle (passed as a parameter)
in the MFC handle map to get the corresponding C++ window object
pointer. The window procedure function then uses the MFC runtime
class system (see Appendix B) to determine the C++ class of the win
dow object. Next it locates the handler function in static tables created
by the dispatch map functions, and finally it calls the handler function
with the correct window object selected.

Mapping Modes

60

Up to now, your drawing units have been display pixels, also known as device
coordinates. The EX04A drawing units are pixels because the device context
has the default mapping mode, MM_TEXT, assigned to it. The statement

pDC-)Rectangle(CRect(0. 0. 200. 200»;

draws a square of 200-by-200 pixels, with its top left corner at the top left of
the window's client area. (Positive y values increase as you move down the

F 0 U R: Basic Event Handling, Mapping Modes, and a Scrolling View

window.) This square would look smaller on a high-resolution display of 1024-
by-768 pixels than it would look on a standard VGA display that is 640-by-480
pixels, and it would look tiny if printed on a laser printer with 600-dpi reso
lution. (Try EX04A's Print Preview feature to see for yourself.)

What if you want the square to be 4-by-4 centimeters (cm), regardless of
the display device? Windows provides a number of other mapping modes, or
coordinate systems, that can be associated with the device context. Coordinates
in the current mapping mode are called logical coordinates. If you assign the
MM_HlMETRIC mapping mode, for example, a logical unit is 1/100 milli
meter (mm) instead of 1 pixel. In the MM_HlMETRIC mapping mode, the y
axis runs in the opposite direction to that in the MM_TEXTmode: y values
decrease as you move down. Thus, a 4-by-4-cm square is drawn in logical co
ordinates this way:

pDC->Rectangle(CRect(0, 0, 4000, -4000»;

Looks easy, doesn't it? Well, it isn't, because you can't work only in logi
cal coordinates. Your program is always switching between device coordinates
and logical coordinates, and you need to know when to convert between them.
This section gives you a few rules that could make your programming life
easier. First you need to know what mapping modes Windows gives you.

The MM_TEXTMapping Mode
At first glance, MM_TEXTappears to be no mapping mode at all, but rather
another name for device coordinates. Almost. In MM_TEXT, coordinates map
to pixels, values of x increase as you move right, and values ofy increase as you
move down, but you're allowed to change the origin through calls to the CDC
functions SetViewportOrg and SetWindowOrg. Here's some code that sets the
window origin to (100, 100) in logical coordinate space and then draws a 200-
by-200-pixel square offset by (100, 100). (An illustration of the output is shown
in Figure 4-2 on the following page.) The logical point (100, 100) maps to the
device point (0, 0). A scrolling window uses this kind of transformation.

void CMyView::OnDraw(CDC* pDC)
{

pDC->SetMapMode(MM_TEXT);
pDC->SetWindowOrg(CPoint(100, 100»;
pDC->Rectangle(CRect(100, 100, 300,.?00»;

61

PAR T II: THE MFC LIBRARY VIEW CLASS

Figure 4-2.
A square drawn after the origin has been moved to (100, 100).

The Fixed-Scale Mapping Modes

62

One important group of Windows mapping modes provides fixed scaling. You
have already seen that, in the ~HlMETRlC mapping mode, x values increase
as you move right and y values decrease as you move down. All fixed mapping
modes follow this convention, and you can't change it. The only difference
among the fixed mapping modes is the actual scale factor, listed in the table
shown here:

Mapping Mode

MM_LOENGLISH

MM_HIENGLISH

MM_LOMETRIC

MM_HlMETRIC

MM_TWIPS

Logical Unit

0.01 inch

0.001 inch

O.lmm

0.01 mm

1/1440 inch

The last mapping mode, MM_ TWIPS, is most often used with printers.
One twip unit is 1/20 point. (A point is a type measurement unit. In Windows
it equals exactly 1/72 inch.) If the mapping mode is ~TWIPS and you want,
for example, 12-point type, set the character height to 12 x 20, or 240, twips.

F 0 U R: Basic Event Handling, Mapping Modes, and a Scrolling View

The Variable-Scale Mapping Modes
Windows provides two mapping modes, MM_ISOTROPIC and MM_ANISO
TROPIC, that allow you to change the scale factor as well as the origin. With
these mapping modes, your drawing can change size as the user changes the
size of the window. Also, if you invert the scale of one axis, you can "flip" an image
about the other axis and you can define your own arbitrary fixed-scale factors.

With the MM_ISOTROPIC mode, a 1:1 aspect ratio is always preserved.
In other words, a circle is always a circle as the scale factor changes. With the
M~ANISOTROPIC mode, the x and y scale factors can change independently.
Circles can be squished into ellipses.

Here's an OnDraw function that draws an ellipse that fits exactly in its
window:

void CMyView::OnDraw(CDC* pDC)
{

CRect rectClient;

GetClientRect(rectClient);
pDC->SetMapMode(MM_ANISOTROPIC);
pDC->SetWindowExt(1000, 1000);
pDC->SetViewportExt(rectClient.right, -rectClient.bottom);
pDC->SetViewportOrg(rectClient.right / 2, rectClient.bottom / 2):

pDC->Ellipse(CRect(-S00, -500, 500, 500»;

What's going on here? The functions SetWindowExt and SetViewportExt work
together to set the scale, based on the window's current client rectangle re
turned by the GetClientRect function. The resulting window size is exactly 1000-
by-1000 logical units. The SetViewportOrgfunction sets the origin to the center
of the window. Thus, a centered ellipse with a radius of 500 logical units fills
the window exactly, as illustrated in Figure 4-3 on the following page.

Here are the formulas for converting logical units to device units:

x scale factor = x viewport extent / x window extent

y scale factor = y viewport extent / y window extent

device x = logical x x x scale factor + x origin offset

device y = logical y x y scale factor + y origin offset

63

PAR T II: THE MFC LIBRARY VIEW CLASS

(-500,0)

yaxis

Client rectangle
(0,500)

i - - - - - - - - - - - - - - - - - -::..::,-.;;,,;----'1--_.....--=..:...-- - - - - - - - - - - - - - - - - -
1
1

(500,0)

---::;+----------4~------.:...--~-- X axis

1 ___ - ___ ... __ ... __ ___ :-:_~_ ----i----=-=
(0, -500)

Figure 4-3.
A centered ellipse drawn in the MM_ANISOTROPIC mapping mode.

Suppose the window is 448 pixels wide (rectClient.right). The right edge
of the ellipse's client rectangle is 500 logical units from the origin. The x scale
factor is 448/1000, and the x origin offset is 448/2 device units. If you use the
formulas shown on the previous page, the right edge of the ellipse's client rect
angle comes out to 448 device units, the right edge of the window. The x scale
factor is expressed as a ratio (viewport extent/window extent) because Win
dows device coordinates are integers, not floating-point values. The extent val
ues are meaningless by themselves.

If you substitute MM_ISOTROPIC for MM_ANISOTROPIC in the preced
ing example, the "ellipse" is always a circle, as shown in Figure 4-4. It expands
to fit the smallest dimension of the window rectangle.

Coordinate Conversion

64

Once you set the mapping mode (plus the origin) of a device context, you can
use logical coordinate parameters for most CDC member functions. If you get
the mouse cursor coordinates from a Windows mouse message (the point
parameter in OnLButtonDown), for example, you're dealing with device coor
dinates. Many other MFC functions, particularly the member functions of class
CRect, work correctly only with device coordinates.

F 0 U R: Basic Event Handling, Mapping Modes, and a Scrolling View

yaxis

Client rectangle
(0,500)

(-500, ,'. (500, 0)

---i-------r-----+------r------'--- X axis

(0, -500)

Figure 4-4.
A centered ellipse drawn in the MM_ISOTROPIC mapping mode.

NOT E : The CRect arithmetic functions use the underlying Win32
RECTarithmetic functions, which assume that right is greater than
left and bottom is greater than top. A rectangle (0,0, 1000, -1000) in
MM_HlMETRIC coordinates, for example, has bottom less than top
and cannot be processed by functions such as CRect::PtInRect unless
your program first calls CRect::NormalizeRect, which changes the rect
angle's data members to (0, -1000,1000,0).

Furthermore, you're likely to need a third set of coordinates that we will
call physical coordinates. Why do you need another set? Suppose you're us
ing the MM_LOENGLISH mapping mode in which a logical unit is 0.01 inch,
but an inch on the screen represents a foot (12 inches) in the real world. Now
suppose the user works in inches and decimal fractions. A measurement of
26.75 inches translates to 223 logical units, which must be ultimately translated
to device coordinates. You will want to store the physical coordinates as either
floating-point numbers or scaled long integers to avoid rounding-off errors.

For the physical-to-Iogical translation you're on your own, but the Win
dows GDI takes care of the logical-to-device translation for you. The CDC
functions LPtoDP and DPtoLP translate between the two systems, assuming the

65

PA R T II: THE MFC LIBRARY VIEW CLASS

66

device context mapping mode and associated parameters have already been
seL Your job is to decide when to use each system. Here are a few rules of
thumb:

Ii Assume that the CDC member functions take logical coordinate
parameters.

Ii Assume that the CWnd member functions take device coordinate
parameters.

1'1 Do all hit-test operations in device coordinates. Define regions in
device coordinates. Functions such as CRect::PtInRect work best
with device coordinates.

II Store long-term values in logical or physical coordinates. If you
store a point in device coordinates and the user scrolls a window,
that point is no longer valid.

Suppose you need to know whether the mouse cursor is inside a rectangle
when the user presses the left mouse button. Here's the code:

II m_rect is CRect data member of the derived view class with MM_LOENGLISH
II logical coordinates

void CMyView::OnLButtonDown(UINT nFlags. CPoint point)
{

CRect rect = m_rect; II rect is a temporary copy of m_rect
CClientDC dc(this); II This is how we get a device context

II for SetMapMode and LPtoDP
II -- more in next chapter

dc.SetMapMode(MM_LOENGLISH);
dc.LPtoDP(rect); II rect is now in device coordinates
if (rect.PtlnRect(point» {

TRACE("Mouse cursor is inside the rectangle.\n");

Notice the use of the TRACE macro (discussed in Chapter 3).

NOT E: As you'll soon see, it's better to set the mapping mode
in the virtual CView function OnPrepareDC instead of in the OnDraw
function.

F 0 U R: Basic Event Handling, Mapping Modes, and a Scrolling View

The EX048 Example-
Converting to the MM_HIMETRIC Mapping Mode

EX04B is EX04A converted to MM_HlMETRIC coordinates. The EX04B pro
ject on the companion CD-ROM uses new class names and filenames, but the
instructions here take you through modifying the EX04A code. Like EX04A,
EX04B performs a hit-test so that the ellipse changes color only when you click
inside the bounding rectangle.

1. Use ClassWizard to override the virtual OnPrepareDC function.
ClassWizard can override virtual functions for selected MFC base classes,
including CView. It generates the correct function prototype in the class's
header file and a skeleton function in the Cpp file. Select the class name
CEx04aView in the Object IDs list, and then double-click on the OnPre
pareDC function in the Messages list. Edit the function as shown here:

void CEx04aView::OnPrepareDC(CDC* pDC. CPrintInfo* pInfo)
(.

pDC~>SetMapModE!(MM_HIMETRIC) ;
CView::OnPrepareDC(pDC. pInfo);

The application framework calls the virtual OnPrepareDC function just
before it calls OnDraw.

2. Edit the view class constructor. You must change the coordinate
values for the ellipse rectangle. That rectangle is now 4-by-4 centimeters
instead of 200-by-200 pixels. Note that the y value must be negative; other
wise, the ellipse will be drawn on the "virtual screen" right above your
monitor! Change the values as shown here:

CEx04aView::CEx04aView() : m_rectEllipse(0. 0 •. 4000, -40,00)
{

3. Edit the OnLButtonDown function. This function must now convert
the ellipse rectangle to device coordinates in order to do the hit-test.
Change the function as shown on the following page.

67

PAR T II: THE MFC LIBRARY VIEW CLASS

void CEx04aView::OnLButtonDown(UINT nFlags. CPoint point)
{

CClientDC dc(this);
OnPrepareDC(&dc);
CRect rectDevice = m_rectEllipse;
dc.LPtoDP(rectDevice):
if (rectDevic~.PtInRect(point»

if (m_nColor == GRAY_BRUSH)
m_nColor = WHITE_BRUSH;

else {
m_nColor = GRAY_BRUSH:

I nva 1 ida teRect (rectDevice) ;

4. Build and run the EX04B program. The output should look similar
to the output from EX04A, except that the ellipse size will be different.
If you try using Print Preview again, the ellipse should appear much
larger than it did in EX04A.

A Scrolling View Window
As the lack of scroll bars in EX04A and EX04B indicates, the MFC CView class,
the base class of CEx04bView, doesn't directly support scrolling. Another MFC
library class, CScrollView, does support scrolling. CScrollView is derived from
CView. We'll create a new program, EX04C, that uses CScrollView in place of
CView. All the coordinate conversion code you added in EX04B sets you up
for scrolling.

The CScrollView class supports scrolling from the scroll bars but not from
the keyboard. It's easy enough to add keyboard scrolling, so we'll do it.

A Window Is Larger than What You See

68

If you usethe mouse to shrink the size of an ordinary window, the contents
of the window remain anchored at the top left of the window, and items at the
bottom and/or on the right of the window disappear. When you expand the
window, the items reappear. You can correctly conclude that a window is larger
than the viewport that you see on the screen. The viewport doesn't have to be
anchored at the top left of the window area, however. Through the use of the
CWnd functions ScrollWindow and SetWindowOrg, the CScrollView class allows
you to move the viewport anywhere within the window, including areas above
and to the left of the origin.

F 0 U R: Basic Event Handling, Mapping Modes, and a Scrolling View

Scroll Bars
Microsoft Windows makes it easy to display scroll bars at the edges of a win
dow, but Windows by itself doesn't make any attempt to connect those scroll
bars to their window. That's where the CScrollView class fits in. CScrollView
member functions process the WM_HSCROLL and WM_ VSCROLL messages
sent by the scroll bars to the view. Those functions move the viewport within
the window and do all the necessary housekeeping.

Scrolling Alternatives
The CScrollView class supports a particular kind of scrolling that involves one
big window and a small viewport. Each item is assigned a unique position in this
big window. If, for example, you have 10,000 address lines to display, instead
of having a window 10,000 lines long, you probably want a smaller window with
scrolling logic that selects only as many lines as the screen can display. In that
case, you should write your own scrolling view class derived from CView.

NOT E : Microsoft Windows NT uses 32-bit numbers for logical
coordinates, so your logical coordinate space is almost unlimited.
Microsoft Windows 95, however, still has some 16-bit components,
so it uses 16-bit numbers for logical coordinates, limiting values to
the range -32,768 to 32,767. Scroll bars send messages with 16-bit
values in both operating systems. With these facts in mind, you
probably want to write code to the lowest common denominator,
which is Windows 95.

The OnlnitialUpdate Function
You'll be seeing more of the OnlnitialUpdate function when you study the
document-view architecture, star:ting in Chapter 15. The virtual Onlnitial
Update function is important here because it is the first function called by
the framework after your view window is fully created. The framework calls On
InitialUpdatebefore it calls OnDrawfor the first time, so OnlnitialUpdateis the
natural place for setting the logical size and mapping mode for a scrolling view.
You set these parameters with a call to the CScrollView::SetScrollSizes function.

Accepting Keyboard Input
Keyboard input is really a two-step process. Windows sends WM_KEYDOWN
and WM_KEYUP messages, with virtual ~ codes, to a window, but before they
get to the window, they are translated. If an ANSI character is typed (result
ing in a WM_KEYDOWN message), the translation function checks the key
board shift status and then sends a WM_CHAR message with the proper code,

69

PAR T II: THE MFC LIBRARY VIEW CLASS

either uppercase or lowercase. Cursor keys and function keys don't have codes,
so there's no translation to do. The window gets only the WM_KEYDOWN and
WM_KEYUP messages.

You can use ClassWizard to map all these messages to your view. If you're
expecting characters, map WM_CHAR; if you're expecting other keystrokes,
map WM_KEYDOWN. The MFC library neatly supplies the character code or
virtual key code as a handler function parameter.

The EX04C Example-Scrolling

70

The goal of EX04C is to make a logical window 20 centimeters wide by 30
centimeters high. The program draws the same ellipse that it drew in the
EX04B project. You could edit the EX04B source files to convert the CView base
class to a CScrollView base class, but it's easier to start over with AppWizard.
App Wizard generates the OnlnitialUpdate override function for you. Here are
the steps:

1. Run AppWizard to create EX04C. Use AppWizard to generate a pro
gram named EX04C in the \vcpp32\ex04c subdirectory. In AppWizard
Step 6, set the CEx04c View base class to CScrollView, as shown here:

2. Add the m_rectEllipse and m_nColor data members in ex04c
View.h. Insert the following code by right-clicking the CEx04cView
class in the Workspace window or by typing inside the CEx04cView class
declaration:

F 0 U R: Basic Event Handling, Mapping Modes, and a Scrolling View

private:
CRect m_rectEllipse:
int m_nColor:

These are the same data members that were added in the EX04A and
EX04B projects.

3. Modify the AppWizard-generated OnlnitialUpdate function. Edit
OnlnitialUpdate in ex04cView.cpp as shown here:

void CEx04cView::OnlnitialUpdate()
{

}

CScrollView: :OnlnitialUpda~e():
CSize sizeTotal(20000. 30000): II 20 by 30 cm
CSize sizePage(sizeTotal .cx I 2. sizeTotal.cy I 2);
CSize sizeLine(sizeTotal .cx I 50. sizeTotal.cy I 50);
SetScrollSizes(MM_HIMETRIC, sizeTotal, sizePage.sizeLine):

4. Use ClassWizard to add a message handler for the WM_KEYDOWN
message. ClassWizard generates the member function OnKeyDown
along with the necessary message map entries and prototypes. Edit the
code as follows:

void CEx04cView::OnKeyDown(UINT nChar. UINT nRepCnt, UINT nFlags)
{

switch (nChar) {
case VK_HOME:

OnVScroll(SB_TOP. 0. NULL);
OnHScroll(SB_LEFT, 0, NULL);
break;

case VK...:.END:
OnVScroll(SB_BOTTOM, 0, NULL);
OnHScroll(SB_RIGHT. 0~ NULL):
break;

case VK_UP:
OnVScroll(SB_LINEUP, 0. NUll):
break;

case VK_DOWN:
OnVScroll(SB_LINEDOWN. 0, NULL);
break:

case V K...:.PR I OR:
OnVScroll(SB_PAGEUP, 0. NULL):
break;

(continued)

71

PAR T II: THE MFC LIBRARY VIEW CLASS

72

case VK_NEXT:
OnVScroll(SB_PAGEDOWN. 0. NULL);
break:

case VK_LEFT:
OnHScroll(SB_LINELEFT. 0, NULL);
break;

case VK_RIGHT:
OnHScroll(SB_LINERIGHT, 0. NULL):
break;

default:
break;

5. Edit the constructor and the OnDraw function. Change the App
Wizard-generated constructor and the OnDraw function in ex04cView.cpp
as follows:

CEx04cView::CEx04cView() m_rectEllipse(0, 0. 4000. -4000)
{

void CEx04cView::OnDraw(CDC* pDC)
{

pDC->SelectStockObject(m_nColor);
pOC- >E11 ; pse (m_rectEll i,pse) ;

These functions are identical to those used in the EX04A and EX04B
projects.

6. Map the WM_LBUTTONDOWN message and edit the handler. Make
the following changes to the ClassWizard-generated code:

void CEx04cView::OnLButtonDown(UINT nFlags. CPoint point)
{

CClientOC dc(this);
OhPrepareOC(&dc):
CRect rectDevi ce = m_rectEll; pse:
dc.LPtoDP(rectOevice);
if (rectDev;ce.PtlnRect(point)} {

if (m_nColor == GRAY_BRUSH) {
. m_nColor= WHITE_BRUSH:

}

F 0 U R: Basic Event Handling, Mapping Modes, and a Scrolling View

else {
m_nColor = GRAY_BRUSH;

InvalidateRect(rectDevice);

This function is identical to the OnLButtonDown handler in the EX04B
project. It calls OnPrepareDC as before, but there is something different.
The CEx04bView class doesn't have an overridden OnPrepareDCfunction,
so the call goes to CScrollView::OnPrepareDG. That function sets the map
ping mode based on the first parameter to SetScrollSizes, and it sets the
window origin based on the current scroll position. Even if your scroll
view used the MNL TEXT mapping mode, you'd still need the coordinate
conversion logic to adjust for the origin offset.

7. Build and run the EX04C program. Check to be sure the mouse hit
logic is working even if the circle is scrolled partially out of the window.
Also check the keyboard logic. The output should look like this:

Other Windows Messages
The MFC library directly supports about 140 Windows message-handling func
tions. In addition, you can define your own messages. You will see plenty of
message-handling examples in later chapters, including handlers for menu
items, child window controls, and so forth. In the meantime, five special
Windows messages deserve special attention: WM_CREATE, WM_CLOSE,
WM_QUERYENDSESSION, WM_DESTROY, and WM_NCDESTROY.

73

PAR T II: THE MFC LIBRARY VIEW CLASS

The WM_CREATE Message
This is the first message that Windows sends to a view. It is sent when the
window's Create function is called by the framework, so the window creation
is not finished and the window is not visible. Therefore, your On Create han
dler cannot call Windows functions that depend on the window being com
pletely alive. You can call such functions in an overridden OnlnitialUpdate
function, but you must be aware that in an SDI application OnlnitialUpdatecan
be called more than once in a view's lifetime.

The WM_CLOSE Message
Windows sends the WM_CLOSE message when the user closes a window from
the system menu and when a parent window is closed. If you implement the
On Close message map function in your derived view class, you can control the
closing process. If, for example, you need to prompt the user to save changes
to a file, you do it in On Close. Only when you have determined that it is safe
to close the window do you call the base class On Close function, which contin
ues the close process. The view object and the corresponding window are both
still active.

TIP: When you're using the full application framework, you prob
ably won't use the WM_CLOSE message handler. You can override
the CDocument::SaveModifiedvirtual function instead, as part of the
application framework's highly structured program exit procedure.

The WM_QUERYENDSESSION Message
Windows sends the WM_QUERYENDSESSION message to all running appli
cations when the user exits Windows. The OnQueryEndSession message map
function handles it. If you write a handler for WM_CLOSE, write one for
WM_QUERYENDSESSION too.

The WM_DESTROY Message

74

Windows sends this message after the WM_CLOSE message, and the OnDestroy
message map function handles it. When your program receives this message,
it should assume that the view window is no longer visible on the screen but
that it is still active and its child windows are still active. Use this message
handler to do cleanup that depends on the existence of the underlying win
dow.Be sure to call the base class OnDestroy function. You cannot "abort" the
window destruction process in your view's OnDestroy function. OnClose is the
place to do that.

F 0 U R: Basic Event Handling, Mapping Modes, and a Scrolling View

The WM_NCDESTROY Message
This is the last message that Windows sends when the window is being de
stroyed. All child windows have already been destroyed. You can do final pro
cessing in OnNcDestroy that doesn't depend on a window being active. Be sure
to call the base class OnNcDestroy function.

TIP: Do not try to destroy a dynamically allocated window object
in OnNcDestroy. That job is reserved for a special CWnd virtual func
tion, PostNcDestroy, that the base class OnNcDestroy calls. MFC Tech
nical Note #17 in the online documentation gives hints on when it's
appropriate to destroy a window object.

75

C HAP T E R F I V E

The Graphics Device
Interface, Colors, and Fonts

You've already seen some elements of the Graphics Device Interface (GDI).
Anytime your program draws on the display or the printer, it must use the GDI
functions. The GDI provides functions for drawing points, lines, rectangles,
polygons, ellipses, bitmaps, and text. You can draw circles and squares intui
tively once you study the available functions, but text programming is more
difficult. This chapter gives you the information you need to start using the
GDI effectively in the Visual C++ environment. You'll learn how to use fonts
effectively on both the display and the printer. You must wait until Chapter
18, however, for details on how the framework controls the printer.

The Device Context Classes
In Chapters 3 and 4, the view class's OnDraw member function was passed a
pointer to a device context object. OnDraw selected a brush and then drew
an ellipse. The Microsoft Windows device context is the key GDI element that
represents a physical device. Each C++ device context object has an associated
Windows device context, identified by a 32-bit handle of type HDG.

Microsoft Foundation Class (MFC) Library version 4.21 provides a num
ber of device context classes. The base class CDC has all the member functions
(including some virtual functions) that you'll need for drawing. Except for the
oddball CMetaFileDC class, derived classes are distinct only in their constructors
and destructors. If you (or the application framework) construct an object of
a derived device context class, you can pass a CDC pointer to a function such
as OnDraw. For the display, the usual derived classes are CClientDC and
CWindowDG. For other devices, such as printers or memory buffers, you con
struct objects of the base class CDC.

77

PAR T II: THE MFC LIBRARY VIEW CLASS

The "virtualness" of the CDC class is an important feature of the appli
cation framework. In Chapter 18, you'll see how easy it is to write code that
works with both the printer and the display. A statement in OnDraw such as

pDC->TextOut(0, 0, "Hello");

sends text to the display, the printer, or the Print Preview window, depend
ing on the class of the object referenced by the CView::OnDraw function's pDC
parameter.

For display and printer device context objects, the application framework
attaches the handle to the object. For other device contexts, such as the
memory device context that you'll see in Chapter 10, you must call a member
function after construction in order to attach the handle.

The Display Context Classes CClientDC and CWindowDC
Recall that a window's client area excludes the border, the caption bar, and
the menu bar. If you create a CClientDC object, you have a device context that
is mapped only to this client area-you can't draw outside it. The point (0,0)
usually refers to the upper left corner of the client area. As you'll see later, an
MFC CView object corresponds to a child window that is contained inside a
separate frame window, often along with a toolbar, a status bar, and scroll bars.
The clien t area of the view, then, does not include these other windows. If the
window contains a docked toolbar along the top, for example, (0,0) refers to
the point immediately under the left edge of the toolbar.

If you construct an object of class CWindowDC, the point (0, 0) is at the
upper-left comer of the nonclient area of the window. With this "whole-window"
device context, you can draw in the window's border, in the caption area, and
so forth. Don't forget that the view window doesn't have a nonclient area, so
CWindowDC is more applicable to frame windows than it is to view windows.

Constructing and Destroying CDC Objects

78

Mter you construct a CDC object, it is important to destroy it promptly when
you're done with it. Microsoft Windows limits the number of available device
contexts, and if you fail to release a Windows device context object, a small
amount of memory is lost until your program exits. Most frequently, you'll
construct a device context object inside a message handler function such as
OnLButtonDown. The easiest way to ensure that the device context object is
destroyed (and that the underlying Windows device context is released) is to
construct the object on the stack in the following way:

F I V E: The Graphics Device Interface, Colors, and Fonts

void CMyView::OnLButtonDown(UINT nFlags, CPoint point)
{

CRect red;

CClientDC dc(this); II constructs dc on the stack
dc.GetClipBox(rect); II retrieves the clipping rectangle

II dc automatically released

Notice that the CClientDC constructor takes a window pointer as a parameter.
The destructor for the CClientDC object is called when the function returns.
You can also get a device context pointer by using the CWnd::GetDCmember
function, as shown in the following code. You must be careful here to call the
ReleaseDC function to release the device context.

void CMyView::OnLButtonDown(UINT nFlags, CPoint point)
{

CRect rect;

CDC* pDC = GetDC(); II a pointer to an internal dc
pDC->GetClipBox(rect); II retrieves the clipping rectangle
ReleaseDC(pDC); II Don't forget this

WAR N I N G : You must not destroy the CDC object passed by the
pointer to OnDraw. The application framework handles the destruc
tion for you.

The State of the Device Context
You already know that a device context is required for drawing. When you use
a CDC object to draw an ellipse, for example, what you see on the screen (or
on the printer's hard copy) depends on the current "state" of the device con
text. This state includes the following:

IZ! Attached GDI drawing objects such as pens, brushes, and fonts.

m The mapping mode that determines the scale of items when they
are drawn. (You've already experimented with the mapping mode
in Chapter 4.)

It:I Various details such as text alignment parameters and polygon
filling mode.

You have already seen, for example, that choosing a gray brush prior to
drawing an ellipse results in the ellipse having a gray interior. When you cre
ate a device context object, it has certain default characteristics, such as a black

79

PAR T II: THE MFC LIBRARY VIEW CLASS

pen for shape boundaries. All other state characteristics are assigned through
CDC class member functions. CDI objects are selected into the device context
by means of the overloaded SelectObject functions. A device context can, for
example, have one pen, one brush, or one font selected at any given time.

The CPaintDC Class
You'll need the CPaintDC class only if you override your view's OnPaint
function. The default OnPaint calls OnDraw with a properly set up device
context, but sometimes you'll need display-specific drawing code. The CPaint
DC class is special because its constructor and destructor do housekeeping
unique to drawing to the display. Once you have a CDCpointer, however, you
can use it as you would any other device context pointer.

Here's a sample OnPaint function that creates a CPaintDC object:

void CMyView::OnPaint()
{

CPaintDC dc(this);
OnPrepareDC(&dc); II explained later
dc.TextOut(0. 0. "for the display. not the printer");
OnDraw(&dc); II stuff that's common to display and printer

For Win32 Programmers
The CPaintDC constructor calls BeginPaint for you, and the des tructor
calls EndPaint. If you construct your device context on the stack, the
EndPaint call is completely automatic.

GOIObjects

80

A Windows CDI object type is represented by an MFC library class. CGdiObject
is the abstract base class for the CDI object classes. A Windows CDI object is
represented by a c++ object of a class derived from CGdiObject. Here's a list
of the CDI derived classes:

rn CBitmap-A bitmap is an array of bits in which one or more bits
correspond to each display pixel. You can use bitmaps to represent
images, and you can use them to create brushes.

F I V E: The Graphics Device Interface, Colors, and Fonts

o CBrush-A brush defines a bitmapped pattern of pixels that is used
to fill areas with color.

D CFont-A font is a complete collection of characters of a particular
typeface and a particular size. Fonts are generally stored on disk as
resources, and some are device-specific.

o CPalette-A palette is a color mapping interface that allows an ap
plication to take full advantage of the color capability of an output
device without interfering with other applications.

o CPen-A pen is a tool for drawing lines and shape borders. You can
specify a pen's color and thickness and whether it draws solid, dot
ted, or dashed lines.

o CRgn-A region is an area whose shape is a polygon, an ellipse, or
a combination of polygons and ellipses. You can use regions for fill
ing, clipping, and mouse hit-testing.

Constructing and Destroying GDI Objects
You never construct an object of class CGdiObject; instead, you construct ob
jects of the derived classes. Constructors for some CDI derived classes, such
as CPen and CBrush, allow you to specify enough information to create the
object in one step. Others, such as CFont and CRgn, require a second creation
step. For these classes, you construct the C++ object with the default construc
tor and then you call a create function such as the CreateFont or CreatePolygon
Rgn function.

The CGdiObject class has a virtual destructor. The derived class destruc
tors delete the Windows CDI objects that are attached to the C++ objects. If
you construct an object of a class derived from CGdiObject, you must delete it
prior to exiting the program. To delete a CDI object, you must first separate
it from the device context. You'll see an example of this in the next section.

NOT E : Failure to delete a CDI object was a serious offense with
Win16. CDI memory was not released until the user restarted
Windows. With Win32, however, the CDI memory is owned by the
process and is released when your program terminates. Still, an
unreleased CDI bitmap object can waste a significant amount of
memory.

81

PAR T II: THE MFC LIBRARY VIEW CLASS

Tracking GDI Objects
OK, so you know that you have to delete your GDI objects and that they must
first be disconnected from their device context. How do you disconnect them?
A member of the CDC::SelectObject family of functions does the work of select
ing a GDI object into the device context, and, in the process, it returns a
pointer to the previously selected object (which gets deselected in the process).
Trouble is, you can't deselect the old object without selecting a new object.
One easy way to track the objects is to "save" the original GDI object when you
select your own GDI object and "restore" the original object when you're fin
ished. Then you'll be ready to delete your own GDI object. Here's an example:

void CMyView::OnDraw(CDC* pDC)
{

CPen newPen(PS_DASHDOTDOT. 2. (COLORREF) 0); II black pen.

CPen* pOldPen = pDC->SelectObject(&newPen);

pDC->MoveTo(10. 10);
pDC->Lineto(110. 10);
pDC->SelectObject(pOldPen);

II newPen automatically destroyed on exit

II 2 pixels wide

II newPen is deselected

When a device context object is destroyed, all its GDI objects are dese
lected. Thus, if you know that a device context will be destroyed before its
selected GDI objects are destroyed, you don't have to deselect the objects. If,
for example, you declare a pen as a view class data member (and you initial
ize it when you initialize the view), you don't have to deselect the pen inside
OnDraw because the device context, controlled by the view base class's OnPaint
handler, will be destroyed first.

Stock GDI Objects

82

Windows contains a number of stock GDI objects that you can use. Because
these objects are part of Windows, you don't have to worry about deleting
them. (Windows ignores requests to delete stock objects.) The MFC library
function CDC::SelectStockObject selects a stock object into the device context and
returns a pointer to the previously selected object, which it deselects. Stock
objects are handy when you want to deselect your own nonstock GDI object
prior to its destruction. You can use a stock object as an alternative to the "old"
object you used in the previous example, as shown here:

F I V E: The Graphics Device Interface, Colors, and Fonts

void CMyView::OnDraw(CDC* pDC)
(

CPen newPen(PS_DASHDOTDOT. 2. (COLORREF) 0); II black pen.
II 2 pixels wide

pDC->SelectObject(&newPen);
pDC->MoveTo(10. 10);
pDC->Lineto(110. 10);
pDC->SelectStockObject(BLACK_PEN); II newPen is deselected

II newPen destroyed on exit

The Microsoft Foundation Class Reference lists, under CDC::SelectStockObject,
the stock objects available for pens, brushes, fonts, and palettes.

The Lifetime of a GOI Selection
For the display device context, you get a "fresh" device context at the begin
ning of each message handler function. No GDI selections (or mapping modes
or other device context settings) persist after your function exits. You must,
therefore, set up your device context from scratch each time. The CView class
virtual member function OnPrepareDC is useful for setting the mapping mode,
but you must manage your own GDI objects.

For other device contexts, such as those for printers and memory buff
ers, your assignments can last longer. For these long-life device contexts, things
get a little more complicated. The complexity results from the temporary
nature of GDI C++ object pointers returned by the SelectObject function. (The
temporary "object" will be destroyed by the application framework during the
idle loop processing of the application, sometime after the handler function
returns the call. See MFC Technical Note #3 in the online documentation.)
You can't simply store the pointer in a class data member; instead, you must
convert it to a Windows handle (the only permanent GDI identifier) with the
GetSafeHdc member function. Here's an example:

II m_pPrintFont points to a CFont object created in CMyView's constructor
II m_hOldFont is a CMyView data member of type HFONT. initialized to 0

void CMyView::SwitchToCourier(CDC* pDC)
(

m_pPrintFont->CreateFont(30. 10. 0. 0. 400. FALSE. FALSE.
0. ANSI_CHARSET. OUT_DEFAULT_PRECIS.
CLIP_DEFAULT_PRECIS. DEFAULT_QUALITY.
DEFAULT_PITCH IFF_MODERN.
"Courier New"); II TrueType

CFont* pOldFont pDC->SelectObject(m_pPrintFont);

(continued)

83

PAR T II: THE MFC LIBRARY VIEW CLASS

II m_hObject is the CGdiObject public data member that stores
II the handle
m_hOldFont = (HFONT) pOldFont->GetSafeHandle();

void CMyView:SwitchToOriginalFont(COC* pOC)

II FromHandle is a static member function that returns an
II object pointer
if (m_hOldFont) {

pOC->SelectObject(CFont::FromHandle(m_hOldFont»;

II m_pPrintFont is deleted in the CMyView destructor

NOT E : Be careful when you delete an object whose pointer is
returned by SelectObject. If you've allocated the object yourself, you
can delete it. If the pointer is temporary, as it will be for the object
initially selected into the device context, you won't be able to delete
the C++ object.

Windows Color Mapping
The Windows GDI provides a hardware-independent color interface. Your
program supplies an "absolute" color code, and the GDI maps that code to a
suitable color or color combination on your computer's video display. Most
programmers of applications for Windows try to optimize their applications'
color display for a few common video card categories.

Standard Video Graphics Array Video Cards

84

A standard Video Graphics Array (VGA) video card uses IS-bit color registers
and thus has a palette of262,144 colors. Because of video memory constraints,
however, the standard VGA board accommodates 4-bit color codes, which
means it can display only 16 colors at a time. Because Windows needs fixed
colors for captions, borders, scroll bars, and so forth, your programs can use
only 16 "standard" pure colors. You cannot conveniently access the other
colors that the board can display.

Each Windows color is represented by a combination of S-bit "red,"
"green," and "blue" values. The 16 standard VGA "pure" (nondithered) col
ors are shown in the following table:

FIV E: The Graphics Device Interface, Colors, and Fonts

~~~M>::::o/~ ~:::l.<~',,,,,"'t.:t~nn::,(:'·~«<~;,:::~t.H <¢>":::H::::. ~S-~ ~ :m" ~~.;< -,'.:11 

Red Green Blue Color 

0 0 0 Black 

0 0 255 Blue 

0 255 0 Green 

0 255 255 Cyan 

255 0 0 Red 

255 0 255 Magenta 

255 255 0 Yellow 

255 255 255 White 

0 0 128 Dark blue 

0 128 0 Dark green 

0 128 128 Dark cyan 

128 0 0 Dark red 

128 0 128 Dark magenta 

128 128 0 Dark yellow 

128 128 128 Dark gray 

192 192 192 Light gray 

Color-oriented GDI functions accept 32-bit COLORREF parameters that 
contain 8-bit color codes each for red, green, and blue. The Windows RGB 
macro converts 8-bit red, green, and blue values to a COLORREF parameter. 
The following statement, when executed on a system with a standard VGA 
board, constructs a brush with a dithered color (one that consists of a pattern 
of pure-color pixels) : 

CBrush brush(RGB(128. 128. 192)); 

The following statement (in your view's OnDraw function) sets the text 
background to red: 

pDC->SetBkColor(RGB(255. 0. 0)); 

The CDC functions SetBkColor and Set Text Color don't display dithered 
colors as the brush-oriented drawing functions do. If the dithered color pat
tern is too complex, the closest matching pure color is displayed. 

256-Color Video Cards 
Most video cards can accommodate 8-bit color codes at all resolutions, which 
means they can display 256 colors simultaneously. This 256-color mode is now 
considered to be the "lowest common denominator" for color programming. 

85 



PAR T II: THE MFC LIBRARY VIEW CLASS 

If Windows is configured for a 256-color display card, your programs are 
limited to 20 standard pure colors unless you activate the Windows color pal
ette system as supported by the MFC library CPalette class and the Windows API, 
in which case you can choose your 256 colors from a total of more than 16.7 
million. Windows color palette programming is discussed in Chapter 10. In 
this chapter, we'll assume that the Windows default color mapping is in effect. 

With an SVGA 256-color display driver installed, you get the 16 VGA 
colors listed in the previous table plus 4 more, for a total of 20. The follow
ing table lists the 4 additional colors: 

Red Green Blue Color 

192 220 192 Money green 

166 202 240 Sky blue 

255 251 240 Cream 

160 160 164 Medium gray 

The RGB macro works much the same as it does with the standard VGA. 
If you specify one of the 20 standard colors for a brush, you get a pure color; 
otherwise, you get a dithered color. If you use the PALETTERGB macro in
stead, you don't get dithered colors; you get the closest matching standard 
pure color as defined by the current palette. 

16-Bit-Color Video Cards 
Most modern video cards support a resolution of 1024-by-768 pixels, and 1 MB 
of video memory can support 8-bit color at this resolution. Ifa video card has 
2 MB of memory, it can support 16-bit color, with 5 bits each for red, green, 
and blue. This means that it can display 32,768 colors simultaneously. That 
sounds like a lot, but there are only 32 shades each of pure red, green, and 
blue. Often, a picture will look better in 8-bit color mode with an appropri
ate palette selected. A forest scene, for example, can use up to 236 shades of 
green. Palettes are not supported in 16-bit-color mode. 

24-Bit-Color Video Cards 

86 

High-end cards (which are becoming more widely used) support 24-bit color. 
This 24-bit capability enables the display of more than 16.7 million pure colors. 



F I V E: The Graphics Device Interface, Colors, and Fonts 

If you're using a 24-bit card, you have direct access to all the colors. The RGB 
macro allows you to specify the exact colors you want. You'll need 2.5 MB of 
video memory, though, if you want 24-bit color at l024-by-768-pixel resolution. 

Fonts 
Old-fashioned character-mode applications could display only the boring 
system font on the screen. Windows provides multiple device-independent 
fonts in variable sizes. The effective use of these Windows fonts can significantly 
energize an application with minimum programming effort. TrueType fonts, 
first introduced with Windows version 3.1, are even more effective and are 
easier to program than the previous device-dependent fonts. You'll see several 
example programs that use various fonts later in this chapter. 

Fonts Are GOI Objects 
Fonts are an integral part of the Windows GDI. This means that fonts behave 
the same way other GDI objects do. They can be scaled and clipped, and they 
can be selected into a device context as a pen or a brush can be selected. All 
GDI rules about deselection and deletion apply to fonts. 

Choosing a Font 
Choosing a Windows font used to be like going to a fruit stand and asking for 
"a piece of reddish-yellow fruit, with a stone inside, that weighs about 4 
ounces." You might have gotten a peach or a plum or even a nectarine, and 
you could be sure that it wouldn't have weighed exactly 4 ounces. Once you 
took possession of the fruit, you could weigh it and check the fruit type. Now, 
with TrueType, you can specify the fruit type, but you still can't specify the ex
act weight. 

Today you can choose between two font types-device-independent 
TrueType fonts and device-dependent fonts such as the Windows display 
System font and the LaserJet LinePrinter font-or you can specify a font cate
gory and size and let Windows select the font for you. If you let Windows se
lect the font, it will choose a TrueType font if possible. The MFC library 
provides a font selection dialog box tied to the currently selected printer, so 
there's little need for printer font guesswork. You let the user select the ex
act font and size for the printer, and then you approximate the display the best 
you can. 

87 



PA R T II: THE MFC LIBRARY VIEW CLASS 

Printing with Fonts 
For text-intensive applications, you'll probably want to specify printer font sizes 
in points (l point = 1/72 inch). Why? Most, ifnot all, built-in printer fonts are 
defined in terms of points. The LaserJet LinePrinter font, for example, comes 
in one size, 8.5 point. You can specify TrueType fonts in any point size. If you 
work in points, you need a mapping mode that easily accommodates points. 
That's whatMM_TIVlPSis for. An 8.5-pointfont is 8.5 x 20, or 170, twips, and 
that's the character height you'll want to specify. 

Displaying Fonts 

88 

If you're not worried about the display matching the printed output, you have 
a lot of flexibility. You can choose any of the scalable Windows True Type fonts, 
or you can choose the fixed-size system fonts (stock objects). With the True
Type fonts, it doesn't much matter what mapping mode you use; simply choose 
a font height and go for it. No need to worry about points. 

Matching printer fonts to make printed output match the screen presents 
some problems, but TrueType makes it easier than it used to be. Even if you're 
printing with TrueType fonts, however, you'll never quite get the display to 
match the printer output. Why? Characters are ultimately displayed in pix
els (or dots), and the width of a string of characters is equal to the sum of the 
pixel widths of its characters, possibly adjusted for kerning. The pixel width 
of the characters depends on the font, the mapping mode, and the resolution 
of the output device. Only if both the printer and the display were set to 
MM_TEXTmode (1 pixel or dot = 1 logical unit) would you get an exact cor
respondence. If you're using the CDC::GetTextExtent function to calculate line 
breaks, the screen breakpoint will occasionally be different from the printer 
breakpoint. 

NOT E: In the MFC Print Preview mode, which we'll examine 
closely in Chapter 18, line breaks occur exactly as they do on the 
printer, but the print quality in the preview window suffers in the 
process. 

If you're matching a printer-specific font on the screen, TrueType again 
makes the job easier. Windows substitutes the closest matching TrueType font. 
For the 8.5-point LinePrinter font, Windows comes pretty close with its Cou
rier New font. 



F I V E: The Graphics Device Interface, Colors, and Fonts 

Logical Inches and Physical Inches on the Display 
The CDC member function GetDeviceCaps returns various display measure
ments that are important to your graphics programming. The six described 
below provide information about the display size. The values listed are for a 
typical display card configured for a resolution of 640-by-480 pixels with 
Microsoft Windows NT 4.0. 

Index Description Value 

HORZSlZE Physical width in millimeters 320 
VERTSlZE Physical height in millimeters 240 
HORZRES Width in pixels 640 
VERTRES Height in raster lines 480 
LOGPlXELSX Horizontal dots per logical inch 96 

LOGPlXELSY Vertical dots per logical inch 96 

The indexes HORZSlZE and VERTSlZE represent the physical dimen
sions of your display. (These indexes might not be true, since Windows doesn't 
know what size display you have connected to your video adapter.) You can 
also calculate a display size by multiplying HORZRES and VERTRES by LOG
PlXELSX and LOGPlXELSY, respectively. The size calculated this way is known 
as the logical size of the display. Using the values above and the fact that there 
are 25.4 millimeters per inch, we can quickly calculate the two display sizes for 
a 640-by-480 pixel display under Windows NT 4.0. The physical display size is 
12.60-by-9.45 inches; and the logical size is 6.67-by-5.00 inches. So the physi
cal size and the logical size need not be the same. 

For Windows NT 4.0, it turns out that HORZSlZE and VERTSlZE are 
independent of the display resolution, and LOGPlXELSX and LOGPlXELSY 
are always 96. So the logical size changes for different display resolutions, but 
the physical size does not. For Windows 95, the logical size and the physical 
size are equal, so both change with the display resolution. (At a resolution of 
640-by-480 pixels with Windows 95, HORZSlZE is 169 and VERTSlZE is 127.) 

Whenever you use a fixed mapping mode such as MM_HlMETRIC or 
MM_ TWIPS, the display driver uses the physical display size to do the mapping. 

89 



PAR T II: THE MFC LIBRARY VIEW CLASS 

So, for Windows NT, text is smaller on a small monitor; but that's not what 
you want. Instead, you want your font sizes to correspond to the logical dis
play size, not the physical size. 

You can invent a special mapping mode, called logical twips, for which 
one logical unit is equal to 1/1440 logical inch. This mapping mode is inde
pendent of the operating system and display resolution and is used by pro
grams such as Microsoft Word. Here is the code that sets the mapping mode 
to logical twips: 

pDC->SetMapMode(MM_ANISOTROPIC); 
pDC->SetWindowExt(1440, 1440); 
pDC->SetViewportExt(pDC->GetDeviceCaps(LOGPIXELSX), 

-pDC->GetDeviceCaps(LOGPIXELSY)); 

NOT E: From the Windows Control Panel, you can adjust the dis
play font size as well as the display resolution. If you change the 
display font size from the default 100 percent to 200 percent, 
HORZSlZE becomes 160, VERTSlZE becomes 120, and the dots-per
inch value becomes 192. In that case, the logical size is divided by 
2, and all text drawn with the logical twips mapping mode is doubled 
in size. 

Computing Character Height 

90 

Five font height measurement parameters are available through the CDC 
function GetTextMetrics, but only three are significant. The tmHeight parameter 
represents the full height of the font, including descenders (for the characters 
g, j, p, q, and y) and any diacritics that appear over capital letters. The tm
ExternalLeading parameter is the distance between the top of the diacritic and 
the bottom of the descender from the line above. The sum of tmHeight and 
tmExternalLeading is the total character height. The value of tmExternalLeading 
can be O. 

You would think that tmHeight would represent the font size in points. 
Wrong! Another GetTextMetrics parameter, tmlnternalLeading, comes into play. 
The point size corresponds to the difference between tmHeight and tmlnternal
Leading. With the MM_ TWIPS mapping mode in effect, a selected 12-point font 
might have a tmHeight value of 295 logical units and a tmlnternalLeading value 
of 55. The font's net height of 240 corresponds to the point size of 12. Figure 
5-1 shows the important font measurements. 



D 

Figure 5-1. 
Font height measurements. 

The EX05A Example 

F I V E: The Graphics Device Interface, Colors, and Fonts 

J- tmExtemalLeading 

1 

Net 
height 

Descender 

tmHeight 

This example sets up a view window with the logical twips mapping mode. A 
text string is displayed in 10 point sizes with the Arial TrueType font. Here are 
the steps for building the application: 

1. Run AppWizard to generate the EX05A project. Start by choosing 
New from the File menu, and then select MFC AppWizard (exe) on the 
Project tab. Select Single Document and deselect Printing And Print 
Preview; accept all the other default settings. The options and the de
fault class names are shown in the illustration on the following page. 

91 



PAR T II: THE MFC LIBRARY VIEW CLASS 

92 

'l'A~pylttard wil!.cre~e ~~ew~ke~onP!oiect\N~h tile foilowingspe'cifiCllti~~:··· : 

'! 

" Features: 
+ Initial toolbar inirie,;n frame 
+ Initial status bat in main frame' 
+3D Controls ... ' .' •••. ,: .... '. ' 
+ Uses shared DLL impiementation(MFC42DLLl 
.. ActiVeX Controls support enabled' . , 
+ Locafizable te~t in: 

::.: •• ~~;~I~~h:~nited staie.] 

2. Use ClassWizard to override the OnPrepareDC function in the 
CEx05aView class. Edit the code in ex05aView.cpp as follows: 

void CEx05aView::OnPrepareDCCCDC* pDC, CPrintlnfo* plnfo) 
{ 

pDC->SetMapMode(MM_ANISOTROPIC): 
pDC->SetW1ndowExtC1440, 1440): 
pDC->SetViewportExt(pDC->GetDeviceCapsCLOGPIXELSX), 

-pDC->GetDeviceCapsCLOGPIXELSY»: 

3. Add a private ShowFont helper function to the view class. Add 
the prototype shown below in ex05a View.h: 

private: 
void ShowFontCCDC* pDC, int& nPos, int nPoints); 

Then add the function itself in ex05a View.cpp: 

void CEx05aV1ew::ShowFont(CDC* pDC, int& nPos, int nPoints), 
{ 

TEXTMETRIC tm: 
CFont 
CString 
CSize 

fontText; 
strText: 
sizeText; 



F I V E: The Graphics Device Interface, Colors, and Fonts 

fontText.CreateFont(-nPoints * 20. 0. 0, 0, 400. FALSE, FALSE, 0, 
ANSI_CHARSET, OUT_DEFAULT_PRECIS, 
CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY. 
DEFAULT_PITCH IFF_SWISS, "Arial"); 

CFont* pOldFont = (CFont*) pDC->SelectObject(&fontText); 
pDC->GetTextMetrics(&tm): 
TRACE("points = %d. tmHeight = %d, tmInternalLeading = %d," 

" tmExternalLeading = %d\n", nPoints, tm.tmHeight, 
tm.tmInternalLeading, tm.tmExternalLeading): 

strText.Format("This is %d-point Arial", nPoints): 
sizeText = pDC->GetTextExtent(strText): 
TRACE("string width = %d. string height = %d\n", sizeText.cx, 

sizeText.cy): 
pDC->TextOut(0, nPos, strText): 
pDC->SelectObject(pOldFont); 
nPos -= tm.tmHeight + tm.tmExternalLeading: 

4. Edit the OnDrawfunction in exOSaView.cpp. AppWizard always 
generates a skeleton OnDraw function for your view class. Find the 
function, and replace the code with the following: 

void CEx05aView::OnDraw(CDC* pDC) 
{ 

int nPosition = 0; 

for (inti = 6: i <= 24; i += 2) 
ShowFont(pDC, nPosition, i): 

TRACE("LOGPIXELSX = %d, LOGPIXELSY = %d\n", 
pDC->GetDeviceCaps(LOGPIXELSX), 
pDC->GetDeviceCaps(LOGPIXELSY»: 

TRACE("HORZSIZE = %d, VERTSIZE = %d\n", 
pDC->GetDeviceCaps(HORZSIZE). 
pDC->GetDeviceCaps(VERTSIZE»; 

TRACE("HORZRES = %d, VERTRES = %d\n", 
pDC->GetDeviceCaps(HORZRES), 
pDC->GetDeviceCaps(VERTRES»: 

S. Build and run the EXOSA program. You must run the program from 
the debugger if you want to see the output from the TRACE statements. 
Choose Go from the Start Debug submenu of Developer Studio's Build 
menu, or click the following button on the Build toolbar: 

93 



PAR T II: THE MFC LIBRARY VIEW CLASS 

The resulting output (assuming the use of a standard VGA card) looks 
like the screen shown here: 

is a-point Arial 

S is 1 D-point Arial 
is is 12-point Arial 
is is 14-point Arial 
is is 16-point Arial 

his is 1B-point Arial 
his is 20-point Arial 
his is 22-point Arial 
his is 24- oint Arial 

Notice that the output string sizes don't quite correspond to the point sizes. 
This discrepancy results from the font engine's conversion of logical units to 
pixels. The program's trace output, partially shown below, shows the printout 
of fon t metrics. (The numbers depend on your display driver and your video 
driver.) 

points = 6. tmHeight = 150. tmlnternalLeading = 30. tmExternalLeading = 4 
string width = 990. string height = 150 
points = 8. tmHeight = 210. tmlnternalLeading = 45. tmExternalLeading = 5 
string width = 1380. string height = 210 
points = 10. tmHeight = 240. tmlnternalLeading = 45. tmExternalLeading = 6 
string width = 1770. string height = 240 
points = 12. tmHeight = 270. tmlnternalLeading = 30. tmExternalLeading = 8 
string width = 2130. string height = 270 

The EX05A Program Elements 

94 

Following is a discussion of the important elements in the EX05A example. 

Setting the Mapping Mode in the OnPrepareDC Function 
The application framework calls OnPrepareDC prior to calling OnDraw, so the 
OnPrepareDC function is the logical place to prepare the device context. If you 



F I V E: The Graphics Device Interface, Colors, and Fonts 

had other message handlers that needed the correct mapping mode, those 
functions would have contained calls to OnPrepareDC. 

The ShowFont Private Member Function 
ShowFont contains code that is executed 10 times in a loop. With C, you would 
have made this a global function, but with C++, it's better to make it a private 
class member function, sometimes known as a helper function. 

This function creates the font, selects it into the device context, prints 
a string to the window, and then deselects the font. If you choose to include 
debug information in the program, ShowFont also displays useful font metrics 
information, including the actual width of the string. 

Calling CFont::CreateFont 
This call includes lots of parameters, but the important ones are the first two
the font height and width. A width value of 0 means that the aspect ratio of 
the selected font will be set to a value specified by the font designer. If you put 
a nonzero value here, as you'll see in the next example, you can change the 
font's aspect ratio. 

TIP: If you want your font to be a specific point size, the CreateFont 
font height parameter (the first parameter) must be negative. If 
you're using the MM_TWIPS mapping mode for a printer, for ex
ample, a height parameter of -240 ensures a true 12-point font, with 
tmHeight- tmlnternalLeading= 240. A +240 height parameter gives 
you a smaller font, with tmHeight = 240. 

The last CreateFont parameter specifies the font name, in this case the 
Arial TrueType font. If you had used NULL for this parameter, the FF_SWISS 
specification (which indicates a proportional font without serifs) would have 
caused Windows to choose the best matching font, which, depending on the 
specified size, might have been the System font or the Arial TrueType font. 
The font name takes precedence. If you had specified FF_ROMAN (which 
indicates a proportional font with serifs) with Arial, for example, you would 
have gotten Arial. 

The EX058 Example 
This program is similar to EX05A except that it shows multiple fonts. The 
mapping mode is MM_ANISOTROPIC, with the scale dependent on the win
dow size. The characters change size along with the window. This program 

95 



PAR T II: THE MFC LIBRARY VIEW CLASS 

96 

effectively shows off some TrueType fonts and contrasts them with the old-style 
fonts. Here are the steps for building the application: 

1. Run AppWizard to generate the EX058 project. The options and 
the default class names are shown here: 

2. Use ClassWizard to override the OnPrepareDC function in the 
CEx05bView class. Edit the code in ex05bView.cpp as follows: 

void CEx05bView::OnPrepareDCCCDC* pDC. CPrintInfo* pInfo) 
{ 

CRect clientRect; 

GetClientRect(clientRect); 
pDC->SetMapModeCMM_ANISOTROPIC); II +y = down 
pDC->SetWindowExt(400. 450); 
pDC->SetViewportExt(c11entRect.right. clientRect~bottom); 
pDC~>SetViewportOrg{0. 0): 

3. Add a private TraceMetrics helper function to the view class. 
Add the following prototype in ex05bView.h: 

private: 
void TraceMetrics(CDC* pDC): 

Then add the function itself in ex05bView.cpp: 



F I V E: The Graphics Device Interface, Colors, and Fonts 

void CEx05bView::TraceMetrics(CDC* pDC) 
{ 

TEXTMETRIC tm: 
char szFaceName[100]; 

pDC-)GetTextMetrics(&tm); 
pDC-)GetTextFace(99. szFaceName); 
TRACE("font = %s, tmHeight = %d. tmInternalleading = %d," 

" tmExternalleading = %d\n", szFaceName, tm.tmHeight, 
tm.tmInternalleading, tm.tmExternalleading); 

4. Edit the OnDraw function in ex05bView.cpp. AppWizard always 
generates a skeleton OnDraw function for your view class. Find the 
function, and edit the code as follows: 

void CEx05bView::OnDraw(CDC* pDC) 
{ 

CFont fontTest1, fontTest2, fontTest3, fontTest4; 

fontTestl.CreateFont(50. 0, 0, 0, 400. FALSE, FALSE, 0. 
ANSI_CHARSET, OUT_DEFAULT_PRECIS, 
CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY, 
DEFAULT_PITCH IFF_SWISS, "Arial"); 

CFont* pOldFont = pDC-)SelectObject(&fontTest1); 
TraceMetricsCpDC); 
pDC-)TextOut(0, 0. "This is Arial, default width"); 

fontTest2;CreateFont(50, 0, 0, 0, 400, FALSE. FALSE, 0, 
ANSI_CHARSET, OUT_DEFAULT_PRECIS, 
CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY, 
DEFAULT_PITCH I FF_MODERN, "Courier"); 
II not TrueType 

pDC-)SelectObject(&fontTest2); 
TraceMetrics(pDC): 
pDC-)TextOut(0, 100, "This is Courier, default width"); 

fontTest3.CreateFont(50, 10, 0, e, 400, FALSE, FALSE. e, 
ANSI_CHARSET, OUT_DEFAULT_PRECIS, 
CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY, 
DEFAULT_PITCH I FF_ROMAN. NUll); 

pDC-)SelectObject(&fontTest3); 
TraceMetrics(pDC): 
pDC-)TextOut(0, 20e, "This is generic Roman, variable width"); 

(continued) 

97 



PAR T II: THE MFC LIBRARY VIEW CLASS 

98 

} 

fontTest4.CreateFont(S0. 0. 0, 0, 400. FALSE, FALSE, 0, 
ANSI_CHARSET, OUT_DEFAULT_PRECIS, 
CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY. 
DEFAULT_PITCH I FF_MODERN. "LinePrinter"); 

pDC->SelectObject(&fontTest4); 
TraceMetrics(pDC); 
pDC->TextOut(0. 300, "This is LinePrinter. default width"); 
pDC->SelectObject(pOldFont); 

5. Build and run the EX05B program. Run the program from the de
bugger to see the TRACE output. The program's window is shown here: 

his is Courier, default width 

This is generic Rotnan, variable width 

This is LinePrinter, default width 

Resize the window to make it smaller, and watch the font sizes change. 
Compare this window with the previous one: 

his is Arial, default width 

This is Courier, default width 

is generic Roman, variable w-idth 

is LinePrinter, default width 



F I V E: The Graphics Device Interface, Colors, and Fonts 

If you continue to downsize the window, notice how the Courier font 
stops shrinking after a certain size and how the Roman font width 
changes. 

The EX058 Program Elements 
Following is a discussion of the important elements in the EX05B example. 

The OnDraw Member Function 
The OnDraw function displays character strings in four fonts, as follows: 

o fontTestl-The TrueType font Arial with default width selection. 

o fontTest2-The old-style font Courier with default width selection. 
Notice how jagged the font appears in larger sizes. 

o fontTest3-The generic Roman font for which Windows supplies 
the TrueType font Times New Roman with programmed width 
selection. The width is tied to the horizontal window scale, so the 
font stretches to fit the window. 

CJ fontTest4-The LinePrinter font is specified, but because this is 
not a Windows font for the display, the font engine falls back on 
the FF_MODERN specification and chooses the TrueType Courier 
New font. 

The TraceMetrics Helper Function 
The TraceMetrics helper function calls CDC::GetTextMetrics and CDC::GetTextFace 
to get the current font's parameters, which it prints in the Debug window. 

The EX05C Example-CScrollView Revisited 
You saw the CScrollView class in Chapter 4 (in EX04C). The EX05C program 
allows the user to move an ellipse with a mouse by "capturing" the mouse, 
using a scrolling window with the MM_LOENGLISH mapping mode. Keyboard 
scrolling is left out, but you can add it by borrowing the OnKeyDown member 
function from EX04C. 

Instead of a stock brush, we'll use a pattern brush for the ellipse-a real 
GDI object. There's one complication with pattern brushes: you must reset the 
origin as the window scrolls; otherwise, strips of the pattern don't line up and 
the effect is ugly. 

99 



PA R T II: THE MFC LIBRARY VIEW CLASS 

100 

As with the EX04C program, this example involves a view class derived 
from CScro II View. Here are the steps to create the application: 

1. Run AppWizard to generate the EX05C project. Be sure to set the 
view base class to CScrollView. The options and the default class names 
are shown here: 

2. Edit the CEx05cView class header in the file ex05cView.h. Add 
the following lines in the class CEx05cView declaration: 

private: 
const CSize m_sizeEllipse: II logical 
CPoint m_pointTopLeft: II logical, top left of ellipse rectangle 
CSize m_sizeOffset; II device, from rect .topleft to capture point· 
BOOL ITLbCaptured; 

3. Use ClassWizard to add three message handlers to the CEx05cView 
class. Add the message handlers as follows: 

Message 

WM_LBUTTONDOWN 

WM_LBUTTONUP 

WM_MOUSEMOVE 

Member Function 

OnLButtonDown 

OnLButtonUp 

OnMouseMove 



F I V E: The Graphics Device Interface, Colors, and Fonts 

4. Edit the CEx05cView message handler functions. ClassWizard 
generated the skeletons for the functions listed in the preceding step. 
Find the functions in ex05cView.cpp, and code them as follows: 

void CEx05cView::OnLButtonDown(UINT nFlags. CPoint point) 
{ 

CRect rectEllipse(m_pointTopLeft. m_sizeEllipse); II still logical 
CRgn circle; 

CClientDC dc(this); 
OnPrepareDC(&dc); 
dc.LPtoDP(rectEllipse); II Now it's in device coordinates 
circle.CreateEllipticRgnIndirect(rectEllipse); 
if (circle.PtlnRegion(point» { 

II Capturing the mouse ensures subsequent LButtonUp message 
SetCapture(); 
m_bCaptured = TRUE; 
CPoint pointTopLeft(m_pointTopLeft); 
dc.LPtoDP(&pointTopLeft); 
m_sizeOffset = point - pointTopLeft; II device coordinates 
II New mouse cursor is active while mouse is captured 
::SetCursor(::LoadCursor(NULL. IDC_CROSS»; 

void CEx05cView::OnLButtonUp(UINT nFlags. CPoint point) 

if (m_bCaptured) { 
::ReleaseCapture(); 
m_bCaptured = FALSE; 

void CEx05cView::OnMouseMove(UINT nFlags. CPoint point) 

if (m_bCaptured) ( 
CClientDC dc(this); 
OnPrepareDC(&dc); 
CRect rectOld(m_pointTopLeft. m_sizeEllipse); 
dc.LPtoDP(rectOld); 
InvalidateRect(rectOld. TRUE); 
m_pointTopLeft = point - m_sizeOffset; 
dc.DPtoLP(&m_pointTopLeft); 
CRect rectNew(m_po;ntTopLeft. m_sizeEllipse); 
dc.LPtoDP(rectNew); 
InvalidateRect(rectNew. TRUE); 

101 



PAR T II: THE MFC LIBRARY VIEW CLASS 

102 

5. Edit the CEx05cView constructor, the OnDrawfunction, and the 
OnlnitialUpdate function. AppWizard generated these skeleton func
tions. Find them in ex05cView.cpp, and code them as follows: 

CEx05cVi ew: : CEx05cVi ew() : m_si zeE" i pse(100. -100), 
m_pointTopLeft(0, 0). 
m_s; zeOffset (0. 0) 

{ 

m_bCaptured FALSE; 

void CEx05cView::OnDraw(CDC* pDC) 
{ 

CBrush brushHatch(HS_DIAGCROSS, RGB(255. 0, 0»; 
CPoint point(0, 0); II logical (0, 0) 

pDC->LPtoDP(&point); 
pDC~>SetBrushOrg(point); 

pDC;>SelectObject(&brushHatch); 

II In device coordinates, 
1/ align the brush with 
II the window origin 

pDC -)E11 ipse {CRect (m_poi ntTopLeft. m_s; zeEll ipse» ; 
pDC->SelectStockObject(BLACK_BRUSH); /1 Deselect brushHatch 
pDC->Rectangle(CRect(100, -100, 200. -200»; // Test invalid rect 

void CEx05cView::OnInitialUpdate() 

CScrollView: :OnlnitialUpdate(); 

CSize sizeTotal(800. 1050): /1 8-by-10.5 inches 
CSize sizePage(sizeTotal.cx / 2. sizeTotal.cy/ 2): 
CSize sizeLine(sizeTotal.cx / 50, sizeTotal.cy I 50); 

.. ; S~tScrollSizes(MM_LOENGLISH. sizeTotal. sizePage. sizeLine); 

6. Build and run the EX05C program. The program allows an ellipse to 
be dragged with the mouse, and it allows the window to be scrolled. The 
program's window should look like the one shown on the facing page. 
As you move the ellipse, observe the black rectangle. You should be able 
to see the effects of invalidating the rectangle. 



F I V E: The Graphics Device Interface, Colors, and Fonts 

The EX05C Program Elements 
Following is a discussion of the important elements in the EX05C example. 

The m_sizeEllipse and m_pointTopLeft Data Members 
Rather than store the ellipse's bounding rectangle as a single CRectobject, the 
program separately stores its size (m_sizeEllipse) and the position of its top left 
corner (m_pointTopLeJt). To move the ellipse, the program merely recalculates 
m_pointTopLeJt, and any round-off errors in the calculation won't affect the size 
of the ellipse. 

The m_sizeOffset Data Member 
When OnMouseMove moves the ellipse, the relative position of the mouse 
within the ellipse must be the same as it was when the user first pressed the 
left mouse button. The m_sizeOffset object stores this original offset of the 
mouse from the top left corner of the ellipse rectangle. 

The m_bCaptured Data Member 
The m_bCaptured Boolean variable is set to TRUE when mouse tracking is in 
progress. 

The SetCapture and ReleaseCapture Functions 
Set Capture is the CWnd member function that "captures" the mouse, such that 
mouse movement messages are sent to this window even if the mouse cursor 
is outside the window. An unfortunate side effect of this function is that the 

103 



PAR T II: THE MFC LIBRARY VIEW CLASS 

104 

ellipse can be moved outside the window and "lost." A desirable and neces
sary effect is that all subsequent mouse messages are sent to the window, in
cluding the WM_LBUTTONUP message, which would otherwise be lost. The 
Win32 ReleaseCapture function turns off mouse capture. 

The SetCursor and LoadCursor Win32 Functions 
The MFC library does not "wrap" some Win32 functions. By convention, we 
use the c++ scope resolution operator (::) when calling Win32 functions di
rectly. In this case, there is no potential for conflict with a CView member 
function, but you can deliberately choose to call a Win32 function in place of 
a class member function with the same name. In that case, the :: operator 
ensures that you call the globally scoped Win32 function. 

When the first parameter is NULL, the LoadCursor function creates a 
cursor resource from the specified predefined mouse cursor that Windows 
uses. The SetCursor function activates the specified cursor resource. This cursor 
remains active as long as the mouse is captured. 

The CScroIlView::OnPrepareDC Member Function 
The CView class has a virtual OnPrepareDC function that does nothing. The 
CScrollView class implements the function for the purpose of setting the view's 
mapping mode and origin, based on the parameters that you passed to 
SetScrollSizes in OnCreate. The application framework calls OnPrepareDC for you 
prior to calling OnDraw, so you don't need to worry about it. You must call 
OnPrepareDC yourself in any other message handler function that uses the 
view's device context, such as OnLButtonDown and OnMouseMove. 

The OnMouseMove Coordinate Transformation Code 
As you can see, this function contains several translation statements. The logic 
can be summarized by the following steps: 

1. Construct the previous ellipse rectangle and convert it from logical 
to device coordinates. 

2. Invalidate the previous rectangle. 

3. Update the top left coordinate of the ellipse rectangle. 

4. Construct the new rectangle and convert it to device coordinates. 

5. Invalidate the new rectangle. 



F I V E: The Graphics Device Interface, Colors, and Fonts 

The function calls InvalidRect twice. Windows "saves up" the two invalid 
rectangles and computes a new invalid rectangle that is the union of the two, 
intersected with the client rectangle. 

The OnDraw Function 
The SetBrushOrg call is necessary to ensure that all of the ellipse's interior 
pattern lines up when the view is scrolled. The brush is aligned with a refer
ence point, which is at the top left of the logical window, converted to device 
coordinates. This is a notable exception to the rule that CDC member func
tions require logical coordinates. 

The CScrollView SetScaleToFitSize Mode 
The CScrollView class has a stretch-to-fit mode that displays the entire scrollable 
area in the view window. The Windows MM_ANISOTROPIC mapping mode 
comes into play, with one restriction: positive y values always increase in the 
down direction, as in MM_TEXTmode. 

To use the stretch-to-fit mode, make the following call in your view's 
function in place of the call to SetScrollSizes: 

SetScaleToFitSize(sizeTotal ); 

You can make this call in response to a Shrink To Fit menu command. Thus, 
the display can toggle between scrolling mode and shrink-to-fit mode. 

Using the Logical Twips Mapping Mode in a Scrolling View 
The MFC CScrollView class allows you to specify only standard mapping modes. 
The EX18A example in Chapter 18 shows a new class CLogScrollView that ac
commodates the logical twips mode. 

105 





C HAP T E R s x 

The Modal Dialog and 
Windows Common Controls 

Almost every Windows-based program uses a dialog window to interact with 
the user. The dialog might be a simple OK message box, or it might be a 
complex data entry form. Calling this powerful element a dialog "box" is an 
injustice. As you'll see, a dialog is truly a window that receives messages, that 
can be moved and closed, and that can even accept drawing instructions in 
its client area. 

The two kinds of dialogs are modal and modeless. This chapter explores 
the most common type, the modal dialog. In the first of this chapter's two 
examples, you'll use all the familiar "old" controls, such as the edit control and 
the list box, inherited from Win16. In the second example, you'll use the new 
Windows common controls, which Microsoft Windows 95 introduced. Chap
ter 7 introduces the modeless dialog and the special-purpose Windows com
mon dialogs for opening files, selecting fonts, and so forth. 

Modal vs. Modeless Dialogs 
The CDialog base class supports both modal and modeless dialogs. With a 
modal dialog, such as the Open File dialog, the user cannot work elsewhere 
in the same application (more correctly, in the same user interface thread) 
until the dialog is closed. With a modeless dialog, the user can work in another 
window in the application while the dialog remains on the screen. Microsoft 
Word's Find And Replace dialog is a good example ofa modeless dialog; you 
can edit your document while the dialog is open. 

Your choice of a modal or a modeless dialog depends on the application. 
Modal dialogs are much easier to program, which might influence your decision. 

107 



PAR T II: THE MFC LIBRARY VIEW CLASS 

FY I: The 16-bit versions of Windows support a special kind of 
modal dialog called a system modal dialog, which prevents the user 
from switching to another application. Win32 also supports system 
modal dialogs but with weird results: the user can switch to another 
application, but the dialog remains as the top window. You probably 
don't want to use system modal dialogs in Win32 applications. 

Resources and Controls 
So now you know a dialog is a window. What makes the dialog differen t from 
the CView windows you've seen already? For one thing, a dialog windo)V is 
almost always tied to a Windows resource that identifies the dialog's elements 
and specifies their layout. Because you can use the dialog editor (one of the 
resource editors) to create and edit a dialog resource, you can quickly and 
efficiently produce dialogs in a visual manner. 

A dialog contains a number of elements called controls. Dialog controls 
include edit con troIs (aka text boxes), buttons, list boxes, combo boxes, static 
text (aka labels), tree views, progress indicators, sliders, and so forth. Windows 
manages these controls using special grouping and tabbing logic, and that 
relieves you of a major programming burden. The dialog controls can be 
referenced either by a CWnd pointer (because they are really windows) or by 
an index number (with an associated #define constant) assigned in the re
source. A control sends a message to its parent dialog in response to a user 
action such as typing text or clicking a button. 

The Microsoft Foundation Class (MFC) Library and ClassWizard work 
together to enhance the dialog logic that Windows provides. ClassWizard gen
erates a class derived from CDialog and then lets you associate dialog class data 
members with dialog controls. You can specify editing parameters such as 
maximum text length and numeric high and low limits. ClassWizard gener
ates statements that call the MFC data exchange and data validation functions 
to move information back and forth between the screen and the data members. 

Programming a Modal Dialog 

108 

Modal dialogs are the most frequently used dialogs. A user action (a menu 
choice, for example) brings up a dialog on the screen, the user enters data 
in the dialog, and then the user closes the dialog. Here's a summary of the 
steps to add a modal dialog to an existing project: 



S I X: The Modal Dialog and Windows Common Controls 

1. Use the dialog editor to create a dialog resource that contains vari
ous controls. The dialog editor updates the project's resource script 
(RC) file to include your new dialog resource, and it updates the 
project's resource.h file with corresponding #deJine constants. 

2. Use ClassWizard to create a dialog class that is derived from CDialog 
and attached to the resource created in step 1. ClassWizard adds 
the associated code and header file to the Developer Studio project. 

NOT E : When ClassWizard generates your derived dialog 
class, it generates a constructor that invokes a CDialogmodal 
constructor, which takes a resource ID as a parameter. Your 
generated dialog header file contains a class enumerator 
constant IDD that is set to the dialog resource ID. In the CPP 
file, the constructor implementation looks like this: 

CMyOialog: :CMyOialog(CWnd* pParent I*=NULL*/) 
: COialog(CMyDialog::IDD. pParent) 

II initialization code here 

The use of enum IDD decouples the CPP file from the re
source IDs that are defined in the project's resource.h file. 

3. Use ClassWizard to add data members, exchange functions, and 
validation functions to the dialog class. 

4. Use ClassWizard to add message handlers for the dialog's buttons 
and other event-generating controls. 

5. Write the code for special control initialization (in OnlnitDialog) 
and for the message handlers. Be sure the CDialog virtual member 
function OnOK is called when the user closes the dialog (unless the 
user cancels the dialog). (Note: OnOK is called by default.) 

6. Write the code in your view class to activate the dialog. This code 
consists of a call to your dialog class's constructor followed by a call 
to the DoModal dialog class member function. DoModal returns only 
when the user exits the dialog window. 

Now we'll proceed with a real example, one step at a time. 

109 



PAR T II: THE MFC LIBRARY VIEW CLASS 

The Dialog That Ate Cincinnati
The EX06A Example 

Let's not mess around with wimpy little dialogs. We'll build a monster dialog 
that contains almost every kind of control. The job will be easy because 
Developer Studio's dialog editor is there to help us. The finished product is 
shown in Figure 6-1. 

Figure 6-1. 
The finished dialog in action. 

As you can see, the dialog supports a human resources application. These 
kinds of business programs are fairly boring, so the challenge is to produce 
something that could not have been done with 80-column punched cards. The 
program is brightened a little by the use of scroll bar controls for "Loyalty" 
and "Reliability." Here is a classic example of direct action and visual repre
sentation of data! ActiveX controls could add more interest, but you'll have 
to wait until Chapter 8 for details on ActiveX. 

Building the Dialog Resource 

110 

Here are the steps for building the dialog resource: 

1. Run AppWizard to generate a project called EX06A. Choose New 
from Developer Studio's File menu, and then click the Projects tab and 
select MFC App Wizard (exe). Accept all the defaults but two: select 



S I X: The Modal Dialog and Windows Common Controls 

Single Document and deselect Printing And Print Preview. The options 
and the default class names are shown here: 

AppWi:ard wiD create a new skeleton project with the following $pecifications: 

Application type of ex06a: . 
Single Document Interface Applic.stion targeting: 

Win32 

ClaHes to be created: 
Application; CE~06a6.pp in ex06a.h and ex06a.cpp 
Framer. CMainFrame in MainFrm.h and MainFrm.cpp 
Document: CEx06aDoc in ex06aDoc.h and ex06aDoc.cpp 
View: ClEx06aView in exOGaView.h and exOGaView.cpp 

Features: 
+ Initial tcolbar in main frame 
+ Initial st.stU$ bar in main frame 
+ 3D Control$ 
+ Uses shared Dll implementation (MFC42.DlL) 
+ Active)< Controls support enabled 
+ Localizable text in: 

Engfish [United States} 
, .:,: : ~ '.~ ,"" , ~ ::' ~, ' < • "' 

Install Directory. 

C: \ vcpp32\ex06a 

As usual, AppWizard sets the new project as the current project. 

2. Create a new dialog resource with 10 IDD_DIALOG1. Choose 
Resource from Developer Studio's Insert menu. The Insert Resource 
dialog appears. Click on Dialog, and then click New. Developer Studio 
creates a new dialog resource, as shown here: 

111 



PAR T II: THE MFC LIBRARY VIEW CLASS 

112 

The dialog editor assigns the resource ID IDD_DIALOG1 to the new 
dialog. Notice that the dialog editor inserts OK and Cancel buttons for 
the new dialog. 

3. Size the dialog and assign a caption. Enlarge the dialog box to 
about 5-by-7 inches. 

When you right-click on the new dialog and choose Properties from 
the pop-up menu, the Dialog Properties dialog appears. Type in the cap
tion for the new dialog as shown in the screen below. The state of the 
pushpin button in the upper-left corner determines whether the Dialog 
Properties dialog stays on top of other windows. (When the pushpin is 
"pushed," the dialog stays on top of other windows.) Click the Toggle 
Grid button (on the Dialog toolbar) to reveal the grid and to help align 
controls. 

llit: Didio!} lliat Ate Cine 

4. Set the dialog style. Click on the Styles tab at the top of the Dialog 
Properties dialog, and then set the style properties as shown in the fol
lowing illustration: 



S I X: The Modal Dialog and Windows Common Controls 

St~le: P: IiUebar 

I~~p~p ...... ::::J C' System meny 

Border. rr Minimize box 

1!,~~r:!_C"""" .. """,,d: 0 Ma~imize bo:~ 

[j Clip ~iblings 

[j Clip Qhlldren 

o Hori.~ontal scroll 

0' Y:ertical scroll 

5. Set additional dialog styles. Click on the More Styles tab at the top 
of the Dialog Properties dialog, and then set the style properties as 
shown here: 

D Set foregroynd 
[j ~D·look 
D'lio fail create 
[J No i.dle message 

D ,!:;ontrol 
[jeenle! 

D Center mouse 
D Loc,gledit 

6. Add the dialog's controls. Use the control palette to add each con
trol. (If the control palette is not visible, right-click any toolbar and 
choose Controls from the list.) Drag controls from the control palette to 
the new dialog, and then position and size the controls, as shown previ
ously in Figure 6-1. Here are the control palette'S controls: 

select~r-It: l111J- Picture 

Static Text""'+.I.,.,.'Aa.'."'.'·':.:' .. ~ ..• ' .. b.I,:~- Edit Box 
Group Box"""~L.J (,;Jr" Button 

Check Box ;~!:,<!t:r" Radio Button 
Combo Box :~m·'M" List Box 

Horizontal Scroll Bar - 'ilt! I!I~- Vertical Scroll Bar 

SPin ~w'~ :.::.IIIII1. - Progress 
slider."~'~,,j}-. .... :.~:l,, Hot Key 

Ii: J 
List control::~[rr~f~"' Tree Control 

Tab Control l;r 8].~" Animate 
Rich Edit ''8b;".- Custom Control 

113 



PAR T II: THE MFC LIBRARY VIEW CLASS 

114 

NOT E : The dialog editor displays the position and size of each 
control in the status bar. The position units are special "dialog 
units," or DLUs, not device units. A horizontal DLU is the average 
width of the dialog font divided by 4. A vertical DLU is the aver
age height of the font divided by 8. The dialog font is normally 
8-poin t MS Sans Serif. 

Here's a brief description of the dialog's controls: 

o The static text control for the Name field. A static text control 
simply paints characters on the screen. No user interaction occurs 
at runtime. You can type the text after you position the bounding 
rectangle, and you can resize the rectangle as needed. This is the 
only static text control you'll see listed in text, but you should also 
create the other static text controls as shown earlier in Figure 6-1. 
Follow the same procedure for the other static text controls in the 
dialog. All static text controls have the same ID, but that doesn't 
matter because the program doesn't need to access any of them. 

o The Name edit control. An edit control is the primary means of 
entering text in a dialog.cRight-click the control, and then choose 
Properties. Change this control's ID from IDe_EDIT1 to IDe_NAME. 
Accept the defaults for the rest of the properties. Notice that the 
default sets Auto HScroll, which means that the text scrolls hori
zontally when the box is filled. 

o The SS Nbr (social security number) edit control. As far as the 
dialog editor is concerned, this control is exactly the same as the 
Name edit control. Simply change its ID to IDe_SSN. Later you will 
use ClassWizard to make this a numeric field. 

o The Bio (biography) edit control. This is a multiline edit control. 
Change its ID to IDe_BID, and then set its properties as shown here: 



S I X: The Modal Dialog and Windows Common Controls 

o The Category group box. This control serves only to group two 
radio buttons visually. Type in the caption Category. The default ID 
is sufficient. 

o The Hourly and Salary radio buttons. Position these radio but
tons inside the Category group box. Set the Hourly button's ID to 
IDC_CAT and set the other properties, as shown here: 

RH §.roup 

M: T absloIl 

0: §.roup 

Mi T absloIl 

,Caption: 1~?~rI~ 
D.t!elplD 

I 
.1 

Be sure that both buttons have the Auto property (the default) on 
the Styles tab set and that only the Hourly button has the Group 
property set. When these properties are set correctly, Windows en
sures that only one of the two buttons can be selected at a time. 
The Category group box has no effect on the buttons' operation. 

o The Insurance group box. This control holds three check boxes. 
Type in the caption Insurance. 

NOT E: Later, when you set the dialog's tab order, you'll 
ensure that the Insurance group box follows the last radio 
button of the Category group. Set the Insurance control's 
Group property now in order to "terminate" the previous 
group. If you fail to do this, it isn't a serious problem, but 
you'll get several warning messages when you run the pro
gram through the debugger. 

115 



PAR T II: THE MFC LIBRARY VIEW CLASS 

116 

o The Life, Disability, and Medical check boxes. Place these con
trols inside the Insurance group box. Accept the default proper
ties, but change the IDs to IDC_LIFE, IDC_DIS, and IDC_MED. 
Unlike radio buttons, check boxes are independent; the user can 
set any combination. 

o The Skill combo box. This is the first of three types of combo 
boxes. Change the ID to IDC_SKILL, and then click on the Styles 
tab and set the Type option to Simple. Click on the Data tab, and 
add three skills (terminating each line with Ctrl-Enter) in the En
ter Listbox Items box: 

This is a combo box of type Simple. The user can type anything in 
the top edit control, use the mouse to select an item from the at
tached list box, or use the Up or Down direction key to select an 
item from the attached list box. 

o The Educ (education) combo box. Change the ID to IDC_EDUC; 
otherwise, accept the defaults. Add the three education levels in 
the Data page, as shown in Figure 6-1. In this Dropdown combo 
box, the user can type anything in the edit box, click on the arrow, 
and then select an item from the drop-down list box or use the Up 
or Down direction key to select an item from the attached list box. 

Aligning Controls 
To align two or more controls, select the controls by clicking on the 
first control and then Shift-clicking on the other controls you want to 
align. Next choose one of the alignment commands (Left, Right, Top, or 
Bottom) from the Align submenu on the dialog editor's Layoutmenu. 



S I X: The Modal Dialog and Windows Common Controls 

NOT E : To set the size for the drop-down portion of a 
combo box, click on the box's arrow and drag down from the 
center of the bottom of the rectangle. 

o The Dept (department) list box. Change the ID to IDC_DEPT; 
otherwise, accept all the defaults. In this list box, the user can se
lect only a single item by using the mouse, by using the Up or 
Down direction key, or by typing the first character of a selection. 
Note that you can't enter the initial choices in the dialog editor. 
You'll see how to set these choices later. 

o The Lang (language) combo box. Change the ID to IDC_LANG, 
and then click on the Styles tab and set the Type option to Drop 
List. Add three languages (English, French, and Spanish) in the 
Data page. With this Drop List combo box, the user can select only 
from the attached list box. To select, the user can click on the arrow 
and then select an entry from the drop-down list, or the user can 
type in the first letter of the selection and then refine the selection 
using the Up or Down direction key. 

Selecting a Group of Controls 
To quickly select a group of controls, position the mouse cursor above 
and to the left of the group. Hold down the left mouse button and drag 
to a point below and to the right of the group, as shown here: 

o Move the mouse cursor here. 
8 Hold down the left mouse button, and ... 

8 ... drag the mouse cursor here. 

117 



PAR T II: THE MFC LIBRARY VIEW CLASS 

118 

o The Loyalty and Reliability scroll bars. Do not confuse scroll bar 
controls with a window's built-in scroll bars as seen in scrolling 
views. A scroll bar control behaves in the same manner as do other 
controls and can be resized at design time. Position and size the 
horizontal scroll bar controls as shown previously in Figure 6-1, 
and then assign the IDs IDC_LOYAL and IDC_RELY. 

o The OK, Cancel, and Special pushbuttons. Be sure the button 
captions are OK, Cancel, and Special, and then assign the ID IDC
_SPECIAL to the Special button. Later you'll learn about special 
meanings that are associated with the default IDs IDOK and 
IDCANCEL. 

o Any icon. (The MFC icon is shown as an example.) You can display 
any icon or bitmap in a dialog, as long as it's defined in the resource 
script. We'll use the program's MFC icon, identified as IDJLMAIN
FRAME. Set the Type option to Icon, and set the Image option to 
IDR_MAINFRAME. Leave the ID as IDC_STATIC. 

7. Check the dialog's tabbing order. Choose Tab Order from the dia
log editor's Layout menu. Use the mouse to set the tabbing order shown 
below. Click on each control in the order shown, and then press Enter. 

" .. " . ~ . . ... v' ":. ".: ..... ."::. " ....... 1] ..... . 
. "::':. ' .•. t.:.· •.. ·· .. :.·.·.> " IF:. 

.............. ;B·:r 
. .• "Lf]: .••..••.•..••• 

;)~r 

TIP: If you mess up the tab sequence partway through, you can 
recover with a Ctrl-Ieft mouse click on the last correctly sequenced 
control. Subsequent mouse clicks will start with the next sequence 
number. 



S I X: The Modal Dialog and Windows Common Controls 

NOT E : A static text control (such as Name or Skill) has an am
persand (&) embedded in the text for its caption. At runtime, the 
ampersand will appear as an underscore under the character that 
follows. (See Figure 6-1.) This enables the user to jump to selected 
controls by holding down the Alt key and pressing the key cor
responding to the underlined character. (The related control 
must immediately follow the static text in the tabbing order.) Thus, 
Alt-Njumps to the Name edit control and AIt-Kjumps to the Skill 
combo box. Needless to say, designated jump characters should be 
unique within the dialog. The Skill control uses AIt-K because the 
SS Nbr control uses AIt-S. 

8. Save the resource file on disk. For safety, choose Save from the File 
menu or click the Save button on the toolbar to save ex06a.rc. Keep the 
dialog editor running, and keep the newly built dialog on the screen. 

ClassWizard and the Dialog Class 
You have now built a dialog resource, but you can't use it without a correspond
ing dialog class. (The section titled "Understanding the EX06AApplication" 
beginning on page xx explains the relationship between the dialog window 
and the underlying classes.) ClassWizard works in conjunction with the dia
log editor to create that class as follows: 

1. Choose ClassWizard from Developer Studio's View menu 
(or press Ctrl-W). Be sure that you still have the newly built dialog, 
IDD_DIALOGl, selected in the dialog editor and that EX06A is the 
current Developer Studio project. 

2. Add the CEx06aDia/og class. ClassWizard detects the fact that 
you've just created a dialog resource without an associated c++ class. 
It politely asks whether you want to create a class, as shown below: 

119 



PAR T II: THE MFC LIBRARY VIEW CLASS 

120 

Accept the default selection of Create A New Class, and click OK. Fill in 
the top field of the New Class dialog, as shown here: 

3. Add the CEx06aDialog variables. Mter ClassWizard creates the 
CEx06aDialogclass, the MFC ClassWizard dialog appears. Click on the 
Member Variables tab, and the Member Variables page appears, as 
shown here: 

II.: • .-

li~~=r~T :i :<'; ;!i! : ,I 

n:! G 

::: ~- 'AL :\ 
';; 

:'." 
:;:: ~E 

y c;' 
:,: :':i 

You need to associate data members with each of the dialog's con
trols. To do this, click on a control ID and then click the Add Variable 
button. The Add Member Variable dialog appears, as shown in the fol
lowing illustration: 



5 I X: The Modal Dialog and Windows Common Controls 

Member variable name: OK 'I 
,', '.: :;C~n~~ ~';;I I ~"' .... ,. .... ~ ........ ,..,.... .. .... ,., .......................... ,.,. .. 

,!;;ategory: 

Variable !ype: 

Description: 

CString with length validation 

Type in the member variable name, and choose the variable type ac
cording to the following table. Be sure to type in the member variable 
name exactly as shown; the case of each letter is important. When you're 
done, click OK to return to the MFC ClassWizard dialog. Repeat this 
process for each of the listed controls .. 

ControllD Data Member Type 

IDC_BIO m_strBio CString 

IDC_CAT m_nCat int 

IDC_DEPT m_strDept CString 

IDC_DIS m_bInsDis BOOL 

IDC_EDUC m_strEduc CString 

IDC_LANG m_strLang CString 

IDC_LIFE m_blnsLife BOOL 

IDC_LOYAL m_nLoyal int 

IDC_MED m_blnsMed BOOL 

IDC_NAME m_strName CString 

IDC_RELY m_nRely int 

IDC_SKILL m_strSkill CString 

IDC_SSN m_nSsn int 

As you select controls in the MFC ClassWizard dialog, various edit 
boxes appear at the bottom of the dialog. If you select a CStringvariable, 

121 



PAR T II: THE MFC LIBRARY VIEW CLASS 

122 

you can set its maximum number of characters; if you select a numeric 
variable, you can set its high and low limits. Set the minimum value for 
IDC_SSNto 0 and the maximum value to 999999999. 

Most relationships between control types and variable types are obvi
ous. The way in which radio buttons correspond to variables is not so 
intuitive, however. The CDialog class associates an integer variable with 
each radio button group, with the first button corresponding to value 0, 
the second to 1, and so forth. 

4. Add the message-handling function for the Special button. 
CEx 06aDia log doesn't need many message-handling functions because 
the CDialog base class, with the help of Windows, does most of the dialog 
management. When you specify the ID IDOK for the OK button (Class
Wizard's default), for example, the virtual CDialog function OnOK gets 
called when the user clicks the button. For other buttons, however, you 
need message handlers. 

Click on the Message Maps tab. The ClassWizard dialog should con
tain an entry for IDC_SPECIAL in the Object IDs list box. Click on this 
entry, and double-click on the BN_CLICKED message that appears in 
the Messages list box. ClassWizard invents a member function name, 
OnSpecial, and opens the Add Member Function dialog, as shown here: 

You could type in your own function name here, but this time accept 
the default and click OK. Click the Edit Code button in the MFC Class
Wizard dialog. This opens the file ex06aDialog.cpp and moves to the On
Special function. Insert a TRACE statement in the OnSpecial function by 
typing in the shaded code, shown below, which replaces the existing code: 

vo; d CEx06aD; a log: : OnSpec; a 1 ( ) 
{ 

",:rRA~E("GEx06a Dia log: : On Specia 1 \ n'~ J; 

5. Use ClassWizard to add an OnlnitDialog message-handling function. 
As you'll see in a moment, ClassWizard generates code that initializes a 
dialog's controls. This DDX (Dialog Data Exchange) code won't initial-



S I X: The Modal Dialog and Windows Common Controls 

ize the list-box choices, however, so you must override the CDialog::On
In itDia log function. Although OnInitDialog is a virtual member function, 
ClassWizard generates the prototype and skeleton if you map the WM
_INITDIALOG message in the derived dialog class. To do so, click on 
CEx06aDialog in the Object IDs list box, and then double-click on the 
WM_INITDIALOG message in the Messages list box. Click the Edit Code 
button in the MFC ClassWizard dialog to edit the OnInitDialog function. 
Type in the shaded code, which replaces the existing code: 

BOOl CEx06aDialog::OnlnitDialog() 
{ 

II Be careful to call CDialog::OnlnitDialog 
II only once in this function 
Cl;stBox* plB = (CListBox*) GetDlgltem(IDC_DEPT): 
plB->InsertString(-l, "Documentation"); 
pLB->InsertString(-l, "Accounting"): 
plB->InsertString(-l, "Human Relations"): 
plB->InsertString(-l. "Security"); 

II Call after initialization 
return CDialog: :OnlnitDialog():, 

You could also use the same initialization technique for the combo 
boxes, in place of the initialization in the resource. 

Connecting the Dialog to the View 
Now we've got the resource and the code for a dialog, but it's not connected 
to the view. In most applications, you would probably use a menu choice to 
activate a dialog, but we haven't studied menus yet. Here we'll use the famil
iar mouse-click message WM_LBUTTONDOWN to start the dialog. The steps 
are as follows: 

1. In ClassWizard, select the CEx06aView class. At this point, be 
sure that EX06A is Developer Studio's current project. 

2. Use ClassWizard to add the· OnLButtonDown member function. 
You've done this in the examples in earlier chapters. Simply select the 
CEx06aView class name, click on the CEx06aView object ID, and then 
double-click on WM_LBUTTONDOWN. 

3. Write the code for OnLButtonDown in file ex06aView.cpp. Add 
the shaded code as shown on the following page. Most of the code con
sists of TRACE statements to print the dialog data members after the 

123 



PAR T II: THE MFC LIBRARY VIEW CLASS 

124 

user exits the dialog. The CEx06aDialog constructor call and the DoModal 
call are the critical statements, however: 

void CEx06aView::OnLButtonDown(UINT nFlags. CPoint point) 
{ 

CEx06aDialod dlg; 
dlg.m_strName 
dlg.m_nSsn 
dlg.m_nCat 
dlg.m_strBio 
dlg. m_blnsLi fe 
dlg.m_blnsDis 
dlg.m_blnsMed 
dlg.m_strDept 
dl 9 .m_strSki 11 

= "Shakespeare. Will"; 
= 307806636; 
= 1: I/e ==hourly. 1 =sa 1 a ry 
= "This person is not·a well~motivated tech writer"; 
= TRUE; 
= FALSE; 
== TRUE; 
= "Documentation"; 

"Wri ter"; 
dlg.m_strLang == "English"; 
dlg.m_strEduc = "College"; 
dlg.m_nLoyal = dlg.m_nRely =50; 
int ret==dlg.DoModal(): 
TRACE("DoModalreturn =%d\n". ret); 
TRACE("name =%s. ssn =%d, cat = %d\n", 

dlg.m_strName. dlg;m_nSsn. dlg.m_nCat): 
TRACE("dept= %s, skill =%s, lang == %s, educ = %s\n", 

dl g. m_st rDept, dl g. m_strSkill .dl g. m_strLang. dl g. m_st rEduc) ; 
TRACE("life~ %d, dis =%d. med = %d.bio = %s\n". 

dlg.m_blnsLife,dlg.m_blnsDis, dlg.m_blnsMed. dlg.m_strBio): 
TRACE("loyalty = %d, reliability =%d\n", 

eng. m_nLoyal. dl 9 .m_nRely») 

4. Add code to the virtual OnDrawfunction in file ex06aView.cpp. 
To prompt the user to press the left mouse button, code the CEx06a
View::OnDraw function. (The skeleton was generated by AppWizard.) 
The following shaded code (which you type in) replaces the existing 
code: 

void CEx06aView: :OnDraw(CDC* pDC) 
{ 

5. To ex06aView.cpp, add the dialog class include statement. The 
OnLButtonDown function above depends on the declaration of class 
CEx06aDialog. You must insert the include statement 



S I X: The Modal Dialog and Windows Common Controls 

#include "ex06aDialog.h". 

at the top of the CEx06a View class source code file (ex06a View.cpp), after 
the statement 

#include "ex06aView.h" 

6. Build and test the application. If you have done everything correctly, 
you should be able to build and run the EX06A application through 
Developer Studio. Try entering data in each control, and then click the 
OK button and observe the TRACE results in the Debug window. Notice 
that the scroll bar controls don't do much yet; we'll attend to them later. 
Notice what happens when you press Enter while typing in text data in a 
control: the dialog closes immediately. 

Understanding the EX06A Application 
When your program calls DoModal, control is returned to your program only 
when the user closes the dialog. If you understand that, you understand modal 
dialogs. When you start creating modeless dialogs, you'll begin to appreciate 
the programming simplicity of modal dialogs. A lot happens "out of sight" as 
a result of that DoModal call, however. Here's a "what calls what" summary: 

CDialog: :DoModal 

CEx06aDialog::OnInitDialog 

... additional initialization ... 

CDialog::OnInitDialog 

CWnd::UpdateData(FALSE) 

CEx06aDialog: :DoDataExchange 

user enters data ... 

user clicks the OK button 

CEx06aDialog::OnOK 

... additional validation ... 

CDialog::OnOK 

CWnd:: U pdateData(TRUE) 

CEx06aDialog: :DoDataExchange 

CDialog::EndDialog(IDOK) 

125 



PAR T II: THE MFC LIBRARY VIEW CLASS 

OnlnitDialog and DoDataExchange are virtual functions overridden in the 
CEx06aDialog class. Windows calls OnlnitDialog as part of the dialog initializa
tion process, and that results in a call to DoDataExchange, a CWnd virtual func
tion that was overridden by ClassWizard. Here is a listing of that function: 

void CEx06aDialog::DoDataExchangeCCDataExchange* pDX) 
{ 

CDialog::DoDataExchangeCpDX); 
//{{AFX_DATA_MAPCCEx06aDialog) 
DDX_TextCpDX, IDC_BIO, m_strBio); 
DDX_RadioCpDX, IDC_CAT, m_nCat); 
DDX_LBStringCpDX, IDC_DEPT, m_strDept); 
DDX_CheckCpDX, IDC_DIS, m_bInsDis); 
DDX_CBStringCpDX, IDC_EDUC, m_strEduc); 
DDX_CBStringCpDX, IDC_LANG, m_strLang); 
DDX_CheckCpDX, IDC_LIFE, m_bInsLife); 
DDX_ScrollCpDX, IDC_LOYAL, m_nLoyal); 
DDX_CheckCpDX, IDC_MED, m_bInsMed); 
DDX_TextCpDX, IDC_NAME, m_strName); 
DDX_ScrollCpDX, IDC_RELY, m_nRely); 
DDX_CBStringCpDX, IDC_SKILL, m_strSkill); 
DDX_TextCpDX, IDC_SSN, m_nSsn); 
DDV_MinMaxIntCpDX, m_nSsn, 0, 999999999); 
/ /} JAFX_DATA_MAP 

DoDataExchange and the DDL (exchange) and DDV_ (validation) functions 
are "bidirectional." If UpdateData is called with a FALSE parameter, the func
tions transfer data from the data members to the dialog controls. If the pa
rameter is TRUE, the functions transfer data from the dialog controls to the 
data members. DDL Text is overloaded to accommodate a variety of data types. 

The EndDialog function is critical to the dialog exit procedure. DoModal 
returns the parameter passed to EndDialog. IDOK accepts the dialog's data, and 
IDCANCEL cancels the dialog. 

TIP: You can write your own "custom" DDX function and wire it 
into Developer Studio. This feature is useful if you're using a unique 
data type throughout your application. See MFC Technical Note #26 
in the online documentation. 

Enhancing the Dialog Program 

126 

The EX06A program required little coding for a lot of functionality. Now we'll 
make a new version of this program that uses some hand-coding to add extra 
features. We'll eliminate EX06A's rude habit of dumping the user in response 
to a press of the Enter key, and we'll hook up the scroll bar controls. 



S I X: The Modal Dialog and Windows Common Controls 

Taking Control of the OnOK Exit 
In the original EX06A program, the CDialog::OnOK virtual function handled 
the OK button, which triggered data exchange and the exit from the dialog. 
Pressing the Enter key happens to have the same effect, and that might or 
might not be what you want. If the user presses Enter while in the Name edit 
control, for example, the dialog closes immediately. 

What's going on here? When the user presses Enter, Windows looks to 
see which pushbutton has the input focus, as indicated on the screen by a 
dotted rectangle. If no button has the focus, Windows looks for the default 
pushbutton that the program or the resource specifies. (The default push
button has a thicker border.) If the dialog has no default button, the virtual 
On OK function is called, even if the dialog does not contain an OK button. 

You can disable the Enter key by writing a do-nothing CEx06aDialog
::OnOK function and adding the exit code to a new function that responds to 
clicking the OK button. Here are the steps: 

1. Use ClassWizard to "map" the lOOK button to the virtual OnOK 
function. In ClassWizard, choose IDOKfrom the CEx06aDialogObject 
IDs list, and then double-click on BN_CLICKED. This generates the 
prototype and skeleton for OnOK. 

2. Use the dialog editor to change the OK button 10. Select the OK 
button, change its ID from IDOK to IDC_OK, and then uncheck its De
fault Button property. Leave the OnOK function alone. 

3. Use ClassWizard to create a member function called OnClickedOk. 
This CEx06aDialog class member function is keyed to the BN_CLICKED 
message from the newly renamed control IDC_OK. 

4. Edit the body of the OnClickedOk function in ex06aOialog.cpp. 
This function calls the base class On OK function, as did the original 
CEx06aDialog:: On OK function. Here is the code: 

void CEx06aDialog::OnClickedOk() 
{ 

TRACE( "CEx06aDi al 09: :OnCl i ckedOk\n"); 
CDialog::OnOK(); 

5. Edit the original OnOK function in ex06aOialog.cpp. This function 
is a "leftover" handler for the old IDOK button. Edit the code as shown 
on the following page. 

127 



PAR T II: THE MFC LIBRARY VIEW CLASS 

void CEx06aDialog::OnOK() 
,{ .--

II dummy OnOK function -- do NOT call CDialog::OnOK() 
J"RACE ("CEx06aDi a log: : OnOK\n'~) ; 

6. Build and test the application. Try pressing the Enter key now. Noth
ing should happen, but TRACE output should appear in the Debug win
dow. Clicking the OK button should exit the dialog as before, however. 

ForWin32 Programmers 
Dialog controls send WM_COMMAND notification messages to their 
parent'dialogs. For a single button click, for example, the bottom 16 
bits of wParam contain the button ID, the top 16 bits of wParam con
tain the BN_CLICKED notification code, and lParam contains the 
button handle. Most window procedure functions process these no
tification messages with a nested switch statement. MFC "flattens out" 
the message processing logic by "promoting" control notification 
messages to the same level as other Windows messages. 

For a Delete button (for example), ClassWizard generates notifi
cation message map entries similar to, these: 

ON_BN_CLICKED(IOC_DELETE, OnDeleteClicked) 
ON_BN_DOUBLECLICKED(IDC_OELETE, OnDeleteDblClicked) 

Button events are special because they generate command messages 
if your dialog class doesn't have notification handlers like the ones 
above. As Chapter 12 explains, the application framework "routes" 
these command messages to various qbjects in your application.You 
could also map control notifications with a more generic ON~COM
MAND message-handling entry like this: 

ON_COMMAND( I DC.:..DELETE; OnDel ete) 

In this case, the OnDeletefunction is unable to distinguishbetWeena. 
single click and a double click,butthat's no problem because .. few 
Windows-based programs utilize double clicks for buttons. 

On Cancel Processing 

128 

Just as pressing the Enter key triggers a call to OnOK, pressing the Esc key 
triggers a call to OnCancel, which results in an exit from the dialog with a 



S I X: The Modal Dialog and Windows Common Controls 

DoModal return code of IDCANCEL. EX06A does no special processing for 
IDCANCEL; therefore, pressing the Esc key (or clicking the Close box) closes 
the dialog. You can circumvent this process by substituting a dummy On Cancel 
function, following approximately the same procedure you used for the OK 
button. 

Hooking Up the Scroll Bar Controls 
The dialog editor allows you to include scroll bar controls in your dialog, and 
ClassWizard lets you add integer data members. You must add code to make 
the Loyalty and Reliability scroll bars work. 

Scroll bar controls have position and range values that can be read and 
written. If you set the range to (0,100), for example, a corresponding data 
member with a value of 50 positions the scroll box at the center of the bar. 
(The function CScrollBar::SetScrollPos also sets the scroll box position.) The 
scroll bars send the WM_HSCROLL and WM_ VSCROLL messages to the 
dialog when the user drags the scroll box or clicks the arrows. The dialog's 
message handlers must decode these messages and position the scroll box 
accordingly. 

Each control you've seen so far has had its own individual message 
handler function. Scroll bar controls are different because all horizontal scroll 
bars in a dialog are tied to a single WM_HSCROLL message handler and all 
vertical scroll bars are tied to a single WM_ VSCROLL handler. Because this 
monster dialog contains two horizontal scroll bars, the single WM_HSCROLL 
message handler must figure out which scroll bar sent the scroll message. 

Here are the steps for adding the scroll bar logic to EX06A: 

1. Add the class enum statements for the minimum and maximum 
scroll range. In ex06aDialog.h, add the following lines at the top of 
the class declaration: 

enum nMin = 0 }; 
enum nMax = 100 }; 

2. Edit the OnlnitDialog function to initialize the scroll ranges. In 
the OnlnitDialogfunction, we'll set the minimum and the maximum 
scroll values such that the CEx06aDialog data members represent per
centage values. A value of 100 means "Set the scroll box to the extreme 
right"; a value of 0 means "Set the scroll box to the extreme left." 

129 



PAR T II: THE MFC LIBRARY VIEW CLASS 

130 

Add the following code to the CEx06aDialog member function 
OnlnitDialog in the file ex06aDialog.cpp: 

'Escr:o'~ifra't,;;W'PSB:::( CScrol1 Ba r*) GetDlg I tem( I DC_(OY AL)~ 
~SB->SetScrol1R~nge(nMiri, nMax); 

'bSB = CScro 11 Ba r*)GetDlg 1 tem<I DC_RELY): 
pSB-)SetScro11Range(nMiYl. YlMax); 

3. Use ClassWizard to add a scroll bar message handler to 
CEx06aDialog. Choose the WM_HSCROLL message, and then add 
the member function OnHScroll. Enter the following shaded code: 

void CEx06aDialog::OnHScrol1(UINT nSBCode, UINT nPos, 
CScro11Bar* pScro11Bar) 

pScrollBar->SetScrol1Pos(nPos); 
break; 

.caseSB..;.LINELEFT: / rleft arrow button 
nTemp2=>{nMax- nMin) r 10:; 
if «nTempl ~ •. nTemp2) )nMin){ 

nTempl -=nTemp2~ 



S I X: The Modal Dialog and Windows Common Controls 

Nor E: The scroll bar functions use 16-bit integers for both 
range and position. 

4. Build and test the application. Build and run EX06A again. Do the 
scroll bars work this time? The scroll boxes should "stick" after you drag 
them with the mouse, and they should move when you click the scroll 
bars' arrows. (Notice that we haven't added logic to cover the user's 
click on the scroll bar itself.) 

Identifying Controls: 
CWnd Pointers and Control IDs 

When you layout a dialog resource in the dialog editor, you identify each 
control by an ID such as IDC_SSN. In your program code, however, you often 
need access to a control's underlying window object. The MFC library provides 
the CWnd::GetDlgItem function for converting an ID to a CWnd pointer. You've 
seen this already in the OnInitDialogmember function of class CEx06aDialog. 
The application framework "manufactured" this returned CWnd pointer be
cause there never was a constructor call for the control objects. This pointer 
is temporary and should not be stored for later use. 

riP: If you need to convert a CWnd pointer to a control ID, use 
the MFC library GetDlgCtrlID member function of class CWnd. 

Setting the Color for the 
Dialog Background and for Controls 

You can change the background color of individual dialogs or specific con
trols in a dialog, but you have to do some extra work. The parent dialog is sent 
a WM_CTLCOLOR message for each control immediately before the control 
is displayed. A WM_CTLCOLOR message is also sent on behalf of the dialog 
itself. If you map this message in your derived dialog class, you can set the 
foreground and background text colors and select a brush for the control or 
dialog nontext area. 

On the following page is a sample OnCtlColor function that sets all edit 
control backgrounds to yellow and the dialog background to red. The m_h
YeZlowBrush and m_hRedBrush variables are data members of type HBRUSH, 
initialized in the dialog's OnInitDialog function. The nCtlColor parameter in
dicates the type of control, and the pWnd parameter identifies the specific 
control. If you wanted to set the color for an individual edit control, you would 
convert pWnd to a child window ID and test it. 

131 



PAR T II: THE MFC LIBRARY VIEW CLASS 

HBRUSH CMyDialog::OnCtlColor(CDC* pDC. CWnd* pWnd. UINT nCtlColor) 
{ 

if (nCtlColor == CTLCOLOR_EDIT) { 
pDC->SetBkColor(RGB(255. 255. 0»: II yellow 
return m_hYellowBrush: 

if (nCtlColor == CTLCOLOR_DLG) 
pDC->SetBkColor(RGB(255. 0. 0»; 
return m_hRedBrush: 

II red 

return CDialog::OnCtlColor(pDC. pWnd. nCtlColor): 

NOT E : The dialog does not post the WM_CTLCOLOR message 
in the message queue; instead, it calls the Win32 SendMessage func
tion to send the message immediately. Thus the message handler 
can return a parameter, in this case a handle to a brush. This is not 
an MFC CBrush object but rather a Win32 HBRUSH. You can create 
the brush by calling the Win32 functions CreateSolidBrush, Create
HatchBrush, and so forth. 

ForWin32 Programmers 
Actually, Win32 no longer has.a WM~CTLCOLOR message.Jtwasre
placed by control-spedficmessages such as WM_GTLCOLORBTN, 
WM_CTLCOLORDLG, and,so ,0n.,MFC"and,ClassWizard process 
these· messages invisibly, so your programs looka.s' though they're 
mapping the old 16-bit WM_ CTLCOLORmessages~ This trickniakes 
debugging more complex,butit makesportable code easier to write. 
Another option would be tousethe ON_MESSAGEniacroto map the 
reai Win32 messages. 

If yourdialog class ( or other MFGwindowclass) doesn't m",p the 
WM_CTLC()LOR~nessage,thefrarneworkref1~cts the,message'back 
to,the,cont~oL,Whenyoustl.ldywindow subclassing in, Chapter 15, 

,you'n"'lea~n, how, tovvrite y()ur· own. con trol·window classes,. that ,'can 
process, these reflected' messages. 

Painting Inside the Dialog Window 

132 

You can paint directly in the client area of the dialog window, but you'll avoid 
overwriting dialog elements if you paint only inside a control window. If you 
want to display text only, use the dialog editor to create a blank static control 



5 I X: The Modal Dialog and Windows Common Controls 

with a unique ID and then call the CWnd::SetDlgltemText function in a dialog 
member function such as OnlnitDialog to place text in the control. 

Displaying graphics is more complicated. You must use ClassWizard to 
add an OnPaint member function to the dialog; this function must convert the 
static control's ID to a CWnd pointer and get its device context. The trick is 
to draw inside the control window while preventing Windows from overwriting 
your work later. The Invalidate/UpdateWindow sequence achieves this. Here is 
an OnPaint function that paints a small black square in a static control: 

void CMyDialog::OnPaint() 
{ 

CWnd* pWnd = GetDlgltem(IDC_STATIC1); 

CDC* pControlDC = pWnd->GetDC(); 

pWnd->Invalidate(); 

II IDC_STATIC1 specified 
II in the dialog editor 

pWnd-)UpdateWindow(); 
pControlDC->SelectStockObject(BLACK_BRUSH); 
pControlDC->Rectangle(0, 0, 10, 10); II black square bullet 
pWnd->ReleaseDC(pControlDC); 

As with all windows, the dialog's OnPaint function is called only if some 
part of the dialog is invalidated. You can force the OnPaint call from another 
dialog member function with the following statement: 

Invalidate(); 

Adding Dialog Controls at Runtime 
You've seen how to use the resource editor to create dialog controls at build 
time. If you need to add a dialog control at runtime, here are the program
ming steps: 

1. Add an embedded control window data member to your dialog 
class. The MFC control window classes include CButton, CEdit, 
CListBox, and CComboBox. An embedded control C++ object is 
constructed and destroyed along with the dialog object. 

2. Choose Resource Symbols from Developer Studio's View menu. 
Add an ID constant for the new control. 

3. Use ClassWizard to map the WM_INITDIALOG message, thus over
riding CDialog::OnlnitDialog. This function should call the embed
ded control window's Create member function. This call displays the 
new control in the dialog. Windows will destroy the control window 
when it destroys the dialog window. 

133 



PAR T II: THE MFC LIBRARY VIEW CLASS 

4. In your derived dialog class, manually add the necessary notification 
message handlers for your new control. 

In Chapter 12, you'll be adding a rich edit control to a view at runtime. 

Using Other Control Features 
You've seen how to customize the control class CScrollBar by adding code in 
the dialog's OnlnitDialogmember function. You can program other controls 
in a similar fashion. In the Microsoft Foundation Class Reference, look at the control 
classes, particularly CListBox and CComboBox. Each has a number of features 
that ClassWizard does not directly support. Some combo boxes, for example, 
can support multiple selections. If you want to use these features, don't try to 
use ClassWizard to add data members. Instead, define your own data mem
bers and add your own exchange code in OnlnitDialogand On Clicked OK. 

For Win32.Programmers 
If you've programmed controls in Win32, you'll know that parent win
dows communicate to controls via Windows messages. So what does a 
function such as CListBox::lnsertString do? (You've seenthis function 
called in your OnlnitDialogfunction.) If you look at. the MFCsource 
code, you'll see that InsertStringsends an LB_INSERTSTRING message 
to· the designated list-box control. Other control class member func
tions don't send messages because they apply to all window types. The 
CScrollView::SetScrollRange function, for example, calls theWin32 Set
ScrollRange function, specifying the correct h Wnd as a parameter .. 

Windows Common Controls 

134 

The controls you used in EX06A are great learning controls because they're 
easy to program. Now you're ready for some more "interesting" controls. We'll 
look at some important new Windows controls, introduced for Microsoft 
Windows 95 and available in Microsoft Windows NT. These include the pro
gress indicator, trackbar, spin button control, list control, and tree control. 

The code for these controls is in the Windows COMCTL32.DLL file. This 
code includes the window procedure for each control, together with code that 
registers a window class for each control. The registration code is called when 
the DLL is loaded. When your program initializes a dialog, it uses the symbolic 
class name in the dialog resource to connect to the window procedure in the 



S I X: The Modal Dialog and Windows Common Controls 

DLL. Thus your program owns the control's window, but the code is in 
the DLL. Except for ActiveX controls, most controls work this way. 

Example EX06B uses the aforementioned controls. Figure 6-2 shows the 
dialog from that example. Refer to it when you read the control descriptions 
that follow. 

Be aware that ClassWizard offers no member variable support for the 
common controls. You'll have to add code to your OnlnitDialog and OnOK 
functions to initialize and read control data. ClassWizard will, however, allow 
you to map notification messages from common controls. 

Figure 6-2. 
The Windows Common Controls Dialog. 

The Progress Indicator Control 
The progress indicator is the easiest common control to program and is rep
resented by the MFC CProgressCtrl class. It is generally used only for output. 
This control, together with the trackbar, can effectively replace the scroll bar 
controls you saw in the previous example. To initialize the progress indicator, 
call the SetRange and SetPos member functions in your OnlnitDialog function, 
and then call SetPos anytime in your message handlers. The progress indica
tor shown in Figure 6-2 has a range of 0 to 100, which is the default range. 

The Trackbar Control 
The trackbar control (class CSliderCtrl) , sometimes called a slider, allows the 
user to set an "analog" value. (Trackbars would have been more effective than 
sliders for Loyalty and Reliability in the EX06A example.) If you specify a large 
range for this control-O to 100 or more, for example-the trackbar's motion 
appears continuous. If you specify a small range, such as 0 to 5, the tracker 

135 



PAR T II: THE MFC LIBRARY VIEW CLASS 

moves in discrete increments. You can program tick marks to match the in
crements. In this discrete mode, you can use a trackbar to set such items as 
the display screen resolution, lens f-stop values, and so forth. The trackbar does 
not have a default range. 

The trackbar is easier to program than the scroll bar because you don't 
have to map the WM_HSCROLL or WM_ VSCROLL messages in the dialog 
class. As long as you set the range, the tracker moves when the user slides it 
or clicks in the body of the trackbar. You might choose to map the scroll 
messages anyway if you want to show the position value in another control. The 
GetPos member function returns the current position value. The top trackbar 
in Figure 6-2 operates continuously in the range ° to 100. The bottom trackbar 
has a range of ° to 4, and those indexes are mapped to a series of double
precision values (4.0, 5.6, 8.0, 11.0, and 16.0). 

The Spin Button Control 
The spin button control (class CSpinButtonCtrl) is an itsy-bitsy scroll bar that's 
most often used in conjunction with an edit control. The edit control, located 
just ahead of the spin control in the dialog's tabbing order, is known as the 
spin control's buddy. The idea is that the user holds down the left mouse but
ton on the spin control to raise or lower the value in the edit control. The spin 
speed accelerates as the user continues to hold down the mouse button. 

If your program uses an integer in the buddy, you can avoid C++ pro
gramming almost entirely. Just use ClassWizard to attach an integer data 
member to the edit control, and set the spin control's range in the OnlnitDialog 
function. (You probably won't want the spin control's default range, which 
runs backward from a minimum of 100 to a maxim~m ofO.) Don't forget to 
select Auto Buddy and Set Buddy Integer in the spin control's Styles dialog 
page. You can call the SetRange and SetAccel member functions in your On
InitDialog function to change the range and the acceleration profile. 

If you want your edit control to display a noninteger, such as a time or 
a floating-point number, you must map the spin control's WM_VSCROLL (or 
WM_HSCROLL) messages and write handler code to convert the spin con
trol's integer to the buddy's value. 

The List Control 

136 

Use the list control (class CListCtrl) if you want a list that contains images as 
well as text. Figure 6-2 on the previous page shows a list control with a "list" 
view style and small icons. The elements are arranged in a grid, and the con
trol includes horizontal scrolling. When the user selects an item, the control 
sends a notification message, which you map in your dialog class. That 



S I X: The Modal Dialog and Windows Common Controls 

message handler can determine which item the user selected. Items are iden
tified by a zero-based integer index. 

Both the list control and the tree control get their graphic images from 
a common control element called an image list (class CImageList). Your pro
gram must assemble the image list from icons or bitmaps and then pass an 
image list pointer to the list control. Your OnInitDialogfunction is a good place 
to create and attach the image list and to assign text strings. The InsertItem 
member function serves this purpose. 

List control programming is straightforward if you stick with strings and 
icons. If you implement drag and drop or if you need custom owner-drawn 
graphics, you've got more work to do. 

The Tree Control 
You're already familiar with tree controls if you've used Microsoft Windows 
Explorer or Developer Studio's Workspace view. The MFC CTreeCtrl class 
makes it easy to add this same functionality to your own programs. Figure 6-2 
illustrates a tree control that shows a modern American combined family. The 
user can expand and collapse elements by clicking the + and - buttons or by 
double-clicking the elements. The icon next to each item is programmed to 
change when the user selects the item with a single click. 

The list control and the tree control have some things in common: they 
can use the same image list, and they share some of the same notification 
messages. Their methods of identifying items are different, however. The tree 
control uses an HTREEITEMhandle instead of an integer index. To insert an 
item, you call the InsertItem member function, but first you must build up a 
TV_INSERTSTRUCTstructure that identifies (among other things) the string, 
the image list index, and the handle of the parent item (which is null for top
level items). 

As with list controls, infinite customization possibilities are available for 
the tree control. For example, you can allow the user to edit items and to insert 
and delete items. 

The WM_NOTIFY Message 
The original Windows controls sent their notifications in WM_COMMAND 
messages. The standard 32-bit wParam and LParam message parameters are not 
sufficient, however, for the information that a common control needs to send 
to its parent. Microsoft solved this "bandwidth" problem by defining a new 
message, WM_NOTIFY. With the WM_NOTIFY message, wParam is the con
trol ID and lParam is a pointer to an NMHDRstructure, which is managed by 
the control. This C structure is defined on the following page. 

137 



PAR T II: THE MFC LIBRARY VIEW CLASS 

typedef struct tagNMHDR { 
HWND hwndFrom: II handle to control sending the message 
U1NT idFrom: 
U1NT code: 

NMHDR: 

II 1D of control sending the message 
II control-specific notification code 

Many controls, however, send WM_NOTIFY messages with pointers to struc
tures larger than NMHDR Those structures contain the three members above 
plus appended control-specific members. Many tree control notifications, for 
example, pass a pointer to an NM_TREEVIEW structure that contains TV
_ITEM structures, a drag point, and so forth. When ClassWizard maps a 
WM_NOTIFY message, it generates a pointer to the appropriate structure. 

The EX06B Example 

138 

I won't try to contrive a business-oriented example that uses all the custom 
controls. I'lljust slap the controls in a modal dialog and trust that you'll see 
what's going on. The steps are shown below and on the following pages. M
ter step 3, the instructions are oriented to the individual controls rather than 
to the Visual C++ components you'll be using. 

1. Run AppWizard to generate the EX068 project. Choose New from 
Developer Studio's File menu, and then select Microsoft AppWizard 
(exe) from the Projects page. Accept all the defaults but two: select 
Single Document and deselect Printing And Print Preview. The options 
and the default class names are shown here: 



S I X: The Modal Dialog and Windows Common Controls 

2. Create a new dialog resource with 10 IDD_DIALOG1. Place the 
controls as shown back in Figure 6-2. 

You can drag the controls from the control palette that is shown on 
page 113. The following table lists the control types and their IDs: 

Tab Sequence Control Type Child Window 10 

1 Static IDC_STATIC 

2 Progress IDC_PROGRESS1 

3 Static IDC_STATIC 

4 Trackbar IDC_ TRACKBAR1 

5 Static IDC_STATIC_ TRACK1 

6 Static IDC_STATIC 

7 Trackbar IDC_ TRACKBAR2 

8 Static IDC_STATIC_ TRACK2 

9 Static IDC_STATIC 

10 Edit IDC_BUDDY_SPIN1 

11 Spin IDC_SPIN1 

12 Static IDC_STATIC 

13 Static IDC_STATIC 

14 List control IDC_LISTVIEWl 

15 Static IDC_STATIC_LISTVIEWl 

16 Static IDC_STATIC 

17 Tree control IDC_ TREEVIEW1 

18 Static IDC_STATIC_ TREEVIEW1 

19 Pushbutton IDOK 

20 Pushbutton IDCANCEL 

Don't worry about the other properties now-you'll set those in the 
following steps. (Some controls may look different than they do in Figure 
6-2 until you set their properties.) Set the tab order as shown on the fol
lowing page. 

139 



PAR T II: THE MFC LIBRARY VIEW CLASS 

140 

3. Use ClassWizard to create a new class, CEx06bDialog, derived 
from CDialog. ClassWizard will automatically prompt you to create 
this class because it knows that the IDD_DIALOGl resource exists with
out an associated c++ class. Map the WM_INITDIALOG message, the 
WM_HSCROLL message, and the WM_ VSCROLL message. 

4. Program the progress control. Because ClassWizard won't generate 
a data member for this control, you must do it yourself. Add a public in
teger data member named m_nProgress in the CEx06bDialogclass header, 
and set it to 0 in the constructor. Also, add the following code in the 
OnInitDialog member function: 

CProgressCtrl* pProg = 
(CProgressCtrl*) GetDlgltem(IDC_PROGRESS1): 

pProg->SetRange(0. 100); 
pProg->SetPos(m_nProgress); 

5. Program the "continuous" trackbar control. Add a public integer 
data member named m_nTrackbarl to the CEx06bDialog header, and set 
it to 0 in the constructor. Next add the following code in the OnInitDialog 
member function to set the trackbar's range, to initialize its position 
from the data member, and to set the neighboring static control to the 
tracker's current value: 

CString strText1: 
CSliderCtrl* pSlide1 

(CSliderCtrl*) GetDlgltem(IDC_TRACKBARl)~ 
pS11de1->SetRange(0. 100); 
pSl i del-)SetPos (m_nTrackbarl); 
strTextl.Format("%d". pSlidel-)GetPos{}}; 
SetDl gItemText (I DC_STATIC_TRACKl, strTextl): 



S I X: The Modal Dialog and Windows Common Controls 

To keep the static control updated, you need to map the WM_HSCROLL 
message that the trackbar sends to the dialog. Here is the code for the 
handler: 

void CEx06bDialog::OnHScroll(UINT nSBCode, UINT nPos, 
CScrollBar* pScrollBar) 

CSliderCtrl* pSlide = (CSliderCtrl*) pScrollBar: 
CString strText; 
strText.Format("%d", pSlide->GetPos(»; 
SetDlgItemText( IDe_STATIC_TRACKl, strText); 

Finally, you need to update the trackbar's m_nTrackbarl data member 
when the user clicks OK. Your natural instinct would be to put this code 
in the On OK button handler. You would have a problem, however, if a 
data exchange validation error occurred involving any other control in 
the dialog. Your handler would set m_nTrackbarl even though the user 
might choose to cancel the dialog. To avoid this problem, add your code 
in the DoDataExchange function as shown here. If you do your own valida
tion and detect a problem, call the CDataExchange::Fail function, which 
alerts the user with a message box. 

if (pDX->m_bSaveAndValidate) 
TRACE("updating trackbar data members\n"); 
CSliderCtrl* pSlidel= 

(CSliderCtrl*) GetDlgltem(IDC_TRACKBARl); 
m_nTrackbarl = pSlidel->GetPos(): 

6. Program the "discrete" trackbar control. Add a public integer data 
member named m_nTrackbar2 to the CEx06bDialog header, and set it 
to 0 in the constructor. This data member is a zero-based index into 
the dValue, the array of numbers (4.0,5.6,8.0,11.0, and 16.0) that the 
trackbar can represent. Define dValue as a private static double array 
member variable in ex06bDialog.h, and add to ex06bDialog.cpp the 
following line: 

doubre.CEx06bDi.~Jog::dV~Jll€:[5J=.{4. 0 ,,,.5. 6 ,S. 0 ,11.,O, 16.0}: 

Next add code in the OnlnitDialogmember function to set the 
trackbar's range and initial position. 

141 



PAR T II: THE MFC LIBRARY VIEW CLASS 

142 

CStringstrText2; 
CSliderCtrl* pSlide2 

(CSliderCtrl*) GetDlgltem(IDC_TRACKBAR2): 
pSlide2->SetRange(0. 4): 
pSli de2- >SetPos (m_nTrackba r2) : 
strText2.Format("%3.1f". dValue[pSlide2->GetPos()]); 
SetDlgltemText(IOC_STATIC_TRACK2. strText2): 

If you had only one trackbar, the WM_HSCROLL handler in step 5 
would work. But because you have two trackbars that send WM_HSCROLL 
messages, the handler must differentiate. Here is the new code: 

void CEx06bDialog::OnHScroll(UINT nSBCode. UINT nPos. 
CScrollBar* pScrollBar) 

CSliderCtrl* pSlide (CSliderCtrl*) pScrollBar; 
CString strText; 

II Two trackbars are sending 
II HSCROLL messages (different processing) 
switch(pScrollBar->GetDlgCtrlID() { 
case IOC_TRACKBARl: 

strText. Format ("%d". pSl i de- >GetPos ( ) ) : 
SetDl gItemText(IOC_STATIC.,...TRACKl. strText); 
break; 

case IOC_TRACKBAR2: 
strText.Format("%3.1f", dValue[pSlide->GetPos()]); 
SetOlgItemText(IOC_STATIC_TRACK2. strText): 
break; 

This trackbar needs tick marks, so you must check the control's 
Tick Marks and Auto Ticks properties back in the dialog editor. With 
Auto Ticks set, the trackbar will place a tick at every increment. The same 
data exchange considerations applied to the previous trackbar apply to 
this trackbar. Add the following code in the dialog class DoDataExchange 
member function inside the block for the ifstatement you added in the 
previous step: 

CSliderCtrl* pSlide2 
(CSl i derCtrl * ) GelDl 9 Item(I OC_TRACKBAR2) : 

rn..:.nTrackbar2= pSl i de2->GetPosO; 



S I X: The Modal Dialog and Windows Common Controls 

Use the dialog editor to set the Point property of both trackbars to 
Bottom/Right. Select Right for the Align Text property of both the 
IDC_STATIC_TRACK1 and IDC_STATIC_TRACK2 static controls. 

7. Program the spin button control. The spin control depends on its 
buddy edit control, located immediately before it in the tab order. Use 
ClassWizard to add a double-precision data member called m_dSpin for the 
IDC_BUDDY_SPIN1 edit control. We're using a double instead of an int 
because the int would require almost no programming, and that would 
be too easy. We want the edit control range to be 0.0 to 10.0, but the 
spin control itself needs an integer range. Add the following code to 
OnlnitDialogto set the spin control range to 0 to 100 and to set its initial 
value to m_dSpin * 10.0: 

CSpinButtonCtrl* pSpin = 
(CSpinButtonCtrl*) GetDlgItem(IDC_SPIN1); 

pSpin->SetRange(0. 100): 
pSpin->SetPos«int) (m_dSpin * 10.0»; 

To display the current value in the buddy edit control, you need to 
map the WM_VSCROLL message that the spin control sends to the dia
log. Here's the code: 

void CEx06bDialog::OnVScroll(UINT nSBCode. UINT nPos. 
CScrollBar* pScrollBar) 

if (nSBCode == SB_ENDSCROLL) { 
return: /1 Reject spurious messages 

} 

// Process scroll messages from IDC_SPINl only 
if (pScrollBar->GetDlgCtrlID() == IDC_SPINl) 

". }. 

CString strValue; 
strValue.Format("%3.lf". (double) nPos / 10.0); 
«CSpinButtonCtrl*) pScrollBar)->GetBuddy() 

->SetWindowText(strValue); 

There's no need for you to add code in OnOK or in DoDataExchange 
because the dialog data exchange code processes the contents of the edit 
control. In the dialog editor, select the spin control's Auto Buddy prop
erty and the buddy's Read-only property. 

8. Set up an image list. Both the list control and the tree control need 
an image list, and the image list needs icons. 

143 



PAR T II: THE MFC LIBRARY VIEW CLASS 

144 

About Icons 
You probably know that a bitmap is an array of bits that represent 
pixels on the display. (You'll learn more about bitmaps in Chapter 10.) 
In Windows, an icon is a "bundle" of bitmaps. First of all, an icon has 
different bitmaps for different: sizes. Typically, small icons are 16-by-
16 pixels and large icons are 32-by-32 pixels. Within each size are two 
separate bitmaps: one 4-bit-per-pixel bitmap for the color imageand 
one monochrome (I-bit-per-pixel) bitmap for the "mask." Ifa mask 
bit is 0, the corresponding image pixel represents an opaque color. 
If the mask bit is 1, an image color of black (0) means that the pixel 
is transparent and an image color of white (OxF) means that the back
ground color is inverted at the pixel location. Windows 95 and Win
dows NT seem to process inverted colors a little differently than 
Windows 3.x does-the inverted pixels show up transparent against 
the desktop, black against a Windows Explorer window background, 
and white against list and tree control backgrounds. Don't ask me why. 

Small iconswere new with Windows 95. They're used in the task 
bar, in Windows Explorer, and in your list and tree controls, if you 
want them there. If an icon doesn't have a I6-by-I6-pixel bitmap, 
Windows manufactures a small icon out of the 32-by-32-pixel bitmap, 
but it won't be as neat as one you draw yourself. 

The graphics editor lets you create and edit icons. Look at the 
color palette shown here: 

Click here for transparent pixels 
Click here for opaque pixels 

The top square in. the upper-left portion shows you the main color 
for brushes, shape interiors, and so on, and the square under it shows 
t:he border color for shape outlines. You select a main color by left
clicking on a color, and you select a border color by right-clicking on 
a color. Now look at the top center portion of the color paJette.You 
click on the upper "monitor" to paint transparent pixels, which are 
drawn in darkcyan. You click on the lower monitor to paint inverted 
pixels, which are drawn in red. 



S I X: The Modal Dialog and Windows Common Controls 

First use the graphics editor to add icons to the project's RC file. On 
the companion CD-ROM, these icons are circles with black outlines and 
different-colored interiors. Use fancier icons if you have them. You can 
import an icon by choosing Resource from the Insert menu and then 
clicking the Import button. For this example, the icon resource IDs are 
as follows: 

IDI_BLACK 

IDI_BLUE 

IDI_CYAN 

IDI_GREEN 

IDI_PURPLE 

IDI_RED 

IDI_WHITE 

IDI_YELLOW 

Next add a private CImageList data member called m_imageList in the 
CEx06bDialogclass header, and then add the following code to OnInitDialog: 

HICON hlcon[8]: 
int n: 
m_imageList.Create(16. 16, 0, 8, 8): II 32, 32 for large icons 
hlcon[0] = AfxGetApp()->Loadlcon(IDI_WHITE); 
hlcon[1] = AfxGetApp()->Loadlcon(IOI_BLACK): 
hlcon[2] = AfxGetApp()->Loadlcon(IOI_RED); 
hlcon[3] = AfxGetApp()->Loadlcon(IDI_BLUE); 
hlcon[4] = AfxGetApp()->Loadlcon(IDI_YELLOW); 
hlcon[5] = AfxGetApp()->Loadlcon(IDI_CYAN); 
hlcon[6] = AfxGetApp()->Loadlcon(IDI_PURPLE); 
hlcon[7] = AfxGetApp()->Loadlcon(IDI_GREEN); 
fo r (n = 0; n < 8: n++) { 

m_imageList.Add(hlcon[n]); 

9. Program the list control. In the dialog editor, set the list control's 
style attributes as shown in the illustration on the following page. 

145 



PAR T II: THE MFC LIBRARY VIEW CLASS 

146 

Make sure the Border style on the More Styles page is set. Next add the 
following code to Onln itDia log: 

stati c cha r* color[] = {"whi te". "bl ack". "red", 
"blue", "yellow". "cyan", 
"purple". "green"}; 

CListCtrl* pList = 
(CListCtrl*) GetDlgIt~m(IDC_LISTVIEWl): 

pL i st- >Set Image List (&m_i mageL i st. LVSI L_SMALL): 
for (n = 0: n < 8; n++) { 

pList->InsertItem(n, color[n],n): 
} 

pList->SetBkColor(RGB(0~ 255. 255»; II UGLY! 
pList-)SetTextBkColor(RGB(0, 255.255): 

As the last two lines illustrate, you don't use the WM_CTLCOLOR mes
sage with common controls; youjust call a function to set the back
ground color. As you'll see when you run the program, however, the 
icons' inverse-color pixels look shabby. 

If you use ClassWizard to map the list control's LVN_ITEMCHANGED 
notification message, you'll be able to track the user's selection of items. 
The code in the following handler displays the selected item's text in a 
static control: 

void CEx06bDialog::OnItemchangedListviewl(NMHDR* pNMHDR, 
LRESULT* pResult) 

NM_LI STY I EW* pNM L i stVi ew = (~M~LI S!V}.~~~)pNMHq~:, 
CListCtrl* pList = 

(CListCtrl*) GetDlgItem(IDC_LISTVIEWl): 
int nSelected = pNMListView->iItem; 
if (nSelected >= 0){ 

CStri ng strItem =pLi st-)GetItemText(nSel ected. 



S I X: The Modal Dialog and Windows Common Controls 

SetDlgltemText(IDC_STATIC_LISTVIEW1, strltem): 

*pResult = 0; 

The NM_LISTVIEWstructure has a data member called iltem that 
contains the index of the selected item. 

10. Program the tree control. In the dialog editor, set the tree control's 
style attributes as shown here: 

Next, add the following lines to OnlnitDialog: 

CTreeCtrl* pTree = (CTreeCtrl*) GetDlgltem(IDC_TREEVIEW1); 
pTree~>SetlmageList(&m_imageList, TVSIL_NORMAL); 
II tree structure common values 
TV_INSERTSTRUCT tvinsert; 
tvinsert.hParent = NULL; 
tvinsert.hlnsertAfter = TVI_LAST; 
tvinsert.item.mask = TVIF_IMAGE I TVIF_SELECTEDIMAGE I 

TVIF_TEXT; 
tvinsert.item.hltem = NULL; 
~vinsert.item.state = 0; 
tvinsert.item.stateMask = 0; 
tvinsert.item.cchTextMax = 6: 
tvinsert.item.iSelectedlmage 1; 
tvinsert.item.cChildren = 0; 
tvinsert.item.1Param = 0; 
II top level 
tvinsert.item.pszText = "Homer"; 
tvinsert.item.ilmage = 2; 
HTREEITEM hDad = pTree->Insertltem(&tvinsert); 
tvinsert.item.pszText = "Marge"; 
HTR~E~TEM hMom = pTree~>InsertItem(&tvinsert); 

(continued) 

147 



PAR T II: THE MFC LIBRARY VIEW CLASS 

148 

II second level 
tvinsert.hParent = hDad; 
~vi nsert. item. pszText =,iBart": 
tvinsert.item.1Image = 3; 
pTree->Insertltem(&tvinsert); 
tvi nsert. item. pszText = "u sa"; 
pTree->InsertItem(&tvinsert); 
// second level 
tvinsert.hParent = hMo~: 
tvinsert.item.pszText = "Bart"; 
tvinsert.item.ilmage = 4; 
pTree->Insertltem(&tvinsert); 
tVinsert;item.pszText= "Lisa"; 
pTree->InsertItem(&tvinsert): 
~vinsert.item.pszText = "Oilbert"; 
HTREEITEM hOther pTree->Inse~tlt~m(&tvinsert); 

II third level 
tvinsert.hParent hOther; 
tvinsert.item.pszText = "Dogbert": 
~vinsert.item~ilmage = 7: 
pTree->Insertltem(&tvinsert): 
tvinsert.item.pszText = "Ratbert"; 
pTree->Ihsertltem(&tvinsert}; 

As you can see, this code sets TV_INSERTSTRUCT text and image 
indexes and calls Insertltem to add nodes to the tree. 

Finally, use ClassWizard to map the TVN_SELCHANGED notifica
tion for the tree control. Here is the handler code to display the se
lected text in a static control: 

void CEx06bDialog::OnSelchangedTreeviewl(NMHDR* pNMHDR. 
LRESULT* pResult) 

NM_TREEVIEW* pNMTreeView = (NM_TREEVIEW*)pNMHDR; 
'CTreeCtrl~'pTree =. (cTreeCt~i'~)'GetDig'Item(iDC~TREEVIEWn; 

HTREE ITEMhSe 1 ected = pNMTreeVi ew-)i temNew. h Item; 
if (hSelected != NUll) { 

char text[31]; 
TV:..:.ITEM item: 
item.mask = TVIF~HANDlE 
item;hltem = hSelected; 

*pResul = 0; 



S I X: The Modal Dialog and Windows Common Controls 

The NM_ TREEVIEW structure has a data member called itemNew 
that contains information about the selected node; itemNew.hItem is the 
handle of that node. The Get/tem function retrieves the node's data, stor
ing the text using a pointer supplied in the TV_ITEM structure. The 
mask variable tells Windows that the hItem handle is valid going in and 
that text output is desired. 

11. Add code to the virtual OnDrawfunction in file ex06bView.cpp. 
The following shaded code replaces the previous code: 

void CEx06bView::OnDraw(CDC* pDC) 
{ 

pDC->TextOut(0, 0, "Press the left mouse button here."); 

12. Use ClassWizard to add the OnLButtonDown member function. 
Edit the AppWizard-generated code as follows: 

void CEx06bView::OnLButtonDown(UINT nFlags, CPoint point) 
{ 

CEx06bDialog dlg; 

dlg.m_nTrackbarl = 20; 
dlg.m_nTrackbar2 = 2; II index for 8.0 
dlg.m_nProgress = 70; II write-only 
dlg.m_dSpin = 3.2; 

dlg.DoModal (); 

Add a statement to include ex06bDialog.h in file ex06bView.cpp. 

13. Compile and run the program. Experiment with the controls to see 
how they work. We haven't added code to make the progress indicator 
functional; we'll cover that in Chapter 11. 

Other Windows Common Controls 
You've seen most of the common controls that appear on the dialog editor 
control palette. I've skipped the animation control because this book doesn't 
cover multimedia, and I've skipped the hot key control because it isn't very 
interesting. The tab controli§ interesting, but you seldom use it inside another 
dialog. Chapter 12 shows you how to construct a tabbed dialog, sometimes 
known as a property sheet. In Chapter 12, you'll also see an application that 
is built around the CRichEditView class, which incorporates the Windows rich 
edit control. 

149 





C HAP T E R S EVE N 

The Modeless Dialog and 
Windows Common Dialogs 

In Chapter 6, you saw the ordinary modal dialog and most of the controls for 
Microsoft Windows. Now you'll move on to the modeless dialog and to the 
common dialogs for Microsoft Windows 95 and Microsoft Windows NT ver
sions 4.0 and later. Modeless dialogs, as you'll remember, allow the user to 
work elsewhere in the application while the dialog is active. The common 
dialog classes are the C++ programming interface to the group of Windows 
utility dialogs that include File Open, Page Setup, Color, and so forth and that 
are supported by the dynamic link library COMDLG32.DLL. 

In this chapter's first example, you'll build a simple modeless dialog that 
is controlled from a view. In the second example, you'll derive from the 
COMDLG32 CFileDialog class a class that allows file deletion. 

Modeless Dialogs 
In the Microsoft Foundation Class (MFC) Library version 4.21, modal and 
modeless dialogs share the same base class, CDialog, and they both use a dia
log resource that you can build with the dialog editor. If you're using a mode
less dialog with a view, you'll need to know some specialized programming 
techniques. 

Creating Modeless Dialogs 
For modal dialogs, you've already learned that you construct a dialog object 
using a CDialog constructor that takes a resource template ID as a parameter, 
and then you display the modal dialog window by calling the DoModal mem
ber function. The window ceases to exist as soon as DoModal returns. Thus, you 
can construct a modal dialog object on the stack, knowing that the dialog 
window has been destroyed by the time the C++ dialog object goes out of scope. 

151 



PAR T II: THE MFC LIBRARY VIEW CLASS 

Modeless dialogs are more complicated. You start by invoking the CDialog 
default constructor to construct the dialog object, but then to create the dia
log window you need to call the CDialog::Create member function instead of 
DoModal. Create takes the resource ID as a parameter and returns immediately 
with the dialog window still on the screen. You must worry about exactly when 
to construct the dialog object, when to create the dialog window, when to 
destroy the dialog, and when to process user-entered data. 

Here's a summary of the differences between creating a modal dialog and 
a modeless dialog: 

Constructor used 

Function used 
to create window 

Modal Dialog 

Constructor with 
resource ID param 

DoModal 

Modeless Dialog 

Default constructor (no params) 

Create with resource ID param 

User-Defined Messages 
Suppose you want the modeless dialog window to be destroyed when the user 
clicks the dialog's OK button. This presents a problem. How does the view 
know that the user has clicked the OK button? The dialog could call a view 
class member function directly, but that would "marry" the dialog to a particu
lar view class. A better solution is for the dialog to send the view a user-defined 
message as the result of a call to the OK button message-handling function. 
When the view gets the message, it can destroy the dialog window (but not the 
object). This sets the stage for the creation of a new dialog. 

You have two options for sending Windows messages: the CWnd::SendMes
sage function or the PostMessage function. The former causes an immediate call 
to the message-handling function, and the latter posts a message in the Win
dows message queue. Because there's a slight delay with the PostMessage op
tion, it's reasonable to expect that the handler function has returned by the 
time the view gets the message. 

Dialog Ownership 

152 

Now suppose you've accepted the dialog default pop-up style, which means 
that the dialog isn't confined to the view's client area. As far as Windows is 
concerned, the dialog's "owner" is the application's main frame window (in
troduced in Chapter 12), not the view. You need to know the dialog's view to 



S EVE N: The Modeless Dialog and Windows Common Dialogs 

send the view a message. Therefore, your dialog class must track its own view 
through a data member that the constructor sets. The CDialogconstructor's 
pParent parameter doesn't have any effect here, so don't bother using it. 

A Modeless Dialog Example-EX07 A 
We could convert the Chapter 6 monster dialog to a mode less dialog, but 
starting from scratch with a simpler dialog is easier. Example EX07 A uses a 
dialog with one edit control, an OK button, and a Cancel button. As in the 
Chapter 6 example, pressing the left mouse button while the mouse cursor 
is inside the view window brings up the dialog, but now we have the option 
of destroying it in response to another event-pressing the right mouse but
ton when the mouse cursor is inside the view window. We'll allow only one 
open dialog at a time, so we must be sure that a second left button press doesn't 
bring up a duplicate dialog. 

To summarize the upcoming steps, the EX07A view class has a single 
associated dialog object that is constructed on the heap when the view is con
structed. The dialog window is created and destroyed in response to user 
actions, but the dialog object is not destroyed until the application terminates. 

Here are the steps to create the EX07 A example: 

1. Run AppWizard to produce \vcpp32\ex07a\ex07a. Accept all the 
defaults but two: select Single Document and deselect Printing And 
Print Preview. The options and the default class names are shown here: 

" . . . . .. . .. 
I! AppWizdld wiD create a new skeleton project~with the loll()wing~pec~ications: 

i1 r 
n 

111~~~;I~ire:i~~:: ...• 
Ii .. C:\vcpp32\~x07t1 • w::' ... "",-

153 



PAR T II: THE MFC LIBRARY VIEW CLASS 

154 

2. Use the dialog editor to create a dialog resource. Choose Resource 
from Developer Studio's Insert menu, and then select Dialog. The dia
log editor assigns the ID IDD_DIALOCl to the new dialog. Change the 
dialog caption to Modeless Dialog. Accept the default OK and Cancel but
tons with IDs IDOK and IDCANCEL, and then add a static text control 
and an edit control with the default ID IDC_EDIT1. Change the static 
text control's caption to Edit 1. Here is the completed dialog: 

tdodelen Dialog ., " . ,< < EJ 

, .; 

II 

NOT E : Be sure to select the dialog's Visible property. 

3. Use ClassWizard to create the CEx07aDialog class. Choose 
ClassWizard from Developer Studio's View menu. Fill in the New 
Class dialog as shown here, and then click the OK button. 

Add the message-handling functions shown on the facing page. 
To add a message-handling function, click on an object ID, click on a 
message, and then click the Add Function button. The Add Member 



S EVE N: The Modeless Dialog and Windows Common Dialogs 

Function dialog box appears. Edit the function name if necessary, and 
click the OK button. 

Object 10 

IDCANCEL 

IDOK 

Message 

BN_CLICKED 

BN_CLICKED 

Member Function 

On Cancel 

OnOK 

4. Add a variable to the CEx07aDialog class. While in ClassWizard, 
click on the Member Variables tab, choose the IDC_EDITl control, and 
then click the Add Variable button to add the CStringvariable m_strEditl. 

5. Edit ex07aOialog.h to add a view pointer and function prototypes. 
Type in the following shaded code in the CEx07aDialogclass declaration: 

private: 
CView* m_pView; 

Also, add the function prototypes as follows: 

public: 
CEx07aDialog(CView* pView); 
BOOL Create(); 

NOT E: Using the CView class rather than the CEx07a View class 
allows the dialog class to be used with any view class. 

6. Edit ex07aOialog.h to define the WM_GOOOBYE message 10. 
Add the following line of code: 

#define WM_GOODBYE 

The Windows constant WM_USER is the first message ID available 
for user-defined messages. The application framework uses a few of 
these messages, so we'll skip over the first five messages. 

NOT E : Developer Studio maintains a list of symbol definitions 
in your project's resource.h file, but the resource editor does not 
understand constants based on other constants. Don't manually 
add WM_GOODBYE to resource.h because Developer Studio 
might delete it. 

155 



PA R T II: THE MFC LIBRARY VIEW CLASS 

156 

7. Add the modeless constructor in the file ex07aDialog.cpp. You 
could modify the existing CEx07aDialogconstructor, but if you add a 
separate one, the dialog class can serve for both modal and modeless 
dialogs. Add the following lines: 

'V"~ 

CEx07aDialog::CEx07aDialog(CView* pView) II modeless constructor 
{ 

m_pView = pView; 
} 

You should also add the following line to the AppWizard-generated 
modal constructor: 

m_pView = NUll; 

The C++ compiler is clever enough to distinguish between the 
modeless constructor CEx07aDialog(CView*) and the modal constructor 
CEx07aDialog(CWnd*). If the compiler sees an argument of class CView 
or a derived CView class, it generates a call to the modeless constructor. 
If it sees an argument of class CWnd or another derived CWnd class, it 
generates a call to the modal constructor. 

8. Add the Create function in ex07aDialog.cpp. This derived dialog 
class Create function calls the base class function with the dialog resource 
ID as a parameter. Add the following lines: 

BOOl CEx07aDialog::CreateC) 
{ 

} 

return CDialog::Create(CEx07aDialog::IDD); 

NOT E : Create is not a virtual function. You could have chosen 
a different name if you had wanted to. 

9. Edit the OnOK and OnCancei functions in ex07aDialog.cpp. These 
virtual functions generated by ClassWizard are called in response to dia
log button clicks. Add the following shaded code: 

void CEx07aDialog::OnCancel() //.not really a message handler 
{ 

if (m_pVi ew 1= NULL) { 
II modeless case -- do not call base class OnCancel 
m_pVi ew-)PostMessage(WM_GOODBYE. IDCANCEl); 

} 



S EVE N: The Modeless Dialog and Windows Common Dialogs 

else { 
COialog::OnCancel(); /I modal case 

void CEx07aOialog::OnOK() II not really a message handler 

if (m_pView != NULL) { 
II modeless case -- do not call base class OnOK 
UpdateOata(TRUE); 
m_pView-)PostMessage(WM_GOOOBYE, lOOK); 

else { 
COialog::OnOK(); II modal case 

If the dialog is being used as a modeless dialog, it sends the user
defined message WM_GOODBYE to the view. We'll worry about handling 
the message later. 

NOT E : For a modeless dialog, be sure you do not call the 
CDialog::OnOK or CDialog::OnCancel function. This means you 
must override these virtual functions in your derived class; other
wise, using the Esc key, the Enter key, or a button click would re
sult in a call to the base class functions, which call the Windows 
EndDialog function. EndDialog is appropriate only for modal dia
logs. In a modeless dialog, you must call Destroy Window instead and, 
if necessary, you must call UpdateData to transfer data from the 
dialog controls to the class data members. 

10. Edit the ex07aView.h header file. You need a data member to hold 
the dialog pointer: 

private: 
CEx07aOialog* m_pOlg; 

If you add the forward declaration 

class CEx07aOialog; 

at the beginning of ex07aView.h, you won't have to include ex07a
Dialog.h in every module that includes ex07a View.h. 

157 



PAR T II: THE MFC LIBRARY VIEW CLASS 

158 

11. Modify the CEx07aView constructor and destructor in the file 
ex07aView.cpp. The CEx07aView class has a data member m_pDlgthat 
points to the view's CEx07aDialogobject. The view constructor constructs 
the dialog object on the heap, and the view destructor deletes it. Add the 
following shaded code: 

CEx07aView::CEx07aView() 
{ 

m_pDlg :::: new CEx07aDialog(this): 

CEx07aView::-CEx07aView() 
{ 

delete m_pDlg; 1/ destroys window ifnot already dest,royed 

12. Add code to the virtual OnDraw function in the ex07aView.cpp file. 
The CEx07aView OnDrawfunction (whose skeleton was generated by 
AppWizard) should be coded as follows in order to prompt the user to 
press the mouse button: 

void CEx07aView::OnDraw(CDC* pDC) 
{ 

pDC->TextOut(0. 0. "Press the left mouse button here."); 
} 

13. Use ClassWizard to add CEx07a View mouse message handlers. 
Add handlers for the WM_LBUTTONDOWN and WM_RBUTTON
DOWN messages. Now edit the code in file ex07aView.cpp as follows: 

void CEx07aView::OnLButtonDown(UINT nFlags. CPoint point) 
{ 

II creates the dialog if not created already 
if (m_pOlg->GetSafeHwnd() == 0) { 

m_pDlg->Create(); II disp.lays the dialog window 

void CEx07aView::OnRButtonDown(UINT nFlags. CPoint point) 

m_pDl g- >OesfroyWi ndow( ): 
U nopr()blemif window was already destroyed 



S EVE N: The Modeless Dialog and Windows Common Dialogs 

For most window types except main frame windows, the Destroy
Window function does not destroy the C++ object. We want this behavior 
because we'll take care of the dialog object's destruction in the view 
destructor. 

14. Add the dialog header include statement to file ex07aView.cpp. 
While you're in ex07aView.cpp, add the following dialog header include 
statement after the view header include statement: 

/linclude "ex07aView.h" 
/linclude "ex07aDialog.h" 

15. Add your own message code for the WM_GOODBYE message. 
Because ClassWizard does not support user-defined messages, you must 
write the code yourself. This task makes you appreciate the work Class
Wizard does for the other messages. 

o In ex07a View.cpp, add the following line after the BEGIN_MES
SAGE_MAP statement but outside the AFYLMSG_MAPbrackets: 

ON_MESSAGECWM_GOODBYE. OnGoodbye) 

o Also in ex07aView.cpp, add the message handler function itself: 

LRESULT CEx07aView::OnGoodbye(WPARAM wParam. LPARAM lParam) 
{ 

} 

II message received in response to modeless dialog OK 
II and Cancel buttons 
TRACE("CEx07aView::OnGoodbye %x. %lx\n", wParam, lParam): 
TRACE("Dialog editl contents = %s\n". 

(const char*) m_pDlg->m_strEditl); 
m_pOlg-)OestroyWindow(); 
return 0L; 

o In ex07a View.h, add the following function prototype before the 
DECLARE_MESSAGE_MAP() statement but outside the AFLMSG 
brackets: 

afx_msg LRESULT OnGoodbye(WPARAM wParam. LPARAM lParam); 

159 



PAR T II: THE MFC LIBRARY VIEW CLASS 

With Win32, the wParam and lParam parameters are the usual means 
of passing message data. In a mouse button down message, for example, 
the mouse x and y coordinates are packed into the lParam value. With 
the MFC library, message data is passed in more meaningful parameters. 
The mouse position is passed as a CPoint object. User-defined messages 
must use wParam and lParam, so you can use these two variables however 
you want. In this example, we've put the button ID in wParam. 

16. Build and test the application. Build and run EX07A. Press the left 
mouse button, and then press the right button. (Be sure the mouse 
cursor is outside the dialog window when you press the right mouse but
ton.) Enter some data, and then click the dialog's OK button. Does the 
view's TRACE statement correctly list the edit control's contents? 

NOT E : If you use the EX07 A view and dialog classes in an MD I 
application, each MDI child window can have one modeless dia
log. When the user closes an MDI child window, the child's 
modeless dialog is destroyed because the view's destructor calls the 
dialog destructor, which, in turn, destroys the dialog window. 

The CFormView Class-
A Modeless Dialog Alternative 

If you need an application based on a single modeless dialog, the CFormView 
class will save you a lot of work. You'll have to wait until Chapter 15, however, 
because the CForm View class is most useful when coupled with the CDocument 
class, and we haven't progressed that far in our exploration of the application 
framework. 

The Windows Common Dialogs 

160 

Windows provides a group of standard user interface dialogs, and these are 
supported by the MFC library classes. You are probably familiar with all or most 
of these dialogs because so many Windows-based applications, including Vi
sual C++, alre~dy use them. All the common dialog classes are derived from 
a common base class, CCommonDialog. A list of the COMDLG32 classes is shown 
in the following table: 



5 EVE N: The Modeless Dialog and Windows Common Dialogs 

Class 

CColorDialog 

CFileDialog 

CFindReplaceDialog 

CPageSetupDialog 

CFontDialog 

CPrintDialog 

Purpose 

Allows the user to select or create a color 

Allows the user to open or save a file 

Allows the user to substitute one string for another 

Allows the user to input page measurement 
parameters 

Allows the user to select a font from a list of available 
fonts 

Allows the user to set up the printer and print a 
document 

Here's one characteristic that all common dialogs share: they gather in
formation from the user, but they don't do anything with it. The file dialog 
can help the user select a file to open, but it really just provides your program 
with the pathname-your program must make the call that opens the file. 
Similarly, a font dialog fills in a structure that describes a font, but it doesn't 
create the font. 

Using the CFileDia/og Class Directly 
U sing the CFileDialog class to open a file is easy. The following code opens a 
file that the user has selected through the dialog: 

CFil eOi a log dl 9 (TRUE. "bmp". "*. bmp") ; 
if (dlg.OoModal() == lOOK) ( 

CFile file; 
VERIFY(file.Open(dlg.GetPathName(). CFile: :modeRead»; 

The first constructor parameter (TRUE) specifies that this object is a "File 
Open" dialog instead of a "File Save" dialog. The default file extension is bmp, 
and *.bmp appears first in the filename edit box. The CFileDialog::GetPathName 
function returns a CString object that contains the full pathname of the se
lected file. 

Deriving from the Common Dialog Classes 
Most of the time, you can use the common dialog classes directly. If you de
rive your own classes, you can add functionality without duplicating code. Each 
COMDLG32 dialog works a little differently, however. The next example is 

161 



PAR T II: THE MFC LIBRARY VIEW CLASS 

specific to the file dialog, but it should give you some ideas for customizing 
the other common dialogs. 

NOT E : In the early editions of this book, the EX07B example 
dynamically created controls inside the standard file dialog. That 
technique doesn't work in Win32, but the new nested dialog method 
described here has the same effect. 

Nested Dialogs 
Win32 provides a way to "nest" one dialog inside another so that multiple 
dialogs appear as one seamless whole. You must first create a dialog resource 
template with a "hole" in it-typically a group box control-with the specific 
child window ID stc32 (=Ox045j). Your program sets some parameters that tell 
COMDLG32 to use your template. In addition, your program must hook into 
the COMDLG32 message loop so that it gets first crack at selected notifications. 
When you're done with all of this, you'll notice that you have created a dia
log window that is a child of the COMDLG32 dialog window, even though your 
template wraps COMDLG32's template. 

This sounds difficult, and it is unless you use MFC. With MFC, you build 
the dialog resource template as described above, derive a class from one of 
the common dialog base classes, add the class-specific connection code in 
OnlnitDialog, and then happily use ClassWizard to map the messages that 
originate from your template's new controls. 

NOT E : Windows NT 3.51 uses an earlier version of the common 
dialogs DLL that does not support the new Windows namespace fea
ture. The nested dialog technique illustrated in the EX07B example 
won't work with the Windows NT 3.51 version of the file dialog. 

A CFileDia/og Example-EX078 

162 

In this example, you will derive a class CEx07bDialog that adds a working De
lete All Matching Files button to the standard file dialog. It also changes the 
dialog's title and changes the Open button's caption to Delete (to delete a 
single file). The example illustrates how you can use nested dialogs to add new 
controls to standard common dialogs. The new file dialog is activated as in the 
previous examples-by pressing the left mouse button when the mouse cur
sor is in the view window. Because you should be gaining skill with Visual C++, 
the following steps won't be as detailed as those for the earlier examples. 
Figure 7-1 shows what the dialog looks like. 



S EVE N: The Modeless Dialog and Windows Common Dialogs 

Lookjn: B Debug 

C) ex07b. obi 
C) ex07bDoc.obi 
C) ex07bView.obi 
C) MainFrm.obi 
C) S pecFileD Ig. obi 
C) Stdll.fx.obi 

Files of type: t ... 

Figure 7-1. 

Delete All Matching Files 

The Delete File dialog in action. 

Follow these steps to build the EX07B application: 

1. Run AppWizard to produce \vcpp32\ex07b\ex07b. Select Single 
Document and deselect Printing And Print Preview; otherwise, accept 
the defaults. The options and the default class names are shown here: 

163 



PAR T II: THE MFC LIBRARY VIEW CLASS 

164 

2. Use the dialog editor to create a dialog resource. Make the dia
log box about 3-by-5 inches, and use the ID IDD_FlLESPECIAL. Set the 
dialog's Style property to Child, its Border property to None, and select 
its Clip Siblings and Visible properties. Create the template with a but
ton with ID IDC_DELETEand a group box with ID stc32=Ox045f, as 
shown here: 

Check your work by choosing Resource Symbols from the Developer 
Studio View menu. You should see a symbol list like the one shown here: 

DD_ABOUTBOX 
DD_FllESPECIAl 130 
DR_EX07BTYPE 129 
DR_MAINFRAME 120 



S EVE N: The Modeless Dialog and Windows Common Dialogs 

3. Use ClassWizard to create the CSpecia/FileDia/og class. Fill in 
the New Class dialog, as shown here: 

Name: I cs pecialFileD ialog 

Filename: 

£,honge .. o I 
Rase class: I ~Diabg 8 
QialoglD: IIDDJIL?~.~E~I~L. . ........ 8 

Automa\ion-""""'---""--:---:--"'--~-,-:-----'-' 

r. N.Qne 

r· e,utometion 

(", . Cleateable by type 10: ~1b"SP~~~:-: 

Cancel 

Click the Change button, and change the names to SpecFileDlg.h 
and SpecFileDlg.cpp. Unfortunately, we cannot use the Base Class drop
down list to change the base class to CFileDialog, as that would decouple 
our class from the IDD_FlLESPECIAL template. We have to change the 
base class by hand. 

4. Edit the file SpecFileDlg.h. Change the line 

class CSpecialFileDialog : public CDialog 

to 

class CSpecialFileDialog : public CFileDialog 

Add the following two public data members: 

CString m_strFilename; 
BOOL m_bDeleteAll; 

Finally, edit the constructor declaration: 

CSpecialFileDialog(BOOL bOpenFileDialog. 
LPCTSTR lpszDefExt = NULL, 
LPCTSTR lpszFileName = NULL, 
DWORD dwFlags = OFN_HIDEREADONLY I OFN_OVERWRITEPROMPT, 
LPCTSTR lpszFilter = NULL, 
CWnd* pParentWnd = NULL); 

165 



PAR T II: THE MFC LIBRARY VIEW CLASS 

166 

5. Replace CDialog with CFileDialog in SpecFileDlg.h. Choose Re
place from Developer Studio's Edit menu, and replace this name globally. 

6. Edit the CSpecialFileDialog constructor in SpecFileDlg.cpp. The 
derived class destructor must invoke the base class constructor and ini
tialize the m_bDeleteAll data member. In addition, it must set some mem
bers of the CFileDialog base class data member m_ofn, which is an instance 
of the Win32 OPENFlLENAME structure. The Flags and IpTemplateName 
members control the coupling to your IDD_FlLESPECIAL template, and 
the IpstrTitle member changes the main dialog box title. Edit the con
structor as follows: 

CSpecialFileDialog::CSpecialFileDialogCBOOL bOpenFileDialog. 
LPCTSTR lpszDefExt. LPCTSTR lpszFileName. DWORD dwFlags •. 
LPCTSTR lpszFilter. CWnd* pParentWnd) 

CFileDialogCbOpenFileDialog. lpszDefExt. lpszFileName • 
. dwFlags. 1pszFilter. pParentWnd) 

11{{AFX_DATA_INITCCSpecialFileDialog) 
II NOTE: the ClassWizard will add member initialization here 

I/}} AFX_DATA_I N IT 
m_ofn.Flags 1= OFN_ENABLETEMPLATE: 
m_ofn.lpTempl ateName= MAKEINTRESOURCECIOD_FILESPECIAL): 
m_ofn.lpstrTitle = "Delete File": 
m_bDeleteAll = FALSE: 

7. Map the WM_INITDIALOG message in the CSpecialDialog class. 
The OnlnitDialog member function needs to change the common 
dialog's Open button caption to Delete. The child window ID is IDOK. 

~OOL bR~t =CFileDialog::OnlnitDialog(): 
~f (bRet == TRUE) { 

GetParent()-)GetDlgItem(IDOK)-)SetWindowTextC"Delete"): 
} 

return bRet: 

8. Map the new IDe_DELETE button (Delete All Matching Files) in 
the CSpecialDialog class. The OnDelete member function sets the 
m_bDeleteAll flag and then forces the main dialog to exit as if the Cancel 
button had been clicked. The client program (in this case, the view) gets 
the IDCANCEL return from DoModal and reads the flag to see whether it 
should delete all files. Here is the function: 



S EVE N: The Modeless Dialog and Windows Common Dialogs 

void CSpecialFileDialog::OnDelete() 
( 

m_bDeleteAll = TRUE: 
II 0x480 is the child window ID of the File Name edit control 
II (as determined by SPYXX) 
GetParent()->GetDlgltem(0x480)->GetWindowText(m_strFilename): 
GetParent()->SendMessage(WM_COMMAND, IDCANCEL): 

9. Add code to the virtual OnDrawfunction in file ex07bView.cpp. 
The CEx07b View OnDraw function (whose skeleton was generated by 
AppWizard) should be coded as follows to prompt the user to press the 
mouse button: 

void CEx07bView::OnDraw(CDC* pDC) 
( 

pDC->TextOut(0, 0, "Press the left mouse button here."); 

10. Add the OnLButtonDown message handler to the CEx07bView 
class. Use ClassWizard to create the message handler for WM_LBUT
TONDOWN, and then edit the code as follows: 

void CEx07bView::OnLButtonDown(UINT nFlags, CPoint pOint) 
( 

CSpecialFileDialog dlgFile(TRUE, NULL, "*.obj"): 
CString strMessage; 
int nModal = dlgFile.DoModal(); 
if «nModal == rDCANCEL) && (dlgFile.m_bDeleteAll» 

strMessage.Format( 
"Are you sure you want to delete all %s files?", 
dlgFile.m_strFilename); 

if (AfxMessageBox(strMessage, MB_YESNO) == IDYES) ( 
HANDLE h; 
WIN32_FIND_DATA fData; 
while«h = ::FindFirstFile(dlgFile.m_strFilename, &fData» 

!= (HANDLE) 0xFFFFFFFF) ( II no MFC equivalent 

} 

if (::DeleteFile(fData.cFileName) == FALSE) ( 
strMessage.Format("Unable to delete file %s\n", 

fData.cFileName); 
AfxMessageBox(strMessage); 
break; 

} 

(continued) 

167 



PAR T II: THE MFC LIBRARY VIEW CLASS 

else if (nModal == lDOK) { 
CString strSingleFilename = dlgFile.GetPathName(): 
strMessage.Format( 

"Are you sure you want to delete Is?", strSingleFilename); 
if (AfxMessageBox(strMessage, MB_YESNO) == lOVES) { 

CFile: :Remove(strSingleFilename); 
} 

Remember that common dialogs just gather data. Since the view is 
the client of the dialog, the view must call DoModal for the file dialog 
object and then figure out what to do with the information returned. 
In this case, the view has the return value from DoModal (either IDOK 
or IDCANCEL) and the value of the public m_bDeleteAll data member, 
and it can call various CFileDialogmember functions such as GetPath
Name. If DoModal returns IDCA.NCEL and the flag is TRUE, the function 
makes the Win32 file system calls necessary to delete all the matching 
files. If DoModal returns IDOK, the function can use the MFC CFile func
tions to delete an individual file. 

Using the global AfxMessageBox function is a convenient way to pop 
up a simple dialog that displays some text and that queries the user for a 
Yes/No answer. The Microsoft Foundation Class Reference describes all the 
message box variations and options. 

Of course, you'll need to include the statement 

ifi ncl ude "SpecFi 1 eDl g. h" 

after the line 

/finclude "ex07bView.h" 

11. Build and test the application. Build and run EX07B. Pressing the 
left mouse button should bring up the Delete File dialog, and you 
should be able to use it to navigate through the disk directory and to 
delete files. Be careful not to delete your important source files! 

Other Customization for CFileDialog 

168 

In the EX07B example, you added a pushbutton to the dialog. It's easy to add 
other controls too. Just put them in the resource template, and, if they are 
standard Windows controls such as edit controls or list boxes, you can use 
ClassWizard to add data members and DDX/DDV code to your derived class. 



S EVE N: The Modeless Dialog and Windows Common Dialogs 

The client program can set the data members before calling DoModal, and it 
can retrieve the updated values after DoModal returns. 

NOT E: Even if you don't use nested dialogs, two windows are still 
associated with a CFileDialog object. Suppose you have overridden 
OnlnitDialogin a derived class and you want to assign an icon to the 
file dialog. You must call CWnd::GetParent to get the top-level win
dow,just as you did in the EX07B example. Here's the code: 

HICON hlcon = AfxGetApp()->Loadlcon(ID_MYICON); 
GetParent()->Setlcon(hlcon. TRUE); II Set big icon 
GetParent()->Setlcon(hlcon. FALSE); II Set small icon 

169 





C HAP T E R E I G H T 

Using ActiveX Controls 

Microsoft Visual Basic (VB) was introduced in 1991 and has proven to be a 
popular and successful application development system for Microsoft Windows. 
Part of its success is attributable to its open-ended nature. The 16-bit versions 
of VB (versions 1 through 3) supported Visual Basic controls (VBXs) , ready-to
run software components that VB developers could buy or write themselves. 
VBXs became the center of a whole industry, and pretty soon there were 
hundreds of them. At Microsoft, the Microsoft Foundation Class (MFC) team 
figured out a way for Visual C++ programmers to use VBXs in their programs, too. 

The VBX standard, which was highly dependent on the 16-bit segment 
architecture, did not make it to the 32-bit world. Now ActiveX Controls (formerly 
known as OLE controls, or OCXs) are the industrial-strength replacement for 
VBXs based on Microsoft COM technology. ActiveX controls can be used by 
application developers in both VB and Visual C++ 5.0. While VBXs were writ
ten mostly in plain C, ActiveX controls can be written in C++ with the help of 
the MFC library or with the help of the ActiveX Template Library (ATL). 

This chapter is not about writing ActiveX controls; it's about using them 
in an application. The premise here is that you can learn to use ActiveX con
trols without knowing much about the Component Object Model (COM) on 
which they're based. Mter all, Microsoft doesn't require that VB programmers 
be COM experts. To effectively write ActiveX controls, however, you need to 
know a bit more, starting with the fundamentals of COM. Consider picking 
up a copy of Adam Denning's ActiveX Controls Inside Out (Microsoft Press, 1997) 
if you're serious about creating ActiveX controls. Of course, knowing more 
ActiveX Controls theory won't hurt when you're using the controls in your 
programs. Chapters 23 and 24 of this book are a good place to start. 

171 



PAR T II: THE MFC LIBRARY VIEW CLASS 

ActiveX Controls vs. Ordinary Windows Controls 
An ActiveX control is a software module that plugs into your C++ program the 
same way a Windows control does. At least that's the way it seems at first. It's 
worthwhile here to analyze the similarities and differences between ActiveX 
controls and the controls you already know. 

Ordinary Controls-A Frame of Reference 
In Chapter 6, you used ordinary Windows controls such as the edit control and 
the list box, and you saw the Windows common controls that work in much 
the same way. These controls are all child windows that you use most often in 
dialogs, and they are represented by MFC classes such as CEdit and CTreeCtrl. 
The client program is always responsible for the creation of the control's child 
window. 

Ordinary controls send notification command messages (standard Win
dows messages), such as BN_CLICKED, to the dialog. If you want to perform 
an action on the control, you call a C++ control class member function, which 
sends a Windows message to the control. The controls are all windows in their 
own right. All the MFC control classes are derived from CWnd, so if you want 
to get the text from an edit control, you call CWnd::GetWindowText. But even 
that function works by sending a message to the control. 

Windows controls are an integral part of Windows, even though the 
Windows common controls are in a separate DLL. Another species of ordinary 
control, the so-called custom control, is a programmer-created control that 
acts as an ordinary control in that it sends WM_COMMAND notifications to 
its parent window and receives user-defined messages. You'll see one of these 
in Chapter 21. 

How ActiveX Controls Are Similar to Ordinary Controls 

172 

You can consider an ActiveX control to be a child window, just as an ordinary 
control is. If you want to include an ActiveX control in a dialog, you use the 
dialog editor to place it there, and the identifier for the control turns up in 
the resource template. If you're creating an ActiveX control on the fly, you 
call a Create member function for a class that represents the control, usually 
in the WM_CREATE handler for the parent window. When you want to manipu
late an ActiveX control, you call a C++ member function, just as you do for a 
Windows control. The window that contains a control is called a container. 



E I G H T: Using ActiveX Controls 

How ActiveX Controls Are Different from 
Ordinary Controls-Properties and Methods 

The most prominent ActiveX Controls features are properties and methods. 
Those C++ member functions that you call to manipulate a control instance 
all revolve around properties and methods. Properties have symbolic names 
that are matched to integer indexes. For each property, the control designer 
assigns a property name, such as BackColor or GridCellEffect, and a property 
type, such as string, integer, or double. There's even a picture type for bitmaps 
and icons. The client program can set an individual ActiveX control property 
by specifying the property's integer index and its value. The client can get a 
property by specifying the index and accepting the appropriate return value. 
In certain cases, ClassWizard lets you define data members in your client win
dow class that are associated with the properties of the controls the client class 
contains. The generated Dialog Data Exchange (DDX) code exchanges data 
between the control properties and the client class data members. 

ActiveX Controls methods are like functions. A method has a symbolic 
name, a set of parameters, and a return value. You call a method by calling a 
C++ member function of the class that represents the control. A control de
signer can define any needed methods, such as PreviousYear, LowerControl
Rods, and so forth. 

An ActiveX control doesn't send WM_ notification messages to its con
tainer the way ordinary controls do; instead, it "fires events." An event has a 
symbolic name and can have an arbitrary sequence of parameters-it's really 
a container function that the control calls. Like ordinary control notification 
messages, events don't return a value to the ActiveX control. Examples of 
events are Click, KeyDown, and NewMonth. Events are mapped in your client 
class just as control notification messages are. 

In the MFC world, ActiveX controls act just like child windows, but there's 
a significant layer of code between the container window and the control 
window. In fact, the control might not even have a window. When you call 
Create, the control's window isn't created directly; instead, the control code 
is loaded and given the command for "in-place activation." The ActiveX con
trol then creates its own window, which MFC lets you access through a CWnd 
pointer. It's not a good idea for the client to use the control's h Wnd directly, 
however. 

173 



PAR T II: THE MFC LIBRARY VIEW CLASS 

A DLL is used to store one or more ActiveX controls, but the DLL often 
has an OCX filename extension instead ofa DLL extension. Your container 
program loads the DLLs when it needs them, using sophisticated COM tech
niques that rely on the Windows Registry. For the time being, simply accept 
the fact that once you specify an ActiveX control at design time, it will be 
loaded for you at runtime. Obviously, when you ship a program that requires 
special ActiveX controls, you'll have to include the OCX files and an appro
priate setup program. 

Installing ActiveX Controls 

174 

Let's assume you've found a nifty ActiveX control that you want to use in your 
project. Your first step is to copy the control's DLL to your hard disk. You could 
put it anywhere, but it's easier to track your ActiveX controls if you put them 
in one place, such as in the system directory (typically\Windows\System for 
Microsoft Windows 95 or\Winnt\System32 for Microsoft Windows NT). Copy 
associated files such as help (HLP) or license (LIC) files to the same directory. 

Your next step is to register the control in the Windows Registry. Actu
ally, the ActiveX control registers itself when a client program calls a special 
exported function. The Windows utility Regsvr32 is a client that accepts the 
control name on the command line. Regsvr32 is suitable for installation scripts, 
but another program, RegComp, in the project REGCOMP on the compan
ion CD-ROM for this book, lets you find your control by browsing the disk. 
Some controls have licensing requirements, which might involve extra entries 
to the Registry. (See Chapters 14, 16, 23, and 24 for information about how 
the Windows Registry works.) Licensed controls usually come with setup pro
grams that take care of those details. 

Mter you register your ActiveX control, you must install it in each project 
that uses it. That doesn't mean that the OCX file gets copied. It means that 
ClassWizard generates a copy ofa C++ class that's specific to the control, and 
it means that the control shows up in the dialog editor control palette for that 
project. 

To install an ActiveX control in a project, choose Add To Project from 
the Project menu and then choose Components And Controls. Select Regis
tered ActiveX Controls, as shown in the following illustration: 



E I G H T: Using ActiveX Controls 

Choose a component to in~ert into your project; 

I§G,all:rl' 

'I :", , ... 

,Close 

Mor~infO 

I""'" , 
i i Path to controt 

This gets you the list of all the ActiveX controls currently registered on your 
system. A typical list is shown here: 

Choose a comportel1t to insert into your project 

Look in: I ,~.,Re?ister~d~ctiv~Controls 
, Grid Control 
~ M arqueeCti 0 biect: 
~ I Microsoft Animation Control. V; 
~Microsoft Common Dialog Cor' 
~ Microsoft Communications Co! 
~ Microsoft D BCombo Control, \' 

The Calendar Control 
The MSCal.ocx control is a popular Microsoft ActiveX Calendar control that's 
probably already installed and registered on your computer. Ifit isn't there, 
don't worry. It's on the CD-ROM that comes with this book. 

175 



PAR T II: THE MFC LIBRARY VIEW CLASS 

176 

Figure 8-1 shows the Calendar control inside a modal dialog. 

! 

Sun tdon Tue Wed Thu Fri Sat 
26 27 28 29 30 31 1 

2 3 4 5 6 7 8 

9 10 fl1;·.·.·.····· ;12 13 14 15 

16 17 18 19 20 21 22 

23 24 25 26 27 28 29 

30 1 2 3 4 5 6 

Figure 8-1. 
The Calendar control in use. 

The Calendar control comes with a help file that lists the control's prop
erties, methods, and events shown here: 

Properties Methods Events 

BackColor AboutBox AfterUpdate 

Day NextDay Before Update 

DayFont NextMonth Click 

DayFontColor NextWeek DblClick 

DayLength NextYear KeyDown 

FirstDay PreviousDay KeyPress 

GridCellEffect PreviousMonth KeyUp 

GridFont PreviousWeek NewMonth 

GridF on tColor PreviousYear New Year 

GridLinesColor Refresh 

Month Today 

MonthLength 



Properties 

ShowDateSelectors 

ShowDays 

ShowHorizontalGrid 

ShowTitle 

ShowVerticalGrid 

TitleFont 

TitleFontColor 

Value 

ValueIsNull 

Year 

E I G H T: Using ActiveX Controls 

You'll be using the BackColor, Day, Month, Year, and Value properties. 
BackColor is an unsigned long, but it is used as an OLE_COLOR, which is 
almost the same as a COLORREF. Day, Month, and Year are short integers. 
Value's type is the special type VARIANT, which is described in Chapter 24. 
It holds the entire date as a 64-bit value. 

Each of the properties, methods, and events listed above has a corre
sponding integer identifier. Information about the names, types, parameter 
sequences, and integer IDs is stored inside the control and is accessible to 
ClassWizard at container design time. 

ActiveX Control Container Programming 
MFC and ClassWizard support ActiveX controls both in dialogs and as "child 
windows." To use ActiveX controls, you must understand how a control grants 
access to properties, and you must understand the interactions between your 
DDX code and those property values. 

Property Access 
The ActiveX control developer designates certain properties for access at 
design time. Those properties are specified in the property pages that the 
control displays in the dialog editor when you right-click on a control and 
choose Properties. The Calendar control's main property page looks like the 
one shown on the following page. 

177 



PAR T II: THE MFC LIBRARY VIEW CLASS 

When you click on the All tab, you see a list of all the design-time-accessible 
properties, which might include a few properties not found on the Control 
tab. The Calendar control's All page looks like this: 

All the control's properties, including the design-time properties, are accessible 
at runtime. Some properties, however, might be designated as read-only. 

ClassWizard's C++ Wrapper Classes for ActiveX Controls 

178 

When you insert an ActiveX control into a project, ClassWizard generates a 
C++ wrapper class, derived from CWnd, that is tailored to your control's meth
ods and properties. The class has member functions for all properties and 



E I G H T: Using ActiveX Controls 

methods, and it has constructors that you can use to dynamically create an 
instance of the control. (ClassWizard also generates wrapper classes for any 
objects used by the control.) Following are a few typical member functions 
from the file Calendar.cpp that ClassWizard generates for the Calendar control: 

unsigned long CCalendar::GetBackColor() 
{ 

unsigned long result; 
InvokeHelper(DISPID_BACKCOLOR, DISPATCH_PROPERTYGET, 

VT_I4, (void*)&result, NULL); 
return result; 

void CCalendar::SetBackColor(unsigned long newValue) 

static BYTE parms[] = 
VTS_I4; 

InvokeHelper(DISPID_BACKCOLOR, DISPATCH_PROPERTYPUT, 
VT_EMPTY, NULL, parms, newValue); 

short CCalendar::GetDay() 
{ 

short result; 
InvokeHelper(0xll, DISPATCH_PROPERTYGET, VT_I2, 

(void*)&result, NULL); 
return result; 

void CCalendar::SetDay(short nNewValue) 

static BYTE parms[] = 
VTS_I2; 

InvokeHelper(0xll, DISPATCH_PROPERTYPUT, VT_EMPTY, 
NULL, parms, nNewValue); 

COleFont CCalendar: :GetDayFont() 
{ 

LPDISPATCH pDispatch; 
InvokeHelper(0xl, DISPATCH_PROPERTYGET, VT_DISPATCH, 

(void*)&pDispatch, NULL); 
return COleFont(pDispatch); 

(continued) 

179 



PAR T II: THE MFC LIBRARY VIEW CLASS 

180 

void CCalendar::SetDayFont(LPDISPATCH newValue) 
{ 

static BYTE parms[] = 
VTS_DISPATCH: 

InvokeHelper(0xl, DISPATCH_PROPERTYPUT, VT_EMPTY, 
NULL, parms, newValue): 

VARIANT CCalendar::GetValue() 
{ 

VARIANT result; 
InvokeHelper(0xc, DISPATCH_PROPERTYGET, VT_VARIANT, 

(void*)&result, NULL): 
return result: 

void CCalendar::SetValue(const VARIANT& newValue) 
{ 

static BYTE parms[] = 
VTS_VARIANT: 

InvokeHelper(0xc, DISPATCH_PROPERTYPUT, VT_EMPTY, 
NULL, parms, &newValue): 

void CCalendar::NextDay() 
{ 

InvokeHelper(0x16, DISPATCH_METHOD, VT_EMPTY, NULL, NULL); 

void CCalendar::NextMonth() 

InvokeHelper(0x17, DISPATCH_METHOD, VT_EMPTY, NULL, NULL); 

You don't have to concern yourself too much with the code inside these 
functions, but you can match up the first parameter of each InvokeHelper func
tion with the dispatch ID for the corresponding property or method in the 
Calendar control property list. As you can see, properties always have separate 
Set and Get functions. To call a method, you simply call the corresponding func
tion. For example, to call the NextDay method from a dialog class function, you 
write code such as this: 

m_calendar.NextDay(): 

In this case, m_calendar is an object of class CCalendar, the wrapper class for 
the Calendar control. 



E I G H T: Using ActiveX Controls 

AppWizard Support for ActiveX Controls 
When the AppWizard ActiveX Controls option is checked (the default), 
App Wizard inserts the following line in your application class InitInstance 
member function: 

AfxEnableControlContainer(); 

It also inserts the following line in the project's StdAfx.h file: 

#include <afxdisp.h> 

If you decide to add ActiveX controls to an existing project that doesn't 
include the two lines above, you can simply add the lines. 

ClassWizard and the Container Dialog 
Once you've used the dialog editor to generate a dialog template, you already 
know that you can use ClassWizard to generate a C++ class for the dialog win
dow. If your template contains one or more ActiveX controls, you can use 
ClassWizard to add data members and event handler functions. 

Dialog Class Data Members vs. Wrapper Class Usage 
What kind of data members can you add to the dialog for an ActiveX control? 
If you want to set a control property before you call DoModal for the dialog, 
you can add a dialog data member for that property. If you want to change 
properties inside the dialog membe~ functions, you must take another ap
proach: you add a data member that is an object of the wrapper class for the 
ActiveX control. 

Now is a good time to review the MFC DDX logic. Look back at the Cin
cinnati dialog in Chapter 6. The CDialog::OnlnitDialog function calls CWnd::Up
dateData(FALSE) to read the dialog class data members, and the CDialog::OnOK 
function calls UpdateData(TRUE) to write the members. Suppose you added 
a data member for each ActiveX control property and you needed to get the 
Value property value in a button handler. If you called UpdateData(FALSE) in 
the button handler, it would read all the property values from all the dialog's 
controls-clearly a waste of time. It's more effective to avoid using a data 
member and to call the wrapper class Get function instead. To call that func
tion, you must first tell ClassWizard to add a wrapper class object data member. 

Suppose you have a Calendar wrapper class CCalendar and you have an 
m_calendar data member in your dialog class. If you want to get the Value 
property, you do it like this: 

COleVariant var = m_calendar.GetValue(); 

181 



PAR T II: THE MFC LIBRARY VIEW CLASS 

182 

NOT E : The VARlANT type and COle Variant class are described 
in Chapter 24. 

Now consider another case: you want to set the day to the 5th of the 
month before the control is displayed. To do this by hand, add a dialog class 
data member m_sCalDay that corresponds to the control's short integer Day 
property. Then add the following line to the DoDataExchange function: 

DDX_OCShortCpDX. ID_CALENDAR1. 0xll. m_sCalDay); 

The third parameter is the Day property's integer index l(its DispID), which 
you can find in the GetDay and SetDayfunctions generate4 by ClassWizard for 
the control. Here's how you construct and display the dialog: 

CMyDialog dlg; 
dlg.m_sCalDay = 5; 
dlg.DoModalC); 

The DDX code takes care of setting the property value from the data mem
ber before the control is displayed. No other programming is needed. As you 
would expect, the DDX code sets the data member from the property value 
when the user clicks the OK button. 

f\J 0 T E : ClassWizard should be able to add a data member like 
m_sCalDay and generate the appropriate DDX code for it. But due 
to a bug in version 5.0 of Visual C++, ClassWizard does not correctly 
detect the properties of many recent controls, including the Calen
dar control. Until this bug is fixed, you'll have to insert the code 
yourself. 

NOT E : Even when ClassWizard correctly detects a control's prop
erties, it can't always generate data members for all of them. In 
particular, no DDX functions exist for VARlANT properties like the 
Calendar's Value property. You'll have to use the wrapper class for 
these properties. 

Mapping ActiveX Control Events 
ClassWizard lets you map ActiveX control events the same way you map Win
dows messages and command messages from controls. If a dialog class contains 
one or more ActiveX controls, ClassWizard adds and maintains an event sink 
map that connects mapped events to their handler functions. It works some-



E I G H T: Using ActiveX Controls 

thing like a message map. You can see the code in Figure 8-2 beginning on 
page 187. 

NOT E: ActiveX controls have the annoying habit of firing events 
before your program is ready for them. If your event handler uses 
windows or pointers to C++ objects, it should verify the validity of 
those entities prior to using them. 

Locking ActiveX Controls in Memory 
Normally, an ActiveX control remains mapped in your process as long as its 
parent dialog is active. That means it must be reloaded each time the user 
opens a modal dialog. The reloads are usually quicker than the initial load 
because of disk caching, but you can lock the control into memory for better 
performance. To do so, add the following line in the overridden OnlnitDialog 
function after the base class call: 

AfxOleLockControl(m_calendar.GetClsid(»; 

The ActiveX control remains mapped until your program exits or until you 
call the AfxOleUnlockControl function. 

The EX08A Example-
An ActiveX Control Dialog Container 

Now it's time to build an application that uses a Calendar control in a dialog. 
Here are the steps to create the EX08A example: 

1. Verify that the Calendar control is registered. If the control does 
not appear in the Developer Studio Gallery's Registered ActiveX Con
trols page, copy the files MSCal.ocx, MSCal.hlp, and MSCal.cnt to your 
system directory and register the control by running the REGCOMP 
program. 

2. Run AppWizard to produce \vcpp32\ex08a\ex08a. Accept most of 
the default settings, but select Single Document and deselect Printing 
And Print Preview. In the AppWizard Step 3 dialog, make sure the 
ActiveX Controls option is selected, as shown on the following page. 

183 



PAR T II: THE MFC LIBRARY VIEW CLASS 

184 

3. Install the Calendar control in the EX08A project. Choose Add To 
Project from Developer Studio's Project menu, and then choose Com
ponents And Controls. Choose Registered ActiveX Controls, and then 
choose Calendar Control S.O. ClassWizard generates two classes in the 
EXOSA directory, as shown here: 

4. Edit the Calendar control class to handle help messages. Add to 
Calendar.cpp the following message map code: 



E I G H T: Using ActiveX Controls 

BEGIN_MESSAGE_MAP(CCalendar. CWnd) 
ON_WM_HElPINFO() 

END_MESSAGE_MAP() 

In the same file, add the OnHelplnfo function: 

BOOl CCalendar::OnHelpInfo(HElPINFO* pHelpInfo) 
{ 

II Edit the following string for your system 
::WinHelp(GetSafeHwnd(). "c:\\winnt\\system32\\mscal.hlp". 

HELP_FINDER. 0); 
return FALSE; 

Then, in Calendar.h, add the function prototype and declare the mes
sage map: 

protected: 
afx_msg BOOl OnHelpInfo(HElPINFO* pHelpInfo); 
DEClARE_MESSAGE_MAP() 

The OnHelplnfo function is called if the user presses the Fl key when 
the Calendar control has the input focus. We have to add the message 
map code by hand because ClassWizard doesn't modify generated 
ActiveX classes. 

NOT E : The ON_ WM_HELPINFO macro maps the WM_HELP 
message, which is new to Microsoft Windows 95 and Microsoft Win
dows NT 4.0. You can use ON_ WM_HELPINFO in any view or dia
log class and then code the handler to activate any help system. 
Chapter 20 describes the MFC context-sensitive help system, which 
predates the WM_HELP message. 

5. Use the dialog editor to create a new dialog resource. Choose 
Resource from Developer Studio's Insert menu, and then choose Dia
log. The dialog editor assigns the ID IDD_DIALOCJ to the new dialog. 
Next change the ID to IDD_ACTIVEXDIALOC, change the dialog cap
tion to ActiveXDialog, and set the dialog's Context Help property (on 
the More Styles page). Accept the default OK and Cancel buttons with 
the IDs IDOK and IDCANCEL, and then add the other controls as shown 
in Figure 8-1. Make the Select Date button the default button. Drag the 
Calendar control from the control palette. Then set an appropriate tab 
order. Assign control IDs as shown in the table on the following page. 

185 



PAR T II: THE MFC LIBRARY VIEW CLASS 

186 

Control 

Calendar control 

Select Date button 

Edit control 

Edit control 

Edit control 

Next Week button 

10 

IDC_CALENDAR] 

IDC_SELECTDATE 

IDC_DAY 

IDC_MONTH 

IDC_YEAR 

IDC_NEXTWEEK 

6. Use ClassWizard to create the CActiveXDialog class. If you run 
ClassWizard directly from the dialog editor window, it will know that 
you want to create a CDialog-derived class based on the IDD_ACTIVEX
DIALOG template. Simply accept the default options, and name the class 
CActiveXDialog. 

Click on the ClassWizard Message Maps tab, and then add the message 
handler functions shown in the table below. To add a message handler 
function, click on an object ID, click on a message, and click the Add 
Function button. If the Add Member Function dialog box appears, type 
the function name and click the OK button. 

Object 10 Message Member Function 

CActiveXDialog WM_INITDIALOG OnlnitDialog (virtual 
function) 

IDC_CALENDAR] NewMonth (event) OnNewMonthCalendar] 

IDC_SELECTDATE BN_CLICKED OnSelectDate 

IDC_NEXTWEEK BN_CLICKED OnNextWeek 

IDOK BN_CLICKED OnOK (virtual function) 

7. Use ClassWizard to add data members to the CActiveXDialog 
class. Click on the Member Variables tab, and then add the data 
members as shown on the facing page. 

NOT E: You might think that the ClassWizard ActiveX Events tab 
is for mapping ActiveX control events in a container. That's not 
true: it's for ActiveX control developers who are defining events for 
a control. 



E I G H T: Using ActiveX Controls 

~CliinJ1EW~~~ ;;;'p; ',~.,;;, .. ,;, .. § • :~~::::r:±lEl 

ir.!,Mes:ag~~.ia~ [~~~~!2~~~I~~]~utomTtiorl J A~tr~~~T~n\LL9~g: I.~~ I :.':. ....; •. :, 
i:;'l:roiect ., Class name:, .. • ': 'Add'CJa~,,:'; 1 
:.::/ex08a :::l ICAcliveXDlalog a .' " I 
: C\..\e~a\ActiveXDjalogh.C:\~.\exOOalActiv~j~~~p •• e,ddVariable .... 

: Con/roIjOs: Type Membet:.Q.elet~Va;iabl'; I 
I~C_DAY • • • short m_sDay Update .cofl.lmns I 
IDC MONTH short m_sMonth 
IDC=NEXTWEEK . fl.indAIl 

:' IDC_SELECTDATE 

I: igfu~~1~ short 

",/ IDOK 

!. 0 e~Cliption: 

8. Edit the CActiveXDialog class. Add the m_varValue and m_BackColor 
data members, and then edit the code for the five handler functions 
OninitDialog, OnNewMonthCalendar 1, OnSelectDate, OnNextWeek, and 
OnOK. Figure 8-2 shows all the code for the dialog class, with new code 
shaded. 

ACTIVEXDIALOG.H 

//{{AFX_INCLUDES() 
flinclude "calendar.h" 
/ /} } AFX_I NC LUDES 
flif !defined(AFX_ACTIVEXDIALOG_H __ 1917789D_6F24_ -. 

11D0_8FD9_00C04FC2A0C2 __ INCLUDED_) 
fldefine AFX_ACTIVEXDIALOG_H __ 1917789D_6F24_ 

11D0_8FD9_00C04FC2A0C2 __ INCLUDED_ 

flif _MSC_VER >= 1000 
flpragma once 
flendif // _MSC_VER >= 1000 

// ActiveXDialog.h : header file 
II 

/////////////////////////////////////////////////////////////////////// 

// CActiveXDialog dialog 

class CActiveXDialog : public CDialog 
{ 

Figure 8-2. 
Code for the CActiveXDialog class. 

(continued) 

187 



PAR T II: THE MFC LIBRARY VIEW CLASS 

188 

Figure 8-2. continued 

II Construction 
public: 

CActiveXDialog(CWnd* pParent NULL); II standard constructor 

II Dialog Data 
11{{AFX_DATA(CActiveXDialog) 
enum { IDD = IDD_ACTIVEXDIALOG }; 
CCalendar m_calendar; 
short m_sDay; 
short m_sMonth; 
short m_sYear; 
I/} }AFX_DATA 
COleVariant m_varValue; 
unsigned long m_BackColor;, 

II Overrides 
II ClassWizard generated virtual function overrides 
11{{AFX_VIRTUAL(CActiveXDialog) 
protected: 
virtual void DoDataExchange(CDataExchange* pDX); II DDX/DDV support 
I/} }AFX_V I RTUAL 

II Implementation 
protected: 

} ; 

II Generated message map functions 
11{{AFX_MSG(CActiveXDialog) 
virtual BOOL OnInitDialog(); 
afx_msg void OnNewMonthCalendarl(); 
afx_msg void OnSelectDate(); 
afx_msg void OnNextWeek(); 
vi rtua 1 voi d OnOK(); 
DECLARE_EVENTSINK_MAP() 
I/} }AFX_MSG 
DECLARE_MESSAGE_MAP() 

II{{AFX_INSERT_LOCATION}} 
II Microsoft Developer Studio will insert additional 
II declarations immediately before the previous line. 

#endif II !defined(AFX_ACTIVEXDIALOG_H __ 1917789D_6F24_ 
IlD0_8FD9_00C04FC2A0C2 __ INCLUDED_) 

(continued) 



E I G H T: Using ActiveX Controls 

Figure 8-2. continued 

ACTIVEXDIALOG.CPP 

// ActiveXDialog.cpp : implementation file 
II 

4Finclude "stdafx.h" 
4Finclude "ex0Sa.h" 
4Finclude "ActiveXDialog.h" 

4Fifdef _DEBUG 
4Fdefine new DEBUG_NEW 
4Fundef THIS_FILE 
static char THIS_FILE[] = __ FILE __ ; 
4Fendif 

/////////////////////////////////////////////////////////////////////// 

// CActiveXDialog dialog 

CActiveXDialog::CActiveXDialog(CWnd* pParent /*=NULL*/) 
: CDialog(CActiveXDialog::IDD. pParent) 

//{{AFX_DATA_INIT(CActiveXDialog) 
m_sDay = 0; 
m_sMonth = 0; 
m_sYear = 0; 
//JJAFX_DATA_INIT 
m_BackColor =0xS000000F;, 

void CActiveXDialog::DoDataExchange(CDataExchange* pDX) 
{ 

CDialog::DoDataExchange(pDX); 
//{{AFX_DATA_MAP(CActiveXDialog) 
DDX_Control(pDX. IDC_CALENDARl. m_calendar); 
DDX_Text(pDX. IDC_DAY. m_sDay); 
DDX_Text(pDX. IDC_MONTH. m_sMonth); 
DDX_Text(pDX. IDC_YEAR. m_sYear); 
/ /} JAFX_DATA_MAP 
DDX,...OC,Co J or(pDX.I PC....,CALENDARl,PI,S~JP_BACKCOLOR.,m....,BackColor) ; 

BEGIN_MESSAGE_MAP(CActiveXDialog. CDialog) 
//{{AFX_MSG_MAP(CActiveXDialog) 

(continued) 

189 



PA R T II: THE MFC LIBRARY VIEW CLASS 

190 

Figure 8-2. continued 

ON_BN_ClICKED(IDC_SElECTDATE, OnSelectDate) 
ON_BN_ClICKED(IDC_NEXTWEEK, OnNextWeek) 
I/} JAFX_MSG_MAP 

END_MESSAGE_MAP() 

1111111111111///1/////////////////////1/////1////////////////1///////// 

// CActiveXDialog message handlers 

BEGIN_EVENTSINK_MAP(CActiveXDialog, CDialog) 
//({AFX_EVENTSINK-MAP(CActiveXDialog) 
ON_EVENT(CActiveXDialog, IDC_CAlENDARl, 3 /* NewMonth */, 

OnNewMonthCalendarl, VTS_NONE) 
//JJAFX_EVENTSINK_MAP 

END_EVENTSINK_MAP() 

BOOl CActiveXDialog::OnlnitDialog() 
( 

CDi al,og: : On Ini tDi a 1 ()g,( ) ; 
m_calendar.SetValue(m_varValue); II no DDX.for VARIANTs 
return TRUE; // return TRUE unless you set the focus to a control 

// EXCEPTION: OCX Property Pages should return FALSE 

void CActiveXDialog::OnNewMonthCalendarl() 

AfxMessageBox("EVENT: CActiveXDialog::OnNewMonthCalendarl~); 

void CActiveXDialog::OnSelectDate() 

CDataExchange dx(this. TRUE); 
DDX_Text(&dx, IDC_DAY. m_sDay): 
DDX_Text(&dx, IDC_MONTH, m_sMonth); 
DDX_Text(&dx, IDC_YEAR, m_sYear); 
m_ca lend a r. SetDay( m_sDay) ; 
m_calendar.SetMonth(m_sMonth): 
m...;.ca lenda r; SetYea r (m_sYea r) ; 

void CActiveXDialog: :OnNextWeek() 

m_ca 1 end~ r. NextWeek ( ) : 

(continued) 



E I G H T: Using ActiveX Controls 

Figure 8-2. continued 

void CActiveXDialog: :OnOK() 
{ 

CDialog::OnOK(); 
m_varValue = m_calendar.GetValue(); II no DDX for VARIANTs 

The OnSelectDate function is called when the user clicks the Select 
Date button. The function gets the day, month, and year values from the 
three edit controls and transfers them to the control's properties. Class
Wizard can't add DDX code for the BackColor property, so you must 
add it by hand. In addition, there's no DDX code for VARlANTtypes, so 
you must add code to the OnlnitDialog and OnOK functions to set and 
retrieve the date with the control's Value property. 

9. Connect the dialog to the view. Use ClassWizard to map the WM_L
BUTTONDOWN message, and then edit the handler function as follows: 

void CEx08aView: :OnLButtonDown(UINT nFlags, CPoint point) 
{ 

CActiveXDialog dlg; 
dlg.m_BackColor = RGB(255, 251, 240); II light yellow 
COleDateTime today = COleDateTime::GetCurrentTime(); 
dlg.m_varValue = COleDateTime(today.GetYear(), today.GetMonth(), 

today.GetDay(), 0, 0, 0); 
if (dlg.DoModal() == IDOK) { 

COleDateTime date(dlg.m_varValue); 
AfxMessageBox(date.Format("%B %d, IV"»~; 

The code sets the background color to light yellow and the date to 
today's date, displays the modal dialog, and reports the date returned 
by the Calendar control. You'll need to include ActiveXDialog.h in 
ex08a View.cpp. 

10. Edit the virtual OnDrawfunction in the file ex08aView.cpp. To 
prompt the user to press the left mouse button, replace the code in the 
view class OnDraw function with this single line: 

pDC->TextOut(0, 0, "Click the left mouse button here."); 

11. Build and test the EX08A application. Open the dialog, enter a date 
in the three edit controls, and then click the Select Date button. Click 
the Next Week button. Try moving the selected date directly to a new 
month, and observe the message box that is triggered by the NewMonth 
event. Watch for the final date in another message box when you click 
OK. Press the Fl key for help on the Calendar control. 

191 



PAR T II: THE MFC LIBRARY VIEW CLASS 

192 

For Win32 Programmers 
If you use a text editor to look inside the ex08a.rc file, you might be 
quite mystified. Here's the entry for the Calendar control in the 
ActiveX Dialog template: 

CONTROL '''' • I DC_CALENDARl. 
"{8E27C92B-1264-101C-8A2F-040224009C02}". 
WS_TABSTOP.7.7.217.113 

There's a 32-digit number sequence where the window class name 
should be. What's going on? Actually, the resource template isn't the 
one that Windows sees. The CDialog::DoModal function "preprocesses" 
the resource template before passing it on to the dialog box procedure 
within Windows. It strips out all the ActiveX controls and creates the 
dialog window without them. Then it loads the controls (based on 
their 32-digit identification numbers, called CLSIDs) and activates 
them in place, causing them to create their own windows in the cor
rect places. The initial values for the properties that you set in the 
dialog editor are stored in binary form inside the project's custom 
DLGINIT resource. 

When the modal dialog runs, the MFC code coordinates the 
messages sent to the dialog window both by the ordinary controls and 
by the ActiveX controls. This allows the user to tab between all the 
controls in the dialog, even though the ActiveX controls are not part 
of the actual dialog template. 

When you call the member functions for the control object, you 
might think you're calling functions for a child window. The control 
window is quite far removed, but MFC steps in to make it seem as if 
you're communicating with a real child window. In ActiveX termi
nology, the container owns a site, which is nota window. You call 
functions for the site, and ActiveX and MFC make the connection to 
the underlying window in the ActiveX control. 

The container window is an object ofa class derived from CWnd. 
The control site is also an object of a class derived from CWnd.-;....the 
ActiveX control wrapper class. That means that the GWnd class has 
built-in support for both containers and sites. 

What you're seeing here is MFC ActiveX controlsupport grafted 
onto regular Windows. Maybe some future Windows version will have 
more direct support for ActiveX Controls. As a matter offact, ActiveX 
versions of the Windows common controls already exist. 



E I G H T: Using ActiveX Controls 

ActiveX Controls in HTML Files 
You've seen the ActiveX Calendar control in an MFC modal dialog. You can 
use the same control in a Web page. The following HTML code will work 
(assuming the person reading the page has the Calendar control installed and 
registered on his or her machine): 

<OBJECT 
CLASSID="clsid:8E27C92B-!264-!0!C-8A2F-040224009C02" 
WIDTH=300 HEIGHT=200 BORDER=! HSPACE=5 ID=calendar> 

<PARAM NAME="Day" VALUE=!!> 
<PARAM NAME="Month" VALUE=!!> 
<PARAM NAME="Year" VALUE=!997> 
<IOBJECT> 

The CLASSID attribute (the same number that was in the EX08A dialog re
source) identifies the Calendar control in the Registry. A browser can down
load an ActiveX control. 

Creating ActiveX Controls at Runtime 
You've seen how to use the dialog editor to insert ActiveX controls at design 
time. If you need to create an ActiveX control at runtime without a resource 
template entry, here are the programming steps: 

1. Insert the component into your project. ClassWizard will create the 
files for a wrapper class. 

2. Add an embedded ActiveX control wrapper class data member to your 
dialog" class or other C++ window class. An embedded C++ object 
is then constructed and destroyed along with the window object. 

3. Choose Resource Symbols from Developer Studio's View menu. 
Add an ID constant for the new control. 

4. If the parent window is a dialog, use ClassWizard to map the dialog's 
WM_INITDIALOG message, thus overriding CDialog::OnlnitDialog. 
For other windows, use ClassWizard to map the WM_CREATE mes
sage. The new function should call the embedded control class's 
Create member function. This call indirectly displays the new control 
in the dialog. The control will be properly destroyed when the par
ent window is destroyed. 

5. In the parent window class, manually add the necessary event mes
sage handlers and prototypes for your new control. Don't forget to 
add the event sink map macros. 

193 



PAR T II: THE MFC LIBRARY VIEW CLASS 

TIP: ClassWizard doesn't help you with event sink maps 
when you add a dynamic ActiveX control to a project. Con
sider inserting the target control in a dialog in another tem
porary project. After you're finished mapping events, simply 
copy the event sink map code to the parent window class in 
your main project. 

The EX08B Example-
The Web Browser ActiveX Control 

194 

Microsoft Internet Explorer 3.x has become a leading Web browser. I was sur
prised to find out that most of its functionality is contained in one big ActiveX 
control, Shdocvw.dll. When you run Internet Explorer, you launch a small 
shell program that loads this Web Browser control in its main window. 

NOTE: You can find complete documentation for the Web Browser 
control's properties, methods, and events in the Internet SDK, 
downloadable from http://www.microsoft.com.This documenta
tion is in HTML form, of course. 

Because of this modular architecture, you can write your own custom 
browser program with very little effort. You can fix anything you don't like 
about the standard browser! I always thought it would be useful to have a two
window browser that showed a search engine page side-by-side with the tar
get page, as shown here: 

Documents l~lO of about 30000 matchine the query, best matches fU'st. 

Planl?'tary Nf't11l1a Huh}))"" 1.2 
Hor., JR, andL.tter, W.B. 1994, ApJ, 461, 288. A Butterfly in the 
Making: Revealing the Near-Infrared Structure of Hubble 12. Joseph L 
HoraInstitute .. 
ha"V:lfrn~m'!lheus.a"c. ·~cn·cl.(;o"j~wlc~:urlhb12.htpn! - size 2K - JS.Apr 96 



E I G H T: Using ActiveX Controls 

EX08B is such a program. This view window contains two Web Browser 
controls that are sized to occupy the entire client area. When the user clicks 
an item in the search (right-hand) control, the program intercepts the com
mand and routes it to the target (left-hand) control. 

Here are the steps for building the example: 

1. Make sure the Web Browser control is registered. You undoubt
edly have Microsoft Internet Explorer 3.x installed, since Developer Stu
dio requires it, so the Web Browser control should be registered. You can 
download Internet Explorer from http://www.microsoft.comif necessary. 

2. Run AppWizard to produce \vcpp32\ex08b\ex08b. Accept all the de
fault settings, except select Single Document and deselect Printing And 
Print Preview. Make sure the ActiveX Controls option is checked as in 
EX08A. 

3. Install the Web Browser control in the EX08B project. Choose Add 
To Project from Developer Studio's Project menu, and choose Compo
nents And Controls from the submenu. Select Registered ActiveX Con
trols, and then choose Microsoft Web Browser Control. Developer Studio 
will generate the wrapper class CWebBrowser and add the files to your 
project. 

4. Add two CWebBrowser data members to the CExOBb View class. 
Click on the ClassView tab in the Workspace window, and then right
click the CEx08b View class. Choose Add Member Variable, and fill in the 
dialog as shown here: 

Repeat for m_target. ClassWizard adds an #include statement for the 
webbrowser.h file. 

5. Add the child window 10 constants for the two controls. Select 
Resource Symbols from Developer Studio's View menu, and then add 
the symbols ID_BROWSElLSEARCH and ID_BROWSElL TARGET. 

195 



PAR T II: THE MFC LIBRARY VIEW CLASS 

196 

6. Add a static character array data member for the AltaVista URL. 
Add the following static data member to the class declaration in 
ex08bView.h: 

private: 
stat; c canst char s_engi neA ltav; sta []: 

Then add the following definition in ex08bView.cpp, outside any 
function: 

canst cha r CEx08bVi ew;: s_eng; neAlta vi sta [J 
Hhttp://altavista.digital.com/H: 

7. Use ClassWizard to map the view's WM_CREATE and WM_SIZE 
messages. Edit the handler code in ex08bView.cpp as follows: 

int CEx08bView::OnCreate(LPCREATESTRUCT lpCreateStruct) 

if (CView::OnCreate(lpCreateStruct) == -1) 
return -1; 

DWORD dwStyle= WS_VISIBLE IWS_CHILD; 
if (m...;.search.Create(NULL, dwStyle. CRect(0. 0. 100. 100). 

this. ID_BROWSER_SEARCH) == 0) { 
AfxMessageBox(HUnable to create search control !\nH); 
return .~1: 

m_sea rch. Nav; gate(s_engi neAl tavi sta. NULL', NULL. NULL. NU LU : 

if (m_target.Create(NULL. dwStyle. CRect(0.0. 100. 100). 
thi s. ID_BROWSER_TARGET> == 0) { 

AfxMessageBoxC"Unable to create target control!\n"); 
return -1: 

} 

m..::.ta rget.GoHome (); II as defined in IE3 options 

return 0; 

void CEx08bView::OnSize(UINT nType. int cx. int cy) 
{ 

CView::OnSize(nType. cx. cy); 

CRect rectClient: 
GetCl i entRect(rectCl i ept): 



E I G H T: Using ActiveX Controls 

CRect rectBrowse(rectClient); 
rectBrowse.right = rectClient.right / 2; 
CRect rectSearch(rectClient); 
rectSearch.left = rectClient.right / 2; 

m_target.SetWidthCrectBrowse.right - rectBrowse.left); 
m_target.SetHeight(rectBrowse.bottom - rectBrowse.top); 
m_target.UpdateWindow(); 

m_search.SetLeft(rectSearch.left); 
m_search.SetWidth(rectSearch.right - rectSearch.left); 
m_search.SetHeight(rectSearch.bottom - rectSearch.top); 
m_search.UpdateWindow(); 

The OnCreate function creates two browser windows inside the view 
window. The right-hand browser displays the top-level AltaVista page, and 
the left-hand browser displays the "home" page as defined through the 
Internet icon in the Control Panel. The OnSize function, called whenever 
the view window changes size, ensures that the browser windows completely 
cover the view window. The CWebBrowser member functions SetWidth and 
SetHeight set the browser's Width and Height properties. 

8. Add the event sink macros in the CExOBbViewfiles. ClassWizard 
can't map events from a dynamic ActiveX control, so you must do it 
manually. Add the following lines inside the class declaration in the file 
ex08bView.h: 

protected: 
afx_msg void OnBeforeNavigateExplorerl(LPCTSTR URL. -. 

long Flags. LPCTSTR TargetFrameName. -. 
VARIANT FAR* PostData, LPCTSTR Headers. BOOL FAR* Cancel); 

afx_msg void OnTitleChangeExplorer2(LPCTSTR Text): 
DECLARE_EVENTSINK_MAP() 

Then add the following code in ex08bView.cpp: 

BEGIN_EVENTSIN~MAP(CEx08bView. CView) 
ON_EVENT(CEx08bView. ID_BROWSER_SEARCH. 100. 

OnBeforeNavigateExplorer1. VTS_BSTR VTS_I4 VTS_BSTR -. 
VTS_PVARIANT VTS_BSTR VTS_PBOOL) 

ON_EVENT( CEx08bVi ew. ID_BROWSE~TARGET. 1l3. -. 
OnTitleChangeExplorer2.VTS_BSTR) 

END_EVENTSINK_MAP() 

197 



PAR T II: THE MFC LIBRARY VIEW CLASS 

198 

9. Add two event handler functions. Add the following member func
tions in ex08bView.cpp: 

void CEx08bView::OnBeforeNavigateExplorerl(lPCTSTR URl. 
long Flags.lPCTSTR TargetFrameName. 

} 

VARIANT FAR* PostData. LPCTSTR Headers, BaOl FAR* Cancel) 

TRACE("CEx08bView::OnBeforeNavigateExplorerl -- URL = %s\n", URL): 

if (!strnicmp(URL, s_engineAltavista, strlen(s_engineAltav{sta») ( 
return: 

m_target.Navigate(URL, NULL, NUll. PostData, NULL); 
*Cancel = TRUE; 

void CEx08bView::OnTitleChangeExplorer2(lPCTSTR Text) 
{ 

} 

II Careful! Event could fire before we're ready. 
CWnd* pWnd = AfxGetApp()-)m_pMainWnd; 
if (pWnd != NULL) { 

if (::!sWindow(pWnd->m_hWnd» { 
pWnd->SetWindowText(Text); 

The OnBeforeNavigateExplorer 1 handler is called when the user clicks on a 
link in the search page. The function compares the clicked URL (in the 
URL string parameter) with the search engine URL. If they match, the 
navigation proceeds in the search window; otherwise, the navigation is 
cancelled and the Navigate method is called for the target window. The 
OnTitleChangeExplorer2 handler updates the EX08B window title to match 
the title on the target page. 

10. Build and test the EX088 application. Search for something on the 
AltaVista page, and then watch the information appear in the target page. 



E I G H T: Using ActiveX Controls 

The EX08C Example-
A Complete Dual-Window Web Browser 

I deliberately kept the EX08B example simple to clearly illustrate the use of 
the Web Browser control. However, I couldn't resist upgrading the program 
so that I could use it as my primary Internet browser. The result is EX08C, 
which uses MFC features described in later chapters of this book-in particular 
the following features: 

C A splitter window with moveable vertical bar browser windows 

C Use of the Registry to "remember" the search and target pages 

Cl Printing of both search and target pages 

C Support for multiple search engines 

Cl Toolbar buttons for navigation, printing, and search engine selection 

Cl Status bar display of activity and the selected URL 

If EX08B runs, \vcpp32\Debug\ex08c should run also. I'm sure you'll 
have your own ideas for further customization. Once you've studied the rest 
of the book, you'll be able to take control of this project from the CD-ROM. 

Picture Properties 
Some ActiveX controls support picture properties, which can accommodate 
bitmaps, metafiles, and icons. If an ActiveX control has at least one picture 
property, ClassWizard generates a CPicture class in your project during the 
control's installation. You don't need to use this CPicture class, but you must 
use the MFC class CPictureHolder. To access the CPictureHolder class declaration 
and code, you need the following line in StdAfx.h: 

#include <afxctl.h> 

Suppose you have an ActiveX control with a picture property named 
Picture. Here's how you set the Picture property to a bitmap in your program's 
resources: 

CPictureHolder pict; 
pict.CreateFromBitmap(IDB_MYBITMAP); II from project's resources 
m_control.SetPicture(pict.GetPictureDispatch()); 

199 



PAR T II: THE MFC LIBRARY VIEW CLASS 

NOT E: If you include the AfxCtl.h file, you can't statically link 
your program with the MFC library. If you need a stand-alone pro
gram that supports picture properties, you'll have to borrow code 
from the CPictureHolder class, located in the \Program Files\Dev
Studio\VC\mfc\src\ctlpict.cpp file. 

Bindable Properties-Change Notifications 

200 

If an ActiveX control has a property designated as bindable, the control will 
send an OnChanged notification to its container when the value of the prop
erty changes inside the control. In addition, the control can send an 
OnRequestEdit notification for a property whose value is about to change but 
has not yet changed. If the container returns FALSE from its OnRequestEdit 
handler, the control should not change the property value. 

MFC fully supports property change notifications in ActiveX control 
containers, but as of Visual C++ version 5.0, no ClassWizard support was avail
able. That means you must manually add entries to your container class's event 
sink map. 

Suppose you have an ActiveX control with a bindable property named 
Note with a dispatch ID of 4. You add an ON_PROPNOTIFYmacro to the 
EVENTSINK macros in this way: 

BEGIN_EVENTSINK_MAP(CAboutDlg. CDialog) 
11{{AFX_EVENTSINK_MAP(CAboutDlg) 
II ClassWizard places other event notification macros here 
II}}AFX_EVENTSINK_MAP 
ON_PROPNOTIFY(CAboutDlg. IDC_MYCTRll. 4. OnNoteRequestEdit.-. 

OnNoteChanged) 
END_EVENTSINK_MAP() 

You must then code the OnNoteRequestEdit and OnNoteChanged functions with 
return types and parameter types exactly as shown here: 

BOOl CMyDlg::OnNoteRequestEdit(BOOl* pb) 
{ 

TRACE ("CMyDl g: : OnNoteRequest Edit \n") ; 
*pb = TRUE; II TRUE means change request granted 
return TRUE; 

BOOl CMyDlg::OnNoteChanged() 
{ 

TRACE("CMyDlg::OnNoteChanged\n"); 
return TRUE; 



E I G H T: Using ActiveX Controls 

You'll also need corresponding prototypes in the class header, as shown here: 

afx_msg BOOl OnNoteRequestEdit(BOOl* pb); 
afx_msg BOOl OnNoteChanged(); 

Other ActiveX Controls 
You'll probably notice that your disk fills up with ActiveX controls, especially 
if you accept controls from Web sites. Most of these controls are difficult to 
use unless you have the documentation on hand, but you can have fun experi
menting. Try the Marquee.ocx control that is distributed with the Internet 
SDK. It works fine in both MFC programs and HTML files. The trick is to set 
the szURL property to the name of another HTML file that contains the text 
to display in the scrolling marquee window. 

Many ActiveX controls were designed for use by Visual Basic program
mers. The SysInfo.ocx control that comes with Visual C++, for example, lets 
you retrieve system parameters as property values. This isn't of much use to a 
C++ programmer, however, because you can make the equivalent Win32 calls 
anytime. 

201 





C HAP T E R N N E 

Win32 Memory Management 

Forget everything you ever knew about Win16 memory management. Some 
of the Win16 memory management functions, such as GlobalAlloc, were car
ried forward into Win32, but this was done to enable developers to port source 
code quickly. Underneath, the original functions work very differently and 
many new ones have been added. 

This chapter starts out with a dose of Win32 memory management 
theory, which includes coverage of the fundamental heap managementfunc
tions. Then you'll see how the C++ new and delete operators connect with the 
underlying heap functions. Finally, you'll learn how to use the memory
mapped file functions, and you'll get some practical tips on managing dynamic 
memory. In no way do I intend this chapter to be a definitive description of 
Win32 memory management. For that, you'll have to read Jeffrey Richter's 
Advanced Windows (Microsoft Press, 1997). (Be sure it's the third edition.) 

Processes and Memory Space 
Before you learn how Microsoft Windows manages memory, you must first 
understand what a process is. If you already know what a program is, you're 
on your way. A program is an EXE file that you can launch in various ways in 
Windows. Once a program is running, it's called a process. A process owns its 
memory, file handles, and other system resources. If you launch the same 
program twice in a row, you have two separate processes running simulta
neously. Both the Microsoft Windows NT Task Manager (right-click the 
taskbar) and the Microsoft Windows 95 PVIEW95 progralll give you a detailed 
list of processes that are currently running, and they allow you to kill processes 
that are not responding. The SPYXX program shows the relationships among 
processes, tasks, and windows. 

203 



PAR T II: THE MFC LIBRARY VIEW CLASS 

NOT E : The Windows taskbar shows main windows, not processes. 
A single process (such as Windows Explorer) might have several main 
windows, each supported by its own thread, and some processes don't 
have windows at all. (See Chapter 11 for a discussion of threads.) 

The important thing to know about a process is that it has its own "pri
vate" 4-gigabyte (GB) virtual address space (which I'll describe in detail in the 
next section). For now, pretend that your computer has hundreds of gigabytes 
of RAM and that each process gets 4 GB. Your program can access any byte 
of this space with a single 32-bit linear address. Each process's memory space 
contains a variety of items, including the following: 

rn Your program's EXE image 

tJ Any nonsystem DLLs that your program loads, including the 
MFCDLLs 

tJ Your program's global data (read-only as well as read/write) 

C Your program's stack 

rn Dynamically allocated memory, including Windows and C 
runtime library (CRT) heaps 

rn Memory-mapped files 

C Interprocess shared memory blocks 

rn Memory local to specific executing threads 

rn All sorts of special system memory blocks, including virtual 
memory tables 

rn The Windows kernel and executive, plus DLLs that are part 
of Windows 

The Windows 95 Process Address Space 

204 

In Windows 95, only the bottom 2 GB (0 to Ox7FFFFFFF) of address space is 
truly private, and the bottom 4 MB of that is off-limits. The stack, heaps, and 
read/write global memory are mapped in the bottom 2 GB along with appli
cation EXE and DLL files. 

The top 2 GB of space is the same for all processes and is shared by all 
processes. The Windows 95 kernel, executive, virtual device drivers (VxDs), 
and file system code, along with important tables such as page tables, are map
ped to the top 1 GB (OxCOOOOOOO to OxFFFFFFFF) of address space. Windows 
DLLs and memory-mapped files are located in the range Ox80000000 to 
OxBFFFFFFF. Figure 9-1 shows a memory map of two processes using the same 
program. 



N I N E: Win32 Memory Management 

Process A Disk Process B 

OxFFFFFFFF 

OxCOOOOOOO 

Ox80000000 

Ox5F400000 

Ox10000000 

Stack 

Read/write globals Read/write globals 

Ox00400000 

Figure 9-1. 
A typical Windows 95 virtual memory map for two processes linked to the 
same EXE file. 

Shared 
memory 
space 

205 



PAR T II: THE MFC LIBRARY VIEW CLASS 

How safe is all this? It's next to impossible for one process to overwrite 
another process's stack, global, or heap memory because this memory, located 
in the bottom 2 GB of virtual address space, is assigned only to that specific 
process. All EXE and DLL code is flagged as read-only, so there's no problem 
if the code is mapped in several processes. 

However, because important Windows read/write data is mapped there, 
the top 1 GB of address space is vulnerable. An errant program could wipe out 
important system tables located in this region. In addition, one process could 
mess up another process's memory-mapped files in the range Ox80000000 
through OxBFFFFFFF because this region is shared by all processes. 

The Windows NT Process Address Space 
A process in Windows NT can access only the bottom 2 GB of its address space, 
and the lowest and highest 64 KB of that is inaccessible. The EXE, the ap
plication's DLLs and Windows DLLs, and memory-mapped files all reside in 
this space between OxOOOlOOOO and Ox7FFEFFFF. The Windows NT kernel, 
executive, and device drivers all reside in the upper 2 GB, where they are com
pletely protected from any tampering by an errant program. Memory-mapped 
files are safer, too. One process cannot access another's memory-mapped file 
without knowing the file's name and explicitly mapping a view. 

How Virtual Memory Works 

206 

You know that your computer doesn't really have hundreds of gigabytes of 
RAM. And it doesn't have hundreds of gigabytes of disk space either. Windows 
uses some smoke and mirrors here. 

First of all, a process's 4-GB address space is going to be sparely used. 
Various programs and data elements will be scattered throughout the 4-GB 
address space in 4-KB units starting on 4-KB boundaries. Each 4-KB unit, called 
a~, can hold either code or data. When a page is being used, it occupies 
physical memory, but you never see its physical memory address. The Intel 
microprocessor chip efficiently maps a 32-bit virtual address to both a physi
cal page and an offset within the page, using two levels of 4-KB page tables, 
as shown in Figure 9-2. Note that individual pages can be flagged as either read
only or read/write. Also note that each process has its own set of page tables. 
The chip's CR3 register holds a pointer to the directory page, so when Windows 
switches from one process to another, it simply updates CR3. 



N I N E: Win32 Memory Management 

32-bit linear address 

Bits 11-0 Physical memory 
.. 0.", .• " ...... ""." •• ""***'"" .. ",.~,- .... , ",4 h .. · ... ···""""0"" ·f"f's"·e .... t" ""in""":"""'" page 

Page table 
directory 

One directory per 
process; holds 
1024 page table 
entries 

r o ., ., •• ,\ 

t'~~:k,~:,~.i~~,:~,.l 

page 4096 bytes 
Page table 

r ' 

i Each page table 
• holds entries for 
: 1024 virtual 
.. memory pages 

'.'. 32;.bit e. ntry-i ~o,""~"',! ea~e~ad~d:::!:ress~··-~ I 
,.,,20~its .12 bits 

Each page table entry contains "present" and 
"read/write" bits 

Windows loads CR3 for the current process 

Figure 9-2. 
Win32 virtual memory management (Intel). 

So now our process is down from 4 GB to maybe 5 MB-a definite improve
ment. But ifwe're running several programs, along with Windows itself, we'll 
still run out of RAM. If you look at Figure 9-2 again, you'll notice that the page 
table entry has a "present" bit that indicates whether the 4-KB page is currently 
in RAM. Ifwe try to access a page that's not in RAM, an interrupt fires and 
Windows analyzes the situation by checking its internal tables. If the memory 
reference was bogus, we'll get the dreaded "page fault" message and the pro
gram will exit. Otherwise, Windows reads the page from a disk file into RAM 
and updates the page table by loading the physical address and setting the 
present bit. This is the essence ofWin32 virtual memory. 

The Windows virtual memory manager figures out how to read and write 
4-KB pages so that it optimizes performance. If one process hasn't used a page 
for a while and another process needs memory, the first page is swapped out 
or discarded and the RAM is used for the new process's page. Your program 
isn't normally aware that this is going on. The more disk I/O that happens, 

207 



PAR T II: THE MFC LIBRARY VIEW CLASS 

208 

however, the worse your program's performance will be, so it stands to reason 
that more RAM is better. 

I mentioned the word "disk," but I haven't talked about files yet. All 
processes share a big systemwide swap file that's used for all read/write data 
and some read-only data. (Windows NT supports multiple swap files.) Windows 
determines the swap file size based on available RAM and free disk space, but 
there are ways to fine-tune the swap file's size and specify its physical location 
on disk. 

The swap file isn't the only file used by the virtual memory manager, 
however. It wouldn't make sense to write code pages back to the swap file, so 
instead of using the swap file, Windows maps EXE and DLL files directly to 
their files on disk. Because the code pages are marked read-only, there's never 
a need to write them back to disk. 

If two processes use the same EXE file, that file is mapped into each 
process's address space. The code and constants never change during program 
execution, so the same physical memory can be mapped for each process. The 
two processes cannot share global data, however, and Windows 95 and Win
dows NT handle this situation differently. Windows 95 maps separate copies 
of the global data to each process. In Windows NT, both processes use the 
same copy of each page of global data until one process attempts to write to 
that page. At that point the page is copied; as a result, each process has its own 
private copy stored at the same virtual address. 

NOT E : A dynamic link library can be mapped directly to its DLL 
file only if the DLL can be loaded at its designated base address. If a 
DLL were statically linked to load at, say, Ox10000000 but that address 
range is already occupied by another DLL, Windows must "fix up" 
the addresses within the DLL code. Windows NT copies the altered 
pages to the swap file when the DLL is first loaded, but Windows 95 
can do the fixup "on the fly" when the pages are brought into RAM. 
Needless to say, it's important to build your DLLs with nonover
lapping address ranges. If you're using the MFC DLLs, set the base 
address of your own DLLs outside the range Ox5F400000 through 
Ox5FFFFFFF. Chapter 21 provides more details on writing DLLs. 

Memory-mapped files, which I'll talk about later, are also mapped directly. 
These can be flagged as read/write and made available for sharing among 
processes. 



N I N E: Win32 Memory Management 

For Win32 Programmers: Segment Registers in Win32 
If you've experimented with the debugger in Win32, you may have 
noticed the segment registers, particularly CS, DS, and SS. These 16-bit 
relics haven't gone away, but you can mostly ignore them. In 32-bit 
mode, the Intel microprocessor still uses segment registers, which are 
16 bits long, to translate addresses prior to sending them through the 
virtual memory system. A table in RAM, called the descriptor table, has 
entries that contain the virtual memory base address and block size 
for code, data, and stack segments. In 32-bit mode, these segments can 
be up to 4 GB in size and can be flagged as read-only or read/write. 
For every memory reference, the chip uses the selector, the contents 
of a segment register, to look up the descriptor table entry for the 
purpose of translating the address. 

Under Win32, each process has two segments-one for code and 
one for data and the stack. You can assume that both have a base value 
of 0 and a size of 4 GB, so they overlap. The net result is no translation 
at all, but Windows uses some tricks that exclude the bottom 16 KB 
from the data segment. If you try to access memory down there, you 
get a protection fault instead of a page fault, which is useful for debug
ging null pointers. 

Some future operating system might someday use segments to get 
around that annoying 4-GB size limitation, but by then we'll have 
Win64 to worry about! 

The VirtualAlloc Function
Committed and Reserved Memory 

If your program needs dynamic memory, sooner or later the Win32 VirtualAlloc 
function will be called. Chances are that your program will never call Virtual
Alloc; instead you'll rely on the Windows heap or the CRT heap functions to 
call it directly. Knowing how VirtualAlloc works, however, will help you better 
understand the functions that call it. 

First you must know the meanings of reserved and committed memory. 
When memory is reserved, a contiguous virtual address range is set aside. If, 
for example, you know that your program is going to use a single 5-MB memory 

209 



PAR T II: THE MFC LIBRARY VIEW CLASS 

block (known as a region) but you don't need to use it all right away, you call 
VirtualAlloe with a MEM_RESERVE allocation type parameter and a 5-MB size 
parameter. Windows rounds the start address of the region to a 64-KB bound
ary and prevents your process from reserving other memory in the same range. 
You can specify a start address for your region, but more often you'll let Win
dows assign it for you. Nothing else happens. No RAM is allocated, and no swap 
file space is set aside. 

When you get more serious about needing memory, you call VirtualAlloe 
again to commit the reserved memory, using a MEM_COMMITallocation type 
parameter. Now the start and end addresses of the region are rounded to 4-KB 
boundaries, and corresponding swap file pages are set aside together with the 
required page table. The block is designated either read-only or read/write. 
Still no RAM is allocated, however; RAM allocation occurs only when you try 
to access the memory. If the memory was not previously reserved, no problem. 
If the memory was previously committed, still no problem. The rule is that 
memory must be committed before you can use it. 

You call the VirtuaLFree function to "decommit" committed memory, 
thereby returning the designated pages back to reserved status. VirtuaLFree can 
also free a reserved region of memory, but you have to specify the base address 
you got from a previous VirtualAlloe reservation call. 

The Windows Heap and the 
GlobalAlloc Function Family 

210 

A heap is a memory pool for a specific process. When your program needs a 
block of memory, it calls a heap allocation function, and it calls a companion 
function to free the memory. There's no assumption about4-KB page bound
aries; the heap manager uses space in existing pages or calls VirtualAlloe to get 
more pages. First we'll look at Windows heaps. Next we'll consider heaps 
managed by the CRT library for functions like malloe and new. 

Windows provides each process with a default heap, and the process can 
create any number of additional Windows heaps. The HeapAlloe function al
locates memory in a Windows heap, and HeapFree releases it. 

You might never need to call HeapAlloe yourself, but it will be called for 
you by the GlobalAlloe function that's left over from Win16. In the ideal 32-bit 
world, you wouldn't have to use GlobalAlloe, but in this real world, we're stuck 
with a lot of code ported from Win16 that uses "memory handle" (HGLOBAL) 
parameters instead of 32-bit memory addresses. 



N I N E: Win32 Memory Management 

GlobaLAlloe uses the default Windows heap. It does two different things, 
depending on its attribute parameter. If you specify GMENLFlXED, GlobaLAlloe 
simply calls HeapAlloe and returns the address cast as a 32-bit HGLOBAL value. 
If you specify GMEM_MOVEABLE, the returned HGLOBAL value is a pointer 
to a handle table entry in your process. That entry contains a pointer to the 
actual memory, which is allocated with HeapAlloe. 

Why bother with "moveable" memory if it adds an extra level of indirec
tion? You're looking at an artifact from Win16, in which, once upon a time, 
the operating system actually moved memory blocks around. In Win32, move
able blocks exist only to support the GlobalReAlloe function, which allocates a 
new memory block, copies bytes from the old block to the new, frees the old 
block, and assigns the new block address to the existing handle table entry. If 
nobody called GlobalReAlloe, we could always use HeapAlloe instead of GlobaLAlloe. 

Unfortunately, many library functions use HGLOBAL return values and 
parameters instead of memory addresses. If such a function returns an 
HGLOBAL value, you should assume that memory was allocated with the 
GMEM_MOVEABLE attribute, and that means you must call the GlobalLoek 
function to get the memory address. (If the memory was fixed, the GlobalLoek call 
just returns the handle as an address.) Call GlobalUnloek when you're finished 
accessing the memory. If you're required to supply an HGLOBAL parameter, 
to be absolutely safe you should generate it with a GlobaLAlloe(GMEM_MOVE
ABLE, ... ) call in case the called function decides to call GlobalReAlloe and ex
pects the handle value to be unchanged. 

The Small-Block Heap, the C++ 
new and delete Operators, and _heapmin 

You can use the Windows HeapAlloe function in your programs, but you're 
more likely to use the malloe and free functions supplied by the CRT. If you 
write C++ code, you won't call these functions directly; instead, you'll use the 
new and delete operators, which map directly to malloe and free. If you use new 
to allocate a block larger than a certain threshold (480 bytes is the default) , 
the CRT passes the call straight through to HeapAlloe to allocate memory from 
a Windows heap created for the CRT. For blocks smaller than the threshold, 
the CRT manages a small-block heap, calling VirtuaLAlloe and VirtualFree as nec
essary. Here is the algorithm: 

1. Memory is reserved in 4-MB regions. 

2. Memory is committed in 64-KB blocks (16 pages). 

211 



PAR T II: THE MFC LIBRARY VIEW CLASS 

3. Memory is decommitted 64 KB at a time. As 128 KB becomes free, 
the last 64 KB is decommitted. 

4. A 4-MB region is released when every page in that region has been 
decommitted. 

As you can see, this small-block heap takes care of its own cleanup. The 
CRT's Windows heap doesn't automatically decommit and unreserve pages, 
however. To clean up the larger blocks, you must call the CRT _heapmin func
tion, which calls the windows HeapCompaet funcFion. (Unfortunately, the Win
dows 95 version of HeapCompaet doesn't do any'thing-all the more reason to 
use Windows NT.) Once pages are decommitted, other programs can reuse 
the corresponding swap file space. 

NOT E : In previous versions of the CRT, the free list pointers 
were stored inside the heap pages. This strategy required the malloe 
function to "touch" (read from the swap file) many pages to find free 
space, and this degraded performance. The current system, which 
stores the free list in a separate area of memory, is faster and mini
mizes the need for third-party heap ma~agement software. 

If you want to change or access the block size threshold, use the CRT 
functions _seLsbh_threshold and _geLsbh_threshold. 

A special debug version of malloe, _mallocdbg, adds debugging informa
tion inside allocated memory blocks. The new operator calls _ mallocdbg when 
you build an MFC project with _DEBUG defined. Your program can then detect 
memory blocks that you forgot to free or that you inadvertently overwrote. 

Memory-Mapped Files 

212 

In case you think you don't have enough memory management options al
ready, I'll toss you another one. Suppose your program needs to read a DIB 
(device-independent bitmap) file. Your instinct would be to allocate a buffer 
of the correct size, open the file, and then call a read function to copy the 
whole disk file into the buffer. The Windows memory-mapped file is a more 
elegant tool for handling this problem, however. You simply map an address 
range directly to the file. When the process accesses a memory page, Windows 
allocates RAM and reads the data from disk. Here's what the code looks like: 

HANDLE hFile = ::CreateFile(strPathname. GENERIC_READ. 
FILE_SHARE_READ. NULL. OPEN_EXISTING. FILE_ATTRIBUTE_NORMAL. NULL); 

ASSERT(hFile != NULL); 



N I N E: Win32 Memory Management 

HANDLE hMap = ::CreateFileMapping(hFile, NULL, PAGE_READONLY, 
0, 0, NULl); 

ASSERT(hMap != NULL); 
LPVOID lpvFile = ::MapViewOfFile(hMap, FILE_MAP_READ, 

0, 0, 0); II Map whole file 
DWORD dwFileSize = ::GetFileSize(hFile, NULL); II useful info 
I I Use the fil e 
: :UnmapViewOfFile(lpvFile); 
::CloseHandle(hMap); 
::CloseHandle(hFile); 

Here you're using virtual memory backed by the DIB file. Windows de
termines the file size, reserves a corresponding address range, and commits 
the file's storage as the physical storage for this range. In this case, lpvFile is 
the start address. The hMap variable contains the handle for the file mapping 
object, which can be shared among processes if desired. 

The DIB in the example above is a small file that you could read entirely 
into a buffer. Imagine a larger file for which you would normally issue seek 
commands. A memory-mapped file works for such a file, too, because of the 
underlying virtual memory system. RAM is allocated and pages are read when 
you access them, and not before. 

NOT E : By default, the entire file is committed when you map it, 
although it's possible to map only part of a file. 

If two processes share a file mapping object (such as hMap in the sample 
code above), the file itself is, in effect, shared memory, but the virtual addresses 
returned by Map View Of File might be different. Indeed, this is the preferred 
Win32 method of sharing memory. (Calling the GlobalAlloc function with 
the GMEM_SHAREflag doesn't create shared memory as it did in Win16.) 
If memory sharing is all you want to do and you don't need a permanent disk 
file, you can omit the call to CreateFile and pass OxFFFFFFFF as the CreateFile
Mapping hFile parameter. Now the shared memory will be backed by pages 
in the swap file. Consult Richter for details on memory-mapped files. The 
EX31B and EX31C sample programs in Chapter 31 illustrate sharing of 
memory-mapped files. 

NOT E : If you in tend to access only a few random pages of a file 
mapping object that is backed by the swap file, you can use a tech
nique that] effrey Richter describes in Advanced Windows under the 
heading "Sparsely Committed Memory-Mapped Files." In this case, 
you call CreateFileMappingwith a special flag and then you commit 
specific address ranges later with the VirtualAlloc function. 

213 



PAR T II: THE MFC LIBRARY VIEW CLASS 

NOT E: You might want to look carefully at the Windows WM
_COPYDATA message. This message lets you transfer data between 
processes in shared memory without having to deal with the file 
mapping API. You must send this message rather than post it, which 
means the sending process has to wait while the receiving process 
copies and processes the data. 

Unfortunately, there's no direct support for memory-mapped files 
or shared memory in MFC. The CSharedFile class supports only clipboard 
memory transfers using HGLOBAL handles, so the class isn't as useful as its 
name implies. 

Accessing Resources 
Resources are contained inside EXEs and DLLs and thus occupy virtual address 
space that doesn't change during the life of the process. This fact makes it easy 
to read a resource directly. If you need to access a bitmap, for example, you 
can get the DIB address with code like this: 

LPVOID lpvResource = (LPVOID) ::LoadResource(NULL. 
::FindResource(NULL. MAKEINTRESOURCE(IDB_REDBLOCKS), 
RT_BITMAP»; 

The LoadResource function returns an HGLOBAL value, but you can safely cast 
it to a pointer. 

Some Tips for Managing Dynamic Memory 

214 

The more you use the heap, the more fragmented it gets and the more slowly 
your program runs. If your program is supposed to run for hours or days at a 
time, you have to be careful. It's better to allocate all the memory you need 
when your program starts and then free it when the program exits, but that's 
not always possible. The CString class is a nuisance because it's constantly al
locating and freeing little bits of memory. Fortunately, MFC developers have 
recently made some improvements. 

Don't forget to call_heapmin every once in a while if your program allo
cates blocks larger than the small-block heap threshold. And be careful to 
remember where heap memory comes from. You'd have a big problem, for 
instance, if you called HeapFree on a small-block pointer you got from new. 



N I N E: Win32 Memory Management 

Be aware that your stack can be as big as it needs to be. Because you no 
longer have a 64-KB size limit, you can put large objects on the stack, thereby 
reducing the need for heap allocations. 

As in Win16, your program doesn't run at full speed and then suddenly 
throw an exception when Windows runs out of swap space. It just slowly grinds 
to a halt, making your customer unhappy. And there's not much you can do 
except try to figure out which program is eating memory and why. Because 
the Windows 95 USER and GDI modules still have 16-bit components, there 
is some possibility of exhausting the 64-KB heaps that hold GDI objects and 
window structures. This possibility is pretty remote, however, and if it happens, 
it probably indicates a bug in your program. 

Optimizing Storage for Constant Data 
Remember that the code in your program is backed not by the swap file but 
directly by its EXE and DLL files. If several instances of your program are 
running, the same EXE and DLL files will be mapped to each process's virtual 
address space. What about constant data? You would want that data to be part 
of the program rather than have it copied to another block of address space 
that's backed by the swap file. 

You've got to work a little bit to ensure that constant data gets stored with 
the program. First consider string constants, which often permeate your pro
grams. You would think that these would be read-only data, but guess again. 
Because you're allowed to write code like this 

char* pch = "test"; 
*pch = 'x'; 

"test" can't possibly be constant data, and it isn't. 
If you want "test" to be a constant, you must declare it as an initialized 

const static or global variable. Here's the global definition: 

canst char g_pch[] = "test"; 

Now g_pch is stored with the code, but where, specifically? To answer that, you 
must understand the "data sections" that the Visual C++ linker generates. If 
you set the link options to generate a map file, you'll see a long list of the 
sections (memory blocks) in your program. Individual sections can be desig
nated for code or data, and they can be read-only or read/write. The important 
sections and their characteristics are listed on the following page. 

215 



PAR T II: THE MFC LIBRARY VIEW CLASS 

216 

Name Type Access Contents 

.text Code Read-only Program code 

.rdata Data Read-only Constant initialized data 

.data Data Read/write Nonconstant initialized data 

.bss Data Read/write Nonconstant uninitialized data 

The .rdata section is part of the EXE file, and that's where the linker puts 
the g_pch variable. The more stuff you put in the .rdata section, the better. The 
use of the const modifier does the trick. 

You can put built-in types and even structures in the .rdata section, but 
you can't put c++ objects there if they have constructors. If you write a state
ment like this 

canst CRect g_rect(0. 0. 100. 100): 

the linker puts the object into the .bss section, and it will be backed separately 
to the swap file for each process. When you think about it, this makes sense 
because the compiler must invoke the constructor function after the program 
is loaded. 

Now suppose you wanted to do the worst possible thing. You'd declare 
a CString global variable (or static class data member) like this: 

canst CString g_str("this is the worst thing I ca'n do"): 

Now you've got the CString object (which is quite small) in the .bss section, 
and you've also got a character array in the .data section, neither of which can 
be backed by the EXE file. To make matters worse, when the program starts, 
the CStringclass must allocate heap memory for a copy of the characters. You 
would be much better off using a const character array instead of a CString object. 



C HAP T E R TEN 

Bitmaps 

Without graphics images, Microsoft Windows-based applications would be 
pretty dull. Some applications depend on images for their usefulness, but any 
application can be spruced up with the addition of decorative clip art from a 
variety of sources. Windows bi tmaps are arrays of bits mapped to display pix
els. That might sound simple, but you have to learn a lot about bitmaps be
fore you can use them to create professional applications for Windows. 

This chapter starts with the "old" way of programming bitmaps-creating 
the device-dependent GDI bitmaps that work with a memory device context. 
You need to know these techniques because many programmers are still using 
them and you'll also need to use them on occasion. 

Next you'll graduate to the modern way of programming bitmaps
creating device-independent bitmaps (DIBs). If you use DIBs, you'll have an 
easier time with colors and the printer and in some cases you'll get better per
formance. A new Win32 function, CreateDIBSection, gives you the benefits of 
DIBs combined with all the features of GDI bitmaps. 

Finally, you'll learn how to use the MFC CBitmapButton class to put bit
maps on pushbuttons. This has nothing to do with DIBs, but it's a useful tech
nique that would be difficult to master without an example. 

GDI Bitmaps and Device-Independent Bitmaps 
There are two kinds of Windows bitmaps: GDI bitmaps and DIBs. GDI bitmap 
objects are represented by the Microsoft Foundation Class (MFC) Library 
version 4.21 CBitmapclass. The GDI bitmap object has an associated Windows 
data structure, maintained inside the Windows GDI module, that is device
dependent. Your program can get a copy of the bitmap data, but the bit ar
rangement depends on the display hardware. GDI bitmaps can be freely 
transferred among programs on a single computer, but because of their de
vice dependency, transferring them by disk or modem doesn't make sense. 

217 



PAR T II: THE MFC LIBRARY VIEW CLASS 

NOT E : In Win32, you're allowed to put a CDI bitmap handle on 
the clipboard for transfer to another process, but behind the scenes 
Windows converts the device-dependent bitmap to a DIB and cop
ies the DIB to shared memory. That's a good reason to consider 
using DIBs from the start. 

DIBs offer many programming advantages over CDI bitmaps. Because 
a DIB carries its own color information, color palette management is easier. 
DIBs also make it easy to control gray shades when printing. Any computer 
running Windows can process DIBs, which are usually stored in BMP disk files 
or as a resource in your program's EXE or DLL file. The wallpaper background 
on your monitor is read from a BMP file when you start Windows. The primary 
storage format for Microsoft Paint is the BMP file, and Developer Studio uses 
BMP files for toolbar buttons and other images. Other graphic interchange 
formats are available, such as TIFF, CIF, andJPEC, but only the DIB format 
is directly supported by the Win32 API. 

Color Bitmaps and Monochrome Bitmaps 
Now might be a good time to reread the "Windows Color Mapping" section 
in Chapter 5. As you'll see in this chapter, Windows deals with color bitmaps 
a little differently from the way it deals with brush colors. 

Many color bitmaps are 16-color. A standard VCA board has four con
tiguous color planes, with 1 corresponding bit from each plane combining to 
represent a pixel. The 4-bit color values are set when the bitmap is created. 
With a standard VCA board, bitmap colors are limited to the standard 16 
colors. Windows does not use dithered colors in bitmaps. 

A monochrome bitmap has only one plane. Each pixel is represented by 
a single bit that is either off (0) or on (1). The CDC::SetTextColor function sets 
the "off" display color, and SetBkColor sets the "on" color. You can specify these 
pure colors individually with the Windows RGB macro. 

Using GOI Bitmaps 

218 

A CDI bitmap is simply another CDI object, such as a pen or a font. You must 
somehow create a bitmap, and then you must select it into a device context. 
When you're finished with the object, you must deselect it and delete it. You 
know the drill. 

There's a catch, though, because the "bitmap" of the display or printer 
device is effectively the display surface or the printed page itself. Therefore, 
you can't select a bitmap into a display device context or a printer device 



TEN: Bitmaps 

context. You have to create a special memory device context for your bitmaps, 
using the CDC::CreateCompatibleDCfunction. You must then use the CDCmem
ber function StretchBlt or BitBlt to copy the bits from the memory device con
text to the "real" device context. These "bit-blitting" functions are generally 
called in your view class's OnDraw function. Of course, you mustn't forget to 
clean up the memory device context when you're finished. 

Loading a GDI Bitmap from a Resource 
The easiest way to use a bitmap is to load it from a resource. If you look in 
ResourceView in the Workspace window, you'll find a list of the project's 
bitmap resources. If you select a bitmap and examine its properties, you'll see 
a filename. 

Here's an example entry in an RC (resource script) file, when viewed by 
a text editor: 

IDB_REDBLOCKS BITMAP DISCARDABLE "res\\Red Blocks.bmp" 

IDB_REDBLOCKS is the resource ID, and the file is Red Blocks.bmp in the 
project's \res subdirectory. (This is one of the Microsoft Windows 95 wallpa
per bitmaps, normally located in the \WINDOWS directory.) The resource 
compiler reads the DIB from disk and stores it in the project's RES file. The 
linker copies the DIB into the program's EXE file. You know that the Red 
Blocks bitmap must be in device-independent format because the EXE can be 
run with any display board that Windows supports. 

The CDC::LoadBitmap function converts a resource-based DIB to a GDI 
bitmap. Below is the simplest possible self-contained OnDraw function that 
displays the Red Blocks bitmap: 

CMyView::OnDraw(CDC* pDC) 
{ 

CBitmap bitmap: II Sequence is important 
CDC dcMemory: 
bitmap.LoadBitmap(IDB_REDBLOCKS): 
dcMemory.CreateCompatibleDC(pDC); 
dcMemory.SelectObject(&bitmap); 
pDC-)BitBlt(100, 100, 54, 96, &dcMemory, 0, 0, SRCCOPY): 
II CDC destructor deletes dcMemory: bitmap is deselected 
II CBitmap destructor deletes bitmap 

The BitBlt function copies the Red Blocks pixels from the memory device 
context to the display (or printer) device context. The bitmap is 54 bits wide 
by 96 bits high, and on a VGA display it occupies a rectangle of 54-by-96 

219 



PAR T II: THE MFC LIBRARY VIEW CLASS 

logical units, offset 100 units down and to the right of the upper-left corner 
of the window's client area. 

NOT E : The code on the previous page works fine for the display. 
As you'll see in Chapter 18, the application framework calls the 
OnDrawfunction for printing, in which case pDCpoints to a printer 
device context. The bitmap here, unfortunately, is configured spe
cifically for the display and thus cannot be selected into the printer
compatible memory device context. If you want to print a bitmap, 
you should look at the CDib class described later in this chapter. 

The Effect of the Display Mapping Mode 
If the display mapping mode in the Red Blocks example is·MM_TEXT, each 
bitmap pixel maps to a display pixel and the bitmap looks nice. If the map
ping mode is MM_LOENGLISH, the bitmap size is 0.54-by-0.96 inch, or 52-by-
92 pixels for Windows 95, and the GDI must do some bit crunching to make 
the bitmap fit. Consequently, the bitmap might not look as good with the 
MALLOENGUSH mapping mode. Calling CDC::SetStretchBltMode with a parame
ter value of COL ORONCOL OR will make shrunken bitmaps look nicer. 

Stretching the Bits 
What if we want Red Blocks to occupy a rectangle of exactly 54-by-96 pixels, 
even though the mapping mode is not MM_ TEXT? The StretchBlt function is 
the solution. Ifwe replace the BitBlt call with the following three statements, 
Red Blocks is displayed cleanly, whatever the mapping mode: 

CSize size(54, 96); 
pDC->DPtoLP(&size); 
pDC->StretehBlt(0, 0, size.ex, -size.ey, 

&deMemory, 0, 0, 54, 96, SRCCOPY); 

With either BitBlt or StretchBlt, the display update is slow if the GDI has to 
actually stretch or compress bits. If, as in the case above, the GDI determines 
that no conversion is necessary, the update is fast. 

The EX10A Example 

220 

The EX10A example displays a resource-based bitmap in a scrolling view with 
mapping mode set to MM_LOENGLISH The program uses the StretchBlt logic 
described above, except that the memory device context and the bitmap are 
created in the view's OnlnitialUpdate member function and last for the life of 
the program. Also, the program reads the bitmap size through a call to the 



TEN: Bitmaps 

CGdiObject member function GetObject, so it's not using hard-coded values as 
in the preceding examples. 

Here are the steps for building the example: 

1. Run AppWizard to produce \vcpp32\ex1 Oa\ex1 Oa. Accept all the 
default settings but two: select Single Document, and select the CScroll
View view base class, as shown in Chapter 4 on page 70, for CExi Oa View. 
The options and the default class names are shown here: 

2. Import the Gold Weave bitmap. Choose Resource from Developer 
Studio's Insert menu. Import the bitmap Gold Weave.bmp from the 
\WINPOWS directory. (If your version of Windows doesn't have this bit
map, load it from this book's companion CD-ROM.) Developer Studio 
will copy this bitmap file into your project's \res subdirectory. Assign the 
ID IDB_ GOLDWEA VE, and save the changes. 

3. Addthe following private data members to the class CEx10aView. 
Edit the file exlOaView.h or use ClassView. The bitmap and the memory 
device context last for the life of the view. The CSize objects are the source 
(bitmap) dimensions and the destination (display) dimensions. 

CDC* m_pdcMemory; 
CBitmap* m_pBitmap: 
CSize m_sizeSource, m_sizeOest: 

221 



PAR T II: THE MFC LIBRARY VIEW CLASS 

222 

4. Edit the following member functions in the class CEx10aView. 
Edit the file exl Oa View.cpp. The constructor and destructor do C++ 
housekeeping for the embedded objects. You want to keep the con
structor as simple as possible because failing constructors cause prob
lems. The OnlnitialUpdate function sets up the memory device context 
and the bitmap, and it computes output dimensions that map each bit 
to a pixel. The OnDraw function calls StretchBlt twice-once by using 
the special computed dimensions and once by mapping each bit to a 
O.Ol-by-O.Ol-inch square. Add the following shaded code: 

CEx10aView::CEx10aView() 
( 

m_pdcMemory = new CDC; 
m_pBitmap = new CBitmap; 

CEx10aView::-CEx10aView() 
{ 

Y • '". ",. ", 

II cleans up the memory device context and the bitmap 
delete m_pdcMemory: II deselects bitmap 
delete.m_pBitmap; 

void CEx10aView::OnDraw(CDC* pDC) 
{ 

pDC~>SetStretchBltMode(COLORONCOLOR); 

pDC->StretchBlt(20. -20. m_sizeDest.cx. -m_s;zeDest.cy. 
m_pdcMemorYi 0. 0. 
m_sizeSource.cx. ~sizeSource.cy. SRCCOPY); 

pDC->StretchBlt(3S0, -20, m_sizeSource.cx. -m_sizeSource.cy, 
m_pdcMemory. 0, 0. 
m_sizeSource.cx,m_sizeSource.cy. SR~COPXh 

void CEx10aView::OnlnitialUpdate() 
{ 

C~cr~11Y1 ew.::.9~}~.i.ti al Update(): ... 
CSizesizeTotalC800, 105(3); II 8-by-1e.S inches 
CSize sizeLine = CSize(sizeTotal.cx I 100,s;zeTotal.cy 
SetScrollSizes(MM_LOENGLISH, sizeTotal, siieTotal. sizeLine); 

BITMAP bm; /1 Windows BITMAP data structure; 
i~ (m_pdcMemory->GetSafeHdc() == NULL) { 

CClientDC dc(th1s); 
OnPrepareDC(&dc); 1/ necessary 
m_pBi tmap->LoadBi tmap (I DB,...G()LDW£.AVE); 



TEN: Bitmaps 

m_pdcMemory->CreateCompatibleOC(&dc); 
m_pdcMemory->SelectObject(m_pBitmap); 
m_pBitmap->GetObject(sizeof(bm), &bm); 
m_sizeSource.cx = bm.bmWidth; 
m_sizeSource.cy = bm.bmHeight; 
m_sizeOest = m_sizeSource; 
dc.OPtoLP(&m_sizeOest); 

5. Build and test the EX10A application. Your screen should look 
like this: 

6. Try the Print Preview and Print features. The bitmap prints to scale 
because the application framework applies the MM_LOENGLISH map
ping mode to the printer device context just as it does to the display 
device context. The output looks great in Print Preview mode, but the 
printed output will probably be blank! We'll fix that soon. 

Using Bitmaps to Improve the Screen Display 
You've seen an example program that displays a bitmap that originated out
side the program. Now you'll see an example program that generates its own 
bitmap to support smooth motion on the screen. The principle is simple: you 
draw on a memory device context with a bitmap selected, and then you zap 
the bitmap onto the screen. 

223 



PAR T II: THE MFC LIBRARY VIEW CLASS 

The EX108 Example 

224 

In the EX05C example in Chapter 5, the user dragged a circle with the mouse. 
As the circle moved, the display flickered because the circle was erased and 
redrawn on every mouse-move message. EXIOB uses a GDI bitmap to correct 
this problem. The EX05C custom code for mouse message processing carries 
over almost in tact; most of the new code is in the OnPaint and OnlnitialUpdate 
functions. 

In summary, the EXIOB OnlnitialUpdate function creates a memory de
vice context and a bitmap that are compatible with the display. The OnPaint 
function prepares the memory device context for drawing, passes OnDrawa 
handle to the memory device context, and copies the resulting bitmap from 
the memory device context to the display. 

Here are the steps to build EXIOB from scratch: 

1. Run AppWizard to produce \vcpp32\ex1 Ob\ex1 Ob. Accept all the 
default settings, except select Single Document and select CScrollView 
view as the base class for CExi Ob View. The options and the default class 
names are shown here: 

2. Use ClassWizard to add CEx10bView message handlers. Add 
message handlers for the following messages: 

e WM_LBUTTONDOWN 

e WM_LBUTTONUP 



TEN: Bitmaps 

o WM_MOUSEMOVE 

o WM_PAINT 

3. Edit the ex10bView.h header file. Add the private data members 
shown here to the CExl Ob View class: 

private: 
const CSize m_sizeEllipse: 
CPoint m_pointTopleft; 
BOOl m_bCaptured: 
CSize m_sizeOffset: 
CDC* m_pdcMemory: 
CBitmap* m_pBitmap; 

4. Code the CEx10bViewconstructor and destructor in ex10bView.cpp. 
You need a memory device context object and a bitmap GDI object. 
These are constructed in the view's constructor and destroyed in the 
view's destructor. Add the following shaded code: 

CEx10bView::CEx10bView() : m_sizeEllipse(100, -100), 
m_pointTopleft(10. -10), 
m_sizeOffset(0, 0) 

m_bCaptured = FALSE: 
m_pdcMemory = new CDC: 
m_pBitmap = new CBitmap: 

CEx10bView::-CEx10bView() 
{ 

delete m_pBitmap; II already deselected 
d~lete m_pdcMemory; 

5. Add code for the OnlnitialUpdate function in ex10bView.cpp. The 
C++ memory device context and bitmap objects are already constructed. 
This function creates the corresponding Windows objects. Both the de
vice context and the bitmap are compatible with the display cop.text dc, 
but you must explicitly set the memory device context's mapping mode 
to match the display context. You could create the bitmap in the OnPaint 
function, but the program runs faster if you create it once here. Add the 
shaded code shown on the following page. 

225 



PAR T II: THE MFC LIBRARY VIEW CLASS 

226 

void CEx10bView: :OnInitialUpdate() 
{ 

CScrollView::OnInitialUpdate(); 
CSize sizeTotal(800. 1050); II 8~by~10.5 inches 
CSize sizePage(sizeTotal.cx I 2. sizeTotal.cy I 2); 
CSize sizeLine(sizeTotal.cx I 50. sizeTotal.cy I 50); 
SetScrollSizes(MM_LOENGLISH. sizeTotal. sizePage. sizeLine); 
II creates the memory device context and the bitmap 
if (m_pdcMemory~>GetSafeHdc() == NULL) { 

} 

CClientDC dc(this); 
OnPrepareDC(&dc); 
CRect rectMax(0. 0. sizeTotal.ex. -sizeTotal.cy); 
dc.LPtoDP(rectMax); 
m_pdcMemory~>CreateCompatibleDC(&dc); 

II makes bitmap same size as display window 
m_pBitmap~>CreateCompatibleBitmap(&dc. rectMax.right. 

rectMax.bottom); 
m_pdcMemory->SetMapMode(MM_LOENGLISH); 

6. Add code for the OnPaintfunction in ex10bView.cpp. Normally, 
it isn't necessary to map the WM_PAINT message in your derived view 
class. The CView version of OnPaint contains the following code: 

CPaintDC dc(this); 
OnPrepareDC(&dc); 
OnDraw(&dc); 

In this example, you will be using the OnPaint function to reduce 
screen flicker through the use of a memory device context. OnDraw is 
passed this memory device context for the display, and it is passed the 
printer device context for printing. Thus, OnDraw can perform tasks 
common to the display and the printer. You don't need to use the bit
map with the printer because the printer has no speed constraint. 

The OnPaint function must perform in order the following three 
steps to prepare the memory device context for drawing: 

Ed Select the bitmap into the memory device context. 

Ed Transfer the invalid rectangle (as calculated by OnMouseMove) 
from the display context to the memory device context. There is 
no SetClipRect function, but the CDC::lntersectClipRect function, 
when called after the CDC::SelectClipRgn function (with a NULL 
parameter), has the same effect. If you don't set the clipping 
rectangle to the minimum size, the program runs more slowly. 



TEN: Bitmaps 

!.J Initialize the bitmap to the current window background color. The 
CDC::PatBlt function fills the specified rectangle with a pattern. In 
this case, the pattern is the brush pattern for the current window 
background. That brush must first be constructed and selected into 
the memory device context. 

After the memory device context is prepared, OnPaint can call 
OnDrawwith a memory device context parameter. Then the CDC::BitBlt 
function copies the updated rectangle from the memory device context 
to the display device context. Add the following shaded code: 

void CEx10bView::OnPaint() 
{ 

CPaintDC dc(this); II device context for painting 
OnPrepareDC(&dc); 
CRect rectUpdate; 
dc.GetClipBox(&rectUpdate); 
CBitmap* pOldBitmap = m_pdcMemory->SelectObject(m_pBitmap); 
m_pdcMemory->SelectClipRgn(NULL); 
m_pdcMemory->IntersectClipRect(&rectUpdate); 
CBrush backgroundBrush«COLORREF) ::GetSysColor(COLOR_WINDOW»; 
CBrush* pOldBrush = m_pdcMemory->SelectObject(&backgroundBrush); 
m_pdcMemory->PatBlt(rectUpdate.left. rectUpdate.top. 

OnDraw(m_pdcMemory); 

rectUpdate.Width(). rectUpdate.Height(). 
PATCOPY) ; 

dc.BitBlt(rectUpdate.left, rectUpdate.top. 
rectUpdate.W;dth(). rectUpdate.Height(), 
m_pdcMemory. rectUpdate.left. rectUpdate.top. 
SRCCOPY) ; 

m_pdcMemory->SelectObject(pOldBitmap); 
m_pdcMemory->SelectObject(pOldBrush); 

7. Code the OnDraw function in ex10bView.cpp. Copy the code from 
ex05cView.cpp. In EXIOB, OnDraw is passed a pointer to a memory de
vice context by the OnPaint function. For printing, OnDraw is passed a 
pointer to the printer device context. 

8. Copy mouse message-handling code from ex05cView.cpp. Copy 
the functions shown below from ex05cView.cpp to exlObView.cpp. Be 
sure to change the functions' class names from CEx05cView to CExlObView. 

!.J OnLButtonDown 

!.J OnLButton Up 

!.J OnMouseMove 

227 



PAR T II: THE MFC LIBRARY VIEW CLASS 

228 

9. Change two lines in the OnMouseMove function in ex10bView.cpp. 
Change the following two lines 

InvalidateRect(rectOld, TRUE); 
InvalidateRect(rectNew, TRUE); 

to 

InvalidateRect(rectOld, FALSE); 
Inval idateRect( rectNew,FALSE); 

If the second CWnd::lnvalidateRect parameter is TRUE (the default), 
Windows erases the background before repainting the invalid rectangle. 
That's what you needed in EX05C, but the background erasure is what 
causes the flicker. Because the entire invalid rectangle is being copied 
from the bitmap, you no longer need to erase the background. The 
FALSE parameter prevents this erasure. 

10. Build and run the application. Here is the EXIOB program output: 

Is the circle's movement smoother now? The problem is that the 
bitmap is only 8-by-IO.5 inches, and if the scrolling window is big 
enough, the circle goes off the edge. One solution to this problem 
is to make the bitmap as big as the largest display. 



TEN: Bitmaps 

Windows Animation 
EX10B is a crude attempt at Windows animation. What if you wanted to move 
an angelfish instead ofa circle? Win32 doesn't have an Angelfish function (yet), 
so you'd have to keep your angelfish in its own bitmap and use the StretchBlt 
mask ROP codes to merge the fish with the background. You'd probably keep 
the background in its own bitmap too. Now things are getting too complex 
for this book. Better run out and get Nigel Thompson's Animation Techniques 
in Win32 (Microsoft Press, 1995). After you read it, you can get rich writing 
video games for Windows! 

DIBs and the CDib Class 
There's an MFC class for GDI bitmaps (CBitmap) , but there's no MFC class for 
DIBs. Don't worry-I'm giving you one here. It's a complete rewrite of the CDib 
class from the earlier editions of this book, and it takes advantage ofWin32 
features such as memory-mapped files, improved memory management, and 
DIB sections. It also includes palette support. Before you examine the CDib 
class, however, you need a little background on DIBs. 

A Few Words About Palette Programming 
Windows palette programming is quite complex, but you've got to deal with 
it if you expect your users to run their displays in the 8-bpp (bits per pixel) 
mode-and many users will if they have video cards with 1 MB or less of 
memory. 

Suppose you're displaying a single DIB in a window. First you must cre
ate a logical palette, a GDI object that contains the colors in the DIB. Then 
you must "realize" this logical palette into the hardware system palette, a table 
of the 256 colors the video card can display at that instant. If your program is 
the foreground program, the realization process tries to copy all your colors 
into the system palette, but it doesn't touch the 20 standard Windows colors. 
For the most part, your DIB looks just like you want it to. 

But what if another program is the foreground program, and what if that 
program has a forest scene DIB with 236 shades of green? Your program still 
realizes its palette, but something different happens this time. Now the system 
palette won't change, but Windows sets up a new mapping between your logi
cal palette and the system palette. If your DIB contains a neon pink color, for 
example, Windows maps it to the standard red color. If your program forgot 
to realize its palette, your neon pink stuff would turn green when the other 
program went active. 

229 



PAR T II: THE MFC LIBRARY VIEW CLASS 

The forest scene example is extreme because we assumed that the other 
program grabbed 236 colors. If instead the other program realized a logical 
palette with only 200 colors, Windows would let your program load 36 of its 
own colors, including, hopefully, neon pink. 

So when is a program supposed to realize its palette? The Windows 
message WM_PALETTECHANGED is sent to your program's main window 
whenever a program, including yours, realizes its palette. Another message, 
WM_QUERYNEWPALETTE, is sent whenever one of the windows in your 
program gets the input focus. Your program should realize its palette in re
sponse to both these messages. These palette messages are not sent to your 
view window, however. You must map them in your application's main frame 
window and then notify the view. Chapter 12 discusses the relationship be
tween the frame window and the view, and Chapter 25 contains a complete 
palette-aware MDI application (EX25A). 

You call the Win32 RealizePalette function to perform the realization, but 
first you must call Select Palette to select your DIB's logical palette into the de
vice context. SelectPalette has a flag parameter that you normally set to FALSE 
in your WM_P ALETTECHANGED and WM_ QUERYNEWP ALETTE handlers. 
This flag ensures that your palette is realized as a foreground palette if your 
application is indeed running in the foreground. If you use a TRUE flag 
parameter here, you can force Windows to realize the palette as though the 
application were in the background. 

You must also call SelectPalette for each DIB that you display in your 
OnDrawfunction. This time you call it with a TRUE flag parameter. Things do 
get complicated if you're displaying several DIBs, each with its own palette. 
Basically, you've got to choose a palette for one of the DIBs and realize it (by 
selecting it with the FALSE parameter) in the palette message handlers. That 
chosen DIB will end up looking better than the other DIBs. There are ways 
of merging palettes, but it might be easier to go out and buy more video 
memory. 

DIBs, Pixels, and Color Tables 

230 

A DIB contains a two-dimensional array of elements called pixels. In many 
cases, each DIB pixel will be mapped to a display pixel, but the DIB pixel might 
be mapped to some logical area on the display, depending on the mapping 
mode and the display function stretch parameters. 

A pixel consists of 1,4,8, 16,24, or 32 contiguous bits, depending on the 
color resolution of the DIB. For 16-bpp, 24-bpp, and 32-bpp DIBs, each pixel 



TEN: Bitmaps 

represents an RGB color. A pixel in a 16-bpp DIB typically contains 5 bits each 
for red, green, and blue values, and a pixel in a 24-bpp DIB has 8 bits for each 
color value. The 16-bpp and 24-bpp DIBs are optimized for video cards that 
can display 65,536 or 16.7 million simultaneous colors. 

A 1-bpp DIB is a monochrome DIB, but these DIBs don't have to be black 
and white-they can contain any two colors chosen from the color table that 
is built into each DIB. A monochrome bitmap has two 32-bit color table entries, 
each containing 8 bits for red, green, and blue values plus another 8 bits for 
flags. Zero (0) pixels use the first entry, and one (1) pixels use the second. 
Whether you have a 65,536-color video card or a 16.7-million-color card, Win
dows can display the two colors directly. (Windows truncates 8-bits-per-color 
values to 5 bits for 65,536-color displays.) If your video card is running in 256-
color palettized mode, your program can adjust the system palette to load the 
two specified colors. 

Eight-bpp DIBs are quite common. Like a monochrome DIB, an 8-bpp 
DIB has a color table, but the color table has 256 (or fewer) 32-bit entries. Each 
pixel is an index into this color table. If you have a palettized video card, your 
program can create a logical palette from the 256 entries. If another program 
(running in the foreground) has control of the system palette, Windows does 
its best to match your logical palette colors to the system palette. 

What if you're trying to display a 24-bpp DIB with a 256-color palettized 
video card? If the DIB author is nice, he or she included a color table contain
ing the most important colors in the DIB. Your program can build a logical 
palette from that table, and the DIB will look OK. If the DIB has no color table, 
use the palette returned by the Win32 CreateHalftonePalette function; it's bet
ter than the 20 standard colors you'd get with no palette at all. Another op
tion is to analyze the DIB to identify the most important colors, but you can 
buy a utility to do that. 

The Structure of a DIB Within a BMP File 
You know that the DIB is the standard Windows bitmap format and that a BMP 
file contains a DIB. So let's look inside a BMP file to see what's there. Figure 
10-1 on the following page shows a layout for a BMP file. The BITMAPFILE
HEADER structure contains the offset to the image bits, which you can use to 
compute the combined size of the BITMAPINFOHEADER structure and the 
color table that follows. The BITMAPFILEHEADER structure contains a file 
size member, but you can't depend on it because you don't know whether the 
size is measured in bytes, words, or double words. 

231 



PAR T II: THE MFC LIBRARY VIEW CLASS 

232 

BITMAPFILEHEADER . bfType = "BM" 
(BMP files only) bfOffBits 

BITMAPINFOHEADER biSize (of this structure) 
biWidth (in pixels) 
biHeight (in pixels) 
biPlanes = 1 
biBitGount (1, 4, 8, 16, 24, or 32) 
biGompression (0 for none) 
biSizelmage (only if compression is used) 
biG/rUsed (nonzero for short color tables) 

Color Table . 2 entries for mono OIBs 
16 or fewer entries for 4-bpp OIBs 
256 or fewer entries for 8-bpp OIBs 

Each entry is 32 bits 

OIB Bit Image Pixels ordered by column within row 

: Rows padded to 4-byte boundaries 

Figure 10-1. 
The layout for a BMP file. 

The BITMAPINFOHEADERstructure contains the bitmap dimensions, 
the bits per pixel, compression information for 4-bpp and 8-bpp bitmaps, and 
the number of color table entries. If the DIB is compressed, this header con
tains the size of the pixel array; otherwise, you can compute the size from the 
dimensions and the bits per pixel. Immediately following the header is the 
color table (if the DIB has a color table). The DIB image comes after that. The 
DIB image consists of pixels arranged by column within rows, starting with the 
bottom row. Each row is padded to a 4-byte boundary. 

The only place you'll find a BITMAPFILEHEADER structure, however, 
is in a BMP file. If you get a DIB from the clipboard, for example, there will 
not be a file header. You can always count on the color table to follow the 
BITMAPINFOHEADER structure, but you can't count on the image to follow 
the color table. If you're using the CreateDIBSectionfunction, for example, you 
must allocate the bitmap info header and color table and then let Windows 
allocate the image somewhere else. 



TEN: Bitmaps 

NOT E : This chapter and all the associated code are specific to 
Windows DIBs. There's also a well-documented variation of the DIB 
format for OS/2. If you need to process these OS/2 DIBs, you'll have 
to modify the CDib class. 

DIB Access Functions 
Windows supplies some important DIB access functions. None of these func
tions is wrapped by MFC, so you'll need to refer to the online Win32 documen
tation for details. Here's a summary: 

C SetDIBitsToDevice-This function displays a DIB directly on the 
display or printer. No scaling occurs; one bitmap bit corresponds 
to one display pixel or one printer dot. This scaling restriction 
limits the function's usefulness. The function doesn't work like 
BitBlt because BitBlt uses logical coordinates. 

C StretchDIBits-This function displays a DIB directly on the display 
or printer in a manner similar to that of StretchBlt. 

C GetDIBits-This function constructs a DIB from a CDI bitmap, 
using memory that you allocate. You have some control over the 
format of the DIB because you can specify the number of color 
bits per pixel and the compression. If you are using compression, 
you have to call GetD/Bits twice-once to calculate the memory 
needed and again to generate the DIB data. 

C CreateDIBitmap-This function creates a CDI bitmap from a DIB. 
As for all these DIB functions, you must supply a device context 
pointer as a parameter. A display device context will do; you don't 
need a memory device context. 

C CreateDIBSection-This new Win32 function creates a special 
kind of DIB known as a DIB section. It then returns a CDI bitmap 
handle. This function gives you the best features of DIBs and CDI 
bitmaps. You have direct access to the DIB's memory, and with the 
bitmap handle and a memory device context, you can call CDI 
functions to draw into the DIB. 

The CDib Class 
If DIBs look intimidating, don't worry. The CDib class makes DIB program
ming easy. The best way to get to know the CDib class is to look at the public 

233 



PAR T II: THE MFC LIBRARY VIEW CLASS 

234 

member functions and data members. Figure 10-2 shows the CDib header file. 
Consult the companion CD-ROM to see the implementation code. 

CDIB.H 

#ifndef _INSIDE_VISUAL_CPP_CDIB 
#define _INSIDE_VISUAL_CPP_CDIB 

class CDib : public CObject 
{ 

enum Alloc {noAlloc, crtAlloc, 
heapAlloc}; II applies to BITMAPINFOHEADER 

DECLARE_SERIAL(CDib) 
public: 

LPVOID m_lpvColorTable: 
HBITMAP m_hBitmap; 
LPBYTE m_lpImage; II starting address of DIB bits 
LPBITMAPINFOHEADER m_lpBMIH; II buffer containing the 

II BITMAPINFOHEADER 
private: 

HGlOBAL m_hGlobal; II for external windows we need to free: 
II could be allocated by this class or 
II allocated externally 

Allocm_nBmihAlloc; 
Alloe m_nImageAlloc; 
DWORD m_dwSizeImage; II of bits--not BITMAPINFOHEADER 

II or BITMAPFIlEHEADER 
int m_nColorTableEntries; 

HANDLE m_hFil e; 
HANDLE m_hMap; 
lPVOID m_lpvFile; 
HPAlETTE m_hpalette: 

public: 
CDib(); 
CDib(CSize size. int nBitCount); II builds BITMAPINFOHEADER 
-CDib(); 
int GetSizeImage() {return m_dwSizeImage;} 
int GetSizeHeader() 

{return sizeof(BITMAPINFOHEADER) + 
sizeof(RGBQUAD) * m_nColorTableEntries;} 

CSize GetDimensions(); 
BOOl AttachMapFile{const char* strPathname.BOOl bShare = FALSE): 
Baal CopyToMapFile(const char* strPathname): 

Figure 10-2. (continued) 

The CDib class declaration. 



TEN: Bitmaps 

Figure 10-2. continued 

BOOl AttachMemory(lPVOID lpvMem. BOOl bMustDelete FALSE. 
HGlOBAl hGlobal = NUll); 

BOOl Oraw(CDC* pOC. CPoint origin. 
CSize size); II until we implement CreateOibSection 

HBITMAP CreateSection(CDC* pOC = NUll); 
UINT UsePalette(CDC* pOC. BOOl bBackground = FALSE): 
BOOl MakePalette(); 
BOOl SetSystemPalette(COC* pOC); 
BOOl Compress(CDC* pOC. 

BOOl bCompress = TRUE); II FALSE means decompress 
HBITMAP CreateBitmap(COC* pOC); 
BOOl Read(CFile* pFile): 
BOOl ReadSection(CFile* pFile, COC* pOC NUll); 
BOOl Write(CFile* pFile); 
void Serialize(CArchive& ar): 
void Empty(); 

private: 

} ; 

void DetachMapFile(); 
void ComputePaletteSize(;nt nBitCount): 
void ComputeMetrics(): 

#endif II _INSIDE_VISUAl_CPP_COIB 

Here's a rundown of the CDib member functions, starting with the con
structors and the destructor: 

[J Default constructor-You'll use the default constructor in prepa
ration for loading a DIB from a file or for attaching to a DIB in 
memory. The default constructor creates an empty DIB object. 

C DIB section constructor-If you need a DIB section that is created 
by the CreateDIBSection function, use this constructor. Its parame
ters determine DIB size and number of colors. The constructor 
allocates info header memory but not image memory. You can also 
use this constructor if you need to allocate your own image memory. 

Parameter 

size 

nBitCount 

Description 

CSize object that contains the width and height of 
the DIB 

Bits per pixel; should be 1, 4, 8, 16, 24, or 32 

235 



PAR T II: THE MFC LIBRARY VIEW CLASS 

236 

m Destructor-The CDib destructor frees all allocated DIB memory. 

m AttachMapFile-This function opens a memory-mapped file in read 
mode and attaches it to the CDib object. The return is immediate 
because the file isn't actually read into memory until it is used. 
When you access the DIB, however, a delay might occur as the file 
is paged in. The AttachMapFile function releases existing allocated 
memory and closes any previously attached memory-mapped file. 

Parameter 

strPathname 

bShare 

Return value 

Description 

Pathname of the file to be mapped 

Flag that is TRUE if the file is to be opened in share 
mode; the default value is FALSE 

TRUE if successful 

m AttachMemory-This function associates an existing CDib object 
with a DIB in memory. This memory could be in the program's 
resources, or it could be clipboard or OLE data object memory. 
Memory might have been allocated from the CRT heap with the 
new operator, or it might have been allocated from the Windows 
heap with GlobalAlloc. 

Parameter 

lpvMem 

bMustDelete 

hGlobal 

Return value 

Description 

Address of the memory to be attached 

Flag that is TRUE if the CDib class is responsible for 
deleting this memory; the default value is FALSE 

If memory was obtained with a call to the Win32 
GlobalAlloc function, the CDib object needs to keep 
the handle in order to free it later, assuming that 
bMustDelete was set to TRUE 

TRUE if successful 

m Compress-This function regenerates the DIB as a compressed 
or an uncompressed DIB. Internally, it converts the existing DIB 
to a CDI bitmap and then makes a new compressed or an uncom
pressed DIB. Compression is supported only for 4-bpp and 8-bpp 
DIBs. You can't compress a DIB section. 



TEN: Bitmaps 

Parameter 

pDC 

bCompress 

Return value 

Description 

Pointer to the display device context 

TRUE (default) to compress the DIB; FALSE to 
uncompress it 

TRUE if successful 

Cl CopyToMapFile-This function creates a new memory-mapped file 
and copies the existing CDib data to the file's memory, releasing 
any previously allocated memory and closing any existing memory
mapped file. The data isn't actually written to disk until the new 
file is closed, but that happens when the CDib object is reused or 
destroyed. 

Parameter 

strPathname 

Return value 

Description 

Pathname of the file to be mapped 

TRUE if successful 

Cl CreateBitmap-This function creates a GDI bitmap from an exist
ing DIB and is called by the Compress function. Don't confuse this 
function with CreateSection, which generates a DIB and stores the 
handle. 

Parameter 

pDC 

Return value 

Description 

Pointer to the display or printer device context. 

Handle to a GDI bitmap-NULL if unsuccessful. 
This handle is not stored as a public data member. 

Cl CreateSection-This function creates a DIB section by calling 
the Win32 CreateDIBSection function. The image memory will 
be unini tialized. 

Parameter 

pDC 

Return value 

Description 

Pointer to the display or printer device context. 

Handle to a GDI bitmap-NULL if unsuccessful. 
This handle is also stored as a public data member. 

237 



PA R T II: THE MFC LIBRARY VIEW CLASS 

238 

EEl Draw-This function outputs the CDib object to the display (or to 
the printer) with a call to the Win32 StretchDIBits function. The 
bitmap will be stretched as necessary to fit the specified rectangle. 

Parameter 

pDC 

origin 

size 

Return value 

Description 

Pointer to the display or printer device context that 
will receive the DIB image 

CPoint object that holds the logical coordinates at 
which the DIB will be displayed 

CSize object that represents the display rectangle's 
width and height in logical units 

TRUE if successful 

m Empty-This function empties the DIB, freeing allocated memory 
and closing the map file if necessary. 

m Get Dimensions-This function returns the width and height of a 
DIB in pixels. 

Parameter Description 

Return value CSize object 

m GetSizeHeader-This function returns the number of bytes in the 
info header and color table combined. 

Parameter Description 

Return value 32-bit integer 

EEl GetSizelmage-This function returns the number of bytes in the 
DIB image (excluding the info header and the color table). 

Parameter Description 

Return value 32-bit integer 

m MakePaleUe-If the color table exists, this function reads it and 
creates a Windows palette. The HPALETTE handle is stored in a 
data member. 



TEN: Bitmaps 

Parameter Description 

Return value TRUE if successful 

[J Read-This function reads a DIB from a file into the CDib object. 
The file must have been successfully opened. If the file is a BMP 
file, reading starts from the beginning of the file. If the file is a 
document, reading starts from the current file pointer. 

Parameter 

pFile 

Return value 

Description 

Pointer to a CFile object; the corresponding disk file 
contains the DIB 

TRUE if successful 

!::J ReadSection-This function reads the info header from a BMP file, 
calls CreateDIBSection to allocate image memory, and then reads the 
image bits from the file into that memory. Use this function if you 
want to read a DIB from disk and then edit it by calling CDI func
tions. You can write the DIB back to disk with Write or CopyToMapFile. 

Parameter 

pFile 

pDC 

Return value 

Description 

Pointer to a CFile object; the corresponding disk file 
contains the DIB 

Pointer to the display or printer device context 

TRUE if successful 

s Serialize-Serialization is covered in Chapter 16. The CDib::Serialize 
function, which overrides the MFC CObject::Serialize function, calls 
the Read and Write member functions. See the Microsoft Foundation 
Class Reference for a description of the parameters. 

S SetSystemPalette-Ifyou have a 16-bpp, 24-bpp, or 32-bpp DIB that 
doesn't have a color table, you can call this function to create for 
your CDib object a logical palette that matches the palette returned 
by the CreateHatjtonePalette function. If your program is running 
on a 256-color palettized display and you don't call SetSystemPalette, 
you'll have no palette at all, and only the 20 standard Windows col
ors will appear in your DIB. 

239 



PAR T II: THE MFC LIBRARY VIEW CLASS 

240 

Parameter 

pDC 

Return value 

Description 

Pointer to the display context 

TRUE if successful 

Ej UsePalette-This function selects the CDib object's logical palette 
into the device context and then realizes the palette. The Draw 
member function calls UsePalette prior to painting the DIB. 

Parameter 

pDC 

bBackground 

Return value 

Description 

Pointer to the display device context for realization. 

If this flag is FALSE (the default value) and the appli
cation is running in the foreground, Windows realizes 
the palette as the foreground palette (copies as many 
colors as possible into the system palette). If this flag 
is TRUE, Windows realizes the palette as a background 
palette (maps the logical palette to the system palette 
as best it can). 

Number of entries in the logical palette mapped to the 
system palette. If the function fails, the return value is 
GDLERROR 

Ej Write-This function writes a DIB from the CDib object to a file. 
The file must have been successfully opened or created. 

Parameter 

pFile 

Return value 

Description 

Pointer to a CFile object; the DIB will be written to 
the corresponding disk file 

TRUE if successful 

For your convenience, four public data members give you access to the 
DIB memory and to the DIB section handle. These members should give you 
a clue about the structure ofa CDibobject. It'sjusta bunch of pointers to heap 
memory. That memory might be owned by the DIB or by someone else. Addi
tional private data members determine whether the CDib class frees the 
memory. 



TEN: Bitmaps 

DIB Display Performance 
Optimized DIB processing is now a major feature of Windows. Modern video 
cards have frame buffers that conform to the standard DIB image format. If 
you have one of these cards, your programs can take advantage of the new 
Windows DIB engine, which speeds up the process of drawing directly from 
DIBs. If you're still running in VGA mode, however, you're out of luck; your 
programs will still work, but not as fast. 

If you're running Windows in 256-color mode, your 8-bpp bitmaps will 
be drawn very quickly, either with StretchBlt or with StretchDIBits. If, however, 
you are displaying I6-bpp or 24-bpp bitmaps, those drawing functions will be 
too slow. Your bitmaps will appear more quickly in this situation if you create 
a separate 8-bbp GDI bitmap and then call StretchBlt. Of course, you must be 
careful to realize the correct palette prior to creating the bitmap and prior 
to drawing it. 

Here's some code that you might insert just after loading your CDib object 
from a BMP file: 

II m_hBitmap is a data member of type HBITMAP 
II m_dcMem is a memory device context object of class CDC 
m_pDib-)UsePalette(&dc); 
m_hBitmap = m_pDib-)CreateBitmap(&dc); II could be slow 
::SelectObject(m_dcMem.GetSafeHdc(). m_hBitmap); 

Here is the code that you use in place ofCDib::Drawin your view's OnDraw 
member function: 

m_pDib-)UsePalette(pDC); II could be in palette msg handler 
CSize sizeDib = m_pDib-)GetDimensions(); 
pDC-)StretchBlt(0. 0. sizeDib.cx. sizeDib.cy. &m_dcMem. 

0. 0. sizeToDraw.cx. sizeToDraw.cy. SRCCOPY); 

Don't forget to call DeleteObject for m_hBitmap when you're done with it. 

The EX10C Example 
Now you'll put the CDib class to work in an application. The EXIOC program 
displays two DIBs, one from a resource and the other loaded from a BMP file 
that you select at runtime. The program manages the system palette and dis
plays the DIBs correctly on the printer. Compare the EXIOC code with the GDI 
bitmap code in EXIOA. Notice that you're not dealing with a memory device 
context and all the GDI selection rules! 

Following are the steps to build EXIOC. It's a good idea to type in the 
view class code, but you'll want to use the cdib.h and cdib.cpp files from the 
companion CD-ROM. 

241 



PAR T II: THE MFC LIBRARY VIEW CLASS 

242 

1. Run AppWizard to produce \vcpp32\ex1 Oc\ex1 Oc. Accept all the 
defaults, except select Single Document and select the CScrollView view 
base class for CExlOcView. The options and the default class names are 
shown here: 

2. Import the Red Blocks bitmap. Choose Resource from Developer 
Studio's Insert menu. Import Red Blocks.bmp from the \WINDOWS di
rectory. (If your version of Windows doesn't include this bitmap, load it 
from the companion CD-ROM.) Developer Studio will copy this bitmap 
file into your project's \res subdirectory. Assign IDB_REDBLOCKS as the 
ID, and save the changes. 

3. Integrate the CDib class with this project. If you've created this 
project from scratch, copy the Cdib.h and Cdib.cpp files from \vcpp32-
\exlOc on the companion CD-ROM. Simply copying the files to disk isn't 
enough; you must also add the CDib files to the project. Choose Add To 
Project from Developer Studio's Project menu, and then choose Files. 
Select Cdib.h and CDib.cpp, and click the OK button. If you now switch 
to ClassView in the Workspace window, you will see the class CDib and 
all of its member variables and functions. 

4. Add two private CDib data members to the class CEx10cView. 
In the ClassViewwindow, right-click the CExlOcView class. Choose Add 
Member Variable from the resulting pop-up menu, and then add the 
m_dibResource member as shown in the following illustration: 



TEN: Bitmaps 

Variable lYpe: I 'OK 

,. Cancel 
Variable Q eclaration: 

'I Q Protected ~, fijY~.~~ . 

Add m_dibFile in the same way. The result should be two data mem
bers at the bottom of the header file: 

CDib m_dibResouree; 
CDib m_dibFile; 

ClassView also adds this statement at the top of the exlOcView.h file: 

/Finelude "CDIB.H" II Added by ClassView 

5. Edit the OnlnitialUpdate member function in ex10cView.cpp. 
This function sets the mapping mode to MM_HlMETRIC and loads the 
m_dibResource object directly from the IDB_REDBLOCKS resource. Note 
that we're not calling LoadBitmap to load a CDI bitmap as we did in 
EXIOA. The CDib::AttachMemory function connects the object to the 
resource in your EXE file. Add the following shaded code: 

void CEx10eView::OnlnitialUpdate() 
{ 

CScrollView::OnlnitialUpdate(); 
CSize sizeTotal(30000, 40000); II 30-by-40 em 
CSize sizeLine ~ CSize(sizeTotal.cx I 100. sizeTotal.cy I 100); 
SetSerollSizes(MM_HIMETRIC. sizeTotal. sizeTotal. sizeLine): 

LPVOID lpvResource = (LPVOID) ::LoadResource(NULL. 
::FindResource(NULL. MAKEINTRESOURCE(IDB_REDBLOCKS). 
RT_BITMAP» : 

m_d i bResouree .AttaehMemory (l pvResouree); I I no need for 
/1 ::LockResouree' 

CClientDCde(this): 
TRACE("bits per pixel =%d\n". de.GetDeviceCaps(BIIS~I~EL»: 

243 



PAR T II: THE MFC LIBRARY VIEW CLASS 

244 

6. Edit the OnDraw member function in the file ex10cView.cpp. 
This code calls CDib::Draw for each of the DIBs. The UsePalette calls 
should really be made by message handlers for the WM_QUERYNEW
PALETTE and WM_PALETTECHANGED messages. These messages are 
hard to deal with because they don't go to the view directly, so we'll take 
a shortcut. Add the following shaded code: 

void CEx10cView::OnDraw(CDC* pDC) 
{ 

BeginWaitCursor(); 
m_dibResource.UsePalette(pDC); II should be in palette 
m_dibFile.UsePalette(pDC); II message handlers. not here 
pDC->TextOut(0, 0. 

"Cl i ck the 1 eft mouse button here to load a fil e. to) : 

CSize sizeResourceDib = m_dibResource.GetDimensions(); 
sizeResourceDib.cx *= 30; 
sizeResourceDib.cy *= -30; 
m_dibResource.Draw(pDC, CPoint(0, -800), sizeResourceDib); 
CSize sizeFileDib = m_dibFile.GetDimens;ons(): 
sizeFileDib.cx *= 30: 
sizeFileDib.cy *=-30: 
m_dibFile.Draw(pDC. CPoint(1800. -800), s;zeFileDib); 

,EndWa itCursor ( ) : 

7. Map the WM_LBUTTONDOWN message in the CEx10cView 
class. Edit the file exlOcView.cpp. OnLButtonDown contains code to 
read a DIB in two different ways. If you leave the MEMORY_MAPPED
_FILES definition intact, the AttachMapFile code is activated to read a 
memory-mapped file. If you comment out the first line, the Read call is 
activated. The SetSystemPalette call is there for DIBs that don't have a 
color table. Add the following shaded code: 

Itdefi ne .MEMORY _MAPPED_FI LES 
void CEx10cView::OnLButtonDown(UINT nFlags. CPoint point) 
{ 

CFileDialog dlg<TRUE. "bmp" , "*.bmp"); 
if (dlg.DoModal{) 1= IDOK) { 

return: 
} 

Iti fdef' MEMORY _MAPPED_FI LES 
. if (m_di bFi le. AttachMapFil e (dl g. GetpathName( y, 

TRUE) == TRUE) {II share 
Inva 1 i dateO; 



TEN: Bitmaps 

ffe 1 se 
CFile file; 
file.Open(dlg.GetPathName(). CFile::modeRead): 
if (m_dibFile.Read(&file) == TRUE) { 

Invalidate(); 

#endif II MEMORY_MAPPED_FILES 
CClientDC dc(this); 
m_dibFile.SetSystemPalette(&dc); 

8. Build and run the application. The EXIOC project directory on the 
companion CD-ROM contains several interesting bitmaps. The Chicago
.bmp file is an 8-bpp DIB with 256-color table entries; the forest.bmp 
and clouds. bmp files are also 8-bpp, but they have smaller color tables. 
The balloons.bmp is a 24-bpp DIB with no color table. Try some other 
BMP files if you have them. Note that Red Blocks is a 16-color DIB that 
uses standard colors, which are always included in the system palette. 

Going Further with DIBs 
Each new version of Windows offers more DIB programming choices. Both 
Windows 95 and Microsoft Windows NT 4.0 provide the LoadImage and 
DrawDibDraw functions, which are useful alternatives to the DIB functions 
already described. Experiment with these functions to see if they work well in 
your applications. 

The Load/mage Function 
The LoadImage function can read a bitmap directly from a disk file, returning 
a DIB section handle. It can even process OS/2 format DIBs. Suppose you 
wanted to add an ImageLoad member function to CDib that would work like 
ReadSection. This is the code you would add to cdib.cpp: 

BOOL CDib::ImageLoad(const char* lpszPathName. CDC* pDC) 
{ 

Empty(); 
m_hBitmap = (HBITMAP) ::LoadImage(NULL. lpszPathName. IMAGE_BITMAP. 

0. 0. LR_LOADFROMFILE I LR_CREATEDIBSECTION I LR_DEFAULTSIZE); 
DIBSECTION ds; 
VERIFY(::GetObject(m_hBitmap. sizeof(ds). &ds) == sizeof(ds»; 
II Allocate memory for BITMAPINFOHEADER 
II and biggest possible color table 
m_lpBMIH = (LPBITMAPINFOHEADER) new 

char[sizeof(BITMAPINFOHEADER) + 256 * sizeof(RGBOUAD)]; 

(continued) 

245 



PAR T II: THE MFC LIBRARY VIEW CLASS 

memcpy(m_lpBMIH. &ds.dsBmih. sizeof(BITMAPINFOHEADER»; 
TRACE("CDib: :loadImage. biClrUsed = %d. biClrImportant %d\n". 

m_lpBMIH->biClrUsed. m_lpBMIH->biClrImportant); 
ComputeMetricsC); II sets m_lpvColorTable 
m_nBmihAlloc = crtAlloc; 
m_lpImage = (lPBYTE) ds.dsBm.bmBits; 
m_nImageAlloc = noAlloc; 
II Retrieve the DIB section's color table 
II and make a palette from it 
CDC memdc; 
memdc.CreateCompatibleDC(pDC); 
::SelectObject(memdc.GetSafeHdc(). m_hBitmap); 
UINT nColors = ::GetDIBColorTable(memdc.GetSafeHdc(). 0. 256. 

(RGBQUAD*) m_lpvColorTable); 
if (nColors != 0) ( 

ComputePaletteSize(m_lpBMIH->biBitCount); 
MakePal ette(); 

II memdc deleted and bitmap deselected 
return TRUE; 

Note that this function extracts and copies the BITMAPINFOHEADER struc
ture and sets the values of the CDib pointer data members. You must do some 
work to extract the palette from the DIB section, but the Win32 GetDIB
ColorTable function gets you started. It's interesting that GetDIBColorTablecan't 
tell you how many palette entries a particular DIB uses. If the DIB uses only 
60 entries, for example, GetDIBColorTable generates a 256-entry color table with 
the last 196 entries set to o. 

The DrawDibDraw Function 

246 

Windows includes the Video for Windows (VFVV) component, which is sup
ported by Visual c++. The VFVV DrawDibDraw function is an alternative to 
StretchDIBits. One advantage of DrawDibDraw is its ability to use dithered col
ors, and another is its increased speed in drawing a DIB with a bpp value that 
does not match the current video mode. The main disadvantage is the need 
to link the VFVV code into your process at runtime. 

Shown below is a DrawDib member function for the CDib class that calls 
DrawDibDraw: 

BOOl CDib: :DrawDib(CDC* pDC. CPoint origin. CSize size) 
{ 

if (m_lpBMIH == NUll) return FALSE; 
if Cm_hPalette != NUll) ( 

: :SelectPalette(pDC->GetSafeHdc(). m_hPalette. TRUE); 



TEN: Bitmaps 

HDRAWDIB hdd = ::DrawDibOpen(); 
CRect rect(origin. size); 
pDC->LPtoDP(rect); II Convert DIB's rectangle 

II to MM_TEXT coordinates 
rect -= pDC->GetViewportOrg(); 
int nMapModeOld = pDC->SetMapMode(MM_TEXT); 
::DrawDibDraw(hdd. pDC->GetSafeHdc(). rect.left. rect.top. 

rect.Width(). rect.Height(). m_lpBMIH. m_lpImage. 0. 0. 
m_lpBMIH->biWidth. m_lpBMIH->biHeight. 0); 

pDC->SetMapMode(nMapModeOld); 
VERIFY(::DrawDibClose(hdd»; 
return TRUE; 

Note that DrawDibDraw needs MM_TEXT coordinates and the MM_TEXT 
mapping mode. Thus, logical coordinates must be converted not to device co
ordinates but to pixels with the origin at the top left of the scrolling window. 

To use DrawDibDraw, your program needs an #include<vfw.h> statement, 
and you must add vfw32.lib to the list oflinker input files. DrawDibDraw might 
assume the bitmap it draws is in read/write memory, a fact to keep in mind if 
you map the memory to the BMP file. 

Putting Bitmaps on Pushbuttons 
The MFC library makes it easy to display a bitmap (instead of text) on a 
pushbutton. If you were to program this from scratch, you would set the Owner 
Draw property for your button and then write a message handler in your dia
log class that would paint a bitmap on the button control's window. If you use 
the MFC CBitmapButton class instead, you end up doing a lot less work, but you 
have to follow a kind of "cookbook" procedure. Don't worry too much about 
how it all works, but be glad that you don't have to write much code. 

NOT E : There's now another way to put bitmaps on buttons. See 
Chapter 32, page 925, for a description of the CButton::SetBitmap 
function, which associates a single bitmap with a button. 

To make a long story short, you layout your dialog resource as usual with 
unique text captions for the buttons you designate for bitmaps. Next you add 
some bitmap resources to your project, and you identify those resources by 
name rather than by numeric ID. Finally you add some CBitmapButton data 
members to your dialog class, and you call the AutoLoad member function for 
each one, which matches a bitmap name to a button caption. If the button 
caption is "Copy", you add two bitmaps: "COPYU" for the up state and 

247 



PAR T II: THE MFC LIBRARY VIEW CLASS 

"COPYD" for the down state. Oh, by the way, you must still set the button's 
Owner Draw property. This will all make more sense when you write a program. 

NOT E : If you look at the MFC source code for the CBitmapButton 
class, you'll see that the bitmap is an ordinary GDI bitmap painted 
with a BitBltcall. Thus, you can't expect any palette support. That's 
not often a problem because bitmaps for buttons are usually 16-
color bitmaps that depend on standard VGA colors. 

The EX10D Example 

248 

Here are the steps for building EX10D: 

1. Run AppWizard to produce \vcpp32\ex1 Od\ex1 Od. Accept all the 
defaults but three: select Single Document, deselect Printing And Print 
Preview, and select Context-Sensitive Help. The options and the default 
class names are shown here: 

The Context-Sensitive Help option was selected for one reason only: 
it causes AppWizard to copy some bitmap files into your project's \hlp sub
directory. These bitmaps are supposed to be bound into your project's 
help file, but we won't study help files until Chapter 20. 

2. Modify the project's IDD_ABOUTBOX dialog resource. It's too 
much hassle to creat~ a new dialog resource for a few buttons, so we'll 
use the About dialog that AppWizard generates for every project. Add 



TEN: Bitmaps 

three pushbuttons with captions, as shown below, accepting the default 
IDs IDC_BUTTON1, IDC_BUTTON2, and IDC_BUTTON3. The size of the 
buttons isn't important because the framework adjusts the button size at 
runtime to match the bitmap size. 

?;, ....... , ..... ,. .. ,.,.,., .. ~ .. , .. ,~,",..,~,~,~ .. ~ .. ",..,~.~,:··,.~,.:·.:..:.'·.'.:··.':.'.:·:·:c·:·:,.,·.'·····,.······,.· ..... , ..... ,.,..'.,. ........ , .. ~ .. ,: .... ,.,.,:,: ... : .. ,. 

il! r~··:~;l;;dv~;i~~i:o···················································I:Jq 
~! ~ Ie COPYright (el 1997 i 
:::J ;.'~H ".~ 1 

): ~ ..... ·@] .. i~...................... ....................................... 1 

Select the Owner Draw property for all three buttons. 

3. Import three bitmaps from the project's \hlp subdirectory. Choose 
Resource from Developer Studio's Insert menu, and then click the Im
port button. Start with EditCopy.bmp, as shown here: 

Assign the name "COPYU" as shown: 

249 



PAR T II: THE MFC LIBRARY VIEW CLASS 

250 

Be sure to use quotes around the name in order to identify the 
resource by name rather than by ID. This is now the bitmap for the 
button's up state. Close the bitmap window and, from the ResourceView 
window, use the clipboard (or drag and drop) to make a copy of the 
bitmap. Rename the copy "COPYD" (down state), and then edit this 
bitmap. Choose Invert Colors from the Image menu. There are other 
ways of making a variation of the up image, but inversion is the quickest. 

Repeat the steps listed above for the EditCut and EditPast bitmaps. 
When you're finished, you should have the following bitmap resources 
in your proj ect: 

Resource Name Original File Invert Colors 

"COPYU" EditCopy.bmp no 

"COPYD" EditCopy.bmp yes 

"CUTU" EditCut.bmp no 

"CUTD" EditCut.bmp yes 

"PASTEU" EditPast.bmp no 

"PASTED" EditPast.bmp yes 

4. Edit the code for the CAboutDlg class. Both the declaration and the 
implementation for this class are contained in the exlOd.cpp file. First 
add the three private data members shown here in the class declaration: 

CBitmapButton m_editCopy: 
CBitmapButton m_editCut; 
CBitmapButton m_editPaste; 

Then you use ClassWizard to map the WM_INITDIALOG message 
in the dialog class. (Be sure that the CAboutDlg class is selected.) The 
message handler (actually a virtual function) is coded as follows: 

BOOl CAboutDlg::OnInitDialog() 
{ 

CDialog:.:OnInitDialog(): 
VERIFY(m_editCopy.Autoload(IDC_BUTTONl. this»; 
VERIFY{m_editCut.Autoload(IDC_BUTTON2. this»: 
VERIFY(m_editPaste.Autolo~d(IDC~BUTTON3. thiS»; 
return TRUE; II return TRUE unless you set the focus to a control 

II EXCEPTION: OCX Property Pages should return FALSE 



TEN: Bitmaps 

The AutoLoad function connects each button with the two matching re
sources. The VERIFY macro is an MFC diagnostic aid that displays a mes
sage box if you didn't code the bitmap names correctly. 

5. Edit the OnDrawfunction in ex10dView.cpp. Replace the AppWizard
generated code with the following line: 

pDC->TextOut(0. 0, "Choose About from the Help menu."): 

6. Build and test the application. When the program starts, choose 
About from the Help menu and observe the button behavior. The image 
below shows the CUT button in the down state: 

:~ 
~""''''>'>W«<'«w' 

Note that bitmap buttons send BN_CLICKED notification messages 
just as ordinary buttons do. ClassWizard can, of course, map those mes
sages in your dialog class. 

Going Further with Bitmap Buttons 
You've seen bitmaps for the buttons' up and down states. The CBitmapButton 
class also supports bitmaps for the focused and disabled states. For the Copy 
button, the focused bitmap name would be "COPYF", and the disabled bitmap 
name would be "COPYX". If you want to test the disabled option, make a 
"COPYX" bitmap, possibly with a red line through it, and then add the follow
ing line to your program: 

m_editCopy.EnableWindow(FALSE); 

251 





'%7Y"" 
,:"":~ . ~_ ~:.t.·;~;". '_~_,.w.w_"""";'; 

C HAP T E R E LEV E N 

Windows Message Processing 
and Multithreaded Programming 

With its new preemptive multitasking and multithreading API, Win32 has 
revolutionized programming for Microsoft Windows. If you've seen magazine 
articles and advanced programming books on these subjects, you might have 
been intimidated by the complexity of using multiple threads. You could stick 
with single-threaded programming for a long time and still write useful Win32 
applications. If you learn the fundamentals of threads, however, you'll be able 
to write more efficient and capable programs and you'll be on your way to a 
better understanding of the Win32 programming model. 

Windows Message Processing 
To understand threads, you must first understand how 32-bit Windows pro
cesses messages. The best starting point is a single-threaded program that 
shows the importance of the message translation and dispatch process. You'll 
improve that program by adding a second thread, which you'll control with 
a global variable and a simple message. Then you'll experiment with.events 
and critical sections. For heavy-duty multithreading elements such as mutexes 
and semaphores, however, you'll need to refer to another book, such as Jeffrey 
Richter's Advanced Windows, 3d Ed. (Microsoft Press, 1997). 

How a Single-Threaded Program Processes Messages 
All the programs so far in this book have been single-threaded, which means 
that your code has only one path of execution. With ClassWizard's help, you've 
written handler functions for various Windows messages and you've written 
OnDraw code that is called in response to the WM_PAINT message. It might 
seem that Windows magically calls your handler when the message floats in, 

253 



PAR T II: THE MFC LIBRARY VIEW CLASS 

but it doesn't work that way. Deep inside the MFC code (which is linked to 
your program) are instructions that look something like this: 

MSG message; 
while (::GetMessage(&message, NULL, e, e» { 

::TranslateMessage(&message); 
::DispatchMessage(&message); 

Windows determines which messages belong to your program, and the 
GetMessage function returns when a message needs to be processed. If no mes
sages are posted, your program is suspended, and other programs can run. 
When a message eventually arrives, your program "wakes up." The Translate
Message function translates WM_KEYDOWN messages into WM_CHAR mes
sages containing ASCII characters, and the DispatchMessage function passes 
control (via the window class) to the MFC message pump, which calls your 
function via the message map. When your handler is finished, it returns to the 
MFC code, which eventually causes DispatchMessage to return. 

Yielding Control 

254 

What would happen if one of your handler functions was a pig and chewed 
up 10 seconds of CPU time? Back in the 16-bit days, that would have hung up 
the whole computer for the duration. Only cursor tracking and a few other 
interrupt-based tasks would have run. With Win32, multitasking has gotten a 
whole lot better. Other applications can run because of preemptive multi
tasking-Windows simply interrupts your pig function when it needs to. How
ever, even in Win32, your program would be locked out for 10 seconds. It 
couldn't process any messages because DispatchMessage doesn't return until 
the pig returns. 

There is a way around this problem, however, which works with both 
Win16 and Win32. You simply train your pig function to be nice and yield 
control once in a while by inserting the following instructions inside the pig's 
main loop: 

MSG message; 
if (::PeekMessage(&message, NULL, e, e, PM_REMOVE» { 

::TranslateMessage(&message); 
::DispatchMessage(&message); 

The PeekMessage function works like GetMessage, except that it returns imme
diately even if no message has arrived for your program. In that case, the pig 
keeps on chewing. If there lli a message, however, the pig pauses, the handler 
is called, and the pig starts up again after the handler exits. 



E LEV EN: Windows Message Processing and Multithreaded Programming 

Timers 
A Windows timer is a useful programming element that sometimes makes 
multithreaded programming unnecessary. If you need to read a communica
tion buffer, for example, you can set up a timer to retrieve the accumulated 
characters every 100 milliseconds. You can also use a timer to control anima
tion because the timer is independent of CPU clock speed. 

Timers are easy to use. You simply call the CWnd member function SetTimer 
with an interval parameter, and then you provide, with the help of Class Wizard, 
a message handler function for the resulting WM_ TIMER messages. Once you 
start the timer with a specified interval in milliseconds, WM_ TIMER messages 
will be sent continuously to your window until you call CWnd::KillTimer or until 
the timer's window is destroyed. You can use multiple timers if you want, each 
identified by an integer. Because Windows isn't a real-time operating system, 
things get imprecise if you specify an interval much less than 100 milliseconds. 

Like any other Windows messages, timer messages can be blocked by 
other handler functions in your program. Fortunately, timer messages don't 
stack up. Windows won't put a timer message in the queue if a message for that 
timer is already present. 

The EX11 A Program 
We're going to write a single-threaded program that contains a CPU-intensive 
computation loop. We want to let the program process messages after the user 
starts the computation; otherwise, the user couldn't cancel thejob. Also, we'd 
like to display the percent complete status by using a progress indicator con
trol, as shown in Figure 11-1. The EX 11A program allows message processing 
by yielding control in the compute loop. A timer handler updates the progress 
control based on compute parameters. The WM_ TIMER messages could not 
be processed if the compute process didn't yield control. 

Figure 11-1. 
The Compute dialog box. 

255 



PAR T II: THE MFC LIBRARY VIEW CLASS 

256 

Here are the steps for building the EXIIA application: 

1. Run AppWizard to generate \vcpp32\ex11 a\ex11 a. Select Single 
Document and deselect Printing And Print Preview; otherwise, accept 
the default settings. The options and the default class names are 
shown here: 

2. Use the dialog editor to create the dialog resource IDD_COMPUTE. 
Use the resource shown here as a guide: 

Compute . ' '. . ' . £I 
~:: rI···'!:·:dU .. " ... u .. :.:.u ..... ::.; ... ~: ..... ;." ... ".; •• ":.: ... ":.".,: ... ;.: ....... ;., ....... ; .. "1: . Sla'ft···:,·' . ,. 

::;Il:'~~.~.~~:~.~~~ ·· .. ·•·•·· .. · •• :: .•.... ··.1;: •. ·: •• :.·.!r;w"c~ri:~:~l;:: " 
~~ll\·! .. i; ... ,"'.::; ....... :.:~~ .... :): .... : .. " ...... , ...... ?:: .. ::: ... m::}···:··::···E··· ...... ~·}·;::·:·u.~ .... < ... :""" ........ :t) 

Keep the default control ID for the Cancel button, but use IDC_START 
for the Start button. For the progress indicator, accept the default ID 
IDC_PROGRESSl. 

3. Use ClassWizard to create the CComputeDlg class. ClassWizard 
connects the new class to the IDD_ COMPUTE resource you just created. 

After the class is generated, add a WM_ TIMER message handler func
tion. Also add BN_CLICKED message handlers for IDC_STARTand 
IDCANCEL. Accept the default names OnStart and On Cancel. 



E LEV EN: Windows Message Processing and Multithreaded Programming 

4. Add three data members to the CComputeDlg class. Edit the file 
ComputeDlg.h. Add the following private data members: 

int m_nTimer; 
int m_nCount; 
enum { nMaxCount = 10000 }; 

The m_nCountdata member of class CComputeDlgis incremented during the 
compute process. It serves as a percent complete measurement when di
vided by the "constant" nMaxCount. 

5. Add initialization code to the CComputeDlg constructor in the 
ComputeDlg.cpp file. Add the following line to the constructor to 
ensure that the Cancel button will work if the compute process has not 
been started: 

Be sure to add the line outside the I If fAF)LDATA_INITcomments gener
ated by ClassWizard. 

6. Code the OnStart function in ComputeDlg.cpp. This code is exe
cuted when the user clicks the Start button. Add the following shaded 
code: 

void CComputeDlg::OnStart() 
( 

MSGmessage; 

m_nTimer = SetTimer{l. 100. NULL); II 1/10 second 
ASSERT{m_nTimer != 0); 
GetDlgltem(IDC_START)-)EnableWindow(FALSE): 
volatile int nTemp; 
for (m_nCount= 0; m_nCount < nMaxCount; m_nCount++) 

for (nTemp = 0: nTemp < 10000; nTemp++) { 

} 

II uses up CPU cycles 

if (::PeekMessage(&message. NULL. 0. 0. PM_REMOVE» { 
::TranslateMessage(&message); 
::DispatchMessage(&message); 

CD; a log ::OnOK( ) : 

257 



PA R T II: THE MFC LIBRARY VIEW CLASS 

258 

The main for loop is controlled by the value of m_nCount. At the end of 
each pass through the outer loop, PeekMessage allows other messages, 
including WM_ TIMER, to be processed. The EnableWindow(FALSE) call 
disables the Start button during the computation. Ifwe didn't take this 
precaution, the On Start function could be reentered. 

7. Code the OnTimerfunction in ComputeDlg.cpp. When the timer 
fires, the progress indicator's position is set according to the value of 
m_nCount. Add the following shaded code: 

void CCompute01g::0nTimer(UINT nIOEvent) 

CProgressCtrl* pBar = (CProgressCtr1*) GetOlgltem(IOC_PROGRESS1); 
pBar->SetPos(m_nCount * 100 I nMaxCount); 

8. Update the OnCancel function in ComputeDlg.cpp. When the user 
clicks the Cancel button during computation, we don't destroy the dialog; 
instead, we set m_nCount to its maximum value, which causes OnStart to 
exit the dialog. If the computation hasn't started, it's OK to exit directly. 
Add the following shaded code: 

voi d CControl 01 g: : OnCancel () 
( 

TRACE("entering CComputeOlg: :OnCance1\n"); 
if (m_nCount == 0) { II prior to Start button 

COialog::OnCancel(); 

else { II computation in progress 
m~nCount nMaxCount; II Force exit from OnStart 

} 

9. Edit the CEx11aViewclass in ex11aView.cpp. First edit the virtual 
OnDrawfunction to display a message, as shown here: 

void CEx11aView::OnOraw(COC* pOC) 

left mouse button here."); 

Then use ClassWizard to add the OnLButtonDown function to handle 
WM_LBUTTONDOWN messages, and add the following shaded code: 

void CEx11aView: :OnLButtonOown(UINT nFlags. CPoint point) 
{ 

CComputeOlg dlg; 
dlg.DoModal(); 



E LEV EN: Windows Message Processing and Multithreaded Programming 

This code displays the modal dialog whenever the user presses the left 
mouse button while the mouse cursor is in the view window. 

While you're in ex11aView.cpp, add the following #includestatement: 

1finclude "ComputeDlg.h" 

1 O. Build and run the application. Press the left mouse button while the 
mouse cursor is inside the view window to display the dialog. Click the 
Start button, and then click Cancel. The progress indicator should show 
the status of the computation. 

On-Idle Processing 
Before multithreaded programming came along, Windows developers used 
on-idle processing for "background" tasks such as pagination. Now on-idle 
processing is not so important, but it's still useful. The application framework 
calls a virtual member function On/dle of class CWinApp, and you can override 
this function to do background processing. On/dle is called from the frame
work's message processing loop, which is actually a little more complicated 
than the simple GetMessage/TranslateMessage/DispatchMessagesequence you've 
seen. Generally, once the On/dle function completes its work, it is not called 
again until the next time the application's message queue has been emptied. 
If you override this function, your code will be called, but it won't be called 
continuously unless there is a constant stream of messages. The base class 
On/dleupdates the toolbar buttons and status indicators, and it cleans up var
ious temporary object pointers. It makes sense for you to override On/dle to 
update the user interface. The fact that your code won't be executed when no 
messages are coming is not important because the user interface shouldn't be 
changing. 

NOT E: If you do override CWinApp::On/dle, don't forget to call 
the base class On/dle. Otherwise, your toolbar buttons won't be up
dated and temporary objects won't be deleted. 

On/dle isn't called at all if the user is working in a modal dialog or is using 
a menu. If you need to use background processing for modal dialogs and 
menus, you'll have to add a message handler function for the WM_ENTER
IDLE message, but you must add it to the frame class rather than to the view 
class. That's because pop-up dialogs are always "owned" by the application's 
main frame window, not by the view window. Chapter 14 explores the relation
ship between the frame window and the view window. 

259 



PAR T II: THE MFC LIBRARY VIEW CLASS 

Multithreaded Programming 
As you'll recall from Chapter 9, a process is a running program that owns its 
own memory, file handles, and other system resources. An individual process 
can contain separate execution paths, called threads. Don't look for separate 
code for separate threads, however, because a single function can be called 
from many threads. For the most part, all of a process's code and data space 
is available to all of the threads in the process. Two threads, for example, can 
access the same global variables. Threads are managed by the operating system, 
and each thread has its own stack. 

Windows offers two kinds of threads, worker threads and user interface 
threads. The Microsoft Foundation Class (MFC) Library supports both. A user 
interface thread has windows, and therefore it has its own message loop. A 
worker thread doesn't have windows, so it doesn't need to process messages. 
Worker threads are easier to program and are generally more useful. The 
remaining examples in this chapter illustrate worker threads. At the end of 
the chapter, however, an application for a user interface thread is described. 

Don't forget that even a single-threaded application has one thread
the main thread. In the MFC hierarchy, CWinApp is derived from CWinThread. 
Back in Chapter 2, I told you that InitInstance and m_pMainWndare members 
of CWinApp. Well, I lied. The members are declared in CWinThread, but of 
course they're inherited by CWinApp. The important thing to remember here 
is that an application lli a thread. 

Writing the Worker Thread Function and Starting the Thread 

260 

If you haven't guessed already, using a worker thread for a long computation 
is more efficient than using a message handler that contains a PeekMessage call. 
Before you start a worker thread, however, you must write a global function 
for your thread's main program. This global function should return a UINT, 
and it should take a single 32-bit value (declared LPVOID) as a parameter. You 
can use the parameter to pass anything at all to your thread when you start 
it. The thread does its computation, and when the global function returns, the 
thread terminates. The thread would also be terminated if the process termi
nated, but it's preferable to ensure that the worker thread terminates first to 
guarantee that you'll have no memory leaks. 

To start the thread (with function name ComputeThreadProc), your program 
makes the following call: 

CWinThread* pThread = 
AfxBeginThread(ComputeThreadProc. GetSafeHwnd(). 

THREAD_PRIORITY_NORMAL); 



E LEV EN: Windows Message Processing and Multithreaded Programming 

The compute thread code looks like this: 

UINT ComputeThreadProc(LPVOID pParam) 
{ 

II Do thread processing 
return 0; 

The AJxBeginThreadfunction returns immediately; the return value is a pointer 
to the newly created thread object. You can use that pointer to suspend and 
resume the thread (CWinThread::SuspendThread and ResumeThread), but the 
thread object has no member function to terminate the thread. The second 
parameter is the 32-bit value that gets passed to the global function, and the 
third parameter is the thread's priority code. Once the worker thread starts, 
both threads run independently. Windows divides the time between the two 
threads (and among the threads that belong to other processes) according 
to their priority. If the main thread is waiting for a message, the compute 
thread can still run. 

How the Main Thread Talks to a Worker Thread 
The main thread (your application program) can communicate with the sub
sidiary worker thread in many different ways. One option that will not work, 
however, is a Windows message; the worker thread doesn't have a message 
loop. The simplest means of communication is a global variable because all 
the threads in the process have access to all the globals. Suppose the worker 
thread increments and tests a global integer as it computes and then exits 
when the value reaches 100. The main thread could force the worker thread 
to terminate by setting the global variable to 100 or higher. 

The code below looks.as though it should work, and when you test it, it 
probably will: 

UINT ComputeThreadProc(LPVOID pParam) 
{ 

g_nCount = 0; 
while (g_nCount++ < 1(0) { 

II Do some computation here 

return 0; 

There's a problem, however, that you could detect only by looking at the gen
erated assembly code. The value of g_nCount gets loaded into a register, the 
register is incremented, and then the register value is stored back in g_nCount. 
Suppose g_nCount is 40 and Windows interrupts the worker threadjust after 

261 



PAR T II: THE MFC LIBRARY VIEW CLASS 

the worker thread loads 40 into the register. Now the main thread gets con
trol and sets g_ nCount to 100. When the worker thread resumes, it increments 
the register value and stores 41 back into g_nCount, obliterating the previous 
value of 100. The thread loop doesn't terminate! 

If you turn on the compiler's optimization switch, you'll have an addi
tional problem. The compiler uses a register for g_nCount, and the register 
stays loaded for the duration of the loop. If the main thread changes the value 
of g_nCount in memory, it will have no effect on the worker thread's compute 
loop. (You can ensure that the counter isn't stored in a register, however, by 
declaring g_nCount as volatile.) 

But suppose you rewrite the thread procedure as shown here: 

UINT ComputeThreadProc(LPVOID pParam) 
{ 

9_nCount = 0; 
while (9_nCount < 100) { 

II Do some computation here 
::Interlockedlncrement«long*) &g_nCount); 

return 0; 

The Interlockedlncrement function blocks other threads from accessing the vari
able while it is being incremented. The main thread can safely stop the worker 
thread. 

Now you've seen some of the pitfalls of using global variables for commu
nication. Using global variables is sometimes appropriate, as the next example 
illustrates, but there are alternative methods that are more flexible, as you'll 
see later in this chapter. 

How the Worker Thread Talks to the Main Thread 

262 

It makes sense for the worker thread to check a global variable in a loop, but 
what if the main thread did that? Remember the pig function? You definitely 
don't want your main thread to enter a loop because that would waste CPU 
cycles and stop your program's message processing. A Windows message is the 
preferred way for a worker thread to communicate with the main thread because 
the main thread always has a message loop. This implies, however, that the 
main thread has a window (visible or invisible) and that the worker thread has 
a handle to that window. 

How does the worker thread get the handle? That's what the 32-bit thread 
function parameter discussed on pages 260-61 is for. You pass the handle in 
the AfxBeginThread call. Why not pass the C++ window pointer instead? Doing 



E LEV EN: Windows Message Processing and Multithreaded Programming 

so would be dangerous because you can't depend on the continued existence 
of the object and you're not allowed to share objects of MFC classes among 
threads. (This rule does not apply to objects derived directly from CObject or to 
simple classes such as CRect and CString.) 

Do you send the message or post it? Better to post it, because sending it 
could cause reentry of the main thread's MFC message pump code, and that 
would create problems in modal dialogs. What kind of message do you post? 
Any user-defined message will do. 

The EX11 B Program 
The EXIIB program looks exactly like the EXIIA program when you run it. 
When you look at the code, however, you'll see some differences. The com
putation is done in a worker thread instead of in the main thread. The count 
value is stored in a global variable g_nCount, which is set to the maximum value 
in the dialog window's Cancel button handler. When the thread exits, it posts 
a message to the dialog, which causes DoModal to exit. 

The document, view, frame, and application classes are the same except 
for their names, and the dialog resource is the same. The modal dialog class 
is still named CComputeDlg, but the code inside is quite different. The construc
tor, timer handler, and data exchange functions are pretty much the same. 
The following code fragment shows the global variable definition and the 
global thread function as given in the \exll b\ComputeDlg.cpp file on the 
companion CD-ROM. Note that the function exits (and the thread terminates) 
when g_nCount is greater than a constant maximum value. Before it exits, 
however, the function posts a user-defined message to the dialog window. 

int g_nCount = 0; 

UINT ComputeThreadProc(LPVDID pParam) 
{ 

} 

volatile int nTemp; II volatile else compiler optimizes too much 

for (g_nCount = 0: g_nCount < CComputeDlg::nMaxCount; 
1::Interlockedlncrement«long*) &g_nCount» 

for (nTemp = 0; nTemp < 10000; nTemp++) { 
II uses up CPU cycles 

} 

II WM_THREADFINISHED is user-defined message 
::PostMessage«HWND) pParam, WM_THREADFINISHED, 0, 0); 
9_nCount = 0; 
return 0; II ends the thread 

263 



PAR T II: THE MFC LIBRARY VIEW CLASS 

The OnStart handler below is mapped to the dialog's Start button. Itsjob 
is to start the timer and the worker thread. You can change the worker thread's 
priority by changing the third parameter of AJxBeginThread-for example, the 
computation runs a little more slowly if you set the priority to THREAD_PRl
ORlTY_LOWEST. 

void CComputeDlg::OnStart() 
( 

m_nTimer = SetTimer(l. 100. NULl); II 1110 second 
ASSERT(m_nTimer!= 0); 
GetDlgItem(IDC_START)->EnableWindow(FALSE); 
AfxBeginThread(ComputeThreadProc. GetSafeHwnd(). 

THREAD_PRIORITY_NORMAL); 

The On Cancel handler below is mapped to the dialog's Cancel button. 
It sets the g_nCount variable to the maximum value, causing the thread to 
terminate. 

void CComputeDlg: :OnCancel() 
{ 

if (g_nCount == 0) { II prior to Start button 
CDialog: :OnCancel (): 

else (II computation in progress 
9_nCount = nMaxCount; II Force thread to exit 

The OnThreadFinished handler below is mapped to the dialog's WM
_THREADFINISHED user-defined message. It causes the dialog's DoModal 
function to exit. 

LRESULT CComputeDlg::OnThreadFinished(WPARAM wParam, LPARAM lParam) 
{ 

} 

CDialog: :OnOK(): 
return 0: 

Using Events for Thread Synchronization 

264 

The global variable is a crude but effective means of interthread communi
cation. Now let's try something more sophisticated. We want to think in terms 
of thread synchronization instead of simple communication. Our threads must 
carefully synchronize their interactions with one another. 



E LEV EN: Windows Message Processing and Multithreaded Programming 

An event is one type of kernel object (processes and threads are also 
kernel objects) that Windows provides for thread synchronization. An event 
is identified by a unique 32-bit handle within a process. It can be identified 
by name, or its handle can be duplicated for sharing among processes. An 
event can be either in the signaled (or true) state or in the unsignaled (or 
false) state. Events come in two types: manual reset and autoreset. We'll be 
looking at autoreset events here because they're ideal for the synchronization 
of two processes. 

Let's go back to our worker thread example. We want the main (user 
interface) thread to "signal" the worker thread to make it start or stop, so we'll 
need a "start" event and a "kill" event. MFC provides a handy CEvent class that's 
derived fr0111 CSyncObject. By default, the constructor creates a Win32 autoreset 
event object in the nonsignaled state. If you declare your events as global ob
jects, any thread can easily access them. When the main thread wants to start 
or terminate the worker thread, it sets the appropriate event to the signaled 
state by calling CEvent::SetEvent. 

Now the worker thread must monitor the two events and respond when 
one of them is signaled. MFC provides the CSingleLock class for this purpose, 
but it's easier to use the Win32 WaitForSingleObject function. This function 
suspends the thread until the specified object becomes signaled. When the 
thread is suspended, it's not using any CPU cycles-which is good. The first 
WaitForSingleObject parameter is the event handle. You can use a CEventobject 
for this parameter; the object inherits from CSyncroObject an operator HANDLE 
that returns the event handle it has stored as a public data member. The sec
ond parameter is the time-out interval. If you set this parameter to INFINITE, 
the function waits forever until the event becomes signaled. If you set the time
out to 0, WaitForSingleObject returns immediately, with a return value of WAIT
_OBjECT_O if the event was signaled. 

The EX11 C Program 
The EXIIC program uses two events to synchronize the worker thread with 
the main thread. Most of the EXII C code is the same as EXIIB, but the CCom
puteDlg class is quite different. The StdAfx.h file contains the following line 
for the CEvent class: 

#include <afxmt.h> 

There are two global event objects, as shown below. Note that the construc
tors create the Windows events prior to the execution of the main program. 

265 



PAR T II: THE MFC LIBRARY VIEW CLASS 

266 

tEvent g~eventStart: II creates autoreset events 
CEventg_eventKi 11; 

It's best to look at the worker thread global function first. The function 
increments g_nCount just as it did in EXIIB. The worker thread is started by 
the OnInitDialog function instead of by the Start button handler. The first 
WaitForSingleObject call waits for the start event, which is signaled by the Start 
button handler. The INFINITE parameter means that the thread waits as long 
as necessary. The second WaitForSingleObject call is different-it has a 0 time
out value. It's located in the main compute loop and simply makes a quick test 
to see whether the kill event was signaled by the Cancel button handler. If the 
event was signaled, the thread terminates. 

INT ComputeThreadProc(LPVOID pParam) 

volatile int nTemp; 

::WaitForSingleObject(g_eventStart. INFINITE); 
TRACE("starting computation\n"); 
frir (g_hCount ~0: g_nCount < CComputeDlg::nMaxCount; 

g_nCount++) ( 
for (nTemp = 0; nTemp < 10000; nTemp++) ( 

// Simulate computation 

if (::WaitForSingleObject(g_eventKill. 0) == WAIT_OBJECT_0) ( 
break: 

Tell owner window we're finished 
::PostMessage«HWND) pParam. WM_THREADFINISHED. 0. 0); 
g_nCount= 0: 
return 0:// ends the thread 

Here is the OnInitDialog function that's called when the dialog is initial
ized. Note that it starts the worker thread, which doesn't do anything until the 
start event is signaled. 

BOOl CComputeDlg::OnInitDialog() 
( 

,~p~i,al?,~,~:9n}~~,~pi a 1 og() ; 
"AfxBegjnThr~ad(C()n}puteThreadPr()c. GetSafeHwnd(»: 

return TRUE; II Return TRUE unless you set the focus to a control 
II EXCEPTION: OCX Property Pages should return FALSE 



E LEV EN: Windows Message Processing and Multithreaded Programming 

The following Start button handler sets the start event to the signaled 
state, thereby starting the worker thread's compute loop: 

void CComputeDlg::OnStart() 
{ 

m_nTimer = SetTimer(l. 100. NULL); II 1/10 second 
ASSERT(m_nTimer != 0); 
GetDlgltem(IDC_START)->EnableWindow(FALSE); 
g_eventStart.SetEvent(); 

The following Cancel button handler sets the kill event to the signaled 
state, causing the worker thread's compute loop to terminate: 

void CComputeDlg::OnCancel() 
{ 

if (g_nCount == 0) { II prior to Start button 
II Must start it before we can kill it 
g_eventStart.SetEvent(); 

g_eventKill.SetEvent(); 

Note the awkward use of the start event when the user cancels without start
ing the compute process. It might be neater to define a new cancel event and 
then replace the first WaitForSingleObject call with a WaitForMultipleObjects call 
in the ComputeThreadProc function. If WaitForMultipleObjects detected a cancel 
event, it could cause an immediate thread termination. 

Thread Blocking 
The first WaitForSingleObject call in the ComputeThreadProc function above is an 
example of thread blocking. The thread simply stops executing until an event 
becomes signaled. A thread could be blocked in many other ways. You could 
call the Win32 Sleep function, for example, to put your thread to "sleep" for 
500 milliseconds. Many functions block threads, particularly those functions 
that access hardware devices or Internet hosts. Back in the Win16 days, those 
functions took over the CPU until they were finished. In Win32, they allow 
other processes and threads to run. 

You should avoid putting blocking calls in your main user interface thread. 
Remember that if your main thread is blocked, it can't process its messages, 
and that makes the program appear sluggish. If you have a task that requires 
heavy file I/O, put the code in a worker thread and synchronize it with your 
main thread. 

Be careful of calls in your worker thread that could block indefinitely. 
Check the online documentation to determine whether you have the option 

267 



PAR T II: THE MFC LIBRARY VIEW CLASS 

of setting a time-out value for a particular I/O operation. If a call does block 
forever, the thread will be terminated when the main process exits, but then 
you'll have some memory leaks. You could call the Win32 TerminateThread 
function from your main thread, but you'd still have the memory leak problem. 

Critical Sections 

268 

Remember the problems with access to the g_nCount global variable? If you 
want to share global data among threads and you need more flexibility than 
simple instructions like Interlockedlncrement can provide, critical sections might 
be the synchronization tools for you. Events are good for signaling, but critical 
sections (sections of code that require exclusive access to shared data) are 
good for controlling access to data. 

MFC provides the CCriticalSection class that wraps the Windows critical 
section handle. The constructor calls the Win32 InitializeCriticalSection func
tion, the Lock and Unlock member functions call EnterCriticalSection and Leave
CriticalSection, and the destructor calls DeleteCriticalSection. Here's how you use 
the class to protect global data: 

CCriticalSection g_cs; 
int g_nCount; 
void func() 
{ 

g_cs.Lock(); 
g_nCount++; 
g_cs.Unlock(); 

II global variables accessible from all threads 

Suppose your program tracks time values as hours, minutes, and seconds, 
each stored in a separate integer, and suppose two threads are sharing time 
values. Thread A is changing a time value but is interrupted by thread B after 
it has updated hours but before it has updated minutes and seconds. Thread 
B will have an invalid time value. 

If you write a C++ class for your time format, it's easy to control data 
access by making the data members private and providing public member 
functions. The CHMS class, shown in Figure 11-2, does exactly that. Notice that 
the class has a data member of type CCriticalSection. Thus, a critical section 
object is associated with each CHMS object. 

Notice that the other member functions call the Lock and Unlock mem
ber functions. If thread A is executing in the middle of Set Time, thread B will 
be blocked by the Lock call in GetTotalSecs un til thread A calls Unlock. The 
IncrementSecs function calls Set Time, resulting in nested locks on the critical 
section. That's OK because Windows keeps track of the nesting level. 



E LEV EN: Windows Message Processing and Multithreaded Programming 

The CHMS class works well if you use it to construct global objects. If you 
share pointers to objects on the heap, you have another set of problems. Each 
thread must determine whether another thread has deleted the object, and 
that means you must synchronize access to the pointers. 

HMS.H 

Iii ncl ude "StdAfx. h" 

class CHMS 
{ 

private: 
int m_nHr, m_nMn. m_nSc; 
CCriticalSection m_cs: 

public: 

} : 

CHMS() : m_nHr(0), m_nMn(0), m_nSc(0) {} 

-CHMS() {} 

void SetTime(int nSecs) 
{ 

m_cs.Lock(); 
m_nSc nSecs % 60: 
m_nMn = (nSecs I 60) % 60: 
m_nHr = nSecs I 3600: 
m_cs.Unlock(); 

int GetTotalSecs() 

int nTotalSecs; 
m_cs.Lock(); 
nTotalSecs = m_nHr * 3600 + m_nMn * 60 + m_nSc: 
m_cs.Unlock() : 
return nTotalSecs: 

void IncrementSecs() 
{ 

} 

m_cs. Lock(): 
SetTime(GetTotalSecs() + 1): 
m_cs. Unl ock(): 

Figure 11-2. 
The CHMS class listing. 

269 



PA R T II: THE MFC LIBRARY VIEW CLASS 

No sample program is provided that uses the CHMS class, but the file 
hms.h is included in the\vcpp32\exllc subdirectory on the companion CD
ROM. If you write a multithreaded program, you can share global objects of 
the class. You don't need any other calls to the thread-related functions. 

Mutexes and Semaphores 
As I mentioned, I'm leaving these synchronization objects to Jeffrey Richter's 
Advanced Windows. You might need a mutex or a semaphore if you're control
ling access to data across different processes because a critical section is acces
sible only within a single process. Mutexes and semaphores (alongwith events) 
are shareable by name. 

User Interface Threads 

270 

The MFC library provides good support for UI threads. You derive a class from 
CWinThread, and you use an overloaded version ofAJxBeginThread to start the 
thread. Your derived CWinThread class has its own InitInstance function, and 
most important, it has its own message loop. You can construct windows and map 
messages as required. 

Why might you want a user interface thread? If you want multiple top-level 
windows, you can create and manage them from your main thread. Suppose 
you allow the user to run multiple instances of your application, but you want 
all instances to share memory. You can configure a single process to run 
multiple UI threads such that users think they are running separate processes. 
That's exactly what Windows Explorer does. Check it out with SPYXX. 

Starting the second and subsequent threads is a little tricky because the 
user actually launches a new process for each copy of Explorer. When the 
second process starts, it signals the first process to start a new thread, and then 
it exits. The second process can locate the first process either by calling the 
Win32 FindWindow function or by declaring a shared data section. Shared data 
sections are explained in detail in Jeffrey Richter's book. 



PA RT III 

THE 
DOCU M ENT -VI EW 
ARCHITECTURE 





C HAP T E R TWELVE 

Menus, Keyboard 
Accelerators, the Rich Edit 
Control, and Property Sheets 

In all the book's examples to this point, mouse clicks have triggered most 
program activity. Even though menu selections might have been more appro- . 
priate, you've used mouse clicks because mouse-click messages are handled 
simply and directly within the Microsoft Foundation Class (MFC) Library 
version 4.21 view window. If you want program activity to be triggered when 
the user chooses a command from a menu, you must first become familiar with 
the other application framework elements. 

This chapter concentrates on menus and the command routing archi
tecture. Along the way, it introduces frames and documents, explaining the 
relationships between these new application framework elements and the 
already familiar view element. You'll use the menu editor to layout a menu 
visually, and you'll use ClassWizard to link document and view member func
tions to menu items. You'll learn how to use special update command user 
interface (UI) member functions to check and disable menu items, and you'll 
see how to use keyboard accelerators as menu shortcut keys. 

Because you're probably tired of circles and dialogs, I'll show you two new 
MFC building blocks. The rich edit common control can add powerful text 
editing features to your application, and property sheets are ideal for setting 
edit options. 

273 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

The Main Frame Window and Document Classes 

274 

Up to now, you've been using a view window as ifit were the application's only 
window. In an SDI application, the view window sits inside another window
the application's main frame window. The main frame window has the title 
bar and the menu bar. Various child windows, including the toolbar window, 
the view window, and the status bar window, occupy the main frame window's 
client area, as shown in Figure 12-1. The application framework controls the 
interaction between the frame and the view by routing messages from the 
frame to the view. 

Child 
windows 

Figure 12-1. 

View window 

Status bar window 

The child windows within an SDI main frame window. 

SOl main frame 
window 

Look again at any project files generated by App Wizard. The MainFrm.h 
and MainFrm.cpp files contain the code for the application's main frame 
window class, derived from the class CFrameWnd. Other files, with names such 
as exl2aDoc.h and exI2aDoc.cpp, contain code for the application's docu
ment class, which is derived from CDocument. In this chapter you'll begin 
working with the MFC document class. You'll start gently, however, by learn
ing only that each view object has exactly one document object attached and 
that the view's inherited GetDocument member function returns a pointer to 
that object. In Chapter 14 you'll learn about frame windows, and in Chapter 15 
you'll learn much more about document-view interactions. 



T W E L V E: Menus, Keyboard Accelerators, the Rich Edit Control, and Property Sheets 

Windows Menus 
A Microsoft Windows menu is a familiar application element that consists of 
a top-level horizontal list of items with associated pop-up menus that appear 
when the user selects a top-level item. Most of the time, you define for a frame 
window a default menu resource that loads when the window is created. You 
can also define a menu resource independent of a frame window. In that case, 
your program must call the functions necessary to load and activate the menu. 

A menu resource completely defines the initial appearance of a menu. 
Menu items can be grayed or have check marks, and bars can separate groups 
of menu items. Multiple levels of pop-up menus are possible. If a first-level 
menu item is associated with a subsidiary pop-up menu, the menu item carries 
a right-pointing arrow symbol, as shown next to the Start Debug menu item 
in Figure 12-2. 

file.' ~dit· ~jew jOSe!tfloject [iid::I~I;.~~dow lielp·, 
i·~·2oJ,PiJci·: . . . CtrltF7 

Ruildex12aexe F7 
·~Bebl.lildAll 

Salch B,Yud,. 
Cislan 
Update 81 Oependencies.~. 

Start Qebug • 

Figure 12-2. 

Debugger Remote Connection." 

t! ' .. El!ecu~ e~12~'~x~' CIII+F5 

. • S~t Active CQrnigurlloon. •• 

Configur Qtions;., .•. 
frofile". 

q1} Slep 1nto ~ fl1 
;{'{} Hunto~U'.so!. Ct~I+GW; 

. ; 1 . ,'. 8\tach to PIOcesS,,; . 

Multilevel pop-up menus (from Microsoft Developer Studio). 

Developer Studio includes an easy-to-use menu resource editing tool. 
This tool lets you edit menus in a wysiwyg environment. Each menu item has 
a properties dialog that defines all the characteristics of that item. The result
ing resource definition is stored in the application's resource script (RC) file. 
Each menu item is associated with an ID, such as ID_FlLE_OPEN, that is de
fined in the resource.h file. 

The MFC library extends the functionality of the standard menus for 
Windows. Each menu item can have a prompt string that appears in the 
frame's status bar when the item is highlighted. These prompts are-really 

275 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

Windows string resource elements linked to the menu item by a common ID. 
From the point of view of the menu editor and your program, the prompts 
appear to be part of the menu item definition. 

Keyboard Accelerators 
You've probably noticed that most menu items contain an underlined letter. 
In Developer Studio (and most other applications), pressing Alt-F followed. 
by S activates the File Save menu item. This shortcut system is the standard 
Windows method of using the keyboard to choose commands from menus. 
If you look at an application's menu resource script (or the menu editor's 
properties dialog), you will see an ampersand (&) preceding the character that 
is underlined in each of the application's menu items. 

Windows offers an alternative way of linking keystrokes to menu items. 
The keyboard accelerator resource consists of a table of key combinations with 
associated command IDs. The Edit Copy menu item (with command ID ID
_EDIT_COPY), for example, might be linked to the Ctrl-C key combination 
through a keyboard accelerator entry. A keyboard accelerator entry does not 
have to be associated with a menu item. If no Edit Copy menu item were 
present, the Ctrl-C key combination would nevertheless activate the ID_EDIT
_COPY command. 

NOT E : If a keyboard accelerator is associated with a menu item 
or toolbar button, the accelerator key is disabled when the menu 
item or button is disabled. 

Command Processing 

276 

As you saw in Chapter 2, the application framework provides a sophisticated 
routing system for command messages. These messages originate from menu 
selections, keyboard accelerators, and toolbar and dialog button clicks. Com
mand messages can also be sent by calls to the CWnd::SendMessage or Post
Message function. Each message is identified by a#define constant that is often 
assigned by a resource editor. The application framework has its own set of 
internal command message IDs, such as ID_FILE_PRlNTand ID_FILE_OPEN. 
Your project's resource.h file contains IDs that are unique to your application. 

Most command messages originate in the application's frame window, 
and without the application framework in the picture, that's where you would 
put the message handlers. With command routing, however, you can handle 
a message almost anywhere. When the application framework sees a frame 



T W E L V E: Menus, Keyboard Accelerators, the Rich Edit Control, and Property Sheets 

window command message, it starts looking for message handlers in one of 
the sequences listed here: 

SOl Application 

View 

Document 

SDI main frame window 

Application 

MOl Application 

View 

Document 

MDI child frame window 

MDI main frame window 

Application 

Most applications have a particular command handler in only one class, 
but suppose your one-view application has an identical handler in both the 
view class and the document class. Because the view is higher in the command 
route, only the view's command handler function will be called. 

What is needed to install a command handler function? The installation 
requirements are similar to those of the window message handlers you've 
already seen. You need the function itself, a corresponding message map entry, 
and the function prototype. Suppose you have a menu item named Zoom 
(with IDl\LZOOM as the associated ID) that you want your view class to handle. 
First you add the following code to your view implementation file: 

BEGIN_MESSAGE_MAP(CMyView, CView) 
ON_COMMAND(IDM_ZOOM, OnZoom) 

END_MESSAGE_MAP() 

void CMyView::OnZoom() 
{ 

II command message processing code 

Now add the following function prototype to the CMyView class header file 
(before the DECLARE_MESSAGE_MAP macro): 

afx_msg void OnZoom(); 

Of course, ClassWizard automates the process of inserting command 
message handlers the same way it facilitates the insertion of window message 
handlers. You'll learn how this works in the next example, EX12A, which starts 
on page 282. 

277 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

Command Message Handling in Derived Classes 
The command routing system is one dimension of command message han
dling. The class hierarchy is a second dimension. If you look at the source code 
for the MFC library classes, you'll see lots of ON_COMMAND message map 
entries. When you derive a class from one of these base classes-for example, 
CView-the derived class inherits all the CVierp message map functions, includ
ing the command message functions. To override one of the base class mes
sage map functions, you must add both a function and a message map entry 
to your derived class. 

Update Command User Interface Handlers 

278 

You often need to change the appearance of a menu item to match the inter
nal state of your application. If your application's Edit menu includes a Clear 
All item, for example, you might want to disable that item if there's nothing 
to clear. You've undoubtedly seen such grayed menu items in Windows-based 
applications, and you've probably also seen check marks next to menu items. 

With Win32 programming, it's difficult to keep menu items synchronized 
with the application's state. Every piece of code that changes the internal state 
must contain statements to update the menu. The MFC library takes a differ
ent approach by calling a special update command user interface (VI) han
dler function whenever a pop-up menu is first displayed. The handler 
function's argument is a CCmdUI object, which contains a pointer to the cor
responding menu item. The handler function can then use this pointer to 
modify the menu item's appearance. Vpdate command VI handlers apply only 
to items on pop-up menus, not to top-level menu items that are permanently 
displayed. You can't use an update command VI handler to disable a File 
menu item, for example. 

The update command VI coding requirements are similar to those for 
commands. You need the function itself, a special message map entry, and of 
course the prototype. The associated ID-in this case, IDM_ZOOM-is the 
same constant used for the command. Here is an example of the necessary 
additions to the view class code file: 

BEGIN_MESSAGE_MAP(CMyView. CView) 
ON_UPDATE_COMMAND_UI(IDM_ZOOM. OnUpdateZoom) 

END_MESSAGE_MAP() 

void CMyView: :OnUpdateZoom(CCmdUI* pCmdUI) 
{ 

pCmdUI->SetCheck(m_bZoomed); II m_bZoomed is a class data member 



T W E L V E: Menus, Keyboard Accelerators, the Rich Edit Control, and Property Sheets 

Here is the function prototype that you must add to the class header (before 
the DECLARE_MESSAGE_MAP macro): 

afx_msg void OnUpdateZoom(CCmdUI* pCmdUI): 

Needless to say, ClassWizard automates the process of inserting update 
command VI handlers. 

Commands That Originate in Dialogs 
Suppose you have a pop-up dialog with buttons, and you want a particular 
button to send a command message. Command IDs must be in the range 
Ox8000 to OxDFFF, the same ID range that the resource editor uses for your 
menu items. If you assign an ID in this range to a dialog button, the button 
will generate a routable command. The application framework first routes this 
command to the main frame window because the frame window owns all pop
up dialogs. The command routing then proceeds normally; if your view has 
a handler for the button's command, that's where it will be handled. To ensure 
that the ID is in the range Ox8000 to OxDFFF, you must use Developer Studio's 
symbol editor to enter the ID prior to assigning the ID to a button. 

The Application Framework's Built-In Menu Items 
You don't have to start each frame menu from scratch-the MFC library defines 
some useful menu items for you, along with all the command handler func
tions, as shown in Figure 12-3. 

il I: !~' _______________ ..;......1 

Figure 12-3. 
The standard SDI frame menus. 

The menu items and command message handlers you get depend on the 
options you choose in AppWizard. If you deselect Printing And Print Preview, 
for example, the Print and Print Preview menu items don't appear. Because 

279 



PA R Till: THE DOCUMENT-VIEW ARCHITECTURE 

printing is optional, the message map entries are not defined in the CView class 
but are generated in your derived view class. That's why entries such as the 
following are defined in the CMy View class instead of in the CView class: 

ON_COMMAND(ID_FILE_PRINT, CView::OnFilePrint) 
ON_COMMAND(ID_FILE_PRINT_PREVIEW, CView: :OnFilePrintPreview) 

Enabling/Disabling Meny Items 
The application framework can disable a menu item if it does not find a com
mand message handler in the current command route. This feature saves you 
the trouble of having to write ON_UPDATE_COMMAND_Ulhandlers. You can 
disable the feature if you set the CFrameWnd data member m_bAutoMenuEnable 
to FALSE. 

Suppose you have two views for one document, but only the first view class 
has a message handler for the IDM_ZOOM command. The Zoom item on the 
frame menu will be enabled only when the first view is active. Or consider the 
application framework-supplied Edit Cut, Copy, and Paste menu items. These 
will be disabled if you have not provided message handlers in your derived view 
or document class. 

MFC Text Editing Options 
Windows itself supplies two text editing tools: the original edit control and the 
new Windows rich edit common control. Both can be used as controls within 
dialogs, but both can also be made to look like view windows. The MFC library 
supports this versatility with the CEditView and CRichEditView classes. 

The CEditView Class 

280 

This class is based on the Windows edit control, so it inherits all the edit 
control's limitations. Text size is limited to 64 KB, and you can't mix fonts. 
AppWizard gives you the option of making CEditView the base class of your view 
class. When the framework gives you an edit view object, it has all the func
tionality of both CView and CEdit. There's no multiple inheritance here,just 
some magic that involves window subclassing. The CEditView class implements 
and maps the clipboard cut, copy, and paste functions, so they appear active 
on the Edit menu. 



T W E L V E: Menus, Keyboard Accelerators, the Rich Edit Control, and Property Sheets 

The CRichEditView Class 
This class uses the rich edit control, so it supports mixed formats and large 
quantities of text. The CRichEditViewclass is designed to be used with the CRich
EditDoc and CRichEditCntrltem classes to implement a complete ActiveX con
tainer application. (Maybe that's a little too much for right now.) 

The CRichEditCtrl Class 
This class wraps the rich edit control, and you can use it to make a fairly de
cent text editor. That's exactly what we'll do in the EX12A example. We'll use 
an ordinary view class derived from CView, and we'll cover the view's client area 
with a big rich edit control that resizes itselfwhen the view size changes. The 
CRichEditCtrl class has dozens of useful member functions, and it picks up 
other functions from its CWndbase class. The functions we'll use in this chap
ter are as follows: 

Function 

Create 

SetWindowPos 

GetWindowText 

SetWindowText 

GetModify 

SetModify 

GetSel 

SetDefaultCharFormat 

SetSelectionCharFormat 

Description 

Creates the rich edit control window (called from the 
parent's WM_CREATE handler) 

Sets the size and position of the edit window (sizes the 
control to cover the view's client area) 

Retrieves plain text from the control (other functions 
available to retrieve the text with rich text formatting codes) 

Stores plain text in the control 

Gets a flag that is TRUE if the text has been modified 
(text modified if the user types in the control or if the 
program calls SetModify(TRUE) 

Sets the modify flag to TRUE or FALSE 

Gets a flag that indicates whether the user has selected text 

Sets the control's default format characteristics 

Sets the format characteristics of the selected text 

NOT E : If you use the dialog editor to add a rich edit control to 
a dialog resource, your application class Initlnstancemember func
tion must call the function AfxlnitRichEdit. 

281 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

The EX12A Example 

282 

This example illustrates the routing of menu and keyboard accelerator com
mands to both documents and views. The application's view class is derived 
from CView and contains a rich edit control. View-directed menu commands, 
originating from a new pop-up menu named Transfer, move data between the 
view object and the document object, and a Clear Document menu item erases 
the document's contents. On the Transfer menu, the Store Data In Document 
item is grayed when the view hasn't been modified since the last time the data 
was transferred. The Clear Document item, located on the Edit menu, is 
grayed when the document is empty. Figure 12-4 shows the first version of the 
EX12A program in use. 

the client area of the view. 
rdwrap is in effect. 

Figure 12-4. 
The EX12A program in use. 

Ifwe exploited the document-view architecture fully, we would tell the 
rich edit control to keep its text inside the document, but that's rather diffi
cult to do. Instead, we'll define a document CStringdata member named m_str
Text, the contents of which the user can transfer to and from the control. The 
initial value of m_strText is a Hello message; choosing Clear Document from 
the Edit menu sets it to empty. By running this example, you'll start to under
stand the separation of the document and the view. 

The first part of the EX12A example exercises Developer Studio's wysiwyg 
menu editor and keyboard accelerator editor together with ClassWizard. You'll 
need to do very little C++ coding. Simply follow these steps: 



T W E L V E: Menus, Keyboard Accelerators, the Rich Edit Control, and Property Sheets 

1. Run AppWizard to generate \vcpp32\ex12a\ex12a. Accept all the 
default settings, except select Single Document and deselect Printing 
And Print Preview. 

2. Use the resource editor to edit the application's main menu. Click 
on the ResourceView tab in the Workspace window. Edit the IDR_MAIN
FRAME menu resource to add a separator and a Clear Document item 
to the Edit menu, as shown here: 

Ctrl+X 
Ctrl+C 
Ctrl+V 

il·. CI~~' llocument . .. . . 
iC::::::=::::::::::::::::::::::::::::C:::::::T!.::::::::::::1 

TIP: The resource editor's menu resource editor is intuitive, but 
you might need some help the first time you insert an item in the 
middle of a menu. A blank item is present at the bottom of each 
menu. Using the mouse, drag the blank item to the insertion posi
tion to define a new item. A new blank item will appear at the bot
tom when you're finished. 

Now add a Transfer menu, and then define the underlying items: 

Use the following command IDs for your new menu items: 

Menu Caption Command 10 

Clear &Document ID_EDIT_CLEAJLALL Edit 

Transfer 

Transfer 

&Get Data From Documen t\tF2 

&Store Data In Document\tF3 

ID_ TRANSFEJL GETDATA 

ID_ TRANSFEJLSTOREDATA 

The MFC library has defined the first item, ID_EDIT_CLEAR...-ALL. 
(Note: \t is a tab character-but type \t; don't press the Tab key.) 

283 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

284 

When you add the menu items, type appropriate prompt strings in 
the Menu Item Properties dialog. These prompts will appear in the 
application's status bar window when the menu item is highlighted. 

3. Use the resource editor to add keyboard accelerators. Open the 
IDJLMAINFRAME accelerator table, and then use the insert key to add 
the following items: 

Accelerator 10 

ID_TRANSFER-GETDATA 

ID_ TRANSFER_STOREDATA 

Key 

Be sure to turn off the Ctrl, Alt, and Shift modifiers. The Accelerator 
edit screen and Accel Properties dialog are shown here: 

T_COP'Y 
ID_FILE_NEW 
IDJILE_OPEN 
IDJILE_SAVE 
ID_EDIT_PASTE 
ID_EDIT_UNDO 
ID_EDIT_CUT 
ID_TRANSFER_GETDATA 

Ctrl+N 
Ctrl+O 
Ctrl+S 
Ctrl+V 
Alt + VK_BACK 
Shift + VK_DELETE 
VKJ2 

VIRTKEY 
VIRTKEY 
VIRTKEY 
VIRTKEY 
VIRTKEY 
VIRTKEY 
VIRTKEY 

ID_ TRANSFER_STORED.b.' VKJ3 VIRTKEY 
ID_N EXT_PAN E 
ID_PREV 
ID_EDIT 
ID_ED 
ID_ED 
ID_ED 

VKJ6 VIRTKEY 

4. Use ClassWizard to add the view class command and update com
mand UI message handlers. Select the CEx12aView class, and then 
add the following member functions: 



T WE LV E: Menus, Keyboard Accelerators, the Rich Edit Control, and Property Sheets 

Object 10 Message Member Function 

ID_TRANSFER_GETDATA COMMAND On TransferGetData 

ID_TRANSFER_STOREDATA COMMAND On TransferStoreData 

ID_ TRANSFER_STOREDATA VPDATE_COMMAND_ VI OnUpdateTransferStoreData 

5. Use ClassWizard to add the document class command and update 
command UI message handlers. Select the CEx12aDoc class, and 
then add the following member functions: 

Object 10 Message Member Function 

ID_EDIT_CLEAR_ALL COMMAND 

ID_EDIT_CLEAR_ALL VPDATE_COMMAND_VI 

OnEditClearDocument 

OnUpdateEditClearDocument 

6. Add a CString data member to the CEx12aDoc class. Edit the file 
ex12aDoc.h or use ClassView. 

public: 
CString m_strText: 

7. Edit the document class member functions in ex12aDoc.cpp. 
The OnNewDocument function was generated by ClassWizard. As you'll 
see in Chapter 15, the framework calls this function after it first con
structs the document and when the user chooses New from the File 
menu. Your version sets some text in the string data member. Add the 
following shaded code: 

BOOl CEx12aDoc::OnNewDocument() 
{ 

if (!CDocument::OnNewDocument(» 
return FALSE; '" 

, ... m.,.,.strI~xt= "Hel19. (from CEx)2aOoc: :OnNewDocument)"; 
return TRUE; 

285 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

286 

The Edit Clear Document message handler sets m_strText to empty, 
and the update command VI handler grays the menu item if the string 
is already empty. Remember that the framework calls OnUpdateEditClear
Document when the Edit menu pops up. Add the following shaded code: 

void CEx12aDoe::OnEditClearDoeument() 
{ 

m_strText.Empty(): 

void CEx12aDoe::OnUpdateEditClearDoeument(CCmdUI* pCmdUI) 

pCmdUI ->Enabl e( ! m_st rText. I s Empty ( ) ) :, 

8. Add a CRichEditCtrl data member to the CEx12aView class. Edit 
the file ex12aView.h or use ClassView. 

'publ i e: 
CRiehEditCtrl m_rieh; 

9. Use ClassWizard to map the WM_CREATE and WM_SIZE mes
sages in the CEx12aViewclass. The On Create function creates the 
rich edit control. The control's size is 0 here because the view window 
doesn't have a size yet. Here is the code for the two handlers: 

int CEx12aView::OnCreate(LPCREATESTRUCT lpCreateStruet) 
{ 

, CReet reet(0, 0. 0, 0): 
if (CView::OnCreate(lpCreateStruet) == -1) 

return -1; 
m_ri~h. Creat~( ES_AUTOVSCROLLj' ES~MUL TI LI NE I ES_WANTRETURNI 

WS_CHILD \WS_VISIBLE\ WS_VSCROLL. rect,this. 1); 

return 0: 

Windows sends the WM_SIZE message to the view as soon as the 
view's initial size is determined and again each time the user changes 
the frame size. This handler simply adjusts the rich edit control's size 
to fill the view client area. Add the following shaded code: 

,void CEx12aView::OnSize(UINT nType. int ex. int ey) 
.{ 

CReetrect; 
CView: :OnSize(nType. ex. ey): 



T W E L V E: Menus, Keyboard Accelerators, the Rich Edit Control, and Property Sheets 

GetClientRect(rect); 
m_rich.SetWindowPos(&wndTop. 0. 0. rect.right - rect.left. 

rect.bottom - rect.top. SWP_SHOWWINDOW); 

10. Edit the menu command handler functions in ex12aView.cpp. 
ClassWizard generated these skeleton functions when you mapped the 
menu commands in step 4. The OnTransferGetData function gets the text 
from the document data member and puts it in the rich edit control. 
The function then clears the control's modified flag. There is no update 
command VI handler. Add the following shaded code: 

void CEx12aView: :OnTransferGetData() 

CEx12aDoc* pOoc = GetOocument(): 
m_rich.SetWindowText(pOoc-)m_strText); 
m_rich.SetModify(FALSE); 

The OnTransferStoreData function copies the text from the view's rich 
edit control to the document string and resets the control's modified 
flag. The corresponding update command VI handler grays the menu 
item if the control has not been changed since it was last copied to or 
from the document. Add the following shaded code: 

void CEx12aView::OnTransferStoreData() 
( 

CEx12aDoc* pDoc = GetDocument(); 
m_rich.GetWindowText(pOoc-)m_strText); 
m_ri ch .SetModHy( FALSE); 

void CEx12aView::OnUpdateTransferStoreData(CCmdUI* pCmdUI) 

pCmdU 1-) Enab 1 e( m_ri ch. GetModify ( ) ) : 

11. Build and test the EX12A application. When the application starts, 
the Clear Document item on the Edit menu should be enabled. Choose 
Get Data From Document from the Transfer menu. Some text should 
appear. Edit the text, and then choose Store Data In Document. That 
menu item should now appear gray. Try choosing the Clear Document 
command, and then choose Get Data From Document again. 

287 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

Property Sheets 
You've already seen property sheets in Developer Studio and in many other 
modern Windows-based programs. A property sheet is a nice UI element that 
allows you to cram lots of categorized information into a small dialog. The user 
selects pages by clicking on their tabs. Windows offers a tab control that you 
can insert in a dialog, but it's more likely that you'll want to put dialogs inside 
the tab control. The MFC library supports this, and the result is called ap.mp: 
~ sheet. The individual dialogs are called property ~. 

Building a Property Sheet 
Follow these general steps to build a property sheet using the Visual C++ tools: 

1. Use the resource editor to create a series of dialog templates that 
are all approximately the same size. The captions are the strings 
that you want to display on the tabs. 

2. Use ClassWizard to generate a class for each template. Select 
CPropertyPage as the base class. Add data members for the controls. 

3. Use ClassWizard to generate a single class derived from CPropertySheet. 

4. To the sheet class, add one data member for each page class. 

5. In the sheet class constructor, call the AddPage member function 
for each page, specifying the address of the embedded page object. 

6. In your application, construct an object of the derived CProperty
Sheet class, and then call DoModal. You must specify a caption in the 
constructor call, but you can change the caption later by calling 
CPropertySheet: :SetTitle. 

7. Take care of programming for the Apply button. 

Property Sheet Data Exchange 

288 

The framework puts three buttons on a property sheet. (See, for example, 
Figure 12-5 on page 290.) Be aware that the framework calls the Dialog Data 
Exchange (DDX) code for a property page each time the user switches to and 
from that page. As you would expect, the framework calls the DDX code for 
a page when the user clicks OK, thus updating that page's data members. From 



T W E L V E: Menus, Keyboard Accelerators, the Rich Edit Control, and Property Sheets 

these statements, you can conclude that all data members for all pages are 
updated when the user clicks OK to exit the sheet. All this with no C++ pro
gramming on your part! 

NOT E : With a normal modal dialog, if the user clicks the Cancel 
button, the changes are discarded and the dialog class data members 
remain unchanged. With a property sheet, however, the data mem
bers are updated if the user changes one page and then moves to 
another, even if the user exits by clicking the Cancel button. 

What does the Apply button do? Nothing at all if you don't write some 
code. It won't even be enabled. To enable it for a given page, you must set the 
page's modified flag by calling SetModified(TRUE) when you detect that the user 
has made changes on the page. 

If you've enabled the Apply button, you can write a handler function for 
it in your page class by overriding the virtual CPropertyPage::OnApply function. 
Don't try to understand property page message processing in the context of 
normal modal dialogs; it's quite different. The framework gets a WM_NOTIFY 
message for all button clicks. It calls the DDX code for the page if the OK or 
Apply button was clicked. It then calls the virtual OnApply functions for all the 
~, and it resets the modified flag, which disables the Apply button. Don't 
forget that the DDX code has already been called to update the data mem
bers in all pages, so you need to override OnApply in only one page class. 

What you put in your OnApply function is your business, but one option 
is to send a user-defined message to the object that created the property sheet. 
The message handler can get the property page data members and process 
them. Meanwhile, the property sheet stays on the screen. 

The EX12A Example Revisited 
Now we'll add a property sheet to EX12A that allows the user to change the 
rich edit control's font characteristics. Of course, we could have used the stan
dard MFC CFontDialog function, but then you wouldn't have learned how to 
create property sheets. Figure 12-5 on the following page shows the property 
sheet that you'll build as you continue with EX12A. 

289 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

290 

Figure 12-5. 
The property sheet from EX12A. 

If you haven't built EX12A, follow the instructions that begin on page 
283 to build it. If you already have EX12A working with the Transfer menu 
commands, just continue on with these steps: 

1. Use the resource editor to edit the application's main menu. 
Click on the ResourceView tab in the Workspace window. Edit the IDR
_MAINFRAME menu resource to add a Format menu that looks like this: 

Use the following command IDs for the new Format m~nu items: 

Caption 

&Default 

&Selection 

Command 10 

ID_FORMAT_DEFAULT 

ID_FORMAT_SELECTION 

Add appropriate prompt strings for the two menu items. 

2. Use ClassWizard to add the view class command and update com
mand UI message handlers. Select the CEx12aView class, and then 
add the following member functions: 



T W E L V E: Menus, Keyboard Accelerators, the Rich Edit Control, and Property Sheets 

Object 10 Message Member Function 

ID_FORMAT_DEFAULT COMMAND OnFormatDefault 

ID_FORMAT_SELECTION COMMAND OnFormatSelection 

ID_FORMAT_SELECTION UPDATE_COMMAND_UI OnUpdateFormatSelection 

3. Use the resource editor to add four property page dialog tem
plates. The templates are shown here with their associated IDs: 

IDD_PAGE3 

~r="2=.lo=c"== 

~Iif';;~(;'::k"': .•. ::.:.,,"'J;:';;,'mf 

I· - C ~I""n ;. <,v' , ':-f l - ",',2"," <.:. "-' . _.' .. : i 
::::!~ .•. :i::·;·'~"'!'":·':":"\:""'::''i';':':":~'':·i·:+':";":""':':':';:"::';:':':'(;;-

Color m 

Use the IDs in the table on the following page for the controls in the 
dialogs. Set the Auto Buddy and the Set Buddy Integer properties for the 
spin button control, and set the Group property for the IDC_FONTand 
IDC_COLOR radio buttons. Set the minimum value of IDC_FONTSIZE 
to 8 and its maximum value to 24. 

Use ClassWizard to create the classes CPagei, CPage2, CPage3, and 
CPage4. In each case, select CPropertyPage as the base class. Click the 
Change button in ClassWizard's New Class dialog to generate the code 

291 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

292 

for all these classes in the files Property.h and Property.cpp. Then add 
the data members shown here: 

Dialog Control 10 Type Data Member 

IDD_PAGEl First radio button IDC_FONT int m_nFont 

IDD_PAGE2 Bold check box IDC_BOW BOOL m_bBold 

IDD_PAGE2 Italic check box IDC_ITALIC BOOL m_bItalic 

IDD_PAGE2 Underline check box IDC_UNDERLINE BOOL m_bUnderline 

IDD_PAGE3 First radio button IDC_COLOR int m_nColor 

IDD_PAGE4 Edit control IDC_FONTSIZE int m_ nFontSize 

IDD_PAGE4 Spin button control IDC_SPINl 

Finally, use ClassWizard to add an OnlnitDialogmessage handler func
tion for CPage4. 

4. Use ClassWizard to create a class derived from CPropertySheet. 
Choose the name CFontSheet. Generate the code in the files Property.h 
and Property.cpp, the same files you used for the property page classes. 
Figure 12-6 shows these files with the added code shaded. 

PROPERTY.H 

#if !defined(AFX_PROPERTY_H __ CD702F99_7495_11D0_8FDC_00C04FC2A0C2 __ INCLUDED_) 
#define AFX_PROPERTY_H __ CD702F99_7495_11D0_8FDC_00C04FC2A0C2 __ INCLUDED_ 

#if _MSC_VER )= 1000 
#pragma once 
#endif II _MSC_VER >= 1000 
II Property.h : header file 
II 

lid ef ine"wiv(jisE RAPf> LV 
,~xJe rnd,GVj,ew~""g,.:..pyt e\.i;' 

Figure 12-6. (continued) 

The EX12A header and implementation file listings for the property page 
and property sheet classes. 



T W E L V E: Menus, Keyboard Accelerators, the Rich Edit Control, and Property Sheets 

Figure 12-6. continued 

/////////////////////////////////////////////////////////////////////// 

// CPa gel dialog 

class CPagel : public CPropertyPage 
{ 

DEClARE_DYNCREATE(CPagel) 

II Construction 
public: 

CPagel ( ) : 
-CPagel(); 

// Dialog Data 
//{{AFX_DATA(CPagel) 
enum { IDD = IDD_PAGEl J; 
int m_nFont; 
/ /} JAFX_DATA 

// Overrides 
// ClassWizard generate virtual function overrides 
//{{AFX_VIRTUAl(CPagel) 
protected: 
virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support 
/ /} JAFX_VIRTUAl 
virtual BOOlOnApply(); 
,vi rtual BO,DL,OnCommand(WPARAM wParam. lPARAM 1 Param); 

// Implementation 
protected: 

J; 

// Generated message map functions 
//{{AFX_MSG(CPagel) 

// NOTE: the ClassWizard will add member functions here 
/ /} JAFX_MSG 
DEClARE_MESSAGE_MAP() 

/////////////////////////////////////////////////////////////////////// 

// CPage2 dialog 

class CPage2 : public CPropertyPage 
{ 

DEClARE_DYNCREATE(CPage2) 

(continued) 

293 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

294 

Figure 12-6. continued 

// Construction 
public: 

CPage2(); 
-CPage2(); 

1/ Dialog Data 
//({AFX_DATA(CPage2) 
enum { IDD = IDD_PAGE2 }; 
BaaL m_bBold; 
BaaL m_bItalic; 
BaaL m_bUnderline; 
/ /} JAFX_DATA 

// Overrides 
// ClassWizard generate virtual function overrides 
//({AFX_VIRTUAL(CPage2) 
protected: 
virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support 

J /}}AXX:c-VI~TU~L 
virtual BaaL OnCommand(WPARAMwParam, LPARAM lParam),i 

// Implementation 
protected: 

} ; 

// Generated message map functions 
//({AFX_MSG(CPage2) 

// NOTE: the ClassWizard will add member functions here 
/ /} } AFX_MSG 
DECLARE_MESSAGE_MAP() 

/////////////////////////////////////////////////////////////////////// 

1/ CPage3 di a log 

class CPage3 : public CPropertyPage 
( 

DECLARE_DYNCREATE(CPage3) 

// Construction 
public: 

CPage3(); 
-CPage3 ( ) ; 

(continued) 



T WE LV E: Menus, Keyboard Accelerators, the Rich Edit Control, and Property Sheets 

Figure 12-6. continued 

// Dialog Data 
//{{AFX_DATACCPage3) 
enum { IDD = IDD_PAGE3 1; 
int m_nColor; 
/ /} lAFX_DATA 

// Overrides 
// ClassWizard generate virtual function overrides 
//{{AFX_VIRTUAlCCPage3) 
protected: 
virtual void DoDataExchangeCCDataExchange* pDX); // DDX/DDV support 
/ /} 1 AFX_V I RTUAl 
virtual BOOl OnCommandCWPARAM wParam, lPARAM lParam); 

// Implementation 
protected: 

1 ; 

1/ Generated message map functions 
//{{AFX_MSGCCPage3) 

// NOTE: the ClassWizard will add member functions here 
/ /} lAFX_MSG 
DEClARE_MESSAGE_MAPC) 

/////////////////////////////////////////////////////////////////////// 

// CPage4 dialog 

class CPage4 : public CPropertyPage 
{ 

DEClARE_DYNCREATECCPage4) 

// Construction 
public: 

CPage4C); 
-CPage4C) ; 

// Dialog Data 
//{{AFX_DATACCPage4) 
enum { IDD = IDD_PAGE4 1; 
int m_nFontSize; 
/ /} lAFX_DATA 

(continued) 

295 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

296 

Figure 12-6. continued 

// Overrides 
// ClassWizard generate virtual function overrides 
//{{AFX_VIRTUAl(CPage4) 
protected: 
virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support 
/ /} J AFX_V I RTUAl 
v~rtual BOOl OnCommand(WPARAM wParam. lPARAM lParam~:. 

// Implementation 
protected: 

J; 

// Generated message map functions 
//{{AFX_MSG(CPage4) 
virtual BOOl OnInitDialog(); 
/ /} JAFX_MSG 
DEClARE_MESSAGE_MAP() 

/////////////////////////////////////////////////////////////////////// 

// CFontSheet 

class CFontSheet : public CPropertySheet 
{ 

DEClARE_DYNAMIC(CFontSheet) 

public: 
CPagel m_pagel; 
CPage2 m_page2: 
CPage3 m_page3; 

.. CPilge4 m_page4; 

// Construction 
public: 

CFontSheet(UINT nIDCaption. CWnd* pParentWnd = NUll. 
UINT iSelectPage = 0); 

CFontSheet(lPCTSTR pszCaption. CWnd* pParentWnd = NUll. 

// Attributes 
public: 

UINT iSelectPage = 0): 

(continued) 



T W E L V E: Menus, Keyboard Accelerators, the Rich Edit Control, and Property Sheets 

Figure 12-6. continued 

// Operations 
public: 

/I Overri des 
// ClassWizard generated virtual function overrides 
//{{AFX_VIRTUAL(CFontSheet) 
/ /}} AFX_V I RTUAL 

// Implementation 
public: 

virtual -CFontSheet(): 

// Generated message map functions 
protected: 

} : 

//{{AFX_MSG(CFontSheet) 
// NOTE - the ClassWizard will add and remove 

member functions here. 
/ /} } AFX_MSG 
DECLARE_MESSAGE_MAP() 

/////////////////////////////////////////////////////////////////////// 

//{{AFX_INSERT_LOCATION}} 
// Microsoft Developer Studio will insert additional declarations 
// immediately before the previous line. 

#endif // Idefined(AFX_PROPERTY_H __ CD702F99_7495_ -. 
llD0_8FDC_00C04FC2A0C2 __ INCLUDED_) 

PROPERTY.CPP 

// Property.cpp : implementation file 
/I 

#include "stdafx.h" 
#include "ex12a.h" 
4ii ncl ude "Property. h" 

4ii fdef _DEBUG 
#define new DEBUG_NEW 
#undef THIS_FILE 
static char THIS_FILE[] = __ FILE __ : 
4iendi f 

(continued) 

297 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

298 

Figure 12-6. continued 

/////////////////////////////////////////////////////////////////////// 

// CPage1 property page 

IMPlEMENT_DYNCREATE(CPage1, CPropertyPage) 

CPage1::CPage1() : CPropertyPage(CPage1::IDD) 
{ 

//{{AFX_DATA_INIT(CPage1) 
m_nFont = -1; 
//JJAFX_DATA_INIT 

CPagel::-CPagel() 
{ 

J 

Baal CPage1::OnApplY~) 
{ 

} 

TRACE("CPage1::OnApply\n"); 
g_pView->SendMessage(WM_USERAPPlY); 
return TRUE; 

Baal CPage1::OnCommand(WPARAMwParam, lPARAM lParam) 
{ 

SetModified(TRUE); 
return CPropertyPage::OnCommand(wParam, lParam); 

} 

void CPage1::DoDataExchange(CDataExchange* pDX) 
{ 

} 

TRACE("Entering CPage1::DoOataExchange ~- %d\n", 
p~X ->m_bSaveAndVa 1 i date) ; 

CPropertyPage::DoDataExchange(pDX); 
//{{AFX_DATA_MAP(CPage1) 
DDX_Radio(pDX, IDC_FONT, m_nFont); 
/ /} JAFX_DATA_MAP 

BEGIN_MESSAGE_MAP(CPage1, CPropertyPage) 
//{{AFX_MSG_MAP(CPage1) 

// NOTE: the ClassWizard will add message map macros here 
/ /} JAFX_MSG_MAP 

END_MESSAGE_MAP() 

(continued) 



T WE LV E: Menus, Keyboard Accelerators, the Rich Edit Control, and Property Sheets 

Figure 12-6. continued 

/////////////////////////////////////////////////////////////////////// 

// CPagel message handlers 

/////////////////////////////////////////////////////////////////////// 

// CPage2 property page 

IMPlEMENT_DYNCREATE(CPage2, CPropertyPage) 

CPage2::CPage2() : CPropertyPage(CPage2: :IDD) 
{ 

//{{AFX_DATA_INIT(CPage2) 
m_bBold = FALSE; 
m_bItalic = FALSE; 
m_bUnderline = FALSE; 
//llAFX_DATA_INIT 

CPage2::-CPage2() 
{ 

1 

Baal CPage2::0nCommand(WPARAM wParam, lPARAM lParam) 
{ 

SetModified(TRUE); 
return CPropertyPage::OnCommand(wParam, lParam); 

void CPage2: :DoDataExchange(CDataExchange* pDX) 

TRACE("Entering CPage2::DoDataExchange -- %d\n", 
pDX ->m_bSa veAndVa 1 i date) ; 

CPropertyPage: :DoDataExchange(pDX); 
//{{AFX_DATA_MAP(CPage2) 
DDX_Check(pDX, IDC_BOlD, m_bBold); 
DDX_Check(pDX, IDC_ITAlIC, m_bItalic); 
DDX_Check(pDX, IDC_UNDERlINE, m_bUnderline); 
/ /} lAFX_DATA_MAP 

BEGIN_MESSAGE_MAP(CPage2, CPropertyPage) 
//{{AFX_MSG_MAP(CPage2) 

// NOTE: the ClassWizard will add message map macros here 
/ /} lAFX_MSG_MAP 

END_MESSAGE_MAP() 

(continued) 

299 



PA R Till: THE DOCUMENT-VIEW ARCHITECTURE 

300 

Figure 12-6. continued 

/////////////////////////////////////////////////////////////////////// 

// CPage2 message handlers 

/////////////////////////////////////////////////////////////////////// 

// CPage3 property page 

IMPLEMENT_DYNCREATE(CPage3, CPropertyPage) 

CPage3::CPage3() : CPropertyPage(CPage3::IDD) 
{ 

//{{AFX_DATA_INIT(CPage3) 
m_nColor = -1; 
//JJAFX_DATA_INIT 

CPage3::-CPage3() 
{ 

J 

Baal 
{ 

} 

SetModified(TRUE): 

void CPage3::DoDataExchange(COataExchange* pOX) 
{ 

, 'h"W <N.V ,"" 

TRACE(''Entering'CPage3::000ataExchange 
pOX .-?rn~bS ax eAndV a lt9a te);.; 

CPropertyPage::DoDataExchange(pDX); 
//{{AFX_DATA_MAP(CPage3) 
DDX_Radio(pDX, IDC_COLOR, m_nColor); 
/ /} JAFX_DATA_MAP 

BEGIN_MESSAGE_MAP(CPage3, CPropertyPage) 
//{{AFX_MSG_MAP(CPage3) 

// NOTE: the ClassWizard will add message map macros here 
/ /} JAFX_MSG_MAP 

END_MESSAGE_MAP() 

/////////////////////////////////////////////////////////////////////// 

II CPage3 message handlers 

(continued) 



T W E L V E: Menus, Keyboard Accelerators, the Rich Edit Control, and Property Sheets 

Figure 12-6. continued 

/////////////////////////////////////////////////////////////////////// 

// CPage4 property page 

IMPLEMENT_DYNCREATE(CPage4. CPropertyPage) 

CPage4::CPage4() : CPropertyPage(CPage4::IDD) 
{ 

//{{AFX_DATA_INIT(CPage4) 
m_nFontSize = 0: 
//}}AFX_DATA_INIT 

CPage4::-CPage4() 
{ 

} 

BOOL CPage4::0nCommand(WPARAM wParam. LPARAM lParam) 
{ 

SetModified(TRUE): 
return CPropertyPage::OnCommand(wParam. lParam); 

void CPage4::DoDataExchange(CDataExchange* pDX) 
{ 

TRACE("Entering CPage4::DoDataExchange -- %d\n". 
pPX,->lILbS,aveAndVa 1 i date); 

CPropertyPage: :DoDataExchange(pDX): 
//{{AFX_DATA_MAP(CPage4) 
DDX_Text(pDX. IDC_FONTSIZE. m_nFontSize): 
DDV_MinMaxlnt(pDX. m_nFontSize. 8. 24): 
/ /} }AFX_DATA_MAP 

BEGIN_MESSAGE_MAP(CPage4. CPropertyPage) 
//{{AFX_MSG_MAP(CPage4) 
/ /} }AFX_MSG_MAP 

END_MESSAGE_MAP() 

/////////////////////////////////////////////////////////////////////// 

// CPage4 message handlers 

BOOL CPage4::0nInitDialog() 
{ 

(continued) 

301 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

302 

Figure 12-6. continued 

~P~~p~rtyPage::O~InitDialo~~); 

« CSpinButtonC:t r1* ) GetDlgItem( I DC_SPI Nl» -)SetRange( 8, 24); 
return TRUE; // return TRUE unless you set the focus to a control 

// EXCEPTION: OCX Property Pages should return FALSE 

/////////////////////////////////////////////////////////////////////// 

// CFontSheet 

IMPLEMENT_DYNAMIC(CFontSheet, CPropertySheet) 

CFontSheet::CFontSheet(UINT nIDCaption, CWnd* pParentWnd, 
UINT iSelectPage) 

:CPropertySheet(nIDCaption, pParentWnd, iSelectPage) 
{ 

J 

CFontSheet::CFontSheet(LPCTSTR pszCaption, CWnd* pParentWnd, 
UINT iSelectPage) 

:CPropertySheet(pszCaption, pParentWnd, iSelectPage) 

w··,· .. ·· ,. ,. , 

AddPage(&m_pagel); 
AddPage(&m_page2); 
AddPage(&m_page3); 
AddPa,ge( &m_page4); 

CFontSheet::-CFontSheet() 
{ 

J 

BEGIN_MESSAGE_MAP(CFontSheet, CPropertySheet) 
//{{AFX_MSG_MAP(CFontSheet) 

// NOTE - the ClassWizard will add and remove 
mapping macros here. 

/ /} JAFX_MSG_MAP 
END_MESSAGE_MAP() 

/////////////////////////////////////////////////////////////////////// 

// CFontSheet message handlers 

5. Add two data members and two prototypes to the CEx12aView, 
class. If you use ClassView for the data members, the #include for 
Property.h will be added automatically. 



T W E L V E: Menus, Keyboard Accelerators, the Rich Edit Control, and Property Sheets 

private: 
CFontSheet m_sh; 
BOOl m_bDefault; II TRUE default format. FALSE selection 

N ow add the prototype for the private function Format: 

void Format(CHARFORMAT& cf); 

Insert the prototype for the protected function OnUserApply before the 
DECLARE_MESSA GE_MAP macro. 

afx_msg lRESUlT OnUserApply(WPARAM wParam, LPARAM lParam): 

6. Edit and add code in the file ex12aView.cpp. Map the user-defined 
WM_USERAPPLYmessage, as shown here: 

ON_MESSAGE(WM_USERAPPLY, OnUserApply) 

Add the following lines to the On Create function, just before the re
turn 0 statement: 

CHARFORMAT cf; 
Format(cf) ; 
m_rich.SetDefaultCharFormat(cf); 

Edit the view constructor to set default values for the property sheet 
data members, as follows: 

CEx12aV; ew: : CEx12aV; ewe ) ,: m_sh (~',"); 

m_sh.m_pagel.m_nFont = 0; 
m_sh.m_page2.m_bBold = FALSE; 
m_sh.m_page2.m_bltalic = FALSE: 
m_sh.m_page2.m_bUnderline = FALSE; 
m_sh.m_page3.m_nColor = 0: 
m_sh.m_page4.m_nFontSize = 12: 
g_pView == this; 
m_pOefauJt. =:J RU E; ... 

303 



PA R Till: THE DOCUMENT-VIEW ARCHITECTURE 

304 

Edit the format command handlers, as shown here: 

void CEx12aView: :OnFormatDefault() 
{ 

m_sh. SetTitl e ("Default Format"); 
m_bDefault = TRUE; 
m_s h. DoModa l( ) : 

void CEx12aView: :OnFormatSelection() 
( 

m_sh.SetTitle("Selection Format"); 
m_bDefault = FALSE; 
m_sh. DoModa 1 () : 

void CEx12aView::OnUpdateFormatSelection(CCmdUI* pCmdUI) 

long nStart. nEnd; 
m_rich.GetSel(nStart. nEnd): ' 
pCmdUI~>Enable(nStart 1= nEnd): 

Add the following handler for the user-defined WM_USERAPPLY 
message: 

LRESULT CEx12aView::OnUserApply(WPARAM wParam. lPARAM lParam) 
{ 

} 

TRACE("CEx12aV;ew::OnUserApply -- wParam = %x\n", wParam): 
CHARFORMAT cf: 
Format(cf); 
if (m_bDefault) { 

m_rich.SetDefaultCharFormat(cf); 

else { 
m_rich.SetSelectionCharFormat(cf); 

} 

return 0; 

Add the Format helper function, as shown on the facing page, to set 
a CHARFORMATstructure based on the values of the property sheet 
data members: 



T W E L V E: Menus, Keyboard Accelerators, the Rich Edit Control, and Property Sheets 

void CEx12aView::Format(CHARFORMAT& cf) 
( 

cf.cbSize sizeof(CHARFORMAT); 
cf.dwMask CFM_BOLD I CFM_COLOR I CFM_FACE I 

CFM_ITALIC I CFM_SIZE I CFM_UNDERLINE; 
cf.dwEffects = (m_sh.m_page2.m_bBold ? CFE_BOLD : 0) 

(m_sh.m_page2.m_bItalic ? CFE_ITALIC : 0) 
(m_sh.m_page2.m_bUnderline ? CFE_UNDERLINE : 0); 

cf.yHeight = m_sh.m_page4.m_nFontSize * 20: 
switch(m_sh.m_page3.m_nColor) ( 
case -1: 
case 0: 

cf.crTextColor RGB(0. 0. 0); 
break; 

case 1: 
cf.crTextColor RGB(255. 0. 0); 
break: 

case 2: 
cf.crTextColor RGB(0. 255. 0); 
break; 

switch(m_sh.m_page1.m_nFont) 
case -1: 
case 0: 

strcpy(cf.szFaceName. "Times New Roman"); 
break; 

case 1: 
strcpy(cf.szFaceName. "Arial"); 
break; 

case 2: 
strcpy(cf.szFaceName. "Courier New"); 
break; 

cf.bCharSet = 0: 
cf.bPitchAndFamily = 0; 

7. Build and test the enhanced EX12A application. Type some text, 
and then choose Default from the Format menu. Observe the TRACE 
messages in the Debug window as you click on property sheet tabs and 
click the Apply button. Try highlighting some text and then formatting 
the selection. 

305 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

Apply Button Processing 
You might be curious about the way the property sheet classes process the Apply 
button. In all the page classes, the overridden OnCommand functions enable 
the Apply button whenever a control sends a message to the page. This works 
fine for pages 1 through 3 in EX12A, but for page 4, On Command is called 
during the initial conversation between the spin button control and its buddy. 

The OnApply virtual override in the CPageJ class sends a user-defined 
message to the view. The function finds the view in an expedient way-by using 
a global variable set by the view class. A better approach would be to pass the 
view pointer to the sheet constructor and then to the page constructor. 

The view class calls the property sheet's DoModal function for both de
fault formatting and selection formatting. It sets the m_bDeJault flag to indi
cate the mode. We don't need to check the return from DoModal because the 
user-defined message is sent for both the OK button and the Apply button. 
If the user clicks Cancel, no message is sent. 

The CMenu Class 

306 

Up to this point, the application framework and the menu editor have shielded 
you from the menu class, CMenu. A CMenu object can represent each Windows 
menu, including the top-level menu items and associated pop-up menus. Most 
of the time, the menu's resource is directly attached to a frame window when 
the window's Create or LoadFrame function is called, and a CMenu object is 
never explicitly constructed. The CWnd member function GetMenu returns a 
temporary CMenu pointer. Once you have this pointer, you can freely access 
and update the menu object. 

Suppose you want to switch menus after the application starts. IDR
_MAINFRAME always identifies the initial menu in the resource script. If you 
want a second menu, you use the menu editor to create a menu resource with 
your own ID. Then, in your program, you construct a CMenu object, use the 
CMenu::LoadMenu function to load the menu from the resource, and call the 
CWnd::SetMenu function to attach the new menu to the frame window. Then 
you call the Detach member function to separate the object's HMENUhandle 
so that the menu is not destroyed when the CMenu object goes out of scope. 

You can use a resource to define a menu, and then your program can 
modify the menu items at runtime. If necessary, however, you can build the 
whole menu at runtime, without benefit of a resource. In either case, you can 



T W E L V E: Menus, Keyboard Accelerators, the Rich Edit Control, and Property Sheets 

use CMenu member functions such as ModifyMenu, InsertMenu, and DeleteMenu. 
Each of these functions operates on an individual menu item identified by ID 
or by a relative position index. 

A menu object is actually composed of a nested structure of submenus. 
You can use the GetSubMenu member function to get aCMenu pointer to a pop
up menu contained in the main CMenu object. The CMenu::GetMenuString 
function returns the menu item string corresponding to either a zero-based 
index or a command ID. If you use the command ID option, the menu is 
searched, together with any submenus. 

Creating Floating Pop-Up Menus 
Floating pop-up menus are one of the latest trends in user interface design. 
The user presses the right mouse button and a floating menu offers choices 
that relate to the current selection. It's easy to create these menus using the 
resource editor and the MFC library CMenu::TrackPopupMenu function. Just 
follow these steps: 

1. Use the menu editor to insert a new, empty menu in your project's 
resource file. 

2. Type some characters in the left top-level item, and then add your 
menu items in the resulting pop-up menu. 

3. Use ClassWizard to add a WM_CONTEXTMENU message handler 
in your view class or in some other window class that receives 
mouse-click messages. Code the handler as shown here: 

void CMyView::OnContextMenu(CWnd *pWnd, CPoint point) 
{ 

CMenu menu; 
menu.LoadMenu(IDR_MYFLOATINGMENU); 
menu.GetSubMenu(0) 

-)TrackPopupMenu(TPM_LEFTALIGN I TPM_RIGHTBUTTON, 
point.x, point.y, this); 

You can use ClassWizard to map the floating menu's command 
IDs the same way you would map the frame menu's command IDs. 

307 



PA R Till: THE DOCUMENT-VIEW ARCHITECTURE 

Extended Command Processing 

308 

In addition to the ON_ COMMAND message map macro, the MFC library pro
vides an extended variation, ON_COMMAND_EX. The extended command 
message map macro provides two features not supplied by the regular com
mand message-a command ID function parameter and the ability to reject 
a command at runtime, sending it to the next object in the command route. 
If the extended command handler returns TRUE, the command goes no fur
ther; if it returns FALSE, the application framework looks for another com
mand handler. 

The command ID parameter is useful when you want one function to 
handle several related command messages. You might invent some of your own 
uses for the rejection feature. 

ClassWizard can't help you with extended command handlers, so you'll 
have to do the coding yourself, outside the A.FJLMSG_MAP brackets. Assume 
that IDM_ZOOM_l and IDM_ZOOM_2 are related command IDs defined in 
resource.h. Here's the class code you'll need to process both messages with 
one function, OnZoom: 

BEGIN_MESSAGE_MAP(CMyView. CView) 
ON_COMMAND_EX(IDM_ZOOM_I. OnZoom) 
ON_COMMAND_EX(IDM_ZOOM_2. OnZoom) 

END_MESSAGE_MAP() 

BOOl CMyView::OnZoom(UINT nID) 
{ 

if (nID == IDM_ZOOM_I) { 
II code specific to first zoom command 

else { 
II code specific to second zoom command 

} 

II code common to both commands 
return TRUE; II Command goes no further 

Here's the function prototype: 

afx_msg BOOl OnZoom(UINT nID); 



T WE LV E: Menus, Keyboard Accelerators, the Rich Edit Control, and Property Sheets 

Other MFC message map macros are helpful for processing ranges of 
commands, as you might see in dynamic menu applications. These macros 
include 

ON_COMMAND_RANGE 

ON_COMMAND_EJLRANGE 

ON_ UPDATE_ COMMAND_ ULRANGE 

If the values of ID~ZOO~l and ID~ZOO~2 were consecutive, you could 
rewrite the eMy View message map as follows: 

BEGIN_MESSAGE_MAP(CMyView. CView) 
ON_COMMAND_EX_RANGE(IDM_ZOOM_l. IDM_ZOOM_2. OnZoom) 

END_MESSAGE_MAP() 

Now OnZoom is called for both menu choices, and the handler can determine 
the choice from the integer parameter. 

309 





C HAP T E R T H R TEE N 

Toolbars and Status Bars 

All the Visual C++ examples up to this point have included toolbars and status 
bars. AppWizard generated the code that initialized these application frame
work elements as long as you accepted the AppWizard default options Dock
ing Toolbar and Initial Status Bar. The default toolbar provides graphics 
equivalents for many of the standard application framework menu selections, 
and the default status bar displays menu prompts together with the keyboard 
state indicators CAP, NUM, and SCRL. 

This chapter shows you how to customize the toolbar and the status bar 
for your application. You'll be able to add your own toolbar graphical buttons 
and control their appearance. You'll also learn how to disable the status bar's 
normal display of menu prompts and keyboard indicators. This allows your 
application to take over the status bar for its own use. 

Control Bars and the Application Framework 
The toolbar is an object of class CToolBar, and the status bar is an object of class 
CStatusBar. Both these classes are derived from class CControlBar, which is it
self derived from CWnd. The CControlBarclass supports control bar windows 
that are positioned inside frame windows. These control bar windows resize 
and reposition themselves as the parent frame moves and changes size. The 
application framework takes care of the construction, window creation, and 
destruction of the control bar objects. AppWizard generates control bar code 
for its derived frame class located in the files MainFrm.cpp and MainFrm.h. 

In a typical SDI application, a CToolBarobject occupies the top portion 
of the CMainFrame client area and a CStatusBar object occupies the bottom 
portion. The view occupies the remaining (middle) part of the frame. 

Beginning with Microsoft Foundation Class (MFC) Library version 4.0, 
the toolbar has been built around the toolbar common control that first be
came available with Microsoft Windows 95. Thus the toolbar is fully dockable. 

311 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

The programming interface is much the same as it was in earlier versions of 
the MFC library, however. The button images are easier to work with now 
because a special resource type is supported by the resource editor. The old 
global buttons array is gone now. 

Assuming that AppWizard has generated the control bar code for your 
application, the user can enable and disable the toolbar and the status bar 
individually by choosing commands from the application's View menu. When 
a control bar is disabled, it disappears and the view size is recalculated. Apart 
from the common behavior just described, toolbar and status bar objects op
erate independently of each other and have rather different characteristics. 

The Toolbar 
A toolbar consists ofa number of horizontally (or vertically) arranged graphi
cal buttons that might be clustered in groups. The programming interface 
determines the grouping. The graphical images for the buttons are stored in 
a single bitmap that is attached to the application's resource file. When a 
button is clicked, it sends a command message, as do menus and keyboard 
accelerators. An update command VI message handler is used to update the 
button's state, which in turn is used by the application framework to modify 
the button's graphical image. 

The Toolbar Bitmap 

312 

Each button on a toolbar appears to have its own bitmap, but actually a single 
bitmap serves the entire toolbar. The toolbar bitmap has a tile, 15 pixels high 
and 16 pixels wide, for each button. The application framework supplies the 
button borders, and it modifies those borders, together with the button's bitmap 
tile color, to reflect the current button state. Figure 13-1 shows the relation
ship between the toolbar bitmap and the corresponding toolbar. 

Figure 13-1. 
A toolbar bitmap and an actual toolbar. 



T H I R TEE N: Toolbars and Status Bars 

The toolbar bitmap is stored in the file Toolbar.bmp in the application's 
\res subdirectory. The bitmap is identified in the resource script (RC) file as 
ID/LMAINFRAME. You don't edit the toolbar bitmap directly; instead you 
use Developer Studio's special toolbar editing facility. 

Button States 
Each button can assume the following states: 

State 

TBBS_ CHECKED 

TBBS_DISABLED 

TBBS_INDETERMINATE 

TBBS_ CHECKED I TBBS_DISABLED 

Meaning 

Normal, unpressed (up) state 

Currently selected (pressed) with 
the mouse 

Checked (down) state 

Unavailable for use 

Enabled, but neither up nor down 

Checked state, but unavailable 
for use 

A button can behave in either of two ways: it can be a pushbutton, which 
is down only when currently selected by the mouse, or it can be a check box 
button, which can be toggled up and down with mouse clicks. All buttons in 
the standard application framework toolbar are pushbuttons. 

The Toolbar and Command Messages 
When the user clicks a toolbar button with the mouse, a command message 
is generated. This message is routed like the menu command messages you 
saw in Chapter 12. Most of the time, a toolbar button matches a menu option. 
In the standard application framework toolbar, for example, the Disk button 
is equivalent to the File Save menu option because both generate the 
ID_FlLE_SA VE command. The object receiving the command message doesn't 
need to know whether the message was produced by a click on the toolbar or 
by a selection from the menu. 

A toolbar button doesn't have to mirror a menu item. If you don't pro
vide the equivalent menu item, however, you are advised to define a keyboard 
accelerator for the button so that the user can activate the command with the 
keyboard or with a keyboard macro product for Microsoft Windows. You can 

313 



PA R Till: THE DOCUMENT-VIEW ARCHITECTURE 

use ClassWizard to define command and update command VI message han
dlers for toolbar buttons, whether or not they have corresponding menu items. 

A toolbar has an associated bitmap resource and, in the RC file, a com
panion TOOLBAR resource that defines the menu commands associated with 
the buttons. Both the bitmap and the TOOLBAR resource have the same ID, 
typically IDJLMAINFRAME. The text of the AppWizard-generated TOOLBAR 
resource is shown below: 

IDR_MAINFRAME TOOLBAR DISCARDABLE 16, 15 
BEGIN 

BUTTON ID_FILE_NEW 
BUTTON ID_FILE_OPEN 
BUTTON ID_FILE_SAVE 
SEPARATOR 
BUTTON ID_EDIT_CUT 
BUTTON ID_EDIT_COPY 
BUTTON ID_EDIT_PASTE 
SEPARATOR 
BUTTON ID_FILE_PRINT 
BUTTON ID_APP_ABOUT 

END 

The SEPARA TOR constants serve to group the buttons by inserting corre
sponding spaces on the toolbar. If the number of toolbar bitmap panes ex
ceeds the n urn ber of resource elements (excluding separators), the extra 
buttons are not displayed. 

When you edit the toolbar with the resource editor, you're editing both 
the bitmap resource and the TOOLBAR resource. You select a button image, 
and then you double-click on the left panel to edit the properties, including 
the button's ID. 

Toolbar Update Command UI Message Handlers 

314 

You remember from Chapter 12 that update command VI message handlers 
were used to disable or add check marks to menu items. These same message 
handlers apply to toolbar buttons. If your update command VI message han
dler calls the CCmdUI::Enablememberfunction with a FALSE parameter, the 
corresponding button is set to the disabled (grayed) state and no longer re
sponds to mouse clicks. 

On a menu item, the CCmdUI::SetCheck member function displays a check 
mark. For the toolbar, the SetCheck function implements check box buttons. 
If the update command VI message handler calls SetCheck with a parameter 
value of 1, the button is toggled to the down (checked) state; if the parameter 
is 0, the button is toggled up (unchecked). 



T H I R TEE N: Toolbars and Status Bars· 

NOT E : If the SetCheck parameter value is 2, the button is set to the 
indeterminate state. This state looks like the disabled state, but the 
button is still active and its color is a bit brighter. 

The update command UI message handlers for a pop-up menu are called 
only when the menu is painted. The toolbar is displayed all the time, so when 
are its update command UI message handlers called? They're called during 
the application's idle processing, so the buttons can be updated continuously. 
If the same handler covers a menu item and a toolbar button, it is called both 
during idle processing and when the pop-up menu is displayed. 

ToolTips 
You've seen ToolTips in various Windows applications, including Developer 
Studio. When the user positions the mouse on a toolbar button for a certain 
interval, text is displayed in a little ToolTip box next to the button. In Chap
ter 12, you learned that menu items can have associated prompt strings, which 
are string resource elements with matching IDs. To create a ToolTip, you 
simply add the tip text to the end of the menu prompt, preceded by a newline 
(\n) character. The resource editor lets you edit the prompt string while you 
are editing the toolbar images. Just double-click in the left panel. 

Locating the Main Frame Window 
The toolbar and status bar objects you'll be working with are attached to the 
application's main frame window, not to the view window. How does your view 
find its main frame window? In an SDI application, you can use the CWnd
::GetParentFrame function. Unfortunately, this function won't work in an MDI 
application because the view's parent frame is the MDI child frame, not the 
MDI frame window. 

If you want your view class to work in both SDI and MDI applications, you 
must find the main frame window through the application object. The AfxGetApp 
global function returns a pointer to the application object, and you can use 
that pointer to get the CWinApp data member m_pMain Wnd. In an MDI ap
plication, AppWizard generates code that sets m_pMain Wnd, but in an SDI 
application, the framework setsm_pMain Wnd during the view creation pro
cess. Once m_pMainWndis set, you can use it in a view class to get the frame's 
toolbar with statements such as this: 

CMainFrame* pFrame (CMainFrame*) AfxGetApp()->m_pMainWnd; 
CToolBar* pToolBar &pFrame->m_wndToolBar; 

315 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

NOTE: You'll need to castm_pMainWndfrom CFrameWnd* to 
CMainFrame* because m_wndToolBar is a member of that derived 
class. You'll also have to make m_wndToolBar public or make your 
class a friend of CMainFrame. 

You can use similar logic to locate menu objects, status bar objects, and 
dialog objects. 

NOT E : In an SDI application, the value of m_pMain Wnd is not 
set when the view's OnCreate message handler is called. If you need 
to access the main frame window in your OnCreate function, you 
must use the GetParentFrame function. 

The EX13A Toolbar Example 

316 

In this example, you will replace the standard application framework Edit Cut, 
Copy, and Paste toolbar buttons with three special-purpose buttons that con
trol drawing in the view window. You will also construct a Draw menu with 
three corresponding menu items, as follows: 

Menu Item 

Circle 

Square 

Pattern 

Function 

Draws a circle in the view window 

Draws a square in the view window 

Toggles a diagonal line fill pattern for new squares and circles 

The menu and toolbar options force the user to alternate between draw
ing circles and squares. Mter the user draws a circle, the Circle menu item and 
toolbar button are disabled; after the user draws a square, the Square menu 
item and toolbar button are disabled. 

On the application's Draw menu, the Pattern menu item gets a check 
mark when pattern fill is active. On the toolbar, the corresponding button is 
a check box button that is down when pattern fill is active and up when it is 
not active. 

Figure 13-2 shows the application in action. The user has just drawn a 
square with pattern fill. Notice the states of the three drawing buttons. 



T H I R TEE N: Toolbars and Status Bars 

Figure 13-2. 
The EX13A program in action. 

The EX13A example introduces the resource editor for toolbars. You'll 
need to do very little C++ coding. Simply follow these steps: 

1. Run AppWizard to generate \vcpp32\ex13a\ex13a. Select Single 
Document and deselect Printing And Print Preview; otherwise, accept 
the default settings. The options and the default class names are 
shown here: 

317 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

318 

2. Use the resource editor to edit the application's main menu. In 
ResourceView, double-click on IDILMAINFRAMEunder Menu. Edit the 
IDILMAINFRAME menu resource to create a menu that looks like this 
(which means you'll need to change the Edit menu): 

Use the following command IDs for your new menu items: 

Menu 

Draw 

Draw 

Draw 

Caption 

Circle 

Square 

Pattern 

Command 10 

ID_DRA W_ CIRCLE 

ID_DRA W_SQUARE 

ID_DRAW_PATTERN 

When you're in the Menu Item Properties dialog, add some appropriate 
prompt strings and ToolTips (following a newline character). The string 
for ID_DRA W_CIRCLEmight be "Draw a circle\nCircle". 

3. Use the resource editor to update the application's toolbar. Edit 
the IDILMAINFRAME toolbar resource to create a bitmap that looks 
like this: 



T H I R TEE N: Toolbars and Status Bars 

You'll be erasing the Edit Cut, Copy, and Paste tiles (fourth, fifth, and 
sixth from the left) and replacing them with new tiles. The toolbar edi
tor is fairly intuitive. You simply move the buttons around with the mouse. 
The Del key erases a button's pixels. If you want to eliminate a button 
entirely, just drag it off the toolbar. Use the rectangle and ellipse tools 
from the bitmap editor's palette. Experiment with different line widths. 
Save the resource file when you're done-just in case. 

Assign the IDs ID_DRA W_ CIRCLE, ID_DRA W_SQUARE, and 
ID_DRA W_PATTERN to the three new buttons. 

4. Use ClassWizard to add CEx13aViewview class message hal'!dlers. 
Add message handlers for the following command and update com
mand UI messages, and accept the default function names shown in the 
following table: 

Object 10 Message Member Function 

ID_DRA W_CIRCLE COMMAND OnDrawCircle 

ID_DRA W_ CIRCLE UPDATE_ COMMAND_ UI On UpdateDrawCircle 

ID_DRAW_PAITERN COMMAND OnDrawPattern 

ID_DRAW_PATTERN UPDATE_COMMAND_ UI On UpdateDrawPattern 

ID_DRA W_SQUARE COMMAND OnDrawSquare 

ID_DRA W_SQUARE UPDATE_COMMAND_UI On UpdateDrawSquare 

5. Add three data members to the CEx13aView class. Edit the file 
ex13aView.h, or use ClassView. 

private: 
CRect m_rect; 
BOOl m_bCircle; 
BOOl m_bPattern; 

6. Edit the ex13aView.cpp file. The CEx13a View constructor simply ini
tializes the class data members. Add the foIiowing shaded code: 

CEx13aView: :CEx13aView() : m_rect(0, 0. 100, 100) 
{ 

~bCircle = TRUE; 
m_bPattern = FALSE; 

319 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

320 

The OnDraw function draws an ellipse or a rectangle, depending on the 
value of the m_bCircle flag. The brush is plain white or a diagonal pat
tern, depending on the value of m_bPattern. 

void CEx13aView::OnDraw(CDC* pDC) 

0L); II brush with diagonal pattern 

if (Tn_bPattern) { 
pDC->SelectObject(&brush); 

else { 
pDC->SelectStockObject(WHITE_BRUSH): 

} 

if (rn_bC; rcl e) { 
pDC->El1ipse(Tn_rect); 

else { 
pDC->Rectangle(Tn_rect): 

} 

pDC->SelectStockObject(WHITE_BRUSH): II Deselects brush 
II if sel ected 

The OnDrawCircle function handles the ID~RA W_ CIRCLE command 
message, and the OnDrawSquarefunction handles the ID_DRA W_SQUARE 
command message. These two functions move the drawing rectangle 
down and to the right, and then they invalidate the rectangle, causing 
the OnDraw function to redraw it. The effect of this invalidation strategy 
is a diagonal cascading of alternating squares and circles. 

void CEx13aView::OnDrawCircle() 
{ 

Tn_bCircle= TRUE; 
Tn_rect += CPointC25. 25): 
InvalidateRectCrn_rect); 

void CEx13aView::OnDrawSquare() 

} 

Tn_bCircle= FALSE; 
Tn_rect+= CPoi nt (25. 25); 
InvalidateRect(rn_rect) ; 



T H I R TEE N: Toolbars and Status Bars 

The following two update command UI functions alternately enable 
and disable the Circle and Square buttons and corresponding menu 
items. Only one item can be enabled at a time. 

void CEx13aView::OnUpdateDrawCircle(CCmdUI* pCmdUI) 
{ 

pCmdUI->Enable(!m_bCircle); 

void CEx13aView::OnUpdateDrawSquare(CCmdUI* pCmdUI) 

pCmdUI->Enable(m_bCircle); 

The OnDrawPattern function toggles the state of the m_bPattern flag. 

void CEx13aView::OnDrawPattern() 
{ 

The OnUpdateDrawPattern function updates the Pattern button and 
menu item according to the state of the m_bPattern flag. The toolbar but
ton appears to move in and out, and the menu item check mark appears 
and disappears. 

void CEx13aView::OnUpdateDrawPattern(CCmdUI* pCmdUI) 
{ 

pCmdUI->SetCheck(m_bPattern); 

7. Build and test the EX13A application. Notice the behavior of the 
toolbar buttons. Try the corresponding menu items, and notice that they 
too are enabled, disabled, and checked as the application's state changes. 
Observe the ToolTip when you stop the mouse pointer on one of the 
new toolbar buttons. 

The Status Bar 
The status bar window neither accepts user input nor generates command 
messages. Its job is simply to display text in panes under program control. The 
status bar supports two types of text panes-message line panes and status 
indicator panes. To use the status bar for application-specific data, you must 
first disable the standard status bar that displays the menu prompt and key
board status. 

321 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

The Status Bar Definition 
The static indicators array that AppWizard generates in the MainFrm.cpp file 
defines the panes for the application's status bar. The constantID_SEPARATOR 
identifies a message line pane; the other constants are string resource IDs that 
identify indicator panes. Figure 13-3 shows the indicators array and its relation
ship to the standard framework status bar. 

Static U1NT indicators[] 
{ 

} : 

10_SEPARATOR, 
10_1N01CATO~CAPS, 
10_1N01CATOR_NUM, 
10_1 NO I CATO R_SC RL, .q-,._~'_~""""""""1iil_"~ ____ ' ___ ...& 

Figure 13-3. 
The status bar and the indicators array. 

The CStatusBar::Setlndicatorsmember function, called in the application'S 
derived frame class, configures the status bar according to the contents of the 
indicators array. 

The Message Line 

322 

A message line pane displays a string that the program supplies dynamically. 
To set the value of the message line, you must first get access to the status bar 
object and then you must call the CStatusBar::SetPaneText member function 
with a zero-based index parameter. Pane 0 is the leftmost pane, 1 is the next 
pane to the right, and so forth. 

The following code fragment is part of a view class member function. 
Note that you must navigate up to the application object and then back down 
to the main frame window. 

CMainFrame* pFrame = (CMainFrame*) AfxGetApp()->m_pMainWnd; 
CStatusBar* pStatus = &pFrame->m_wndStatusBar; 
pStatus->SetPaneText(0, "message line for first pane"); 

Normally, the length of a message line pane is exactly one-fourth the 
width of the display. If, however, the message line is the first (index 0) pane, 



T H I R TEE N: Toolbars and Status Bars 

it is a stretchy pane without a beveled border. Its minimum length is one-fourth 
the display width, and it expands if room is available in the status bar. 

The Status Indicator 
A status indicator pane is linked to a single resource-supplied string that is 
displayed or hidden by logic in an associated update command VI message 
handler function. An indicator is identified by a string resource ID, and that 
same ID is used to route update command VI messages. The Caps Lock indi
cator is handled in the frame class by a message map en try and a handler 
function equivalent to those shown below. The Enable function turns on the 
indicator if the Caps Lock mode is set. 

ON_UPDATE_COMMAND_UI(ID_INDICATOR_CAPS, OnUpdateKeyCapsLock) 

void CMainFrame::OnUpdateKeyCapsLock(CCmdUI* pCmdUI) 
{ 

pCmdUI->Enable(: :GetKeyState(VK_CAPITAL) & 1); 

The status bar update command VI functions are called duri~g idle processing 
so that the status bar is updated whenever your application receives messages. 

The length of a status indicator pane is the exact length of the corre
sponding resource string. 

Taking Control of the Status Bar 
In the standard application framework implementation, the status bar has the 
child window ID AFJLIDW_STATUS_BAR The application framework looks 
for this ID when it wants to display a menu prompt. The update command VI 
handlers for the keyboard state indicators, embedded in the frame window 
base class, are linked to the following string IDs: ID_INDICATOlL CAPS, 
ID_INDlCATOlLNUM, and ID_INDlCATOlLSCRL. To take control of the sta
tus bar, you must use a different child window ID and you must use different 
indicator ID constants. 

NOT E : The only reason to change the status bar's child window 
ID is to prevent the framework from writing menu prompts in pane 
O. If you like the menu prompts, you can disregard the following 
instructions. 

The status bar window ID is assigned in the CStatusBar::Create function 
called by the derived frame class On Create member function. That function is 
contained in the MainFrm.cpp file that App Wizard generates. The window ID 
is the third Create parameter, and it defaults to AFJLIDW_STATUS_BAR 

323 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

To assign your own ID, you must replace this call 

m_wndStatusBar.Create(this); 

with this call 

m_wndStatusBar.Create(this. WS_CHILD I WS_VISIBLE I CBRS_BOTTOM. 
ID_MY_STATUS_BAR); 

You must also, of course, define the ID_MY_STATUS_BAR constant in the 
resource.h file (using Developer Studio's resource symbol editor). 

We forgot one thing. The standard application framework's View menu 
allows the user to turn the status bar on and off. That logic is pegged to the 
AFJLIDW_STATUS_BAR window ID, so you'll have to change the menu logic 
too. In your derived frame class, you must write message map entries and 
handlers for the ID_ VIEW_STATUS_BAR command and update command VI 
messages. ID_ VIEW_STATUS_BAR is the ID of the Status Bar menu item. The 
derived class handlers override the standard handlers in the CFrameWndbase 
class. See the EX13B example for code details. 

The EX13B Status Bar Example 

324 

The EX13B example replaces the standard application framework status bar 
with a new status bar that has the following text panes: 

Pane 
Index String 10 Type Description 

0 ID_SEPARATOR (0) Message line x cursor coordinate 

1 ID_SEPARATOR (0) Message line y cursor coordinate 

2 ID_INDICATOlLLEFT Status indicator Left mouse button 
status 

3 ID_INDICATOlLRiGHT Status indicator Right mouse button 
status 

The resulting status bar is shown in Figure 13-4. Notice that the leftmost pane 
stretches past its normal 1/4-screen length as the displayed frame window 
expands. 



T H I R TEE N: Toolbars and Status Bars 

1~~~tif=ji:iixl 

1;;fqJ~r~1 r;~l~ril (~r!J I 

Figure 13-4. 
The status bar of the EX13B example. 

Follow these steps to produce the EX13B example: 

1. Run AppWizard to generate \vcpp32\ex13b\ex13b. Accept all the 
default settings, except select Single Document and deselect Printing And 
Print Preview. The options and the default class names are shown here: 

Fea!U!es: .. ·...•. '. :>.i 
+ Initial toolbill in main frame 
"'lroitial$l&tusb<irinmairtl!ame .,., 
:t:3DCOntrois' . '.:: .:.: .... : ",' ',:::': .> 

( '+ Use$ shared DLllmplementation (MFC42DUI ' 
; + Active>< Controls support enabll;id 

+ loc.afi:<lble text in: 
.~,~?I~h [1Jni\ed~.~~,t~:1 

325 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

326 

2. Use the string editor to edit the application's string table resource. 
The application has a single string table resource with artificial "segment" 
divisions left over from the 16-bit era. Double-click on the String Table 
icon in the String Table folder on the ResourceView page to bring up 
the string editor. Then double-click on the empty entry at the end of the 
list. A dialog allows you to assign the ID and the string value as shown 
below: 

;10> ... 

IDJNDICATOR_EXT 
IDJNDIC.6.TOR_CAPS 
IDJNDIC.6.TOR_NUM 
IDJNDICATOR_SCRl 
IDJNDIC.6.TOR_OVR 
IDJNDIC.6.TOR_REC 
ID_VIEW_TOOlBAR 
ID_VIEW_STATUS_BAR 
AFXJ S_SCSIZE 
AFXJDS_SCMOVE 
AFXJDS_SCMINIMIZE 
AFXJDS_SCMAXIMIZE 
AFXJDS_SCNEXTWINDOW 
AFXJDS_SCPREVWINDOW 
AFXJDS_SCClOSE 
AFXJDS_SC EST ORE 
AFXJDS_SCTASKLIST 
IDJNDIC.6.TOR_lEFT 

Value 
57681 
59136 
59137 
59138 
59139 
59140 
59141 
59392 
59393 
61184 
61185 
61186 
61187 

-61188 
61189 
61190 
61202 
61203 
61204 

Switch back to the previous window pane\nPrevious Pane 
EXT 
C.6.P 
NUM 
SCRl 
OVR 
REC 
Show or hide the toolbar n Toggle T oolBar 
Show or hide the status bar\nToggle StatusBar 
Change the window size 
Change the window position 
R educe the window to an icon 
Enlarge the window to full size 
Switch to the next document window 
Switch to the previous document window 
Close the active window and prompts to save the documents 
Restore the window to normal size 

ActivateTaskLii~~.ml1mU~BlrE ••• II.m~.il lEFT Jl 

Add two strings as follows: 

String 10 

ID_INDICATOlLLEFr 

ID_INDICATOlLRlGHT 

String Caption 

LEFT 

RIGHT 

3. Use Developer Studio to edit the application's symbols. Choose 
Resource Symbols from the View menu. Add the new status bar identi
fier, ID_MY_STATUS_BAR, and accept the default value. 



T H I R TEE N: Toolbars and Status Bars 

4. Use ClassWizard to add View menu command handlers in the class 
CMain Fram e. Add the following command message handlers: 

Object ID Message Member Function 

ID_ VIEW_STATUS_BAR COMMAND On ViewStatusBar 

ID_ VIEW_STATUS_BAR UPDATE_COMMAND_UI OnUpdateViewStatusBar 

5. Add the following function prototypes to MainFrm.h. You must 
add these CMainFrame message handler prototypes manually because 
ClassWizard doesn't recognize the associated command message IDs. 

afx_msg void OnUpdateLeft(CCmdUI* pCmdUI); 
afx_msg void OnUpdateRight(CCmdUI* pCmdUI); 

Add the message handler statements inside the AFLMSG brackets 
so that ClassWizard will let you access and edit the code later. While 
MainFrm.h is open, make m_wndStatusBarpublic rather than protected. 

6. Edit the MainFrm.cpp file. Replace the original indicators array with 
the following shaded code: 

static UINT indicators[] = 
{ 

} ; 

ID_SEPARATOR, II first message line pane 
ID_SEPARATOR. II second message line pane 
ID_INDICATOR_LEFT. 
ID_INDICATOR_RlqHT. 

Next edit the OnCreate member function. Replace the following 
statement 

if (!m_wndStatusBar.Create(this) I I 
!m_wndStatusBar.Setlndicators(indicators. 

sizeof(indicators)/sizeof(UINT») 

T RA C E (:) ( " Fail edt 0 c rea t est a t usb a r \ n " ) ; 
return -1; II fail to create 

with the statement shown at the top of the following page. 

327 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

328 

if (!'!I-:-wn,dStatusBa r. Crea~e( thi,s, 
WS_CHILD /WS_VISIBLE / CBRS_BOTTOM, ID_MY_STATUS_BAR) II 

!m_wndStatusBar.SetIndicators(indicators, 
sizeof(indicators)/sizeof(UINT») 

TRACE0("Failed to create status bar\n"); 
return -1; II fail to create 

The modified call to Create uses our own status bar ID, ID_MY_STATUS
_BAR, instead of AFX_IDW_STATUS_BAR (the application framework's 
status bar object). 

Now add the following message map entries for the class CMainFrame. 
ClassWizard can't add these for you because it doesn't recognize the 
string table IDs as object IDs. 

'ON_UPOATE_COMMANO_U I ( 10_1 NOI CATOR_LEFT. OnUpdateLeft) 
ON_UPOATE_COMMANO_UI(ID_INDICATOR_RIGHT, OnUpdateRight) 

Next add the following CMainFrame member functions that update 
the two status indicators: 

void CMainFrame::OnUpdateLeft(CCmdUI* pCmdUI) 
{ 

pCmdUI->Enable(::GetKeyState(VK_LBUTTON) < 0): 
} 

void CMainFrame::OnUpdateRight(CCmdUI* pCmdUI) 

pCmdUI~>Enable(::GetKeyState(VK_RBUTTON) < 0): 

Note that the left and right mouse buttons have virtual key codes like 
keys on the keyboard have. You don't have to depend on mouse-click 
messages to determine the button status. 

Finally, edit the following View menu functions that ClassWizard 
originally generated in MainFrm.cpp: 

void CMainFrame::OnViewStatusBar() 
{ 

, • • ~. , '.~ .> • , 

m_wndStatusBar.ShowWindow«m.:..wndStatusBar.GetStyle() & 
WS_VISIBLE) == 0); 

Recal cLayout(): 



T H I R TEE N: Toolbars and Status Bars 

void CMainFrame::OnUpdateViewStatusBar(CCmdUI* pCmdUI) 
{ 

pCmdUI-)SetCheck«m_wndStatusBar.GetStyle() & WS_VISIBLE) 1= 0): 

These functions ensure that the View menu Status Bar command is prop
erly linked to the new status bar. 

7. Edit the OnDrawfunction in Ex13bView.cpp. The OnDrawfunction 
displays a message in the view window. Add the following shaded code: 

void CEx13bView::OnDraw(CDC* pPC) 
{ 

pDC-)TextOut(0. 0. 
"Watch the status par ,while you move and cl ick the mouse."): 

} 

8. Add a WM_MOUSEMOVE handler in the CEx13bView class. Use 
ClassWizard to map the message to OnMouseMove, and then edit the 
function as shown below. This function gets a pointer to the status bar 
object and then calls the SetPaneText function to update the first and sec
ond message line panes. 

void CEx13bView::OnMouseMove(UINT nFlags. CPoint point) 
{ 

CString str: 
CMainFrame* pFrame = (CMainFrame*) AfxGetApp()-)m_pMainWnd; 
CStatusBar* pStatus = &pFrame-)m_wndStatusBar; 
if (pStatus) { 

str.Format("x = %d". point.x): 
pStatus->SetPaneText(0. str): 
str.Format("y = %d". point.y); 
pStatus->SetPaneText(l. str): 

Finally, add the statement 

#inclu~e "MainFrm.h" 

near the top of the file ex13bView.cpp. 

9. Build and test the EX13B application. Move the mouse, and observe 
that the left two status bar panes accurately reflect the mouse cursor's 
position. Try the left and right mouse buttons. Can you toggle the status 
bar on and off from the View menu? 

329 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

330 

NOT E: If you want the first (index 0) status bar pane to have a 
beveled border like the other panes and the status bar to grow and 
shrink better, include the following two lines in the CMainFrame
::OnCreatefunction, following the call to the status bar Create function: 

m_wndStatusBar.SetPanelnfo(0. 0. 0. 50); 
m_wndStatusBar.SetPanelnfo(l. 0. SBPS_STRETCH. 50); 

These statements change the width of the first two panes (from their 
default of 1/4 the display size) and make the second pane (index 1) 
the stretchy one. 



C HAP T E R F 0 U R TEE N 

A Reusable Frame 
Window Base Class 

c++ promises programmers the ability to produce "software Lego blocks" 
that can be taken "off the shelf" and fitted easily into an application. The 
Microsoft Foundation Class (MFC) Library version 4.21 classes are a good 
example of this kind of reusable software. This chapter shows you how to build 
your own reusable base class by taking advantage of what the MFC library 
already provides. 

In the process of building the reusable class, you'll learn a few more 
things about Microsoft Windows and the MFC library. In particular, you'll see 
how the application framework allows access to the Windows Registry, you'll 
learn more about the mechanics of the CFrameWnd class, and you'll get more 
exposure to static class variables and the CString class. 

Why Reusable Base Classes Are Difficult to Write 
In a normal application, you write code for software components that solve 
particular problems. It's usually a simple matter of meeting the project speci
fication. With reusable base classes, however, you must anticipate future pro
gramming needs, both your own and those of others. You have to write a class 
that's general and complete yet efficient and easy to use. 

This chapter's example showed me the difficulty in building reusable 
software. I started out with the intention of writing a frame class that would 
"remember" its window size and position. When I got into the job, I discov
ered that existing Windows-based programs remember whether they have 
been minimized to the taskbar or whether they have been maximized to full 
screen. Then there was the oddball case of a window that was both minimized 
and maximized. Mter that, I had to worry about the toolbar and the status bar, 

331 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

plus the class had to work in a dynamic link library (DLL). In short, it was 
surprisingly difficult to write a frame class that would do everything that a 
programmer might expect. 

In a production programming environment, reusable base classes might 
fall out of the normal software development cycle. A class written for one 
project might be extracted and further generalized for another project. There's 
always the temptation, though, to cut and paste existing classes without ask
ing, "What can I factor out into a base class?" If you're in the software busi
ness for the long term, it's beneficial to start building your library of truly 
reusable components. 

The CPersistentFrame Class 
In this chapter, you'll be using a class named CPersistentFrame that is derived 
from the CFrameWnd class. This CPersistentFrameclass supports a persistent SDI 
(Single Document Interface) frame window that remembers the following 
characteristics: 

[;J Window size 

Window position 

[;J Maximized status 

[;J Minimized status 

[;J Toolbar and status bar enablement and position 

When you terminate an application that's built with the CPersistentFrame 
class, the above information is saved on disk in the Windows Registry. When 
the application starts again, it reads the Registry and restores the frame to its 
state at the previous exit. 

You can use the persistent view class in any SDI application, including 
the examples in this book. All you have to do is substitute CPersistentFrame for 
CFrameWnd in your application's derived frame class files. 

The CFrameWnd Class and 
the ActivateFrame Member Function 

332 

Why choose CFrameWnd as the base class for a persistent window? Why not have 
a persistent view class instead? In an MFC SDI application, the main frame 
window is always the parent of the view window. This frame window is created 



F 0 U R TEE N: A Reusable Frame Window Base Class 

first, and then the control bars and the view are created as child windows. The 
application framework ensures that the child windows shrink and expand 
appropriately as the user changes the size of the frame window. It wouldn't 
make sense to change the view size after the frame was created. 

The key to controlling the frame's size is the CFrameWnd::ActivateFrame 
member function. The application framework calls this virtual function (de
clared in CFrameWnd) during the SDI main frame window creation process 
(and in response to the File New and File Open commands). The framework's 
job is to call the CWnd::ShowWindow function with the parameter nCmdShow. 
ShowWindowmakes the frame window visible along with its menu, view window, 
and control bars. The nCmdShow parameter determines whether the window is 
maximized or minimized or both. 

If you override ActivateFrame in your derived frame class, you can change 
the value of nCmdShow before passing it to the CFrameWnd::ActivateFrame func
tion. You can also call the CWnd::SetWindowPlacement function, which sets the 
size and position of the frame window, and you can set the visible status of the 
control bars. Because all changes are made before the frame window becomes 
visible, no annoying flash occurs on the screen . 

. You must be careful not to reset the frame window's position and size 
after every File New or File Open command. A first-time flag data member 
ensures that your CPersistentFrame::ActivateFrame function operates only when 
the application starts. 

The PreCreateWindow Member Function 
PreCreate Window, declared at the CWnd level, is another virtual function that you 
can override to change the characteristics of your window before it's displayed. 
The framework calls this function before it calls ActivateFrame. AppWizard 
always generates an overridden PreCreateWindow function in your project's view 
and frame window classes. -__ . 

This function has a CREATESTRUCTstructure as a parameter, and two of 
the data members in this structure are style and dwExStyle. You can change these 
data members before passing the structure on to the base class PreCreateWindow 
function. The style flag determines whether the window has a border, scroll 
bars, a minimize box, and so on. The dwExStyle flag controls other character
istics, such as always-on-top status. See the online documentation for Window 
Styles and Extended Window Styles for details. 

The CREATESTRUCT member lpszClass is also useful to change the win
dow's background brush, cursor, or icon. It makes no sense to change the 
brush or cursor in a frame window because the client area is covered by the view 

333 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

window. If you want an ugly red view window with a special cursor, for ex
ample, you can override your view's PreCreateWindow function like this: 

BOOl CMyView::PreCreateWindow(CREATESTRUCT& cs) 
{ 

if (!CView: :PreCreateWindow(cs» 
return FALSE; 

cs.lpszClass = 
AfxRegisterWndClass(CS_DBlClKS I CS_HREDRAW I CS_VREDRAW, 

AfxGetApp()->loadCursor(IDC_MYCURSOR), 
::CreateSolidBrush(RGB(255, 0, 0»); 

if (cs.lpszClass != NUll) { 
return TRUE; 

else { 
return FALSE; 

If you override the PreCreateWindow function in your persistent frame 
class, windows of all derived classes will share the characteristics you pro
grammed in the base class. Of course, derived classes can have their own over
ridden PreCreateWindowfunctions, but then you'll have to be careful about the 
interaction between the base class and derived class functions. 

The Windows Registry 

334 

If you've used Win16-based applications, you've probably seen INI files. You can 
still use INI files in Win32-based applications, but Microsoft recommends that 
you use the Windows Registry instead. The Registry is a set of system files, man
aged by Windows, in which Windows and individual applications can store and 
access permanent information. The Registry is organized as a kind of hierarch i
cal database in which string and integer data is accessed by a multipart key. 

For example, a text processing application, TEXTPROC, might need to 
store the most recent font and point size in the Registry. Suppose that the 
program name forms the root of the key (a simplification) and that the ap
plication maintains two hierarchy levels below the name. The structure looks 
something like this: 

TEXTPROC 

Text formatting 

Font = Times Roman 

Points = 10 



F 0 U R TEE N: A Reusable Frame Window Base Class 

Unicode 
European languages use characters-even characters with diacritics
that can be encoded in 8 bits. Most Asian languages require 16 bits for 
their characters. Many programs use the double-byte character set 
(nBCS) standard: some characters use 8 bits and others 16 bits, depend
ing on the value of the first 8 bits. nBCS is being replaced by Unicode, 
in which all characters are 16-bit "wide" characters. No specific Unicode 
character ranges are set aside for individual languages: if a character 
is used in both the Chinese and the Japanese languages, for example, 
that character appears only once in the Unicode character set. 

When you look at MFC source code and the code thatAppWizard 
generates, you'll see the types TCHAR, LPTSTR, and LPCTSTR and 
you'll see literal strings like _ T("string"). You are looking at Unicode 
macros. If you build your project without defining _UNICODE, the 
compiler generates code for ordinary 8-bitANSI characters (CHAR) and 
pointers to 8-bit character arrays (LPSTR, LPCSTR). If you do define 
_UNICODE, the compiler generates code for 16-bit Unicode characters 
(WCHAR), pointers (LPWSTR, LPCWSTR), and literals (L"widestring"). 

The _UNICODE preprocessor symbol also determines which Win
dows functions your program calls. Many Win32 functions have two 
versions. When your program calls CreateWindowEx, for example, the 
compiler generates code to call either CreateWindowExA (with ANSI pa
rameters) or CreateWindowExW (with Unicode parameters). In Microsoft 
Windows NT, which uses Unicode internally, CreateWindowExWpasses 
all parameters straight through, but CreateWindowExA converts ANSI 
string and character parameters to Unicode. In Microsoft Windows 95, 
which uses ANSI internally, CreateWindowExWis a stub that returns an 
error and CreateWindowExA passes the parameters straight through. 

If you want to create a Unicode application, you should target it 
for Windows NT and use the macros throughout. You can write Uni
code applications for Windows 95, but you'll do extra work to call the 
"A" versions of the Win32 functions. As shown in Chapters 24-29, 
COM calls (except nAO) always use wide characters. Although Win32 
functions are available for converting between ANSI and Unicode, if 
you're using the CStringclass you can rely on a wide character construc
tor and the AllocSysString member function to do the conversions. 

For simplicity, this book's example programs use ANSI only. The 
code AppWizard generated uses Unicode macros, but the code I wrote 
uses 8-bit literal strings and the· char, char*, and const char* types. 

335 



PA R Till: THE DOCUMENT-VIEW ARCHITECTURE 

The MFC library provides four CWinApp member functions, holdovers 
from the days of IN I files, for accessing the Registry. Starting with Visual C++ 
version 5.0, AppWizard generates a call to CWinApp::SetRegistryKey in your 
application's Initlnstance function as shown here: 

SetRegistryKey(_T("Local AppWizard-Generated Applications"»; 

If you remove this call, your application will not use the Registry but 
will create and use an INI file in the Windows directory. The SetRegistryKey 
function's string parameter establishes the top of the hierarchy, and the fol
lowing Registry functions define the bottom two levels, called heading name 
and entry name: 

iJ GetProfilelnt 

iJ WriteProfileInt 

iJ GetProfileString 

iJ WriteProfileString 

These functions treat Registry data as either CString objects or unsigned 
integers. If you need floating-point values as entries, you must use the string 
functions and do the conversion yourself. All the functions take a heading 
name and an entry name as parameters. In the example shown above, the 
heading name is Text Formatting and the entry names are Font and Points. 

To use the Registry access functions, you need a pointer to the applica
tion object. The global function AfxGetApp does the job. With the previous 
sample Registry, the Font and Points entries were set with the following code: 

AfxGetApp()-)WriteProfileString("Text formatting", "Font", 
"Times Roman"); 

AfxGetApp()-)WriteProfilelnt("Text formatting", "Points", 10); 

You'll see a real Registry example in EXl4A, and you'll learn to use the 
Windows Regedit program to examine and edit the Registry. 

NOT E : The application framework stores a list of most recently 
used files in the Registry under the heading Recent File List. 

Using the CString Class 

336 

The MFC CString class is a significant de facto extension to the C++ language. 
As the Microsoft Foundation Class Reference points out, the CString class has 
many useful operators and member functions, but perhaps its most impor-



F OUR TEE N: A Reusable Frame Window Base Class 

tant feature is its dynamic memory allocation. You never have to worry about 
the size of a CString object. The statements below represent typical uses of 
CStringobjects. 

CString strFirstName("Elvis"); 
CString strLastName("Presley"); 
CString strTruth = strFirstName + " " + strLastName; II concatenation 
strTruth += " is alive"; 
ASSERT(strTruth == "Elvis Presley is alive"); 
ASSERT(strTruth.Left(5) == strFirstName); 
ASSERT(strTruth[2] == 'v'); II subscript operator 

In a perfect world, c++ programs would always use all CString objects and 
never use ordinary zero-terminated character arrays. Unfortunately, many 
runtime library functions still use character arrays, so programs must always mix 
and match their string representations. Fortunately, the CString class provides 
a const char* () operator that converts a CString object to a character pointer. 
Many of the MFC library functions have const char* parameters. Take the global 
AfxMessageBox function, for example. Here is one of the function's prototypes: 

int AFXAPI AfxMessageBox(LPCTSTR lpszText, UINT nType = MB_OK, 
UINT nIDHelp = 0); 

(Note: LPCTSTR is not a pointer to a CString object but rather is a Unicode
enabled replacement for const char*.) 

You can call AfxMessageBox this way: 

char szMessageText[] = "Unknown error"; 
AfxMessageBox(szMessageText); 

Or you can call it this way: 

CString strMessageText("Unknown error"); 
AfxMessageBox(strMessageText); 

Now suppose you want to generate a formatted string. CString::Format 
does the job, as shown here: 

int nError = 23; 
CString strMessageText; 
strMessageText.Format("Error number %d", nError); 
AfxMessageBox(strMessageText); 

NOT E : Suppose you want direct write access to the characters in 
a CStringobject. If you write code like this 

CString strTest("test"); 
strncpy(strTest, "T", 1); 

337 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

338 

you'll get a compile error because the first parameter of strncpy is de
clared char*, not const char*. The CString::GetBuffer function "locks down" 
the buffer with a specified size and returns a char*. You must call the 
ReleaseBuffer member function later to make the string dynamic again. 
Here's the correct way to capitalize the T: 

CString strTest("test"); 
strncpy(strTest.GetBuffer(S). "T". 1); 

strTest.ReleaseBuffer(); 
ASSERT(strTest == "Test"); 

The const char* operator takes care of converting a CString object to a 
constant character pointer; but what about conversion in the other direction? 
It so happens that the CStringclass has a constructor that converts a constant 
character pointer to a CStringobject, and it has a set of overloaded operators 
for these pointers. That's why statements such as this work: 

strTruth += " is alive"; 

The special constructor works with functions that take a CString reference 
parameter, such as CDC:: TextOut. In the following statement, a temporary 
CStringobject is created on the calling program's stack and then the object's 
address is passed to TextOut: 

pDC-)TextOut(0. 0. "Hello. world!"); 

It's more efficient to use the other overloaded version of CDC:: TextOut if you're 
willing to count the characters: 

pDC-)TextOut(0. 0. "Hello. world!". 13); 

If you're writing a function that takes a string parameter, you've got some 
design choices. Here are some programming rules: 

L:I If the function doesn't change the contents of the string and you're 
willing to use C runtime functions such as strcpy, use a const char* 
parameter. 

til If the function doesn't change the contents of the string but you 
want to use CString member functions inside the function, use a 
const CString& parameter. 

El If the function changes the contents of the string, use a CString& 
parameter. 



F 0 U R TEE N: A Reusable Frame Window Base Class 

The Position of a Maximized Window 
As a Windows user, you know that you can maximize a window from the sys
tem menu or by clicking a button at the top right corner of the window. You 
can return a maximized window to its original size in a similar fashion. It's 
obvious that a maximized window remembers its original size and position. 

The CWnd function GetWindowRect retrieves the screen coordinates of 
a window. If a window is maximized, GetWindowRect returns the coordinates 
of the screen rather than the window's unmaximized coordinates. If a per
sistent frame class is to work for maximized windows, it has to know the win
dow's unmaximized coordinates. CWnd::GetWindowPlacement retrieves the 
unmaximized coordinates together with some flags that indicate whether the 
window is currently minimized or maximized or both. 

The companion SetWindowPlacement function lets you set the maximized 
and minimized status and the size and position of the window. To calculate the 
position of the top left corner of a maximized window, you need to account for 
the window's border size, obtainable from the Win32 GetSystemMetricsfunction. 
See Figure 14-1, beginning on the following page, for the CPersistentFrame::Acti
vateFrame code for an example of how SetWindowPlacement is used. 

Control Bar Status and the Registry 
The MFC library provides two CFrameWnd member functions, SaveBarState and 
LoadBarState, for saving and loading control bar status to and from the Reg
istry. These functions process the size and position of the status bar and docked 
toolbars. They don't process the position of floating toolbars, however. 

Static Data Members 
The CPersistentFrame class stores its Registry key names in static const char array 
data members. What were the other storage choices? String resource entries 
won't work because the strings need to be defined with the class itself. (String 
resources make sense if CPersistentFrame is made into a DLL, however.) Glo
bal variables are generally not recommended because they defeat encapsula
tion. Static CStringobjects don't make sense because the characters must be 
copied to the heap when the program starts. 

An obvious choice would have been regular data members. But static 
data members are better because, as constants, they are segregated into the 
program's read-only data section and can be mapped to multiple instances of 
the same program. If the CPersistentFrame class is part of a D LL, the character 

339 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

arrays can be mapped by all processes that are using the DLL. Static data mem
bers are really global variables, but they are scoped to their class so there's no 
chance of name collisions. 

The Default Window Rectangle 
You're used to defining rectangles with device or logical coordinates. A CRect 
object constructed with the statement 

CRect rect(CW_USEDEFAULT, CW_USEDEFAULT, 0, 0); 

has a special meaning. When Windows creates a new window with this special 
rectangle, it positions the window in a cascade pattern with the top left cor
ner below and to the right of the window most recently created. The right and 
bottom edges of the window are always within the display's boundaries. 

The CFrameWnd class's static rectDefault data member is constructed using 
CW_USEDEFAULT this way, so it contains the special rectangle. The CPersistent
Frame class declares its own rectDefault default window rectangle with a fixed 
size and position as a static data member, thus hiding the base class member. 

The EX14A Example 

340 

The EXl4A program illustrates the use of a persistent frame window class, 
CPersistentFrame. Figure 14-1 shows the contents of the files Persist.h and 
Persist.cpp, which are included in the EXl4A project on the companion CD
ROM. In this example, you'll insert the new frame class into an AppWizard
generated SDI application. EXl4A is a "do-nothing" application, but you can 
insert the persistent frame class into any of your own SDI "do-something" 
applications. 

PERSIST.H 

// Persist.h 

iIi fndef _I NS 1 DE_V I SUAL_CP P_PERSI STENT _FRAME 
#define _INSIDE_VISUAL_CPP_PERSISTENT_FRAME 

class CPersistentFrame : public CFrameWnd 
{ // remembers where it was on the desktop 

DECLARE_DYNAMIC(CPersistentFrame) 

Figure 14-1. 
The CPersistentView class listing. 

(continued) 



F 0 U R TEE N: A Reusable Frame Window Base Class 

Figure 14-1. continued 

private: 
static const CRect s_rectDefault: 
static const char s_profileHeading[]; 
static const char s_profileRect[]; 
static const char s_profilelcon[]; 
static const char s_profileMax[]; 
static const char s_profileTool[]; 
static const char s_profileStatus[]; 
Baal m_bFirstTime; 

protected: // Create from serialization only 
CPersistentFrame(); 
-CPersistentFrame(); 

//{{AFX_VIRTUAl(CPersistentFrame) 
public: 

} ; 

virtual void ActivateFrame(int nCmdShow -I); 

protected: 
/ /} } AFX_V I RTUAl 

//{{AFX_MSG(CPersistentFrame) 
afx_msg void OnDestroy(); 
/ /} } AFX_MSG 

PERSIST.CPP 

// Persist.cpp Persistent frame class for SOl apps 

#include "stdafx.h" 
#include "persist.h" 

/lifdef _DEBUG 
/lundef THIS_FILE 
static char BASED_CODE THIS_FIlE[] = __ FIlE __ : 
#endif 
/////////////////////////////////////////////////////////////// 

// CPersistentFrame 

const CRect CPersistentFrame::s_rectDefault(10. 10, 
500. 400); // static 

const charCPersistentFrame::s_profileHeading[] = "Window size"; 

(continued) 

341 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

342 

Figure 14-1. continued 

const char CPersistentFrame: :s_profileRect[] = "Rect"; 
const char CPersistentFrame::s_profilelcon[] = "icon"; 
const cha r CPers i stentFrame: : s_profil eMax[J = "max": 
const char CPersistentFrame::s_profileTool[] = "tool"; 
const char CPersistentFrame: :s_profileStatus[J = "status"; 
IMPlEMENT_DYNAMIC(CPersistentFrame. CFrameWnd) 

BEGIN_MESSAGE_MAPCCPersistentFrame. CFrameWnd) 
//{{AFX_MSG_MAP(CPersistentFrame) 
ON_WM_DESTROY() 
/ /} lAFX_MSG_MAP 

END_MESSAGE_MAP() 

/////////////////////////////////////////////////////////////// 

CPersistentFrame::CPersistentFrame(){ 
m_bFirstTime = TRUE; 

/////////////////////////////////////////////////////////////// 

CPersistentFrame::-CPersistentFrame() 
{ 

1 

/////////////////////////////////////////////////////////////// 

void CPersistentFrame: :OnDestroy() 
{ 

CString strText; 
BOOl blconic. bMaximized; 

WINDOWPlACEMENT wndpl ; 
wndpl.length = s;zeof(WINDOWPlACEMENT): 
// gets current window position and 
// iconized/maximized status 
BOOl bRet ~ GetWindowPlacement<&wndpl); 
if Cwndpl .showCmd == SW_SHOWNORMAL) { 

blconic = FALSE; 
bMaximized = FALSE; 

else if (wndpl.showCmd 
blconic = FALSE; 
bMaximized = TRUE; 

1 
else if <wndpl.showCmd 

blconic = TRUE; 

SW_SHOWMAXIMIZEO) { 

SW_SHOWMINIMIZED) { 

(continued) 



F 0 U R TEE N: A Reusable Frame Window Base Class 

Figure 14-1. continued 

if (wndpl.flags) 
bMaximized TRUE; 

else { 
bMaximized FALSE; 

} 

strText.Format("%04d %04d %04d %04d". 
wndpl.rcNormalPosition.left. 
wndpl.rcNormalPosition.top. 
wndpl.rcNormalPosition.right. 
wndpl.rcNormalPosition.bottom): 

AfxGetApp()->WriteProfileString(s_profileHeading, 
s_profileRect. strText); 

AfxGetApp()->WriteProfileInt(s_profileHeading, 
s_profileIcon. bIconic); 

AfxGetApp()->WriteProfileInt(s_profileHeading, 
s_profileMax. bMaximized); 

SaveBarState(AfxGetApp()->m_pszProfileName); 
CFrameWnd::OnOestroy(); 

/////////////////////////////////////////////////////////////// 

void CPersistentFrame::ActivateFrame(int nCmdShow) 
{ 

CString strText: 
BOOl bIconic. bMaximized; 
UINT flags; 
WINOOWPlACEMENT wndpl; 
CRect recto 

if (m_bFirstTime) 
m_bFirstTime = FALSE; 
strText = AfxGetApp()->GetProfileString(s_profileHeading. 

s_profileRect); 
if (lstrText.lsEmpty(» { 

rect.left = atoi«const char*) strText); 
rect.top = ato;«const char*) strText + 5); 
rect.right = atoi«const char*) strText + 10); 
rect.bottom = atoi«const char*) strText + 15); 

else { 
rect s_rectOefault; 

(continued) 

343 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

344 

Figure 14-1. continued 

} 

,., 0 

bleoni e = AfxGetApp() ->GetProfil eInt( s_profil eHeading. 
s_profileleon. 0): 

bMaximized = AfxGetApp()->GetProfileInt(s_profileHeadin~. 
s_profileMax. 0); 

if (bleonie) { 
nCmdShow =SW_SHOWMINNOACTIVE: 
if (bMaximized) { 

flags = WPF_RESTORETOMAXIMIZED; 
} 

else { 
flags = WPF_SETMINPOSITION; 

else { 
if (bMaximized) { 

nCmdShow = SW_SHOWMAXIMIZED; 
flags = WPF_RESTORETOMAXIMIZED; 

else { 
nCmdShow = SW_NORMAl; 
flags = WPF_SETMINPOSITION: 

wndpl.length = sizeofCWINDOWPlACEMENT): 
wndpl .showCmd = nCmdShow; 
wndpl.flags = flags; 
wndpl.ptMinPosition = CPoint(0. 0): 
wndpl.ptMaxPosition = 

CPoint(-::GetSystemMetries(SM_CXBORDER) •. 
-::GetSystemMetries(SM_CYBORDER»; 

wndpl.reNormalPosition = reet: 
loadBarState(AfxGetApp()-)ffi-pszProfileName); 
I/setswindow's position and minimized/maxi~ized status 
BOOl bRet = SetWindowPlaeement(&wndpl); 

CFrameWnd::AetivateFrame(nCmdShow); 

Here are the steps for building the EXl4A example program: 

1. Run AppWizard to generate \vcpp32\ex14a\ex14a. Accept all the 
default settings, except select Single Document and deselect Printing 
And Print Preview. The options and the default class names are shown 
in the following illustration: 



F 0 U R TEE N: A Reusable Frame Window Base Class 

AppW'izard wiQ create a new skelt:-ton project with the following tpt:-dications: 

Application type of ex14a: 
Single Document Interface Application targeting: 

W'in32 

Cklsses to be Cleated 
Appfication: CEx14aApp in ex14a,h and ex14a,cPP 
Frame: CM.!linFrao1e in MainFrm,h and MainFrm.cpp 
Document: CEx' 4aDoc in ex14aDoc.h and ex'4<lDoc.cpp 
View: CEx' 4aView in ex14aView.h and ex14aView.cpp 

Features: 
+ Initial toolbar in main frame 
+ Initial status bar in main frame 
+ 3D Contlols 
t Uses shared DLL impiement<ltion (MFC42.DLL) 
+ Activa"< Controls ;upport enabled 
.. localizable text in: 

English [United States) 

2. Modify MainFrm.h. You must change the base class of CMainFrame. 
To do this, simply change the line 

class CMainFrame : public CFrameWnd 

to 

class CMainFrame : public CPersistentFrame 

Also, add the line 

/linclude "persist.h" 

3. Modify MainFrm.cpp. Globally replace all occurrences of CFrameWnd 
with CPersistentFrame. 

4. Modify ex14a.cpp. Replace the line 

Set Reg i st ryKey <-T(" Loca 1 AppWi za rd -Genera ted App 1 i cat ions") ) ; 

with the line 

SetRegistryKey("Inside Visual C++"); 

5. Add the Persist.cpp file to the project. You can type in the Persist.h 
and Persist.cpp files from Figure 14-1, or you can copy the files from 
the companion CD-ROM. Having the files in the \vcpp32\ex14a direc
tory is not sufficient. You must add the names of the files to the project's 
project (DSP) file. Choose Add To Project from Developer Studio's Pro
ject menu, and choose Files from the submenu. Select Persist.h and Per
sist.cpp from the list. 

345 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

346 

6. Rebuild the ClassWizard file to include the new CPersistentFrame 
class. Use Windows Explorer to delete the ClassWizard file ex14a.clw. 
Back in Developer Studio, choose ClassWizard from the View menu. Fol
low Developer Studio's instructions if it asks you to close any files. Click 
Yes when asked if you would like to rebuild the CLW file. The Select 
Source Files dialog box will appear. Make sure all of the header and 
source files are listed in the Files In Project box, as shown in the follow
ing illustration: 

. ex14a.cpp 
ex14a.h 
ex14aDoc.cpp 
ex14aDoc.h 
ex14aView.cpp 

, ex14aView.h 
. MainFrm.cpp 

MainFrm.h 

e- c:\ 
e- vcpp32 
f!> ex14a 
LJ Debug 
LJ res 

Then click OK to regenerate the CLW file. Notice that CPersistentFrame 
is now integrated into ClassWizard. You'll now be able to map messages 
and override virtual functions in the CPersistentFrame class. 

7. Build and test the EX14A application. Size and move the applica
tion's frame window, and then close the application. When you restart 
the application, does its window open at the same location at which it 
was closed? Experiment with maximizing and minimizing, and then 
change the status and position of the control bars. Does the persistent 
frame remember its settings? 

8. Save the CPersistentFrame class as a Gallery component for 
future use. In the ClassView window, right-click on CPersistentFrame and 
select Add To Gallery. Bring up the Components And Controls Gallery by 



F 0 U R TEE N: A Reusable Frame Window Base Class 

choosing Add To Project from the Project menu and then choosing 
Components And Controls. Notice that Developer Studio created the 
file Persistent Frame.ogx in a folder named \ex14a. Change this fol
der's name to Persistent Frame. Now you can add the CPersistentFrame 
class to any project by simply adding Persistent Frame.ogx. We will add 
CPersistentFrame to EX21A this way. 

9. Examine the Windows Registry. Run the Windows regedit.exe pro
gram. Navigate to the HKEY_CURRENT_USER\Software\Inside Visual 
C++\ex14a key. You should see data values similar to those shown below: 

.8.egi~try fdit ~iew Help 

El···jJ My Computer 
$··CJ HKEY_CLASSES_ROOT 
S·CJ HKEY_CURRENT_USER 
I ~·CJ AppE vents 
! (·CJ Console 

I±I"CJ Control Panel 
1····CJ Environment 
[h·CJ Keyboard Layout 
~J'CJ Network 
i:1:J·CJ Printers 
G"CJ Software 

i ~ .. CJ Command Software 
B"CJ Inside Visual C++ 
i B'CJ ex14a 

!····CJ ex14a-BarO 
!···CJ ex14a-Bar1 
!····CJ ex14a-Bar2 
!····CJ ex14a-Bar3 
!····CJ ex14a-Summary 

~ Name 
§1 (Default) 
lilllIicon 
IilllImax 
§1Rect 

-

I Data 
(value not set) 
Oxoooooooo (0) 
OxOOOOOOOO (0) 

'IXI 

"0012 0086 0714 0556" 

. I::::~ .'Mjn';iWA 
$:.pLoc~l~pP\tJi~~rd:~~~~r~t~~~pplicati?~s..:::l. '. I; ....., 

Notice the relationship between the Registry key and the SetRegistryKey 
function parameter, "Inside Visual C++". If you supply an empty string as 
the SetRegistryKey parameter, the program name (ex14a, in this case) is 
positioned directly below the Software key. 

Persistent Frames in MOl Applications 
You won't get to Multiple Document Interface (MDI) applications until Chap
ter 17, but if you're using this book as a reference, you might want to apply 
the persistent frame technique to MDI applications. 

The CPersistentFrame class, as presented in this chapter, won't work in an 
MDI application because the MDI main frame window's ShowWindow function 

347 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

348 

is called, not by a virtual ActivateFrame function, but directly by the applica
tion class's InitInstance member function. If you need to control the charac
teristics of an MDI main frame window, add the necessary code to InitInstance. 

The ActivateFrame function is called, however, for CMDIChildWnd objects. 
This means your MDI application could remember the sizes and positions of 
its child windows. You could store the information in the Registry, but you 
would have to accommodate multiple windows. You would have to modify the 
CPersistentFrame class for this purpose. 



C HAP T E R F 1FT E E N 

Separating the 
Document from Its View 

Now you're finally going to see the interaction between documents and views. 
Chapter 12 gave you a preview of this interaction when it showed the routing 
of command messages to both view objects and document objects. In this 
chapter, you'll see how the document maintains the application's data and how 
the view presents the data to the user. You'll also learn how the document and 
view objects talk to each other while the application executes. 

The two examples in this chapter both use the CFonn View class as the base 
class for their views. The first example is as simple as possible, with the docu
ment holding only one simple object of class CStudent, which represents a 
single student record. The view shows the student's name and grade and al
lows editing. With the CStudent class, you'll get some practice writing classes 
to represent real-world entities. You'll also get to use the Microsoft Founda
tion Class (MFC) Library version 4.21 diagnostic dump functions. 

The second example goes further by introducing pointer collection 
classes-the CObList and CTypedPtrList classes in particular. Now the document 
holds a collection of student records, and the view allows the sequencing, 
insertion, and deletion of individual records. 

Document-View Interaction Functions 
You already know that the document object holds the data and that the view 
object displays the data and allows editing. An SDI application has a document 
class derived from CDocument, and it has one or more view classes, each ulti
mately derived from CView. A complex handshaking process takes place among 
the document, the view, and the rest of the application framework. To under
stand this process, you need to know about five important member functions 

349 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

in the document and view classes. Two are nonvirtual base class functions that 
you call in your derived classes; three are virtual functions that you often 
override in your derived classes. Let's look at these functions one at a time. 

The CView::GetDocument Function 
A view object has one and only one associated document object. The Get
Document function allows an application to navigate from a view to its docu
ment. Suppose a view object gets a message that the user has entered new data 
into an edit control. The view must tell the document object to update its 
internal data accordingly. The GetDocument function provides the document 
pointer that can be used to access document class member functions or pub
lic data members. 

NOT E : The CDocument::GetNextView function navigates from the 
document to the view, but because a document can have more than 
one view, it's necessary to call this member function once for each 
view, inside a loop. You'll seldom call GetNextView because the ap
plication framework provides a better method of iterating through 
a document's views. 

When App Wizard generates a derived CView class, it creates a special ~ 
safe version of the GetDocument function that returns not a CDocument pointer 
but a pointer to an object of your derived class. This function is an inline 
function, and it looks something like this: 

CMyDoc* GetDocument() 
{ 

return (CMyDoc*) m_pDocument; 

When the compiler sees a call to GetDocument in your view class code, it uses 
the derived class version instead of the CDocument version, so you do not have 
to cast the returned pointer to your derived document class. Because the 
CView::GetDocument function is not a virtual function, a statement such as 

pView->GetDocument(); II pView is declared CView* 

calls the base class GetDocument function and thus returns a pointer to a 
CDocument object. 

The CDocument::UpdateAIIViews Function 

350 

If the document data changes for any reason, all views must be notified so that 
they can update their representations of that data. If UpdateAllViews is called 
from a member function of a derived document class, its first parameter, 



F 1FT E EN: Separating the Document from Its View 

pSender, is NULL. If UpdateAllViews is called from a member function of a de
rived view class, set the pSenderparameter to the current view, like this: 

GetDocument()->UpdateAllViews(this); 

The non-null parameter prevents the application framework from notifying 
the current view. The assumption here is that the current view has already up
dated itself. 

The function has optional hint parameters that can be used to give view
specific and application-dependent information about which parts of the view 
to update. This is an advanced use of the function. 

How exactly is a view notified when UpdateAllViews gets called? Take a 
look at the next function, On Update. 

The CView::OnUpdate Function 
This virtual function is called by the application framework in response to your 
application's call to the CDocument::UpdateAllViewsfunction. You can, of course, 
call it directly within your derived CView class. Typically, your derived view 
class's On Update function accesses the document, gets the document's data, 
and then updates the view's data members or controls to reflect the changes. 
Alternatively, On Update can invalidate a portion of the view, causing the view's 
OnDraw function to use document data to draw in the window. The OnUpdate 
function might look something like this: 

void CMyView: :OnUpdate(CView* pSender. LPARAM lHint. CObject* pHint) 
{ 

CMyDocument* pMyDoc = GetDocument(); 
CString lastName = pMyDoc->GetLastName(); 
m_pNameStatic->SetWindowText(lastName); II m_pNameStatic is 

II a CMyView data member 

The hint information is passed through directly from the call to Update
AllViews. The default On Update implementation invalidates the entire window 
rectangle. In your overridden version, you can choose to define a smaller 
invalid rectangle as specified by the hint information. 

If the CDocumentfunction UpdateAllViews is called with the pSenderparame
ter pointing to a specific view object, OnUpdate is called for all the document's 
views except the specified view. 

The CView::OnlnitiaIUpdate Function 
This virtual CView function is called when the application starts, when the user 
chooses New from the File menu, and when the user chooses Open from the 

351 



PA R Till: THE DOCUMENT-VIEW ARCHITECTURE 

File menu. The CView base class version of OnlnitialUpdate does nothing but 
call On Update. If you override OnlnitialUpdate in your derived view class, be sure 
that the view class calls the base class's OnlnitialUpdate function or the derived 
class's On Update function. 

You can use your derived class's OnlnitialUpdate function to initialize your 
view object. When the application starts, the application framework calls On
InitialUpdate immediately after OnCreate (if you've mapped OnCreate in your 
view class). OnCreate is called once, but OnlnitialUpdate can be called many times. 

The CDocument::OnNewDocument Function 
The framework calls this virtual function after a document object is first con
structed and when the user chooses New from the File menu in an SDI ap
plication. This is a good place to set the initial values of your document's 
data members. AppWizard generates an overridden OnNewDocument func
tion in your derived document class. Be sure to retain the call to the base 
class function. 

The Simplest Document-View Application 

352 

Suppose you don't need multiple views of your document but you plan to take 
advantage of the application framework's file support. In this case, you can 
forget about the UpdateAllViews and On Update functions. Simply follow these 
steps when you develop the application: 

1. In your derived document class header file (generated by App
Wizard), declare your document's data members. These data 
members are the primary data storage for your application. You 
can make these data members public, or you can declare the de
rived view class a friend of the document class. 

2. In your derived view class, override the OnlnitialUpdate virtual 
member function. The application framework calls this function 
after the document data has been initialized or read from disk. 
(Chapter 16 discusses disk file I/O.) OnlnitialUpdate should up
date the view to reflect the current document data. 

3. In your derived view class, let your window message and command 
message handlers and your OnDraw function read and update the 
document data members directly, using GetDocument to access the 
document object. 



F 1FT E EN: Separating the Document from Its View 

The sequence of events for this simplified document-view environment 
is as follows: 

Application starts CMyDocument object constructed 

CMy View object constructed 

View window created 

CMyView::OnCreate called (if mapped) 

CMyDocument: :OnNewDocument called 

CMy View::OnlnitialUpdate called 

View object initialized 

View window invalidated 

CMyView::OnDraw called 

User edits data CMyView functions update CMyDocument 
data members 

User exits application CMyView object destroyed 

CMyDocument object destroyed 

The CFormView Class 
The CForm View class is a useful view class that has many of the characteristics 
of a modeless dialog window. Like a class derived from CD ia log, a derived 
CForm View class is associated with a dialog resource that defines the frame 
characteristics and enumerates the controls. The CForm View class supports the 
same dialog data exchange and validation (DDX and DDV) functions that you 
saw in the CD ia log examples in Chapter 6. 

WAR N I N G: If AppWizard generates a Form View dialog, the 
properties are set correctly, but if you use the dialog editor to make 
a dialog for a form view, you must specify the following items in the 
Dialog Properties dialog: 

Style = Child 
Border = None 
Visible = unchecked 

A CForm View object receives notification messages directly from its con
trols, and it receives command messages from the application framework. This 
application framework command-processing ability clearly separates CForm
View from CD ia log, and it makes controlling the view from the frame's main 
menu or toolbar easy. 

The CFormViewclass is derived from CView (actually, from CScrollView) and 
not from CDialog. You can't, therefore, assume that CDialog member functions 

353 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

are supported. CForm View does not have virtual Onln itDia log, OnOK, and On
Cancel functions. CForm View member functions do not call UpdateData and the 
DDX functions. You have to call UpdateData yourself at the appropriate times, 
usually in response to control notification messages or command messages. 

Even though the CForm View class is not derived from the CDialog class, 
it is built around the Microsoft Windows dialog. For this reason, you can use 
many of the CDialog class member functions such as GotoDlgCtrl and Next
DlgCtrl. All you have to do is cast your CForm View pointer to a CDialog pointer. 
The following statement, extracted from a member function of a class derived 
from CForm View, sets the focus to a specified control. GetDlgltem is a CWnd 
function and is thus inherited by the derived CForm View class. 

«CDialog*) this)->GotoDlgCtrl(GetDlgltem(IDC_NAME»; 

App Wizard gives you the option of using CForm View as the base class for 
your view. When you select CForm View, App Wizard generates an empty dialog 
with the correct style properties set. The next step isto use ClassWizard to add 
control notification message handlers, command message handlers, and 
update command UI handlers. (The example steps beginning on page 362 
show you what to do.) You can also define data members and validation 
criteria. 

The CObject Class 
If you study the MFC library hierarchy, you'll notice that the CObject class is 
at the top. Most other classes are derived from the CObject root class. When a 
class is derived from CObject, it inherits a number of important characteristics. 
The many benefits of CObject derivation will become clear as you read the 
chapters that follow. 

In this chapter, you'll see how CObject derivation allows objects to parti
cipate in the diagnostic dumping scheme and allows objects to be elements 
in the collection classes. 

Diagnostic Dumping 

354 

The MFC library gives you some useful tools for diagnostic dumping. You 
enable these tools when you select the Debug target. When you select the 
Win32 Release target, diagnostic dumping is disabled and the diagnostic code 
is not linked to your program. All diagnostic output goes to the Debug view 
in the debugger's Output window. 



F 1FT E EN: Separating the Document from Its View 

TIP: To clear diagnostic output from the debugger's Output win
dow, position the cursor in the Output window and click the right 
mouse button. Then choose Clear from the pop-up menu. 

The TRACE Macro 
You've seen the TRACE macro used throughout the preceding examples in 
this book. TRACE statements are active whenever the constant _DEBUG is 
defined (when you select the Debug target and when the afxTraceEnabled 
variable is set to TRUE). TRACE statements work like C language printf state
ments, but they're completely disabled in the release version of the program. 
Here's a typical TRACE statement: 

int nCount = 9; 
CString strDesc("total"); 
TRACE("Count = %d, Description = %s\n", nCount, strDesc); 

NOT E : The TRACE macro takes a variable number of parame
ters and is thus easy to use. If you look at the MFC source code, you 
won't see TRACE macros but rather TRACEO, TRACEl, TRACE2, 
and TRACE3 macros. These macros take 0, 1, 2, and 3 parameters, 
respectively, and are leftovers from the 16-bit environment, where 
it was necessary to conserve space in the data segment. 

The afxDump Object 
An alternative to the TRACE statement is more compatible with the C++ lan
guage. The MFC afxDump object accepts program variables with a syntax 
similar to that of cout, the C++ output stream object. You don't need complex 
formatting strings; instead, overloaded operators control the output format. 
The afxDump output goes to the same destination as the TRACE output, but 
the afxDump object is defined only in the Debug version of the MFC library. 
Here is a typical stream-oriented diagnostic statement that produces the same 
output as the TRACE statement above: 

int nCount = 9; 
CString strDesc("total"); 
tlifdef _DEBUG 

afxDump « "Count = " « nCount 
« ", Description = " « strDesc « "\n"; 

tlendif II _DEBUG 

Although both afxDump and cout use the same insertion operator «<), they 
don't share any code. The cout object is part of the Visual C++ iostream library, 

355 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

and afxDump is part of the MFC library. Don't assume that any of the cout 
formatting capability is available through afxDump. 

Classes that aren't derived from CObject, such as CString, CTime, and CRect, 
contain their own overloaded insertion operators for CDumpContext objects. 
The CDumpContext class, of which afxDump is an instance, includes the over
loaded insertion operators for the native C++ data types (int, double, char*, and 
so on). The CDumpContext class also contains insertion operators for CObject 
references and pointers, and that's where things get interesting. 

The Dump Context and the CObject Class 

356 

If the CDumpContextinsertion operator accepts CObjectpointers and references, 
it must also accept pointers and references to derived classes. Consider a trivial 
class, CAction, that is derived from CObject, as shown here: 

class CAction : public CObject 
{ 

public: 
int m_nTime; 

} ; 

What happens when the following statement executes? 

flifdef _DEBUG 
afxDump « action; II action is an object of class CAction 

flendi f II _DEBUG 

The virtual CObject::Dump function gets called. If you haven't overridden Dump 
for CAction, you don't get much except for the address of the object. If you 
have overridden Dump, however, you can get the internal state of your object. 
Here's a CAction::Dump function: 

flifdef _DEBUG 
void CAction::Dump(CDumpContext& dc) const 
{ 

CObject: :Dump(dc); II Always call base class function 
dc « "time = " « m_nTime « "\n"; 

flendif II _DEBUG 

The base class (CObject) Dump function prints a line such as this: 

a CObject at $411504 



F 1FT E EN: Separating the Document from Its View 

If you have called the DECLARE_DYNAMIC macro in your CAction class 
definition and the IMPLEMENT_DYNAMIC macro in your CAction declara
tion, you will see the name of the class in your dump 

a CAction at $4115D4 

even if your dump statement looks like this: 

#ifdef _DEBUG 
afxDump « (CObject&) action; 

#endif II _DEBUG 

The two macros work together to include the MFC library runtime class code 
in your derived CObject class. With this code in place, your program can de
termine an object'S class name at runtime (for the dump, for example) and 
it can obtain class hierarchy information. 

NOTE: The (DECLARE_SERIAL, IMPLEMENT_SERIAL) and 
(DECLARE_DYNCREATE, IMPLEMENT_DYNCREATE) macro pairs 
provide the same runtime class features as those provided by the 
(DECLARE_DYNAMIC, IMPLEMENT_DYNAMIC) macro pair. 

Automatic Dump of Undeleted Objects 
With the Debug target selected, the application framework dumps all objects 
that are undeleted when your program exits. This dump is a useful diagnos
tic aid, but if you want it to be really useful, you must be sure to delete all your 
objects, even the ones that would normally disappear after the exit. This ob
ject cleanup is good programming discipline. 

NOT E : The code that adds debug information to allocated 
memory blocks is now in the Debug version of the CRT (C runtime) 
library rather than in the MFC library. If you choose to dynamically 
link MFC, the MSVCRTD DLL is loaded along with the necessary 
MFC DLLs. When you add the line 

#define new DEBUG_NEW 

at the top of a CPP file, the CRT library lists the filename and line 
number at which the allocations were made. AppWizard puts this 
line at the top of all the CPP files it generates. 

357 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

358 

Window Subclassing for 
Enhanced Data Entry· Control 
What if you want an edit control (in a dialog or a form view) that ac
cepts only numeric characters? That's an easy one. You just set the 
Number style in the control's property sheet. If you want to exclude 
numeric characters or change the case of alphabetic characters, you 
must do some programming. 

The MFC library provides a convenient way to change the behav
ior of any standard control, including the edit control. Actually, there 
are several ways. You. can derive your own classes from CEdit, CListBox, 
and so forth (with their own message handler functions) and then 
create control objects at runtime. Or you can register a special win
dow class, as a Win32 programmer would do, and integrate it into the 
project's resource file with a text editor. Neither of these methods, 

. however, allows you to use the dialog editor to position controls in the 
dialog resource. 

The easy way to modify a control's behavior is to use the MFC 
library's window sub classing feature. You use the dialog editor to posi
tion a normal control in a dialog resource, and then you write a new 
c++ class that contains message handlers forthe events that you want 
to handle yourself. Here are the steps for subclassing an edit control: 

1. With the dialog editor, position an edit control in your dialog 
resource. Assume that it has the child window ID IDC_EDITl. 

2. Write a new class-for example, CNonNumericEdit-derived from 
CEdit. Map the WM_CHAR message and write a handler like this: 

void CNonNumericEdit::OnChar(UINT nChar, UINTnRepCnt,UINT nFlags) 
{ 

J 

if (!isdigit(nChar» { 
CEdit::OnChar(nChar, nRepCnt. nFlags): 

3. Inyourderived dialog or form view class header, declare a data 
member .of class CNonNumericEdit in this way: 

private: 
CNonNumericEditm_nonNumer;cEdit: 

4. If you're working with a dialog class, add the following line to 
your OnInitDialog override function: 

m_nonNumeri cEd i t. Subcl assDl g Item(I DC_ED In. th is) : 



F 1FT E EN: Separating the Document from Its View 

5. If you're working with a form view class, add the following code 
to your OnlnitialUpdate override function: 

if (m_nonNumericEdit.m_hWnd == NULL) { 
m_nonNumericEdit.SubclassDlgItem(IDC_EDIT1. this); 

The CWnd::SubclassDlgltern member function ensures that all 
messages are routed through the application framework's message 
dispatch system before being sent to the control's built-in window 
procedure. This technique is called dynamic subclassing and is ex
plained in more detail in Technical Note #1. 

The code in the preceding steps only accepts or rejects a charac
ter. If you want to change the value ofa character, your handler must 
call CWnd::DefWindowProc, which bypasses some MFC logic that stores 
parameter values in thread object data members. Here's a sample 
handler that converts lowercase characters to uppercase: 

void CUpperEdit: :OnChar(UINT nChar. UINT nRepCnt. UINT nFlags) 
{ 

if (islower(nChar» { 
nChar = toupper(nChar); 

DefWindowProc(WM_CHAR. (WPARAM) nChar. 
(LPARAM) (nRepCnt I (nFlags « 16»): 

You can also use window subclassing to handle reflected messages, 
which were mentioned in Chapter 6. If an MFC window class doesn't 
map a message from one of its child controls, the framework reflects 
the message back to the control. Technical Note #62 in the online 
documentation explains the details. 

If you need an edit control with a yellow background, for example, 
you can derive a class CYellowEdit from CEdit and use ClassWizard to 
map the =WM_CTLCOLOR message in CYellowEdit. (ClassWizard lists 
the message name with an equal sign in front to indicatt,'! that it is 
reflected.) The handler code, shown below, is substantially the same 
as the nonreflected WM_CTLCOLOR handler shown on page 132. 
(Member variable m_hYellowBrush is defined in the control class's 
constructor. ) 

HBRUSH CYellowEdit::CtlColor(CDC* pDC. UINT nCtlColor) 
{ 

pDC->SetBkColor(RGB(255. 255. e»; /1 yellow 
return m_hYellowBrush; 

359 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

The EX15A Example 

360 

The first of this chapter's two examples shows a very simple document-view 
interaction. The CEx15aDoc document class, derived from CDocument, allows 
for a single embedded CStudent object. The CStudent class represents a student 
record composed of a CString name and an integer grade. The CEx15a View 
view class is derived from CForm View. It is a visual representation of a student 
record that has edit controls for the name and grade. The default Enter push
button updates the document with data from the edit controls. Figure 15-1 
shows the EX15A program window. 

Figure 15-1. 
The EX15A program in action. 

Figure 15-2 shows the code for the CStudentclass. Most of the class's fea
tures serve EX15A, but a few items carry forward to EX15B and the programs 
discussed in Chapter 16. For now, take note of the two data members, the de
fault constructor, the operators, and the Dump function declaration. The 
DECLARE_DYNAMIC and IMPLEMENT_DYNAMIC macros ensure that the 
class name is available for the diagnostic dump. 

STUDENT.H 

II student.h 

ffifndef _INSIDE_VISUAL_CPP_STUDENT 
fldefi ne _I NS I DE_V I SUAL_CPP _STUDENT 

Figure 15-2. 
The CStudent class listing. 

(continued) 



F 1FT E EN: Separating the Document from Its View 

Figure 15-2. continued 

class CStudent : public CObject 
{ 

DECLARE_DYNAMIC(CStudent) 
public: 

CString m_strName: 
int m_nGrade; 

CStudent() 
{ 

CStudent(const char* szName, int nGrade) m_strName(szName) 
{ 

m_nGrade = nGrade: 

CStudent(const CStudent& 5) m_strName(s.m_strName) 
{ 

1/ copy constructor 
m_nGrade = s.m_nGrade; 

const CStudent& operator =(const CStudent& s) 

} 

ffi-strName = s.m_strName: 
m_nGrade = s.m_nGrade; 
return *this; 

BOOL operator ==(const CStudent& s) const 
{ 

if «m_strName == s.m_strName) && (m_nGrade 
return TRUE; 

s.m_nGrade» { 

else { 
return FALSE: 

BOOL operator !=(const CStudent& s) const 
{ 

} 

// Let's make use of the operator we just defined! 
return !(*this == s); 

(continued) 

361 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

362 

Figure 15-2. continued 

lhfcJe"f ~DEBUG 
void DumpCCOumpContext& dc) canst; 

fiend if II _DEBUG 
} : 

STUDENT.CPP 

#include "stdafx.h" 
#include "student~h" 

)MPLEMENT_OYNAMIC(CStudent. CObject) 

II; fdef _DEBUG 
ya;d"CStudent::Oump(CDumpCantext& de) eanst 
( 

CObject::Dump(dc): 
de «ltm_strName .. « m_strName « "\nll1_nGrade = " « m_nGrade: 

} 

Ilendif II _DEBUG 

Follow these steps to build the EX15A example: 

1. Run AppWizard to generate \vcpp32\ex15a\ex15a. In the Step 6 
page, change the view's base class to CForm View, as shown here: 



F 1FT E EN: Separating the Document from Its View 

The options and the default class names are shown here: 

Application type of ex15a: 
Single Document Interface Application targetit1g: 

Win32 

Classes to be Cleated: 
Appfication: CE~l5<IApp in e~15<1.h <l!'Id ex15<lcPP 
Frame: CM<linFrarne in MainFrm.h and MainFrm.cpp 
Document CEx15aDoc in ex15llDoc.h and ex15aDoc,cPP 
FOImView: CEx15aYiew in ex15aView,h and ex15aView,cpp 

Features: 
.. Initial toolbar in main frame 
.. Initial status bar in main frame 
.. 30 Controls 
.. Uses chafed DLL implementation (MFC42,DLL). 
+ Active>< Controls support. enabled 
.. Localizable tei<! in: . .' , 

; ::';; ~;~~~{Uni\ed$t~~l 

2. Use the menu editor to replace the Edit menu options. Delete the 
current Edit menu items and replace them with a Clear All option, as 
shown here: 

Use the default constant ID_EDIT_CLEAR_ALL, which is assigned by the 
application framework. A menu prompt automatically appears. 

3. Use the dialog editor to modify the IDD_EX15A_FORM dialog. 
Open the AppWizard-generated dialog IDD_EXJ5A_FORM, and add 
controls as shown on the following page. 

Be sure that the Styles properties are set exactly as shown in the Dia
log Properties dialog (Style = Child; Border = None) and that Visible is 
unchecked. 

363 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

364 

Use the following IDs for the controls: 

Control 

Name edit control 

Grade edit control 

Enter pushbutton 

10 

IDC_NAME 

IDC_GRADE 

IDC_ENTER 

4. Use ClassWizard to add message handlers for CEx15aView. 
Select the CEx15a View class, and then add handlers for the following 
messages. Accept the default function names. 

Object 10 

IDC_ENTER 

ID_EDIT_ CLEAILALL 

ID_EDIT_ CLEAILALL 

Message 

BN_CLICKED 

COMMAND 

UPDATE_COMMAND_UI 

Member Function 

OnEnter 

OnEditClearAll 

OnUpdateEditClearAll 

5. Use ClassWizard to add variables for CEx15aView. Click on the 
Member Variables tab in the MFC ClassWizard dialog, and then add the 
following variables: 



F 1FT E EN: Separating the Document from Its View 

Control 10 Member Variable 

m_nGrade 

m_strName 

Category 

Value 

Value 

Variable Type 

int 

CString 

For m_nGrade, enter a minimum value of 0 and a maximum value of 100. 
Notice that ClassWizard generates the code necessary to validate data 
entered by the user. 

6. Use ClassWizard to override the virtual OninitialUpdate function 
in the view class. 

7. Add a prototype for the helper function UpdateControlsFromDoc. 
In the ClassView window, right-click on CEx15a View and choose Add 
Member Function. Fill out the dialog box to add this function: 

private: 
void UpdateControlsFromDoc(): 

8. Edit the file Ex15aView.cpp. ClassWizard generated the skeleton 
OnlnitialUpdate function, and ClassView generated the skeleton Update
ControlsFromDoc function. UpdateControlsFromDoc is a private helper mem
ber function that transfers data from the document to the CEx15aView 
data members and then to the dialog edit controls. Edit the code as 
shown here: 

void CEx15aView::OnInitialUpdate() 
{ .11 ca 11 ed on sta rtup 

Upda~eCont~glsFrompo~(); 

void CEx15aView::UpdateControlsFromDoc() 
{ II called from OnInitialUpdate and OnEditClearAll 

CEx15aDoc* pDoc = GetDocument(): 
m_nGrade = pDoc->m_student.m_nGrade: 
m_strName = pDoc->m_student.m_strName; 
UpdateData(FALSE); /I calls DDX 

The OnEnterfunction replaces the OnOKfunction you'd expect to 
see in a dialog class. The function transfers data from the edit controls 
to the view's data members and then to the document. Add the shaded 
code at the top of the following page. 

365 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

366 

void CEx15aView::OnEnter() 
( 

CEx15aOoc* pDoc = GetDocument(): 
UpdateOata(TRUE); 
pOoc-)m_student.m_nGrade = m_nGrade: 
pOoc->m_student.m_strName = m_strName: 

In a complex multiview application, the Edit Clear All command 
would be routed directly to the document. In this simple example, it's 
routed to the view. The update command UI handler disables the menu 
item if the document's student object is already blank. Add the follow
ing shaded code: 

void CEx15aView::OnEditClearAll() 
( 

, '"" " .. ' , .. " ".,", 

GetOocument():->m_student = CStudent(); II "blank" student object 
UpdateContro 1 s FromDoc( ); 

void CEx15aView::OnUpdateEditClearAll(CCmdUI* pCmdUI) 
( 

pCllldUI:>Enable(GetDocument(!.->m_student !,=:',CStudentO); II. blank? 
} 

9. Edit the EX15A project to add the files for CStudent. Choose Add 
To Project from the Project menu, choose Files from the submenu, and 
select the Student.h header and the Student.cpp source code files. De
veloper Studio will add the files' names to the project's DSP file so that 
they will be compiled when you build the project. 

10. Add a CStudent data member to the CEx15aDoc class. Use 
ClassView to add the following data member, and the #includewill be 
added automatically. 

public: 
CStudent m_student; 

The CStudent constructor is called when the document object is con
structed, and the CStudent destructor is called when the document ob
ject is destroyed. 

11. Edit the Ex15aDoc.cpp file. Use the CEx15aDoc constructor to initial
ize the student object, as shown here: 

CExl ba Doc: : CEx15a Doc () :i'lll..;.sJudentC'default val ue". ,0) 
.{ 

TRAcE(nD()c~inentobject constructe~\n';)'i' 



F 1FT E EN: Separating the Document from Its View 

We can't tell whether the EX15A program works properly unless we 
dump the document when the program exits. We'll use the destructor 
to call the document's Dump function, which calls the CStudent::Dump 
function: 

CEx15aDoc::-CEx15aDoc() 
{ 

Iii fdef _DEBUG 
Dump(afxDump): 

#endif 1/ _DEBUG 
} 

void CEx15aDoc::Dump(CDumpContext& de) const 
{ 

C~ocument::Dump(dc): 

de « .':\n" « m_studeDt.« "\n".: 

12. Build and test the EX15A application. Type a name and a grade, 
and then click Enter. Now exit the application. Does the Debug window 
show messages similar to those shown here? 

a CEx15aDoc at $411580 
m_strTitle = Untitled 
m_strPathName = 
m_bModifi ed = 0 
m_pDocTemplate = $4113A0 

a CStudent at $4115D4 
m_strName = Sullivan, Walter 
m_nGrade = 78 

NOT E : To see these messages, you must compile the application 
with the Win32 Debug target selected and you must run the pro
gram from the debugger. 

A More Advanced Document-View Interaction 
If you're laying the groundwork for a multiview application, the document
view interaction must be more complex than the simple interaction in example 
EX15A. The fundamental problem is this: the user edits in view #1, so view #2 
(and any other views) must be updated to reflect the changes. Now you need 
the UpdateAllViews and On Update functions because the document is going to 
act as the clearinghouse for all view updates. The development steps are shown 
on the following page. 

367 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

368 

1. In your derived document class header file (generated by App
Wizard), declare your document's data members. If you want, you 
can make these data members private and you can define member 
functions to access them or declare the view class as a friend of the 
document class. 

2. In your derived view class, use ClassWizard to override the OnUp
date virtual member function. The application framework calls this 
function whenever the document data has changed for any reason. 
On Update should update the view with the current document data. 

3. Evaluate all your command messages. Determine whether each is 
document-specific or view-specific. (A good example of a document
specific command is the Clear All command on the Edit menu.) 
Now map the commands to the appropriate classes. 

4. In your derived view class, allow the appropriate command mes
sage handlers to update the document data. Be sure that these 
message handlers call the CDocument::UpdateAllViews function be
fore they exit. Use the type-safe version of the CView::GetDocument 
member function to access the view's document. 

5. In your derived document class, allow the appropriate command 
message handlers to update the document data. Be sure that these 
message handlers call the CDocument::UpdateAllViews function be
fore they exit. 

The sequence of events for the complex document-view interaction is 
shown here: 

Application starts CMyDocument object constructed 

CMyView object constructed 

Other view objects constructed 

View windows created 

CMyView::OnCreate called (if mapped) 

CDocument::OnNewDocument called 

CView::OnlnitialUpdate called 

Calls CMyView::OnUpdate 

Initializes the view 



F 1FT E EN: Separating the Document from Its View 

User executes view 
command 

User executes 
document command 

User exits application 

CMyView functions update CMyDocument 
data members 

Call CDocument::UpdateAllViews 

Other views' OnUpdate functions called 

CMyDocument functions update data 
members 

Call CDocument::UpdateAllViews 

CMyView::OnUpdate called 

Other views' On Update functions called 

View objects destroyed 

CMyDocument object destroyed 

The CDocument::DeieteContents Function 
At some point, you'll need a function to delete the contents of your document. 
You could write your own private member function, but it happens that the 
application framework declares a virtual DeleteContents function for the CDocu
ment class. The application framework calls your overridden DeleteContents 
function when the document is closed and, as you'll see in the next chapter, 
at other times as well. 

The CObList Collection Class 
Once you get to know the collection classes, you'll wonder how you ever got 
along without them. The CObList class is a useful representative of the collec
tion class family. If you're familiar with this class, it's easy to learn the other 
list classes, the array classes, and the map classes. 

You might think that collections are something new, but the C program
ming language has always supported one kind of collection-the array. C 
arrays must be fixed in size, and they do not support insertion of elements. 
Many C programmers have written function libraries for other collections, 
including linked lists, dynamic arrays, and indexed dictionaries. For imple
menting collections, the c++ class is an obvious and better alternative than a 
C function library. A list object, for example, neatly encapsulates the list's 
internal data structures. 

The CObList class supports ordered lists of pointers to objects of classes 
derived from CObject. Another MFC collection class, CPtrList, stores void point
ers instead of CObjectpointers. Why not use CPtrListinstead? The CObListclass 
offers advantages for diagnostic dumping, which you'll see in this chapter, and 

369 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

for serialization, which you'll see in the next chapter. One important feature 
of CObList is that it can contain mixed pointers. In other words, a CObList col
lection can hold pointers to both CStudentobjects and CTeacherobjects, assum
ing that both CStudent and CTeacher were derived from CObject. 

Using the CObList Class for a First-In, First-Out List 

370 

One of the easiest ways to use a CObList object is to add new elements to the 
tail, or bottom, of the list and to remove elements from the head, or top, of 
the list. The first element added to the list will always be the first element 
removed from the head of the list. Suppose you're working with element 
objects of class CAction, which is your own custom class derived from CObject. 
A command-line program that puts five elements into a list and then retrieves 
them in the same sequence is shown here: 

Ifinclude <afx.h> 
Ifinclude <afxcoll .h> 

class CAction : public CObject 
{ 

private: 
i nt m_nTi me; 

public: 

} ; 

CAction(int nTime) { m_nTime = nTime; } II Constructor stores 
II integer time value 

void Pri ntTime() { trace(ntime = %d\nn. m_nTime); } 

int main() 
{ 

CAction* pAction; 
CObList actionList; II action list constructed on stack 
i nt i; 

II inserts action objects in sequence {0. 1. 2. 3. 4} 
for (i = 0; i < 5; i ++) { 

pAction = new CAction(i); 
actionList.AddTail(pAction); II no cast necessary for pAction 

II retrieves and removes action objects in sequence {0. 1. 2. 3. 4} 
while (!actionList.lsEmpty(» { 

pAction = II cast required for 
(CAction*) actionList.RemoveHead(); II return value 

pAction->PrintTime(); 



F 1FT E EN: Separating the Document from Its View 

delete pAction; 

return 0; 

Here's what's going on in the program. First a CObList object, actionList, 
is constructed. Then the CObList::AddTail member function inserts pointers 
to newly constructed CAction objects. No casting is necessary for pAction be
cause AddTail takes a CObject pointer parameter and pAction is a pointer to a 
derived class. 

Next the CAction object pointers are removed from the list of the objects 
deleted. A cast is necessary for the returned value of RemoveHead because 
RemoveHead returns a CObject poin ter that is higher in the class hierarchy than 
CAction. 

When you remove an object pointer from a collection, the object is not 
automatically deleted. The delete statement is necessary for deleting the CAction 
objects. 

CObList Iteration-The POSITION Variable 
Suppose you want to iterate through the elements in a list. The CObList class 
provides a GetNext member function that returns a pointer to the "next" list 
element, but using it is a little tricky. GetNext takes a parameter of type POSI
TION, which is a 32-bit variable. The POSITION variable is an internal repre
sentation of the retrieved element's position in the list. Because the POSITION 
parameter is declared as a reference (&), the function can change its value. 

GetNext does the following: 

1. It returns a pointer to the "current" object in the list, identified by 
the incoming value of the POSITION parameter. 

2. It increments the value of the POSITION parameter to the next list 
element. 

Here's what a GetNext loop looks like, assuming you're using the list gen
erated in the previous example: 

CAction* pAction; 
POSITION pos = actionList.GetHeadPosition(); 
while (pos 1= NULL) ( 

pAction = (CAction*) actionList.GetNext(pos); 
pAction->PrintTime(); 

371 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

Now suppose you have an interactive Windows-based application that 
uses toolbar buttons to sequence forward and backward through the list, one 
element at a time. You can't use GetNextto retrieve the entry because GetNext 
always increments the POSITION variable and you don't know in advance 
whether the user is going to want the next element or the previous element. 
Here's a sample view class command message handler function that gets the 
next list entry. In the CMyViewclass, m_actionListis an embedded CObListobject 
and the m_position data member is a POSITION variable that holds the current 
list position. 

CMyView::OnCommandNext() 
{ 

POSITION pas; 
CAction* pAction; 

if «pos = m_position) 1= NULL) { 
m_actionList.GetNext(pos); 
if (pas 1= NULL) { II pos is NULL at end of list 

pAction = (CAction*) m_actionList.GetAt(pos); 
pAction->PrintTime(); 
m_position = pos; 

else { 
AfxMessageBox("End of list reached"); 

GetNextis now called first to increment the list position, and the CObList::GetAt 
member function is called to retrieve the entry. The m_position variable is 
updated only when we're sure we're not at the tail of the list. 

The CTypedPtrList Template Collection Class 

372 

The CObList class works fine if you want a collection to contain mixed point
ers. If, on the other hand, you want a type-safe collection that contains only 
one type of object pointer, you should look at the MFC library template pointer 
collection classes. CTypedPtrList is a good example. Templates are a relatively 
new C++ language element, introduced by Microsoft Visual C++ version 2.0. 
CTypedPtrList is a template class that you can use to create a list of any point
ers to objects of any specified class. To make a long story short, you use the 
template to create a custom derived list class, using either CPtrList or CObList 
as a base class. 



F 1FT E EN: Separating the Document from Its View 

To declare an object for CAetion pointers, you write this line of code: 

CTypedPtrList<CObList, CAction*> m_actionList; 

The first parameter is the base class for the collection, and the second parame
ter is the type for parameters and return values. Only CPtrList and CObList are 
permitted for the base class because those are the only two MFC library pointer 
list classes. If you are storing objects of classes derived from CObjeet, you should 
use CObList as your base class; otherwise, use CPtrList. 

By using the template as shown above, the compiler ensures that all list 
member functions return a CAetion pointer. Thus, you can write the follow
ing code: 

pAction = m_actionList.GetAt(pos); II no cast required 

If you want to clean up the notation a little, use a typedefstatement to gener
ate what looks like a class, as shown here: 

typedef CTypedPtrList<CObList, CAction*> CActionList; 

Now you can declare m_aetionList as follows: 

CActionList m_actionList; 

The Dump Context and Collection Classes 
The Dump function for CObList and the other collection classes has a useful 
property. If you call Dump for a collection object, you can get a display of each 
object in the collection. If the element objects use the DECLARE_DYNAMIC 
and IMPLEMENT_DYNAMIC macros, the dump will show the class name for 
each object. 

The default behavior of the collection Dump functions is to display only 
class names and addresses of element objects. If you want the collection Dump 
functions to call the Dump function for each element object, you must, some
where at the start of your program, make the following call: 

/fifdef _DEBUG 
afxDump.SetDepth(l); 

/fendif 

Now the statement 

/fifdef _DEBUG 
afxDump « actionList; 

/fendif 

373 



PA R Till: THE DOCUMENT-VIEW ARCHITECTURE 

produces output such as this: 

a CObList at $411832 
with 4 elements 

a CAction at $412CD6 
time = 0 

a CAction at $412632 
time = 1 

a CAction at $41268E 
time = 2 

a CAction at $4126EA 
time = 3 

If the collection contains mixed pointers, the virtual Dump function is called 
for the object's class and the appropriate class name is printed. 

The EX158 Example 

374 

This second SDI example improves on EX15A in the following ways: 

~ Instead of a single embedded CStudent object, the document now 
contains a list of CStudent objects. (Now you see the reason for us
ing the CStudent class instead of making m_strName and m_ nGrade 
data members of the document.) 

~ Toolbar buttons allow the user to sequence through the list. 

In The application is structured to allow the addition of extra views. 
The Edit Clear All command is now routed to the document 
object, so the document's UpdateAllViews function and the view's 
On Update function are brought into play. 

m The student-specific view code is isolated so that the CEx15b View 
class can later be transformed into a base class that contains only 
general-purpose code. Derived classes can override selected func
tions to accommodate lists of application-specific objects. 

The EX15B window, shown in Figure 15-3, looks a little different from 
the EX15A window shown in Figure 15-1. The toolbar buttons are enabled only 
when appropriate. The Next (arrow-down graphic) button, for example, is 
disabled when we're positioned at the bottom of the list. 



F 1FT E EN: Separating the Document from Its View 

r----------------:---"-"------'-..-:-'-' --,----, 

!! ,Eile .Edit~tlldent,. ~iew Help , , 

I 
I 

I Student Data Entry Form 
r---__ ------~--~ 

Name IMeyers, Brian I: 
:-.~.'7.:.v7, .. ·:::::".-__:_:; ~~.:-:.::-:.~."';:_::::_:__:.::_:::~:;::-'. :-:-.. ··:-·7~::_:___:~·~,'7':-' ~ • 

§rade I;~~, """J 
;;' "tIes! ::'>1 

Figure 15-3. 
The EX15B program in action. 

The toolbar buttons function as follows: 

Button Function 

Retrieves the first student record 

Retrieves the last student record 

Retrieves the previous student record 

!I!..I Retrieves the next student record 

~ Deletes the current student record 

[Q) Inserts a new student record 

The Clear button in the view window clears the contents of the Name and 
Grade edit controls. The Clear All command on the Edit menu deletes all the 
student records in the list and clears the view's edit controls. 

This example deviates from the step-by-step format in the previous ex
amples. Because there's now more code, we'll simply list selected code and the 
resource requirements. In the listing figures, shaded code indicates additional 

375 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

code or other changes that you enter in the output from AppWizard and 
ClassWizard. The frequent use of TRACE statements lets you follow the pro
gram's execution in the debugging window. 

Resource Requirements 

376 

The file ex15b.rc defines the application's resources as follows. 

Toolbar 
The toolbar (visible in Figure 15-3) was created by erasing the Edit Cut, Copy, 
and Paste tiles (fourth, fifth, and sixth from the left) and replacing them with 
six new patterns. The Flip Vertical command (on the Image menu) was used 
to duplicate some of the tiles. The ex15b.rc file defiries the linkage between 
the command IDs and the toolbar buttons. 

Student Menu 
Having menu options that correspond to the new toolbar buttons isn't abso
lutely necessary. (Class Wizard allows you to map toolbar button commands 
just as easily as menu commands.) However, most applications for Microsoft 
Windows have menu options for all commands, so users generally expect them. 

Edit Menu 
On the Edit menu, the clipboard menu items are replaced by the Clear All 
menu item. See step 2 on page 363 for an illustration of the Edit menu. 

The IDD_STUDENT Dialog Template 
The IDD_STUDENT dialog template, shown here, is similar to the EX15A 
dialog shown in Figure 15-1 except that the Enter pushbutton has been re
placed by the Clear pushbutton: 



F 1FT E EN: Separating the Document from Its View 

The following IDs identify the controls: 

Control 

Name edit control 

Grade edit control 

Clear pushbutton 

10 

IDC_NAME 

IDC_GRADE 

IDC_CLEAR 

The controls' styles are the same as for the EX15A program. 

Code Requirements 
Here's a list of the files and classes in the EX15B example: 

Header File Source Code File Classes Description 

ex15b.h ex15b.cpp CEx15bApp Application class 
(from AppWizard) 

CAboutDlg About dialog 

MainFrm.h MainFrm.cpp CMainFrame SDI main frame 

StuDoc.h StuDoc.cpp CStudentDoc Student document 

StuView.h Stu View.cpp CStudentView Student form view 
(derived from 
CFormView) 

Student.h Student.cpp CStudent Student record 
(similar to EX15A) 

StdAfx.h StdAfx.cpp Includes the standard 
precompiled headers 

CEx15bApp 
The files ex15b.cpp and ex15b.h are standard AppWizard output. 

CMainFrame 
The code for the CMainFrame class in MainFrm.cpp is standard AppWizard 
output. 

CStudent 
This is the code from EX15A, except for the following line added at the end 
of Student.h: 

377 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

378 

NOT E : Use of the MFC template collection classes requires the 
following statement in StdMx.h: 

1/; nclucle'<afxtempl ~ h> 

CStudentDoc 
AppWizard originally generated the CStudentDocclass. Figure 15-4 shows the 
code used in the EX15B example. 

STUDOC.H 

II StuDoc.h : interface of the CStudentDoc class 
/I 
1111111//////////////////////////////////////////////////11///1//////// 

#if !defined(AFX_STUDOC_H __ 4D011047_7E1C_11D0_8FE0_00C04FC2A0C2 __ INCLUDED_) 
#define AFX_STUDOC_H __ 4D011047_7E1C_11D0_8FE0_00C04FC2A0C2 __ INCLUDED_ 

#if _MSC_VER >= 1000 
#pragma once 
#endif // _MSC_VER >= 1000 

class CStudentDoc : public CDocument 
{ 

protected: // create from serialization only 
CStudentDoc(); 
DECLARE_DYNCREATE(CStudentDoc) 

/I Attributes 
public: 
ICS'tudentLi st* GetLi st () { 

return &m_studentList; 

/I Operati ons 
public: 

1/ Overrides 
// ClassWizard generated virtual function overrides 
//({AFX_VIRTUAL(CStudentDoc) 
public: 

Figure 15-4. 
The CStudentDoc class listing. 

(continued) 



F 1FT E EN: Separating the Document from Its View 

Figure 15-4. continued 

virtual BOOlOnNewDocument(): 
virtual void Serialize(CArchive& ar): 
virtual void DeleteContents(): 
/ /} }AFX_VIRTUAl 

// Implementation 
public: 

virtual -CStudentDoc(): 
#ifdef _DEBUG 

virtual void AssertValid() const: 
virtual void Dump(CDumpContext& dc) const: 

#endif 

protected: 

// Generated message map functions 
protected: 

//{{AFX_MSG(CStudentDoc) 
afx_msg void OnEditClearAll(): 
afx_msg void OnUpdateEditClearAll(CCmdUI* pCmdUI): 
/ /} }AFX_MSG 
DEClARE_MESSAGE_MAP() 

private: 
CSt~dentl i st m_studentLi st: 

} : 

/////////////////////////////////////////////////////////////////////// 

//{{AFX_INSERT_lOCATION}} 
// Microsoft Developer Studio will insert additional declarations 
// immediately before the previous line. 

#endif // !defined(AFX_STUDOC_H __ 4D011047_7EIC_ -. 
IID0_8FE0_00C04FC2A0C2 __ INClUDED_) 

STUDOC.CPP 

// StuDoc.cpp : implementation of the CStudentDoc class 
// 

#include "stdafx.h" 
11 inc 1 u de" ex 15 b . h" 

1/i ncl ude "StuDoc. h" 

(continued) 

379 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

380 

Figure 15-4. continued 

flifdef _DEBUG 
fldefine new DEBUG_NEW 
flundef THIS_FILE 
static char THIS_FILE[] = __ FILE __ : 
flendif 

/////////////////////////////////////////////////////////////////////// 

// CStudentDoc 

IMPLEMENT_DYNCREATECCStudentDoc. CDocument) 

BEGIN_MESSAGE_MAPCCStudentDoc. CDocument) 
//{{AFX_MSG_MAP(CStudentDoc) 
ON_COMMAND(ID_EDIT_CLEAR_ALL. OnEditClearAll) 
ON_UPDATE_COMMAND_UI(ID_EDIT_CLEAR_ALL. OnUpdateEditClearAll) 
/ /} JAFX_MSG_MAP 

END_MESSAGE_MAP() 

/////////////////////////////////////////////////////////////////////// 

// CStudentDoc construction/destruction 

CStudentDoc::CStudentDoc() 
{ 

TRACE("Entering CStudentDoc constructor\n"); 
f/ifdef _DEBUG 

afxDump~SetDepth(l): 1/ Ensure dump of list. elements 
fIend; f / / ._DEBUG 
J 

CStudentDoc::-CStudentDoc() 
{ 

J 

BOOL CStudentDoc::OnNewDocument() 
{ 

, .. , .. : .. , ",' '.' ~ h' ..... , ." .. , ....... ' .. ' .":," ',," ... . .. : ,_: , ... '" ...... " .. " , ..... ," ..... , ..... , .. ," h ,," ,. "y"." ."' , 

TRACE("Enteri ngCStudentDoc: .:9nNewDocument \n"); 
if'(!CDocument::OnNewDocument(» 

return FALSE: 

// TODO: add reinitialization code here 
// (SDI documents will reuse this document) 

return TRUE; 

(continued) 



F 1FT E EN: Separating the Document from Its View 

Figure 15-4. continued 

/////////////////////////////////////////////////////////////////////// 

// CStudentDoc serialization 

void CStudentDoc::Serialize(CArchive& ar) 
{ 

if (ar.IsStoring(» 
{ 

else 
{ 

// TODO: add storing code here 

// TODO: add loading code here 

/////////////////////////////////////////////////////////////////////// 

// CStudentDoc diagnostics 

#ifdef _DEBUG 
void CStudentDoc::AssertValid() const 
{ 

CDocument: :AssertValid(); 

void CStudentDoc::Dump(CDumpContext& dc) const 

CDocument::Dump(d~); 

dc, « "\n" «m_studentL; st « "\n": 

/////////////////////////////////////////////////////////////////////// 

// CStudentDoc commands 

void CStudentDoc::DeleteContents() 
{ 

Iii fdef _DEBUG 
Dump(afxDump); 

llend; f 
while (m_studentList.GetHeadPosition(» 

delete m_studentList.RemoveHead(): 
} 

(continued) 

381 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

382 

Figure 15-4. continued 

void CStudentDoc::OnEditClearAll() 

void CStudentDoc::OnUpdateEditClearAll(CCmdUI* pCmdUI) 
{ 

,. < ' ~"' .', , ,~, 

pCll1dUI ::>Enab}e(lrn_stu.dentLis.t. IsEmpty{}); 

ClassWizard and CStudentDoc 
The Edit Clear All command is handled in the document class. The follow
ing message handlers were added through ClassWizard: 

Object 10 Message Member Function 

ID_EDIT_CLEA/LALL COMMAND OnEditClearAll 

ID_EDIT_CLEA/LALL ON_VPDATE_COMMAND_VI OnUpdateEditClearAll 

Data Members 
The document class provides for an embedded CStudentList object, the 
m_studentList data member, that holds pointers to CStudent objects. The list 
object is constructed when the CStudentDoc object is constructed, and it is de
stroyed at program exit. CStudentList is a typedeffor a CTypedPtrList for CStudent 
pointers. 

Constructor 
The document constructor sets the depth of the dump context so that a dump 
of the list causes dumps of the individual list elements. 

GetList 
The inline CetList function helps isolate the view from the document. The 
document class must be specific to the type of object in the list-in this case, 
objects of the class CStudent. A generic list view base class, however, can use a 
member function to get a pointer to the list without knowing the name of the 
list object. 



F 1FT E EN: Separating the Document from Its View 

DeieteContents 
The DeleteContents function is a virtual override function that is called by other 
document functions and by the application framework. Its job is to remove 
all student object pointers from the document's list and to delete those stu
dent objects. An important point to remember here is that SDI document ob
jects are reused after they are closed. DeleteContents also dumps the student list. 

Dump 
App Wizard generates the Dump function skeleton between the lines #ifdef 
_DEBUG and#endif. Because the afxDump depth was set to 1 in the document 
constructor, all the CStudent objects contained in the list are dumped. 

CStudentView 
Figure 15-5 shows the code for the CStudentView class. This code will be car
ried over into the next two chapters. 

STUVIEW.H 

// StuView.h : interface of the CStudentView class 
// 
/////////////////////////////////////////////////////////////////////// 

#if !defined(AFX_STUVIEW_H __ 4D011049_7E1C_11D0_8FE0_00C04FC2A0C2 __ INCLUDED_) 
#define AFX_STUVIEW_H __ 4D011049_7E1C_11D0_8FE0_00C04FC2A0C2 __ INCLUDED_ 

#if _MSC_VER >= 1000 
#pragma once 
#endif // _MSC_VER >= 1000 

class CStudentView : public CFormView 
{ 

protected: 
POSITION m_position: 1/ current position in document list 
CStudentL; s,t*.m_pLi st; . II. cop; ed from document 

protected: // create from serialization only 
CStudentView(): 
DECLARE_DYNCREATE(CStudentView) 

public: 
//{{AFX_DATA(CStudentView) 
enum { IDD = IDD_STUDENT }: 
int m_nGrade: 

Figure 15-5. 
The CStudentView class listing. 

(continued) 

383 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

384 

Figure 15-5. continued 

CString m_strName; 
I/} }AFX_DATA 

II Attributes 
public: 

CStudentDoc* GetDocument(); 

II Operations 
public: 

II Overrides 
II ClassWizard generated virtual function overrides 
11{{AFX_VIRTUAl(CStudentView) 
public: 
virtual BOOl PreCreateWindow(CREATESTRUCT& cs); 
virtual void OnInitialUpdate(); 
protected: 
virtual void DoDataExchange(CDataExchange* pDX); II DDX/DDV support 
virtual void OnUpdate(CView* pSender. lPARAM lHint. CObject* pHint); 
I/} }AFX_VIRTUAl 

II Implementation 
public: 

virtual -CStudentView(); 
/lifdef _DEBUG 

virtual void AssertValid() const; 
virtual void Dump(CDumpContext& dc) const; 

/lendif 

PT9,tected,: , 
virtual void ClearEntry(): 
virt~al void InsertEntryCPOSITION position); 
virtual void GetEntry{POSITION positio~): 

II Generated message map functions 
protected: 

11{{AFX_MSG(CStudentView) 
afx_msg void OnClear(); 
afx_msg void OnCommandHome(): 
afx_msg void OnCommandEnd(); 
afx_msg void OnCommandPrev(); 
afx_msg void OnCommandNext(); 
afx_msg void OnCommandIns(); 
afx_msg void OnCommandDel(): 
afx_msg void OnUpdateCommandHome(CCmdUI* pCmdUI); 
afx_msg void OnUpdateCommandEnd(CCmdUI* pCmdUI); 
afx_msg void OnUpdateCommandDel(CCmdUI* pCmdUI); 

(continued) 



F 1FT E EN: Separating the Document from Its View 

Figure 15-5. continued 

} ; 

/ /} } AFX_MSG 
DECLARE_MESSAGE_MAP() 

#ifndef _DEBUG // debug version in StuView.cpp 
inline CStudentDoc* CStudentView::GetDocument() 

{ return (CStudentDoc*)m_pDocument; } 
#endif 

/////////////////////////////////////////////////////////////////////// 

//{{AFX_INSERT_LOCATION}} 
// Microsoft Developer Studio will insert additional declarations 
// immediately before the previous line. 

#endif // !defined(AFX_STUVIEW_H __ 4D011049_7EIC_ -. 
IlD0_8FE0_00C04FC2A0C2 __ INCLUDED_) 

STUVIEW.CPP 

// StuView.cpp : implementation of the CStudentView class 
// 

#include "stdafx.h" 
#include "ex15b.h" 

#include "StuDoc.h" 
Ifi ncl ude "StuVi ew. h" 

Ifi fdef _DE~UG 
#define new DEBUG_NEW 
#undef THIS_FILE 
static char THIS_FILE[] = __ FILE __ : 
#endif 

/////////////////////////////////////////////////////////////////////// 

// CStudentView 

IMPLEMENT_DYNCREATE(CStudentView. CFormView) 

BEGIN_MESSAGE_MAP(CStudentView. CFormView) 
//{{AFX_MSG_MAP(CStudentView) 
ON_BN_CLICKED(IDC_CLEAR. OnClear) 
ON_COMMAND(ID_STUDENT_HOME. OnCommandHome) 
ON_COMMAND(ID_STUDENT_END. OnCommandEnd) 
ON_COMMAND(ID_STUDENT_PREV. OnCommandPrev) 

(continued) 

385 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

386 

Figure 15-5. continued 

ON_COMMAND(ID_STUDENT_NEXT. OnCommandNext) 
ON_COMMAND(ID_STUDENT_INS. OnCommandlns) 
ON_COMMAND(ID_STUDENT_DEL. OnCommandDel) 
ON_UPDATE_COMMAND_UI(ID_STUDENT_HOME. OnUpdateCommandHome) 
ON_UPDATE_COMMAND_UI(ID_STUDENT_END. OnUpdateCommandEnd) 
ON_UPDATE_COMMAND_UI(ID_STUDENT_PREV. OnUpdateCommandHome) 
ON_UPDATE_COMMAND_UI(ID_STUDENT_NEXT. OnUpdateCommandEnd) 
ON_UPDATE_COMMAND_UI(ID_STUDENT_DEL. OnUpdateCommandDel) 
/ /} JAFX_MSG_MAP 

END_MESSAGE_MAP() 

/////////////////////////////////////////////////////////////////////// 

// CStudentView construction/destruction 

CStudentView::CStudentView() 
: CFormView(CStudentView::IDD) 

IRAGE("Entering"'CStudentVi ew const ructor\Yi"1. 
//{{AFX_DATA_INIT(CStudentView) 
m_nGrade = 0; 
m_strName = _T( ""); 

//JJAFX_DATA_INIT 
i. ,m_posiJ ion ~ "NU LL; 

CStudentView::-CStudentView() 
{ 

J 

void CStudentView::DoDataExchange(CDataExchange* pDX) 
{ 

CFormView::DoDataExchange(pDX); 
//{{AFX_DATA_MAP(CStudentView) 
DDX_Text(pDX. IDC_GRADE. m_nGrade); 
DDV_MinMaxlnt(pDX. m_nGrade. 0. 100); 
DDX_Text(pDX. IDC_NAME. m_strName); 
DDV_MaxChars(pDX. m_strName. 20); 
/ /} JAFX_DATA_MAP 

BOOL CStudentView::PreCreateWindow(CREATESTRUCT& cs) 
{ 

// TODO: Modify the Window class or styles here by modifying 
// the CREATESTRUCT cs 
return CFormView::PreCreateWindow(cs); 

(continued) 



F 1FT E EN: Separating the Document from Its View 

Figure 15-5. continued 

/////////////////////////////////////////////////////////////////////// 

// CStudentView diagnostics 

fiifdef _DEBUG 
void CStudentView::AssertValid() const 
( 

CFormView::AssertValid(); 

void CStudentView::Dump(CDumpContext& de) const 
( 

CFormView::Dump(dc); 

CStudentDoc* CStudentView: :GetDocument() // non-debug version is inline 
( 

ASSERT(m_pDocument->IsKindOf(RUNTIME_CLASS(CStudentDoc»); 
return (CStudentDoc*)m_pDocument; 

fiendif II_DEBUG 

/////////////////////////////////////////////////////////////////////// 

// CStudentView message handlers 

void CStudentView::OnClear() 
( 

TRACE("Entering CStudentView::OnClear\n"): 
"Gl earEn.t.ryO;; 

void CStudentView::OnUpdate(CView* pSender. LPARAM lHint. 
CObject* pHint) 

// called by OnlnitialUpdate and byUpdateAllViews 
TRACE("EnteringCStudentView::OnUpdate\n"); 
IILPOS; t ion =m_pLi st ->GetHeadPos it ion ( ) ; 
Get~ntry(m_posJ:t:ion); .lfJnitJal data for vi!=w 

void CStudentView::OnInitialUpdate() 

TRACE("Entering CStudentView::OnInitialUpdate\n"); 
IILp.L;st,.=Getpoeu!11~l'1t( )->GetLi~t() ; 
CFormView::OnInitialUpdate(); 

(continued) 

387 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

388 

Figure 15-5. continued 

void CStudentView::OnCommandHome() 
{ 

TRACE (i'Enteri ng"C$tLJd~ntliiew: : OnComman'dHome\n;"j;"" 
II need to deal with list empty condition 
if (!m_pList~>IsEmpty() { 

m_position = m_pList-)GetHeadPositionO: 
GetEntry(m_position): 

void CStudentView::OnCommandEnd() 
{ 

TRACE("Entering CStudentView::OnCommandEnd\n"); 
if (!m_pList->IsEmpty(» { 

m_position = m_pList~>GetTailPosition(): 
GetEntry(m_position); 

} 

void CStudentView::OnCommandPrev() 

L 
POSITION. pos: 
TRACE("Entering CStudentView::OnCommandPrev\n"); 
if «pos ~ m_position) !~ NULL) 

m_pList~>GetPrev(pos): 

if (pos) { 
GetEntry (pos): 
m_position~ pos: 

void CStudentView::OnCommandNext() 
{ 

(continued) 



F 1FT E EN: Separating the Document from Its View 

Figure 15-5. continued 

void CStudentView::OnCommandlns() 
{ 

TRACE("Entering CStudentView::OnCommandIns\n"); 
InsertEntry(m_position); 
GetDocument()->SetModifiedFlag(); 
GetDocument()~>UpdateAllViews(this); 

void CStudentView::OnCommandDel() 

// deletes current entry and positions to next one or head 
POS ITION pos; 
TRACE("Entering CStudentView::OnCommandDel\n"); 
if «pos = m_position) != NULL) ( 

m_pList->GetNext(pos); 
if (pos == NULl) ( 

pos = m_pList->GetHeadPosition(); 
TRACE("GetHeadPos = %ld\n", pas); 
if (pos == m_position) ( 

pos = NULL; 

GetEntry(pos); 
CStudent* ps = m_pList->GetAt(m_position); 
m_pList->RemoveAt(m_position); 
delete ps; 
m_position = pos; 
GetDocument()->SetModifiedFlag(); 
GetDocument()->UpdateAllViews(this); 

void CStudentView::OnUpdateCommandHome(CCmdUI* pCmdUI) 
{ 

/1 called during idle processing and when Student menu drops down 
POSITION pos: 

// enables button if list not empty and not at home already 
pos = m_pList->GetHeadPosition(); 
pCmdUI~>~nable«m_position 1= NUL~) && (po~, 1= m..,.,p,osJtion»); 

void CStudentView::OnUpdateCommandEnd(CCmdUI* pCmdUI) 
{ 

(continued) 

389 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

390 

Figure 15-5. continued 
, ~"'».-..- ~, .. ,.~ "" .. ,. ~.". '" , '" ':.' ... ,":~ ':.". ·v> ,~. ' ••• """',,:",, '. ," '","': ~ :": ., : 'W," ~ '" '"' y •••• , • ." W"~ "' ," "," ~,," ~'w 

II called during idle processing and when Student menu,dropsdown 
POSITION pos: 

II enables button if list not empty ~nd not at end already 
pos= m_pLi s t ..,>GetTa 11 Positi on ( ); 
pCmdUI~>En~bJe( (m_po,s;tion!;=:NULl) &&(pos 1= IlLposition)J: 

void CStudentView::OnUpdateCommandDel(CCmdUI* pCmdUI) 
t, .. 

/ / ca 11 ~ddiJri ng i dl eprocess i ng and when Student menu drops down 
pCmdUI->Enab 1 e(m_posit1()nl= NULL) : 

void CStudentView::GetEntry(POSITION position) 
{ 

if (position) 

}, 

CStudent* pStudent :::::m_pList->GetAt(position): 
m_strNanie = pStudent->m_strName: 
m_nGrade = pStudent->m_nGrade: 

Cl ea rEntry (): 

Upci,a,teData (fALSE) ,:,;,' 

void CStudentView::lnsertEntry(POSITION position) 

if. (UpdateData(T~UE»)J 

void CStudentView::ClearEntry() 
{ 

; m ... s t r Na me';"';; ;;; 
ril.; .. nGrade=0; .... , 
updai:etiata(F~LSE):> .... .. ·;.i .. ' ........ . 
C(;GPi al(~g~. )<t his ).~'>~otoDlgctrJ:(~E!t[) 19Item(IDC..,..,~A~E »: 



F 1FT E EN: Separating the Document from Its View 

ClassWizard and CStudentView 
ClassWizard was used to map the CStudentView Clear pushbutton notification 
message as follows: 

Object 10 Message Member Function 

IDC_CLEAR On Clear 

Because CStudentView is derived from CForm View, ClassWizard supports 
the definition of dialog data members. The variables shown here were added 
with the Edit Variables button: 

Control 10 Member Variable 

m_nGrade 

m_strName 

Category 

Value 

Value 

Variable Type 

int 

CString 

The minimum value of the m_nGrade data member was set to 0, and its 
maximum value was set to 100. The maximum length of the m_strName data 
member was set to 20 characters. 

ClassWizard maps toolbar button commands to their handlers. Here are 
the commands and the handler functions to which they were mapped: 

Object 10 Message Member Function 

ID_STUDENT_HOME COMMAND OnCommandHome 

ID_STUDENT_END COMMAND OnCommandEnd 

ID_STUDENT_PREV COMMAND OnCommandPrev 

ID_STUDENT_NEXT COMMAND OnCommandNext 

ID_STUDENT_INS COMMAND OnCommandIns 

ID_STUDENT_DEL COMMAND OnCommandDel 

Each command handler has built-in error checking. 
The following update command VI message handlers are called during 

idle processing to update the state of the toolbar buttons and, when the Stu
dent menu is painted, to update the menu items. 

391 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

392 

Object 10 Message Member Function 

ID_STUDENT_HOME UPDATE_COMMAND_UI OnUpdateCommandHome 

ID_STUDENT_END UPDAT~_COMMAND_UI OnUpdateCommandEnd 

ID_STUDENT_PREV UPDAT~_COMMAND_UI OnUpdateCommandHome 

ID_STUDENT_NEXT UPDATE_COMMAND_UI OnUpdateCommandEnd 

ID_STUDENT_DEL UPDATE_COMMAND_UI OnUpdateCommandDel 

For example, this button, 

which retrieves the fIrst student record, is disabled when the list is empty and 
when the m_position variable is already set to the head of the list. The Previ
ous button is disabled under the same circumstances, so it uses the same 
update command VI handler. The End and the Next buttons share a handler 
for similar reasons. Because a delay sometirp.es occurs in calling the update 
command VI functions, the command message handlers must look for error 
conditions. 

Data Members 
The m_position data member is a kind of Cursor for the document's collection. 
It contains the position of the CStudent object that is currently displayed. The 
m_pList variable provides a quick way to get at the student list in the document. 

OnlnitialUpdate 
The virtual OnlnitialUpdatefunction is called when you start the application. 
It sets the view's m_pListdata me~ber for subsequent access to the document's 
list object. 

On Update 
The virtual On Update function is called both by the OnlnitialUpdate function 
and by the CDocument::UpdateAllViews function. It resets the list position to the 
head of the list, and it displays the head entry. In this example, the Update
AllViews function is called only in response to the Edit Clear All command. In 
a multiview application, you might need a different strategy for setting the 
CStudentView m_position variable in response to document updates from an
other view. 



F 1FT E EN: Separating the Document from Its View 

Protected Virtual Functions 
These three functions are protected virtual functions that deal specifically with 
CStudent objects: 

CetEntry 

InsertEntry 

ClearEntry 

You can move these functions to a derived class if you want to isolate the 
general-purpose list-handling features in a base class. 

Testing the EX15J3 Application 
Fill in the student name and grade fields, and then click this button 

to insert the entry into the list. Repeat this action several times, using the Clear 
pushbutton to erase the data from the previous entry. When you exit the 
application, the debug output should look similar to this: 

a CStudentOoc at $411500 
m_strTitle = Untitled 
m_strPathName = 
m_bModifi eel = 1 
m_pOocTemplate = $4113F1 
with view $41189~ 

a CObList at $411624 
with 4 elements 

a CStudent at $412770 
m_strName = Fi~her. Lon 
m_nGrade = 67 

a CStudent at $412E80 
m_strName = Meyers. Lisa 
m_nGrade = 80 

a CStudent at $412880 
m_strName = Seghers. John 
m_nGrade = 92 

a CStudent at $4128F0 
m_strName = Anderson. Bob 
m_nGrade = 87 

393 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

Two Exercises for the Reader 

394 

You might have noticed the absence of a Modify button on the toolbar. With
out such a button, you can't modify an existing student record. Can you add 
the necessary toolbar button and message handlers? The most difficult task 
might be designing a graphic for the button's tile. 

Recall that the CStudentView class is just about ready to be a general
purpose base class. Try separating the CStudent-specific virtual functions into 
a derived class. Mter that, make another derived class that uses a new element 
class other than CStudent. 



C HAP T E R SIXTEEN 

Reading and Writing 
Documents-SOl Applications 

As you've probably noticed, every AppWizard-generated program has a File 
menu that contains the familiar New, Open, Save, and Save As commands. In 
this chapter, you'll learn how to make your application respond to read and 
write documents. 

Here we'll stick with the Single Document Interface (SDI) application 
because it's familiar territory. Chapter 17 introduces the Multiple Document 
Interface (MDI) application, which is more flexible in its handling of docu
ments and files. In both chapters, you'll get a heavy but necessary dose of 
application framework theory; you'll learn a lot about the various helper classes 
that have been concealed up to this point. The going will be rough, but be
lieve me, you really have to know the details to get the most out of the appli
cation framework. 

This chapter's example, EX16A, is an SDI application based on the 
EX15B example from the previous chapter. It uses the student list document 
with a CFormView-derived view class. Now the student list can be written to and 
read from disk through a process called serialization. Chapter 17 shows you 
how to use the same view and document classes to make an MDI application. 

Serialization-What Is It? 
The term "serialization" might be new to you, but it's already seen some use 
in the world of object-oriented programming. The idea is that objects can be 
persistent, which means they can be saved on disk when a program exits and 
then can be restored when the program is restarted. The process of saving and 
restoring objects is called serialization. In the Microsoft Foundation Class 
(MFC) Library, designated classes have a member function named Serialize. 

395 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

When the application framework calls Serialize for a particular object-for 
example, an object of class CStudent-the data for the student is either saved 
on disk or read from disk. 

In the MFC library, serialization is not a substitute for a database man
agement system. All the objects associated with a document are sequentially 
read from or written to a single disk file. It's not possible to access individual 
objects at random disk file addresses. If you need database capability in your 
application, consider using the Microsoft Open Database Connectivity 
(ODBC) software or Data Access Objects (DAO). Chapters 28 and 29 show you 
how to use ODBC and DAO with the MFC application framework. 

NOT E : There's a new storage option that fits between sequen
tial files and a database: structured storage, described in Chapter 
26. The MFC framework already uses structured storage for con
tainer programs that support embedded objects. 

Disk Files and Archives 

396 

How do you know whether Serialize should read or write data? How is Serialize 
connected to a disk file? With the MFC library, disk files are represented by 
objects of class CFile. A CFile object encapsulates the binary file handle that 
you get through the Win32 function CreateFile. This is not the buffered FILE 
pointer that you'd get with a call to the C runtime Jopen function; rather, it's 
a handle to a binary file. This file handle is used by the application framework 
for Win32 ReadFile, WriteFile, and SetFilePointer calls. 

If your application does no direct disk I/O but instead relies on the 
serialization process, you can avoid direct use of CFile objects. Between the 
Serialize function and the CFile object is an archive object (of class CArchive), 
as shown in Figure 16-l. 

The CArchive object buffers data for the CFile object, and it maintains an 
internal flag that indicates whether the archive is storing (writing to disk) or 
loading (reading from disk). Only one active archive is associated with a file 
at anyone time. The application framework takes care of constructing the CFile 
and CArchive objects, opening the disk file for the CFile object and associating 
the archive object with the file. All you have to do, in your Serialize function, 
is load data from or store data in the archive object. The application frame
work calls the document's Serialize function during the File Open and File Save 
processes. 



S I X TEE N: Reading and Writing Documents-SOl Applications 

Persistent 
documenlobject 

The Serialize function is called by 
the application framework when 

the File Open or File Save 
command is chosen 

Figure 16-1. 
The serialization process. 

Making a Class Serializable 

. ;::, A .. ~ • .ive object CFile object 
, 

A serializable class must be derived directly or indirectly from CObject. In 
addition (with some exception), the class declaration must contain the 
DECLARE_SERIAL macro call and the class implementation file must contain 
the IMPLEMENT_SERIAL macro call. (See the MicrosoftFoundation Class Ref 
erence for a description of these macros.) This chapter's CStudentclass example 
is modified from the class in Chapter 15 to include these macros. 

Writing a Serialize Function 
In Chapter 15, you saw a CStudentclass, derived from CObject, with these data 
members: 

public: 
CString m_strName; 
int m_nGrade; 

Now your job is to write a Serialize member function for CStudent. Because 
Serialize is a virtual member function of class CObject, you must be sure that the 
return value and parameter types match the CObject declaration. Following is 
the Serialize function for the CStudent class. 

397 



PA R Till: THE DOCUMENT-VIEW ARCHITECTURE 

398 

., ,~ . '. ' . ;. ".". ,. . ., ' ... '" " , '" ~, '"" .. ", 

~oid CStudent::Serialize(CArchive& ar) 
{ 

TRACE("Entering CStudent::Serial;ze\n fl
): 

if (ar.IsStoring()} { 
ar « m_strName«m_nGrade; 

} 

else { 
ar » m_strName » m_nGrade: 

} 

Most serialization functions call the Serialize functions of their base classes. 
If CStudentwere derived from CPerson, for example, the first line of the Serial
ize function would be 

CPerson::Serialize(ar): 

The Serialize function for CObject (and for CDocument, which doesn't override 
it) doesn't do anything useful, so there's no need to call it. 

Notice that ar is a CArchive reference parameter that identifies the ap
plication's archive object. The CArchive::IsStoringmember function tells us 
whether the archive is currently being used for storing or loading. The CArchive 
class has overloaded insertion operators «<) and extraction operators (») 
for many of the C++ built-in types, as shown in the following table: 

Type Description 

BYTE 8 bits, unsigned 

WORD 16 bits, unsigned 

LONG 32 bits, signed 

DWORD 32 bits, unsigned 

float 32 bits 

double 64 bits, IEEE standard 

int 32 bits, signed 

short 16 bits, signed 

char 8 bits, unsigned 

unsigned 32 bits, unsigned 

The insertion operators are overloaded for values; the extraction opera
tors are overloaded for references. Sometimes you must use a cast to satisfy 



S I X TEE N: Reading and Writing Documents-SOl Applications 

the compiler. Suppose you have a data member m_nType that is an enumer
ated type. Here's the code you would use: 

ar « (int) m_nType; 
ar » (int&) m_nType; 

MFC classes that are not derived from CObject, such as CString and CRect, 
have their own overloaded insertion and extraction operators for CArchive. 

Loading from an Archive-Embedded Objects vs. Pointers 
Now suppose your CStudentobject has other objects embedded in it, and these 
objects are not instances of standard classes such as CString, CSize, and CRect. 
Let's add a new data member to the CStudent class: 

public: 
CTranscript m_transcript; 

Assume that CTranscript is a custom class, derived from CObject, with its 
own Serialize member function. There's no overloaded « or » operator for 
CObject, so the CStudent::Serialize function now becomes 

void CStudent::Serialize(CArchive& ar) 
{ 

if (ar.IsStoring(» 
ar « m_strName « m_nGrade; 

else ( 
ar » m_strName » m_nGrade; 

m_transcript.Serialize(ar); 

Before the CStudent::Serialize function can be called to load a student 
record from the archive, a CStudent object must exist somewhere. The embed-

_ ded CTranscript object m_transcript is constructed along with the CStudent 
object before the call to the CTranscript::Serialize function. When the virtual 
CTranscript::Serializefunction does get called, it can load the archived transcript 
data into the embedded m_transcriptobject. If you're looking for a rule, here 
it is: always make a direct call to Serialize for embedded objects of classes de
rived from CObject. 

Suppose that, instead of an embedded object, your CStudent object con
tained a CTranscript pointer data member such as this: 

public: 
CTranscript* m_pTranscript; 

399 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

400 

You could use the Serialize function, as shown below, but as you can see, you 
must construct a new CTranscript object yourself: 

void CStudent::Serialize(CArchive& ar) 
{ 

if (ar.IsStoring()) 
ar « m_strName « m_nGrade; 

else { 
m_pTranscript = new CTranscript; 
ar » m_strName » m_nGrade; 

m_pTranscript->Serialize(ar); 

Because the CArchive insertion and extraction operators are indeed over
loaded for CObject pointers, you could write Serialize this way instead: 

void CStudent: :Serialize(CArchive& ar) 
{ 

if (ar.IsStoring()) 
ar « m_strName « m_nGrade « m_pTranscript; 

else 
ar » m_strName » m_nGrade » m_pTranscript; 

But how is the CTranscript object constructed when the data is loaded from 
the archive? That's where the DECLARE_SERIAL and IMPLEMENT_SERIAL 
macros in the CTranscript class come in. 

When the CTranscriptobject is written to the archive, the macros ensure 
that the class name is written along with the data. When the archive is read, 
the class name is read in and an object of the correct class is dynamically 
constructed, under the control of code generated by the macros. Once the 
CTranscriptobject has been constructed, the overridden Serialize function for 
CTranscript can be called to do the work of reading the student data from the 
disk file. Finally, the CTranscript pointer is stored in the m_pTranscript data 
member. To avoid a memory leak, you must be sure that m_pTranscript does 
not already contain a pointer to a CTranscript object. If the CStudent object was 
just constructed and thus was not previously loaded from the archive, the tran
script pointer will be null. 

The insertion and extraction operators do not work with embedded 
objects of classes derived from CObject, as shown here: 

ar » m_strName » m_nGrade » &m_transcript; II Don't try this 



S I X TEE N: Reading and Writing Documents-SOl Applications 

Serializing Collections 
Because all collection classes are derived from the CObject class and the col
lection class declarations contain the DECLARE_SERIAL macro call, you can 
conveniently serialize collections with a call to the collection class's Serialize 
member function. If you call Serialize for a CObList collection of CStudent 
objects, for example, the Serialize function for each CStudent object will be 
called in turn. You should, however, remember the following specifics about 
loading collections from an archive: 

D If a collection contains pointers to objects of mixed classes (all 
derived from CObject) , the individual class names are stored in 
the archive so that the objects can be properly constructed with 
the appropriate class constructor. 

D If a container object, such as a document, contains an embedded 
collection, loaded data is appended to the existing collection. 
You might need to empty the collection before loading from the 
archive. This is usually done in the document's virtual DeleteContents 
function, which is called by the application framework. 

iJ When a collection of CObject pointers is loaded from an archive, 
the following processing steps take place for each object in the 
collection: 

o The object's class is identified. 

o Heap storage is allocated for the object. 

o The object's data is loaded into the newly allocated storage. 

o A pointer to the new object is stored in the collection. 

The EX16A example, beginning on page 410, shows serialization of an 
embedded collection of CStudent records. 

The Serialize Function and the Application Framework 
OK, so you know how to write Serialize functions, and you know that these 
function calls can be nested. But do you know when the first Serialize function 
gets called to start the serialization process? With the application framework, 
everything is keyed to the document (the object of a class derived from 
CDocument). When you choose Save or Open from the File menu, the appli
cation framework creates a CArchive object (and an underlying CFile object) 
and then calls your document class's Serialize function, passing a reference to 

401 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

the CArchiveobject. Your derived document class Serialize function then seri
alizes each of its nontemporary data members. 

NOT E : If you take a close look at any App Wizard-generated 
document class, you'll notice that the class includes the DECLARE
_DYNCREATE and IMPLEMENT_DYNCREATE macros rather than 
the DECLARE_SERIAL and IMPLEMENT_SERIAL macros. The SE
RIAL macros are unneeded because document objects are never 
used in conjunction with the CArchive extraction operator or in
cluded in collections; the application framework calls the docu
ment's Serialize member function directly. You should include the 
DECLARE_SERIAL and IMPLEMENT_SERIAL macros in all other 
serializable classes. 

The SOl Application 
You've seen many SDI applications that have one document class and one view 
class. We'll stick to a single view class in this chapter, but we'll explore the 
interrelationships among the application object, the main frame window, the 
document, the view, the document template object, and the associated string 
and menu resources. 

The Windows Application Object 

402 

For each of your applications, AppWizard has been quietly generating a class 
derived from CWinApp. It has also been generating a statement such as this: 

CMyApp theApp; 

What you're seeing here is the mechanism that starts an MFC application. The 
class CMyApp is derived from the class CWinApp, and theApp is a globally de
clared instance of the class. This global object is called the Windows applica
tion object. 

Here's a summary of the startup steps in a Microsoft Windows MFC 
library application: 

1. Windows loads your program into memory. 

2. The global object theApp is constructed. (All globally declared ob
jects are constructed immediately when the program is loaded.) 

3. Windows calls the global function WinMain, which is part of the 
MFC library. (WinMain is equivalent to the non-Windows main 
function-each is a main program entry point.) 



S I X TEE N: Reading and Writing Documents-SOl Applications 

4. WinMain searches for the one and only instance of a class derived 
from CWinApp. 

5. WinMain calls the Initlnstance member function for theApp, which 
is overridden in your derived application class. 

6. Your overridden InitInstance function starts the process of loading 
a document and displaying the main frame and view windows. 

7. WinMain calls the Run member function for theApp, which starts 
the processes of dispatching window messages and command 
messages. 

You can override another important CWinApp member function. The 
Exitlnstance function is called when the application terminates, after all its 
windows are closed. 

NOT E: Windows allows multiple instances of programs to run. 
The InitInstance function is called each time a program instance 
starts up. In Win32, each instance runs as an independent process. 
It's only incidental that the same code is mapped to the virtual 
memory address space of each process. If you want to locate other 
running instances of your program, you must either call the Win32 
FindWindow function or set up a shared data section or memory
mapped file for communication. 

The Document Template Class 
If you look at the InitInstance function that AppWizard generates for your 
derived application class, you'll see that the following statements are featured 
prominently: 

CSingleDocTemplate* pDocTemplate: 
pDocTemplate = new CSingleDocTemplate( 

IDR_MAINFRAME, 
RUNTIME_CLASS(CStudentDoc), 
RUNTIME_CLASS(CMainFrame) , 
RUNTIME_CLASS(CStudentView)): 

AddDocTemplate(pDocTemplate); 

II main SDI frame window 

Unless you start doing fancy things with splitter windows and multiple 
views, this is the only time you'll actually see a document template object. In 
this case, it's an object of class CSingleDocTemplate, which is derived from 
CDocTemplate. The CSingleDocTemplate class applies only to SDI applications 
because SDI applications are limited to one document object. AddDocTemplate 
is a member function of class CWinApp. 

403 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

404 

The AddDocTemplate call, together with the document template construc
tor call, establishes the relationships among classes-the application class, the 
document class, the view window class, and the main frame window class. The 
application object exists, of course, before template construction, but the 
document, view, and frame objects are not constructed at this time. The ap
plication framework later dynamically constructs these objects when they are 
needed. 

This dynamic construction is a sophisticated use of the C++ language. 
The DECLAREJ)YNCREA TE and IMPLEMENT J)YNCREA TE macros in a class 
declaration and implementation enable the MFC library to construct objects 
of the specified class dynamically. If this dynamic construction capabilityweren't 
present, more relationships among your application's classes would have to 
be hard-coded. Your derived application class, for example, would need code 
for constructing document, view, and frame objects of your specific derived 
classes. This would compromise the object-oriented nature of your program. 

NOT E : The MFC library dynamic construction capability was de
signed before the runtime type identification (RTTI) feature was 
added to the C++ language. The original MFC implementation goes 
beyond RTTI, and the MFC library continues to use it for dynamic 
object construction. See Appendix B for a description of MFC li
brary dynamic construction. 

With the template system, all that's required in your application class is 
use of the RUNTIME_CLASS macro. Notice that the target class's declaration 
must be included for this macro to work. 

Figure 16-2 illustrates the relationships among the various classes, and 
Figure 16-3 illustrates the object relationships. An SDI application can have 
only one template (and associated class groups), and when the SDI program 
is running, there can be only one document object and only one main frame 
window object. 



Figure 16-2. 
Class relationships. 

Figure 16-3. 
Object relationships. 

S I X TEE N: Reading and Writing Documents-SOl Applications 

~~~""~~"':%"''''i"*",#~~~ 

• < CDocument' '
~ ~ h h > J

0/ • 0'", class"""""!!%;
"" " ' < IX «9.,.. ;,;0 y ~

, x~ ~ y it

;' ' , r eVieW'0 " if
~ ",x "j; ~ !1i:;",~ ~9~ }):y /, ~"'~i
Wi' ,,,.. classk »ill,,>!
it ~ w<~ it;» >o..?w fL, ~~, 't'*j

• II 181181 .. II .. '" II J' ~•.....•.................................... :

405

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

The Document Template Resource
The first AddDocTemplate parameter is IDJLMAINFRAME, the identifier for a
string table resource. Here is the corresponding string that AppWizard gen
erates for EX16A in the application's RC file:

IDR_MAINFRAME
"ex16a\n"
"\n"

"Ex16a\n"
"Ex16a Files (*.16a)\n"
".16A\n"
"Ex16a.Document\n"
"Ex16a Document"

II application window caption
II root for default document name
II ("Untitled" used if none provided)
II document type name
II document type description and filter
II extension for documents of this type
II Registry file type ID
II Registry file type description

NOT E : The resource compiler won't accept the string concate
nations as shown above. If you examine the ex16a.rc file, you'll see
the substrings combined in one long string.

IDJLMAINFRAME specifies one string that is separated into substrings
by newline characters (\n). The substrings show up in various places when the
application executes. The string 16A is the default document file extension
specified to App Wizard.

The IDJLMAINFRAME ID, in addition to specifying the application's
strings, identifies the application's icon, toolbar resources, and menu.
AppWizard generates these resources, and you can maintain them with the
resource editors.

So now you've seen how the AddDocTemplate call ties all the application
elements together. Be aware, though, that no windows have been created yet
and therefore nothing appears on the screen.

Multiple Views of an SOl Document
Providing multiple views of an SDI document is a little more complicated. You
could provide a menu item that allows the user to choose a view, or you could
allow multiple views in a splitter window. Chapter 19 shows you how to imple
ment both techniques.

Creating an Empty Document
The CWinApp::OnFileNew Function

406

Mter your application class's InitInstance function calls the AddDocTemplate
member function, it calls OnFileNew (indirectly through CWinApp::Process
ShellCommand), another important CWinApp member function. OnFileNew
sorts through the web of interconnected class names and does the following:

S I X TEE N: Reading and Writing Documents-SOl Applications

1. Constructs the document object but does not attempt to read data
from disk.

2. Constructs the main frame object (of class CMainFrame); also cre
ates the main frame window but does not show it. The main frame
window includes the ID/LMAINFRAME menu, the toolbar, and the
status bar.

3. Constructs the view object; also creates the view window but
doesn't show it.

4. Establishes connections among the document, main frame, and
view objects. Do not confuse these object connections with the
class connections established by the call to AddDocTemplate.

5. Calls the virtual CDocument::OnNewDocument member function for
the document object, which calls the virtual DeleteContents function.

6. Calls the virtual CView::OnlnitialUpdate member function for the
view object.

7. Calls the virtual CFrameWnd::ActivateFrame for the frame object to
show the main frame window together with the menus, view win
dow, and control bars.

NOT E : Some of the functions listed above are not called directly
by OpenDocumentFile but are called indirectly through the applica
tion framework.

In an SDI application, the document, main frame, and view objects are
created only once, and they last for the life of the program. The CWinApp
::OnFileNewfunction is called by Initlnstance. It's also called in response to the
user choosing the File New menu item. In this case, OnFileNew must behave a
little differently. It can't construct the document, frame, and view objects
because they're already constructed. Instead, it reuses the existing document
object and performs steps 5, 6, and 7 above. Notice that OnFileNew always calls
DeleteContents (indirectly) to empty the document.

The Document Class's OnNewDocument Function
You've seen the view class OnlnitialUpdate member function and the document
class OnNewDocument member function in Chapter 15. If an SDI application
didn't reuse the same document object, you wouldn't need OnNewDocument
because you could perform all document initialization in your document class
constructor. Now you must override OnNewDocument to initialize your docu
ment object each time the user chooses File New or File Open. AppWizard

407

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

helps you by providing a skeleton function in the derived document class it
generates.

NOT E : It's a good idea to minimize the work you do in construc
tor functions. The fewer things you do, the less chance there is for
the constructor to fail-and constructor failures are messy. Func
tions such as CDocument::OnNewDocumentand CView::OnlnitialUpdate
are excellent places to do initial housekeeping. If things aren't right,
you can pop up a message box, and in the case of OnNewDocument,
you can return FALSE. Be advised that both functions can be called
more than once for the same object. If you need certain instructions
executed only once, declare a "first time" flag data member.

Connecting File Open to Your Serialization Code
The OnFileOpen Function

When AppWizard generates an application, it maps the File Open menu item
to the CWinApp::OnFileOpen member function. When called, this function
invokes a sequence of functions to accomplish these steps:

1. Prompts the user to select a file.

2. Calls the virtual function CDocument::OnOpenDocument for the
already existing document object. This function opens the file,
calls CDocument::DeleteContents, and constructs a CArchive object
set for loading. It then calls the document's Serialize function,
which loads data from the archive.

3. Calls the view's OnlnitialUpdate function.

The Most Recently Used (MRU) file list is a handy alternative to the File
Open menu item. The application framework tracks the four most recently
used files and displays their names on the File menu. These filenames are
stored in the Windows Registry between program executions.

NOT E : You can change the number of recent files tracked by
supplying a parameter to the LoadStdProfileSetting function in the
application class Initlnstance function.

The Document Class's DeleteContents Function

408

When you load an existing SDI document object from a disk file, you must
somehow erase the existing contents of the document object. The best way to

S I X TEE N: Reading and Writing Documents-SOl Applications

do this is to override the CDocument::DeleteContents virtual function in your
derived document class. The overridden function, as you've seen in Chapter
15, does whatever is necessary to clean up your document class's data mem
bers. In response to both the File New and File Open menu items, the
CDocument functions OnNewDocument and OnOpenDocument both call the
DeleteContents function, which means DeleteContents is called immediately after
the document object is first constructed. It's called again when you close a
document.

If you want your document classes to work in SDI applications, plan on
emptying the document's contents in the DeleteContents member function
rather than in the destructor. Use the destructor only to clean up items that
last for the life of the object.

Connecting File Save and
File Save As to Your Serialization Code

When App Wizard generates an application, it maps the File Save menu item
to the OnFileSave member function of the CDocument class. OnFileSave calls the
CDocument function OnSaveDocument, which in turn calls your document's
Serialize function with an archive object set for storing. The File Save As menu
item is handled in a similar manner; it is mapped to the CDocument function
OnFileSaveAs, which calls OnSaveDocument. Here the application framework
does all the file management necessary to save a document on disk.

NOT E: Yes, it is true that the File New and File Open menu op
tions are mapped to application class member functions, but File
Save and File Save As are mapped to document class member func
tions. File New is mapped to OnFileNew. The SDI version of Init
Instance also calls OnFileNew (indirectly). No document object exists
when the application framework calls InitInstance, so OnFileNew can't
possibly be a member function of CDocument. When a document is
saved, however, a document object certainly exists.

The Document's "Dirty" Flag
Many document-oriented applications for Windows track the user's modifi
cations of a document. If the user tries to close a document or exit the pro
gram, a message box asks whether the user wants to save the document. The
MFC application framework directly supports this behavior with the CDocument
data member m_bModified. This Boolean variable is TRUE if the document has
been modified (has become "dirty"); otherwise, it is FALSE.

409

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

The protected m_bModiJiedflag is accessed through the CDocumentmem
ber functions SetModiJiedFlag and IsModiJied. The framework sets the document
object's flag to FALSEwhen the document is created or read from disk and
when it is saved on disk. You, the programmer, must use the SetModifiedFlag
function to set the flag to TRUE when the document data changes. The vir
tual function CDocument::SaveModified, which the framework calls when the
user closes the document, displays a message box if the m_bModiJied flag is set
to TRUE. You can override this function if you need to do something else.

In the EX16A example, you'll see how a one-line update command VI
function can use IsModified to control the state of the disk button and the
corresponding menu item. When the user modifies the file, the disk button
is enabled; when the user saves the file, the button changes to gray.

NOT E : In one respect, MFC SDI applications behave a little dif
ferently from other Windows SDI applications such as Notepad.
Here's a typical sequence of events:

1. The user creates a document and saves it on disk under the
name, say, test.dat.

2. The user modifies the document.

3. The user chooses File Open and then specifies test.dat.

When the user chooses File Open, Notepad asks whether the
user wants to save the changes made to the document (in step 2
above). If the user answers no, the program rereads the document
from disk. An MFC application, on the other hand, assumes that
the changes are permanent and does not reread the file.

The EX16A Example-SOl with Serialization

410

The EX16A example is similar to example EX15B. The student dialog and the
toolbar are the same, and the view class is the same. Serialization has been
added, together with an update command VI function for File Save. The
header and implementation files for the view and document classes will be
reused in example EX17 A in the next chapter.

All the new code (code that is different from EX15B) is listed, with ad
ditions and changes to the AppWizard-generated code and the ClassWizard
code shaded. A list of the files and classes in the EX16A example is shown in
the following table:

S I X TEE N: Reading and Writing Documents-SOl Applications

Header File Source Code File Class Description

ex16a.h ex16a.cpp CEx16aApp Application class
(from AppWizard)

CAboutDlg About dialog

MainFrm.h MainFrm.cpp CMainFrame SDI main frame

StuDoc.h StuDoc.cpp CStudentDoc Student document

StuView.h StuView.cpp CStu den t View Student form view
(from EX15B)

Student.h Student.cpp CStu den t Student record

StdAfx.h StdAfx.cpp Precompiled headers
(with afxtempl.h
included)

CStudent
The EX16A Student.h file is almost the same as the file in the EX15A project.
(See Figure 15-2 beginning on page 360.) The header contains the macro

OECLARE~SERIAL(CStudent)

instead of

DECLARE_DYNAMIC(CStudent)

And the implementation file contains the macro

I~,P,L~MEN!-:-SERIAL(CStudent. "C,Object. 0)

instead of

IMPLEMENT_DYNAMIC(CStudent. Cobject)

The virtual Serialize function (as shown on page 398) has also been added.

CEx16aApp
The application class files, shown in Figure 16-4 on the following page, con
tain only code generated by AppWizard. The application was generated with
a default file extension and with the Microsoft Windows Explorer launch and
drag-and-drop capabilities. These features are described later in this chapter.

411

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

412

To generate additional code, you must do the following when you first
run AppWizard: in the AppWizard Step 4 page, click the Advanced button.
When the Advanced Options dialog appears, you must enter the filename ex
tension in the upper-left control, as shown here:

This ensures that the document template resource string contains the correct
default extension and that the correct Explorer-related code is inserted into
your application class Initlnstancemember function. You can change some of
the other resource substrings if you want.

NOT E: The generated calls to Enable3dControls and Enable3dCon
trolsStatic in CEx16aApp::lnitlnstanceare not necessary with Microsoft
Windows 95 or Microsoft Windows NT 4.0. These two functions sup
port an older DLL that is shipped with Microsoft Windows 3.51.

EX16A.H

II ex16a.h main header file for the EX16A application
1/

#if !definedCAFX_EX16A_H __ 1A036EA3_821A_11D0_8FE2_00C04FC2A0C2 __ INCLUDED_)
#define AFX_EX16A_H __ 1A036EA3_821A_11D0_8FE2_00C04FC2A0C2 __ INCLUDED_

#if _MSC_VER)= 1000
#pragma once
#endif II _MSC_VER)= 1000

Figure 16-4.
The CEx16aApp class listing.

(continued)

S I X TEE N: Reading and Writing Documents-SOl Applications

Figure 16-4. continued

#ifndef __ AFXWIN_H __
#error include 'stdafx.h' before including this file for PCH

ffendif

#include "resource.h" // main symbols

///

// CEx16aApp:
// See ex16a.cpp for the implementation of this class
//

class CEx16aApp public CWinApp

public:
CEx16aApp();

// Overrides
// ClassWizard generated virtual function overrides
//({AFX_VIRTUAl(CEx16aApp)
public:
virtual BOOl Initlnstance();
/ /} } AFX_V I RTUAl

// Implementation

} ;

//({AFX_MSG(CEx16aApp)
afx_msg void OnAppAbout();

// NOTE - the ClassWizard will add and remove -.
member functions here.

// DO NOT EDIT what you see in these blocks -.
of generated code !

/ /} } AFX_MSG
DEClARE_MESSAGE_MAP()

///

//{{AFX_INSERT_lOCATION}}
// Microsoft Developer Studio will insert additional declarations
// immediately before the previous line.

#endif // !defined(AFX_EX16A_H __ IA036EA3_821A- -.
IlD0_8FE2_00C04FC2A0C2 __ INClUDED_)

(continued)

413

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

414

Figure 16-4. continued

EX16A.CPP

// ex16a.cpp Defines the class behaviors for the application.
/!

#include "stdafx.h"
Iii ncl ude "ex16a. h"

#include "MainFrm.h"
#include "StuDoc.h"
#include "StuView.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[J = __ FILE __ :
#endif

///

// CEx16aApp

BEGIN_MESSAGE_MAPCCEx16aApp, CWinApp)
//{{AFX_MSG_MAPCCEx16aApp)
ON_COMMANDCID_APP_ABOUT, OnAppAbout)

// NOTE - the ClassWizard will add and remove mapping macros here.
// DO NOT EDIT what you see in these blocks of generated code!

/ /} lAFX_MSG_MAP
// Standard file based document commands
ON_COMMANDCID_FILE_NEW, CWinApp::OnFileNew)
ON_COMMANDCID_FILE_OPEN, CWinApp::OnFileOpen)

END_MESSAGE_MAPC)

///////////////////)///

// CEx16aApp construction

CEx16aApp::CEx16aAppC)
{

// TODO: add construction code here,
// Place all significant initialization in Initlnstance

///

// The one and only CEx16aApp object

CEx16aApp theApp:

(continued)

S I X TEE N: Reading and Writing Documents-SOl Applications

Figure 16-4. continued

///

// CEx16aApp initialization

BOOL CEx16aApp::lnitlnstance()
{

AfxEnableControlContainer():

// Standard initialization
// If you are not using these features and wish to reduce the size
// of your final executable. you should remove from the following
// the specific initialization routines you do not need.

IIi fdef _AFXDLL
Enable3dControls(): // Call this when using MFC ina shared DLL

flelse
Enable3dControlsStatic(): // Call this when linking to MFC statically

flendif

// Change the registry key under which our settings are stored.
// You should modify this string to be something appropriate
// such as the name of your company or organization.
SetRegistryKey(_T("Local AppWizard-Generated Applications"»:

LoadStdProfileSettings(): // Load standard INI file options
// (including MRU)

// Register the application's document templates.
// Document templates serve as the connection between
// documents. frame windows and views.

CSingleDocTemplate* pDocTemplate:
pDocTemplate = new CSingleDocTemplate(

IDR_MAINFRAME.
RUNTIME_CLASS(CStudentDoc).
RUNTIME_CLASS(CMainFrame).
RUNTIME_CLASS(CStudentView»:

AddDocTemplate(pDocTemplate):

// Enable DDE Execute open
EnableShellOpen():
RegisterShellFileTypes(TRUE):

// main SDI frame window

(continued)

415

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

416

Figure 16-4. continued

// Parse command line for standard shell commands. DDE. file open
CCommandLineInfo cmdInfo;
ParseCommandLine(cmdInfo);

// Dispatch commands specified on the command line
if (!ProcessShellCommand(cmdInfo»

return FALSE;

// The one and only window has been initialized.
// so show and update it.
m_pMainWnd->ShowWindow(SW_SHOW);
m_pMainWnd->UpdateWindow();

// Enable drag/drop open
m_pMainWnd->DragAcceptFiles();

return TRUE;

///

// CAboutDlg dialog used for App About

class CAboutDlg : public CDialog
(

public:
CAboutDlg();

II Dialog Data
//({AFX_DATA(CAboutDlg)
enum { IDD = IDD_ABOUTBOX };
/ /} }AFX_DATA

// ClassWizard generated virtual function overrides
//{{AFX_VIRTUAL(CAboutDlg)
protected:
virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
/ /}} AFX_V I RTUAL

// Implementation
protected:

//{{AFX_MSG(CAboutDlg)

} ;

// No message handlers
/ /} }AFX_MSG
DECLARE_MESSAGE_MAP()

(continued)

S I X TEE N: Reading and Writing Documents-SOl Applications

Figure 16-4. continued

CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD)
{

//{{AFX_DATA_INIT(CAboutDlg)
//}}AFX_DATA_INIT

void CAboutDlg: :DoDataExchange(CDataExchange* pDX)
{

CDialog::DoDataExchange(pDX);
//{{AFX_DATA_MAP(CAboutDlg)
/ /} }AFX_DATA_MAP

BEGIN_MESSAGE_MAP(CAboutDlg. CDialog)
//{{AFX_MSG_MAP(CAboutDlg)

// No message handlers
/ /} }AFX_MSG_MAP

END_MESSAGE_MAP()

// App command to run the dialog
void CEx16aApp: :OnAppAbout()
{

CAboutDlg aboutDlg;
aboutDlg.DoModal();

///

// CEx16aApp commands

CMainFrame
The main frame window class code, shown in Figure 16-5 below, is almost
unchanged from the code that App Wizard generated. The overridden
ActivateFrame function and the WM_DROPFILES handler exist solely for
trace purposes.

MAINFRM.H

// MainFrm.h : interface of the CMainFrame class
II
///

#if !defined(AFX_MAINFRM_H __ IA036EA7_821A_IID0_8FE2_00C04FC2A0C2 __ INCLUDED_)
#define AFX_MAINFRM_H __ IA036EA7_821A_IID0_8FE2_00C04FC2A0C2 __ INCLUDED_

Figure 16-5. (continued)

The CMainFrame class listing.

417

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

418

Figure 16-5. continued

#if _MSC_VER >= 1000
#pragma once
#endif II _MSC_VER >= 1000

class CMainFrame : public CFrameWnd
{

protected: II create from serialization only
CMainFrame();
DEClARE_DYNCREATE(CMainFrame)

II Attributes
public:

II Operations
public:

II Overrides
II ClassWizard generated virtual function overrides
11{{AFX_VIRTUAl(CMainFrame)
public:
virtual BOOl PreCreateWindow(CREATESTRUCT& cs);
virtual void ActivateFrame(int nCmdShow = ~1);
I/}} AFX_V I RTUAl

II Implementation
public:

virtual -CMainFrame();
Iii fdef _DEBUG

virtual void AssertValid() const;
virtual void Dump(CDumpContext& dc) const;

/fendif

protected: II control bar embedded members
CStatusBar m_wndStatusBar;
CToolBar m_wndToolBar;

II Generated message map functions
protected:

} ;

11{{AFX_MSG(CMainFrame)
afx_msg int OnCreate(lPCREATESTRUCT lpCreateStruct);
afx_msg void OnDropFiles(HDROP hDroplnfo);
I/} }AFX_MSG
DEClARE_MESSAGE_MAP()

(continued)

S I X TEE N: Reading and Writing Documents-SOl Applications

Figure 16-5. continued

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Developer Studio will insert additional declarations
// immediately before the previous line.

#endif // !defined(AFX_MAINFRM_H __ IA036EA7_B21A- -.
IlD0_BFE2_00C04FC2A0C2 __ INCLUDED_)

MAINFRM.CPP

// MainFrm.cpp : implementation of the CMainFrame class
II

#include "stdafx.h"
#include "ex16a.h"

1/i ncl ude "Ma i nFrm. h"

1/i fdef _DEBUG
#define new DEBUG_NEW
11undef THIS_FILE
static char THIS_FILE[] = __ FILE __ :
11endif

///

II CMa in Frame

IMPLEMENT_DYNCREATE(CMainFrame. CFrameWnd)

BEGIN_MESSAGE_MAP(CMainFrame. CFrameWnd)
//{{AFX_MSG_MAP(CMainFrame)
ON_WM_CREATE()
ON_WM_DROPFILES()
/ /} }AFX_MSG_MAP

END_MESSAGE_MAP()

static UINT indicators[]
{

} :

ID_SEPARATOR.
ID_INDICATOR_CAPS.
ID_INDICATOR_NUM.
ID_INDICATOR-SCRL.

// status line indicator

(continued)

419

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

420

Figure 16-5. continued

///

// CMainFrame construction/destruction

CMainFrame::CMainFrame()
{

// TODO: add member initialization code here

CMainFrame::-CMainFrame()
{

}

int CMainFrame::OnCreate(LPCREATESTRUCT lpCreateStruct)

if (CFrameWnd::OnCreate(lpCreateStruct) == -1)
return -1;

if (!m_wndToolBar.Create(this) I I
!m_wndToolBar.LoadToolBar(IDR_MAINFRAME»

TRACE0(nFailed to create toolbar\nn);
return -1; // fail to create

if (!m_wndStatusBar.Create(this) I I
!m_wndStatusBar.SetIndicators(indicators,

sizeof(indicators)/sizeof(UINT»)

TRACE0(nFailed to create status bar\nn);
return -1; // fail to create

// TODO: Remove this if you don't want tool tips
// or a resizeable toolbar
m_wndToolBar.SetBarStyle(m_wndToolBar.GetBarStyle() I

CBRS_TOOLTIPS I CBRS_FLYBY I CBRS_SIZE_DYNAMIC);

// TODO: Delete these three lines if you don't want the toolbar to
// be dockable
m_wndToolBar.EnableDocking(CBRS_ALIGN_ANY);
EnableDocking(CBRS_ALIGN_ANY);

(continued)

S I X TEE N: Reading and Writing Documents-SOl Applications

Figure 16-5. continued

DockControlBar(&m_wndToolBar);
return 0;

BOOl CMainFrame::PreCreateWindow(CREATESTRUCT& cs)
{

// TODO: Modify the Window class or styles here by modifying
// the CREATESTRUCT cs

return CFrameWnd::PreCreateWindow(cs);

///

// CMainFrame diagnostics

fiifdef _DEBUG
void CMainFrame: :AssertValid() const
{

CFrameWnd::AssertValid();

void CMainFrame::Dump(CDumpContext& dc) const
{

CFrameWnd::Dump(dc);

void CMainFrame::OnDropFiles(HDROP hDroplnfo)
{

TRACE(nEryt~r5 ngCMa.inFrame::OnDropFi 1 es \n,");
CFrameWnd::OnDropFiles(hDroplnfo);

421

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

CStudentDoc

422

The CStudentDoc class is the same as the CStudentDoc class from the previous
chapter (shown in Figure 15-4) except for four functions: Serialize, Delete
Contents, OnOpenDocument, and OnUpdateFileSave.

Serialize
One line has been added to the AppWizard-generated function to serialize the
document's student list, as shown here:

///

// CStudentDoc serialization

void CStudentDoc::Serialize(CArchive& ar)
1,

TRACE (tl EnterJngC~tu'dentDoc :,; Seria 1i ze \nU) :
if (ar.IsStoring(»
{

else
{

// TODO: add storing code here

// TODO: add loading code here

'··YW·'

m.;..s,tudentL ist.Seri ali ze(a r) ;

Deie te Con ten ts
The Dump statement is replaced by a simple TRACE statement. Here is the
modified code:

void CStudentDoc::DeleteContents()
{

TRACE("Entering CStudentDoc::DeleteContents\n");
while (m_studentList.GetHeadPosition(» {

delete m_studentList.RemoveHead();

OnOpenDocument
This virtual function is overridden only for the purpose of displaying a TRACE
message, as shown here:

BOOl CStudentDoc::OnOpenDocument(lPCTSTR lpszPathName)
t
L •. ,'.IRACE(t;EDteTj09; CStud~~,tD~'9'~ To~i6'p'enDoc~JlleDt\n~:).;

S I X TEE N: Reading and Writing Documents-SOl Applications

if (!CDocument::OnOpenDocument(lpszPathName»
return FALSE;

return TRUE;

On UpdateFileSave
This message map function grays the File Save toolbar button when the docu
ment is in the unmodified state. The view controls this state by calling the
document's SetModijiedFlagfunction, as shown here:

void CStudentDoc::OnUpdateFileSave(CCmdUI* pCmdUI)
(

II Disable disk tool bar button if file is not modified
pCmdUI->Enable(IsModified(»;

CStudentView
The code for the CStudentView class comes from the previous chapter. Figure
15-5 beginning on page 383 shows the code.

Testing the EX16A Application
Build the program and start it from the debugger, and then test it by typing
some data and saving it on disk with the filename Test. 16a. (You don't need
to type the .16a.)

Exit the program, and then restart it and open the file you saved. Did the
data you typed come back? Take a look at the Debug window and observe the
sequence of function calls. Is the following sequence produced when you start
the application?

Entering CStudentDoc constructor
Entering CStudentView constructor
Entering CStudentDoc::OnNewDocument
Entering CStudentDoc::DeleteContents
Entering CStudentView::OnInitialUpdate
Entering CStudentView::OnUpdate
Entering CMainFrame::ActivateFrame
Entering CStudentDoc::OnOpenDocument
Entering CStudentDoc::DeleteContents
Entering CStudentDoc::Serialize
Entering CStudent::Serialize
Entering CStudent::Serialize
Entering CStudent::Serialize
Entering CStudentView::OnInitialUpdate
Entering CStudentView::OnUpdate
Entering CMainFrame::ActivateFrame

423

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

Explorer Launch and Drag and Drop
In the past, PC users were accustomed to starting up a program and then
selecting a disk file (sometimes called a document) that contained data the
program understood. Many MS-DOS-based programs worked this way; the old
Windows Program Manager improved things by allowing the user to double
click on a program icon instead of typing a program name. Meanwhile, Apple
Macintosh users were double-clicking on a document icon; the Macintosh
operating system figured out which program to run.

While Windows Explorer still lets users double-click on a program, it also
lets users double-click on a document icon to run the document's program.
But how does Explorer know which program to run? Explorer uses the Win
dows Registry to make the connection between document and program. The
link starts with the filename extension that you typed into AppWizard, but as
you'll see, there's more to it than that. Once the association is made, users can
launch your program by double-clicking on its document icon or by dragging
the icon from Explorer to a running instance of your program. In addition,
users can drag the icon to a printer, and your program will print it.

Program Registration

424

In Chapter 14, you saw how MFC applications store data in the Windows
Registry by calling SetRegistryKey from the InitInstancefunction. Independent
of this SetRegistryKey call, your program can write file association information
in a different part of the Registry on startup. To activate this feature, you must
type in the filename extension when you create the application with App
Wizard. (Use the Advanced button in AppWizard Step 4.) After you do that,
AppWizard adds the extension as a substring in your template string and adds
the following line in your Initlnstance function:

RegisterShellFileTypes(TRUE);

Now your program adds two items to the Registry. Under the HKEY
_CLASSES_ROOT top-level key, it adds a subkey and a data string as shown
here (for the EX16A example):

.16A = Ex16a.Document

The data item is the file type ID that AppWizard has chosen for you.
Ex16a.Document, in turn, is the key for finding the program itself. The Reg
istry entries for Ex16a.Document, also beneath HKEY_CLASSES_ROOT, are
shown here:

S I X TEE N: Reading and Writing Documents-SOl Applications

r o
•• "

I

It Registry Edit, ~ew !:lelp

Dela
"C:\vcpp32\ex16a\Oebug\ex16a.exe "41"" :

Notice that the Registry contains the full pathname of the EX16A pro
gram. Now Explorer can use the Registry to navigate from the extension to
the file type ID to the actual program itself. Mter the extension is registered,
Explorer finds the document's icon and displays it next to the filename, as
shown here:

[3J
test.16a

Double-Clicking on a Document
When the user double-clicks on a document icon, Explorer executes the as
sociated SDI program, passing in the selected filename on the command line.
You might notice that AppWizard generates a call to EnableShellOpen in the ap
plication class Initlnstance function. This supports execution via DDE message,
the technique used by the File Manager in Windows NT 3.51. Explorer can
launch your SDI application without this call.

Enabling Drag and Drop
If you want your already-running program to open files dragged from Ex
plorer, you must call the CWnd function DragAcceptFiles for the application's
main frame window. The application object's public data member m_pMain
Wnd points to the CFrameWnd (or CMDIFrameWnd) object. When the user
drops a file anywhere inside the frame window, the window receives a WM
_DROPFILES message, which triggers a call to FrameWnd::OnDropFiles. The
following line in Initlnstance, generated by AppWizard, enables drag and drop:

m_pMainWnd-)DragAcceptFiles();

425

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

Program Startup Parameters
When you choose Run from the Start menu, or when you double-click the
program directly in Explorer, there is no command-line parameter. The
Initlnstancefunction processes the command line with calls to ParseCommand
Line and ProcessShellCommand. If the command line contains something that
looks like a filename, the program immediately loads that file. Thus, you create
a Windows shortcut that can run your program with a specific document file.

Experimenting with Explorer Launch and Drag and Drop

426

Once you have built EX16A, you can try running it from Explorer. You must
execute the program directly, however, in order to write the initial entries in
the Registry. Be sure that you've saved at least one 16A file to disk, and then
exit EX16A. Start Explorer, and then open the \vcpp32\ex16a directory.
Double-click on one of the 16Afiles in the panel on the right. Your program
should start with the selected file loaded. Now, with both EX16A and Explorer
open on the desktop, try dragging another file from Explorer to the EX16A
window. The program should open the newfilejust as if you had chosen File
Open from the EX16A menu.

You might also want to look at the EX16A entries in the Registry. Run
the Regedit program (possibly named Regedt32 in Windows NT), and expand
the HKEY_CLASSES_ROOT key. Look under ".16A" and "Ex16a.Document."
Also expand the HKEY_CURRENT_USER (or HKEY_USERS\.DEFAULT)
key, and look under "Software." You should see a Recent File List under the
subkey ex16a. The EX16A program calls SetRegistryKey with the string "Local
App Wizard-Generated Applications", so the program name goes beneath the
ex16a subkey.

C HAP T E R 5 EVE N TEE N

Reading and Writing
Documents-MOl Applications

This chapter introduces the Microsoft Foundation Class (MFC) Library ver
sion 4.21 Multiple Document Interface (MDI) application and demonstrates
how it reads and writes its document files. The MDI application appears to
be the preferred MFC library program style. It's the AppWizard default, and
most of the sample programs that come with Microsoft Visual C++ are MDI
applications.

Here you'll learn the similarities and differences between Single Docu
ment Interface (SDI) and MDI applications, and you'll learn how to convert
an SDI application to an MDI application. Be sure you thoroughly understand
the SDI application described in Chapter 16 before you attack the MDI ap
plication in this chapter.

The MOl Application
Before you look at the MFC library code for MDI applications, you should be
familiar with the operation of Microsoft Windows MDI programs. Take a close
look at the Visual C++ Developer Studio now. It's an MDI application whose
"multiple documents" are program source code files. Developer Studio is not
the most typical MDI application, however, because it collects its documents
into projects. It's better to examine Microsoft Word or, better yet, a real MFC
library MDI application-the kind that AppWizard generates.

A Typical MOl Application, MFC Style
This chapter's first example, EX17A, is an MDI version of EX16A. Run the
EX16A example to see an illustration of the SDI version after the user has
selected a file. Now look at the MDI equivalent, as shown in Figure 17-1 on
the following page.

427

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

428

Figure 17-1.
The EX17A application with two files open and the Window menu shown.

The user has two separate document files open, each in a separate MDI
child window, but only one child window is active-the lower window, which
lies on top of the other child window. The application has only one menu and
one toolbar, and all commands are routed to the active child window. The
main window's title bar reflects the name of the active child window's docu
ment file.

The child window's minimize box allows the user to reduce the child
window to an icon in the main window. The application's Window menu
(shown in Figure 17-1) lets the user control the presentation through the fol
lowing items:

Menu Item

New Window

Cascade

Tile

Arrange Icons

(document names)

Action

Opens as an additional child window for the selected
document

Arranges the existing windows in an overlapped pattern

Arranges the existing windows in a non overlapped, tiled
pattern

Arranges minimized windows in the frame window

Selects the corresponding child window and brings it
to the top

S EVE N TEE N: Reading and Writing Documents-MOl Applications

lfthe user closes both child windows (and opens the File menu), the ap
plication looks like Figure 17-2.

Figure 17-2.
EX17A with no child windows.

The File menu is different, most toolbar buttons are disabled, and the
window caption does not show a filename. About the only thing the user can
do is start a new document or open an existing document from disk.

Figure 17-3 shows the application when it first starts up and a new docu
ment is created. The single child window has been maximized.

Figure 17-3.
EX17A with initial child window.

429

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

The single, empty child window has the default document name Ex17al.
This name is based on the Doc Type Name (Ex17a) that you selected in the
Advanced Options dialog after clicking the Advanced button in Step 4 of
AppWizard. The first new file is Ex17al, the second is Ex17a2, and so forth.
The user normally chooses a different name when saving the document.

An MFC library MDI application, like many commercial MDI applica
tions, starts up with a new, empty document. (Developer Studio is an excep
tion.) If you want your application to start up with a blank frame, you can
modify the argument to the ProcessShellCommand call in the application class
file, as shown in example EX17A.

For Win32 Programmers
Starting with version 3.0, Windows directly supports MDI applications.
The MFC library builds on this Windows support to create an MDI
environment that parallels the SDI environment. In a Win32 MDI
application, amain application frame window contains the menu and
a single client window. The client window manages various child win
dows that correspond to documents. The MDI client window has its
own preregistered window class (not to be confused with a C++ class)
with a procedure that handles special messages such as WM_MDI
CASCADE and WM_MDITILE. An MDI child window procedure is
similar to the window procedure for an SDI main window.

In the MFC library, the CMDIFrameWnd class encapsulates the
functions of both the main frame window and the MDI client window.
This class has message handlers for all the Windows MDI messages and
thus can manage its child windows, which are represented by objects
of class· CMDI ChildWnd.

The MOl Application Object

430

You're probably wondering how an MDI application works and what code
makes it different from an SDI application. Actually, the startup sequences are
pretty much the same. An application object, of a class derived from class
CWinApp, has an overridden InitInstance member function. This InitInstance
function is somewhat different from the SDI Initlnstance function, starting with
the call to AddDocTemplate.

S EVE N TEE N: Reading and Writing Documents-MOl Applications

The MOl Document Template Class
The MDI template construction call in Initlnstance looks like this:

CMultiDocTemplate* pDocTemplate;
pDocTemplate = new CMultiDocTemplate(

IDR_EX17ATYPE.
RUNTIME_CLASS(CStudentDoc).
RUNTIME_CLASS(CChildFrame). II custom MDI child frame
RUNTIME_CLASS(CStudentView»;

AddDocTemplate(pDocTemplate);

Unlike the SDI application you saw in Chapter 16, an MDI application can use
multiple document types and allows the simultaneous existence of more than
one document object. This is the essence of the MDI application.

The single AddDocTemplate call shown above permits the MDI application
to support multiple child windows, each connected to a document object and
a view object. It's also possible to have several child windows (and correspond
ingviewobjects) connected to the same document object. In this chapter, we'll
start with only one view class and one document class. You'll see multiple view
classes and multiple document classes in Chapter 19.

NOT E: When your application is running, the document tem
plate object maintains a list of active document objects that were cre
ated from the template. The CMultiDocTemplate member functions
GetFirstDocPosition and GetNextDoc allow you to iterate through the
list. Use CDocument::GetDocTemplate to navigate from a document to
its template.

The MOl Frame Window and the MOl Child Window
The SDI examples had only one frame window class and only one frame win
dow object. For SDI applications, AppWizard generated a class named CMain
Frame, which was derived from the class CFrameWnd. An MDI application has
two frame window classes and many frame objects, as shown in the table on
the following page. The MDI frame-view window relationship is shown in
Figure 17-4 on the following page.

431

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

AppWizard-
Generated Number Menu and

Base Class Class of Objects Control Bars

CMDIFrameWnd CMainFrame 1 only Yes

CMDIChildWnd CChildFrame 1 per child No
window

Status bar window

Figure 17-4.
The MDI frame-view window relationship.

Contains Object
a View Constructed

No

Yes

In application
class's
InitInstance
function

By application
framework
when a new
child window
is opened

MDI main
frame
window

In an SDI application, the CMainFrameobject frames the application and
contains the view object. In an MDI application, the two roles are separated.
Now the CMainFrame object is explicitly constructed in Initlnstance, and the
CChildFrame object contains the view. App Wizard generates the code below:

432

CMainFrame* pMainFrame = new CMainFrame;
if (!pMainFrame->LoadFrame(IDR_MAINFRAME»

return FALSE;
m_pMainWnd = pMainFrame;

S EVE N TEE N: Reading and Writing Documents-MOl Applications

(code calls ProcessShell Command to create child frame)

pMainFrame->ShowWindow(m_nCmdShow);
pMainFrame->UpdateWindow();

The application framework can create the CChildFrame objects dynami
cally because the CChildFrame runtime class pointer is passed to the CMulti
DocTemplate constructor.

NOT E : The MDI InitInstance function sets the CWinApp data
member m_pMainWnd to point to the application's main frame win
dow. This means you can access m_pMain Wnd through the global
AfxGetApp function anytime you need to get your application's main
frame window.

The Main Frame and Document Template Resources
An MDI application (EX17A, as described later in this chapter) has two sepa
rate string and Ir.enu resources, identified by the IDJLMAINFRAME and
IDJLEX17ATYPE constants. The first resource set goes with the empty main
frame window; the second set goes with the occupied main frame window.
Here are the two string resources with substrings broken out:

lOR_MAINFRAME
"ex17a"

IOR_MYOOCTYPE
"\n"
"Ex17a\n"
"Ex17a\n"

II application window caption

II (not used)
II root for default document name
II document type name

"Ex17a Files (*.17a)\n"
".17a\n"
"Ex17a.Oocument\n"
"Ex17a Document"

II document type description and fil ter
II extension for documents of this type
II Reg; stry fil e type 10

II Registry file type description

NOT E : The resource compiler won't accept the string concate
nations as shown above. If you examine the ex17a.rc file, you'll see
the substrings combined in one long string.

The application window caption comes from the IDJLMAINFRAME
string. When a document is open, the document filename is appended. The
last two substrings in the IDJLEX17ATYPE string support embedded launch
and drag and drop.

433

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

Creating an Empty Document
The CWinApp::OnFileNew Function

The MDI Initlnstance function calls OnFileNew (through ProcessShellCommand),
as did the SDI InitInstance function. This time, however, the main frame win
dow has already been created. OnFileNew, through a call to the CMultiDoc
Template function OpenDocumentFile, now does the following:

1. Constructs a document object but does not attempt to read data
from disk.

2. Constructs a child frame window object (of class CChildFrame).
Also creates the child frame window but does not show it. In the
main frame window, the IDR....MAINFRAME menu is replaced by
the IDR....EX17 A TYPE menu. IDR....EX17 A TYPE also identifies an
icon resource that is used when the child window is minimized
within the frame.

3. Constructs a view object. Also creates the view window but does
not show it.

4. Establishes connections among the document, the main frame,
and view objects. Do not confuse these object connections with
the class associations established by the call to AddDocTemplate.

5. Calls the virtual OnNewDocument member function for the docu
ment object.

6. Calls the virtual OnlnitialUpdate member function for the view
object.

7. Calls the virtual ActivateFramemember function for the child
frame object to show the frame window and the view window.

The OnFileNew function is also called in response to the File New menu
command. In an MDI application, OnFileNew performs exactly the same steps
as it does when called from InitInstance.

NOT E : Some functions listed above are not called directly by
OpenDocumentFile but are called indirectly through the application
framework.

Creating an Additional View for an Existing Document

434

If you choose the New Window command from the Window menu, the appli
cation framework opens a new child window that's linked to the currently

S EVE N TEE N: Reading and Writing Documents-MOl Applications

selected document. The associated CMDIFrameWnd function, On WindowNew,
does the following:

1. Constructs a child frame object (of class CChildFrame). Also
creates the child frame window but does not show it.

2. Constructs a view object. Also creates the view window but does
not show it.

3. Establishes connections between the new view object and the
existing document and main frame objects.

4. Calls the virtual OnlnitialUpdate member function for the view
object.

5. Calls the virtual ActivateFrame member function for the child
frame object to show the frame window and the view window.

Loading and Storing Documents
In MDI applications, documents are loaded and stored the same way as in SDI
applications but with two important differences: a new document object is
constructed each time a document file is loaded from disk, and the document
object is destroyed when the child window is closed. Don't worry about clearing
a document's contents before loading-but you should override the CDocu
ment::DeleteContents function anyway, to make the class portable to the SDI
environment.

Multiple Document Templates
An MDI application can support multiple document templates through mul
tiple calls to the AddDocTemplate function. Each template can specify a differ
ent combination of document, view, and MDI child frame classes. When the
user chooses New from the File menu of an application with multiple tem
plates, the application framework displays a list box that allows the user to
select a template by name as specified in the string resource (document type
substring). Multiple AddDocTemplate calls are not supported in SDI applications
because the document, view, and frame objects are constructed once for the
life of the application.

NOT E : When your application is running, the application object
keeps a list of active document template objects. The CWinApp mem
ber functions GetFirstDocTemplatePosition and GetNextDocTemplate
allow you to iterate through the list of templates. These functions,

435

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

together with the CDocTemplate member functions GetFirstDocPosition
and GetNextDoc, allow you to access all of the application's document
objects.

If you don't want the template list box, you can edit the File menu to add
a New menu item for each document type. Code the command message han
dlers as follows, using the document type substring from each template:

void CMyApp::OnFileNewStudent()
{

OpenNewDocument("Studnt");

void CMyApp::OnFileNewTeacher()
{

OpenNewDocument("Teachr");

Then add the OpenNewDocument helper function as follows:

BOOl CMyApp::OpenNewDocument(const CString& strTarget)
{

CString strDocName;
CDocTemplate* pSelectedTemplate;
POSITION pos = GetFirstDocTemplatePosition();
while (pos != NUll) {

pSelectedTemplate = (CDocTemplate*) GetNextDocTemplate(pos);
ASSERT(pSelectedTemplate !=NUll);
ASSERT(pSelectedTemplate-)IsKindOf(

RUNTIME_ClASS(CDocTemplate»);
pSelectedTemplate-)GetDocString(strDocName.

CDocTemplate::docName);
if (strDocName == strTarget) { II from template's

II string resource
pSelectedTemplate-)OpenDocumentFile(NUll);
return TRUE;

return FALSE;

Explorer Launch and Drag and Drop

436

When you double-click on a document icon for an MDI application in Win
dows Explorer, the application launches only if it was not running already;
otherwise, a new child window opens in the running application for the docu
ment you selected. The EnableShellOpen call in the application class InitInstance
function is necessary for this to work. Drag and drop works much the same

S EVE NT E EN: Reading and Writing Documents-MOl Applications

way in an MDI application as it does in an SDI application. If you drag a file
from Explorer to your MDI main frame window, the program opens a new
child frame (with associated document and view) just as if you'd chosen the
File Open command. As with SDI applications, you must use the AppWizard
Step 4 Advanced button to specify the filename extension.

The EX17 A Example
This example is the MDI version of the EX16A example from the previous
chapter. It uses the same document and view class code and the same resources
(except the program name). The application code and main frame class code
are different, however. All the new code is listed here, including the code that
App Wizard generates. A list of the files and classes in the EX17 A example are
shown in the table below:

Header File Source Code File Class Description

ex17a.h ex17a.cpp CEx17aApp Application class
(from AppWizard)

CAboutDlg About dialog

MainFrm.h MainFrm.cpp CMainFrame MDI main frame

ChildFrm.h ChildFrm.cpp CChildFrame MDI child frame

StuDoc.h StuDoc.cpp CStudentDoc Student document
(from EX16A)

StuView.h Stu View.cpp CStudentView Student form view
(from EX15B)

Student.h Student.cpp CStudent Student record
(from EX16A)

StdAfx.h StdAfx.h Precompiled headers
(with afxtempl.h included)

CEx17aApp
In the CEx17aApp source code listing, the OpenDocumentFilememberfunction
is overridden only for the purpose of inserting a TRACE statemen t. Also, a few
lines have been added before the ProcessShellCommand call in InitInstance. They
check the argument to ProcessShellCommand and change it if necessary to pre
vent the creation of any empty document window on startup. Figure 17-5 on
the following page shows the source code.

437

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

438

EX17A.H

// ex17a.h main header file for the EX17A application
//

#if !defined(AFX_EX17A_H __ 7B5FE267_85E9_1100_8FE3_00C04FC2A0C2 __ INClUOEO_)
#define AFX_EX17A_H __ 7B5FE267_85E9_1100_8FE3_00C04FC2A0C2 __ INClUOEO_

#if _MSC_VER >= 1000
#pragma once
#endif // _MSC_VER >= 1000

#ifndef __ AFXWIN_H __
#error include 'stdafx.h' before including this file for PCH

#endif

#include "resource.h" // main symbols

// //11111111/11/111
/I CEx17aApp:
II See ex17a.cpp for the implementation of this class
/I

class CEx17aApp public CWinApp

public:
CEx17aApp();

I I Overri des
II ClassWizard generated virtual function overrides
11{{AFX_VIRTUAl(CEx17aApp)
public:
virtual Baal InitInstance();
virtual COocument* OpenOocumentFile(lPCTSTR lpszFileName);
I/} }AFX_VIRTUAl

II Implementation

11{{AFX_MSG(CEx17aApp)
afx_msg void OnAppAbout();

II NOTE - the ClassWizard will add and remove -.
member functions here.

/I DO NOT EDIT what you see in these
blocks of generated code!

I/} }AFX_MSG

Figure 17-5.
The CEx17aApp source code listing.

(continued)

S EVE N TEE N: Reading and Writing Documents-MOl Applications

Figure 17-5. continued

DECLARE_MESSAGE_MAP()
} :

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Developer Studio will insert additional declarations
// immediately before the previous line.

#endif // !defined(AFX_EX17A_H __ 7B5FE267_85E9_
IlD0_8FE3_00C04FC2A0C2 __ INCLUDED_)

EX17A.CPP

// ex17a.cpp Defines the class behaviors for the application.
//

#include "stdafx.h"
#include "ex17a.h"

#include "MainFrm.h"
#include "ChildFrm.h"
#include "StuDoc.h"
#include "StuView.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __ FILE __ :
#endif

///

// CEx17aApp

BEGIN_MESSAGE_MAP(CEx17aApp, CWinApp)
//{{AFX_MSG_MAP(CEx17aApp)
ON_COMMAND(ID_APP_ABOUT, OnAppAbout)

// NOTE - the ClassWizard will add and remove -.
mapping macros here.

// DO NOT EDIT what you see in these
blocks of generated code!

/ /} }AFX_MSG_MAP
// Standard file based document commands
ON_COMMAND(ID_FILE_NEW, CWinApp::OnFileNew)

(continued)

439

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

440

Figure 17-5. continued

ON_COMMAND(ID_FIlE_OPEN. CWinApp::OnFileOpen)
END_MESSAGE_MAP()

///

// CEx17aApp construction

CEx17aApp::CEx17aApp()
{

// TODO: add construction code here.
// Place all significant initialization in InitInstance

///

// The one and only CEx17aApp object

CEx17aApp theApp:

///

// CEx17aApp initialization

BOOl CEx17aApp::InitInstance()
{

AfxEnableControlContainer():

// Standard initialization
// If you are not using these features and wish to reduce the size
// of your final executable. you should remove from the following
// the specific initialization routines you do not need.

IIi fdef _AFXDll
Enable3dControls(): // Call this when using MFC in a shared Dll

/lelse
Enable3dControlsStatic(): // Call this when linking to MFC

1/ statically
Ilendif

// Change the registry key under which our settings are stored.
// You should modify this string to be something appropriate
// such as the name of your company or organization.
SetRegi s t ryKey (_ T(" loca 1 AppWi za rd -Generated App 1 i cat ions")) :

loadStdProfileSettings(): // load standard INI file options
// (including MRU)

(continued)

5 EVE N TEE N: Reading and Writing Documents-MOl Applications

Figure 17-5. continued

II Register the application's document templates. Document
II templates serve as the connection between documents. frame
II windows and views.

CMultiDocTemplate* pDocTemplate;
pDocTemplate = new CMultiDocTemplate(

lDR_EX17ATYPE.
RUNTlME_CLASS(CStudentDoc).
RUNTIME_CLASS(CChildFrame). II custom MDl child frame
RUNTIME_CLASS(CStudentView»;

AddDocTemplate(pDocTemplate);

II create main MDl Frame window
CMainFrame* pMainFrame = new CMainFrame;
if (!pMainFrame->LoadFrame(lDR_MAlNFRAME»

return FALSE;
m_pMainWnd = pMainFrame;

II Enable drag/drop open
m_pMainWnd->DragAcceptFiles();

II Enable DDE Execute open
EnableShellOpen();
RegisterShellFileTypes(TRUE);

II Parse command line for standard shell commands. DDE. file open
CCommandLinelnfo cmdlnfo;
ParseCommandLine(cmdlnfo);

II no empty document window on startup
if (cmdlnfo.m_nShellCommand == CCommandLinelnfo::FileNew)

cmdlnfo.m_nShellCommand = CCommandLinelnfo::FileNothing;
}

II Dispatch commands specified on the command line
if (!ProcessShellCommand(cmdlnfo»

return FALSE;

II The main window has been initialized. so show and update it.
pMainFrame->ShowWindow(m_nCmdShow);
pMainFrame->UpdateWindow();

return TRUE;

(continued)

441

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

442

Figure 17-5. continued

///

// CAboutDlg dialog used for App About

class CAboutDlg : public CDialog
{

public:
CAboutDlg();

// Dialog Data
//{{AFX_DATA(CAboutDlg)
enum { IDD = IDD_ABOUTBOX };
/ /} }AFX_DATA

// ClassWizard generated virtual function overrides
//{{AFX_VIRTUAL(CAboutDlg)
protected:
virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
/ /}} AFX_V I RTUAL

// Implementation
protected:

//{{AFX_MSG(CAboutDlg)

} ;

// No message handlers
/ /} }AFX_MSG
DECLARE_MESSAGE_MAP()

CAboutDlg::CAboutDlg() : CDialog(CAboutDlg: :IDD)
{

//{{AFX_DATA_INIT(CAboutDlg)
//}}AFX_DATA_INIT

void CAboutDlg::DoDataExchange(CDataExchange* pDX)

CDialog::DoDataExchange(pDX);
//{{AFX_DATA_MAP(CAboutDlg)
/ /} }AFX_DATA_MAP

BEGIN_MESSAGE_MAP(CAboutDlg. CDialog)
//{{AFX_MSG_MAP(CAboutDlg)

// No message handlers
/ /} }AFX_MSG_MAP

END_MESSAGE_MAP()

(continued)

S EVE N TEE N: Reading and Writing Documents-MOl Applications

Figure 17-5. continued

// App command to run the dialog
void CExI7aApp::OnAppAbout()
{

CAboutDlg aboutDlg;
aboutDlg.DoModal();

///

// CEx17aApp commands

CDocument* CExI7aApp::OpenDocumentFile(LPCTSTR lpszFileName)
{

TRACE(HCExI7aApp::OpenDocumentFile\n");
return CWinApp::OpenDocumentFile(lpszFileName);

CMainFrame
This main frame class, listed in Figure 17-6, is almost identical to the SDI
version, except that it's derived from CMDIFrameWnd instead of CFrameWnd.

MAINFRM.H

// MainFrm.h : interface of the CMainFrame class
II
///

#if !defined(AFX_MAINFRM_H __ 7B5FE26B_85E9_11D0_8FE3_00C04FC2A0C2 __ INCLUDED_)
#define AFX_MAINFRM_H __ 7B5FE26B_85E9_11D0_8FE3_00C04FC2A0C2 __ INCLUDED_

#if _MSC_VER >= 1000
#pragma once
#endif // _MSC_VER >= 1000

class CMainFrame : public CMDIFrameWnd
{

DECLARE_DYNAMIC(CMainFrame)
public:

CMainFrame();

// Attributes
public:

Figure 17-6.
The CMainFrame class listing.

(continued)

443

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

Figure 17-6. continued

// Operations
public:

// Overrides
// ClassWizard generated virtual function overrides
//{{AFX_VIRTUAl(CMainFrame)
virtual BOOl PreCreateWindow(CREATESTRUCT& cs);
/ /}} AFX_V I RTUAL

// Implementation
public:

virtual ~CMainFrame();
flifdef _DEBUG

virtual void AssertValid() const;
virtual void Dump(CDumpContext& dc) const;

fiend if

protected: // control bar embedded members
CStatusBar m_wndStatusBar;
CToolBar m_wndToolBar;

// Generated message map functions
protected:

} ;

//{{AFX_MSG(CMainFrame)
afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);

// NOTE - the ClassWizard will add and remove -.
member functions here.

// DO NOT EDIT what you see in these blocks
of generated code!

/ /} }AFX_MSG
DECLARE_MESSAGE_MAP()

///

444

//{{AFX_INSERT_lOCATION}}
// Microsoft Developer Studio will insert additional declarations
// immediately before the previous line.

flendif // !defined(AFX_MAINFRM_H __ 7B5FE26B_85E9_
IlD0_8FE3_00C04FC2A0C2 __ INCLUDED_)

(continued)

S EVE N TEE N: Reading and Writing Documents-MOl Applications

Figure 17-6. continued

MAINFRM.CPP

// MainFrm.cpp : implementation of the CMainFrame class
/I

#include "stdafx.h"
#include "ex17a.h"

#include "MainFrm.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __ FILE __ :
#endif

///

// CMainFrame

IMPLEMENT_DYNAMICCCMainFrame. CMDIFrameWnd)

BEGIN_MESSAGE_MAPCCMainFrame. CMDIFrameWnd)
//{{AFX_MSG_MAPCCMainFrame)

// NOTE - the ClassWizard will add and remove -.
mapping macros here.

// DO NOT EDIT what you see in these blocks
of generated code !

ON_WM_CREATEC)
/ /} }AFX_MSG_MAP

END_MESSAGE_MAPC)

static UINT indicators[]
{

} :

ID_SEPARATOR.
ID_INDICATOR_CAPS.
ID_INDICATOR_NUM.
ID_INDICATOR_SCRL.

// status line indicator

///

// CMainFrame construction/destruction

CMainFrame: :CMainFrameC)
{

// TODO: add member initialization code here

(continued)

445

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

446

Figure 17-6. continued

CMainFrame::-CMainFrame()
{

}

int CMainFrame::OnCreate(lPCREATESTRUCT lpCreateStruct)
{

if (CMOIFrameWnd::OnCreate(lpCreateStruct) == -1)
return -1;

if (!m_wndToolBar.Create(this) I I
!m_wndToolBar.loadToolBar(IOR_MAINFRAME»

TRACE0("Failed to create toolbar\n");
return -1; II fail to create

if (!m_wndStatusBar.Create(this) I I
!m_wndStatusBar.Setlndicators(indicators,

sizeof(indicators)/sizeof(UINT»)

TRACE0("Failed to create status bar\n");
return -1; II fail to create

II TOOO: Remove this if you don't want tool tips
II or a resizeable toolbar
m_wndToolBar.SetBarStyle(m_wndToolBar.GetBarStyle() I

CBRS_TOOlTIPS I CBRS_FlYBY I CBRS_SIZE_OYNAMIC);

II TOOO: Delete these three lines if you don't want the tool bar to
II be dockable
m_wndToolBar.EnableOocking(CBRS_AlIGN_ANY);
EnableOocking(CBRS_AlIGN_ANY);
OockControlBar(&m_wndToolBar);

return 0;

BOOl CMainFrame::PreCreateWindow(CREATESTRUCT& cs)
{

}

II TOOO: Modify the Window class or styles here by modifying
II the CREATESTRUCT cs

return CMDIFrameWnd::PreCreateWindow(cs);

(continued)

S EVE N TEE N: Reading and Writing Documents-MOl Applications

Figure 17-6. continued

///

// CMainFrame diagnostics

1/i fdef _DEBUG
void CMainFrame::AssertValidC) const
(

CMDIFrameWnd::AssertValidC);

void CMainFrame::DumpCCDumpContext& dc) const
(

CMDIFrameWnd::DumpCdc):

///

// CMainFrame message handlers

CChiidFrame
This child frame class, listed in Figure 17-7, lets you conveniently control the
child frame window's characteristics by adding code in the PreCreateWindow
function. You can also map messages and override otqer virtual functions.

CHILDFRM.H

// ChildFrm.h : interface of the CChildFrame class
II
///

#if !definedCAFX_CHILDFRM_H __ 7B5FE26D_85E9_11D0_8FE3_00C04FC2A0C2 __ INCLUDED_)
#define AFX_CHILDFRM_H __ 7B5FE26D_85E9_11D0_8FE3_00C04FC2A0C2 __ INCLUDED_

#if _MSC_VER)= 1000
#pragma once
#endif // _MSC_VER)= 1000

class CChildFrame : public CMDIChildWnd
(

DECLARE_DYNCREATECCChildFrame)
public:

CChildFrameC) :

Figure 17-7.
The CChildFrame class listing.

(continued)

447

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

Figure 17-7. continued

// Attributes
public:

II Operati ons
public:

// Overrides
// ClassWizard generated virtual function overrides

. //{{AFX_VIRTUAl(CChildFrame)
public:
virtual BOOl PreCreateWindow(CREATESTRUCT& cs);
virtual void ActivateFrame(int nCmdShow = -1);
/ /}} AFX_V I RTUAl

// Implementation
public:

virtual -CChildFrame();
lIifdef _DEBUG

virtual void AssertValid() const;
virtual void Dump(CDumpContext& dc) const;

lIendif

// Generated message map functions
protected:

//{{AFX_MSG(CChildFrame)

} ;

// NOTE - the ClassWizard will add and remove -.
member functions here.

II DO NOT EDIT what you see in these blocks
of generated code!

/ /} }AFX_MSG
DEClARE_MESSAGE_MAP()

///

448

//{{AFX_INSERT_lOCATION}}
// Microsoft Developer Studio will insert additional declarations
// immediately before the previous line.

lIendif // !defined(AFX_CHIlDFRM_H __ 7B5FE26D_85E9_
11D0_8FE3_00C04FC2A0C2 __ INClUDED_)

(continued)

S EVE N TEE N: Reading and Writing Documents-MOl Applications

Figure 17-7. continued

CHILDFRM.CPP

// ChildFrm.cpp : implementation of the CChildFrame class
II

/Finclude "stdafx.h"
if inc 1 u de" ex 1 7 a . h "

/Finclude "ChildFrm.h"

ifi fdef _DEBUG
/Fdefine new DEBUG_NEW
/Fundef THIS_FILE
static char THIS_FILE[] = __ FILE __ :
/Fendif

///

// CChildFrame

IMPLEMENT_DYNCREATE(CChildFrame. CMDIChildWnd)

BEGIN_MESSAGE_MAP(CChildFrame, CMDIChildWnd)
//{{AFX_MSG_MAP(CChildFrame)

// NOTE - the ClassWizard will add and remove -.
mapping macros here.

II DO NOT EDIT what you see in these blocks
of generated code !

/ /} lAFX_MSG_MAP
END_MESSAGE_MAP()

///

// CChildFrame construction/destruction

CChildFrame::CChildFrame()
{

// TODO: add member initialization code here

CChildFrame: :-CChildFrame()
{

1

(continued)

449

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

Figure 17-7. continued

BOOl CChildFrame::PreCreateWindow(CREATESTRUCT& cs)
{

// TODO: Modify the Window class or styles here by modifying
// the CREATESTRUCT cs

return CMDIChildWnd::PreCreateWindow(cs);

1//

// CChildFrame diagnostics

!fifdef _DEBUG
void CChildFrame::AssertValid() const
{

CMDIChildWnd::AssertValid();

void CChildFrame::Dump(CDumpContext& dc) const

CMDIChildWnd::Dump(dc);

Ilendif II _DEBUG

///

// CChildFrame message handlers

void CChildFrame::ActivateFrame(int nCmdShow)
{

" .". YU h, , • ,." ., ~,< '" w < .,~ , h ,. ~ '"'" h" '"'" Y •• ,'

TRACEC'JnterJngCC.h1J df~ame:.:Ac:.ti vat~Frame\n'~) ;
CMDIChildWnd: :ActivateFrame(nCmdShow);

Testing the EX17 A Application

450

Do the build, run the program from Developer Studio, and then make several
documents. Try saving the documents on disk, closing them, and reloading
them. Also, choose New Window from the Window menu. Notice that you now
have two views (and child frames) attached to the same document. Now exit
the program and start Explorer. The files you created should show up with
document icons. Double-click on a document icon and see whether the EX17 A
program starts up. Now, with both Explorer and EX17A on the desktop, drag
a document from Explorer to EX17A. Was the file opened?

C HAP T E R E G H TEE N

Printing and Print Preview

If you're depending on the Win32 API alone, printing is one of the tougher
programmingjobs you'll have. If you don't believe me,just skim through the
60-page chapter "Using the Printer" in Charles Petzold's Programming Win
dows 95 (Microsoft Press, 1996). Other books about Microsoft Windows ignore
the subject completely. The Microsoft Foundation Class (MFC) Library ver
sion 4.21 application framework goes a long way toward making printing easy.
As a bonus, it adds a print preview capability that behaves like the print pre
view functions in commercial Windows-based programs such as Microsoft
Word and Microsoft Excel.

In this chapter, you'll learn how to use the MFC library Print and Print
Preview features. In the process, you'll get a feeling for what's involved in
Windows printing and how it's different from printing in MS-DOS. First
you'll do some wysiwyg printing, in which the printer output matches the
screen display. This option requires careful use of mapping modes. Later
you'll print a paginated data processing-style report that doesn't reflect the
screen display at all. In that example, you will use a template array to struc
ture your document so that the program can print any specified range of
pages on demand.

Windows Printing
In the old days, programmers had to worry about configuring their applica
tions for dozens of printers. Now Windows makes life easy because it provides
all the printer drivers you'll ever need. It also supplies a consistent user inter
face for printing.

451

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

Standard Printer Dialogs

452

When the user chooses Print from the File menu of a Windows-based appli
cation, the standard Print dialog appears, as shown in Figure 18-1.

Figure 18-1.
The standard Print dialog.

If the user chooses Print Setup from the File menu, the standard Print
Setup dialog appears, as shown in Figure 18-2.

Figure 18-2.
The standard Print Setup dialog.

E I G H TEE N: Printing and Print Preview

During the printing process, the application displays a standard printer
status dialog, as shown in Figure 18-3.

Printing
Ex18a1
on the

HP LaserJet 4
on LPT1:
Page 1

I [f~6§~r:!1

Figure 18-3.
The standard printer status dialog.

Interactive Print Page Selection
If you've worked in the data processing field, you're used to batch-mode
printing. A program reads a record and then formats and prints selected in
formation as a line in a report. Every time, say, 50 lines have been printed, the
program ejects the paper and prints a new page heading. The programmer
assumes that the whole report will be printed at one time and makes no al
lowance for interactively printing selected pages.

As Figure 18-1 shows, page numbers are important in Windows-based
printing. A program must respond to a user's page selection by calculating
which information to print and then printing the selected pages. If you're
aware of this page selection requirement, you can design your application's
data structures accordingly.

Remember the student list from Chapter 16? What if the list included
1000 students' names and the user wanted to print page 5 ofa student report?
If you assumed that each student record required one print line and that a
page held 50 lines, page 5 would include records 201 through 250. With an
MFC list collection class, you're stuck iterating through the first 200 list ele
ments before you can start printing. Maybe the list isn't the ideal data structure.
How about an array collection instead? With the CObArray class (or with one of
the template array classes), you can directly access the 201st student record.

Not every application has elements that map to a fixed number of print
lines. Suppose the student record contained a multiline text biography field.
Because you wouldn't know how many biography lines each record included,
you'd have to search through the whole file to determine the page breaks. If
your program could remember those page breaks as it calculated them, its
efficiency would increase.

453

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

Display Pages vs. Printed Pages
In many cases, you'll want a printed page to correspond to a display page. As
you learned in Chapter 5, you cannot guarantee that objects will be printed
exactly as they are displayed on screen. With TrueType fonts, however, your
printed page will get pretty close. If you're working with full-size paper and
you want the corresponding display to be readable, you'll certainly want a
display window that's larger than the screen. Thus, a scrolling view such as the
one the CScrollView class provides is ideal for your printable views.

Sometimes, however, you might not care about display pages. Perhaps
your view holds its data in a list box, or maybe you don't need to display the
data at all. In these cases, your program can contain stand-alone print logic
that simply extracts data from the document and sends it to the printer. Of
course, the program must properly respond to a user's page-range request.
If you query the printer to determine the paper size and orientation (portrait
or landscape) , you can adjust the pagination accordingly.

Print Preview
The MFC library Print Preview feature shows you on screen the exact page and
line breaks you'll get when you print your document on a selected printer. The
fonts might look a little funny, especially in the smaller sizes, but it's not a
problem. Look now at the print preview window that appears on page 462.

Print Preview is an MFC library feature, not a Windows feature. Don't
underestimate how much effort went into programming Print Preview. The
Print Preview program examines each character individually, determining its
position based on the printer's device context. Mter selecting an approximat
ing font, the program displays the character in the print preview window at
the proper location.

Programming for the Printer
The application framework does most of the work for printing and print pre
view. To use the printer effectively, you must understand the sequence of
function calls and know which functions to override.

The Printer Device Context and the CView::OnDraw Function

454

When your program prints on the printer, it uses a device context object of class
CDC. Don't worry about where the object comes from; the application frame
work constructs it and passes it as a parameter to your view's OnDraw function.

E I G H TEE N: Printing and Print Preview

If your application uses the printer to duplicate the display, the OnDraw func
tion can do double duty. If you're displaying, the OnPaint function calls OnDraw
and the device context is the display context. If you're printing, OnDraw is called
by another CView virtual function, OnPrint, with a printer device context as a
parameter. The OnPrint function is called once to print an entire page.

In print preview mode, the OnDraw parameter is actually a pointer to a
CPreviewDC object. Your OnPrint and OnDraw functions work the same regard
less of whether you're printing or previewing.

The CView::OnPrint Function
You've seen that the base class OnPrint function calls OnDraw and that OnDraw
can use both a display device context and a printer device context. The map
ping mode should be set before OnPrint is called. You can override OnPrint
to print items that you don't need on the display, s~ch as a title page, head
ers, and footers. The OnPrint parameters are as follows:

[II A pointer to the device context

rJ A pointer to a print information object (CPrintInfo) that includes
page dimensions, the current page number, and the maximum
page number

In your overridden OnPrint function, you can elect not to call OnDraw
at all to support print logic that is totally independent of the display logic. The
application framework calls the OnPrint function once for each page to be
printed, with the current page number in the CPrintInfo structure. You'll soon
find out how the application framework determines the page number.

Preparing the Device Context
The CView::OnPrepareDC Function

If you need a display mapping mode other than MM_ TEXT (and you usually
do), that mode is usually set in the view's OnPrepareDC function. You override
this function yourself if your view class is derived directly from CView, but it's
already overridden if your view is derived from CScrollView. The OnPrepareDC
function is called in OnPaint immediately before the call to OnDraw. If you're
printing, the same OnPrepareDC function is called, this time immediately be
fore the application framework calls OnPrint. Thus, the mapping mode is set
before both the painting of the view and the printing of a page.

The second parameter of the OnPrepareDC function is a pointer to a
CPrintlnfo structure. This pointer is valid only if OnPrepareDGis being called

455

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

prior to printing. You can test for this condition by calling the CDC member
function IsPrinting. The IsPrinting function is particularly handy if you're us
ing OnPrepareDC to set different mapping modes for the display and the printer.

If you do not know in advance how many pages your print job requires,
your overridden OnPrepareDC function can detect the end of the document
and reset the m_bContinuePrinting flag in the CPrintInfo structure. When this
flag is FALSE, the OnPrint function won't be called again and control will pass
to the end of the print loop.

The Start and End of a Print Job

456

When a print job starts, the application framework calls two CViewfunctions,
OnPreparePrinting and OnBeginPrinting. (App Wizard generates the OnPrepare
Printing, OnBeginPrinting, and OnEndPrinting functions for you if you select the
Printing And Print Preview option.) The first function, OnPreparePrinting, is
called before the display of the Print dialog. If you know the first and last page
numbers, call CPrintlnfo::SetMinPage and CPrintlnfo::SetMaxPage in OnPrepare
Printing. The page numbers you pass to these functions will appear in the Print
dialog for the user to override.

The second function, OnBeginPrinting, is called after the Print dialog
exits. Override this function to create Graphics Device Interface (GDI) objects,
such as fonts, that you need for the entire print job. A program runs faster if
you create a font once instead of re-creating it for each page.

The CView function OnEndPrinting is called at the end of the print job,
after the last page has been printed. Override this function to get rid of GDI
objects created in OnBeginPrinting.

The following table summarizes the important overridable CView print
loop functions:

Function

OnPreparePrinting

OnBeginPrinting

OnPrepareDC (for each page)

OnPrint (for each page)

OnEndPrinting

Common Override Behavior

Sets first and last page numbers

Creates GDI objects

Sets mapping mode and optionally detects
end of print job

Does print-specific output and then calls
OnDraw

Deletes GDI objects

E I G H TEE N: Printing and Print Preview

The EX18A Example-A Wysiwyg Print Program
This example displays and prints a single page of text stored in a document.
The printed image should match the displayed image. The MM_TWIPS map
ping mode is used for both printer and display. First we'll use a fixed draw
ing rectangle; later we'll base the drawing rectangle on the printable area
rectangle supplied by the printer driver.

Here are the steps for building the example:

1. Run AppWizard to generate \vcpp32\ex18a\ex18a. Accept the de
fault options, and then rename the document and view classes and files
as shown here:

Application type of e~ 1 Sa:
Multiple Document Interface t-.pplication targeting:

Win32

Clas~es to be cre"ted:
Appfication: CEx1 Sa6.pp in ex18a,h and ex1Sa,cPP
Frame; CMainFrame in MainFrmh and MainFrm.cpp
MDIChUdFrame; CCi'aldFr"me in ChildFrm.h and ChildFrm,cpp
Document: CPoemDoc in PoemDoc.h and PoemDoc,cpp
5crollView: C5tringView in 5tringView,h and StringView,cpp

Features:
+ Initial toolbar in main frame
.. Initial stabJs bar in main frame
+ Printing and Plint Preview support in view
.. 30 Controls
.. Uses shared DLL implementation (MFC42.DLL)
.. ~\iveX Controls tup~~rtenabled

Indall Diredor),:

C: \ vcpp32\ex1 Sa

Note that this is an MDI application.

2. Add a CStringArray data member to the CPoemDoc class. Edit
the PoemDoc.h header file or use ClassView.

public:
CStringArray m_stringArray;

The document data is stored in a string array. The MFC library CStringArray
class holds an array of CString objects, accessible by a zero-based subscript.
You need not set a maximum dimension in the declaration because the
array is dynamic.

457

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

458

3. Add a CRect data member to the CStringView class. Edit the
StringView.h header file or use ClassView:

private:
CRect m_rectPrint;

4. Edit three CPoemDoc member functions in the file PoemDoc.cpp.
Skeleton OnNewDocument and Serialize functions were generated by
AppWizard, but we'll have to use ClassWizard to override the Delete
Contents function. We'll initialize the poem document in the overridden
OnNewDocument function. DeleteContents is called in CDocument::OnNew
Document, so by calling the base class function first we're sure the poem
won't be deleted. (The text, by the way, is an excerpt from the twentieth
poem in Lawrence Ferlinghetti's book A Coney Island of the Mind.) Type
10 lines of your choice. You can substitute another poem or maybe your
favorite Win32 function description. Add the following shaded code:

BOOl CPoemDoc::OnNewDocument()
{

if (!CDocument::OnNewDocument(»
return FALSE;

m_stringArray.SetSize(10);
m_stringArray[0]
m_stringArray[l]
m_stringArray[2]
m_stringArray[3]
m_stringArray[4J
m_stringArray[5]
m_stringArray[6]
m_stri ngArray[7]
m_stringArray[8]
m_stringArray[9]

return TRUE;

(Note: The CStringArray class supports dynamic arrays, but here we're
using the m_stringArray object as though it were a static array of 10
elements.)

The application framework calls the document's virtual DeleteContents
function when it closes the document; this action deletes the strings in
the array. A CStringArray contains actual objects, and a CObArray con-

E I G H TEE N: Printing and Print Preview

tains pointers to objects. This distinction is important when it's time to
delete the array elements. Here the RemoveAll function actually deletes
the string objects:

void CPoemDoc::DeleteContents()
{

II called before OnNewDocument and when document is closed
m_str,i ngArray. RemoveA 11 ();

Serialization isn't important in this example, but the following func
tion illustrates how easy it is to serialize strings. The application frame
work calls the DeleteContents function before loading from the archive, so
you don't have to worry about emptying the array. Add the following
shaded code:

void CPoemDoc::Serialize(CArchive& ar)
{

. m_stringArray.Serialize(ar);

5. Edit the OnlnitialUpdate function in StringView.cpp. You must
override the function for all classes derived from CScrollView. This
function's job is to set the logical window size and the mapping mode.
Add the following shaded code:

void CStringView::OnlnitialUpdate()
{

CScrollView::OnlnitialUpdate();
CSize sizeTotal(ffi-rectPrint.Width(). m_rectPrint.Height(»;
CSize sizePage(sizeTotal .cx I 2.

sizeTotal.cy / 2); II page scroll
CSize sizeLine(sizeTotal .cx I 100.

sizeTotal.cy I 100); II line scroll
SetScroll Sizes (MM_ TWI PS. s i zeTotal.. sj zePa ge. si ze Li ne) :

6. Edit the OnDraw function in StringView.cpp. The OnDraw function
of class CStringView draws on both the display and the printer. In addi
tion to displaying the poem text lines in 10-point roman font, it draws a
border around the printable area and a crude ruler along the top and
left margins. The function assumes the MM_ TWIPS mapping mode, in
which 1 inch = 1440 units. Add the shaded code that's shown on the
following page.

459

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

460

void CStringView::OnDraw(CDC* pDC)
{

int i. j. nHeight;
CString str;
CFont font;
TEXTMETRIC tm;

CPoemDoc* pDoc = GetDocument();
II Draw a border -- slightly smaller to avoid truncation
pDC->Rectangle(m_rectPrint + CRect(0. 0. -20, 20»;
II Draw horizontal and vertical rulers
j = m_rectPr;nt.Width() I 1440;
for (1 = 0; i <= j; i++) {

str.Format("%02d", i);

pDC->TextOut(i * 1440. 0. str);

j = m_rectPrint.Height() I 1440;
for (i = 0; i <= j; i++) {

str.Format("%02d", i);
pDC->TextOut(€l, -i * 1440. str);

}

II Print the poem €l.5 inch down and over;
II use 10-point roman font
font.CreateFont(-200. 0. 0. 0, 400, FALSE. FALSE, 0. ANSI_CHARSET.

OUT_DEFAULT_PRECIS. CLIP_DEFAULT_PRECIS,
DEFAULT_OUALITY. DEFAULT_PITCH IFF_ROMAN.
"Times New Roman");

CFont* pOldFont = (CFont*) pDC->SelectObject(&font):
pDC->GetTextMetrics(&tm);
nHeight = tm.tmHeight + tm.tmExternalleading;
TRACE("font height =%d, internal leading = %d\n".

nHeight. tm.tmInternalLeading);
j = pDoc->m_stringArray.GetS;ze():
for (1 = 0; i < j; 1++) {

pDC->TextOut(720. -; * nHeight

pDC->SelectObject(pOldFont);
TRACE("LOGPIXELSX = %d, LOGPIXELSY = %d\n",

pDC->GetDeviceCaps(LOGPIXELSX),
pDC->GetDev1ceCaps(LOGPIXELSY»:

TRACE("HORZSIZE = %d, VERTSIZE = %d\n",
pDC~>GetDeviceCaps(HORZSIZE)~

pDC~>GetDevJceCaps(VERTSIZE»;

7. Edit the OnPreparePrinting function in StringView.cpp. This
function sets the maximum number of pages in the print job. This

E I G H TEE N: Printing and Print Preview

example has only one page. It's absolutely necessary to call the base
class DoPreparePrinting function in your overridden OnPreparePrinting
function. Add the following shaded code:

BOOl CStringView::OnPreparePrinting(CPrintInfo* pInfo)
{

pInfo->SetMaxPage(1);
return DoPreparePrinting(pInfo);

8. Edit the constructor in StringView.cpp. The initial value of the print
rectangle should be 8-by-10.5 inches, expressed in twips (l inch = 1440
twips). Add the following shaded code:

CStringView::CStringView() : m_rectPrint(0. 0. 11520, -15120)
{

}

9. Build and test the application. If you run the EX18A application un
der Microsoft Windows NT with the lowest screen resolution, your MDI
child window will look like the one shown below. (The text will be larger
under higher resolutions and under Windows 95.)

'mmi~':,~z~~sr:'~70i~7[jg',~~;~;~
. fde li,di! ~iew Yiindow llelp

06 07

03

04

05

The window text is too small, isn't it? Go ahead and choose Print
Preview from the File menu, and then click twice with the magnifying
glass to enlarge the image. The print preview output is illustrated on the
following page.

461

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

462

00 01 02

The pennycandystore beyond the EI
is where I first

fell in love
01 with unreality

Jellybeans glowed in the semi-gloom
of that september afternoon
A cat upon the counter moved among

the licorice sticks

03 04

Remember "logical twips" from Chapter 5? Now we're going to use
logical twips to enlarge type on the display while keeping the printed
text the same size. This requires some extra work because the CScrollView

class wasn't designed for nonstandard mapping modes. You will be chang
ing the view's base class from CScrollView to CLogScrollView, which is a
class that I created by copying and modifying the MFC code in View
Scrl.cpp. The files LogScrollView.h and LogScrollView.cpp are in the
\vcpp32\exlSa directory on the companion CD-ROM.

10. Insert the CScrollView class into the project. Copy the files Log
ScrollView.h and LogScrollView.cpp from the companion CD-ROM if
you have not done so already. Choose Add To Project from the Project
menu, and then choose Files from the submenu. Select the two new files
and click OK to insert them into the project.

11. Edit the StringView.h header file. Add the following line at the top
of the file:

f/inc'lude ~'L6gs2'rollView.h"

Then change the line

class CStringView : public CScrollView

to

cl ass CStri ngVi ew publ i c CLogScroll Vi ew

E I G H TEE N: Printing and Print Preview

12. Edit the StringView.cpp file. Globally replace all occurrences of
CScrollView with CLogScrollView. Then edit the OnlnitialUpdate function.
Here is the edited code, which is much shorter:

void CStringView::OnlnitialUpdate()
{

CLogScrollView::OnlnitialUpdate();
CSize sizeTotal(m_rectPrint.Width(), -m_rectPrint.Height());
SetLogScrollSizes(sizeTotal);

13. Build and test the application again. Now the screen should look
like this:

The pennycandystore beyond the E1
is where I first

fell in love
with unreality

J ellyb e ans glowe d in the s emi-glo om
of that september afternoon
A cat upon the counter moved among

the licoric e sticks
and to otsie rolls

and Oh Boy Gum

Reading the Printer Rectangle
The EX18A program prints in a fixed-size rectangle that's appropriate for a
laser printer set to portrait mode with 8.5-by-ll-inch (letter-size) paper. But
what if you load European-size paper or you switch to landscape mode? The
program should be able to adjust accordingly.

It's relatively easy to read the printer rectangle. Remember the CPrintlnfo
pointer that's passed to OnPrint? That structure has a data member m_rectDraw
that contains the rectangle in logical coordinates. Your overridden OnPrint
function simply stuffs the rectangle in a view data member, and OnDraw uses
it. There's only one problem: you can't get the rectangle until you start print
ing, so the constructor still needs to set a default value for OnDraw to use be
fore printing begins.

463

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

If you want the EX18A program to read the printer rectangle and adjust
the size of the scroll view, use ClassWizard to override OnPrintand then code
the function as follows:

void CStringView::OnPrint(COC* pOC, CPrintInfo* pInfo)
{

m_rectPrint = plnfo->m_rectDraw:
Set LogScro 11 Si zes (CSi ze (m_rectPri nt. Wi dth (). ~m_rectP rint. He; ght (») ;
CLogScro11View::OnPrint(pOC, pInfo);

Template Collection Classes Revisited
The CArray Class

464

In EX15B in Chapter 15, you saw the MFC library CTypedPtrList template
collection class, which was used to store a list of pointers to CStudent objects.
Another collection class, CArray, is appropriate for the next example, EXI8B.
This class is different from CTypedPtrList in two ways. First, it's an array, with
elements accessible by index, just like CStringArray in EXI8A. Second, the
array holds actual objects, not pointers to objects. In EXI8B, the elements are
CRect objects. The elements' class does not have to be derived from CObject,
and indeed, CRect is not.

As in EXI5B, a typedefmakes the template collection easier to use. We
use the statement

typedef CArray<CRect, CRect&> CRectArray:

to define an array class that holds CRect objects and whose functions take CRect
reference parameters. (It's cheaper to pass a 32-bit pointer than to copy a 128-
bit object.) To use the template array, you declare an instance of CRectArray
and then you call CArray member functions such as SetSize. You can also use
the CArray subscript operator to get and set elements.

The template classes CArray, CList, and CMap are easy to use if the el
ement class is sufficiently simple. The CRect class fits that description because
it contains no pointer data members. Each template class uses a global func
tion, SerializeElements, to serialize all the elements in the collection. The
default SerializeElements function does a bitwise copy of each element to and
from the archive.

E I G H TEE N: Printing and Print Preview

If your element class contains pointers or is otherwise complex, you'll
need to write your own SerializeElements function. If you did write this function
for the rectangle array (not required), your code would look like this:

void AFXAPI SerializeElements(CArchive& ar, CRect* pNewRects,
int nCount)

for (int i = 0; i < nCount; i++, pNewRects++) {
if (ar.IsStoring(» {

ar « *pNewRects;

else {
ar » *pNewRects;

When the compiler sees this function, it uses the function to replace
the SerializeElements function inside the template. This works, however, only
if the compiler sees the SerializeElements prototype before it sees the template
class declaration.

NOT E : The template classes depend on two other global func
tions, ConstructElements and DestructElements. Starting with Visual
C++ version 4.0, these functions call the element class constructor
and destructor for each object. Therefore, there's no real need to
replace them.

The EX188 Example-A Multipage Print Program
In this example, the document contains an array of 50 CRect objects that de
fine circles. The circles are randomly positioned in a 6-by-6-inch area and have
random diameters of as much as 0.5 inch. The circles, when drawn on the
display, look like two-dimensional simulations of soap bubbles. Instead of
drawing the circles on the printer, the application prints the corresponding
CRect coordinates in numeric form, 12 to a page with headers and footers.

1. Run AppWizard to generate \vcpp32\ex18b\ex18b. Select Single
Document, and accept the defaults for all the other settings. The options
and the default class names are shown on the following page.

465

PA R Till: THE DOCUMENT-VIEW ARCHITECTURE

466

2. Edit the StdAfx.h header file. You'll need to bring in the declara
tions for the MFC template collection classes. Add the following
statement:

~include (afxtempl.h>

3. Edit the ex18bDoc.h header file. In the EX18A example, the docu
ment data consists of strings stored in a CStringArray collection. Because
we're using a template collection for ellipse rectangles, we'll need a typedef
statement outside the class declaration, as shown here:

~ypedef CArray(CRect.CRect&> CRectArr~y;

Next add the following public data members to the ex18bDoc.h
header file:

public:
enum { nLinesPerPage = i2}:
enum {nMaxEllipses= 50 J:
CRectArray m_el1ipseArray:

The two enumerations are object-oriented replacements for #defines.

4. Edit the ex18bDoc.cpp implementation file. The overridden On
NewDocument function initializes the ellipse array with some random
values, and the Serialize function reads and writes the whole array. App
Wizard generated the skeletons for both functions. You don't need a

E I G H TEE N: Printing and Print Preview

DeleteContents function because the CArray subscript operator writes
a new CRect object on top of any existing one. Add the following
shaded code:

BOOl CEx18bDoc::OnNewDocument()
{

if (!CDocument::OnNewDocument(»
return FALSE;

int nl. n2. n3;
II Make 50 random circles
srand«unsigned) time(NUll»;
m_ellipseArray.SetSize(nMaxEllipses):

for (i nt i = 0; < nMaxEllipses: i++)

nl rand() * 600 I RAND_MAX:
n2 = rand() * 600 I RAND_MAX:
n3 = rand() * 50 I RAND_MAX;
m_ellipseArray[iJ = CRect(nl. -n2. nl + n3. -(n2 + n3»;

return TRUE:

void CEx18bDoc::Serialize(CArchive& ar)
{

m_el1ipseArray.Serialize(ar);

5. Edit the ex18bView.h header file. Use ClassView to add the member
variable and two function prototypes listed below. ClassView will also gen
erate skeletons for the functions in ex18bView.cpp.

public:
int m_nPage;

private:
void PrintPageHeader(CDC* pDC);
void PrintPageFooter(CDC* pDC);

The m_nPage data member holds the document's current page num
ber for printing. The private functions are for the header and footer
subroutines.

6. Edit the OnDraw function in ex18bView.cpp. The overridden
OnDraw function simply draws the bubbles in the view window. Add the
shaded code shown on the following page.

467

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

468

void CEx18bView::OnOraw(COC* pOC)
{

inti,j;

CEx18bOoc* pOoc = GetOocument();
j = pDoc->m_ellipseArray.GetUpperBound();
for (i =0; i <j; i++) {

pDC->Ellipse(pOoc->m_ellipseArray[i]):

7. Insert the OnPrepareDC function in ex18bView.cpp. The view class
is not a scrolling view, so the mapping mode must be set in this func
tion. Use ClassWizard to override the OnPrepareDC function, and then
add the following shaded code:

void CEx18bView::OnPrepareOC(COC* pOC, CPrintlnfo* plnfo)
{

pDC->SetMapMode(MM_LOENGLISH);

8. Insert the OnPrint function in ex18bView.cpp. The CView default
OnPrint function calls OnDraw. In this example, we want the printed out
put to be entirely different from the displayed output, so the OnPrint
function must take care of the print output without calling OnDraw.On
Print first sets the mapping mode to MM_ TWIPS, and then it creates a
fixed-pitch font. After printing the numeric contents of 12 m_ellipseArray
elements, OnPrint deselects the font. You could have created the font
once in OnBeginPrinting, but you wouldn't have noticed the increase in
efficiency. Use ClassWizard to override the OnPrint function, and then
add the following shaded code:

void CEx18bView::OnPrint(CDC* pOC. CPrintlnfo* plnfo)
{

; nt i. nSta rt, nEnd. nHei ght:
CString str:
CPoint point(720, -1440):
CFont font:
TEXTMETRIC tm;

pDC->SetMapMode(MM_TWIPS):
CEx18bOoc* pOoc = GetDocument():
m_nPage = plnfo->m_nCurPage: II for PrintPageFooter's benefit
nStart = Cm_nPage - 1) * CEx18bDoc::nLinesPerPage;
nEnd=nStart + CEx18bOoc::nLinesPerPage:

E I G H TEE N: Printing and Print Preview

II 14-point fixed-pitch font
font.CreateFont(-280. 0. 0. 0. 400. FALSE. FALSE.

0. ANSI_CHARSET. OUT_DEFAULT_PRECIS.
CLIP_DEFAULT_PRECIS. DEFAULT_QUALITY.
DEFAULT_PITCH IFF_MODERN. "Couri er New");
II Courier New is a TrueType font

CFont* pOldFont = (CFont*) (pDC->SelectObject(&font»;
PrintPageHeader(pDC);
pDC->GetTextMetrics(&tm);
nHeight = tm.tmHeight + tm.tmExternalLeading;
for (i = nStart; i < nEnd; i++) {

if (i > pDoc->m_ellipseArray.GetUpperBound(»
break;

str.Format("%6d %6d %6d %6d %6d". i + 1.
pDoc->m_ellipseArray[i].left.
pDoc->m_ellipseArray[i].top.
pDoc->m_ellipseArray[i].right.
pDoc->m_ellipseArray[i].bottom);

point.y -= nHeight;
pDC->TextOut(point.x. point.y, str);

PrintPageFooter(pDC);
pDC->SelectObject(pOldFont);

9. Edit the OnPreparePrinting function in ex18bView.cpp. The
OnPreparePrinting function (whose skeleton is generated by AppWizard)
computes the number of pages in the document and then communi
cates that value to the application framework through the SetMaxPage
function. Add the following shaded code:

BOOL CEx18bView::OnPreparePrinting(CPrintInfo* pInfo)
(

CEx18bDoc* pDoc = GetDocument();
pInfo->SetMaxPage(pDoc->m_ellipseArray.GetUpperBound() I

CEx18bDoc: :nLinesPerPage + 1);
return DoPreparePrinting(pInfo);

10. Insert the page header and footer functions in ex18bView.cpp.
These private functions, called from OnPrint, print the page headers
and the page footers. The page footer includes the page number,
stored by OnPrint in the view class data member m_nPage. The CDC
::GetTextExtent function provides the width of the page number so that
it can be right justified. Add the shaded code on the following page.

469

PA R Till: THE DOCUMENT-VIEW ARCHITECTURE

470

void CExI8bView::PrintPageHeader(CDC* pDC)
{

CString str;

CPoint point(0, 0);
pDC->TextOut(point.x. point.y, HBubble Report"):
point += CSize(720. -720);
str.Format("%6.6s %6.6s %6.6s %6.6s %6.6s",

HI ndex", "Left". "Top", "Ri ght", "Bottom"):
pDC->TextOut(point.x, point.y, str):

void CExI8bView::PrintPageFooter(CDC* pDC)

CString str;

CPoint point(0, -14400): II Move 10 inches down
CExl8bDoc* pDoc = GetDocument();
str.Format("Document %s", (LPCSTR) pDoc->GetTitleO):
pDC->TextOut(point.x. point.y, str):
str.Format("Page%d", m_nPage):
CSize size = pDC->GetTextExtent(str);
point.x += 11520 - size.ex:
pDC->TextOut(point.x. point.y, str): 1/ right-justified

11. Build and test the application. For one set of random numbers, the
bubble child window looks like this:

o o

00 0

0 0

E I G H TEE N: Printing and Print Preview

Each time you choose New from the File menu, you should see a
different picture. In Print Preview, the first page of the output should
look like this:

lit "In L" ",u
IU "UL Itl ",1:14
,Ut ·.au .au "l4(
,,".au: "a ".1:.'

,'-': ·,n Ln "UI
w ., .. I" ",n
tn -LI.I: In "Us
U(-lit ", -In
UL -'II •• , "Ul
.... ,. III -L,U
tU -.n U(·11'
411 • ., •• " • •. U

With the Print dialog, you can specify any range of pages to print.

471

C HAP T E R N NET E E N

Splitter Windows
and Multiple Views

Except for the EX17 A example, each program you've seen so far in this book
has had only one view attached to a document. If you've used a Microsoft
Windows-based word processor, you know that it's convenient to have two
windows open simultaneously on various parts of a document. Both windows
might contain normal views, or one window might contain a page layout view
and another might contain an outline view.

With the application framework, you can use a splitter window or mul
tiple MDI child windows to display multiple views. You'll learn about both
presentation options here, and you'll see that it's easy to make multiple view
objects of the same view class (the normal view) in both cases. It's slightly more
difficult, however, to use two or more view classes in the same application (say,
the outline view and the page layout view).

This chapter emphasizes the selection and presentation of multiple views.
The examples depend on a document with data initialized in the OnNew
Document function. Look back now to Chapter 15 for a review of document
view communication.

The Splitter Window
A splitter window appears as a special type of frame window that holds several
views in panes. The application can split the window on creation, or the user
can split the window by choosing a menu command or by dragging a splitter
box on the window's scroll bar. After the window has been split, the user can
move the splitter bars with the mouse to adjust the relative sizes of the panes.
Splitter windows can be used in both SOl and MDI applications. You can see
examples of splitter windows on pages 477 and 479.

473

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

The splitter window is represented by an object of class CSplitterWnd. As
far as Windows is concerned, a CSplitterWnd object is an actual window that
fully occupies the frame window (CFrameWnd or CMDIChildWnd) client area.
The view windows occupy the splitter window pane areas. The splitter window
does not take part in the command dispatch mechanism. The active view
window (in a splitter pane) is connected directly to its frame window.

View Options

474

When you combine multiview presentation methods with application models,
you get a number of permutations. Here are some of them:

I7:l SDI application with splitter window, single view class This
chapter's first example, EX19A, covers this case. Each splitter win
dow pane can be scrolled to a different part of the document. The
programmer determines the maximum number of horizontal and
vertical panes; the user makes the split at runtime.

I7:l SDI application with splitter window, multiple view classes The
EX19B example illustrates this case. The programmer determines
the number of panes and the sequence of views; the user can
change the pane size at runtime.

I7:l SDI application with no splitter windows, multiple view classes The
EX19C example illustrates this case. The user switches view classes
by making a selection from a menu.

I7:l MDI application with no splitter windows, single view class This is
the standard MDI application you've seen already in Chapter 17.
The New Window menu item lets the user open a new child win
dow for a document that's open already.

Ii MDI application with no splitter windows, multiple view classes
A small change to the standard MDI application allows the use of
multiple views. As example EX19D shows, all that's necessary is to
add a menu item and a handler function for each additional view
class available.

Ii MDI application with splitter child windows This case is covered
thoroughly in the online documentation. The SCRIBBLE example
illustrates the splitting of an MDI child window.

N I NET E EN: Splitter Windows and Multiple Views

Dynamic and Static Splitter Windows
A dynamic splitter window allows the user to split the window at any time by
choosing a menu item or by dragging a splitter box located on the scroll bar.
The panes in a dynamic splitter window generally use the same view class. The
top left pane is initialized to a particular view when the splitter window is cre
ated. In a dynamic splitter window, scroll bars are shared among the views. In
a window with a single horizontal split, for example, the bottom scroll bar
controls both views. A dynamic splitter application starts with a single view
object. When the user splits the frame, other view objects are constructed.
When the user unsplits the frame, view objects are destroyed.

The panes of a static splitter window are defined when the window is first
created, and they cannot be changed. The user can move the bars but cannot
unsplit or resplit the window. Static splitter windows can accommodate mul
tiple view classes, with the configuration set at creation time. In a static split
ter window, each pane has separate scroll bars. In a static splitter window
application, all view objects are constructed when the frame is constructed and
they are all destroyed when the frame is destroyed.

The EX19A Example-
A Single View Class SOl Dynamic Splitter

In this example, the user can dynamically split the view into four panes with
four separate view objects, all managed by a single view class. We'll use the
document and the view code from EX18A. AppWizard lets you add a dynamic
splitter window to a new application. Create an SDI project, and click the
Advanced button in the AppWizard Step 4 dialog. Click on the Window Styles
tab, and select Use Split Window as shown here:

P" .$ystemmenu

, r Minimized

r:Ma~imized

475

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

When you check the Use Split Window check box, AppWizard adds code
to your CMainFrame class. Of course, you could add the same code to the CMain
Frame class of an existing application to add splitter capability.

Resources for Splitting
When AppWizard generates an application with a splitter frame, it includes
a Split option in the project's View menu. The ID_ WINDOW_SPLIT command
ID is mapped in the CView class within the MFC library.

CMainFrame

476

The application's main frame window class needs a splitter window data
member and a prototype for an overridden OnCreateClient function. Here are
the additions that AppWizard makes to the MainFrm.h file:

protected:
CSplitterWnd m_wndSplitter;

public:
virtual BOOl OnCreateClient(lPCREATESTRUCT lpcs, -.

CCreateContext* pContext);

The application framework calls the CFrameWnd::OnCreateClient virtual
member function when the frame object is created. The base class version
creates a single view window as specified by the document template. The
AppWizard-generated OnCreateClient override shown here (in MainFrm.cpp)
creates a splitter window instead, and the spli tter window creates the first view:

BOOl CMainFrame::OnCreateClient(lPCREATESTRUCT l*lpcs*I,
CCreateContext* pContext)

return m_wndSplitter.Create(this,
2, 2, II TODO: adjust the number of rows, columns
CSize(10, 10), II TODO: adjust the minimum pane size
pContext);

The CSplitterWnd Create member function creates a dynamic splitter window,
and the CSplitterWnd object knows the view class because its name is embed
ded in the CCreateContext structure that's passed as a parameter to Create.

The second and third Create parameters (2,2) specify that the window
can be split into a maximum of two rows and two columns. If you changed the
parameters to (2, 1), you would allow only a single horizontal split. The
parameters (1, 2) allow only a single vertical split. The CSize parameter specifies
the minimum pane size.

N I NET E EN: Splitter Windows and Multiple Views

Testing the EX19A Application
When the application starts, you can split the window by choosing Split from
the View menu or by dragging the splitter boxes at the left and top of the scroll
bars. Figure 19-1 shows a typical single view window with a four-way split.
Multiple views share the scroll bars.

00

, 01

02

; 00

! 01

01 02

The pennycandystore beyond the E1
is where I first

fell in love
with unre ality

J ellyb e ans glowe d in the s emi-glo om
of that september afternoon
A cat upon the counter moved among

the licorice sticks
and to otsie rolls

and Oh Boy Gum

01 02

The pennycandystore beyond the E1
is where I first

fell in love
with unreality

Jellybeans glowed in the semi-gloom
of that september afternoon
A cat upon the counter moved among

the licorice sticks
and to otsie rolls

and Oh Boy Gum
i,-"':-,':''''::;",,",,,

Figure 19-1.

00

01

01

01 02

The pennycandystore beyond the E1
is where I first

fell in love
with unreality

Jellybeans glowed in the semi-gloom
of that september afternoon
A cat upon the counter moved among

the licorice sticks
and tootsie rolls

and Oh Boy Gum

01 02

The pennycandystore beyond the E1
is where I first

fell in love
with unre ality

Jellybeans glowed in the semi-gloom
of that september afternoon
A cat upon the counter moved among

the licorice sticks
and to otsie rolls

and Oh Boy Gum

A single view window with a four-way split.

The EX198 Example-
A Double View Class SDI Static Splitter

In EX19B, we'll extend EX19A by defining a second view class and allowing
a static splitter window to show the two views. (The Hand CPP files are cloned
from the original view class.) This time the splitter window works a little dif
ferently. Instead of starting off as a single pane, the splitter is initialized with
two panes. The user can move the bar between the panes by dragging it with
the mouse or by choosing the Window Split menu item.

The easiest way to generate a static splitter application is to let App Wizard
generate a dynamic splitter application and then edit the generated CMain

Frame: :OnCreateClient function.

477

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

CHex Vie w
The CHex View class was written to allow programmers to appreciate poetry. It
is essentially the same code used for CStringView except for the OnDraw mem
ber function:

void CHexView::OnDraw(CDC* pDC)
{

II hex dump of document strings
int i, j, k, 1, n, nHeight;
CString outputLine, str:
CFont font;
TEXTMETRIC tm:

CPoemDoc* pDoc = GetDocume~t():
font.CreateFont(-160, 80, 0, 0, 400, FALSE, FALSE, 0,

ANSLCHARSET ,OUT _DEFAUL T_PRECIS, CLI P _DEFAUL T_PRECIS.
DEFAULT_QUALITY, DEFAULT_PITCH I FF _SWI?S, , "Ari al"):

CFont* pOldFont = pDC->SelectObject(&font):
pDC->GetTextMetrics(&tm):
nHeight = tm.tmHeight + tm.tmExternalLeading:

j = pDoc->m_stringArray.GetSize();
for (i =0:i < j: i ++){

outputLine.FormatC"%02x ", i):
1 = pDoc->m_stri ngArray[i]. GetLength{):
for (k = 0; k <. 1: k++) {

n = pDoc->m_stringArray[i][k] & 0x00ff;
str.Format("%02x ", n);
outputLine += str;

pDC->TextOut(720, -i * nHeight - 720 , ~utputLine):

pDC->SelectObject(pOldFont);

This function displays a hexadecimal dump of all strings in the document's
m_stringArray collection. Notice the use of the subscript operator to access
individual characters in a CString object.

CMainFrame

478

As in EX19A, the EX19B application's main frame window class needs a splitter
window data member and a prototype for an overridden OnCreateClient func
tion. You can let AppWizard generate the code by specifying Use Split Win
dow, as in EX19A. You won't have to modify the MainFrm.h file.

The implementation file, MainFrm.cpp, needs both view class headers
(and the prerequisite document header), as shown here:

N I NET E EN: Splitter Windows and Multiple Views

Ifinclude "PoemDoc.h"
jfinclude "StringView.h"
lfinclude "HexView.h"

AppWizard generates dynamic splitter code in the OnCreateClient func
tion, so you'll have to do some editing if you want a static splitter. Instead of
calling CSplitterWnd::Create, you'll call the CSplitterWnd::CreateStaticfunction,
which is tailored for multiple view classes. The following calls to CSplitterWnd
::CreateView attach the two view classes. As the second and third CreateStatic
parameters (2, 1) dictate, this splitter window contains only two panes. The
horizontal split is initially 100 device units from the top of the window. The
top pane is the string view; the bottom pane is the hex dump view. The user
can change the splitter bar position but cannot change the view configuration.

BOOl CMainFrame: :OnCreateClient(lPCREATESTRUCT l*lpcs*l,
CCreateContext* pContext)

VERIFY(m_wndSplitter.CreateStatic(this, 2, 1»;
VERIFY(m_wndSplitter.CreateView(0, 0, RUNTIME_ClASS(CStringView),

CSize(100, 100), pContext»;
VERIFY(m_wndSplitter.CreateView(l, 0, RUNTIME_ClASS(CHexView).

CSize(100, 100), pContext»:
return TRUE;

Testing the EX19B Application
When you start the EX19B application, the window should look like the one
shown below. Notice the separate horizontal scroll bars for the two views.

479

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

The EX19C Example-
Switching View Classes Without a Splitter

Sometimes you just want to switch view classes under program control and you
don't want to be bothered with a splitter window. The EX19C example is an
SDI application that switches between CStringView and CHex View in response
to selections on the View menu. Starting with what AppWizard generates, all
you need to do is add two new menu commands and then add some code to
the CMainFrame class. You also need to change the CStringView and CHexView
constructors from protected to public.

Resource Requirements
The following two items have been added to the View menu in the IDR
_MAINFRAME menu resource:

Caption

St&ring View

&HexView

Command 10

ID_ VIEW_STRINGVIEW

ID_ VIEW_HEXVIEW

CMainFrame Function

On ViewStringView

On ViewHex View

ClassWizard was used to add the command-handling functions (and corre
sponding update command UI handlers) to the CMainFrame class.

CMainFrame

480

The CMainFrame class gets a new private helper function, Switch To View, which
is called from the two menu command handlers. The enum parameter tells the
function which view to switch to. Here are the two added items in the
MainFrm.h header file:

private:
enum eView { STRING = 1. HEX = 2 }:
void SwitchToView{eView nView);

The Switch To View function (in MainFrm.cpp) makes some low-level MFC
calls to locate the requested view and to activate it. Don't worry about how it
works. Just adapt it to your own applications when you want the view-switching
feature. Add the following code:

N I NET E EN: Splitter Windows and Multiple Views

void CMainFrame::SwitchToView(eView nView)
{

CView* pOldActiveView = GetActiveView();
CView* pNewActiveView = (CView*) GetDlgltem(nView);
if (pNewActiveView NULL) {

swi tch (nVi ew) {
case STRING:

pNewActiveView (CView*) new CStringView;
break;

case HEX:
pNewActiveView = (CView*) new CHexView;
break;

CCreateContext context;
context.m_pCurrentDoc = pOldActiveView->GetDocument();
pNewActiveView->Create(NULL. NULL, WS_BORDER,

CFrameWnd::rectDefault. this, nView, &context):
pNewActiveView->OnInitialUpdate();

SetActiveView(pNewActiveView);
pNewActiveView->ShowWindow(SW_SHOW);
pOldActiveView->ShowWindow(SW_HIDE);
pOldActiveView->SetDlgCtrlID(

pOldActiveView->GetRuntimeClass()
RUNTIME_CLASS(CStringView) ? STRING: HEX);

pNewActiveView->SetDlgCtrlID(AFX_IDW_PANE_FIRST);
Reca 1 cLayout () ;

Finally, here are the menu command handlers and update command VI
handlers that ClassWizard initially generated (along with message map entries
and prototypes). The update command VI handlers test the current view's class.

void CMainFrame::OnViewStringView()
{

SwitchToView(STRING);

void CMainFrame::OnUpdateViewStringView(CCmdUI* pCmdUI)

pCmdUI->Enable(
!GetActiveView():~IsKindOf(RUNTIME_CLASS(CStringView»):

(continued)

481

PA R Till: THE DOCUMENT-VIEW ARCHITECTURE

void CMainFrame::OnViewHexView()
{

swii~hToVfew(HEX);

void CMainFrame::OnUpdateViewHexView(CCmdUI* pCmdUI)
{

pCmdUI->Enable(
IGetActiveView{)-)IsKindOf(RUNTIME_CLASS(CHexView»):

Testing the EX19C Application
The EX19C application initially displays the CStringView view of the document.
You can toggle between the CStringView and CHexView views by choosing the
appropriate command from the View menu. Both views of the document are
shown side by side in Figure 19-2.

pennyc
is where I first

fell in love
withurueality

Jellybeans glowed in the semi-gloom
of that september afternoon
A cat upon the countermoved among

the licorice sticks
and to otsie rolls

andOhBoyOum

Figure 19-2.

02 20 20 20 20 20 20 20 20 20 20 20 20 21
03 20 20 20 20 20 20 20 20 20 20 20 20 21
04 4s 65 6e 6e 79 62 65 61 6e 73 20 67 6.
05 6166 20 74 68 61 74 2073657074 6!
06 41 206361 7420757061 6e 20 74 6f
07 20 20 20 20 20 20 20 20 20 20 20 20 21
08 20 20 20 20 20 20 20 20 20 20 20 20 21
09 20 20 20 20 20 20 20 20 20 20 20 61 6.

The CStringView view and the CHexView view of the document.

The EX19D Example-
A Multiple View Class MOl Application

482

The final example, EX19D, uses the previous document and view classes to
create a multiple view class MDI application without a splitter window. The
logic is different from the logic in the other multiple view class applications.
This time the action takes place in the application class in addition to the main
frame class. As you study EX19D, you'll gain more insight into the use of
CDocTemplate objects.

N I NET E EN: Splitter Windows and Multiple Views

This example was generated with the AppWizard Context-Sensitive Help
option. In Chapter 20, you'll activate the context-sensitive help capability.

If you're starting from scratch, use AppWizard to generate an ordinary
MDI application with one of the view classes. Then add the second view class
to the project and modify the application class files and main frame class files
as described in the following sections.

Resource Requirements
The following two items have been added to the Window menu in the
IDR-EX19DTYPE menu resource:

Caption Command 10 CMainFrame
Function

New &String Window ID_ WINDOW_NEW_STRING CMDIFrameWnd-
(replaces New Window item) ::OnWindowNew

New &Hex Window On WindowNewHex

ClassWizard was used to add the command-handling function On Window
NewHex to the CMainFrame class.

CEx19dApp
In the application class header file, ex19d.h, the following data member and
function prototype have been added:

public:
CMultiOocTemplate* m_pTemplateHex;
virtualint Exitlnstance(}:

The implementation file, ex19d.cpp, contains the following #include
statements:

lIinclude "PoemOoc.h"
lIinclude "StringView.h" .
lIinclude "HexView.h"

The CEx19dApp Initlnstance member function has the code shown on the
following page inserted immediately after the AddDocTemplate function call.

483

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

~_pTemplateHex = new CMultiDocTemplate(
IDR_EX19DTYPE.
RUNTIME_CLASS(CPoemDoc).
RUNTIME_CLASS(CChildFrame).
RUNTIME_CLASS(CHexView»;

The AddDocTemplate call generated by AppWizard established the pri
mary document/frame/view combination for the application that is effective
when the program starts. The template object above is a secondary template
that can be activated in response to the New Hex Window menu item.

Now all you need is an ExitInstance member function that cleans up the
secondary template:

int CEx19dApp::ExitInstance()
X

delete m_pTemplateHex;
return CWi nApp: : ExitInstance(); 1/ savesprofi le,setti ngs

CMainFrame

484

The main frame class implementation file, MainFrm.cpp, has the CHexView
class header (and the prerequisite document header) included:

#include "PoemDoc.h"
#include "HexView.h"

The base frame window class, CMDIFrameWnd, has an OnWindowNew
function that is normally connected to the standard New Window menu item
on the Window menu. The New String Window menu item is mapped to this
function in EX19D. The New Hex Window menu item is mapped to the com
mand handler function below to create new hex child windows. The function
is a clone of On WindowNew, adapted for the hex view-specific template defined
in InitInstance.

void CMainFrame::OnWindowNewHex()
{

CMDIChildWnd*pActiveChild = MDIGetActive();
CDocument* pDocument:
if (pActiveChild == NULL II

(pDocument = pActiveChild->GetActiveDocument(» == NULL) {
TRACE("Warning: No active document for WindowNewcolllmand\n"):
AfxMessageBox{AFX_IDP_COMMAND_FAILURE);
return; II Command failed

N I NET E EN: Splitter Windows and Multiple Views

II Otherwise, we have a new frame!
CDocTemplate* pTemplate =

«CEx19dApp*) AfxGetApp(»->m_pTemplateHex;
ASSERT_VALID(pTemplate);
CFrameWnd* pFrame =

pTemplate->CreateNewFrame(pDocument, pActiveChild);
if (pFrame == NULL) (

TRACE("Warning: failed to create new frame\n");
AfxMessageBox(AFX_IDP_COMMAND_FAILURE);
return; II Command failed

pTemplate->InitialUpdateFrame(pFrame, pDocument);

NOT E : The function cloning above is a useful MFC program
ming technique. You must first find a base class function that does
almost what you want, and then copy ~t from the \VC\mfc\src sub
directory into your derived class, changing it as required. The only
danger of cloning is that subsequent versions of the MFC library
might implement the original function differently.

Testing the EX19D Application
When you start the EX19D application, a text view child window appears.
Choose New Hex Window from the Window menu. The application should
look like this:

00 546865207065 6e 6e 79 63 61 6e 64 79 73 74 6f 72 65 20 62 65 79 6f 6e 64 20;
01 69732077 68 65 72 65 2049206669727374
02 2020202020202020202020202020202020206665 6e 6e 20 69 6e 20 6e'
rowwwwwwWWWWWWWWWWWWWWWW77~M~~

~~~~~~~~~~nW~~~77~~W~~WM~~Wn~ 

~~~WM~~Mwn~roM~~~~72W~~M~72~~~~ 
OO~~~~M~~ro~~~M~~~~~~~M~72~~~~~E

~W~~~~~~~W~W~~~~~~~WWWM~~~~~

08 20 20 ~~;~g,:~;?gW}~.~.0}~;~",:~;.~~0~;;020 2020 61~e 64 2074 6f 6f 74 illJ

485

C HAP T E R T WEN T Y

Context-Sensitive Help

Help technology is in a transition phase at the moment. It looks as if the
Hypertext Markup Language (HTML) format is replacing rich text format
(RTF), and you can see this already in the new Microsoft Developer Studio
online documentation. Microsoft is developing tools for compiling and index
ing HTML files. In the meantime, Microsoft Foundation Class (MFC) Library
version 4.21 application framework programs are set up to use the WinHelp
help engine that's included with Microsoft Windows. That means you'll be
writing RTF files and your programs will be using compiled HLP files.

This chapter first shows you how to construct and process a simple stand
alone help file that has a table of contents and lets the user jump between
topics. Next you'll see how your MFC library program activates WinHelp with
help context IDs that are derived from window and command IDs keyed to
an AppWizard-generated help file. Finally you'll learn how to use the MFC
library help message routing system to customize the help capability.

The Windows WinHelp Program
If you've used commercial Windows-based applications, you've probably mar
veled at their sophisticated help screens with graphics, hyperlinks, and popups.
At some software firms, including Microsoft, help authoring has been elevated
to a profession in its own right. This section can't turn you into a help expert, but
it can get you started by showing you how to prepare a simple no-frills help file.

Rich Text Format
The original Windows SDK documentation showed you how to format help
files with the ASCII file format called rich text format. We'll be using rich text
format too, but we'll be working in wysiwyg mode, thereby avoiding the direct
use of awkward escape sequences. You'll write with the same fonts, sizes, and

487

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

styles that your user sees on the help screens. You'll definitely need a word
processor that handles RTF. I've used Microsoft Word for this book, but many
other word processors accommodate the RTF format.

NOT E : Several commercial Windows help tools are available, in
cluding RoboHELP from Blue Sky Software and ForeHelp from
the Forefront Corporation. RoboHELP is a set of templates and
macros for Microsoft Word, and ForeHelp is a stand-alone package
that simulates WinHelp, giving you immediate feedback as you write
the help system.

Writing a Simple Help File

488

We're going to write a simple help file with a table of contents and three top
ics. This help file is designed to be run directly from WinHelp, started from
Windows. No C++ programming is involved. Here are the steps:

1. Create a \vcpp32\ex20a subdirectory.

2. Write the main help text file. Use Microsoft Word (or another RTF
compatible word processor) to type text as shown here:

Strikethrough text formatting

Single-underline text formatting

Help'Topic'HI
~
This -js-the-text-for-help-topic-number-l _~
~

Page break %, inserted with
Ctrl-Enter

Be sure to apply the double-underline and hidden text formatting cor
rectly and to insert the page break at the correct place.

T WEN T Y: Context-Sensitive Help

NOT E: To see hidden text, you must turn on your word pro
cessor's hidden text viewing mode. In Word, choose Options from
the Tools menu, click on the View tab, and select All in the Non
printing Characters section.

3. Insert footnotes for the Table Of Contents screen. The Table Of
Contents screen is the first topic screen in this help system. Insert the
following footnotes at the beginning of the topic title, using the speci
fied custom footnote marks:

Footnote Mark

$

Text

HID_CONTENTS

SIMPLE Help Contents

Description

Help context ID

Topic title

When you're finished with this step, the document should look like this:

4. Insert footnotes for the Help Topic 1 screen. The Help Topic 1
screen is the second topic screen in the help system. Insert the following
footnotes, using the specified custom footnote marks:

Footnote Mark

$
K

Text

HID_TOPIC 1

SIMPLE Help Topic 1

SIMPLE Topics

Description

Help context ID

Topic title

Keyword text

489

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

490

5. Clone the Help Topic 1 screen. Copy the entire Help Topic 1 section
of the document, including the page break, to the clipboard, and then
paste two copies of the text into the document. The footnotes are copied
along with the text. In the first copy, change all occurrences of 1 to 2. In
the second copy, change all occurrences of 1 to 3. Don't forget to change
the footnotes. With Word, it's a little difficult to see which footnote goes
with which topic, so be careful. When you're finished with this step, the
document text (including footnotes) should look like this:

#$Simple' Help' Table' of Contents~
11
Help·topicsll

~J:H.J;LIo.P'!'G.'.lI
Topic·2J:HJLTO.P".G.~1I
~J:H.tLIo.P'!'G.~lI

.. ····.· .. ··············· ··········.··Page Break··· ... ~

I4KHelp'Topic'1U ;
11
This 'is ·the ·text· for' help -topic 'numb er·1 .11

.. ·····.· · .. · Page Break········ .. ··•····································

I4KHelp'T opic '2U
11
This·is·the·text·for·help·topic·numb er-2 .11

...................•.................................. ······.····················.· ... ·············Page Break ··············· ············ .. .

I4KHelp'Topic'3U
11
This·is·the·text·for·help-topic·number-3·lI

#JiID _ CONTENTSlI
$SIMP LE· H elp'Contentsll
#JiID _TOPIC 111
$SIMPLE' Help' Topidll
KSIMPLE'Topicsll
#JiID _TOPIC211
$SIMP LE· Help' Topic'211
KSIMPLE'Topicsll
#JiID 30PIC311
$SIMPLE' Help'Topic'311
KSIMPLE-Topicsll

6. Save the document. Save the document as \vcpp32\ex20a\Simple.rtf.
Specify Rich Text Format as the file type.

7. Write a help project file. Using Developer Studio or another text edi
tor, create the file \vcpp32\ex20a\Simple.hpj, as follows:

T WEN T Y: Context-Sensitive Help

[OPTIONS]
CONTENTS=HID_CONTENTS
TITLE=SIMPLE Application Help
COMPRESS=true
WARNING=2

[FILES]
Simple. rtf

This file specifies the context ID of the Table Of Contents screen and
the name of the RTF file that contains the help text. Be sure to save the
file in text (ASCII) format.

8. Build the help file. From Windows, run the Microsoft Help Workshop
(HCRTF) utility. Open the file \vcpp32\ex20a\Simple.hpj, and then click
the Save And Compile button.

This step runs the Windows Help Compiler with the project file
Simple.hpj. The output is the help file Simple. hlp in the same directory.

NOT E : If you use Word 97 to create or edit RTF files, make sure
you use version 4.02 (or later) of the HCRTF utility. Earlier ver
sions of the HCRTF cannot process the rich text flags generated
by Word 97. Ifversion 4.02 is not already installed on your system,
look for a copy in the \DevStudio\VC\Unsupported Tools\HCW di
rectory on your Microsoft Visual C++ CD-ROM. Install the files, and
then copy all of them (including HwDll.dll from your system direc
tory) to the\VC\bin subdirectory of your Developer Studio directory.

9. Run WinHelp with the new help file. From Windows Explorer, double
click the file \vcpp32\ex20a\Simple.hlp. The Table Of Contents screen
should look like this:

Simple Help Table of Contents

Help topics
Topic 1
I.qp.iq.~
Topic 3

491

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

492

Now move the mouse cursor to Topic 1, and notice that the cursor
changes from an arrow to a pointing hand. When you press the left mouse
button, the Help Topic 1 screen should appear, as shown here:

Help Topic 1

This is the text for help topic numb er 1.

The HID_ TOPIC1 text in the Table Of Contents screen links to the
corresponding context ID (the # footnote) in the topic page. This link is
known as a jump.

The link to Help Topic 2 is coded as a pop-up jump. When you click
on Topic 2, here's what you see:

<8 SIMPLE Application Help IIJIiJEJ

Simple Help Table of Contents

Help topics
Topic 1

::r:~p'~C;.4

Help Topic 2

This is the text for help topic numb er 2.

10. Click the WinHelp Contents pushbutton. Clicking this button should
take you to the Table Of Contents screen, as shown at the beginning of
step 9. WinHelp knows the ID of the Table Of Contents window because
you specified it in the HPJ file.

11. Click the Win Help Index pushbutton. When you click the Index but
ton, WinHelp opens its Index dialog, which displays the help file's list of
keywords. In Simple.hlp, all topics (excluding the table of contents) have

T WEN T Y: Context-Sensitive Help

the same keyword (the K footnotes) , SIMPLE Topics. When you double
click on this keyword, you see all associated topic titles (the $ footnotes),
as shown here:

Help Topics: SIMPLE Application Help 6£t

1 .!ype the first few letters of the word)lou're I?oking for.

I ~ ~ ~PLE. Topics

IMPLE Helo T oorc 1

What you have here is a two-level help search hierarchy. The user
can type the first few letters of the keyword and then select a topic from
a list box. The more carefully you select your keywords and topic titles,
the more effective your help system will be.

An Improved Table of Contents
You've been looking at the "old-style" help table of contents. The latest Win32
version of Win Help can give you a modern tree-view table of contents. All you
need is a text file with a CNT extension. Add a new file, Simple.cnt, in the
\vcpp32\ex20a directory, containing this text:

:Base Simple.hlp
1 Help topics
2 Topic l=HID_TOPICl
2 Topic 2=HID_TOPIC2
2 Topic 3=HID_TOPIC3

Notice the context IDs that match the help file. Mter compiling
Simple.cnt, the next time you run WinHelp with the Simple.hlp file, you'll see
a new contents screen similar to the one shown on the following page.

493

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

You can also use HCRTF to edit CNT files. The CNT file is independent
of the HPJ file and the RTF files. If you update your RTF files, you must make
corresponding changes in your CNT file.

The Application Framework and WinHelp

494

You've seen Win Help mnning as a stand-alone program. The application frame
work and WinHelp cooperate to give you context-sensitive help. Here are some
of the main elements:

1. You select the Context-Sensitive Help option when you run
AppWizard.

2. AppWizard generates a Help Topics item on your application's Help
menu, and it creates one or more generic RTF files together with
an HPJ file and a batch file that runs the Help Compiler.

3. AppWizard inserts a keyboard accelerator for the FI key, and it maps
the FI key and the Help Topics menu item to member functions in
the main frame window object.

4. When your program runs, it calls WinHelp when the user presses
FI or chooses the Help Topics menu item, passing a context ID that
determines which help topic is displayed.

You now need to understand how WinHelp is called from another ap
plication and how your application generates context IDs for WinHelp.

T WEN T Y: Context-Sensitive Help

Calling WinHelp
The CWinApp member function WinHelp activates WinHelp from within your
application. If you look up WinHelp in the online documentation, you'll see
a long list of actions that the optional second parameter controls. Ignore the
second parameter, and pretend that WinHelp has only one unsigned long
integer parameter, dwData. This parameter corresponds to a help topic. Sup
pose that the SIMPLE help file is available and that your program contains the
statement

AfxGetApp()-)WinHelp(HID_TOPICl);

When the statement is executed, in response to the Fl key or some other
event, the Help Topic 1 screen appears, as it would if the user had clicked
on Topic 1 in the Help Table Of Contents screen.

"Wait a minute," you say. "How does WinHelp know what help file to
use?" The name of the help file matches the application name. If the execut
able program name is Simple.exe, the help file is named Simple.hlp.

NOT E : You can force WinHelp to use a different help file by set
ting the CWinApp data member m_pszHelpFilePath.

"And how does WinHelp match the program constant HID_ TOPIC1 to
the help file's context ID?" you ask. The help project file must contain a MAP
section that maps context IDs to numbers. If your application's resource.h file
defines HID_TOPIC1 as 101, the Simple.hpj MAP section looks like this:

[MAP]
HID_TOPICI leI

The program's #define constant name doesn't have to match the help
context ID; only the numbers must match. Making the names correspond,
however, is good practice.

Using Search Strings
For a text-based application, you might need help based on a keyword rather
than a numeric context ID. In that case, use the WinHelp HELP_KEY or
HELP_PARTIALKEYoption as follows:

CString string("find this string");
AfxGetApp()-)WinHelp«DWORD) (LPCSTR) string, HELP_KEY);

The double cast for string is necessary because the first WinHelp pa
rameter is multipurpose; its meaning depends on the value of the second
parameter.

495

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

Calling WinHelp from the Application's Menu
AppWizard generates a Help Topics option on the Help menu, and it maps
that option to CWind::OnHelpFinder in the main frame window, which calls
WinHelp this way:

AfxGetApp()->WinHelp(0L. HELP_FINDER);

With this call, WinHelp displays the Help Table Of Contents screen, and the
user can navigate the help file through jumps and searches.

If you want the old-style table of contents, call WinHelp this way instead:

AfxGetApp()->WinHelp(0L. HELP_INDEX);

And if you want a "help on help" item, make this call:

AfxGetApp()->WinHelp(0L. HELP_HELPONHELP);

Help Context Aliases
The ALIAS section of the HPJ file allows you to equate one context ID with
another. Suppose your HPJ file contained the following statements:

[ALIAS]
HID_TOPIC1 = HID_GETTING_STARTED

[MAP]
HID_TOPIC1 101

Your RTF files could use HID_TOPIC1 and HID_GETTING_STARTED inter
changeably. Both would be mapped to the help context 101 as generated by
your application.

Determining the Help Context

496

You now have enough information to add a simple context-sensitive help sys
tem to an MFC program. You define Fl (the standard MFC library Help key)
as a keyboard accelerator, and then you write a command handler that
maps the program's help context to a WinHelp parameter. You could in
vent your own method for mapping the program state to a context ID, but
why not take advantage of the system that's already built into the application
framework?

The application framework determines the help context based on the
ID of the active program element. These identified program elements in
clude menu commands, frame windows, dialog windows, message boxes, and
control bars. A menu item might be identified as ID_EDIT_CLEAR_ALL, for

T WEN T Y: Context-Sensitive Help

example, and the main frame window usually has the IDR_MAINFRAME
identifier. You might expect these identifiers to map directly to help context
IDs. IDR_MAINFRAME, for example, would map to a help context ID of the
same name. But what if a frame ID and a command ID had the same nu
meric value? Obviously, you need a way to prevent these overlaps.

The application framework solves the overlap problem by defining a
new set of help #define constants that are derived from program element
IDs. These help constants are the sum of the element ID and a base value,
as follows:

Program Element Help Context Base
Element 10 Prefix 10 Prefix (Hexadecimal)

Menu Item or toolbar button ID_,IDM_ HID_, HIDM_ 10000
Frame or dialog IDR_,IDD_ HIDR_, HIDD 20000
Error message box IDP_ HIDP_ 30000
Nonclient area H ... 40000
Control bar IDW_ HIDW_ 50000
Dispatch error messages 60000

HID_EDIT_CLEAR_ALL (OxlE121) corresponds to ID_EDIT_CLEAR_ALL
(OxE121), and HIDR_MAINFRAME (Ox20080) cOorresponds to IDR_MAIN
FRAME (Ox80).

F1 Help
Two separate context-sensitive help access methods are built into an MFC
application and are available if you have selected the AppWizard Context
Sensitive Help option. The first is standard Fl help. The user presses Fl; the
program makes its best guess about the help context and then calls WinHelp.
In this mode, it is possible to determine the currently selected Ihenu item or
the currently selected window (frame, view, dialog, or message box).

Shift-F1 Help
The second context-sensitive help mode is more powerful than the Fl mode.
With Shift-Fl help, the program can identify the following help contexts:

[i.] A menu item selected with the mouse cursor

[i.] A toolbar button

497

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

m A frame window

m A view window

m A specific graphics element within a view window

m The status bar

m Various nonclient elements such as the system menu control

Note: Shift-Fl help doesn't work with modal dialogs or message boxes.
The user activates Shift-Fl help by pressing Shift-Fl or by clicking the

Context Help toolbar button, shown here:

In either case, the mouse cursor changes to

On the next mouse click, the help topic appears, with the position of the mouse
cursor determining the context.

Message Box Help-The AfxMessageBox Function
The global function AfxMessageBox displays application framework error mes
sages. This function is similar to the CWnd::MessageBox member function ex
cept that it has a help context ID as a parameter. The application framework
maps this ID to a WinHelp context ID and then calls WinHelp when the user
presses Flo If you can use the AfxMessageBox help context parameter, be sure
to use prompt IDs that begin with IDP_. In your RTF file, use help context IDs
that begin with HIDP_.

There are two versions of AfxMessageBox. In the first version, the prompt
string is specified by a character-array pointer parameter. In the second version,
the prompt ID parameter specifies a string resource. If you use the second ver
sion, your executable program will be more efficient. Both AfxMessageBox
versions take a style parameter that makes the message box display an excla
mation point, a question mark, or another graphics symbol.

Generic Help

498

When context-sensitive help is enabled, AppWizard assembles a series of default
help topics that are associated with standard MFC library program elements.

T WEN T Y: Context-Sensitive Help

Following are some of the standard topics:

[J Menu and toolbar commands (File, Edit, and so forth)

[J Nonclient window elements (maximize box, title bar, and so forth)

[J Status bar

[J Error message boxes

These topics are contained in the files MxCore.rtf and MxPrint.rtf, which are
copied, along with the associated bitmap files, to the application's \hlp sub
directory. Your job is to customize the generic help files.

NOT E : AppWizard generates MxPrint.rtf only if you specify the
Printing And Print Preview option.

A Help Example-No Programming Required
If you followed the instructions for EX19D in Chapter 19, you selected the
AppWizard Context-Sensitive Help option. We'll now return to that example
and explore the application framework's built-in help capability. You'll see how
easy it is to link help topics to menu command IDs and frame window resource
IDs. You edit RTF files, not CPP files.

Here are the steps for customizing the help for EX19D:

1. Verify that the help file was built correctly. If you have built the
EX19D project already, chances are that the help file was created cor
rectly as part of the build process. Check this by running the applica
tion and then pressing the F1 key. You should see the generic Application
Help screen with the title "Modifying the Document," as shown on the
following page.

If you do not see this screen, the MAKEHELP batch file did not run
correctly. First check the last two lines of the ex19d.hpj file in the \hlp
subdirectory. Are the paths correct for your Visual C++ installation?
Next choose Options from the Tools menu and click on the Directories
tab. Make sure that the \VC\bin subdirectory of your Developer Studio
directory is one of the search directories for Executable Files.

To generate the help file, highlight the ex19d.hpj file in the Workspace
FileView window, and then choose Compile Ex19d.hpj from the Build
menu. This runs the MAKEHELP batch file that is in your project direc
tory. (You can also run it directly from an MS-DOS prompt.) You should
observe some "file(s) copied" messages but no error messages. Rerun
the EX19D program and press Fl again.

499

PA R Till: THE DOCUMENT-VIEW ARCHITECTURE

500

Modifying the Document

«Write epplicetion-specific help here thet provides en overview of how the
user should modify e document using your epplicetion.

If your epplicetion supports multiple document types end you went to heve e
distinct help topicfor eech, then use the help context i.d. genereted by running
the MAKEHELP.BAT file produced by AppWizerd. Alternetively, run
MAKEHM es follows:

mekehm IDR_HIDR~Ox2000 resource.h

If the IDR_ symbol for one of your documenttypes is, for exemple,
IDR_CHARTTYPE, then the help context i.d. genereted by MAKEHM will be
HIDR_CHARTTYPE.

Note, AppWizerd defines the HIDR_DOC11YPE help context i.d. used by this
help topic for the first document type supported by your epplicetion.
AppWizerd produces en elies in the .HPJ file foryour epplicetion, mepping
HIDR_DOC11YPE to the HIDR_ produced by MAKEHM forthet document
type. »

NOT E : The Visual C++ make processor doesn't always detect all
the dependencies in your help system. Sometimes you must run the
MAKEHELP batch file yourself to rebuild the HLP file after mak
ing changes.

2. Test the generic help file. Try the following experiments:

I.iTI Close the Help dialog, and then press Alt-F, Fl. This should open
the help topic for the File New command. You can also press Fl
while holding down the mouse button on the File New menu item
to see the same help topic.

m Close the Help dialog, click the Context Help toolbar button
(shown on page 498), and then choose Save from the File menu.
Do you get the appropriate help topic?

I.iTI Click the Context Help toolbar button again, and then select the
frame window's title bar. You should get an explanation of a Win
dows title bar.

Close all child windows, and then press Fl. You should see a main
index page that is also an old-style table of contents.

3. Change the application title. The file MxCore.rtf, in the \vcpp32-
\ex19d\hlp directory, contains the string «YourApp» throughout. Re
place it globally with EX19D.

T WEN T Y: Context-Sensitive Help

4. Change the Modifying The Document Help screen. The file
MxCore.rtf in the \vcpp32\ex19d\hlp directory contains text for the
generic Application Help screen. Search for Modifying the Document,
and then change the text to something appropriate for the application.
This topic has the help context ID HIDR_DOC1TYPE. The generated
ex19d.hpj file provides the alias HIDR_EX19DTYPE.

5. Add a topic for the Window New String Window menu item. The
New String Window menu item was added to EX19D and thus didn't have
associated help text. Add a topic to MxCore.rtf, as shown here:

Use this command to open a new String window with the same contents as the active window. .
You can open multiple document windows to display different parts or views of a document at the [.j
same time. When you open a new window. it becomes the active window and is displayed on top
of all other open windows.

Notice the # footnote that links the topic to the context ID HID-
_ WINDOW_NEW_STRINC as defined in hlp\ex19d.hm. The program's
command ID for the New String Window menu item is, of course, ID
_ WINDO~NEW_STRINC.

6. Rebuild the help file and test the application. Run the MAKEHELP
batch file again, and then rerun the EX19D program. Try the two new
help links.

The MAKEHELP Process
The process of building the application's HLP file is complex. Part of the com
plexity results from the Help Compiler's nonacceptance of statements such as

HID_MAINFRAME = ID_MAINFRAME + 0x20000

501

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

Because of the Help Compiler's nonacceptance, a special preprocessing pro
gram named makehm.exe must read the resource.h file to produce a help map
file that defines the help context ID values. Below is a diagram of the entire
MAKEHELP process:

AppWizard generates the application's help project file (HPJ) and the
help contents file (CNT). In the project file, the [FILES] section brings in RTF
files and the [MAP] section contains #include statements for the generic and
the application-specific help map (HM) files. The Help Workshop (HCRTF)
processes the project file to produce the help file that WinHelp reads.

Help Command Processing

502

You've seen the components of a help file, and you've seen the effects of Fl
and Shift-Fl. You know how the application element IDs are linked to help
context IDs. What you haven't seen is the application framework's internal
processing of the help requests. Why should you be concerned? Suppose you
want to provide help on a specific view window instead of a frame window.
What if you need help topics linked to specific graphics items in a view win
dow? These and other needs can be met by mapping the appropriate help
messages in the view class.

Help command processing depends on whether the help request was an
Fl request or a Shift-Fl request. The processing of each help request will be
described separately.

T WEN T Y: Context-Sensitive Help

F1 Processing
The Fl key is normally handled by a keyboard accelerator entry that AppWizard
inserts in the RC file. The accelerator associates the Fl key with an ID_HELP
command that is sent to the OnHelp member function in the CFrameWnd class.

NOT E : In an active modal dialog or a menu selection in progress,
the Fl key is processed by a Windows hook that causes the same
OnHelp function to be called. The Fl accelerator key would other
wise be disabled.

The CFrameWnd::OnHelp function sends an MFC-defined WM_COM
MANDHELP message to the innermost window, which is usually the view. If
your view class does not map this message or if the handler returns FALSE,
the framework routes the message to the next outer window, which is either
the MDI child frame or the main frame. If you have not mapped WM_COM
MANDHELP in your derived frame window classes, the message is processed
in the MFC CFrameWnd class, which displays help for the symbol thatAppWizard
generates for your application or document type.

If you map the WM_COMMANDHELP message in a derived class,
your handler must call CWinApp::WinHelp with the proper context ID as
a parameter.

For any application, AppWizard adds the symbol IDILMAINFRAME to
your project and the HM file defines the help context ID HIDILMAINFRAME,
which is aliased to main_index in the HPJ file. The standard MxCore.rtf file
associates the main index with this context ID.

For an MDI application named SAMPLE, for example, AppWizard
also adds the symbol IDR_SAMPLETYPE to your project and the HM file
defines the help context ID HIDR_SAMPLETYPE, which is aliased to HIDR
J)OCl TYPE in the HPJ file. The standard MxCore.rtf file associates the topic
"Modifying the Document" with this context ID.

Shift-F1 Processing
When the user presses Shift-Fl or clicks the Context Help toolbar button, a
command message is sent to the CFrameWnd function OnContextHelp. When
the user presses the mouse button again after positioning the mouse cursor,
an MFC-defined WM_HELPHITTEST message is sent to the innermost win
dow where the mouse click is detected. From that point on, the routing of this
message is identical to that for the WM_COMMANDHELP message, described
in "Fl Processing" above.

The lParam parameter of OnHelpHitTest contains the mouse coordinates
in device units, relative to the upper-left corner of the window's client area.

503

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

The y value is in the high-order half; the x value is in the low-order half. You
can use these coordinates to set the help context ID specifically for an item
in the view. Your OnHelpHitTest handler should return the correct context
ID; the framework will call WinHelp.

A Help Command Processing Example-EX20B
This example, EX20B, is based on example EX19D from Chapter 19. It's a
two-view MDI application with view-specific help added. Each of the two view
classes has an OnCommandHelp message handler to process F1 help requests
and an OnHelpHitTest message handler to process Shift-F1 help requests.

Header Requirements
The compiler recognizes help-specific identifiers only if the following #include
statement is present:

111 nc"i'ude<afxpri v. h>

In EX20B, the statement is in the StdAfx.h file.

CStringView

504

The modified string view in StringView.h needs message map function
prototypes for both F1 help and Shift-F1 help, as shown here:

, •• y ••••• , ••• ,., •• ". ".- ,,'." ••• ""'" ,

,afx_msg LRESU L T OnCommandHe 1 p CWPARAM wPa ram, LPARAM 1 Pa ram) ;
afx_msg LRESUL 1 OnHel pHitTestCWPARAM wParam, LPARAM 1 Param);

Here are the message map entries in StringView.cpp:

b N __ M"ESSAG E (WM_COMMANDH E L P, OnComma ndHe 1 p)
ON_MESSAGE(WM_HELPHITTEST. OnHel pHitTest) ,

The OnCommandHelp message handler member function in StringView.cpp
processes F1 help requests. It responds to the message sent from the MDI main
frame and displays the help topic for the string view window, as shown here:

LR'EStJLTES1:ri ngvi"ew;:OnCo"mlliand.Help'c'wpARAM"wparalli:,CP'ARAM 1 Param)
{

(lParam=:=. 0){ II context not already determined
1 Param =HID_BASE_RESOURCE+. IDR_STRINGVIEW:

T WEN T Y: Context-Sensitive Help

AfxGetApp()->WinHelp(lParam);
return TRUE;

Finally the OnHelpHitTest member function handles Shift-Fl help, as shown
here:

LRESULT CStringView::OnHelpHitTest(WPARAM wParam. LPARAM lParam)
(

return HID_BASE_RESOURCE + IDR_STRINGVIEW;

In a more complex application, you might want OnHelpHitTest to set the help
context ID based on the mouse cursor position.

CHex Vie w
The CHexView class processes help requests the same way the CStringView class
does. Following is the necessary header code in HexView.h:

afx_msg LRESULT OnCommandHelp(WPARAM wParam. LPARAM lParam);
afx_msg LRESULT OnHelpHitTest(WPARAM wParam. LPARAM lParam);

Here are the message map entries in HexView.cpp:

ON_MESSAGE(WM_COMMANDHELP. OnCommandHelp)
ON_MESSAGE(WM_HELPHITTEST. OnHelpHitTest)

And here is the implementation code in HexView.cpp:

LRESULT CHexView::OnCommandHelp(WPARAM wParam. LPARAM lParam)
{

if (lParam == 0) { II context not already determined
lParam = HID_BASE_RESOURCE + IDR_HEXVIEW;

AfxGetApp()->WinHelp(lParam);
return TRUE;

LRESULT CHexView::OnHelpHitTestCWPARAM wParam. LPARAM lParam)
{

505

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

Resource Requirements
Two new symbols were added to the project's Resource.h file. Here are their
values and corresponding help context IDs:

Symbol

IDILSTRINGVIEW

IDILHEXVIEW

Value

101

102

Help Context 10

HIDILSTRINGVIEW

HIDILHEXVIEW

Value

Ox20065
Ox20066

Help File Requirements

506

Two topics Were added to the AfxCore.rtffile with the help context IDs HIDR
_STRlNGVIEW and HIDR_HEXVIEW, as shown here:

This is the string view of the document. It shows the actual text of the document.

#HexView

This is the hexadecimal view of the document. It allows programmers to appreciate fine poetry.

The generated ex20b.hm file, in the project's\hlp subdirectory, should
look like this:

II MAKEHELP.BAT generated Help Map file. Used by EX20B.HPJ.

II Commands (ID_* and IDM_*)
HID_WINDOW_NEW_STRING 0x18003
HID_WINDOW_NEW_HEX 0x18004

II Prompts (IDP_*)

II Resources (IDR_*)
HIDR_STRINGVIEW
HIDR_HEXVIEW
HIDILMAINFRAME
HIDR_EX20BTYPE

II Dialogs (100_*)
HIDD_ABOUTBOX

II Frame Controls (IDW_*)

Testing the EX20B Application

T WEN T Y: Context-Sensitive Help

0x20065
0x20066
0x20080
0x20081

0x20064

Open a string child window and a hexadecimal child window. Test the action
ofFl help and Shift-Fl help within those windows. If the help file didn't com
pile correctly, follow the instructions in step 1 of the help example beginning
on page 499.

507

C HAP T E R TWENTY-ONE

Dynamic Link Libraries

If you want to write modular software, you'll be very interested in dynamic
link libraries (DLLs). You're probably thinking that you've been writing
modular software all along because C++ classes are modular. But classes are
build-time modular, and DLLs are runtime modular. Instead of programming
giant EXEs that you must rebuild and test each time you make a change, you
can build smaller DLL modules that you can test individually. You can, for
example, put a C++ class in a DLL, which might be as small as 12 KB after com
piling and linking. Client programs can load and link your DLL very quickly
when they run. Microsoft Windows itself uses DLLs for its major functions.

DLLs are getting easier to write. Win32 has greatly simplified the program
ming model, and there's more and better support from AppWizard and the
MFC library. This chapter shows you how to write DLLs in C++ and how to write
client programs that use DLLs. You'll see how Win32 maps DLLs into your
processes, and you'll learn the differences between MFC regular DLLs and
MFC extension DLLs. You'll see examples of simple DLLs of each type, and
you'll see a more complex DLL example that implements a custom control.

Fundamental DLL Theory
Before you look at the application framework's support for DLLs, you must
understand how Win32 integrates DLLs into your process. You might want to
review Chapter 9 to renew your knowledge of processes and virtual memory.
Remember that a process is a running instance of a program and that the
program starts out as an EXE file on disk.

Basically, a DLL is a file on disk (usually with a DLL extension), consist
ing of global data, compiled functions, and resources, that becomes part of
your process. It is compiled to load at a preferred base address, and if there's
no conflict with other DLLs, the file gets mapped to the same virtual address
in your process. The DLL has various exported functions, and the client pro-

509

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

gram (the program that loaded the DLL in the first place) imports those func
tions. Windows matches up the imports and exports when it loads the DLL.

NOT E: Win32 DLLs allow exported global variables as well as
functions.

In Win32, each process gets its own copy of the DLL's read/write global
variables. If you want to share memory among processes, you must either use
a memory-mapped file or declare a shared data section as described inJeffrey
Richter's Advanced Windows (Microsoft Press, 1997). Whenever your DLL re
quests heap memory, that memory is allocated from the client process's heap.

How Imports Are Matched to Exports

510

A DLL contains a table of exported functions. These functions are identified
to the outside world by their symbolic names and (optionally) by integers
called ordinal numbers. The function table also contains the addresses of the
functions within the DLL. When the client program first loads the DLL, it
doesn't know the addresses of the functions it needs to call but it does know
the symbols or ordinals. The dynamic linking process then builds a table that
connects the client's calls to the function addresses in the DLL. If you edit and
rebuild the DLL, you don't need to rebuild your client program unless you
have changed function names or parameter sequences.

NOT E : In a simple world, you'd have one EXE file that imports
functions from one or more DLLs. In the real world, many DLLs call
functions inside other DLLs. Thus, a particular DLL can have both
exports and imports. This is no problem because the dynamic link
age process can handle cross-dependencies.

In the DLL code, you must explicitly declare your exported functions
like this:

__ declspec(dllexport) int MyFunction(int n);

(The alternative is to list your exported functions in a module-definition
[DEF] file, but that's usually more troublesome.) On the client side, you need
to declare the corresponding imports like this:

__ declspec(dllimport) int MyFunction(int n);

If you're using C++, the compiler generates a decorated name for
MyFunction that other languages can't use. These decorated names are the
long names the compiler invents based on class name, function name, and
parameter types. They are listed in the project's MAP file. If you want to use

T WEN T Y - 0 N E: Dynamic Link Libraries

the plain name MyFunction, you have to write the declarations this way:

extern "e" __ declspec(dllexport) int MyFunction(int n);
extern "e" __ declspec(dllimport) int MyFunction(int n);

NOT E : By default, the compiler uses the __ cdeclargument pass
ing convention, which means that the calling program pops the pa
rameters from the stack. Some client languages might require the
__ stdcall convention, which replaces the Pascal calling convention,
and which means that the called function pops the stack. Therefore,
you might have to use the __ stdcall modifier in your DLL export
declaration.

Just having import declarations isn't enough to make a client link to a
DLL. The client's project must specify the import library (LIB) to the linker,
and the client program must actually contain a call to at least one of the DLL's
imported functions. That call statement must be in an executable path in the
program.

Implicit Linkage vs. Explicit Linkage
The preceding section primarily describes implicit linking, which is what you
as a C++ programmer will probably be using for your DLLs. When you build
a DLL, the linker produces a companion import LIB file, which contains every
DLL's exported symbols and (optionally) ordinals, but no code. The LIB file
is a surrogate for the DLL that is added to the client program's project. When
you build (statically link) the client, the imported symbols are matched to the
exported symbols in the LIB file, and those symbols (or ordinals) are bound
into the EXE file. The LIB file also contains the DLL filename (but not its full
pathname), which gets stored inside the EXE file. When the client is loaded,
Windows finds and loads the DLL and then dynamically links it by symbol or
by ordinal.

Explicit linking is more appropriate for interpreted languages such as
Microsoft Visual Basic, but you can use it from C++ if you need to. With ex
plicit linking, you don't use an import file; instead, you call the Win32
LoadLibrary function, specifying the DLL's pathname as a parameter.
LoadLibrary returns an HINSTANCE parameter that you can use in a call to
GetProcAddress, which converts a symbol (or an ordinal) to an address inside
the DLL. Suppose you have a DLL that exports a function like this:

extern "e" __ declspec(dllexport) double SquareRoot(double d);

511

PA R Till: THE DOCUMENT-VIEW ARCHITECTURE

Here's an example of a client's explicit linkage to the function:

typedef double (SORTPROC)(double);
HINSTANCE hInstance:
SORTPROC* pFunction;
VERIFY(hInstance = ::LoadLibrary("c:\\winnt\\system32\\mydll .dll"»;
VERIFY(pFunction = (SORTPROC*): :GetprocAddress(hInstance. "SquareRoot"»;
double d = (*pFunction)(81.0); II Call the DLL function

With implicit linkage, all DLLs are loaded when the client is loaded, but
with explicit linkage, you can determine when DLLs are loaded and unloaded.
Explicit linkage allows you to determine at runtime which DLLs to load. You
could, for example, have one DLL with string resources in English and another
with string resources in Spanish. Your application would load the appropri
ate DLL after the user chose a language.

Symbolic Linkage vs. Ordinal Linkage
In Win16, ordinal linkage was more efficient and was the preferred linkage
option. In Win32, the symbolic linkage efficiency was improved, and Microsoft
now recommends it over ordinal linkage. The DLL version of the MFC library,
however, uses ordinal linkage. A typical MFC program might link to hundreds
of functions in the MFC DLL. Ordinal linkage permits that program's EXE
file to be smaller because it does not have to contain the long symbolic names
of its imports. If you build your own DLL with ordinal linkage, you must specify
the ordinals in the project's DEF file, which doesn't have too many other uses
in the Win32 environment. If your exports are C++ functions, you must use
decorated names in the DEF file (or declare your functions with extern "C").
Here's a short extract from one of the MFC library DEF files:

?ReadList@CRecentFileList@@UAEXXZ @ 5458 NONAME
?ReadNameDictFromStream@CPropertySection@@OAEHPAUIStream@@@Z @ 5459 NONAME
?ReadObject@CArchive@@QAEPAVCObject@@PBUCRuntimeClass@@@Z @ 5460 NONAME
?ReadString@CArchive@@QAEHAAVCString@@@Z @ 5461 NONAME
?ReadString@CArchive@@QAEPADPADI@Z @ 5462 NONAME
?ReadString@CInternetFile@@UAEHAAVCString@@@Z @ 5463 NONAME
?ReadString@CInternetFile@@UAEPADPADI@Z @ 5464 NONAME

The numbers after the at symbols (@) are the ordinals. Makes you want to use
symbolic linkage instead, doesn't it?

The DLL Entry Point-DJ/Main

512

By default, the linker assigns the main entry point _DllMainCRTStartup to your
DLL. When Windows loads the DLL, it calls this function, which first calls the
constructors for global objects and then calls the global function DllMain,

T WEN T Y - 0 N E: Dynamic Link Libraries

which you're supposed to write. DllMain is called not only when the DLL is
attached to the process but also when it is detached, and at other times as well.
Here is a skeleton DllMain function:

HINSTANCE g_hInstance;
extern "C" int API ENTRY

DllMain(HINSTANCE hInstance. DWORD dwReason. LPVOID lpReserved)

if (dwReason == DLL_PROCESS_ATTACH)
{

TRACE0("EX21A.DLL Initial izing!\n");
II Do initialization here

else if (dwReason == DLL_PROCESS_DETACH)
{

TRACE0("EX21A.DLL Terminating!\n");
II Do cleanup here

return 1; II ok

If you don't write a DllMain function for your DLL, a do-nothing version is
brought in from the runtime library.

The DllMain function is also called when individual threads are started
and terminated, as indicated by the dwReason parameter. Richter's book tells
you all you need to know about this complex subject. .

Instance Handles-Loading Resources
Each DLL in a process is identified by a unique 32-bit HINSTANCEvalue. In
addition, the process itself has an HINSTANCEvalue. All these instance han
dles are valid only within a particular process, and they represent the starting
virtual address of the DLL or EXE. In Win32, the HINSTANCE and HMOD
ULEvalues are the same and the types can be used interchangeably. The pro
cess (EXE) instance handle is almost always Ox400000, and the handle for a
DLL loaded at the defal1lt base address is OxlOOOOOOO. If your program uses
several DLLs, each will have a differentHINSTANCEvalue, either because the
DLLs had different base addresses specified at build time or because the loader
copied and relocated the DLL code.

Instance handles are particularly important for loading resources. The
Win32 FindResourcefunction takes an HINSTANCEparameter. EXEs and DLLs
can each have their own resources. If you want a resource from the DLL, you
specify the DLL's instance handle, and if you want a resource from the EXE
file, you specify the EXE's instance handle.

513

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

How do you get an instance handle? If you want the EXE's handle, you
call the Win32 GetModuleHandlefunction with a NULL parameter. If you want
the DLL's handle, you call the Win32 GetModuleHandle function with the DLL
name as a parameter. Later you'll see that the MFC library has its own method
of loading resources by searching various modules in sequence.

How the Clien~ Program Finds a DLL
If you link explicitly with ~oadLibrary, you can specify the DLL's full pathname.
If you don't specify the pathname, or if you link implicitly, Windows uses the
following search sequence to locate your DLL:

1. The directory containing the EXE file

2. The process's current directory

3. The Windows system directory

4. The Windows directory

5. The directories listed in the Path environment variable

Here's a trap you can easily fall into. You build a DLL as one project, then
you copy the DLL file to the system directory, and then you run the DLL from
a client program. So far, so good. Next you rebuild the DLL with some changes,
but you forget to copy the DLL file to the system directory. The next time you
run the client program, it loads the old version of the DLL. Be careful!

Debugging a DLL
Developer Studio makes it easy to debug a DLL.Just run the debugger from
the DLL project. The first time you do this, the debugger asks for the path
name of the client EXE file. Every time you "run" the DLL from the debugger
after this, the debugger loads the EXE, but the EXE uses the search sequence
to find the DLL. This means that you must either set the Path environment
variable to point to the DLL or copy the DLL to a directory in the search
sequence.

MFC DLLs-Extension vs. Regular

514

We've been looking at Win32 DLLs that have a DllMain function and some
exported functions. Now we'll move into the world of the MFC application
framework, which adds its own support layer on top of the Win32 basics.
App Wizard lets you build two kinds of DLLs with MFC library support:

T WEN T Y - 0 N E: Dynamic Link Libraries

extension DLLs and regular DLLs. You must understand the differences be
tween these two types before you decide which one is best for your needs.

NOT E : Of course, Developer Studio lets you build a pure Win32
DLL without the MFC library,just as it lets you build a Windows pro
gram without the MFC library. This is an MFC-oriented book, how
ever, so we'll ignore the Win32 option here.

An extension DLL supports a C++ interface. In other words, the DLL can
export whole classes and the client can construct objects of those classes or
derive classes from them. An extension DLL dynamically links to the code in
the DLL version of the MFC library, so an extension DLL requires that your
client program be dynamically linked to the MFC library (the AppWizard
default) and that both the client program and the extension DLL be synchro
nized to the same version of the MFC DLLs (mfc42.dll, mfcd42.dll, and so on).
Extension DLLs are quite small; you can build a simple extension DLL with
a size of 10 KB, which loads quickly.

If you need a DLL that can be loaded by any Win32 programming envi
ronment (including Visual Basic version 5.0), you should use a regular DLL.
A big restriction here is that the regular DLL can export only C-style functions.
It can't export C++ classes, member functions, or overloaded functions be
cause every C++ compiler has its own method of decorating names. You can,
however, use C++ classes (and MFC library classes, in particular) inside your
regular DLL.

When you build an MFC regular DLL, you can choose to statically link
or dynamically link to the MFC library. If you choose static linking, your DLL
will include a copy of all the MFC library code it needs and will thus be self
contained. A typical Release-build statically linked regular DLL is about 144
KB in size. If you choose dynamic linking, the size drops to about 17 KB but
you'll have to ensure that the proper MFC DLLs are present on the target
machine. That's no problem if the client program is already dynamically linked
to the same version of the MFC library.

When you tell AppWizard what kind ofDLL or EXE you want, compiler
#de.fine constants are set as shown in the following table:

Regular DLL

Extension DLL

Client EXE

Dynamically Linked
to Shared MFC Library

_AFXDLL, _USRDLL

_AFXEXT, _AFXDLL

_AFXDLL

Statically Linked*
to MFC Library

_USRDLL

unsupported option

no constants defined

* The static linking option is not supported by the Visual C++ Learning Edition.

515

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

If you look inside the MFC source code and header files, you'll see a ton
of #ifdefstatements for these constants. This means that the library code is com
piled quite differently depending on the kind of project you're producing.

The Shared MFC DLLs and the Windows DLLs
If you build a Windows Debug target with the shared MFC DLL option, your
program is dynamically linked to one or more of these (ANSI) MFC DLLs:

mfc42d.dll
mfco42d.dll
mfcd42d.dll
mfcn42d.dll

Core MFC classes
ActiveX (OLE) classes
Database classes (ODBC and DAO)
Winsock, Winlnet classes

When you build a Release target, your program is dynamically linked to
mfc42.dll only. Linkage to these MFC DLLs is implicit via import libraries. You
might assume implicit linkage to the ActiveX and ODBC DLLs in Windows,
in which case you would expect all these DLLs to be linked to your Release
build client when it loads, regardless of whether it uses ActiveX or ODBC
features. However, this is not what happens. Through some creative thunking,
MFC loads the ActiveX and ODBC DLLs explicitly (by calling LoadLibrary)
when one of their functions is first called. Your client application thus loads
only the DLLs it needs.

MFC Extension DLLs-Exporting Classes

516

If your extension DLL contains only exported C++ classes, you'll have an easy
time building and using it. The steps for building the EX21A example show
you how to tell AppWizard that you're building an extension DLL skeleton.
That skeleton has only the DllMain function. You simply add your own C++
classes to the project. There's only one special thing you must do. You must
add the macro AFYLEXT_ CLASS to the class declaration, as shown here:

class AFX_EXT_CLASS CStudent : public CObject

This modification goes into the H file that's part of the DLL project, and it
also goes into the H file that client programs use. In other words, the H files
are exactly the same for both client and DLL. The macro generates different
code depending on the situation-it exports the class in the DLL and imports
the class in the client.

T WEN T Y - 0 N E: Dynamic Link Libraries

The MFC Extension DLL Resource Search Sequence
If you build a dynamically linked lVIFC client application, many of the MFC
library's standard resources (error message strings, print preview dialog tem
plates, and so on) are stored in the MFC DLLs (mfc42.dll, mfcd42.dll, and so
on), but your application has its own resources too. When you call an MFC
function such as CString::LoadString or CBitmap::LoadBit17lap, the framework
steps in and searches first the EXE file's resources and then the MFC DLL's
resources.

If your program includes an extension DLL and your EXE needs a re
source, the search sequence is first the EXE file, then the extension DLL, and
then the MFC DLLs. If you have a string resource ID, for example, that's
unique among all resources, the MFC library will find it. If you have duplicate
string IDs in your EXE file and your extension DLL file, the MFC library loads
the string in the EXE file.

If the extension DLL loads a resource, the sequence is first the extension
DLL, then the MFC DLLs, and then the EXE.

You can change the search sequence if you need to. Suppose you want
your EXE code to search the extension DLL's resources first. Use code such
as this:

HINSTANCE hInstResourceClient = AfxGetResourceHandle();
II Use DLL's instance handle
AfxSetResourceHandle(::GetModuleHandle("mydllname.dll"»;
CString strRes;
strRes.LoadString(IDS_MYSTRING);
II Restore client's instance handle
AfxSetResourceHandle(hlnstResourceClient);

You can't use AfxGetInstanceHandleinstead of ::GetModuleHandle. In an exten
sion DLL, AfxGetInstanceHandle returns the EXE's instance handle, not the
DLL's handle.

The EX21A Example-An MFC Extension DLL
This example makes an extension DLL out of the CPersistentFra17le class you saw
in Chapter 14. First you'll build the ex21a.dll file, and then you'll use it in a
test client program, EX21B.

Here are the steps for building the EX21A example:

1. Run AppWizard to produce \vcpp32\ex21 a\ex21 a. Choose New
from Developer Studio's File menu, and then click on the Projects tab
as usual. Instead of selecting MFC AppWizard (exe), choose MFC App
Wizard (dll), as shown on the following page.

517

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

518

ISAPI ExtensionWizard
~Makefile

MFC ActiveX ControfWizard

~RfJ;APpYli~4I~l
MFC AppWizard (exe)

~ New 0 atabase Wizard

In this example, only one AppWizard screen appears. Choose MFC
Extension DLL, as shown here:

2. Examine the ex21 a.cpp file. AppWizard generates the following
code, which includes the DllMain function:

II ex21a.cpp : Defines the initialization routines for the DLL.
II

Ii inc 1 u de" s t d a f x . h"
#include <afxdllx.h>

T WEN T Y - 0 N E: Dynamic Link Libraries

liifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __ FILE __ ;
#endif

static AFX_EXTENSION_MODULE Ex21aDLL = { NULL. NULL };

extern "C" int APIENTRY
DllMain(HINSTANCE hInstance. DWORD dwReason. LPVOID lpReserved)
{

II Remove this if you use lpReserved
UNREFERENCED_PARAMETER(lpReserved);

if (dwReason == DLL_PROCESS_ATTACH)
{

TRACE0("EX21A.DLL Initializing!\n");

II Extension DLL one-time initialization
if (!AfxInitExtensionModule(Ex21aDLL. hInstance»

return 0;

II Insert this DLL into the resource chain

(generated comment lines deleted)

new CDynLinkLibrary(Ex21aDLL);

else if (dwReason == DLL_PROCESS_DETACH)
{

TRACE0("EX21A.DLL Terminating!\n");
II Terminate the library before destructors are called
AfxTermExtensionModule(Ex21aDLL);

return 1; II ok

3. Insert the CPersistentFrame class into the project. Choose Add To
Project from the Project menu, and then choose Components And Con
trols from the submenu. Locate the file Persistent Frame.ogx that you
created in Chapter 14 (or locate the copy on the companion CD-ROM).
Click the Insert button to insert the class into the current project.

NOTE: If you don't want to use the OGX component, you can
copy the files Persist.h and Persist.cpp into your project directory
and add them to the project by choosing Add To Project from the
Developer Studio Project menu.

519

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

4. Edit the persist.h file. Modify the line

class CPersistentFrame public CFrameWnd

to read

classAFX_EXT_CLASS CPersistentFrame : public CFrameWnd

5. Build the project and copy the DLL file. Copy the file ex21a.dll from
the \vcpp32\ex21a\Debug directory to your system directory (\Windows
\System or \Winnt\System32).

The EX21 B Example-A DLL Test Client Program

520

This example starts off as a client for ex21a.dll. It imports the CPersistentFrame
class from the DLL and uses it as a base class for the SDI frame window. Later
you'll add code to load and test the other sample DLLs in this chapter.

Here are the steps for building the EX21B example:

1. Run AppWizard to produce \vcpp32\ex21 b\ex21 b. This is an ordi
nary MFC EXE program. Select Single Document. Otherwise, accept the
default settings. Be absolutely sure that in Step 5 you accept the As A
Shared DLL option.

2. Copy the file persist.h from the \vcpp32\ex21a directory. Note
that you're copying the header file, not the CPP file.

3. Change the CMainFrame base class to CPersistentFrame as you
did in EX14A. Replace all occurrences of CFrameWnd with CPersistent
Frame in both MainFrm.h and MainFrm.cpp. Also insert the following
line into MainFrm.h:

~include"persi~t.h"

4. Add the ex21 a import library to the linker's input library list.
Choose Settings from Developer Studio's Project menu. Select All Con
figurations in the Settings For drop-down list. Then fill in the Object
/Library Modules control on the Link page as shown on the facing page.

You must specify the full pathname for the ex21a.lib file unless you
have a copy of that file in your project directory.

5. Build and test the EX21 B program. If you run the program from the
debugger and Windows can't find the EX21A DLL, Windows displays a
message box when EX21B starts. If all goes well, you should have a per
sistent frame application that works exactly like the one in EXl4A. The
only difference is that the CPersistentFrame code is in an extension DLL.

T WEN T Y - 0 N E: Dynamic Link Libraries

r, Ignore aU default li,Qf(l!ie$

ri' Gene! ate !!l(lpfile

MFC Regular DLLs-The CWinApp Derived Class

.,

When AppWizard generates a regular DLL, the DllMain function is inside the
framework and you end up with a class derived from CWinApp (and a global
object of that class), just as you would with an EXE program. You can get con
trol by overriding CWinApp::lnitInstance and CWinApp::Exitlnstance. Most of
the time, you don't bother overriding those functions, though. You simply
write the C functions and then export them with the __ declspec(dllexport) modi
fier (or with entries in the project's DEF file).

Using the AFX_MANAGE_STATE Macro
When mfc42.dll is loaded as part of a process, it stores data in some truly glo
bal variables. If you call MFC functions from an MFC program or extension
DLL, mfc42.dll knows how to set these global variables on behalf of the call
ing process. If you call into mfc42.dll from a regular MFC DLL, however, the
global variables are not synchronized and the effects will be unpredictable.
To solve this problem, insert the line

AFX_MANAGE_STATE(AfxGetStaticModuleState(»;

at the start of all exported functions in your regular DLL. If the MFC code is
statically linked, the macro will have no effect.

The MFC Regular DLL Resource Search Sequence
When an EXE links to a regular DLL, resource loading functions inside the
EXE will load the EXE's own resources. Resource loading functions inside the
regular DLL will load the DLL's own resources.

521

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

If you want your EXE code to load resources from the DLL, you can use
AfxSetResourceHandle to temporarily change the resource handle. The code will
be nearly the same as that on page 517. If you're writing an application that
needs to be localized, you can put language-specific strings, dialogs, menus,
and so forth in an MFC regular DLL. You might, for example, include the
modules English.dll, German.dll, and French.dll. Your client program would
explicitly load the correct DLL and use code such as that on page 517 to load
the resources, which would have the same IDs in all the DLLs.

The EX21 C Example-An MFC Regular DLL

522

This example makes a regular DLL that exports a single square root function.
First you'll build the ex21c.dll file, and then you'll modify the test client pro
gram, EX21B, to test the new DLL.

Here are the steps for building the EX21C example:

1. Run AppWizard to produc~ \vcpp32\ex21 c\ex21 c. Proceed as you
did for EX21A, but accept Regular DLL Using Shared MFC DLL (instead
of choosing MFC Extension DLL) from the one and only AppWizard page.

2. Examine the ex21 c.cpp file. AppWizard generates the following
code, which includes a derived CWinApp class:

// ex21c.cpp : Defines the initialization routines for the DLL.
//

/linclude "stdafx.h"
/linclude "ex21c.h"

/lifdef _DEBUG
/ldefine new DEBUG_NEW
/lundef THIS_FILE
static char THIS_FILE[] = __ FILE __ :
/lendif

(generated comment lines omitted)

///

// CEx21cApp

BEGIN_MESSAGE_MAP(CEx21cApp, CWinApp)
//{{AFX_MSG_MAP(CEx21cApp)

// NOTE - the ClassWizard will add and remove -.
mapping macros here.

// DO NOT EDIT what you see in these blocks
of generated code!

T WEN T Y - 0 N E: Dynamic Link Libraries

/ /} }AFX_MSG_MAP
END_MESSAGE_MAP()

///

// CEx21cApp construction

CEx21cApp::CEx21cApp()
{

// TODO: add construction code here.
// Place all significant initialization in InitInstance

///

// The one and only CEx21cApp object

CEx21cApp theApp;

3. Add the code for the exported Ex21cSquareRoot function. It's OK
to add this code in the ex21c.cpp file, although you can use a new file if
you want to:

extern "C" __ declspec(dllexport) double Ex21cSquareRoot(double d)
{

AFX_MANAGE_STATE(AfxGetStaticModuleState(»;
TRACE("Entering Ex21cSquareRoot\n");
if (d)= 0. 0) {

return sqrt(d);

AfxMessageBox("Can't take square root of a negative number.");
return 0.0:

You can see that there's no problem with the DLL displaying a message
box or another modal dialog. You'll need to include math.h in the file
containing this code.

4. Build the project and copy the OLL file. Copy the file ex21c.dll
from the \vcpp32\ex21 c\Debug directory to your system directory.

Updating the EX21 B Example-Adding Code to Test ex21 c.dll
When you first built the EX21B program, it linked dynamically to the EX21A
MFC extension DLL. Now you'll update the project to implicitly link to the
EX21C MFC regular DLL and to call the DLL's square root function.

Following are the steps for updating the EX21B example.

523

PA R Till: THE DOCUMENT-VIEW ARCHITECTURE

524

1. Add a new dialog resource and class to \vcpp32\ex21 b\ex21 b.
Use the dialog editor to create the IDD_EX21Ctemplate, as shown here:

Then use ClassWizard to generate a class CTest21cDialog, derived
from CDialog. The controls, data members, and message map function
are shown in the table below:

ControllD Type Data Member Message Map Function

edit m_dlnput (double)

edit m_dOutput (double)

IDC_INPUT

IDC_OUTPUT

IDC_COMPUTE button On Compute

2. Code the OnCompute function to call the DLL's exported function.
Edit the ClassWizard-generated function in Test21cDialog.cpp as shown
here:

void CTest21cDialog::OnCompute()
{

UpdateData(TRUE);
m_dOutput = Ex21cSquareRoot(m..:..dlnput);
UpdateData(fALSE):

You'll have to declare the Ex21cSquareRoot function as an imported
function. Add the following line to the Test21cDialog.h file:

extern "e" __ declspec(dlJ import) doubleEx21cSquareRoot(double d);

3. Integrate the CTest21 cDialog class into the EX21 B application.
You'll need to add a top-level menu, Test, and an Ex21c DLL option
with the ID ID_TEST_EX21CDLL. Use ClassWizard to map this option to

T WEN T Y - 0 N E: Dynamic Link Libraries

a member function in the CEx21 b View class, and then code the handler
in Ex21 bView.cpp as follows:

void CEx21bView::OnTestEx21cdll()
{

CTest21cOialog dlg;
dlg.OoModal();

Of course, you'll have to add this line to the Ex21bView.cpp file:

/Finclude "Test21cOialog.h"

4. Add the EX21 C import library to the linker's input library list.
Choose Settings from Developer Studio's Project menu, and then add
\vcpp32\ex21c\Debug\ex21c.lib to the Object/Library Modules control on
the Link page. (Use a space to separate the new entry from the existing
entry.) Now the program should implicitly link to both the EX21A DLL
and the EX21C DLL. As you can see, the client doesn't care whether
the DLL is a regular DLL or an extension DLL. You just specify the LIB
name to the linker.

5. Build and test the updated EX21 B application. Choose Ex21c DLL
from the Test menu. Type a number in the Input edit control, and then
click the Compute Sqrt button. The result should appear in the Output
control.

A Custom Control DLL
Programmers have been using DLLs for custom controls since the early days
of Windows because custom controls are neatly self-contained. The original
custom controls were written in pure C and configured as stand-alone DLLs.
Today you can use the features of the MFC library in your custom controls,
and you can use the wizards to make coding easier. A regular DLL is the best
choice for a custom control because the control doesn't need a C++ interface
and because it can be used by any development system that accepts custom
controls (such as the Borland C++ compiler). You'll probably want to use
the MFC dynamic linking option because the resulting DLL will be small and
quick to load.

What Is a Custom Control?
You've seen ordinary controls and Microsoft Windows common controls
in Chapter 6, and you've seen ActiveX controls in Chapter 8. The custom

525

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

control acts like an ordinary control, such as the edit control, in that it sends
WM_COMMAND notification messages to its parent window and receives user
defined messages. The dialog editor lets you position custom controls in dia
log templates. That's what the "head" control palette item, shown here, is for:

You have a lot of freedom in designing your custom control. You can
paint anything you want in its window (which is managed by the client appli
cation), and you can define any notification and inbound messages you need.
You can use ClassWizard to map normal Windows messages in the control
(WM_LBUTTONDOWN, for example), but you must manually map the user
defined messages and manually map the notification messages in the parent
window class.

A Custom Control's Window Class

526

A dialog resource template specifies its custom controls by their symbolic
window class names. Don't confuse the Win32 window class with the C++ class;
the only similarity is the name. A window class is defined by a structure that
contains the following:

rzl The name of the class

Eli A pointer to the WndProc function that receives messages sent
to windows of the class

D Miscellaneous attributes, such as the background brush

The Win32 RegisterClass function copies the structure into process mem
ory so that any function in the process can use the class to create a window.
When the dialog window is initialized, Windows creates the custom control
child windows from the window class names stored in the template.

Suppose now that the control's WndProcfunction is inside a DLL. When
the DLL is initialized (by a call to DllMain), it can call RegisterClass for the
control. Because the DLL is part of the process, the client program can cre
ate child windows of the custom control class. To summarize, the client knows
the name string of a control window class and it uses that class name to con
struct the child window. All the code for the control, including the WndProc
function, is inside the DLL. All that's necessary is that the client load the DLL
prior to creating the child window.

T WEN T Y - 0 N E: Dynamic Link Libraries

The MFC Library and the WndProc Function
OK, so Windows calls the control's WndProc function for each message sent
to that window. But you really don't want to write an old-fashioned switch-case
statement-you want to map those messages to c++ member functions, as
you've been doing all along. Now, in the PLL, you must rig up a C++ class that
corresponds to the control's window class. Once you've done that, you can
happily use ClassWizard to map messages.

The obvious part is the writing of the C++ class for the control. You sim
ply use ClassWizard to create a new class derived from CWnd. The tricky part
is wiring the C++ class to the WndProc function and to the application frame
work's message pump. You'll see a real WndProc in the EX21D example, but
here's the pseudocode for a typical control WndProc function:

LRESULT MyControlWndProc(HWND hWnd, UINT message
WPARAM wParam, LPARAM lParam)

if (this is the first message for this window)
CWnd* pWnd = new CMyControlWindowClass();
attach pWnd to hWnd

return AfxCallWndProc(pWnd, hWnd, message, WParam, lParam);

The MFC AfxCallWndProc function passes messages to the framework, which
dispatches them to the member functions mapped in CMyControlWindowClass.

Custom Control Notification Messages
The control communicates with its parent window by sending it special
WM_COMMAND notification messages with parameters, as shown here:

Parameter

(HIWORD) wParam

(LOWORD) wParam

lParam

Usage

Notification code

Child window ID

Child window handle

The meaning of the notification code is arbitrary and depends on the control.
The parent window must interpret the code based on its knowledge of the
control. For example, the code 77 might mean that the user typed a charac
ter while positioned on the control.

527

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

The control might send a notification message such as this:

GetParent()->SendMessage(WM_COMMAND,
GetDlgCtrlID() I ID_NOTIFYCODE « 16, (LONG) GetSafeHwnd(»;

On the client side, you map the message with the MFC ON_CONTROL macro
like this:

ON_CONTROL(ID_NOTIFYCODE, IDC_MYCONTROL, OnClickedMyControl)

Then you declare the handler function like this:

afx_msg void OnClickedMyControl();

User-Defined Messages Sent to the Control
You have already seen user-defined messages in Chapter 7. This is the means
by which the client program communicates with the control. Because a stan
dard message returns a 32-bit value if it is sent rather than posted, the client
can obtain information from the control.

The EX21 D Example-A Custom Control

528

The EX21D program is an MFC regular DLL that implements a traffic light
control indicating off, red, yellow, and green states. When clicked with the left
mouse button, the DLL sends a clicked notification message to its parent and
responds to two user-defined messages, RYG_SETSTATE and RYG_GET
STATE. The state is an integer that represents the color. Credit goes to Rich
ard Wilton, who included the original C-language version of this control in
his book Windows 3 Developer's Workshop (Microsoft Press, 1991).

The EX21D project was originally generated using AppWizard, with link
age to the shared MFC DLL,just like EX21C. Figure 21-1 shows the code
for the primary source file, with the added code in the InitInstance function
shaded. The dummy exported Ex21 dEn try function exists solely to allow the
DLL to be implicitly linked. The client program must include a call to this
function, and that call must be in an executable path in the program or the
compiler will eliminate the call. As an alternative, the client program could
call the Win32 LoadLibrary function in its InitInstance function to explicitly link
the DLL.

T WEN T Y - 0 N E: Dynamic Link Libraries

EX21D.CPP

// ex21d.cpp Defines the initialization routines for the DLL.
II

/Finclude "stdafx.h"
/Finclude "ex21d.h"
1/i nc 1 ude "RygWnd. h"

/Fifdef _DEBUG
/Fdefine new DEBUG_NEW
/Fundef THIS_FILE
static char THIS_FILE[] = __ FILE __ :
/Fendif

extern "C" __ declspec (dll export) voi d Ex21dEntry () {} /I dummy function

(generated comment lines omitted)

///

// CEx21dApp

BEGIN_MESSAGE_MAP(CEx21dApp, CWinApp)
//{{AFX_MSG_MAP(CEx21dApp)

// NOTE - the ClassWizard will add and remove -.
mapping macros here.

II DO NOT EDIT what you see in these blocks
of generated code!

/ /} JAFX_MSG_MAP
END_MESSAGE_MAP()

///

// CEx21dApp construction

CEx21dApp::CEx21dApp()
{

// TODO: add construction code here,
// Place all significant initialization in InitInstance

///

// The one and only CEx21dApp object

CEx21dApp theApp:

Figure 21-1. (continued)

The EX21D primary source listing.

529

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

530

Figure 21-1. continued

BOOl CEx21dApp::InitInstance()
{

CRygWnd ::Regi sterWndCJass (Af)«(J~tI nstanceHClndl e (»:,
return CWinApp::InitInstance();

Figure 21-2 shows the code for the CRygWnd class, including the global
RygWndProcfunction. The code that paints the traffic light isn't very interest
ing, so we'll concentrate on the functions that are common to most custom
controls. The static RegisterWndClass member function actually registers the
RYGwindow class and must be called as soon as the DLL is loaded. The OnL
ButtonDown handler is called when the user presses the left mouse button
inside the control window. It sends the clicked notification message to the
parent window. The overridden PostNcDestroy function is important because
it deletes the CRygWnd object when the client program destroys the control
window. The OnGetState and OnSetState functions are called in response to user
defined messages sent by the client. Remember to copy the DLL to your sys
tem directory.

RYGWND.H

#if !defined(AFX_RYGWND_H __ 1AA889D5_9788_11D0_BED2_00C04FC2A0C2 __ INClUDED_)
#define AFX_RYGWND_H __ 1AA889D5_9788_11D0_BED2_00C04FC2A0C2 __ INClUDED_

#if _MSC_VER >= 1000
#pragma once
#endif // _MSC_VER >= 1000
// RygWnd.h : header file
II

///

// CRygWnd window

#defi ne RYG~SETSTATEWM~USER+"e'
/Idefine RYG_GETSTATE WM_USER+ 1

LRESU l T CALLBACK A FX":'EXPORT

class CRygWnd : public CWnd
(

pr'iv~te :

Figure 21-2.
The CRygWnd class listing.

(continued)

T WEN T Y - 0 N E: Dynamic Link Libraries

Figure 21-2. continued

static CRect s_rect:
static CPoint s_point;
static CRect s_rColor[3J:
static CBrush s_bColor[4J:

// Construction
public:

CRygWnd () :
public:

static BOOl RegisterWndClass(HINSTANCE hInstance):

// Attributes
public:

// Operations
public:

// Overrides
// ClassWizard generated virtual function overrides
//{{AFX_VIRTUAl(CRygWnd)
protected:
virtual void PostNcDestroy();
/ /} }AFX_VIRTUAl

// Implementation
public:

virtual -CRygWnd();

// Generated message map functions
private:

void SetMapping(CDC* pDC);
void UpdateColor(CDC* pDC, int n);

protected:
//{{AFX_MSG(CRygWnd)
afx_msg void OnPaint();

} ;

afx_msg void OnlButtonDown(UINT nFlags. CPoint point);
//}}AFX_MSG
afx_msg lRESUlT OnSetState(WPARAM wParam, lPARAM lParam);
a fx_msg LRESUL T OnGetState (WPARAM wPa ram. lPARAM 1 Param>.:,
DEClARE_MESSAGE_MAP()

///

(continued)

531

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

532

Figure 21-2. continued

//{{AFX_INSERT_LOCATION}}
// Microsoft Developer Studio will insert additional declarations
// immediately before the previous line.

#endif // !definedCAFX_RYGWND_H __ 1AA889D5_9788_ -.
11D0_BED2_00C04FC2A0C2 __ INCLUDED_)

RYGWND.CPP

// RygWnd.cpp : implementation file
//

#include "stdafx.h"
#include "RygWnd.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __ FILE __ ;
#endif

LRESULT CALLBACK AFX_EXPORT
RygWndProcCHWND hWnd. UINT message. WPARAM wParam. LPARAM lParam)

{

AFX_MANAGE_STATE(AfxGetStaticModuleState(»;

CWnd* pWnd;

pWnd = CWnd::FromHandlePermanent(hWnd);
if (pWnd == NULL) (

// Assume that client created a CRygWnd window
pWnd = new CRygWnd();
pWnd->Attach(hWnd);

ASSERT(pWnd->m_hWnd == hWnd);
ASSERT(pWnd == CWnd::FromHandlePermanent(hWnd»;
LRESULT lResult = AfxCallWndProcCpWnd. hWnd. message.

wParam,lParam) ;
return lResu1t;

///

// CRygWnd

// static data members
CRect CRygWnd::s_rect(-500. 1000, 500, -1000); II outer rectangle
CPointCRygWnd::s_point(300, 300); // rounded corners

(continued)

T WEN T Y - 0 N E: Dynamic Link Libraries

Figure 21-2. continued

CRect CRygWnd::s_rColor[] {CRect(-250. 800. 250. 300).
CRect(-250. 250, 250, -250),
CRect(-250. -300, 250. -800)};

CBrush CRygWnd::s_bColor[] {RGB(192. 192. 192).
RGB(0xFF. Ox00. 0x00).
RGB(OxFF. OxFF. OxOO),
RGB(OxOO. 0xFF. 0xOO)};

BOOL CRygWnd::RegisterWndClass(HINSTANCE hlnstance) // static member
// function

WNDCLASS wc;
wc.lpszClassName = "RYG"; // matches class name in client
wc.hlnstance = hlnstance;
wc.lpfnWndProc = RygWndProc;
wC.hCursor = ::LoadCursor(NULL. IDC_ARROW);
wc.hlcon = 0;
wc.lpszMenuName = NULL;
wc.hbrBackground = (HBRUSH) ::GetStockObject(LTGRAY_BRUSH);
wc.style = CS_GLOBALCLASS;
wC.cbClsExtra = 0;
wC.cbWndExtra = 0;
return (::RegisterClass(&wc) 1= 0);

///

CRygWnd::CRygWnd()
{

m_nState = 0;
TRACE("CRygWnd constructor\n");

CRygWnd: :~CRygWnd()
{

TRACE("CRygWnd destructor\n"):

BEGIN_MESSAGE_MAP(CRygWnd. CWnd)
//{{AFX_MSG_MAP(CRygWnd)
ON_WM_PAINT<)
ON_WM_LBUTTONDOWN()
/ /} }AFX_MSG_MAP
ON_MESSAGE(RYG~SETSTATE. OnSetState)

(continued)

533

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

534

Figure 21-2. continued

ON_MESSAGE(RYG_GETSTATE, OnGetState)
END_MESSAGE_MAP()

void CRygWnd::SetMapping(CDC* pDC)
{

CRect clientRect:
GetClientRect(clientRect);
pDC-)SetMapMode(MM_ISOTROPIC);
pDC-)SetWindowExt(1000. 2000);
pDC-)SetViewportExt{clientRect.right. -clientRect.bottom):
pDC-)SetViewportOrg(clientRect.right / 2. clientRect.bottom / 2):·

void CRygWnd::UpdateColor(CDC* pDC. int n)
{

}

if (m_nState == n +1) {
pDC-)SelectObject(&s_bColor[n+1]);

else {
pDC-)SelectObject{&s_bColor[0]);

pDC-)Ellipse{s_rColor[n]);

///

// CRygWnd message handlers

void CRygWnd::OnPaint()
{

i nt .i ;
CPaintDC dc(this); // device context f()rpainting
SetMapping(&dc);
dc.SelectStockObject(DKGRAY~BRUSH);

dc.RoundRect(s_rect. s_point)~

for (i = 0; i< 3; i++) {
UpdateColor{&dc. i);

void CRygWnd::OnLButtonDown(UINT nFlags. CPoint point)

..
// Notification code is HIWORDof wParam. 0 in thi case
GetParent(),..)SendMessage(WM_COMMAND. GetDlgCtrlID().

(LONG) GetSa feHwnd ()): II <0

(continued)

T WEN T Y • 0 N E: Dynamic Link Libraries

Figure 21-2. continued

void CRygWnd::PostNcDestroy()
{

TRACE("CRygWnd::PostNcDestroy\n"):
del~te this; II CWnd::PostNcDestroy does nothing

LRESULT CRygWnd::OnSetState(WPARAM wParam. LPARAM lParam)
{

TRACE("CRygWnd::SetState. wParam = %d\n", wParam);
m_nState = (int) wParam;
Invalidate(FALSE);
return 0L;

LRESULT CRygWnd::OnGetState(WPARAM wParam. LPARAM lParam)
{

TRACE("CRygWnd::GetState\n");
return m_nState;

Revising the Updated EX21 B Example
Adding Code to Test ex21 d.dll

The EX21B program already links to the EX21Aand EX21C DLLs. Now you'll
revise the project to implicitly link to the EX21D custom control.

Here are the steps for updating the EX21B example:

1. Add a new dialog resource and class to \vcpp32\ex21 b\ex21 b.
Use the dialog editor to create the IDD_EX21D template with a custom
control with child window ID IDC_RYG, as shown here:

~,:,.:,.:,.:,.:,:,.:,.:,.:,.:,.:,.:,.: ... :,.: ... : ... : ... :,.: ... : ... :.,:.,:,.:,:.,:.,:.,:.,:.,:.,:,:.,:.,:.,0:.,:.,:.,:.,.: .. : ... :.,:.,:.,:.,:.,:,.:,'.,.:,.:,.:,.:,.:,.:,.:'.:':':'.:'.:'.:.':'.:'.:'.:".: ... : ... :'

Ex21 d Test E'i

'"' '<'" ;": ,.,.,,.,

"dCk'tb.,h~ .. , ,<

Specify RYG as the window class name of the custom control, as shown
on the following page.

535

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

536

Then use ClassWizard to generate a class CTest21dDialog, derived from
CDialog.

2. Edit the Test21 dDialog.h file. Add the following private data member:

enum { OFF. RED. YELLOW. GREEN} m_nState:

Also add the following import and user-defined message IDs:

" .-'

extern "C" __ declspec(dllimport) void Ex21dEntry(): II dummy function
#define RYG_SETSTATE WM_USER + 0
#define RYG_GETSTATE WM_USER + 1

3. Edit the constructor in Test21 dDialog.cpp to initialize the state
data member . . Add the following shaded code:

CTest21dDialog::CTest21dDialog(CWnd* pParent I*=NULL*/)
: CDialog(CTest21dDialog::IDD. pParent)

11{{AFX_DATA_INIT(CTest21dDialog)
II NOTE: the ClassWizard will add member initialization here

II}}AFX_DATA_INIT
m_nState = OFF;
Ex21dEntry();11 Make sure DLL gets loaded

4. Map the control's clicked notification message. You can't use
ClassWizard here, so you must add the message map entry and handler
function in the Test21dDialog.cpp file, as shown here:

, ... " . ,. ~ .,".' . , " . .. " ,

ON_CONTROL{0. IOC_RYG. OnClickedRyg) /I. Notification code Js 0

oi d CTest21dDi a log: : OnCl i ckedRyg ()

switch(m_nState) {

T WEN T Y - 0 N E: Dynamic Link Libraries

case OFF:
m_nState = RED;
break;

case RED:
m_nState YELLOW;
break;

case YELLOW:
m_nState = GREEN;
break;

case GREEN:
m_nState = OFF;
break;

GetDlgltem(IDC_RYG)->SendMessage(RYG_SETSTATE. m_nState);
return;

When the dialog gets the clicked notification message, it sends the
RYG_SETSTATE message back to the control in order to change the
color. Don't forget to add this prototype in the Test21dDialog.h file:

afx_msg void OnClickedRyg();

5. Integrate the CTest21 dDialog class into the EX21 B application.
You'll need to add a second item on the Test menu, an Ex21d DLL op
tion with ID ID_ TEST_EX21DDLL. Use ClassWizard to map this option
to a member function in the CEx21bView class, and then code the han
dler in Ex21bView.cpp as follows:

void CEx21bView::OnTestEx21ddll()
{

CTest21dDialog dlg;
dlg.DoModal();

Of course, you'll have to add the following line to Ex21bView.cpp:

iii ncl ude "Test21dDi al og. h"

6. Add the EX21 D import library to the linker's input library list.
Choose Settings from Developer Studio's Project menu, and then add
\vcPp32\ex21d\Debug\ex21d.lib to the Object/Library Modules control
on the Link page. With this addition, the program should implicitly link
to all three DLLs.

537

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

538

7. Build and test the updated EX21 B application. Choose Ex2ld DLL
from the Test menu. Try clicking the traffic light with the left mouse
button. The traffic-light color should change. The result of clicking the
traffic light several times is shown here:

C HAP T E R TWENTY-TWO

MFC Programs Without
Document or View Classes

The document-view architecture is useful for many applications, but some
times a simpler program structure is sufficient. This chapter illustrates three
applications: a dialog-based program, a Single Document Interface (SDI) pro
gram, and a Multiple Document Interface (MDI) program. None of these
programs uses document, view, or document-template classes, but they all use
command routing and some other MFC library features. The first example is
a standard AppWizard-generated program, but the other two examples are
substantially different. The resource editors and ClassWizard, however, work
well with all three types of programs.

These examples don't have a lot in common, but all use an application
object of a class derived from CWinApp. The examples diverge in the appli
cation class's InitInstance function.

The EX22A Example-A Dialog-Based Application
For many applications, a dialog provides a sufficient user interface. The dia
log window appears straigh taway when the user starts the application. The user
can minimize the dialog window, and as long as the dialog is not system modal,
the user can freely switch to other applications.

In this example, the dialog functions as a simple calculator, as shown in
Figure 22-1 on the following page. ClassWizard takes charge of defining the
class data members and generating the DDX (Dialog Data Exchange) func
tion calls-everything but the coding of the compute function. The appli
cation's resource script, ex22a.rc, defines an icon as well as the dialog.

539

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

540

Figure 22-1.
The EX22A Calculator dialog.

AppWizard gives you the option of generating a dialog-based application.
Here are the steps for building the EX22A example:

1. Run AppWizard to produce \vcpp32\ex22a\ex22a. Select the Dia
log Based option in the AppWizard Step 1 dialog, as shown here:

In the next dialog, enter EX22A Calculator as the dialog title.

2. Edit the IDD_EX22A_DIALOG resource. Refer to Figure 22-1 as a
guide. Use the dialog editor to assign IDs to the controls shown in the
table at the top of the facing page.

Open the Properties dialog box and click on the Styles tab. Select
the System Menu and Minimize Box options.

T WEN TV· TWO: MFC Programs Without Document or View Classes

Control

Left operand edit control

Right operand edit control

Result edit control

First radio button (group property set)

Compute pushbutton

ID

IDC_LEFT

IDC_RIGHT

IDC_RESULT

IDC_OPERA TION

IDC_COMPUTE

3. Use ClassWizard to add member variables and a command
handler. AppWizard has already generated a class CEx22aDlg. Add
the following data members:

ControllD Member Variable Type

IDC_LEFT m_dLeft double

IDC_RIGHT m_dRight double

IDC_RESULT m_dResult double

IDC_OPERATION m_ nOperation int

Add the message handler On Compute for the IDC_ COMPUTE button.

4. Code the OnCompute member function in the ex22aDlg.cpp file.
Add the following shaded code:

void CEx22aDlg::OnComputeC)
(

UpdateData(TRUE);
switch (m_nOperation)
case 0: I I add

m_dResult = m~dLeft + m_dRight;
break;

case 1: I I subt ract
m_dResult = m_dLeft - m_dRight:
break;

case 2: II multiply
m_dResult = m_dLeft * m_dRight;
break;

case 3: /1 divide
if Cm_dRight!= 0.0) (

m_dResult = m_dLeft I m_dRight;
]

(continued)

541

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

else {
AfxMessageBox("Divide by zero");
m_dResult = 0.0;

break:
default:

TRACE("default; m_nOperation = %d\n". m_nOperation);
}

UpdateData(FALSE):

5. Build and test the EX22A application. Notice that the program's
icon appears in the Microsoft Windows 95 taskbar. Verify that you can
minimize the dialog window.

The Application Class Initlnstance Function

542

The critical element of the EX22A application is the CEx22aApp::lnitInstance
function that was generated by AppWizard. A normal InitInstance function
creates a main frame window and returns TRUE, allowing the program's
message loop to run. The EX22A version constructs a modal dialog object, calls
DoModal, and then returns FALSE. This means that the application exits after
the user exits the dialog. The DoModalfunction lets the Windows dialog pro
cedure get and dispatch messages, as it always does. Note that AppWizard does
not generate a call to CWinApp::SetRegistryKey.

Here is the generated InitInstance code from ex22a.cpp:

BOOl CEx22aApp::lnitlnstance()
{

II Standard initialization
II If you are not using these features and wish to reduce the size
II of your final executable, you should remove from the following
II the specific initialization routines you do not need.

f/ifdef _AFXOll
Enable3dControls();

f/else
Enable3dControlsStatic();

f/endif

CEx22aOlg dlg;
m_pMainWnd = &dlg;

II Call

II Call

int nResponse = dlg.OoModal();
if (nResponse == lOOK)
{

this when using MFC ina shared Dll

this when linking to MFC statically

T WEN T V - TWO: MFC Programs Without Document or View Classes

II TODO: Place code here to handle when the dialog is
II dismissed with OK

else if (nResponse == IDCANCEl)

II TODO: Place code here to handle when the dialog is
II dismissed with Cancel

II Since the dialog has been closed. return FALSE so that we exit the
II application. rather than start the application's message pump.
return FALSE:

The Dialog Class and the Program Icon
The generated CEx22aDlg class contains these two message map entries:

ON_WM_PAI NT()
ON_WM_QUERYDRAGICON()

The associated handler functions take care of displaying the application's icon
when the user minimizes the program. This code applies only to Microsoft
Windows NT version 3.51, in which the icon is displayed on the desktop. You
don't need the three handlers for Windows 95 or Windows NT 4.0 because
those versions of Windows display the program's icon directly on the taskbar.

There is some icon code that you do neep. It's in the dialog's handler
for WM_INITDIALOG, which is generated by AppWizard. Notice the two Set
Icon calls in the OnlnitDialog function code below. App Wizard generates code
to add an About box to the System menu if you checked the About box op
tion. m_hIcon is a data member of the dialog class that is initialized in the
constructor.

Baal CEx22aDlg::OnInitDialog()
{

CDialog::OnInitDialog():

II Add "About ... " menu item to system men~.

II IDM_ABOUTBOX must be in the system command range.
ASSERT«IDM_ABOUTBOX & 0xFFF0) == IDM_ABOUTBOX):
ASSERT(IDM_ABOUTBOX < 0xF000):

CMenu* pSysMenu = GetSystemMenu(FAlSE):
if (pSysMenu 1= NUll)
{

(continued)

543

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

CString strAboutMenu;
strAboutMenu.LoadString(IOS_ABOUTBOX);
if (!strAboutMenu.lsEmpty(»
{

pSysMenu->AppendMenu(MF_SEPARATOR);
pSysMenu->AppendMenu(MF_STRING. IOM_ABOUTBOX. strAboutMenu);

II Set the icon for this dialog. The framework does this
II automatically when the application's main window
II is not a dialog
Setlcon(m_hlcon. TRUE);
Setlcon(m_hlcon. FALSE);

II Set big icon
II Set small icon

II TOOO: Add extra initialization here

return TRUE; II return TRUE unless you set the focus to a control

The EX22B Example-An SOl Application

544

This SDI "Hello, world!" example builds on the code you saw way back in
Chapter 2. The application has only one window, an object of a class derived
from CFrameWnd. All drawing occurs inside the frame window, and all mes
sages are handled there. Besides the frame and application classes, here are
the application's important elements:

i.7J A main menu-You can have a Windows-based application without
a menu-you don't even need a resource script. But EX22B has
both. The application framework routes menu commands to mes
sage handlers in the frame class.

i.7J An icon-An icon is useful if the program is to be activated from
Microsoft Windows Explorer. It's also useful when the application's
main frame window is minimized. The icon is stored in the resource,
along with the menu.

m Window close message command handler-Many an application
needs to do special processing when its main window is closed. If
you were using documents, you could override the CDocument::Save
Modified function. Here, to take control of the close process, you
must write message handlers to process close messages sent as a re
sult of user actions and by Windows itself when it shuts down.

T WEN T Y - TWO: MFC Programs Without Document or View Classes

fJ Precompiled headers-Precompiled headers offer such a compile
speed advantage that you can't afford not to use them. This de
mands two extra files in the project (StdMx.h and StdMx.cpp), but
they are short and simple.

fJ Toolbar and status bar-The EX22B application has these, but they
present a problem. They overlap the frame window client area, so
you must account for them if you are painting in the client area.

The EX22B application was originally generated with App Wizard as a
normal SDI application. The document and view classes were removed, and
the application class InitInstance function was modified. If you need an appli
cation such as this, it might be easier to copy the EX22B project and then
change the class names and filenames.

The Application Class Initinstance Function
As in all the examples in this chapter, the InitInstancefunction plays a major
role. Here the function creates a main frame window and displays it. The key
function is CFrameWnd::LoadFrame. It calls Create to create the window, and it
attaches the menu and icon identified by IDlLMAINFRAME. It also attaches
an accelerator table and gets the title string (IDlLMAINFRAME) from the
application's string table. Here is the InitInstance code from ex22b.cpp:

BOOl CEx22bApp::InitInstance()
{

II Standard initialization
II If you are not using these features and wish to reduce the size
II of your final executable, you should remove from the following
II the specific initialization routines you do not need.

IFi fdef _AFXDll
Enable3dControls(); II Call this when using MFC in a shared Dll

/Felse
Enable3dControlsStatic(); II Call this when linking to MFC statically

/Fendif

II Change the registry key under which our settings are stored.
II You should mqdify this string to be something appropriate
II such as the name of your company or organization.
SetRegi stryKey<-T("local AppWi zard-Generated Appl i cati ons"));

CMainFrame* pMainFrame = newCMainFrame:
"i f (.! pMai nFrame~>loadFrame(IDfLMAINFRAME))

return FALSE;

(continued)

545

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

:m~pMai nWnd=. j>Ma i nfr,ame:
m_pMa i nWnd ->ShowWi ndowCm..,..n,CmdS,h9\:1) ;
m_pMainWnd->UpdateWindow();

return TRUE;

The CMainFrame Class
The CMainFrame class is a normal product of AppWizard, with only a few
minor changes. It uses the DECLARE_DYNAMIC and IMPLEMENT_DYNAMIC
macros instead of the DYNCREATE macros, because dynamic creation isn't
necessary. Also, the constructor must be public because we're explicitly con
structing a frame window from the application class. The following message
handlers were added by ClassWizard for the WM_PAINT, WM_CLOSE, and
WM_QUERYENDSESSION messages:

void CMainFrame::OnPaint()
{

CPaintOC dc(this); II device context for painting
.:·~c~:Text'Out(0,5e: ··;;H~.lfo:···wo·rl:di··"j;···

Ii Do not call CFrameWnd::OnPaint() for painting messages

void CMainFrame::OnClose()

J.
if(Af~M~~sageBox("OK.to .2lose·~i ndow1.", . MB_YESNO)

~rr ~,me W ~ d ::,9 n.C l.o.~~. ().;

BOOl CMainFrame::OnQueryEndSession()
{

'"' ~'·"i ~~ ~ ,.,.,~.~,.,

{AfxMessageBox("OK to
return TRUE;

IOYES)C

The EX22C Example-An MOl Application

546

This bare-bones MDI example isn't as simple as the SDI example, EX22B.
Remember from Chapter 17 that an MDI application consists of a main frame
window and one or more child windows. Also, a single MDI client window is
attached to the main frame window but the application framework keeps that
window hidden. If you use EX22C as a prototype, you'll be doing most of your

T WEN T Y - TWO: MFC Programs Without Document or View Classes

programming in a class derived from CMDIChildWnd. Child window objects
can receive and process messages as the frame window object did in the EX22B
example.

The EX22C MDI program doesn't have all the features of a full-blown
document-view MDI application, but it does have these basic elements:

C A main menu-A full-blown MDI application has two (or more)
menus. EX22C has only one menu, and that menu is attached to
the main frame window. The MDI Window submenu (with the
Cascade, Tile, and child selection items) is part of this main menu
structure, but these items (along with the File Close item) are dis
abled when no child windows are present. There is no New Win
dow choice on the Window menu.

C An icon-Every Windows-based program needs an icon. The
EX22C resource script defines two icons-one for the application
and another for the child window.

[rJ Initial child window-Many MDI applications open an empty child
window on startup. EX22C is no exception. If you use EX22C as a
prototype for your own MDI applications, you can easily disable
this feature.

EJ Window close message command handler-MDI window close
logic is more complex than SDI window close logic because of the
many windows involved. Child windows can be closed individually
or as a result of the main frame window's closure. In the EX22C
example, the main frame window sends WM_CLOSE messages to
all child windows and the child window message handlers process
these messages. The Window menu even has a Close All item, a
feature not present in a standard document-view MDI application.

[rJ Precompiled headers-As in the previous examples, EX22C uses
precompiled headers to speed compilation.

[rJ Toolbar and status bar

The EX22C application was originally generated with AppWizard as a
normal MDI application. The document and view classes were removed, and
the application class InitInstance function was modified.

The Application Class Initlnstance Function
The EX22C InitInstance function is identical to the EX22B Initlnstance function
except for a call to create the initial child frame. CMDIFrameWnd::LoadFrame

547

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

attaches the IDR~NFRAME icon and menu. In this application, IDILMAlN
FRAME identifies a complete menu that is identical to the IDILEX22CTYPE
menu. This menu remains attached to the MDI frame window both when it
is empty and when it contains child windows. The Initlnstance code from
ex22c.cpp is shown below:

BOOl CEx22cApp::lnitlnstance()
(

II Standard initialization
II If you are not using these features and wish to reduce the size
II of your final executable. you should remove from the following
II the specific initialization routines you do not need.

/Fifdef _AFXOll
Enable3dControls(); II Call this when using MFC ina shared Oll

/Felse
Enable3dControlsStatic(); II Call this when linking to MFC statically

/Fendif

II Change the registry key under which our settings are stored.
II You should modify this string to be something appropriate
II such as the name of your company or organization.
SetRegistryKey(_T("local AppWizard-Generated Applications"));

II create main MOl Frame window
CMainFrame* pMainFrame = new CMainFrame;
if (!pMainFrame-)loadFrame(IOR_MAINFRAME))

return FALSE;
m_pMainWnd = pMainFrame;

II The main window has been initialized. so show and update it.
pMainFrame-)ShowWindow(m_nCmdShow);
pMainFrame-)UpdateWindow();

pMainFrame~)CreatelnitialChild(~;

return TRUE;

The CMainFrame Class

548

The CMainFrameclass is a normal product of AppWizard, with some changes.
It also has a private integer data member m_nChild, which keeps track of the
child window number for the child window's caption. The following message
handlers were added by ClassWizard for the WM_CLOSE and WM_QUERY
ENDSESSION messages:

T WEN T Y - TWO: MFC Programs Without Document or View Classes

void CMainFrame::OnClose()
{

if (CloseAllChildWindows(»
CMDIFrameWnd::OnClose();

BOOl CMainFrame::OnQueryEndSession()
{

return CloseAllChildWindows();

The following command handlers (and update command VI handler)
were added for the File New and Window Close All menu options. The
LoadFrame function creates a child window. If a maximized child frame is
present, the new child frame is created with the WS_MAXIMlZE style. The
CMDIChildWnd::LoadFramefunction uses the document icon, but it does not
reset the main frame window's menu or set the caption.

void CMainFrame::OnFileNew()
{

BOOl bMaximized = FALSE;
II creates a new child window. maximized if active child is maximized
CChildFrame* pActiveChild = (CChildFrame*) MDIGetActive(&bMaximized);
CChildFrame* pChild = new CChildFrame();
pChild->loadFrame(IDR_EX22CTYPE,

WS_CHIlD I WS_VISIBlE I WS_OVERlAPPEDWINDOW
(bMaximized ? WS_MAXIMIZE : 0), this):

CString strTitle;
strTitle.Format("Child Window %d", m_nChild++);
pChild->SetWindowText(strTitle);

void CMainFrame::OnWindowCloseall()

CloseAllChildWindows();

void CMainFrame::OnUpdateWindowCloseall(CCmdUI* pCmdUI)
{

pCmdUI->Enable(MDIGetActive() 1=:= NULL>;

Finally, a public function is necessary for the InitInstance function to
create the initial child window, and a helper function closes the child windows,
as shown on the following page.

549

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

~ 0 id· .. C M a i n F ram e : : C rea tel n ; t i a 1 Chi 1 d ()
{

OnFileNew(); II Call it here because it's protected

BOOL CMainFrame::CloseAllChildWindows()
{

II returns TRUE if all child windows permit closure
CChildFrame* pChild;
CChildFrame*pPrevChild = NULL;
while «pChild = (CChildFrame*) MDIGetActive(» != NULL) {

if (pChild == pPrevChild) {
return FALSE: II closure not permitted

}

pPrevChild = pChild;
pChild->SendMessage(WM_CLOSE);

return TRUE;

The CChiidFrame Class

550

The CChildFrame class was originally generated by AppWizard. It uses the
DECLARE_DYNAMIC and IMPLEMENT_DYNAMIC macros instead of the
DYNCREATEmacros because dynamic creation isn't necessary. The message
handlers shown here were added by ClassWizard for the WM_PAINT message
and the WM_CLOSE message:

void CChildFrame::OnPaint()
{

CPaintDC dc(thi~); I[device context for painting
dc.TextOut(0 •. 0, "Hello, world!"):
II Do not call CMDIChild::OnPaint() for painting messages

void CChildFrame::OnClose()

if (AfxMessageBox("OK to close window?", MB_YESNO)
CMDIChi ldWnd:: On~l.ose();

IOYES) {

The following command handler was added for the File Close menu
command:

void CChildFrame::OnFileClose()

sendM~SS(lge(Wt-LCLOSE) ;

T WEN T Y - TWO: MFC Programs Without Document or View Classes

For Win32 Programmers
The CMDIChildWnd: :LoadFrame function caUs Ci\1DIChildWnd: : Create,
but Create doesn't create the child frame window directly. It loads a
structure and then sends a WM_MDICREATE message to the MDI
client window (owned by the main frame window). The client window
then creates the child window.

Resource Requirements
Most EX22C resources are the same ones AppWizard generates for a standard
MDI application. However, EX22C has only a single menu resource, IDR
_MAINFRAME.

Custom AppWizards
The EX22B and EX22C projects are logical candidates for custom AppWizards.
See the topic "Creating Custom App Wizards" in the Visual C++ Programmer's
Guide in the InfoView database.

551

PART IV

ACTIVEX: COM,
AUTOMATION,
AND OLE

C HAP T E R TWENTY-THREE

The Component Object Model

The Component Object Model (COM) is the foundation of much of the new
Microsoft ActiveX technology, and it's now an integral part of Microsoft Win
dows. So I've made it an integral part of Inside Visual C++. Soon, most Windows
programming will involve COM, so you'd better start learning it now. But
where do you begin? You could start with the MFC classes for ActiveX Controls,
Automation, and OLE, but those classes, useful as they are, obscure the real
COM architecture. You've got to start with fundamental theory, and that in
cludes COM and something called an interface.

This is the first of five chapters that make up Part IV of this book. Here
you'll get the theory you need for the other four chapters. You'll learn about
interfaces and how the MFC library implements interfaces through its mac
ros and interface maps.

ActiveX Technology Background
The terminology is changing as fast as the technology, and not all groups
within Microsoft can agree on how to use the terms ActiveX and OLE. I think
of ActiveX as something that was created when the "old" OLE collided with
the Internet. It includes not only those Windows features built on COM (which
you'll study in this part of the book) but also the Microsoft Internet Informa
tion Server family and the Winlnet programming interface (covered in Part VI) .

. Yes, OLE is still here, but now it stands for Object Linking and Embed
ding again,just as it did in the days of OLE 1. It'sjust another subset of ActiveX
technology that includes such odds and ends as drag and drop. Unfortunately
(or fortunately, if you have existing code), the MFC source code and the
Windows API have not kept current with the naming conventions. As a result,
you'll see lots of occurrences of "OLE" and "Ole" in class names and function

555

PAR T I V: ACTIVEX: COM, AUTOMATION, AND OLE

names, even though some of those classes and functions go beyond linking
and embedding. In this part of the book, you might notice references to the
"server" in the code generated by App Wizard. Microsoft has now reserved this
term for database servers and Internet servers; "component" is the new term
for OLE servers.

Bookstore computer sections are now full of books on OLE, COM, and
ActiveX. I don't claim to offer those books' level of detail here, but you should
come away with at least a pretty good understanding of COM theory. I've in
cluded a closer connection to the MFC library classes than you'll see in other
books. The net result should be good preparation for the really heavy-duty
ActiveX/COM books, including Kraig Brockschmidt's Inside OLE, 2d ed.
(Microsoft Press, 1995), and Don Box's Creating Components Using DCOM and
C++ (Addison Wesley, 1997). A good midlevel book is Dale Rogerson's Inside
COM (Microsoft Press, 1997).

One more thing. Don't expect this stuff to be easy. Kraig Brockschmidt
reported "six months of mental fog" before he started understanding the
concepts. A thorough knowledge of the C++ language is the minimum pre
requisite. Don't be afraid to dig in and write code. Make sure you can do the
easy things before getting into advanced areas like multithreaded COM, cus
tom marshaling, and distributed COM (DCOM).

The Component Object Model
COM is an "industry-standard" software architecture supported by Microsoft,
Digital Equipment, and many other companies. It's by no means the only
standard. Indeed, it competes directly against other standards, such as Open
Doc and System Object Model (SaM), which are supported by Apple and IBM.
Some people are working to establish interoperability between COM and other
architectures, but my guess is that COM will become the leading standard.

The Problem That COM Solves

556

The "problem" is that there's no standard way for Windows program modules
to communicate with one another. "But," you say, "what about the DLL with
its exported functions, Dynamic Data Exchange (DDE), the Windows Clip
board, and the Windows API itself, not to mention legacy standards such as
VBX and OLE I? Aren't they good enough?" Well, no. You can't build an
object-oriented operating system for the future out of these ad hoc, unrelated
standards. With the Component Object Model, however, you can, and that's
precisely what Microsoft is doing.

T WEN T Y • T H R E E: The Component Object Model

The Essence of COM
What's wrong with the old standards? Lots. The Windows API has too large a
programming "surface area"-more than 350 separate functions. VBXs don't
work in the 32-bit world. With DDE, there's a complicated system of applica
tions, topics, and items. How you call a DLL is totally application-specific. COM
provides a unified, expandable, object-oriented communications protocol for
Windows that already supports the following features:

EJ A standard, language-independent way for a Win32 client EXE to
load and call a Win32 DLL

13 A general-purpose way for one EXE to control another EXE on the
same computer (the DDE replacement)

13 A replacement for the VBX control, called an ActiveX control

13 A powerful new way for application programs to interact with the
operating system

C Expansion to accommodate new protocols such as Microsoft's OLE
DB database interface

13 The newly released distributed COM (DCOM) that allows one
EXE to communicate with another EXE that resides on a different
computer, even if the computers use different microprocessor-chip
families

So what is COM? That's an easier question to ask than to answer. COM
is a protocol that connects one software module with another and then drops
out of the picture. Mter the connection is made, the two modules can com
municate through a mechanism called an interface. Interfaces require no
statically or dynamically linked entry points or hard-coded addresses other
than the few general-purpose COM functions that get the communication
process started. An interface (more precisely, a COM interface) is a term that
you'll be seeing a lot of. Follow along, and you'll begin to understand what
an interface is.

What Is a COM Interface?
I'll use a planetary-motion simulation (suitable for NASA or Nintendo) to illus
trate C++ inheritance and polymorphism. Imagine a spaceship that travels
through our solar system under the influence of the sun's gravity. In ordinary
C++, you could declare a CSpaceship class and write a constructor that sets the
spaceship's initial position and acceleration. Then you could write a nonvirtual

557

PA R T I V: ACTIVEX: COM, AUTOMATION, AND OLE

558

member function named Fly that implemented Kepler's laws to model move
ment of the spaceship from one position to the next-say, over a period of 0.1
second. You could also write a Display function that painted an image of the
spaceship in a window.

If we think of this example within the context of COM, the spaceship
code could generate a separate EXE or DLL (the component), which is a COM
module. The simulation manager (the client program) can't call Fly or any
CSpaceship constructor directly because COM provides only a standard global
function to gain access to the spaceship object. Before we tackle real COM,
let's build a "COM simulation" in which both the component and the client
code are statically linked in the same EXE file. For our standard global func
tion, we'll invent a function named GetClassObject, with the following three
parameters:

BOOl GetClassObject(int nClsid. int nIid. void** ppvObj):

The first Get Class Object parameter, nClsid, is a 32-bit integer that uniquely
identifies the CSpaceship class. The second parameter, nIid, is the unique iden
tifier of the interface that we want, and the third parameter is a pointer to the
class object. The function returns TRUE if the call was successful.

Now let's back up to the design of CSpaceship. We haven't talked about
spaceship interfaces yet. A COM interface is a C++ base class (actually, a C++
struct) that declares a group of pure virtual functions. These functions com
pletely control some aspect of derived class behavior. For CSpaceship, let's write
an interface named IMotion, which controls the spaceship object's position.
For simplicity's sake, we'll declare just two functions, Fly and GetPosition, and
we'll keep things simple by making the position value an integer. The Fly func
tion calculates the position of the spaceship, and the GetPosition function returns
a reference to the current position. Here are the declarations:

struct IMotion
{

virtual void Fly() = 0:
virtual int& GetPosition() 0;

} :

class CSpaceship public IMotion

protected:
i nt m_n Pos it ion;

public:

} ;

CSpaceship() { m_nPosition = 0; }
void Fly();
int& GetPosition() { return m_nPosition;

T WEN T Y - T H R E E: The Component Object Model

The actual code for the spaceship-related functions, including GetClass
Object, is located in the component part of the program. The client part calls
the Get Class Object function to construct the spaceship and to obtain an IMotion
pointer. Both parts have access to the IMotion declaration at compile time.
Here's how the client calls GetClassObject.

IMotion* pMot;
GetClassObject(CLSID_CSpaceship. IID_IMotion. (void**) &pMot);

Assume for the moment that COM can use the unique integer identifiers
CLSID_ CSpaceship and IID_IMotion to construct a spaceship object instead of
some other kind of 0 bj ect. If the call is successful, pMot poin ts to a CSpaceship
object that Get Class Object somehow constructs. As you can see, the CSpaceship
class implements the Fly and GetPosition functions, and our main program can
call them for the one particular spaceship object, as shown here:

int nPos = 50;
pMot->GetPosition() = nPos;
pMot->Fly() ;
nPos = pMot->GetPosition();
TRACE("new position = %d\n". nPos);

Now the spaceship is off and flying, and we're controlling it entirely
through the pMot pointer. Notice that pMot is technically not a pointer to a
CSpaceship object, but in this case, a CSpaceship pointer and an IMotion pointer
are the same because CSpaceship is derived from IMotion. You can see how the
virtual functions work here: it's classic C++ polymorphism.

Let's make things a little more complex by adding a second interface,
IVisual, that handles the spaceship's visual representation. One function is
enough-Display. Here's the whole base class:

struct IVisual
{

virtual void Display() = 0;
} ;

Are you getting the idea that COM wants you to associate functions in
groups? (You're not imagining it.) But why? Well, in your space simulation,
you probably want to include other kinds of objects in addition to spaceships.
Imagine that the IMotion and IVisual interfaces are being used for other classes.
Perhaps a CSun class has an implementation of IVisual but does not have an
implementation of IMotion, and perhaps a CSpaceStation class has other inter
faces as well. If you "published" your IMotion and IVisual interfaces, perhaps
other space simulation software companies would adopt them. Or perhaps
they wouldn't.

559

PAR T I V: ACTIVEX: COM, AUTOMATION, AND OLE

560

Think of an interface as a contract between two software modules. The
idea is that interface declarations never change. If you want to upgrade your
spaceship code, you don't change the IMotion or the !Visual interface; rather,
you add a new interface, such as ICrew. The existing spaceship clients can
continue to run with the old interfaces, and new client programs can use the
new ICrew interface as well. These client programs can find out, at runtime,
which interfaces a particular spaceship software version supports.

Consider the GetClassObject function as a more powerful alternative to the
C++ constructor. With the ordinary constructor, you obtain one object with one
batch of member functions. With the GetClassObject function, you obtain the
object plus your choice ofinterfaces. As you'll see later, you start with one inter
face and then use that interface to get other interfaces to the same object.

So how do you program two interfaces for CSpaceship?You could use C++
multiple inheritance, but that wouldn't work if two interfaces pad the same
member function name. The MFC library uses nested classes instead. Not all
C++ programmers are familiar with nested classes, so I'll offer a little help.
Here's a first cut at nesting interfaces within the CSpaceship class:

class CSpaceship
{

protected:
i nt m_nPositi on:
int m_nAcceleration:
int m_nColor:

public:

} :

CSpaceship()
{ m_nPosition = m_nAcceleration m_nColor 0:}

class XMotion : public IMotion
{

public:
XMot ion () { }
virtual void Fly():
virtual int& GetPosition():

} m_xMotion:

class XVisual
{

public:

public IVisual

XVisual() { }
virtual void Display():

m_xVisual:

friend class XVisual:
friend class XMotion:

T WEN T Y - T H R E E: The Component Object Model

NOT E : It might make sense to make m_nAcceleration a data mem
ber of XMotion and m_nColor a data member of XVisual. We'll make
them data members of CSpaceship because that strategy is more
compatible with the MFC macros, which you'll see later.

Notice that the implementations of IMotion and !Visual are contained
within the "parent" CSpaceship class. Be aware that m_xMotion and m_xVisual
are really embedded data members of CSpaceship. Indeed, you could have
implemented CSpaceship strictly with embedding. Nesting, however, brings to
the party these two things: nested class member functions can access parent
class data members without the need for CSpaceship pointer data members, and
the nested classes are neatly packaged along with the parent and are invisible
outside the parent. Look at the following code for the GetPosition member
function:

int& CSpaceship::XMotion::GetPosition()
{

METHOD_PROLOGUE(CSpaceship, Motion) II makes pThis
return pThis->m_nPosition;

Notice also the double scope resolution operators, which are necessary
for nested class member functions. METHOD_PROLOGUE is a one-line MFC
macro that uses the C offsetoj operator to retrieve the offset used in generat
ing a this pointer to the parent class, pThis. The compiler always knows the
offset from the beginning of parent class data to the beginning of nested class
data. GetPosition can thus access the CSpaceship data member m_nPosition.

Now suppose you have two interface pointers, pMot and pVis, for a par
ticular CSpaceship object. (Don't worry yet about how you got the pointers.)
You can call interface member functions in the following manner:

pMot->Fly() ;
pVis->Display();

What's happening under the hood? In C++, each class (at least, each class
that has virtual functions and is not an abstract base class) has a virtual func
tion table, which is otherwise known as a vtable. In this example, that means
there are vtables for CSpaceship::XMotion and CSpaceship::XVisual. For each
object, there's a pointer to the object's data, the first element of which is a
pointer to the class's vtable. The pointer relationships are shown on the fol
lowing page.

561

PA R T I V: ACTIVEX: COM, AUTOMATION, AND OLE

CSpaceship object

pMot

pVis

NOTE: Theoretically, it's possible to program COM in C. If you
look at the Windows header files, you'll see code such as this:

#ifdef __ cplusplus
II C++-specific headers

#else
1* C-specific headers *1

#endif

In C++, interfaces are declared as C++ structs, often with inheri
tance; in C, they're declared as C typedeJstructswith no inheritance.
In C++, the compiler generates vtables for your derived classes; in C,
you must "roll your own" vtables, and that gets tedious. It's impor
tant to realize, however, that in neither language do the interface
declarations have data members, constructors, or destructors. There
fore, you can't rely on the interface having a virtual destructor-but
that's not a problem because you never invoke a destructor for an
interface.

The IUnknown Interface and the Querylnterface Member Function
Let's get back to the problem of obtaining your interface pointers in the first
place. COM declares a special interface named IUnknownfor this purpose. As
a matter of fact, all interfaces are derived from IUnknown, which has a pure
virtual member function, Querylnterface, that returns an interface pointer based
on the interface ID you feed it. All this assumes that you have one interface
pointer to start with, either an IUnknown pointer or a pointer to a derived
interface such as IMotion. Here is the new interface hierarchy, with IUnknown
at the top:

562

T WEN T Y - T H R E E The Component Object Model

struct IUnknown
{

virtual BOOl QueryInterface(int nIid. void** ppvObj) 0:
} :

struct IMotion : public IUnknown
{

virtual void Fly() = 0:
virtual int& GetPosition() 0:

} :

struct IVi sual : publ i c IUnknown
{

virtual void Display() = 0:
} :

To satisfy the compiler, we must now add Querylnterfaceimplementations
in both CSpaceship::XMotion and CSpaceship::XVisual. What do the vtables look
like after this is done? For each derived class, the compiler builds a vtable with
the base class function pointers on top, as shown here:

CSpaceship: :XMotion vtable

Querylnterface function pointer

Flyfunction pointer

GetPosition function pointer

CSpaceship::XVisual vtable

Querylnterface function pointer

Display function pointer

GetClassObject can get the interface pointer for a given CSpaceship object by
getting the address of the corresponding embedded object. Here's the code
for the Querylnterface function in XMotion:

BOOl CSpaceship::XMotion::QueryInterface(int nIid.

METHOD_PROlOGUE(CSpaceship. Motion)
switch (nIid) {
case IID_IUnknown:
case IID_IMotion:

*ppvObj = &pThis-)m_xMotion:
break:

case IID_IVisual:
*ppvObj = &pThis->m_xVisual:
break:

voi d** ppvObj)

(continued)

563

PAR T I V: ACTIVEX: COM, AUTOMATION, AND OLE

564

default:
*ppvObj = NUll;
return FALSE;

return TRUE;

Because IMotion is derived from IUnknown, an IMotion pointer is a valid pointer
if the caller asks for an IUnknown pointer.

NOT E : The COM standard demands that Querylnterface return
exactly the same IUnknown pointer value for IID_IUnknown, no
matter which interface pointer you start with. Thus, if two IUnknown
pointers match, you can assume that they refer to the same object.

Below is a GetClassObject function that uses the address of m_xMotion to
obtain the first interface pointer for the newly constructed CSpaceship object:

BOOl GetClassObject(int& nClsid. int& nlid.
void** ppvObj)

ASSERT(nClsid == ClSID_CSpaceship);
CSpaceship* pObj = new CSpaceship();
IUnknown* pUnk = &pObj->m_xMotion;
return pUnk->Ouerylnterface(nlid. ppvObj);

Now your client program can call Querylnterface to obtain an !Visual
pointer, as shown here:

IMotion* pMot;
IVisual* pVis;
GetClassObject(ClSID_CSpaceship. IID_IMotion. (void**) &pMot);
pMot->Fly() ;
pMot->Ouerylnterface(IID_IVisual. (void**) &pVis);
pVis->Display();

Notice that the client uses a CSpaceship object, but it never has an actual
CSpaceship pointer. Thus, the client cannot directly access CSpaceship data
members, even if they're public. Notice also that we haven't tried to delete the
spaceship object yet-that comes soon.

There's a special graphical representation for interfaces and COM
classes. Interfaces are shown as small circles (or jacks) with lines attached to
their class. The IUnknown interface, which every COM class supports, is at the
top, and the others are on the left. The CSpaceship class can be represented
like this:

T WEN T Y - T H R E E: The Component Object Model

I Visual 0-
IMotiono-

lunknOWn?

CSpaceship

Reference Counting: The AddRef and Release Functions
COM interfaces don't have virtual destructors, so it isn't cool to write a state
ment such as this:

delete pMot; II Don't do this

COM has a strict protocol for deleting objects; the two other IUnknown virtual
functions, AddRefand Release, are the key. Each COM class has a data member
m_dwRef, in the MFC library-that keeps track of how many "users" an object
has. Each time the component program returns a new interface pointer (as
in Querylnterface), the program calls AddRef, which increments m_dwRef When
the client program is finished with the pointer, it calls Release. When m_dwRef
goes to 0, the object destroys itself. Here's an example of a Release function
for the CSpaceship::XMotion class:

DWORD CSpaceship::XMotion::Release()
{

METHOD_PROLOGUE(CSpaceship. Motion) II makes pThis
if (pThis->m_dwRef == 0)

return 0;
if (--pThis->m_dwRef == 0)

delete pThis; II the spaceship object
return 0;

return pThis->m_dwRef;

In MFC COM-based programs, the object's constructor sets m_dwRef to 1. This
means that it isn't necessary to call AddRef after the object is first constructed.
A client program should call AddRef, however, if it makes a copy of an interface
pointer.

Class Factories
Object-oriented terminology can get a little fuzzy sometimes. Small talk pro
grammers, for example, talk about "objects" the way C++ programmers talk
about "classes." The COM literature often uses the term "component object"
to refer to the object plus the code that's associated with it. What COM calls

565

PAR T I V: ACTIVEX: COM, AUTOMATION, AND OLE

566

a "class factory" is really an "object factory." A class factory is a class that sup
ports a special COM interface named IClassFactory. This interface, like all
interfaces, is derived from IUnknown. IClassFactory's principal member func
tion is Createlnstance, which in our COM simulation is declared like this:

virtual BOOl CreateInstance(int& nIid, void** ppvObj) = 0:

Why use ~ class factory? We've already seen that we can't call the target
class constructor directly; we have to let the component module decide how
to construct objects. The component provides the class factory for this pur
pose and thus encapsulates the creation step, as it should. Locating and
launching component modules, and thus establishing the class factory, is
expensive, but constructing objects with Createlnstance is cheap. We can, there
fore, allow a single class factory to create multiple objects.

What does all this mean? It means that we screwed up when we let
GetClassObject construct the CSpaceship object directly. We were supposed to
construct a class factory object and then call Createlnstance to cause the class
factory (object factory) to construct the actual spaceship object.

Let's do things the right way. First we declare a new class, CSpaceship
Factory. To keep things simple, we'll derive the class from IClassFactory so that
we don't have to deal with nested classes, and in addition, we'll add the code
that tracks references:

struct IClassFactory : public IUnknown
(

virtual BOOl CreateInstance(int& nIid, void** ppvObj) 0:
} :

class CSpaceshipFactory public IClassFactory

private:
DWORD m_dwRef:

public:

} :

CSpaceshipFactory() (m_dwRef = 1: }
II IUnknown functions
virtual BOOl QueryInterface(int& nIid,

void** ppvObj):
virtual DWORD AddRef():
virtual DWORD Release():
II IClassFactory function
virtual BOOl CreateInstance(int& nIid,

voi d** ppvObj):

T WEN T Y - T H R E E: The Component Object Model

Next we write the CreateInstance member function:

BOOl CSpaceshipFactory: :CreateInstance(int& nIid, void** ppvObj)
(

CSpaceship* pObj = new CSpaceship();
IUnknown* pUnk = &pObj-)m_xMotion;
return pUnk-)OueryInterface(nIid, ppvObj);

Finally, here's the new Get Class Object function, which constructs a class factory
object and returns an IClassFactory interface pointer:

BOOl GetClassObject(int& nClsid, int& nIid,
voi d** ppvObj)

ASSERT(nClsid == ClSID_CSpaceship);
ASSERT«nIid == IID_IUnknown) I I (nIid == IID_IClassFactory»;
CSpaceshipFactory* pObj = new CSpaceshipFactory();
ppObj = pObj; II IUnknown = IClassFactory* = CSpaceship*

The CSpaceship and CSpaceshipFactory classes work together and share the
same class ID. Now the client code looks like this (without error-checking logic):

IMotion* pMot;
IVisual* pVis;
IClassFactory* pFac;
GetClassObject(ClSID_CSpaceship, IID_IClassFactory, (void**) &pFac);
pFac-)CreateInstance(IID_IMotion, &pMot);
pMot-)OueryInterface(IID_IVisual, (void**) &pVis);
pMot-)Fly() ;
pVis-)Display();

Notice that the CSpaceshipFactory class implements the AddRef and Release func
tions. It must do this because AddRef and Release are pure virtual functions in
the IUnknown base class. We'll start using these functions in the next iteration
of the program.

The CCmdTarget Class
We're still a long way from real MFC COM-based code, but we can take one
more step in the COM simulation before we switch to the real thing. As you
might guess, some code and data can be "factored out" of our spaceship COM
classes into a base class. That's exactly what the MFC library does, and the base
class is CCmdTarget, the standard base class for document and window classes.

567

PAR T I V: ACTIVEX: COM, AUTOMATION, AND OLE

CCmdTarget, in turn, is derived from CObject. We'll use CSimulatedCmdTarget
instead, and we won't put too much in it-only the reference-counting logic
and the m_dwRef data member. The CSimulatedCmdTarget functions External
AddRefandExternalRelease can be called in derived COM classes. Because we're
using CSimulatedCmdTarget, we'll bring CSpaceshipFactory in line with CSpaceship,
and we'll use a nested class for the IClassFactory interface.

We can also do some factoring out inside our CSpaceship class. The
QueryInterface function can be "delegated" from the nested classes to the outer
class helper function ExternalQueryInterface, which calls ExternalAddRef Each
QueryInterface function, then, increments the reference count, but Create
Instance calls ExternalQueryInterface, followed by a call to ExternalRelease. When
the first interface pointer is returned by CreateInstance, the spaceship object
has a reference count of l. A subsequent QueryInterface call increments the
count to 2, and in this case, the client must call Release twice to destroy the
spaceship object.

One last thing-we'll make the class factory object a global object. That
way we won't have to call its constructor. When the client calls Release, there
is no problem because the class factory's reference count is 2 by the time the
client receives it. (The CSpaceshipFactory constructor sets the reference count
to 1, and ExternalQueryInterface, called by GetClassObject, sets the count to 2.)

The EX23A Example-A Simulated COM

568

Figures 23-1, 23-2, 23-3, and 23-4 show code for a working "simulated COM"
program, EX23A. This is a Win32 command-line program (without the MFC
library) that uses a class factory to construct an object of class CSpaceship, calls
its interface functions, and then releases the spaceship. The Interface.h header
file, shown in Figure 23-1, contains the CSimulatedCmdTarget base class and the
interface declarations that are used by both the client and component pro
grams. The Spaceship.h header file that's shown in Figure 23-2 contains the
spaceship-specific class declarations that are used in the component pro
gram. Spaceship.cpp, shown in Figure 23-3, is the component that imple
ments GetClassObject; and Client.cpp, shown in Figure 23-4, is the client that
calls GetClassObject. What's phony here is that both client and component code
are linked within the same ex23a.exe program. Thus, our simulated COM
is not required to make the connection at runtime. (You'll see how that's done
later in this chapter.)

T WEN T Y • T H R E E: The Component Object Model

INTERFACE.H

II definitions that make our code look like MFC code
f/defi ne BOOl i nt
f/define DWORD unsigned int
f/define TRUE 1
f/define FALSE 0
f/define TRACE printf
f/define ASSERT assert
II----------definitions and macros-----------------------------------
f/define ClSID_CSpaceship 10
f/define IID_IUnknown 0
f/define IID_IClassFactory 1
f/define IID_IMotion 2
f/define IID_IVisual 3

II this macro for 16-bit Windows only
f/define METHOD_PROlOGUE(theClass. localClass) \

theClass* pThis = «theClass*)«char*)(this) - \
offsetof(theClass. m_xf/f/localClass»): \

BOOl GetClassObject(int nClsid. int nIid. void** ppvObj):

II----------interface declarations----------------------------------
struct IUnknown
(

} ;

IUnknown() (TRACE("Entering IUnknown ctor %p\n". this): }
virtual BOOl QueryInterface(int nIid. void** ppvObj) = 0:
virtual DWORD Release() = 0:
virtual DWORD AddRef() = 0:

struct IClassFactory public IUnknown
(

} :

ICl assFactory()
(TRACE("Entering IClassFactory ctor %p\n". this):

virtual BOOl CreateInstance(int nIid. void** ppvObj) = 0:

struct IMotion : public IUnknown
(

} ;

IMotion() (TRACE("Entering IMotion ctor %p\n". this): }
virtual void Fly() = 0: II pure
virtual int& GetPosition() = 0;

Figure 23-1. (continued)

The Interface. h file.

569

PAR T I V: ACTIVEX: COM, AUTOMATION, AND OLE

570

Figure 23-1. continued

struct IVisual : public IUnknown
{

} ;

IVisual() { TRACE("Entering IVisual ctor %p\n". this); }
virtual void Display() = 0;

class CSimulatedCmdTarget II 'simulated' CSimulatedCmdTarget
{

public:
DWORD m_dwRef;

protected:
CSimulatedCmdTarget()

TRACE("Entering CSimulatedCmdTarget ctor %p\n". this);
m_dwRef = 1; II implied first AddRef

virtual -CSimulatedCmdTarget()
{ TRACE("Entering CSimulatedCmdTarget dtor %p\n". this); }

DWORD ExternalRelease() {
TRACE("Entering CSimulatedCmdTarget::ExternalRelease--RefCount \

} ;

%ld\n". m_dwRef);
if (m_dwRef == 0)

return 0;
if(--m_dwRef == 0l)

TRACE("deleting\n");
delete this;
return 0;

return m_dwRef;

DWORD ExternalAddRef() { return ++m_dwRef; }

SPACESHIP.H
class CSpaceship;

II----------class declarations--
class CSpaceshipFactory : public CSimulatedCmdTarget
{

public:
CSpaceshipFactory()

{ TRACE("Entering CSpaceshipFactory ctor %p\n". this); }

Figure 23-2. (continued)

The Spaceship.h file.

T WEN T Y - T H R E E: The Component Object Model

Figure 23-2. continued

-CSpaceshipFactory()

} :

(TRACE("Entering CSpaceshipFactory dtor %p\n". this):
BOOl ExternalOuerylnterface(int lRid. void** ppvObj):
class XClassFactory : public IClassFactory
(

public:
XClassFactory()

(TRACE("Entering XClassFactory ctor %p\n". this):
virtual BOOl Ouerylnterface(int lRid. void** ppvObj):
virtual DWORD Release():
virtual DWORD AddRef():
virtual BOOl Createlnstance(int lRid. void** ppvObj):

m_xClassFactory;
friend class XClassFactory:

class CSpaceship public CSimulatedCmdTarget

private:
int m_nPosition: II We can access these from

II all the interfaces
int m_nAcceleration:
int m_nColor:

public:
CSpaces hi p () (

TRACE("Entering CSpaceship ctor %p\n". this):
m_nPosition = 100:
m_nAcceleration = 101:
m_nColor = 102:

-CSpaceship()
(TRACE("Entering CSpaceship dtor %p\n". this): }

BOOl ExternalOuerylnterface(int lRid. void** ppvObj):
class XMotion : public IMotion
(

public:
XMotion()

(TRACE("Entering XMotion ctor %p\n". this): }
virtual BOOl Ouerylnterface(int lRid. void** ppvObj);
virtual DWORD Release();
virtual DWORD AddRef():
virtual void Fly();
virtual int& GetPosition():

m_xMotion;

(continued)

571

PAR T I V: ACTIVEX: COM, AUTOMATION, AND OLE

572

Figure 23-2. continued

class XVisual public IVisual

} ;

(

public:
X Vis u a 1 () { T RA C E (" En t e r i n 9 X Vis u a 1 c tor \ n "); }
virtual BOOl Querylnterface(int lRid. void** ppvObj);
virtual DWORD Release();
virtual DWORD AddRef();
virtual void Display();

friend class XVisual; II These must be at the bottom!
friend class XMotion;
friend class CSpaceshipFactory::XClassFactory;

SPACESHIP.CPP

#include <stdio.h>
#include <stddef.h> II for offsetof in METHOD_PROLOGUE
#include <ASSERT.h>
#include "Interface.h"
#include "Spaceship.h"

CSpaceshipFactory g_factory;

II----------member functions--
BOOl CSpaceshipFactory::ExternalQuerylnterface(int nlid.

voi d** ppvObj) (
TRACE("Entering CSpaceshipFactory::ExternalQuerylnterface--nlid \

%d\n". nlid);
switch (nlid) (
case IID_IUnknown:
case IID_IClassFactory:

*ppvObj = &m_xClassFactory;
break;

default:
*ppvObj = NUll;
return FALSE;

ExternalAddRef();
return TRUE;

Figure 23-3.
The Spaceship. cpp file.

(continued)

TWENTY-THREE The Component Object Model

Figure 23-3. continued

BOOl CSpaceshipFactory::XClassFactory::OueryInterface(int nIid.
voi d** ppvObj)

TRACE("Entering CSpaceshipFactory::XClassFactory::\
OueryInterface--nIid = %d\n". nIid);

METHOD_PROlOGUE(CSpaceshipFactory. ClassFactory) II makes pThis
return pThis->
ExternalOueryInterface(nlid. ppvObj); II delegate to

II CSpaceshipFactory

BOOl CSpaceshipFactory::XClassFactory::CreateInstance(int nIid.
voi d** ppvObj)

TRACE("Entering CSpaceshipFactory: :XClassFactory: :CreateInstance\n");
METHOD_PROlOGUE(CSpaceshipFactory. ClassFactory) II makes pThis
CSpaceship* pObj = new CSpaceship();
if (pObj->ExternalOueryInterface(nIid. ppvObj» (

pObj->ExternalRelease(); II balance reference count
return TRUE;

return FALSE;

DWORD CSpaceshipFactory::XClassFactory::Release() (
TRACE("Entering CSpaceshipFactory::XClassFactory::Release\n");
METHOD_PROlOGUE(CSpaceshipFactory. ClassFactory) II makes pThis
return pThis->ExternalRelease(); II delegate to CSimulatedCmdTarget

DWORD CSpaceshipFactory::XClassFactory::AddRef() (
TRACE("Enteri ng CSpaceshi pFactory: : XCl assFactory: : AddRef\n") ;
METHOD_PROlOGUE(CSpaceshipFactory. ClassFactory) II makes pThis
return pThis->ExternalAddRef(); II delegate to CSimulatedCmdTarget

BOOl CSpaceship::ExternalOueryInterface(int nIid. void** ppvObj)
TRACE("Entering CSpaceship: :ExternalOueryInterface--nIid

%d\n". nlid);
switch (nlid) (
case IID_IUnknown:
case IID_IMotion:

*ppvObj = &m_xMotion; II Both IMotion and IVisual are derived
break; II from IUnknown. so either pointer will do

(continued)

573

PAR T I V: ACTIVEX: COM, AUTOMATION, AND OLE

574

Figure 23-3. continued

case IID_IVisual:
*ppvObj = &m_xVisual:
break;

default :
*ppvObj = NUll;
return FALSE;

ExternalAddRef();
return TRUE;

BOOl CSpaceship::XMotion::Ouerylnterface(int nlid. void** ppvObj) {
TRACE("Entering CSpaceship::XMotion::Ouerylnterface--nlid = \

%d\n". nlid);
METHOD_PROlOGUE(CSpaceship. Motion) II makes pThis
return pThis->ExternalOuerylnterface(nlid. ppvObj); II delegate to

II CSpaceshi p

DWORD CSpaceship::XMotion::Release() {
TRACE("Entering CSpaceship::XMotion::Release\n");
METHOD_PROlOGUE(CSpaceship. Motion) II makes pThis
return pThis->ExternalRelease(); II delegate to CSimulatedCmdTarget

DWORD CSpaceship: :XMotion::AddRef() {
TRACE("Entering CSpaceship::XMotion::AddRef\n");
METHOD_PROlOGUE(CSpaceship. Motion) II makes pThis
return pThis->ExternalAddRef(); II delegate to CSimulatedCmdTarget

void CSpaceship::XMotion::Fly() {
TRACE("Entering CSpaceship::XMotion::Fly\n");
METHOD_PROlOGUE(CSpaceship. Motion) II makes pThis
TRACE("this = %p. pThis = %p\n". this. pThis);
TRACE("m_nPosition = %d\n". pThis->m_nPosition);
TRACE("m_nAcceleration = %d\n". pThis->m_nAcceleration);

int& CSpaceship::XMotion::GetPosition() {
TRACE("Entering CSpaceship::XMotion::GetPosition\n");
METHOD_PROlOGUE(CSpaceship. Motion) II makes pThis
TRACE("this = %p. pThis = %p\n". this. pThis);

(continued)

T WEN T Y - T H R E E: The Component Object Model

Figure 23-3. continued

TRACE("m_nPosition = %d\n", pThis->m_nPosition):
TRACE("m_nAcceleration = %d\n", pThis->m_nAcceleration):
return pThis->m_nPosition:

BOOl CSpaceship::XVisual ::Ouerylnterface(int nIid, void** ppvObj) (
TRACE("Entering CSpaceship::XVisual::OueryInterface--nIid \

%d\n", nlid):
METHOD_PROlOGUE(CSpaceship. Visual) II makes pThis
return pThis-)ExternalOuerylnterface(nlid, ppvObj): II delegate to

II CSpaceshi p

DWORD CSpaceship::XVisual::Release() (
TRACE("Entering CSpaceship::XVisual ::Release\n"):
METHOD_PROlOGUE(CSpaceship, Visual) II makes pThis
return pThis-)ExternalRelease(): II delegate to CSimulatedCmdTarget

DWORD CSpaceship::XVisual ::AddRef() (
TRACE("Entering CSpaceship: :XVisual ::AddRef\n"):
METHOD_PROlOGUE(CSpaceship, Visual) II makes pThis
return pThis-)ExternalAddRef(): II delegate to CSimulatedCmdTarget

void CSpaceship: :XVisual: :Display() (
TRACE("Enteri ng CSpaceshi p: : XVi sual : : Di spl ay\n"):
METHOD_PROlOGUE(CSpaceship, Visual) II makes pThis
TRACE("this = %p, pThis = %p\n", this, pTh;s):
TRACE("m_nPosition = %d\n", pThis->m_nPosition):
TRACE("m_nColor = %d\n", pThis-)m_nColor):

II----------simulates COM component ----------------------------------
II In real COM, this would be DllGetClassObject, which would be called
II whenever a client called CoGetClassObject

BOOl GetClassObject(int nClsid, int nlid, void** ppvObj)
(

ASSERT(nClsid == C~SID_CSpaceship):
ASSERT«nlid == IID_IUnknown) I I (nlid == IID_IClassFactory»;
return g_factory.ExternalOuerylnterface(nlid, ppvObj):
II Refcount is 2, which prevents accidental deletion

(continued)

575

PAR T I V: ACTIVEX: COM, AUTOMATION, AND OLE

576

CLlENT.CPP

#include <stdio.h>
#include <stddef.h> II for offsetof in METHOD_PROLOGUE
#include <assert.h>
#include "interface.h"

II----------main program---
int main() II simulates OLE client program

TRACE("Entering client main\n");
IUnknown* pUnk; II If you declare these void*. you lose type-safety
IMotion* pMot;
IVisual* pVis;
IClassFactory* pClf;

GetClassObject(CLSID_CSpaceship. IID_IClassFactory.
(void**) &pClf);

pClf->CreateInstance(IID_IUnknown. (void**) &pUnk);
pUnk->Ouerylnterface(IID_IMotion. (void**) &pMot); II All three
pMot->Ouerylnterface(IID_IVisual. (void**) &pVis); II pointers

II should work
TRACE("main: pUnk = %P. pMot = %P. pDis = %p\n". pUnk. pMot. pVis);

II Test all the interface virtual functions
pMot->Fly() ;
int nPos = pMot->GetPosition();
TRACE("nPos = %d\n". nPos);
pVis->Display();

pClf->Release();
pUnk->Release();
pMot->Release();
pVis->Release();
return 0;

Figure 23-4.
The Client. cpp file.

T WEN T Y - T H R E E: The Component Object Model

Real COM with the MFC Library
So much for simulations. Now we'll get ready to convert the spaceship example
to genuine COM. You must learn a few more things before we start, though.
First you must learn about the Co Get Class Object function, then you must learn
how COM uses the Windows Registry to load the component, and then you
have to understand the difference between an in-process component (a DLL)
and an out-of-process component (an EXE). Finally, you must become familiar
with the MFC macros that support nested classes:

The net result will be an MFC regular DLL component that contains all
the CSpaceship code with the IMotion and !Visual interfaces. A regular MFC
library Windows application acts as the client. It loads and runs the compo
nent when the user selects a menu item.

The COM CoGetClassObject Function
In our simulation, we used a phony function named Get Class Object. In real
COM, we use the global CoGetClassObject function. (Co stands for "component
object.") Compare the following prototype to the GetClassObject function you've
seen already:

STDAPI CoGetClassObject(REFCLSID rclsid. DWORD dwClsContext.
COSERVERINFO* pServerlnfo. REFIID riid. LPVOID* ppvObj)

The interface pointer goes in the ppvObj parameter, and pServerInfo is a pointer
to a machine on which the class object is instantiated (NULL if the machine
is local). The types REFCLSID and REFIID are references to 128-bit GUIDs
(globally unique identifiers for COM classes and interfaces). STDAPI indicates
that the function returns a 32-bit value of type HRESULT.

The standard GUIDs are defined in the Windows libraries that are dy
namically linked to your program. Special-purpose GUIDs, such as those for
spaceship objects, must be defined in your program in this way:

II {692D03A4-C689-11CE-B337-88EA36DE9E4E}
static const lID IID_IMotion =

{0x692d03a4. 0xc689. 0xllce. {0xb3. 0x37. 0x88. 0xea. 0x36.
0xde. 0xge. 0x4e}};

577

PA R T I V: ACTIVEX: COM, AUTOMATION, AND OLE

If the dwClsContext parameter is CLSCTK1NPROC_SERVER, the COM
subsytem looks for a DLL. If it is CLSCTJeLOCAL_SERVER, COM looks for an
EXE. (The two codes can be combined to select either a DLL or an EXE.) The
return value is an HRESULTvalue, which is 0 (NOERROR) ifno error occurs.

NOT E : Another COM function, CoCreateInstance, combines the
functionality of Co Get Class Object and IClassFactory::CreateInstance.

COM and the Windows Registry

578

In the EX23A example, the component was statically linked to the client, a
clearly bogus circumstance. In real COM, the component is either a DLL or
a separate EXE. When the client calls the CoGetClassObject function, COM steps
in and finds the correct component, which, in the case ofa DLL, might already
be in process memory or it might be on disk. How does COM make the con
nection? It looks up the class's unique 128-bit class ID number in the Windows
Registry. Thus, the class must be registered permanently on your computer.

If you run the Windows Regedit program (Regedt32 in Microsoft Windows
NT 3.51), you'll see a screen similar to the one shown in Figure 23-5. This
figure shows subfolders for three class IDs, two of which are class IDs associ
ated with DLLs (InprocServer32) and one of which is a class ID associated with
an EXE (LocaIServer32) .The CoGetClassObject function looks up the class ID
in the Registry and then loads the DLL or EXE as required.

I $,,(3 {D FOB 3D 60-548F-1 01 B-8E65-08002B2BD1 1 9} ~~~Il£,;~";';;;;";-;";""';';;.J~~=";';;;;";""'-";';;;;";:...\J
I 00··(3 {E 4C1 8040-1 CD 5-1 01 CoB 325-01lM001 F31 68} I ~-·CJ {EA7BAE70-FB3B-11CD-A903-01lM00510EA3}
! IiJ··CJ {EA7BAE71 -FB3B-1 1 CD-A903-01lM0051 OEA3}
I EJ"CJ {FB8F0823-0164-101B-84ED-08002B2EC713} I i I····CJ InprocServer32
I i G::J ProglD
I S··CJ {FB 8F0824-0164-1 01 8 -84E 0 -080028 2E C71 3}

I , (3 ProglD
II ! , .. ··a IMmigis

S··(3 {FC7AF71 D-FC74-1 01A-84ED-0800282EC71 3}
I i L..G::J InprocServer32
I B"CJ {FF5521 24-COCO-1 01A-8F6F-00006E2EF953}
I : (3 InprocHandler32
. 1··_·(3 LocaiServer32

"~"J1:12:L~i~-~,,prOgID ___________ :i!i WIHH~~?1tI:·. ·P ,,··.·· : •• :., •• :." ••••• ,.".<

fi!!.l\Q:!3{;1fPU44:

Figure 23-5.
Three class IDs in the Registry.

What if you don't want to track those ugly class ID numbers in your client
program? No problem. COM supports another type of registration database

T WEN T Y - T H R E E: The Component Object Model

entry that translates a human-readable program ID into the corresponding
class ID. Figure 23-6 shows the Registry entries. The COM function CLSIDFrom
ProgID reads the database and performs the translation.

I
I$J··CJ Software
I$J··CJ Soundo'LE
I$J-CJ SoundAec
I$1-CJ Spaceship
riJ·CJ SPINDIAL.SpindiaICtrl. 1
I····CJ StaticDib
i····CJ StaticEnhancedMetafile
I····CJ StaticMetafile
~··CJ StdFont
! I...·CJ CLSID
~··CJ StdPicture

II...·a_
ttl'CJ sysfde
IB"CJ T e~tConf.Application
$··CJ T e~tConf.Application. 1

'4 ~~i,,§l;q,ll~ .. ~.X!T,~9rl. 1 . .~ r"F;~.:t~'''i·'';!:·····''fi·;;·i':·;·'·;'·'';>'··i~·i;;\;i;6·!i"·;·''',':'''·;;i:F;·';,····,···;·''·,yhN··;·F'

Figure 23-6.
Human-readable program IDs in the Registry.

NOT E : The first CLSIDFromProgID parameter is a string that holds
the program ID, but it's not an ordinary string. This is your first
exposure to double-byte characters in COM. All string parameters
of COM functions (except Data Access Objects [DAO]) are Unicode
character string pointers of type OLECHAR*. Your life is going to
be made miserable because of the constant need to convert between
double-byte strings and ordinary strings. If you need a double-byte
literal string, you prefix the string with an L character, like this:

CLSIDFromProgID(L"Spaceship", &clsid);

You'll begin learning about the MFC library's Unicode string
conversion capabilities in Chapter 24.

How does the registration information get into the Registry? In two ways.
First, Regedit has an ASCII file import facility that accepts data in a REG file
like this one:

REGEDIT4

[HKEY_CLASSES_ROOT\StdPicture]
@="Standard Picture"

[HKEY_CLASSES_ROOT\StdPicture\CLSID]
@="{FB8F0824-0164-101B-84ED-08002B2EC713}"

579

PAR T I V: ACTIVEX: COM, AUTOMATION, AND OLE

Regedit can load a REG file in batch mode, or you can load such a file through
the Regedit Registry menu. AppWizard generates a REG file for your project
in certain circumstances.

Second, instead of using Regedit, you can program your component
application to call Windows functions that update the Registry directly. The
MFC library conveniently wraps these functions with the function COleObject
Factory::UpdateRegistryAll, which finds all your program's global class factory
objects and registers their names and class IDs.

Runtime Object Registration
You'vejust seen how the Windows Registry registers COM classes on disk. Class
factory objects also must be registered, and it's a shame that the same word,
"register," is used in both contexts. Objects in out-of-process component
modules are registered at runtime with a call to the COM CoRegisterClassObject
function, and the registration information is maintained in memory by the
Windows DLLs. If the factory is registered in a mode that permits a single
instance of the component module to create multiple COM objects, COM can
use an existing process when a client calls Co Get Class Object.

How a COM Client Calls an In-Process Component

580

We're beginning with a DLL component instead of an EXE component be
cause the program interactions are simpler. I'll show pseudocode here because
you're going to be using the MFC library classes, which hide much of the detail.

Client

COM

Client

CLSID clsid;

IClassFactory* pClf;

IUnknown* pUnk;

CoInitialize(NULL); / / Initialize COM

CLSIDFromProgID ("componentname", &clsid);

COM uses the Registry to look up the class ID from "componentname"

CoGetClassObject(clsid, CLSCTX_INPROC_SERVER, NULL,

IID_IClassFactory, (void**) &pClf);

T WEN T Y - T H R E E: The Component Object Model

COM

COM uses the class ID to look for a component in memory

if (component DLL is not loaded already) {

COM gets DLL filename from the Registry

COM loads the component DLL into process memory

DLL Component

COM

if (component just loaded) {

Global factory objects are constructed

DLL's InitInstance called (MFC only)

COM calls DLL's global exported DllGetClassObject with the CLSID

value that was passed to CoGetClassObject

DLL Component

DllGetClassObject returns IClassFactory*

COM

COM returns IClassFactory* to client

Client

pClf->CreateInstance (NULL, IID_IUnknown, (void**) &pUnk);

DLL Component

Class factory's Createlnstance function called (called directly-through

component's vtable)

Client

Constructs object of "componentname" class

Returns requested interface pointer

pClf->ReleaseO;

pUnk->Release ();

DLL Component

"componentname" Release is called through vtable

if (refcount == 0) {

Object destroys itself

(continued)

581

PAR T I V: ACTIVEX: COM, AUTOMATION, AND OLE

Client

CoFreeUnusedLibrariesO;

COM

COM calls DLL's global exported DllCanUnloadNow

DLL Component

Client

COM

Client

DllCanUnloadNow called if (all DLL's objects destroyed) {

return TRUE

CoUninitializeO; / / COM frees the DLL if DllCanUnloadNow returns

TRUE just prior to exit

COM releases resources

Client exits

DLL Component

Windows unloads the DLL if it is still loaded and no other programs are
using it

Some important points are worth noting. First, the DLL's exported DllGet
ClassObject function is called in response to the client's Co Get Class Object call.
Second, the class factory interface address returned is the actual physical
address of the class factory vtable pointer in the DLL. And third, when the
client calls Createlnstance, or any other interface function, the call is direct
(through the component's vtable).

The COM linkage between a client EXE and a component DLL is quite
efficient. It'sjust as efficient as the linkage to any C++ virtual function in the
same process, plus there's full C++ parameter and return type-checking at
compile time. The only penalty for using ordinary DLL linkage is the extra
step of looking up the class ID in the Registry when the DLL is first loaded.

How a COM Client Calls an Out-of-Process Component

582

The COM linkage to a separate EXE component is more complicated than
the linkage to a DLL component. The EXE component is in a different pro
cess or possibly on a different computer. Don't worry, though. Write your

T WEN T Y - T H R E E: The Component Object Model

programs as if a direct connection exists. COM takes care of the details through
a Remote Procedure Call (RPC).

In an RPC, the client makes calls to a special DLL called a proxy. The
proxy sends a stream of data to a stub, which is inside a DLL in the component's
process. When the client calls a component function, the proxy alerts the stub
by sending a message to the component program, which is processed by a
hidden window. The mechanism of converting parameters to and from data
streams is called marshaling.

If you use standard interfaces such as IUnknown and IClassFactory, the
proxy and stub code, which implements marshaling, is provided by the Windows
OLE32 DLL. If you invent your own interfaces, such as IMotion and !Visual,
you're stuck with the tedious job of writing the marshaling code yourself.
That's why few software firms develop their own interfaces but instead rely on
existing COM interfaces, such as IDispatch (which you'll see in Chapter 24).

Here's the pseudocode interaction between an EXE client and an EXE
component. Compare it to the DLL version beginning on page 580. Notice
that the client-side calls are exactly the same.

Client

COM

Client

COM

CLSID clsid;

IClassFactory* pClf;

IUnknown* pUnk;

CoInitialize(NULL); / / Initialize COM

CLSIDFromProgID ("componentname", &clsid);

COM uses the Registry to look up the class ID from "componentname"

CoGetClassObject(clsid, CLSCTX_LOCAL_SERVER, NULL,

IID_IClassFactory, (void**) &pClf);

COM uses the class ID to look for a component in memory

if (component EXE is not loaded already, or
if we need another instance) {

COM gets EXE filename from the Registry

COM loads the component EXE

(continued)

583

PAR T I V: ACTIVEX: COM, AUTOMATION, AND OLE

584

EXE Component

COM

Client

if (just loaded) {

Global factory objects are constructed

InitInstance called (MFC only)

CoInitialize (NULL);

for each factory object {

CoRegisterClassObject(...) ;

Returns IClassFactory* to COM

COM returns the requested interface pointer to the client

(client's pointer is not the same as the component's interface pointer)

pClf->CreateInstance(NULL,IID_IUnknown, (void**) &pUnk);

EXE Component

Client

Class factory's CreateInstance function called

(called indirectly through marshaling)

Constructs object of "componentname" class

Returns requested interface pointer indirectly

pClf->ReleaseO;

pUnk->ReleaseO;

EXE Component

Client

"componentname" Release is called indirectly

if (refcount == 0) {

Object destroys itself

if (all objects released) {

Component exits gracefully

CoUninitializeO; II just prior to exit

T WEN T Y • T H R E E: The Component Object Model

COM

COM calls Release for any objects this client has failed to release

EXE Component

Component exits

COM

COM releases resources

Client

Client exits

As you can see, COM plays an important role in the communication
between the client and the component. COM keeps an in-memory list of class
factories that are in active EXE components, but it does not keep track of
individual COM objects such as the CSpaceship object. Individual COM objects
are responsible for updating the reference count and for destroying them
selves through the AddRef/Release mechanism. COM does step in when a client
exits. If that client is using an out-of-process component, COM "listens in" on
the communication and keeps track of the reference count on each object.
COM disconnects from component objects when the client exits, and, under
certain circumstances, this causes those objects to be released. Don't depend
on this behavior, however. Be sure that your client program releases all its
interface pointers prior to exiting.

The MFC Interface Macros
In EX23A, you saw the use of nested classes for interface implementation. The
MFC library has a set of macros that automate this process. For the CSpaceship
class, derived from the real MFC CCmdTarget class, you use the following mac
ros inside the declaration:

BEGIN_INTERFACE_PART(Motion, IMotion)
STDMETHOD_(void, Fly) ():
STDMETHOD_(int&, GetPosition) ():

END_INTERFACE_PART(Motion)

BEGIN_INTERFACE_PART(Visual, IVisual)
STDMETHOD_(void, Display) ():

END_INTE~FACE_PART(Visual)

585

PA R T I V: ACTIVEX: COM, AUTOMATION, AND OLE

The INTERFACE_PARTmacros generate the nested classes, adding X to the
first parameter to form the class name and adding m_x to form the embed
ded object name. The macros generate prototypes for the specified interface
functions plus prototypes for QueryInterface, AddRef, and Release.

The DECLARE_INTERFACE_MAP macro generates the declarations for
a table that holds the IDs of all the class's interfaces. The CCmdTarget::External
QueryInterface function uses the table to retrieve the interface pointers.

In the CSpaceship implementation file, use the following macros:

BEGIN_INTERFACE_MAP(CSpaceship, CCmdTarget)
INTERFACE_PART(CSpaceship, IID_IMotion, Motion)
INTERFACE_PART(CSpaceship, IID_IVisual, Visual)

END_INTERFACE_MAP()

These macros build the interface table used by CCmdTarget::ExternalQuery
Interface. A typical interface member function looks like this:

STDMETHODIMP_(void) CSpaceship::XMotion::Fly()
(

METHOD_PROLOGUE(CSpaceship, Motion)
pThis->m_nPosition += 10;
return;

Don't forget that you must implement all the functions for each interface,
including QueryInterface, AddRef, and Release. Those three functions can del
egate to functions in CCmdTarget.

NOT E : The STDMETHOD_ and STDMETHODIMP _ macros de
clare and implement functions with the _ _ stdcall parameter passing
convention, as required by COM. These macros allow you to specify
the return value as the first parameter. Two other macros, STD
METHOD and S1DMETHODIMP, assume an HRESULTreturn value.

The MFC COleObjectFactory Class

586

In the simulated COM example, you saw a CSpaceshipFactory class that was
hard-coded to generate CSpaceship objects. The MFC library applies its dy
namic creation technology to the problem. Thus, a single class, aptly named
COleObjectFactory, can create objects of any class specified at runtime. All you
need to do is use macros like these in the class declaration:

DECLARE_DYNCREATE(CSpaceship)
DECLARE_OLECREATE(CSpaceship)

T WEN T Y - T H R E E: The Component Object Model

And use macros like these in the implementation file:

IMPlEMENT_DYNCREATE(CSpaceship. CCmdTarget)
II {692D03A3-C689-11CE-B337-88EA36DE9E4E}
IMPlEMENT_OlECREATE(CSpaceship. "Spaceship". 0x692d03a3. 0xc689. 0xllce.

0xb3. 0x37. 0x88. 0xea. 0x36. 0xde. 0xge. 0x4e)

The DYNCREATE macros set up the standard dynamic creation mecha
nism as described in Appendix B. The OLECREA TE macros declare and define
a global object of class COleObjectFactory with the specified unique CLSID. In
a DLL component, the exported DllGetClassObject function finds the specified
class factory object and returns a pointer to it, based on global variables set
by the OLECREATEmacros. In an EXE component, initialization code calls the
static COleObjectFactory::RegisterAll, which finds all factory objects and registers
each one by calling CoRegisterClassObject. The RegisterAll function is called also
when a DLL is initialized. In that case, it merely sets a flag in the factory object(s).

AppWizard/ClassWizard Support for COM In-Process Components
AppWizard isn't optimized for creating COM DLL components, but you can
fool it by requesting a regular DLL with Automation support. The following
functions in the project's main source file are of interest:

BOOl CEx23bApp::InitInstance()
(

COleObjectFactory::RegisterAll();
return TRUE;

STDAPI DllGetClassObject(REFClSID rclsid. REFIID riid. lPVOID* ppv)
(

AFX_MANAGE_STATE(AfxGetStaticModule_State(»;
return AfxDllGetClassObject(rclsid. riid. ppv);

STDAPI DllCanUnloadNow(void)
(

AFX_MANAGE_STATE(AfxGetStaticModule_State(»;
return AfxDllCanUnloadNow();

STDAPI DllRegisterServer(void)
(

AFX_MANAGE_STATE(AfxGetStaticModule_State(»;
COleObjectFactory::UpdateRegistryAll();
return S_OK;

587

PA R T I V: ACTIVEX: COM, AUTOMATION, AND OLE

The three global functions are exported in the project's DEF file. By calling
MFC functions, the global functions do everything you need in a COM in
process component. The DllRegisterSeroerfunction can be called by a utility
program to update the system Registry.

Once you've created the skeleton project, your next step is to use Class
Wizard to add one or more COM-creatable classes to the project. Just fill in
the New Class dialog box, as shown here:

In your generated class, you end up with some Automation elements such
as dispatch maps, but you can safely remove those. You can also remove the
following two lines from StdAfx.h:

#include <afxodlgs.h>
#include <afxdisp.h>

MFC COM Client Programs

588

Writing an MFC COM client program is a no-brainer. Youjust use AppWizard
to generate a normal application. Add the following line in StdAfx.h:

#include <afxole.h>

Then add the following line at the beginning of the application class Init
Instance member function:

AfxOlelnit();

You're now ready to add code that calls Co Get Class Object.

T WEN T Y - T H R E E: The Component Object Model

The EX238 Example-An MFC COM In-Process Component
The EX23B example is an MFC regular DLL that incorporates a true COM
version of the CSpaceship class you saw in EX23A. The ex23b.cpp and ex23b.h
files were generated by App Wizard, as described previously. Figure 23-7 shows
the Interface.h file, which declares the IMotion and IVisual interfaces. Figures
23-8 and 23-9 show the code for the CSpaceship class. Compare the code to the
code in EX23A. Do you see how the use of the MFC macros reduces code size?
Note that the MFC CCmdTargetclass takes care of the reference counting and
Querylnterface logic.

INTERFACE.H

struct IMotion : public IUnknown
{

STDMETHOD_(void. Fly) () = 0;
STDMETHOD_(int&. GetPosition) () 0;

} ;

struct IVisual : public IUnknown
{

STDMETHOD_(void. Display) () 0;
} ;

Figure 23-7.
The Interface. h file.

SPACESHIP.H

void ITrace(REFIID iid. const char* str);

// ///////1////////

/1 CSpaceship command target

class CSpaceship : public CCmdTarget
{

DECLARE_DYNCREATE(CSpaceship)

private:
int m_nPosition; // We can access this from all the interfaces
int m_nAcceleration;
int m_nColor;

protected:
CSpaceship(); // protected constructor used by dynamic creation

Figure 23-8. (continued)

The Spaceship. h file.

589

PA R T I V: ACTIVEX: COM, AUTOMATION, AND OLE

590

Figure 23-8. continued

// Attributes
public:

1/ Operati ons
public:

// Overrides
// ClassWizard generated virtual function overrides
//{{AFX_VIRTUALCCSpaceship)
public:
virtual void OnFinalReleaseC);
/ /}} AFX_V I RTUAL

// Implementation
protected:

virtual -CSpaceship();

// Generated message map functions
//{{AFX_MSGCCSpaceship)

// NOTE - the ClassWizard will add and remove member functions here.
/ /} } AFX_MSG

DECLARE_MESSAGE_MAPC)
DECLARE_OLECREATECCSpaceship)

BEGIN_INTERFACE_PARTCMotion. IMotion)
STDMETHOD_Cvoid. Fly) ();
STDMETHOD_Cint&. GetPosition) C):

END_INTERFACE_PARTCMotion)

BEGIN_INTERFACE_PARTCVisual. IVisual)
STDMETHOD_Cvoid. Display) C):

END_INTERFACE_PARTCVisual)

} ;

//

T WEN T Y - T H R E E: The Component Object Model

SPACESHIP.CPP

/linclude "stdAfx.h"
/linclude "ex23b.h"
/linclude "Interface.h"
II inc 1 u de" Spa c e s hip. h"

/lifdef _DEBUG
/lundef THIS_FILE
static char THIS_FILE[] = __ FILE __ ;
/lendif
//////////////////////////////////1//111//111/1///11////1//////////1/1

// CSpaceship

// {692D03A4-C689-11CE-B337-88EA36DE9E4E}
static const lID IID_IMotion =
{ 0x692d03a4. 0xc689. 0x11ce.

{ 0xb3. 0x37. 0x88. 0xea. 0x36. 0xde. 0xge. 0x4e } };

// {692D03A5-C689-11CE-B337-88EA36DE9E4E}
static const lID IID_IVisual =
{ 0x692d03a5. 0xc689. 0x11ce.

{ 0xb3. 0x37. 0x88. 0xea. 0x36. 0xde. 0xge. 0x4e } };

IMPLEMENT_DYNCREATE(CSpaceship. CCmdTarget)
CSpaceship::CSpaceship()
(

TRACE("CSpaceship ctor\n");
m_nPosition = 100;
m_nAcceleration = 101;
m_nColor = 102;
// To keep the application running as long as an OLE automation
// object is active. the constructor calls AfxOleLockApp.

AfxOleLockApp();

CSpaceship::-CSpaceship()
(

TRACE("CSpaceship dtor\n");
// To terminate the application when all objects created with
/1 OLE automation. the destructor calls AfxOleUnlockApp.

AfxOleUnlockApp();

Figure 23-9. (continued)

The Spaceship. cpp file.

591

PAR T I V: ACTIVEX: COM, AUTOMATION, AND OLE

592

Figure 23-9. continued

void CSpaceship::OnFinalRelease()
{

II When the last reference for an automation object is released
II OnFinalRelease is called. This implementation deletes the
II object. Add additional cleanup required for your object before
II deleting it from memory.

delete this;

BEGIN_MESSAGE_MAP(CSpaceship, CCmdTarget)
11{{AFX_MSG_MAP(CSpaceship)
II NOTE - ClassWizard will add and remove mapping macros here.
I/} }AFX_MSG_MAP

END_MESSAGE_MAP()

BEGIN_INTERFACE_MAP(CSpaceship, CCmdTarget)
INTERFACE_PART(CSpaceship, ItD_IMotion, Motion)
I NTERFACE_PART(CSpaceshi p, IID_IVi sua 1, Vi sua 1)

END_INTERFACE_MAP()

II {692D03A3-C689-11CE-B337-88EA36DE9E4E}
IMPLEMENT_OLECREATE(CSpaceship, "Spaceship", 0x692d03a3, 0xc689,

0xllce, 0xb3, 0x37, 0x88, 0xea, 0x36, 0xde,
0xge, 0x4e)

STDMETHODIMP_(ULONG) CSpaceship::XMotion::AddRef()
{

TRACE("CSpaceship::XMotion::AddRef\n");
METHOD_PROLOGUE(CSpaceship, Motion)
return pThis->ExternalAddRef();

STDMETHODIMP_(ULONG) CSpaceship::XMotion::Release()
{

TRACE("CSpaceship::XMotion::Release\n");
METHOD_PROLOGUE(CSpaceship, Motion)
return pThis->ExternalRelease();

STDMETHODIMP CSpaceship::XMotion::OueryInterface(
REFIID iid, LPVOID* ppvObj)

ITrace(iid, "CSpaceship::XMotion: :OueryInterface");
METHOD_PROLOGUE(CSpaceship, Motion)
return pThis->ExternalOueryInterface(&iid, ppvObj);

(continued)

T WEN T Y - T H R E E: The Component Object Model

Figure 23-9. continued

STDMETHODIMP_(void) CSpaceship::XMotion::Fly()
(

TRACE("CSpaceship::XMotion::Fly\n");
METHOD_PROLOGUE(CSpaceship, Motion)
TRACE("m_nPosition = %d\n", pThis-)m_nPosition);
TRACE("m_nAcceleration = %d\n", pThis-)m_nAcceleration);
return;

STDMETHODIMP_(int&) CSpaceship::XMotion::GetPosition()
(

TRACE("CSpaceship::XMotion::GetPosition\n");
METHOD_PROLOGUE(CSpaceship, Motion)
TRACE("m_nPosition = %d\n", pThis-)m_nPosition);
TRACE("m_nAcceleration = %d\n", pThis-)m_nAcceleration);
return pThis-)m_nPosition;

//

STDMETHODIMP_(ULONG) CSpaceship: :XVisual ::AddRef()
(

TRACE("CSpaceship: :XVi sual: :AddRef\n");
METHOD_PROLOGUE(CSpaceship, Visual)
return pThis-)ExternalAddRef();

STDMETHODIMP_(ULONG) CSpaceship::XVisual ::Release()
{

T RA C E (" C Spa c e s hip : : X Vis u a 1 : : R e 1 e a s e \ n ") ;
METHOD_PROLOGUE(CSpaceship, Visual)
return pThis-)ExternalRelease();

STDMETHODIMP CSpaceship::XVisual ::OueryInterface(
REFIID iid, LPVOID* ppvObj)

ITrace(iid, "CSpaceship: :XVisual ::OueryInterface");
METHOD_PROLOGUE(CSpaceship, Visual)
return pThis-)ExternalOueryInterface(&iid, ppvObj);

(continued)

593

PAR T I V: ACTIVEX: COM, AUTOMATION, AND OLE

Figure 23-9. continued

STDMETHODIMP_(void) CSpaceship::XVisual::Display()
{

TRACE("CSpaceship::XVisual::Display\n"):
METHOD_PROLOGUE(CSpaceship. Visual)
TRACE("m_nPosition = %d\n". pThis-)m_nPosition):
TRACE("m_nColor = %d\n". pThis-)m_nColor):

//

void ITrace(REFIID iid. const char* str)
{

OLECHAR* lpszIID:
::StringFromIID(;;d. &lpszIID):
CString strTemp = (LPCWSTR) lpszIID:
TRACE("%s - %s\n". (const char*) strTemp. (const char*) str):
AfxFreeTaskMem(lpszIID):

//

// CSpaceship message handlers

The EX23C Example-An MFC COM Client

594

The EX23C example is an MFC program that incorporates a true COM version
of the client code you saw in EX23A. This is a generic App Wizard MFC Single
Document Interface (SDI) EXE program with an added #include statement
for the MFC COM headers and a call to AfxOlelnit, which initializes the DLL.
A Spaceship option on an added Test menu is mapped to the view class han
dler function shown in Figure 23-10. The project also contains a copy of the
EX23B component's Interface.h file, shown in Figure 23-7. You can see an
#include statement for this file at the top of ex23cView.cpp.

void CEx23cView::OnTestSpaceship()
{

CLSID clsid:
LPCLASSFACTORY pClf:
LPUNKNOWN pUnk:
IMotion* pMot:
IVisual* pVis:
HRESULT hr:

Figure 23-10. (continued)

The client's command handler that loads and tests the CSpaceship component.

T WEN T V - T H R E E: The Component Object Model

Figure 23-10. continued

if «hr = ::CLSIDFromProgID(L"Spaceship", &clsid» 1= NOERROR)
TRACE("unable to find Program ID -- error = %x\n", hr);
return;

if «hr = ::CoGetClassObject(clsid, CLSCTX_INPROC_SERVER,
NULL, IID_IClassFactory, (void **) &pClf» 1= NOERROR) {;
TRACE("unable to find CLSID -- error = %x\n", hr);
return;

pClf-)CreateInstance(NULL, IID_IUnknown, (void**) &pUnk);
pUnk-)OueryInterface(IID_IMotion, (void**) &pMot); II All three
pMot-)OueryInterface(IID_IVisual, (void**) &pVis); II pointers

II should work
TRACE("main: pUnk = %p, pMot = %p, pDis = %p\n", pUnk, pMot, pVis);

II Test all the interface virtual functions
pMot-)Fly();
int nPos = pMot-)GetPosition();
TRACE("nPos = %d\n", nPos);
pVis-)Display();

pClf-)Release();
pUnk-)Release();
pMot-)Release();
pVis-)Release();
AfxMessageBox("Test succeeded. See Debug window for output.");

To test the client and the component, you must first run the component
to update the Registry. Several utilities can be used to do this, but you might
want to try the REGCOMP program in the \ vcpp32\RegComp project on the
companion CD-ROM. This program prompts you to select a DLL or an OCX
file, and then it calls the exported DllRegisterSeroer function.

Both client and component show their progress through TRACE calls,
so you need the debugger. You can run either the client or the component
from the debugger. If you try to run the component, you'll be prompted for
the client pathname. In either case, you don't have to copy the DLL because
Windows finds it through the Registry.

595

PAR T I V: ACTIVEX: COM, AUTOMATION, AND OLE

Containment and Aggregation vs. Inheritance

596

In normal C++ programming, you frequently use inheritance to factor out
common behavior into a reusable base class. The CPersistentFrame class (dis
cussed in Chapter 14) is an example of reusability through inheritance.

COM uses containment and aggregation instead of inheritance. Let's
start with containment. Suppose you extended the spaceship simulation to
include planets in addition to spaceships. Using C++ by itself, you would prob
ably write a COrbiter base class that encapsulated the laws of planetary motion.
With COM, you would have "outer" CSpaceship and CPlanet classes plus an
"inner" COrbiter class. The outer classes would implement the !Visual interface
directly, but those outer classes would delegate their IMotion interfaces to the
inner class. The result would look something like this:

Iunkno~n? ~unkn~~~?
IVisualo-,' . CSpaceship '/un$wn

IMotion 0--\; COrbit;r' [

CPlanet lunknown

Note that the COrbiter object doesn't know that it's inside a CSpaceship
or CPla1ut object, but the outer object certainly knows that it has a COrbiter
object embedded inside. The outer class needs to implement all its interface
functions, but the IMotion functions, including Querylnterface, simply call the
same IMotion functions of the inner class.

A more complex alternative to containment is aggregation. With aggre
gation, the client can have direct access to the inner object's interfaces. Shown
here is the aggregation version of the space simulation:

IUnknown (outer) y
IUnknown (inner)O J.

" :~.: ··\c··:·: :··1··:······ .. ·
I Visual 0-- CSpaceship I . .

,.:. . .:.1
, . .;..:; ..•.. jt

The orbiter is embedded in the spaceship and planet, just as it was in the
containment case. Suppose the client obtains an !Visual pointer for a space
ship and then calls Querylnterjace for an IMotion pointer. Using the outer

T WEN T Y - T H R E E: The Component Object Model

IUnknown pointer will draw a blank because the CSpaceship class doesn't sup
port IMotion. The CSpaceship class keeps track of the inner IUnknown pointer
(of its embedded COrbiter object), so the class uses that pointer to obtain the
IMotion pointer for the COrbiter object.

Now suppose the client obtains an IMotion pointer and then calls Query
Interface for IVisual. The inner object must be able to navigate to the outer
object, but how does it do this? Take a close look at the CreateInstance call back
in Figure 23-10. The first parameter is set to NULL in that case. If you are
creating an aggregated (inner) object, you use that parameter to pass an
IUnknown pointer for the outer object that you have already created. This
pointer is called the controlling unknown. The COrbiterclass saves this pointer
in a data member and then uses it to call QueryInterface for interfaces the class
itself doesn't support.

The MFC library supports aggregation. The CCmdTarget class has a public
data member m_pOuterUnknown that holds the outer object's IUnknown pointer
(if the object is aggregated). The CCmdTarget member functions ExternalQuery
Interface, ExternaLAddRef, and ExternalRelease delegate to the outer IUnknown if
it exists. Member functions InternalQueryInterface, InternalAddRef, and Internal
Release do not delegate. See Technical Note #38 for a description of the MFC
macros that support aggregation.

597

C HAP T E R TWENTY-FOUR

Automation

After reading Chapter 23, you should know what an interface is; you've
already seen two standard COM interfaces, IUnknown and IClassFactory. Now
you're ready for "applied" COM, or at least one aspect of it-Automation
(formerly OLE Automation). You'll be learning about the COM IDispatch
interface, which enables C++ programs to communicate with Microsoft Visual
Basic for Applications (VBA) programs and with programs written in other
languages. You'll be using the MFC library implementation of IDispatch to write
C++ Automation component and client programs. Both out-of-process com
ponents and in-process components are covered.

But before jumping into C++ Automation programming, you'll need
to know how the rest of the world writes programs. In this chapter, you'll get
some exposure to VBA as it is implemented in Microsoft Excel. You'll be run
ning your C++ components from Excel and running Excel from a C++ client
program.

Connecting C++ with
Visual Basic for Applications

Not all programmers for Microsoft Windows-based applications are going to
be C++ programmers, especially if they have to learn the intricacies of COM
theory. There's talk ofa programming "division of labor," in which C++ pro
grammers will produce reusable modules and VBA programmers will consume
those modules by integrating them into applications. You can prepare for this
eventuality now by learning how to make your software "VBA-friendly." Auto
mation is one tool that's available now and that is supported by the MFC
library. The ActiveX control is another tool for C++ /VBA integration and is
very much a superset of Automation because both tools use the IDispatch
interface. Using ActiveX controls might be overkill in many situations. Many
applications, including Microsoft Excel 97, can support both Automation

599

PAR T I V: ACTIVEX: COM, AUTOMATION, AND OLE

components and ActiveX controls. You can apply all that you learrt about
Automation to writing and using ActiveX controls.

Two factors are working on behalf of Automation's success. First, VBA
(or VB Script) is now the programming standard in most Microsoft applica
tions, including Microsoft Word, Excel, and Microsoft Access, not to mention
Microsoft Visual Basic itself. All these applications support Automation, which
means they can be linked to other Automation-compatible components,
including those written in c++ and VBA. For example, you can write a C++
program that uses the text processing capability of Word, or you can write a
C++ matrix inversion component that can be called from a VBA macro in an
Excel worksheet. Second, dozens of software companies are providing Auto
mation programming interfaces for their applications, mostly for the benefit
ofVBA programmers. With a little effort, you can run these applications from
C++. You can, for example, write an MFC program that controls Shapeware's
Visio drawing program.

Automation isn't just for C++ and VBA programmers. Software-tools
companies are already announcing Automation-compatible Basic-like lan
guages that you can license for your own programmable applications. One
version of Small talk even supports Automation!

Automation Clients and
Automation Components

600

A clearly defined "master-slave" relationship is always present in an Automa
tion communication dialog. The master is the Automation client, and the slave
is the Automation component (server). The client initiates the interaction by
constructing a component object (it might have to load the component pro
gram) or by attaching to an existing object in a component program that is
already running. The client then calls interface functions in the component
and releases those interfaces when it's finished.

Here are some interaction scenarios:

m A C++ Automation client uses a Microsoft or third-party application
as a component. The interaction could trigger the execution of
VBA code in the component application.

II A C++ Automation component is used from inside a Microsoft
application (or a Visual Basic application), which acts as the Auto
mation client. Thus, VBA code can construct and use C++ objects.

T WEN T Y - F 0 U R: Automation

o A C++ Automation component is used by a C++ Automation client.

D A Visual Basic program uses an Automation-aware application
such as Excel. In this case, Visual Basic is the client and Excel is
the component.

Microsoft Excel-
A Better Visual Basic Than Visual Basic

When I wrote the previous editions of this book, Visual Basic worked as an
Automation client but you couldn't use it to create an Automation component.
Now Visual Basic 5.0 lets you write components too, even ActiveX controls. I
used Excel originally instead of VB because Excel was the first Microsoft
application to support VBA syntax and it could serve as both a client and a
component. I decided to stick with Excel because C++ programmers who look
down their noses at Visual Basic might be inclined to buy Excel if only to track
their software royalties.

I strongly recommend that you get a copy of Excel 97 (or later). This is
a true 32-bit application and a part of the Microsoft Office 97 suite. With this
version of Excel, you can write VBA code in a separate location that accesses
worksheet cells in an object-oriented manner. It's easy to add visual program
ming elements such as pushbuttons. Forget all you ever knew about the old
spreadsheet programs that made you wedge macro code inside cells.

This chapter isn't meant to be an Excel tutorial, but I have included a
simple Excel workbook here. (A workbook is a file that can contain multiple
worksheets plus separate VBA code.) This workbook demonstrates a VBA
macro that executes from a pushbutton. You can use Excel to load Demo.xls
from the \vcpp32\ex24a subdirectory, or you can key in the example from
scratch. Figure 24-1, on the following page, shows the actual spreadsheet with
the button and sample data.

In this spreadsheet, you highlight cells A4 to A9 and click the Process Col
button. A VBA program iterates down the column and draws a hatched pat
tern on cells that have numeric values greater than 10.

Figure 24-2 shows the macro code itself, which is "behind" the worksheet.
In Excel 97, choose Macro from the Tools menu, and then choose
Visual Basic Editor. (Alt-F11 is the shortcut.) As you can see, you're working
in the standard VBA 5.0 environment at this point.

601

PA R T I V: ACTIVEX: COM, AUTOMATION, AND OLE

602

Figure 24-1.
An Excel spreadsheet that uses VBA code.

Figure 24-2.

Do Until ActiveCell.Value -
If ActiveCell. Value> 10 Then

Selection. Interior. Pattern a xlCrissCros"
Else

Se lect ion. Inter ior. Pat t"rn - x INone
End If
Selection.Offset(l, 0) • Range ("A1") .Select

Loop
End Sub

The VBA code for the Excel spreadsheet.

T WEN T Y • F OUR: Automation

If you want to create the example yourself, follow these steps:

1. Start Excel with a new workbook, press Alt-F11, and then double
click Sheet1 in the top left window.

2. Type in the macro code shown in Figure 24-2.

3. Return to the Excel window by choosing Close And Return To
Microsoft Excel. Choose Toolbars from the View menu. Check the
Forms check box to display the Forms toolbar. (You can also access
the list of toolbars by right-clicking on any existing toolbar.)

4. Click the Button control, and then create the pushbutton by drag
ging the mouse in the upper-left corner of the worksheet. Assign
the button to the Sheet1.ProcessColumn macro.

5. Size the pushbutton, and type the caption Process Col, as shown in
Figure 24-1.

6. Type some numbers in the column starting at cell A4. Select the
cells containing these numbers, and then click the button to test
the program.

Pretty easy, isn't it?
Let's analyze an Excel VBA statement from the macro above:

S e 1 e c t ion. 0 f f 5 e t (1, 0). Ra n 9 e (" AI") . S e 1 e c t

The first element, Selection, is a property of an implied object, the Excel
application. The Selection property in this case is assumed to be a Range object
that represents a rectangular array of cells. The second element, Offset, is a
property of the Range object that returns another Range object based on the
two parameters. In this case, the returned Range object is the one-cell range
that begins one row down from the original range. The third element, Range,
is a property of the Range object that returns yet another range. This time it's
the upper-left cell in the second range. Finally, the Select method causes Excel
to highlight the selected cell and makes it the new Selection property of the
application.

As the program iterates through the loop, the preceding statement moves
the selected cell down the worksheet one row at a time. This style of program
ming takes some getting used to, but you can't afford to ignore it. The real
value here is that you now have all the capabilities of the Excel spreadsheet
and graphics engine available to you in a seamless programming environment.

603

PAR T I V: ACTIVEX: COM, AUTOMATION, AND OLE

Properties, Methods, and Collections
The distinction between a property and a method is somewhat artificial. Basic
ally, a property is a value that can be both set and retrieved. You can, for ex
ample, set and get the Selection property for an Excel application. Another
example is Excel's Width property, which applies to many object types. Some
Excel properties are read-only; most are read/write.

Properties don't officially have parameters, but some properties are
indexed. The property index acts a lot like a parameter. It doesn't have to be
an integer, and it can have more than one element (row and column, for
example). You'll find many indexed properties in Excel's object model, and
Excel VBA can handle indexed properties in Automation components.

Methods are more flexible than properties. They can have zero or many
parameters, and they can either set or retrieve object data. Most frequently
they perform some action, such as showing a window. Excel's Select method
is an example of an action method.

The Excel object model supports collection objects. If you use the
Worksheets property of the Application object, you get back a Sheets collec
tion object, which represents all the worksheets in the active workbook. You
can use the Item property (with an integer index) to get a specific Worksheet
object from a Sheets collection, or you can use an integer index directly on
the collection.

The Problem That Automation Solves

604

You've already learned that a COM interface is the ideal way for Windows
programs to communicate with one another, but you've learned that it's mostly
impractical to design your own COM interfaces. Automation's general-purpose
interface, IDispatch, serves the needs of both C++ and VBA programmers. As
you might guess from your glimpse of Excel VBA, this interface involves
objects, methods, and properties.

You can write COM interfaces that include functions with any parameter
types and return values you specify. IMotion and IVisual, created in the last
chapter, are some examples. If you're going to let VBA programmers in,
however, you can't be fast and loose anymore. You can solve the communica
tion problem with one interface that has a member function that's smart
enough to accommodate methods and properties as defined byVBA. Need
less to say, IDispatch has such a function: Invoke. You use IDispatch::Invokefor
COM objects that can be constructed and used in either C++ or VBA programs.

T WEN T Y - F 0 U R: Automation

Now you're beginning to see what Automation does. It funnels all inter
module communication through the IDispatch::Invoke function. How does a
client first connect to its component? Because IDispatch is merely another
COM interface, all the registration logic supported by COM comes into play.
Automation components can be DLLs or EXEs, and they can be accessed over
a network using distributed COM (DCOM).

The IDispatch Interface
IDispatch is the heart of Automation. It's fully supported by COM marshaling,
as are IUnknown and IClassFactory, and it's well supported by the MFC library.
At the component end, you need a COM class with an IDispatch interface (plus
the prerequisite class factory, of course). At the client end, you use standard
COM techniques to obtain an IDispatch pointer. (As you'll see, the MFC library
and the wizards take care of a lot of these details for you.)

Remember that Invoke is the principal member function of IDispatch. If
you looked up IDispatch::Invoke in the Visual C++ online documentation, you'd
see a really ugly set of parameters. Don't worry about those now. The MFC
library steps in on both sides of the Invoke call, using a data-driven scheme to
call component functions based on dispatch map parameters that you define
with macros.

Invoke isn't the only IDispatchmember function. Another function your
controller might call is GetIDsOfNames. From the VBA programmer's point of
view, properties and methods have symbolic names, but C++ programmers
prefer more efficient integer indexes. Invoke uses integers to specify proper
ties and methods, so GetIDsOfNames is useful at the start of a program to con
vert each name to a number if you don't know the index numbers at compile
time. You've already seen thatIDispatchsupports symbolic names for methods.
In addition, the interface supports symbolic names for a method's parameters.
The GetIDsOfNames function returns those parameter names along with the
method name. Unfortunately, the MFC IDispatch implementation doesn't
support named parameters.

Automation Programming Choices
Suppose you're writing an Automation component in C++. You've got some
choices to make. Do you want an in-process component or an out-of-process
component? What kind of user interface do you want? Does the component
need a user interface at all? Can users run your EXE component as a stand
alone application? If the component is an EXE, will it be SDI or MDI? Can the
user shut down the component program directly?

605

PAR T I V: ACTIVEX: COM, AUTOMATION, AND OLE

606

If your component is a DLL, COM linkage will be more efficient than it
would be with an EXE component because no marshaling is required. Most
of the time, your in-process Automation components won't have their own
user interfaces, except for modal dialog boxes. If you need a component that
manages its own child window, you should use an ActiveX control, and if you
want to use a main frame window, use an out-of-process component. As with
any 32-bit DLL, an Automation DLL is mapped into the client's process mem
ory. If two client programs happen to request the same DLL, Windows loads
and links the DLL twice. Each client is unaware that the other is using the same
component.

With an EXE component, however, you must be careful to distinguish
between a component program and a component object. When a client calls
IClassFactory::CreateInstance to construct a component object, the component's
class factory constructs the object, but COM might or might not need to start
the component program.

Here are some scenarios:

il] The component's COM-creatable class is programmed to require
a new process for each object constructed. In this case, COM starts
a new process in response to the second and subsequen t Create
Instance calls, each of which returns an IDispatch pointer.

il] Here's a special case of the scenario above, specific to MFC appli
cations. The component class is an MFC document class in an SDI
application. Each time a client calls CreateInstance, a new compo
nent process starts, complete with a document object, a view object,
and an SDI main frame window.

il] The component class is programmed to allow multiple objects in
a single process. Each time a client calls CreateInstance, a new com
ponent object is constructed. There is only one component pro
cess, however.

il] Here's another special case of the scenario above, specific to MFC
applications. The component class is an MFC document class in
an MDI application. There is a single component process with one
MDI main frame window. Each time a client calls CreateInstance, a
new document object is constructed, along with a view object and
an MDI child frame window.

There's one more interesting case. Suppose a component EXE is run
ning before the client needs it, and then the client decides to access a com-

T WEN T Y - F 0 U R: Automation

ponent object that already exists. You'll see this case with Excel. The user might
have Excel running but minimized on the desktop, and the client needs ac
cess to Excel's one and only Application object. Here the client calls the COM
function GetActiveObject, which provides an interface pointer for an exist
ing component object. If the call fails, the client can create the object with
CoCreateInstance.

For component object deletion, normal COM rules apply. Automation
objects have reference counts, and they delete themselves when the client calls
Release and the reference count goes to O. In an MDI component, if the Au
tomation object is an MFC document, its destruction causes the correspond
ing MDI child window to close. In an SDI component, the destruction of the
document object causes the component process to exit. The client is respon
sible for calling Release for each IDispatch interface before the client exits. For
EXE components, COM will intervene if the client exits without releasing an
interface, thus allowing the component process to exit. You can't always de
pend on this intervention, however, so be sure that your client cleans up its
interfaces!

With generic COM, a client application often obtains multiple interface
pointers for a single component object. Look back at the spaceship example
in Chapter 23, in which the simulated COM component class had both an
IMotion pointer and an !Visual pointer. With Automation, however, there's
usually only a single (IDispatch) pointer per object. As in all COM program
ming, you must be careful to release all your interface pointers. In Excel, for
example, many properties return an IDispatch pointer to new or existing ob
jects. If you fail to release a pointer to an in-process COM component, the
Debug version of the MFC library alerts you with a memory-leak dump when
the client program exits.

The MFC IDispatch Implementation
The component program can implement its !Dispatch interface in several ways.
The most common of these pass off much of the work to the Windows COM
DLLs by calling the COM function CreateStdDispatch or by delegating the In
vokecall to theITypeInfointerface, which involves the component's~library.
A type library is a table, locatable through the Registry, that allows a client to
query the component for the symbolic names of objects, methods, and prop
erties. A client could, for example, contain a browser that allows the user to
explore the component's capabilities.

The MFC library supports type libraries, but it doesn't use them in its
implementation of IDispatch, which is instead driven by a dispatch map. MFC

607

PAR T I V: ACTIVEX: COM, AUTOMATION, AND OLE

programs don't call CreateStdDispatch at all, nor do they use a type library to
implementIDispatch::GetIDsOfNames. This means that you can't use the MFC
library if you implement a multilingual Automation component-one that
supports English and German property and method names, for example.
(CreateStdDispatch doesn't support multilingual components either.)

Later in this chapter, you'll learn how a client can use a type library and
you'll see how AppWizard and ClassWizard create and maintain type librar
ies for you. Once your component has a type library, a client can use it for
browsing, independent of the IDispatch implementation.

An MFC Automation Component

608

Let's look at what happens in an MFC Automation component-in this case,
a simplified version of the EX24C alarm clock program that is discussed later
in this chapter. In the MFC library, the IDisPqtch implementation is part of the
CCmdTarget base class, so you don't need INTERFACE_MAP macros. You write
an Automation component class, CClock, for example, that is derived from
CCmdTarget, and this class's CPP file contains DISPATCH_MAP macros:

BEGIN_DISPATCH_MAP(CClock, CCmdTarget)
DISP_PROPERTY(CClock, "Time", m_time, VT_DATE)
DISP_PROPERTY_PARAM(CClock, "Figure", GetFigure,

SetFigure, VT_VARIANT, VTS_I2)
DISP_FUNCTION(CClock, "RefreshWin", Refresh, VT_EMPTY, VTS_NONE)
DISP_FUNCTION(CClock, "ShowWin", ShowWin, VT_BOOl, VTS_I2)

END_DISPATCH_MAP()

Looks a little like an MFC message map, doesn't it? The CClock class header
file contains related code, shown here:

public:
DATE m_time:
afx_msg VARIANT GetFigure(short n):
afx_msg void SetFigure(short n, const VARIANT& vaNew);
afx_msg void Refresh():
afx_msg BOOl ShowWin(short n);
DEClARE_DISPATCH_MAP()

What does all this stuff mean? It means that the CClock class has the
following properties and methods:

Name

Time

Figure

RefreshWin

ShowWin

Type

Property

Property

Method

Method

T WEN T Y - F 0 U R: Automation

Description

Linked directly to class data member m_time.

Indexed property, accessed through member
functions GetFigure and SetFigure: first parameter
is the index; second (for SetFigure) is the string
value. (The figures are the "XII," "III," "VI," and
"IX" that appear on the clock face.)

Linked to class member function Refresh-no
parameters or return value.

Linked to class member function ShowWin-short
integer parameter, Boolean return value.

How does the MFC dispatch map relate to IDispatch and the Invoke mem
ber function? The dispatch map macros generate static data tables that the
MFC library's Invoke implementation can read. A controller gets an IDispatch
pointer for CClock (connected through the CCmdTarget base class), and it calls
Invokewith an array of pointers as a parameter. The MFC library's implemen
tation of Invoke, buried somewhere inside CCmdTarget, uses the CClock dispatch
map to decode the supplied pointers and either calls one of your member
functions or accesses m_time directly.

As you'll see in the examples, ClassWizard can generate the Automation
component class for you and it can help you code the dispatch map.

An MFC Automation Client Program
Let's move on to the client's end of the Automation conversation. How does
an MFC Automation client program call Invoke? The MFC library provides a
base class COleDispatchDriverfor this purpose. This class has a data member,
m_lpDispatch, which contains the corresponding component's IDispatch
pointer. To shield you from the complexities of the Invoke parameter se
quence, COleDispatchDriver has several member functions, including Invoke
Helper, GetProperty, and SetProperty. These three functions call Invoke for an
IDispatch pointer that links to the component. The COleDispatchDriverobject
incorporates the IDispatch pointer.

Let's suppose our client program has a class CClockDriver, derived from
COleDispatchDriver, that drives CClock objects in an Automation component.

609

PAR T I V: ACTIVEX: COM, AUTOMATION, AND OLE

610

Here are the functions that get and set the Time property:

DATE CClockDriver: :GetTime()
{

DATE result:
GetProperty(l, VT_DATE, (void*)&result);
return result;

void CClockDriver::SetTime(DATE propVal)
{

SetProperty(l, VT_DATE, propVal);

Here are the functions for the indexed Figure property:

VARIANT CClockDriver::GetFigure(short i)
{

VARIANT result;
static BYTE parms[] = VTS_I2;
InvokeHelper(2, DISPATCH_PROPERTYGET, VT_VARIANT,

(void*)&result, parms, i);
return result;

void CClockDriver::SetFigure(short i, const VARIANT& propVal)
{

static BYTE parms[] = VTS_I2 VTS_VARIANT:
InvokeHelper(2, DISPATCH_PROPERTYPUT, VT_EMPTY, NUll,

parms, i, &propVal);

And finally, here are the functions that access the component's methods:

void CClockDriver::RefreshWin()
{

InvokeHelper(3, DISPATCH_METHOD, VT_EMPTY, NUll, NUll);

BOOl CClockDriver::ShowWin(short i)
{

BOOl result;
static BYTE parms[] = VTS_I2;
InvokeHelper(4, DISPATCH_METHOD, VT_BOOl,

(void*)&result, parms, i);
return result;

T WEN T Y - F 0 U R: Automation

The function parameters identify the property or method, its return
value, and its parameters. You'll learn about dispatch function parameters
later, but for now take special note of the first parameter for the InvokeHelper,
GetProperty, and SetProperty functions. This is the unique integer index, or
dispatch ID (DISPID), for the property or method. Because you're using com
piled C++, you can establish these IDs at compile time. If you're using an MFC
Automation component with a dispatch map, the indexes are determined by
the map sequence, beginning with 1. If you don't know a component's dispatch
indexes, you can call the IDispatch member function GetlDsOfNames to convert
the symbolic property or method names to integers.

The following illustration shows the interactions between the client and
the component:

Automation Controller Automation Component
r 0,,",": ~0~'00""'~'" "W~0'W'0W_"W

r"""·"'~""'·"0'0"~'~.00"'~_,",:':~~'

!. . CDindTarget.... ·
I COIeDispatchDriver

I .. 9,etProperty
iSetProperty
! InvokeHelper

lDispatch::lnvoke -I'

I
""""CCib~k6~~i;~;""","'1

'..... .' .' , ' ...•..• :.'J
,. ,,;,GetTime ' .. ,'. '1"".

',' J .. •••• ••• Ie. SetTiirie 'J III: 118." G Gil: ~ a •• alla Ill§; are 811

: , '<GetFiQure , '; ";:, ·,l .. · u •••••• • .. • • • .. • •

SeiFigurfj ',' ',' 1

Refresh IJI(in ;:. : :; ,t. · · · · · · · .. · · ·
:,1

The solid lines show the actual connections through the MFC base classes and
the Invoke function. The dotted lines represent the resulting logical connec
tions between client class members and component class members.

Most Automation components have a binary type library file with a TLB
extension. ClassWizard can access this type library file to generate a class
derived from COleDispatchDriver. This generated controller class contains
member functions for all the component's methods and properties with hard
coded dispatch IDs. Sometimes you need to do some surgery on this gener
ated code, but that's better than writing the functions from scratch.

611

PA RT I V: ACTIVEX: COM, AUTOMATION, AND OLE

After you have generated your driver class, you embed an object of this
class in your client application's view class (or in another class) like this:

CClockDriver m_clock;

Then you ask COM to create a clock component object with this statement:

m_clock.CreateDispatch("Ex24c.Document");

Now you're ready to call the dispatch driver functions:

m_clock.SetTime(COleDateTime::GetCurrentTime(»;
m_clock.RefreshWin();

When the m_clock object goes out of scope, its destructor releases the IDispatch
pointer.

An Automation Client Program
Using the Compiler's #import Directive

612

Now there's an entirely new way of writing Automation client programs. In
stead of using ClassWizard to generate a class derived from COleDispatchDriver,
you use the compiler to generate header and implementation files directly
from a component's type library. For the clock component, your client pro
gram contains the following statement:

/Fimport" .. \ex24c\debug\ex24c. tl b" renameJ]amespace("Cl ockDri v") usi ng namespace Cl ockDri v;

The compiler then generates (and processes) two files, ex24c.t1h and ex24c.t1i,
in the project's Debug or Release subdirectory. The TLH file contains the
IEx24c clock driver class declaration plus this smart pointer declaration:

_COM_SMARTPTR_TYPEDEF(IEx24c, __ uuidof(IDispatch»;

The _COM_SMARTPTR-TYPEDEF macro generates the IEx24cPtr pointer
type, which encapsulates the component's IDispatch pointer. The TLI file
contains inline implementations of member functions, some of which are
shown in the following code:

inline HRESULT IEx24c::RefreshWin () {
return _com_dispatch_method(this, 0x4, DISPATCH_METHOD, VT_EMPTY, NULL,

NULl) ;

T WEN T Y • F 0 U R: Automation

inline DATE IEx24c::GetTime ()
DATE _result;
_com_dispatch_propget(this. 0xl. VT_DATE. (void*)&_result);
return _result;

inline void IEx24c::PutTime (DATE _val) (
_com_dispatch_propput(this. 0xl. VT_DATE. _val);

Note the similarity between these functions and the COleDispatchDriver
member functions you've already seen. The functions _com_dispatch_method,
_com_dispatch_propget, and _com_dispatch_propput are in the runtime library.

In your Automation client program, you declare an embedded smart
pointer member in your view class (or in another class) like this:

IEx24cPtr m_clock;

Then you create a clock component object with this statement:

m_clock.CreateInstance(__ uuidof(Document»;

Now you're ready to use the IEx24cPtr class's overloaded -> operator to call
the member functions defined in the TLI file:

m_clock->PutTime(COleDateTime::GetCurrentTime(»;
m_clock->RefreshWin();

When the m_clock smart pointer object goes out of scope, its destructor calls
the COM Release function.

The #import directive is the future of COM programming. With each new
version of Visual C++, you'll see COM features moving into the compiler, along
with the document-view architecture itself.

The VARIANTType
No doubt you've noticed the VARIANTtype used in both Automation client
and component functions in the previous example. VARIANT is an all-purpose
data type that IDispatch::lnvokeuses to transmit parameters and return values.
The VARIANT type is the natural type to use when exchanging data with VBA.
Let's look at a simplified version of the VARIANT definition in the Windows
header files.

613

PAR T I V: ACTIVEX: COM, AUTOMATION, AND OLE

614

struct tagVARIANT {
VARTYPE vt; II unsigned short integer type code
WORD wReservedl, wReserved2, wReserved3;
union {

short iVa 1 ; II VT_I2 short integer
long 1 Va 1 ; II VT_I4 long integer
float fltVal; II VT_R4 4-byte fl oat
double dblVal; II VT_RB B-byte IEEE float
DATE date; II VT_DATE stored as dbl

II date.time
CY vtCY II VT_CY 64-bit integer
BSTR bstrVal; II VT_BSTR
IUnknown* punkVal; II VT_UNKNOWN
IDispatch* pdispVal; II VT_DISPATCH
short* piVal; II VT_BYREF I VT_I2
long* plVal; II VT_BYREF I VT_I4
float* pfltVa 1 ; II VT_BYREF I VT_R4
double* pdblVal; II VT_BYREF I VT_RB
DATE* pdate; II VT_BYREF I VT_DATE
CY* pvtCY; II VT_BYREF I VT_CY
BSTR* pbstrVal; II VT_BYREF I VT_BSTR

} ;

typedef struct tagVARIANT VARIANT;

As you can see, the VARIANT type is a C structure that contains a type code
vt, some reserved bytes, and a big union of types that you already know about.
If vt is VT _12, for example, you would read the VARIANT's value from iVal,
which contains a 2-byte integer. If vt is VT _R8, you would read this value from
dblVal, which contains an 8-byte real value.

A VARIANT object can contain actual data or a pointer to data. If vt has
the VT _BYREF bit set, you must access a pointer in piVal, plVal, and so on. Note
that a VARIANT object can contain an IUnknown pointer or an IDispatch
pointer. This means that you can pass a complete COM object using an Auto
mation call, but if you want VBA to process that object, its class should have
an IDispatch interface.

Strings are special. The BSTR type is yet another way to represent char
acter strings. A BSTRvariable is a pointer to a zero-terminated character ar
ray with a character count in front. A BSTRvariable could, therefore, contain
binary characters, including zeros. If you had a VARIANT object with vt =

VT _BSTR, memory would look like this:

T WEN T Y - F 0 U R: Automation

VARIANT Object Allocated Memory

Integer character count

String character data

bstr

O-terminating byte

Because the string has a terminating 0, you can use bstrVal as though it
were an ordinary char pointer, but you have to be very, very careful about
memory cleanup. You can't simply delete the string pointer, because the al
located memory begins with the character count. Windows provides the
SysAllocString and SysFreeString functions for allocating and deleting BSTR
objects.

NOT E : SysAllocStringis another COM function that takes a wide
string pointer as a parameter. This means that all BSTRs contain
wide characters, even if you haven't defined_UNICODE. Be careful.

Windows supplies some useful functions for VARIANTs, including those
shown in the table below. If a VARIANT contains a BSTR, these functions
ensure that memory is allocated and cleared properly. The Variant/nit and
VariantClearfunctions set vt to VT _EMPTI. All the variant functions are global
functions and take a VARIANT* parameter.

Function

Variant/nit

VariantClear

VariantCopy

VariantCopylnd

VariantChangeType

Description

Ini tializes a VARIANT

Clears a VARIANT

Frees memory associated with the destination VARIANT
and copies the source VARIANT

Frees the destination VARIANTand performs any
indirection necessary to copy the source VARIANT

Changes the type of the VARIANT

615

PA R T I V: ACTIVEX: COM, AUTOMATION, AND OLE

The COleVariant Class

616

It makes a lot of sense to write a C++ class to wrap the VARIANT structure.
Constructors can call Variant/nit, and the destructor can call VariantClear. The
class can have a constructor for each standard type, and it can have copy con
structors and assignment operators that call VariantCopy. When a variant ob
ject goes out of scope, its destructor is called and memory is cleaned up
automatically.

Well, the MFC team createdjust such a class, mostly for use in the Data
Access Objects (DAO) subsystem, described in Chapter 29. It works well in
Automation clients and components, however. Here's a simplified declaration:

class COleVariant : public tagVARIANT
{

II Constructors
public:

COleVariant();

COleVariant(const VARIANT& varSrc);
COleVariant(const COleVariant& varSrc);

COleVariant(LPCTSTR lpszSrc);
COleVariant(CString& strSrc);

COleVariant(BYTE nSrc);
COleVariant(short nSrc, VARTYPE vtSrc = VT_I2);
COleVariant(long lSrc, VARTYPE vtSrc = VT_I4);

COleVariant(float fltSrc);
COleVariant(double dblSrc);
COleVariant(const COleDateTime& dateSrc);

II Destructor
-COleVariant(); II deallocates BSTR

II Operations
public:

} ;

void Clear(); II deallocates BSTR
VARIANT Detach(); II more later
void ChangeType(VARTYPE vartype. LPVARIANT pSrc = NULL);

In addition, the CArchive and CDumpContext classes have comparison opera
tors, assignment operators, conversion operators, and friend insertion/extrac
tion operators. See the online documentation for a complete description of
this useful MFC COleVariant class.

Now let's see how the COleVariant class helps us write the component's
GetFigurefunction that you saw referenced previously in the sample dispatch

T WEN T Y - F 0 U R: Automation

map. Assume that the component stores strings for four figures in a class data
member:

private:
CString m_strFigure[4];

Here's what we'd have to do if we used the VARlANTstructure directly:

VARIANT CClock::GetFigure(short n)
{

VARIANT vaResult;
::VariantInit(&vaResult);
vaResult.vt = VT_BSTR;
II CString::AllocSysString creates a BSTR
vaResult.bstrVal = m_strFigure[n].AllocSysString();
return vaResult; II Copies vaResult without copying BSTR.

II BSTR still must be freed later.

Here's the equivalent, with a COleVariant return value:

VARIANT CClock::GetFigure(short n)
{

return COleVariant(m_strFigure[n]).Detach();

Calling the COleVariant::Detachfunction is critical here. The GetFigurefunction
is constructing a temporary object that contains a pointer to a BSTR. That
object gets bitwise-copied to the return value. If you didn't call Detach, the
COleVariant destructor would free the BSTR memory and the calling program
would get a VARlANTthat contained a pointer to nothing.

A component's variant dispatch function parameters are declared as const
VARlANT&. You can always cast a VARlANTpointer to a COleVariantpointer
inside the function. Here's the Set Figure function:

void CClock::SetFigure(short n, const VARIANT& vaNew)
{

COleVariant vaTemp;
vaTemp.ChangeType(VT_BSTR, (COleVariant*) &vaNew);
m_strFigure[n] = vaTemp.bstrVal;

NOT E : Remember that all BSTRs contain wide characters. The
CString class has a constructor and an assignment operator for the
LPCWSTR (wide-character pointer) type. Thus, the m_strFigure string
will contain single-byte characters, even though bstrVal points to a
wide-character array.

617

PAR T I V: ACTIVEX: COM, AUTOMATION, AND OLE

Client dispatch function variant parameters are also typed as canst VARl
ANT&. You can call those functions with either a VARlANTor a COleVariant
object. Here's an example of a call to the CClockDriver::SetFigure function
shown on the preceding page:

pClockDriver-)SetFigure(0. COleVariant("XII"»;

NOT E : Visual C++ 5.0 has added two new classes for BSTRs and
VARlANTs. These classes are independent of the MFC library:
_bstc and _varianLt. The _bstr_t class encapsulates the BSTR data
type; the _varianLtclass encapsulates the VARlANTtype. Both classes
manage resource allocation and deallocation. For more information
on these classes, see the online documentation.

Parameter and Return Type Conversions for Invoke

618

All IDispatch::Invokeparameters and return values are processed internally as
VARlANTs. Remember that! The MFC library implementation of Invoke is
smart enough to convert between a VARlANT and whatever type you supply
(where possible), so you have some flexibility in declaring parameter and
return types. Suppose, for example, that your controller's GetFigurefunction
specifies the return type BSTR. If a component returns an int or a long, all is
OK: COM and the MFC library convert the number to a string. Suppose your
component declares a long parameter and the controller supplies an into Again,
no problem.

NOT E : An MFC library Automation client specifies the expected
return type as a VT_ parameter to the COleDispatchDriver functions
GetProperty, SetProperty, and InvokeHelper. An MFC library Automation
component specifies the expected parameter types as VTS_ parame
ters in the DISP_PROPERTYand DISP_FUNCTION macros.

Unlike C++, VBA is not a strongly typed language. VBA variables are often
stored internally as VARIANTs. Take an Excel spreadsheet cell value, for
example. A spreadsheet user can type a text string, an integer, a floating-point
number, or a date/time in a cell. VBA treats the cell value as a VARIANT and
returns a VARIANT object to an Automation client. If your client function
declares a VARIANTretum value, it can test vt and process the data accordingly.

VBA uses a date/time format that is distinct from the MFC library CTime
class. Variables of type DATE hold both the date and the time in one double
value. The fractional part represen ts time (.25 is 6:00 AM), and the whole part
represents the date (number of days since December 30, 1899). The MFC

T WEN T Y - F 0 U R: Automation

library provides a COleDateTime class that makes dates easy to deal with. You
could construct a date this way:

COleDateTime date(1997, 10, 1, 18, 0, 0):

The above declaration initializes the date to October 1, 1997, at 6:00 PM.
The COleVariantclass has an assignment operator for COleDateTime, and

the COleDateTime class has member functions for extracting date/time com
ponents. Here's how you print the time:

TRACE("time = %d:%d:%d\n",
date.GetHour(),date.GetMinute(),date.GetSecond(»:

If you have a variant that contains a DATE, you use the COleVariant::
ChangeType function to convert a date to a string, as shown here:

COleVariant vaTimeDate = date:
COleVariant vaTemp:
vaTemp.ChangeType(VT_BSTR, &vaTimeDate):
CString str = vaTemp.bstrVal:
TRACE("date = %s\n", str):

One last item concerning Invoke parameters: a dispatch function can
have optional parameters. If the component declares trailing parameters as
VARIANTs, the client doesn't have to supply them. If the client calls the func
tion without supplying an optional parameter, the VARIANTobject's vtvalue
on the component end is VT _ERROR.

Automation Examples
The remainder of this chapter presents five sample programs. The first three
programs are Automation components-an EXE component with no user
interface, a DLL component, and a multi-instance SDI EXE component. Each
of these component programs comes with a Microsoft Excel driver workbook
file. The fourth sample program is an MFC Automation client program that
drives the three components and also runs Excel using the COleDispatchDriver
class. The last sample is a client program that uses the new C++ #import direc
tive instead of the MFC COleDispatchDriver class.

The EX24A Automation Component
EXE Example-No User Interface

The Visual C++ Autoclik example is a good demonstration of an MDI frame
work application with the document object as the Automation component.
(To find the Autoclik example, look for "Autoclik: Automation" under "Visual

619

PA R T I V: ACTIVEX: COM, AUTOMATION, AND OLE

620

c++ Tutorials" in the online documentation.) The EX24A example is differ
ent because it has no user interface. There is one Automation-aware class, and
in the first version of the program, a single process supports the construction
of multiple Automation component objects. In the second version, a new
process starts up each time an Automation client creates an object.

The EX24A example represents a typical use of Automation. A C++ com
ponent implements financial transactions. VBA programmers can write User
interface-intensive applications that rely on the audit rules imposed by the
Automation component. A production component program would probably
use a database, but EX24A is simpler. It implements a bank account with two
methods, Deposit and Withdrawal, and one read-only property, Balance.
Obviously, the Withdrawal method can't permit withdrawals that make the
balance negative. You can use Excel to control the component, as shown in
Figure 24-3.

Figure 24-3.
This Excel workbook is controlling the EX24A component.

Here are the steps for creating the program from scratch:

1. Run AppWizard to create the EX24A project in the \vcpp32\ex24a
directory. Select the Dialog-Based option (Step 1). Deselect all op
tions in Step 2, and accept the remaining default settings. This is the
simplest application that AppWizard can generate.

2. Eliminate the dialog class from the project. Using Windows Ex
plorer or the command-line prompt, delete the files ex24aDlg.cpp and
ex24aDlg.h. Remove ex24aDlg.cpp and ex24aDlg.h from the project by
deleting them from the project's Workspace window (FileView). Edit
ex24a.cpp. Remove the dialog #include, and remove all dialog-related

T WEN T Y - F 0 U R: Automation

code from the InitInstance function. In ResourceView, delete the
IDD_EX24A_DIALOG dialog resource template.

3. Add code to enable Automation. Add this line in StdAfx.h:

#include <afxdisp.h>

Edit the InitInstance function (in Ex24a.cpp) to look like this:

BOOl CEx24aApp::InitInstance()
{

AfxOl eInit():
if(RunEmbedded() I I RunAutomated(» {

II component started by COM
COleTemplateServer::RegisterAll();
retu rn TRU E;

II Component is being run directly by the user
COleObjectFactory::UpdateRegistryAll();
AfxMessageBox("Bank server is registered");
return FALSE;

4. Use ClassWizard to add a new class, CBank, as shown here:

Be sure to select the Createable By Type ID option.

5. Use ClassWizard to add two methods and a property. Click on the
Automation tab, and then add a Withdrawal method, as shown on the
following page.

621

PAR T I V: ACTIVEX: COM, AUTOMATION, AND OLE

622

rrcnm"""", -----~-----I,-';:,'OK: .

If; lm;:~;~ ~~~--, ",I,~ : ·l;~':~~c~~~~F::':l.·:
f:'IWithd~a~al ~: '
~.. ~«"~ < ~:.' .~" "'; ~.:. : ~ ,,~,~, ' ~ ',,", "··,x ,", b

i:.Fieturn .tYpe:

~:;\.1;~;~~~.!7;.;;;.;;;;;;.;.",;:' ';;·;;·';";;:;;:;;;';':;;;;·;;;:;;';";;;:';::"i;:,;,,·~t •. ,

The dAmount parameter is the amount to be withdrawn, and the return
value is the actual amount withdrawn. If you try to withdraw $100 from
an account that contains $60, the amount withdrawn is $60.

Add a similar Deposit method that returns void, and then add the
Balance property, as shown here:

T WEN T Y - F 0 U R: Automation

We could have chosen direct access to a component data member, but
then we wouldn't have read-only access. We choose Get/Set Methods
so that we can code the SetBalance function to do nothing.

6. Add a public m_dBalance data member of type double to the
CBank class. Because we've chosen the Get/Set Methods option for
the Balance property, ClassWizard doesn't generate a data member
for us. You should declare m_dBalance in the Bank.h file and initialize
m_dBalance to 0.0 in the CBank constructor located in the bank.cpp file.

7. Edit the generated method and property functions. Add the fol
lowing shaded code:

double CBank::Withdrawal(double dAmount)
{,

if (dAmount < 0.0)
return 0.0:

if (dAmount <= m_dBalance>
m_dBalance -= dAmount:
return dAmount:

double dTemp = m_dBalance;
m_dBalance = 0.0;

, xeturndTernP;

void CBank::Deposit(double dAmount)
{

if (dAmount < 0.0) {
return;

double CBank::GetBalance()
{

,r~t u rl1"ffi __ dB aJ,an ce;

void CBank::SetBalance(double newValue)
{

",JgbC~(·~S(?r:r.x. Oay,~ •. I .. c:an~Jwclo .. thqt! \ 11 :'):.

623

PA R T I V: ACTIVEX: COM, AUTOMATION, AND OLE

624

8. Build the EX24A program; run it once to register the component.

9. Set up five Excel macros in a new workbook file, ex24a.xls. Add
the following code:

Dim Bank As Object
Sub LoadBank()

Set Bank = CreateObjectC"Ex24a.Bank")
End Sub

Sub UnloadBankC)
Set Bank = Nothing

End Sub

Sub DoDeposit()
Range("D4").Select
Bank.Deposit CActiveCell.Value)

End Sub

Sub DoWithdrawal()
Range("E4").Select
Dim Amt
Amt = Bank.Withdrawal(ActiveCell.Value)
Range("E5").Select
ActiveCell .Value = Amt

End Sub

Sub Dolnquiry()
Dim Amt
Amt = Bank.Balance()
Range("G4").Select
ActiveCell .Value = Amt

End Sub

10. Arrange an Excel worksheet as shown in Figure 24-3. Attach the
macros to the pushbuttons (by right-clicking the pushbuttons).

11. Test the EX24A bank component. Click the Load Bank Program
button, and then enter a deposit value in cell D4 and click the Deposit
button. Click the Balance Inquiry button, and watch the balance appear
in cell G4. Enter a withdrawal value in cell E4, and click the Withdrawal
button. To see the balance, click the Balance Inquiry button.

NOT E: Sometimes you need to click the buttons twice. The first
click switches the focus to the worksheet, and the second click runs
the macro. The hourglass pointer tells you the macro is working.

T WEN T Y - F 0 U R: Automation

What's happening in this program? Look closely at the CEx24aApp
::InitInstancefunction. When you run the program directly from Windows, it
displays a message box and then quits, but not before it updates the Regis
try. The COleObjectFactory::UpdateRegistryAll function hunts for global class
factory objects, and the CBank class's IMPLEMENT_OLECREATE macro invo
cation defines such an object. (The IMPLEMENT_ OLECREATE line was gen
erated because you checked ClassWizard's Createable By Type ID check box
when you added the CBank class.) The unique class ID and the program ID,
EX24A.BANK, are added to the Registry.

When Excel now calls CreateObject, COM loads the EX24A program, which
contains the global factory for CBank objects; COM then calls the factory
object's Createlnstance function to construct the CBank object and return an
IDispatch pointer. Here's the CBank class declaration that ClassWizard gener
ated in the bank.h file, with unnecessary detail (and the method and prop
erty functions you've already seen) omitted:

class CBank : public CCmdTarget
{

DECLARE_DYNCREATE(CBank)
public:

double m_dBalance;
CBank(); II protected constructor used by dynamic creation

II Attributes
public:

II Operations
public:

II Overrides
II ClassWizard generated virtual function overrides
11{{AFX_VIRTUAL(CBank)
public:
virtual void OnFinalRelease();
I/} JAFX_VIRTUAL

II Implementation
protected:

virtual -CBank();

II Generated message map functions
11{{AFX_MSG(CBank)

II NOTE - the ClassWizard will add and remove member functions here.
I/} JAFX_MSG

(continued)

625

PA R T I V: ACTIVEX: COM, AUTOMATION, AND OLE

626

} ;

DECLARE_MESSAGE_MAP()
DECLARE_OLECREATE(CBank)

II Generated OLE dispatch map functions
11{{AFX_DISPATCH(CBank)
afx_msg double GetBalance():
afx_msg void SetBalance(double newValue);
afx_msg double Withdrawal(double dAmount);
afx_msg void Deposit(double dAmount);
I/} }AFX_DISPATCH
DECLARE_DISPATCH_MAP()
DECLARE_INTERFACE_MAP()

Here is the code automatically generated by ClassWizard in bank.cpp:

IMPLEMENT_DYNCREATE(CBank, CCmdTarget)

CBank::CBank()
{

EnableAutomation();

II To keep the application running as long as an OLE automation
II object is active, the constructor calls AfxOleLockApp.

AfxOleLockApp();

CBank: :-CBank()
{

II To terminate the application when all objects created with
II OLE automation, the destructor calls AfxOleUnlockApp.

AfxOleUnlockApp();

void CBank::OnFinalRelease()
{

}

II When the last reference for an automation object is released,
II OnFinalRelease is called. This implementation deletes the
II object. Add additional cleanup required for your object before
II deleting it from memory.

CCmdTarget::OnFinalRelease

T WEN T Y - F 0 U R: Automation

BEGIN_MESSAGE_MAP(CBank, CCmdTarget)
11{{AFX_MSG_MAP(CBank)

II NOTE - the ClassWizard will add and remove mapping macros here.
I/}} AFX_MSG_MAP

END_MESSAGE_MAP()

BEGIN_DISPATCH_MAP(CBank, CCmdTarget)
11{{AFX_DISPATCH_MAP(CBank)
DISP_PROPERTY_EX(CBank, "Balance", GetBalance, SetBalance, VT_RB)
DISP_FUNCTION(CBank, "Withdrawal", Withdrawal, VT_RB, VTS_RB)
DISP_FUNCTION(CBank, "Deposit", Deposit, VT_EMPTY, VTS_RB)
II}}AFX_DISPATCH_MAP

END_DISPATCH_MAP()

II Note: we add support for IID_IBank to support typesafe binding
II from VBA. This 110 must match the GUID that is attached to the
II dispinterface in the .ODL file.

II {A9S1SAB6-SBBS-IID0-B4BF-00400S2630SB}
static const 110 IID_IBank =
{ 0xa9S1Sab6, 0xSbBS, 0xlld0, { 0xB4, 0xBf, 0x0, 0x40, 0xS, 0x26,

0x30, 0xSb } };

BEGIN_INTERFACE_MAP(CBank, CCmdTarget)
INTERFACE_PART(CBank, IID_IBank, Dispatch)

END_INTERFACE_MAP()

II {632BIE4C-F2B7-11CE-BSE3-00AA00SBlS74}
IMPLEMENT_OLECREATE2(CBank, "EX24A.BANK", 0x632ble4c, 0xf2B7, 0xllce,

0xbS, 0xe3, 0x0, 0xaa, 0x0, 0xSb, 0xlS, 0x74)

This first version of the EX24A program runs in single-process mode, as
does the Autoclik program. If a second Automation client asks for a new CBank
object, COM calls the class factory CreateInstance function again and the ex
isting process constructs another CBank object on the heap. You can verify this
by making a copy of the ex24a.xls workbook (under a different name) and
loading both the original and the copy. Click the Load Bank Program button
in each workbook, and watch the Debug window. InitInstanceshould be called
only once.

A small change in the EX24A program makes it behave differently. To
have a new EX24A process start up each time a new component object is
requested, follow the steps shown on page 629.

627

PAR T I V: ACTIVEX: COM, AUTOMATION, AND OLE

628

Debugging an EXE Component Program
When an Automation client launches an EXE component program,
it sets the /Embeddingcommand-line parameter. If you want to debug
your component, you must do the same. Choose Settings from the
Developer Studio Project menu, and then enter /Embedding in the
Program Arguments box on the Debug page, as shown here:

When you click the Debug Go toolbar button, your program will
start and then wait for a client to activate it. At this point, you should
start the client program from Windows (ifit is not already running)
and then use it to create a component object. Your component pro
gram in the debugger should then construct its object.It might be a
good idea to include a TRACE statement in the component object'S
constructor.

Don't forget that your component program must be registered
before the client can find it. That means you have to run it once with
out the /Embeddingflag. Many clients don't synchronize with Registry
changes. If your client is running when you register the component,
you may have to restart the client.

T WEN T Y - F OUR: Automation

1. Add the following macro in bank.h:

#define IMPLEMENT_OLECREATE2(class_name. external_name. \
1. wI. w2. bl. b2. b3. b4. b5. b6. b7. bS) \
AFX_DATADEF COleObjectFactary class_name::factary(class_name::guid. \
RUNTIME_CLASS(class_name). TRUE. _T(external_name»; \
canst AFX_DATADEF GUID class_name::guid = \
(1. wI. w2. (bI. b2. b3. b4. b5. b6, b7. bS} };

This macro is the same as the standard MFC IMPLEMENT_ OLECREATE
macro except that the original FALSE parameter (after the RUNTlME
_CLASS parameter) has been changed to TRUE.

2. In bank.cpp, change the IMPLEMENT_OLECREATE macro invo
cation to IMPLEMENT_OLECREATE2.

3. Build the program, and test it using Excel. Start two Excel pro
cesses, and then load the bank program from each. Use the Microsoft
Windows NT Task Manager or PVIEW95 to verify that two EX24A pro
cesses are running.

NOT E: The EX24A program on the companion CD-ROM uses
the IMPLEMENT_OLECREATE2 macro.

The EX24B Automation Component DLL Example
You could easily convert EX24A from an EXE to a DLL. The CBank class would
be exactly the same, and the Excel driver would be similar. It's more interest
ing, though, to write a new application-this time with a minimal user inter
face (UI). We'll use a modal dialog box because it's about the most complex
UI we can conveniently use in an Automation DLL.

The EX24B program is fairly simple. An Automation component class,
identified by the registered name Ex24b.Auto, has the following properties
and method:

LongData
TextData
DisplayDialog

Long integer property
VARlANT property
Method-no parameters, BOOL return

DisplayDialog displays the EX24B data gathering dialog box shown in
Figure 24-4 on page 631. An Excel macro passes two cell values to the DLL
and then updates the same cells with the updated values.

629

PAR T I V: ACTIVEX: COM, AUTOMATION, AND OLE

630

Parameters Passed. by Reference
So far, you've seen VBA parameters passed by value. VBA has pretty
strange rules for calling methods. If the method has one parameter,
you can use parentheses; ifit has more than one, you can't (unless
you're using the function's return value, in which case you mustuse
parentheses). Here is some sample VBA code that passes the string
parameter by value:

Object.Methodl parmI, "text"
Object.Method2("text")
Dim s as String
s = "text"
Object.Method2(s)

Sometimes, though, VBA passes the address of a parameter (a
reference). In this example, the string is passed by reference:

Dim s as String
s = "text"
Object.Methodl parmI. s

You can override VBA's defaultbehavior by prefixing a parameter
with ByVal or ByRef. As you can see, your component can never know
in advance whether it's getting a value or a reference, so it must be
prepared for both. The trick is to test vi to see whether its VF_BYREF
bit is set. Here's a sample method implementation that accepts a string
(in a VARIANT) passed either by reference or by value:

void CMyComponent::Method(long nParml. canst VARIANT& vaParm2)
{

CString str:
if «vaParm2.vt &0x7f) == VT_BSTR){

if «vaParm2.vt & VT_BYREF) 1= 0)
str = *(vaParm2.pbstrVal); II byref

else
str = vaParm2.bstrVal; II byval

AfxMessageBox(str):

If you declare a BSTR parameter, the MFC library does the conversion
for you. Suppose your client program passed a BSTR reference. to an
out-of-process component and the componerit program changed the
value. Because the component can't access the memory of the client
process, COM must copy the string to the componeritand then copy.
it back to the client after the function returns. Before declaringTefer~
ence parameters, remember that it's notlikereference passing iri C++.

T WEN T Y • F 0 U R: Automation

x

OK

Cancel

Long I~~,

Figure 24·4.
The EX24B DLL dialog in action.

The example was first generated as an MFC AppWizard DLL with the
Regular DLL Using Shared MFC DLL option and the Automation option
selected. Here are the steps for building and testing the EX24B component
DLL from the code installed from the companion CD-ROM:

1. From Developer Studio, open the \vcpp32\ex24b\ex24b.dsw
workspace. Build the project.

2. Register the DLL with the RegComp utility. You can use the
RegComp program in the \vcpp32\RegComp\Release directory on the
companion CD-ROM; a file dialog makes it easy to select the DLL file.

3. Start Excel, and then load the \vcpp32\ex24b\ex24b.xls workbook
file. Type an integer in cell C3, and type some text in cell D3, as
shown here:

Click the Load DLL button, and then click the Gather Data button. Edit
the data, click OK, and watch the new values appear in the spreadsheet.

631

PAR T I V: ACTIVEX: COM, AUTOMATION, AND OLE

632

4. Click the Unload DLL button. If you've started the DLL (and Excel)
from the debugger, you can watch the Debug window to be sure the
DLL's ExitInstancefunction is called.

Debugging a DLL Component
To debug a DLL, you must tell the debugger which EXE file to load.
Choose Settings from Developer Studio's Project menu, and then
enter the controller's full pathname (including the EXE extension)
in the Executable For Debug Session box on the Debug page:

When you click the Debug Go toolbar button, your controller will
start (loading the DLL as part of its process) and then wait for you to
activate the component.

When you activate the component, your DLL in the debugger
should then construct its component object. It mightbea good idea
to include a TRACE statement in the component object's constructor.
Don't forget that your DLLmust be registered before the client can
load it.·

Here's another option. If you have the source code for the client
program, you can start the client program in the debugger. When the
client loads the component DLL, you can see the outputfrom the
component program's TRACE statements.

T WEN T Y - F 0 U R: Automation

Now let's look at the EX24B code. Like an MFC EXE, an MFC regular
DLL has an application class (derived from CWinApp) and a global applica
tion object. The overridden Initlnstance member function in ex24b.cpp looks
like this:

BOOl CEx24bApp::InitInstance()
(

TRACE("CEx24bApp: :InitInstance\n");
II Register all OLE server (factories) as running. This enables the
II OLE libraries to create objects from other applications.
COleObjectFactory: :RegisterAll();

return TRUE;

There's also an ExitInstance function for diagnostic purposes only, as well as
the following code for the three standard COM DLL exported functions:

STDAPI DllGetClassObject(REFClSID rclsid. REFIID riid. lPVOID* ppv)
(

AFX_MANAGE_STATE(AfxGetStaticModuleState(»;
return AfxDllGetClassObject(rclsid. riid. ppv);

STDAPI DllCanUnloadNow(void)
(

AFX_MANAGE_STATE(AfxGetStaticModuleState(»;
return AfxDllCanUnloadNow();

STDAPI DllRegisterServer(void)
(

AFX_MANAGE_STATE(AfxGetStaticModuleState(»;
COleObjectFactory::UpdateRegistryAll();
VERIFY(AfxOleRegisterTypelib(AfxGetInstanceHandle(). theTypelibGUID.

"ex24b.tlb"»;
return S_OK;

The PromptDl.cpp file contains code for the CPromptDlgclass, but that
class is a standard class derived from CDialog. The file PromptDl.h contains
the CPromptDlg class header.

The CEx24bAuto class, the Automation component class initially gener
ated by ClassWizard (with the Createable By Type ID option), is more inter
esting. This class is exposed to COM under the program ID ex24b.Auto. Figure
24-5 on the following page shows the header file ex24bAuto.h.

633

PA R T I V: ACTIVEX: COM, AUTOMATION, AND OLE

634

EX24BAUTO.H

class CEx24bAuto : public CCmdTarget
{

DECLARE_DYNCREATE(CEx24bAuto)

CEx24bAuto(); II protected constructor used by dynamic creation

II Attributes
public:

II Operations
public:

II Overrides
II ClassWizard generated virtual function overrides
11{{AFX_VIRTUAL(CEx24bAuto)
public:
virtual void OnFinalRelease();
I/}}AFX_VIRTUAL

II Implementation
protected:

} ;

virtual -CEx24bAuto();

II Generated message map functions
11{{AFX_MSG(CEx24bAuto)

II NOTE - the ClassWizard will add and remove member functions here.
I/} }AFX_MSG

DECLARE_MESSAGE_MAP()
DECLARE_OLECREATE(CEx24bAuto)

II Generated OLE dispatch map functions
11{{AFX_DISPATCH(CEx24bAuto)
long m_1Data;
afx_msg void OnLongDataChanged();
VARIANT m_vaTextData;
afx_msg void OnTextDataChanged();
afx_msg BOOL DisplayDialog();
I/} }AFX_DISPATCH
DECLARE_DISPATCH_MAP()
DECLARE_INTERFACE_MAP()

Figure 24-5.
Excerpt from the ex24bA uto. h header file.

Figure 24-6 shows the implementation file ex24bAuto.cpp.

T WEN T Y • F 0 U R: Automation

EX24BAUTO.CPP

/linclude "stdafx.h"
/linclude "ex24b.h"
/linclude "Ex24bAuto.h"
/linclude "Promptdl.h"

/lifdef _DEBUG
/ldefine new DEBUG_NEW
/lundef THIS_FILE
static char THIS_FILE[] = __ FILE __ ;
/lendif

// /////////11////1///1

// CEx24bAuto

IMPLEMENT_DYNCREATE(CEx24bAuto. CCmdTarget)

CEx24bAuto::CEx24bAuto()
{

EnableAutomation();

1/ To keep the application running as long as an OLE automation
1/ object is active. the constructor calls AfxOleLockApp.

::VariantInit(&m_vaTextData); // necessary initialization
m_1Data = 0;

AfxOleLockApp();

CEx24bAuto::-CEx24bAuto()
{

II To terminate the application when all objects created with
/1 with OLE automation. the destructor calls AfxOleUnlockApp.

AfxOleUnlockApp();

void CEx24bAuto::OnFinalRelease()

II When the last reference for an automation object is released,
II OnFinalRelease is called. The base class will automatically
// delete the object. Add additional cleanup required for your
II object before calling the base class.

Figure 24·6. (continued)

The ex24bA uto. cpp implementation file.

635

PA R T I V: ACTIVEX: COM, AUTOMATION, AND OLE

636

Figure 24-6. continued

CCmdTarget::OnFinalRelease();
}

BEGIN_MESSAGE_MAP(CEx24bAuto. CCmdTarget)
//{{AFX_MSG_MAP(CEx24bAuto)

// NOTE - the ClassWizard will add and remove mapping macros here.
/ /} }AFX_MSG_MAP

END_MESSAGE_MAP()

BEGIN_DISPATCH_MAP(CEx24bAuto. CCmdTarget)
//{{AFX_DISPATCH_MAP(CEx24bAuto)

DISP_PROPERTY_NOTIFY(CEx24bAuto. "longData". m_1Data.
OnlongDataChanged. VT_I4)

DISP_PROPERTY_NOTIFY(CEx24bAuto. "TextData". m_vaTextData.
OnTextDataChanged. VT_VARIANT)

DISP_FUNCTION(CEx24bAuto. "DisplayDialog". DisplayDialog. VT_BOOl.
VTS_NONE)

//}}AFX_DISPATCH_MAP
END_DISPATCH_MAP()

// Note: we add support for IID_IEx24bAuto to support typesafe binding
// from VBA. This lID must match the GUID that is attached to the
// dispinterface in the .ODl file.

// {A9S1SAD7-SB8S-11D0-848F-00400S2630SB}
static const lID IID_IEx24bAuto =
{ 0xa9S1Sad7. 0xSb8S. 0xlld0. { 0x84. 0x8f. 0x0. 0x40. 0xS. 0x26. 0x30.

0xSb } };

BEGIN_INTERFACE_MAP(CEx24bAuto. CCmdTarget)
INTERFACE_PART(CEx24bAuto. IID_IEx24bAuto. Dispatch)

END_INTERFACE_MAP()

// {A9S1SAD8-SB85-11D0-848F-0040052630SB}
IMPlEMENT_OlECREATE(CEx24bAuto. "ex24b.Auto". 0xa9S15ad8. 0xSb8S.

0xlld0. 0x84. 0x8f. 0x0. 0x40. 0xS. 0x26. 0x30. 0xSb)

//

// CEx24bAuto message handlers

void CEx24bAuto::OnlongDataChanged()
{

TRACE("CEx24bAuto::OnlongDataChanged\n");

(continued)

T WEN T Y - F 0 U R: Automation

Figure 24-6. continued

void CEx24bAuto::OnTextDataChanged()
(

TRACE("CEx24bAuto::OnTextDataChanged\n");

BOOl CEx24bAuto::DisplayDialog()
(

TRACE("Entering CEx24bAuto::DisplayDialog %p\n". this);
BOOl bRet = TRUE;
AfxlockTempMaps(); II See MFC Tech Note #3
CWnd* pTopWnd = CWnd::FromHandle(::GetTopWindow(NUll»;
try {

CPromptDlg dlg/*(pTopWnd)*I;
if (m_vaTextData.vt == VT_BSTR){

dlg.m_strData = m_vaTextData.bstrVal; II converts double-byte
II character to
II single-byte
II character

dlg.m_1Data = m_1Data;
if (dlg.DoModal() == lDOK)

m_vaTextData = COleVariant(dlg.m_strData).Detach();
m_1Data = dlg.m_1Data;
bRet = TRUE;

else {
bRet FALSE;

catch (CException* pe) (
TRACE("Exception: failure to display dialog\n");
bRet = FALSE;
pe->Delete();

AfxUnlockTempMaps();
return bRet;

The two properties, LongData and TextData, are represented by class
data members m_lDataand m_vaTextData, both initialized in the constructor.
When the LongData property was added in ClassWizard, a notification function,
OnLongDataChanged, was specified. This function is called whenever the
controller changes the property value. Notification functions apply only to

637

PA RT I V: ACTIVEX: COM, AUTOMATION, AND OLE

638

properties that are represented by data members. Don't confuse this notifi
cation with the notifications that ActiveX controls give their container when
a bound property changes.

The DisplayDialog member function, which is the DisplayDialogmethod,
is ordinary except that the AfxLockTempMaps and AfxUnlockTempMapsfunctions
are necessary for cleaning up temporary object pointers that would normally
be deleted in an EXE program's idle loop.

What about the Excel VBA code? Here are the three macros and the
global declarations:

Dim Dllcomp As Object
Private Declare Sub CoFreeUnusedLibraries Lib "OLE32" ()

Sub LoadDllComp()
Set Dll comp = CreateObj ect ("Ex24b. Auto")
Range("C3").Select
Dllcomp.LongData = Selection.Value
Range("D3").Select
Dllcomp.TextData Selection.Value

End Sub

Sub RefreshDllComp() 'Gather Data button
Range("C3").Select
Dllcomp.LongData = Selection.Value
Range("D3").Select
Dllcomp.TextData = Selection.Value
Dllcomp.DisplayDialog
Range("C3").Select
Selection.Value = Dllcomp.LongData
Range("D3").Select
Selection.Value = Dllcomp.TextData

End Sub

Sub UnloadDllComp()
Set Dllcomp = Nothing
Call CoFreeUnusedLibraries

End Sub

The first line in LoadDllComp creates a component object as identified
by the registered name Ex24b.Auto. The RefreshDllComp macro accesses the
component object's LongData and TextData properties. The first time you run
LoadDllComp, it loads the DLL and constructs an Ex24b.Auto object. The
second time you run LoadDllComp, something curious happens: a second
object is constructed, and the original object is destroyed. If you run Load
DllComp from another copy of the workbook, you get two separate Ex24b.Auto

T WEN T Y - F OUR: Automation

objects. Of course, there's only one mapping of ex24b.dll in memory at any
time unless you're running more than one Excel process.

Look closely at the UnloadDllComp macro. When the "Set Dllcomp =
Nothing" statement is executed, the DLL is disconnected, but it's not un
mapped from Excel's address space and that means the component's
Exitlnstance function is not called. The CoFreeUnusedLibraries function calls the
exported DllCanUnloadNow function for each component DLL and, if that
function returns TRUE, CoFreeUnusedLibraries frees the DLL. MFC programs
call CoFreeUnusedLibraries in the idle loop (after a I-minute delay), but Excel
doesn't. That's why UnloadDllComp must call CoFreeUnusedLibraries after
disconnecting the component.

NOT E : The CoFreeUnusedLibraries function doesn't do anything
in Windows NT 3.51 unless you have Service Pack 2 (SP2) installed.

The EX24C SOl Automation Component
EXE Example-With User Interface

This Automation component example illustrates the use of a document com
ponent class in an SDI application in which a new process is started for each
object. This component program demonstrates an indexed property plus a
method that constructs a new COM object.

The first Automation component example you saw, EX24A, didn't have
a user interface. The global class factory constructed a CBank object that did
the component's work. What if you want your EXE component to have a win
dow? If you've bought into the MFC document-view architecture, you'll want
the document, view, and frame with all the benefits they provide.

Suppose you created a regular MFC application and then added a COM
creatable class such as CBank. How do you attach the CBank object to the
document and view? From a CBank class member function, you could navigate
through the application object and main frame to the current document or
view, but you'd have a tough time in an MDI application if you encountered
several component objects and several documents. There is a better way. You
make the document class the creatable class, and you have the full support of
AppWizard for this task-and that's true for both MDI and SDI applications.

The MDI Autoclik example demonstrates how COM triggers the construc
tion of new document, view, and child frame objects each time an Automation
client creates a new component object. Because the EX24C example is an SDI
program, Windows starts a new process each time the client creates an object.
Immediately after it starts the program, COM, with the help of the MFC

639

PAR T I V: ACTIVEX: COM, AUTOMATION, AND OLE

640

application framework, constructs not only the Automation-aware document
but also the view and the main frame window.

Now's a good time to experiment with the EX24C application, which was
first generated by AppWizard with the Automation option checked. It's a
Windows-based alarm clock program that's designed to be manipulated from
an Automation client such as Excel. EX24C has the following properties and
methods:

Name

Time

Figure

Refresh Win

Show Win

CreateAlarm

Description

DATE property that holds a COM DATE (m_vaTime)

Indexed VARIANT property for the four figures on the clock
face (m_strFigure[])

Method that invalidates the view window and brings the main
frame window to the top (Refresh)

Method that displays the application's main window (ShowWin)

Method that creates a CAlarm object and returns its IDispatch
poin ter (CreateAlarm)

Here are the steps for building and running EX24C from the compan
ion CD-ROM:

1. From Developer Studio, open the workspace \ vcpp32\ex24c
\ex24c.dsw Build the project to produce the ex24c.exe file in the
project's Debug subdirectory.

2. Run the program once to register it. The program is designed to
be executed either as a stand-alone application or as an Automation
component. When you run it from Windows or from Developer Studio,
it updates the Registry and displays the face of a clock with the charac
ters XII, III, VI, and IX at the 12, 3, 6, and 9 o'clock positions. Exit the
program.

3. Load the Excel workbook file \ vcpp32\ex24c\ex24c.xls. The work
sheet should look like the one shown here:

T WEN T Y - F 0 U R: Automation

Click the Load Clock button, and then double-click the Set Alarm
button. (There is a long delay after you click the Load Clock button.)
The clock should appear as shown below, with the letter A indicating the
alarm setting:

If you've started the component program from the debugger, you
can watch the Debug window to see when InitInstance is called and when
the document object is constructed.

641

PAR T I V: ACTIVEX: COM, AUTOMATION, AND OLE

642

If you're wondering why there's no menu, it's because of the follow
ing statement in the CMainFrame::PreCreateWindow function:

cs.hMenu = NULL;

4. Click the Unload Clock button. If you've started the component pro
gram from the debugger, you can watch the Debug window for a mes
sage box that indicates that the ExitInstance function is called.

AppWizard did most of the work of setting up the document as an Auto
mation component. In the derived application class CEx24cApp, it generated
a data member for the component, as shown here:

public:
COleTemplateServer m_server;

The MFC COleTemplateSeroer class is derived from COleObjectFactory. It is
designed to create a COM document object when a client calls IClassFactory
::CreateInstance. The class ID comes from the global clsid variable defined in
ex24c.cpp. The human-readable program ID (Ex24c.Document) comes from
the IDJLMAINFRAME string resource.

In the Initlnstance function (in ex24c.cpp), AppWizard generated the
following code, which connects the component object (the document) to the
application's document template:

CSingleOocTemplate* pOocTemplate;
pOocTemplate = new CSingleOocTemplate(

lOR_MAINFRAME,
RUNTIME_CLASS(CEx24cOoc),
RUNTIME_CLASS(CMainFrame),
RUNTIME_CLASS(CEx24cView»;

AddOocTemplate(pOocTemplate);

II main SOl frame window

m_server.ConnectTemplate(clsid, pOocTemplate, TRUE);

Now all the plumbing is in place for COM and the framework to construct
the document, together with the view and frame. When the objects are con
structed, however, the main window is not made visible. That's your job. You
must write a method that shows the window.

The following UpdateRegistry call from the InitInstance function updates
the Windows Registry with the contents of the project's IDJLMAINFRAME
string resource:

m_server.UpdateRegistry(OAT_OISPATCH_OBJECT);

T WEN T Y - Fa U R: Automation

The following dispatch map in the ex24cDoc.cpp file shows the proper
ties and methods for the CEx24cDoc class. Note that the Figure property is an
indexed property that ClassWizard can generate if you specify a parameter.
Later you'll see the code you have to write for the GetFigure and SetFigure
functions.

BEGIN_DISPATCH_MAP(CEx24cDoc, CDocument)
11{{AFX_DISPATCH_MAP(CEx24cDoc)
DISP_PROPERTY_NOTIFY(CEx24cDoc, "Time", m_time, OnTimeChanged, VT_DATE)
DISP_FUNCTION(CEx24cDoc, "ShowWin", ShowWin, VT_EMPTY, VTS_NONE)
DISP_FUNCTION(CEx24cDoc, "CreateAlarm", CreateAlarm, VT_DISPATCH,

VTS_DATE)
DISP_FUNCTION(CEx24cDoc, "RefreshWin", Refresh, VT_EMPTY, VTS_NONE)
DISP_PROPERTY_PARAM(CEx24cDoc, "Figure", GetFigure, SetFigure,

VT_VARIANT, VTS_I2)
II}}AFX_DISPATCH_MAP

END_DISPATCH_MAP()

The RefreshWin and ShowWin member functions aren't very interesting,
but the CreateAlarm method is worth a close look. Here's the corresponding
CreateAlarm member function:

LPDISPATCH CEx24cDoc: :CreateAlarm(DATE time)
{

TRACE("Entering CEx24cDoc::CreateAlarm: time = %f\n", time);
II OLE deletes any prior CAl arm object
m_pAlarm = new CAlarm(time);
return m_pAlarm->GetIDispatch(FALSE); II no Add Ref here

We've chosen to have the component create an alarm object when a
controller calls CreateAlarm. CAlarm is an Automation component class that
we've generated with ClassWizard. It is not COM-creatable, and that means
there's no IMPLEMENT_OLECREATE macro and no class factory. The
CreateAlarm function constructs a CAlarm object and returns an IDispatch
pointer. (The FALSE parameter for CCmdTarget::GetIDispatch means that the
reference count is not incremented; the CAlarm object already has a reference
count of 1 when it is constructed.)

The CAlarm class is declared in alarm.h as follows:

class CAl arm : public CCmdTarget
{

DECLARE_DYNAMIC(CAlarm)
public:

CAlarm(DATE time);

(continued)

643

PAR T I V: ACTIVEX: COM, AUTOMATION, AND OLE

644

II Attributes
public:

II Operations
public:

II Overrides
II ClassWizard generated virtual function overrides
11{{AFX_VIRTUAL(CAlarm)
public:
virtual void OnFinalRelease():
I/}} AFX_V I RTUAL

II Implementation
protected:

virtual -CAlarm():

II Generated message map functions
11{{AFX_MSG(CAlarm)

II NOTE - the ClassWizard will add and remove member functions here.
I/} }AFX_MSG

DECLARE_MESSAGE_MAP()
II Generated OLE dispatch map functions

public:
11{{AFX_DISPATCH(CAlarm)
DATE m_time:

} :

I/} }AFX_DISPATCH
DECLARE_DISPATCH_MAP()
DECLARE_INTERFACE_MAP()

Notice the absence of the DECLARE_DYNCREATEmacro.
Alarm.cpp contains a dispatch map, as follows:

BEGIN_DISPATCH_MAP(CAlarm, CCmdTarget)
11{{AFX_DISPATCH_MAP(CAlarm)
DISP_PROPERTY(CAlarm, "Time", m_time, VT_DATE)
II}}AFX_DISPATCH_MAP

END_DISPATCH_MAP()

Why do we have a CAlarm class? We could have added an AlarmTime prop
erty in the CEx24cDoc class instead, but then we would have needed another
property or method to turn the alarm on and off. By using the CAlarm class,
what we're really doing is setting ourselves up to support multiple alarms-a
collection of alarms.

To implement an Automation collection, we would write another class,
CAlarms, that would contain the methods Add, Remove, and Item. Add and

T WEN T Y • F 0 U R: Automation

Remove are self-explanatory; Item returns an IDispatch pointer for a collec
tion element identified by an index, numeric, or otherwise. We would also
implement a read-only Count property that returned the number of elements.
The document class (which owns the collection) would have an Alarms
method with an optional VARIANTparameter. If the parameter were omitted,
the method would return the IDispatch pointer for the collection. If the pa
rameter specified an index, the method would return an IDispatch pointer for
the selected alarm.

NOT E : If we wanted our collection to support the VBA "For
Each" syntax, we'd have some more work to do. We'd add an IEnum
VARIANT interface to the CAlarmsclass to enumerate the collection
of variants and implement the Next member function of this inter
face to step through the collection. Then we'd add a CAlarms
method named _NewEnum that returned an IEnum VARIANT inter
face pointer. Ifwe wanted the collection to be general, we'd allow
separate enumerator objects (with an IEnumVARIANTinterface)
and we'd implement the other IEnumVARIANTfunctions-Skip,
Reset, and Clone.

The Figure property is an indexed property, and that makes it interest
ing. The Figure property represents the four figures on the clock face-XII,
III, VI, and IX. It's a CStringarray, so we can use Roman numerals. Here's the
declaration in ex24cDoc.h:

public:
CString m_strFigure[4];

And here are the GetFigure and SetFigure functions in ex24cDoc.cpp:

VARIANT CEx24cDoc::GetFigureCshort n)
(

TRACEC"Entering CEx24cDoc::GetFigure -- n = %d m_strFigure[n] = %s\n",
n, m_strFigure[n]);

return COleVariantCm_strFigure[n]).DetachC);

void CEx24cDoc::SetFigureCshort n, const VARIANT FAR& newValue)
(

TRACEC"Entering CEx24cDoc::SetFigure -- n = %d, vt = %d\n", n,
newValue.vt);

COleVariant vaTemp;
vaTemp.ChangeTypeCVT_BSTR, CCOleVariant*) &newValue);
m_strFigure[n] = vaTemp.bstrVal; II converts double-to-single

645

PA R T I V: ACTIVEX: COM, AUTOMATION, AND OLE

646

These functions tie back to the DISP_PROPERTY_PARAM macro in the
CEx24cDoc dispatch map. The first parameter is the index number, specified
as a short integer by the last macro parameter. Property indexes don't have
to be integers, and the index can have several components (row and column
numbers, for example). The ChangeType call in Set Figure is necessary because
the controller might otherwise pass numbers instead of strings.

You'vejustseen collection properties and indexed properties. What's the
difference? A controller can't add or delete elements of an indexed property,
but it can add elements to a collection and it can delete elements from a
collection.

What draws the clock face? As you might expect, it's the OnDraw mem
ber function of the view class. This function uses GetDocumentto get a pointer
to the document object, and then it accesses the document's property data
members and method member functions.

The Excel macro code appears below:

Dim Clock As Object
Dim Alarm As Object

Sub LoadClock()
Set Clock = CreateObject("ex24c.Document")
Range("A3").Select
n = 0
Do Until n = 4

Clock.figure(n) = Selection.Value
Selection.Offset(0. l).Range("Al").Select
n = n + 1

Loop
RefreshClock
Clock.ShowWin

End Sub

Sub RefreshClock()
Clock.Time = Now()
Clock.RefreshWin

End Sub

Sub CreateAlarm()
Range("E3").Select
Set Alarm = Clock.CreateAlarm(Selection.Value)
RefreshClock

End Sub

Sub UnloadClock()
Set Clock = Nothing

End Sub

T WEN T Y - F 0 U R: Automation

Notice the Set Alarm statement in the CreateAlarm macro. It calls the
CreateAlarm method to return an IDispatch pointer, which is stored in an
object variable. If the macro is run a second time, a new alarm is created, but
the original one is destroyed because its reference count goes to O.

WAR N I N G: You've seen a modal dialog in a DLL (EX24B), and
you've seen a main frame window in an EXE (EX24C). Be careful
with modal dialogs in EXEs. It's OK to have an About dialog that is
invoked directly by the component program, but it isn't a good idea
to invoke a modal dialog in an out-of-process component method
function. The problem is that once the modal dialog is on the
screen, the user can switch back to the client program. MFC clients
handle this situation with a special "Server Busy" message box, which
appears right away. Excel does something similar, but it waits 30
seconds, and this could confuse the user.

The EX24D Automation Client Example
So far, you've seen C++ Automation component programs. Now you'll see a
C++ Automation client program that runs all the previous components and
also controls Microsoft Excel 97. The EX24D program was originally generated
by AppWizard, but without any COM options. It was easier to add the COM
code than it would have been to rip out the component-specific code. If you
do use AppWizard to build such an Automation controller, add the following
line at the end of StdAfx.h:

#include <afxdisp.h>

Then add this call at the beginning of the application's Initlnstance function:

AfxOl elnit();

To prepare EX24D, open the \vcpp32\ex24d\ex24d project and do the
build. Run the application from the debugger, and you'll see a standard SDI
application with a menu structure similar to that shown in Figure 24-7 on the
following page.

If you have built and registered all the components, you can test them
from EX24D. Notice that the DLL doesn't have to be copied to the \Winnt
\System32 directory because Windows finds it through the Registry. For some
components, you'll have to watch the Debug window to verify that the test
results are correct. The program is reasonably modular. Menu commands and
update command UI events are mapped to the view class. Each component ob
ject has its own C++ controller class and an embedded data member in ex24d
View.h. We'll look at each part separately after we delve into type libraries.

647

PA R T I V: ACTIVEX: COM, AUTOMATION, AND OLE

648

Load Load Load Load
- - - -
Test Get Data Create Alarm Execute - - - -

Unload Unload Refresh Time
- -

Unload
-

Figure 24-7.
A sample menu structure for a standard SDI application.

Type Libraries and OOL Files
I've told you that type libraries aren't necessary for the MFC IDispatch imple
mentation, but Developer Studio has been quietly generating and updating
type libraries for all your components. What good are these type libraries? VBA
can use a type library to browse your component's methods and properties,
and it can use the type library for improved access to properties and methods,
a process called early binding that I'll describe later in this chapter. But we're
building a C++ client program here, not a VBA program. It so happens that
ClassWizard can read a component's type library and use the information to
generate C++ code for the client to use to "drive" an Automation component.

NOT E : AppWizard initializes a project's ODL (Object Descrip
tion Language) file when you first create it. ClassWizard edits this
file each time you generate a new Automation component class or
add properties and methods to an existing class. Unlike it does with
the CLW file, ClassWizard can't rebuild an ODL file from the con
tents of your source files. If you mess up your ODL file, you'll have
to re-create it manually.

When you were adding properties and methods to your component
classes, ClassWizard was updating the project's ODL file. This file is a text file
that describes the component in an ODL. (Your GUID will be different if you
used AppWizard to generate this project.) Here's the ODL file for the bank
component:

/I ex24a.odl : type library source for ex24a.exe

II This file will be processed by the MIDL compiler to produce the
II type library (ex24a.tlb).

[uuid(85D56DE4-789D-IID0~92EI-D74DIB9CCD32), version(l.0)]
library Ex24a
{

} ;

T WEN T Y - F 0 U R: Automation

importlibC"stdole32.tlb");

II Primary dispatch interface for CBank

[uuidC99EA95El-78Al-llD0-92El-D74DlB9CCD32)
dispinterface IBank
{

} ;

properties:
II NOTE - ClassWizard will maintain property information here.

II Use extreme caution when editing this section.
11{{AFX_ODL_PROPCCBank)
[idCl)] double Balance;
I/} }AFX_ODL_PROP

methods:
II NOTE - ClassWizard will maintain method information here.
II Use extreme caution when editing this section.
11{{AFX_ODL_METHODCCBank)

[id(2)] double WithdrawalCdouble dAmount);
II}}AFX_ODL_METHOD

II Class information for CBank

[uuidC99EA95E2-78Al-llD0-92El-D74DlB9CCD32)
coclass Bank
{

[default] dispinterface IBank;
} ;

II {{AFX_APPEND_ODL}}
II }}AFX_APPEND_ODL}}

The ODL file has a unique GUID type library identifier, 85D56DE4-789D
IIDO-92EI-D74DIB9CCD32, and it completely describes the bank compo
nent's properties and methods under a dispinterface named IBank. In
addition, it specifies the dispinterface GUID, 99EA95EI-78AI-IIDO-92EI
D74DIB9CCD32, which is the same GUID that's in the interface map of the
CBank class listed on page 625. You'll see the significance of this GUID when
you read the "VBA Early Binding" section near the end of this chapter. The
CLSID, 99EA95E2-78AI-IIDO-92EI-D74DIB9CCD32, is what a VBA browser
can use to actually load your component.

Anyway, when you build your component project, Developer Studio
invokes the MIDL utility, which reads the ODL file and generates a binary TLB

649

PA R T I V: ACTIVEX: COM, AUTOMATION, AND OLE

650

file in your project's debug or release subdirectory. Now when you develop a
c++ client program, you can ask ClassWizard to generate a driver class from
the component project's TLB file.

NOT E : The MIDL utility generates the type library in a stand
alone TLB file, and that's what Automation controllers such as Excel
look for. ActiveX controls have their type libraries bound into their
resources.

To actually do this, you click the ClassWizard Add Class button and then
select From A Type Library ... from the drop-down list. You navigate to the
component project's TLB file, and then ClassWizard shows you a dialog similar
to the illustration below:

IBank

IBank is the dispinterface specified in the ODL file. You can keep this name
for the class if you want, and you can specify the Hand CPP filenames. Ifa type
library contains several interfaces, you can make multiple selections. You'll see
the generated controller classes in the sections that follow.

The Controller Class for ex24a.exe
Class Wizard generated the IBank class (derived from COleDispatchDriver) listed
in Figure 24-8. Look closely at the member function implementations. Note
the first parameters of the GetProperty, SetProperty, and InvokeHelper function
calls. These are hard-coded DISPIDs for the component's properties and
methods, as determined by the component's dispatch map sequence.

T WEN T Y - F 0 U R: Automation

WAR N I N G : If you use ClassWizard to delete a property and then
you add it back, you'll probably change the component's dispatch
IDs. That means that you'll have to regenerate or edit the control
ler class so that the IDs match.

BANKDRIVER.H

class IBank : public COleDispatchDriver
{

public:
IBank() {} // calls COleDispatchDriver default constructor
IBank(LPDISPATCH pDispatch) : COleDispatchDriver(pDispatch) {}
IBank(const IBank& dispatchSrc) : COleDispatchDriver(dispatchSrc) {}

// Attributes
public:

double GetBalance():
void SetBalance(double):

// Operations
public:

} :

double Withdrawal(double dAmount):
void Deposit(double dAmount):

BANKDRIVER.CPP

flinclude "StdAfx.h"
1f inc 1 u de" Ban k D r i v e r . h "

1fi fdef _DEBUG
fldefine new DEBUG_NEW
1fundef THIS_FILE
static char THIS_FILE[] = __ FILE __ ;
flendif

//

// IBank properties

double IBank::GetBalance()
(

double result;
GetProperty(0xl. VT_RB. (void*)&result);
return result;

Figure 24-8.
The IBank class listing.

(continued)

651

PA R T I V: ACTIVEX: COM, AUTOMATION, AND OLE

652

Figure 24 -8. continued

void IBank::SetBalance(double propVal)
{

SetProperty(0xl, VT_RS, propVal);
}

///

// IBank operations

double IBank::Withdrawal(double dAmount)
{

double result;
static BYTE parms[]

VTS_RS;
InvokeHelper(0x2, DISPATCH_METHOD, VT_RS, (void*)&result, parms,

dAmount);
return result;

void IBank::Deposit(double dAmount)
{

static BYTE parms[] =
VTS_RS;

InvokeHelper(0x3, DISPATCH_METHOD, VT_EMPTY, NULL, parms,
dAmount);

The CEx24dView class has a data member m_bank of class IBank. The
CEx24dView member functions for the Ex24a.Bank component are listed
below. They are hooked up to options on the EX24D main menu. Of particular
interest is the OnBankoleLoadfunction. The COleDispatchDriver::CreateDispatch
function loads the component program (by calling Co Get Class Object and
IClassFactory::Createlnstance) and then calls Querylnterface to get an IDispatch
pointer, which it stores in the object's m_lpDispatch data member. The
COleDispatchDriver: :ReleaseDispatch function, called in OnBankoleUnload, calls
Release on the pointer.

void CEx24dView::OnBankoleLoad()
{

if(!m_bank.CreateDispatch("Ex24a.Bank"»
AfxMessageBox("Ex24a.Bank component not found");
return;

void CEx24dView::OnUpdateBankoleLoad(CCmdUI* pCmdUI)

pCmdUI->Enable(m_bank.m_lpDispatch == NULL);
}

T WEN T Y - F 0 U R: Automation

void CEx24dView::OnBankoleTest()
{

m_bank.Deposit(20.0);
m_bank.Withdrawal(15.0);
TRACE ("new ba 1 ance = %f\n". m_bank. GetBa 1 ance (» ;

void CEx24dView::OnUpdateBankoleTest(CCmdUI* pCmdUI)
{

pCmdUI->Enable(m_bank.m_lpDispatch != NUll);

void CEx24dView::OnBankoleUnload()

m_bank.ReleaseDispatch();

void CEx24dView: :OnUpdateBankoleUnload(CCmdUI* pCmdUI)
{

pCmdUI->Enable(m_bank.m_lpDispatch != NUll);

The Controller Class for ex24b.dll
Figure 24-9 shows the class header file generated by ClassWizard.

AUTODRIVER.H

class IEx24bAuto public COleDispatchDriver
{

public:
IEx24bAuto() {} II calls COleDispatchDriver default constructor
IEx24bAuto(lPDISPATCH pDispatch) : COleDispatchDriver(pDispatch) {}
IEx24bAuto(const IEx24bAuto& dispatchSrc)

COleDispatchDriver(dispatchSrc) {}

II Attributes
public:

long GetlongData();
void SetlongData(long);
VARIANT GetTextData();
void SetTextData(const VARIANT&);

II Operations
public:

BOOl DisplayDialog();
} ;

Figure 24-9.
The Ex24bAuto class header file.

653

PAR T I V: ACTIVEX: COM, AUTOMATION, AND OLE

654

Notice that each property requires separate Get and Set functions in the
client class, even though the property is represented by a data member in the
component.

The view class header has a data member m_auto of class IEx24bAuto.
Here are some DLL-related command handler member functions from
ex24dView.cpp:

void CEx24dView::OnDlloleGetdata()
{

m_auto.DisplayDialog();
COleVariant vaData = m_auto.GetTextData();
ASSERT(vaData.vt == VT_BSTR);
CString strTextData = vaData.bstrVal;
long lData = m_auto.GetLongData();
TRACE("CEx24dView::OnDlloleGetdata -- long = %ld. text = %s\n".

lData. strTextData);

void CEx24dView::OnUpdateDlloleGetdata(CCmdUI* pCmdUI)

pCmdUI-)Enable(m_auto.m_lpDispatch != NULL);

void CEx24dView::OnDlloleLoad()

if(!m_auto.CreateDispatch("Ex24b.Auto"»
AfxMessageBox("Ex24b.Auto component not found");
return;

m_auto.SetTextData(COleVariant("test"»; II testing
m_auto.SetLongData(79); II testing
II verify dispatch interface
II {A9515AD7-5B85-11D0-848F-00400526305B}
static const 110 IIO_IEx24bAuto =

{ 0xa9515ad7. 0x5b85. 0xlld0. { 0x84. 0x8f. 0x0. 0x40. 0x5. 0x26.
0x30. 0x5b } };

LPDISPATCH p;
HRESULT hr = m_auto.m_lpDispatch-)Ouerylnterface(IID_IEx24bAuto.

(void**) '&p);
TRACE("OnDlloleLoad -- Ouerylnterface result = %x\n". hr);
p-)Release();

void CEx24dView::OnUpdateDlloleLoad(CCmdUI* pCmdUI)
{

pCmdUI-)Enable(m_auto.m_lpDispatch == NULL);

T WEN T Y - F 0 U R: Automation

void CEx24dView::OnDlloleUnload()
{

m_auto.ReleaseDispatch();

void CEx24dView::OnUpdateDlloleUnload(CCmdUI* pCmdUI)
{

pCmdUI-)Enable(m_auto.m_lpDispatch 1= NULL);

The Controller Class for ex24c.exe
Figure 24-10 shows the headers for the IEx24cand IAlarmclasses, which drive
the EX24C Automation component.

CLOCKDRIVER.H

class IEx24c : public COleDispatchDriver
{

public:
IEx24c() {} II calls COleDispatchDriver default constructor
IEx24c(LPDISPATCH pDispatch) : COleDispatchDriver(pDispatch) {}
IEx24c(const IEx24c& dispatchSrc) :

COleDispatchDriver(dispatchSrc) {}

II Attributes
public:

DATE GetTime();
void SetTime(DATE);

II Operations
public:

} ;

void ShowWin();
LPDISPATCH CreateAlarm(DATE time);
void RefreshWin();
void SetFigure(short n. const VARIANT& newValue);
VARIANT GetFigure(short n);

class IAlarm public COleDispatchDriver

public:
IAlarm() {} II calls COleDispatchDriver default constructor
IAlarm(LPDISPATCH pDispatch) : COleDispatchDriver(pDispatch) {}
IAlarm(const IAlarm& dispatchSrc) :

COleDispatchDriver(dispatchSrc) {}

Figure 24 -1 O. . (continued)

The IEx24c and IAlarm class header files.

655

PA R T I V: ACTIVEX: COM, AUTOMATION, AND OLE

656

Figure 24 -10. continued

II Attributes
public:

DATE GetTime();
void SetTime(DATE);

II Operations
public:
} ;

Of particular interest is the IEx24c::CreateAlarm member function in
ClockDriver.cpp:

LPDISPATCH IEx24c::CreateAlarm(DATE time)
{

LPDISPATCH result;
static BYTE parms[]

VTS_DATE;
InvokeHelper(0x3. DISPATCH_METHOD. VT_DISPATCH. (void*)&result.

parms. time);
return result;

This function can be called only after the clock object (document) has been
constructed. It causes the EX24C component to construct an alarm object and
return an IDispatch pointer with a reference count of 1. The COleDispatch
Driver::AttachDispatch function connects that pointer to the client's m_alarm
object, but if that object already has a dispatch pointer, the old pointer is
released. That's why, if you watch the Debug window, you'll see that the old
EX24C instance exits immediately after you ask for a new instance. You'll have
to test this behavior with the Excel driver because EX24D disables the Load
menu option when the clock is running.

The view class has the data members m_clockand m_alarm. Here are the
view class command handlers:

void CEx24dView: :OnClockoleCreatealarm()
{

CAlarmDialog dlg;
if (dlg.DoModal() == IDOK) {

COleDateTime dt(1995. 12. 23. dlg.m_nHours. dlg.m_nMinutes.
dlg.m_nSeconds);

LPDISPATCH pAlarm = m_clock.CreateAlarm(dt);
m_alarm.AttachDispatch(pAlarm); II releases prior object!
m_clock.RefreshWin();

T WEN T Y - F 0 U R: Automation

void CEx24dView::OnUpdateClockoleCreatealarm(CCmdUI* pCmdUI)
{

pCmdUI->Enable(m_clock.m_lpDispatch != NULL);

void CEx24dView: :OnClockoleLoad()

if(!m_clock.CreateDispatch("Ex24c.Document"»
AfxMessageBox("Ex24c.Document component not found");
return;

m_clock.SetFigure(0. COleVariant("XII"»;
m_clock.SetFigure(1. COleVariant("III"»;
m_clock.SetFigure(2. COleVariant("VI"»;
m_clock.SetFigure(3. COleVariant("IX"»;
OnClockoleRefreshtime();
m_clock.ShowWin();

void CEx24dView: :OnUpdateClockoleLoad(CCmdUI* pCmdUI)

pCmdUI->Enable(m_clock.m_lpD;spatch == NULL);

void CEx24dView::OnClockoleRefreshtime()
{

COleDateTime now = COleDateTime::GetCurrentTime();
m_clock.SetTime(now);
m_clock.RefreshWin();

void CEx24dView::OnUpdateClockoleRefreshtime(CCmdUI* pCmdUI)
{

pCmdUI->Enable(m_clock.m_lpDispatch != NULL);

void CEx24dView::OnClockoleUnload()

m_clock.ReleaseDispatch();

void CEx24dView::OnUpdateClockoleUnload(CCmdUI* pCmdUI)

pCmdUI->Enable(m_clock.m_lpDispatch != NULL);

657

PA R T I V: ACTIVEX: COM, AUTOMATION, AND OLE

658

Controlling Microsoft Excel
The EX24D program contains code that loads Excel, creates a workbook, and
reads from and writes to cells from the active worksheet. Controlling Excel is
exactly like controlling an MFC Automation component, but you need to know
about a few Excel peculiarities.

If you study Excel VBA, you'll notice that you can use more than 100
"objects" in your programs. All of these objects are accessible through Auto
mation, but if you write an MFC Automation client program, you'll need to
know about the objects' properties and methods. Ideally, you'd like a C++ class
for each object, with member functions coded to the proper dispatch IDs.

Excel has its own type library, found in the file ExceIS.olb, usually in the
\Program Files\Microsoft Office\Office directory. ClassWizard can read this
file, exactly as it reads TLB files, to create C++ driver classes for individual Excel
objects. It makes sense to select the objects you need and then combine the
classes into a single pair of files, as shown in Figure 24-11.

Figure 24-11.
Class Wizard can create C++ classes for the Excel objects listed in Excel8.olb.

You might need to edit the generated code to suit your needs. Let's look
at an example. If you use ClassWizard to generate a driver class for the
Worksheet object, you get a GetRange member function, as shown here:

T WEN T Y - F 0 U R: Automation

LPDISPATCH _Worksheet::GetRange(const VARIANT& Celll, const VARIANT& Cel12)
{

LPDISPATCH result;
static BYTE parms[] = VTS_VARIANT VTS_VARIANT;
InvokeHelper(0xc5, DISPATCH_PROPERTYGET, VT_DISPATCH, (void*)&result,

parms, &Celll, &Cel12);
return result;

You know (from the Excel VBA documentation) that you can call the
method with either a single cell (one parameter) or a rectaOngular area speci
fied by two cells (two parameters). Remember: you can omit optional parame
ters in a call to InvokeHelper. Now it makes sense to add a second overloaded
GetRange function with a single cell parameter like this:

LPDISPATCH _Worksheet::GetRange(const VARIANT& Celll) II added
{

LPDISPATCH result;
static BYTE parms[] = VTS_VARIANT;
InvokeHelper(0xc5, DISPATCH_PROPERTYGET, VT_DISPATCH, (void*)&result,

pa rms, &Ce 111) ;
return result;

How do you know which functions to fix up? They're the functions you
decide to use in your program. You'll have to read the Excel VBA reference
manual to figure out the required parameters and return values. Perhaps
someday soon someone will write a set of C++ Excel controller classes.

The EX24D program uses the Excel objects and contains the correspond
ing classes shown in the table below. All the code for these objects is contained
in the files excel8.h and excel8.cpp.

Object/Class

_Application

Range

_Worksheet

Workbooks

Worksheets

View Class Data Member

m_app

m_mnge[5]

m_ worksheet

m_ workbooks

m_worksheets

The following view member function, OnExceloleLoad, handles the Excel
CaMP Load menu command. This function must work if the user already has
Excel running on the desktop. The COM GetActiveObject function tries to

659

PAR T I V: ACTIVEX: COM, AUTOMATION, AND OLE

660

return an IUnknown pointer for Excel. GetActiveObject requires a class ID, so
we must first call CLSIDFromProgID. If GetActiveObject is successful, we call Query
Interface to get an IDispatch pointer and we attach it to the view's m_app con
troller object of class _Application. If GetActiveObject is unsuccessful, we call
COleDispatchDriver::CreateDispatch, as we did for the other components.

void CEx24dView::OnExceloleLoad()
{ II If Excel is already running. attach to it; otherwise. start it

LPDISPATCH pDisp;
LPUNKNOWN pUnk;
CLSID clsid;
TRACE("Entering CEx24dView::OnExcelLoad\n");
BeginWaitCursor();
::CLSIDFromProgID(L"Excel.Application.8". &clsid); II from Registry
if(::GetActiveObject(clsid. NULL. &pUnk) == S_OK) {

VERIFY(pUnk->QueryInterface(IID_IDispatch.
(void**) &pDisp) == S_OK);

m_app.AttachDispatch(pDisp);
pUnk->Release():
TRACE(" attach complete\n");

else {
if(!m_app.CreateDispatch("Excel.Application.8"))

AfxMessageBox("Excel 97 program not found");

TRACE(" create complete\n");

EndWaitCursor();

OnExceloleExecute is the command handler for the Execute item in the
Excel Comp menu. Its first task is to find the Excel main window and bring it
to the top. We must write some Windows code here because I could not find
a method for this purpose. We must also create a workbook ifno workbook
is currently open.

We have to watch our method return values closely. The Workbooks Add
method, for example, returns an IDispatch pointer for a Workbook object and,
of course, increments the reference count. Ifwe generated a class for Work
book, we could call COleDispatchDriver::AttachDispatchso that Release would be
called when the Workbook object was destroyed. Because we don't need a
Workbook class, we'll simply release the pointer at the end of the function.
Ifwe don't clean up our pointers properly, we might get memory leak mes
sages from the Debug version of MFC.

The rest of the OnExceloleExecute function accesses the cells in the work
sheet. It's easy to get and set numbers, dates, strings, and formulas. The C++
code is similar to the VBA code you would write to do the same job.

T WEN T Y - F 0 U R: Automation

void CEx24dView::OnExceloleExecute()
{

LPDISPATCH pRange, pWorkbooks;

CWnd* pWnd = CWnd::FindWindow("XLMAIN", NULL);
if (pWnd != NULL) {

TRACE("Excel window found\n");
pWnd->ShowWindow(SW_SHOWNORMAL);
pWnd->UpdateWindow();
pWnd->BringWindowToTop();

m_app.SetSheetslnNewWorkbook(1);

VERIFY(pWorkbooks = m_app.GetWorkbooks());
m_workbooks.AttachDispatch(pWorkbooks);

LPDISPATCH pWorkbook = NULL;
if (m_workbooks.GetCount() == 0) {

II Add returns a Workbook pointer, but we
II don't have a Workbook class
pWorkbook = m_workbooks.Add(); II Save the pointer for

II later release

LPDISPATCH pWorksheets = m_app.GetWorksheets();
ASSERT(pWorksheets != NULL);
m_worksheets.AttachDispatch(pWorksheets);
LPDISPATCH pWorksheet = m_worksheets.Getltem(COleVariant«short) 1));

m_worksheet.AttachDispatch(pWorksheet);
m_worksheet.Select();

VERIFY(pRange = m_worksheet.GetRange(COleVariant("A1")));
m_range[0].AttachDispatch(pRange);

VERIFY(pRange = m_worksheet.GetRange(COleVariant("A2")));
m_range[1].AttachDispatch(pRange);

VERIFY(pRange = m_worksheet.GetRange(COleVariant("A3")));
m_range[2].AttachDispatch(pRange);

VERIFY(pRange = m_worksheet.GetRange(COleVariant("A3"),
COleVariant("C5")));

m_range[3].AttachDispatch(pRange);

VERIFY(pRange = m_worksheet.GetRange(COleVariant("A6")));

(continued)

661

PA R T I V: ACTIVEX: COM, AUTOMATION, AND OLE

662

m_range[4].AttachDispatch(pRange);

m_range[4].SetValue(COleVariant(COleDateTime(1994, 4, 24, IS, 47, 8»);
II retrieve the stored date and print it as a string
COleVariant vaTimeDate = m_range[4].GetValue();
TRACE("returned date type = %d\n", vaTimeDate.vt);
COleVariant vaTemp;
vaTemp.ChangeType(VT_BSTR, &vaTimeDate);
CString str = vaTemp.bstrVal;
T RA C E (" d ate = % s \ n", (con s t c h a r *) s t r) ;

m_range[0].SetValue(COleVariant("test string"»;

COleVariant vaResult0 = m_range[0].GetValue();
if (vaResult0.vt == VT_BSTR) {

CString str = vaResult0.bstrVal;
T RA C E (" v aRe s u It 0 = % s \ n", (con s t c h a r *) s t r) ;

m_range[I].SetValue(COleVariant(3.14159»;

COleVariant vaResultl = m_range[I].GetValue();
if (vaResultl.vt == VT_R8) (

TRACE("vaResultl = %f\n", vaResultl. dbl Val);

m_range[2].SetFormula(COleVariant("=$A2*2.0"»;

COleVariant vaResult2 = m_range[2].GetValue();
if (vaResult2.vt == VT_R8) {

TRACE("vaResult2 = %f\n", vaResult2.dblVal);

COleVariant vaResult2a = m_range[2].GetFormula();
if (vaResult2a.vt == VT_BSTR) {

CString str = vaResult2a.bstrVal;
TRACE("vaResult2a = %s\n", .(const char*) str);

m_range[3].FillRight();
m_range[3].FillDown();

II cleanup
if (pWorkbook != NULL) (

pWorkbook->Release();

T WEN T Y - F 0 U R: Automation

The EX24E Automation Client Example
This program uses the new #import directive to generate smart pointers. It
behaves just like EX24D except that it doesn't run Excel. The #import state
ments are in the StdMx.h file to minimize the number of times the compiler
has to generate the driver classes. Here is the added code:

#include <afxdisp.h>

#import " .. \ex24a\debug\ex24a.tlb" rename_namespace("BankDriv")
using namespace BankDriv;

#import " .. \ex24b\debug\ex24b.tlb" rename_namespace("Ex24bDriv")
using namespace Ex24bDriv:

#import " .. \ex24c\debug\ex24c.tlb" rename_namespace("ClockDriv")
using namespace ClockDriv:

And of course you'll need to call AfxOlelnit in your application class Initlnstance
member function.

The view class header contains embedded smart pointers as shown:

IEx24bAutoPtr m_auto:
IBankPtr m_bank:
IEx24cPtr m_clock;
IAlarmPtr m_alarm:

Here is the code for the view class menu command handlers:

void CEx24eView: :OnBankoleLoad()

if(m_bank.Createlnstance(__ uuidof(Bank» 1= S_OK)
AfxMessageBox("Bank component not found"):
return:

void CEx24eView: :OnUpdateBankoleLoad(CCmdUI* pCmdUI)
{

pCmdUI->Enable(m_bank.GetlnterfacePtr() == NULL);

void CEx24eView: :OnBankoleTest()

try
m_bank->Deposit(20.0):
m_bank->Withdrawal(15.0):
TRACE("new balance = %f\n", m_bank->GetBalance(»;

(continued)

663

PA R T I V: ACTIVEX: COM, AUTOMATION, AND OLE

664

catch(_com_error& e) {
AfxMessageBox(e.ErrorMessage(»:

void CEx24eView::OnUpdateBankoleTest(CCmdUI* pCmdUI)
{

pCmdUI-)Enable(m_bank.GetlnterfacePtr()!= NULL):

void CEx24eView::OnBankoleUnload()
{

m_bank.Release():

void CEx24eView::OnUpdateBankoleUnload(CCmdUI* pCmdUI)
{

pCmdUI-)Enable(m_bank.GetlnterfacePtr() != NULL):

void CEx24eView::OnClockoleCreatealarm()
{

CAlarmDialog dlg:
try {

if (dlg.DoModal() == IDOK) {
COleDateTime dt(1995. 12. 23. dlg.m_nHours. dlg.m_nMinutes.

dlg.m_nSeconds):
LPDISPATCH pAlarm = m_clock-)CreateAlarm(dt):
m_alarm.Attach«IAlarm*) pAlarm): II releases prior object!
m_clock-)RefreshWin():

catch(_com_error& e) {
AfxMessageBox(e.ErrorMessage(»:

void CEx24eView::OnUpdateClockoleCreatealarm(CCmdUI* pCmdUI)
{

pCmdUI-)Enable(m_clock.GetlnterfacePtr() != NULL):

void CEx24eView::OnClockoleLoad()
{

if(m_clock.Createlnstance(__ uuidof(Document» != S_OK) {
AfxMessageBox("Clock component not found"):
return:

T WEN T Y - F 0 U R: Automation

try
m_clock-)PutFigure(0, COleVariant("XII"»;
m_clock-)PutFigure(l, COleVariant("III"»;
m_clock-)PutFigure(2, COleVariant("VI"»;
m_clock-)PutFigure(3, COleVariant("IX"»;
OnClockoleRefreshtime();
m_clock-)ShowWin();

catch(_com_error& e) (
AfxMessageBox(e.ErrorMessage(»;

void CEx24eView::OnUpdateClockoleLoad(CCmdUI* pCmdUI)
(

pCmdUI-)Enable(m_clock.GetInterfacePtr() == NULL);

void CEx24eView::OnClockoleRefreshtime()
(

COleDateTime now = COleDateTime::GetCurrentTime();
try (

m_clock-)PutTime(now);
m_clock-)RefreshWin();

catch(_com_error& e) (
AfxMessageBox(e.ErrorMessage(»;

void CEx24eView: :OnUpdateClockoleRefreshtime(CCmdUI* pCmdUI)
(

pCmdUI-)Enable(m_clock.GetInterfacePtr() 1= NULL);

void CEx24eView::OnClockoleUnload()
(

m_clock.Release();

void CEx24eView::OnUpdateClockoleUnload(CCmdUI* pCmdUI)
(

pCmdUI-)Enable(m_clock.GetInterfacePtr() 1= NULL);

(continued)

665

PA R T I V: ACTIVEX: COM, AUTOMATION, AND OLE

666

void CEx24eView::OnDlloleGetdata()
{

try
m_auto->DisplayDialog();
COleVariant va Data = m_auto->GetTextData();
ASSERT(vaData.vt == VT_BSTR);
CString strTextData = vaData.bstrVal;
long lData = m_auto->GetLongData();
TRACE("CEx24dView::OnDlloleGetdata--long %ld, text %s\n",

lData, strTextData);
catch(_com_error& e) {

AfxMessageBox(e.ErrorMessage());

void CEx24eView::OnUpdateDlloleGetdata(CCmdUI* pCmdUI)

pCmdUI->Enable(m_auto.GetlnterfacePtr() != NULL);

void CEx24eView::OnDlloleLoad()

if(m_auto.Createlnstance(__ uuidof(Ex24bAuto)) != S_OK)
AfxMessageBox("Ex24bAuto component not found");
return;

void CEx24eView: :OnUpdateDlloleLoad(CCmdUI* pCmdUI)

pCmdUI->Enable(m_auto.GetlnterfacePtr() == NULL);

void CEx24eView::OnDlloleUnload()
{

m_auto.Release();

void CEx24eView::OnUpdateDlloleUnload(CCmdUI* pCmdUI)
{

pCmdUI->Enable(m_auto.GetlnterfacePtr() != NULL);

Note the use of the try/catch blocks in the functions that manipulate the
components. These are particularly necessary for processing errors that occur
when a component program stops running. In the previous example, EX24D,
the MFC COleDispatchDriver class took care of this detail.

T WEN T Y - F 0 U R: Automation

VBA Early Binding
When you ran the EX24A, EX24B, and EX24C components from Excel VBA,
you were using something called late binding. Normally, each time VBA
accesses a property or a method, it calls IDispatch::GetIDsOfNames to look up
the dispatch ID from the symbolic name. This isn't very efficient, but what is
more significant is that VBA can't do type-checking until it actually accesses
a property or a method. Suppose, for example, that a VBA program tried to
get a property value that it assumed was a number, but the component pro
vided a string instead. VBA would give you a runtime error when it executed
the Property Get statement.

With early binding, VBA can preprocess the Visual Basic code, converting
property and method symbols to DISPIDs before it runs the component
program. In so doing, it can check property types, method return types, and
method parameters, giving you compile-time error messages. How can VBA
get the advance information it needs? From the component's type library, of
course. It can use that same type library to allow the VBA programmer. to
browse the component's properties and methods. VBA reads the type library
before it even loads the component program.

Registering a Type Library
You've already seen that Developer Studio generates a TLB file for each com
ponent. For VBA to locate that type library, its location must be specified in
the Windows Registry. The simplest way of doing this is to write a text REG file
that the Windows Regedit program can import. Here's the ex24b.reg file for
the EX24B DLL component:

REGEDIT4

[HKEY_CLASSES_ROOT\TypeLib\{A9515ACA-5B85-11D0-848F-00400526305B}]

[HKEY_CLASSES_ROOT\TypeLib\{A9515ACA-5B85-11D0-848F-00400526305B}\1.0]
@="Ex24b"

[HKEY_CLASSES_ROOT\TypeLib\{A9515ACA-5B85-11D0-848F-00400526305B}\1.0\0]

[HKEY_CLASSES_ROOT\TypeLib\{A9515ACA-5B85-11D0-848F-00400526305B}\1.0\0
\win32]

@="C:\\vcpp32\\ex24b\\Debug\\ex24b.tlb"

[HKEY_CLASSES_ROOT\TypeLib\{A9515ACA-5B85-11D0-848F-00400526305B}\1.0
\FLAGS]

@="0"

(continued)

667

PAR T I V: ACTIVEX: COM, AUTOMATION, AND OLE

[HKEY_CLASSES_ROOT\TypeLib\{A9515ACA-5B85-11D0-848F-00400526305B}\1.0
\HELPDIR]

@="C:\\vcpp32\\ex24b\\Debug"

[HKEY_CLASSES_ROOT\Interface\{A9515AD7-5B85-11D0-848F-00400526305B}]
@="IEx24bAuto"

[HKEY_CLASSES_ROOT\Interface\{A9515AD7-5B85-11D0-848F-00400526305B}
\ProxyStubClsid]

@="{00020420-0000-0000-C000-000000000046}"

[HKEY_CLASSES_ROOT\Interface\{A9515AD7-5B85-11D0-848F-00400526305B}
\ProxyStubClsid32]

@="{00020420-0000-0000-C000-000000000046}"

[HKEY_CLASSES_ROOT\Interface\{A9515AD7-5B85-11D0-848F-00400526305B}
\TypeLib]

@="{A9515ACA-5B85-11D0-848F-00400526305B}"
"Version"="1.0"

Notice that this file generates subtrees under the Registry's TypeLib and
Interface keys. The third entry specifies the path for the version 1.0 TLB file.
The 0 sub key stands for "neutral language." If you had a multilingual ap
plication, you would have separate entries for English, French, and so forth.
The TypeLib entries are used by browsers, and the Interface entries are used
for runtime type-checking and, for an EXE component, marshaling the
dispinterface.

How a Component Can Register Its Own Type Library

668

When an EXE component is run stand-alone, it can call the MFC AfxRegister
TypeLib function to make the necessary Registry entries, as shown here:

VERIFY(AfxOleRegisterTypeLib(AfxGetInstanceHandle(), theTypeLibGUID,
"ex24b.tlb"»;

Shown here is theTypeLibGUID, a static variable of type GUID:

II {A9515ACA-5B85-11D0-848F-00400526305B}
static const GUID theTypeLibGUID =
{ 0xa9515aca, 0x5b85, 0xlld0, { 0x84. 0x8f. 0x00. 0x40. 0x05, 0x26. 0x30.

0x5b } };

The AfxRegisterTypeLib function is declared in the afxwin.h header, which
requires _AFXDLL to be defined. That means you can't use it in a regular DLL
unless you copy the code from the MFC source files.

T WEN T Y - F 0 U R: Automation

The COL File
Now is a good time to look at the ODL file for the same project.

II ex24b.odl : type library source for ex24b.dll

II This file will be processed by the MIDL compiler to produce the
II type library (ex24b.tlb)

[uuid(A9515ACA-5B85-11D0-848F-00400526305B), version(1.0)]

II GUID for the type library--matches TypeLib Registry key and
II AfxOleRegisterTypeLib parameter
1 i bra ry Ex24b
{

II library name for Excel's object borrower

importlib("stdole32.tlb");
II primary dispatch interface for CEx24bAuto

[uuid(A9515AD7-5B85-11D0-848F-00400526305B)]

II GUID from component's interface map--matches Registry Interface
II entry

dispinterface IEx24bAuto
{

II name used in VBA Dim statement and Object list
properties:

II NOTE - ClassWizard will maintain property information here.
II Use extreme caution when editing this section.
11{{AFX_ODL_PROP(CEx24bAuto)

1 ;

[id(l)] long LongData;
[id(2)] VARIANT TextData;
I/} lAFX_ODL_PROP

methods:
II NOTE - ClassWizard will maintain method information here.
II Use extreme caution when editing this section.
11{{AFX_ODL_METHOD(CEx24bAuto)
[id(3)] boolean DisplayDialog();
IlllAFX_ODL_METHOD

II Class information for CEx24bAuto

[uuid(A9515AD8-5B85-11D0-848F-00400526305B)

(continued)

669

PA R T I V: ACTIVEX: COM, AUTOMATION, AND OLE

} ;

II component's CLSID

coclass Ex24bAuto
{

[default] dispinterface IEx24bAuto;
} ;

As you can see, numerous connections exist among the Registry, the type
library, the component, and the VBA client.

NOT E : A useful Visual C++ utility, OLEVIEW, lets you examine
registered components and their type libraries.

How Excel Uses a Type Library

670

Now is a good time to examine the sequence of steps Excel uses to utilize your
type library:

1. When Excel starts up, it reads the TypeLib section of the Registry
to compile a list of all type libraries. It loads the type libraries for
VBA and for the Excel object library.

2. Mter starting Excel, loading a workbook, and switching to the
Visual Basic Editor, the user (or workbook author) chooses Refer
ences from the Tools menu and checks the EX24B LIB line, as
shown here:

T WEN T Y • F 0 U R: Automation

When the workbook is saved, this reference information is saved
with it.

3. After that, the Excel user will be able to browse through the EX24B
properties and methods by choosing Object Browser from the
Visual Basic Editor's View menu to view the Object Browser dialog
shown here:

4. To make use of the type library in your VBA program, you simply
replace the line

Dim DllComp as Object

with

Dim DllComp as IEx24bAuto

The VBA program will exit immediately if it can't find IEx24bAuto
in its list of references.

5. Immediately after VBA executes the CreateObject statement and
loads the component program, it calls Querylnterface for IID_IEx-
24bAuto, which is defined in the Registry, the type library, and the
component class's interface map. (IEx24bAuto is really an IDispatch
interface.) This is a sort of security check. If the component can't
deliver this interface, the VBA program exits. Theoretically, Excel
could use the CLSID in the type library to load the component
program, but it uses the CLSID from the Registry instead, just as it
did in late binding mode.

671

PAR T I V: ACTIVEX: COM, AUTOMATION, AND OLE

Why Use Early Binding?
You might think that early binding would mak~ your Automation component
run faster. You probably won't notice any speed increase, though, because the
IDispatch: :Invoke calls are the limiting factor. A typical MFC Invoke call from a
compiled C++ client to a compiled C++ component requires about 0.5 milli
second, which is pretty gross.

The browse capability that the type library provides is probably more
valuable than the compiled linkage. If you are writing a C++ controller, for
example, you can load the type library through various COM fUIlctions, includ
ing LoadTypeLib, and then you can access it tqrough the ITypeLib and ITypeInfo
interfaces. Plan to spend some time on that project, however, because the type
library interfaces are tricky.

Faster Client-Component Connections

672

Microsoft has recognized the limitations of the IDispatch interface. It's natu
rally slow because all data must be funneled through VARIANTs and possibly
converted on both ends. There's a new variation called a dual interface. (A
discussion of dual interfaces is beyond the scope of this book. See Kraig
Brockschmidt's Inside OLE, 2d ed. [Microsoft Press, 1995], for more informa
tion.) In a dual interface, you define your own custom interface, derived from
IDispatch. The Invoke and GetIDsOfNames functions are included, but so are
other functions. If the client is smart enough, it can bypass the inefficient
Invoke calls and use the specialized functions instead. Dual interfaces can
support only standard Automation types, or they can support arbitrary types.

There is no direct MFC support for dual interfaces in Visual C++ 5.0, but
the ACDUAL Visual C++ sample should get you started.

C HAP T E R T WEN T Y • F I lJ E

Uniform Data Transfer
Clipboard Transfer
and OLE Drag and Drop

ActiveX technology includes a powerful mechanism for transferring data
within and among Microsoft Windows-based applications. The COM IDataObject
interface is the key element of what is known as Uniform Data Transfer. As
you'll see, Uniform Data Transfer gives you all sorts of options for the format
ting and storage of your transferred data, going well beyond standard clip
board transfers.

MFC support is available for Uniform Data Transfer, but it's not so per
vasive as to obscure what's going on at the COM interface level. One of the
useful applications of Uniform Data Transfer is OLE Drag and Drop. Many
developers want to use drag-and-drop capabilities in their applications, and
drag-and-drop support means that programs now have a standard for infor
mation interchange. The MFC library supports drag-and-drop operations, and
that, together with clipboard transfer, is the main focus of this chapter.

What you learn about the IDataObject interface in this chapter will carry
forward to your study of compound documents.

The IDataObject Interface
The IDataObject interface is used for clipboard transfers and drag-and-drop
operations, but it's also used in compound documents, ActiveX Controls,
and custom OLE features. Kraig Brockschmidt (Inside OLE, 2d ed., Microsoft
Press, 1995) says, "Think of objects as little piles of stuff." The IDataObject
interface helps you move those piles around, no matter what kind of stuff
they contain.

673

PA R T I V: ACTIVEX: COM, AUTOMATION, AND OLE

If you were programming at the Win32 level, you would write C++ code
that supported the IDataObject interface. Your program would then construct
data objects of this class, and you would manipulate those objects with the
IDataObject member functions.

How IDataObject Improves on Standard Clipboard Support
There has never been much MFC support for the Windows Clipboard. If
you've written programs for the clipboard already, you've used Win32 clip
board functions such as Open Clipboard, CloseClipboard, GetClipboardData, and
SetClipboardData. One program copies a single data element of a specified
format to the clipboard, and another program selects the data by format code
and pastes it. Standard clipboard formats include global memory (specified
by an HGLOBAL variable) and various GDI objects, such as bitmaps and
metafiles (specified by their handles). Global memory can contain text as well
as custom formats.

The IDataObject interface picks up where the Windows Clipboard leaves
off. To make a long story short, you transfer a single IDataObject pointer to or
from the clipboard instead of transferring a series of discrete formats. The
underlying data object can contain a whole array of formats. Those formats
can tarry information about target devices, such as printer characteristics, and
they can specify the data's aspect or view. The standard aspect is content. Other
aspects include an icon for the data and a thumbnail picture.

. It's important to note that the IDataObject interface specifies the storage
medium of a data object format. Conventional clipboard transfer relies exclu
sively on global memory. The IDataObject interface permits the transmission
of a disk filename or a structured storage pointer instead. Thus, if you want
to transfer a very large block of data that's in a disk file already, you don't have
to waste time copying it to and from a memory block.

In case you were wondering, IDataObject pointers are compatible with
programs that use existing clipboard transfer methods. The format codes are
the same. Windows takes care of the conversion to and from the data object.
Of course, if an OLE-aware program puts an IStorage pointer in a data object
and puts the object on the clipboard, older, non-aLE-aware programs would
be unable to read that format.

The FORMA TETe and STGMEDIUM Structures

674

Before you're ready for the IDataObject member functions, you need to exam
ine two important COM structures that are used as parameter types: the
FORMA TETC structure and the STGMEDIUM structure.

T WEN T Y - F I V E: Uniform Data Transfer-Clipboard Transfer and OLE Drag and Drop

FORMATETC
The FORlVIATETC structure is often used instead of a clipboard format to
represent data format information. However, unlike the clipboard format, the
FORMA TETC structure includes information about a target device, the aspect
or view of the data, and a storage medium indicator. Here are the members
of the FORMA TETC structure:

Type

CLIPFORMAT

DVTARGETDEVICE*

DWORD

LONG

DWORD

Name

cfFormat

ptd

dwAspect

lindex

tymed

Description

Structure that contains clipboard formats,
such as standard interchange formats (for
example, CF_ TEXT, which is a text format,
and CF_DIB, which is an image compres
sion format), custom formats (such as rich
text format), and OLE formats used to
create linked or embedded objects

Structure that contains information about
the target device for the data, including
the device driver name (can be NULL)

A DVASPECT enumeration constant
(DVASPECT_CONTEN1: DVASPECT
_THUMBNAIL, and so on)

Usually -1

Specifies type of media used to transfer
the object's data (TYMED_HGLOBAL,
TYMED_FILE, TYMED_ISTORAGE,
and so on)

An individual data object accommodates a collection of FORMATETC
elements, and the IDataObject interface provides a way to enumerate them.
Here's a useful macro for filling in a FORMATETC structure:

#define SETFORMATETC(fe. cf. asp. td. med. 1i) \
«fe).cfFormat=cf. \
(fe).dwAspect=asp. \
(fe) .ptd=td. \
(fe).tymed=med. \
(fe).l i ndex=l i)

675

PAR T I V: ACTIVEX: COM, AUTOMATION, AND OLE

STGMEDIUM
The other important structure for IDataObject members is the STGMEDIUM
structure. The STGMEDIUM structure is a global memory handle used for
operations involving data transfer. Here are the members:

Type Name Description

DWORD tymed Storage medium value used in
marshaling and unmarshaling
routines

HBITMAP hBitmap Bitmap handle*

HMETAFlLEPICT hMetaFilePict Metafile handle*

HENHMETAFlLE hEnhMetaFile Enhanced metafile handle*

HGLOBAL hGlobal Global memory handle*

LPOLESTR lpszFileName Disk filename (double-byte)*

ISTREAM* pstm IStream interface pointer*

ISTORAGE* pstg IStorage interface pointer*

IUNKNOWN* pUnkForRelease Used by clients to call Release for
formats with interface pointers*

* This member is part of a union, including handles, strings, and interface pointers used by the
receiving process to access the transferred data.

As you can see, the STGMEDIUM structure specifies where data is stored. The
tymed variable determines which union member is valid.

The IDataObject Interface Member Functions

676

This interface has nine member functions. Brockschmidt and the online docu
mentation do a goodjob of describing all these functions. Following are the
functions that are important for this chapter.

HRESUL T EnumFormatEtc(DWORD dwDirection,
IEnumFORMATETC ppEnum);

If you have an IDataObject pointer for a data object, you can use EnumFormatEtc
to enumerate all the formats that it supports. This is an ugly API that the MFC
library insulates you from. You'll learn how this happens when you examine
the COleDataObject class.

HRESUL T GetData(FORMATETC* pFEln, STGMEDIUM* pSTM);
GetData is the most important function in the interface. Somewhere, up in the
sky, is a data object, and you have an IDataObject pointer to it. You specify, in

T WEN T Y - F I V E: Uniform Data Transfer-Clipboard Transfer and OLE Drag and Drop

a FORMATETC variable, the exact format you want to use when you retrieve
the data, and you prepare an empty STGMEDIUM variable to accept the re
sults. If the data object has the format you want, GetData fills in the STGMEDIUM
structure. Otherwise, you get an error return value.

HRESUlT QueryGetData(FORMATETC* pFE);
You call QueryGetData if you're not sure whether the data object can deliver
data in the format specified in the FORMATETC structure. The return value
says, ''Yes, I can" (S_OK) or "No, I can't" (an error code). Calling this func
tion is definitely more efficient than allocating a STGMEDIUM variable and
calling GetData.

HRESUlT SetData(FORMATETC* pFEln,
STGMEDIUM* pSTM, Baal fRelease);

SetData is rarely supported by data objects. Data objects are normally loaded
with formats in their own server module; clients retrieve data by calling GetData.
With SetData, you'd be transferring data in the other direction-like pumping
water from your house back to the water company.

Other IDataObject Member Functions-Advisory Connections
The interface contains other important functions that let you implement an
advisory connection. When the program using a data object needs to be no
tified whether the object's data changes, the program can pass an IAdviseSink
pointer to the object by calling the IDataObJect ::DAdvise function. The object
then calls various IAdviseSink member functions, which the client program
implements. You won't need advisory connections for drag-and-drop opera
tions, but you will need them when you get to embedding in Chapter 27.

MFC Uniform Data Transfer Support
The MFC library does a lot to make data object programming easier. As you
study the MFC data object classes, you'll start to see a pattern in MFC COM
support. At the component end, the MFC library provides a base class that
implements one or more OLE interfaces. The interface member functions call
virtual functions that you override in your derived class. At the client end, the
MFC library provides a class that wraps an interface pointer. You call simple
member functions that use the interface pointer to make COM calls.

The terminology needs some clarification here. The data object I've been
describing is the actual C++ object that you construct, and that's the way
Brockschmidt uses the term. In the MFC documentation, a data object is what

677

PAR T I V: ACTIVEX: COM, AUTOMATION, AND OLE

the client program sees through an IDataObject pointer. A data source is the
object you construct in a component program.

The COleDataSource Class

678

When you want to use a data source, you construct an object of class COleData
Source, which implements the IDataObject interface (without advisory connec
tion support). This class builds and manages a collection of data formats stored
in a cache in memory. A data source is a regular COM object that keeps a ref
erence count. Usually, you construct and fill a data source, and then you pass
it to the clipboard or drag and drop it in another location, never to worry about
it again. If you decide not to pass off a data source, you can invoke the destruc
tor, which cleans up all its formats.

Following are some of the more useful member functions of the COle
DataSource class.

void CacheData(CLIPFORMAT cfFormat,
STGMEDIUM* IpStgMedium,
FORMATETC* IpFormatEtc = NULL);

This function inserts an element in the data object's cache for data trans
fer. The IpStgMedium parameter points to the data, and the IpFormatEtc parame
ter describes the data. If, for example, the STGMEDIUM structure specifies a
disk filename, that filename gets stored inside the data object. If IpFormatEtc
is set to NULL, the function fills in a FORMATETC structure with default val
ues. It's safer, though, if you create your FORMATETC variable with the tymed
member set.

void CacheGlobaIData(CLIPFORMAT cfFormat,
HGLOBAL hGlobal, FORMATETC* IpFormatEtc = NULL);

You call this specialized version of CacheData to pass data in global memory
(identified by an HGLOBAL variable). The data source object is considered
the owner of that global memory block, so you should not free it after you
cache it. You can usually omit the IpFormatEtc parameter. The CacheGlobalData
function does not make a copy of the data.

DROPEFFECT DoDragDrop(DWORD dwEffects =
DROPEFFECT_COPYIDROPEFFECT_MOVEI
DROPEFFECT _LINK, LPCRECT IpRectStartDrag = NULL,
COleDropSource* pDropSource = NULL);

You call this function for drag-and-drop operations on a data source. You'll
see it used in the EX25B example.

T WEN T Y - F I V E: Uniform Data Transfer-Clipboard Transfer and OLE Drag and Drop

void SetClipboard{void);
The SetClipboard function, which you'll see in the EX25A example, calls the
OleSetClipboard function to put a data source on the Windows Clipboard. The
clipboard is responsible for deleting the data source and thus for freeing the
global memory associated with the formats in the cache. When you construct
a COleDataSource object and call SetClipboard, COM calls AddRef on the object.

The COleDataObject Class
This class is on the destination side of a data object transfer. Its base class is
CCmdTarget, and it has a public member m_lpDataObject that holds an IDataObject
pointer. That member must be set before you can effectively use the object.
The class destructor only calls Release on the IDataObject pointer.

Following are a few of the more useful COleDataObject member functions.

BOOl AttachClipboard{void);
As Brockschmidt points out, OLE clipboard processing is internally complex.
From your point of view, however, it's straightforward as long as you use the
COleDataObject member functions. You first construct an "empty" COleDataObject
object, and then you call AttachClipboard, which calls the global OleGetClipboard
function. Now the m_lpDataObject data member points back to the source data
object (or so it appears), and you can access its formats.

If you call the GetData member function to get a format, you must remem
ber that the clipboard owns the format and you cannot alter its contents. If
the format consists of an HGLOBAL pointer, you must not free that memory
and you cannot hang on to the pointer. Consider calling GetGlobalData instead
if you need to have long-term access to the data in global memory.

If a non-CaM-aware program copies data onto the clipboard, the Attach
Clipboard function still works because COM invents a data object that contains
formats corresponding to the regular Windows data on the clipboard.

void BeginEnumFormats{void);
BOOl GetNextFormat(FORMATETC* IpFormatEtc);
These two functions allow you to iterate through the formats that the data
object contains. You call BeginEnumFormats first, and then you call GetNextFormat
in a loop until it returns FALSE.

BOOl GetData{CllPFORMAT cfFormat,
STGMEDIUM* IpStgMedium
FORMATETC* IpFormatEtc = NULL);

This function calls IDataObject ::GetData and not much more. The function
returns TRUE if the data source contains the format you asked for. You gen
erally need to supply the lpFormatEtc parameter.

679

PAR T I V: ACTIVEX: COM, AUTOMATION, AND OLE

HGlOBAl GetGlobaIData(ClIPFORMAT cfFormat,
FORMATETC* ipFormatEtc = NUll);

Use the GetGlobaWata functiori if you know your requested format is compat
ible with global memory. This function makes a copy of the selected format's
memory block, and it gives you an HGLOBAL handle that you must free later.
You can often omit the lpForrnatEtc parameter.

BOOl IsDataAvaiiable(CllPFORMAT cfFormat,
FORMATETC* ipFormatEtc = NUll);

The IsDataAvailable function tests whether the data object contains a given
format.

MFC Data Object Clipboard Transfer

680

N ow that you've seen the COleDataObject and COleDataSource classes, you'll have
an easy time doing clipboard data object transfers. But why not just do clip
board transfers the old way with GetClipboardData and SetClipboardData? You
could for most common formats, but if you write functions that process data
objects, you can use those same functions for drag and drop.

Figure 25-1 shows the relationship between the clipboard and the COle
DataSource and COleDataObject classes. You construct a COleDataSource object
on the copy side, and then you fill its cache with formats. When you call SetClip
board, the formats are copied to the clipboard. On the paste side, you call

Copy Side

Figure 25-1.
MFC OIE clipboard processing.

Paste Side

(The m_lpOataObject member holds
the IOataObject pointer for the

COleOataSource object)

AttachClipboard

T WEN T Y - F I V E: Uniform Data Transfer-Clipboard Transfer and OLE Drag and Drop

AttachClipboard to attach an IDataObject pointer to a COleDataObject object, after
which you can retrieve individual formats.

Suppose you have a document-view application whose document has a
CString data member m_strText. You want to use view class command handler
functions that copy to and paste from the clipboard. Before you write those
functions, you should write two helper functions. The first, SaveText, creates
a data source object from the contents of m_strText. The function constructs
a COleDataSource object, and then it copies the string contents to global memory.
Last it calls CacheGlobalData to store the HGLOBAL handle in the data source
object. Here is the SaveText code:

COleDataSource* CMyView::SaveText()
{

CEx25fDoc* pDoc = GetDocument();
if (!pDoc->m_strtext.IsEmpty(» {

COleDataSource* pSource = new COleDataSource();
int nTextSize = GetDocument()->m_strText.Getlength() + 1;
HGlOBAl hText = ::GlobalAlloc(GMEM_SHARE, nTextSize);
lPSTR pText = (lPSTR) ::Globallock(hText);
ASS ERT(pText) ;
strcpy(pText, GetDocument()->m_strText);
::GlobalUnlock(hText);
pSource->CacheGlobalData(CF_TEXT, hText);
return pSource;

return NUll;

The second helper function, DoPasteText, fills in m_strText from a data
object specified as a parameter. We're using COleDataObject::GetData here
instead of GetGlobalData because GetGlobalData makes a copy of the global
memory block. That extra copy operation is unnecessary because we're copy
ing the text to the CString object. We don't free the original memory block
because the data object owns it. Here is the DoPasteText code:

BOOl CMyView::DoPasteText(COleDataObject* pDataObject)
{

STGMEDIUM stg;
FORMATETC fmt;
II update command UI should keep us out of here if not CF_TEXT
if (!pDataObject->IsDataAvailable(CF_TEXT» {

TRACE ("CF _TEXT format is unava il abl e\n") ;
return FALSE;

(continued)

681

PA R T I V: ACTIVEX: COM, AUTOMATION, AND OLE

II Memory is MOVEABLE, so we must use GlobalLock!
SETFORMATETC(fmt, CF_TEXT, DVASPECT_CONTENT, NULL, TYMED_HGLOBAL, -1);
VERIFY(pDataObject->GetData(CF_TEXT, &stg, &fmt));
HGLOBAL hText = stg.hGlobal;
GetDocument()->m_strText = (LPSTR) ::GlobalLock(hText);
::GlobalUnlock(hText);
return TRUE;

Here are the two command handler functions:

void CMyView::OnEditCopy()

COleDataSource* pSource = SaveText();
if (pSou rce) {

pSource->SetClipboard();

void CMyView::OnEditPaste()
{

COleDataObject dataObject;
VERIFY(dataObject.AttachClipboard());
DoPasteText(&dataObject);
II dataObject released

The MFC CRectTracker Class

682

The CRectTrackerclass is useful in both OLE and non-OLE programs. It allows
the user to move and resize a rectangular object in a view window. There are
two important data members: the m_nStyle member determines the border,
resize handle, and other characteristics; and the m_rect member holds the
device coordinates for the rectangle.

The important member functions follow.

void Draw{CDC* pDC) const;
The Draw function draws the tracker, including border and resize handles, but
it does not draw anything inside the rectangle. That's your job.

BOOl Track{CWnd* pWnd, CPoint point,
BOOl bA 110 win vert = FALSE, CWnd* pWndClipTo = NUll);

You call this function in a WM_LBUTTONDOWN handler. If the cursor is on
the rectangle border, the user can resize the tracker by holding down the mouse
button; if the cursor is inside the rectangle, the user can move the tracker.
If the cursor is outside the rectangle, Track returns FALSE immediately;

T WEN T Y - F I V E: Uniform Data Transfer-Clipboard Transfer and OLE Drag and Drop

otherwise, Track returns TRUE only when the user releases the mouse button.
That means Track works a little like CDialog::DoModal. It contains its own mes
sage dispatch logic.

int HitTest(CPoint point) const;
Call HitTest if you need to distinguish between mouse button hits inside and
on the tracker rectangle. The function returns immediately with the hit sta
tus in the return value.

BOOl SetCursor(CWnd* pWnd, UINT nHitTest) const;
Call this function in your view's WM_SETCURSOR handler to ensure that the
cursor changes during tracking. If Set Cursor returns FALSE, call the base class
OnSetCursor function; if Set Cursor returns TRUE, you then return TRUE.

CRectTracker Rectangle Coordinate Conversion
You must deal with the fact that the CRectTracker::m_rect member stores device
coordinates. If you are using a scrolling view or have otherwise changed the
mapping mode or viewport origin, you must do coordinate conversion. Here's
a strategy:

1. Define a CRectTracker data member in your view class. Use the name
m_tracker.

2. Define a separate data member in your view class to hold the rect
angle in logical coordinates. Use the name m_rectTracker.

3. In your view's OnDraw function, set m_rect to the updated device
coordinates, and then draw the tracker. This adjusts for any scroll
ing since the last OnDraw. Here's some sample code:

m_tracker.m_rect = m_rectTracker:
pDC-)LPtoDP(ffi-tracker.ffi-rect): II tracker requires device coordinates
m_tracker.Draw(pDC):

4. In your mouse button down message handler, call Track, set m_rect
Tracker to the updated logical coordinates, and call Invalidate, as
shown here:

if (m_tracker.Track(this, point, FALSE, NULL» {
CClientDC dc(this):
OnPrepareDC(&dc):
m_rectTracker = m_tracker.m_rect:
dc.DPtoLP(m_rectTracker):
Inval idate():

683

PA R T I V: ACTIVEX: COM, AUTOMATION, AND OLE

The EX25A Example-A Data Object Clipboard

684

This example uses the CDib class from EXIOC. Here you'll be able to move
and resize the DIB image with a tracker rectangle, and you'll be able to copy
and paste the DIB to and from the clipboard using a COM data object. The
example also includes functions for reading DIBs from and writing DIBs to
BMP files.

If you create such an example from scratch, use AppWizard without
any ActiveX or Automation options and then add the following line in your
StdAfx.h file:

#include <afxole.h>

Add the following call at the start of the application's InitInstance function:

AfxOleInit();

To prepare EX25A, open the \vcpp32\ex25a\ex25a.dsw workspace and
then build the project. Run the application, and paste a bitmap into the rect
angle by choosing Paste From on the Edit menu. You'll see an MDI applica
tion similar to the one shown in Figure 25-2.

Figure 25-2.
The EX25A program in operation.

T WEN T Y - F I V E: Uniform Data Transfer-Clipboard Transfer and OLE Drag and Drop

The CMainFrame Class
This class contains the handlers OnQueryNewPalette and OnPaletteChanged for
the WM_QUERYNEWPALETTE and WM_PALETTECHANGED messages,
respectively. These handlers send a user-defined WM_ VIEWPALETTE
CHANGED message to all the views, and then the handler calls CDib::UsePalette
to realize the palette. The value of wParam tells the view whether it should
realize the palette in background or foreground mode.

The CEx25aDoc Class
This class is pretty straightforward. It contains an embedded CDib object, m_dib,
plus a Clear All command handler. The overridden DeleteContents member
function calls the CDib::Empty function.

The CEx25aView Class
This class contains the clipboard function command handlers, the tracking
code, the DIB drawing code, and the palette message handler. Figure 25-3
shows the header and implementation files with manually entered code shaded.

EX25AVIEW.H

#if !definedCAFX_EX25AVIEW_H __ 4F329B0F_5DFl_IID0_848F_00400526305B __ INCLUDED_)
#define AFX_EX25AVIEW_H __ 4F329B0F_5DFl_IID0_848F_00400526305B __ INCLUDED_

#if _MSC_VER >= 1000
#pragma once
#endifll _MSC_VER >= 1000

#define WM_VIEWPALETTECHANGED WM_USER + 5

class CEx25aView : public CScrollView
{

I I for tracking
CRectTracker m_tracker;
CRect ffi-rectTracker; II logical coordinates
CSJz~ m_s i zeTot~l,; II, 90cument size

protected: II create from serialization only
CEx25aViewC);
DECLARE_DYNCREATECCEx25aView)

II Attributes
public:

CEx25aDoc* GetDocumentC);

Figure 25-3.
The CEx25a View class listing.

(continued)

685

PA R T I V: ACTIVEX: COM, AUTOMATION, AND OLE

686

Figure 25-3. continued

II Operations
public:

II Overrides
II ClassWizard generated virtual function overrides
11{{AFX_VIRTUAl(CEx25aView)
public:
virtual void OnDraw(CDC* pDC); II overridden to draw this view
virtual BOOl PreCreateWindow(CREATESTRUCT& cs);
virtual void OnPrepareDC(CDC* pDC, CPrintInfo* pInfo = NUll);
virtual void OnInitialUpdate();
protected:
virtual BOOl OnPreparePrinting(CPrintlnfo* plnfo);
virtual void OnBeginPrinting(CDC* pDC, CPrintInfo* pInfo);
virtual void OnEndPrinting(CDC* pDC, CPrintInfo* pInfo);
I/} }AFX_VIRTUAl

II Implementation
public:

virtual -CEx25aView();
fFifdef _DEBUG

virtual void AssertValid() const;
virtual void Dump(CDumpContext& dc) const;

fFendif

protected:

II generated message map functions
protected:

11{{AFX_MSG(CEx25aView)
afx_msg
afx_msg
afx_msg
afx_msg
afx_msg
afx_msg
afx_msg

void
void
void
void
void
void
void

OnEditCopy() ;
OnUpdateEditCopy(CCmdUI* pCmdUI);]
OnEditCopyto() ;
OnEditCut() ;
OnEditPaste() ;
OnUpdateEditPaste(CCmdUI* pCmdUI);
OnEditPastefrom();

afx_msg void
afx_msg BOOl
afx_msg lONG
afx_msg void

OnlButtonDown(UINT nFlags, CPoint point);
OnSetCursor(CWnd* pWnd, UINT nHitTest, UINT message);
OnViewPaletteChanged(UINT wParam, lONG lParam);
OnSetFocus(CWnd* pOldWnd);

I/} }AFX_MSG

(continued)

T WEN T V - F I V E: Uniform Data Transfer-Clipboard Transfer and OLE Drag and Drop

Figure 25-3. continued

private:
BOOL DoPasteDibCCOleDataObject* pDataObject):
COleDataSource* SaveDib();

} :

#ifndef _DEBUG // debug version in Ex2SaView.cpp
inline CEx2SaDoc* CEx2SaView::GetDocumentC)

{ return CCEx2SaOoc*)m_pOocument; }
#endif

//

//{{AFX_INSERT_LOCATION}}
// Microsoft Developer Studio will insert additional declarations
// immediately before the previous line

#endif
// !defined(AFX_EX2SAVIEW_H __ 4F329B0F_SDFl_11D0_848F_0040052630SB __ INCLUDED_)

EX25AVIEW.CPP

#include "stdafx.h"
#include "ex2Sa.h"

#include "cdib.h"
fiinclude "ex2SaOoc.h"
#include "ex2SaView.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __ FILE __ :
fiendif

///

// CEx2SaView

IMPLEMENT_DYNCREATECCEx25aView. CScrollView)

BEGIN_MESSAGE_MAP(CEx2SaView. CScrollView)
//({AFX_MSG_MAPCCEx2SaView)
ON_COMMAND(ID_EOIT_COPY. OnEditCopy)
ON_UPDATE_COMMAND_UICID_EDIT_COPY. OnUpdateEditCopy)
ON_COMMAND(ID_EDIT_COPYTO. OnEditCopyto)

(continued)

687

PA R T I V: ACTIVEX: COM, AUTOMATION, AND OLE

688

Figure 25-3. continued

ON_COMMAND(ID_EDIT_CUT. OnEditCut)
ON_COMMAND(ID_EDIT_PASTE. OnEditPaste)
ON_UPDATE_COMMAND_UI(ID_EDIT_PASTE. OnUpdateEditpaste)
ON_COMMAND(ID_EDIT_PASTEFROM. OnEditPastefrom)
ON_WM_lBUTTONDOWN()
ON_WM_SETCURSOR()
ON_MESSAGE(WM_VIEWPAlETTECHANGED. OnViewPaletteChanged)
ON_UPDATE_COMMAND_UI(ID_EDIT_COPYTO. OnUpdateEditCopy)
ON_UPDATE_COMMAND_UI(ID_EDIT_CUT. OnUpdateEditCopy)
ON_WM_SETFOCUS()
/ /} JAFX_MSG_MAP
// standard printing commands
ON_COMMAND(ID_FIlE_PRINT. CScrollView::OnFilePrint)
ON_COMMAND(ID_FIlE_PRINT_DIRECT. CScrollView::OnFilePrint)
ON_COMMAND(ID_FIlE_PRINT_PREVIEW. CScrollView::OnFilePrintPreview)

END_MESSAGE_MAP()

//

// CEx25aView construction/destruction

CEx25aView::CEx25aView():; m"':sizeTotal(800. 1(50), // 8-by-10.5 inches
// when printed

{

J

m...;.rectTracker(S0, 50.,250, 250)

CEx25aView: :-CEx25aView()
{

J

BOOl CEx25aView::PreCreateWindow(CREATESTRUCT& cs)
{

// TODO: Modify the Window class or styles here by modifying
// the CREATESTRUCT cs

return CScrollView::PreCreateWindow(cs);

//

// CEx25aView drawing

void CEx25aView::OnDraw(CDC* pDC)

J """ ,...'
CDib& dib = GetDocumentU->m_dib: . . ,

·.IJL.trac~ .. E?r·[rL .. re<;t.=rn_rec:tTraC:ker'; .•

(continued)

T WEN T Y - F I V E: Uniform Data Transfer-Clipboard Transfer and OLE Drag and Drop

Figure 25-3. continued

pDC->LPtoDP(m_tracker.m_rect); II tracker wants device coordinates
m_tracker.Draw(pDC):
dib.Draw(pDC. m_rectTracker.TopLeft(). m_rectTracker.Size(»;

111111111/1///1////1////////1///1///1////////11/11/////1//1/1/////////

// CEx25aView printing

BOOL CEx25aView::OnPreparePrinting(CPrintInfo* pInfo)
{

pInfo->S~tM~xPage(l);

return DoPreparePrinting(pInfo);

void CEx25aView::OnBeginPrinting(CDC* /*pDC*/, CPrintInfo* l*pInfo*/)

/1 TODO: add extra initialization before printing

void CEx25aView::OnEndPrinting(CDC* /*pDC*/, CPrintInfo* /*pInfo*/)

// TODO: add cleanup after printing

//////11/////////////////////////1///////////11///////////////1///////

// CEx25aView diagnostics

tlifdef _DEBUG
void CEx25aView::AssertValid() const
{

CScrollView::AssertValid();

void CEx25aView::Dump(CDumpContext& dc) const

CScrollView::Dump(dc);

CEx25aDoc* CEx25aView::GetDocument() // nondebug version is inline
{

ASSERT(m_pDocument->IsKindOf(RUNTIME_CLASS(CEx25aDoc»);
return (CEx25aDoc*)m_pDocument;

tlendif //_DEBUG

(continued)

689

PA R T I V: ACTIVEX: COM, AUTOMATION, AND OLE

690

Figure 25-3. continued

~lllllllllljjllllllll~llllljll)jllllllllllllljljjl;illjjllllil
II helper furictionsused for clipboard anddrag-drcip

BaaL CEx25aView::DoPasteDib(COleDataObject* pDataObject)
{

II update com~and user interface should keep us out of
II here if not CF _OIB
if (!pOataObject·>IsOataAvailable(CF_DIB» {

TRACE("CF_DIB formatisunavail able\n");
return FALSE;

}

CEx25aDoc* pDoc= GetDocument():
II Seems to be MdvEABLE memory. so we ~ust ~se GlobalLock!
II (hDib!= lpDib) GetGlobalData copies the memory. so we can
II hang onto it until we delete the CDib.
HGLOBAL hDib = pDataObject->GetGlobalData(CF~DIB);
ASSERT(hOib!= NULL);
LPVOID lpDib = ::GlobalLo~k(hDib):
ASSERT(lpDib!= NULL):
pDoc ->m_dib. AttachMemory (1 pDi b. TRUE. hOi b) :
pDoc->SetModifiedFlag();
pDoc->UpdateAllViews(NULL):
return TRUE;

tOleO~taSource* CEx25aView::SaveDib{)
{

CDib& dib = GetDocument()-)m_dib:
if (dib.GetSiielmage() > 0) {

C01~baiasource* pSource = riew COleDataSource();
int nHea~erS1ze = dib.G~t~izeH~ader():
intnlmag~Size= dib.~etSizelmage();
HGLOBAL hHeader = ~:GlobalAlloc(GMEM_SHARE.

nHeaderSize + nlmageSize);
LPVOID p~eader = ::GlobalLock{hHeader);
ASSERT(pHeader != NULL): .
LPVOID pImage = (LPBYTE)pHeader + nHe~derS~ze;
memcpy(pHeader ~di b .m.JpBMIH. nHeaderSlze);
memcpy(plmage. dib.m,.:..lpImage. nImageSize):
I I Receiver is supposed to free. thegl oba 1
::GlobalUnlockChHeader);
pSource->CacheGlobalOata(CF_OIB. hHeader);
return pSource:

(continued)

T WEN T Y - F I V E: Uniform Data Transfer-Clipboard Transfer and OLE Drag and Drop

Figure 25-3. continued

//

// CEx25aView message handlers

void CEx25aView::OnEditCopy()
{

COleOataSource* pSource = SaveOib();
if (pSource) {

pSource->SetClipboard(); // OLE deletes data source

void CEx25aView::OnUpdateEditCopy(CCmdUI* pCmdUI)
{

// serves Copy. Cut. and Copy To
COib& dib = GetOocument()->m_dib;
pCmdUI->Enable(dib.GetSizeImage() > 0L);

void CEx25aView::OnEditCopyto()
{

COib& dib = GetOocument()->m_dib;
CFil eO; a log dl g (FALSE. "bmp". "*. bmp") ;
if (dlg.OoModal() != lOOK) return:

BeginWaitCursor();
dib.CopyToMapFile(dlg.GetPathName(»;
EndWaitCursor():

void CEx25aView::OnEditCut()

OnEditCopyO;
Ge,tDocument() ->OnJdi t~1.earA1H);

void CEx25aView::OnEditPaste()
{

CEx25aDoc* pOoc = GetDocument();
COleDataObject dataObject;
VERIFY(dataObject.AttachClipboard(»;
DoPasteOib(&dataObject};
CClientDC dc(this);
pDoc->m..;...dib.UsePalette(&dc):
pDoc->SetModifiedFlag():
pDoc~>Up,dateAll Views (NULL);

(continued)

691

PA R T I V: ACTIVEX: COM, AUTOMATION, AND OLE

692

Figure 25-3. continued

void CEx25aView::OnUpdateEditPaste(CCmdUI* pCmdUI)
{

COleDataObject dataObject:
BOOl bAvail = dataObject.AttachClipboard() &&

dataObject.IsDataAvailable(CF_DIB):
pCmdUI-)Enable(bAvail):

void CEx25aView::OnEditPastefrom()
(

CEx25aDoc* pDoc = GetDocument();
CFileDialog dlg(TRUE. "bmp", "*.bmp");
if (dlg.DoModal() != IDOK) return:
if (pDoc-)m_dib.AttachMapFile(dlg.GetPathNameO, TRUE» {II share

CClientDC dc(th1s);

",J

pDoc-)m_dib.SetSystemPalette(&dc);
pDoc-)m_dib.UsePalette(&dc);
pDoc-)SetModifiedFlag();
pDoc-)UpdateAllViews(NUll);

void CEx25aView::OnPrepareDC(CDC* pDC, CPrintInfo* pInfo)

II custom MM_lOENGlISH;positive Y is down
if (pDC-)lsPrinting(» {

}

int nHsize = pDC-)GetDeviceGaps(HORZSIZE) * 1000 1254:
int nVsize = pDC-)GetDeviceCaps(VERTSIZE) * 1000 1254;
pOC-)SetMapMode (MM_AN I SOTROPI C) ;
pDC-)SetWindowExt(nHsize. nVs;ze);
pDC-)SetViewportExt(pDC-)GetDeviceCaps{HORZRES},

pDC->GetDeviceCaps(VERTRES»:

else
CScrollView::OnPrepareDC(pDC,

void CEx25aView::OnInitialUpdate()
(

CRectTracker::re$;zeOtitside;
GSc:rollVi~w::OnlnjtiaJUpdate();,

(continued)

T WEN T Y - F I V E: Uniform Data Transfer-Clipboard Transfer and OLE Drag and Drop

Figure 25-3. continued

void CEx25aView::OnlButtonDown(UINT nFlags, CPoint point)
{

if (m_tracker.Track(this, point, FALSE, NUll»
CClientDC dc(this);
OnPrepareDC(&dc);
m_rectTracker = m_tracker.m_rect:
dc.DPtolP(m_rectTracker); II Update logical coordinates
Inval idate();

BOOl CEx25aView::OnSetCursor(CWnd* pWnd, UINT nHitTest, UINT message)
{

if (m_tracker.SetCursor(pWnd, nHitTest» {
return TRUE;

else {
return CScrollView::OnSetCursor(pWnd. nHitTest, message);

lONG CEx25aView: :OnViewPaletteChanged(UINT wParam, lONG lParam)
{

TRACE("CEx25aView: :OnViewPaletteChanged. HWND = %x, \
code = %d\n", GetSafeHwnd(), wParam);

CClientDC dc(this);
GetDocument()->m_dib.UsePalette(&dc, wParam);
Invalidate();
return 0;

void CEx25aView::OnSetFocus(CWnd* pOldWnd)

CScrollView::OnSetFocus(pOldWnd);
AfxGetApp()->m_pMainWnd-)SendMessage(WM_PALETTECHANGED,

(UINT) GetSafeH~nd(»:.

693

PAR T I V: ACTIVEX: COM, AUTOMATION, AND OLE

A few interesting things are happening in the view class. In the DoPasteDib
helper, we can call GetGlobalData because we can attach the returned HGLOBAL
variable to the document's CDib object. If we called GetData, we would have
to copy the memory block ourselves. The Paste From and Copy To command
handlers rely on the memory-mapped file support in the CDib class. The
OnPrepareDC function creates a special printer mapping mode that isjust like
MM_LOENGLISH except that positive y is down. One pixel on the display cor
responds to 0.01 inch on the printer.

MFC Drag and Drop
Drag and drop was the ultimate justification for the data object code you've
been looking at. OLE supports this feature with its IDropSource and IDropTarget
interfaces plus some library code that manages the drag-and-drop process. The
MFC library offers good drag-and-drop support at the view level, so we'll use
it. Be aware that drag-and-drop transfers are immediate and independent of
the clipboard. If the user cancels the operation, there's no "memory" of the
object being dragged.

Drag-and-drop transfers should work consistently between applications,
between windows of the same application, and within a window. When the user
starts the operation, the cursor should change to an arrow-rectangle combi
nation. If the user holds down the Ctrl key, the cursor turns into a plus sign
(+), which indicates that the object is being copied rather than moved.

MFC also supports drag-and-drop operations for items in compound
documents. This is the next level up in MFC OLE support, and it's not cov
ered in this chapter. Look up the OCLIENT example in the online documen
tation under Visual C++ Samples.

The Source Side of the Transfer

694

When your source program starts a drag-and-drop operation for a data object,
it calls COleDataSource::DoDragDrop. This function internally creates an object
ofMFC class COleDropSource, which implements the IOleDropSource interface.
DoDragDrop is one of those functions that don't return for a while. It returns
when the user drops the object or cancels the operation or when a specified
number of milliseconds have elapsed.

If you're programming drag-and-drop operations to work with a CRect
Tracker object, you should call DoDragDrop only when the user clicks inside the
tracking rectangle, not on its border. CRectTracker::HitTest gives you that in
formation. When you call DoDragDrop, you need to set a flag that tells you
whether the user is dropping the object into the same view (or document) that
it was dragged from.

T WEN T Y - F I V E: Uniform Data Transfer-Clipboard Transfer and OLE Drag and Drop

The Destination Side of the Transfer
If you want to use the MFC library's view class drag-and-drop support, you
must add a data member of class COleDropTarget to your derived view class.
This class implements the IDropTarget interface, and it holds an IDropSource
pointer that links back to the COleDropSource object. In your view's Onlnitial
Update function, you call the Register member function for the embedded
COleDrop Target 0 bj ect.

Mter you have made your view a drop target, you must override four
CView virtual functions, which the framework calls during the drag-and-drop
operation. Here's a summary of what they should do, assuming you're us
ing a tracker:

OnDragEnter

OnDragOver

OnDragLeave

OnDrop

Adjusts the focus rectangle and then calls OnDragOver

Moves the dotted focus rectangle and sets the drop effect
(determines cursor shape)

Cancels the transfer operation; returns the rectangle to
its original position and size

Adjusts the focus rectangle and then calls the DoPaste
helper function to get formats from the data object

The Drag-and-Drop Sequence
Figure 25-4 illustrates the MFC drag-and-drop process. Here's a summary of
what's going on:

1. User presses the left mouse button in the source view window.

2. Mouse button handler calls CRectTracker::HitTest and finds out that
the cursor was inside the tracker rectangle.

3. Handler stores formats in a COleDataSource object.

4. Handler calls COleDataSource::DoDragDrop for the data source.

5. User moves the cursor to the view window of the target application.

6. OLE calls IDropTarget::OnDragEnter and OnDragOver for the COle
DropTarget object, which calls the corresponding virtual functions
in the target's view. The OnDragOverfunction is passed a COleData
Object pointer for the source object, which the target tests for a for
mat it can understand.

7. OnDragOver returns a drop effect code, which OLE uses to set the
cursor.

695

PAR T I V: ACTIVEX: COM, AUTOMATION, AND OLE

8. OLE calls IDataSource::QueryContinueDrag on the source side to find
out whether the drag operation is still in progress. The MFC COle
DataSource class responds appropriately.

9. User releases the mouse button to drop the object in the target
view window.

10. OLE calls IDropTarget::OnDrop, which calls OnDrop for the target's
view. Because OnDrop is passed a COleDataObject pointer, it can
retrieve the desired format from that object.

11. When OnDrop returns in the target program, DoDragDrop can re
turn in the source program.

IDropTarget

Figure 25-4.
MFC OLE drag-and-drop processing.

The EX25B Example-OLE Drag and Drop

696

This example picks up where the EX25A example leaves off. It adds drag-and
drop support, using the existing SaveDib and DoPasteDib helper functions. All
of the clipboard code is the same. You should be able to adapt EX25B to other
applications that require drag and drop for data objects.

To prepare EX25B, open the \vcpp32\ex25b\ex25b.dsw workspace and
build the project. Run the applh:ation, and test drag and drop between child
windows and between instances of the program.

T WEN T Y - F I V E: Uniform Data Transfer-Clipboard Transfer and OLE Drag and Drop

The CEx25bDoc Class
This class is just like the EX25A version except for an added flag data mem
ber, m_bDragHere. This flag is TRUE when a drag-and-drop operation is in
progress for this document. The flag is in the document and not in the view
because it's possible to have multiple views attached to the same document.
It doesn't make sense to drag a DIB from one view to another when both views
reflect the document's m_dib member.

The CEx25bView Class
To start with, this class has three additional data members and a constructor
that initializes all the data members, as shown here:

CRect m_rectTrackerEnter; II original logical coordinates
COleDropTarget m_dropTarget;
CSize m_dragOffset; II device coordinates

CEx25bView::CEx25bView() : m_sizeTotal(800, 1050), II 8-by-10.5 inches
II when printed

{

}

m_rectTracker(50, 50, 250, 250),
m_dragOffset(0, O),
m_rectTrackerEnter(50, 50, 250, 250)

The OnlnitialUpdate function needs one additional line to register the
drop target:

m_dropTarget.Register(this);

Following are the drag-and-drop virtuai override functions. Note that
OnDrop replaces the DIB only if the document's m_bDragHere flag is TRUE, so
if the user drops the DIB in the same window or in another window that's
connected to the same document, nothing happens.

DROPEFFECT CEx25bView::OnDragEnter(COleDataObject* pDataObject,
DWORD dwKeyState, CPoint point)

TRACE("Entering CEx25bView::OnDragEnter, point = (%d, %d)\n",
point.x, point.y);

m_rectTrackerEnter = m_rectTracker; II save original coordinates
II for cursor leaving

CClientDC dc(this);
OnPrepareDC(&dc);

II rectangle

(continued)

697

PAR T I V: ACTIVEX: COM, AUTOMATION, AND OLE

698

dc.DrawFocusRect(m_rectTracker); II will be erased in OnDragOver
return OnDragOver(pDataObject, dwKeyState, point);

DROPEFFECT CEx25bView::OnDragOver(COleDataObject* pDataObject,
DWORD dwKeyState, CPoint point)

if (!pDataObject->IsDataAvailable(CF_DIB»
return DROPEFFECT_NONE;

MoveTrackRect(point);
if «dwKeyState & MK_CONTROl)

return DROPEFFECT_COPY;
}

II Check for force move

MICCONTROL) {

if «dwKeyState & MK_AlT) MK_AlT) {
return DROPEFFECT_MOVE;

II default -- recommended action is move
return DROPEFFECT_MOVE;

void CEx25bView: :OnDragleave()
{

TRAC~("Entering CEx25bView::OnDragleave\n");
CClientDC dc(this);
OnPrepareDC(&dc);
dc.DrawFocusRect(m_rectTracker);
m_rectTracker = m_rectTrackerEnter; II Forget it ever happened

BOOl CEx25bView::OnDrop(COleDataObject* pDataObject,
DROPEFFECT dropEffect, CPoint point)

TRACE("Entering CEx25bView::OnDrop
BOOl bRet;
CEx25bDoc* pDoc = GetDocument();
MoveTrackRect(point);
if (pDoc->m_bDragHere) {

pDoc->m_bDragHere = FALSE;
bRet = TRUE;

else {
bRet = DoPasteDib(pDataObject);

return bRet;

dropEffect = %d\n", dropEffect);

T WEN T Y - F I V E: Uniform Data Transfer-Clipboard Transfer and OLE Drag and Drop

The handler for the WM_LBUTTONDOWN message needs substantial
overhaul. It must call DoDragDrop if the cursor is inside the rectangle and Track
if it is on the rectangle border. The revised code is shown here:

void CEx25bView::OnLButtonDown(UINT nFlags, CPoint point)
{

CEx25bDoc* pDoc = GetDocument();
if (m_tracker.HitTest(point) == CRectTracker::hitMiddle)

COleDataSource* pSource = SaveDib();
if (pSource) {

else {

II DoDragDrop returns only after drop is complete
CClientDC dc(this);
OnPrepareDC(&dc);
CPoint topleft = m_rectTracker.TopLeft();
dc.LPtoDP(&topleft);
II 'point' here is not the same as the point parameter in
II OnDragEnter, so we use this one to compute the offset
m_dragOffset = point - topleft; II device coordinates
pDoc->m_bDragHere = TRUE;
DROPEFFECT drop Effect = pSource->DoDragDrop(

DROPEFFECT_MOVE I DROPEFFECT_COPY, CRect(0, 0, 0, 0»;
TRACE("after DoDragDrop -- dropEffect = %ld\n", dropEffect);
if (dropEffect == DROPEFFECT_MOVE && pDoc->m_bDragHere) {

pDoc->OnEditClearAll();

pDoc->m_bDragHere = FALSE;
delete pSource;

if (m_tracker.Track(this, point, FALSE, NULL» {
CClientDC dc(this);
OnPrepareDC(&dc);
II should have some way to prevent it going out of bounds
m_rectTracker = m_tracker.m_rect;
dC.DPtoLP(m_rectTracker); II update logical coordinates

Invalidate();

Finally, the new MoveTrackRect helper function, shown on the following
page, moves the tracker's focus rectangle each time the OnDragOverfunction
is called. Thisjob was done by CRectTracker::Track in the EX25A example.

699

PA R T I V: ACTIVEX: COM, AUTOMATION, AND OLE

void CEx25bView::MoveTrackRect(CPoint point)
{

CClientDC dc(this);
OnPrepareDC(&dc);
dc.DrawFocusRect(m_rectTracker);
dc.LPtoDP(m_rectTracker);
CSize sizeTrack = m_rectTracker.Size();
CPoint newTopleft = point - m_dragOffset; II still device
m_rectTracker = CRect(newTopleft. sizeTrack);
m_tracker.m_rect = m_rectTracker;
dc.DPtoLP(m_rectTracker);
dc.DrawFocusRect(m_rectTracker);

Windows Applications
and Drag and Drop-Dobjview

700

I tested EX25B with the Microsoft Office 97 suite. I tried both drag-and-drop
and clipboard transfers, with the results shown in the following table:

EX25B

Sends clipboard data to

Accepts clipboard data from

Sends drag-drop data to

Accepts drag-drop data from

Word Excel PowerPoint

-v (no palettes)

When I started to investigate why these programs were so uncooperative,
I discovered a useful OLE utility called Dobjview (IDataObject viewer). I could
use Dobjview to examine a data object on the clipboard, and I could drag
objects to the Dobjview window. Here's what I got when I dragged a picture
from Microsoft Excel:

dvll.psect-{Content } lindex-{-l} tyaed.-{MFPict }
dvApsect-{Content } lindex-{-l} tyaed-UFPict }
dvA.pse<::t.-{Content } lindex-{-l} tyaed.-{IStorage}
dv.\psect-{Content } lindex-{-l} tyaed-{hGlobal }

No CF_DIB format is present. If you want pictures from Excel, you must en
hance EX25B to process metafiles. Another alternative is to rewrite the pro
gram with compound document support as described in Chapter 27. The OLE
libraries contain code to display bitmaps and metafiles.

C HAP T E R TWENTY-S x

Structured Storage

Like Automation and Uniform Data Transfer, structured storage is one of
those COM features that you can use effectively by itself. Of course, it's also
behind much of the ActiveX technology, particularly compound documents.

In this chapter, you'll learn to write and read compound files with the
IStorage and IStream interfaces. The IStorage interface is used to create and
manage structured storage objects. IStream is used to manipulate the data
contained by the storage object. The IStorage and IStream interfaces, like all
COM interfaces, are simply virtual function declarations. Compound files, on
the other hand, are implemented by code in the Microsoft Windows OLE32
DLL. Compound files represent a new Microsoft file I/O standard that you
can think of as "a file system inside a file."

Mter you're familiar with IStorage and IStream, you'll move on to the
IPersistStorage and IPersistStream interfaces. With the IPersistStorage and IPer
sistStream interfaces, you can program a class to save and load objects to and
from a compound file. You say to an object, "Save yourself," and it knows how.

Compound Files
This book discusses four options for file I/O. You can read and write whole
sequential files (like the MFC archive files you saw first in Chapter 16), you
can use a database management system (as described in Chapters 28 and 29),
you can write your own code for random file access, and, finally, you can use
compound files.

Think ofa compound file as a whole file system within a file. Figure 26-1
on the following page shows a traditional disk directory as supported by early
MS-DOS systems and by Microsoft Windows. It's composed of fites and
subdirectories, with a root directory at the top. Now imagine the same struc
ture inside a single disk file. The files are called streams, and the directories
are called storages. Each is identified by a name of up to 32 wide characters

701

PAR T I V: ACTIVEX: COM, AUTOMATION, AND OLE

long. A stream is a logically sequential array of bytes, and a storage is a collec
tion of streams and substorages. (A storage can contain other storages, just
as a directory can contain subdirectories.) In a disk file, the bytes aren't nec
essarily stored in contiguous clusters. Similarly, the bytes in a stream aren't
necessarily contiguous in their compound file. They just appear that way.

Figure 26-1.
A disk directory with files and subdirectories.

NOT E : Storage and stream names cannot contain the characters
/, \, :, or !. If the first character has an ASCII value of less than 32,
the element is marked as managed by some agent other than the
owner.

You can probably think of many applications for a compound file. The
classic example is a large document composed of chapters and paragraphs
within chapters. The document is so large that you don't want to read the
whole thing into memory when your program starts, and you want to be able
to insert and delete portions of the document. You could design a compound
file with a root storage that contained substorages for chapters. The chapter
substorages would contain streams for the paragraphs. Other streams could
be for index information.

One very useful feature of compound files is transactioning. When you
start a transaction for a compound file, all changes are written to a temporary
file. The changes are made to your file only when you commit the transaction.

Storages and the IStorage Interface

702

If you have a storage object, you can manipulate it through the IStorage inter
face. Pay attention to these functions because MFC offers no support for stor
age access. Following are some of the important member functions and their
significant parameters.

T WEN T Y - S I X: Structured Storage

HRESUL T Commit(...);
Commits all the changes to this storage and to all elements below it.

HRESULT CopyTo(... , IStorage** pStgDest);
Copies a storage, with its name and all its substorages and streams (recur
sively), to another existing storage. Elements are merged into the target stor
age, replacing elements with matching names.

HRESUL T CreateStorage(const WCHAR* pName, ... ,
DWORD mode, ... , IStorage* * ppStg);

Creates a new substorage under this storage object.

HRESUL T CreateStream(const WCHAR* pName, ... ,
DWORD mode, ... , IStream* * ppStream);

Creates a new stream under this storage object.

HRESUL T DestroyElement(const WCHAR* pName);
Destroys the named storage or stream that is under this storage object. A stor
age cannot destroy itself.

HRESUL T EnumElements(... , IEnumSTATSTG* * ppEnumStatstg);
Iterates through all the storages and streams under this storage object. The
IEnumSTATSTG interface has Next, Skip, and Clone member functions, as do
other COM enumerator interfaces.

HRESUL T MoveElementTo(const WCHAR* pName,
IStorage* pStgDest, const LPWSTR* pNewName,
DWORD flags);

Moves an element from this storage object to another storage object.

HRESUL T OpenStream(const WCHAR* pName, ... ,
DWORD mode, ... , IStorage* * ppStg);

Opens an existing stream object, designated by name, under this storage
object.

HRESUL T OpenStorage(const WCHAR* pName, ... ,
DWORD mode, ... , IStorage** ppStg);

Opens an existing substorage object, designated by name, under this storage
object.

DWORD Release(void);
Decrements the reference count. If the storage is a root storage representing
a disk file, Release closes the file when the reference count goes to O.

703

PAR T I V: ACTIVEX: COM, AUTOMATION, AND OLE

HRESUL T RenameElement(const WCHAR* pOldName,
const WCHAR* pNewName);

Assigns a new name to an existing storage or stream under this storage object.

HRESUL T Rever~(void);
Abandons a transaction, leaving the compound file unchanged.

HRESUL T SetClass(CLSID& clsid);
Inserts a 12S-bit class identifier into this storage object. This ID can then be
retrieved with the Stat function.

HRESULT Stat(STATSTG* pStatstg, DWORD flag);
Fills in a STATSTG structure with useful information about the storage object,
including its name and class ID.

Getting an IStorage Pointer
Where do you get the first IStorage pointer? COM gives you the global func
tion StgCreateDocfile to create a new structured storage file on disk and the
function StgOpenStorage to open an existing file. Both of these set a pointer
to the file's root storage. Here's some code that opens an existing storage file
named MyStore.stg and then creates a new substorage:

IStorage* pStgRoot;
IStorage* pSubStg;

if (:: StgCreateDocfil e(L"MyStore. stg".
STGM_READWRITE I STGM_SHARE_EXCLUSIVE I STGM_CREATE.
0. &pStgRoot) == S_OK) {
if (pStgRoot->CreateStorage(L"MySubstorageName".

STGM_READWRITE I STGM_SHARE_EXCLUSIVE I STGM_CREATE.
0. 0. &pSubStg) == S_OK) {
II Do something with pSubStg
pSubStg->Release();

pStgRoot->Release();

Freeing STATSTG Memory

704·

When you call IStorage::Stat with a STATFLAG_DEFAULTvalue for the flag
parameter, COM allocates memory for the element name. You must free this
memory in a manner compatible with its allocation. COM has its own alloca
tion system that uses an allocator object with an IMalloc interface. You must

T WEN T Y - S I X: Structured Storage

get an IMalloc pointer from COM, call IMalloc::Free for the string, and then
release the allocator. The code in the next section illustrates this.

If you want just the element size and type and not the name, you can call
Statwith the STATFLAG_NONAME flag. In that case, no memory is allocated
and you don't have to free it. This seems like an irritating detail, but if you
don't follow the recipe, you'll have a memory leak.

Enumerating the Elements in a Storage Object
Following is some code that iterates through all the elements under a storage
object, differentiating between substorages and streams. The elements are
retrieved in a seemingly random sequence, independent of the sequence in
which they were created; however, I've found that streams are always retrieved
first. The IEnumSTATSTG::Next element fills in a STATSTG structure that tells
you whether the element is a stream or a storage object.

IEnumSTATSTG* pEnum;
IMalloc* pMalloc;
STATSTG statstg;
extern IStorage* pStg; II maybe from OpenStorage
: :CoGetMalloc(MEMCTX_TASK. &pMalloc); II assumes AfxOleInit called
VERIFY(pStg->EnumElements(0. NULL. 0. &pEnum) == S_OK)
while (pEnum->Next(l. &statstg. NULL) == NOERROR) (

if (statstg.type == STGTY_STORAGE) (
if (pStg->OpenStorage(statstg.pwcsName. NULL.

STGM_READ I STGM_SHARE_EXCLUSIVE.
NULL. 0. &pSubStg) == S_OK) (
II Do something with the substorage

else if (statstg.type == STGTY_STREAM)
II Process the stream

pMalloc->Free(statstg.pwcsName); II avoids memory leaks

pMalloc->Release();

Sharing Storages Among Processes
If you pass an IStoragepointer to another process, the marshaling code ensures
that the other process can access the corresponding storage element and
everything below it. This is a convenient way of sharing part of a file. One of
the standard data object media types of the TYMED enumeration is TYMED
_ISTORAGE, and this means you can pass an IStorage pointer on the c1ipbo~rd
or through a drag-and-drop operation.

705

PA R T I V: ACTIVEX: COM, AUTOMATION, AND OLE

Streams and the IStream Interface

706

If you have a stream object, you can manipulate it through the IStream inter
face. Streams are always located under a root storage or a substorage object.
Streams grow automatically (in 512-byte increments) as you write to them. An
MFC class for streams, COZeStreamFiZe, makes a stream look like a CFiZe object.
That class won't be of much use to us in this chapter, however.

HRESULT CopyTo(IStream** pStm, ULARGE_INTEGER cb, ...);
Copies cb bytes from this stream to the named stream. ULARGE_INTEGER
is a structure with two 32-bit members-HighPart and LowPart.

HRESULT CloneOStream** ppStm);
Creates a new stream object with its own seek pointer that references the bytes
in this stream. The bytes are not copied, so changes in one stream are visible
in the other.

HRESUL T Commit(...);
Transactions are not currently implemented for streams.

HRESUL T Read(void const* pv, ULONG cb, ULONG* pcbRead);
Tries to read cb bytes from this stream into the buffer pointed to by pv. The
variable pcbRead indicates how many bytes were actually read.

DWORD Release(void);
Closes this stream.

HRESUL T Revert(void);
Has no effect for streams.

HRESUL T Seek(LARGE_INTEGER dlibMove,
DWORD dwOrigin, ULARGE_INTEGER* NewPosition);

Seeks to the specified position in this stream. The dwOrigin parameter speci
fies the origin of the offset defined in the NewPosition parameter .

. HRESUL T SetSize(ULARGE_INTEGER IibNewSize);
Extends or truncates a stream. Streams grow automatically as they are written,
but calling SetSize can optimize performance.

HRESULT Stat(STATSTG* pStatstg, DWORD flag);
Fills in the STATSTG structure with useful information about the stream,
including the stream name and size. The size is useful if you need to allocate
memory for a read.

T WEN T Y - S I X: Structured Storage

HRESUL T Write(void const* PV, ULONG cb, ULONG* pcbWritten);
Tries to write cb bytes to this stream from the buffer pointed to by pv. The
variable pcb Written indicates how many bytes were actually written.

IStream Programming
Here is some sample code that creates a stream under a given storage object
and writes some bytes from l1Lbuffer to the stream:

extern IStorage* pStg;
IStream* pStream;
ULONG nBytesWritten;

if (pStg-)CreateStream(L"MyStreamName",
STGM_CREATE I STGM_READWRITE I STGM_SHARE_EXCLUSIVE,
0, 0, &pStream) == S_OK) {
ASSERT(pStream 1= NULL);
pStream-)Write(m_buffer, m_nLength, &nBytesWritten);
pStream-)Release();

The ILockBytes Interface
As already mentioned, the compound file system you've been looking at is
implemented in the OLE32 DLL. The structured storage interfaces are flex
ible enough, however, to permit you to change the underlying implementa
tion. The key to this flexibility is the ILockBytes interface. The StgCreateDocfile
and StgOpenStorage global functions use the default Windows file system. You
can write your own file access code that implements the ILockBytes interface
and then call StgCreateDocfileOnILockBytes or StgOpenStorageOnILockBytes to
create or open the file, instead of calling the other global functions.

Rather than implement your own ILockBytes interface, you can call Create
ILockBytesOnHGlobalto create a compound file in RAM. If you wanted to put
compound files inside a database, you would implement an ILockBytes inter
face that used the database's blobs (binary large objects).

The EX26A Example-Structured Storage
When you choose the EX26A Storage Write option, the program walks
through your entire disk directory looking for TXT files. As it goes, it writes
a compound file (\direct.stg) on the top level of your directory structure. This
file contains storages that match your subdirectories. For each TXT file that
the program finds in a subdirectory, it copies the first line of text to a stream

707

PAR T I V: ACTIVEX: COM, AUTOMATION, AND OLE

in the corresponding storage. When you choose the Storage Read option, the
program reads the direct.stg compound file and prints the contents of this file
in the Debug window.

If you create such an example from scratch, use AppWizard without any
ActiveX or Automation options and then add the following lines in your
StdAfx.h file:

#include <afxole.h>
#include <afxpriv.h> II for wide-character conversion

Then delete the following line:

#define VC_EXTRALEAN

To prepare EX26A, open the \vcpp32\ex26a\ex26a.dsw workspace and
build the project. Run the program from the debugger. First choose Write
from the Storage menu and wait for a "Write complete" message box. Then
choose Read. Observe the output in the Debug window.

The Menu
The EX26A example has an added top-level Storage menu with Write and
Read options.

The CEx26aView Class
This class maps the new Storage Read and Write menu commands listed above
to start worker threads. The handlers are shown here:

void CEx26aView::OnStorageRead()
{

CWinThread* pThread = AfxBeginThread(ReadThreadProc. GetSafeHwnd(»;

void CEx26aView::OnStorageWrite()

CWinThread* pThread = AfxBeginThread(WriteThreadProc. GetSafeHwnd(»;

The Worker Threads

708

Figure 26-2 lists the code for the Storage Write and Storage Read worker
threads.

T WEN T Y - S I X: Structured Storage

THREAD.H

extern int g_nIndent;
extern const char* g_szBlanks;
extern const char* g_szRootStorageName;

UINT WriteThreadProc(LPVOID pParam);
UINT ReadThreadProc(LPVOID pParam);
void ReadDirectory(const char* szPath. LPSTORAGE pStg);
void ReadStorage(LPSTORAGE pStg):

WRITETHREAD.CPP

#include "StdAfx.h"
#include "Thread.h"

int g_nIndent = 0;
const chap g_szBlanks = "
const char* g_szRootStorageName "\\direct.stg";

UINT WriteThreadProc(LPVOID pParam)
{

USES_CONVERSION:
LPSTORAGE pStgRoot = NULL;
g_nIndent = 0;
VERIFY(::StgCreateDocfile(T2COLE(g_szRootStorageName).

STGM_READWRITE I STGM_SHARE_EXCLUSIVE I STGM_CREATE.
0. &pStgRoot) == S_OK);

ReadDirectory("\\". pStgRoot);
pStgRoot->Release();
AfxMessageBox("Write complete");
return 0;

void ReadDirectory(const char* szPath. LPSTORAGE pStg)
{

II recursive function
USES_CONVERSION;
WIN32_FIND_DATA fData;
HANDLE h:
char szNewPath[MAX_PATH];
char szStorageName[100];
char szStreamName[100];
char szData[81];
char* pch = NULL;

Figure 26-2.
The code listing for the two worker threads in EX26A.

" . .

(continued)

709

PA R T I V: ACTIVEX: COM, AUTOMATION, AND OLE

710

Figure 26-2. continued

LPSTORAGE pSubStg = NULL;
LPSTREAM pSt ream = NULL:

g_nlndent++:
strcpy(szNewPath, szPath):
strcat(szNewPath, "*.*"):
h = ::FindFirstFile(szNewPath, &fData):
if (h == (HANDLE) 0xFFFFFFFF) return: II can't find directory
do {

if (!strcmp(fData.cFileName, " .. ") II
!strcmp(fData.cFileName, ".")) continue:

while«pch = strchr(fData.cFileName, '! '» != NULL) {
*pch = 'I':

if (fData.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY)
II It's a directory, so make a storage
strcpy(szNewPath, szPath):
strcat(szNewPath, fData.cFileName):
strcat(szNewPath, "\\"):

strcpy(szStorageName, fData.cFileName):
szStorageName[31] = '\0'; II limit imposed by OLE
TRACE("%0.*sStorage = %s\n", (g_nlndent - 1) * 4,

g_szBlanks, szStorageName):
VERIFY(pStg-)CreateStorage(T2COLE(szStorageName),

STGM_CREATE I STGM_READWRITE I STGM_SHARE_EXCLUSIVE,
0, 0, &pSubStg) == S_OK):

ASSERT(pSubStg != NULL):
ReadDirectory(szNewPath, pSubStg):
pSubStg-)Release():

else {
if «pch = strrchr(fData.cFileName, '.'» != NULL)

if (!stricmp(pch, ".TXT"» (
II It's a text file, so make a stream
strcpy(szStreamName, fData.cFileName):
strcpy(szNewPath, szPath):
strcat(szNewPath, szStreamName):
szStreamName[32] = '\0': II OLE max length
TRACE("%0.*sStream = %s\n", (g_nlndent - 1) * 4,

g_szBlanks, szNewPath):
CStdioFile file(szNewPath, CFile::modeRead):
II Ignore zero-length files
if(file.ReadString(szData, a0» (

TRACE("%s\n", szData):

(continued)

T WEN T Y - S I X: Structured Storage

Figure 26-2. continued

VERIFY(pStg->CreateStream(T2COLE(szStreamName),
STGM_CREATE I STGM_READWRITE I
STGM_SHARE_EXCLUSIVE,
0, 0, &pStream) == S_OK);

ASSERT(pStream != NULL);
II Include the null terminator in the stream
pStream->Write(szData, strlen(szData) + I, NULL);
pStream->Release();

while (::FindNextFile(h, &fData));
g_nIndent--;

READTHREAD.CPP

f/include "StdAfx.h"
f/include "Thread.h"

UINT ReadThreadProc(LPVOID pParam)
{

USES_CONVERSION;
LPSTORAGE pStgRoot = NULL;
II doesn't work without STGM_SHARE_EXCLUSIVE
g_nIndent = 0;
if (::StgOpenStorage(T2COLE(g_szRootStorageName), NULL,

STGM_READ I STGM_SHARE_EXCLUSIVE,
NULL, 0, &pStgRoot) == S_OK) {
ASSERT(pStgRoot!= NULL);
ReadStorage(pStgRoot);
pStgRoot->Release():

else {
AfxMessageBox("Storage file not available or not readable.");

AfxMessageBox("Read complete");
return 0;

void ReadStorage(LPSTORAGE pStg)
II reads one storage -- recursive calls for substorages
{

USES_CONVERSION;

(continued)

711

PA RT I V: ACTIVEX: COM, AUTOMATION, AND OLE

712

Figure 26-2. continued

LPSTORAGE pSubStg = NULL;
LPSTREAM pStream = NULL;
LPENUMSTATSTG pEnum = NULL;
LPMALLOC pMalloc = NULL; II for freeing statstg
STATSTG statstg;
ULONG nLength;
BYTE buffer[101];

g_nIndent++;
::CoGetMalloc(MEMCTX_TASK. &pMalloc); II assumes AfxOleInit

1/ was called
VERIFY(pStg->EnumElements(0. NULL. 0. &pEnum) == S_OK);
while (pEnum->Next(l. &statstg. NULL) == S_OK) {

if (statstg.type == STGTY_STORAGE) {
VERIFY(pStg->OpenStorage(statstg.pwcsName. NULL.

STGM_READ I STGM_SHARE_EXCLUSIVE.
NULL. 0. &pSubStg) == S_OK);

ASSERT(pSubStg 1= NULL);
TRACE("%0.*sStorage = %s\n". (g_nIndent - 1) * 4.

g_szBlanks. OLE2CT(statstg.pwcsName»;
ReadStorage(pSubStg);
pSubStg-)Release();

else if (statstg.type == STGTY_STREAM) {
VERIFY(pStg-)OpenStream(statstg.pwcsName. NULL.

STGM_READ I STGM_SHARE_EXCLUSIVE.
0. &pStream) == S_OK);

ASSERT(pStream 1= NULL);
TRACE("%0.*sStream = %s\n". (g_nIndent - 1) * 4.

g_szBlanks. OLE2CT(statstg.pwcsName»;
pStream-)Read(buffer. 100. &nLength);
buffer[nLength] = '\0';
TRACE("%s\n". buffer);
pStream-)Release();

else {
ASSERT(FALSE); I I LockBytes?

pMalloc-)Free(statstg.pwcsName); II avoids memory leaks

pMalloc-)Release();
pEnum-)Release();
g_nIndent--;

T WEN T Y - S I X: Structured Storage

To keep the program si~ple, there's no synchronization between the
main thread and the two worker threads. You could run both threads at the
same time if you used two separate compound files.

From your study of the Win32 threading model, you would expect that
closing the main window would cause the rea4 thread or write thread to ter
minate "midstream," possibly caus~ng memory leaks. But this does not hap
pen because MFC senses that the worker threads are using COM objects. Even
though the window does close immediately, the program does not exit until
all threads exit.

Both threads use recursive functions. The ReadStorage function reads a
storage and calls itself to read the substorages. The ReadDirectory function reads
a directory and calls itself to read the subdirectories. This function calls the
Win32 functions FindFirstFile and FindNextFile to iterate through the elements
in a directory. The dwFileAttributes member of the WIN32_FIND_DATA struc
ture indicates whether the element isa file or a subdirectory. ReadDirectory uses
the MFC CStdioFile class because the class is ideal for reading text.

The USES_CONVERSION macro is necessary to support the wide
character conversion macros OLE2CT and T2COLE. These macros are used
here because the example doesn't use the CString class, which has built-in
conversion logic.

Structured Storage and Persistent COM Objects
The EX26A program explicitly called member functions of IStorage and IStream
to write and read a compound file. In the object-oriented world, objects should
know how to save and load themselves to and from a compound file. That's
what the IPersistStorage and IPersistStream interfaces are for. If a COM compo
nent implements these interfaces, a container program can "connect" the
object to a compound file by passing the file's IStorage pointer as a parameter
to the Save and Load member functions of the IPersistStorage interface. Such
objects are said to be persistent. On the following page, Figure 26-3 shows the
process of calling the IPersistStorage::Save function.

A COM component is more likely to implement an IStorage interface than
an IStream interface. If the COM object is associated with a particular storage,
the COM component can manage substorages and streams under that stor
age once it gets the IStorage pointer. A COM component implements the
IStream interface only ifit stores all its data in an array of bytes. ActiveX con
trols implement the IStream interface for storing and loading property values.

713

PA R T I V: ACTIVEX: COM, AUTOMATION, AND OLE

A

Application calls
Save

~ Application calls
\ CreateStorage to obtain

-:"" a substorage
" "

''''''''T'~'''''''T'~
"I'.t'/~

Figure 26-3.
Calling IPersistStorage::Save.

IUnknown y

Object saves its data in
the storage passed as a

Save parameter

The IPersistStorage Interface

714

Both the IPersistStorage and IPersistStream interfaces are derived from IPersist,
which contributes the GetClassIDmeIIlber function. Here's a summary of the
IPersistStorage member functions:

HRESUL T GetClassID(CLSID* pC/sid);
Returns the COM component's 128-bit class identifier.

HRESUL T InitNew(IStorage* pStg);
Initializes a newly created object. The component might need to use the stor
age for tem.porary data, so the container must provide an IStorage pointer that's
valid for the life of the object. The component should call AddRefifit intends
to use the storage. The compone~t should not use this IStoragepointer for sav
ing and loading; it should wait for Save and Load calls and then use the passed
in IStorage pointer to call IStorage::Write and Read.

HRESUL T IsDirty(void);
Returns S_OK if the object has changed since it was last saved; otherwise, re
turns S_FALSE.

HRESUL T Load(IStorage* pStg);
Loads the COM object's data from the designated storage.

T WEN T Y - S I X: Structured Storage

HRESUl T Save{IStorage* pStg, Baal fSameAsLoad);
Saves the COM object's data in the designated storage.

The IPersistStream Interface
Here's a summary of the IPersistStream member functions:

HRESUl T GetClassID{CLSID* pC/sid);
Returns the COM component's 128-bit class identifier.

HRESUl T GetMaxSize{UlARGE_INTEGER* pcbSize);
Returns the number of bytes needed to save the object.

HRESUl T IsDirty{void);
Returns S_OK if the object has changed since it was last saved; otherwise,
returns S_FALSE.

HRESUl T load{IStream* pStm);
Loads the COM object's data from the designated stream.

HRESUl T Save{IStream* pStm, Baal fC/earDirty);
Saves the COM object's data to the designated stream. If the fClearDirty
parameter is TRUE, Save clears the object's dirty flag.

IPersistStream Programming
The following container program code fragment creates a stream and saves
a COM object's data in it. Both the IPersistStream pointer for the COM object
and the IStorage pointer are set elsewhere.

extern IStorage* pStg;
extern IPersistStream* pPersistStream;
IStream* pStream;
if (pStg->CreateStream(L"MyStreamName",

STGM_CREATE I STGM_READWRITE I STGM_SHARE_EXCLUSIVE,
0, 0, &pStream) == S_OK) {
ASSERT(pStream 1= NULL);
pPersistStream->Save(pStream, TRUE);
pStream->Release();

If you program your own COM class for use in a container, you'll need
to use the MFC interface macros to add the IPersistStream interface. Too bad
there's not an "interface wizard" to do the job.

715

PAR T I V: ACTIVEX: COM, AUTOMATION, AND OLE

The EX26B Example-
A Persistent DLL Component

716

The EX26B program, which is used by EX26C, is a COM DLL that contains
the CTextcomponent. This is a simple COM class that implements the IDispatch
and IPersistStream interfaces. The IDispatch interface allows access to the
component's one and only property, Text, and the IPersistStream interface
allows an object to save and load that Text property to and from a structured
storage file.

To prepare EX26B, open the\vcpp32\ex26b\ex26b.dswworkspace and
build the project. Use regsvr32 or REGCOMP to register the DLL.

Figure 26-4 lists the code for the CText class in Text.h and Text.cpp.

TEXT.H

#ifndef __ TEXT_H __
#define __ TEXT_H __
II CText command target
class CText : public CCmdTarget
{

private:
char* m_pchText;

DECLARE_DYNCREATE(CText)

CText(); II protected constructor used by dynamic creation

II Attributes
public:

II Operations
public:

II Overrides
II ClassWizard generated virtual function overrides
11{{AFX_VIRTUAL(CText)
public:
virtual void OnFinalRelease();
I/} }AFX_VIRTUAL

II Implementation
protected:

virtual -CText();

Figure 26-4.
The code listingfor the CText class in Text.h and Text.cpp.

(continued)

T WEN T V - S I X: Structured Storage

Figure 26-4. continued

// Generated message map functions
//{{AFX_MSG(CText)

// NOTE - the ClassWizard will add and remove member functions here.
/ /} }AFX_MSG

} ;

DECLARE_MESSAGE_MAP()
DECLARE_OLECREATE(CText)

// Generated OLE dispatch map functions
//{{AFX_DISPATCH(CText)
afx_msg VARIANT GetText();
afx_msg void SetText(const VARIANT FAR& newValue);
/ /} } A FX_D I SPA T C H
DECLARE_DISPATCH_MAP()
DECLARE_INTERFACE_MAP()

BEGIN_INTERFACE_PART(PersistStream, IPersistStream)
STDMETHODCGetClassID)CLPCLSID);
STDMETHODCIsDirty)();
STDMETHOD(Load)(LPSTREAM);
STDMETHOD(Save)(LPSTREAM, BaaL);
STDMETHOD(GetSizeMax)(ULARGE_INTEGER FAR*);

END_INTERFACE_PARTCPersistStream)

//

//{{AFX_INSERT_LOCATION}}
// Microsoft Developer Studio will insert additional declarations
// immediately before the previous line.

TEXT.CPP

#include "stdafx.h"
#include "ex26b.h"
#include "Text.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __ FILE __ ;
#endif

(continued)

717

PAR T I V: ACTIVEX: COM, AUTOMATION, AND OLE

718

Figure 26-4. continued

//

// CText

IMPLEMENT_DYNCREATECCText. CCmdTarget)

CText::CTextC)
{

EnableAutomationC);

// To keep the application running as long as an OLE automation
// object is active. the constructor calls AfxOleLockApp.

AfxOleLockAppC);
m_pchText = NULL;

CText::-CTextC)
{

// To terminate the application when all objects created
// with OLE automation. the destructor calls AfxOleUnlockApp.

ifCm_pchText 1= NULL) {
delete [] m_pchText;

AfxOleUnlockAppC);

void CText::OnFinalReleaseC)
{

// When the last reference for an automation object is released.
// OnFinalRelease is called. The base class will automatically
// delete the object. Add additional cleanup required for your
// object before calling the base class.

CCmdTarget::OnFinalReleaseC);

BEGIN_MESSAGE_MAPCCText. CCmdTarget)
//{{AFX_MSG_MAPCCText)

// NOTE - ClassWizard will add and remove mapping macros here.
/ /} JAFX_MSG_MAP

END_MESSAGE_MAPC)

(continued)

T WEN T Y - S I X : Structured Storage

Figure 26-4. continued

BEGIN_DISPATCH_MAP(CText, CCmdTarget)
//{{AFX_DISPATCH_MAP(CText)
DISP_PROPERTY_EX(CText, "Text", GetText, SetText, VT_VARIANT>
//}}AFX_DISPATCH_MAP

END_DISPATCH_MAP()

// Note: we add support for IID_IText to support typesafe binding
// from VBA. This lID must match the GUID that is attached to the
// dispinterface in the ODL file.

// {4EBFDD71-5F7D-11D0-848F-00400526305B}
static const lID IID_IText =
{ 0x4ebfdd71, 0x5f7d, 0x11d0, { 0x84, 0x8f, 0x0, 0x40, 0x5, 0x26,

0x30, 0x5b } };

BEGIN_INTERFACE_MAP(CText, CCmdTarget)
INTERFACE_PART(CText, IID_IPersistStream, PersistStream)
INTERFACE_PART(CText, IID_IText, Dispatch)

END_INTERFACE_MAP()

// {4EBFDD72-5F7D-11D0-848F-00400526305B}
IMPLEMENT_OLECREATE(CText, "Ex26b.Text", 0x4ebfdd72, 0x5f7d,

0x11d0, 0x84, 0x8f, 0x0, 0x40, 0x5, 0x26, 0x30, 0x5b)

//

// CText message handlers

VARIANT CText::GetText()
{

return COleVariant(m_pchText).Detach();

void CText::SetText(const VARIANT FAR& newValue)

CString strTemp;
ASSERT(newValue.vt == VT_BSTR);
if(m_pchText != NULL) {

delete [] m_pchText;

strTemp = newValue.bstrVal; // converts to narrow chars
m_pchText = new char[strTemp.GetLength() + 1];
strcpy(m_pchText, strTemp);

(continued)

719

PA R T I V: ACTIVEX: COM, AUTOMATION, AND OLE

720

Figure 26-4. continued

//

STDMETHODIMP_(ULONG) CText::XPersistStream::AddRef()
{

METHOD_PROLOGUE(CText. PersistStream)
return (ULONG) pThis->ExternalAddRef();

STDMETHODIMP_(ULONG) CText: :XPersistStream::Release()
{

METHOD_PROLOGUE(CText. PersistStream)
return (ULONG) pThis->ExternalRelease();

STOMETHODIMP CText::XPersistStream::Querylnterface(REFIIO iid.
void FAR* FAR* ppvObj)

METHOD_PROLOGUE(CText. PersistStream)
// ExternalQuerylnterface looks up 110 in the macro-generated tables
return (HRESULT) pThis->ExternalQuerylnterface(&iid. ppvObj);

}

////////////////////////////////!///

STDMETHODIMP CText::XPersistStream::GetClassIO(LPCLSIO lpClassID)
{

}

TRACE("Entering CText: :XPersistStream: :GetClassIO\n");
METHOD_PROLOGUE(CText. PersistStream)
ASSERT_VALID(pThis);

*lpClassIO = CText::guid;
return NOERROR;

STDMETHODIMP CText::XPersistStream::IsOirty()
{

}

TRACE("Entering CText::XPersistStream: :IsDirty\n");
METHOO_PROLOGUE(CText. PersistStream)
ASSERT_VALID(pThis);

return NOERROR;

(continued)

T WEN T Y - S I X: Structured Storage

Figure 26-4. continued

STDMETHODIMP CText::XPersistStream::Load(LPSTREAM pStm)
{

ULONG nLength;
STATSTG statstg;

METHOD_PROLOGUE(CText. PersistStream)
ASSERT_VALID(pThis);
if(pThis-)m_pchText != NULL) {

delete [] pThis->m_pchText;

II don't need to free statstg.pwcsName because of NONAME flag
VERIFY(pStm->Stat(&statstg. STATFLAG_NONAME) == NOERROR);
int nSize = statstg.cbSize.LowPart; II assume < 4 GB
if(nSize > 0) {

pThis->m_pchText = new char[nSize];
pStm->Read(pThis->m_pchText. nSize. &nLength);

return NOERROR;

STDMETHODIMP CText::XPersistStream::Save(LPSTREAM pStm. BOOL fClearDirty)
{

METHOD_PROLOGUE(CText. PersistStream)
ASSERT_VALID(pThis);
int nSize = strlen(pThis->m_pchText) + 1;
pStm->Write(pThis->m_pchText. nSize. NULL);
return NOERROR;

STDMETHODIMP CText::XPersistStream::GetSizeMax(ULARGE_INTEGER FAR* pcbSize)
{

TRACE("Entering CText: :XPersistStream::GetSizeMax\n");
METHOD_PROLOGUE(CText. PersistStream)
ASSERT_VALID(pThis);
pcbSize->LowPart = strlen(pThis->m_pchText) + 1;
pcbSize->HighPart = 0; II assume < 4 GB
return NOERROR;

The CTextclass was generated by ClassWizard as an ordinary Automation
component. The IPersistStream interface was added manually. Look carefully
at the XPersistStream::Load and XPersistStream::Save functions. The Load func
tion allocates heap memory and then calls IStream::Read to load the contents
of the stream. The Save function copies the object's data to the stream by
calling IStream:: Write.

721

PA R T I V: ACTIVEX: COM, AUTOMATION, AND OLE

The EX26C Example-
A Persistent Storage Client Program

722

This program is similar to EX26A in function-indeed, the storage files are
compatible. Inierh~lly, however, both worker threads use the persistent COM
class CText (EX26B) for loading and storing text.

To prepare EX26C, open the \vcpp32\ex26c\ex26c.dsw workspace and
build the project. Run the program from the debugger, first choosing Write
from the Storage menu and then choosing Read. Observe the output in the
Debug window. .

The menu, the view class, ahd the application class are the same as the
EX26A versions. Only the thread code is different.

Figure 26-5 lists the code for both the WriteThread.cpp and the Read
Thread.cpp files.

WRITETHREAD.CPP

Iii ncl ude "StdAfx. h"
/linclude "Thread.h"
/linclude "itext.h"

CLSID g_clsid; II for the Text server
int g_nIndent = 0;
const char* g_szBlanks = "
const char* g_szRootStorageName = "\\direct.stg";

UINT WriteThreadProc(LPVOID pParam)
{

USES_CONVERSION;
LPSTORAGE pStgRoot = NULL;
g_nIndent = 0;
::CoInitialize(NULL);
::CLSIDFromProgID(L"EX26B.TEXT", &g_clsid);
VERIFY(::StgCreateDocfile(T2COLE(g_szRootStorageName),

STGM_READWRITE I STGM_SHARE_EXCLUSIVE I STGM_CREATE.
0, &pStgRoot) == S_OK);

ReadDirectory("\\". pStgRoot);
pStgRoot-)Release();
AfxMessageBox("Write complete");
return 0;

Figure 26-5.
The code listing for the two worker threads in EX26C.

".

(continued)

T WEN T V - S I X: Structured Storage

Figure 26-5. continued

void ReadDirectory(const char* szPath, LPSTORAGE pStg)
(

II recursive function
USES_CONVERSION;
WIN32_FIND_DATA fData;
HANDLE h;
char szNewPath[MAX_PATH];
char szStorageName[100]:
char szStreamName[100]:
char szData[81];
char* pch = NULL;

LPSTORAGE pSubStg = NULL;
LPSTREAM pSt ream = NULL;
LPPERSISTSTREAM pPersistStream = NULL;

g_nIndent++;
strcpy(szNewPath, szPath);
strcat(szNewPath, "*.*");
h = ::FindFirstFile(szNewPath, &fData);
if (h == (HANDLE) 0xFFFFFFFF) return; II can't find directory
do {

if (!strcmp(fData.cFileName, " .. ") II
!strcmp(fData.cFileName, ".")) continue;

while«pch = strchr(fData.cFileName, '!'» != NULL) {
*pch = 'I ':

if (fData.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY)
II It's a directory, so make a storage
strcpy(szNewPath, szPath);
strcat(szNewPath,fData.cFileName);
strcat(szNewPath, "\\");

strcpy(szStorageName, fData.cFileName);
szStorageName[31] = '\0'; II limit imposed by OLE
TRACE("%0.*sStorage = %s\n", (g_nIndent - 1) * 4,

g_szBlanks, szStorageName):
VERIFY(pStg->CreateStorage(T2COLE(szStorageName),

STGM_CREATE I STGM_READWRITE I STGM_SHARE_EXCLUSIVE,
0, 0, &pSubStg) == S_OK);

ASSERT(pSubStg != NULL):
ReadDirectory(szNewPath, pSubStg);
pSubStg->Release():

(continued)

723

PA R T I V: ACTIVEX: COM, AUTOMATION, AND OLE

724

Figure 26-5. continued

else {
if «pch = strrchr(fData.cFileName, '.'» != NULL)

if (!stricmp(pch, ".TXT"» (
II It's a text file, so make a stream
strcpy(szStreamName, fData.cFileName);
strcpy(szNewPath, szPath);
strcat(szNewPath, szStreamName);
szStreamName[32] = '\0'; II OLE max length
TRACE("%0.*sStream = %s\n", (g_nIndent - 1) * 4,

g_szBlanks, szNewPath);
CStdioFile file(szNewPath, CFile: :modeRead);
II Ignore zero-length files
if(file.ReadString(szData, 80» (

TRACE("%s\n", szData);
VERIFY(pStg-)CreateStream(T2COLE(szStreamName),

STGM_CREATE I STGM_READWRITE I
STGM_SHARE_EXCLUSIVE,
0, 0, &pStream) == S_OK);

ASSERT(pStream != NULL);
II Include the null terminator in the stream
IText text;
VERIFY(text.CreateDispatch(g_clsid»;
text.ffi-lpDispatch-)QueryInterface(IID_IPersistStream,

(void**) &pPersistStream);
ASSERT(pPersistStream != NULL);
text.SetText(COleVariant(szData»;
pPersistStream->Save(pStream, TRUE);
pPersistStream->Release();
pStream-)Release();

while (::FindNextFile(h, &fData»;
g_nIndent--;

READTHREAD.CPP

/tinclude "StdAfx.h"
/tinclude "Thread.h"
/tinclude "itext.h"

i1ifdef _DEBUG
/tdefine new DEBUG_NEW

(continued)

T WEN T Y - S I X: Structured Storage

Figure 26-5. continued

#undef THIS_FILE
static char THIS_FILE[] = __ FILE __ ;
fiend if

UINT ReadThreadProc(LPVOIO pParam)
(

g_nIndent = 13;
::CoInitialize(NULL);
::CLSIOFromProgIO(L"EX26B.TEXT", &g_clsid);
LPSTORAGE pStgRoot = NULL;
if(: : StgOpenStorage(L"\ \01 RECT. STG", NULL,

STGM_REAOISTGM_SHARE_EXCLUSIVE,
NULL, 13, &pStgRoot) == S_OK) (

ASSERT(pStgRoot!= NULL);
ReadStorage(pStgRoot);
pStgRoot->Release();

else (
AfxMessageBox("Storage file not available or not readable.");

AfxMessageBox("Read complete");
return 13;

void ReadStorage(LPSTORAGE pStg)
II reads one storage -- recursive calls for substorages
(

LPSTORAGE pSubStg = NULL;
LPSTREAM pSt ream = NULL;
LPENUMSTATSTG pEnum = NULL;
STATSTG statstg;
LPPERSISTSTREAM pPersistStream = NULL;

g_nIndent++;
if(pStg->EnumElements(e, NULL, 13, &pEnum) != NOERROR) (

ASSERT(FALSE) ;
return; .

while(pEnum->Next(l, &statstg, NULL) == NOERROR) (
if(statstg.type == STGTY_STORAGE) (

VERIFY(pStg->OpenStorage(statstg.pwcsName, NULL,
STGM_REAOISTGM_SHARE_EXCLUSIVE,
NULL, 13, &pSubStg) == S_OK);

ASSERT(pSubStg != NULL);
ReadStorage(pSubStg);

(continued)

725

PA R T I V: ACTIVEX: COM, AUTOMATION, AND OLE

726

Figure 26-5. continued

pSubStg-)Release();

else if(statstg.type == STGTY_STREAM) (
VERIFY(pStg-)OpenStream(statstg.pwcsName. NULL.

STGM_READISTGM_SHARE_EXCLUSIVE.
0. &pStream) == S_OK);

ASSERT(pStream != NULL);
IText text:
VERIFY(text.CreateDispatch(g_clsid»;
text.m_lpDispatch-)Querylnterface(IID_IPersistStream.

(void**) &pPersistStream);
ASSERT(pPersistStream != NULL);
pPersistStream-)Load(pStream):
pPersistStream-)Release();
COleVariant va = text.GetText();
ASSERT(va.vt == VT_BSTR):
CString str = va.bstrVal;
TRACE("%s\n". str);
pStream-)Release();

else (
ASSERT(FALSE); II LockBytes?

::CoTaskMemFree(statstg.pwcsName);

pEnum-)Release();
g_nlndent--;

Look at the second half of the ReadDirectory function in the Write Thread
.cpp file in Figure 26-5. For each TXT file, the program constructs a CText
object by constructing an IText driver object and then calling CreateDispatch.
Then it calls the SetText member function to write the first line of the file to
the object. After that, the program calls IPersistStream::Save to write the object
to the compound file. The CText object is deleted after the IPersistStream
pointer is released and after the IText object is deleted, releasing the object's
IDispatch pointer.

Now look at the second half of the ReadStorage function in the Read
Thread.cpp file. Like ReadDirectory, it constructs an ITextdriver object and calls
CreateDispatch. Then it calls Querylnterface to get the object's IPersistStream
pointer, which it uses to call Load. Finally, the program calls GetText to retrieve
the line of text for tracing.

T WEN T Y - S I X: Structured Storage

As you've learned already, a COM component usually implements IPersist
Storage, not IPersistStream. The CText class could have worked this way, but then
the compound file would have been more complex because each TXT file
would have needed both a storage element (to support the interface) and a
subsidiary stream element (to hold the text).

Now get ready to take a giant leap. Suppose you have a true creatable
by-CLSID COM component that supports the IPersistStorageinterface. Recall
the IStorage functions for class IDs. If a storage element contains a class ID,
together with all the data an object needs, COM can load the server, use the
class factory to construct the object, get an IPersistStoragepointer, and call Load
to load the data from a compound file. This is a preview of compound docu
ments, which you'll see in Chapter 27.

Compound File Fragmentation
Structured storage has a dark side. Like the disk drive itself, compound files
can become fragmented with frequent use. If a disk drive becomes frag
mented, however, you still have the same amount of free space. With a com
pound file, the space from deleted elements isn't always recovered. This means
that compound files can keep growing even if you delete data.

Fortunately, there is a way to recover unused space in a compound file.
You simply create a new file and copy the contents. The IStorage::CopyTo func
tion can do the whole job in one call if you use it to copy the root storage. You
can either write a stand-alone utility or build a file regeneration capability into
your application.

Other Compound File Advantages
You've seen how compound files add a kind of random access capability to
your programs, and you can appreciate the value oftransactioning. Now con
sider the brave new world in which every program can read any other pro
gram's documents. We're not there yet, but we have a start. Compound files
from Microsoft applications have a stream under the root storage named
\005SummaryInformation. This stream is formatted as a property set, as de
fined for ActiveX controls. If you can decode the format for this stream, you
can open any conforming file and read the summary.

727

PA RT I V: ACTIVEX: COM, AUTOMATION, AND OLE

728

Visual C++ comes with a compound file viewing utility named Dfview,
which uses a tree view to display the file's storages and streams. Here is the
Dfview output for the structured storage file generated by EX26A:

\ - C:\direct.stg
ItDOS
~ COUNTRY.TXT
~ DRVSPACE.TXT

ItS64D
LJUTIL

Ittemp
ItAOL20

LJCCL
LJIDB
LJMPM
LJTOOL

As a matter of fact, you can use EX26A to view the structure of any com
pound file. Are you starting to see the potential of this "universal file format"?

C HAP T E R TWENTY-SEVEN

OLE Embedded
Components and Containers

In this chapter, you'll get familiar with the core of Object Linking and
Embedding (OLE). You'll learn how an embedded component talks to its con
tainer. This is knowledge you'll need to use ActiveX controls, in-place activa
tion (Visual Editing) , and linking, all of which are described in Adam Denning's
ActiveX Controls Inside Out (Microsoft Press, 1997), Kraig Brockschmidt's In
side OLE, 2d ed. (Microsoft Press, 1995), and other books.

You'll get started with an MFC mini-server, an out-of-process OLE com
ponent program that supports in-place activation but can't run as a stand-alone
program. Running this component will give you a good idea of what OLE looks
like to the user, in case you don't know already. You'll also see the extensive
MFC support for this kind of application. If you work at only the top MFC level,
however, you won't appreciate or understand the underlying OLE mecha
nisms. For that, you'll have to dig deeper.

N ext you'll build a con tainer program that uses the familiar parts of the
MFC library but that supports embedded OLE objects that can be edited in
their own windows. This container can, of course, run your MFC mini-server,
but you'll really start to learn OLE when you build a mini-server from scratch
and watch the interactions between it and the container.

Embedding vs.
In-Place Activation (Visual Editing)

Visual Editing is Microsoft's name for in-place activation. A component that
supports in-place activation also supports embedding. Both store their data
in a container's document, and both can be activated by the container. An
in-place-capable component can run inside the container application's main

729

PAR T I V: ACTIVEX: COM, AUTOMATION, AND OLE

730

window, taking over the container's menu and toolbar, and it can run in its
own top-level window if necessary. An embedded component can run only in
its own window, and that window has a special menu that does not include file
commands. Figure 27-1 shows a Microsoft Excel spreadsheet in-place activated
inside a Microsoft Word document. Notice the Excel menus and toolbars.

11
TO: Book Dept.'
FROM: Managemen~
RE: Sales Figures'
11

Figure 27-1.

Book Name

MEMORANDUM~

An Excel spreadsheet activated inside a Word document.

Some container applications support only embedded components; oth
ers support both in-place and embedded components. Usually, an in-place
container program allows the user to activate in-place components either in
place or in their own windows. You should be getting the idea that embedding
is a subset of in-place activation. This is true not only at the user level but also
at the OLE implementation level. Embedding relies on two key interfaces,
IOleObject and IOleClientSite, which are used for in-place activation as well.

T WEN T Y - 5 EVE N: OLE Embedded Components and Containers

Mini-Servers vs.
Full Servers (Components)-linking

A mini-server can't be run as a stand-alone program; it depends on a container
application to launch it. It can't do its own file I/O but depends on the
container's files. A full server, on the other hand, can be run both as a stand
alone program and from a container. When it's running as a stand-alone
program, it can read and write its own files, which means that it supports OLE
linking. With embedding, the container document contains all the data that
the component needs; with linking, the container contains only the name of
a file that the component must open.

The Dark Side of Visual Editing
I'm really enthusiastic about the COM architecture, and I truly believe that
ActiveX Controls will take over the programming world. I'm not so sure about
Visual Editing, though, and I'm not alone. From my teaching experience, I've
learned that few developers are writing applications that fit the "objects em
bedded in a document" model. From my programming experience, I've
learned that it is tricky for containers and components to coordinate the size
and scale of embedded objects. From my "user" experience, I've learned that
in-place activation can be slow and awkward, although the situation is improv
ing with faster computers.

If you don't believe me, try embedding an Excel worksheet in a Word
document, as shown in Figure 27-1. Resize the worksheet in both the active
mode and the nonactive mode. Notice that the two sizes don't track and that
processing is slow.

Consider the need for drawing graphics. Older versions of Microsoft
PowerPoint used an in-place component named Microsoft Draw. The idea was
that other applications could use this component for all their graphics needs.
Well, it didn't work out that way, and PowerPoint now has its own built-in
drawing code. If you have old PowerPoint files with Microsoft Draw objects,
you'll have a hard time converting them.

Now consider printing. Let's say you receive a Word document over the
Net from Singapore, and that document contains the metafiles for some
embedded objects. You don't have the objects' component programs, how
ever. You print the document on your trusty 1200-dpi color laser printer, and
the metafiles print with it. Embedded object metafiles can be rendered for a

731

PAR T I V: ACTIVEX: COM, AUTOMATION, AND OLE

specific printer, but it's doubtful that the person in Singapore used your
printer driver when creating the document. The result is less than optimal
output with incorrect line breaks.

I do believe, however, that the OLE embedding technology has a lot of
potential. Playing sounds and movies is cool, and storing objects in a database
is interesting. What you learn in this chapter will help you think of new us~s
for this technology.

Windows Metafiles and Embedded Objects

732

You're going to need a little more Windows theory before you can understand
how in-place and embedded components draw in their clients' windows. We've
avoided metafiles up to this point because we haven't needed them, but they've
always been an integral part of Windows. Think ofa metafile as a cassette tape
for GDI instructions. To use a cassette, you'll need a player/recorder, and
that's what the metafile device context (DC) is. If you specify a filename when
you create the metafile DC, your metafile will be saved on disk; otherwise, it's
saved in memory and you get a handle.

In the world of OLE embedding, components create metafiles and con
tainers play them. Here's some component code that creates a metafile that
contains some text and a rectangle:

CMetaFileDC dcm; II MFC class for metafile DC
VERIFY(dcm.Create(»;
dcm.SetMapMode(MM_ANISOTROPIC);
dcm.SetWindowOrg(0.0);
dcm.SetWindowExt(5000. -5000);
II drawing code
dcm.Rectangle(CRect(500. -1000. 1500. -2000»;
dcm.TextOut(0. 0. m_strText);
HMETAFILE hMF = dcm.Close();
ASSERT(hMF 1= NULL);

It's possible to create a metafile that uses a fixed mapping mode such as
MALLOENGLISH, but with OLE we'll always use the MALANISOTROPIC mode,
which is not fixed. The metafile contains a SetWindowExt call to set the x and
y extents of the window, and the program that plays the metafile calls SetView
port Ext to set the extents of the viewport. Here's some code that you might put
inside your container view's OnDraw function:

pDC->SetMapMode(MM_HIMETRIC);
pDC->SetViewportExt(5000. 5000);
pDC->PlayMetafile(hMF);

T WEN T Y - S EVE N: OLE Embedded Components and Containers

What's supposed to show up on the screen is a rectangle l-by-l-cm square
because the component assumes the M~HlMETRIC mapping mode. It will
be l-by-l cm as long as the viewport extent matches the window extent. If the
container sets the viewport extent to (5000, 10000) instead, the rectangle will
be stretched vertically but the text will be the same size because it's drawn with
the nonscalable system font. If the container decided to use a mapping mode
other than MM_HlMETRIC, it could adjust the viewport extent to retain the
l-by-l-cm size.

To reiterate, the component sets the window extent to the assumed size
of the viewable area and draws inside that box. If the component uses a nega
tive y extent, the drawing code works just as it does in MM_HlMETRIC map
ping mode. The container somehow gets the component's extent size and
attempts to draw the metafile in an area with those HlMETRIC dimensions.

Why are we bothering with metafiles? Because the container needs to
draw something in the component's rectangle, even if the component pro
gram isn't running. The component creates the metafile and hands it off in a
data object to the in-process OLE handler module on the container side of the
Remote Procedure Call (RPC) link. The handler then caches the metafile and
plays it on demand and also transfers it to and from the container's storage.
When a component is in-place active, however, its view code is drawing directly
in a window that's managed by the container.

The MFC OLE Architecture
for Component Programs

We're not going into too many details here-just enough to allow you to under
stand the new files in the next example. You need to know about three new
MFC base classes-COleIPFrameWnd, COleServerDoc, and COleServerltem.

When you use AppWizard to generate an OLE component, AppWizard
generates a class derived from each, in addition to an application class, a main
frame class, and a view class. The COleIPFrameWnd class is rather like CFrame
Wnd. It's your application's main frame window, which contains the view. It
has a menu associated with it, IDILSRVILINPLACE, which will be merged into
the container program's menu. When your component program is running
in place, it's using the in-place frame, and when it's running stand-alone or
embedded, it's using the regular frame, which is an object of a class derived
from CFrameWnd. The embedded menu is IDILSRVILEMBEDDED, and the
stand-alone menu is IDILMAINFRAME.

733

PA R T I V: ACTIVEX: COM, AUTOMATION, AND OLE

The COleServerDoc class is a replacement for CDocument. It contains added
features that support OLE connections to the container. The COleServerltem
class works with the COleServerDoc class. If components never supported OLE
linking, the functionality of the two classes could be combined into one class.
Because stand-alone component programs do support linking, the MFC ar
chitecture dictates that both classes be present in all components. You'll see
in the EX27C example that we can make our own simple mini-server without
this division.

Together, the COleServerltem class and the COleServerDoc class implement
a whole series of OLE interfaces, including IOleObject, IDataObject, IPersistStarage,
and IOleInPlaceActiveObject. These classes make calls to the container, using
interface pointers that the container passes to them. The important things to
know, however, are that your derived CView class draws in the component's
in-place-active window and that the derived COleServerltem class draws in the
metafile on command from the container.

The EX27 A Example-
An MFC In-Place-Activated Mini-Server

734

You don't need much OLE theory to build an MFC mini-server. This example
is a good place to start, though, because you'll get an idea of how containers
and components interact. This component isn't too sophisticated. It simply
draws some text and graphics in a window. The text is stored in the document,
and there's a dialog for updating it.

Here are the steps for creating the program from scratch:

1. Run AppWizard to create the EX27 A project in the \vcpp32\ex27a
directory. Select Single Document Interface. Click the Mini-Server
option in the AppWizard Step 3 dialog shown on the facing page.

2. Examine the generated files. You've got the familiar application,
document, main frame, and view files, but you've got two new files too.

Header

SrvrItem.h

IpFrame.h

Implementation

SrvrItem.cpp

IpFrame.cpp

Class

CEx27 aSrvrltem

CI nPlaceFrame

MFC Base Class

COleServerltem

COleIPFrameWnd

T WEN T Y - S EVE N: OLE Embedded Components and Containers

1"I:Ii!filtlM·lijtfr:Jm··~trt~" Ed~i~~9&t;~'!!,:=~!!=:!:' ~ include? "

r! N.Qne
(" ,Container

cr,~~;'~.~~
("FuD·,tetver
C Both container Nxi server
. r; Active.-'< gq~nt server

Would you like support rOl compound fpes?

(0': tes, Please
, r: No;.!hank you

. Wh~oihe; supPOIt ~ould you like to include?, "

.r' A!;tomation
r?; Active?: Cont.!ol;

3. Add a text member to the document class. Add the following pub
lic data member in the class declaration in ex27aDoc.h:

CString m_strText;

Set the string's initial value to Initial default text in the document's OnNew
Document member function.

4. Add a dialog to modify the text. Insert a new dialog template with
an edit control, and then use ClassWizard to generate a CTextDialogclass
derived from CD ia log. Don't forget to include the dialog class header in
ex27aDoc.cpp. Also, use ClassWizard to add a CString member variable
named m_strText for the edit control.

5. Add a new menu command in both the embedded and in-place
menus. Add a Modify menu command in both the IDlLSRVJLEMBED
DED and IDlLSRVJLINPLACE menus. To insert this menu command
on the IDlLSRVJLEMBEDDED menu, use the resource editor to add an
EX27 A-EMBED menu item on the top level, and then add a Modify option
on the submenu for this item. Next add an EX27A-INPLACE menu item
on the top level of the IDlLSRVILINPLACE menu and add a Modify
option on the EX27 A-INPLACE submenu.

To associate both Modify options with one OnModify function, use
ID_MODIFY as the ID for the Modify option of both the IDR_SRVJLEM
BEDDED and IDlLSRVJLINPLACE menus. Then use ClassWizard to map
both Modify options to the OnModify function in the document class. Code
the Modify command handler as shown on the following page.

735

PA RT I V: ACTIVEX: COM, AUTOMATION, AND OLE

736

void CEx27aDoc::OnModify()
J,

CTextDialog dlg;
dlg.m_strText = ffi-strText:
if (dlg.DoModal() == lDOK)

m_strText = dlg.m_strText:
UpdateAllViews(NULL); II Trigger CEx27aView::OnDraw
UpdateAllltems(NULL): II Trigger CEx27aSrvrltem::OnDraw
SetModifiedFlag():

6. Override the view's OnPrepareDC function. Use ClassWizard to
generate the function, and then insert the following line:

~ri~~>SetMap~ode(MM_HIMETRiC»)

7. Edit the view's OnDrawfunction. The following code in ex27aView.cpp
draws a 2-cm circle centered in the client rectangle, with the text word
wrapped in the window:

void CEx27aView::OnDraw(CDC* pDC)
{

CEx27aDoc* pDoc = GetDocument();
",,~,?,?ERT~VALlq(pD()"c):,.

CFont font:
font.CreateFont(-Se9. 0. 0. 0, 409. FALSE, FALSE, 0,

ANSl_CHARSET. OUT_DEFAULT_PRECIS.
CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY.
DEFAULT_PITCH IFF_SWISS. "Arial"):

CFont* pFont = pDC-)SelectObject(&font):
CRect rectClient;
GetClientRect(rectClient);
CSize sizeClient ~ rectClient.§ize();
pOC~>DPtoHIMETRIC(&sizeClieht):

CRect rectEllipse(sizeClient.cx 12 - 1131313.
-sizeClient.cy 1 2 + 1131313.
sizeClient~cx 1 2 + 11300.
~sizeClient.cy / 2 -1000):

pDt~~Ellipse(rectEllipse):
pDC->TextOut(0. 0, pDoc-)m_strText);
pOC~>SelectObje~t(pFont):

8. Edit the server item's OnDrawfunction. The following code in the
SrvrItem.cpp file tries to draw the same circle drawn in the view's OnDraw
function. You'll learn what a server item is shortly.

T WEN T Y - S EVE N: OLE Embedded Components and Containers

BOOl CEx27aSrvrItem: :OnDraw(CDC* pDC, CSize& rSize)
(

II Remove this if you use rSize
UNREFERENCED_PARAMETER(rSize);

CEx27aDoc* pDoc = GetDocument();
ASSERT_VAlID(pDoc);

II TODO: set mapping mode and extent
II (The extent is usually the same as the size returned from
II OnGetExtent)
pDC->SetMapMode(MM_ANISOTROPIC);
pDC->SetWindowOrg(0,0);
pDC->SetWindowExt(3000, -3000);

CFont font;
font.CreateFont(-500, 0, 0, 0, 400, FALSE, FALSE, 0,

ANSI_CHARSET, OUT_DEFAULT_PRECIS,
ClIP_DEFAULT_PRECIS, DEFAULT_QUALITY,
DEFAULT_PITCH IFF_SWISS, "Arial"):

CFont* pFont = pDC->SelectObject(&font);
CRect rectEllipse(CRectC500. -500, 2500, -2500»;
pDC->Ellipse(rectEllipse);
pDC->TextOut(0, 0, pDoc->m_strText);
pDC->SelectObjectCpFont);

return TRUE;

9. Edit the document's Serialize function. The framework takes care
of loading and saving the document's data from and to an OLE stream
named Contents that is attached to the object's main storage. You simply
write normal serialization code, as shown here:

void CEx27aDoc::Serialize(CArchive& ar)
{

if (ar.IsStoring(»
{

.ar« m_strText:.

else
{

ar » m_strText;

There is a CEx27aSrvrltem::Serialize function, too, that delegates to the
document Serialize function.

737

PAR T I V: ACTIVEX: COM, AUTOMATION, AND OLE

738

10. Build and register the EX27 A application. You must run the appli
cation directly once to update the Registry.

11. Test the EX27 A application. You need a container program that sup
ports in-place activation. Use Microsoft Excel 97 if you have it, or build
the project in the MFC OLE DRAWCLI sample. Choose the container's
Insert Object menu item. If this option does not appear on the Insert
menu, it might appear on the Edit menu instead. Then select Ex27a Docu
ment from the list.

NOT E : You debug an embedded component the same way you
debug an Automation EXE component. See the sidebar, "Debugging
an EXE Component Program," on page 628 for more information.

When you first insert the EX27A object, you'll see a hatched border,
which indicates that the object is in-place active. The bounding rectangle is
3-by-3-cm square, with a 2-cm circle in the center, as illustrated here:

I nitial default

U
If you click elsewhere in the container's window, the object becomes inactive,
and it's shown like this:

Initial default

U
In the first case, you saw the output of the view's OnDraw function; in the
second case, you saw the output of the server item's OnDraw function. The
circles are the same, but the text is formatted differently because the server
(component) item code is drawing on a metafile device context.

T WEN T Y - S EVE N: OLE Embedded Components and Containers

If you use the resize handles to extend the height of the object (click once
on the object to see the resize handles; don't double-click), you'll stretch the
circle and the font will get bigger, as shown in the figure on the left. If you
reactivate the object by double-clicking on it, it's reformatted as shown in the
figure on the right.

I nitial default I nitial default

o
Click elsewhere in the container's window, single-click on the object, and

then choose Ex27a Object from the bottom of the Edit menu. Choose Open
from the submenu. This starts the component program in embedded mode
rather than in in-place mode, as shown here:

I nitial default text

o
Notice that the component's IDILSRV]LEMBEDDED menu is visible.

739

PAR T I V: ACTIVEX: COM, AUTOMATION, AND OLE

An MOl Embedded Component?
The EX27 A example is anSDI mini-server. Each time a controller creates an
EX27A object, a new EX27A process is started. You might expect an MDI mini
server process to support multiple component objects, each with its own docu
ment, but this is not the case. When you ask AppWizard to generate an MDI
mini-server, it generates an SDI program, as in EX27A. It's theoretically pos
sible to have a single process support multiple embedded objects in different
windows, but you can't easily create such a program with the MFC library.

In-Place Component Sizing Strategy
If you look at the EX27A output on pages 738 and 739, you'll observe that the
metafile image does not always match the image in the in-place frame window.
I had hoped to create another example in which the two images matched.
I was unsuccessful, however, when I tried to use the Microsoft Office 97 appli
cations as containers. Each one did something a little different and unpredict
able. A complicating factor is the containers' different zooming abilities.

When AppWizard generates a component program, it gives you an over
ridden OnGetExtent function in your server item class. This function returns
a hard-coded size of (3000, 3000). You can certainly change this value to suit
your needs, but be careful if you change it dynamically. I tried maintaining
my own document data member for the component's extent, but that messed
me up when the container's zoom factor changed. I thought containers would
make more use of another component item virtual function, OnSetExtent, but
they didn't.

You'll be safest if you simply make your component extents fixed and
assume that the container will do the right thing. Keep in mind that when the
container application prints its document, it prints the component metafiles.
The metafiles are really more important than the in-place views.

If you control both container and component programs, however, you
have more flexibility. You can build up a modular document processing system
with its own sizing protocol. You can even use other OLE interfaces.

Container-Component Interactions

740

Analyzing the component and the container separately won't help you to fully
understand how they work. You must watch them working together to under
stand their interactions. Let's reveal the complexity one step at a time. Con
sider first that you have a container EXE and a component EXE, and the
container must manage the component by means of OLE interfaces.

T WEN T Y - S EVE N: OLE Embedded Components and Containers

Look back to the space simulation example in Chapter 23. The client
program called CoGetClassObject and IClassFactory::Createlnstance to load the
spaceship component and to create a spaceship object, and then it called
QuerylnterJace to get IMotion and !Visual pointers. An embedding container
program works the same way that the space simulation client works. It starts
the component program based on the component's class ID, and the compo
nent program constructs an object. Only the interfaces are different.

Figure 27-2 shows a container program looking at a component. You've
already seen all the interfaces except one-IOleObject.

Object data
(in a storage)

Figure 27-2.
A container program's view of the component.

Using the Component's IOleObject Interface
Loading a component is not the same as activating it. Loading merely starts a
process, which then sits there waiting for further instructions. If the container
gets an IOleObject pointer to the component object, it can call the DoVerb
member function with a verb parameter such as OLEIVERB_SHOW. The com
ponent should then show its main window and act like a Windows-based pro
gram. If you look at the IOleObject::DoVerb description on page 748, you'll see
an IOleClientSite* parameter. We'll consider client sites shortly, but for now
you can simply set the parameter to NULL and most components will work OK

741

PAR T I V: ACTIVEX: COM, AUTOMATION, AND OLE

Another important IOleObject function, Close, is useful at this stage. As you
might expect, the container calls Close when it wants to terminate the compo
nent program. If the component process is currently servicing one embedded
object (as is the case with MFC components), the process exits.

Loading and Saving the Component's Native Data
Compound Documents

Figure 27-2 demonstrates that the container manages a storage through an
IStorage pointer and that the component implements IPersistStorage. That
means that the component can load and save its native data when the con
tainer calls the Load and Save functions of IPersistStorage. You've seen the
IStorage and IPersistStorage interfaces used in Chapter 26, but this time the
container is going to save the component's class ID in the storage. The con
tainer can read the class ID from the storage and use it to start the component
program prior to calling IPersistStorage::Load.

Actually, the storage is very important to the embedded object.Just as a
virus needs to live in a cell, an embedded object needs to live in a storage. The
storage always needs to be available because the object is constantly loading
and saving itself and reading and writing temporary data.

What appears at the bottom of Figure 27-2 is a compound document. The
container manages the whole file, but the embedded components are respon
sible for the storages inside it. There's one main storage for each embedded
object, and the container doesn't know or care what's inside those storages.

Clipboard Data Transfers

742

If you've run any OLE container programs, including Microsoft Excel, you've
noticed that you can copy and paste whole embedded objects. There's a spe
cial data object format, CF_EMBEDDEDOBjECT, for embedded objects. If
you put an IDataObjectpointer on the clipboard and that data object contains
the CF_EMBEDDEDOBjECT format (and the companion CF_ OBjECTDESCRlP
TOR format), another program can load the proper component program and
reconstruct the object.

There's actually less here than meets the eye. The only thing inside the
CF_EMBEDDEDOBjECT format is an IStorage pointer. The clipboard copy
program verifies that IPersistStorage::Save has been called to save the embed
ded object's data in the storage, and then it passes off the IStorage pointer in

T WEN T Y - 5 EVE N: OLE Embedded Components and Containers

a data object. The clipboard paste program gets the class ID from the source
storage, loads the component program, and then calls IPersistStorage::Load to
load the data from the source storage.

The data objects for the clipboard are generated as needed by the con
tainer program. The component's IDataObject interface isn't used for trans
ferring the objects' native data.

Getting the Component's Metafile
You already know that a component program is supposed to draw in a metafile
and that a container is supposed to play it. But how does the component deliver
the metafile? That's what the IDataObject interface, shown in Figure 27-2, is
for. The container simply calls IDataObject::GetData, asking for a CF_METAFlLE
PICTformat. But wait a minute. The container is supposed to get the metafile
even if the component program isn't running. So now you're ready for the
next complexity level.

The Role of the In-Process Handler
If the component program is running, it's in a separate process. Sometimes
it's not running at all. In either case, the OLE32 DLL is linked into the con
tainer's process. This DLL is known as the object handler.

NOT E : It's possible for an EXE component to have its own custom
handler DLL, but most components use the "default" OLE32 DLL.

Figure 27-3 on the following page shows the new picture. The handler
communicates with the component over the RPC link, marshaling all inter
face function calls. But the handler does more than act as the component's
proxy for marshaling; it maintains a cache that contains the component object's
metafile. The handler saves and loads the cache to and from storage, and it
can fill the cache by calling the component's IDataObject::GetData function.

When the container wants to draw the metafile, it doesn't do the drawing
itself; instead, it asks the handler to draw the metafile by calling the handler's
IViewObject2::Draw function. The handler tries to satisfy as many container
requests as it can without bothering the component program, but if it needs
to call a component function, the handler takes care of loading the compo
nent program if it is not already loaded.

743

PA R T I V: ACTIVEX: COM, AUTOMATION, AND OLE

Document

Metafile

Figure 27-3.

Object's native
data

The in-process handler and the component.

NOT E: The IViewObject2 interface is an example of OLE's design
evolution. Someone decided to add a new function-in this case,
GetExtent-to the IViewObject interface. IViewObject2 is derived from
IViewObject and contains the new function. All new components
should implement the new interface and should return an IView
Object2 pointer when Querylnterjace is called for either IID_IViewObject
or IID_IViewObject2. This is easy with the MFC library because you
write two interface map entries that link to the same nested class.

Figure 27-3 shows both object data and metafile data in the object's stor-
age. When the container calls the handler's IPersistStorage::Save function, the
handler writes the cache (containing the metafile) to the storage and then calls
the component's IPersistStorage::Save function, which writes the object's native
data to the same storage. The reverse happens when the object is loaded.

Component States

744

Now that you know what a handler is, you're ready for a description of the four
states that an embedded object can assume:

State

Passive

Loaded

Running

Active

T WEN T Y - S EVE N: OLE Embedded Components and Containers

Descri ption

The object exists only in a storage.

The object handler is running and has a metafile in its cache, but
the EXE component program is not running.

The EXE component program is loaded and running, but the window
is not visible to the user.

The EXE component's window is visible to the user.

The Container Interfaces
Now for the container side of the conversation. Look at Figure 27-4. The
container consists of a document and one or more sites. The IOleContainer
interface has functions for iterating over the sites, but we won't worry about
it here. The important interface is IOleClientSite. Each site is an object that the
component accesses through an IOleClientSite pointer. When the container
creates an embedded object, it calls IOleObject::SetClientSite to establish one of
the two connections from component to container. The site maintains an
IOleObject pointer to its component object.

Object

.... "'...... Site knows its storage object "-I VI,"t Class factory
'UJtUU'.U'I'II'I."'t"t""~.UUH'J.. IClassFactory ~

..... IUUU UU.Uph U'u t: H" ~ ~ y Y~~ YYY""~

Component gets IStorage* from container • fk..1.;~~~;;.J.;;.~

;', .. ' "' .. ,11'~

Figure 27-4.

Objects native
"qat(i,,,,

The interaction between the container and the component.

745

PA R T I V: ACTIVEX: COM, AUTOMATION, AND OLE

One important IOleClientSite function is SaveObject. When the component
decides it's time to save itself to its storage, it doesn't do so directly; instead,
it asks the site to do the job by calling IOleClientSite::SaveObject. "Why the in
direction?" you ask. The handler needs to save the metafile to the storage,
that's why. The SaveObject function calls IPersistStorage::Save at the handler level,
so the handler can do its job before calling the component's Save function.

Another important IOleClientSite function is OnShowWindow. The com
ponent program calls this function when it starts running and when it stops
running. The client is supposed to display a hatched pattern in the embed
ded object's rectangle when the component program is running or active.

The Advisory Connection

746

Figure 27-4 shows another interface attached to the site-IAdviseSink. This is
the container's end of the second component connection. Why have another
connection? The IOleClientSite connection goes directly from the component
to the container, but the IAdviseSink connection is routed through the handler.
Mter the site has created the embedded object, it calls IViewObject2::SetAdvise,
passing its IAdviseSink pointer. Meanwhile, the handler has gone ahead and
established two advisory connections to the component. When the embedded
object is created, the handler calls IOleObject::Advise and then calls IDataObject
::DAdvise to notify the advise sink of changes in the data object. When the
component's data changes, it notifies the handler through the IDataObject
advisory connection. When the user saves the component's data or closes the
program, the component notifies the handler through the IOleObject advisory
connection. Figure 27-5 shows these connections.

Figure 27-5.

OnViewChange
OnC/ose
OnSave

Advisory connection details.

OnC/ose
OnSave

T WEN T Y - S EVE N: OLE Embedded Components and Containers

When the handler gets the notification that the component's data has
changed (the component calls IAdviseSink::OnDataChange) , it can notify the
container by calling IAdviseSink::On View Change. The container responds by
calling IViewObject2::Draw in the handler. If the component program is not
running, the handler draws its metafile from the cache. If the component
program is running, the handler calls the component's IDataObject::GetData
function to get the latest metafile, which it draws. The OnClose and OnSave
notifications are passed in a similar manner.

A Metafile for the Clipboard
As you've just learned, the container doesn't deal with the metafile directly
when it wants to draw the embedded object; instead, it calls IViewObject2::Draw.
In one case, however, the container needs direct access to the metafile. When
the container copies an embedded object to the clipboard, it must copy a
metafile in addition to the embedded object and the object descriptor. That's
what the handler's IDataObject interface is for. The container calls IDataObject
::GetData, requesting a metafile format, and it copies that format into the
clipboard's data object.

An Interface Summary
Following is a summary of the important OLE interfaces we'll be using in the
examples in this chapter. The function lists are by no means complete, nor
are the parameter lists. See Books Online or Brockschmidt's book for the com
plete specifications.

The IOleObject Interface
Embedded components implement this interface. The client site maintains
an IOleObject pointer to an embedded object.

HRESUL T Advise(IAdviseSink* pAdvSink,
DWORD* pdwConnection);

The handler calls this function to establish one of the two advisory connec
tions from the component to the handler. The component usually implements
Advise with an OLE advise holder object, which can manage multiple advisory
connections.

HRESUL T Close(DWORD dwSaveOption);
The container calls Close to terminate the component application but to leave
the object in the loaded state. Containers call this function when the user clicks

747

PA R T I V: ACTIVEX: COM, AUTOMATION, AND OLE

outside an in-place-active component's window. Components that support in
place activation should clean up and terminate.

HRESULT DoVerb(LONG iVerb, ... , IOleClientSite* pActiveSite, ...);
Components support numeric verbs as defined in the Registry. A sound com
ponent might support a "Play" verb, for example. Embedded components
should support the OLEIVERB_SHOWverb, which instructs the object to show
itself for editing or viewing. If the component supports in-place activation, this
verb starts the Visual Editing process; otherwise, it starts the component pro
gram in a window separate from that of its container. The OLEIVERB_OPEN
verb causes an in-place-activation-capable component to start in a separate
window.

HRESUL T GetExtent(DWORD dwDrawAspect, SIZEL* pSizeJ);
The component returns the object extent in HlMETRIC dimensions. The
container uses these dimensions to size the rectangle for the component's
metafile. Sometimes the container uses the extents that are included in the
component's metafile picture.

HRESUL T SetClientSite(IOleClientSite* pClientSite);
The container calls SetClientSite to enable the component to store a pointer
back to the site in the container.

HRESUL T SetExtent(DWORD dwDrawAspect, SIZEL* pSizeJ);
Some containers call this function to impose extents on the component.

HRESUL T SetHostNames(LPCOLESTR szContainerApp,
LPCOLESTR szContainerObj);

The container calls SetHostNames so that the component can display the con
tainer program's name in its window caption.

HRESUL T Unadvise(DWORD* dwConnection);
This function terminates the advisory connection set up by Advise.

The IViewObject21nterface

748

Embedded component handlers implement this interface. The container calls
its functions, but the component program itself doesn't implement them. An
IViewObject2 interface cannot be marshaled across a process boundary because
it's associated with a device context.

T WEN T Y • S EVE N: OLE Embedded Components and Containers

HRESUL T Draw(DWORD dwAspect,
... , const LPRECTL IprcBounds, ...);

The container calls this function to draw the component's metafile in a speci
fied rectangle.

HRESUL T SetAdvise(DWORD dwAspect,
... , IAdviseSink* pAdvSink);

The container calls SetAdvise to set up the advisory connection to the handler,
which in turn sets up the advisory connection to the component.

The IOleClientSite Interface
Containers implement this interface. There is one client site object per com
ponent object.

HRESUL T GetContainer(IOleContainer* * ppContainer);
The GetContainer function retrieves a pointer to the container object (docu
ment) , which can be used to enumerate the container's sites.

HRESUL T OnShowWindow(BOOL fShow);
The component program calls this function when it switches between the
running and the loaded (or active) state. When the object is in the loaded state,
the container should display a hatched pattern on the embedded object's
rectangle.

HRESUL T SaveObject(void);
The component program calls SaveObject when it wants to be saved to its stor
age. The container calls IPersistStorage::Save.

The IAdviseSink Interface
Containers implement this interface. Embedded object handlers call its func
tions in response to component notifications.

void OnClose(void);
Component programs call this function when they are being terminated.

void OnViewChange(DWORD dwAspect, ...);
The handler calls On View Change when the metafile has changed. Because the
component program must have been running for this notification to have
been sent, the handler can call the component's IDataObject::GetData function

749

PA R T I V: ACTIVEX: COM, AUTOMATION, AND OLE

to get the latest metafile for its cache. The container can then draw this meta
file by calling IViewObject2::Draw.

OLE Helper Functions

750

A number of global OLE functions encapsulate a sequence of OLE interface
calls. Following are some that we'll use in the EX27B example:

HRESUL T OleCreate(REFCLSID re/sid, REFIID riid, """'
IOleClientSite* pClientSite, IStorage* pStg, void* * ppvObj);

The Ole Create function first executes the COM creation sequence using the
specified class ID. This loads the component program. Then the function calls
Querylnterface for an IPersistStorage pointer, which it uses to call InitNew, pass
ing the pStg parameter. It also calls Querylnterface to get an IOleObject pointer,
which it uses to call SetClientSite using the pClientSite parameter. Finally, it calls
Querylnterfacefor the interface specified by riid, which is usually IID_IOleObject.

HRESUL T OleCreateFromData(IDataObject* pSreDataObj,
REFIID riid, """' IOleClientSite* pClientSite, IStorage* pStg,
void** ppvObj);

The OleCreateFromData function creates an embedded object from a data ob
ject. In the EX27B example, the incoming data object has the CF_EMBEDDED
OBJECT format with an IStorage pointer. The function then loads the component
program based on the class ID in the storage, and then it calls IPersistStorage
::Load to make the component load the object's native data. Along the way,
it calls IOleObject::SetClientSite.

HRESUL T OleDraw(IUnknown* pUnk, DWORD dwAspeet,
HDC hdeDraw, LPCRECT /preBounds);

This function calls Querylnterface on pUnk to get an IViewObject pointer, and
then it calls IViewObject::Draw, passing the IprcBounds parameter.

HRESUL T OleLoad(IStorage* pStg, REFIID riid,
IOleClientSite* pClientSite, void* * ppvObj);

The OleLoad function first executes the COM creation sequence by using the
class ID in the specified storage. Then it calls IOleObject::SetClientSite and IPersist
Storage::Load. Finally, it calls Querylnterface for the interface specified by riid,
which is usually IID_IOleObject.

T WEN T Y • S EVE N: OLE Embedded Components and Containers

HRESUL T OleSave(IPersistStorage* pPS, IStorage* pStg, ...);
This function calls IPersistStorage::GetClassID to get the object's class ID, and
then it writes that class ID in the storage specified by pStg. Finally, it calls IPersist
Storage:: Save.

An OLE Embedding Container Application
N ow that we've got a working mini-server that supports embedding (EX27 A) ,
we'll write a container program to run it. We're not going to use the MFC
container support, however, because you need to see what's happening at the
OLE interface level. We will use the MFC document-view architecture and the
MFC interface maps, and we'll also use the MFC data object classes.

MFC Support for OLE Containers
If you did use AppWizard to build an MFC OLE container application, you'd
get a class derived from COle Document and a class derived from COleClientltem.
These MFC base classes implement a number of important OLE container
interfaces for embedding and in-place activation. The idea is that you have one
COleClientltem object for each embedded object in a single container docu
ment. Each COleClientltem object defines a site, which is where the component
object lives in the window.

The COle Document class maintains a list of client items, but it's up to you
to specify how to select an item and how to synchronize the metafile's posi
tion with the in-place frame position. AppWizard generates a basic container
application with no support for linking, clipboard processing, or drag and
drop. If you want those features, you might be better off looking at the MFC
OLE DRA WCLI and OCLIENT samples.

We will use one MFC OLE class in the container-COlelnsertDialog. This
class wraps the OleUllnsertObject function, which invokes the standard Insert
Object qialog box. This Insert Object dialog enables the user to select from
a list of registered component programs.

Some Container Limitations
Because our container applicatio~ is designed for learning, we'll make some
simplifications to reduce the bulk of the code. First of all, this container won't
support in-place activation-it allows the user to edit embedded objects only
in a separate window. Also, the container supports only one embedded item
per document, and that means there's no linking support. The container uses
a structured storage file to hold the document's embedded item, but it handles

751

PA R T I V: ACTIVEX: COM, AUTOMATION, AND OLE

the storage directly, bypassing the framework's serialization system. Clipboard
support is provided; drag-and-drop support is not. Outside of these limitations,
however, it's a pretty good container!

Container Features
OK, what does the container actually do? Here's a list of features:

[J As an MFC MDI application, it handles multiple documents.

[J Displays the component's metafile in a sizeable, moveable tracker
rectangle in the view window.

[l Maintains a temporary storage for each embedded object.

[J Implements the Insert Object menu option, which allows the user
to select a registered component. The selected component program
starts in its own window.

[J Allows embedded objects to be copied (and cut) to the clipboard
and pasted. These objects can be transferred to and from other
containers such as Microsoft Word and Microsoft Excel.

[l Allows an embedded object to be deleted.

[J Tracks the component program's loaded-running transitions and
hatches the tracker rectangle when the component is running or
active.

Ii] Redraws the embedded object's metafile on receipt of component
change notifications.

[J Saves the object in its temporary storage when the component up
dates the object or exits.

[J Copies the embedded object's temporary storage to and from
named storage files in response to Copy To and Paste From com
mands on the Edit menu.

The EX278 Example-An Embedding Container

752

Now for the working program. It's a good time to open the \vcpp32\ex27b
\ex27b.dsw workspace and build the EX27B project. If you choose Insert
Object from the Edit menu and select Ex27a Document, the EX27B compo
nent will start. If you change the component's data and switch back to the
container, the container will look like this:

T WEN T Y - S EVE N: OLE Embedded Components and Containers

'r'~ ';;~27b - Ex27b1
i; file Edit ~iew ~indow Help

~_i!tfm ... , ~:.~
; rae Edit EX27AEMBED ~ew Help

New text

o
The CEx27bView Class

You can best understand the program by first concentrating on the view class.
Look at the code in Figure 27-6, but ignore all IOleClientSite pointers. The
container program will actually work if you pass NULL in every IOleClientSite
pointer parameter. It just won't get notifications when the metafile or the
native data changes. Also, components will appear displaying their stand-alone
menus instead of the special embedded menus.

EX27BVIEW.H

#if !definedCAFX_EX27BVIEW_H __ 1EAAB6E1_6011_11D0_848F_00400526305B __ INCLUDED_)
#define AFX_EX27BVIEW_H __ 1EAAB6E1_6011_11D0_848F_00400526305B __ INCLUDED_

#if _MSC_VER >= 1000
#pragma once
#endif II _MSC_VER >= 1000

#define CF_OBJECTDESCRIPTOR "Object Descriptor"
#define CF_EMBEDDEDOBJECT "Embedded Object"
#define SETFORMATETCCfe. cf. asp. td. med. 1i) \

CCfe).cfFormat=cf. \
Cfe).dwAspect=asp. \
Cfe).ptd=td. \
Cfe).tymed=med. \
C fe) .1 i ndex=l i)

Figure 27-6.
The container's CEx27b View class listing.

(continued)

753

PA R T I V: ACTIVEX: COM, AUTOMATION, AND OLE

754

Figure 27-6. continued

//

class CEx27bView : public CScrollView
{

public:
ClIPFORMAT m_cfObjDesc:
ClIPFORMAT m_cfEmbedded:
CSize m_sizeTotal: // document size
CRectTracker m_tracker:
CRect m_rectTracker: // logical coords

protected: // create from serialization only
CEx27bView():
DEClARE_DYNCREATE(CEx27bView)

// Attributes
public:

CEx27bDoc* GetDocument():

private:
void GetSize():
void SetNames():
void SetViewAdvise():
BOOl MakeMetafilePict(COleDataSource* pSource):
COleDataSource* SaveObject():
BOOl DoPasteObject(COleDataObject* pDataObject):
BOOl DoPasteObjectDescriptor(COleDataObject* pDataObject):

// Overrides
// ClassWizard generated virtual function overrides
//{{AFX_VIRTUAl(CEx27bView)
public:
virtual void OnDraw(CDC* pDC): // overridden to draw this view
virtual BOOl PreCreateWindow(CREATESTRUCT& cs):
virtual void OnInitialUpdate():
protected:
virtual BOOl OnPreparePrinting(CPrintInfo* pInfo):
virtual void OnBeginPrinting(CDC* pDC, CPrintInfo* pInfo):
virtual void OnEndPrinting(CDC* pDC, CPrintInfo* pInfo):
/ /} } AFX_ V I RTUAl

// Implementation
public:

virtual -CEx27bView():
lIifdef _DEBUG

virtual void AssertValid() const:
virtual void Dump(CDumpContext& dc) const:

lIendif

(continued)

T WEN T Y - S EVE N: OLE Embedded Components and Containers

Figure 27-6. continued

protected:

// Generated message map functions
protected:

} ;

//{{AFX_MSG(CEx27bView)
afx_msg void
afx_msg void
afx_msg void
afx_msg void
afx_msg void
afx_msg void
afx_msg void
afx_msg void
afx_msg void
afx_msg void

OnEditCopy() ;
OnUpdateEditCopy(CCmdUI* pCmdUI);
OnEditCopyto();
OnEditCut();
OnEditPaste() ;
OnUpdateEditPaste(CCmdUI* pCmdUI);
OnEditPastefrom();
OnEditInsertobject();
OnUpdateEditInsertobject(CCmdUI* pCmdUI);
OnlButtonDown(UINT nFlags. CPoint point);

afx_msg void OnlButtonDblClk(UINT nFlags. CPoint point);
afx_msg BOOl OnSetCursor(CWnd* pWnd. UINT nHitTest. UINT message);
/ /} }AFX_MSG
DEClARE_MESSAGE_MAP()

#ifndef _DEBUG // debug version in ex27bView.cpp
inline CEx27bDoc* CEx27bView::GetDocument()

{ return (CEx27bDoc*)m_pDocument; }
#endif

//

//{{AFX_INSERT_lOCATION}}
// Microsoft Developer Studio will insert additional declarations
// immediately before the previous line.

#endif
//!defined(AFX_EX27BVIEW_H __ IEAAB6El_6011_11D0_848F_00400526305B __ INClUDED_)

EX27BVIEW.CPP

#include "stdafx.h"
#include "ex27b.h"

4ii nc 1 ude "ex27 bDoc . h"
#include "ex27bView.h"

#ifdef _DEBUG
#define new DEBUG_NEW

(continued)

755

PA R T I V: ACTIVEX: COM, AUTOMATION, AND OLE

756

Figure 27-6. continued

fFundef THIS_FILE
static char THIS_FILE[] = _FILE_;
flendi f

//

// CEx27bView

IMPLEMENT_DYNCREATE(CEx27bView, CScrollView)

BEGIN_MESSAGE_MAP(CEx27bView, CScrollView)
//{{AFX_MSG_MAP(CEx27bView)
ON_COMMAND(ID_EDIT_COPY, OnEditCopy)
ON_UPDATE_COMMAND_UI(ID_EDIT_COPY, OnUpdateEditCopy)
ON_COMMAND(ID_EDIT_COPYTO, OnEditCopyto)
ON_UPDATE_COMMAND_UI(ID_EDIT_COPYTO, OnUpdateEditCopy)
ON_COMMAND(ID_EDIT_CUT, OnEditCut)
ON_UPDATE_COMMAND_UI(ID_EDIT_CUT, OnUpdateEditCopy)
ON_COMMAND(ID_EDIT_PASTE, OnEditPaste)
ON_UPDATE_COMMAND_UI(ID_EDIT_PASTE, OnUpdateEditPaste)
ON_COMMAND(ID_EDIT_PASTEFROM, OnEditPastefrom)
ON_COMMAND(ID_EDIT_INSERTOBJECT, OnEditInsertobject)
ON_UPDATE_COMMAND_UI(ID_EDIT_INSERTOBJECT, OnUpdateEditInsertobject)
ON_WM_LBUTTONDOWN()
ON_WM_LBUTTONDBLCLK()
ON_WM_SETCURSOR()
/ /} lAFX_MSG_MAP
// Standard printing commands
ON_COMMAND(ID_FILE_PRINT, CScrollView::OnFilePrint)
ON_COMMAND(ID_FILE_PRINT_DIRECT, CScrollView::OnFilePrint)
ON_COMMAND(ID_FILE_PRINT_PREVIEW, CScrollView::OnFilePrintPreview)

END_MESSAGE_MAP()

//

// CEx27bView construction/destruction

CEx27bView::CEx27bView() : m_sizeTotal(20000, 25000),
// 20 x 25 cm when printed
m_rectTracker(0, 0, 0, 0)

m_cfObjDesc = ::RegisterClipboardFormat(CF_OBJECTDESCRIPTOR);
m_cfEmbedded = ::RegisterClipboardFormat(CF_EMBEDDEDOBJECT);

CEx27bView::~CEx27bView()

{

1

(continued)

T WEN T Y - S EVE N: OLE Embedded Components and Containers

Figure 27-6. continued

BOOl CEx27bView::PreCreateWindow(CREATESTRUCT& cs)
{

// TODO: Modify the Window class or styles here by modifying
// the CREATESTRUCT cs

return CScrollView::PreCreateWindow(cs);

//

// CEx27bView drawing

void CEx27bView::OnDraw(CDC* pDC)
{

CEx27bDoc* pDoc = GetDocument();

if(pDoc->m_lpOleObj != NUll) {
VERIFY(: :OleDraw(pDoc->m_lpOleObj, DVASPECT_CONTENT,

pDC->GetSafeHdc(), m_rectTracker) == S_OK);

m_tracker.m_rect = m_rectTracker;
pDC->lPtoDP(m_tracker.m_rect); // device
if(pDoc->m_bHatch) {

m_tracker.m_nStyle 1= CRectTracker::hatchInside;

else {
m_tracker.m_nStyle &= -CRectTracker::hatchInside;

m_tracker.Draw(pDC);

//

// CEx27bView printing

BOOl CEx27bView: :OnPreparePrinting(CPrintInfo* pInfo)
{

pInfo->SetMaxPage(l);
return DoPreparePrinting(pInfo);

void CEx27bView::OnBeginPrinting(CDC* /*pDC*/, CPrintInfo* /*pInfo*/)

// TODO: add extra initialization before printing

(continued)

757

PA R T I V: ACTIVEX: COM, AUTOMATION, AND OLE

758

Figure 27-6. continued

void CEx27bView::OnEndPrinting(CDC* /*pDC*/, CPrintInfo* /*pInfo*/)
{

// TODO: add cleanup after printing

//

// CEx27bView diagnostics

Iii fdef _DEBUG
void CEx27bView::AssertValid() const
{

CScrollView::AssertValid();

void CEx27bView::Dump(CDumpContext& dc) const
{

CScrollView::Dump(dc);

CEx27bDoc* CEx27bView::GetDocument() // non-debug version is inline
{

ASSERT(m_pDocument-)IsKindOf(RUNTIME_CLASS(CEx27bDoc»);
return (CEx27bDoc*)m_pDocument;

//

// CEx27bView message handlers

void CEx27bView::OnInitialUpdate()
{

TRAC E ("C Ex27 bV i ew: : On I n it i a 1 Upda te \ n") ;
m_rectTracker = CRect(1000. -1000, 5000. -5000);
m_tracker.m_nStyle = CRectTracker::solidLine I

CRectTracker::resizeOutside;
SetScrollSizes(MM_HIMETRIC. m_sizeTotal);
CScrollView: :OnInitialUpdate();

void CEx27bView::OnEditCopy()

COleDataSource* pSource = SaveObject();
if(pSource) {

pSource-)SetClipboard(); // OLE deletes data source

(continued)

T WEN T Y - 5 EVE N: OLE Embedded Components and Containers

Figure 27-6. continued

void CEx27bView::OnUpdateEditCopy(CCmdUI* pCmdUI)
{

II serves Copy, Cut, and Copy To
pCmdUI->Enable(GetDocument()->m_lpOleObj != NULL);

void CEx27bView::OnEditCopyto()

II Copy text to an STG file (nothing special about STG ext)
CFileDialog dlg(FALSE, "stg" , "*.stg");
if (dlg.DoModal() != IDOK) {

return;

CEx27bDoc* pDoc = GetDocument();
II Create a structured storage home for the object (m_pStgSub).
II Create a root storage file, then a substorage named "sub."
LPSTORAGE pStgRoot;
VERIFY(::StgCreateDocfile(dlg.GetPathName().AllocSysString(),

STGM_READWRITEISTGM_SHARE_EXCLUSIVEISTGM_CREATE,
0, &pStgRoot) == S_OK);

ASSERT(pStgRoot != NULL);

LPSTORAGE pStgSub;
VERIFY(pStgRoot->CreateStorage(CEx27bDoc::s_szSub,

STGM_CREATEISTGM_READWRITEISTGM_SHARE_EXCLUSIVE,
0, 0, &pStgSub) == S_OK);

ASSERT(pStgSub != NULL);

II Get the IPersistStorage* for the object
LPPERSISTSTORAGE pPS = NULL;
VERIFY(pDoc->m_lpOleObj->Querylnterface(IID_IPersistStorage,

(void**) &pPS) == S_OK);
II Finally, save the object in its new home in the user's file
VERIFY(::OleSave(pPS, pStgSub, FALSE) == S_OK);
II FALSE means different stg
pPS->SaveCompleted(NULL); II What does this do?
pPS->Release();

pStgSub->Release();
pStgRoot->Release();

void CEx27bView::OnEditCut()

OnEdi tCopy();
GetDocument()->OnEditClearAll();

(continued)

759

PA R T I V: ACTIVEX: COM, AUTOMATION, AND OLE

760

Figure 27-6. continued

void CEx27bView::OnEditPaste()
{

CEx27bDoc* pDoc = GetDocument();
COleDataObject dataObject;
VERIFY(dataObject.AttachClipboard(»;
pDoc->DeleteContents();
DoPasteObjectDescriptor(&dataObject);
DoPasteObject(&dataObject);
SetViewAdvise();
GetSize();
pDoc->SetModifiedFlag();
pDoc->UpdateAllViews(NULL);

void CEx27bView::OnUpdateEditPaste(CCmdUI* pCmdUI)
{

II Make sure that object data is available
COleDataObject dataObject;
if (dataObject.AttachClipboard() &&

dataObject.IsDataAvailable(m_cfEmbedded»
pCmdUI->Enable(TRUE);

else {
pCmdUI->Enable(FALSE);

void CEx27bView::OnEditPastefrom()

CEx27bDoc* pDoc = GetDocument();
II Paste from an STG file
CFileDialog dlg(TRUE, "stg", "*.stg");
if (dlg.DoModal() != IDOK) {

return;

II Open the storage and substorage
LPSTORAGE pStgRoot;
VERIFY(::StgOpenStorage(dlg.GetPathName().AllocSysString(), NULL,

STGM_READISTGM_SHARE_EXCLUSIVE,
NULL, 0, &pStgRoot) == S_OK);

ASSERT(pStgRoot != NULL);

LPSTORAGE pStgSub;

(continued)

T WEN T Y - S EVE N: OLE Embedded Components and Containers

Figure 27-6. continued

VERIFY(pStgRoot->OpenStorage(CEx27bDoc: :s_szSub, NULL,
STGM_READISTGM_SHARE_EXCLUSIVE,
NULL, 0, &pStgSub) == S_OK);

ASSERT(pStgSub != NULL);

II Copy the object data from the user storage to the temporary storage
VERIFY(pStgSub->CopyTo(NULL, NULL, NULL,

pDoc->m_pTempStgSub) S_OK);
II Finally, load the object -- pClientSite not necessary
LPOLECLIENTSITE pClientSite =

(LPOLECLIENTSITE) pDoc->Getlnterface(&IID_IOleClientSite);
ASSERT(pClientSite != NULL);
pDoc->DeleteContents();
VERIFY(::OleLoad(pDoc->m_pTempStgSub, IID_IOleObject, pClientSite,

(void**) &pDoc->m_lpOleObj) == S_OK);
SetViewAdvise();
pStgSub->Release();
pStgRoot->Release();
GetSize();
pDoc->SetModifiedFlag();
pDoc->UpdateAllViews(NULL);

void CEx27bView: :OnEditInsertobject()

CEx27bDoc* pDoc = GetDocument();
COlelnsertDialog dlg;
if(dlg.DoModal() == IDCANCEL) return;
II no addrefs done for GetInterface
LPOLECLIENTSITE pClientSite =

(LPOLECLIENTSITE) pDoc->GetInterface(&IID_IOleClientSite);
ASSERT(pClientSite != NULL);
pDoc->DeleteContents();
VERIFY(::OleCreate(dlg.GetClassID(), IID_IOleObject,

OLERENDER_DRAW, NULL, pClientSite, pDoc->m_pTempStgSub,
(void**) &pDoc->m_lpOleObj) == S_OK);

SetViewAdvise();

pDoc->m_lpOleObj->DoVerb(OLEIVERB_SHOW, NULL, pClientSite, 0,
NULL, NULL); II OleRun doesn't show it

SetNames();
GetDocument()->SetModifiedFlag();
GetSize();
pDoc->UpdateAllViews(NULL);

(continued)

761

PAR T I V: ACTIVEX: COM, AUTOMATION, AND OLE

762

Figure 27-6. continued

void CEx27bView::OnUpdateEditlnsertobject(CCmdUI* pCmdUI)
(

pCmdUI-)Enable(GetDocument()-)m_lpOleObj == NULL):

void CEx27bView::OnLButtonDown(UINT nFlags. CPoint point)
{

TRACE("**Entering CEx27bView::OnLButtonDown -- point
"(%d. %d)\n". point.x. point.y):

if(m_tracker.Track(this. point. FALSE. NULL)) (
CClientDC dc(this):
OnPrepareDC(&dc):
m_rectTracker = m_tracker.m_rect:
dc.DPtoLP(m_rectTracker): II Update logical coords
GetDocument()-)UpdateAllViews(NULL):

TRACE("**Leaving CEx27bView::OnLButtonDown\n"):

void CEx27bView::OnLButtonDblClk(UINT nFlags. CPoint point)
(

if(m_tracker.HitTest(point) == CRectTracker: :hitNothing) return:
II Activate the object
CEx27bDoc* pDoc = GetDocument():
if(pDoc-)m_lpOleObj 1= NULL) (

LPOLECLIENTSITE pClientSite =
(LPOLECLIENTSITE) pDoc-)Getlnterface(&IID_IOleClientSite):

ASSERT(pClientSite 1= NULL):
VERIFY(pDoc-)m_lpOleObj-)DoVerb(OLEIVERB_OPEN. NULL. pClientSite.

0.GetSafeHwnd(). CRect(0. 0. 0. 0)) == S_OK):
SetNames():
GetDocument()-)SetModifiedFlag():

BOOL CEx27bView::OnSetCursor(CWnd* pWnd. UINT nHitTest. UINT message)
(

if(m_tracker.SetCursor(pWnd. nHitTest)) {
return TRUE:

else (
return CScrollView::OnSetCursor(pWnd. nHitTest. message):

(continued)

T WEN T Y - S EVE N: OLE Embedded Components and Containers

Figure 27-6. continued

//

void CEx27bView::SetViewAdvise()
{

CEx27bDoc* pDoc = GetDocument();
if(pDoc->m_lpOleObj 1= NULL) {

LPVIEWOBJECT2 pViewObj;
pDoc->m_lpOleObj->QueryInterface(IID_IViewObject2.

(void**) &pViewObj);
LPADVISESINK pAdviseSink =

(LPADVISESINK) pDoc->GetInterface(&IID_IAdviseSink);
VERIFY(pViewObj->SetAdvise(DVASPECT_CONTENT. 0. pAdviseSink)

== S_OK);
pViewObj->Release();

void CEx27bView::SetNames() // sets host names

CEx27bDoc* pDoc = GetDocument();
CString strApp = AfxGetApp()->m_pszAppName;
if(pDoc->m_lpOleObj 1= NULL) {

pDoc->m_lpOleObj->SetHostNames(strApp.AllocSysString(). NULL);

void CEx27bView::GetSize()
{

CEx27bDoc* pDoc = GetDocument();
if(pDoc->m_lpOleObj 1= NULL) {

SIZEL size; // Ask the component for its size
pDoc->m_lpOleObj->GetExtent(DVASPECT_CONTENT. &size);
m_rectTracker.right = m_rectTracker.left + size.cx:
m_rectTracker.bottom = m_rectTracker.top - size.cy;

BOOL CEx27bView::DoPasteObject(COleDataObject* pDataObject)
{

TRACE("Entering CEx27bView::DoPasteObject\n");
// Update command UI should keep us out of here if not
// CF_EMBEDDEDOBJECT
if (!pDataObject->IsDataAvailable(m_cfEmbedded» {

(continued)

763

PAR T I V: ACTIVEX: COM, AUTOMATION, AND OLE

764

Figure 27-6. continued

TRACE("CF_EMBEDDEDOBJECT format is unavailable\n");
return FALSE;

CEx27bDoc* pDoc = GetDocument();
II Now create the object from the IDataObject*.
II OleCreateFromData will use CF_EMBEDDEDOBJECT format if available.
LPOLECLIENTSITE pClientSite =

(LPOLECLIENTSITE) pDoc->Getlnterface(&IID_IOleClientSite);
ASSERT(pClientSite != NULL);
VERIFY(::OleCreateFromData(pDataObject->m_lpDataObject,

IID_IOleObject, OLERENDER_DRAW. NULL. pClientSite,
pDoc->m_pTempStgSub, (void**) &pDoc->m_lpOleObj) == S_OK);

return TRUE;

BOOL CEx27bView::DoPasteObjectDescriptor(COleDataObject* pDataObject)
{

TRACE("Entering CEx27bView::DoPasteObjectDescriptor\n");
STGMEDIUM stg;
FORMATETC fmt;
CEx27bDoc* pDoc = GetDocument();
if (!pDataObject->IsDataAvailable(m_cfObjDesc»

TRACE("OBJECTDESCRIPTOR format is unavailable\n"):
return FALSE;

SETFORMATETC(fmt. m_cfObjDesc, DVASPECT_CONTENT, NULL,
TYMED_HGLOBAL. -I);

VERIFY(pDataObject->GetData(m_cfObjDesc, &stg, &fmt»:

return TRUE;

II helper function used for clipboard and drag-drop
COleDataSource* CEx27bView::SaveObject()
{

TRACE("Entering CEx27bView::SaveObject\n");
CEx27bDoc* pDoc = GetDocument();
if (pDoc->m_lpOleObj != NULL) {

COleDataSource* pSource = new COleDataSource();

II CODE FOR OBJECT DATA
FORMATETC fmte;
SETFORMATETC(fmte, m_cfEmbedded, DVASPECT_CONTENT, NULL,

TYMED_ISTORAGE, -I);
STGMEDIUM stgm;
stgm.tymed = TYMED_ISTORAGE;

(continued)

T WEN T Y - S EVE N: OLE Embedded Components and Containers

Figure 27-6. continued

stgm.pstg = pDoc->m_pTempStgSub;
stgm.pUnkForRelease = NULL;
pDoc->m_pTempStgSub->AddRef(); II must do both!
pDoc->m_pTempStgRoot->AddRef();
pSource->CacheData(m_cfEmbedded, &stgm, &fmte);

II metafile needed too
MakeMetafilePict(pSource);

II CODE FOR OBJECT DESCRIPTION DATA
HGLOBAL hObjDesc = ::GlobalAlloc(GMEM_SHARE, sizeof(OBJECTDESCRIPTOR»;
LPOBJECTDESCRIPTOR pObjDesc =

(LPOBJECTDESCRIPTOR) ::GlobalLock(hObjDesc);
pObjDesc->cbSize = sizeof(OBJECTDESCRIPTOR);
pObjDesc->clsid = CLSID_NULL;
pObjDesc->dwDrawAspect = 0;
pObjDesc->dwStatus = 0;
pObjDesc->dwFullUserTypeName 0;
pObjDesc->dwSrcOfCopy = 0;
pObjDesc->sizel.cx 0;
pObjDesc->sizel.cy 0;
pObjDesc->pointl.x 0;
pObjDesc->pointl.y 0;
::GlobalUnlock(hObjDesc);
pSource->CacheGlobalData(m_cfObjDesc, hObjDesc);
return pSource;

return NULL;

BOOL CEx27bView::MakeMetafilePict(COleDataSource* pSource)
{

CEx27bDoc* pDoc = GetDocument();
COleDataObject dataObject;
LPDATAOBJECT pDataObj; II OLE object's IDataObject interface
VERIFY(pDoc->m_lpOleObj->QueryInterface(IID_IDataObject,

(void**) &pDataObj) == S_OK);
dataObject.Attach(pDataObj):
FORMATETC fmtem;
SETFORMATETC(fmtem, CF_METAFILEPICT, DVASPECT_CONTENT, NULL,

TYMED_MFPICT, -1);
if (!dataObject.IsDataAvailable(CF_METAFILEPICT, &fmtem»

TRACE("CF_METAFILEPICT format is unavailable\n");
return FALSE;

(continued)

765

PA R T I V: ACTIVEX: COM, AUTOMATION, AND OLE

766

Figure 27-6. continued

}

II Just copy the metafile handle from the OLE object
II to the clipboard data object
STGMEDIUM stgmm;
VERIFY(dataObject.GetData(CF_METAFILEPICT. &stgmm. &fmtem));
pSource->CacheData(CF_METAFILEPICT. &stgmm. &fmtem);
return TRUE;

Study the message map and the associated command handlers. They're
all relatively short, and they mostly call the OLE functions described earlier.
A few private helper functions need some explanation, however.

NOT E : You'll see many calls to a GetInterface function. This is a
member of class CCmdTarget and returns the specified OLE inter
face pointer for a class in your project. It's used mostly to get the
IOleClientSite interface pointer for your document. It's more efficient
than calling Extern alQueryln terface, but it doesn't increment the
object's reference count.

GetSize
This function calls IOleObject::GetSize to get the embedded object's extents,
which it converts to a rectangle for storage in the tracker.

SetNames
The SetNames function calls IOleObject::SetHostNames to send the container
application's name to the component.

Set Vie wA dvise
This function calls the embedded object's IViewObject2::SetAdvise function to
set up the advisory connection from the component object to the container
document.

MakeMetafilePict
The MakeMetafilePict function calls the embedded object's IDataObject::GetData
function to get a metafile picture to copy to the clipboard data object. A
metafile picture, by the way, is a Windows METAFllEPICT structure instance,
which contains a pointer to the metafile plus extent information.

SaveObject
This function acts like the SaveDib function in the EX25A example. It creates
a COleDataSource object with three formats: embedded object, metafile, and
object descriptor.

T WEN T Y - S EVE N: OLE Embedded Components and Containers

DoPasteObjectDescriptor
The DoPasteObjectDescriptor function pastes an object descriptor from the clip
board but doesn't do anything with it. It is necessary to call this function prior
to calling DoPasteObject.

DoPasteObject
This function calls OleCreateFromData to create an embedded object from an
embedded object format on the clipboard.

The CEx27bDoc Class
This class implements the IOleClientSite and IAdviseSink interfaces. Because of
our one-embedded-item-per-document simplification, we don't need to track
separate site objects. The documentlli the site. We're using the standard MFC
interface macros, and, as always, we must provide at least a skeleton function
for all interface members.

Look carefully at the functions XOleClientSite::SaveObject, XOleClientSite
::OnShowWindow, and XAdviseSink::On View Change in Figure 27-7 below. They're
the important ones. All other functions have at least a TRACE statement so that
you can see what functions the component or handler is trying to call. Look
also at the OnNewDocument, OnCloseDocument, and DeleteContents functions of
the CEx27b View class. Notice how the document is managing a temporary stor
age. The document's m_pTempStgSub data member holds the storage pointer
for the embedded object, and the m_lpOleObj data member holds the embed
ded object's IOleObject pointer.

EX27BDOC.H

#if !definedCAFX_EX27BDOC_H __ 1EAAB6DF_6011_11D0_848F_00400526305B __ INCLUDED_)
#define AFX_EX27BDOC_H __ 1EAAB6DF_6011_11D0_848F_00400526305B __ INCLUDED_

#if _MSC_VER >= 1000
/!pragma once
#endif II_MSC_VER >= 1000

void ITrace(REFIID iid, const char* str);

class CEx27bDoc : public CDocument
{

protected: II create from serialization only
CEx27bDoc();
DECLARE_DYNCREATE(CEx27bDoc)

Figure 27-7.
The container's CEx27bDoc class listing.

(continued)

767

PAR T I V: ACTIVEX: COM, AUTOMATION, AND OLE

768

Figure 27-7. continued

BEGIN_INTERFACE_PART(OleClientSite, IOleClientSite)
STDMETHOD(SaveObject)();
STDMETHOD(GetMoniker)(DWORD, DWORD, lPMONIKER*);
STDMETHOD(GetContainer)(lPOlECONTAINER*);
STDMETHOD(ShowObject)();
STDMETHOD(OnShowWindow)(BOOl);
STDMETHOD(RequestNewObjectlayout)();

END_INTERFACE_PART(OleClientSite)

BEGIN_INTERFACE_PART(AdviseSink, IAdviseSink)
STDMETHOD_(void,OnDataChange)(lPFORMATETC, lPSTGMEDIUM);
STDMETHOD_(void,OnViewChange)(DWORD, lONG);
STDMETHOD_(void,OnRename)(lPMONIKER);
STDMETHOD_(void,OnSave)();
STDMETHOD_(void,OnClose)();

END_INTERFACE_PART(AdviseSink)

friend class CEx27bView;
private:

lPOlEOBJECT m_lpOleObj;
lPSTORAGE m_pTempStgRoot;
lPSTORAGE m_pTempStgSub;
BOOl m_bHatch;
static const OlECHAR* s_szSub;

II Overrides
II ClassWizard generated virtual function overrides
11{{AFX_VIRTUAl(CEx27bDoc)
public:
virtual BOOl OnNewDocument();
virtual void Serialize(CArchive& ar);
virtual void OnCloseDocument();
virtual void DeleteContents();
protected:
virtual BOOl SaveModified();
1/}}AFX_VIRTUAl

II Implementation
public:

virtual -CEx27bDoc();
#ifdef _DEBUG

virtual void AssertValid() const;
virtual void Dump(CDumpContext& dc) const;

#endif

(continued)

T WEN T Y - S EVE N: OLE Embedded Components and Containers

Figure 27-7. continued

protected:

// Generated message map functions
protected:

J;

//({AFX_MSG(CEx27bDoc)
afx_msg void OnEditClearAll():
/ /} JAFX_MSG
DECLARE_MESSAGE_MAP()

//

//({AFX_INSERT_LOCATIONJJ
// Microsoft Developer Studio will insert additional declarations
// immediately before the previous line.

/lendif
// !defined(AFX_EX27BDOC_H __ IEAAB6DF_6011_11D0_848F_00400526305B __ INCLUDED_)

EX27BDOC.CPP

/linclude "stdafx.h"
/linclude "ex27b.h"

/linclude "ex27bDoc.h"

/lifdef _DEBUG
/ldefine new DEBUG_NEW
/lundef THIS_FILE
static char THIS_FILE[] = __ FILE __ ;
/lendif
const OLECHAR* CEx27bDoc::s_szSub = L"sub"; // static

//

// CEx27bDoc

IMPLEMENT_DYNCREATE(CEx27bDoc, CDocument)

BEGIN_MESSAGE_MAP(CEx27bDoc, CDocument)
//({AFX_MSG_MAP(CEx27bDoc)
ON_COMMAND(ID_EDIT_CLEAR_ALL, OnEditClearAll)
/ /} JAFX_MSG_MAP

END_MESSAGE_MAP()

(continued)

769

PA R T I V: ACTIVEX: COM, AUTOMATION, AND OLE

770

Figure 27-7. continued

BEGIN_INTERFACE_MAP(CEx27bDoc, CDocument)
INTERFACE_PART(CEx27bDoc, IID_IOleClientSite, OleClientSite)
INTERFACE_PART(CEx27bDoc, IID_IAdviseSink, AdviseSink)

END_INTERFACE_MAP()

//

// implementation of IOleClientSite

STDMETHODIMP_(ULONG) CEx27bDoc::XOleClientSite::AddRef()
{

TRACE ("CEx27bDoc: : XOl eCl i entSite: : AddRef\n") ;
METHOD_PROLOGUE(CEx27bDoc, OleClientSite)
return pThis->InternalAddRef():

STDMETHODIMP_(ULONG) CEx27bDoc::XOleClientSite::Release()
{

TRACE("CEx27bDoc::XOleClientSite::Release\n"):
METHOD_PROLOGUE(CEx27bDoc, OleClientSite)
return pThis->InternalRelease();

STDMETHODIMP CEx27bDoc::XOleClientSite::OueryInterface(
REFIID iid, LPVOID* ppvObj)

ITrace(iid, "CEx27bDoc::XOleClientSite::Ouerylnterface");
METHOD_PROLOGUE(CEx27bDoc, OleClientSite)
return pThis->InternalOueryInterface(&iid, ppvObj);

STDMETHODIMP CEx27bDoc::XOleClientSite::SaveObject()
{

TRACE("CEx27bDoc::XOleClientSite::SaveObject\n");
METHOD_PROLOGUE(CEx27bDoc, OleClientSite)
ASSERT_VALID(pThis);

LPPERSISTSTORAGE lpPersistStorage;
pThis->m_lpOleObj->OueryInterface(IID_IPersistStorage,

(void**) &lpPersistStorage);
ASSERT(lpPersistStorage != NULL);
HRESULT hr = NOERROR;
if (lpPersistStorage->IsDirty() == NOERROR)
{

// NOERROR == S_OK != S_FALSE, therefore object is dirty!
hr = ::OleSave(lpPersistStorage, pThis->m_pTempStgSub, TRUE);

(continued)

T WEN T Y - S EVE N: OLE Embedded Components and Containers

Figure 27-7. continued

if (hr != NOERROR)
hr = lpPersistStorage->SaveCompleted(NULL);

II Mark the document as dirty if save successful
pThis->SetModifiedFlag();

lpPersistStorage->Release();
pThis->UpdateAllViews(NULL);
return hr;

STDMETHODIMP CEx27bDoc::XOleClientSite::GetMoniker(
DWORD dwAssign, DWORD dwWhichMoniker, LPMONIKER* ppMoniker)

TRACE("CEx27bDoc::XOleClientSite::GetMoniker\n");
return E_NOTIMPL;

STDMETHODIMP CEx27bDoc::XOleClientSite::GetContainer(
LPOLECONTAINER* ppContainer)

TRACE("CEx27bDoc::XOleClientSite: :GetContainer\n");
return E_NOTIMPL;

STDMETHODIMP CEx27bDoc::XOleClientSite::ShowObject()
{

TRACE("CEx27bDoc::XOleClientSite::ShowObject\n");
METHOD_PROLOGUE(CEx27bDoc, OleClientSite)
ASSERT_VALID(pThis);
pThis->UpdateAllViews(NULL);
return NOERROR;

STDMETHODIMP CEx27bDoc::XOleClientSite::OnShowWindow(BOOL fShow)
{

TRACE("CEx27bDoc::XOleClientSite::OnShowWindow\n");
METHOD_PROLOGUE(CEx27bDoc, OleClientSite)
ASSERT_VALID(pThis);
pThis->m_bHatch = fShow;
pThis->UpdateAllViews(NULL);
return NOERROR;

(continued)

771

PAR T I V: ACTIVEX: COM, AUTOMATION, AND OLE

772

Figure 27-7. continued

STDMETHODIMP CEx27bDoc::XOleClientSite::RequestNewObjectLayout()
{

TRACE("CEx27bDoc: :XOleClientSite::RequestNewObjectLayout\n");
return E_NOTIMPL;

//

// implementation of IAdviseSink

STDMETHODIMP_(ULONG) CEx27bDoc::XAdviseSink::AddRef()
{

}

TRACE("CEx27bDoc: :XAdviseSink::AddRef\n");
METHOD_PROLOGUE(CEx27bDoc. AdviseSink)
return pThis->InternalAddRef();

STDMETHODIMP_(ULONG) CEx27bDoc::XAdviseSink::Release()
{

TRACE("CEx27bDoc::XAdviseSink::Release\n");
METHOD_PROLOGUE(CEx27bDoc. AdviseSink)
return pThis->InternalRelease();

STDMETHODIMP CEx27bDoc::XAdviseSink::Ouerylnterface(
REFIID iid. LPVOID* ppvObj)

ITrace(iid. "CEx27bDoc::XAdviseSink::Ouerylnterface");
METHOD_PROLOGUE(CEx27bDoc. AdviseSink)
return pThis->InternalOuerylnterface(&iid. ppvObj);

STDMETHODIMP_(void) CEx27bDoc::XAdviseSink::OnDataChange(
LPFORMATETC lpFormatEtc. LPSTGMEDIUM lpStgMedium)

TRACE("CEx27bDoc::XAdviseSink::OnDataChange\n");
METHOD_PROLOGUE(CEx27bDoc. AdviseSink)
ASSERT_VALID(pThis);

// Interesting only for advanced containers. Forward it such that
// containers do not have to implement the entire interface.

(continued)

T WEN T Y - S EVE N: OLE Embedded Components and Containers

Figure 27-7. continued

STDMETHODIMP_(void) CEx27bDoc: :XAdviseSink::OnViewChange(
DWORD aspects, LONG /*lindex*/)

TRACE("CEx27bDoc::XAdviseSink::OnViewChange\n");
METHOD_PROLOGUE(CEx27bDoc, AdviseSink)
ASSERT_VALID(pThis);

pThis-)UpdateAllViews(NULL); // the really important one

STDMETHODIMP_(void) CEx27bDoc::XAdviseSink::OnRename(
LPMONIKER /*lpMoniker*/)

TRACE("CEx27bDoc::XAdviseSink::OnRename\n");
// Interesting only to the OLE link object. Containers ignore this.

STDMETHODIMP_(void) CEx27bDoc::XAdviseSink::OnSave()
(

TRACE("CEx27bDoc::XAdviseSink::OnSave\n");
METHOD_PROLOGUE(CEx27bDoc, AdviseSink)
ASSERT_VALID(pThis);

pThis-)UpdateAllViews(NULL);

STDMETHODIMP_(void) CEx27bDoc: :XAdviseSink::OnClose()
(

TRACE("CEx27bDoc::XAdviseSink::OnClose\n");
METHOD_PROLOGUE(CEx27bDoc, AdviseSink)
ASSERT_VALID(pThis);

pThis-)UpdateAllViews(NULL);

//

// CEx27bDoc construction/destruction

CEx27bDoc::CEx27bDoc()
(

m_lpOleObj = NULL;
m_pTempStgRoot = NULL;
m_pTempStgSub = NULL;
m_bHatch = FALSE;

(continued)

773

PA R T I V: ACTIVEX: COM, AUTOMATION, AND OLE

774

Figure 27-7. continued

CEx27bDoc::-CEx27bDoc()
{

}

BaaL CEx27bDoc::OnNewDocument()
{

TRACE(nEntering CEx27bDoc::OnNewDocument\nn);
II Create a structured storage home for the object (m_pTempStgSub).
II This is a temporary file -- random name supplied by OLE.
VERIFY(::StgCreateDocfile(NULL,

STGM_READWRITEISTGM_SHARE_EXCLUSIVEISTGM_CREATEI
STGM_DELETEONRELEASE,
0, &m_pTempStgRoot) == S_OK);

ASSERT(m_pTempStgRoot != NULL);

VERIFY(m_pTempStgRoot->CreateStorage(OLESTR(nsubn),
STGM_CREATEISTGM_READWRITEISTGM_SHARE_EXCLUSIVE,
0, 0, &m_pTempStgSub) == S_OK);

ASSERT(m_pTempStgSub != NULL);
return CDocument::OnNewDocument();

11
II CEx27bDoc serialization

void CEx27bDoc::Serialize(CArchive& ar)
{

II no hookup to MFC serialization
if (ar.IsStoring())
{

else
{

II TODO: add storing code here

II TODO: add loading code here

11111111111111111111//111/11111111/111/1111/111111///1//1111/111/1111/1//1
// CEx27bDoc diagnostics

#ifdef _DEBUG
void CEx27bDoc::AssertValid() const
{

CDocument::AssertValid();

(continued)

T WEN T Y - S EVE N: OLE Embedded Components and Containers

Figure 27-7. continued

void CEx27bDoc::Dump(CDumpContext& dc) const
{

CDocument::Dump(dc);

liendif //_DEBUG

//

// CEx27bDoc commands

void CEx27bDoc::OnCloseDocument()
{

m_pTempStgSub->Release(); // must release BEFORE calling base class
m_pTempStgRoot->Release();
CDocument::OnCloseDocument();

void CEx27bDoc::DeleteContents()
{

if(m_lpOleObj != NULL) {
// If object is running. close it. which releases our
// IOleClientSite
m_lpOleObj->Close(OLECLOSE_NOSAVE);
m_lpOleObj->Release(); // should be final release (or else ...)
m_lpOleObj = NULL;

void CEx27bDoc::OnEditClearAll()
{

DeleteContents();
UpdateAllViews(NULL);
SetModifiedFlag();
m_bHatch = FALSE;

BOOL CEx27bDoc::SaveModified()
{

}

// Eliminate "save to file" message
return TRUE;

void ITrace(REFIID iid. const char* str)
{

}

OLECHAR* lpszIID;
::StringFromIID(iid. &lpszIID);
CString strIID = lpszIID;
TRACE("%s - %s\n". (const char*) strIID. (const char*) str);
AfxFreeTaskMem(lpszIID);

775

PAR T I V: ACTIVEX: COM, AUTOMATION, AND OLE

The EX27C Example-
An OLE Embedded Component

You've already seen an MFC embedded component with in-place-activation
capability (EX27A). Now you'll see a bare-bones component program that
activates an embedded object in a separate window. It doesn't do much ex
cept display text and graphics in the window, but you'll learn a lot if you study
the code. The application started as an SDI AppWizard Automation compo
nent with the document as the creatable object. The document's IDispatch
interface was ripped out and replaced with IOleObject, IDataObject, and IPersist
Storage interfaces. All the template server code carries through, so the docu
ment, view, and main frame objects get created when the container starts the
component.

Open and build the EX27C project now. Run the application to register it,
and then try it with the EX27B container or any other container program.

The CEx27cView Class
This class is straightforward. The only member functions of interest are the
OnDraw function and the OnPrepareDC function, as shown here:

void CEx27cView::OnDraw(CDC* pDC)
{

CEx27cDoc* pDoc = GetDocument();
ASSERT_VALID(pDoc);

pDC->Rectangle(CRect(500. -1000. 1500. -2000»;
pDC~?:rextOut(0. 0.,pQoc:')lILstrText);

void CEx27cView::OnPrepareDC(CDC* pDC. CPrintInfo* pInfo)
{

pDC")S.etMa·pM()de(MM":'H.IM.ETRI C):

The CEx27cDoc Class

776

This class does most of the component's work and is too qig to list here. Fig
ure 27-8 lists the header file, but you'll have to go to the companion CD-ROM
for the implementation code. A few of the important functions are listed here,
however.

T WEN T Y - S EVE N: OLE Embedded Components and Containers

EX27CDOC.H

#if !defined(AFX_EX27CDOC_H __ 1EAAB6F5_6011_11D0_848F_00400526305B __ INCLUDED_)
#define AFX_EX27CDOC_H __ 1EAAB6F5_6011_11D0_848F_00400526305B __ INCLUDED_

#if _MSC_VER >= 1000
#pragma once
#endif II _MSC_VER >= 1000

extern const CLSID clsid; II defined in ex27c.cpp
void ITrace(REFIID iid. const char* str);

#define SETFORMATETC(fe. cf. asp. td. med. li) \
«fe).cfFormat=cf. \
(fe).dwAspect=asp. \
(fe).ptd=td. \
(fe).tymed=med. \
(fe).l index:::l i)

class CEx27cDoc : public CDocument
{

friend class CEx27cView;
private:

CString m_strText;

LPOLECLIENTSITE m_lpClientSite;
LPOLEADVISEHOLDER m_lpOleAdviseHolder;
LPDATAADVISEHOLDER m_lpDataAdviseHolder;
CString m_strContainerApp;
CString m_strContainerObj;
HGLOBAL MakeMetaFile();

BEGIN_INTERFACE_PART(OleObject. IOleObject)
STDMETHOD(SetClientSite)(LPOLECLIENTSITE);
STDMETHOD(GetClientSite)(LPOLECLIENTSITE*);
STDMETHOD(SetHostNames)(LPCOLESTR. LPCOLESTR);
STDMETHOD(Close)(DWORD);
STDMETHOD(SetMoniker)(DWORD. LPMONIKER);
STDMETHOD(GetMoniker)(DWORD. DWORD. LPMONIKER*);
STDMETHOD(InitFromData)(LPDATAOBJECT. BOOL. DWORD);
STDMETHOD(GetClipboardData)(DWORD. LPDATAOBJECT*);
STD~ETHOD(DoVerb)(LONG. LPMSG. LPOLECLIENTSITE. LONG.

HWND. LPCRECT);
STDMETHOD(EnumVerbs)(LPENUMOLEVERB*);
STDMETHOD(Update)();

Figure 27-8.
The component's CEx27 eDoe class handler file listing.

(continued)

777

PAR T I V: ACTIVEX: COM, AUTOMATION, AND OLE

778

Figure 27-8. continued

STDMETHOD(IsUpToDate)();
STDMETHOD(GetUserClassID)(lPClSID);
STDMETHOD(GetUserType)(DWORD. lPOlESTR*);
STDMETHOD(SetExtent)(DWORD. lPSIZEl);
STDMETHOD(GetExtent)(DWORD. lPSIZEl);
STDMETHOD(Advise)(lPADVISESINK. lPDWORD);
STDMETHOD(Unadvise)(DWORD);
STDMETHOD(EnumAdvise)(lPENUMSTATDATA*);
STDMETHOD(GetMiscStatus)(DWORD. lPDWORD);
STDMETHOD(SetColorScheme)(lPlOGPAlETTE);

END_INTERFACE_PART(OleObject)

BEGIN_INTERFACE_PART(DataObject. IDataObject)
STDMETHOD(GetData)(lPFORMATETC. lPSTGMEDIUM);
STDMETHOD(GetDataHere)(lPFORMATETC. lPSTGMEDIUM);
STDMETHOD(QueryGetData)(lPFORMATETC);
STDM~THOD(GetCanonicalFormatEtc)(lPFORMATETC. lPFORMATETC);
STDMETHOD(SetData)(lPFORMATETC. lPSTGMEDIUM. BOOl);
STDMETHOD(EnumFormatEtc)(DWORD. lPENUMFORMATETC*);
STPMETHOD(DAdvise)(lPFORMATETC. DWORD. lPADVISESINK. lPDWORD);
STDMETHOD(DUnadvise)(DWORD);
STDMETHOD(EnumDAdvise)(lPENUMSTATDATA*);

END_INTERFACE_PART(DataObject)

BEGIN_INTERFACE_PART(PersistStorage. IPersistStorage)
STDMETHOp(GetClassID)(lPClSID);
STDMETHOD(IsDirty)();
STDMETHOO(InitNew)(lPSTORAGE);
STDMETHOD(load)(lPSTORAGE);
STDMETHOD(Save)(lPSTORAGE. BOOl);
STDMETHOD(SaveCompleted)(lPSTORAGE);
STPMETHOD(HandsOffStorage)();

END_INTERFACE_PART(PersistStorage)

protected: II Create from serialization only
CEx27cDoc();
DEClARE_DYNCREATE(CEx27cDoc)

II Overrides
II ClassWizard generated virtual function overrides
11{{AFX_VIRTUAl(CEx27cDoc)
public:
virtual BOOlOnNewDocument();
virtual void Serialize(CArchive& ar);

(continued)

T WEN T Y • S EVE N: OLE Embedded Components and Containers

Figure 27·8. continued

virtual void OnFinalRelease();
virtual void OnCloseDocument();
protected:
virtual BOOl SaveModified();
/ /} }AFX_VIRTUAl

// Implementation
public:

virtual -CEx27cDoc();
#ifdef _DEBUG

virtual void AssertValid() const;
virtual void Dump(CDumpContext& dc) const;

#endif

// Generated message map functions
public:

//{{AFX_MSG(CEx27cDoc)
afx_msg void OnModify();
afx_msg void OnFileUpdate();
afx_msg void OnUpdateFileUpdate(CCmdUI* pCmdUI);
/ /} }AFX_MSG
DEClARE_MESSAGE_MAP()

} ;

//

//{{AFX_INSERT_lOCATION}}
// Microsoft Developer Studio will insert additional declarations
// immediately before the previous line

#endif
// !defined(AFX_EX27CDOC_H __ IEAAB6F5_6011_11D0_848F_00400526305B __ INClUDED_)

Here's a list of the important interface functions in ex27cDoc.cpp:

XOleObject::SetClientSite
XOleObject::Do Verb
XOleObject: :Advise
XDataObject:: GetData
XDataObject: : Query GetData
XDataObject: :DAdvise
XPersistStorage::GetClassID
XPersistStorage: :InitNew
XPersistStorage: :Load
XPersistStorage:: Save

779

PAR T I V: ACTIVEX: COM, AUTOMATION, AND OLE

780

You've seen the container code that draws a metafile. Here's the com
ponent code that creates it. The object handler calls the component's XData
Object::GetData function when it needs a metafile. This GetData implementa
tion calls a helper function, MakeMetaFile, which creates the metafile picture.
Compare the drawing code with the drawing code in CEx27cView::OnDraw.

STDMETHODIMP CEx27cDoc::XDataObject: :GetData(
lPFORMATETC lpFormatEtc, lPSTGMEDIUM lpStgMedium)

TRACE("CEx27cDoc::XDataObject::GetData -- %d\n",
lpFormatEtc->cfFormat);

METHOD_PROlOGUE(CEx27cDoc, DataObject)
ASSERT_VAlID(pThis);

if (lpFormatEtc->cfFormat != CF_METAFIlEPICT) {
return S_FAlSE;

HGlOBAl hPict = pThis->MakeMetaFile();
lpStgMedium->tymed = TYMED_MFPICT;
lpStgMedium->hMetaFilePict = hPict;
lpStgMedium->pUnkForRelease = NUll;
return S_OK;

HGlOBAl CEx27cDoc::MakeMetaFile
{

HGlOBAl hPict;
CMetaFileDC dcm;
VERIFY(dcm.Create(»;
CSize size(5000, 5000); II initial size of object in Excel & Word
dcm.SetMapMode(MM_ANISOTROPIC);
dcm.SetWindowOrg(0,0);
dcm.SetWindowExt(size.cx, -size.cy);
II drawing code
dcm.Rectangle(CRect(500, -1000, 1500, -2000»;
CFont font;
font.CreateFont(-500, 0, 0, 0, 400, FALSE, FALSE, 0,

ANSI_CHARSET, OUT_DEFAULT_PRECIS,
CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY,
DEFAULT_PITCH IFF_SWISS, "Arial");

CFont* pFont = dcm.SelectObject(&font);
dcm.TextOut(0, 0, m_strText);
dcm.SelectObject(pFont);

T WEN T Y - S EVE N: OLE Embedded Components and Containers

HMETAFILE hMF = dem.Close();
ASSERT(hMF != NULL);
hPiet = ::GlobalAlloe(GMEM_SHAREIGMEM_MOVEABLE. sizeof(METAFILEPICT»;
ASSERT(hPiet 1= NULL);
LPMETAFILEPICT lpPiet;
lpPiet = (LPMETAFILEPICT) ::GlobalLoek(hPiet);
ASSERT(lpPiet 1= NULL);
lpPiet->mm = MM_ANISOTROPIC;
lpPiet->hMF = hMF;
lpPiet->xExt = size.ex;
lpPiet->yExt = size.ey; II HIMETRIC height
::GlobalUnloek(hPiet);
return hPiet;

The XOleObject::Advise and XDataObject::DAdvise functions are similar.
Both call global OLE functions to set up OLE advise holder objects that can
manage multiple advise sinks. (In this program, there's only one advise sink
per OLE advise holder object.) The XOleObject::Advise function, listed below,
establishes an OLE advise holder object with the IOleAdviseHolder interface.
Other document functions call IOleAdviseHolder::SendOnClose and SendOnSave,
which in turn call IAdviseSink::OnClose and OnSave for each attached sink.

STDMETHODIMP CEx27eDoe::XOleObjeet::Advise(
IAdviseSink* pAdvSink. DWORD* pdwConneetion)

{

TRACE("CEx27eDoe::XOleObjeet::Advise\n");
METHOD_PROLOGUE(CEx27eDoe. OleObjeet)
ASSERT_VALID(pThis);
*pdwConneetion = 0;
if (pThis->m_lpOleAdviseHolder == NULL &&

::CreateOleAdviseHolder(&pThis->m_lpOleAdviseHolder)
1= NOERROR) {

return E_OUTOFMEMORY;

ASSERT(pThis->m_lpOleAdviseHolder 1= NULL);
return pThis->m_lpOleAdviseHolder->Advise(pAdvSink. pdwConneetion);

The framework calls the OnModify function when the user chooses Modify
from the EX27C-MAIN menu. The user enters a string through a dialog, and
the function sends the OnDataChange notification to the object handler's data
advise sink. (Figure 27-5 on page 746 illustrates the advisory connections.)

781

PA R T I V: ACTIVEX: COM, AUTOMATION, AND OLE

782

Here is the OnModify function code:

void CEx27cDoc::OnModify()
{

}

CTextDialog dlg;
dlg.m_strText = m_strText;
if (dlg.DoModal() == lDOK)

m_strText = dlg.m_strText;
UpdateAllViews(NULL); II redraw view
II Notify the client that the metafile has changed.
II Client must call lViewObject::SetAdvise.
LPDATAOBJECT lpDataObject =

(LPDATAOBJECT) Getlnterface(&llD_lDataObject);
HRESULT hr =

m_lpDataAdviseHolder-)SendOnDataChange(lpDataObject, 0, NULL);
ASSERT(hr == NOERROR);
SetModifiedFlag(); II won't update without this

The framework calls the OnFileUpdate function when the user chooses
Update from the File menu. The f~nction calls IOleClientSite::SaveObject, which
in turn causes the container to save the metafile and the object's native data
in the storage. The function also sends the OnSave notification back to the
client's advise sink. Here is the OnFileUpdate function code:

void CEx27cDoc::OnFileUpdate()
{

if (m_lpClientSite == NULL) return;
VERlFY(m_lpClientSite-)SaveObject() NOERROR);
if (m_lpOleAdviseHolder 1= NULL)

m_lpOleAdviseHolder-)SendOnSave();
SetModifiedFlag(FALSE);

PAR T V

DATABASE
MANAGEMENT

C HAP T E R TWENTY·E G H T

Database Management
with Microsoft ODBC

Microcomputers became popular, in part, because businesspeople saw them
as a low-cost means of tracking inventory, processing orders, printing payroll
checks, and so forth. Business applications required fast access to individual
records in a large database. One of the first microcomputer database tools was
dBASE II, a single-user product with its own programming language and file
format. Today Windows programmers have a wide choice of programmable
database management systems (DBMSs), including Powersoft PowerBuilder,
Borland Paradox, Microsoft Access, and Microsoft FoxPro. Most of these prod
ucts can access both local data and remote data on a central computer. The
latter case requires the addition of database server software such as ORACLE
or Microsoft SQL Server.

NOT E : Microsoft SQL Server is included with the Enterprise
Edition of Visual C++.

How do you, as an MFC programmer, fit into the picture? Visual C++
contains all the components you'll need to write C++ database applications
for Microsoft Windows. Indeed, the product contains two separate database
access systems: ODBC (Open Database Connectivity) and DAO (Data Access
Objects). This chapter covers the ODBC standard, which consists of an exten
sible set of dynamic link libraries (DLLs) that provide a standard database ap
plication programming interface. ODBC is based on a standardized version
of SQL (Structured Query Language). With ODBC and SQL, you can write
database access code that is independent of any database product.

Visual C++ includes tools and MFC classes for ODBC, and that's the
subject of this chapter. You'll learn the basics of ODBC, and you'll see four
sample programs-one that uses the ODBC rowset with support from the MFC
CRecordset class (EX28A), one that uses the MFC CRecordView class (EX28B),

785

PAR TV: DATABASE MANAGEMENT

one that uses multiple recordsets (EX2SC), and one that uses the CRecordset
class without binding (EX2SD).

The Advantages of Database Management

786

The serialization process, introduced in Chapters 16 and 17, ties a document
object to a disk file. All the document's data must be read into memory when
the document is opened, and all the data must be written back to disk when
an updated document is closed. Obviously, you can't serialize a document
that's bigger than the available virtual memory. Even if the document is small
enough to fit in memory, you might not need to read and write all the data
every time the program runs.

You could program your own random access disk file, thus inventing your
own DBMS, but you probably have enough work to do already. Besides, using
a real DBMS gives you many advantages, including the following:

[] Use of standard file formats-Many people think of dBASE/Xbase
DBF files when they think of database formats. This is only one da
tabase file format, but it's a popular one. A lot of data is distributed
in DBF files, and many programs can read and write in this format.
Lately the Microsoft Access MDB format has become popular too.
With the MDB format, all of a database's tables and indexes can be
contained in a single disk file.

Indexed file access-If you need quick access to records by key (a
customer name, for example), you need indexed file access. You
could always write your own B-tree file access routines, but that's a
tediousjob that's been done already. All DBMSs contain efficient
indexed access routines.

Data integrity safeguards-Many professional DBMS products have
procedures for protecting their data. One example is transaction
processing. A transaction encompasses a series of related changes.
If the entire transaction can't be processed, it is rolled back so that
the database reverts to its original state before the transaction.

Multiuser access control-If your application doesn't need multi
user access now, it might in the future. Most DBMSs provide record
locking to prevent interference among simultaneous users. Some
multiuser DBMSs use the client-server model, which means that
most processing is handled on a single database server computer;
the workstations handle the user interface. Other multiuser DBMSs

T WEN T Y - E I G H T: Database Management with Microsoft ODSe

handle database processing on the workstations, and they control
each workstation's access to shared files.

Structured Query Language
You could not have worked in the software field without at least hearing about
SQL, a standard database access language with its own grammar. In the SQL
world, a database is a collection of tables that consist of rows and columns.
Many DBMS products support SQL, and many programmers know SQL. The
SQL standard is continually evolving, and SQL grammar varies among prod
ucts. SQL extensions, such as blob (binary large object) capability, allow stor
age of pictures, sound, and complex data structures.

The OOBe Standard
The Microsoft Open Database Connectivity (ODBC) standard defines not only
the rules of SQL grammar but also the C-Ianguage programming interface to
an SQL database. It's now possible for a single compiled C or C++ program
to access any DBMS that has an ODBC driver. The ODBC Software Develop
ment Kit (SDK), included with Visual C++, contains 32-bit drivers for DBF files,
Microsoft Access MDB databases, Microsoft Excel XLS files, Microsoft FoxPro
files, ASCII text files, and Microsoft SQL Server databases.

Other database companies, including Oracle, Informix, Progress, Ingres,
and Centura Software, provide ODBC drivers for their own DBMSs. If you
develop an MFC program with the dBASE/Xbase driver, for example, you can
run the same program with an Access database driver. No recompilation is
necessary-the program simply loads a different DLL.

Not only can C++ programs use ODBC but other DBMS programming
environments can also take advantage of this new standard. You could write
a C++ program to update an SQL Server database, and then you could use an
off-the-shelf ODBC-compatible report writer to format and print the data.
ODBC thus separates the user interface from the actual database management
process. You no longer have to buy your interface tools from the same com
pany that supplies the database engine.

Some people have criticized ODBC because it doesn't let programmers
take advantage of the special features of some particular DBMS. Well, that's
the whole point! Programmers need learn only one application programming
interface (API), and they can choose their software components based on
price, performance, and support. No longer will developers be locked into
buying all their tools from their database suppliers.

787

PA R TV: DATABASE MANAGEMENT

What's the future of ODBC? That's a difficult question. Microsoft is
driving the standard, but it isn't actually "selling" ODBC; it's giving ODBC away
for the purpose of promoting other products. Other companies are selling
their own proprietary ODBC libraries. Meanwhile, Microsoft has introduced
OLE-based Data Access Objects (DAO), which relies on the Jet database en
gine from Microsoft Access. (Chapter 29 describes DAO and compares its fea
tures with the features of ODBC.) And if that wasn't enough, Microsoft is in
the process of introducing OLE DB, an alternative to ODBC based on the
Component Object Model (COM). It's not clear yet how OLE DB will coex
ist with the Internet.

The ODeC Architecture
ODBC's unique DLL-based architecture makes the system fully modular. A
small top-level DLL, ODBC32.DLL, defines the API. ODBC32.DLL loads
database-specific DLLs, known as drivers, during program execution. With the
help of the Windows Registry (maintained by the ODBC Administrator mod
ule in the Windows Control Panel), ODBC32.DLL tracks which database
specific DLLs are available and thus allows a single program to access data in
several DBMSs simultaneously. A program could, for example, keep some
local tables in DBF format and use other tables controlled by a database server.
Figure 28-1 shows the 32-bit ODBC DLL hierarchy.

Note from this figure that many standard database formats can be ac
cessed through the Microsoft Access Jet database engine, a redistributable
module packaged with Visual C++. If, for example, you access a DBF file
through theJet engine, you're using the same code that Microsoft Access uses.

ODec SDK Programming

788

If you program directly at the ODBC C-Ianguage API level, you must know
about three important ODBC elements: the environment, the connection, and
the statement. All three are accessed through handles.

First you need an environment that establishes the link between your
program and the ODBC system. An application usually has only one environ
ment handle.

Next you need one or more connections. The connection references a
specific driver and data source combination. You might have several connec
tions to subdirectories that contain DBF files, and you might have connections
to several SQL servers on the same network. A specific ODBC connection can
be hardwired into a program, or the user can be allowed to choose from a list
of available drivers and data sources.

T WEN T Y - E I G H T: Database Management with Microsoft ODBC

Figure 28-1.

Local DBF
files

32-bit ODBC architecture.

ODBCCR32.DLL
cursor library

Local MDB
files

Remote shared
database

ODBC32.DLL has a built-in Windows dialog box that lists the connec
tions that are defined in the Registry (under HKEY_LOCAL_MACHINE
\SOFTWARE\ODBC). Once you have a connection, you need an SQL
statement to execute. The statement might be a query, such as this:

SELECT FNAME, LNAME, CIlY FROM AUTHORS

WHERE STATE = 'UT' ORDER BY LNAME

Or the statement could be an update statement, such as this:

UPDATE AUTHORS SET PHONE = '801 232-5780'

WHERE ID = '357-86-4343'

Because query statements need a program loop to process the returned
rows, your program might need several statements active at the same time.
Many ODBC drivers allow multiple active statement handles per connection.

Look again at the SQL statement above. Suppose there were 10 authors
in Utah. ODBC lets you define the query result as a block of data, called a

789

PAR TV: DATABASE MANAGEMENT

rowset, which is associated with an SQL statement. Through the ODBC SDK
function SQLExtendedFetch, your program can move forward and backward
through the 10 selected records by means of an ODBC cursor. This cursor is
a programmable pointer into the rowset.

What if, in a multiuser situation, another program modified (or deleted)
a Utah author record while your program was stepping through the rowset?
With an ODBC Level 2 driver, the rowset would probably be dynamic and
ODBC could update the rowset whenever the database changed. A dynamic
rowset is called a dynaset. The Jet engine supports ODBC Level 2, and thus
it supports dynasets.

Visual C++ includes the ODBC cursor library module ODBCCR32.DLL,
which supports static rowsets (called snapshots) for Level 1 drivers. With a
snapshot, a SELECT statement causes ODBC to make what amounts to a lo
cal copy of the 10 author records and build an in-memory list of pointers to
those records. These records are guaranteed not to change once you've
scrolled through them; so in a multiuser situation, you might need to requery
the database periodically to rebuild the snapshot.

The MFC OOBC Classes
CRecordset and CDatabase

790

With the MFC classes for Windows, you use C++ objects instead of window
handles and device context handles; with the MFC ODBC classes, you use
objects instead of connection handles and statement handles. The environ
ment handle is stored in a global variable and is not represented by a C++
object. The two principal ODBC classes are CDatabase and CRecordset. Objects
of class CDatabase represent ODBC connections to data sources, and objects
of class CRecordset represent scrollable rowsets. The Visual C++ documentation
uses the term "recordset" instead of "rowset" to be consistent with Microsoft
Visual Basic and Microsoft Access. You seldom derive classes from CDatabase,
but you generally derive classes from CRecordset to match the columns in your
database tables.

For the author query in the previous section, you would derive (with the
help of Class Wizard) a CAuthorSet class from CRecordset that had data members
for first name, last name, city, state, and zip code. Your program would con
struct a CAuthorSet object (typically embedded in the document) and call its
inherited Open member function. Using the values of parameters and data
members, CRecordset::Open constructs and opens a CDatabaseobject; this func
tion issues an SQL SELECT statement and then moves to the first record. Your
program would then call other CRecordset member functions to position the

T WEN T V - E I G H T: Database Management with Microsoft ODSe

ODBC cursor and exchange data between the database fields and the
CAuthorSet data members. When the CAuthorSetobject is deleted, the recordset
is closed and, under certain conditions, the database is closed and deleted.
Figure 28-2 shows the relationships between the C++ objects and the ODBC
components.

CDatabase object

'm_hdbc

I

Figure 28-2.

CAuthorSet object
(embedded in document)

MFC ODBC class database relationships.

It's important to recognize that the CAuthorSet object contains data
members that represent only one row in a table, the so-called "current record."
The CRecordset class, together with the underlying ODBC rowset code, man
ages the database dynaset or snapshot.

NOT E: It's possible to have several active dynasets or snapshots
per data source, and you can use multiple data sources within the
same program.

The important CRecordset member functions discussed in this chapter are
summarized in the table on the following page.

791

PAR TV: DATABASE MANAGEMENT

Function

Open

AddNew

Update

Delete

Edit

IsBOF

IsEOF

MoveNext

MoveFirst

MoveLast

MovePrev

GetDefaultConnect

GetDefaultSQL

DoFieldExchange

GetStatus

Description

Opens the recordset.

Prepares to add a new record to the table.

Completes an AddNew or Edit operation by saving the new
or edited data in the data source.

Deletes the current record from the recordset.

Prepares to implement changes on the current record.

Determines whether the recordset has been positioned
before the first record.

Determines whether the recordset has been positioned
after the last record.

Sets the current record to the next record or to the next
rowset.

Sets the current record to the first record in the recordset.

Sets the current record to the last record or to the last
rowset.

Sets the current record to the previous record or to the
previous rowset.

Gets the default connect string for the data source on
which the recordset is based.

Gets the default SQL string.

Exchanges data between the recordset data fields and the
corresponding record on the data source.

Gets the index of the current record in the recordset and
the final count status.

GetRecordCount Determines the highest-numbered record yet encountered
as the user moves through the records.

GetODBCFieldCount Gets the number of fields in the recordset object.

Get ODB CFieldlnfo Gets information about the fields in the recordset.

Counting the Rows in a Recordset

792

It's difficult to know how many records are contained in an ODBC recordset.
ODBC doesn't provide an accurate count of the rows in a recordset until
you've read past the end. Until that time, the count returned from the CRecord
set::GetRecordCount member function is a "high-water mark" that returns only
the last row accessed by CRecordset::MoveNext. The CRecordset::GetStatus func
tion returns a CRecordsetStatus object, which has a data member m_bRecord
CountFinal that indicates whether the count is final.

T WEN T Y - E I G H T: Database Management with Microsoft DOSe

The CRecordset::MoveLastfunction does not register the record count for
you, even for dynasets. If you really want to know how many records are in
cluded in a recordset, you must loop through the whole table with MoveNext
calls. If your program adds or deletes a record or if another user adds or deletes
a record, the record count is not adjusted.

Processing OOBC Exceptions
Many MFC ODBC calls don't return an error code but instead throw a CDB
Exception object, which contains a string that describes the error. Suppose you
are trying to delete a record from a table in an Access database. Access might
be enforcing referential integrity rules, which means that you're not allowed
to delete that row because a row in another table depends on it. If you call
CRecordset::Delete, you'll see an ODBC error message box that came from the
MFC base classes.

You certainly appreciate the error message, but now ODBC has "lost its
place" in the recordset, and there is no longer a current record. Your program
needs to detect the error so that it won't call functions, such as CRecordset
::MoveNext, that depend on a current record. You must handle the exception
in this way:

try
m_pSet->Delete();

catch(CDBException* e)
AfxMessageBox(e->m_strError);
e->Delete();
m_pSet->MoveFirst(); II lost our place!
UpdateData(FALSE);
return;

m_pSet->MoveNext();

The Student Registration Database
The Visual C++ Enroll tutorial uses a ready-made sample Access database
(STDREG32.MDB) that tracks students, classes, and instructors. (See Tutorial
Samples under Visual C++\ VisuaIC++ Samples\MFC Samples in the online
documentation.) Figure 28-3 on the following page shows the four database
tables and the relationships among them. The boldfaced fields are indexed
fields, and the 1-00 relationships represent referential integrity constraints.
If there's at least one section for the course MATHIOI, for example, Access
prevents the user from deleting the MATHIOI course record.

793

PA R TV: DATABASE MANAGEMENT

Figure 28-3.
The Student Registration database schema.

The EX28A Recordset Example

794

You can lise AppWizard to generate a complete forms-oriented database ap
plication, and that's what the Enroll tutorial is all about. If customers or us
ers wanted a straightforward business database application like that, however,
they probably wouldn't call in a Visual C++ programmer; instead, they might
use a less technical tool, such as Microsoft Access. Visual C++ and the MFC
ODBC classes are more appropriate for a complex application that might have
an incidental need for database access. You can also use the classes to make
your own general-purpose database query tool.

The EX28A program isolates the database access code from user inter
face code so that you can see how to add ODBC database capability to any MFC
application. You'll be using ClassWizard to generate a CRecordsetclass, but you
won't be using the CRecordViewclass that AppWizard generates when you ask
for a database view application.

The EX28A application is fairly simple. It displays the rows from the stu
dent database table in a scrolling view, as shown in the screen on page 800.
The student table is part of the Student Registration (Microsoft Access 97)
sample database that's included with Visual C++.

Here are the steps for building the EX28A example:

T WEN T Y - E I G H T: Database Management with Microsoft ODBC

1. Run AppWizard to produce \vcpp32\ex28a\. Specify an SDI appli
cation (Step 1 dialog box) with CScrollViewas the view's class type (Step 6
dialog box). Select the Header Files Only option from the AppWizard
Step 2 dialog box, as shown here:

Sa.of;
Sue ~s: ...

~~~==111 What database SUPPOlt would you ~ke to include? 

r NQne 

Co' E~;.~.eTi!!~s:~n.i~ 
r Q.ataba~e view wahout me ~UPpOlt 

r Databa~e ~;ew !!:lith me SUppOI! 

~======='9iiiiii\llf you incbJde a database view, you must select a 
data soulce. 

~ata li~~I~e... I 
No data source is $elected. 

< ll.~ck ' " U"xt> finish Cancel 

2. Copy the Student Registration database to your hard disk. You 
can find the file stdreg32.mdb in the \DEVSTUDIO\Vc\Samples\Mfc
\Database\Stdreg directory on the Visual C++ CD-ROM. Copy it to the 
new project directory on your hard disk, and make sure the copy does 
not have its read-only attribute set. 

3. Run the ODBC Data Source Administrator to install the Student 
Registration data source. Click the ODBC icon in the Windows Con
trol Panel. The Visual C++ Setup program should have already installed 
the required ODBC drivers on your hard disk. If you are running Win
dows 95, click the Drivers button to see whether the Microsoft Access 
driver is available. (If the Microsoft Access driver is not available, rerun 
Visual C++ Setup.) Click the Add button, choose Microsoft Access Driver 
in the Add Data Source dialog box, and fill in the ODBC Microsoft Ac
cess 97 Setup dialog box as shown on the following page: 

795 



PA R TV: DATABASE MANAGEMENT 

796 

Dala Source Name: l~t;~2;~~\~;~~:s;~~~H~;~ ,'<" ••••• " •• ',.,,'" ,I ."" 
~--~----~~--------------~ 

OK' "'1 

<.ca~cei'l 

hptions» 

NOT E : If you are using Microsoft Windows NT version 4.0, click 
on the ODBC icon in the Windows Control Panel and then click on 
the ODBC Drivers tab to see whether the Microsoft Access Driver 
is available. 

4. Use ClassWizard to create the CEx28aSet recordset class. 
Choose New from the Add Class menu, and then fill in the New Class 
dialog box as shown here: 



T WEN T Y - E I G H T: Database Management with Microsoft ODSC 

5. Select the Student Registration database's Student table for the 
CEx28aSet class. When you click the OK button in the New Class 
dialog box, ClassWizard displays the Database Options dialog box. Select 
the Student Registration data source, and select the Dynaset option as 
shown here: 

GIable 

It .6.ind all columns 

After you select the data source, ClassWizard prompts you to select 
a table. Select Student, as shown here: 

tudent • , " 

6. Examine the data members that ClassWizard generates. Click 
on the Member Variables tab for the newly generated CEx28aSet class. 
ClassWizard should have generated data members based on student 
column names, as shown on the following page. 

797 



PAR TV: DATABASE MANAGEMENT 

798 

7. Declare an embedded recordset object in ex28aDoc.h. Add the 
following public data member in the CEx28aDoc class declaration: 

CEx28aSet m_ex28aSet; 

8. Edit the ex28aDoc.cpp file. Add the line 

#include "ex28aSet.h" 

just before the line 

#include "ex28aDoc.h" 

9. Declare a recordset pointer in ex28aView.h. Add the following pri
vate data member in the CEx28a View class declaration: 

10. Edit the OnDrawand On/nitia/Update functions in ex28aView.cpp. 
Add the following shaded code: 

void CEx28aView::OnDraw(CDC* pDC) 
{ 

TEXTMETRIC tm; 
pDC->GetTextMetrics(&tm); 
int nLineHeight=tm.tmHeight+tm.tmExternalLeading; 
CPoint pText(0.0); 



T WEN T V - E I G H T: Database Management with Microsoft DOSe 

int y = 0; 
CString str; 
if Cm_pSet->IsBOFC» { II detects empty recordset 

return: 

m_pSet->MoveFirstC): II fails if recordset is empty 
while C!m_pSet->lsEOFC» { 

str.FormatC"%ld". m_pSet->m_StudentID): 
pDC->TextOutCpText.x. pText.y. str); 
pDC->TextOutCpText.x+1000. pText.y. m_pSet->m_Name); 
str.FormatC"%d". m_pSet->m_GradYear): 
pDC->TextOut(pText.x+4000. pText.y. str); 
m_pSet->MoveNext(): 
pText.y -= nLineHeight; 

void CEx28aView::OnlnitialUpdate() 
{ 

CScrollView::OnlnitialUpdate(): 
CSize sizeTotal(8000. 10500); 

SetScrollSizesCMM_HIENGLISH. sizeTotal); 

m_pSet = &GetDocument()->m_ex28aSet; 
II Remember that documents/views are reused in SDI applications! 
if (m_pSet->IsOpenC» { 

m_pSet->Close(); 
} 

m_pSet->Open(): 

Also in ex28a View.cpp, add the line 

tfinclude "ex28aSet.h" 

just before the line 

4/include "ex28aDoc.h" 

11. Edit the ex28a.cpp file. Add the line 

1fi ncl ude "ex28aSet. h" 

just before the line 

4/include "ex28aDoc.h" 

799 



PART V: DATABASE MANAGEMENT 

800 

12. Build and test the EX28A application. Does the resulting screen 
look like the one shown here? 

itfila:EdiLlLiew JiBip . .... . 

iH:t5[f.i[glnwI~rel\;~r1ir .. 
i 1001 
i 1002 
·1003 
11004 
\ 1005 
i 1006 

i 1007 
1008 

Smith. Randy 
Maples. Alex 
Jones. Thomas 
Shannon. Eric 
Foster. Susan 
Jefferson. Nancy 
Tuner. Bob 
Holin. David 

95 
95 
96 
96 
95 
96 
95 

11009 Reynolds. Don 96 
! 1010 Taylor. Robert 95 
11011 Karr. Dave 96 
i 1012 Tannant Tim 96 
i 1013 Marcus. Susan 95 
1014 Butterfield. Rita 96 

i 1015 Amon. Craig 95 
! 1016 Anderson. Sandra 96 
i 1017 Cooper. Linda 95 

Adding ooec Capability to an MFC Application 
If you need to add ODBC capability to an existing MFC application, 
make the following changes to the project. 

1. Add the following line at the end of StdAfx.h: 

#include <afxdb.h> 

2. Edit the RCfile in text mode. Mter the line 

ttlli ncl ude "" afxpr; nt. rc"" II print i ng/pri nt prey; ew resources\r\n" 

add the line 

"#i ncl ude "" afxdb. rc'''' 

And after the line 

#include "afxprint.rc" 

add the line 

Ilinclude "afxdb. rc" 

II database resources\r\n" 

II printirig/print preview resources 

II database resources 



T WEN T Y - E I G H T: Database Management with Microsoft ODSe 

The EX28A Program Elements 
The following is a discussion of the major elements in the EX28A program. 

Connecting the Recordset Class to the Application 
When ClassWizard generates the CEx28aSet class, it adds the CPP and H files 
to the project-and that's all it does. It's up to you to link the recordset to your 
view and to your document. By embedding a CEx28aSet object inside the 
CEx28aDoc class, you ensure that the recordset object will be constructed when 
the application starts. 

The view could always get the recordset from the document, but it's more 
efficient if the view has its own recordset pointer. Notice how the view's 
OnlnitialUpdate function sets the m_pSet data member. 

NOT E : If you run App Wizard with either of the Database View 
options, App Wizard generates a class derived from CRecordset, a class 
derived from CRecordView (for ODBC), and all the necessary linkage 
asjust described. We're not using AppWizard in this mode because 
we don't want a form-based application. 

The CEx28aViewClass's On/nitia/Update Member Function 
The job of the CEx28a View::OnlnitiaIUpdate function is to open the recordset 
that's associated with the view. The recordset constructor was called with a 
NULL database pointer parameter, so the CRecordset::Open function knows it 
must construct a CDatabase object and link that database one to one with the 
recordset. But how does Open know what data source and table to use? It calls 
two CRecordset virtual functions, GetDefaultConnect and GetDejaultSQL. Class
Wizard generates implementations of these functions in your derived 
recordset class, as shown here: 

CString CEx28aSet::GetDefaultConnect() 
{ 

return _T("ODBC;DSN=Student Registration"); 

CString CEx28aSet::GetDefaultSQL() 
{ 

return _T("[StudentJ"); 

801 



PAR TV: DATABASE MANAGEMENT 

NOT E: ClassWizard and AppWizard place brackets around all 
column-and table [names]. These brackets are necessary only if the 
names contain embedded blanks. 

GetDefaultSQL is a pure virtual function, so the derived class must imple
ment it. GetDefaultConnect, on the other hand, has a base class implementation 
that opens an ODBC dialog box, which in turn prompts the user for the data 
source name. 

Because documents and views are reused in SDI applications, the On
InitialUpdate function must close any open recordset before it opens a new 
recordset. The CRecordSet::IsOpen member function is used to test this. 

The CEx28aView Class's OnDraw Member Function 

802 

As in any document-view application, the CEx28a View::OnDraw function is 
called every time the view is invalidated and once for every printed page. Here 
OnDraw inefficiently slogs through every row in the recordset and paints its 
column values with the CDC:: TextOut function. The principal CRecordset mem
ber functions it calls are MoveFirst and MoveNext. MoveFirst will fail if the 
recordset is empty, so the initial call to CRecordset::IsBOF is necessary to detect 
the beginning-of-file condition. The CRecordset::IsEOF call detects t:p.e end-of
file condition for the recordset and terminates the row loop. 

Remember that ClassWizard generated CEx28aSet class data members for 
the recordset's columns. This means that the recordset class and now the view 
class are both hard-coded for the student record. The CRecordset member 
functions call a pure virtual function, DoFieldExchange, that ClassWizard gen
erates based on the data members m_StudentID, m_Name, and m_ Grad Year. 
Here is the code for this example's derived recordset class: 

void CEx28aSet::DoFieldExchange(CFieldExchange* pFX) 
{ 

//{{AFX_FIELD_MAP(CEx28aSet) 
pFX->SetFieldType(CFieldExchange::outputColumn); 
RFX_Long(pFX. _T("[StudentID]"). m_StudentID); 
RFX_Text(pFX. _T("[Name]"). m_Name); 
RFX_Int(pFX. _T("[GradYear]"). m_GradYear); 
//}}AFX_FIELD_MAP 

Each SQL data type has a record field exchange (RFX) function. RFX 
functions are quite complex and are called many times during database pro
cessing. You might first think, as I did, that the RFX functions are like the 
CDialog DDX functions and thus actually transfer data between the database 



T WEN T Y - E I G H T: Database Management with Microsoft ODSe 

and the data members. This is not the case. The primary purpose of the RFX 
functions is to bind the database columns to the data members so that the 
underlying onBC functions, such as SQLExtendedFetch, can transfer the col
umn data. To this end, the DoFieldExchange function is called from CRecord

Set::Open. DoFieldExchange is also called by the Move functions for the purpose 
of reallocating strings and clearing status bits. 

Because the DoFieldExchange function is so tightly integrated with MFC 
database processing, you are advised not to call this function directly in your 
programs. 

Filter and Sort Strings 
SQL query statements can have an ORDER BY clause and a WHERE clause. 
The CRecordset class has a public data member m_strSort that holds the text of 
the ORDER BY clause (excluding the words "ORDER BY"). Another public 
data member, m_strFilter, holds the text of the WHERE clause (excluding the 
word "WHERE"). You can set the values of these strings prior to opening the 
recordset. 

Joining Two Database Tables 
Most database programmers know that ajoin is one big logical table composed 
of fields from two or more related tables. In the Student Registration database, 
you couldjoin the Student table with the Enrollment table to get a list of stu
dents and the classes they were enrolled in. 

Joins are easy to do with Visual C++ because ClassWizard lets you add 
tables to an existing recordset. A few additional programming tasks are 
needed, though. Here are the steps for joining the Enrollment table to the 
Student table in EX28A. 

l. Use ClassWizard to access the CEx28aSet class on the Member Vari
ables tab. Click the Update Columns button, and then select the 
Enrollment table from the Student Registration database. If you 
get a warning message indicating that the data source does not 
contain all the columns that the recordset classes need, click the 
Yes button to continue. Then click the Bind All button to add the 
data members for the Enrollment fields. 

2. Edit the CEx28aSet::GetDefaultSQL function, as shown on the next 
page, to access the Student and Enrollment tables. 

803 



PAR TV: DATABASE MANAGEMENT 

CString CEx28aSet::GetDefaultSQL() 
{ 

return _ T (" [Student], [£nro 11 ment]") ; 

3. Two StudentID fields are now in the joined table. In the CEx28aSet
::DoFieldExchange function, edit the StudentID line to qualify the 
field with a table name: 

RFX_Long(pFX. _T("[Student].[StudentID]"). m_StudentIO); 

4. In the CEx28aView::OnlnitialUpdatefunction, set the recordset's 
m_strFilter string as follows: 

m_pSet->m_strFilter = "[Student].[StudentID] 
[Enrollment].[StudentID]"; 

5. In the CEx28a View::OnDraw function, add code to display the new 
Enrollment fields. Here is a sample: 

pDC->TextOut(pText.x+5000. pText.y. m_pSet->m_CourseID); 

The MFC CRecordView Class 

804 

The CRecordView class is a form view class that's attached to a recordset. Fig
ure 28-4 illustrates an MFC record view application. The toolbar buttons en
able the user to step forward and backward through a database table. 

Figure 28-4. 
An MFC application based on the CRecordView class. 



T WEN T Y - E I G H T: Database Management with Microsoft DOSe 

Like the CFonn View class, the CRecordView class depends on a dialog tem
plate resource. The CForm View class has data members that correspond to the 
controls in the dialog box, but the CRecordView class accesses data members 
in a foreign object, namely the attached CRecordsetobject. When the user enters 
data in the controls, the record view's DDX (Dialog Data Exchange) code 
moves the data into the recordset's data members, which are bound to data
base columns by the recordset's RFX (Record Field Exchange) code. 

When you specify a database view application, AppWizard generates a 
class derived from CRecordView together with an empty dialog template. App
Wizard also generates a class derived from CRecordset, so it must ask you for a 
database table name. At runtime, the record view object and the recordset 
object are connected. Your job is to add controls to the dialog template and 
match the controls to recordset data members-no C++ programming is re
quired to create a working form-based database application. 

AppWizard generates a read-only, view-based database application. If 
you want to modify, add, and delete records, you must do some coding. The 
default behavior of the resulting application matches the behavior of Visual 
Basic and Access, which is a little weird. A record is added or modified only 
when the user moves out of it. If that's what you want, you can pattern your 
applications after the ENROLL sample program in the \DEVSTUDIO\Vc
\Samples\Mfc\Tutorial\Enroll directory on the Visual C++ CD-ROM. 

The EX288 Record View Example 
The EX28B example is an "add-change-delete" application that's different 
from the Access model. The user must explicitly add, update, and delete 
records. Even if you prefer the Access-style behavior, you can learn a lot about 
the CRecordView class by going. through the steps in the EX28B example. 

Here are the steps for building the EX28B example: 

1. Run AppWizard to produce \vcpp32\ex28b\ex28b. As you move 
through the AppWizard steps, select Single Document Interface (Step 1 
dialog box) and Database View Without File Support (Step 2). In the 
Step 2 dialog box, also click the Data Source button and choose the 
ODBC data source named Student Registration. Also choose Dynaset as 
the Recordset Type. Then select the Instructor table. Finally, deselect 
Printing And Print Preview (Step 4). The options and the default class 
names are shown at the top of the following page. 

805 



PAR TV: DATABASE MANAGEMENT 

806 

Qas$es t6 be Cleated: ~,.. .' .' .' ~ '.' •. .'. '., . ..: 
Application: CEx2SbApp in Ex2eb.h and Ex28b.cpp '. 
Fr"me: CMainFlatlle in M"inFrm.h and MainFrm.cpp 
DoclR'I'l\ll'lt CEx28bOoc inE~28bDoc.h and Ex28bOoc.cpp .'~ ..... 

. RecOlcMew: CEx28bView in E~8bView.h and Ex28bView.cpp. ' .. : • '. '.': t 
Record$et CEIi28bSel in E~ebSet.h and Ex28bSet.cpp . .•..... ... .'.) 

(connected to ,,,We tlnclructorf in tlate rowce 'Student Registration') j I 
;: F~~~re$: ...•... ....> ....:. '. ..... .... .... .' 
J : .. fniti"'toolbarin'main frame' ...... ::." ... ' .: 
:: t Initial $tatU$ bar in main frame' ... .. :. : 
:) .. 30 Controls'·· , . '. '. '.' :.' •... : •.•. . 
i. .. Uses $nated DLL implementatiol'l !MF~2.DlLl 
I t Databa$e $upport,w/thoul fjli~\:7~~rt: ~::: ::. : . 

:! •. 100lal Dkect~y: 
; C:\vc~2\Ex28b 

2. Add edit controls to the IDD_EX28B_FORMtemplate. Use the 
IDs IDC_ID, IDC_NAME, and IDC_ROOM, and position the controls 
as shown here: 

3. Use ClassWizard to link the edit controls to the recordset data 
members. To add a data member, click on the Member Variables tab 
and choose the ID corresponding to the edit box for each variable. Click 
the Add Variable button, and click the arrow in the Member Variable 
Name combo box to display a list of variables. Select only the appropri
ate variable, as shown here: 



T WEN T Y - E I G H T: Database Management with Microsoft ODBe 

OK 

Cancel 

Variable !ype: 

Description: 

CString with length validation 

When you're finished adding variable names for each edit box, 
you'll see a screen like the one shown here: 

~,'::::::' j"".;.<.;.:;:#~::-:«i'. <.>< 
!!···M~s~~~M~s Member Variables rAtAomaii~~: I i.~i:yeXEve<rl!s I ~~ss Info I 
;: Eroject: 03ssn3me:MdCj~ss: .. T I :, I ~x2.8b .:::.J Ir-C~Ex~28--bV--re-w ------3-,. 
1:; C:\;cpp32\EX28B\ex28bViewh. i:;:\vcpp32\D<28B\~x2ebViev;.CPp I [lii:f~Y.iii:ra.:~:~;] 
iii Control!Ds: Type Member ·!i~iet~Va~jabl~ I 
;!:; I~C f:AME CString ->m.Name • I .Upd~t~~~iu~fl~;' I 
:: IDC=ROOM CString ->m.RoomNo 

;,>,' . ; "."'" ;~. '.~."~, .. ::';'" ~ 

:;< Description: 

4. Build and test the EX28B application. You should have a working 
read·only database application that looks like Figure 28-4 on page 804. 
Use the toolbar buttons to sequence through the instructor records. 

5. Back up your database. Now you're going to include the logic to 
add, change, and delete records. It would be a good idea to make a copy 
of the STDREG32.MDB file first. That way you have something to refer 
back to after you delete all the records. 

807 



PA R TV: DATABASE MANAGEMENT 

808 

6. Add menu commands. Add the following items to the Record pop
up menu in the IDJLMAINFRAME menu. Also, use ClassWizard to map 
the commands to the specified CEx28bView class members. 

Update 
Menu Command Command 
Command Command 10 Handler UI Handler 

Add Record ID_RECORD_ADD OnRecordAdd 

Clear Fields ID_RECORD- OnRecordClearfields 
_ CLEARFIELDS 

Delete Record ID_RECORD_DELETE OnRecordDelete On UPdate-
RecordDelete 

Update Record ID_RECORD_ UPDATE OnRecordUpdate On UPdate-
Record Update 

7. Override the OnMove function in the CEx28bView class. The 
CRecordView::OnMove function does the work of updating the database 
when the user moves out ofa record. Because we don't want this behav
ior, we must override the function as follows: 

Baal CEx28bView::OnMove(UINT nIDMoveCommand) 
{ 

switch (nIDMoveCommand) 
{ 

case ID_RECORD_PREV: 
m_pSet->MovePrev(); 
if (!m_pSet->IsBOF(» 

break; 

case ID_RECORD_FIRST: 
m_pSet->MoveFirst(); 
break; 

case ID_RECORD_NEXT: 
m_pSet->MoveNext(); 
if (!m_pSet->IsEOF(» 

break; 
if (!m_pSet->CanScroll(» 

II Clear screen since we're sitting on EOF 
m_pSet->SetFieldNull(NUll); 
break: 



T WEN T V - E I G H T: Database Management with Microsoft DOSe 

case ID_RECORD_LAST: 
m_pSet-)MoveLast(): 
break: 

default: 
II unexpected case value 
ASSERT< FALSE) : 

II Show results of Move operation 
UpdateData(FALSE): 
return TRUE; 

Also add the declaration for this overridden function to the ex28bView.h 
header file. 

8. Edit the menu command handlers. The following functions call 
various CRecordset member functions to edit the database. To add a 
record, you must call CRecordset::AddNew, followed by Update. To modify 
a record, you must call CRecordset::Edit, followed by Update. When you 
add a new record to the database, you should call CRecordset::MoveLast 
because the new record is always added to the end of the dynaset. 

NOT E : If you have a sorted recordset (or if your ODBC driver 
doesn't put added records in the recordset), you should call 
CRecordset::Requery to completely regenerate the recordset. In that 
case, there's no convenient way to position the cursor on the newly 
added record, and that's a basic problem with SQL. 

Add the following shaded code: 

void CEx28bView::OnRecordAdd() 
{ 

m_pSet-)AddNew(): 
UpdateData(TRUE); 
if (m_pSet-)CanUpdate(» 

m_pSet-)Update(): 

if (!m_pSet-)IsEOF(» 
m_pSet-)MoveLast(): 

m_pSet-)Requery(); II for sorted sets 
UpdateData(FALSE): 

(continued) 

809 



PA R TV: DATABASE MANAGEMENT 

810 

void CEx28bView::OnRecordClearfields() 

"~yo .' ••••••••• ,.,." •• ",' ••• "., "._ 

m_pSet~>SetFieldNull(NULL); 

UpdateData (FALSE) : 

void CEx28bView::OnRecordDelete() 

CRecordsetStatus status; 
try ( 

m_pSet->Delete(); 
} 

catch(CDBException* e) 
AfxMessageBox(e->m_strError): 
e,. >Del eteO ; 
m_pSet->MoveFirst(); II lost our place! 
UpdateData(FAlSE); 
return: 

} 

m_pSet->GetStatus(status); 
if (status.m_1CurrentRecord == e){ 

II We deleted last of 2 records 
m_pSet->MoveFirst(): 

} 

else { 
m_pSet-:>MoveNext(); 

} 

UpdateData(FAlSE);. 

void CEx28bView::OnUpdateRecordDelete(CCmdUI* pCmdUI) 

void CEx28bView::OnRecordUpdate() 
J 

m_pSet->Edit 
UpdateData(TRUE): 
; f (in_pSeF>CanUpdateO) { 

flLPSet->UpdateC); 
} 

'1/ shouJdrequery.if,.key f.i.eld changed 
} 

void CEx28bView::OnUpdateRecordUpdate(CCmdUI* pCmdUI) 
.J. 

.p,C~~.Wi~>E~a·~l~ (!~~p~~t-?is.EOF()j·; 



T WEN T Y - E I G H T: Database Management with Microsoft ODBe 

9. Build and test the EX28B application again. Now you can add, 
change, and delete records. Observe what happens if you try to add a 
record with a duplicate key. You get an error message that comes from 
an exception handler inside the framework. You can add try/catch logic 
in OnRecordAdd to customize the error processing. 

Multiple Recordsets 
Both the EX28A and EX28B examples relied on a single recordset. In many 
cases, you'll need simultaneous access to multiple recordsets. Suppose you're 
writing a program that lets the user add Section records, but you want the user 
to select a valid CourseID and InstructorID. You'll need auxiliary Course and 
Instructor recordsets in addition to the primary Section recordset. 

In the previous examples, the view object contained an embedded 
recordset that was created with the CRecordset default constructor, which 
caused the creation ofa CDatabaseobject. The view's OnlnitialUpdate function 
called CRecordset::Open, which called the virtual CRecordset::GetDefaultConnect 
function, opened the database, and then called the virtual CRecordset::Get

DefaultSQL function. The problem with this scenario is that there can be only 
one recordset per database because the database is embedded in the recordset. 

To get multiple recordsets, you have to do things a different way-you 
must create the CDatabase object first. Then you can construct as many re
cordsets as you want, passing a CDatabasepointer as a parameter to the CRecord
set constructor. You start by embedding a CDatabase object in the document 
in place of the CRecordset object. You also include a pointer to the primary 
recordset. Here are the document data members: 

CEx28bSet* m_pEx28bSet; 
CDatabase m_database; 

In your overridden CDocument::OnNewDocument function, you construct 
the primary recordset on the heap, passing the address of the CDatabase ob
ject to the recordset constructor. Here's the code you insert: 

if (m_pEx28bSet == NULL) { 
m_pEx28bSet = new CEx28bSetC&m_database); 
CString strConnect = m_pEx28bSet->GetDefaultConnect(); 
m_database.Open(NULL, FALSE, FALSE, strConnect, FALSE); 

The CRecordView::OnlnitialUpdate function still opens the recordset, but 
this time CRecordset::Open does not open the database. (It's already open.) Now 
the code for setting the view's m_pSet data member is a little different: 

m_pSet = GetDocument()->m_pEx28bSet; 

811 



PAR TV: DATABASE MANAGEMENT 

Figure 28-5 shows the new relationship between the document, the view, 
and the primary recordset. Also shown are possible auxiliary recordsets. 

Pointer passed as a 
constructor parameter 

,_ '$ H ~. ,11 ~ l' Ill. t' l t t It *. U I * ••• f' I t ~ ~,~ 

"",1. lc ,'!."""
llt1

lt. 

--' i 

Figure 28-5. 

Embedded 

Object relationships for multiple recordsets. 

""ttHlt~f 
~fl'k~t~t 

" " " 
Pointer pa~~ed as a 

constructor p',meter 

; 

The EX28C Multiple Recordset Example 

812 

The EX28C program is similar to EX28B except that the new database
recordset relationships are implemented and an auxiliary recordset allows 
listing of the sections an instructor teaches. The EX28C window looks like this: 



T WEN T Y - E I G H T: Database Management with Microsoft ODSC 

Build the EX23C project, and test the application. Sequence through the 
instructor records, and watch the Sections Taught list change. 

As you can see, there's a new list-box control in the form dialog box. Also, 
there's one short helper function in the view class, LoadListbox, that loads the 
list box with the rows in the Section recordset, as shown here: 

void CEx28cView::LoadListbox() 
{ 

CEx28cDoc* pDoc = GetDocument(); 
CListBox* pLB = (CListBox*) GetDlgItem(IDC_SECTIONS); 
CSectionSet sect(&pDoc->m_database); II db passed via constructor 

sect.m_strFilter.Format("InstructorID = '%5"', 

(LPCSTR) m_pSet->m_InstructorID); 

sect.Open(); 
pLB->ResetContent(); 
while (!sect.IsEOF(» 

pLB->AddString(sect.m_CourseID + " " + sect.m_SectionNo); 
sect.MoveNext(); 

II sect closed by CRecordset destructor 

Notice that this function sets up a filter string based on the value of the 
InstructorID field in the primary recordset. LoadListbox is called from the 
OnlnitDialog, OnMove, On Update, OnRecordAdd, and OnRecordDelete member 
functions. 

Parameterized Queries 
The EX28C example sets up and executes a new query each time it accesses 
the auxiliary recordset. It's more efficient, however, if you set up a single 
parameterized query, which enables ODBC to bind to a parameter in your 
program. You can simply change the value of that parameter and reexecute 
the query. 

Here are the steps for querying the section set for all the sections a 
selected instructor teaches. 

1. Add a parameter data member to the section recordset class: 

CString m_InstructorIDParam; 

2. Add the following line to the section recordset constructor, which 
sets the value of the inherited m_nParams data member to the total 
number of query parameters, in this case 1: 

m_nPa rams = 1; 
""' . , ..... ", 

813 



PAR TV: DATABASE MANAGEMENT 

3. Add the following code to the section recordset DoFieldExchange 
function: 

pFX· >Set Fi e 1 dType( CFi e 1 d Exchange: : pa ram) : 
RFX_Text<pFX, "Param", m_InstructorIDParam); II Any name will do 

4. Add the following code to the view class prior to calling Open for 
the section recordset: 

sect .m_strFil ter = If I nstructorI 0 = ?"; 

sect.m_InstructorIDParam = m_pSet->m_InstructorID; 

OOBe Multithreading 
ODBC itself supports multithreaded programming, but not all ODBC drivers 
do. In particular, the Access driver you've used for the preceding examples 
does not support multithreading, but the Microsoft SQL Server driver does. 
Even if your ODBC driver does not support multithreading, you can put all 
your database access code in a worker thread if you want to. (Multithreaded 
programming and worker threads are described in Chapter 11.) 

Bulk Row Fetches 
If you're using Microsoft SQL Server or another client-server DBMS, you can 
speed up your database access by using the bulk row-fetch feature of ODBC 
that is now supported by the CRecordset class. As the name implies, your pro
gram fetches multiple records from the data source instead of only one record 
at a time. The data source is bound to elements in an array that is attached 
to an object of a class derived from CRecordset. Currently, no MFC support exists 
for adding, changing, or deleting records from a bulk-fetch-enabled recordset. 
(See the InfoView article "Recordset: Fetching Records in Bulk (ODBC)" for 
details.) 

Using Recordsets Without Binding 

814 

All three of the examples in this chapter used recordset classes derived from 
CRecordset. The data members of those classes were bound to database columns 
at recordset creation time using the ODBC binding mechanism. When the 
programs called CRecordset::Move, the ODBC driver copied data directly from 
the data source into the data members. 

ODBC has always supported unbound data access through the functions 
SQLGetData and SQLPutData. Now the CRecordset class supports read-only 



T WEN T Y - E I G H T: Database Management with Microsoft ODBe 

unbound data access through its GetFieldValue member function. One over
loaded version of this function retrieves the value of a field specified by name 
and then stores it in an object of class CDBVariant. This class is similar to the 
COleVariant class described in Chapter 24, but it does not use any OLE code 
and it doesn't have as many overloaded operators and member functions. The 
COleVariant class has a data member, m_dwType, followed by a union. If the 
type code is DBVT_LONG, for example, you access an integer in the union 
member m_lVal. 

You can use CRecordset::GetFieldValue for circumstances in which you don't 
know the database schema at design time. Your "dynamic database" program 
constructs an object of class CRecordset, and you access the column values with 
code like this: 

void CEx28dView::DrawDataRowCCDC* pDC, int y) 
{ 

int x = 0; 
CString strTime, str; 
CEx28dDoc* pDoc = GetDocumentC); 
for Cint i = 0; i < pDoc-)m_nFields; i++) { 

CDBVariant var; II must declare this inside the loop 
m_pSet-)GetFieldValueCi, var); 
switch Cvar.m_dwType) { 
case DBVT_STRING: 

str = *var.m_pstring; II narrow characters 
break; 

case DBVT_SHORT: 
str.FormatC"%d", Cint) var.m_iVal); 
break; 

case DBVT_LONG: 
str.FormatC"%d", var.m_1Val); 
break; 

case DBVT_SINGLE: 
str.FormatC"%10.2f", Cdouble) var.m_fltVal); 
break; 

case DBVT_DOUBLE: 
str.FormatC"%10.2f", var.m_dblVal); 
break; 

case DBVT_DATE: 
str.FormatC"%d/%d/%d", var.m_pdate-)month, var.m_pdate-)day, 

var.m_pdate-)year); 
break; 

case DBVT_BOOL: 
str = Cvar.m_boolVal 
break; 

0) ? "FALSE" "TRUE"; 

(continued) 

815 



PA R TV: DATABASE MANAGEMENT 

816 

case DBVT_NULL: 
str = "----"; 
break; 

default: 
str.Format("Unk type %d\n", var.m_dwType); 
TRACE("Unknown type %d\n", var.m_dwType); 

pDC->TextOut(x, y, str); 
x += pDoc->m_arrayFieldSize[i] * m_nCharWidth; 

The code above is excerpted from a sample program EX28D, which is 
on the CD-ROM included with this book. That program uses the CRow View 
code from the DAO example, EX29A, described in the next chapter. The pro
grams EX28D and EX29A are similar in architecture and function. EX28D uses 
ODBC, and EX29A uses DAO. 

Although MFC gives you the CRecordset functions GetODBCFieldCount 
and GetODBCFieldlnfo to get field lengths and types, you must call the ODBC 
function SQLTables to get a "table of tables." The CTables class in the EX28D 
project encapsulates this table. 



C HAP Y E R TWENTY-NINE 

Database Management with 
Microsoft Data Access Objects 

In Chapter 28, you saw database management programming with the 
Microsoft Foundation Class (MFC) Library and Microsoft ODBC. In this chap
ter, you'll see a completely different database programming approach-the 
MFC Data Access Objects (DAO) classes and the underlying DAO software. 
Actually, the approach is not so different. Instead of the ODBC classes 
CDatabase and CRecordset, you'll be using CDaoDatabase and CDaoRecordset. The 
ODBC and DAO classes are so similar (many member function names are the 
same) that you can convert ODBC applications, such as the examples in 
Chapter 28, to DAO applications simply by changing class names and not 
much else. Thus, you can look at DAO as a sort of replacement for ODBC. But 
as you'll see, DAO goes far beyond ODBC. 

This chapter merely scratches the surface of DAO, highlighting its fea
tures and outlining the differences between DAO and ODBC. Along the way, 
it explains the relationships between DAO, COM, the MicrosoftJet database 
engine, Visual Basic for Applications (VBA) , and the MFC library. Finally, it 
presents a dynamic database example. 

DAO, COM, and the Microsoft Jet Database Engine 
One feature ofDAO is a set of COM interfaces, which, like all COM interfaces, 
are nothing more than specifications-sets of pure virtual function declara
tions. These interfaces have names such as DAOWorkspace, DAODatabase, and 
DAORecordset. (Note: These interface names don't begin with the letter I as 
do most other interface names.) 

The other feature of DAO is the implementation of those interfaces. 
Microsoft supplies the COM module DA0350.DLL, which connects to the 
same Jet database engine DLL that serves the Microsoft Access database product. 

817 



PAR TV: DATABASE MANAGEMENT 

As a Visual C++ developer, you have royalty-free redistribution rights to these 
DLLs. At the moment, the only DAO implementation available with Jet is 
DA0350.DLL, but nothing prevents other database software companies from 
providing their own DAO implementations. 

DAO and VBA 

818 

In Chapter 24, you learned about Automation. A VBA Automation control
ler (such as Microsoft Excel or Microsoft Visual Basic) can load any Automa
tion component and then use it to create objects. Once the objects are created, 
the component can get and set properties and can call methods. The compo
nents you created in Chapter 24 all communicated through the COM IDispatch 
interface. But VBA can use interfaces other than IDispatch to communicate 
with a component. 

If you look in the Windows Registry under HKEY_CLASSES_ROOT
\TypeLib, you'll find the class ID {00025EOI-OOOO-OOOO-COOO-000000000046} 
and the pathname for DA0350.DLL, which contains the DAO type library. If 
you select this item as a VBA reference (by pressing Alt-Fll in Excel and then 
choosing Object Browser from the Visual Basic View menu, for example), your 
VBA programs can use the DAO objects and you can browse the DAO library, 
as shown here: 

Like IDispatch servers, the Microsoft DAO component implements 
objects that have properties and methods. 



T WEN T Y - N I N E: Database Management with Microsoft Data Access Objects 

DAO and MFC 
The MFC library has the following five DAO database classes: 

Class Use 

CDaoWorkspace An interface for managing a single user's database session 

CDaoDatabase An interface for working with a database 

CDaoRecordset An interface for working with a set of records (such as table
type recordsets, dynaset-type recordsets, or snapshot-type 
recordsets) 

CDaoTableDef An interface for manipulating a definition of a base table or 
an attached table 

CDaoQueryDef An interface for querying a database 

These classes more or less wrap the COM interfaces with corresponding names. 
(CDaoRecordset wraps DAORecordset, for example.) The CDaoWorkspace class 
actually wraps two interfaces, DAOWorkspace and DAODBEngine. The MFC 
wrapping is fairly complete, so you need to make direct COM DAO calls only 
when you need access to certain database security features. If you use the MFC 
library, all reference counting is taken care of; if you call DAO directly, you 
must be sure to call Release on your interfaces. 

Both AppWizard and ClassWizard fully support DAO. You can use 
AppWizard to generate a complete form-based application that works like 
EX28B in the previous chapter, and you can use ClassWizard to generate a 
table-specific class that is derived from CDaoRecordset. 

What Databases Can You Open with DAO? 
The following four database options are supported by DAO: 

[] Opening an Access database (MDB file )-An MDB file is a self
contained database that includes query definitions, security infor
mation, indexes, relationships, and of course the actual data tables. 
You simply specify the MDB file's pathname. 

[] Opening an ODBC data source directly-There's a significant limi
tation here. You can't open an ODBC data source that uses the Jet 
engine as a driver; you can use only data sources that have their 
own ODBC driver DLLs. 

819 



PA R TV: DATABASE MANAGEMENT 

[J Opening an ISAM-type (indexed sequential access method) data 
source (a group of dBASE, FoxPro, Paradox, Btrieve, Excel, or text 
files) through the Jet engine-Even if you've set up an ODBC data 
source that uses the Jet engine to access one of these file types, you 
must open the file as an ISAM-type data source, not as an ODBC 
data source. 

[J Attaching external tables to an Access database-This is actually 
the preferred way of using DAO to access ODBC data. First you use 
Access to attach the ODBC tables to an MDB file, and then you use 
DAO to open the MDB file as in the first option. You can also use 
Access to attach ISAM files to an MDB file. 

Using DAO in ODBC Mode
Snapshots and Dynasets 

820 

I've already said that DAO goes far beyond ODBC, but let's take things one 
step at a time. We'll start with DAO snapshots and dynasets, which behave 
pretty much the same way in DAO as they do in ODBC. You can use snapshots 
and dynasets with ODBC data sources, ISAM-type files, and Access tables. You 
write programs using the MFC library classes CDaoDatabase and CDaoRecordset, 
which are very similar to the ODBC classes CDatabase and CRecordset. There are 
a few notable differences, however: 

[3 The CDaoRecordset::GetRecordCount function works differently from 
the CRecordset::GetRecordCount function. For attached tables arid ODBC 
data sources, CDaoRecordset::GetRecordCount always returns -1. For 
Access tables and ISAM-type files, it returns the number of records 
actually read, which is the final count for the recordset only if you 
have moved to the last record. Unfortunately, DAO has no equiva
lent for the ODBC CRecordset::GetStatus function, so you can't test a 
DAO recordset to find out whether the record count is indeed final. 

With DAO, you can get and set the absolute position of the current 
record in a dynaset or a snapshot, you can get and set a percent po
sition, you can find a record containing a matching string, and you 
can use bookmarks to mark records for later retrieval. 

~ DAO makes it easy to get and set column values without binding. 
Because values are passed as VARIANTs, you can build dynamic 
applications that adjust to the database schema at runtime. 



T WEN T Y - N I N E: Database Management with Microsoft Data Access Objects 

One important thing to remember about snapshot recordsets is that the 
record count never changes. With dynasets, the record count changes only if 
you delete or add records in the dynaset. If another user deletes a record, that 
record is marked as deleted in your dynaset; if another user adds a record, you 
don't see that record in your dynaset. If you add a record to a dynaset, that 
record is added at the end of the dynaset, regardless of the sort order. 

DAO Table-Type Recordsets 
DAO introduces a new type of recordset unknown in the ODBC universe. A 
table-type recordset (supported by the CDaoRecordset class) is a direct view of 
an entire database table. You can use a table-type recordset only with a table 
in an Access database. Table-type recordsets have the following characteristics 
that distinguish them from snapshots and dynasets: 

o The CDaoRecordset::GetRecordCount function returns an approximate 
record count that reflects records added or deleted by other users. 

o You can't use the CDaoRecordset functions that access a record's 
absolute position or percent position. 

o The CDaoRecordset::Seek function lets you position to a record by 
key value. You first call the CDaoRecordset::SetCurrentIndex function 
to select the index. 

o If you add a record to a table-type recordset, the record is added 
in its proper place using the sort order that is determined by the 
current index. 

The table-type recordset is a significant departure from ODBC and SQL. 
You can now select an individual record without first issuing a query. You can 
find a record with one index and then move sequentially using a different 
index. It's like dBASE or FoxPro programming! 

DAO QueryDefs and TableDefs 
If you're working with an Access database, you can store parameterized queries 
in the database, using the MFC CDaoQueryDef class. Also, you can use the 
CDaoTableDef class to define tables at runtime, which is more convenient than 
using an SQL CREATE statement. 

821 



PA R TV: DATABASE MANAGEMENT 

DAO Multithreading 
The Microsoft Access Jet engine is not multithreaded, and that means that 
DAO is not multithreaded. Furthermore, you must confine all DAO calls to 
your application's main thread. 

Displaying Database Rows in a Scrolling Window 
You've seen all the general DAO theory you're going to get here. Now you're 
ready for a practical example. Before you dig into the code for EX29A, how
ever, you need to study the general problem of displaying database rows in a 
scrolling window. If this were an easy problem to solve, there would probably 
be an MFC CScrollDatabaseView class. But there isn't, so we'll write our own class. 
Actually, it's not that difficult if we make some simplifying assumptions about 
the database. First, our scrolling row-view class will be based on a dynaset, and 
that means that it can accommodate any table, including those in ODBC data 
sources and ISAM-type files. Second, we'll specify read-only access, which 
means that the number of rows in the dynaset can't change. . 

Scrolling Alternatives 
There are lots of ways to implement scrolling with Visual C++. If you look at 
the DAOVIEW MFC sample database program on the Visual C++ CD-ROM, 
you'll see the use of the MFC CListViewclass, which encapsulates the Windows 
list view common control. The trouble with this approach is that you must copy 
all the selected rows into the control, which can be slow, and more signifi
cantly, you can't see updates that other programs are making in the same table. 
The list view is a de facto snapshot of a database table. 

We'll base our scrolling view on the MFC CScrollView class, and our code 
will be smart enough to retrieve only those records that are needed for the 
client area of the window. The only limitation here is the logical size of the 
scrolling window. In Microsoft Windows 95, the limits are ±32,767, and that 
restricts the number of rows we can display. If the distance between rows is 14 
units, we can display only up to 2340 rows. 

A Row-View Class 

822 

If you've read other books about programming for Windows, you know that 
authors spend lots of time on the problem of scrolling lists. This is a tricky 
programming exercise that must be repeated over and over. Why not encap
sulate a scrolling list in a base class? All the ugly details would be hidden, and 
you could get on with the business of writing your application. 



T WEN T Y - N I N E: Database Management with Microsoft Data Access Objects 

The CRow View class, adapted from the class of the identical name in the 
CHKBOOK MFC advanced sample program on the Visual C++ CD-ROM, does 
thejob. Through its use of virtual callback functions, it serves as a model for 
other derivable base classes. CRow View has some limitations, and it's not built 
to industrial-strength specifications, but it works well in the DAO example. 
Figure 29-1 shows the header file listing. 

ROWVIEW.H 

// rowview.h : interface of the CRowView class 
/I 
// This class implements the behavior of a scrolling view that presents 
// multiple rows of fixed-height data. A row view is similar to an 
// owner-draw list box in its visual behavior; but unlike list boxes, 
// a row view has all of the benefits of a view (as well as scroll view), 
// including perhaps most importantly printing and print preview. 
////////////////////////////////////////////////////////////////////////// 

class CRowView : public CScrollView 
( 

DECLARE_DYNAMIC(CRowView) 
protected: 
// Construction/destruction 

CRowVi ew( ) ; 
virtual ~CRowView(); 

// Attributes 
protected: 

int m_nRowWidth; 
int m_nRowHeight; 
int m_nCharWidth; 

// width of row in logical units 
// height of row in logical units 
// avg char width in logical units 

int m_nPrevSelectedRow; 
int m_nPrevRowCount; 

// index of the most recently selected row 
// most recent row count, before update 

int m_nRowsPerPrintedPage; II how many rows fit on a printed page 

// Operations-Attributes 
protected: 

virtual void UpdateRow(int nlnvalidRow); // called by derived class 
// On Update 

virtual void CalculateRowMetrics(CDC* pDC) 
( GetRowWidthHeight(pDC, m_nRowWidth, m_nRowHeight, 

m_nCharWidth); } 
virtual void UpdateScrollSizes(); 
virtual CRect RowToWndRect(CDC* pDC, int nRow); 

Figure 29-1. 
The CRowView handler file listing. 

(continued) 

823 



PA R TV: DATABASE MANAGEMENT 

Figure 29-1. continued 

virtual int RowToYPos(int nRow); 
virtual void RectlPtoRowRange(const CRect& rectlP, int& nFirstRow, 

int& nlastRow, BOOl bIncludePartiallyShownRows); 
virtual int lastViewableRow(); 

II Overridables 
protected: 

virtual void GetRowWidthHeight(CDC* pDC, int& nRowWidth, 
int& nRowHeight, int& nCharWidth) = 0; 

virtual int GetActiveRow() = 0; 
virtual int GetRowCount() = 0; 
virtual void OnDrawRow(CDC* pDC, int nRow, int y, BOOl bSelected) 0; 
virtual void ChangeSelectionNextRow(BOOl bNext) = 0; 
virtual void ChangeSelectionToRow(int nRow) = 0; 

II Implementation 
protected: 

II standard overrides of MFC classes 
virtual void OnInitialUpdate(); 
virtual void OnDraw(CDC* pDC); II overridden to draw this view 
virtual void OnPrepareDC(CDC* pDC, CPrintInfo* pInfo = NUll); 
virtual BOOl OnPreparePrinting(CPrintInfo* pInfo); 
virtual void OnBeginPrinting(CDC* pDC, CPrintInfo* pInfo); 
virtual void OnPrint(CDC* pDC, CPrintlnfo* pInfo); 

II Generated message map functions 
protected: 

} ; 

11{{AFX_MSG(CRowView) 
afx_msg void OnKeyDown(UINT nChar, UINT nRepCnt, UINT nFlags); 
afx_msg void OnSize(UINT nType, int ex, int cy); 
afx_msg void OnlButtonDown(UINT nFlags, CPoint point); 
I/}} AFX_MSG 
DEClARE_MESSAGE_MAP() 

Dividing the Work Between Base and Derived Classes 

824 

Because the CRow View class (itself derived from CScrollView) is designed to be 
a base class, it is as general as possible. CRow View relies on its derived class to 
access and paint the row's data. The EX29A example's document class obtains 
its row data from a scrollable DAO database, but the CHKBOOK example uses 
a random access disk file. The CRow View class serves both examples effectively. 
It supports the concept of a selected row that is highlighted in the view. 
Through the CRow View virtual member functions, the derived class is alerted 
when the user changes the selected row. 



T WEN T Y - N I N E: Database Management with Microsoft Data Access Objects 

The CRowView Pu~e Virtual Member Functions 
Classes derived from CRowView must implement the following pure virtual 
member functions: 

[J GetRowWidthHeight-This function returns the character width 
and height of the currently selected font and the width of the row, 
based on average character widths. As the device context switches 
between printer and display, the returned font metric values 
change accordingly. 

[J GetActiveRow-The base class calls this function frequently, so if 
another view changes the selected row, this view can track it. 

9 ChangeSelectionNextRow, ChangeSelectionToRow-These two functions 
serve to alert the derived class that the user has changed the selected 
row. The derived class can then update the document (and other 
views) if necessary. 

9 OnDrawRow-The OnDrawRow function is called by the function 
CRowView::OnDraw to draw a specific row. 

Other CRowView Functions 
Three other CRowView functions are available to be called by derived classes 
and the application framework: 

[J UpdateRow-This public function triggers a view update when the 
row selection changes. Normally, only the newly selected row and 
the deselected row are invalidated, and this means that the final 
invalid rectangle spans both rows. If the total number of rows has 
changed, UpdateRow calls UpdateScrollSizes. 

t:il UpdateScrollSizes-This is a virtual function, so you can override it 
if necessary. The CRowView implementation updates the size of the 
view, which invalidates the visible portion. UpdateScrollSizes is called 
by OnSize and by OnUpdate (after the user executes a new query). 

t:il OnPrint-The CRow View class overrides this function to cleverly 
adjust the viewport origin and clipping rectangle so that OnDraw 
can paint on the printed page exactly as it does in the visible 
portion of a window. 

825 



PAR TV: DATABASE MANAGEMENT 

826 

The MFC Dialog Bar 
You haven't seen the CDialogBar class yet because it hasn't made sense 
to use it. (A dialog bar is a child of the frame window that is arranged 
according to a dialog template resource and that routes commands in 
a manner similar to that of a toolbar.) It fits well in the DAO example, 
however. (See Figure 29-2 on page 828.) The dialog bar contains an 
edit control for the SQL query string, and it has a pushbutton to 
reexecute the query. The button sends a command message that can 
be handled in the view, and it can be disabled by an update command 
VI handler. Most dialog bars reside at the top of the frame window, 
immediately under the toolbar. 

It's surprisingiy easy to add a dialog bar to an application. You 
don't everi need a new derived class. Here are the steps: 

1. Vse the resource editor to layout the dialog bar. Apply the 
following styles: 

Style = Child 
Border = None 
Visible = unchecked 

You can choose a horizontally oriented bar for the top or bot
tom of the frame, or you can choose a vertically oriented bar 
for the left or right side of the frame. Add any controls you need, 
including buttons and edit controls. 

2 .. Declare anembedded CDialogBarobject in your derived 
main frame class declaration, as shown here: 

CDialogBar m_wndMyBar; 

3. Add dialog bar object creation code to your main frame class 
On Create member function, as shown here: 

(!m_wndMyBar.Create(thi s. IDD_MY_BAR. CBRS .. , .. JOP, 
ID_MY;.....BAR)) ( 
TRACEC"Failed to create dialog bar\n"): 
return -1; 

IDD_MY_BAR is • the dialog resource. ID . assigned in the re-:
source editor-The CBRS_TOP style tellsthe application frame
work toplace the dialog bar atthe top of the frame window. 
ID_MY _BARis the dialog bar's control window· ID, which 
should be within the range OxE800 through OxE820 to ensure 
that the Print Preview window preempts the dialog bar. 



T WEN T V - N I N E: Database Management with Microsoft Data Access Objects 

Programming a Dynamic Recordset 
If you use AppWizard to create a DAO database application, AppWizard gen
erates a class derived from CDaoRecordset with a DoFieldExchange function that 
binds data members to the columns in a specific database table. For a dynamic 
recordset class, however, you need to determine the column names and data 
types at runtime. The EX28A example shows how to do this with ODBC. 

With DAO, the procedure is similar. You simply construct a CDaoRecordset 
object and call the GetFieldValue member function, which returns a VARlANT 
representing the column value. Other member functions tell you the number 
of columns in the table and the name, type, and width of each column. 

NOT E : If a field VARlANT contains a BSTR, assume the string 
contains 8-bit characters. This is an exception to the rule that all 
BSTRs contain wide characters. 

The EX29A Example 
Now we'll put everything together and build another working program-an 
MDI application that connects to any DAO data source. The application 
dynamically displays tables in scrolling view windows, and it allows the user to 
type in the SQL QUERY statement, which is stored in the document along with 
data source and table information. AppWizard generates the usual MDI main 
frame, document, application, and view classes, and we change the view class 
base to CRowView and add the DAO-specific code. Figure 29-2 on the follow
ing page shows the EX29A program in operation. 

The document's File menu includes the following commands: 

DAOOpenMDB 

DAO Open ISAM 

DAO Open ODBC 

The user must choose one of these commands after opening a document. As 
you will see, the code for opening the database is different depending on the 
data source type. 

You can learn a lot about this application by looking at the three-view 
window in Figure 29-2. The two view windows in the upper part of the main 
window are tied to the same document, and the lower view window is tied to 
another document. The dialog bar shows the SQL statement that's associated 
with the active view window. 

827 



PAR TV: DATABASE MANAGEMENT 

828 

Figure 29-2. 

Reynolds. Don 
,T'II, .. ln .... OnhClt"* 

Name 
Klausen. Jim 

The EX29A program in operation. 

The EX29A example includes source code listings and resource require
ments. Here is a table of the files and classes: 

Header File Source Code File Class Description 

Ex29a.h Ex29a.cpp CEx29aApp Main application 

MainFrm.h MainFrm.cpp CMainFrame MDI main frame 

ChildFrm.h ChildFrm.cpp CChildFrame MDI child frame 

Ex29aDoc.h Ex29aDoc.cpp CEx29aDoc EX29A document 

Ex29a View.h Ex29aView.cpp CEx29aView Scrolling database view class 

Rowview.h Rowview.cpp CRow View Row view base class 

Tablesel.h Tablesel.cpp CTableSelect Table selection dialog class 

IsamSelect.h IsamSelect.cpp CIsamSelect ISAM-type data source 
selection dialog class 

StdAfx.h StdAfx.cpp Precompiled headers 

Now we'll go through the application's classes one at a time, excluding 
CRow View. You'll see the important data members and the principal member 
functions. 



T WEN T Y - N I N E: Database Management with Microsoft Data Access Objects 

CEx29aApp 
The application class is the unmodified output from AppWizard. Nothing 
special here. 

CMainFrame and CChildFrame 
These classes are the standard output from AppWizard except for the addition 
of the dialog bar created in the CMainFrame::OnCreate member function. 

CEx29aDoc 
The document class manages the database connections and recordsets. Each 
document object can support one main recordset attached to one data source. 
A document object can have several views attached. Data sources (represented 
by CDaoDatabase objects) are not shared among document objects; each docu
ment has its own. 

Data Members 
The important CEx29aDoc data members are as follows: 

Data Member 

m_pRecordset 

m_database 

m_strDatabase 

m_strConnect 

m_strQuery 

m_bConnected 

m_nFields 

m_ nRowCount 

m_ nDatabaseType 

OnOpenDocument 

Description 

Pointer to the document's recordset object 

Document's embedded CDaoDatabase object 

Database pathname (MDB file) 

ODBC connection string or ISAM connection string 

Entire SQL SELECT statement 

Flag that is TRUE when the document is connected 
to a recordset 

Number of fields (columns) in the recordset 

Number of records (rows) in the recordset 

enum fUNK, MDB, ISAM, ODBC} 

This overridden CDocumentfunction is called when the user loads a document 
from disk. The document contains the name of the database and the query 
string, so the program can open the database and run the query upon loading. 

829 



PAR TV: DATABASE MANAGEMENT 

830 

BOOl CEx29aDoc::OnOpenDocument(lPCTSTR lpszPathName) 
{ 

if (!CDocument::OnOpenDocument(lpszPathName» 
return FALSE; 

PutOuery() ; 
switch (m_nDatabaseType) 
case UNK: 

break; 
case MDB: 

DaoOpenMdb(); 
break; 

case ISAM: 
DaoOpenIsam(); 
break; 

case ODBC: 
DaoOpenOdbc(); 
break; 

return TRUE; 

OnCloseDocumenf 
This overridden CDocument function closes the database if one is connected: 

void CEx29aDoc::OnCloseDocument() 
{ 

m_strOuery.Empty(); 
PutOuery() ; 
if (m_bConnected) { 

delete m_pRecordset; II Destructor calls Close 
m_database.Close(); 
m_bConnected = FALSE; 
m_pRecordset = NUll; 
m_nRowCount = 0; 

} 

CDocument::OnCloseDocument(); 

OnFileDaoOpenOdbc and DaoOpenOdbc 
These functions are called in response to the user choosing the DAO Open 
ODBC command from the File menu. DaoOpenOdbc, which is also called by 
OnOpenDocument, calls CDaoDatabase::Open with the connect parameter string. 
The string "ODBC;" causes the ODBC data source selection dialog to be dis
played. Notice the use of the try/catch block to detect SQL processing errors. 



T WEN T Y - N I N E: Database Management with Microsoft Data Access Objects 

void CEx29aOoc::OnFileOaoOpenOdbc() 
( 

m_strConnect.Empty(): 
m_strQuery.Empty(): 
OaoOpenOdbc(): 

void CEx29aOoc::OaoOpenOdbc() 
{ 

II can't open OOBC using Access driver 
if (m_strConnect.IsEmpty(» ( 

m_strConnect = "OOBC:": 

BeginWaitCursor(): 
try ( 

II nonexclusive. read-only 
m_database.Open("". FALSE. TRUE. m_strConnect): 

catch (COaoException* e) ( 
::OaoErrorMsg(e): 
EndWaitCursor(): 
e->Oelete(): 
return: 

m_strConnect = m_database.GetConnect(): 
TRACE("database name = %s. connect = %s\n". 

(const char*) m_strOatabase. 
(const char*) m_strConnect): 

OpenRecordset(): 
m_nOatabaseType = OOBC: 
EndWaitCursor(): 

OnFileDaoOpenisam and DaoOpenisam 
These functions are called· in response to the user choosing the DAO Open 
ISAM command from the File menu. DaoOpenIsam, which is also called by 
OnOpenDocument, gets a directory name from the user (through the CIsamSelect 
class) and then calls CDaoDatabase::Open with the connect parameter string. 
The CIsamSelect::m_strIsam string specifies the type offile. Example strings are 
"dBASE III", "FoxPro 2.6", and "Excel 8.0". 

831 



PA R TV: DATABASE MANAGEMENT 

832 

void CEx29aOoc::OnFileOaoOpenlsam() 
( 

m_strConnect.Empty(); 

m_strOuery.Empty(); 
OaoOpenlsam(); 

void CEx29aOoc::OaoOpenIsam() 

BeginWaitCursor(); 
if (m_strConnect.lsEmpty(» 

CIsamSelect isamOlg; 
if (isamOlg.OoModal() 1= lOOK) 

return; 

hLstrConnect = isamOlg.m_strIsam + n;OATABASE=n + 
isamOlg.m_strOirectory; 

TRACE(nm_strConnect = %s\nn, (const char*) m_strConnect); 

try ( 
II nonexclusive, read-only 
m_database.Open(nn, FALSE, TRUE, m_strConnect); 

catch(COaoException* e) 
::OaoErrorMsg(e); 
EndWaitCursor(); 
e-)Oelete(); 
return; 

m_strConnect = m_database.GetConnect(); 
TRACE(ndatabase name = %s, connect = %s\nn, 

(const char*) m_strOatabase, (const char*) m_strConnect); 
OpenRecordset(); 
m_nOatabaseType = ISAM; 
EndWaitCursor(); 

OnFileDaoOpenMdb and DaoOpenMdb 
These functions are called in response to the user choosing the DAO Open 
MDB command from the File menu. DaoOpenMdb, which is also called by 
OnOpenDocument, uses the MFC CFileDialog class to get an MDB file pathname 
from the user. Compare the CDaoDatabase::Open call with the calls in the two 
preceding functions. Notice that the MDB pathname is passed as the first 
parameter. 



T WEN T Y - N I N E: Database Management with Microsoft Data Access Objects 

void CEx29aDoc::OnFileDaoOpenMdb() 
( 

m_strDatabase.Empty(); 
m_strQuery.Empty(); 
DaoOpenMdb(); 

void CEx29aDoc::DaoOpenMdb() 

if (m_strDatabase.IsEmpty(» 
CFileDialog dlg(TRUE, ".mdb", "*.mdb"); 
if (dlg.DoModal() == IDCANCEL) return; 
m_strDatabase = dlg.GetPathName(); 

BeginWaitCursor(); 
try ( 

II nonexclusive, read-only 
m_database.Open(m_strDatabase, FALSE, TRUE); 

catch (CDaoException* e) ( 
::DaoErrorMsg(e); 
EndWaitCursor(); 
e-)Delete(); 
return; 

m_strDatabase = m_database.GetName(); 
TRACE("database name = %s, connect = %s\n", 

(const char*) m_strDatabase, (const char*) m_strConnect); 
OpenRecordset(): 
m_nDatabaseType = MOB: 
EndWaitCursor(); 

OnFileDaoDisconnect 
This function closes the DAO database, enabling the document to be saved. 

void CEx29aDoc::OnFileDaoDisconnect() 
{ 

if (m_bConnected) ( 
delete m_pRecordset: II Destructor calls Close 
m_database.Close(); 
m_bConnected = FALSE; 
m_pRecordset = NULL; 
m_nRowCount = 0: 
UpdateAllViews(NULL); 

833 



PA RT V: DATABASE MANAGEMENT 

834 

OpenRecordset 
This helper function is called by Dao Open Odbc, DaoOPen/sam, and DaoOpenMdb. 
The CTableSelect class allows the user to select a table name, which is used to 
construct a SELECT statement. Calls to CDaoRecordset::MoveLast and CDao
Recordset::GetAbsolutePosition set the record count for ODBC, ISAM, and MDB 
data sources. 

void CEx29aDoc::OpenRecordsetC) 
( 

GetOueryC) ; 
if Cm_strOuery.IsEmptyC» . 

CTableSelect tableDlgC&m_database); 
if CtableDlg.DoModal() 1= lOOK) ( 

m_database.CloseC); II escape route 
return; 

m_strOuery.FormatC"select * from [%5]", tableDlg.m_strSelection); 
PutOueryC) ; 

m_pRecordset = new CDaoRecordsetC&m_database); 
try ( 

m_pRecordset->OpenCdbOpenDynaset, m_strOuery, dbReadOnly); 

catch CCDaoException* e) ( 
::DaoErrorMsgCe); 
UpdateAllViewsCNULL); 
m_bConnected = FALSE; 
e->DeleteC); 
return; 

if (!m_pRecordset-)IsBOF(» 
II might be expensive for a really big table 
II View adjusts its m_nRowCount if you supply a big value here 
m_pRecordset->MoveLast(); II to validate record count 

m_nRowCount = m_pRecordset->GetAbsolutePosition() + 2; 
TRACE("m_nRowCount = %d\n", m_nRowCount); 
GetFieldSpecs(); 
UpdateAllViews(NULL); 
m_bConnected = TRUE; 



T WEN T Y - N I N E: Database Management with Microsoft Data Access Objects 

NOT E : The MFC CDaoRecordset class has m_strFilter and m_strSort 
data members as does the ODBC CRecordset class. You can't use these 
strings, however, if your recordset doesn't have bound fields; you 
must construct the entire SELECT statement as shown on the pre
ceding page. 

OnRequery 
This message handler is called in response to the user clicking the Requery 
button on the dialog bar. This message handler reads the query string value 
and regenerates the recordset. Note that the CDaoRecordset::Requery function 
doesn't handle an updated SELECT statement, so we close and reopen the 
recordset instead. 

void CEx29aDoc::OnRequery() 
{ 

GetOuery() ; 
II Requery won't work because we're changing the SOL statement 
BeginWaitCursor(); 
if(m_pRecordset->IsOpen(» 

m_pRecordset->Close(); 

try 
m_pRecordset->Open(dbOpenDynaset. m_strOuery. dbReadOnly); 

catch (CDaoException* e) { 
::DaoErrorMsg(e); 
m_nRowCount = 0; 
UpdateAllViews(NUll); 
EndWaitCursor() ; 
e->Delete(); 
return; 

if (!m_pRecordset->IsBOF(» 
m_pRecordset->Movelast(); II to validate record count 

m_nRowCount = m_pRecordset->GetAbsolutePosition() + 2; 
TRACE(nm_nRowCount = %d\nn. m_nRowCount); 
GetFieldSpecs(); 
UpdateAllViews(NUll); 
EndWaitCursor(); 

835 



PAR TV: DATABASE MANAGEMENT 

PutQuery and GetQuery 
These utility functions move the document's query string to and from the edit 
control on the dialog bar. 

Serialize 
The Serialize function reads and writes the m_strConnect, m_strDatabase, and 
m_strQuery data members. 

CEx29aView 

836 

This class is derived from CRowView and implements the virtual functions. 

Data Members 
The CEx29aView class uses the integer variable m_nSelectedRow to track the 
currently selected row. The recordset pointer is held in m_pSet. 

On Update 
This virtual CView function is called through the application framework when 
the view is created and when the document's contents change in response 
to a database open or requery event. If several views are active for a given 
document, all views reflect the current query but each can maintain its own 
current row and scroll position. OnUpdate also sets the value of the m_pSet data 
member. This can't be done in OnlnitialUpdate because the recordset is not 
open at that point. 

GetRowWidthHeight, GetActiveRow, 
ChangeSeiectionNextRow, and ChangeSeiectionToRow 
These functions are implementations of the CRowView class pure virtual 
functions. They take care of drawing a specified query result row, and they 
track the current selection. 

GetRowCount 
This virtual function, which is called from CRowView, simply returns the record 
count value stored in the document. 

OnDrawRowand DrawDataRow 
The OnDrawRow virtual function is called from CRowView member functions 
to perform the actual work of drawing a designated row. OnDrawRow reads the 
recordset's current row and then calls the CDaoRecordset::Move function to 
position the cursor and read the data. The try/catch block detects catastrophic 
errors resulting from unreadable data. The DrawDataRow helper function steps 



T WEN T Y - N I N E: Database Management with Microsoft Data Access Objects 

through the columns and prints the values. Notice that OnDrawRow displays 
"* * RECORD DELETED * *" when it encounters a record that has been 
deleted by another user since the dynaset was first created. OnDrawRow and 
DrawDataRow are shown here: 

void CEx29aView::OnOrawRow(COC* pOC, int nRow, int y, BOOl bSelected) 
{ 

int x = 0; 
i nt i; 
CEx29aOoc* pOoc = GetOocument(); 
if (m_pSet == NUll) return; 

if (nRow == 0) { II title row 
for (i = 0; i < pOoc->m_nFields; i++) { 

pOC->TextOut(x, y, pOoc->m_arrayFieldName[i]); 
x += pOoc->m_arrayFieldSize[i] * m_nCharWidth; 

else { 
try 

m_pSet->SetAbsolutePosition(nRow - 1); II adjust for title row 
II SetAbsolutePosition doesn't throw exception until AFTER 
II end of set 
if (m_pSet->GetAbsolutePosition() (nRow - 1)) { 

OrawOataRow(pOC, y); 

catch (COaoException* e) { 
II might be a time delay before delete is seen in this program 
if (e->m_pErrorlnfo->m_1ErrorCode == 3167) { 

pOC ->TextOut (0, y, "**RECORO OElETEO**"); 

else { 
m_pSet->Movelast(); II in case m_nRowCount is too big 
pOoc->m_nRowCount m_pSet->GetAbsolutePosition() + 2; 

e->Oelete(); 

void CEx29aView::OrawOataRow(COC* pOC, int y) 
{ 

int x = 0: 
CString strTime: 

(continued) 

837 



PART V: DATABASE MANAGEMENT 

838 

COleVariant var: 
CString str: 
CEx29aDoc* pDoc = GetDocument(): 
for (int i = 0: i < pDoc->m_nFields: i++) { 

var = m_pSet->GetFieldValue(i): 
switch (var.vt) { 

case VT_BSTR: 
str = (LPCSTR) var.bstrVal: II narrow characters in DAO 
break: 

case VT_I2: 
str.Format("%d", (int) var.iVal): 
break: 

case VT_I4: 
str.Format("%d", var.1Val): 
break: 

case VT_R4: 
str.Format("%10.2f", (double) var.fltVal): 
break: 

case VT_R8: 
str.Format("%10.2f", var.dblVal): 
break: 

case VT_CY: 
str = COleCurrency(var).Format(): 
break: 

case VT_DATE: 
str = COleDateTime(var).Format(): 
break: 

case VT_BOOL: 
str = (var.boolVal 
break: 

case VT_NULL: 
str = "----". 
break: 

default : 

0) ? "FALSE" "TRUE": 

str.Format("Unk type %d\n", var.vt): 
TRACE("Unknown type %d\n", var.vt): 

pDC->TextOut(x, y, str): 
x += pDoc->m_arrayFieldSize[i] * m_nCharWidth: 



T WEN T Y • N I N E: Database Management with Microsoft Data Access Objects 

OnlnitialUpdate and OnTimer 
Because we're working with a dynaset, we want to show database changes 
made by other programs. The timer handler calls CWnd::lnvalidate, which 
causes all records in the client area to be refreshed, as shown here: 

void CEx29aView::OnlnitialUpdate() 
{ 

CRowView::OnlnitialUpdate(); 

void CEx29aView::OnTimer(UINT nIDEvent) 

Invalidate(); II Update view from database 

CTableSelect 
This is a ClassWizard-generated dialog class that contains a list box used for 
selecting the table. For the student registration database, the dialog looks like 
the one shown below: 

Data Members 
The CTableSelect data members are as follows: 

Data Member 

m_pDatabase 

m_strSelection 

Description 

Pointer to the recordset's CDaoDatabase object 

ClassWizard-generated variable that corresponds to 
the list-box selection 

839 



PAR TV: DATABASE MANAGE~ENT 

840 

Constructor 
The constructor takes a database pointer parameter, which it uses to set the 
m_pDatabase data member, as shown here: 

CTableSelect: :CTableSelect(CDaoDatabase* pDatabase. 
CWnd* pParent 1*=NUll*/) 
: CDialog(CTableSelect::IDD. pParent) 

11{{AFX_DATA_INIT(CTableSelect) 
m_strSelection = ""; 
IIJJAFX_DATA_INIT 
m_pDatabase = pDatabase; 

OnlnitDia/og 
This self-contained function creates, opens, and reads the data source's list 
of tables and puts the table name strings in the dialog's list box, as shown here: 

BOOl CTableSelect::OnlnitDialog() 
{ 

J 

ClistBox* plB = (ClistBox*) GetDlgltem(IDC_lISTl); 
int nTables = m_pDatabase->GetTableDefCount(); 
TRACE("CTableSelect::OnlnitDialog. nTables = %d\n". nTables); 
CDaoTableDeflnfo tdi; 
for (int n = 0; n < nTables; n++) { 

m_pDatabase->GetTableDeflnfo(n. tdi); 

J 

TRACE("table name = %s\n". (const char*) tdi.m_strName); 
if (tdi .m_strName.left(4) 1= "MSys") { 

plB->AddString(tdi .m_strName); 

return CDialog::OnlnitDialog(); 

OnDblclkList1 
It's handy for the user to choose a list-box entry with a double click. This function 
is mapped to the appropriate list-box notification message, as shown here: 

void CTableSelect::OnDblclklistl() 
{ 

OnOK(); II Double-clicking on list-box item exits dialog 



T WEN T Y - N I N E: Database Management with Microsoft Data Access Objects 

ClsamSelect 
This ClassWizard-generated dialog class contains a list pox and an edit control 
used for selecting the ISAM-type data source. The user must type the directory 
for the files, as shown here: 

Btrieve 
dBASE 5 
dBASE III 
dBASE IV 
Excel 3.0 
Excel 4.0 
Excel 5.0 
Excel 7.0 
FoxPro 2.0 
FoxPro 2.5 
FoxPro 2.6 
Paradox 3.x , 1,.."_' _' .... ' --:';'_--:';'--:';'~.I 
~~:~~~~ !:~mm r8;l§§Wase\dbaSe I; 

t i>~'~~»>'~~~"';"*?'~~;;Y,->~,,,.~ "?» ":~:~~~>."': '~,,:.; ., :<~~ ~.~~h ~:"«l<'~~"~'; :;~ "':~ 

Data Members 
The CIsamSelect class data members are as follows: 

Data Member 

m_strDirectory 

OnlnitDialog 

Definition 

ClassWizard-generated variable that corresponds to the 
list-box selection 

ClassWizard-generated variable that corresponds to the 
edit control contents 

This function sets the initial values of the list box, which are the options from 
the "Connect Property" topic in Books Online, as shown here: 

BOOl CIsamSelect::OnInitDialog() 
{ 

ClistBox* plB = (ClistBox*) GetDlgItem(IDC_lIST1); 
plB->AddString("dBASE 111"); 
plB->AddString("dBASE IV"); 

(continued) 

841 



PA R TV: DATABASE MANAGEMENT 

pLB->AddString("dBASE 5"); 
pLB->AddString("Paradox 3.x"); 
pLB->AddString("Paradox 4.x"); 
pLB->AddString("Paradox 5.x"); 
pLB->AddString("Btrieve"); 
pLB->AddString("FoxPro 2.0"); 
pLB->AddString("FoxPro 2.5"); 
pLB->AddString("FoxPro 2.6"); 
pLB->AddString("Excel 3.0"); 
pLB->AddString("Excel 4.0"); 
pLB->AddString("Excel 5.0"); 
pLB->AddString("Excel 7.0"); 
pLB->AddString("Text"); 
CDialog::OnlnitDialog(); 

return TRUE; II Return TRUE unless you set the focus to a control. 
II EXCEPTION: OCX Property Pages should return FALSE. 

The EX29A Resource File 

842 

This application uses a dialog bar, so you'll need a dialog resource for it. 
Figure 29-2, on page 828, shows the dialog bar. The dialog resource ID is 
IDD_QUERY_BAR. The controls are listed here: 

Control 

Button 

Edit 

10 

IDC_REQUERY 

IDC_QUERY 

The following styles are set: 

Style = Child 

Border = None 

Visible = unchecked 

There's also a table selection dialog template, IDD_ TABLE_SELECT, which 
has a list-box control with ID IDC_liST1 and an ISAM selection dialog template, 
IDD_ISA~SELECT. The File menu has the following four added items: 



T WEN T Y - N I N E: Database Management with Microsoft Data Access Objects 

Menu Item 

DAO Open MDB 

DAO Open ISAM 

DAO Open ODBC 

DAO Disconnect 

Command 10 

ID_FlLE_DAOOPEN_MDB 

ID_FlLE_DAOOPEN_ISAM 

ID_FlLE_DAOOPEN_ODBC 

ID_FlLE_DAODISCONNECT 

Running the EX29A Program 
You can run the EX29A program with any DAO data source, but try the student 
registration database (STDREG32.MDB) from the Visual C++ CD-ROM first. 
To test the multiuser capabilities of the program, run it simultaneously with 
EX28B. Use EX28B to change and delete instructor records while displaying 
the instructor table in EX29A. (Note: For this example application, the Save 
and Save As commands on the File menu are deactivated. Using this applica
tion, it is not possible for you to save a query or the results of the query.) 

, 843 





PART VI 

PROGRAMMING 
FOR THE 
INTERNET 





C HAP T E R T H R T Y 

TCP/IP, Winsock, and Winlnet 

As a c++ programmer, you're going to be asked to do more than create Web 
pages. You'll be the one who makes the Internet reach its true potential and 
who creates distributed applications that haven't even been imagined yet. To 
be successful, you'll have to understand how the Internet works and how to 
write programs that can access other computers on the Internet. 

In this section, you'll start with a primer on the Transmission Control 
Protocol/Internet Protocol (TCP/IP) that's used throughout the Internet, 
and then you'll move up one level to see the workings of HyperText Trans
port Protocol (HTTP). Then it will be time to get something running. You'll 
assemble your own intranet (a local version of the Internet) and study an 
HTTP client-server program based on Winsock, the fundamental API for 
TCP/IP. Finally you'll move on to Winlnet, which is a higher level API than 
Winsock and part of Microsoft's ActiveX technology. 

To COM or Not to COM 
Surely you've read about ActiveX Controls for the Internet. If you've explored 
the subject, you've probably encountered concepts such as composite moni
kers and anti-monikers, which are part of the Microsoft Component Object 
Model (COM). If you were overwhelmed, don't worry-it's actually possible 
to program for the Internet without COM, and that's a good place to start. This 
chapter and the next chapter are mostly COM-free. In Chapter 32, you'll be 
writing a COM-based ActiveX document server, but MFC effectively hides the 
COM details so you can concentrate on Winsock and Winlnet programming. 
I'm not saying that ActiveX controls aren't important, but I can't do them 
justice in this book. I'll defer to Adam Denning's new book on this subject, 
ActiveX Controls Inside Out (Microsoft Press, 1997). Your study of this book's 
COM material and Internet material will prepare you well for Adam's book. 

847 



PAR T V I: PROGRAMMING FOR THE INTERNET 

Internet Primer 
You can't write a good Winsock program without understanding the concept 
of a socket, which is used to send and receive packets of data across the net
work. To fully understand what a socket is, you need to have a thorough knowl
edge of the underlying Internet protocols. This section contains a concentrated 
dose of Internet theory. It should be enough to get you going, but you might 
want to refer to one of the TCP/IP textbooks if you want more theory. 

Network Protocols-Layering 
All networks use layering for their transmission protocols, and the collection 
oflayers is often called a stack. The application program talks to the top layer, 
and the bottom layer talks to the network. Figure 30-1 shows you the stack for 
a local area network (LAN) running TCP lIP. Each layer is logically connected 
to the corresponding layer at the other end of the communications channel. 
The server program, as shown at the right in the figure, is a program that con
tinuously listens on one end of the channel, and the client program, as shown 
on the left, periodically connects with the server to exchange data. Think of 
the server as an HTTP-based World Wide Web server, and think of the client 
as a browser program running on your computer. 

Application layer 
HTTP protocol 

.-<11 II tilt II tit. t ~.I t 1111 ~ J t' tit II t II U •• ' I." I." ~~ 

Network layer 

Link layer 
Ethernet protocol '1F'rT'T:?T;;~~"?"! 

<·,···,···········,··,··"·,·,····, .. ·"·,··,,~l!:!:m~m~t; .. ~riY~r:;1 
L." .. ""'»."."».0,*~.i.:.."~,~"*""~""'~".,,.*:,,.,.,.,.;.,J 

Figure 30-1. 
The stack for a LAN running TCPIIP. 

The Internet Protocol 

848' 

The Internet Protocol (IP) layer is the best place to start in your quest to 
understand TCP/IP. The IP protocol defines packets, calleddatagrams, that 
are fundamental units of Internet communication. These packets, typically less 
than 1000 bytes long, go bouncing all over the world when you open a Web 



T H I R T Y: TCP/IP, Winsock, and Winlnet 

page, download a file, or send e-mail. Figure 30-2 shows a simplified layout of 
an IP datagram. 

4·bit header 
length 

Figure 30-2. 
A simple IP datagram layout. 

16·bit total datagram length in bytes 

16·bit IP checksum (header only) 

32·bit source IP address 

32·bit destination IP address 

Options (if any) 

Data 

Notice that the IP datagram contains 32-bit addresses for both the source 
and destination computers. These IP addresses uniquely identify computers 
on the Internet and are used by routers (specialized computers that act like 
telephone switches) to direct the individual datagrams to their destinations. 
The routers don't care about what's inside the datagrams-they are just in
terested in that datagram's destination address and total length. Their job is 
to resend the datagram as quickly as possible. 

The IP layer doesn't tell the sending program whether a datagram has 
successfully reached its destination. That's ajob for the next layer up the stack. 
The receiving program can look only at the checksum to determine whether 
the IP datagram header was corrupted. 

The User Datagram Protocol 
The TCP lIP protocol should really be called TCP IUDP lIP because it includes 
the User Datagram Protocol (UDP), which is a peer of TCP. All IP-based trans
port protocols store their own headers and data inside the IP data block. First 
let's look at the UDP layout in Figure 30-3 on the following page. 

849 

A 

20 

TS 
.L 



PAR T V I: PROGRAMMING FOR THE INTERNET 

850 

16-bit source port number 16·bit destination port number 

16-bit length (UDP header + data) 16-bit checksum (UDP header + data) 

Data (if any) 

Figure 30-3. 
A simple UDP layout. 

A complete UDP lIP datagram is shown in Figure 30-4. 

IP datagram 
14 , ................ ,",.11, ............. " •• ,""', .......... " ....... ,""" ..... ,,""" ....... ,'" ......... ""1 

l .. i ...... "'·'''''''''''''''~·~:.,~~~~~~~~ ..... " ... ··''',,,,,,,'''>1 
IP header 

Usually 20 bytes 

Figure 30-4. 

UDP 
header 

8 bytes 

UDP data 

The relationship between the IP datagram and the UDP datagram. 

UDP is only a small step up from IP, but applications never use IP directly. 
Like IP, UDP doesn't tell the sender when the datagram has arrived. That's 
up to the application. The sender could, for example, require that the receiver 
send a response, and the sender could retransmit the datagram if the response 
didn't arrive within, say, 20 seconds. UDP is good for simple one-shot messages 
and is used by the Internet Domain Name System (DNS), which is explained 
later in this chapter. (UDP is used for transmitting live audio and video, for 
which some lost or out-of-sequence data is not a big problem.) 

Figure 30-3 shows that the UDP header does convey some additional 
information-namely the source and destination port numbers. These 16-bit 
numbers are used by the application programs on each end. For example, a 
client program might send a datagram addressed to port 1700 on the server. 
The server program is listening for any datagram that includes 1700 in its 
destination port number, and when the server finds one, it can respond by 
sending another datagram back to the client, who is listening for a datagram 
that includes 1701 in its destination port number. 



T H I R T Y: TCP/lP, Winsock, and Winlnet 

IP Address Format-Network Byte Order 
You know that IP addresses are 32-bits long. You might think that 232, or more 
than 4 billion, uniquely addressed computers could exist on the Internet, but 
that's not true. Part of the address identifies the LAN on which the host com
puter is located, and part of it identifies the host computer within the network. 
Most IP addresses are Class .c addresses, which are formatted as shown in 
Figure 30-5. 

1 1 0 Network ID Host 
computerlD 

21 bits 8 bits 

Figure 30-5. 
The layout of a Class C IP address. 

This means that slightly more than 2 million networks can exist, and each 
of those networks can have 28, or 256, addressable host computers. The Class 
A and Class B IP addresses, which allow more host computers on a network, 
are all used up. 

NOT E : The Internet "powers-that-be" have recognized that a 
shortage of IP addresses exists, so they have proposed a new stan
dard, the IP Next Generation (IPng) protocol. IPng defines a new 
IP datagram format that uses 128-bit addresses instead of 32-bit 
addresses. With IPng, you'll be able, for example, to assign a unique 
Internet address to each light switch in your house, so you can switch 
off your bedroom light from your portable computer from anywhere 
in the world. There's no schedule yet for IPng implementation. 

By convention, IP addresses are written in dotted-decimal format. The 
four parts of the address refer to the individual byte values. An example of a 
Class C IP address is 194.128.198.201. In a computer with an Intel CPU, the 
address bytes are stored low-order-to-the-Ieft, in so-called little-endian order. 
In most other computers, including the UNIX machines that first supported 
the Internet, bytes are stored high-order-to-the-Ieft, in big-endian order. Be
cause the Internet imposes a machine-independent standard for data inter
change, all multibyte numbers must be transmitted in big-endian order. This 
means that programs running on Intel-based machines must convert between 
network byte order (big-endian) and host byte order (little-endian). This rule 
applies to 2-byte port numbers as well as to 4-byte IP addresses. 

851 



PAR T V I: PROGRAMMING FOR THE INTERNET 

The Transmission Control Protocol 

852 

You've learned about the limitations of UDP. What you really need is a pro
tocol that supports error-free transmission of large blocks of data. Obviously, 
you want the receiving program to be able to reassemble the bytes in the exact 
sequence in which they were transmitted, even though the individual data
grams might have arrived in the wrong sequence. TCP is that protocol, and 
it's the principal transport protocol for all Internet applications, including 
HTTP and File Transfer Protocol (FTP). Figure 30-6 shows the layout of a 
TCP segment. (It's not called a datagram.) The TCP segment fits inside an IP 
datagram, as shown in Figure 30-7. 

16-bit source port number 16-bit destination port number 

4-bit header 
length 

32-bit sequence number 

32-bit acknowledgment sequence number 

Flags (SYN, 
ACK, FIN) 

16-bit checksum (TCP header + data) 

Options (if any) 

Data (if any) 

Figure 30-6. 
A simple layout of a TCP diagram. 

IP datagram 1·<·"""' ......... """' .. "· ....... " ...... ,,,· .. "',,,, .. · .. ,,,,,,,,, ....... ,,,,· ......... ,,,,,·,,,,, .... ·>1 
TCP segment 

I<ntlf~ I ~ J, H UUUUUUIfU UU ~ I'!' ~ uu UUtlUUUUUIU. ~. ~ UIUtU~~1 

IP header TCP header TCP data 

Usually 20 bytes Usually 20 bytes 

Figure 30-7. 
The relationship between an IP datagram and a TCP segment. 

T 

20 
bytes 



T H I R T Y: TCP/IP, Winsock, and Winlnet 

The TCP protocol establishes a full-duplex, point-to-point connection 
between two computers, and a program at each end of this connection uses 
its own port. The combination of an IP address and port number is called a 
socket. The connection is first established with a three-way handshake. The 
initiating program sends a segment with the SYN flag set, the responding 
program sends a segment with both the SYN and ACKflags set, and then the 
initiating program sends a segment with the ACK flag set. 

Mter the connection is established, each program can send a stream of 
bytes to the other program. TCP uses the sequence number fields together 
with ACKflags to control this flow of bytes. The sending program doesn't wait 
for each segment to be acknowledged but instead sends a number of segments 
together; then it waits for the first acknowledgment. If the receiving program 
has data to send back to the sending program, it can piggyback its acknowl
edgment and outbound data together in the same segments. 

The sending program's sequence numbers are not segment indexes but 
rather indexes into the byte stream. The receiving program sends back the 
sequence numbers (in the acknowledgment number field) to the sending 
program, thereby ensuring that all bytes are received and assembled in se
quence. The sending program resends segments that are not acknowledged. 

Each program closes its end of the TCP connection by sending a segment 
with the FIN flag set, which must be acknowledged by the program on the 
other end. A program can no longer receive bytes on a connection that has 
been closed by the program on the other end. 

Don't worry about the complexity of the TCP protocol. The Winsock and 
WinInetAPIs hide most of the details, so you don't have to worry aboutACK 
flags and sequence numbers. Your program calls a function to transmit a block 
of data, and Windows takes care of splitting the block into segments and stuff
ing them inside IP datagrams. Windows also takes care of delivering the bytes 
on the receiving end, but that gets tricky, as you'll see later in this chapter. 

The Domain Name System 
When you surf the Web, you don't use IP addresses. Instead, you use human
friendly names like "microsoft.com" or .. www.cnn.com ... A significant portion 
of Internet resources is consumed when host names (such as microsoft.com) 
are translated into IP addresses that TCP lIP can use. A distributed network 
of name server (domain server) computers do the translation by processing 
DNS queries. The entire Internet namespace is organized into domains, start
ing with an unnamed root domain. Under the root is a series of top-level 
domains such as com, edu, gov, and org. 

853 



PAR T V I: PROGRAMMING FOR THE INTERNET 

854 

NOT E : Do not confuse Internet domains with Microsoft Windows NT 
domains. The latter are logical groups of networked computers that 
share a common security database. 

Let's look at the server end first. Suppose a company named SlowSoft has 
two host computers connected to the Internet, one for World Wide Web 
(WWW) service and the other for FTP service. By convention, these host com
puters are named www.slowsoft.comandftp.slowsoft.com. respectively, and 
both are members of the second-level domain slowsoft, which SlowSoft has 
registered with an organization called InterNIC. (See http://ds.internic.net.) 

Now SlowSoft must designate two (or more) host computers as its name 
servers. The name servers for the com domain each have a database entry for 
the slowsoft domain, and that entry contains the names and IP addresses of 
SlowSoft's two name servers. Each of the two slowsoft name servers has data
base entries for both of SlowSoft's host computers. These servers might also 
have database entries for hosts in other domains, and they might have entries 
for name servers in third-level domains. Thus, if a name server can't provide 
a host's IP address directly, it can redirect the query to a lower-level name 
server. Figure 30-8 illustrates SlowSoft's domain configuration. 

NOT E : A top-level name server runs on its own host computer. 
InterNIC manages (at last count) nine computers that serve the root 
domain and top-level domains. Lower-level name servers could be 
programs running on host computers anywhere on the Net. Slow
Soft's Internet service provider (ISP), ExpensiveNet, can furnish one 
of SlowS oft's name servers. If the ISP is running Windows NT Server, 
the name server is usually the DNS program that comes bundled 
with the operating system. That name server might be designated 
nsl.expensivenet.com. 

Now for the client side. A user types http://www.slowsoft.comin the 
browser. (The http:// prefix tells the browser to use the HTTP protocol when 
it eventually finds the host computer.) The browser must then resolve 
www.slowsoft.comintoanIPaddress.soit uses TCP/IP to send a DNS query 
to the default gateway IP address for which TCP /IP is configured. This default 
gateway address identifies a local name server, which might have the needed 
host IP address in its cache. Ifnot, the local name server relays the DNS query 
up to one of the root name servers. The root server looks up slowsoft in its data
base and sends the query back down to one of SlowSoft's designated name 
servers. In the process, the IP address for www.slowsoft.com will be cached for 
later use if it was not cached already. If you want to go the other way, name 
servers are also capable of converting an IP address to a name. 



T H I R T Y: TCP/lP, Winsock, and Winlnet 

l~terNIC ro~t1;J.' 
name servers .. OIl ..... Unnamed root 

L~f '< ' . 41ft", 

a.root-serverS.net ~~.t" • .... .... 

ns1.expensivenet.com 
nS.other.com 

edu 

'.· ... ··,810w86f1'$> 
", ,..." .';,.. '. • ............ slowsoft 
iOame;$ervers; • 

ns1.expensivenet.com 

..... : ... ... .. .ct. _ • 

com 
{t .. 

~.+ ...... 
~ + 
• + 
~ + 

.... :: ... .... .... .. . .. .... . . 
org 

. ,., .. : .... 
Other top-level 

domains 

+ + 
•• + •• . . 

microsoft 

to. •• . . 
"1O + •• . . .... .. . . . . 

.~ .. 
• +. . . . . 

Other second· level 
domains under com 

www ftp 

www 
ftp 

Figure 30-8. 
SlowSoft's domain configuration. 

HTTP Basics 
You're going to be doing some Winsock programming soon, but just sending 
raw byte streams back and forth isn't very interesting. You need to use a higher
level protocol to be compatible with existing Internet servers and browsers. 
HTTP is a good place to start because it's the protocol of the popular World 
Wide Web and it's relatively simple. 

855 



PAR T V I: PROGRAMMING FOR THE INTERNET 

856 

HTTP is built on TCP, and this is the way it works: First a server program 
listens on port 80. Then some client program (typically a browser) connects 
to the server (www.slowsoft.com) after receiving the server's IP address from 
a name server. Using its own port number, the client sets up a two-way TCP 
connection to the server. As soon as the connection is established, the client 
sends a request to the server, which might look like this: 

GET /customers/newproducts.html HTTP/1.0 

The server identifies the request as a GET, the most common type, and 
it concludes that the client wants a file named newrroducts.html that's located 
in a server directory known as /customers (which might or might not be \cus
tomers on the server's hard disk). Immediately following are request headers, 
which mostly describe the client's capabilities. 

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/x-jg, */* 
Accept-Language: en 
UA-pixels: 1024x768 
UA-color: color8 
UA-OS: Windows NT 
UA-CPU: x86 
User-Agent: Mozilla/2.0 (compatible; MSIE 3.0; AK; Windows NT) 
Host: www.slowsoft.com 
Connection: Keep-Alive 
If-Modified-Since: Wed, 26 Mar 1997 20:23:04 GMT 
(blank line) 

The If-Modified-Since header tells the server not to bother to transmit 
newproducts.html unless the file has been modified since March 26, 1997. This 
implies that the browser already has a dated copy of this file stored in its cache. 
The blank line at the end of the request is crucial; it provides the only way for 
the server to tell that it's time to stop receiving and start transmitting, and that's 
because the TCP connection stays open. 

Now the server springs into action. It sends newproducts.html, but first 
it sends an OK response: 

HTTP/1.0 200 OK 

followed immediately by some response header lines: 

Server: Microsoft-IIS/2.0 
Date: Thu, 03 Mar 1997 17:33:12 GMT 
Content-Type: text/html 
Accept-Ranges: bytes 
Last-Modified: Wed, Mar 26 1997 20:23:04 GMT 
Content-Length: 407 
(blank line) 



T H I R T Y: TCPIIP, Winsock, and Winlnet 

The contents of newproducts.html immediately follow the blank line: 

<html> 
<head><title>SlowSoft's New Products</title></head> 
<body><body background="/images/clouds.jpg"> 
<hl><center>Welcome to SlowSoft's New Products List 
</center></hl><p> 
Unfortunately. budget constraints have prevented SlowSoft from 

introducing any new products this year. We suggest you keep 
enjoying the old products.<p> 

<a href="default.htm">SlowSoft's Home Page</a><p> 
</body> 
</html> 

You're looking at elementary HyperText Markup Language (HTML) code 
here, and the resulting Web page won't win any prizes. I won't go into details 
because dozens ofHTML books are already available. From these books, you'll 
learn that HTML tags are contained in angle brackets and that there's often 
an "end" tag (with a I character) for every "start" tag. Some tags, such as <a> 
(hypertext i!nchor), have attributes. In the example above, the line 

<a href="default.htm">SlowSoft's Home Page</a><p> 

creates a link to another HTML file. The user clicks on "SlowSoft's Home 
Page," and the browser requests default.htm from the original server. 

Actually, newproducts.html references two server files, default.htm and 
limages/clouds.jpg. The clouds.jpg file is aJPEG file that contains a back
ground picture for the page. The browser downloads each of these files as a 
separate transaction, establishing and closing a separate TCP connection each 
time. The server just dishes out files to any client that asks for them. In this 
case, the server doesn't know or care whether newproducts.html and cloudsJpg 
were requested by the same client. Clients are simply IP addresses and port 
numbers to the server. In fact, the port number is different for each request 
from a client. For example, if 10 of your company's programmers are surfing 
the Web via your company's proxy server (more on proxy servers later), the 
server sees the same IP address for each client. 

NOT E: Web pages use two graphics formats, GIF andJPEG. GIF 
files are compressed images that retain all the detail of the original 
uncompressed image but are usually limited to 256 colors. They 
support transparent regions and animation.JPEG files are smaller, 
but they don't carry all the detail of the original file. GIF files are 
often used for small images such as buttons, andJPEG files are of
ten used for photographic images for which detail is not critical. 
Developer Studio can read, write, and convert both GIF andJPEG 

857 



PAR T V I: PROGRAMMING FOR THE INTERNET 

files, but the Win32 API cannot handle these formats unless you 
supply a special compression/decompression module. 

The HTTP standard includes a PUT request type that enables a client 
program to upload a file to the server. PUT is seldom implemented by client 
programs or server programs. 

FTP Basics 
The File Transfer Protocol handles uploading and downloading of server files 
plus directory navigation and browsing. A Windows command-line program 
called ftp (it doesn't work through a Web proxy server) lets you connect to an 
FTPserverusingUNIX-like keyboard commands. Browser programs usually 
support the FTP protocol (for downloading files only) in a more user-friendly 
manner. You can protect an FTP server's directories with a user-name/pass
word combination, but both strings are passed over the Internet as clear text. 
FTP is based on TCP. Two separate connections are established between the 
client and server, one for control and one for data. 

Internet vs. Intranet 
Up to now, we've been assuming that client and server computers were con
nected to the worldwide Internet. The fact is you can run exactly the same 
client and server software on a local intranet. An intranet is often implemented 
on a company's LAN and is used for distributed applications. Users see the 
familiar browser interface at their client computers, and server computers 
supply simple Web-like pages or do complex data processing in response to 
user input. 

An intranet offers a lot of flexibility. If, for example, you know that all 
your computers are Intel-based, you can use ActiveX controls and ActiveX 
document servers that provide ActiveX document support. If necessary, your 
server and client computers can run custom TCP /IP software that allows com
munication beyond HTTP and FTP. To secure your company's data, you can 
separate your intranet completely from the Internet or you can connect it 
through a firewall, which is another name for a proxy server. 

Build Your Own $99 Intranet 

858 

Building a Windows-based intranet is easy and cheap. Both Windows 95 and 
Windows NT contain the necessary networking capabilities. If you don't want 
to spend the $99, you can build a free intranet within a single computer. All 
the code in this chapter will run on this one-computer configuration. 



T H I R T Y: TCP/IP, Winsock, and Winlnet 

NT File System vs. File Allocation Table 
With Windows 95, you are restricted to one file system, File Allocation Table 
(FAT-actually VFAT for long filenames). With Windows NT, you choose 
between NT File System (NTFS) and FAT at setup time. Your intranet will be 
much more secure if you choose NTFS because NTFS allows you to set user 
permissions for individual directories and files. Users log on to a Windows 
server (or to an attached workstation) supplying a user name and password. 

Intranet and Internet clients participate in this operating-system secu
rity scheme because the server can log them on as though they were local users. 
Thus you can restrict access to any server directory or file to specific users who 
must supply passwords. If those user workstations are Windows network clients 
(as would be the case with a LAN-based intranet), the user name and password 
are passed through from the user's logon. 

Network Hardware 
You obviously need more than one computer to make a network. Your main 
development computer is probably a Pentium or a Pentium Pro, but chances 
are you have at least one old computer hanging around. If it's at least a 486, 
it makes sense to connect it to your main computer for intranet testing and 
file backups. 

You'll need a network board for each computer, but 10-megabit-per
second Ethernet boards now cost less than $50 each. Choose a brand that 
either comes with its own drivers for both Windows 95 and Windows NT or is 
already supported by those operating systems. To see a list of supported 
boards, click on the Network icon in the Control Panel, and then click the Add 
button to add an Adapter. 

Most network boards have connectors for both thin coaxial (coax) and 
10BaseT twisted pair. With 10BaseT, you must buy a hub, which costs several 
hundred dollars and needs a power supply. Thin coax requires only coaxial 
cable (available in precut lengths with connectors) plus terminator plugs. With 
coax, you daisy-chain your computers together and put terminators on each 
end of the chain. 

Follow the instructions that come with the network board. In most cases 
you'll have to run an MS-DOS program that writes to the electrically erasable/ 
programmable read-only memory (EEPROM) on the board. Write down the 
values you select-you'll need them later. 

Configuring Windows for Networking 
Mter clicking on the Network icon in the Control Panel, you select protocols, 
adapters (network boards), and services. The screens that appear depend on 

859 



PAR T V I: PROGRAMMING FOR THE INTERNET 

whether you're using Windows 95 or Windows NT. You must select TCP lIP 
as one of your protocols if you want to run an intranet. You must also install 
the Windows driver for your network board, ensuring that the IRQ and 1/0 
address values match what you put into the board's EEPROM. You must also 
assign an IP address to each of your network boards. If you're not connected 
directly to the Internet, you can choose any unique address you want. 

That's actually enough configuring for an intranet, but you'll probably 
want to use your network for sharing files and printers, too. For Windows NT, 
install Client And Server Services and bind them to TCP lIP. For Windows 95, 
install Client For Microsoft Networks and File And Printer Sharing For 
Microsoft Networks. If you have an existing network with another protocol 
installed (Novell IPX/SPX or Microsoft NetBEUI, for example), you can 
continue to use that protocol on the network along with TCP/IP. In that case, 
Windows file and print sharing will use the existing protocol and your intranet 
will use TCP/IP. If you want one computer to share another computer's re
sources, you must enable sharing from Microsoft Windows Explorer (for disk 
directories) or from the Printers folder (for printers). 

Host Names for an Intranet-The HOSTS File 
Both Internet and intranet users expect their browsers to use host names, not 
IP addresses. There are various methods of resolving names to addresses, 
including your own DNS server, which is an installable component of Windows 
NT Server. The easiest way of mapping Internet host names to IP addresses, 
however, is to use the HOSTS file. On Windows NT, this is a text file in the 
\Winnt\System32\DRIVERS\ETC directory. On Windows 95, it's in the\WIN
DOWS directory, in a prototype HOSTS.SAM file that's already there. Just copy 
that file to HOSTS, and make the entries with Notepad. Make sure that you 
copy the edited HOSTS file to all computers in the network. 

Testing Your Intranet-The Ping Program 
You can use the Windows Ping program to test your intranet. From the com
mand line, type ping followed by the IP address (dotted-decimal format) or 
the host name of another computer on the network. If you get a positive re
sponse, you'll know that TCP lIP is configured correctly. If you get no response 
or an error message, proceed no further. Go back and troubleshoot your 
network connections and configuration. 

An Intranet for One Computer-The TCP/IP Loopback Address 
The first line in the HOSTS file should be 

127.0.0.1 localhost 

860 



T H I R T Y: TCP/IP, Winsock, and Winlnet 

This is the standard loopback IP address. If you start a server program to lis
ten on this address, client programs running on the same machine can con
nect to localhost to get a TCP lIP connection to the server program. This works 
whether or not you have network boards installed. 

Winsock 
Winsock is the lowest level Windows API for TCP lIP programming. Part of the 
code is located in wsock32.dll (the exported functions that your program 
calls), and part is inside the Windows kernel. You can write both internet server 
programs and internet client programs using the Winsock API. This API is 
based on the original Berkely Sockets API for UNIX. A new and much more 
complex version, Winsock 2, is included for the first time with Windows NT 
4.0, but we'll stick with the old version because it's the current standard for 
both Windows NT and Windows 95. 

Synchronous vs. Asynchronous Winsock Programming 
Winsock was introduced first for Winl6, which did not support multithreading. 
Consequently, most developers used Winsock in the asynchronous mode. In 
that mode, all sorts of hidden windows and PeekMessage calls enabled single
threaded programs to make Winsock send and receive calls without blocking, 
thus keeping the user interface (UI) alive. Asynchronous Winsock programs 
were complex, often implementing "state machines" that processed callback 
functions, trying to figure out what to do next based on what had just happened. 

Well, we're not in 16-bit land anymore, so we can do modern multi
threaded programming. If this scares you, go back and review Chapter 11. 
Believe me, once you get used to multithreaded programming, you'll love it. 
In this chapter, we'll make the most of our Winsock calls from worker threads 
so that the program's main thread can carry on with the UI. The worker 
threads contain nice sequential logic consisting of blocking Winsock calls. 

The MFC Winsock Classes 
I try to use MFC classes where it makes sense, but the MFC developers told me 
that the CAsyncSocket and CSocket classes were not appropriate for 32-bit syn
chronous programming. The Visual C++ online help says you can use CSocket 
for synchronous programming, but if you look at the source code you'll see 
some ugly message-based code left over from Win 16. 

The Blocking Socket Classes 
Since I couldn't use MFC, I had to write my own Winsock classes. CBlocking
Socket is a thin wrapping of the Winsock API, designed only for synchronous 

861 



PAR T V I: PROGRAMMING FOR THE INTERNET 

862 

use in a worker thread. The only fancy features are exception-throwing on 
errors and time-outs for sending and receiving data. The exceptions help you 
write cleaner code because you don't need to have error tests after every 
Winsock call. The time-outs (implemented with the Winsock select function) 
prevent a communication fault from blocking a thread indefinitely. 

CHttpBlockingSocket is derived from CBlockingSocket and provides func
tions for reading HTTP data. CSockAddr and CBlockingSocketException are helper 
classes. 

The CSockAddr Helper Class 
Many Winsock functions take socket address parameters. As you might remem
ber, a socket address consists of a 32-bit IP address plus a 16-bit port number. 
The actual Winsock type is a 16-byte sockaddcin structure, which looks like this: 

struct sockaddr_in { 
short sin_family; 
u_short sin_port; 
struct in_addr sin_addr; 
char sin_zero[8]; 

} ; 

The IP address is stored as type in_addr, which looks like this: 

struct in_addr 
union { 

struct u_char s_bl.s_b2.s_b3.s_b4; } S_un_b; 
struct u_short s_wl.s_w2; } S_un_w; 
u_long S_addr; 

S_un; 

These are ugly structures, so we'll derive a programmer-friendly C++ class 
from sockaddcin. The file \vcpp32\ex30a\Blocksock.h on the CD-ROM con
tains the following code for doing this, with inline functions included: 

class CSockAddr : public sockaddr_in { 
public: 

II constructors 
CSockAddr() 
{ 

sin_family = AF_INET; 
sin_port = 0; 
sin_addr.s_addr = 0; 

II Default 
CSockAddr(const SOCKADDR& sa) { memcpy(this. &sa. 

sizeof(SOCKADDR»; } 
CSockAddr(const SOCKADDR_IN& sin) { memcpy(this. &sin. 



} : 

T H I R T Y: TCP/lP, Winsock, and Winlnet 

sizeof(SOCKADDR_IN»: } 
CSockAddr(const ULONG ulAddr, const USHORT ushPort 0) 
II parms are host byte ordered 
{ 

sin_family = AF_INET: 
sin_port = htons(ushPort): 
sin_addr.s_addr = htonl(ulAddr): 

CSockAddr(const char* pchIP, const USHORT ushPort 0) 
II dotted IP addr string 
{ 

sin_family = AF_INET: 
sin_port = htons(ushPort): 
sin_addr.s_addr = inet_addr(pchIP): 

II already network byte ordered 
II Return the address in dotted-decimal format 
CString DottedDecimal() 

{ return inet_ntoa(sin_addr): } 
II constructs a new CString object 
II Get port and address (even though they're public) 
USHORT Port() const 

{ return ntohs(sin_port): 
ULONG IPAddr() const 

{ return ntohl(sin_addr.s_addr): 
II operators added for efficiency 
const CSockAddr& operator=(const SOCKADDR& sa) 
{ 

memcpy(this, &sa, sizeof(SOCKADDR»: 
return *this: 

const CSockAddr& operator=(const SOCKADDR_IN& sin) 
{ 

memcpy(this, &sin, sizeof(SOCKADDR_IN»: 
return *this: 

operator SOCKADDR() 
{ return *«LPSOCKADDR) this): 

operator LPSOCKADDR() 
{ return (LPSOCKADDR) this: } 

operator LPSOCKADDR_IN() 
{ return (LPSOCKADDR_IN) this: 

As you can see, this class has some useful constructors and conversion 
operators, which make the CSockAddr object interchangeable with the type 
sockaddr_in and the equivalent types SOCKADDlLIN, sockaddr, and SOCK
ADDR. There's a constructor and a member function for IP addresses in 
dotted-decimal format. The internal socket address is in network byte order, 

863 



PAR T V I: PROGRAMMING FOR THE INTERNET 

864 

but the member functions all use host byte order parameters and return 
values. The Winsock functions htonl, htons, ntohs, and ntohl take care of the 
conversions between network and host byte order. 

The CBlockingSocketException Class 
All the CBlockingSocket functions throw a CBlockingSocketException object when 
Winsock returns an error. This class is derived from the MFC CException class 
and thus overrides the GetErrorMessage function. This function gives the Win
sock error number and a character string that CBlockingSocket provided when 
it threw the exception. 

The CBlockingSocket Class 
Figure 30-9 shows an excerpt from the header file for the CBlockingSocket class. 

BLOCKSOCK.H 

class CBlockingSocket : public CObject 
{ 

DECLARE_DYNAMIC(CBlockingSocket) 
public: 

} ; 

SOCKET m_hSocket; 
CBlockingSocket(); m_hSocket = NULL; 
void Cleanup(); 
void Create(int nType = SOCK_STREAM); 
void Close(); 
void Bind(LPCSOCKADDR psa); 
void Listen(); 
void Connect(LPCSOCKADDR psa); 
BOOL Accept(CBlockingSocket& s. LPCSOCkADDR psa); 
int Send(const char* pch. const int nSize. const int nSecs); 
int Write(const char* pch. const int nSize. const int nSecs); 
int Receive(char* pch. const int nSize. const int nSecs); 
int SendDatagram(const char* pch. const int nSize. LPCSOCKADDR psa. 

const int nSecs); 
int ReceiveDatagram(char* pch. const int nSize. LPCSOCKADDR psa, 

const int nSecs); 
void GetPeerAddr(LPCSOCKADDR psa); 
void GetSockAddr(LPCSOCKADDR psa); 
static CSockAddr GetHostByName(const char* pchName. 

const USHORT ushPort = 0); 
static const char* GetHostByAddr(LPCSOCKADDR psa); 
operator SOCKET(); 

{ return m_hSocket; } 

Figure 30-9. 
The excerpt from the header file for the CBlockingSocket class. 



T H I R T Y: TCP/IP, Winsock, and Winlnet 

Following is a list of the CBlockingSocket member functions, starting with 
the constructor: 

CJ Constructor-The CBlockingSocket constructor makes an uninitial
ized object. You must call the Create member function to create a 
Windows socket and connect it to the C++ object. 

CJ Create-This function calls the Winsock socket function and then 
sets the m_hSocket data member to the returned 32-bit SOCKET 
handle. 

Parameter 

nType 

Description 

Type of socket; should be SOCK_STREAM 
(the default value) or SOCK_DGRAM 

[J Close-This function closes an open socket by calling the Winsock 
closesocket function. The Create function must have been called pre
viously. The destructor does not call this function because it would 
be impossible to catch an exception for a global object. Your server 
program can call Close anytime for a socket that is listening. 

!]l Bind-This function calls the Winsock bind function to bind a pre
viously created socket to a specified socket address. Prior to calling 
Listen, your server program calls Bind with a socket address contain
ing the listening port number and server's IP address. If you supply 
INADDJLANY as the IP address, Winsock deciphers your compu
ter's IP address. 

Parameter 

psa 

Description 

A CSockAddr object or a pointer to a variable of 
type sockaddr 

m Listen-This TCP function calls the Winsock listen function. Your 
server program calls Listen to begin listening on the port specified 
by the previous Bind call. The function returns immediately. 

m Accept-This TCP function calls the Winsock accept function. Your 
server program calls Accept immediately after calling Listen. Accept 
returns when a client connects to the socket, sending back a new 

865 



PAR T V I: PROGRAMMING FOR THE INTERNET 

866 

socket (in a CBlockingSocket object that you provide) that corre
sponds to the new connection. 

Parameter 

s 

psa 

Return value 

bescription 

A reference to an existing CBlockingSocket object for 
which Create has not been called 

A CSockAddr object or a pointer to a variable of type 
sockaddr for the connecting socket's address 

TRUE if successful 

m Connect-This TCP function calls the Winsock connect function. 
Your client program calls Connect after calling Create. Connect 
returns when the connection has been made. 

Parameter 

psa 

Description 

A CSockAddr object or a pointer to a variable of 
type sockaddr 

D Send-This TCP function calls the Winsock send functIon after 
calling select to activate the time-out. The number of bytes actually 
transmitted by each Send call depends on how quickly the program 
at the other end of the connection can receive the bytes. Send 
throws an exception if the program at the other end closes the 
socket before it reads all the bytes. 

Parameter 

pch 

nSize 

nSecs 

Return value 

Description 

A pointer to a buffer that contains the bytes to send 

The size (in bytes) of the block to send 

Time-out value in seconds 

The actual number of bytes sent 

m Write-This TCP function calls Send repeatedly until all the bytes 
are sent or until the receiver closes the socket. 



Parameter 

pch 

nSize 

nSecs 

Return value 

T H I R T Y: TCP/IP, Winsock, and Winlnet 

Description 

A pointer to a buffer that contains the bytes to send 

The size (in bytes) of the block to send 

Time-out value in seconds 

The actual number of bytes sent 

a Receive-This TCP function calls the Winsock recv function after 
calling select to activate the time-out. This function returns only the 
bytes that have been received. For more information, see the de
scription of the CHttpBlockingSocket class in the next section. 

Parameter 

pch 

nSize 

nSecs 

Return value 

Description 

A pointer to an existing buffer that will receive the 
incoming bytes 

The maximum number of bytes to receive 

Time-out value in seconds 

The actual number of bytes received 

Ii!iJ SendDatagram-This UDP function calls the Winsock sendto func
tion. The program on the other end needs to call ReceiveDatagram. 
There is no need to call Listen, Accept, or Connect for datagrams. 
You must have previously called Create with the parameter set to 
SOCK_DGRAM. 

Parameter 

pch 

nSize 

psa 

nSecs 

Return value 

Description 

A pointer to a buffer that contains the bytes to send 

The size (in bytes) of the block to send 

The datagram's destination address; a CSockAddr 
object or a pointer to a variable of type sockaddr 

Time-out value in seconds 

The actual number of bytes sent 

867 



PAR T V I: PROGRAMMING FOR THE INTERNET 

868 

e ReceiveDatagram-This UDP function calls the Winsock recvfrom 
function. The function returns when the program at the other end 
of the connection calls SendDatagram. You must have previously 
called Create with the parameter set to SOCK_DGRAM. 

Parameter 

pch 

nSize 

psa 

nSecs 

Return value 

Description 

A pointer to an existing buffer that will receive the 
incoming bytes 

The size (in bytes) of the block to send 

The datagram's destination address; a CSockAddr 
object or a pointer to a variable of type sockaddr 

Time-out value in seconds 

The actual number of bytes received 

e GetPeerAddr-This function calls the Winsock getpeername function. 
It returns the port and IP address of the socket on the other end 
of the connection. If you are connected to the Internet through a 
Web proxy server, the IP address is the proxy senrer's IP address. 

Parameter 

psa 

Descri ption 

A CSockAddrobject or a pointer to a variable of 
type sockaddr 

e GetSockAddr-This function calls the Winsock getsockname function. 
It returns the socket address that Winsock assigns to this end of 
the connection. If the other program is a server on a LAN, the IP 
address is the address assigned to this computer's network board. 
If the other program is a server on the Internet, the IP address is 
assigned by your service provider when you dial in. In both cases, 
Winsock assigns the port number, which is different for each 
connection. 

Parameter 

psa 

Description 

A CSockAddr object or a pointer to a variable of type 
sockaddr 



T H I R T Y: TCP/lP, Winsock, and Winlnet 

Cl GetHostByName-This static function calls the Winsock function 
gethostbyname. It queries a name server and then returns the socket 
address corresponding to the host name. The function times out 
by itself. 

Parameter 

pchName 

ushPort 

Return value 

Description 

A pointer to a character array containing the host 
name to resolve 

The port number (default value 0) that will become 
part of the returned socket address 

The socket address containing the IP address from 
the DNS plus the port number ushPort 

Cl GetHostByAddr-This static function calls the Winsock gethostbyaddr 
function. It queries a name server and then returns the host name 
corresponding to the socket address. The function times out by itself. 

Parameter 

psa 

Return value 

Description 

A CSockAddr object or a pointer to a variable of 
type sockaddr 

A pointer to a character array containing the host 
name; the caller should not delete this memory 

Cl Cleanup-This function closes the socket ifit is open. It doesn't 
throw an exception, so you can call it inside an exception catch 
block. 

Cl operator SOCKET-This overloaded operator lets you use a 
CBlockingSocket object in place of a SOCKET parameter. 

The CHttpBlockingSocket Class 
If you call CBlockingSocket::Receive, you'll have a difficult time knowing when 
to stop receiving bytes. Each call returns the bytes that are stacked up at your 
end of the connection at that instant. If there are no bytes, the call blocks, but 
if the sender closed the socket, the call returns zero bytes. 

In the HTTP section beginning on page 855, you learned that the client 
sends a request terminated by a blank line. The server is supposed to send the 
response headers and data as soon as it detects the blank line, but the client 

869 



PAR T V I: PROGRAMMING FOR THE INTERNET 

870 

needs to analyze the response headers before it reads the data. What this says 
is that, as long as a TCP connection remains open, the receiving program must 
process the received data as it comes in. A simple but inefficient technique 
would be to call Receive for 1 byte at a time. A better way is to use a buffer. 

The CHttpBlockingSocket class adds buffering to CBlockingSocket, and it 
provides two new member functions. Here is part of the \vcpp32\ex30A \Block
sock.h file: 

class CHttpBlockingSocket public CBlockingSocket 
{ 

public: 
DECLARE_DYNAMIC(CHttpBlockingSocket) 
enum {nSizeRecv = 1000}; II max receive buffer size (> hdr line 

II length) 
CHttpBlackingSacket(); 
-CHttpBlackingSocket(); 
int ReadHttpHeaderLine(char* pch. canst int nSize. canst int nSecs); 
int ReadHttpRespanse(char* pch. canst int nSize. canst int nSecs); 

private: 
char* m_pReadBuf; II read buffer 
int m_nReadBuf; II number af bytes in the read buffer 

} ; 

The constructor and destructor take care of allocating and freeing a 1000-
character buffer. The two new member functions are as follows: 

IJ ReadHttpHeaderLine-This function returns a single header line, 
terminated with a <cr><lf> pair. ReadHttpHeaderLine inserts a ter
minating zero at the end of the line. If the line buffer is full, the 
terminating zero is stored in the last position. 

Parameter 

pch 

nSize 

nSecs 

Return value 

Description 

A pointer to an existing buffer that will receive the 
incoming line (zero-terminated) 

The size of the pch buffer 

Time-out value in seconds 

The actual number of bytes received, excluding the 
terminating zero 

IJ ReadHttpResponse-This function returns the remainder of the 
server's response received when the socket is closed or when the buf
fer is full. Don't assume that the buffer contains a terminating zero. 



T H I R T Y: TCPIIP, Winsock, and Winlnet 

Parameter 

pch 

nSize 

nSecs 

Return value 

Descri ption 

A pointer to an existing buffer that will receive the 
incoming data 

The maximum number of bytes to receive 

Time-out value in seconds 

The actual number of bytes received 

A Simplified HTTP Server Program 
Now it's time to use the blocking socket classes to write an HTTP server pro
gram. All the frills have been eliminated, but the code actually works with a 
browser. This server doesn't do much except return some hard-coded head
ers and HTML statements in response to any GET request. (See the EX30A 
program later in this chapter for a more complete HTTP server.) 

Initializing Winsock 
Before making any Winsock calls, the program must initialize the Winsock 
library. The following statements in the application's InitInstance member 
function do the job: 

WSADATA wsd; 
WSAStartup(0x0101, &wsd); 

Starting the Server 
The server starts in response to some user action, such as a menu choice. 
Here's the command handler: 

CBlockingSocket g_sListen; II one-and-only global socket for listening 
void CSocketView: :OnlnternetStartServer() 
{ 

try 
CSockAddr saServer(INADDR_ANY, 80); 
g_sListen.Create(); 
g_sListen.Bind(saServer); 
g_sListen.Listen(); 
AfxBeginThread(ServerThreadProc, GetSafeHwnd(»; 

catch(CBlockingSocketException* e) { 
g_sListen.Cleanup(); 
II Do something about the exception 
e->Delete(); 

871 



PAR T V I: PROGRAMMING FOR THE INTERNET 

872 

Pretty simple, really. The handler creates a socket, starts listening on it, and 
then starts a worker thread that waits for some client to connect to port 80. If 
something goes wrong, an exception is thrown. The global g_sListen object lasts 
for the life of the program and is capable of accepting multiple simultaneous 
connections, each managed by a separate thread. 

The Server Thread 
Now let's look at the SeroerThreadProc function: 

UINT ServerThreadProc(LPVOID pParam) 
{ 

CSockAddr saClient; 
CHttpBlockingSocket sConnect; 
char request[100]; 
char headers[] = "HTTP/1.0 200 OK\r\n" 

"Server: Inside Visual C++ SOCK01\r\n" 
"Date: Thu, 05 Sep 1996 17:33:12 GMT\r\n" 
"Content-Type: text/html\r\n" 
"Accept-Ranges: bytes\r\n" 
"Content-Length: 187\r\n" 
"\r\n"; II the important blank line 

char html[] = 
"<html><head><title>Inside Visual C++ Server</title></head>\r\n" 
"<body><body background=\"/samples/images/usa1.jpg\">\r\n" 
"<h1><center>This is a custom home page</center></h1><p>\r\n" 
"</body></html>\r\n\r\n"; 

try { 
if(!g_sListen.Accept(sConnect, saClient» { 

II Handler in view class closed the listening socket 
return 0; 

AfxBeginThread(ServerThreadProc, pParam); 
II read request from client 
sConnect.ReadHttpHeaderLine(request, 100, 10); 
TRACE("SERVER: %s", request); II Print the first header 
if(strnicmp(request, "GET", 3) == 0) { 

do { II Process the remaining request headers 
sConnect.ReadHttpHeaderLine(request, 100, 10); 
TRACE("SERVER: %s", request); II Print the other headers 

while(strcmp(request, "\r\n"»; 
sConnect.Write(headers, strlen(headers), 10); II response hdrs 
sConnect.Write(html, strlen(html), 10); II HTML code 

else { 
TRACE("SERVER: not a GET\n"); 
II don't know what to do 



T H I R T Y: TCP/IP, Winsock, and Winlnet 

sConnect.CloseC); II Destructor doesn't close it 

catchCCBlockingSocketException* e) ( 
II Do something about the exception 
e-)DeleteC): 

return 13: 

The most important function cpll is the Accept call. The thread blocks 
until a client connects to the server's port 80, and then Accept returns with a 
new socket, sConnect. The current thread immediately starts another thread. 

In the meantime, the current thread must process the client's request 
that just came in on sConnect. It first reads all the request headers by calling 
ReadHttpHeaderLine until it detects a blank line. Then it calls Write to send the 
response headers and the HTML statements. Finally, the current thread calls 
Close to close the connection socket. End of story for this connection. The next 
thread is sitting, blocked at the Accept call, waiting for the next connection. 

Cleaning Up 
To avoid a memory leak on exit, the program must ensure that all worker 
threads have been terminated. The simplest way to do this is to close the lis
tening socket. This forces any thread's pending Accept to return FALSE, caus
ing the thread to exit. 

try 
g_sListen.CloseC): 
SleepC3ee): II Wait for thread to exit 
WSACleanupC): II Terminate Winsock 

catchCCUserException* e) { 
e-)DeleteC): 

There might be a problem if a thread were in the process of fulfilling a 
client request. In that case, the maip thread should positively ensure that all 
threads have terminated before exiting. 

A Simplified HTTP Client Program 
Now for the client side of the story-a simple working program that does a 
blind GET request. When a server receives a GET request with a slash, as 
shown, it's supposed to deliver its default HTML file: 

GET I HTTPII.e 

873 



PAR T V I: PROGRAMMING FOR THE INTERNET 

874 

If you typed http://www.slowsoft.comin a browser, the browser sends the blind 
GET request. 

This client program can use the same CHttpBlockingSocket class you've 
already seen, and it must initialize Winsock the same way the server did. A 
command handler simply starts a client thread with a call like this: 

AfxBeginThread(ClientSocketThreadProc. GetSafeHwnd(»; 

Here's the client thread code: 

CString g_strServerName = "localhost"; II or some other host name 
UINT ClientSocketThreadProc(LPVOID pParam) 
{ 

CHttpBlockingSocket sClient; 
char* buffer = new char[MAXBUF]; 
int nBytesReceived = 0; 
char request[] = "GET I HTTP/l.0\r\n"; 
char headers[] = II Request headers 

"User-Agent: Mozilla/l.22 (Windows; U; 32bit)\r\n" 
"Accept: *I*\r\n" 
"Accept: image/gif\r\n" 
"Accept: image/x-xbitmap\r\n" 
"Accept: image/jpeg\r\n" 
"\r\n"; II need this 

CSockAddr saServer. saClient; 
try { 

sClient.Create(); 
saServer = CBlockingSocket::GetHostByName(g_strServerName. 80); 
sClient.Connect(saServer); 
sClient.Write(request. strlen(request). 10); 
sClient.Write(headers. strlen(headers). 10); 
do { II Read all the server's response headers 

nBytesReceived = sClient.ReadHttpHeaderLine(buffer. 100. 10); 
} while(strcmp(buffer. "\r\n"»; II through the first blank line 
nBytesReceived = sClient.ReadHttpResponse(buffer. 100. 10); 
if(nBytesReceived == 0) { 

AfxMessageBox("No response received"); 

else { 
buffer[nBytesReceived] '\0'; 
AfxMessageBox(buffer); 

catch(CBlockingSocketException* e) { 
II Log the exception 
e-)Delete(); 

} 



sClient.CloseC); 
delete [] buffer; 
return 0; II The thread exits 

T H I R T Y: TCP/IP, Winsock, and Winlnet 

This thread first calls CBlockingSocket::GetHostByName to get the server 
computer's IP address. Then it creates a socket and calls Connect on that socket. 
Now there's a two-way communication channel to the server. The thread sends 
its GET request followed by some request headers, reads the server's response 
headers, and then reads the response file itself, which it assumes is a text file. 
Mter the thread displays the text in a message box, it exits. 

Building a Web Server with CHttpBlockingSocket 
If you need a Web server, your best bet is to buy one or to use the Microsoft 
Internet Information Server (lIS) that comes bundled with Windows NT 
Server. Of course, you'll learn more if you build your own server and you'll 
have a useful diagnostic tool. And what if you need features that lIS can't 
deliver? Suppose you want to add Web server capability to an existing Windows 
application, or suppose you have a custom ActiveX control that sets up its own 
non-HTTP TCP connection with the server. Take a good look at the server 
code in EX30A, which works under both Windows NT and Windows 95. It 
might work as a foundation for your next custom server application. 

EX30A Server Limitations 
The server part of the EX30A program honors GET requests for files, and it 
has logic for processing POST requests. (POST requests are described in 
Chapter 31.) These are the two most common HTTP request types. EX30A 
will not, however, launch Common Gateway Interface (CGI) scripts or load 
Internet Server Application Programming Interface (ISAPI) DLLs. (You'll 
learn more about ISAPI in Chapter 31.) EX30A makes no provision for secu
rity, and it doesn't have FTP capabilities. Other than that, it's a great server! 
If you want the missing features, just write the code for them yourself. 

EX30A Server Architecture 
You'll soon see that EX30A combines an HTTP server, a Winsock HTTP cli
ent, and two WinInet HTTP clients. All three clients can talk to the built-in 
server or to any other server on the Internet. Any client program, including 
the Telnet utility and standard browsers such as Microsoft Internet Explorer 
3.0, can communicate with the EX30A server. You'll examine the client sec
tions a little later. 

875 



PAR T V I: PROGRAMMING FOR THE INTERNET 

876 

EX30A is a standard MFC SDI document-view application with a view 
class derived from CEditView. The main menu includes Start Server and Stop 
Server menu choices as well as a Configuration command that brings up a 
tabbed dialog for setting the home directory, the default file for blind GETs, 
and the listening port number (usually 80). 

The Start Server command handler starts a global socket listening and 
then launches a thread, as in the simplified HTTP server described previously. 
Look at the SeroerThreadProc function included in the file \vcpp32\ex30a
\ServerThread.cpp of the EX30A project on the CD-ROM. Each time a server 
thread processes a request, it logs the request by sending a message to the 
CEditViewwindow. It also sends messages for exceptions, such as bind errors. 

The primary job of the server is to deliver files. It first opens a file, stor
ing a CFilepointer in pFile, and then it reads 5K (SERVERMAXBUF) blocks and 
writes them to the socket sConnect, as shown in the code below: 

char* buffer = new char[SERVERMAXBUF]; 
DWORD dwLength = pFile->GetLength(); 
nBytesSent = 0; 
DWORD dwBytesRead = 0; 
UINT uBytesToRead; 
while(dwBytesRead < dwLength) 

uBytesToRead = min(SERVERMAXBUF. dwLength - dwBytesRead); 
VERIFY(pFile->Read(buffer. uBytesToRead) == uBytesToRead); 
nBytesSent += sConnect.Write(buffer. uBytesToRead. 10); 
dwBytesRead += uBytesToRead; 

The server is programmed to respond to a GET request for a phony file 
named Custom. It generates some HTML code that displays the client's IP 
address, port number, and a sequential connection number. This shows you 
one possibility for server customization. 

The server normally listens on a socket bound to address INADDJLANY. 
This is the server's default IP address determined by the Ethernet board or 
assigned during your connection to your ISP. If your server computer has 
several IP addresses, you can force the server to listen to one of them by fill
ing in the Server IP Address in the Advanced Configuration page. You can also 
change the server's listening port number on the Server page. If you choose 
port 90, for example, browser users would connect to http://localhost:90. 

The leftmost status bar indicator pane displays "Listening" when the 
server is running. 



T H I R T Y: TCP/IP, Winsock, and Winlnet 

Using the Win32 TransmitFile Function 
If you have Windows NT 4.0, you can make your server more efficient by us
ing the Win32 TransmitFile function in place of the CFile::Read loop in the code 
excerpt shown on page 871. TransmitFile sends bytes from an open file directly 
to a socket and is highly optimized. The EX30A ServerThreadProc function 
contains the following line: 

if (::TransmitFile(sConnect, (HANDLE) pFile->m_hFile, dwLength, 0, NULL, 
NULL, TF_DISCONNECT» 

If you have Windows NT, uncomment the line 

#define USE_TRANSMITFILE 

at the top of ServerThread.cpp to activate the TransmitFile logic. 

Building and Testing EX30A 
Open the \vcpp32\ex30a project in Developer Studio, and then build the 
project. A directory under EX30A, called Website, contains some HTML files 
and is set up as the EX30A server's home directory, which appears to clients 
as the server's root directory. 

NOT E : If you have another HTTP server running on your com
puter, stop it now. If you have installed lIS along with Windows NT 
Server, it is probably running now, so you must run the Internet 
Service Manager program from the Microsoft Internet Server menu. 
Select the WWW Service line, and then click the stop button (the 
one with the square). EX30A reports a bind error (10048) if another 
server is already listening on port 80. 

Run the program from the debugger, and then choose Start Server from 
the Internet menu. Now go to your Web browser and type localhost. You should 
see the lIS default page (which I copied into the EX30A directory for you) 
complete with all graphics. The EX30A window should look like this: 

::~. ~~~~~~~~~==~~~==~~+I 
ii!'Addres~ http://. ,i . URL Request ,'.,' ..> 
! SERVER CONNECTION It 51 : .IF' Qddr= 127 .O~O.l~. port :::. .1399 ~ 1 0122/9~17:59:24 GMT 
iGET IHlJP/hO·.· .. ' ...... ,.. ".';,>:, ........... ;;. ' ..... ; ....... ',' ....•. , >:.; 
: SERVER CONNECTION 11 52: 1Pllddr=}21.(}:O:1, Il0rt ,;,1400 -:,1 0/22/9617:59:25 GMT 
i· GEt/backgrd.gif H1TPI1~O .• ;. : .• ,',.' .,.'. ',"<, .>.:... ;' ... ,; ..... ;; .. ",'. 
! SERVER CONNECTION II 53:lF'addr.= '12? .O.O.1.:port=1401 :':'10122/96 11:59:26 <l.MT .. 
lGE;T/bult~J·~~.F.HTTP1.J~Q.:.:<T-·:'" ~ ... : .. ,.'::',' .'~., .. . " 

li~~~9:,·(:i;;:;:··.:·:;··:" .. , '·l.:';.;::':::;; .. ,;' ;::'H';';~.~,)!;' .,.::' ... ': >·:;':;';i~~ 

877 



PAR T V I: PROGRAMMING FOR THE INTERNET 

Look at the Developer Studio debug window for a listing of the client's 
request headers. 

If you click the browser's Refresh button, you might notice EX30A error 
messages like this: 

WINSOCK ERROR--SERVER: Send error #10054 -- 10/05/96 04:34:10 GMT 

This tells you that the browser read the file's modified date from the server's 
response header and figured out that it didn't need the data because it already 
had the file in its cache. The browser then closed the socket, and the server 
detected an error. If the EX30A server were smarter, it would have checked 
the client's If-Modified-Since request header before sending the file. 

Of course, you can test the server on your $99 intranet. Start the server 
on one computer, and then run the browser from another, typing in the 
server's host name as it appears in the HOSTS file. 

Using Telnet 

878 

The Telnet utility is included with both Windows 95 and Windows NT. It's use
ful for testing server programs such as EX30A. With Telnet, you're sending 
one character at a time, which means that the server's CBlockingSocket::Receive 
function is receiving one character at a time. The Telnet window is shown here: 

The first time you run Telnet, choose Preferences from the Terminal 
menu and turn on Local Echo. Each time thereafter, choose Remote System 
from the Connect menu and then type your server name and port number 80. 
You can type a GET request (followed by a double carriage return), but you'd 
better type fast because the EX30A server's Receive calls are set to time-out after 
10 seconds. 



T H I R T Y: TCP/lP, Winsock, and Winlnet 

Building a Web Client with CHttpBlockingSocket 
If you had written your own Internet browser program a few years ago, you 
could have made a billion dollars by now. But these days, you can download 
browsers for free, so it doesn't make sense to write one. It does make sense 
to add Internet access features to your Windows applications, however. 
Winsock is not the best tool if you need HTTP or FTP access only, but it's a 
good tool for learning. 

The EX30A Winsock Client 
The EX30A program implements a Winsock client in the file \vcpp32\ex30a
\ClientSockThread.cpp on the CD-ROM. The code is similar to the code for 
the simplified HTTP client on page 874. The client thread uses global vari
ables set by the Configuration property sheet, including server filename, server 
host name, server IP address and port, and client IP address. The client IP ad
dress is necessary only if your computer supports multiple IP addresses. When 
you run the client, it connects to the specified server and issues a GET request 
for the file you specified. The Winsock client logs error messages in the EX30A 
main window. 

EX30A Support for Proxy Servers 
If your computer is connected to a LAN at work, chances are it's not exposed 
directly to the Internet but rather connected through a proxy server, some
times called a firewall. There are two kinds of proxy servers: Web and Winsock. 
Web proxy servers, sometimes called CERN proxies, support only the HTTP, 
FTP, and gopher protocols. (The gopher protocol, which predates HTTP, 
allows character-mode terminals to access Internet files.) A Winsock client 
program must be specially adapted to use a Web proxy server. A Winsock proxy 
server is more flexible and thus can support protocols such as RealAudio. 
Instead of modifying your client program source code, you link to a special 
Remote Winsock DLL that can communicate with a Winsock proxy server. 

The EX30A client code can communicate through a Web proxy if you 
check the Use Proxy check box in the Client Configuration page. In that case, 
you must know and enter the name of your proxy server. From that point on, 
the client code connects to the proxy server instead of to the real server. All 
GET and POST requests must then specify the full Uniform Resource Loca
tor (URL) for the file. 

879 



PAR T V I: PROGRAMMING FOR THE INTERNET 

If you were connected directly to SlowSoft's server, for example, your 
GET request migh t look like this: 

GET /customers/newproducts.html HTTP/I.e 

But if you were connected through a Web proxy server, the GET would look 
like this: 

GET http://slowsoft.com/customers/newproducts.html HTTP/I.e 

Testing the EX30A Winsock Client 
The easiest way to test the Winsock client is by using the built-in Winsock 
server. Just start the server as before, and then choose Request (Winsock) froni 
the Internet menu. You should see some HTML code in a message bpx. You 
can also test the client against lIS, the server running in another EX30A pro
cess on the same computer, the EX30A server running on another computer 
on the Net, and an Internet server. Ignore the "Address" URL on the dialog 
bar for the time being; it's for one of the WinInet clients. You must enter the 
server name and filename in the Client page of the Configuration dialog. 

Winlnet 
WinInet is a higher-level API than Winsock, but it works only for HTTP, FTP, 
and gopher client programs in both asynchronous and synchronous modes. 
You can't use it to build servers. The WININET DLL is independent of the 
WINSOCK32 DLL. Microsoft Internet Explorer 3.0 (IE3) uses WinInet, and 
so do ActiveX controls. 

Winlnet's Advantages over Winsock 

880 

WinInet far surpasses Winsock in the support it gives to a professional-level 
client program. Following are just some of the WinInet benefits: 

m Caching-Just like IE3, your WinInet client program caches HTML 
files and other Internet files. You don't have to do a thing. The sec
ond time your client requests a particular file, it's loaded from a 
local disk instead of from the Internet. 

[;.I Security-WinInet supports basic authentication, Windows NT 
challenge/response authentication, and the Secure Sockets Layer 
(SSL). Authentication is described in Chapter 31. 



T H I R T Y: TCP/IP, Winsock, and Winlnet 

rJ Web proxy access-You enter proxy server information through 
the Control Panel (click on the Internet icon), and it's stored in 
the Registry. WinInet reads the Registry and uses the proxy server 
when required. 

C Buffered I/O-WinInet's read function doesn't return until it can 
deliver the number of bytes you asked for. (It returns immediately, 
of course, if the server closes the socket.) Also, you can read indi
vidual text lines if you need to. 

e Easy API-Status callback functions are available for VI update 
and cancellation. One function, ClnternetSession::OpenURL, finds 
the server's IP address, opens a connection, and makes the file 
ready for reading, all in one call. Some functions even copy Inter
net files directly to and from disk. 

C User friendly-WinInet parses and formats headers for you. If a 
server has moved a file to a new location, it sends back the new 
VRL in an HTTP Location header. WinInet seamlessly accesses the 
new server for you. In addition, WinInet puts a file's modified date 
in the request header for you. 

The MFC Winlnet Classes 
WinInet is a modern API available only for Win32. The MFC wrapping is quite 
good, which means I didn't have to write my own WinInet class library. Yes, 
MFC WinInet supports blocking calls in multithreaded programs, and by now 
you know that makes me happy. 

The MFC classes closely mirror the underlying WinInet architecture, and 
they add exception processing. These classes are summarized in the follow
ing sections. 

ClnternetSession 
You need only one ClnternetSession object for each thread that accesses the 
Internet. After you have your ClnternetSession object, you can establish HTTP, 
FIP, or gopher connections or YOll can open remote files directly by calling 
the OpenURL member function. You can use the ClnternetSession class directly, 
or you can derive a class from it in order to support status callback functions. 

The ClnternetSession constructor calls the WinInet InternetOpen function, 
which returns an HINTERNET session handle that is stored inside the Clnternet
Session object. This function initializes your application's use of the WinInet 
library, and the session handle is used internally as a parameter for other 
WinInet calls. 

881 



PAR T V I: PROGRAMMING FOR THE INTERNET 

882 

CHttpConnection 
An object of class CHttpConnectionrepresents a "permanent" HTTP connec
tion to a particular host. You know already that HTTP doesn't support per
manent connections and thatFTP doesn't either. (The connections last only 
for the duration of a file transfer.) WinInet gives the appearance of a perma
nent connection because it remembers the host name. 

After you have your ClnternetSession object, you call the GetHttpConnection 
member function, which returns a pointer to a CHttpConnection object. (Don't 
forget to delete this object when you are finished with it.) 

The GetHttpConnection member function calls the WinInet InternetConnect 
function, which returns an HINTERNET connection handle that is stored in
side the CHttpConnection object and used for subsequent WinInet calls. 

CFtpConnection, CGopherConnection 
These classes are similar to CHttpConnection, but they use the FTP and gopher 
protocols. The CFtpConnection member functions GetFile and PutFile allow you 
to transfer files directly to and from your disk. 

ClnternetFile 
With HTTP, FTP, or gopher, your client program reads and writes byte 
streams. The MFC WinInet classes make these byte streams look like ordinary 
files. If you look at the class hierarchy, you'll see that ClnternetFile is derived 
from CStdioFile, which is derived from CFile. Therefore, ClnternetFile and its de
rived classes override familiar CFile functions such as Read and Write. For FTP 
files, you use ClnternetFile objects directly, but for HTTP and gopher files, you 
use objects of the derived classes CHttpFileand CGopherFile. You don't construct 
a ClnternetFile object directly, but you call CFtpConnection::OpenFileto get a Cln
ternetFile poin ter. 

If you have an ordinary CFile object, it has a 32-bit HANDLE data mem
ber that represents the underlying disk file. A ClnternetFileobject uses the same 
m_hFiledata member, but that data member holds a 32-bitInternet file handle 
of type HINTERNET, which is not interchangeable with a HANDLE. The 
ClnternetFile overridden member functions use this handle to call WinInet 
functions such as InternetReadFile and InternetWriteFile. 

CHttpFile 
This Internet file class has member functions that are unique to HTTP files, 
such as AddRequestHeaders, SendRequest, and GetFileURL. You don't construct 
a CHttpFile object directly, but you call the CHttpConnection::OpenRequest 
function, which calls the WinInet function HttpOpenRequest and returns a 
CHttpFile pointer. You can specify a GET or POST request for this call. 



T H I R T Y: TCP/IP, Winsock, and Winlnet 

Once you have your CHttpFile pointer, you call the CHttpFile::SendRequest 
member function, which actually sends the request to the server. Then you 
call Read. 

CFtpFileFind, CGopherFileFind 
These classes let your client program explore FTP and gopher directories. 

ClnternetException 
The MFC WinInet classes throw ClnternetException objects that your program 
can process with try/catch logic. 

Internet Session Status Callbacks 
WinInet and MFC provide callback notifications as a WinInet operation 
progresses, and these status callbacks are available in both synchronous (block
ing) and asynchronous modes. In synchronous mode (which we're using 
exclusively here), your WinInet calls block even though you have status call
backs enabled. 

Callbacks are easy in C++. You simply derive a class and override selected 
virtual functions. The base class for WinInet is ClnternetSession. Now let's de
rive a class named CCallbacklnternetSession: 

class CCallbacklnternetSession : public ClnternetSession 
{ 

public: 
CCallbacklnternetSession( LPCTSTR pstrAgent = NULL. DWORD dwContext = 1. 

DWORD dwAccessType = PRE_CONFIG_INTERNET_ACCESS. 
LPCTSTR pstrProxyName = NULL. LPCTSTR pstrProxyBypass = NULL. 
DWORD dwFlags = 0 ) { EnableStatusCallback() } 

protected: 
virtual void OnStatusCallback(DWORD dwContext. DWORD dwlnternalStatus. 

LPVOID lpvStatuslnformation. DWORD dwStatuslnformationLength); 
} ; 

The only coding that's necessary is a constructor and a single overridden 
function, OnStatusCallback. The constructor calls ClnternetSession::EnableStatus
Callback to enable the status callback feature. Your WinInet client program 
makes its various Internet blocking calls, and when the status changes, 
OnStatusCallback is called. Your overridden function quickly updates the VI 
and returns, and then the Internet operation continues. For HTTP, most of 
the callbacks originate in the CHttpFile::SendRequest function. 

What kind of events trigger callbacks? A list of the codes passed in the 
dwlnternalStatus parameter is shown on the following page. 

883 



PAR T V I: PROGRAMMING FOR THE INTERNET 

Code Passed Action Taken 

Look up the IP address of 
the supplied name. The 
name now in lpvStatus
Information. 

Successfully found the IP 
address. The IP address 
now in lpvStatusInformation. 

INTERNET_STATUS_CONNECTING_ TO_SERVER Connect to the socket. 

INTERNET_STATUS_CONNECTED_ TO_SERVER Successfully connected to 
the socket. 

INTERNET_STATUS_SENDING_REQUEST Send the information 
request to the server. 

INTERNET_STATUS_REQUEST_SENT Successfully sent the infor
mation request to the server. 

INTERNET_STATUS_RECEIVING_RESPONSE Waiting for the server to 
respond to a request. 

INTERNET_STATUS_RESPONSE_RECEIVED Successfully received a 
response from the server. 

INTERNET_STATUS_CLOSING_CONNECTION Closing the connection to 
the server. 

INTERNET_STATUS_CONNECTION_CLOSED Successfully closed the 
connection to the server. 

INTERNET_STA TUS_HANDLE_CREA TED Program can now close the 
handle. 

INTERNET_STATUS_HANDLE_CLOSING Successfully terminated this 
handle value. 

INTERNET _STATUS_REQUEST _COMPLETE Successfully completed the 
asynchronous operation. 

You can use your status callback function to interrupt a Winlnet opera
tion. You could, for example, test for an event set by the main thread when 
the user cancels the operation. 

A Simplified Winlnet Client Program 

884 

And now for the Winlnet equivalent of our Winsock client program that 
implements a blind GET request. Because you're using Winlnet in blocking 
mode, you must put the code in a worker thread. That thread is started from 
a command handler in the main thread: 



T H I R T Y: TCP/IP, Winsock, and Winlnet 

AfxBeginThread(ClientWinlnetThreadProc. GetSafeHwnd(»; 

Here's the client thread code: 

CString g_strServerName = "localhost"; II or some other host name 
UINT ClientWinlnetThreadProc(LPVOID pParam) 
{ 

ClnternetSession session; 
CHttpConnection* pConnection = NULL; 
CHttpFile* pFile1 = NULL; 
char* buffer = new char[MAXBUF]; 
UINT nBytesRead 0; 
try { 

pConnection session.GetHttpConnection(g_strServerName. 80); 
pFile1 = pConnection->OpenRequest(1. "I"); II blind GET 
pFile1->SendRequest(); 
nBytesRead = pFile1->Read(buffer. MAXBUF - 1); 
buffer[nBytesRead] = '\0'; II necessary for message box 
char temp[10]; 
if(pFile1->Read(temp. 10) 1= 0) { 

II makes caching work if read complete 
AfxMessageBox("File overran buffer -- not cached"); 

AfxMessageBox(buffer); 

catch(ClnternetException* e) 
II Log the exception 
e->Delete(); 

if(pFile1) delete pFile1; 
if(pConnection) delete pConnection; 
delete [] buffer; 
return 0; 

The second Read call needs some explanation. It has two purposes. If the 
first Read doesn't read the whole file, that means that it was longer than 
MAXBUF -1. The second Read will get some bytes, and that lets you detect the 
overflow problem. If the first Read reads the whole file, you still need the sec
ond Read to force WinInet to cache the file on your hard disk. Remember that 
WinInet tries to read all the bytes you ask it to-through the end of the file. 
Even so, you need to read 0 bytes after that. 

885 



PAR T V I: PROGRAMMING FOR THE INTERNET 

Building a Web Client 
with the MFC Winlnet Classes 

There are two ways to build a Web client with WinInet. The first method, using 
the CHttpConnection class, is similar to the simplified WinInet client on the 
preceding page. The second method, using ClnternetSession::OpenURL, is even 
easier. We'll start with the CHttpConnection version. 

The EX30A Winlnet Client #1-Using CHttpConnection 
The EX30A program implements a WinInet client in the file \vcpp32-
\ex30a\ClientInetThread.cpp on the CD-ROM. Besides allowing the use of an 
IP address as well as a host name, the program uses a status callback function. 
That function, CCallbacklnternetSession::OnStatusCallback in the file \vcpp32-
\ex30a\utility.cpp, puts a text string in a global variable g_pchStatus, using a 
critical section for synchronization. The function then posts a user-defined 
message to the application's main window. The message triggers an V pdate 
Command VI handler (called by CWinApp::Onldle), which displays the text in 
the second status bar text pane. 

Testing the Winlnet Client #1 
To test the WinInet client #1, you can follow the same procedure you used to 
test the Winsock client. Note the status bar messages as the connection is made. 
Note that the file appears more quickly the second time you request it. 

The EX30A Winlnet Client #2-Using OpenURL 

886 

The EX30A program implements a different WinInet client in the file 
ClientVrlThread.cpp on the CD-ROM. This client uses the "Address" VRL 
(that you type to access the Internet site). Here's the actual code: 

CString g_strURL = ''http://''; 

UINT ClientUrlThreadProc(LPVOID pParam) 
{ 

char* buffer = new char[MAXBUF]; 
UINT nBytesRead = 0; 

CInternetSession session; II can't get status callbacks for OpenURL 
CStdioFile* pFilel = NULL; II could call ReadString to get 1 line 
try { 

pFilel = session.OpenURL(g_strURL, 0, INTERNET_FLAG_TRANSFER_BINARY 
IINTERNET_FLAG_KEEP_CONNECTION); 



T H I R T Y: TCP/IP, Winsock, and Winlnet 

II If OpenURL fails, we won't get past here 
nBytesRead = pFile1->Read(buffer, MAXBUF - 1): 
buffer[nBytesRead] = '\0': II necessary for message box 
char temp[100]: 
if(pFile1->Read(temp, 100) != 0) { 

II makes caching work if read complete 
AfxMessageBox( "Fil e overran buffer - - not cached"): 

::MessageBox(::GetTopWindow(::GetDesktopWindow(», buffer, 
"URL CLIENT", MB_OK): 

catch(CInternetException* e) { 
LogInternetException(pParam, e): 
e->Delete(): 

if(pFile1) delete pFile1: 
delete [] buffer: 
return 0: 

Note that OpenURL returns a pointer to a CStdioFile object. You can use 
that pointer to call Read as shown, or you can call ReadStringto get a single line. 
The file class does all the buffering. As in the previous WinInet client, it's 
necessary to call Read a second time to cache the file. The OpenURL INTERNET
_FLA G_KEEP _ CONNECTION parameter is necessary for Windows NT chal
lenge/response authentication, which is described in Chapter 31. If you added 
the flag INTERNET_FLAG_RELOAD, the program would bypass the cache just 
as the browser does when you click the Refresh button. 

Testing the Winlnet Client #2 
You can test the WinInet client #2 against any HTTP server. You run this cli
ent by typing in the URL address, not by using the menu. You must include 
the protocol (http:// or ftp://) in the URL address. Type http://localhost. You 
should see the same HTML code in a message box. No status messages appear 
here because the status callback doesn't work with OpenURL. 

Asynchronous Moniker Files 
Just when you thought you knew all the ways to download a file from the 
Internet, I'm going to tell you about another one. With asynchronous moni
ker files, you'll be doing all your programming in your application's main 
thread without blocking the user interface. Sounds like magic, doesn't it? The 
magic is inside the Windows URLMON DLL, which depends on WinInet and 

887 



PAR T V I: PROGRAMMING FOR THE INTERNET 

is used by Microsoft Internet Explorer. The MFC CAsyncMonikerFileclass makes 
the programming easy, but you should know a little theory first. 

Monikers 
A moniker is a "surrogate" COM object that holds the name (URL) of the 
"real" object, which could be an embedded component but more often isjust 
an Internet file (HTML, ]PEG, GIF, and so on). Monikers implement the 
IMonikerinterface, which has two important member functions: BindToObject 
and BindToStorage. The BindToObject function puts an object into the running 
state, and the BindToStorage function provides an IStream or an IStorage pointer 
from which the object's data can be read. A moniker has an associated 
IBindStatusCallback interface with member functions such as OnStartBinding 
and OnDataAvailable, which are called during the process of reading data from 
aURL. 

The callback functions are called in the thread that created the moni
ker. This means that the URLMON DLL must set up an invisible window in 
the calling thread and send the calling thread messages from another thread, 
which uses WinInet functions to read the URL. The window's message han
dlers call the callback functions. 

The MFC CAsyncMonikerFile Class 
Fortunately, MFC can shield you from the COM interfaces described above. 
The CAsyncMonikerFile class is derived from CFile, so it acts like a regular file. 
Instead of opening a disk file, the class's Open member function gets an 
IMonikerpointer and encapsulates the IStream interface returned from a call 
to BindToStorage. Furthermore, the class has virtual functions that are tied to 
the member functions of IBindStatusCallback. Using this class is a breeze; you 
construct an object or a derived class and call the Open member function, 
which returns immediately. Then you wait for calls to overridden virtual func
tions such as OnProgress and OnDataAvailable, named, not coincidentally, af
ter their IBindStatusCallback equivalents. 

Using the CAsyncMonikerFile Class in a Program 

888 

Suppose your application downloads data from a dozen URLs but has only one 
class derived from CAsyncMonikerFile. The overriqden callback functions must 
figure out where to put the data. That means you must associate each derived 
class object with some UI element in your program. Following is one of many 
ways to do this. Suppose you want to list the text of an HTML file in an edit 
control that's part of a form view. This is what you can do: 



T H I R T Y: TCP/IP, Winsock, and Winlnet 

l. Use ClassWizard to derive a class from CAsyncMonikerFile. 

2. Add a character pointer data member m_buffer. Invoke new for this 
pointer in the constructor; invoke delete in the destructor. 

3. Add a public data member m_edit of class CEdit. 

4. Override the OnDataAvailable function thus: 

void CMyMonikerFile::OnDataAvailable(DWORD dwSize. DWORD bscfFlag) 
{ 

try { 
UINT nBytesRead = Read(m_buffer. MAXBUF - 1); 
TRACE("nBytesRead = %d\n". nBytesRead); 
m_buffer[nBytesRead] = '\0'; II necessary for edit control 
II The following two lines add text to the edit control 
m_edit.SendMessage(EM_SETSEL. (WPARAM) 999999. 1000000); 
m_edit.SendMessage(EM_REPLACESEL. (WPARAM) 0. 

(LPARAM) m_buffer); 

catch(CFileException* pe) 
TRACE("File exception %d\n. pe->m_cause"); 
pe->Delete(); 

5. Embed an object of your new moniker file class in your view class. 

6. In you view's OnlnitialUpdate function, attach the C£dit member to 
the edit control like this: 

m_myEmbeddedMonikerFile.m_edit.SubClassDlgItem(ID_MYEDIT. this); 

7. In your view class, open the moniker file like this: 

m_myEmbeddedMonikerFile.Open(''http://hostifilename''); 

For a large file, OnDataAvailable will be called several times, each time 
adding text to the edit control. If you override OnProgress or OnStopBindingin 
your derived moniker file class, your program can be alerted when the trans
fer is finished. You can also check the value of bscfFlag in OnDataAvailable to 
determine whether the transfer is completed. Note that everything here is in 
your main thread and-most importantly-the moniker file object must ex
ist for as long as the transfer is in progress. That's why it's a data member of 
the view class. 

Asynchronous Moniker Files vs. Winlnet Programming 
In the WinInet examples earlier in this chapter, you started a worker thread 
that made blocking calls and sent a message to the main thread when it was 

889 



PAR T V I: PROGRAMMING FOR THE INTERNET 

890 

finished. With asynchronous moniker files, the same thing happens-the 
transfer takes place in another thread, which sends messages to the main 
thread. Youjust don't see the other thread. There is one very important dif
ference, however, between asynchronous moniker files and Winlnet program
ming: with blocking Winlnet calls, you need a separate thread for each 
transfer; with asynchronous moniker files, only one extra thread handles all 
transfers together. For example, if you're writing a browser that must down
load 50 bitmaps simultaneously, using asynchronous moniker files saves 49 
threads, which makes the program much more efficient. 

Of course, you have some extra control with Winlnet and it's easier to 
get information from the response headers, such as total file length. Your 
choice of programming tools, then, depends on your application. The more 
you know about the options, the better the choice you can make. 



C HAP T E R T H RTY-ONE 

Programming the Microsoft 
I nternet I nformation Server 

In Chapter 30, you used a "homemade" Web based on the WinsockAPls. In 
this chapter, you'll learn how to use and extend Microsoft Internet Informa
tion Server (lIS) 3.0, which is bundled with Microsoft Windows NT Server 4.0. 
lIS is actually three separate servers-one for HTTP (for the World Wide 
Web), one for FTP, and one for gopher. This chapter tells you how to write 
HTTP server extensions using the Microsoft lIS application programming 
interface (ISAPI) that is part of Microsoft ActiveX technology. You'll exam
ine two kinds of extensions: an ISAPI server extension and an ISAPI filter, both 
of which are DLLs. An ISAPI server extension can perform Internet business 
transactions such as order entry. An ISAPI filter intercepts data traveling to 
and from the server and thus can perform specialized logging and other tasks. 

liS Alternatives 
The exercises in this chapter assume that you have Windows NT Server 4.0 and 
lIS. If you are running Windows NT Workstation, you can use Peer Web Ser
vices, which supports fewer connections and doesn't allow virtual servers. If 
you are running Microsoft Windows 95, you can use Personal Web Server, 
which is packaged with Microsoft FrontPage. Internet Information Server, 
Peer Web Services, and Personal Web Server can all use ISAPI extension DLLs. 
See your server's documentation for operating details. 

Microsoft liS 
Microsoft lIS is a high-performance Internet/intranet server that takes advan
tage of Windows NT features such as I/O completion ports, the Win32 func
tion TransmitFile, file-handle caching, and CPU scaling for threads. 

891 



PAR T V I: PROGRAMMING FOR THE INTERNET 

Installing and Controlling liS 
When you install Windows NT Server 4.0, you are given the option of install
ing lIS. If you selected lIS at setup, the server will be running whenever Win
dows NT is running. lIS is a special kind of Win32 program called a service 
(actually three services-WWW, HTTP, and gopher-in one program called 
inetinfo.exe), which won't appear in the taskbar. You can control lIS from 
the Services icon in the Control Panel, but you'll probably want to use the 
Internet Service Manager program instead. 

Running Internet Service Manager 

892 

You can run Internet Service Manager from the Microsoft Internet Server 
menu that's accessible on the Start menu. 

NOT E : You can also run an HTML-based version of Internet 
Service Manager remotely from a browser. That version allows you 
to change service parameters, but it won't let you turn services on 
and off. 

Figure 31-1 shows the Microsoft Service Manager screen with the World 
Wide Web (WWW) running and FTP services stopped. 

Figure 31-1. 
The Microsoft Internet Service Manager screen. 

) 

You can select a service by clicking on its icon at the left. The triangle and 
square buttons on the toolbar of the screen allow you to turn the selected 
service on or off. 

liS Security 
Mter you double-click on the WWW service icon of the Microsoft Internet 
Service Manager screen, you'll see a property sheet. The Service page lets you 



T H I R T Y - 0 N E: Programming the Microsoft Internet Information Server 

configure lIS security. When a client browser requests a file, the server imper
sonates a local user for the duration of the request and that user name deter
mines which files the client can access. Which local user does the server 
impersonate? Most often, it's the one you see in the Username field shown in 
Figure 31-2. 

Anonymous LOgon....,.--....,.-....,.--,----~-.".___,__,__-,..., 

J.!$erneme: IIU~R:,~~~,A~~I~~~~M~L .; 

. E assw~ct I:';:~~~:_. 
Password Aulhentication __ ----,-:-..,.-,--,----,---.., 

P'. Allow I>JlOnymous 

D;,aasic [Clear'Text) 

Ci, Window~t!T ChanengeiAe~ponse 

Figure 31-2. 
The WWW Service Properties screen. 

Most Web page visitors don't supply a user name and password, so they 
are considered anonymous users. Those users have the same rights they would 
have if they had logged on to your server locally as IUSR_MYMACHINE
NAME. That means that IUSR_MYMACHINENAME must appear in the list 
of users that is displayed when you run User Manager or User Manager For 
Domains (from the Administrative Tools menu), and the passwords must 
match. The lIS Setup program normally defines this anonymous user for you. 
You can define your own WWW anonymous user name, but you must be sure 
that the entry on the Service page matches the entry in the computer's (or 
Windows NT domain's) user list. 

Note also the Password Authentication options. For the time being, stick 
to the Allow Anonymous option only, which means that all Web users are 
logged on as IUSR_MYMACHINENAME. Later in this chapter, I'll explain 
Windows NT Challenge/Response. 

893 



PAR T V I: PROGRAMMING FOR THE INTERNET 

894 

liS Directories 
Remember SlowSoft's Web site from Chapter 30? If you requested the URL 
http://slowsoft.com/newproducts.html, the newproducts.html file would be 
displayed from the slowsoft.com home directory. Each server needs a home 
directory, even if that directory contains only subdirectories. The home direc
tory does not need to be the server computer's root directory, however. As 
shown in Figure 31-3 below, the WWW home directory is really\WebHome, 
so clients read the disk file \WebHome\newproducts.html. 

Figure 31-3. 
The \WebHome VVWW home directory screen. 

Your server could get by with a home directory only, but the lIS virtual 
directory feature might be useful. Suppose SlowSoft wanted to allow Web 
access to the directory\BF on the D drive. The screen above shows a virtual 
/BugsFixed directory that maps to D:\BF. Clients would access files with a URL 
similar to this: http://slowsoft.com/BugsFixed/filel.html. 

NOT E: If your computer was configured for multiple IP ad
dresses (see the Control Panel Network icon), lIS would allow you 
to define virtual Web servers. Each virtual server would have its own 
home directory (and virtual directories) attached to a specified IP 
address, making it appear as though you had several server comput
ers. Unfortunately, the lIS Web server listens on all the computer's 
IP addresses, so you can't run lIS simultaneously with the EX30A 
server with both listening on port 80. 



T H I R T Y - 0 N E: Programming the Microsoft Internet Information Server 

As described in Chapter 30, browsers can issue a blind request. As Fig
ure 31-3 shows, Internet Service Manager lets you specify the file that a blind 
request selects, usually Default.htm. If you select the Directory Browsing Al
lowed option of the Directories page on the service property screen, browser 
clients can see a hypertext list of files in the server's directory instead. 

liS Logging 
lIS is capable of making log entries for all connections. You control logging 
from the Internet Service Manager's Logging property page. You can specify 
text log files, or you can specify logging to an SQL/ODBC database. Log 
entries consist of date, time, client IP address, file requested, query string, and 
so forth. 

Testing liS 
It's easy to test lIS with a browser or with any of the EX30A clients. Just make 
sure that lIS is running and that the EX30A server is not running. The default 
lIS home directory is \Winnt\System32\inetsrv\wwwroot, and some HTML 
files are installed there. If you're running a single machine, you can use the 
localhost host name. For a network, use a name from the Hosts file. If you can't 
access the server from a remote machine, run ping to make sure the network 
is configured correctly. Don't try to build and run ISAPI DLLs until you have 
successfully tested lIS on your computer. 

ISAPI Server Extensions 
An ISAPI server extension is a program (implemented as a DLL loaded by 
lIS) that runs in response to a GET or POST request from a client program 
(browser). The browser can pass parameters to the program, which are often 
values that the browser user types into edit controls, selects from list boxes, 
and so forth. The ISAPI server extension typically sends back HTML code 
based on those parameter values. You'll better understand this process when 
you see an example. 

Common Gateway Interface and ISAPI 
Internet server programs were first developed for UNIX computers, so the 
standards were in place long before Microsoft introduced lIS. The Common 
Gateway Interface (CGI) standard, actually part ofHTTP, evolved as a way for 
browser programs to interact with scripts or separate executable programs 
running on the server. Without altering the HTTPICGI specifications, 

895 



PAR T V I: PROGRAMMING FOR THE INTERNET 

Microsoft designed lIS to allow any browser to load and run a server DLL. 
DLLs are part of the lIS process and thus are faster than scripts that might need 
to load separate executable programs. Because of your experience, you'll 
probably find it easier to write an ISAPI DLL in C++ than to write a script in 
PERL, the standard Web scripting language for servers. 

CGI shifts the programming burden to the server. Using CGI parameters, 
the browser sends small amounts of information to the server computer, and 
the server can do absolutely anything with this information, including access 
a database, generate images, and control peripheral devices. The server sends 
a file (HTML or otherwise) back to the browser. The file can be read from the 
server's disk, or it can be generated by the program. No ActiveX controls or 
Java applets are necessary, and the browser can be running on any type of 
computer. 

A Simple ISAPI Server Extension GET Request 
Suppose an HTML file contains the following tag: 

<a href="scripts/maps.dll?State=Idaho">Idaho Weather Map</a><p> 

When the user clicks on Idaho Weather Map, the browser sends the server a CGI 
GET request like this: 

GET scripts/maps.dll?~tate=Idaho HTTP/l.0 

lIS then loads maps.dll from its scripts (virtual) directory, calls a default 
function (often named Default), and passes it the State parameter Idaho. The 
DLL then goes to work generating aJPG file containing the up-to-the-minute 
satellite weather map for Idaho and sends it to the client. 

If maps.dll had more than one function, the tag could specify the func
tion name like this: 

<a href="scripts/maps.dll?GetMap?State=Idaho&Res=5">Idaho Weather Map</a><p> 

In this case, the function GetMap is called with two parameters, State and Res. 
You'll soon learn how to write an ISAPI server similar to maps.dll, but 

first you'll need to understanq HTML forms, because you don't often see CGI 
GET requests by themselves. 

HTML Forms-GET vs. POST 

896 

In the HTML code for the simple CGI GET request above, the state name was 
hard-coded in the tag. Why not let the user select the state from a drop-down 
list? For that, you need a form, and here's a simple one that can do the job. 



T H I R T Y - 0 N E: Programming the Microsoft Internet Information Server 

<html> 
<head><title>Weathermap HTML Form</title> 
<I head> 
<body> 
<hl><center>Welcome to the Satellite Weathermap Service</center></hl> 
<form action="scripts/maps.dll?GetMap" method=GET> 

<p>Select your state: 
<select name="State"> 

<option> Alabama 
<option> Alaska 
<option> Idaho 
<option> Washington 

</select> 
<p><input type="submit"><input type="reset"> 
</form> 
</body></html> 

If you looked at this HTML file with a browser, you would see the form 
shown in Figure 31-4. 

Figure 31-4. 
The Weathermap HTML Form window. 

The select tag provides the state name from a list of four states, and the all
important "submit" input tag displays the pushbutton that sends the form data 
to the server in the form of a eGI GET request that looks like this: 

GET scripts/maps.dll?GetMap?State=Idaho HTTP/l.0 
(various request headers) 
(b7ank 7ine) 

Unfortunately, some early versions of the Netscape browser omit the function 
name in form-originated GET requests, giving you two choices: provide only 

897 



PAR T V I: PROGRAMMING FOR THE INTERNET 

a default function in your ISAPI DLL, and use the POST method inside a form 
instead of the GET method. 

If you want to use the POST option, change one HTML line in the form 
on the previous page to the following: 

<form action="scripts/maps.dll?GetMap" method=POST> 

Now here's what the browser sends to the server: 

POST scripts/maps.dll?GetMap 
(various request headers) 
(blank line) 
State=Idaho 

Note that the parameter value is in the last line instead of in the request line. 

NOT E : ISAPI DLts are usually stored in a separate virtual direc
tory on the server because these DLLs must have execute permis
sion but do not need read permission. Clicking the Edit Properties 
button shown in Figure 31-3 will allow you to access these permis
sions from the Internet Service Manager, or you can double-click 
on a directory to change its properties. 

Writing an ISAPI Server Extension DLL 

898 

Visual C++ gives you a quick start for writing ISAPI server extensions. Just select 
ISAPI Extension Wizard from the Projects list. After you click the OK button, 
your first screen looks like Figure 31-5. 

Figure 31-5. 
The Step 1 page of the ISAPI Extension Wizard. 



T H I R T Y - 0 N E: Programming the Microsoft Internet Information Server 

Check the Generate A Server Extension Object box, and you've got a 
do-nothing DLL project with a class derived from the MFC CHttpServer class 
and a Default member function. Now it's time for a little programming. 

You must write your ISAPI functions as members of the derived 
CHttpServer class, and you must write parse map macros to link them to lIS. 
There's no "parse map wizard," so you have to do some coding. It's OK to use 
the Default function, but you need a GetMap function too. First insert these 
lines into the wizard-generated parse map: 

ON_PARSE_COMMANDCGetMap, CWeatherExtension, ITS_PSTR) 
ON_PARSE_COMMAND_PARAMSC"State") 

Then write the GetMap function: 

void CWeatherExtension::GetMapCCHttpServerContext* pCtxt, LPCTSTR pstrState) 
{ 

StartContentCpCtxt); 
WriteTitleCpCtxt); 
*pCtxt « "Visualize a weather map for the state of ". 
*pCtxt « pstrState; 
EndContentCpCtxt); 

This function doesn't actually generate the weather map (what did you 
expect?), but it does display the selected state name in a custom HTML file. 
The CHttpServer::StartContent and CHttpServer::EndContent functions write the 
HTML boilerplate, and CHttpServer::WriteTitle calls the virtual CHttpServer
::GetTitle function, which you need to override: 

LPCTSTR CWeatherExtension::GetTitleC) const 
{ 

return "Your custom weather map"; II for browser's title window 

The MFC CHttpServerContextclass has an overloaded « operator, which 
you use to put text in the HTML file you're building. Behind the scenes, an 
attached object of the MFC class CHtmlStream represents the output to the 
server's socket. 

The MFC ISAPI Server Extension Classes 
Now is a good time to review the three MFC classes that are used to create 
an MFC ISAPI server extension. Remember that these classes are for ISAPI ser
ver extensions only. Don't even think of using them in ordinary Winsock or 
WinInet applications. 

899 



PAR T V I: PROGRAMMING FOR THE INTERNET 

CHttpServer 
With the help of the ISAPI Extension Wizard, you derive a class from 
CHttpSeroerfor each ISAPI server extension DLL that you create. You need one 
member function for each extension function (including the default func
tion), and you need an overridden Get Title function. The framework calls your 
extension functions in response to client requests, using the connections estab
lished in the parse map. The ISAPI Extension Wizard provides an overridden 
GetExtension Version function, which you seldom edit unless you need initializa
tion code to be executed when the DLL is loaded. 

One of the CHttpSeroer member functions that you're likely to call is Add
Header, which adds special response headers, such as Set-Cookie, before the 
response is sent to the server. (More on cookies later.) 

CHttpServerContext 
There's one CHttpSeroer object per DLL, but there is one CHttpSeroerContext 
object for each server transaction request. Your extension functions each 
provide a pointer to one of these objects. You don't derive from CHttpSeroer
Context, so you can't easily have variables for individual transactions. Because 
transactions can be managed by different lIS threads, you have to be careful 
to perform synchronization for any data members of your CHttpSeroerclass or 
global variables. 

You've already seen the use of the StartContent, EndContent, and WriteTitle 
functions of the CHttpSeroerclass plus the overloaded » operator. You might 
also need to call the CHttpServerContext::GetSeroerVariable function to read in
formation sent by the client in the request headers. 

CHtmlStream 
Most of the time, you don't use the CHtmlStream class directly. The CHttpSeroer
Context class has a CHtmlStream data member, m_pStream, that's hooked up to 
the » operator and serves as the output for HTML data. You could access the 
CHtmlStream object and call its Write member function if you needed to send 
binary data to the client. Because objects of the CHtmlStream class accumulate 
bytes in memory before sending them to the client, you need an alternative 
approach if your DLL relays large files directly from disk. 

A Practical ISAPI Server Extension-ex31 a.dll 

900 

The weather map server isn't interesting enough to make into a real project. 
I think you'll find the EX31A example more to your taste. It's a real Internet 
commerce application-a pizza ordering program. Imagine a computer-



T H I R T Y - 0 N E: Programming the Microsoft Internet Information Server 

controlled pizza oven and a robot arm that selects frozen pizzas. Microsoft 
Internet Explorer 7.0 is supposed to be able to deliver the hot pizzas directly 
from your clients' monitors, but in the meantime, you'll have to hire some de
livery drivers. 

The First Step-Getting the Order 
Junior sales trainees are constantly admonished to "get the order." That's cer
tainly necessary in any form of commerce, including the Internet. When the 
hungry customer hyperlinks to your site (by clicking on a picture of a pizza, 
of course), he or she simply downloads an HTML file that looks like this: 

<htm1> 
<head><tit1e>Inside Visual C++ HTML Form 1</tit1e> 
</head> 
<body> 
<hl><center>We1come to CyberPizza</center></hl> 
<p> Enter your order. 
<form action="scripts/ex31a.d11?ProcessPizzaForm" method=POST> 

<p> Your Name: <input type="text" name="name" va1ue=""> 
<p> Your Address: <input type="text" name="address" va1ue=""> 
<p> Number of Pies: <input type="text" name="quantity" va1ue=1> 
<p>Pizza Size: 

<menu> 
<li><input type="radio" name="size" va1ue=8>8-inch 
<1 i ><i nput type="radi 0" name="s i ze" va 1 ue=10> Hl- inch 
<li><input type="radio" name="size" va1ue=12 checked>12-inch 
<li><input type="radio" name="size" va1ue=14>14-inch 

</menu> 
<p> Toppings: 
<p> 

<input type="checkbox" name="topl" va1ue="Pepperoni" checked> 
Pepperoni 

<input type="checkbox" name="top2" va1ue="Onions"> Onions 
<input type="checkbox" name="top3" va1ue="Mushrooms"> Mushrooms 
<input type="checkbox" name="top4" va1ue="Sausage"> Sausage 

<p> 
<em>(you can select multiple toppings)</em> 

<p><input type="submit" va1ue="Submit Order Now"><input type="reset"> 
</form> 
</body></htm1> 

Figure 31-6 on the following page shows how the order form appears in 
the browser. 

901 



PAR T V I: PROGRAMMING FOR THE INTERNET 

902 

Figure 31-6. 
The CyberPizza order form. 

So far, no ISAPI DLL is involved. When the customer clicks the Submit 
Order Now button, things start to happen. Here's what the server sees: 

POST scripts/ex3Ia.dll?ProcessPizzaForm HTTP/I.0 
(request headers) 
(blank line) 
name=Walter+Sullivan&address=Redmond%2C+WA&quantity=2&size=12&topl=Pepperoni 

&top3=Mushrooms 

Looks like Walter Sullivan has ordered two 12-inch pepperoni and mushroom 
pizzas. The browser inserts a + sign in place of a space, the %2C is a comma, 
and the & is the parameter separator. Now let's look at the parse map entries 
in ex31a.cpp: 

ON_PARSE_COMMAND(ProcessPizzaForm, CEx3laExtension. 
ITS_PSTR ITS_PSTR ITS_14 ITS_PSTR ITS_PSTR ITS_PSTR ITS_PSTR ITS_PSTR) 

ON_PARSE_COMMAND_PARAMS("name address quantity size topl=- top2=- top3=- -. 
top4=-") 



T H I R T Y - 0 N E: Programming the Microsoft Internet Information Server 

Optional Parameters 
When you write your parse map statements, you must understand the 
browser's rules for sending parameter values from a form. In the 
EX31A pizza form, the browser always sends parameters for text fields, 
even if the user enters no data. If the user left the Name field blank, 
for example, the browser would send name=&. For check box fields, 
however, it's a different story. The browser sends the check box pa
rameter value only if the user checks the box. The parameters asso
ciated with .check boxes are thus defined as optional parameters. 

If your parse macro for parameters looked like this 

ON_PARSE_COMMAND_PARAMS(" name address quantity size topl top2 top3 .. 
top4") 

there would be trouble if the customer didn't chec~ all the toppings. 
The HTTP request would simply fail, and the customer would have to 
search for another pizza site. The =- symbols in the ex31a.cpp code 
designate the last four parameters as optional, with default values-, 
If the Toppings option is checked, the form transmits the value; oth
erwise, it transmits a'"" character, which the DLL can test for. Optional 
parameters must be listed last. 

The DLL's ProcessPizzaForm function reads the parameter values and 
produces an HTML confirmation form, which it sends to the customer. Here 
is the code: 

void CEx3laExtension: :ProcessPizzaForm(CHttpServerContext* pCtxt, 
LPCTSTR pstrName, LPCTSTR pstrAddr, int nQuantity, LPCTSTR pstrSize, 
LPCTSTR pstrTopl, LPCTSTR pstrTop2, LPCTSTR pstrTop3, LPCTSTR pstrTop4) 

StartContent(pCtxt); 
WriteTitle(pCtxt); 
if((strlen(pstrName) > 0) && (strlen(pstrAddr) > 0)) 

*pCtxt « II Your pi zza order is as foll ows: "; 
*pCtxt « "<p>Name: II « pstrName; 
*pCtxt « "<p>Address: " « pstrAddr; 
*pCtxt« "<p>Number of pies: "« (long int) nQuantity; 
*pCtxt « "<p>Size: " « pstrSize; 

, *pCtxt « "<p>Toppings: " « pstrTopl « " " « pstrTop2; 
*pCtxt « " " « pstrTop3 « " " « pstrTop4; 
*pCtxt « "<p>The total cost is $23.49, including delivery."; 

(continued) 

903 



PAR T V I: PROGRAMMING FOR THE INTERNET 

*pCtxt « "<form action=\"ex31a.dll?ConfirmOrder\" method=POST>"; 
*pCtxt « "<p><input type=\"hidden\" name=\"name\" value=\""; 
*pCtxt « pstrName « "\">"; II xref to original order 
*pCtxt « "<p><input type=\"submit\" value=\"Confirm and charge my ~ 

credit card\">"; 
*pCtxt « "</form>"; 
II Store this order in a disk file or database. referenced by name 

else { 
*pCtxt « "You forgot to enter name or address. Back up and try ~ 

again."; 

EndContent(pCtxt); 

The resulting browser screen is shown below in Figure 31-7. 

Figure 31-7. 
The pizza confirmation browser screen. 

As you can see, I took a shortcut computing the price. To accept, the customer 
clicks the submit button named Confirm And Charge My Credit Card. 

The Second Step-Processing the Confirmation 

904 

When the user clicks the Confirm And Charge My Credit Card button, the 
browser sends a second POST request to the server, specifying that the 
CEx31aExtension::ConfirmOrderfunction be called. But now you have to solve 



T H I R T Y - 0 N E: Programming the Microsoft Internet Information Server 

a big problem. Each HTTP connection (request/response) is independent of 
all others. How are you going to link the confirmation request with the origi
nal order? Although there are different ways to do this, the most common ap
proach is to send some text back with the confirmation in a hidden input.@g. 
When the confirmation parameter values come back, the server uses the hid
den text to match the confirmation to the original order, which it has stored 
somewhere on its hard disk. 

In the EX31A example, I'm using the customer's name in the hidden 
field, although it might be safer to use some combination of the name, date, 
and time. Here's the HTML code that CEx31aExtension::ProcessPizzaForm sends 
to the customer as part of the confirmation form: 

<input type="hidden" name="name" value="Walter Sullivan"> 

Here's the code for the CEx31aExtension::ConfirmOrder function: 

void CEx31aExtension::ConfirmOrder(CHttpServerContext* pCtxt, 
LPCTSTR pstrName) 

StartContent(pCtxt); 
WriteTitle(pCtxt); 
*pCtxt « "<p>Our courteous delivery person will arrive within 30 -. 

minutes."; 
*pCtxt « "<p>Thank you, " « pstrName « ", for using CyberPizza."; 
II Now retrieve the order from disk by name, and then make the pizza. 
II Be prepared to delete the order after a while if the customer 
II doesn't confirm. 
m_cs.Lock(); II gotta be threadsafe 
long int nTotal = ++m_nTotalPizzaOrders; 
m_cs.Unlock(); 
*pCtxt « "<p>Total pi zza orders = " « nTotal; 
EndContent(pCtxt); 

The customer's name comes back in the pstrNameparameter, and that's 
what you use to retrieve the original order from disk. The function also keeps 
track of the total number of orders, using a critical section (m_cs) to ensure 
thread synchronization. 

Building and Testing ex31 a.dll 
If you have copied the code from the CD-ROM, your project is located in 
\vcpp32\ex31a. Building the project adds a DLL to the Debug subdirectory. 
You must copy this DLL to a directory that the server can find and copy Pizza
Form.html also. You can use the scripts and wwwroot subdirectories already 
under \ Winnt\System32\inetsrv, or you can set up new virtual directories. 

905 



PAR T V I: PROGRAMMING FOR THE INTERNET 

NOT E : If you make changes to the EX31A DLL in the Visual C++ 
project, be sure to use Internet Service Manager (Figure 31-1) to 
turn off the WWWservice (becallse the old DLL stays loaded), copy 
the new DLL to the scripts directory, and then turn the WWW ser
vice on again. The revised DL~ will be loaded as soon as the first 
client requests it. 

If everything has been installed correctly, you should be able to load 
PizzaForm.html from the browser and then order some pizza. Enjoy! 

Debugging the EX31 A Dll 

906 

The fact that lIS is a Windows NT service complicates debugging ISAPI DLLs. 
Services normally run as part of the operating system, controlled by the ser
vice manager database. They have their own window station, and they run on 
their own invisible desktop. This involves some of the murkier parts of Win
dows NT, and not much published information is available. 

However, you can use these steps to debug your EX31A DLL (or any 
ISAPI DLL): 

1. Use the Internet Service Manager to stop all lIS services. 

2. Choose Settings from the EX31A project Build menu, and in the 
Project Settings dialog, type in the data as shown: 

3. Start User Manager or User Manager For Domains (Administrative 
Tools menu). Choose User Rights from the Policies menu, check 
Show Advanced User Rights, select the right Act As Part Of The 
Operating System, and add your user group as shown here: 



T H I R T Y • 0 N E: Programming the Microsoft Internet Information Server 

Domain: MYDOMAIN I OK 

:!l Cancel 
I" ,. 

.t!.elp 

I...~: 8dd .. 
~==~~====-----------

:'Ele~ove I 
L",CO~""C-~~'~~'---'-'~~'~---"'-'--'-"'-'~""'--'-''ow,'! 

4. Repeat step 3 to set the right for Generate Security Audits. 

5. Log back on to Windows NT to activate the new permission. (Don't 
forget this step.) 

6. Make sure that the current EX31A DLL file has been copied into 
the scripts directory. 

7. Start debugging. You can set breakpoints, step through code, and 
see the output of TRACE messages. 

ISAPI Database Access 
Your ISAPI server extension could use ODBC to access an SQL database. 
Before you write pages ofODBC code, however, check out the Internet Data
base Connector described in Chapter 8 of the lIS documentation. The Inter
net Database Connector is a ready-to-run DLL, Httpodbc.dll, that collects SQL 
query parameters and formats the output. You control the process by writing 
an IDC file that describes the data source and an HTX file that is a template 
for the resulting HTML file. No C++ programming is necessary. 

The Internet Database Connector is for queries only. If you want to 
update a database, you must write your own ISAPI server extension with 
ODBC calls. Make sure your ODBC driver is multithreaded, as is the latest 
SQL server driver. 

Using HTTP Cookies to Link Transactions 
Now that you've wolfed down the pizza, it's time for some dessert. However, 
the cookies that we'll be digesting in this section are not made with chocolate 
chips. Cookies are used to store information on our customers' hard disks. In 

907 



PAR T V I: PROGRAMMING FOR THE INTERNET 

the EX31A example, the server stores the customer name in a hidden field of 
the confirmation form. That works fine for linking the confirmation to the 
order, but it doesn't help you track how many pizzas Walter ordered this year. 
If you notice that Walter consistently orders pepperoni pizzas, you might want 
to send him some e-mail when you have a surplus of pepperoni. 

How Cookies Work 
With cookies, you assign Walter a customer ID number with his first order and 
make him keep track of that number on his computer. The server assigns the 
number by sending a response header such as this one: 

Set-Cookie: customer_id=12345; path=/; expires=Monday. 
02-Sep-99 00:00:00 GMT 

The string customeLid is the arbitrary cookie name you have assigned, the / 
value for path means that the browser sends the cookie value for any request 
to your site (named CyberPizza.com), and the expiration date is necessary for 
the browser to store the cookie value. 

When the browser sees the Set-Cookie response header, it creates (or re
places) an entry in its cookies. txt file as follows: 

customer_id 
12345 
cyberpizza.com/ 
o 
2096697344 
o 
2093550622 
35 

* 
Thereafter, when the browser requests anything from CyberPizza.com, the 
browser sends a request header like this: 

Cookie: customer_id=12345 

How an ISAPI Server Extension Processes Cookies 

908 

Your ISAPI server extension function makes a call like this one to store the 
cookie at the browser: 

AddHeader(pCtxt. "Set-Cookie: session_id=12345; path=/; expires=Monday. " 
" 02-Sep-99 00:00:00 GMT\r\n"); 

To retrieve the cookie, another function uses code like this: 



T H I R T Y - 0 N E: Programming the Microsoft Internet Information Server 

char strCookies[200]; 
DWORD dwLength = 200; 
pCtxt-)GetServerVariable("HTTP_COOKIE". strCookies. &dwLength); 

The strCookiesvariable should now contain the text customecid=12345. 

Problems with Cookies 
There was an uproar some time ago when Internet users first discovered that 
companies were storing data on the users' PCs. New browser versions now ask 
permission before storing a cookie from a Web site. Customers could thus 
refuse to accept your cookie, they could erase their cookies. txt file, or this file 
could become full. If you decide to use cookies at your Web site, you'lljust have 
to deal with those possibilities. 

WWW Authentication 
Up to now, your lIS has been set to allow anonymous logons, which means that 
anyone in the world can access your server without supplying a user name or 
password. All users are logged on as IUSR_MYMACHINENAME and can ac
cess any files for which that user name has permissions. 

NOT E : As stated in Chapter 30, you should be using NTFS on 
your server for maximum security. 

Basic Authentication 
The simplest way to limit server access is to enable basic authentication. Then, 
if a client makes an anonymous request, the server sends back the response 

HTTP/l.0 401 Unauthorized 

together with a response header like this: 

WWW-Authenticate: Basic realm="xxxx" 

The client prompts the user for a user name and password, and then it resends 
the request with a request header something like this: 

Authorization: Basic 2rc2341dfd8kdr 

The string that follows Basic is a pseudoencrypted version of the user name 
and password, which the server decodes and uses to impersonate the client. 

The trouble with basic authentication is that intruders can pick up the 
user name and password and use it to gain access to your server. lIS and most 
browsers support basic authentication, but it's not very effective. 

909 



PAR T V I: PROGRAMMING FOR THE INTERNET 

Windows NT Challenge/Response Authentication 
Windows NT challenge/response authentication is often used for intranets 
running on Microsoft networks, but you can use it on the Internet as well. lIS 
supports it (see Figure 31-2), but not all browsers do. 

If the server has challenge/response activated, a client making an ordi
nary request gets this response header: 

WWW-Authenticate: NTLM 

Authorization: NTLM TIRMTVNTUAABAAAAA5IAA 

The string after NTLM is the well-encoded user name-the password is never 
sent over the network. The server issues a challenge, with a response header 
like this: 

WWW-Authenticate: NTLM RPTUFJTgAAAAAA ... 

The client, which knows the password, does some math on the challenge 
code and the password and then sends back a response in a request header 
like this: 

Authorization: NTLM AgACAAgAAAAAAAAAA ... 

The server, which has looked up the client's password from the user name, 
runs the same math on the password and challenge code. It then compares 
the client's response code against its own result. If the client's and server's 
results match, the server honors the client's request by impersonating the 
client's user name and sending the requested data. 

When the client resends the request, the challenge/response dialog is 
performed over a single-socket connection with keep-alive capability as speci
fied in the Connection request header. 

Winlnet fully supports Windows NT challenge/response authentication. 
Thus, Internet Explorer 3.0 and the EX30A Winlnet clients support it. If the 
client computer is logged on to a Windows NT domain, the user name and 
password are passed through. If the client is on the Internet, Winlnet prompts 
for the user name and password. If you're writing Winlnet code, you must use 
the INTERNET_FLAG_KEEP_CONNECTION flag in all CHttpConnection::
OpenRequest and ClnternetSession::OpenURL calls, as EX30A illustrates. 

The Secure Sockets Layer 

910 

Windows NT challenge/response authentication controls only who logs on to 
a server. Anyone snooping on the Net can read the contents of the TCP/IP 
segments. The secure sockets layer (SSL) goes one step further and encodes 



T H I R T Y - 0 N E: Programming the Microsoft Internet Information Server 

the actual requests and responses (with a performance hit, of course). Both 
lIS and Winlnet support SSL. (The secure sockets layer is described in Chapter 
5 of the IIS documentation.) 

ISAPI Filters 
An ISAPI server extension DLL is loaded the first time a client references it 
in a GET or POST request. An ISAPI filter DLL is loaded (based on a Regis
try entry) when the WWW service is started. The filter is then in the loop for 
all HTTP requests, so you can read and/or change any data that enters or 
leaves the server. 

Writing an ISAPI Filter DLL 
The ISAPI Extension Wizard makes writing filters as easy as writing server 
extensions. Choose Generate A Filter Object, and Step 2 looks like this: 

What not4ication priority will,YOUr rater have? 

CHjgh 

r Medium 
1'='. J.ow (DelaYlt] 

What connection twes interest yotJr !ater? 

Mt[~~~.R9:~:i~;~~~~ 
P: I:i onsecured port sessions 

ri .outgoing raw datl)and headers 

r:fost.preProcesdng of the request headers 

r,; .client authenticatiOn leQ~ts . 

r:i.1!RL mapping leque$t~ 
rii Set~e! log l'IIitl.!$ 

~! fnd 0/ connection 

The list of options under Which Notifications Will Your Filter Process? 
refers to seven places where your filter can get control during the processing 
of an HTTP request. You check the boxes, and the wizard generates the code. 

The MFC ISAPI Filter Classes 
There are two MFC classes for ISAPI filters, CHttpFilter and CHttpFilterContext. 

CHttpFilter 
With the help of the ISAPI Extension Wizard, you derive a class from CHttpFilter 
for each ISAPI filter you create. There's just one object of this class. The class 

911 



PAR T V I: PROGRAMMING FOR THE INTERNET 

912 

has virtual functions for each of seven notifications. Here's the list of filters 
in the order in which lIS calls them: 

virtual DWORD OnReadRawData(CHttpFilterContext* pCtxt, 
PHTTP_FILTER_RAW_DATA pRawData); 

virtual DWORD OnPreprocHeaders(CHttpFilterContext* pCtxt, 
PHTTP_FILTER_PREPROC_HEADERS pHeaderInfo) ; 

virtual DWORD OnUrlMap(CHttpFilterContext* pCtxt, 
PHTTP_FILTER_URL_MAP pMapInfo); 

virtual DWORD OnAuthentication(CHttpFilterContext* pCtxt, 
PHTTP_FILTER_AUTHENT pAuthent); 

virtual DWORD OnSendRawData(CHttpFilterContext* pCtxt, 
PHTTP_FILTER_RAW_DATA pRawData); 

virtual DWORD OnLog(CHttpFilterContext* pfc, PHTTP_FILTER_LOG pLog) ; 
vi rtual DWORD OnEndOfNetSession(CHttpFilterContext* pCtxt); 

If you override a function, you get control. It would be inefficient, how
ever, if lIS made virtual function calls for every notification for each transac
tion. Another virtual function, GetFilterVersion, is called once when the filter 
is loaded. The ISAPI Extension Wizard always overrides this function for you, 
and it sets flags in the function's pVerparameter, depending on which notifi
cations you want. Here's a simplified sample with all the flags set: 

BOOL CMyFilter::GetFilterVersion(PHTTP_FILTER_VERSION pVer) 
{ 

CHttpFilter::GetFilterVersion(pVer); 
pVer->dwFlags 1= SF_NOTIFY_ORDER_LOW 1 SF_NOTIFY_NONSECURE_PORT 

SF_NOTIFY_LOG 1 SF_NOTIFY_AUTHENTICATION 1 

SF_NOTIFY_PREPROC_HEADERS 1 SF_NOTIFY_READ_RAW_DATA 
SF_NOTIFY_SEND_RAW_DATA 1 SF_NOTIFY_URL_MAP 1 

SF_NOTIFY_END_OF_NET_SESSION; 
return TRUE; 

If you had specified URL mapping requests only, the wizard would have set 
only the SF_NOTIFY_ URL_MAP flag and it would have overridden only On
UrlMap. lIS would not call the other virtual functions, even if they were 
overridden in your derived class. 

CHttpFilterContext 
An object of this second MFC class exists for each server transaction, and each 
of the notification functions gives you a pointer to that object. The CHttp
FilterContext member functions you might call are GetServerVariable, AddRe
sponseHeaders, and Write Clien t. 



T H I R T Y - 0 N E: Programming the Microsoft Internet Information Server 

A Sample ISAPI Filter-ex31 b.dll, ex31 c.exe 
l had a difficult time thinking up a cute application for ISAPI filters. The one 
I came up with, ex31b.dll, is a useful visual logging utility. lIS, of course, logs 
all transactions to a file (or database), but you must stop the server before you 
can see the log file entries. With this example, you have a real-time transac
tion viewer that you can customize. 

Choosing the Notification 
Start by looking at the list of CHttpFiltervirtual member functions on the fac
ing page. Observe the calling sequence and the parameters. For the EX31B 
logging application, I chose OnReadRawData because it gave me full access to 
the incoming request and header text (from pRawData) and to the source and 
destination IP addresses (from pCtxt-> GetServerVariable). 

Sending Transaction Data to the Display Program 
The ISAPI filter DLL can't display the transactions directly because it runs (as 
part of the lIS service process) on an invisible desktop. You need a separate 
program that displays text in a window, and you need a way to send data from 
the DLL to the display program. There are various ways to send the data across 
the process boundary. Mter talking to Jeff Richter, the Windows guru who 
wrote Advanced Windows (Microsoft Press, 1997), I chose to put the data in 
shared memory and then post a user-defined message, WM_SENDTEXT, to 
the display program. These messages can queue up, so lIS can keep going 
independently of the display program. 

I declared two handle data members in CEx31bFilter::m_hProcessDest and 
CEx31bFilter::m_hWndDest. I added code at the end of the GetFilterVersion func
tion to set these data members to the display program's process ID and main 
window handle. The code finds the display program's main window by its title, 
ex31b, and then it gets the display program's process ID. 

m_hProcessDest = NULL; 
if«m_hWndDest = ::FindWindow(NULL, "ex31b"» 1= NULL) { 

DWORD dwProcessld; 
GetWindowThreadProcessld(m_hWndDest, &dwProcessld); 
m_hProcessDest = OpenProcess(PROCESS_DUP_HANDLE, FALSE, dwProcessId); 
SendTextToWindow("EX31B filter started\r\n"); 

At the top of the following page is a helper function, Send Text To Window, 
that sends the WM_SENDTEXT message to the display program. 

913 



PAR T V I: PROGRAMMING FOR THE INTERNET 

914 

void CEx31bFilter::SendTextToWindow(char* pchData) 
{ 

if(m_hProcessDest != NULL) { 
int nSize = strlen(pchData) + 1; 
HANDLE hMMFReceiver; 
HANDLE hMMF = ::CreateFileMapping«HANDLE) 0xFFFFFFFF. NULL. 

PAGE_READWRITE. 0. nSize. NULL); 
ASSERT(hMMF != NULL); 
LPVOID lpvFile = ::MapViewOfFile(hMMF. FILE_MAP_WRITE. 0. 0. nSize); 
ASSERT(lpvFile != NULL); 
memcpy«char*) lpvFile. pchData. nSize); 
::DuplicateHandle(: :GetCurrentProcess(). hMMF. m_hProcessDest. 

&hMMFReceiver. 0. FALSE. DUPLICATE_SAME_ACCESS 
DUPLICATE_CLOSE_SOURCE); 

::PostMessage(m_hWndDest. WM_SENDTEXT. (WPARAM) 0. 
(LPARAM) hMMFReceiver); 

: :UnmapViewOfFile(lpvFile); 

The DuplicateHandlefunction makes a copy ofEX31B's map handle, which it 
sends to the EX31C program in a message parameter. The EX31C process ID, 
determined in GetFilterVersion, is necessary for the DuplicateHandle call. Here 
is the filter's OnReadRawData function, which calls Send Text To Window: 

DWORD CEx31bFilter::OnReadRawData(CHttpFilterContext* pCtxt. 
PHTTP_FILTER_RAW_DATA pRawData) 

TRACE ("CEx31bFilter: :OnReadRawData\n"); 
II sends time/date. from IP. to IP. request data to a window 
char pchVar[50] = ""; 
char pchOut[2000]; 
DWORD dwSize = 50; 
BOOL bRet; 
CString strGmt = CTime::GetCurrentTime().FormatGmt("%m/%d/%y %H:%M:%S -. 

GMT") ; 
strcpy(pchOut. strGmt); 
bRet = pCtxt-)GetServerVariable("REMOTE_ADDR". pchVar. &dwSize); 
if(bRet && dwSize ) 1) { 

strcat(pchOut. ". From "); 
strcat(pchOut. pchVar); 

bRet = pCtxt-)GetServerVariable("SERVER_NAME". pchVar. &dwSize); 
if(bRet && dwSize ) 1) { 

strcat(pchOut. ". To "); 
strcat(pchOut. pchVar); 



T H I R T Y - ONE: Programming the Microsoft Internet Information Server 

strcat(pchOut, n\r\nn); 
int nLength = strlen(pchOut); 
II Raw data is not zero-terminated 
strncat(pchOut, (canst char*) pRawData-)pvInData, pRawData-)cbInData); 
nLength += pRawData->cbInData; 
pchOut[nLength] = '\0'; 
SendTextToWindow(pchOut); 
return SF_STATUS_REQ_NEXT_NOTIFICATION; 

The Display Program 
The display program, ex31c.exe, isn't very interesting. It's a standard App
Wizard CRichEditView program with a WM_SENDTEXT handler in the main 
frame class: 

LONG CMainFrame: :OnSendText(UINT wParam, LONG lParam) 
{ 

TRACE(nCMainFrame::OnSendText\nn); 
LPVOID lpvFile = ::MapViewOfFile«HANDLE) lParam, FILE_MAP_READ, 0, 0, 

0) ; 

GetActiveView()->SendMessage(EM_SETSEL, (WPARAM) 999999, 1000000); 
GetActiveView()->SendMessage(EM_REPLACESEL, (WPARAM) 0, 

(LPARAM) lpvFile); 
::UnmapViewOfFile(lpvFile); 
::CloseHandle«HANDLE) lParam); 

return 0; 

This function just relays the text to the view. 
The EX31C CMainFrameclass overrides OnUpdateFrameTitleto eliminate 

the document name from the main window's title. This ensures that the DLL 
can find the EX31C window by name. 

The view class maps the WM_RBUTTONDOWN message to implement 
a context menu for erasing the view text. It seems that rich edit view windows 
don't support the WM_CONTEXTMENU message. 

Building and Testing the EX31 B ISAPI Filter 
Build both the EX31B and EX31C projects, and then start the EX31C pro
gram. To specify loading of your new filter DLL, you must manually update 
the Registry. Run the Regedit application, and then double-click on Filter 
DLLs in \HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services
\ W3SVC\Parameters. Add the full pathname of the DLL separated from other 
DLL names with a comma. 

915 



PAR T V I: PROGRAMMING FOR THE INTERNET 

916 

There's one more thing to do. You must change the lIS mode to allow 
the service to interact with the EX31C display program. To do this, click on 
the Services icon in the Control Panel, double-click on World Wide Web 
Publishing Service, and then check Allow Service To Interact With Desktop. 
Finally, use Internet Service Manager to stop and restart the WWW service to 
load the filter DLL. When you use the browser to retrieve pages from the 
server, you should see output like this: 

UA-color: color8 
UA-OS: Windows NT 
UA-CPU: x86 
User-Agent: Mozilla/2.0 (compatible; MSIE 3.0; Windows NT) 
Host: localhost 
Connection: Keep-Alive 

10/22/9617:11 :51 GMT. From 121.0.0.1. To localhost 
POST Iscripts/ex31 a.dll?ProcessPizzaForm HTTPI1.0 

image/gif. image/x-xbitmap. image/jpeg. image/pjpeg. 1rr 
Referer: http://localhost/pizzaform.html 
Accept-Language: en 
Content-Type: application/x-www-form-urlencoded 
UA-pixels: 1024x168 
UA-color: color8 
UA-OS: Windows NT 
UA-CPU: x86 
User-Agent: Mozilla/2.0 (compatible; MSIE 3.0; Windows NT) 
Host: localhost 
Connection: Keep-Alive 
Content-Length: 60 
Pragma: No-Cache 

name=David&address=Seattle&quantity=l &size=12&top1 =Pepperoni 

You can use the same steps for debugging an ISAPI filter that you used 
for an ISAPI server extension. 



C HAP T E R T H RTY·TWO 

ActiveX Document Servers 
and the Internet 

An ActiveX document is a special file that you can download from a Web 
server. When the browser sees an ActiveX document file, it automatically loads 
the corresponding ActiveX document server program from your hard disk, 
and that program takes over the whole browser window to display the contents 
of the document. The Microsoft Internet Explorer 3.0 (IE3) browser is not 
the only ActiveX document container program. The Microsoft Office Binder 
program also runs ActiveX document server programs, storing the several 
ActiveX documents in a single disk file. 

NOT E : In the COM world, an ActiveX document server program 
is called a server because it implements a COM component. The 
container program (IE3 or Office Binder) creates and controls that 
COM component. In the Internet world, the same program looks 
like a client because it can request information from a remote host 
(Microsoft Internet Information Server). 

In this chapter, you'll learn about ActiveX document servers and ActiveX 
documents and you'll build two ActiveX document servers that work over the 
Internet in conjunction with IE3. Pay attention to this technology now because 
you'll be seeing a lot more of it as Microsoft Windows evolves. 

ActiveX Document Theory 
It's helpful to put ActiveX documents within the context of COM and OLE, 
which you already understand if you've read the other chapters in this book. 
You can, however, get started with ActiveX document servers without fully 
understanding all the COM concepts covered in Part VI. 

917 



PAR T V I: PROGRAMMING FOR THE INTERNET 

ActiveX Document Servers vs. OLE Embedded Servers 

918 

As you saw in Chapter 27, an OLE embedded server program runs in a child 
window of an OLE container application and occupies a rectangular area in 
a page of the container's document (see Figure 27-1). Unless an embedded 
server program is classified as a mini-server, it can run stand-alone also. In 
embedded mode, the server program's data is held in a storage inside the 
container application's file. The embedded server program takes over the 
container program's menu and toolbar when the user activates it by double
clicking on its rectangle. 

In contrast to an embedded server, an ActiveX document server takes 
over a whole frame window in its container application, and the document is 
always active. An ActiveX server application, running inside a container's 
frame window, runs in about the same way it would in stand-alone mode. You 
can see this for yourself if you have Microsoft Office 97. Office includes an 
ActiveX container program called Binder (accessible from the Office short
cut bar), and the Office applications (Microsoft Word, Microsoft Excel, and 
so on) have ActiveX server capability. Figure 32-1 shows a Word document and 
an Excel chart inside the same binder. 

Figure 32-1. 
A Word document and an Excel chart inside a Microsoft Office Binder window. 

Like an embedded server, the ActiveX document server saves its data in 
a storage inside the ActiveX container's file. When the Office user saves the 
Binder program from the File menu, Binder writes a single OBD file to disk; 



T H I R T Y - TWO: ActiveX Document Servers and the Internet 

the file contains one storage for the Word document and another for the Excel 
spreadsheet. You can see this file structure yourself with the DFVIEWutility, 
as shown in Figure 32-2. 

Il:lliXI 

file lree Help . . ' . . . .' 
c;:;;,~'-¢"~"-"'-""~-"'~""-'-"->'-'--~""'--~'-'-'._. __ . __ .,-,._-,"'=._.-
I£.....f \ - C:\mydocs\Binderl.obd 

1211 
~IOle 
~Book 
~ICompObj 
~IViewOOO 
~ ISummarylnformation 
~IDocumentSummarylnformation 

EE 
~IOle 
~ICompObj 
~IViewOOO 
~WordDocument 
~ ISummarylnformation 
~IDocumentSummarylnformation 

~Binder 
~ ISummarylnformation 
~ IDocumentSummarylnformation 

Figure 32-2. 
A file structure displayed by the DocFile Viewer. 

Running an ActiveX Document Server from IE3 
It's more fun to run an ActiveX document server from IE3 than from Microsoft 
Office Binder. Rather than load a storage only from an OBD file, the s~rver 
program can load its storage from the other side of the world. You just type 
in a URL, such as http://www.DaliLama. in/SecretsOfTheUniverse. doc, and a 
Microsoft Word document opens inside your Browse window, taking over the 
browser's menu and toolbar. That's assuming, of course, that you have in
stalled the Microsoft Word program. If not, a Word document viewer is avail
able, but it must be on your hard disk before you download the file. 

An ActiveX document server won't let you save your changes back to the 
Internet host, but it will let you save them on your own hard disk. In other 
words, File Save is disabled but File Save As is enabled. 

If you have Microsoft Office 97, try running Word or Excel in IE3 now. 
The EX30A server is quite capable of delivering documents or worksheets to 
your browser, assuming that they are accessible from its home directory. Note 
that IE3 recognizes documents and worksheets not by their file extensions but 

919 



PAR T V I: PROGRAMMING FOR THE INTERNET 

by the CLSID inside the files. You can prove this for yourself by renaming a 
file prior to accessing it. 

ActiveX Document Servers vs. ActiveX Controls 
Both ActiveX document servers and ActiveX controls can run with and with
out the Internet. Both are compiled programs that can run inside a browser. 
The following table lists some of the differences between the two: 

ActiveX 
Document ActiveX 
Server Control 

Module type EXE Most often a DLL 

Can run stand-alone Yes No 

Code automatically downloaded 
and registered by a WWW browser No Yes 

Can be embedded in an HTML file No Yes 

Occupies the entire browser wind?w Yes Sometimes 

Can be several pages Yes Not usually 

Can read/write disk files Yes Not usually 

OLE Interfaces for ActiveX Document Servers and Containers 
ActiveX document servers implement the same interfaces as OLE embedded 
servers, including IOleObject, IOleInPla ce Object, and IOlelnPlaceActiveObject. 
ActiveX document containers implement IOleClientSite, IOleInPlaceFrame, and 
IOlelnPlaceSite. The menu negotiation works the same as it does for Visual 
Editing. 

920 

Some additional interfaces are implemented, however. ActiveX docu
ment servers implement IOleDocument, IOleDocumentView, IOleCommandTarget, 
and IPrint, and ActiveX document containers implement IOleDocumentSite. The 
architecture allows for multiple views of the same document-sort of like the 
MFC document-view architecture-but most ActiveX document servers imple
ment only one view per document. 

The critical function in an OLE embedded server is IOleObject::Do Verb, 
which is called by the container when the user double-clicks on an embedded 
object or activates it through the menu. For an ActiveX document server, 
however, the critical function is IOleDocumentView::UIActivate. (Before calling 
this function, the container calls IOleDocument::CreateView, but generally 
the server just returns an interface pointer to the single document-view 



T H I R T Y - TWO: ActiveX Document Servers and the Internet 

object.) UIActivate finds the container site and frame window, sets that win
dow as the server's parent, sets the server's window to cover the container's 
frame window, and then activates the server's window. 

NOT E : It's important to realize that the COM interaction takes 
place between the container program (IE3 or Binder) and the 
ActiveX document server (your program), which are both running 
on the client computer. I know of no cases in which remote proce
dure calls (RPCs) are made over the Internet. That means that the 
remote host (the server computer) does not use COM interfaces to 
communicate with clients, but it can deliver data in the form of 
storages. 

MFC Support for ActiveX Document Servers 
MFC allows you to create your own ActiveX document server programs, but 
it doesn't let you create ActiveX document container programs. If you need 
a container, you'll have to write it using COM interfaces. To get a server pro
gram, create a new MFC AppWizard EXE project and then check the ActiveX 
Document Server check box, as shown in Figure 32-3. 

Figure 32-3. 
Step 3 of the MFC App Wizard. 

Note that you are forced to accept full OLE container/server function
ality. Thus your MFC ActiveX document server acts as an embedded and linked 
server and as a container for other embedded or linked objects. 

921 



PAR T V I: PROGRAMMING FOR THE INTERNET 

COleServerDoc 
As it is for any COM component, your ActiveX document server's document 
class is derived from COleSeruerDoc, which implements IPersistStorage, IOleObject, 
IDataObject, IOleInPlaceObject, and IOleInPlaceActiveObject. 

NOT E: The COM interfaces and MFC classes discussed here 
were named before Microsoft introduced ActiveX technology. An 
ActiveX document server was formerly known as a document object 
server or a doc object server, so those are the names you'll see in the 
source code and in some online documentation. 

CDocObjectServerltem 
This class is derived from the COleServerItem class used in embedded servers. 
Your ActiveX documen t server program has a class derived from CDocObject
Server Item, but that class isn't used when the program is running in ActiveX 
document mode. 

CDocObjectServer 
This class implements the new ActiveX server interfaces. Your application 
creates an object of class CDocObjectServerand attaches it to the COleServerDoc 
object. If you look at COleServerDoc::GetDocObjectServer in your derived docu
ment class, you'll see the construction code. Thereafter, the document object 
and attached CDocObjectServero~ject work together to provide ActiveX docu
ment server functionality. This class implements both IOleDocument and 
IOleDocumentView, which means that you can have only one view per document 
in an MFC ActiveX document server. You generally don't derive classes from 
CDocObjectServer. 

COleDoclPFrameWnd 
This class is derived from COleIPFrame Wnd. Your application has a frame win
dow class derived from COleDocIPFrameWnd. The framework constructs an ob
ject of that class when the application starts in embedded server mode or in 
ActiveX document server mode. In ActiveX document server mode, the ser
ver's window completely covers the container's frame window and has its own 
menu resource attached, with the identifier IDILSRVILINPLACE (for an SDr 
application) . 

ActiveX Document Server Example EX32A 

922 

You could construct the EX32A example in two phases. The first phase is a 
plain ActiveX document server that loads a file from its container. The view 
base class is CRichEditView, which means the program loads, edits, and stores 



T H I R T Y - TWO: ActiveX Document Servers and the Internet 

text plus embedded objects. In the second phase, the application is enhanced 
to download a separate text file from the Internet one line at a time, demon
strating that ActiveX document servers can make arbitrary WinInet calls. 

EX32A Phase 1-A Simple Server 
The EX32A example on the book's CD-ROM is complete with the text down
load feature from Phase 2. You can exercise its Phase 1 capabilities by build
ing it, or you can create a new application with AppWizard. If you do use 
AppWizard, you should refer to Figure 32-3 to see the AppWizard EXE project 
dialog and select the appropriate options. All other options are the default 
options, except those for selecting SDI (Step 1) and the view's base class 
(CRichEditView-on the wizard's last page). You don't have to write any C++ 
code at all. 

Be sure to run the program once in stand-alone mode to register it. While 
the program is running in stand-alone mode, type some text (and insert some 
OLE embedded objects) and then save the document as test.32a in your 
Internet server's home directory (\scripts or \wwwroot directory). Try load
ing test.32a from IE3 and from Office Binder. Use Binder's Section menu for 
loading and storing EX32A documents from and to disk files. 

You should customize the document icons for your ActiveX document 
servers because those icons show up on the right side of an Office Binder 
window. 

Debugging an ActiveX Document Server 
If you want to debug your program in ActiveX document server mode, click 
on the Debug tab in the Build Settings dialog. Set Program Arguments to 
/Embedding, and then start the program. Now start the container program and 
use it to "start" the server, which has in fact already started in the debugger 
and is waiting for the container. 

EX32A Phase 2-Adding Winlnet Calls 
The EX32A example on the CD-ROM includes two dialog bar objects, one for 
the main frame window and another for the in-place frame window. Both are 
attached to the same resource template, IDD_DIALOCBAR, which contains an 
edit control that accepts a text file URL plus start and stop buttons that dis
play green and red bitmaps. If you click the green button (handled by the 
OnStart member function of the CEx32aView class), you'll start a thread that 
reads the text file one line at a time. The thread code from the file Url
Thread.cpp is shown on the following page. 

923 



PAR T V I: PROGRAMMING FOR THE INTERNET 

924 

CString g_strURL = ''http://''; 
volatile BOOL g_bThreadStarted FALSE; 
CEvent g_eKill; 

UINT UrlThreadProc(LPVOID pParam) 
{ 

g_bThreadStarted = TRUE; 
CString strLine; 
CInternetSession session; 
CStdioFile* pFile1 = NULL; 

try 
pFile1 = session.OpenURL(g_strURL. 0. INTERNET_FLAG_TRANSFER_BINARY 

I INTERNET_FLAG_KEEP_CONNECTION); II needed for Windows NT c/r 

II authentication 
II Keep displaying text from the URL until the Kill event is 
II received 
while(::WaitForSingleObject(g_eKill.m_hObject. 0) 1= WAIT_OBJECT_0) 

II one line at a time 
if(pFile1-)ReadString(strLine) == FALSE) break; 
strLine += '\n'; 
::SendMessage«HWND) pParam. EM_SETSEL. (WPARAM) 999999. 

1000000); 
::SendMessage«HWND) pParam. EM_REPLACESEL. (WPARAM) 0. 

(LPARAM) (const char*) strLine); 
Sleep(250); II Deliberately slow down the transfer 

catch(CInternetException* e) { 
LogInternetException(pParam. e); 
e-)Delete(); 

if(pFile1 1= NULL) delete pFile1; II closes the file--prints a warning 
g_bThreadStarted = FALSE; 
II Post any message to update the toolbar buttons 
::PostMessage«HWND) pParam. EM_SETSEL. (WPARAM) 999999. 1000000); 
T RA C E ( " P 0 5 t t h rea d ex i tin g nor m a 11 y \ n" ) ; 
return 0; 

This code uses the CStdioFile pointer to pFilel returned from OpenURL. 
The ReadStringmember function reads one line at a time, and each line is sent 
to the rich edit view window. When the main thread sets the "kill" event (the 
red button), the URL thread exits. 



T H I R T Y - TWO: ActiveX Document Servers and the Internet 

Displaying Bitmaps on Buttons 
Chapter 10 describes the CBitmapButton class for associating a group 
of bitmaps with a pushbutton. Microsoft Windows 95 and Microsoft 
Windows NT 4.0 support an alternative technique that associates a 
single bitmap with a button. First you apply the Bitmap style (on the 
button's property sheet) to the button, and then you declare a vari
able of class CBitmap that will last at least as long as the button is en
abled. Then you make sure that the CButton::SetBitrnap function is 
called just after the button is created. 

Here is the code for associating a bitmap with a button, from the 
EX32A MainFrm.cpp and IpFrame.cpp files: 

m_bitmapGreen.LoadBitmap(IDB_GREEN): 
HBITMAP hBitmap = (HBITMAP) m_bitmapGreen.GetSafeHandle(); 
«CButton*) m_wndDialogBar.GetDlgltem(IDC_START»->SetBitmap(hBitmap): 

If your button was in a dialog, you could put similar code in the 
OnlnitDialog member function and declare a CBitmap member in the 
class derived from CDialog. 

Before you test EX32A, make sure that the server (EX30A or lIS) is run
ning and that you have a text file in the server's home directory. Test the 
EX32A program first in stand-alone mode by entering the text file URL in the 
dialog bar. Next try running the program in server mode from IE3. Enter 
test.32a (the document you created when you ran EX32Ain stand-alone mode) 
in IE3' s Address field to load the server. 

NOT E : I considered using the CAsyncMonikerFileclass (see page 
888) instead of the MFC Winlnet classes to read the text file. I stuck 
with WinInet, however, because my program could use the CStdioFile 
class ReadString member function to "pull" individual text lines 
from the server when it wanted them. The CAsyncMonikerFile class 
would have "pushed" arbitrary blocks of characters into the program 
(by calling the overridden OnDataAvailable function) as soon as the 
characters had been received. 

925 



PAR T V I: PROGRAMMING FOR THE INTERNET 

ActiveX Document Server Example EX328 

926 

Look at the pizza form example from Chapter 31 (EX31A). Note that the 
server (the ISAPI DLL) processes the order only when the customer clicks the 
Submit button. This is OK for ordering pizzas because you're probably happy 
to accept money from anyone, no matter what kind of browser is used. 

For a form-based intranet application, however, you can be more selec
tive. You can dictate what browser your clients have, and you can distribute 
your own client software on the net. In that environment, you can make data 
entry more sophisticated, allowing, for example, the client computer to vali
date each entry as the user types it. That's exactly what's happening in EX32B, 
which is another ActiveX document server, of course. 

EX32B is a form-based employee time-sheet entry program that works 
inside IE3 (as shown in Figure 32-4) or works as a stand-alone application. 

Il 
i1''''''''L~-~-~-i-Ld.,~.jL 

Figure 32-4. 
Employee time-sheet entry form. 

Looks like a regular HTML form, doesn't it? It's actually an MFC form 
view, but the average user probably won't know the difference. The Name field 
is a drop-down combo box, however-which is different from the select field 
you would see in an HTML form-because the user can type in a value if nec
essary. The Job Number field has a spin button control that helps the user 
select the value. These aren't necessarily the ideal controls for time-sheet entry, 



T H I R T Y - TWO: ActiveX Document Servers and the Internet 

but the point here is that you can use any Windows controls you want, includ
ing tree controls, list controls, trackbars, and ActiveX controls, and you can 
make them interact any way you want. 

Field Validation in an MFC Form View 
Problem: MFC's standard validation scheme validates data only when 
CWnd::UpdateData(TRUE) is called, usually when the user exits the 
dialog. Applications often need to validate data the moment the user 
leaves a field (edit control, list box, and so on). The problem is com
plex because Windows permits the user to freely jump between fields 
in any sequence by using the mouse. Ideally, standard MFC DDX/DDV 
(data exchange/validation) code should be used for field validation, 
and the standard DoDataExchange function should be called when the 
user finishes the transaction. 

Solution: Derive your field validation form view classes from the 
class CValidForm, derived from CForm View, with this header: 

II valform.h 
#ifndef _VALIOFORM 
#define _VALIOFORM 

class CValidForm : public CFormView 
{ 

OECLARE_OYNAMIC(CValidForm) 
private: 

BOOL m_bValidationOn; 
public: 

} ; 

CValidForm(UINT 10); 
II override in derived dlg to perform validation 
virtual void ValidateOlgltem(COataExchange* pOX. UINT 10); 
11{{AFX_VIRTUAL(CValidForm) 
protected: 
virtual BOOL OnCommand(WPARAM wParam. LPARAM lParam); 
I/} }AFX_VIRTUAL 

11{{AFX_MSG(CValidForm) 
afx_msg LONG OnValidate(UINT wParam. LONG lParam); 
II}}AFX_MSG 
DECLARE_MESSAGE_MAP() 

#endif II _VALIDFORM 

(continued) 

927 



PAR T V I: PROGRAMMING FOR THE INTERNET 

928 

This class has one virtual function, ValidateDlgltem, that accepts the 
control ID as the second parameter. The derived form view class imple
ments this function to call the DDXjDDV functions for the appropri
ate field. Here is a sample ValidateDlgltem implementation for a form 
view that has two numeric edit controls: 

void CMyForm::ValidateDlgItem(CDataExchange* pOX. UINT uID) 
{ 

switch (uID) { 
case IDC_EDITl: 

DDX_Text(pDX, IDC_EDITI. m_nEditl); 
DDV_MinMaxlnt(pDX. m_nEditl, 0. 10); 
break: 

case I DC_EDIT2: 
DDX_Text(pDX. IDC_EDIT2, m_nEdit2); 
DDV_MinMaxInt(pDX, m_nEdit2, 20, 30): 
break; 

default: 
break; 

Notice the similarity to the wizard-generated DoDataExchangefunction: 

void CAboutDlg::DoDataExchange(CDataExchange* pOX) 
{ 

} 

11{{AFX_DATA_MAP(CMyForm) 
DDX_Text(pDX, IDC_EDITl, m_nEditl); 
DDV_MinMaxInt(pDX, m_nEditl, 0. 10); 
DDX_Text(pDX, IDC_EDIT2, m_nEdit2); 
DDV_MinMaxlnt(pDX, m_nEdit2, 20, 30); 
I/} }AFX_DATA_MAP 

How does it work? The CValidForm class traps the user's attempt 
to move away from a control. When the user presses the Tab key or 
clicks on another control, the original controlsends a killfocus com
mand message (a control notification message) to the parent window, 
the exact format depending on the kind of control. An edit control, 
for example, sends an EN_JULLFOCUS command. When the form 
window receives this killfocus message, it invokes the DDXjDDV code 
that is necessary for that field, and if there's an error, the focus is set 
back to that field. 

There are some complications, however. First, we want to allow the 
user to freely switch the focus to another application-we're notin-



T H I R T Y - TWO: ActiveX Document Servers and the Internet 

terested in trapping the killfocus message in that case. Next, we must 
be careful howwe set the focus back to the control that produced the 
error. We can't just call SetFocusin direct response to the killfocus mes
sage; instead we nlust allow the killfocus process to complete. We can 
achieve this by posting a user-defined WM_ VALIDATE message back 
to the form window. The WM_ VALIDATE handler calls our Validate
Dlgltem virtual function after the focus has been moved to the next field. 
Also, we must ignore the killfocus message that results when we switch 
back from the control that the user tried to select, and we must allow 
the IDCANCEL button to abort the transaction without validation. 

Most of the work here is done in the view's virtual OnCommand 
handler, which is called for all control notification messages. We 
could, of course, individually map each control's killfocus message in 
our derived form view class, but that would be too much work. Here 
is the OnCommand handler: 

BOOL CValidForm: :OnCommandCWPARAM wParam, LPARAM lParam) 
{ 

II specific for WIN32 -- wParam/lParam processing different for 
II WIN16 
TRACE("CValidForm::OnCommand, wParam = %x, lParam = %x\n", 

wParam, 1 Param); 
TRACE("m_bValidationOn = %d\n", m_bValidationOn); 
ifCm_bValidationOn) { II might be a killfocus 

UINT notificationCode = (UINT) HIWOROC wParam ); 
if«notificationCode EN_KILlFOCUS) I I 

CnotificationCode == lBN_KILlFOCUS) I I 
(notificationCode == CBN_KIlLFOCUS) ) { 

CWnd* pFocus = CWnd::GetFocus(); II static function call 
II if we're changing focus to another control in the 
II same form 
if( pFocus && CpFocus->GetParent() == this) ) 

ifCpFocus->GetOlgCtrlIO() != IOCANCEl) 
II and focus not in Cancel button 
II validate AFTER drawing finished 
BOOl rtn = PostMessage( WM_VAlIDATE, wParam ); 
TRACEC"posted message, rtn = %d\n", rtn); 

return CFormView::OnCommand(wParam, lParam); II pass it on 

(continued) 

929 



PAR T V I: PROGRAMMING FOR THE INTERNET 

930 

Note that m~bValidationOn is a Boolean data member in CValidForm. 
Finally, hereis the On Validate message handler, mapped to the 

user-defined WM_ VALIDATE message: 

LONG CValidForm::OnValidate(UINT wParam. LONG lParam) 
{ 

TRACE("Entering CValidForm::OnValidate\n"); 
COataExchange dx(this, TRUE); 
m_bValidationOn = FALSE; II temporarily off 
UINT controlIO = (UINT) LOWORO( wParam ); 
try { 

ValidateOlgItem(&dx. controlIO); 

catch(CUserException* pUE) { 
pUE->Oelete(): 
TRACE("CValidForm caught the exception\n"); 
II fall through --user already alerted via message box 

m_bValidationOn = TRUE: 
return 0; II goes no further 

Instructions for use: 

1. Add valform.h and valform.cpp to your project. 

2. Insert the following statement in your view class header file: 

3. Change your view class base class from CForm View to 
CValidForm. 

4. Override ValidateDlgltem for your form's controls as shown 
above; That's all. 

For dialogs, followthe same steps,but use valid.h and valid.cpp. 
Derive your dialog c1ass.from. CValidDialoginstead of from ·CDialog. 



T H I R T Y - TWO: ActiveX Document Servers and the Internet 

Generating POST Requests Under Program Control 
The heart of the EX32B program is a worker thread that generates' a POST 
request and sends it to a remote server. The server doesn't care whether the 
POST request came from an HTML form or from your program. It could 
process the POST request with an ISAPI DLL, with a PERL script, or with a 
Common Gateway Interface (CGI) executable program. 

Here's what the server receives when the user clicks the EX32B Submit 
button: 

POST scripts/ex31a.dll?ProcessTimesheet HTTP/l.0 
(request headers) 
(b7ank 7ine) 
Period=12&Name=Dunkel&Hours=6.5&Job=5 

And here's the thread code from PostThread.cpp: 

II PostThread.cpp (uses MFC WinInet calls) 

#include <stdafx.h> 
#include "PostThread.h" 

#define MAXBUF 50000 

CString g_strFile = "/scripts/ex31a.dll"; 
CString g_strServerName = "local host"; 
CString g_strParameters; 

UINT PostThreadProc(LPVOID pParam) 
{ 

CInternetSession session; 
CHttpConnection* pConnection = NULL; 
CHttpFile* pFilel = NULL; 
char* buffer = new char[MAXBUF]; 
UINT nBytesRead = 0; 
DWORD dwStatusCode; 
BOOL bOkStatus = FALSE; 
try ( 

pConnection = session.GetHttpConnection(g_strServerName, 
(INTERNET_PORT) 80); 

pFilel = pConnection->OpenRequest(0, g_strFile + 
"?ProcessTimesheet", II POST request 
NULL, I, NULL, NULL, INTERNET_FLAG_KEEP_CONNECTION 
INTERNET_FLAG_RELOAD); II no cache 

pFilel->SendRequest(NULL, 0, (LPVOID) (const char*) g_strParameters, 
g_strParameters.GetLength(»; 

pFilel->QueryInfoStatusCode(dwStatusCode); 

(continued) 

931 



PAR T V I: PROGRAMMING FOR THE INTERNET 

if(dwStatusCode == 200) { II OK status 
II doesn't matter what came back from server -- we're looking 
II for OK status 
bOkStatus = TRUE; 
nBytesRead = pFile1->Read(buffer. MAXBUF - 1); 
buffer[nBytesRead] = '\0'; II necessary for TRACE 
TRACE(buffer); 
T RA C E ( II \ nil) ; 

catch(CInternetException* pel 
char text[100]; 
pe->GetErrorMessage(text. 99); 
TRACE("WinInet exception %s\n". text); 
pe->Oelete(); 

if(pFile1) delete pFile1; II does the close -- prints a warning 
if(pConnection) delete pConnection; II Why does it print a warning? 
delete [] buffer; 
::PostMessage«HWNO) pParam. WM_POSTCOMPLETE. (WPARAM) bOkStatus. 0); 
return 0; 

The main thread assembles the g_strParameters string based on what the 
user typed, and the worker thread sends the POST request using the CHttp
File::SendRequest call. The thread then calls QuerylnfoStatusCode to find out if 
the server sent back an OK response. Before exiting, the thread posts a mes
sage to the main thread, using the bOkStatus value in wParam to indicate suc
cess or failure. 

The EX32B View Class 

932 

The CEx32b View class is derived from CValidForm, as described in the sidebar 
that starts on page 927. CEx32bView collects user data and starts the post thread 
when the user clicks the Submit button after all fields have been successfully 
validated. Field validation is independent of the internet application. You 
could use CValidForm in any MFC form view application. 

Here is the code for the overridden ValidateDlgltem member function, 
which is called whenever the user moves from one control to another: 

void CEx32bView::ValidateOlgItem(COataExchange* pOX. UINT uIO) 
{ 

ASSERT<this); 
TRACE("CEx32bView::ValidateOlgltem\n"); 



T H I R T Y • TWO: ActiveX Document Servers and the Internet 

switch CuID) ( 
case IDC_EMPLOYEE: 

DDX_CBStringCpDX. IDC_EMPLOYEE. m_strEmployee); 
II need custom DDV for empty string 
DDV_MaxCharsCpDX. m_strEmployee. 10); 
ifCm_strEmployee.IsEmptyC» ( 

AfxMessageBoxC"Must supply an employee name"); 
pDX->Fail C); 

break; 
case IDC_HOURS: 

DDX_TextCpDX. IDC_HOURS. m_dHours); 
DDV_MinMaxDoubleCpDX. m_dHours. 0.1. 100.); 
break; 

case IDC_JOB: 
DDX_TextCpDX. IDC_JOB. m_nJob); 
DDV_MinMaxlntCpDX. m_nJob. 1. 20); 
brea k; 

default : 
break; 

return; 

The OnSubmit member function is called when the user clicks the Sub
mit button. CWnd::UpdateData returns TRUE only when all the fields have been 
successfully validated. At that point, the function disables the Submit button, 
formats g_strParameters, and starts the post thread. 

void CEx32bView::OnSubmitC) 
( 

ifCUpdateDataCTRUE) == TRUE) 
GetDlgltemCIDC_SUBMIT)-)EnableWindowCFALSE); 
CString strHours. strJob. strPeriod; 
strPeriod.FormatC"%d". m_nPeriod); 
strHours.FormatC"%3.2f". m_dHours); 
strJob.FormatC"%d". m_nJob); 
g_strParameters = "Period=" + strPeriod + "&Employee=" + 

m_strEmployee + "&Hours=" +strHours + "&Job=" + 
strJob + "\r\n"; 

TRACEC"parameter string = %s". g_strParameters); 
AfxBeginThreadCPostThreadProc. GetSafeHwndC). 

THREAD_PRIORITY_NORMAL); 

The OnCancel member function is called when the user clicks the Re
set button. The CValidForm logic requires that the button's control ID be 
IDCANCEL. 

933 



PAR T V I: PROGRAMMING FOR THE INTERNET 

void CEx32bView::OnCancel() 
{ 

CEx32bDoc* pDoc = GetDocument(); 
m_dHours = 0; 
m_strEmployee = ""; 
m_nJob = 0; 
m_nPeriod = pDoc->m_nPeriod; 
UpdateData(FALSE); 

The OnPostComplete handler is called in response to the user-defined 
WM_POSTCOMPLETE message sent by the post thread: 

LONG CEx32bView::OnPostComplete(UINT wParam, LONG lParam) 
{ 

TRACE("CEx32bView::OnPostComplete - %d\n", wParam); 
if(wParam == 0) { 

AfxMessageBox("Server did not accept the transaction"); 

else 
OnCancel (); 

GetDlgItem(IDC_SUBMIT)->EnableWindow(TRUE); 
return 0; 

This function displays a message box if the server didn't send an OK re
sponse. It then enables the Submit button, allowing the user to post another 
time-sheet entry. 

Building and Testing EX32B 
Build the /vcpp32/ex32b project, and then run it once in stand-alone mode 
to register it and to write a document file called test.32b in your WWW root 
directory. Make sure the EX31A DLL is available in the scripts directory (with 
execute permission) because that DLL contains an ISAPI function, Process
Timesheet, that handles the server end of the POST request. Be sure that you 
have lIS or some other ISAPI-capable server running. 

Now run IE3 and load test.32b from your server. The EX32B program 
should be running in the Browse window, and you should be able to enter time
sheet transactions. 

ActiveX Document Servers vs. VB Script 

934 

It's possible to insert VB Script (or JavaScript) code into an HTML file. I'm 
no expert on VB Script, but I've seen some sample code. You could probably 
duplicate the EX32B time-sheet application with VB Script, but you would be 



T H I R T Y - TWO: ActiveX Document Servers and the Internet 

limited to the standard HTML input elements. It would be interesting to see 
how a VB Script programmer would solve the problem. In any case, you're a 
C++ programmer, not a Visual Basic programmer, so you might as well stick 
to what you know. 

Going Further with ActiveX Document Servers 
EX32A used a worker thread to read a text file from an Internet server. It used 
the MFC WinInet classes, and it assumed that a standard HTTP server was 
available. An ActiveX documen t server could just as easily make Winsock calls 
using the CBlockingSocket class from Chapter 30. That would imply that you 
were going beyond the HTTP and FTP protocols. You could, for example, 
write a custom internet server program that listened on port 81. (That server 
could run concurrently with IIS ifnecessary.) Your ActiveX document server 
could use a custom TCP lIP protocol to get binary data from an open socket. 
The server could use this data to update its window in real-time, or it could 
send the data to another device, such as a sound board. 

935 





APPENDIX A 

Message Map Functions 
in the Microsoft 
Foundation Class Library 

HANDLERS FOR WM_COMMAND MESSAGES 

Map Entry 

ON_COMMAND «id>, <memberFxn» 

ON_COMMAND_EX( <id>, <memberFxn» 

ON_COMMAND_EX_RANGE«id>, <idLast>, 
<memberFxn> ) 

ON_COMMAND_RANGE( <id>, <idLast>, 
<memberFxn> ) 

Function Prototype 

afx_msg void memberFxnO; 

afx_msg BOOL memberFxn(UINT); 

afx_msg BOOL memberFxn(UINT); 

afx_msg void memberFxn(UINT); 

ON_UPDATE_COMMAND_UI«id>, 
<memberFxn> ) 

afx_msg void memberFxn(CCmdUI*); 

ON_UPDATE_COMMAND_ULRANGE( <id>, 
<idLast>, <memberFxn» 

ON _UPDATE_COMMAND_ ULREFLECT 
«memberFxn> ) 

afx_msg void memberFxn(CCmdUI*); 

afx_msg void memberFxn(CCmdUI*); 

937 



A P PEN D I X A: Message Map Functions in the Microsoft Foundation Class Library 

HANDLERS FOR CHILD WINDOW NOTIFICATION MESSAGES 

Map Entry 

Generic Control Notification Codes 

ON_CONTROL ( <wNotifyCode>, <id>, 
<memberFxn> ) 

ON_CONTROL_RANGE( <wNotifyCode>, <id>, 
<idLast>, <memberFxn» 

ON_CONTROL_REFLECT «wN otifyCode>, 
<memberFxn> ) 

ON_CONTROL_REFLECT _EX( <wNotifyCode>, 
<memberFxn> ) 

ON_NOTIFY( <wNotifyCode>, <id>, 
<memberFxn> ) 

ON_NOTIFY_EX ( <wNotifyCode>, <id>, 
<memberFxn> ) 

ON_NOTIFY_EX_RANGE«wNotifyCode>, 
<id>, <idLast>, <memberFxn» 

ON_NOTIFY_RANGE ( <wNotifyCode>, <id>, 
<idLast>, <memberFxn» 

ON_NOTIFY_REFLECT ( <wNotifyCode>, 
<memberFxn> ) 

ON_NOTIFY_REFLECT _EX( <wNotifyCode>, 
<memberFxn> ) 

User Button Notification Codes 

ON_BN_CLICKED (<id>, <memberFxn» 

ON_BN_DOUBLECLICKED «id>, 
<memberFxn> ) 

ON_BN_KILLFOCUS( <id>, <memberFxn» 

ON_BN_SETFOCUS«id>, <memberFxn» 

Combo Box Notification Codes 

Function Prototype 

afx_msg void memberFxn 0; 

afx_msg void memberFxn (UINT); 

afx_msg void memberFxn (); 

afx_msg BOOL memberFxnO; 

afx_msg void memberFxn(NMHDR*, 
LRESULT*); 

afx_msg BOOL memberFxn(UINT, 
NMHDR*, LRESULT*); 

afx_msg BOOL memberFxn(UINT, 
NMHDR*, LRESULT*); 

afx_msg void memberFxn(UINT, 
NMHDR*, LRESULT*); 

afx_msg void memberFxn(NMHDR*, 
LRESULT*); 

afx_msg BOOL memberFxn(NMHDR*, 
LRESULT*); 

afx_msg void memberFxn 0; 
afx_msg void memberFxn 0; 

afx_msg void memberFxn(); 

afx_msg void memberFxn(); 

ON_CBN_CLOSEUP «id>, <memberFxn» afx_msg void memberFxn 0; 
ON_CBN_DBLCLK( <id>, <memberFxn» afx_msg void memberFxn (); 

ON_CBN_DROPDOWN«id>, <memberFxn» afx_msg void memberFxn(); 

ON_CBN_EDITCHANGE(<id>, <memberFxn» afx_msg void memberFxn(); 

ON_CBN_EDITUPDATE«id>, <memberFxn» afx_msg void memberFxn(); 

ON_CBN_ERRSPACE«id>, <memberFxn» afx_msg void memberFxnO; 

938 



A P PEN D I X A: Message Map Functions in the Microsoft Foundation Class Library 

HANDLERS FOR CHILD WINDOW NOTIFICATION MESSAGES continued 

Map Entry 

Combo Box Notification Codes, continued 

ON_CBN_KILLFOCUS(dd>, <memberFxn» 

ON_CBN_SELCHANGE«id>, <memberFxn» 

ON_CBN_SELENDCANCEL( dd>, 
<memberFxn> ) 

ON_CBN_SELENDOK( <id>, <memberFxn» 

ON_CBN_SETFOCUS( <id>, <memberFxn» 

Check List Box Notification Codes 

Function Prototype 

afx_msg void memberFxnO; 

afx_msg void memberFxn(); 

afx_msg void memberFxn 0; 

afx_msg void memberFxn 0; 
afx_msg void memberFxn 0; 

ON_CLBN_CHKCHANGE«id>, <memberFxn» afx_msg void memberFxnO; 

Edit Control Notification Codes 

ON_EN_CHANGE( dd>, <memberFxn» 

ON_EN_ERRSPACE(dd>, <memberFxn» 

ON_EN_HSCROLL( dd>, <memberFxn» 

ON_EN_KILLFOCUS«id>, <memberFxn» 

ON_EN_MAXTEXT«id>, <memberFxn» 

ON_EN_SETFOCUS( <id>, <memberFxn» 

ON_EN_UPDATE( <id>, <memberFxn» 

ON_EN_ VSCROLL( <id>, <memberFxn» 

List Box Notification Codes 

ON_LBN_DBLCLK( dd>, <memberFxn» 

ON_LBN_ERRSPACE( <id>, <memberFxn» 

ON_LBN_KILLFOCUS«id>, <memberFxn» 

ON_LBN_SELCANCEL( <id>, <memberFxn» 

ON_LBN_SELCHANGE(dd>, <memberFxn» 

ON_LBN_SETFOCUS( <id>, <memberFxn» 

Static Control Notification Codes 

ON_STN_CLICKED (dd>, <memberFxn» 

ON_STN_DBLCLK( dd>, <memberFxn» 

ON_STN_DISABLE«id>, <memberFxn» 

ON_STN_ENABLE(dd>, <memberFxn» 

afx_msg void memberFxn 0; 
afx_msg void memberFxn(); 

afx_msg void memberFxn 0; 
afx_msg void memberFxn(); 

afx_msg void memberFxn 0; 
afx_msg void memberFxn 0; 
afx_msg void memberFxn 0; 
afx_msg void memberFxn 0; 

afx_msg void memberFxn 0; 
afx_msg void memberFxn 0; 
afx_msg void memberFxn 0; 
afx_msg void memberFxn 0; 
afx_msg void memberFxn 0; 
afx_msg void memberFxn 0; 

afx_msg void memberFxn 0; 
afx_msg void memberFxn 0; 
afx_msg void memberFxn 0; 
afx_msg void memberFxn 0; 

939 



A P PEN D I X A: Message Map Functions in the Microsoft Foundation Class Library 

HANDLERS FOR WINDOW NOTIFICATION MESSAGES 

Map Entry 

ON_WM_ACTIVATE() 

ON_WM-ACTIVATEAPPO 

ON_ WM_ASKCBFORMATNAME () 

ON_WM_CANCELMODEO 

ON_WM_CAPTURECHANGEDO 

ON_ WM_CHANGECBCHAIN 0 
ON_WM_CHARO 

ON_WM_CHARTOITEMO 

Function Prototype 

afx_msg void OnActivate(UINT, CWnd*, BOOL); 

afx_msg void OnActivateApp (BOOL, HTASK); 

afx_msg void OnAskCbFormatName(UINT, 
LPTSTR); 

afx_msg void OnCancelModeO; 

afx_msg void OnCaptureChanged(CWnd*); 

afx_msg void OnChangeCbChain(HWND, HWND); 

afx_msg void OnChar(UINT, UINT, UINT); 

afx_msg int OnCharToItem(UINT, CListBox*, 
UINT); 

ON_WM_CHARTOITEM_REFLECTO afx_msg int CharToItem(UINT, UINT); 

ON_WM_CHILDACTIVATEO 

ON_WM_CLOSEO 

ON_WM_COMPACTINGO 

ON_ WM_COMP AREITEM () 

ON_WM_COMPAREITEM
_REFLECT() 

ON_ WM_CONTEXTMENU () 

ON_ WM_COPYDATAO 

ON_WM_CREATEO 

ON_ WM_CTLCOLORO 

ON_ WM_CTLCOLOR_REFLECT () 

ON_ WM_DEAD CHAR 0 
ON_ WM_DELETEITEM 0 

ON_ WM_DELETEITEM_REFLECTO 

ON_ WM_DESTROYO 

ON_ WM_DESTROYCLIPBOARD 0 
ON_WM_DEVICECHANGEO 

ON_WM_DEVMODECHANGEO 

ON_WM_DRAWCLIPBOARDO 

ON_ WM_DRA WITEM () 

940 

afx_msg void OnChildActivate(); 

afx_msg void OnClose(); 

afx_msg void OnCompacting(UINT); 

afx_msg int OnCompareItem(int, 
LPCOMP AREITEMSTRUCT); 

afx_msg int CompareItem(LPCOMPAREITEM
STRUCT); 

afx_msg void OnContextMenu(CWnd*, CPoint); 

afx_msg BOOL OnCopyData(CWnd*, 
COPYDATASTRUCT*) ; 

afx_msg int OnCreate(LPCREATESTRUCT); 

afx_msg HBRUSH OnCtlColor(CDC*, CWnd*, 
UINT); 

afx_msg HBRUSH CtlColor(CDC*, UINT); 

afx_msg void OnDeadChar(UINT, UINT, UINT); 

afx_msg void OnDeleteItem(int, 
LPDELETEITEMSTRUCT) ; 

afx_msg void Deleteltem (LPDELETEITEMSTRUCT) 

afx_msg void OnDestroy(); 

afx_msg void OnDestroyClipboardO; 

aDcmsg BOOL OnDeviceChange(UINT, DWORD); 

afx_msg void OnDevModeChange (LPTSTR); 

afx_msg void OnDrawClipboardO; 

afx_msg void OnDrawItem(int, 
LPDRA WITEMSTRUCT); 



A P PEN 0 I X A: Message Map Functions in the Microsoft Foundation Class Library 

HANDLERS FOR WINDOW NOTIFICATION MESSAGES continued 

Map Entry 

ON_ WM_DRA WITEM_REFLECT 0 
ON_ WM_DROPFILESO 

ON_WM_ENABLEO 

ON_ WM_ENDSESSION () 

ON_ WM_ENTERIDLE () 

ON_ WM_ENTERMENULOOP 0 
ON_ WM_ERASEBKGND () 

ON_ WM_EXITMENULOOP 0 
ON_ WM_FONTCHANGE() 

ON_WM_GETDLGCODEO 

ON_ WM_GETMINMAXINFO () 

ON_ WM_HELPINFO () 

ON_WM_HSCROLLO 

ON_ WM_HSCROLL_REFLECT () 

ON_ WM_HSCROLLCLIPBOARD 0 

ON_ WM_ICONERASEBKGND () 

ON_ WM_INITMENU () 

ON_ WM_INITMENUPOPUP () 

ON_WM_KEYDOWN() 

ON_WM_KEYUPO 

ON_ WM_KILLFOCUSO 

ON_ WM_LBUTTONDBLCLKO 

ON_ WM_LBUTTONDOWN 0 
ON_ WM_LBUTTONUPO 

ON_ WM_MBUTTONDBLCLKO 

ON_WM_MBUTTONDOWNO 

ON_WM_MBUTTONUPO 

ON_WM_MDIACTIVATEO 

Function Prototype 

afx_msg void DrawItem(LPDRAWITEMSTRUCT); 

afx_msg void OnDropFiles(HDROP); 

afx_msg void OnEnable(BOOL); 

afx_msg void OnEndSession (BOOL); 

afx_msg void OnEnterIdle(UINT, CWnd*); 

afx_msg void OnEnterMenuLoop (BOOL); 

afx_msg BOOL OnEraseBkgnd(CDC*); 

afx_msg void OnExitMenuLoop(BOOL); 

afx_msg void OnFontChangeO; 

afx_msg UINT OnGetDlgCode 0; 
afx_msg void OnGetMinMaxInfo (MINMAXINFO*); 

afx_msg BOOL OnHelpInfo(HELPINFO*); 

afx_msg void OnHScroll(UINT, UINT, 
CScrollBar*) ; 

afx_msg void HScroll (UINT, UINT); 

afx_msg void OnHScrollClipboard(CWnd*, UINT, 
UINT); 

afx_msg void OnIconEraseBkgnd (CDC*); 

afx_msg void OnInitMenu(CMenu*); 

afx_msg void OnInitMenuPopup(CMenu*, UINT, 
BOOL); 

afx_msg void OnKeyDown (UINT, UINT, UINT); 

afx_msg void OnKeyUp(UINT, UINT, UINT); 

afx_msg void OnKillFocus(CWnd*); 

afx_msg void OnLButtonDblClk(UINT, CPoint); 

afx_msg void OnLButtonDown(UINT, CPoint); 

afx_msg void OnLButtonUp(UINT, CPoint); 

afx_msg void OnMButtonDblClk(UINT, CPoint); 

afx_msg void OnMButtonDown(UINT, CPoint); 

afx_msg void OnMButtonUp(UINT, CPoint); 

afx_msg void OnMDIActivate(BOOL, CWnd*, 
CWnd*); 

afx_msg void OnMeasureItem(int, 
LPMEASUREITEMSTRUCT) ; 

ON_WM_MEASUREITEM_REFLECTO afx_msg void MeasureItem(LPMEASUREITEM
STRUCT); 

(continued) 

941 



A P PEN D I X A: Message Map Functions in the Microsoft Foundation Class Library 

HANDLERS FOR WINDOW NOTIFICATION MESSAGES continued 

Map Entry 

ON_ WM_MENUSELECT 0 

ON_ WM_MOUSEACTIV ATE () 

ON_WM_MOUSEMOVEO 

ON _ WM_MOUSEWHEEL 0 

ON_WM_MOVEO 

ON_ WM_MOVINGO 

ON_ WM_NCACTIV ATE () 

ON_ WM_NCCALCSIZE () 

ON_ WM_NCDESTROYO 

ON_WM_NCHITTESTO 

ON_ WM_NCLBUTTONDBLCLKO 

ON_WM_NCLBUTTONDOWN() 

ON_WM_NCLBUTTONUPO 

ON _ WM_NCMBUTTONDBLCLKO 

ON_WM_NCMBUTTONDOWNO 

ON_ WM_NCMBUTTONUP 0 
ON_WM_NCMOUSEMOVEO 

ON_ WM_NCP AINT () 

ON_ WM_NCRBUTTONDBLCLKO 

ON_WM_NCRBUTTONDOWNO 

ON_WM_NCRBUTTONUPO 

ON_ WM_P AINT() 

ON_ WM_P AINTCLIPBOARD () 

ON_WM_PALETTECHANGEDO 

ON_ WM_P ALETTEISCHANGING() 

942 

Function Prototype 

afx_ffisg LRESULT OnMenuChar(UINT, UINT, 
CMenu*); 

afx_ffisg void OnMenuSelect(UINT, UINT, 
HMENU); 

afx_ffisg int OnMouseActivate(CWnd*, UINT, 
UINT); 

afx_ffisg void OnMouseMove(UINT, CPoint); 

afx_ffisg BOOL OnMouseWheel(UINT, 
short, CPoint); 

afx_ffisg void OnMove(int, int); 

afx_ffisg void OnMoving(UINT, LPRECT); 

afx_ffisg BOOL OnNcActivate(BOOL); 

afx_ffisg void OnNcCalcSize(BOOL, 
NCCALCSIZE_P ARAMS*); 

afx_ffisg BOOL OnNcCreate(LPCREATE-
STRUCT); 

afx_ffisg void OnNcDestroyO; 

afx_ffisg UINT OnNcHitTest(CPoint); 

afx_ffisg void OnNcLButtonDbIClk(UINT, 
CPoint); 

afx_ffisg void OnNcLButtonDown(UINT, CPoint); 

afx_ffisg void OnNcLButtonUp(UINT, CPoint); 

afx_ffisg void OnNcMButtonDbIClk(UINT, 
CPoint); 

afx_ffisg void OnNcMButtonDown(UINT, CPoint); 

afx_ffisg void OnNcMButtonUp(UINT, CPoint); 

afx_ffisg void OnNcMouseMove(UINT, CPoint); 

afx_ffisg void OnNcPaintO; 

afx_ffisg void OnNcRButtonDbIClk(UINT, 
CPoint); 

afx_ffisg void OnNcRButtonDown(UINT, CPoint); 

afx_ffisg void OnNcRButtonUp(UINT, CPoint); 

afx_ffisg void OnPaint(); 

afx_ffisg void OnPaintClipboard(CWnd*, 
HGLOBAL); 

afx_ffisg void OnPaletteChanged(CWnd*); 

afx_ffisg void OnPaletteIsChanging(CWnd*); 



A P PEN D I X A: Message Map Functions in the Microsoft Foundation Class Library 

HANDLERS FOR WINDOW NOTIFICATION MESSAGES continued 

Map Entry Function Prototype 

afx_ffisg void OnParentNotify(UINT, LPARAM); 

ON_WM_PARENTNOTIFY_REFLECTO afx_ffisg void ParentNotify(UINT, LPARAM); 

ON_ WM_QUE~YDRAGICON 0 afx_ffisg HCURSOR OnQueryDragIcon 0; 
ON_ WM_QUERYENDSESSION 0 
ON_WM_QUERYNEWPALETTEO 

ON_ WM_QUERYOPEN 0 
ON_ WM_~UTTONDBLCLKO 

ON_ WM_RBUTTONDOWN 0 
ON_WM_RBUTTONUPO 

ON_ WM_RENDERALLFORMATSO 

ON_ WM_RENDERFORMAT () 

ON_ WM_SETCURSORO 

ON_ WM_SETFOCUSO 

ON_ WM_SETTINGCHANGE 0 
ON_WM_SHOWWINDOWO 

ON_WM_SIZEO 

ON_ WM_SIZECLIPBOARD 0 
ON_ WM_SIZINGO 

ON_WM_SPOOLERSTATUSO 

ON_ WM_STYLECHANGED () 

ON_ WM_STYLECHANGINGO 

ON_WM_SYSCHARO 

ON_ WM_SYSCOLORCHANGEO 

ON_ WM_SYSCOMMAND () 

ON_ WM_SYSDEAD CHAR 0 

ON_ WM_SYSKEYUP () 

ON_ WM_ TCARD 0 
ON_ WM_ TIMECHANGE () 

ON_WM_TIMERO 

afx_ffisg BOOL OnQueryEndSessionO; 

afx_ffisg BOOL OnQueryNewPaletteO; 

afx_ffisg BOOL OnQueryOpen 0; 
afx_ffisg void OnRButtonDblClk(UINT, CPoint); 

afx_ffisg void OnRButtonDown(UINT, CPoint); 

afx_ffisg void OnRButtonUp(UINT, CPoint); 

afx_ffisg void OnRenderAllForffiatsO; 

afx_ffisg void OnRenderForffiat(UINT); 

afx_ffisg BOOL OnSetCursor(CWnd*, UINT, 
UINT); 

afx_ffisg void OnSetFocus(CWnd*); 

afx_ffisg void OnSettingChange (UINT, LPCTSTR); 

afx_ffisg void OnShowWindow(BOOL, UINT); 

afx_ffisg void OnSize(UINT, int, int); 

afx_ffisgvoid OnSizeClipboard(CWnd*, HGLOBAL); 

afx_ffisg void OnSizing(UINT, LPRECT); 

afx_ffisg void OnSpoolerStatus(UINT, UINT); 

afx_ffisg void OnStyleChanged(int, 
LPSTYLESTRUCT) ; 

afx_ffisg void OnStyleChanging(int, 
LPSTYLESTRUCT) ; 

afx_ffisg void OnSysChar(UINT, UINT, UINT); 

afx_ffisg void OnSysColorChange(); 

afx_ffisg void OnSysCoffiffiand(UINT, LPARAM); 

afx_ffisg void OnSysDeadChar(UINT, UINT, 
UINT); 

afx_ffisg void OnSysKeyDown(UINT, UINT, 
UINT); 

afx_ffisg void OnSysKeyUp(UINT, UINT, UINT); 

afx_ffisg void OnTCard(UINT, DWORD); 

afx_ffisg void OnTiffieChange(); 

afx_ffisg void OnTiffier(UINT); 

(continued) 

943 



A P PEN 0 I X A: Message Map Functions in the Microsoft Foundation Class Library 

HANDLERS FOR WINDOW NOTIFICATION MESSAGES continued 

Map Entry 

ON_ WM_ VKEYTOITEM_REFLECT() 

ON_ WM_ VSCROLL() 

ON_ WM_ VSCROLL_REFLECT() 

ON_ WM_ VSCROLLCLIPBOARD () 

ON_WM_WINDOWPOSCHANGED() 

Function Prototype 

afx_m~g int OnVKeyToItem(UINT, CListBox*, 
UINT); 

afx_msg int VKeyToItem (UINT, UINT); 

afx_msg void OnVScroll(UINT, UINT, 
CScrollBar*) ; 

afx_msg void VScroll(UINT, UINT); 

afx_msg void OnVScrollClipboard(CWnd*, UINT, 
UINT); 

afx_msg void On WindowPosChanged 
(WINDOWPOS*) ; 

ON_ WM_ WINDOWPOSCHANGING() afx_msg void On WindowPosChanging 
(WINDOWPOS*) ; 

afx_msg void On WinlniChange (LPCTSTR); 

USER-DEFINED MESSAGE CODES 

Map Entry 

ON_MESSAGE «message>, 
<memberFxn> ) 

ON_REGISTERED_MESSAGE 
( <nMessageVariable>, 
<memberFxn> ) 

ON_REGISTERED_ THREAD
_MESSAGE «nMessage Variable>, 
<memberFxn» 

ON_ THREAD_MESSAGE «message>, 
<memberFxn> ) 

944 

Function Prototype 

afx_msg LRESUL T memberFxn (WP ARAM, 
LPARAM); 

afx_msg LRESUL T memberFxn (WP ARAM, 
LPARAM); 

afx_msg void memberFxn(WPARAM, LPARAM); 

afx_msg void memberFxn(WPARAM, LPARAM); 



APPENDIX B 

MFC Library Runtime 
Class Identification and 
Dynamic Object Creation 

Long before runtime type information (RTTI) was added to the C++ lan
guage specification, the MFC library designers realized that they needed 
runtime access to an object's class name and to the position of the class in the 
hierarchy. Also, the document-view architecture (and, later, COM class fac
tories) demanded that objects be constructed from a class specified at runtime. 
So the MFC team created an integrated macro-based class identification and 
dynamic creation system that depends on the universal CObject base class. And 
in spite of the fact that the Visual C++ version 5.0 compiler supports the ANSI 
RTTI syntax, the MFC library continues to use the original system, which 
actually has more features. 

This appendix explains how the MFC library implements the class iden
tification and dynamic creation features. You'll see how the DECLARE_DYN
AMIC, DECLARE_DYNCREATE, and associated macros work, and you'll learn 
about the RUNTIME_CLASS macro and the CRuntimeClass structure. 

Getting an Object's Class Name at Runtime 
If you wanted only an object's class name, you'd have an easy time, assuming 
that all your classes were derived from a common base class, CObject. Here's 
how you'd get the class name: 

945 



A P PEN D I X B: MFC Library Runtime Class Identification and Dynamic Object Creation 

class CObject 
{ 

public: 
virtual char* GetClassName() canst { return NULL: } 

} : 

class CMyClass public CObject 

public: 
static char s_lpszClassName[]: 
virtual char* GetClassName() canst { return s_lp~zClassName: } 

} : 
char CMyClass::s_szClassName[] = "CMyClass": 

Each derived class would override the virtual GetClassName function, 
which would return a static string. You would get an object's actual class name 
even if you used a CObjectpointer to call GetClassName. If you needed the class 
name feature in many classes, you could save yourself some work by writing 
macros. ADECLARE_CLASSNAME macro might insert the static data mem
ber and the GetClassName function in the class declaration, and an IMPLE
MENT_CLASSNAME macro might define the class name string in the 
implementation file. 

The MFC CRuntimeClass Structure 
and the RUNTIME_CLASS Macro 

946 

In a real MFC program, an instance of the CRuntimeClass structure replaces 
the static LlpszClassName data member shown above. This structure has data 
members for the class name and the object size; it also contains a pointer to 
a special static function, CreateObject, that's supposed to be implemented in the 
target class. Here's a simplified version of CRuntimeClass: 

struct CRuntimeClass 
{ 

} : 

char m_lpszClassName[21]: 
int m_nObjectSize: II used for memory validation 
CObject* (*m_pfnCreateObject)(): 
CObject* CreateObject(): 

NOT E: The real MFC CRuntimeClass structure has additional 
data members and functions that navigate through the class's hier
archy. This navigation feature is not supported by the official C++ 
RTTI implementation. 



A P PEN D I X 8: MFC Library Runtime Class Identification and Dynamic Object Creation 

This structure supports not only class name retrieval but also dynamic 
creation. Each class you derive from CObject has a static CRuntimeClass data 
member, provided you use the MFC DECLARE_DYNAMIC, DECLARE_DYN
CREA TE, or DECLARE_SERIAL macro in the declaration and the correspond
ing IMPLEMENT macro in the implementation file. The name of the static 
data member is, by convention, class < clasL name>. If your class were named 
CMyClass, the CRuntimeClass data member would be named classCMyClass. 

If you want a pointer to a class's static CRuntimeClass object, you use the 
MFC RUNTIME_CLASS macro, defined as follows: 

#define RUNTIME_CLASS(class_name) (&class_name::class##class_name) 

Here's how you use the macro to get the name string from a class name: 

ASSERT( RUNTIME_CLASS( CMyCl ass) ->m_l pszCl assName == "CMyCl ass"); 

If you want the class name string from an object, you call the virtual 
CObject::GetRuntimeClass function. The function simply returns a pointer to the 
class's static CRuntimeClass object, just as earlier the GetClassName function 
returned the name string. Here's the function you'd write for CMyClass: 

virtual CRuntimeClass* GetRuntimeClass() canst { return &classCMyClass; } 

And here's how you'd call it: 

ASSERT(pMyObject->GetRuntimeClass()->m_lpszClassName "CMyClass"); 

Dynamic Creation 
You've already learned that the DECLARE and IMPLEMENT macros add a 
static CRuntimeClass object to a class. If you use the DECLARE_DYNCREATE 
or DECLARE_SERIAL macro (and the corresponding IMPLEMENT macro), 
you get an additional static member function CreateObject (distinct from CRun
timeClass::CreateObject) in your class. Here's an example: 

CObject* CMyClass::CreateObject() 
{ 

return new CMyClass; 

Obviously, CMyClass needs a default constructor. This constructor is declared 
protected in wizard-generated classes that support dynamic creation. 

Now look at the code for the CRuntimeClass::CreateObject function: 

CObject* CRuntimeClass::CreateObject() 
{ 

return (*m_pfnCreateObject)(); 
} 

947 



A P PEN 0 I X B: MFC Library Runtime Class Identification and Dynamic Object Creation 

This function makes an indirect call to the CreateObject function in the target 
class. Here's how you would dynamically construct an object of class CMyClass: 

CRuntimeClass* pRTC = RUNTIME_CLASS(CMyObject); 
CMyClass* pMyObject = (CMyClass*)pRTC->CreateObject(); 

Now you know how document templates work. A document template 
object has three CRuntimeClass* data members initialized at construction to 
point to the static CRuntimeClass data members for the document, frame, and 
view classes. When CWinApp::OnFileNew is called, the framework calls the 
Create Object functions for the three stored pointers. 

A Sample Program 

948 

Here is the code for a command-line program that dynamically constructs 
objects of two classes. Note that this isn't real MFC code-the CObject class is 
a simplified version of the MFC library CObjectclass. You can find this code in 
the dyncreat.cpp file in the \vcpp32\appendb project. 

#include <stdio.h> 

#define RUNTIME_CLASS(class_name) (&class_name::class##class_name) 

class CObject; 

struct CRuntimeClass 
{ 

} ; 

char m_lpszClassName[21]; 
int m_nObjectSize; 
CObject* (*m_pfnCreateObject)(); 
CObject* CreateObject(); 

II not a true abstract class because there are no pure 
II virtual functions. but user can't create CObject objects 
II because of the protected constructor 
class CObject 
{ 

public: 
II not pure because derived classes don't necessarily implement it 
virtual CRuntimeClass* GetRuntimeClass() const { return NULL; } 

II We never construct objects of class CObject. but in MFC we use 
II this to get class hierarchy information 
static CRuntimeClass classCObject; II DYNAMIC 



A P PEN 0 I X B: MFC Library Runtime Class Identification and Dynamic Object Creation 

virtual -CObject() {}: II gotta have it 
protected: 

CObject() ( printf("CObject constructor\n"): 
} : 

CRuntimeClass CObject::classCObject 
sizeof(CObject). NULL }: 

( "CObject". 

CObject* CRuntimeClass::CreateObject() 
( 

return (*m_pfnCreateObject)(): II indirect function call 

class CAlpha public CObject 

public: 
virtual CRuntimeClass* GetRuntimeClass() 

const { return &classCAlpha: } 
static CRuntimeClass classCAlpha: 
static CObject* CreateObject(): 

protected: 

II DYNAMIC 
I I DYNCREATE 

CAl pha () ( pri ntf( "CAl pha constructor\n"): } 
} ; 

CRuntimeClass CAlpha::classCAlpha = ( "CAlpha". 
sizeof(CAlpha). CAlpha::CreateObject }: 

CObject* CAlpha::CreateObject() II static function 
( 

return new CAlpha: 

class CBeta public CObject 

public: 
virtual CRuntimeClass* GetRuntimeClass() 

const { return &classCBeta: } 
static CRuntimeClass classCBeta: II DYNAMIC 
static CObject* CreateObject(): II DYNCREATE 

protected: 
CBeta() ( printf("CBeta constructor\n"): 

} : 

CRuntimeClass CBeta::classCBeta = ( "CBeta". 
sizeof(CBeta). CBeta::CreateObject }: 

(continued) 

949 



A P PEN D I X B: MFC Library Runtime Class Identification and Dynamic Object Creation 

950 

CObject* CBeta::CreateObject() II static function 
{ 

return new CBeta; 

int rnain() 

pri ntH "Enteri ng dyncreate rnai n\n"); 

CRuntirneClass* pRTCAlpha = RUNTIME_CLASS(CAlpha); 
CObject* pObjl = pRTCAlpha->CreateObject(); 
printf("class of pObjl = %s\n", 

pObjl->GetRuntirneClass()->rn_lpszClassNarne); 

CRuntirneClass* pRTCBeta = RUNTIME_CLASS(CBeta); 
CObject* pObj2 = pRTCBeta->CreateObject(); 
pri ntH "cl ass of pObj 2 = %s\n", 

pObj2->GetRuntirneClass()->rn_lpszClassNarne); 

delete pObjl; 
delete pObj2; 
return 0; 



INDEX 
Special Characters 
<> (angle brackets), 857 
[] (column and table notation), 802 
& (dialog control accelerator operator), 119 
» (extraction operator), 398-400 
« (insertion operator), 355, 398-400 
& (keyboard accelerator operator), 276 
& (reference operator), 371 
:: (scope resolution operator), 561 

Numbers 
lOBaseT twisted pair, 859 

A 
About dialog window, 41-42 
accelerators, keyboard, 41, 276 
Access database, 819, 820 
ActivateFrame member function, 332-33, 348 
ActiveX controls, 171-201 

ActiveX document servers vs., 920 (see also 

ActiveX document server applications) 
AppWizard support, 181 
ATL and, 6,15,171 
bindable properties and change notifications, 

200 
ClassWizard and container dialog windows, 

181-83 
ClassWizard's wrapper classes for, 178-80 
Calendar control, 175-77, 183-92 
change notifications, 200 
COM, OLE, and, 555-56 (see also COM 

(Component Object Model» 
COM-based and COM-free, 847 
container programming, 177-92 
control events, mapping, 182-83 
creating, at runtime, 193-94 
dialog class data members vs. wrapper class 

usage, 181-82 
dialog editor and, 9 
events, 173-74, 182-83 

ActiveX controls, continued 

Gallery and, 14, 175 
in HTML files, 193 
installing, 174-75 
locking, in memory, 183 
ordinary controls vs., 172-74 
picture properties, 199 
property access, 177-78 
type libraries, 650 
VBA and, 599-600 
Visual C++ and Internet SDK, 201 
Web Browser control, 194-99 
Win32 programming, 192 
WinInet and, 880 

ActiveX Controls Inside Out (Denning), 171, 729, 
847 

ActiveX document container applications, 917, 
920-21 

ActiveX document server applications, 917-35 
ActiveX controls vs., 920 (see also ActiveX 

controls) 
displaying bitmaps on buttons, 925 
example application, 922-25 
example form-based application, 926-35 
field validation, 927-30 
interfaces, 920-21 
MFC support, 921-22 
OLE embedded servers vs., 918-19 
running, from Internet Explorer, 919-20 
VB Script vs., 934-35 

ActiveX Template Library (ATL) , 6, 15, 21, 171 
adapters, network, 859 
AddDocTemplate function, 403-4,406-7,430-31, 

435 
AddRef function, 565 
addresses 

IP,849,851 
TCP/IP loopback, 860-61 

AddTail function, 371 
Advanced Windows (Richter), 203, 213, 253, 270, 

510,913 
advisory connections, 677, 746-47 

951 



INSIDE VISUAL C++ 

AfxBeginThread function, 260-61 
AfxCallWndProc function, 527 
MxCore.rtf file, 499 
afxctl.h file, 199 
afxdb.h file, 800 
afxdisp.h file, 45, 181 
afxDump object, 355-56 
AfxEnableControlContainer function, 181 
AFJLEXL CLASS macro, 516 
afxext.h file, 45 
AfxGetApp function, 315, 336, 433, 496 
AfxGetlnstanceHandle function, 517 
AfxGetStaticModuleState function, 521 
AFJLIDW_STATUS_BAR constant, 323-24 
AfxlnitRichEdit function, 281 
AFJLMANAGE_STATE macro, 521 
AfxMessageBox function, 168, 337, 498 
AFJLMSG and AFJLMSG_MAP notation, 57 
afx_msgnotation,48 

afxole.h file, 45, 588 
AfxOlelnit function, 588 
AfxOleLockControl function, 183 
AfxOleUnlockControl function, 183 
MxPrint.rtf file, 499 
AfxRegisterTypeLib function, 668 
afxres.h file, 41 
AfxSetResourceHandle function, 522 
afxtempl.h file, 45, 378 
afxTraceEnabled variable, 355 
afxwin.h file, 45 
aggregation, 596-97 
aliases, help context, 496 
alignment, control, 116 
allocation. See memory management 
allocator objects, 704-5 
AllocSysString function, 335 
ampersand (&), 119, 276, 371 
angle brackets «», 857 
animation controls, 149 
Animation Techniques in Win32 (Thompson), 229 
anonymous users, 893, 909 
ANSI strings, 335 
APIs. See application programming interfaces 

(APIs) 
application 

ActiveX (see ActiveX controls; ActiveX 
document server applications) 

adding ODBC capability to MFC, 800 

952 

application, continued 

build process (see build process) 
class, 25, 402-3, 430 
DLL client, 514 
without document or view classes, 539-51 
document-view architecture (see document-

view architecture) 
embedded launch, 411-12, 424-26, 436 
generating (see AppWizard) 
help files (see help, context-sensitive) 
icons, 543-44 
MDI vs. SDI, 32 (see also multiple document 

interface (MDI); single document 
interface (SDI)) 

MS-DOS vs. Windows, 3-4 
registration, 424-25 
resources, 40-43 (see also resources) 
running, 46 
shutdown, 26 
single-threaded programming, 253-54 
size and speed of, 18-19 
startup, 25 
startup parameters, 426, 628 
typical MFC, 23-26 

application frameworks, 22-23. See also Microsoft 
Foundation Class (MFC) Library 

benefits, 17-22 
class libraries vs., 22-23 
example program using, 23-26 

application programming interfaces (APIs) 
MFC library as C++ Windows interface, 18 
Win16,6 
Win32 (see Win32 API) 
WinInet (see WinInet API) 
Winsock (see Winsock API) 

applications, example 
as custom AppWizards, 551 
without documents or views, 539-51 
requirements for, 31 
simplest document-view, 352-53 
student records (see student records 

applications) 
WinInet client, 884-85 
Winsock HTTP client, 873-75 
Winsock HTTP server, 871-73 

Apply button, 306 
AppWizard, 11-12, 31-46. See also application; 

Microsoft Developer Studio 97 



AppWizard, continued 

ActiveX support, 181 
COM client support, 588 
COM DLL component support, 587-88 
context-sensitive help and, 483 
custom, 12,551 
Debug and Release targets, 43-44, 516 
diagnostic macros, 44 
drawing in view windows with GDI, 38-40 
example "do-nothing" SDI application, 32-37 
form view dialog windows and, 353 
generating SDI code with, 32-35 
message handlers, 56-57 (see also message 

handlers) 
ODBC support, 801 
precompiled headers, 44-46 
SDI vs. MDI, 32 
toolbar and status bar support, 311 
using, with ClassWizard, 57-60 (see also 

Class Wizard) 
view classes, 31, 37-38 
views and, 32 (see also view windows) 
Win32 programming and messages, 40 

archive objects, 396-97, 398-400 
arguments. See parameters 
arrays 

collections vs., 369-70 
of strings, 457 
template collection classes, 453, 464-65 

asynchronous moniker files, 887-90 
interfaces and functions, 888 
MFC class, 888-89 
WinInet programming vs., 889-90, 925 (see also 

WinInet API) 
asynchronous Winsock programming, 861 
ATL (ActiveX Template Library), 6,15,21,171 
authentication, 880,909-11 

basic, 909 
ISAPI permissions, 898 
secure sockets layer (SSL) , 910-11 
Windows NT challenge/response, 910-11 

Automation, 599-672. See also COM (Component 
Object Model) 

benefits, 604-8 
clients and components, 600-601 (see also 

Automation client applications; 
Automation component applications) 

COleVariant class, 616-19 

Automation, continued 

dual interfaces, 672 
example applications, 619-66 
general-purpose interface, 605 

Index 

MFC interface implementation, 607-8 
Microsoft Excel and, 601-3, 658-62, 670-71 
ODL files, 648-50, 669-70 
parameter and return type conversions, 618-19 
parameters passed by reference, 630 
type libraries, 648-50, 667-68, 670-71 
VARlANTdata type, 613-15 
Visual Basic for Applications and, 599-600, 

667-72 
Automation client applications. See also 

Automation 
components and, 600-601 (see also Automation 

component applications) 
example, 647-62 
example, using #import, 663-66 

Excel as, 601-3 
MFC support, 609-12 
using compiier #import directives, 612-13 

Automation component applications. See also 

Automation 
clients and, 600-601 (see also Automation 

client applications) 
debugging DLL, 632 
debugging EXE, 628 
example, 608-9 
example DLL, 629-39 
example EXE, 619-29 
example SDI EXE, 639-47 
Excel as, 601-3 
MFC support, 607-8 
programming considerations, 605-8 

autoreset events, 265 

B 
background color, dialog windows, 131-32 
base classes, reusable, 331-32 
Basic. See Microsoft Visual Basic; VB Script; Visual 

Basic for Applications (VBA) 
basic authentication, 880, 909 
BeginPaint function, 80 
beveled borders, 330 
big-endian order, 851 
bindable properties, 200 

953 



INSIDE VISUAL C++ 

Binder, Microsoft Office, 917, 918-19 
binding 

early, 667-72 
late, 667 
using recordsets without, 614-16 

bit-blitting functions, 219 
BitBlt function, 219 
BITMAPFlLEHEADER and BITMAPINFOHEADER 

structures, 231-33 
bitmaps, 217 

device-independent (see device-independent 
bitmaps (DIBs)) 

GDI (see GDI bitmaps) 
icon, 144 
pushbutton, 247-51, 925 
toolbar, 312-13 

blind GET requests, HTTP, 873-75, 884 
blocking, thread, 267-68 
blocking socket classes, 861-71 
BMP files, 9, 218, 231-33 
bookmarks, 820 
borders, beveled, 330 
Borland Object Windows Library (OWL), 17 
brackets ([]), 802 
breakpoin ts, 10 
browsers. See Microsoft Internet Explorer; 

Netscape Web browser; Source Browser; 
Web Browser ActiveX control; Web 
browsers 

brushes 
class, 81 
control colors and, 132 
dithered colors, 85, 246-47 
pattern,99,105 

BSTRtype,614-15,617-18,630,827 

buddy, spin button control, 136, 291 
buffered I/O, WinInet, 881 
bugs, Visual C++, 182, 500. See also debugging; 

errors 
build process, 7-9, 35-36 

targets, 43-44 
targets and DLLs, 516 

built-in menu items, 279-80 
bulk row fetches, 814 
button controls 

Apply button, 306 
check box, 313 
command messages, 279 

954 

button controls, continued 

control notifications, 128 
help, 498 

c 

OK, 122, 127-28 
pushbutton bitmaps, 247-51, 925 
pushbutton controls, 118,313 
radio, 115 
states, 313 
toolbar button states, 313, 315 

C, CPP, and CXX file extensions, 10,32 
C/C++ language. See Microsoft Visual C++ 
C runtime library (CRT), 211-12, 357 
caches,678,743,880 
calculator application, 539-44 
Calendar control, 175-77, 183-92 
callback functions, 823 

Internet session status, 881, 883-84, 888 
Call Graph/Caller Graph viewing mode, 12 
CArchive class, 396-97, 398 
CArray class, 464-65 
case conversion of characters, 359 
CAsyncMonikerFile class, 888-89, 925 
CAsyncSocket class, 861 
CBitmapButton class, 247-48 
CBitmap class, 80, 217, 925 
CBlockingSocket class, 861-62, 864-69 
CBlockingSocketException class, 864 
CBrush class, 81, 132 
CClientDC class, 77, 78 
CCmdTarget class, 567-68 
CCmdUI class, 278-79 
CColorDialogclass, 161 

CComboBox class, 133 
CCommonDialog class, 160 
CControlBar class, 311 
CCriticalSection class, 268 
CDaoDatabase class, 819 
CDaoQueryDefclass, 819, 821 
CDaoRecordset class, 819 
CDaoTableDefclass, 819, 821 
CDaoWorkspace class, 819 
CDatabase class, 790-93 
CDC class, 38, 77-80 
CDialogBar class, 826 
CDialogclass, 107, 151,353-54 



CDib class, 229, 233-40 
CDocObjectServer class, 922 
CDocObjectServerltem class, 922 
CDocTemplate class, 403, 436, 483 
CDocument class, 349-50 
CDumpContext class, 356-57 
CEdit class, 280 
CEditView class, 280 
CEvent class, 265 
CFile class, 396-97 
CFileDialog class, 161, 162-69 
CFindReplaceDialog class, 161 
CFont class, 81 
CFontDialogclass, 161 

CForm View class, 160, 353-54, 927-30 
CFrameWnd class, 25, 332-33 
CFtpConnection class, 882 
CFtpFileFind class, 883 
CGdiObject class, 80-84 
CGI (Common Gateway Interface), 895-96 
CGopherConnection class, 882 
CGopherFileFind class, 883 
challenge/response authentication, Windows NT, 

910 
ChangeSelectionNextRow function, 836 
ChangeSelectionToRow function, 836 
character pointers, converting strings to, 337 
characters. See also fonts; keystrokes; strings 

case conversion, 359 
height, 90-91 
sets of, 335 

check boxes, 115-16,313 
on HTML forms and optional parameters, 903 

child windows, in a main frame window, 274 
CHtmlStream class, 899, 900 
CHttpBlockingSocket class, 862, 869-71 
CHttpConnection class, 882, 886 
CHttpFile class, 882-83 
CHttpFilterclass, 911-12 

CHttpFilterContext class, 912 
CHttpServer class, 899, 900 
CHttpServerContext class, 899, 900 
ClmageList class, 137 
ClnternetException class, 883 
ClnternetFile class, 882 
ClnternetSession class, 881 
circles 

determining point position inside, 51-52 

Index 

circles, continued 

example application, changing color of, 52-60 
example applications, dragging, 99-105,223-29 

ClsamSelect class, 841-42 
classes. See also objects; individual classes 

ActiveX control wrappers, 178-80 
ActiveX document servers, 921-22 
applications, 25, 402-3, 430 
asynchronous moniker files, 888-89 
browsing, 12-13,36-37 
ClassWizard and, 56-60 (see also ClassWizard) 
clipboard memory transfers, 214 
collections, 369-74 (see also collections) 
common dialog windows, 160-61 
control bars, 311-12 
controls, 133-34 
critical sections, 268 
custom controls, 526 
DAO,819 
data members (see data members) 
derived, 162, 278 
device contexts, 38, 77-80 
device-independent bitmaps (DIBS) , 233-40 
in DLLs, 516 (see also dynamic link libraries 

(DLLs); extension DLLs, MFC library; 
regular DLLs, MFC library) 

DLLs vs., 509 
Excel objects, 658-62 
factories, 565-67 
frame windows, 25, 274 
GDI,80-84 
interfaces as, 558-59 
ISAPI filters, 911-12 
ISAPI server extensions, 899-907 
member functions (see member functions) 
MFC documents, 274 
naming conventions, 23, 37 
nested, 560-62, 585-86 
ODBC, 790-93 
rectangles, points, and sizes, 50-51 
reusable base, 331-32 
serializable, 397 
splitter windows, 473-74 
template collections, 372-73, 464-65 
view windows, 31, 32, 37-38 
Visual C++, for BSTRand VARIANT types, 618 
Web Browser ActiveX controls, 195-98 
windows, 37-38 

955 



INSIDE VISUAL C++ 

classes, continued 
WinInet, 881-83, 886-87 
Winsock,861-71 

class factories, 565-67. See also COM 
(Component Object Model) 

class libraries, 22-23. See also Microsoft 
Foundation Class (MFC) Library 

ClassView, 13,37 
ClassWizard, 12 

and ActiveX controls, 181-91 
adding menu command message handlers, 354 
COM DLL component support, 587-88 
common control support, 135 
dialog class and, 119-23 
dialog controls and, 108 
Excel type library and, 658 
form view support, 391 
using, with AppWizard, 57-60 (see also 

AppWizard) 
wrapper classes for ActiveX controls, 178-80 

client applications 
ActiveX control (see ActiveX controls, 

container programming) 
ActiveX document container applications, 917 
Automation (see Automation client 

applications) 
COM (see COM client applications) 
example WinInet, 884-85 
example WinInet Web, 886-87 
example Winsock HTTP, 873-75 
example Winsock Web, 879-80 
OLE embedding (see OLE embedding 

container applications) 
client areas, 50 
client windows, MDI, 430 
clipboard 

bitmap transfer, 218 
data object transfer, 680-82 
Dobjview program and transfers, 700 
drag and drop (see drag and drop) 
embedded component metafiles, 747 
example application with data object, 684-94 
IDataObject interface and, 674 
OLE embedding and, 742-43 

CListBox class, 133 
CListCtrl class, 136-37 
CLogScrollView class, 105, 462 
CLSIDFromProgID function, 579 

956 

CMDIChildWnd class, 348, 430 
CMDIFrameWnd class, 430 
CMenu class, 306-7 
CMetaFileDC class, 77 
CMultiDocTemplate class, 431 
CNT file extension, 493-94, 502 
coaxial cable, 859 
CObArray class, 453 
CObject class, 354, 356-57 
CObList class, 369-74 
CoCreatelnstance function, 578 
code. See source code 
code generator. See AppWizard 
CoFreeUnusedLibraries function, 639 
Co Get Class Object function, 577-78 
COleClientltem class, 751 
COleDataObject class, 679-80 
COleDataSource class, 678-79 
COleDateTime class, 619 
COleDispatchDriver class, 609-12 
COleDocIPFrameWnd class, 922 
COleDocument class, 751 
COleDropSource class, 694 
COleDropTarget class, 695 
COleInsertDialog class, 751 
COleIPFrameWnd class, 733 
COleObjectFactory class, 586-87 
COleServerDoc class, 733-34, 922 
COleServerltem class, 733-34 
COleVariant class, 616-19 
collections 

array, 453 
Automation, 645 
class, 369-74 
dump contexts and, 373-74 
example application with, 374-94 
Excel, 604 
first-in, first-out (FIFO) lists, 370-71 
indexed properties vs. properties of, 646 
iteration through elements, 371-72 
printing, 453 
serializing, 401 
template, 372-73, 464-65 

color 
device-independent bitmaps (DIBS), 229-31 
dialog for selecting, 161 
dialog window background and controls, 131-32 
dithered, 85, 246-47 



color, continued 
GDI bitmaps, 218 
mapping, 84-87 
palettes (see palettes, color) 
standard VGA video cards, 84-85 
tables, 230-31 

column and table notation ([]), 802 
COM (Component Object Model), 21, 555-97 

ActiveX controls and, 171,555-56 (see also 
ActiveX controls) 

Automation (see Automation) 
base class, 567-68 
benefits, 556 
class factory interface, 565-67 
client applications (see COM client applications) 
CoGetClassObject function, 577-78 
as communications protocol, 557-58 
component applications (see COM component 

applications) 
containment and aggregation vs. inheritance, 

596-97 
creating objects of any class at runtime, 586-87 
database management (see Microsoft Data 

Access Objects (DAO); Microsoft Open 
Database Connectivity (ODBC)) 

example application simulating, 568-76 
interface for obtaining interface pointers, 

562-65 
interface macros, 585-86 
interfaces, 557-62 
Internet programming with, and without, 847 

(see also Internet; Winlnet API; Winsock 
API) 

MFC support for, 577-95 
OLE and, 555-56 
reference counting functions, 565 
runtime object registration, 580 
Structured Storage (see Structured Storage) 
Uniform Data Transfer (see Uniform Data 

Transfer) 
Windows Registry and, 578-80 

combo boxes, 116-17 
COM client applications. See also COM 

(Component Object Model) 
AppWizard/MFC support, 588 
calls to DLL components from, 580-82 
calls to EXE components from, 582-85 
example application as, 594-95 

Index 

COM client applications, continued 
example simulation application, 568-76 

COM component applications. See also COM 
(Component Object Model) 

AppWizard/ClassWizard support for DLL, 
587-88 

calls from clients to DLL, 580-82 
calls from clients to EXE, 582-85 
example DLL, 589-94 
example simulation application, 568-76 

comctl32.dll file, 134 
_com_dispatch_ method, _com_dispatch_propget, and 

_com_dispatch_propput functions, 613 
comdlg32.dll file, 151, 160 
command message handlers, 277-78, 354. See also 

message handlers 
command message processing, 276-79. See also 

message mapping 
command message handlers, 277-78, 354 
command routing architecture, 273 
in derived classes, 278 
in dialog windows, 279 
example application with help commands, 

504-7 
extended, 308-9 
help commands, 502-4 
toolbars, 313-15 
update command user interface (UI) messages, 

278-79,314-15 
committed memory, 209-10 
common controls, 134-49 

example application with, 138-49 
example application with rich edit, 282-87 
IDs, 139 
list control, 136-37 
progress indicator control, 135 
rich edit control, 281 
spin button control, 136 
trackbar control, 135-36 
tree control, 137 
WM_NOTIFY messages, 137-38 

common dialog windows, 160-69 
Common Gateway Interface (CGI), 895-96 
compiler. See also build process 

Automation clients using #import directive, 
612-13,663-66 

C/C++, 7, 10 
help, 14 

957 



INSIDE VISUAL C++ 

compiler, continued 
resource, 10 
switches, 45 

component applications. See COM component 
applications 

Component Object Model. See COM 
(Component Object Model) 

Components and Controls Gallery, 14-15, 175, 
346-47 

compound documents, 673, 742 
compound files. See also Structured Storage 

benefits, 701-2, 727-28 
example application with, 707-13 
fragmentation, 727 

_ COM_SMARTPT/L TYPEDEFmacro, 612 
constants 

#define (see #define constants) 
optimizing storage for, 215-16 
resource file, 155 
static data members as, 339-40 

const char* operator, 337 
ConstructElements function, 465 
constructor functions 

device contexts, 78-79 
failures, 408 
GDI objects, 81 
modal vs. mode less dialog windows, 156 
view windows, 59, 67, 72 

container applications. See ActiveX controls, 
container programming; ActiveX 
document container applications; OLE 
embedding container applications 

containment, 596-97 
context-sensitive help. See help, context-sensitive 
control bars. See also status bars; toolbars 

classes, 311-12 
Windows Registry and status of, 339 

controller applications. See Automation client 
applications 

controlling unknown, 597 
control notification messages, 128, 172,353-54 
control palette, 5, 113-14, 149 
Control Panel, 90 
controls 

ActiveX controls vs. ordinary controls, 172-74 
(see also ActiveX controls) 

adding, at runtime, 133-34 
adding, to common dialog windows, 168-69 

958 

controls, continued 
adding, with control palette, 113-14 
aligning, 116 
button (see button controls) 
check boxes (see check boxes) 
colors for, 131-32 
combo boxes, 116-17 
common (see common controls) 
custom (see custom controls) 
dialog windows, 108 (see also dialog windows; 

modal dialog windows) 
edit (see edit controls) 
example application with, 110-26 
example application with hand-coded features, 

126-31 
extending, with hand-coding, 134 
group boxes, 115 
identifying, with CWnd pointers and IDs, 131 
list, 136-37, 145-47 
list boxes, 117 
progress indicator, 135, 140,255-59 
rich edit (see rich edit controls) 
scroll bar, 129-31 
selecting group of, 117 
spin button control, 136, 143 
static text, 114 
sub classing, 358-59 
tab,149 
trackbar (slider), 135-36, 140-43 
tree, 137, 147-49 
VBX, 171, 557 
Win32 programming and messages, 128, 134 

cookies, HTTP, 907-9 
coordinates. See also mapping modes 

brushes and, 105 
conversion, 63-66 
CRectTracker class and conversion of, 682-83 
device, 60-61 
logical, for versions of Windows, 69 

Copy To function, 727 
CoRegisterClassObject function, 580 
cout object, 355-56 
CPageSetupDialog class, 161 
CPaintDC class, 80 
CPaletteclass, 81, 86 
CPen class, 81 
CPersistentFrame class, 332 
CPicture class, 199 



CPictureHolder class, 199 
CPoint class, 50-51 
CPP file extension, 10, 32 
CPreviewDC class, 455 
CPrintDialog class, 161 
CPrintInJo class, 455 
CProgressCtrl class, 135 
CPropertyPage class, 288-89 
CPropertySheet class, 288-89 
CPtrList class, 369 
CreateCompatibleDC function, 219 
CreateDIBitmap function, 233 
CreateDIBSection function, 233 
CreateEllipticRgnIndirect function, 52 
CreateFile function, 396 
CreateFileMapping function, 213 
CreateFont function, 95 
Create function, 74, 152, 306, 551 
CreateHalftonePalette function, 231 
CreateHatchBrush function, 132 
CreateInstance function, 566-67 
CreateSolidBrush function, 132 
CreateStatic function, 479 
CreateStdDispatch function, 607-8 
CreateWindowEx functions, 335 
Creating Components Using DCOM and C++ (Box), 

556 
CRecordset class, 790-93, 801 
CRecordView class, 801, 804-5 
CRect class, 39, 50-51, 65, 340 
CRgn class, 52, 81 
CRichEditCtrl class, 281 
CRichEditDoc class, 281 
CRichEditView class, 149,281 
critical sections, 268-70 
CRow View class, 822-25 
CRT (C runtime library), 211-12, 357 
CRuntimeClass structure, 946-47 
CScrollBar class, 129-31 
CScrollView class, 68, 99-105, 454, 462 
CSharedFile class, 214 
CSingleDocTemplate class, 403-5 
CSingleLock class, 265 
CSize class, 50-51 
CSliderCtrl class, 135-36 
CSockAddr class, 862-64 
CSocket class, 861 
CSpinButtonCtrl class, 136 

Index 

CSplitterWnd class, 474 
CStatusBar class, 311 
CStringArray class, 457 
CString class, 335, 336-38 
CSyncObject class, 265 
CTableSelect class, 839-40 
CToolBar class, 311 
CTreeCtrl class, 137 
CTypedPtrList class, 372-73 
cursors, mouse, 66, 104; See also points 
custom control DLLs, 525-38 

example, 528-35 
example application as client for, 535-38 
notification messages, 527-28 
ordinary controls vs., 525-26 
user-defined messages, 528 
window classes, 526 
WndProc function, 527 

custom controls, 172, 525-38 
custom DDX functions, 126 
CView class, 32, 37-38, 349-50 
CWebBrowser class, 195-98 
CWinApp class, 25, 402-3, 435, 521 
CWindowDC class, 77, 78 
CWinThread class, 260 
CWnd class, 38, 131 
CXX file extension, 10 

D 
DAO. See Microsoft Data Access Objects (DAO) 
dao350.dll file, 818 
DAODatabase interface, 817 
DaoOpenIsam function, 831-32 
DaoOpenMdb function, 832-33 
DaoOpenOdbc function, 830-31 
DAORecordset interface, 817 
DAOWorkspace interface, 817 
data. See also database management; file formats; 

files; resources 
constant, 215-16 (see also constants) 
exchange functions, 126, 182,288-89,353, 

927-30 
integrity, 786 
members (see also data members) 
objects (see data objects) 
structures (see data structures) 
types (see types) 

959 



INSIDE VISUAL C++ 

data access objects. See Microsoft Data Access 
Objects (DAO) 

database management, 785-86 
advantages, 786-87 
data access objects (see Microsoft Data Access 

Objects (DAO)) 
ISAPI access, 907 
ODBC standard, 787-90 (see also Microsoft 

Open Database Connectivity (ODBC)) 
serialization vs., 396 (see also serialization) 
SQL and, 787 

datagrams, 848-49 
data members. See also variables 

ActiveX control container dialog class, vs. 
wrapper class usage, 181-82 

dialog controls and, 120-22 
initializing, 49 
saving view states, 48-49 
static, 339-40 

data objects, 673-74. See also Uniform Data 
Transfer 

clipboard transfer, 680-94 
example application using clipboard to copy, 

684-94 
data structures 

clipboard,674-76 
display painting, 40 
rectangles, points, and sizes, 50 
storages, 704-5 
VARIANT,613-15 
vtable, 26-27, 561-62 

DATE type, 618-19 
DBCS (double-byte character set), 335 
DBWIN program, 14 
DCOM (distributed COM), 557, 605 
DDE (dynamic data exchange), 425 
DDV (dialog data validation) functions, 126,353, 

927-30 
DDX (dialog data exchange) functions, 126, 182, 

288-89,353,927-30 
debugger, 10-11,46 
debugging. See also errors 

ActiveX document server applications, 923 
AppWizard Win32 Debug target, 43-44 
Automation DLL component applications, 632 
Automation EXE component applications, 628 
debugger, 10-11,46 
diagnostic dumping (see diagnostic dumping) 

960 

debugging, continued 
diagnostic macros, 44, 355 
diagnostic tools, 14 
of dynamic link libraries, 514 
dynamic link library for, 357 
ISAPI server extensions, 906-7 
memory allocation functions, 212 
OLE embedded component applications, 738 
trapping errors, 666, 830-31 
in Visual C++, 182,500 
in Win32, 43-44 

DEBUG_NEW constant, 357 
_DEBUG preprocessor constant, 355 
Debug targets in Win32, 43-44, 354, 516 
DECLARE_DYNAMIC macro, 357, 373 
DECLARE_DYNCREATEmacro, 357, 402, 404 
DECLARE_INTERFACE_MAPmacro, 586 
DECLARE_OLECREA TE macro, 586 
DECLARE_SERIAL macro, 357, 397 
decorated names, 510-11 
DEF file extension, 512 
#define constants 

for command messages, 276 
compiler, 515 
context-sensitive help and, 497 
as resources, 41 

definitions and references viewing mode, 12 
DeleteContents function, 369, 408-9 
DeleteCriticalSection function, 268 
DeleteMenu function, 307 
delete operator, 203, 211 
derived classes 

command message handling in, 278 
common dialog classes, 162 

derived class graph/base class graph viewing 
mode, 12 

Destroy Window function, 157 
DestructElements function, 465 
destructor functions 

device contexts, 78-79 
GDI objects, 81 

Detach function, 617 
Developer Studio. See Microsoft Developer 

Studio 97 
device contexts, 4 

for bitmaps, 219 
classes, 77-80 
creating and destroying, 78-79 



device contexts, continued 
display, 78 
display-specific drawing code and, 80 
drawing inside view windows, 38 
lifetime of, 83-84 
mapping modes and coordinates (see mapping 

modes) 
preparing, 455-56 
printer, 454-55 
state of, 79-80 
Win32 programming and, 80 

device coordinates, 60-61 
device-independent bitmaps (DIBs) , 229-47 

access functions, 233 
class, 233-40 
display performance, 241 
DrawDibDraw function, 246-47 
example application displaying and printing, 

241-45 
example application with clipboard transfer, 

684-94 
example application with OLE Drag and Drop, 

696-700 
CD! bitmaps vs., 217-18 (see also CD! bitmaps) 
LoadImage function, 245-46 
palette programming, 229-30 
pixels, color tables, and, 230-31 
structure of, within BMP files, 231-33 

Dfview program, 728, 919 
diagnostic dumping, 354-59. See also debugging 

afxDump objects, 355-56 
automatic dump of undeleted objects, 357 
GObject class and, 354 
GObject class and dump context, 356-57 
TRACE macros, 355 

diagnostic macros. See also debugging 
enabling,44 
using TRACE, 355 

diagnostic tools, 14 
dialog bars, 826 
dialog control accelerator operator (&), 119 
dialog data exchange (DDX) functions, 126, 182, 

288-89,353,927-30 
dialog data validation (DDV) functions, 126, 353, 

927-30 
dialog resource editor, 9, 10,42-43, 109. See also 

resource editors 
dialog units (DLUs), 114 

dialog windows, 107 
About, 41-42 
ActiveX control container (see ActiveX 

controls, container programming) 
adding controls at runtime, 133-34 
ClassWizard and, 119-23 

Index 

color of background and of controls, 131-32 
command message processing and, 279 
common (see common dialog windows) 
control accelerator operator (&),119 
controls, 108 (see also controls) 
identifying controls, 131 
modal vs. modeless, 107-8, 151-52 (see also 

modal dialog windows; modeless dialog 
windows) 

painting inside, 132-33 
resources, 9, 10,41-43,108,109 
standard printer, 452-53 
system modal, 108 
tabbed (see property sheets) 

DIB file extension, 218 
DIBs. See device-independent bitmaps (DIBs) 
directories, lIS, 894-95 
"dirty" flags, 409-10 
disk files, 396-97 

reading DIBs from, 245-46 
dispatch maps, 607-8 
DispatchMessage function, 254 
DISP_FUNGTION macro, 618 
displays 

device contexts, 78, 83 
fonts, 88 (see also fonts) 
mapping modes (see mapping modes) 
pages vs. printed pages, 454 
pixels, 60-61, 230-31 
resolution and font size, 89-90 
video cards, 84-87 

DISP_PROPERTY macro, 618 
distributed COM (DCOM), 557, 605 
dithered colors, 85, 246-47 
DllGetGlassObject function, 587 
DllMain function, 512-13 
DllRegisterServer function, 588, 595 
DLLs. See dynamic link libraries (DLLs) 
DLUs (dialog units), 114 
DNS (Domain Name System), 853-55 
Dobjview program, 700 
documents. See also files 

961 



INSIDE VISUAL C++ 

documents, continued 
ActiveX (seeActiveX document server 

applications) 
applications without, 539-51 
class, 274, 349-50 
compound, 673, 742 
deleting contents of, 369 
frame windows, view windows, and, 274 
serialization (see serialization) 
storing bitmaps in (see device-independent 

bitmaps (DIBs)) 
templates (see document templates) 
views and (see document-view architecture; 

view windows) 
Windows Explorer document association, 

424-26,436 
document templates 

class, 403-405 
MDI support for multiple, 435-36 
resource, 406, 433 
SDI and, 403-5 

document-view architecture, 27-28, 349-94. See 
also documents; view windows 

applications without, 539-51 
CForm View class and, 353-54 
CObject class and, 354 
collections (see collections) 
deleting document contents, 369 
diagnostic dumping, 354-59 
document-view interaction functions, 349-52 
document-view interactions for multiple views, 

367-69 
example application with collections, 374-94 
example application with simple, 360-67 
simplest application, 352-53 
window subclassing feature, 358-59 

DoDataExchange function, 126,927-28 
DoFieldExchange function, 802-3 
Domain Name System (DNS), 853-55 
DoModalfunction, 125-26 
"do-nothing" application, 32-37 
double-byte character set (DBCS), 335 
DPtoLP function, 65 
DragAcceptFiles function, 425 
drag and drop 

in MDI applications, 436 
OLE (see OLE Drag and Drop) 
in SDI applications, 424-26 

962 

drag and drop, continued 
testing, 426 

DrawDataRow function, 836-37 
DrawDibDraw function, 246-47 
drawing 

device contexts and, 38 (see also device 
contexts) 

inside dialog windows, 132-33 
example code, 39 
CDI bitmaps and, 218-19 
invalidating rectangles for, 49-50 
mapping modes and, 65-66 
OnPaint function, device contexts, and, 80 
printing and, 454-55 
inside view windows with CDI, 38-40 

drivers, ODBC, 787-88 
drop sources, 694 
drop targets, 695 
DSP file extension, 9 
DSW file extension, 9 
dual interfaces, 672 
dual-window Web Browser application, 198-99 
dump contexts 

CObject class and, 356-57 
collection classes and, 373-74 

Dump function, 356, 373 
dumping, diagnostic. See diagnostic dumping 
dynamic data exchange (DDE), 425 
dynamic link libraries (DLLs), 5, 509-14 

ActiveX controls (seeActiveX controls) 
Automation component applications, 605-8 
classes vs., 509 
class libraries, 22-23 (see also Microsoft 

Foundation Class (MFC) Library) 
COM component applications, 577, 580-82, 

587-88 
common controls, 134 
common dialog windows, 151, 160 
C runtime library (CRT), 211-12, 357 
custom controls, 525-38 
debug, 357 
debugging, 514 
entry points, 512-13 
example Automation component, 629-39 
example COM component, 589-94 
extension (see MFC extension DLLs) 
implicit linkage vs. explicit linkage, 511-12 
instance handles and loading resources, 513-14 



dynamic link libraries (DLLs), continued 
ISAPI (see ISAPI filters; ISAPI server 

extensions) 
ISAPI database access, 907 
Jet database engine, 818 
matching of imports to exports, 510-11 
memory space, 204-6, 208 
MFC (see MFC extension DLLs, MFC regular 

DLLs) 
monikers, 887 
ODBC, 788-90 
regular (see MFC regular DLLs) 
search sequence to locate, 514 
symbolic linkage vs. ordinal linkage, 512 
type libraries (see type libraries) 
WinInet,80 
Winsock, 861 

dynamic recordsets, 827-43 
dynamic rowsets (dynasets), 790, 820-21 
dynamic splitter windows, 475 
dynamic subclassing, 359 

E 
early binding, 667-72 

benefits, 672 
component registration of own type library, 668 
dual interfaces, 672 
Excel type library usage, 670-71 
ODL files, 669-70 
registering type libraries, 667-68 
type libraries, ODL files and, 648-50 

edit controls, 114, 280 
rich text (see rich edit controls) 
subclassing, 358-59 

edit control views, 280-81 
ellipses 

determining point positions inside, 51-52 
example applications dragging, 99-105, 223-29 

embeddedlaunch,411-12,424-26,436 
embedded objects 

metafiles and, 732-33 
pointers vs., 399-400 

embedding. See OLE embedding 
/Embedding command-line parameter, 628 
Enable3dControls and Enable3dControlsStatic 

functions, 412 

Enable function, 314 
EnableShellOpen function, 425 
EndDialogfunction, 126, 157 
EndPaint function, 80 
EnterCriticalSection function, 268 
Enter key processing, 127-28 
entry point, DLL, 512-13 
environment, development. See Microsoft 

Developer Studio 97 
errors. See also debugging 

processing ODBC exceptions, 793 
trapping, 666, 830-31 
Visual C++ bugs, 182, 500 
WinInet exceptions, 883 
Winsock exceptions, 864 

Esc key processing, 128-29 
events. See also messages 

ActiveX control, 173-74, 182-83 
Calendar control, 176-77 
handling (see message mapping) 
Internet session, 883-84 
thread synchronization, 264-65 

event sink maps, 182-83 

Index 

example applications. See applications, example 
Excel. See Microsoft Excel 
exceptions. See errors 
EXE files 

Automation component applications, 605-8 
COM components and clients, 557, 558, 577, 

580-85 
example Automation component, 619-29 
example COM component and client, 568-76 
example SDI Automation component, 639-47 
generating, 10 
memory space, 203-6,208 
modal dialogs in Automation component, 647 

ExitInstance function, 403 
explicit linkage to a DLL, 511-12 
Explorer. See Microsoft Internet Explorer; 

Windows Explorer 
exported DLL functions, 510-11 
extended command message processing, 308-9 
extension DLLs, ISAP!. See ISAPI filters; ISAPI 

server extensions 
extension DLLs, MFC. See MFC extension DLLs 
extensions. See file extensions 
extraction operator (»), 398-400 

963 



INSIDE VISUAL C++ 

F 
F1 key, 13,494,497,502-3 
F5 key, 46 
FAT (File Allocation Table), 859 
field exchange functions, 802-3 
field validation in form view windows, 927-30 
FIFO (first-in, first-out) lists, 370-71 
File Allocation Table (FAT), 859 
file extensions, Developer Studio, 9 
file formats 

database management, 786 
GIF andJPEG graphics, 857-58 
HTML (see HTML (Hypertext Markup 

Language) files) 
rich text format (RTF), 487-88 

File menu, 429 
files. See also data; database management 

compound (see compound files) 
created by AppWizard, 35 
dialog for opening, 161 
DIBs inside BMP, 231-33 
documents (see documents) 
embeddedlaunch,411-12,424-26,436 
formats (see file formats) 
help, 488-94 (see also help, context-sensitive) 
loading from archive, 399-400 
make, 8-9 
memory-mapped, 208, 212-14 
metafiles (see metafiles) 
moniker, 887-90 
Most Recently Used (MRU), 408 
reading DIBs from disk, 245-46 
serialization of disk and archive, 396-97 (see 

also serialization) 
swap,208 
Workspace, 9 

file systems, 859 
File Transfer Protocol (FTP), 858 
filters, ISAPI. See ISAPI filters 
filter strings, SQL, 803 
FindResource function, 513 
firewalls (proxy servers), 858, 879-80, 881 
first-in, first-out (FIFO) lists, 370-71 
fixed-scale mapping modes, 62 
floating pop-up menus, 307 
fonts, 87-91 

choosing, 87 
class, 81 

964 

fonts, continued 
computing character height, 90-91 
dialog for selecting, 161 
displaying, 88 
example applications displaying, 91-99 
example application with property sheets for, 

289-306 
as GDI objects, 87 
logical inches and physical inches on displays, 

89-90 
mapping modes and printing, 62 
printing with, 88 
TrueType, 87-88, 454 
twips mapping mode and, 62, 88-91, 105,462 

ForeHelp (software), 488 
FORMATETCstructure, 674-75 
formats. See file formats 
forms, HTML, 896-98, 903 
form view windows 

as alternative to modeless dialogs, 160 
class, 353-54 
example ActiveX document server application 

with, 926-35 
field validation, 927-30 
recordset, 804-5 

fragmentation, compound file, 727 
frame windows 

child,550-51 
class, 25 
closing, 26 
creating, 25 
document classes and classes for main, 274 
locating main, for control bars, 315-16 
MDI,431-33 
persistent (see persistent frame windows) 

frameworks, application. See application 
frameworks 

free function, 211 
FTP (File Transfer Protocol), 858 
ftp program, 858 
full servers, 731. See also OLE embedded 

component applications 
function cloning, 486 
functions 

bit-blitting, 219 
callback,823,881,883-84,888 
cloning, 486 
constructor (see constructor functions) 



functions, continued 
destructor (see destructor functions) 
dialog data exchange (DDX), 126, 182, 288-89, 

353,927-30 
dialog data validation (DDV), 126,353,927-30 
DIB access, 233 
DLL (see dynamic link libraries (DLLs)) 
document-view interaction, 349-52 
matching DLL exported and imported, 510-11 
member (see member functions) 
message handler (see message handlers) 
message map (see message mapping) 
OLE helper, 750-51 
private (helper), 95 
record field exchange (RFX) , 802-3 
Source Browser and, 12 
virtual, 26-27, 561-62 

G 
Gallery, 14-15 
GDI. See GDI bitmaps; Graphics Device Interface 

(GDI) 
GDI bitmaps, 217-29 

animation and, 229 
class, 80 
color and monochrome, 218 
device-independent bitmaps vs., 217-18 (see 

also device-independent bitmaps (DIBs)) 
display mapping mode and, 220 
example application displaying resource

based, 220-23 
example application generating, for 

animation, 223-29 
loading, from resources, 219-20 
printing, 220 
on pushbuttons, 247-51, 925 
stretching, 220 
using, 218-23 

generic help, 498-99 
GetActiveObject function, 607 
GetActiveRow function, 836 
GetAt function, 372 
GetBuffer function, 338 
GetClientRect function, 50 
GetClipBox function, 50 
GetDC function, 79 
GetDeJaultConnect function, 801-2 

GetDefaultSQL function, 801-2 
GetDeviceCaps function, 89 
GetDIBColorTable function, 246 
GetDIBits function, 233 
GetDlgCtrlID function, 131 
GetDlgItem function, 131,354 
GetDocTemplate function, 431 
GetDocument function, 274, 350 
GetFieldValue function, 815-16 
GetFirstDocPosition function, 431, 436 
GetFirstDocTemplatePosition function, 435 
GetIDsOfNames function, 605 
GetInterface function, 766 
GetMenuString function, 307 
GetMessage function, 254 
GetModuleH andle function, 514, 517 
GetNextDoc function, 431, 436 
GetNextDocTemplate function, 435 
GetNext function, 371-72 
GetNextView function, 350 
GetObject function, 221 
GetParentFrame function, 315-16 
GetParent function, 169 
GetPathName function, 161 
GetProcessAddress function, 511 
GetProfileInt function, 336 
GetProJileString function, 336 
GetProperty function, 609 
Get Query function, 836 
GetRecordCount function, 820, 821 
GET requests, HTTP, 856, 875 

blind, 873-74, 884 
HTML forms, 896-98 
ISAPI server extension, 896 

GetRowCount function, 836 
GetRowWidthHeight function, 836 
GetSaJeHdc function, 83-84 
_geLsbh_threshold function, 212 
GetSubMenu function, 307 
GetSystemMetrics function, 339 
GetTextExtent function, 88, 469 
GetTextMetrics function, 90 
GetWindowPlacement function, 339 
GetWindowRect function, 339 
GIF files, 857-58 

Index 

GlobalAlloc and GlobalReAlioc functions, 203,210-11 
global variables 

exported from DLLs, 510 

965 



INSIDE VISUAL C++ 

global variables, continued 
exported DLL functions and, 521 
thread communication and, 261-62 
view states and, 49 

gopher protocol, 879 
GotoDlgCtrl function, 354 
graphic resource editors. See resource editors 
Graphics Device Interface (GDI) 

bitmaps (see GDI bitmaps) 
color mapping, 84-87 
constructing and destroying CDI objects, 81 
device context classes, 77-80 (see also device 

contexts) 
drawing in view windows, 38-40 
example application processing mouse clicks 

in scrolling window, 99-105 
example applications displaying fonts, 91-99 
fonts, 87-91 (see also fonts) 
introduced,4 
lifetime of selections, 83-84 
objects, 80-84 
stock objects, 82-83 
tracking objects, 82 

graphics editor, 144. See also resource editors 
graphics files, 857-58. See also bitmaps 
group boxes, 115 

H 
H file extension, 32 
handle map, 60 
handlers. See in-process handlers; message 

handlers 
handles 

device contexts and, 77 
instance, 513-14 
as permanent CDI identifiers, 83-84 

hardware, network, 859 
HCRTF (Microsoft Help Workshop) program, 

14,491,494 
header (H) files, 32 
headers, precompiled, 44-46 
heap 

small-block, 209, 211-12 
Windows, 210-11 

HeapAlloc function, 210-11 
HeapCompact function, 212 
HeapFree function, 214 

966 

_heapmin function, 212 
height, font character, 90-91 
"Hello, world!" applications, 23-26, 32-37; 

544-51 
help, context-sensitive, 487-507 

building help files with MAKEHELP, 499-500, 
501-2 

example application with, 499-501 
example application with help command 

processing, 504-7 
F1 key, 494, 497, 503 
generic, 498-99 
help command processing, 502-4 
help context aliases, 496 
help context determination, 496-97 
HTML format, 13,487 
menu access, 496 
message box, 498 
rich text format (RTF), 487-88 
Shift-Fl key combination, 497-98, 503-4 
tree-view table of contents, 493-94 
using search strings, 495 
WinHelp function, 495 
WinHelp program, 487-94 
WinHelp program and MFC, 494-99 
writing help files, 488-94 

help, online, 7, 13 
Help Compiler, 491 
helper (private) functions, 95 

OLE,750-51 
hidden input tags, 905 
hidden text, 488 
HM file extension, 502 
home directories, 894 
host byte order, 851 
host names 

DNS, 853 
intranet, 860 

HOSTS file, 860 
HPJ file extension, 502 
HTML (Hypertext Markup Language) files 

ActiveX controls in, 193 
forms, 896-98,903 
HTTP and, 857 
online help system, 13 
RTF files and, 487 

HTTP (HyperText Transport Protocol), 847, 
855-58. See also Internet; Web 



HTTP (HyperText Transport Protocol), continued 
cookies, 907-9 
example Winlnet client application, 884-85 
example Winsock client application, 873-75 
example Winsock server application, 871-73 
GET requests (see GET requests, HTTP) 
POST requests, 875, 896-98 

httpodbc.dll file, 907 
hubs, network, 859 
Hypertext Markup Language. See HTML 

(Hypertext Markup Language) files 
HyperText Transport Protocol. See HTTP 

(HyperText Transport Protocol) 

I 
IAdviseSink interface, 677, 746-47, 749-50 
IBindStatusCallback interface, 888 
IClassFactory interface, 565-67 
ICO file extension, 9 
icons 

applications, 543-44 
dialog window, 118 
resources, 10, 41 
sizes of, 144 

IDataObject interface, 673-77 
IDCANCEL constant, 129 
IDD_ABOUTBOX constant, 41-42 
IDE. See Microsoft Developer Studio 97 
ID_INDICATO/LCAPS constant, 323 
ID_INDICATO/LNUM constant, 323 
ID_INDICATO/LSCRL constant, 323 
IDispatch interface, 599, 605, 607-8 
IDOK constant, 122, 127 
ID/LMAINFRAMEconstant, 41, 306, 406 
IDropSource interface, 694 
IDropTarget interface, 694 
IDs 

common control, 139 
control, 131 

ID_SEPARATOR constant, 322 
ID_ WINDOW_SPLIT constant, 476 
lIS. See Microsoft Internet Information Server 

(lIS) 
ILockBytes interface, 707 
image lists, 137, 143-45 
images. See bitmaps; graphics files 
IMalloc interface, 704-5 

Index 

IMonikerinterface, 888 
implementation files (CPP), 32 
IMPLEMENT_DYNAMIC macro, 357, 373 
IMPLEMENT_DYNCREATEmacro, 357, 402, 404 
IMPLEMENT_OLECREATEmacro, 587 
IMPLEMENT_SERIAL macro, 357, 397 
implicit linkage to a DLL, 511-12 
#import directive, 612-13, 663-66 
imported DLL functions, 510-11 
#include statement, 9 
indeterminate state of buttons, 315 
indexed file access, 786 
indexed properties, 604, 646 
indicators, status bar, 322 
InfoViewer program, 7, 13 
inheritance, 596-97 
initialization, class data member, 49 
InitializeCriticalSection function, 268 
InitInstance function, 25, 403, 408, 409, 542-43 
in-place activation (Visual Editing) 

component sizing strategy, 740 
disadvantages, 731-32 
embedding vs., 729-30 (see also OLE 

embedding) 
example application as mini-server with, 734-40 

in-process (DLL) components, COM, 577, 580-82, 
587-88 

in-process handlers, 743-44 
input, message map functions and, 4. See also 

message mapping 
insertion operator «<), 355, 398-400 
InsertMenu function, 307 
InsertString function, 134 
Inside COM (Rogerson), 556 
Inside OLE (Brockschmidt), 556, 672, 673, 729 
instance handles, 513-14 
instances, multiple, 403 
integrated development environment. See 

Microsoft Developer Studio 97 
integrity, data, 786 
integrity, referential, 793 
interface maps, 555 
INTERFACE_PART macro, 586 
interfaces 

ActiveX document servers and containers, 
920-21 

Automation, 604-5, 607-8 
COM, 555, 557-68, 585-86 

967 



INSIDE VISUAL C++ 

interfaces, continued 

Data Access Objects, 817-19 
dual Automation, 672 
obtaining pointers to, 562-65 
OLE embedding, 741-42, 745-50 
Structured Storage, 702-7 
Uniform Data Transfer, 673-77 

InterlockedIncrement function, 262 
Internet 

ActiveX controls for, 6 
asynchronous moniker files, 887-90 ' 
Domain Name System (DNS), 853-55 
File Transfer Protocol (FTP), 858 
gopher protocol, 879 
HyperText Transport Protocol (HTTP), 855-58 

(see also HTTP (HyperText Transport 
Protocol) ) 

Internet Protocol (IP) layer, 848-49 
intranet vs., 858 (see also intranets) 
IP addresses, 851 
network protocols and layering, 848 
programming for, with and without COM, 847 
Telnet program, 878 
theory, 848-58 
Transmission Control Protocol (TCP), 852-53 
User Datagram Protocol (UDP), 849-50 
Web (see Web) 
WinInet programming (see WinInet API) 
Winsock programming (see Winsock API) 

Internet Database Connector, 907 
Internet Explorer. See Microsoft Internet 

Explorer 
Internet Information Server. See Microsoft 

Internet Information Server (lIS) 
InternetOpen function, 881 
Internet Protocol (IP), 847, 848-49 
Internet SDK, 194, 201 
Internet Service Manager, 877, 892-95, 898, 906 
InterNIC, 854 
IntersectClipRect function, 226 
intranets 

configuring Windows for networking, 859-60 
host names, 860 
Internet vs., 858 (see also Internet) 
network hardware, 859 
NT File System vs. File Allocation Table, 859 
for single computer, 860-61 
testing, with Ping program, 860 

968 

Invalidate function, 38 
InvalidateRect function, 38, 49-50 
Invoke function, 604-5, 618-19 
InvokeHelperfunction, 609 
IOleAdviseHolder interface, 781 
IOleClientSite interface, 730, 745-46, 749,920 
IOleContainer interface, 745 
IOleDocument interface, 920 
IOleDocumentSite interface, 920 
IOleDocumentView interface, 920 
IOleObject interface, 730, 741-42, 747-48, 920 
IP (Internet Protocol), 847, 848-49 
IP addresses, 849, 851 

100pback,860-61 
IPersistStorage interface, 714-15 
IPersistStream interface, 715 
IPng (IP Next Generation) protocol, 851 
ISAM databases, 820 
ISAPI filters, 891, 911-16 

example application, 913-16 
MFC classes l 911-12 
writing, 911 

ISAPI server extensions, 891, 895-907 
Common Gateway Interface and, 895-96 
debugging, 906-7 
example application, 900-907 
GET requests, 896 
HTML forms, 896-98 
HTML forms and optional parameters, 903 
Internet Database Connector and, 907 
MFC classes, 899-900 
using HTTP cookies to link transactions, 907-9 
writing, 898-99 

IsBOFfunction, 802 
IsEOFfunction, 802 

IsModified function, 410 
IsPrinting function, 456 
IsStoringfunction, 398 

IStorage interface, 702-5 
IStream interface, 706-7 
iteration 

through collections, 371-72 
through documents, 431 
through storage elements, 705 

IUnknown interface, 562-65 
IVI and IVT file extensions, 13 
IViewObject2 interface, 743-44, 748-49 



J 
jacks, interface, 564 
Jet database engine, 788, 817-18, 822 
joins, database table, 803-4 
JPEG files, 857-58 
jumps, help, 492 

K 
keyboard accelerator operator (&), 276 
keyboard accelerators, 41, 276 
keystrokes 

Ctrl-F5 key combination, 46 
Enter key, 127-28 
Esc key, 128-29 
example application processing, 68-73 
F1 key, 13,494,497,502-3 
F5 key, 46 
messages, 4,69-70,71-72 
Shift-F1 key combination, 497-98, 503-4 
toolbars and, 313-14 

KillTimer function, 255 

L 
labels, 114 
LaserJet printer fonts, 87-88 
late binding, 667 
launch,embedded,411-12,424-26,436 
layering and network protocols, 848. See also 

Internet 
learning curve, 22 
LeaveCritiealSeetion function, 268 
LIB file extension, 10,511 
libraries. See class libraries; dynamic link libraries 

(DLLs); type libraries 
licensed ActiveX controls, 174 
LIC file extension, 174 
lifetimes of GDI selections, 83-84 
linkage, DLL 

implicit vs. explicit, 511-12 
symbolic vs. ordinal, 512 

linker, 10 
linking, 731. See also OLE (Object Linking and 

Embedding); OLE embedding 
list boxes, 117 
list controls, 136-37, 145-47 
lists. See collections 

little-endian order, 851 
LoadBarState function, 339 
LoadBitmap function, 219 
LoadCursorfunction, 104 

LoadFrame function, 306, 547-51 
LoadImage function, 245-46 
LoadLibrary function, 511 
LoadMenu function, 306 
LoadResouree function, 214 
LoadStdProfileSetting function, 408 
locking ActiveX controls in memory, 183 
logging, liS, 895 
logical coordinates, 61, 63-66, 69 
logical inches on displays, 89-90 
logical palettes, 229 
logical twips, 90, 105,462 
logons, anonymous, 909 
loopback address, TCP lIP, 860-61 
LPRECToperator, 51 
LPtoDP function, 65 

M 
macros 

diagnostic, 44, 355 
dispatch map, 608-9 
dump context and, 357 
interface, 585-86 
message map, 277, 308-9 
MFC state, 521 
parameter passing, 586 
parse map, 899 
serialization, 397 
smart pointer, 612 
Unicode, 335 
VBA,601-3 
virtual functions vs., 26-27 

main frame windows. See frame windows 
MainFrm.h and MainFrm.cpp files, 274 
main function, 3 

Index 

main threads, 261-63. See also multithreaded 
programming 

makefile, 8-9 
MAKEHELP batch file, 499-500, 501-2 
make program, 8 
MAR file extension, 9 
_mallocdbgfunction, 212 
malloe function, 211-12 

969 



INSIDE VISUAL C++ 

manual reset,£vents, 265 
mapping. See color mapping; mapping modes; 

message mapping 
mapping modes, 60-68 

coordinate conversion, 63-66 
device contexts and, 79 
device coordinates, 60-61 
displaying fonts, 88-91 
example application with coordinate 

conversion, 67-68 
fixed scale, 62 
fonts and, 62, 88-91 
CDI bitmaps and, 220 
MM_TEXT,61-62 

setting, 69 
variable scale, 63-64 

Marquee ActiveX control, 201 
marshaling, 583, 604-5, 743 
maximized windows, 339 
MDI. See Multiple Document Interface (MDI) 
member functions. See also functions; methods 

CBlockingSocket, 865-69 

CHttpBlockingSocket, 870-71 

constructor (see constructor functions) 
CRecordset, 791-92 

CRow View, 825 
destructor (see destructor functions) 
events and, 47 
IDataObject interface, 676-77 
IStorage interface, 702-4 
IStream interface, 706-7 
mapping modes and, 66 
OLE embedding interfaces, 747-50 
private (helper), 95 
rich edit control, 281 
views and, 32 
virtual, 26-27, 561-62 

memory device contexts, 219 
memory management, 5, 203-16 

accessing resources, 214 
C++ new and delete operators, 211-12 
freeing storage, 704-5 
CDI bitmap objects and, 81 
_heapmin function, 211-12 
locking ActiveX controls, 183 
managing dynamic memory, 214-15 
memory-mapped files, 212-14 
optimizing storage for constant data, 215-16 

970 

memory management, continued 

pointers (see pointers) 
processes and memory space, 203-6 
small-block heap, 211-12 
VirtualAlloc function and, 209-10 
virtual memory, 205, 206-9 
Win32 programming and, 209 
Windows 95 process address space, 204-5 
Windows heap and GlobalAlloc functions, 210-11 
Windows NT process address space, 205 

memory-mapped files, 208, 212-14 
menu bars, 274 
menus, 275-76. See also toolbars 

access to help, 496 
adding command message handlers with 

ClassWizard,354 
built-in items, 279-80 
class, 306-7 
command message processing, 276-79 
enabling and disabling items, 280 
example application with property sheets, 

289-306 
example application with rich edit control, 

282-87 
extended command message processing, 308-9 
floating pop-up, 307 
keyboard accelerators and, 276 
main frame windows and, 273-74 
property sheets and, 288-89 
resources, 41, 275-76, 283 
text editing controls, 280-81 
typical MDI, 427-30 

MessageBox function, 498 
message box help, 498 
message handlers. See also message mapping 

command messages, 277-78, 354 
prototypes, 57 
requirements, 27 
update command VI messages, 314-15 

message line pane of status bar, 322-23 
message mapping, 26-27, 47-60. See also message 

processing 
ActiveX control events, 182-83 
AppWizard, ClassWizard, and, 56-60 
example application with, 52-60 
invalid rectangles, 49-50 
macros, 277, 308-9 
message handlers (see message handlers) 



message mapping, continued 
message map, 47, 48 
saving view states with data members, 48-49 
thread communication, 261-63 
thread synchronization and, 264-65 
Win32 programming and state variables, 49 
Win32 programming and WndProc functions, 

60 
window client areas, 50 

message processing, 3-4, 253-59 
example application, 255-59 
MFC library (see message mapping) 
multithreaded programming (see 

multithreaded programming) 
on-idle processing, 259 
single-threaded programming, 253-54 
timers, 255 
windows sub classing and, 346-47 
yielding control and, 254 

messages. See also events 
DDE,425 
error (see debugging) 
keystroke, 4,69-70, 71-72 
mouse (see mouse messages) 
notifications, 128, 134, 137-38, 172,353-54; 

527-28 
pop-up dialog buttons, 279 
processing (see message mapping; message 

processing) 
property change notifications and bindable 

properties, 200 
scrolling, 69, 129 
toolbar command, 313-14 
update command user interface (VI), 278-79, 

314-15 
use~defined,4, 152, 155,528 
Win32 programming and, 40,128,132,134 
windows, 4, 73-75 

metafiles 
clipboard,747 
embedded objects and, 732-33 
getting component's, 743 

METHOD_PROLOGUE macro, 561 
methods. See also member functions 

ActiveX control, 173-74 
Calendar control, 176-77 
VBA,604 

Index 

MFC extension DLLs, 5,514-22 
Debug and Release target versions, 516 
example, with exported class, 517-20 
example application as client of, 520-21 
exporting classes, 516 
MFC regular DLLs vs., 514-16 (see also MFC 

regular DLLs) 
resource search sequence, 517 

MFC library. See Microsoft Foundation Class 
(MFC) Library 

MFC regular DLLs, 521-25 
CWinApp derived class, 521 
example, with exported function, 522-23 
example application as client of, 523-25 
MFC extension DLLs vs., 514-16 (see also MFC 

extension DLLs) 
resource search sequence, 521-22 

Microsoft Access databases, 788, 819-20 
Microsoft ActiveX Template Library (ATL) , 6, 

15,21,171 
Microsoft Data Access Objects (DAO) , 817-43 

classes, 819 
COM and, 817-18 
database options, 819-20 
dialog bars, 826 
displaying database rows in scrolling wi,ndows, 

822-25 
example application with, 827-43 
Jet database engine and, 817-18 
MFC and, 819 
multithreading, 822 
ODBC mode, snapshots and dynasets, 820-21 
programming dynamic recordsets, 827 
query and table definitions, 821 
table-type recordsets, 821 
VBAand,818 

Microsoft Developer Network (MSDN), 6-7,13 
Microsoft Developer Studio 97 

build process, 7-9 (see also build process) 
ClassWizard features and, 12 (see also 

Class Wizard) 
code generator (see AppWizard) 
Gallery, 14-15, 175,346-47 
graphics file formats, 857-58 
new features, 21 
online help system, 13 
resource editors, 5, 6 (see also resource editors) 
running programs, 46 

971 



INSIDE VISUAL C++ 

Microsoft Excel 
as Automation component and client, 601-3 
controlling, 658-62 
type library usage, 670-71 

Microsoft Foundation Class (MFC) Library, 15, 
17-28 

ActiveX document servers, 921-22 
adding ODBC capability to applications, 800 
as application framework, 17-28 
application frameworks vs. class libraries, 22-23 
applications (see application) 
asynchronous moniker files, 888-89 
Automation, 607-12 (see also Automation) 
benefits, 17-22 
bitmaps, 229 
built-in menu items, 279-80 
classes (see classes) 
class factories, 565-67 
COM and, 577-95 (see also COM (Component 

Object Model)) 
context-sensitive help, 494-99 (see also help, 

context-sensitive) 
control bars, 311-12 (see also status bars; 

toolbars) 
custom controls, 172,525-38 (see also custom 

control DLLs) 
DAO and, 819 (see also Microsoft Data Access 

Objects (DAO)) 
dialog bars, 826 
document-view architecture, 27-28 (see also 

documents; document-view architecture; 
view windows) 

dynamic link libraries (see MFC extension 
DLLs; MFC regular DLLs) 

dynamic object creation, 945-50 
history, 19-21 
ISAPI filters, 911-12 
ISAPI server extensions, 899-900 
learning curve, 22 
memory management (see memory 

management) 
message mapping, 26-27 (see also message 

mapping) 
naming conventions, 555-56 
ODBC, 790-93 (see also Microsoft Open 

Database Connectivity (ODBC)) 
OLE Drag and Drop, 694-96 
OLE embedding, 733-34, 751 

972 

Microsoft Foundation Class (MFC) Library, 
continued 

subclassing feature, 358-59 
text-editing controls, 280-81 
Uniform Data Transfer, 677-82 
WinInet, 881-83, 886-87, 925 
Winsock,861 

Microsoft Foundation Class Reference, 6, 38 
Microsoft FrontPage, 891 
Microsoft Help Workshop (HCRTF), 14,491,494 
Microsoft Internet Explorer 

as ActiveX document container program, 917, 
919-20 

Web Browser ActiveX control and, 194-95 
WinInet and, 880 

Microsoft Internet Information Server (lIS), 555, 
891-916 

alternatives, 891 
directories, 894-95 
example ISAPI filter application, 913-16 
example ISAPI server extension application, 

900-907 
installing and controlling, 892 
ISAPI database access, 907 
ISAPI filters, 911-12 
ISAPI server extensions, 895-900 
logging, 895 
running Internet Service Manager, 892-95 
security, 892-93 
stopping HTTP server, 877 
stopping WWW service, 906 
using HTTP cookies to link transactions, 907-9 
Web authentication, 909-11 

Microsoft MS-DOS, Windows vs., 4 
Microsoft Office 97, 700 
Microsoft Office Binder, 917, 918-19 
Microsoft Open Database Connectivity (ODBC), 

785-816. See also database management 
adding to MFC applications, 800 
architecture, 788-89 
bulk row fetches, 814 
counting rows in recordsets, 792-93 
DAO and, 819, 820-21 (see also Microsoft Data 

Access Objects (DAO)) 
example application with multiple recordsets, 

812-14 
example application with recordset, 794-803 
example application with record view, 805-11 



Microsoft Open Database Connectivity (ODBC), 
continued 

example student registration database, 793-94 
form view class for recordsets, 804-5 
joining two database tables, 803-4 
MFC classes, 790-93 
multithreading, 814 
ODBC SDK programming, 788-90 
parameterized queries, 813-14 
processing exceptions, 793 
SQL filter and sort strings, 803 
as standard, 787-90 
using multiple recordsets, 811-14 
using recordsets without binding, 814-16 

Microsoft SQL Server, 785 
Microsoft Visual Basic, 7 

as Automation component, 601 
controls (VBXs), 171,557 

Microsoft Visual C++ 
ActiveX con troIs, 201 (see also ActiveX 

controls) 
application framework (see Microsoft 

Foundation Class (MFC) Library) 
AppWizard code generator, 11-12 (see also 

AppWizard) 
bugs in, 182,500 
C/C++ compiler, 10 (see also compiler) 
classes for BSTRand VARIANTtypes, 618 
class libraries vs. application frameworks, 22-23 
ClassWizard, 12 (see also ClassWizard) 
components, 6-15 
debugger, 10-11, 46 (see also debugging) 
Developer Studio 97 and build process, 7-9 

(see also build process; Microsoft 
Developer Studio 97) 

diagnostic tools, 14 
example applications (see applications, 

example) 
Gallery, 14-15, 175,346-47 
heap,211-12 
linker, 10 
Microsoft SQL Server and, 785 
online help, 7, 13 
resource compiler, 10 
resource editors, 9-10, 40-43 (see also resource 

editors) 
Source Browser, 12-13,36-37 
source code control, 14 

Index 

Microsoft Visual C++, continued 

Visual Basic for Applications and, 599-600 
Microsoft VisuaIJ++, 7 
Microsoft Windows 

C++ interface (see Microsoft Visual C++) 
COM (see COM (Component Object Model» 
common controls (see common controls) 
common dialogs (see common dialog windows) 
Control Panel, 90 
DAO (see Microsoft Data Access Objects 

(DAO» 
dynamic link libraries (DLLs), 5 (see also 

dynamic link libraries (DLLs» 
Explorer (see Windows Explorer) 
file systems, 859 
Graphics Device Interface (GD I), 4 (see also 

Graphics Device Interface (GDI» 
heap,210-11 
Internet Explorer (see Microsoft Internet 

Explorer) 
Internet programming (see Internet; WinInet 

API; Winsock API) 
memory management, 5 (see also memory 

management) 
message processing, 3-4 (see also message 

processing) 
ODBC (see Microsoft Open Database 

Connectivity (ODBC» 
programming model, 3-6 
Registry, 334-36 (see also Windows Registry) 
resource-based programming, 5 (see also 

resources) 
taskbar, 204 
versions (see Microsoft Windows 95; Microsoft 

Windows NT) 
Win32 API, 6 (see also Win32 API) 

Microsoft Windows 95 
configuring, for networking, 859-60 
diagnostic tools, 14, 203 
DLL memory mapping, 208 
file systems, 859 
IIS alternatives, 891 
logical coordinates, 69 
process address space, 204-6 
requirements for example applications, 31 

Microsoft Windows NT 
Access ODBC driver, 795 
applicationicon~543 

973 



INSIDE VISUAL C++ 

Microsoft Windows NT, continued 

challenge/response authentication, 910 
CoFreeUnusedLibraries function, 639 
configuring, for networks, 859-60 
diagnostic tools, 14, 203 
DLL memory mapping, 208 
domains, 854 
file systems, 859 
lIS and, 891-93 
logical coordinates, 69 
logical and physical inches on displays, 89-90 
nested dialogs, 162 
proceu address space, 206 
requirements for example applications, 31 
TransmitFile function, 877 
Unicode, 335 
versions, 854, 891 

Microsoft Word 97, 491 
MIDL program, 649-50 
mini-servers. See also OLE embedded component 

applications 
example application with in-place activation, 

734-40 
full servers vs., 731 

MM_ANISOTROPIC mapping mode, 63-64, 732 
MM_HIENGLISH mapping mode, 62 
MM_HlMETRICmapping mode, 61, 62, 67-68 
MM_ISOTROPIC mapping mode, 63-64 
MM_LOENGLISH mapping mode, 62 
MM_LOMETRIC mapping mode, 62 
MM_TEXTmapping mode, 60-61 
MM_ TWIPS mapping mode, 62, 88 
modal dialog windows, 107-34. See also dialog 

windows 
in Automation EXE components, 647 
common controls, 134-49 
example application with every common 

control, 138-49 
example application with every "old" control, 

110-26 
example application with hand-coded features, 

126-31 
in EXE files, 647 
modeless vs., 107-8, 151-52 (see also modeless 

dialog windows) 
programming, 108-9 
property sheets vs., 289 
resources and controls, 108 

974 

modal dialog windows, continued 
Shift-Fl help and, 498 
system, 108 
Win32 programming and control messages, 

128, 132, 134 
modeless dialog windows, 151-60. See also dialog 

windows 
CForm View class as alternative to, 160 
creating, 151-52 
example application with, 153-60 
modal vs., 107-8, 151-52 (see also modal dialog 

windows) 
ownership, 152-53 
user-defined messages and, 152 

ModifyMenu function, 307 
module definition files'(DEF), 512 
modules, component. See Gallery 
monikers, 847, 887-90 
monochrome bitmaps, 218 
Most Recently Used (MRU) file list, 408 
mouse cursors, 66, 104. See also points 
mouse messages 

capturing and releasing, 103-4 
example applications processing, 52-60, 67-68, 

68-73,99-105 
msvcrtd.dll file, 357 
Multiple Document Interface (MDI), 427-50 

application objects, 430 
child windows, 32, 431-33, 551-57 
child windows and modeless dialogs, 160 
creating additional views, 434-35 
creating empty documents, 434 
document templates, 431, 435-36 
drag and drop (see drag and drop) 
example application with, 437-50 
example application with multiple view class, 

483-86 
example application without documents or 

views, 546-51 
frame windows and child windows, 431-33 
loading and storing documents, 435 
locating main frame window, 315 
main frame and document template resources, 

433 
multiple view options, 474 (see also splitter 

windows and multiple views) 
OLE embedded components and, 740 
persistent frame windows in, 347-48 



Multiple Document Interface (MDI), continued 
SDI vs., 32 (see also Single Document Interface 

(SDI) ) 
typical application, 427-30 
Win32 programming and client windows, 430 
Windows Explorer launch and drag and drop, 

436-37 
multiple views, 406, 480-85. See also splitter 

windows 
example MDI application with multiple views, 

483-85 
example SDI application with multiple views, 

480-83 
multitasking, preemptive, 254 
multithreaded programming, 260-70 

critical sections, 268-70 
DAO,822 
example application with events for thread 

synchronization, 265-67 
example application with worker thread, 263-64 
mutexes and semaphores, 270 
ODBC,814 
thread blocking, 267-68 
thread communication, 261-63 
user-interface threads, 270 
using events for thread synchronization, 264-65 
Winsock, 861 
writing worker thread function and starting 

thread, 260-61 
multiuser access control, 786-87 
mutexes, 270 

N 
names, decorated, 510-11 
naming conventions 

ActiveX document server interfaces and 
classes, 922 

classes, 23 
DAO interfaces, 817 
DNS host names, 853-55 
generated classes, 37 
intranet host names, 860 
MFC and COM, 555-56 
nonstatic class data members, 49 
recordset column and table names, 802 
storages and streams, 702 

nested classes, 560-62, 585-86 

nested common dialog windows, 162 
network byte order, 851 
network protocols, 848. See also Internet 
networks. See Internet; intranets 
new operator, 203, 211 
NextDlgCtrl function, 354 
notifications. See messages 
NTFS (NT File System), 859 

o 
OBD file extension, 918 
object handlers, 743-44 

Index 

Object Linking and Embedding. See OLE (Object 
Linking and Embedding); OLE Drag and 
Drop; OLE embedding 

objects. See also classes 
application, 402-3, 430 
collection (see collections) 
dynamic creation, 945-50 
embedded (see embedded objects) 
GDI, 80-84 (see also Graphics Device Interface 

(GDI) ) 
persistent, 713-21 (see also database 

management; files; persistent frame 
windows; serialization) 

registration, 174, 578-80 
Objects Windows Library (OWL), 17 
OBJ file extension, 10 
OCXs, 171. See also ActiveX controls 
ODBC. See Microsoft Open Database 

Connectivity (ODBC) 
odbc32.dll file, 788-89 
ODBC Software Development Kit (SDK) 

programming, 788-90 
ODL (Object Description Language) files, 648-50, 

669-70 
OK buttons, 122, 127-28 
OLE (Object Linking and Embedding), 555-56. 

See also COM (Component Object 
Model); OLE Drag and Drop; OLE 
embedding 

ole32.dll file, 701, 743 
OLE Automation. See Automation 
OLE controls (OCXs), 171. See also ActiveX 

controls 
OLE DB, 788 
OLE Drag and Drop, 694-700. See also drag and 

drop 

975 



INSIDE VISUAL C++ 

OLE Drag and Drop, continued 

Dobjview program and, 700 
example application with, 696-700 
MFC support, 694-96 
sequence, 695-96 
source side, 694 
target side, 695 

OLE embedded component applications. See also 

OLE embedding 
ActiveX document servers vs., 918-19 (see also 

ActiveX document server applications) 
container-component interactions, 740-44 

(see also OLE embedding container 
applications) 

example application as, 776-82 
example application as mini-server with in-

place activation, 734-40 
MDI,740 
MFC architecture, 733-34 
mini-servers vs. full servers and linking, 731 
sizing strategy for in-place, 740 
states of, 744-47 

OLE embedding, 729-82 
advisory connections, 746-47 
clipboard metafiles, 747 
container-component interactions, 740-44 

(see also OLE embedded component 
applications; OLE embedding container 
applications) 

in-place activation vs., 729-30, 731-32 
interfaces, 747-50 
interfaces for ActiveX document servers and 

containers, 920-21 
OLE helper functions, 750-51 
Windows metafiles and embedded objects, 

732-33 
OLE embedding container applications, 751-52. 

See also OLE embedding 
clipboard data transfers, 742-43 
container-component interactions, 740-44 

(see also OLE embedded component 
applications) 

example application as, 752-76 
features, 752 
getting component's metafile, 743 
in-process handler and, 743-44 
interfaces, 745-46 
.limitations, 751-52 

976 

OLE embedding container applications, 
continued 

loading and saving data in compound 
documents, 742 

MFC support, 751 
using component IOleObject interface, 741-42 

OLE Structured Storage. See Structured Storage 
OLE Uniform Data Transfer. See Uniform Data 

Transfer 
OLEVIEW program, 670 
OnBeginPrinting function, 456 
On Cancel function, 128-29, 157 
On Changed function, 200 
OnCloseDocument function, 830 
OnClose function, 74-75 
ON_ COMMAND_EX macro, 308 
ON_ COMMAND_EX-RANGE macro, 309 
ON_COMMAND macro, 277-78 
ON_COMMAND_RANGE macro, 309 
OnContextHelp function, 503 
ON_CONTROL macro, 528 
OnCreateClient function, 476, 478-79 
On Create function, 74 
OnDestroy function, 74-75 
OnDraw function, 38, 454-55, 802-3 
OnDrawRow function, 836-37 
OnEndPrinting function, 456 
OnFileDaoDisconnect function, 833 
OnFileDaoOpenlsam function, 831-32 
OnFileDaoOpenMdb function, 832-33 
OnFileDaoOpenOdbc function, 830-31 
OnFileNew function, 406-7, 409, 434 
OnFileOpen function, 408 
OnFileSaveAs function, 409 
OnFileSave function, 409 
OnHelpFinder function, 496 
OnHelp function, 503 
OnHelpHitTest function, 503-4 
OnHelplnfo function, 185 
Onldle function, 259 
on-idle processing, 259 
OnlnitDialogfunction, 122-23 

OnlnitialUpdatefunction, 69, 351-52, 801-2 
OnKeyDown function, 71-72 
OnLButtonDown function, 25, 49, 123-24 
online help, 7, 13 
ON_MESSAGE macro, 132 
OnMouseMove function, 104-5 



OnNcDestroy function, 75 
OnNewDocument function, 352, 407-8, 409 
OnOK function, 127-28, 157 
OnOpenDocument function, 408, 409, 829-30 
OnPaint function, 26, 80, 133,455 
OnPrepareDC function, 66, 83, 455-56 
OnPreparePrinting function, 456 
OnPrint function, 455 
OnQueryEndSession function, 74 
OnRequery function, 835 
OnRequestEdit function, 200 
OnSaveDocument function, 409 
ON_ UPDA TE_ COMMAND_ UI macro, 278-79, 

314-15 
ON_ UPDATE_COMMAND_ ULRANGE macro, 309 
On Update function, 351, 367-69, 836 
On WindowNew function, 435 
ON_ WM_HELPINFO macro, 185 
Open Database Connectivity. See Microsoft Open 

Database Connectivity (ODBC) 
OpenDocumentFile function, 407 
Open function, 790 
OpenRecordset function, 834-35 
OpenURL function, 881, 886-87 
operators 

const char*, 337 
delete, 203, 211 
dialog control accelerator (&), 119 
extraction (»), 398-400 
insertion «<), 355, 398-400 
keyboard accelerator (&), 276 
LPRECT,51 

new, 203, 211 
overloaded, 50 
reference (&),371 
scope resolution (::),561 

ordinal linkage to a DLL, 510, 512 
out-of-process (EXE) components, COM, 557, 

558,577,582-85 
overloaded operators, 50 
OWL (Objects Windows Library), 17 
ownership of dialog windows, 152-53 

p 
pages 

display vs. printed, 454 
selection of, for printing, 453 

Index 

pages, memory, 206 
pages, Web, 193. See also HTML (Hypertext 

Markup Language) files; Web 
painting. See drawing 
PAINTSTRUCT structure, 40 
PALETTERGB macro, 86 
palettes, color. See also color; color mapping 

class, 81 
device-independent bitmaps, colors, and, 

229-31 
palette, control, 5, 113-14, 149 
panes, 457 
parameterized queries, 813-14 
parameters 

Automation, 618-19 
HTML form optional, 903 
parameterized queries, 813-14 
passing conventions, 511, 630 
program startup, 426, 628 

ParseCommandLine function, 426 
parse map macros, 899 
passwords. See authentication 
PatBlt function, 227 
pattern brushes, 99, 105 
PCH file extension, 45 
PeekMessage function, 254 
Peer Web Services, 891 
pens, 81 
performance. See speed 
permissions, ISAPI DLL, 898 
persistent frame windows, 331-48 

default window rectangles, 340 
displaying, 333-34 
example application with, 340-47 
MDI applications and, 347-48 
reusable base classes, 331-32 
static data members, 339-40 
string class and, 336-39 
view window sizes and, 332-33 
Windows Registry information, 334, 336, 339 

persistent objects. See also database management; 
files; persistent frame windows; 
serialization 

example application with, 716-21 
IPersistStorage interface, 714-15 
IPersistStream interface, 715 
Structured Storage and, 713-15 

Personal Web Server, 891 

977 



INSIDE VISUAL C++ 

physical coordinates, 65 
physical inches on displays, 89-90 
picture properties, ActiveX control, 199 
Ping program, 860 
pixels, 60-61, 230-31 
pointers 

collections class, 369 
converting strings to, 337 
embedded objects vs., 399-400 
getting IStorage, 704 

identifying dialog controls with, 131 
interface, 562-65 
rectangle reference parameters and, 51 
template collection class, 372-73 
this, 561 

points (type measurement), 62, 88 
POINT structure, 50 
pop-up jumps, help, 492 
pop-up menus, floating, 307 
port numbers, Internet, 850 
POSITIONvariable, 371-72 
PostMessage function, 152, 276 
PostNcDestroy function, 75 
POST requests, HTTP, 875 

HTML forms, 896-98 
#pragma statements, 10 
precompiled headers, 44-46 
PreCreateWindow function, 333-34 
preemptive multitasking, 254 
printer device contexts, 83, 220, 454-55 
printing, 451-71 

device contexts, 454-56 
display pages vs. printed pages, 454 
example application with device-independent 

bitmap, 241-45 
example application with multipage, 465-71 
example wysiwyg application, 457-64 
with fonts, 88 
CDI bitmaps, 220 
interactive print page selection, 453 
mapping modes and, 62 
OnDraw and OnPaint functions, 40 
OnPrint function, 455 
print preview, 454 
reading printer rectangles, 463-64 
standard dialogs, 452-53 
starting and ending print jobs, 456 
template collection classes and, 464-65 

978 

private class member functions, 95 
processes 

marshaling and, 583, 604-5, 743 
memory space and, 203-6 
sharing storages among, 705 
threads vs., 260 

ProcessShellCommand function, 426 
programming 

APIs (see application programming interfaces 
(APIs) ) 

application framework, 22-26 (see also 
Microsoft Foundation Class (MFC) 
Library) 

applications (see application; applications, 
example) 

C language (see Microsoft Visual C++) 
development environment, 7-9 
Internet (see Internet; WinInet API; Winsock 

API) 
multithreaded (see multithreaded programming) 
projects, 8-9 
single-threaded, 253-54 
Windows model for, 3-6 

Programming Windows 95 (Petzold), 6, 451 
programs, defined, 203. See also application; 

applications, example 
progress indicator controls, 135, 140,255-59 
projects, 8-9. See also application; make files 
properties. See also property sheets 

ActiveX control, 173-74, 177-78, 199,200 
Calendar control, 176-78 
collection, 646 
indexed, 604, 646 
VBA,604 

property sheets, 288-89 
Apply button processing, 306 
building, 288 
data exchange, 288-89 
example application with, 289-306 

protocols, network, 848. See also Internet 
proxies, 583 
proxy servers (firewalls), 858, 879-80, 881 
PtInRect function, 51 
PtInRgn function, 52 
pushbutton bitmaps, 247-51, 925 
pushbutton controls, 118. See also button controls 
PutQuery function, 836 
PVIEW and PVIEW95 programs, 14, 203 



Q 
queries, SQL, 785, 787, 803. See also Microsoft 

Open Database Connectivity (ODBC) 
query definitions, 821 
Querylnterface function, 562-65 

R 
radio buttons, 115 
random access files, 396. See also compound files; 

database management 
RC.EXE (Resource Compiler) program, 10,43, 

406,433 
RC file extension, 9 
ReadFile function, 396 
RealiuPalette function, 230 
record field exchange (RFX) functions, 802-3 
recordsets 

bulk row fetches, 814 
class, 790-93 
counting rows in, 792-93 
CRecordView class, 804-5 
DAO table-type, 821 
dynamic, 827 
example application with dynamic, 827-43 
example application with multiple, 812-14 
example application with record view, 805-11 
example application with single, 794-803 
multiple, 811-14 
parameterized queries, 813-14 
processing ODBC exceptions, 793 
using, without binding, 814-16 

rectangles 
bounding, of windows, 78 
classes, 50-51, 682-83 
default window, 340 
determining point position in, 51, 66 
invalidating, 38, 49-50 
pointers to, 51 
printer, 463-64 

RECT structures, 50 
reference counting, 565 
reference operator (&),371 
references, COM interfaces and, 565 
referential integrity, 793 
REGCOMP program, 174, 183,595,631 
Regedit and Regedt32 programs, 347, 426, 578-80 
regions, GDI, 52, 81 

regions, memory, 209-10 
RegisterClass function, 526 
registers, segment, 209 
RegisterShellFileTypes function, 424 
Registry. See Windows Registry 
Regsvr32 program, 174 
regular DLLs, MFC. See MFC regular DLLs 
ReleaseBuffer function, 338 
ReleaseCapture function, 103-4 
ReleaseDC function, 79 
Release function, 565 
Release targets, 43-44, 516 

Index 

Remote Procedure Call (RPC), 583, 733, 921 
RemoveHead function, 371 
Requery function, 809 
reserved memory, 209-10 
RES file extension, 10 
resource compiler, 10,43,406,433 
resource editors, 5, 6, 19,40-43. See also resources 

control palette, 113-14, 149 
dialog resources, 42-43, 109 
icons, 144 
menu resources, 275, 283 
ResourceView and, 9-10 
strings resources, 326 
symbol definitions and constants, 155 
toolbar, 313, 318-19 

resource.h file, 41, 155 
resources 

accessing, in virtual memory, 214 
compiling, 10,43,406,433 
dialog windows, 41, 108 (see also dialog 

windows) 
DLLs, instance handles and loading, 513-14 
document template, 406, 433 
editing, 9-10, 40-43 (see also resource editors) 
form views, 353-54 
frame windows, 433 
icons, 41 (see also icons) 
keyboard accelerators, 41,276 
loading GDI bitmaps from, 219-20 
MDI main frame and document template, 433 
menus, 41, 275-76, 283 (see also menus) 
programming with, 5 
SDI document template, 406 
search sequence for MFC extension DLLs, 517 
search sequence for MFC regular DLLs, 521-22 
string tables, 41, 326 (see also strings) 

979 



INSIDE VISUAL C++ 

resources, continued 
toolbar, 41, 312-13 (see also toolbars) 

ResourceView, 9-10, 219 
return types, Automation, 618-19 
reusable base classes, 331-32. See also persistent 

frame windows 
RFX (record field exchange) functions, 802-3 
RGB macro, 85, 87, 218 
rich edit controls, 149, 281 

example application with, 282-87, 289-306 
rich text format (RTF) files, 487-88 
RoboHELP (software), 488 
root domains, 853 
root storages, 704 
routers, Internet, 849 
rows, database, 822-25 
rowsets, 789-90. See also recordsets 
RPC (Remote Procedure Call), 583, 733, 921 
RTF (rich text format) files, 487-88 
Run function, 25 
running programs, 46 
runtime 

adding dialog controls at, 133-34 
class identification at, 404 
class system, 60 
creating ActiveX controls, 193-94 
object registration, 580 

RUNTIME_CLASS macro, 404, 946-47 
runtime type identification (RTTI) feature, 404 

5 
SaveBarState function, 339 
SaveModified function, 74 
SaveObject function, 746 
scales. See mapping modes 
scope resolution operator (::),561 
screens. See displays 
scroll bars, 69, 118, 129-31 
scrolling view windows, 68-73 

accepting keyboard input, 69-70 
displaying database rows in, 822-25 
scroll bars, 69 
setting logical size and mapping mode, 69 
window and viewport sizes, 68 

ScrollWindow function, 68 
SDI. See Single Document Interface (SDI) 

980 

search sequences 
for DLLs, 514 
for resources in an MFC extension DLL 

application, 517 
for resources in an MFC regular DLL 

application, 521-22 
search strings for help, 495 
sections, critical, 268-70 
secure sockets layer (SSL), 880, 910-11 
security. See authentication 
segment registers, 209 
SelectObject function, 80, 82 
SelectPalette function, 230 
SELECT statement, SQL, 790 
SelectStockObject function, 82-83 
semaphores, 270 
SendMessage function, 132, 152, 276 
sequential files, 396 
serialization, 395-402 

archives, 396-97, 399-400 
of collections, 401 
database management vs., 396 (see also 

database management) 
disk files and archives, 396-97 
MDI and (see Multiple Document Interface 

(MDI) ) 
SDI and (see Single Document Interface (SDI)) 
Serialize function, 397-99,401-2 

SerializeElements function, 464-65 
Serialize function, 396, 397-99, 401-2, 836 
server applications, 556 

ActiveX document (seeActiveX document 
server applications) 

Automation (see Automation component 
applications) 

COM (see COM component applications) 
example Winsock HTTP, 871-73 
example Winsock Web, 875-78 
OLE (see OLE embedded component 

applications) 
SetBitmap function, 247,925 
SetBkColorfunction, 85, 218 
SetBrushOrg function, 105 
SetCapture function, 103-4 
Set Check function, 314-15 
SetCursor function, 104 
SetDIBitsToDevice function, 233 
SetFilePointer function, 396 



SetIndicators function, 322 
SetMaxPage function, 456 
SetMenu function, 306 
SetMinPage function, 456 
SetModifiedFlagfunction, 410 
SetModified function, 289 
SetPaneText function, 322 
SetProperty function, 609 
SetRegistryKey function, 336, 347, 424 
_seLsbh_threshold function, 212 
SetScaleToFitSize function, 105 
SetScrollPos function, 129 
SetScrollSizes function, 69 
SetStretchBltMode function, 220 
SetTextColorfunction, 85, 218 
SetTimer function, 255 
SetViewportExt function, 63 
SetViewportOrgfunction, 61 
SetWindowExt function, 63 
SetWindowOrgfunction, 61, 63, 68 
SetWindowPlacement function, 333, 339 
shdocvw.dll file, 194 
Shift-F1 key combination, 497-98, 503-4 
ShowWindowfunction, 25, 333, 347-48 
shutdown, application, 26 
Single Document Interface (SDI), 395-426 

application objects, 402-3 
creating empty documents, 406-7 
deleting document contents, 408-9 
document templates, 403-6 
example application as Automation 

component EXE, 639-47 
example application switching view classes, 

480-83 
example application with double view static 

splitter window, 478-80 
example application without documents or 

views, 544-46 
example application with serialization, 410-23 
example application with single view dynamic 

splitter window, 475-77 
generating, 32-35 
initializing documents, 407-8 
locating main frame window, 315-16 
Multiple Document Interface vs., 32 (see also 

Multiple Document Interface (MDI)) 
multiple view options, 474 (see also splitter 

windows; multiple views) 

Index 

Single Document Interface (SDI), continued 

OLE embedded components and, 740 
opening documents, 408 
saving documents, 409 
serialization, 395-402 
tracking document modifications, 409-10 
Windows Explorer launch and drag and drop, 

411-12,424-26 
single-threaded programming, 253-54 
sites, ActiveX control container, 192 
size, application, 18-19 
SIZE structure, 50 
Sleep function, 267 
slider controls, 135-36, 140-43 
small-block heap, 211-12 
smart pointer declarations, 612 
snapshots, 790,820-21 
sockets, Internet, 848, 853 
software components. See Gallery 
sort strings, SQL, 803 
Source Browser, 12-13, 36-37 
source code 

control,14 
example (see applications, example) 
Gallery and, 14 
generator (see AppWizard) 

SourceSafe application, 14 
speed 

application, 18-19 
DIB display, 241 

spin button control, 136, 143 
splitter windows, 406, 473-79 

class, 473-74 
dynamic and static, 475 
example application with double view SDI 

static, 478-80 
example application with single view SDI 

dynamic,475-77 
view options, 474 

SPYXX program, 14, 203 
SQL (Structured Query Language), 785, 787, 803 
SQLExtendedFetch function, 790 
SQLGetData and SQLPutData functions, 814 
SQLTabies function, 816 
SSL (secure sockets layer), 880 
stacks, network, 848 
standard help topics, 499 
standard printer dialogs, 452-53 

981 



INSIDE VISUAL C++ 

Standard Template Library (STL), 10 
startup, application, 25. See also embedded 

launch 
startup parameters, application, 426, 628 
states 

of device contexts, 79-80 
of embedded components, 744-47 
keyboard, 323 
of pushbuttons, 251 
of toolbar buttons, 313, 315 
of views, 48-49 

state variables, 49 
statically linked projects, 5 
static data members, 339-40 
static rowsets, 790 
static splitter windows, 475 
static text controls, 114 
STATSTGstructure, 704-5 
status bars, 321-30 

as control bars, 311-12 
controlling, 323-24 
defining, 322 
example application with, 324-30 
locating main frame window, 315-16 
message line, 322-23 
status indicator, 323 
Windows Registry and status of, 339 

status callback functions, Internet session, 881, 
883-84,888 

status indicator pane of status bars, 323 
stdafx.h file, 45-46, 378 
STDMETHOD and STDMETHODIMP macros, 586 
STGMEDIUM structure, 676 
stock CDI objects, 82-83 
storages, 701, 702-5. See also streams; Structured 

Storage 
freeing memory, 704-5 
getting IStorage pointer, 704 
IStorage interface member functions, 702-4 
iterating through elements, 705 
persistent, 714-15 
sharing, among processes, 705 

streams, 701, 706-7. See also storages; Structured 
Storage 

persistent, 715 
StretchBltfunction, 219, 220, 241 
StretchDIBits function, 233, 241 

982 

strings 
arrays of, 457 
class, 336-39 
concatenation, 406, 433 
dialog for finding and replacing, 161 
search, for help, 495 
SQL filter and sort, 803 
string table resource, 41, 326 
types,579,614-15,617-18,827 
Unicode, 335, 337, 579 
VARIANT, 182,613-19,827 

Structured Query Language (SQL) , 785, 787, 803 
Structured Storage, 701-28. See also COM 

(Component Object Model) 
compound file advantages, 727-28 
compound file fragmentation, 727 
compound files, 701-2 
example application as persistent storage 

client, 722-27 
example application as persistent storage DLL 

component, 716-21 
example application with compound file, 

707-13 
ILockBytes interface, 707 
persistent COM objects and, 713-15 
storages and IStorage interface, 702-5 
streams and IStream interface, 706-7 

stubs, 583 
student records example applications 

document-view interaction, 360-67 
with lists, 374-94 
MDI version, 437-50 
registration database, 793-94 
SDI serialization, 410-23 

styles, dialog, 112-13 
SubclassDlgItem function, 359 
subclassing, controls and, 358-59 
super VGA (SVCA) boards, 85-86 
swap files, 208 
symbol definitions, 155 
symbolic linkage, 512 
synchronization, thread, 264-65 
synchronous Winsock programming, 861 
SysAllocString function, 615 
SysFreeString function, 615 
Syslnfo ActiveX control, 201 
system modal dialog windows, 108 
system palettes, 229 



T 
tabbed dialog windows. See property sheets 
tabbing order, 118-19 
tab controls, 149 
table notation ([]), 802 
table of contents, help file tree-view, 493-94 
tables, database. See also recordsets 

definitions, 821 
joining, 803-4 

table-type recordsets, 821 
tags, HTML, 857 

hidden input, 905 
targets, AppWizard, 43-44, 516 
taskbar, Windows, 204 
Task Manager, Windows NT, 14,203 
TCP (Transmission Control Protocol), 847, 

852-53 
Telnet program, 878 
template collection classes, 372-73, 464-65 
templates 

ActiveX, 6, 15,21, 171 
C++, 10 
document (see document templates) 

TerminateThread function, 268 
text, hidden, 488 
text-editing controls, 280-81. See also edit 

controls; rich edit controls 
TextOut function, 338 
theApp global application object, 25, 402-3 
this pointer, 561 
thread blocking, 267-68 
threads, 260. See also multithreaded 

programming; single-threaded 
programming 

thread synchronization, 264-65 
timers, 255 
TLB file extension, 611, 649-50 
Toolbar.bmp file, 313 
toolbars, 312-21. See also menus 

bitmaps, 312-13 
button states, 313 
command messages and, 313-14 
as control bars, 311-12 
example application with, 316-21 
help buttons, 497-98 
locating main frame window, 315-16 
resources, 41 

Index 

toolbars, continued 

ToolTips, 315 
update command UI message handlers, 314-15 
Windows Registry and status of, 339 

ToolTips, 315 
top-level domains, 853 
TraceEnabled function, 44 
TRACE macros, 44, 355 
TRACER program, 44 
trackbar controls, 135-36, 140-43 
TrackPopupMenu, 307 ' 
transactioning, 702 
TranslateMessage function, 254 
Transmission Control Protocol (TCP), 847, 852-53 
TransmitFile function, 877 
tree controls, 137, 147-49 
tree-view table of contents, help file, 493-94 
True Type fonts, 87-88, 454 
try/catch error trapping, 666, 830-31 
twips, 62,88-91,105,462 
type libraries, 607, 648-50 

component registration of own, 668 
Excel usage, 670-71 
ODL files and, 648-50, 669-70 
registering, 667-68 

types 
archive data, 398-99 
BSTRstrings, 614-15, 617-18, 630, 827 
Unicode, 335, 337, 579 
VARIANT, 182,613-19,827 
VBA DATE, 618-19 

u 
UDP (User Datagram Protocol), 849-50 
UIActivate function, 920-21 
undeleted objects, automatic dump of, 357 
Unicode strings, 335, 337, 579 
Uniform Data Transfer, 673-700. See also COM 

(Component Object Model) 
class for moving and sizing rectangles, 682-83 
clipboard transfer, 680-82 
data object class, 679-80 
data source class, 678-79 
data structures, 674-77 
Dobjview program and, 700 
example application with data object 

clipboard,684-94 

983 



INSIDE VISUAL C++ 

Uniform Data Transfer, continued 

example application with OLE Drag and Drop, 
696-700 

interface, 673-77 
MFC support, 677-82 
MFC support for OLE Drag and Drop, 694-96 

unknown, controlling, 597 
UpdateAllViews function, 350-51, 367-69 
update command user interface (UI) messages, 

278-79,314-15 
UpdateData function, 157 
UpdateRegistryAll function, 580 
Update Window function, 25 
urlmon.dll file, 887 
User Datagram Protocol (UDP), 849-50 
user-defined messages, 4, 152, 155, 528 
user input, message map functions and, 4. See 

also message mapping 
user interface (UI) messages, 278-79, 314-15 
user-interface threads, 260, 270 
users, anonymous, 893, 909 

v 
validation, field, 927-30 
variables. See also data members 

global (see global variables) 
state, 49 

variable-scale mapping modes, 63-64 
VariantChangeType function, 615 
VariantClearfunction, 615 
VariantCopy function, 615 
VariantCopylnd function, 615 
Variant/nit function, 615 
VAR1AlVTtype, 182,613-19,827 
VBA. See Visual Basic for Applications (VBA) 
VB Script, ActiveX document servers vs., 934-35. 

See also Visual Basic for Applications (VBA) 
VBXs (Microsoft Visual Basic controls), 171, 557 
version resources, 41 
vfw32.lib file, 247 
vfw.h file, 247 
video cards, 84-87 
Video for Windows (VFW), 246-47 
Video Graphics Array (VGA) video cards, 84-85, 

218 
viewport, 68 

984 

view windows 
applications without, 539-51 
AppWizard-generated class, 37-38 
class, 32 
connecting dialogs to, 123-25 
documents and (see documents; document-

view architecture) 
drawing inside, with GDI, 38-40 
edit control, 280 
form (see form view windows) 
interactions between frame windows and, 274 

(see also frame windows) 
for MDI documents, 434-35 
multiple (see splitter windows; multiple views) 
printing, 454 
record, 804-11 
rich text edit control, 281 
saving state of, with data members, 48-49 
scrolling, 68-73 
as viewports, 68 

VirtuaLAlloc function, 209-10, 211 
virtual directories, IIS, 894, 898 
VirtuaLFree function, 211 
virtual functions, 26-27, 561-62 
virtual key codes, 69 
virtual memory, 205, 206-9. See also memory 

management 
virtual Web servers, 894 
Visual Basic. See Microsoft Visual Basic; Visual 

Basic for Applications (VBA) 
Visual Basic for Applications (VBA) 

Automation and, 599-600 
DAO and, 818 
early binding, 667-72 
Excel and, 601-3 
For Each syntax, 645 
parameter passing, 630 
types, 618-19 

Visual C++. See Microsoft Visual C++ 
Visual Editing. See in-place activation (Visual 

Editing) 
vtable (virtual function dispatch table) structures, 

26-27,561-62 

w 
WaitForMultipleObjects function, 267 
WaitForSingleObject function, 265 



Web. See also Internet 
ActiveX controls in pages, 193 
authentication, 909-11 
browsers (see Web browsers) 
example WinInet client applications, 886-87 
example Winsock client application; 879-80 
example Winsock server application, 875-78 
HTML files (see HTML (Hypertext Markup 

Language) files) 
HTTP as protocol of, 855-58 (see also HTTP 

(HyperText Transport Protocol» 
programming applications for (see ActiveX 

document server applications; Microsoft 
Internet Information Server (IIS); 
WinInet API; Winsock API) 

virtual Web servers, 894 
We b browsers 

cookies and, 907-9 
HTML forms, 896-98, 903 
Internet Explorer (see Microsoft Internet 

Explorer) 
Netscape, 897-98 
running Internet Service Manager from, 892 
testing IIS with, 895 
Web Browser ActiveX control, 194-99 

Win16 API, 6 
Win32 API, 6. See also Microsoft Windows 

ActiveX control containers and sites, 192 
AppWizard-generated applications and 

messages, 40 
BeginPaint and EndPaint calls, 80 
child frame window creation, 551 
dialog controls and color messages, 132 
dialog controls and notification messages, 128 
dialog controls and parent windows, 134 
MDI client windows, 430 
segment registers, 209 
state variables, 49 
window classes and WndProc functions, 60 

Win32 Debug Target, 43-44, 354 
Win32 Release Target, 43-44 
Window menu, 428 
windows 

AppWizard-generated class, 37-38 
child (see child windows) 
class, 38, 60 
client area of, 50 
custom controls, 526 

Index 

windows, continued 
default rectangles, 340 
destroying, 157 
device contexts, 38 (see also device contexts) 
dialog (see dialog windows) 
frame (see frame windows) 
Help Compiler, 491 
mapping modes and coordinates (see mapping 

modes) 
MDI client, 430 
messages on creating and closing, 4, 73-75 
position of maximized, 339 
splitter (see splitter windows) 
subclassing, 358-59 
view (see view windows) 
viewports and, 68 
Workspace, 35-36 

Windows. See Microsoft Windows; Microsoft 
Windows 95; Microsoft Windows NT 

Windows 3 Developer's Workshop (Wilton), 528 
Windows Explorer 

MDI embedded launch and drag and drop, 
436 

SDI embedded launch and drag and drop, 
411-12,424-26 

sharing computer resources, 860 
small icons and, 144 

Windows Registry 
accessing, 334-36 
ActiveX controls, 174 
application registration for drag and drop, 

424-25 
Automation component registration, 628 
COM and, 578-80 
control bar status and, 339 
DAO type library, 818 
examining entries, 347, 426 
Most Recently Used (MRU) file list, 408 
proxy servers, 881 
runtime object registration, 580 
type libraries, 667-68 

window subclassing feature, 358-59 
WinHeZp function, 495 
WinHelp program, 487-94 

calling, for context-sensitive help, 495 (see also 
help, context-sensitive) 

rich text format (RTF), 487-88 
tree-view table of contents, 493-94 

985 



INSIDE VISUAL C++ 

WinHelp program, continued 
writing help files, 488-94 

WinInet API, 555, 880-90 
asynchronous moniker files vs., 889-90 
challenge/response authentication, 910 
example ActiveX document server application, 

923-25 
example client application, 884-85 
example Web client using CHttpConnection, 886 
example Web client using OpenURL, 886-87 
MFC classes, 881-83, 925 
status callback notifications, 883-84 
Winsock vs., 880-81 

wininet.dll file, 880 
WinMain function, 3-4, 25, 40 
WinsockAPI,861-80 

blocking socket classes, 861-71 
example HTTP client application, 873-75 
example HTTP server application, 871-73 
example Web client application, 879-80 
example Web server application, 875-78 
firewalls or proxy servers, 879-80 
MFC classes, 861 
synchronous vs. asynchronous programming, 

861 
using Telnet, 878 
WinInet vs., 880-81 

WizardBar, 8, 12,58 
wizards. See AppWizard; ClassWizard 
WM_CHAR message, 4, 69-70 
WM_CLOSE message, 4, 74-75 
WM_COMMANDHELP message, 503 
WM_COMMAND message, 4,128,527-28 
WM_CONTEXTMENU message, 307 
WM_COPYDATA message, 214 
WM_CREATE message, 4,74 
WM_CTLCOLORBTN message, 132 
WM_CTLCOLORDLG message, 132 
WM_CTLCOLOR message, 131-32 

986 

WM_DESTROY message, 74 
WM_ENTERIDLE message, 259 
WM_HELPHITTEST message, 503 
WM_HELP message, 185 
WM_HSCROLL message, 69,129 
WM_INITDIALOG message, 123 
WM_KEYDOWN message, 69-70 
WM_KEYUP message, 69-70 
WM_LBUTTONDOWN message, 4, 48 
WM_MDICREATE message, 551 
WM_NCDESTROY message, 74 
WM_NOTIFYmessage, 137-38 
WM_PAINT message, 40 
WM_PALETTECHANGED message, 230 
WM_QUERYENDSESSION message, 74 
WM_QUERYNEWPALETTE message, 230 
WM_TIMER message, 255 
WM_USER message, 155 
WM_ VSCROLL message, 69, 129 
WNDCLASS structure, 49 
WndProc function, 40, 60, 527 
Word 97. See Microsoft Word 97 
workbooks, 601 
worker threads, 260. See also multithreaded 

programming 
Workspace files, 9 
Workspace window, 35-36 
World Wide Web. See Web 
wrapper classes for ActiveX controls, 178-80, 

181-82 
WriteFile function, 396 
WriteProfileInt function, 336 
WriteProfileString function, 336 
wsock32.dll file, 861 
WWW. SeeWeb 

y 
yielding control, 254 





David J. Kruglinski 
1947-1997 



David Kruglinski was a self-taught and talented programmer, writer, teacher, 
and outdoorsman. 

His programming career began while attending Purdue University in 
1966, and he began writing applications for microcomputers in 1976 after a 
friend fished an 8080 board out of a garbage bin. 

Inside Visual C++ is David's fifth book. He wrote the first edition of this 
award-winning and highly acclaimed text for Microsoft Press in 1992. A best
selling title, the book is now in its fourth edition. Prior to writing for Microsoft 
Press, David wrote four books on subjects ranging from microcomputer data
base management systems to PC communications. 

His skills as a writer and programmer landed him a contract position on 
the Microsoft Foundation Class Library version 1.0 documentation team in 
mid-1991. Much of the MFC reference, especially many of the most basic 
classes, such as CString, still show David's expert touch. He left the Microsoft 
Languages group to pursue Inside Visual C++ about the time Microsoft C/C++ 
7.0 shipped in 1992. 

David's association with MFC and the Visual C++ language made him 
highly regarded as an authority on both technologies. He started a success
ful software tools company and worked as a consultant and instructor for 
Microsoft Visual C++. In between his extensive travels to teach, lecture, attend 
conferences, and pilot his paraglider, David followed the latest software de
velopments through his many contacts at Microsoft. He frequently visited 
members of the Visual C++ teamashe tracked developments and explored 
newtechnologiesadded to MFC, including OLE, database, and the Internet. 
~A)~orld tra.veler~I1d outdoorsman who' enj o~ed hiking and dim bing, 

David was never ~thq~this.·'wing~" fIe began paragliding in the late 1980s, 
andduringdie.pasFJewyears.hehad.gainedan international reputation.as 

~ an ~:xcel1ent pilot Adaringahd uncorwentionalflyer ,David enjoyed soaring 
over mollntain .. p~a.k~. and,.yaIleys.· at· spectacular sites .across the globe, from~ 
Europe to South America. He set site records~forhis time in the air and for 

the distances and heights he. traveled. ....••. .... ..~~~.. ..•.. . ..•..•••.. ~ .'. 
"I) ownwi nd Dave" Kruglinski died while pa,raglidingJn the Methowy al-

ley,Oka1l6ganC6unty;Wasliingtqn, April1?, 1997. He was4g year$old .• ~~ 

.; ... ,'"., .... ,' 





T he manuscript for this book was prepared 

and submitted to Microsoft Press in electronic 

form. Text files were prepared using Microsoft Word 

7.0 for Windows 95. Pages were composed by Micro

soft Press using Adobe PageMaker 6.0 for Windows 95, 

with text in New Baskerville and display type in Hel

vetica bold. Composed pages were delivered to the 

printer as electronic prepress files. 

Cover Graphic Designer 

Greg Erickson 

Interior Graphic Designer 

Pam Hidaka 

Interior Graphic Artist 

Michael Victor 

Principal Compositors 

Peggy Herman 

Jeffrey Brendecke 

Principal Proofreader/Copy Editor 

Richard Carey 

Indexer 

Shane-Armstrong Information Services 





Get 

Vi 'c
· in the art of 

lSUa ++. 

U.S.A. $39.99 
U.K. £37.49 [V.A.T. included] 
Canada $53.99 
ISBN 1-57231-510-5 

licrosoft Press® products are available worldwide wherever quality 
)mputer books are sold. For more information, contact your book or 
)mputer retailer, software reseller, or local Microsoft Sales Office, or visit 
ur Web site at mspress.microsoft.com. To locate your nearest source for 
licrosoft Press products, or to order directly, call 1-800-MSPRESS in the 
.S. (in Canada, call 1-800-268-2222). 

rices and availability dates are subject to change. 

For a solid guide to everything from Developer 

Studio ™ fundamentals to compiler optimization, 
this is the book you're searching for. It's a complete 
look at Visual C+t--including the redesigned 
development environment of version 5.0. You'll find 
guidance on: 

• Getting started in Developer Studio and using 
AppWizard 

• Working with the text editor, the graphics editor, 
and the dialog editor 

• Using ClassWizard for creating and maintaining 
classes and using the Gallery to add ready-made 
components 

• Using and writing ActiveX™ controls 
• Using the debugger, optimizing your programs, and 

customizing Developer Studio 
Appendixes include tables of ASCII and ANSI charac
ters, descriptions of MFC classes supported by 
ClassWizard, and an introduction to Visual Basic® 
Scripting Edition. The enclosed CD-ROM includes 
sample code to help you get started quickly. In short, 
this volume is invaluable for anyone who wants to 
master the powerful development tools in Visual C+t
version 5. 





For experienced 
developers, it's the source 

of information 
on programming in Win32. 

This preeminent volume, completely updated for Microsoft® Windows® 95 and Microsoft Windows NT® version 
4.0, shows you how to deploy the powerful capabilities of the 32-bit API. 

ji \·'1 
~~1IiI>1 

! Advanced J!~7 
-WindoWs 

Third Edition 

, lheProfelliond : 
. OevdopBI~Guide : 

to !he Vrm32'API : 
for Windows NT 4.0 : 

andWilidoV.195 : 

Jeffrey Richter 
Microsoft'Press 

U.S.A. $49.99 
U.K. £46.99 [V.AI. included] 
Canada $67.99 
ISBN 1-57231-548-2 

Topics include: 
• Exploring virtual memory and using virtual memory in your 

own applications 
• Understanding kernel objects and their handles 
• Managing processes and threads, including thread-local 

storage, thread synchronization, and the Windows NT 4.0 
thread scheduler 

• Taking advantage of fibers and the functions that manipu
late them 

• Developing software for international markets using 
Unicode 

• Writing robust, error-free applications using structured 
exception handling 

• Writing DLLs and mastering techniques for using them 
most effectively 

• Sharing code and data among applications using memory
mapped files and sophisticated DLL-injection techniques 

• Porting 16-bit Windows-based programs to Win32 
• Performing synchronous I/O and using asynchronous tech

niques, including alertable I/O and I/O completion ports 

Plus, the enclosed CD-ROM contains dozens of sample 
programs, along with sample code and compiled applica
tions. Get ADVANCED WINDOWS. And create state-of-the-art 
programs for the Windows 95 and Windows NT operating 
systems. 

Microsoft Press<ll> products are available worldwide wherever quality computer books 
are sold. For more information, contact your book or computer retailer, software 
reseller, or local Microsoft Sales Office, or visit our Web site at mspress.microsoft.com. 
To locate your nearest source for Microsoft Press products, or to order directly, 
call1-800-MSPRESS in the U.S. (in Canada, call 1-800-268-2222). 

Prices and availability dates are subject to change. 





Microsoft werof 
Visual C++ 

in both hands. 
This four-volume collection is the complete printed product documentation for Microsoft Visual e-++ 
version 5.0, the development system for Win32®. In book form, this information is portable, easy to access 
and browse, and a comprehensive alternative to the substantial online help system in Visual e-++. The 
volumes are numbered as a set-but you can buy any or all of the volumes, any time you need them. So 
take hold of all the power. Get the MICROSOFT VISUAL e-++ 5.0 PROGRAMMER'S REFERENCE SET. 

~ 
=t 

11_1 C+-.: 
MFC Ubrary Reference, 
Part 1. 

Microsoft® Visual C++® MFC 
Library Reference, Part 1 
U.S.A. $39.99 
U.K. £36.99 
Canada $53.99 
ISBN 1-57231-518-0 

~ 
:::::;:r 

Microsoft® Visual C++® MFC 
Library Reference, Part 2 
U.S.A. $39.99 
U.K. £36.99 
Canada $53.99 
ISBN 1-57231-519-9 

~ 
51 

Volume 3 of the 4-volume 
VISual C++ 5.0 Programmer's 
Reference Set ! 

I 
1'1!c~soft· - c I 
VISUal ++" I 
Run-lime Ubrary Reference 1 

,Iltm" 
Microsoft® Visual C++® 
Run-Time Library Reference 
U.S.A. $39.99 
U.K. £36.99 
Canada $53.99 
ISBN 1-57231-520-2 

~ 

Microsoft® Visual C++® 
Language Reference 
U.S.A. $29.99 
U.K. £27.49 
Canada $39.99 
ISBN 1-57231-521-0 

1icrosoft Press® products are available worldwide wherever quality computer books are sold. For more information, contact your book or computer retailer, 
oftware reselier, or local Microsoft Sales Office, or visit our Web site at mspress.microsoft.com. To locate your nearest source for Microsoft Press products, 
r to order directly, cali 1-800-MSPRESS in the U.S. (in Canada, cali 1-800-268-2222). 

rices and availability dates are subject to change. 





U.S.A. $39.99 
U.K. £37.49 [V.A.T. included) 
Canada $53.99 
ISBN 1-57231-511-3 

Microsoft Press@ products are available worldwide wherever quality 
computer books are sold. For more information, contact your book or 
computer retailer, software reselier, or local Microsoft Sales Office, or visit 
our Web site at mspress.microsoft.com. To locate your nearest source for 
Microsoft Press products, or to order directly, caIi1-800-MSPRESS in the 
U.S. (in Canada, cali 1-800-268-2222). 

Prices and availability dates are subject to change. 

MFC DEVELOPER'S WORKSHOP is the first book to 

provide developer-driven, task-oriented relief for 
those using the MFC library to program for Windows. 
It targets troublesome, frequently encountered 
tasks-and provides solutions for them. In addition, 
carefully selected articles from Microsoft's huge 
Knowledge Base supplement the main text and 
amplify the topics being discussed. Intended for 
those with at least one year of experience developing 
MFC applications for Windows, MFC DEVELOPER'S 
WORKSHOP covers: 

• The functionality of AppWizard and the modularity 
of the class library 

• Frame window architecture 
• Document templates 
• Di!3log boxes-techniques for modifying their 

attributes and behavior 
• USing Windows common controls 
• Using ActiveX™ controls and implementing OLE 

features such as drag and drop 
• Resource-only DLLs and saving the state of MFC 

applications 



IMPORTANT-READ CAREFULLY BEFORE OPENING SOFTWARE PACKET(S). By opening the sealed packet(s) containing 
the software, you indicate your acceptance of the following Microsoft License Agreement. 

MICROSOFT LICENSE AGREEMENT 
(Book Companion CD) 

This is a legal agreement between you (either an individual or an entity) and Microsoft Corporation. By opening the sealed software 
packet(s) you are agreeing to be bound by the terms of this agreement. If you do not agree to the terms of this agreement, promptly return the 
unopened software packet(s) and any accompanying written materials to the place you obtained them for a full refund. 
MICROSOFT SOFTWARE LICENSE 
1. GRANT OF LICENSE. Microsoft grants to you the rightto use one copy of the Microsoft software program included with this book (the 
"SOFTWARE") on a single terminal connected to a single computer. The SOFTWARE is in "use" on a computer when it is loaded into the 
temporary memory (i.e., RAM) or installed into the permanent memory (e.g., hard disk, CD-ROM, or other storage device) of that com
puter. You may not network the SOFTWARE or otherwise use it on more than one computer or computer terminal at the same time. 
2. COPYRIGHT. The SOFTWARE is owned by Microsoft or its suppliers and is protected by United States copyright laws and interna
tional treaty provisions. Therefore, you must treat the SOFTWARE like any other copyrighted material (e.g., a book or musical recording) 
except that you may either (a) make one copy of the SOFTWARE solely for backup or archival purposes, or (b) transfer the SOFTWARE to 
a single hard disk provided you keep the original solely for backup or archival purposes. You may not copy the written materials accompa
nying the SOFTWARE. 
3. OTHER RESTRICTIONS. You may not rent or lease the SOFTWARE, but you may transfer the SOFTWARE and accompanying writ
ten materials on a permanent basis provided you retain no copies and the recipient agrees to the terms of this Agreement. You may not re
verse engineer, decompile, or disassemble the SOFTWARE. If the SOFTWARE is an update or has been updated, any transfer must include 
the most recent update and all prior versions. 
4. DUAL MEDIA SOFTWARE. If the SOFTWARE package contains more than one kind of disk (3.5",5.25", and CD-ROM), then you 
may use only the disks appropriate for your single-user computer. You may not use the other disks on another computer or loan, rent, lease, 
or transfer them to another user except as part of the permanent transfer (as provided above) of all SOFTWARE and written materials. 
5. SAMPLE CODE. If the SOFTWARE includes Sample Code, then Microsoft grants you a royalty-free right to reproduce and distribute 
the sample code of the SOFTWARE provided that you: (a) distribute the sample code only in conjunction with and as a part of your software 
product; (b) do not use Microsoft's or its authors' names, logos, or trademarks to market your software product; (c) include the copyright 
notice that appears on the SOFTWARE on your product label and as a part of the sign-on message for your software product; and (d) agree 
to indemnify, hold harmless, and defend Microsoft and its authors from and against any claims or lawsuits, including attorneys' fees, that 
arise or result from the use or distribution of your software product. 

DISCLAIMER OF WARRANTY 
The SOFTWARE (including instructions for its use) is provided "AS IS" WITHOUT WARRANTY OF ANY KIND. MICROSOFT 
FURTHER DISCLAIMS ALL IMPLIED WARRANTIES INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRAN
TIES OF MERCHANTABILITY OR OF FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK ARISING OUT OF 
THE USE OR PERFORMANCE OF THE SOFTWARE AND DOCUMENTATION REMAINS WITH YOU. 

IN NO EVENT SHALL MICROSOFT, ITS AUTHORS, OR ANYONE ELSE INVOLVED IN THE CREATION, PRODUCTION, 
OR DELIVERY OF THE SOFTWARE BE LIABLE FOR ANY DAMAGES WHATSOEVER (INCLUDING,. WITHOUT LIMI
TATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMA
TION, OR OTHER PECUNIARY LOSS) ARISING OUT OF THE USE OF OR INABILITY TO USE THE SOFTWARE OR 
DOCUMENTA TION, EVEN IF MICROSOFT HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. BECAUSE 
SOME STATES/COUNTRIES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY FOR CONSEQUEN
TIAL OR INCIDENTAL DAMAGES, THE ABOVE LIMITATION MAY NOT APPLY TO YOU. 

U.S. GOVERNMENT RESTRICTED RIGHTS 
The SOFTWARE and documentation are provided with RESTRICTED RIGHTS. Use, duplication, or disclosure by the Government is sub
ject to restrictions as set forth in subparagraph (c)(1)(ii) of The Rights in Technical Data and Computer Software clause at DFARS 252.227-
7013 or subparagraphs (c)(I) and (2) of the Commercial Computer Software - Restricted Rights 48 CFR 52.227-19, as applicable. 
Manufacturer is Microsoft Corporation, One Microsoft Way, Redmond, WA 98052-6399. 
If you acquired this product in the United States, this Agreement is governed by the laws of the State of Washington. 
Should you have any questions concerning this Agreement, or if you desire to contact Microsoft Press for any reason, please write: 
Microsoft Press, One Microsoft Way, Redmond, WA 98052-6399. 



Inside 
VISUal C+-f . ~,~'" ~~ .... ' 

for Version '5 ;·O" ' 
, 1 , 

I • .AI • • • • • • • • • • • • • • • • 
, ( 

A veteran Ins~der's guide to programming 
for 32·blt Wln·dows· platfonns the 
application-building wizards and tools of 
Microsoft's popular development environment. 

"Kruglinski's book has already 
become the standard text for VC++." 

Visual Basic4t Programmer's Journal r 
• • 1, ' 

Building on the solid achievements of three previous ert1\' ons, INSIDE 

VISUAL C++ presents detailed and comprehensive coverage of the 

Visual C++ development system and the intricacies of 32-bit 

programming for the Windows operating system. This book offers by 

far the best overall explanation of the capabilities of Microsoft's 

powerful and complex aevelopment tool. 

Beginning with a technical overview of Windows, Visual C++, and the 

application framework, INSIDE VISUAL a.-+" ~over~: 
• Fundamentals-event handling, GDI, dialog boxes, memory 

management, SDI and MDI, printing, and help 

• Advanced topics-multithreading, DIBs, ODBC, and DLLs 

• ActiyeX~-creating document objects and ActiveX.controls, COM, 
Automation, and using wizards and compiler extensions that 
support COM 

• C++ programming for the Internet-Winsock, MFC Winlnet, and 
ISAPI extension programs for Microsoft4t Internet Information Server 

U.S.A. $49.99 
U.K. £46.99 [V.A.T. included] 

Canada $66.99 

7 90145 15652 5 

The companion CD 
:.pc1udes all the source 
code files and sample 
applications In this book. 

Microsoft Windows 95 or 

Microsoft Windows N'f® version 
4.0 operating system and 

About the Author: 
David Kruglinski was part of the 

team that originally created 

Microsoft Visual C++. As head 

of\is own consulting firm, he 

lf~ctures and teaches classes 
i worldwide on advanced C++ 

programming topics. 



Designed for 

Microsoft
WindowsNT
Windows"95 


