
Des igned for

Microsoft"
WindowsNTe

Windows·95

Complete documentation for
Microsoft Visual C++ version 5.0

MFC Library Reference,
Part 2

Microsoft Press

MFC Library Reference,
Part 2·

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 1997 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted
in any form or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Microsoft Visual C++ MFC Library Reference I Microsoft Corporation.

p. cm.
Includes index.
ISBN 1-57231-519-9
1. C++ (Computer program language) 2. Microsoft Visual C++.

3. Microsoft foundation class library. I. Microsoft Corporation.
QA76.73.CI53M535 1997
005.26'8--dc21 97-2421

CIP

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QMQM 2 1 0 9 8 7

Distributed to the book trade in Canada by Macmillan of Canada, a division of Canada Publishing
Corporation.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further
information about international editions, contact your local Microsoft Corporation office. Or contact
Microsoft Press International directly at fax (206) 936-7329.

Macintosh and TrueType are registered trademarks of Apple Computer, Inc. FoxPro, Microsoft,
Microsoft Press, MS, MS-DOS, Visual Basic, Visual C++, Win32, Windows, and Windows NT are
registered trademarks of Microsoft Corporation. Other product and company names mentioned herein
may be the trademarks of their respective owners.

Acquisitions Editor: Eric Stroo
Project Editor: Maureen Williams Zimmerman

Contents

Part 1
Introduction xi

Class Library Overview 1
About the Microsoft Foundation Classes 1

Root Class: CObject 4

MFC Application Architecture Classes 5

Window, Dialog, and Control Classes 10
Drawing and Printing Classes 17

Simple Data Type Classes 19

Array, List, and Map Classes 20

File and Database Classes 22

Internet and Networking Classes 25

OLE Classes 27

Debugging and Exception Classes 32

Alphabetical Reference to the Microsoft Foundation Class Library 35
CAnimateCtrl 35

CArchive 40

CArchiveException 59

CArray 61
CAsyncMonikerFile 71

CAsyncSocket 80

CBitmap 113

CBitmapButton 123

CBrush 127

CButton 136

CByteArray 145

CCachedDataPathProperty 147

CCheckListBox 149

CClientDC 156

CCmdTarget 158

iii

Contents

iv

CCmdUI 168

CColorDialog 172

CComboBox 177

CCommandLineInfo 202

CCommonDialog 208

CConnectionPoint 210

CControlBar 214

CCreateContext 222

CCriticalSection 224

CCtrlView 227

CDaoDatabase 229

CDaoException 251

CDaoFieldExchange 256

CDaoQuery Def 260

CDaoRecordset 280

CDaoRecordView 348

CDaoTableDef 354

CDaoWorkspace 378

CDatabase 402
CDataExchange 419

CDataPathProperty 423

CDBException 427

CDBVariant 431

CDC 436

CDialog 563

CDialogBar 575

CDocltem 577

CDockState 579

CDocObjectServer 582

CDocObjectServerItem 586

CDocTemplate 589

CDocument 601

CDragListBox 620

CDumpContext 624

CDWordArray 629

CEdit 631

CEditView 653

CEvent 663

CException 667

Contents

CFieldExchange 672
CFile 676

CFileDialog 694
CFileException 704
CFileFind 709

CFindReplaceDialog 721
CFont 728
CFontDialog 737

CFontHolder 743

CFormView 747
CFrameWnd 751
CFtpConnection 770

CFtpFileFind 780

CGdiObject 783
CGopherConnection 790
CGopherFile 794

CGopherFileFind 796
CGopherLocator 800

CHeaderCtrl 803
CHotKeyCtrl 810
CHtmlStream 814

CHttpConnection 822

CHttpFile 825
CHttpFilter 833
CHttpFilterContext 844

CHttpServer 850

CHttpServerContext 860
CImageList 868

CIntemetConnection 881
CIntemetException 884

CIntemetFile 886
CIntemetSession 893
CList 909

CListBox 920

CListCtrl 945
CListView 976
CLongBinary 978

CMap 980

CMapPtrToPtr 986

v

Contents

vi

CMapPtrToWord 988

CMapStringToOb 990

CMapStringToPtr 998
CMapStringToString 1000

CMap WordToOb 1002

CMap WordToPtr 1004
CMDIChildWnd 1006
CMDIFrameWnd 1011

CMemFile 1019
CMemoryException 1025

CMemoryState 1026
CMenu 1030
CMetaFileDC 1053

CMiniFrameWnd 1058
CMonikerFile 1060
CMultiDocTemplate 1064

CMultiLock 1067

CMutex 1071
CN otSupportedException 1073
CObArray 1074

CObject 1091
CObList 1099

COleBusyDialog 1116
COleChangeIconDialog 1120
COleChangeSourceDialog 1124

COleClientItem 1129

COleCmdUI 1173
COleControl 1176
COleControlModule 1256

COleConvertDialog 1257
COleCurrency 1263

COleDataObject 1275
COleDataSource 1282
COleDateTime 1293

Index

Part 2
COleDateTimeSpan 1317
COleDialog 1332
COleDispatchDriver 1334
COleDispatchException 1341
COleDocument 1344
COleDropSource 1356
COleDropTarget 1359
COleException 1366
COlelnsertDialog 1368
COleIPFrameWnd 1374
COleLinkingDoc 1377
COleLinksDialog 1381
COleMessageFilter 1384
COleObjectFactory 1391
COlePasteSpecialDialog 1398
COlePropertiesDialog 1405
COlePropertyPage 1410
COleResizeBar 1417
COleSafeArray 1419
COleServerDoc 1431
COleServerItem 1450
COleStreamFile 1470
COleTemplateServer 1474
COleUpdateDialog 1477
COleVariant 1479
CPageSetupDialog 1487
CPaintDC 1495
CPalette 1497
CPen 1503
CPictureHolder 1510
CPoint 1515
CPrintDialog 1521
CPrintInfo 1530
CProgressCtrl 1538
CPropertyPage 1542
CPropertySheet 1551

Contents

vii

Contents

viii

CPropExchange 1563
CPtrArray 1568

CPtrList 1570
CRecentFileList 1572
CRecordset 1576

CRecordView 1633

CRect 1639
CRectTracker 1657
CResourceException 1666

CRgn 1667
CRichEditCntrItem 1681
CRichEditCtrl 1683
CRichEditDoc 1711

CRichEditView 1714

CRuntimeClass 1735
CScrollBar 1737
CScrollView 1744

CSemaphore 1752
CSharedFile 1754
CSingleDocTemplate 1757

CSingleLock 1760
CSize 1763
CSliderCtrl 1767

CSocket 1779
CSocketFile 1785

CSpinButtonCtrl 1787
CSplitterWnd 1794

CStatic 1812
CStatusBar 1818
CStatusBarCtrl 1825

CStdioFile 1833

CString 1837
CStringArray 1863

CStringList 1865

CSyncObject 1867

CTabCtrl 1870
CTime 1882

CTimeSpan 1894
CToolBar 1901

CToolBarCtrl 1913

CToolTipCtrl 1940
CTreeCtrl 1948
CTree View 1974
CTypedPtrArray 1976

CTypedPtrList 1981

CTypedPtrMap 1989
CUIntArray 1993
CUserException 1995

CView 1997
CWaitCursor 2017
CWinApp 2021

CWindowDC 2064
CWinThread 2066

CWnd 2078
CWordArray 2277

MFC Macros and Globals 2279
Data Types 2281
Type Casting of MFC Class Objects 2282
Run-Time Object Model Services 2282

Diagnostic Services 2283

Exception Processing 2285
CString Formatting and Message-Box Display 2287

Application Information and Management 2287

Standard Command and Window IDs 2288

Collection Class Helpers 2289
Record Field Exchange Functions 2290

Dialog Data Exchange Functions for CRecordView and CDaoRecordView 2292
Dialog Data Exchange Functions for OLE Controls 2293

Database Macros 2294
DAO Database Engine Initialization and Termination 2295
OLE Initialization 2295

Application Control 2295

Dispatch Maps 2296
Variant Parameter Type Constants 2296

Type Library Access 2297

Property Pages 2298
Event Maps 2299

Contents

ix

Contents

x

Event Sink Maps 2300

Connection Maps 2300

Registering OLE Controls 2301

Class Factories and Licensing 2302

Persistence of OLE Controls 2303

Internet Server API (lSAPI) Parse Maps 2303

Internet Server API (IS API) Diagnostic Macros 2304

Macros, Global Functions, and Global Variables 2304

ClassWizard Comment Delimiters 2483

Structures, Styles, and Callback Functions 2489
Structures Used by MFC 2489

Styles Used by MFC 2564

Callback Functions Used by MFC 2575

Index

COleDateTimeSpan
COleDateTimeSpan does not have a base class.

A COleDateTimeSpan object represents a relative time, a time span. A
COleDateTimeSpan keeps time in days.

COleDateTimeSpan is used with its companion class COleDateTime.
COleDateTime encapsulates the DATE data type of OLE automation.
COleDateTime represents absolute time values. All COleDateTime calculations
involve COleDateTimeSpan values. The relation between these classes is analogous
to the one between CTime and CTimeSpan.

For more information on the COleDateTime and COleDateTimeSpan classes, see
the article "Date and Time: Automation Support" in Visual C++ Programmer's Guide
online.

#include <afxdisp.h>

COleDateTimeSpan Class Members
Constructor

COleDateTimeSpan

Attributes

GetStatus

SetStatus

GetDays

GetHours

GetMinutes

GetSeconds

GetTotalDays

GetTotalHours

GetTotalMinutes

GetTotalSeconds

Constructs a COleDateTimeSpan object.

Gets the status (validity) of this COleDateTimeSpan object.

Sets the status (validity) of this COleDateTimeSpan object.

Returns the day portion of the span this COleDateTimeSpan object
represents.

Returns the hour portion of the span this COleDateTimeSpan object
represents.

Returns the minute portion of the span this COleDateTimeSpan
object represents.

Returns the second portion of the span this COleDateTimeSpan
object represents.

Returns the number of days this COleDateTimeSpan object
represents.

Returns the number of hours this COleDateTimeSpan object
represents.

Returns the number of minutes this COleDateTimeSpan object
represents.

Returns the number of seconds this COleDateTimeSpan object
represents.

COleDateTimeSpan

1317

COleDateTimeSpan: :COleDateTimeSpan

Operations

SetDateTimeSpan

Format

Operators

operator double

operator =
operator +, •

operator +=, .=

operator ==, <, <=

Data Members

Dump/Archive

operator «

operator »

Sets the value of this COleDateTimeSpan object.

Generates a formatted string representation of a COleDateTimeSpan
object.

Converts this COleDateTimeSpan value to a double.

Copies a COleDateTimeSpan value.

Add, subtract, and change sign for COleDateTimeSpan values.

Add and subtract a COleDateTimeSpan value from this
COleDateTimeSpan value.

Compare two COleDateTimeSpan values.

Contains the underlying double for this COleDateTimeSpan
object.

Contains the status of this COleDateTimeSpan object.

Outputs a COleDateTimeSpan value to CArchive or
CDumpContext.

Inputs a COleDateTimeSpan object from CArchive.

Member Functions
COleDateTimeSpan: :COleDateTimeSpan

COleDateTimeSpan();
COleDateTimeSpan(const COleDateTimeSpan& dateSpanSrc);
COleDateTimeSpan(double dblSpanSrc);
COleDateTimeSpan(long lDays, int nHours, int nMins, int nSecs);

Parameters

1318

dateSpanSrc An existing COleDateTimeSpan object to be copied into the new
COleDateTimeSpan object.

dblSpanSrc The number of days to be copied into the new COleDateTimeSpan
object.

lDays, nHours, nMins, nSecs Indicate the day and time values to be copied into the
new COleDateTimeSpan object.

COleDateTimeSpan: : Format

Remarks

Example

All of these constructors create new COleDateTimeSpan objects initialized to the
specified value. A brief description of each of these constructors follows:

• COleDateTimeSpan() Constructs a COleDateTimeSpan object initialized to O.

• COleDateTimeSpan(dateSpanSrc) Constructs a COleDateTimeSpan object
from an existing COleDateTimeSpan object.

• COleDateTimeSpan(dblSpanSrc) Constructs a COleDateTimeSpan object
from a floating-point value.

• COleDateTimeSpan(IDays, nHours, nMins, nSecs) Constructs a
COleDateTimeSpan object initialized to the specified numerical values.

The status of the new COleDateTimeSpan object is set to valid.

For more information about the bounds for COleDateTimeSpan values, see the
article "Date and Time: Automation Support" in Visual C++ Programmer's Guide
online.

COleDateTimeSpan spanOne(2.75): II 2 days and 18 hours
COleDateTimeSpan spanTwo(2, 18, 0, 0): II 2 days and 18 hours
COleDateTimeSpan spanThree(3, -6, 0, 0): II 2 days and 18 hours

See Also: COleDateTimeSpan: :operator =, COleDateTimeSpan: :GetStatus,
COleDateTimeSpan: :m_span, COleDateTimeSpan: :m_status

COleDateTimeSpan: : Format
CString Format(LPCTSTR pFormat) const;
CString Format(UINT nID) const;

Return Value
A CString that contains the formatted date/time-span value.

Parameters
pFormat A formatting string similar to the printf formatting string. Formatting

codes, preceded by a percent (%) sign, are replaced by the corresponding
COleDateTimeSpan component. Other characters in the formatting string are
copied unchanged to the returned string. See the run-time function strftime for
details. The value and meaning of the formatting codes for Format are listed
below:

• %D Total days in this COleDateTimeSpan

• %H Hours in the current day

• %M Minutes in the current hour

1319

COleDateTimeSpan: : GetDays

Remarks

• %S Seconds in the current minute

• % % Percent sign

nID The resource ID for the format-control string.

Call these functions to create a formatted representation of the time-span value. If the
status of this COleDateTimeSpan object is null, the return value is an empty string. If
the status is invalid, the return string is specified by the string resource
IDS_INVALID_DATETIMESPAN.

A brief description of the forms for this function follows:

Format(pFormat) This form formats the value using the format string which
contains special formatting codes that are preceded by a percent sign (%), as in
printf. The formatting string is passed as a parameter to the function.

Format(nID) This form formats the value using the format string which contains
special formatting codes that are preceded by a percent sign (%), as in printf. The
formatting string is a resource. The ID of this string resource is passed as the
parameter.

For more information about the formatting codes used in this function, see strftime,
wcsftime in the Run-Time Library Reference. For a listing of locale ID values, see the
section "Supporting Multiple National Languages" in the Win32 SDK OLE
Programmer's Reference.

See Also: COleDateTimeSpan: : GetStatus

COleDateTimeSpan: : GetDays
long GetDays() const;

Return Value

Remarks

1320

The day portion of this date/time-span value.

Call this member function to retrieve the day portion of this date/time-span value.

The return values from this function range between approximately -3,615,000 and
3,615,000.

For other functions that query the value of a COleDateTimeSpan object, see the
following member functions:

• GetHours

• GetMinutes

• GetSeconds

• GetTotalDays

COleDateTimeSpan: : GetMinutes

• GetTotalHours

• GetTotalMinutes

• GetTotalSeconds

See Also: COleDateTimeSpan: :SetDateTimeSpan

COleDateTimeSpan:: GetHours
long GetHours() const;

Return Value

Remarks

The hours portion of this date/time-span value.

Call this member function to retrieve the hour portion of this date/time-span value.

The return values from this function range between -23 and 23.

For other functions that query the value of a COleDateTimeSpan object; see the
following member functions:

• GetDays

• GetMinutes

• GetSeconds

• GetTotalDays

• GetTotalHours

• GetTotalMinutes

• GetTotalSeconds

See Also: COleDateTimeSpan: :SetDateTimeSpan

COleDateTimeSpan: : GetMinutes
long GetMinutes() const;

Return Value

Remarks

The minutes portion of this date/time-span value.

Call this member function to retrieve the minute portion of this date/time-span value.

The return values from this function range between -59 and 59.

1321

COleDateTimeSpan::GetSeconds

For other functions that query the value of a COleDateTimeSpan object, see the
following member functions:

• GetDays

• GetHours

• GetSeconds

• GetTotalDays

• GetTotalHours

• GetTotalMinutes

• GetTotalSeconds

See Also: COleDateTimeSpan: :SetDateTimeSpan

COleDateTimeSpan:: GetSeconds
long GetSeconds() const;

Return Value

Remarks

The seconds portion of this date/time-span value.

Call this member function to retrieve the second portion of this date/time-span value.

The return values from this function range between -59 and 59.

For other functions that query the value of a COleDateTimeSpan object, see the
following member functions:

• GetDays

• GetHours

• GetMinutes

• GetTotalDays

• GetTotalHours

• GetTotalMinutes

• GetTotalSeconds

See Also: COleDateTimeSpan: :SetDateTimeSpan

COleDateTimeSpan: : GetS tatus
DateTimeSpanStatus GetStatus() const;

Return Value
The status of this COleDateTimeSpan value.

1322

CO leDateTimeSpan:: GetTotalDays

Remarks
Call this member function to get the status (validity) of this COleDateTimeSpan
object.

The return value is defined by the DateTimeSpanStatus enumerated type, which is
defined within the COleDateTimeSpan class.

enum DateTimeSpanStatus{

} ;

valid - 0,
invalid - 1,
null - 2,

For a brief description of these status values, see the following list:

• COleDateTimeSpan: :valid Indicates that this COleDateTimeSpan object is
valid.

• COleDateTimeSpan::invalid Indicates that this COleDateTimeSpan object is
invalid; that is, its value may be incorrect.

• COleDateTimeSpan: : null Indicates that this COleDateTimeSpan object is null,
that is, that no value has been supplied for this object. (This is "null" in the
database sense of "having no value," as opposed to the C++ NULL.)

The status of a COleDateTimeSpan object is invalid in the following cases:

• If this object has experienced an overflow or underflow during an arithmetic
assignment operation, namely, += or -=.

• If an invalid value was assigned to this object.

• If the status of this object was explicitly set to invalid using SetStatus.

For more information about the operations that may set the status to invalid, see
COleDateTimeSpan::operator +, - and COleDateTimeSpan::operator +=, -=.

For more information about the bounds for COleDateTimeSpan values, see the
article "Date and Time: Automation Support" in Visual C+ + Programmer's Guide
online.

See Also: COleDateTimeSpan: :SetStatus, COleDateTimeSpan: : m_status

COleDateTimeSpan:: GetTotalDays
double GetTotalDays() const;

Return Value
This date/time-span value expressed in days.

Remarks
Call this member function to retrieve this date/time-span value expressed in days.

1323

COleDateTimeSpan: : GetTotalHours

The return values from this function range between approximately -3.65e6 and
3.65e6.

For other functions that query the value of a COleDateTimeSpan object, see the
following member functions:

• GetDays

• GetHours

• GetMinutes

• GetSeconds

• GetTotalHours

• GetTotalMinutes

• GetTotalSeconds

See Also: COleDateTimeSpan: :SetDateTimeSpan,
COleDateTimeSpan: :operator double

COleDateTimeSpan: : GetTotalHours
double GetTotalHours() const;

Return Value

Remarks

1324

This date/time-span value expressed in hours.

Call this member function to retrieve this date/time-span value expressed in hours.

The return values from this function range between approximately -8.77e7 and
8.77e7.

For other functions that query the value of a COleDateTimeSpan object, see the
following member functions:

• GetDays

• GetHours

• GetMinutes

• GetSeconds

• GetTotalDays

• GetTotalMinutes

• GetTotalSeconds

See Also: COleDateTimeSpan: :SetDateTimeSpan

CO leDateTimeS pan:: GetTotalSeconds

COleDateTimeSpan: : GetTotalMinutes
double GetTotalMinutes() const;

Return Value

Remarks

This date/time-span value expressed in minutes.

Call this member function to retrieve this date/time-span value expressed in minutes.

The return values from this function range between approximately -5.26e9 and
5.26e9.

For other functions that query the value of a COleDateTimeSpan object, see the
following member functions:

• GetDays

• GetHours

• GetMinutes

• GetSeconds

• GetTotalDays

• GetTotalHours

• GetTotalSeconds

See Also: COleDateTimeSpan: :SetDateTimeSpan

COleDateTimeSpan: : GetTotalSeconds
double GetTotalSeconds() const;

Return Value

Remarks

This date/time-span value expressed in seconds.

Call this member function to retrieve this date/time-span value expressed in seconds.

The return values from this function range between approximately -3.16ell to
3.16e11.

For other functions that query the value of a COleDateTimeSpan object, see the
following member functions:

• GetDays

• GetHours

• GetMinutes

• GetSeconds

1325

COleDateTimeSpan: :SetDateTimeSpan

• GetTotalDays

• GetTotalHours

• GetTotalMinutes

See Also: COleDateTimeSpan: :SetDateTimeSpan

COleDateTimeSpan: : SetDateTimeSpan
void SetDateTimeSpan(long IDays, int nHours, int nMins, int nSecs);

Parameters

Remarks

Example

IDays, nHours, nMins, nSecs Indicate the date-span and time-span values to be
copied into this COleDateTimeSpan object.

Call this member function to set the value of this date/time-span value.

For functions that query the value of a COleDateTimeSpan object, see the following
member functions:

• GetDays

• GetHours

• GetMinutes

• GetSeconds

• GetTotalDays

• GetTotalHours

• GetTotalMinutes

• GetTotalSeconds

COleDateTimeSpan spanOne;
COleDateTimeSpan spanTwo;
spanOne.SetDateTimeSpan(0, 2, 45, 0); II 2 hours and 45 seconds
spanTwo.SetDateTimeSpan(0, 3, -15, 0); II 2 hours and 45 seconds

See Also: COleDateTimeSpan: : GetStatus, COleDateTimeSpan: :m_span

COleDateTimeSpan: :SetStatus
void SetStatus(DateTimeSpanStatus nStatus);

Parameters
nStatus The new status value for this COleDateTimeSpan object.

1326

COleDateTimeSpan: : operator =

Remarks
Call this member function to set the status (validity) of this COleDateTimeSpan
object. The nStatus parameter value is defined by the DateTimeSpanStatus
enumerated type, which is defined within the COleDateTimeSpan class.

enum DateTimeSpanStatus{

} ;

valid - 0,
invalid - 1,
null - 2,

For a brief description of these status values, see the following list:

• COleDateTimeSpan: :valid Indicates that this COleDateTimeSpan object is
valid.

• COleDateTimeSpan::invalid Indicates that this COleDateTimeSpan object is
invalid; that is, its value may be incorrect.

• COleDateTimeSpan: :null Indicates that this COleDateTimeSpan object is null,
that is, that no value has been supplied for this object. (This is "null" in the
database sense of "having no value," as opposed to the C++ NULL.)

Caution This function is for advanced programming situations. This function does not alter the
data in this object. It will most often be used to set the status to null or invalid. Note that the
assignment operator (operator =) and SetDateTimeSpan do set the status of the object based
on the source value(s).

See Also: COleDateTimeSpan::GetStatus, COleDateTimeSpan::m_status

Operators
COleDateTimeSpan::operator =

Remarks

const COleDateTimeSpan& operator=(double dbISpanSrc);
const COleDateTimeSpan& operator=(const COleDateTimeSpan& dateSpanSrc);

These overloaded assignment operators copy the source date/time-span value into this
COleDateTimeSpan object.

See Also: COleDateTimeSpan:: COleDateTimeSpan

1327

COleDateTimeSpan::operator +. -

COleDateTimeSpan::operator +, -

Remarks

COleDateTimeSpan operator+(const COleDateTimeSpan& dateS pan) const;
COleDateTimeSpan operator-(const COleDateTimeSpan& dateS pan) const;
COleDateTimeSpan operator-() const;

The first two operators let you add and subtract date/time-span values. The third lets
you change the sign of a date/time-span value.

If either of the operands is null, the status of the resulting COleDateTimeSpan value
is null.

If either of the operands is invalid and the other is not null, the status of the resulting
COleDateTimeSpan value is invalid.

For more information on the valid, invalid, and null status values, see the m_status
member variable.

See Also: COleDateTimeSpan::operator +=,-=

COleDateTimeSpan: : operator +=, -

Remarks

const COleDateTimeSpan& operator+=(const COleDateTimeSpan dateSpan);
const COleDateTimeSpan& operator-=(const COleDateTimeSpan dateSpan);

These operators let you add and subtract date/time-span values from this
COleDateTimeSpan object.

If either of the operands is null, the status of the resulting COleDateTimeSpan value
is null.

If either of the operands is invalid and the other is not null, the status of the resulting
COleDateTimeSpan value is invalid.

For more information on the valid, invalid, and null status values, see the m_status
member variable.

See Also: COleDateTimeSpan::operator +,-

COleDateTimeSpan::operator double

Remarks

1328

operator double() const;

This operator returns the value of this COleDateTimeSpan value as a floating-point
number of days.

COleDateTimeSpan::operator «,»

See Also: COleDateTimeSpan: : GetTotalDays,
COleDateTimeSpan: :SetDateTimeSpan, COleDateTimeSpan: :m_span

COleDateTimeSpan Relational Operators

Remarks

Example

BOOL operator==(const COleDateTimeSpan& dateSpan) const;
BOOL operator!=(const COleDateTimeSpan& dateSpan) const;
BOOL operator« const COleDateTimeSpan& dateSpan) const;
BOOL operator>(const COleDateTimeSpan& dateSpan) const;
BOOL operator<=(const COleDateTimeSpan& dateSpan) const;
BOOL operator>=(const COleDateTimeSpan& dateSpan) const;

These operators compare two date/time-span values and return nonzero if the
condition is true; otherwise O.

Note The return value of the ordering operations (<, <=, >, >=) is undefined if the status of
either operand is null or invalid. The equality operators (==, !=) consider the status of the
operands.

COleDateTimeSpan spanOne(3, 12, 0, 0) ; II 3 days and 12 hours
COleDateTimeSpan spanTwo(spanOne); /I 3 days and 12 hours
BOOl b;
b = spanOne ~= spanTwo; II TRUE

spanTwo.SetStatus(COleDateTimeSpan::invalid);
b - spanOne == spanTwo; II FALSE, different status
b = spanOne != spanTwo; II TRUE, different status
b = spanOne < spanTwo; II FALSE, same value
b - spanOne > spanTwo; II FALSE, same value
b = spanOne <= spanTwo; II TRUE, same value
b = spanOne >= spanTwo; II TRUE, same value

Note The last four lines of the preceding example will ASSERT in debug mode.

COleDateTimeSpan::operator «, »

Remarks

friend CDumpContext& AFXAPI operator«(CDumpContext& dc,
.. COleDateTimeSpan dateSpan);

friend CArchive& AFXAPI operator«(CArchive& ar, COleDateTimeSpari dateSpan);
friend CArchive& AFXAPI operator»(CArchive& ar, COleDateTimeSpan& dateSpan);

The COleDateTimeSpan insertion «<) operator supports diagnostic dumping and
storing to an archive. The extraction (») operator supports loading from an archive.

See Also: CDumpContext, CArchive

1329

COleDateTimeSpan: :m_span

Data Members
COleDateTimeSpan: :m_span
Remarks

The underlying double value for this COleDateTime object. This value expresses the
date/time-span in days.

Caution Changing the value in the double data member will change the value of this
COleDateTimeSpan object. It does not change the status of this COleDateTimeSpan object.

See Also: COleDateTimeSpan: :COleDateTimeSpan,
COleDateTimeSpan: :SetDateTimeSpan, COleDateTimeSpan: :operator double

COleDateTimeSpan: :m_status
Remarks

1330

The type for this data member is the enumerated type DateTimeSpanStatus, which is
defined within the COleDateTimeSpan class.

enum DateTimeSpanStatus{

} :

valid = 0,
invalid = 1.
null = 2,

For a brief description of these status values, see the following list:

• COleDateTimeSpan: : valid Indicates that this COleDateTimeSpan object is
valid.

• COleDateTimeSpan: : invalid Indicates that this COleDateTimeSpan object is
invalid; that is, its value may be incorrect.

• COleDateTimeSpan: : null Indicates that this COleDateTimeSpan object is null,
that is, that no value has been supplied for this object. (This is "null" in the
database sense of "having no value," as opposed to the C++ NULL.)

The status of a COleDateTimeSpan object is invalid in the following cases:

• If this object has experienced an overflow or underflow during an arithmetic
assignment operation, namely, += or -=.

• If an invalid value was assigned to this object.

• If the status of this object was explicitly set to invalid using SetStatus.

COleDateTimeSpan::m_status

For more information about the operations that may set the status to invalid, see
COleDateTimeSpan::operator +, - and COleDateTimeSpan::operator +=, -=.

Caution This data member is for advanced programming situations. You should use the inline
member functions GetStatus and SetStatus. See SetStatus for further cautions regarding
explicitly setting this data member.

For more information about the bounds for COleDateTimeSpan values, see the
article "Date and Time: Automation Support" in Visual C++ Programmer's Guide
online.

See Also: COleDateTimeSpan: :GetStatus, COleDateTimeSpan: :SetStatus

1331

COleDialog

COleDialog

The COleDialog class provides functionality common to dialog boxes for OLE.
The Microsoft Foundation Class Library provides several classes derived from
COleDialog.

These are:

• COleInsertDialog

• COleConvertDialog

• COleChangeIconDialog

• COleLinksDialog

• COleBusyDialog

• COleUpdateDialog

• COlePasteSpecialDialog

• COlePropertiesDialog

• COleChangeSourceDialog

For more information about OLE-specific dialog boxes, see the article "Dialog Boxes
in OLE" in Visual C++ Programmer's Guide online.

#include <afxodIgs.h>

COleDialog Class Members
Operations

GetLastError Gets the error code returned by the dialog box.

1332

Member Functions
COleQialog::GetLastError

UINT GetLastError() const;

Return Value

Remarks

The error codes returned by GetLastError depend on the specific dialog box
displayed.

Call the GetLastError member function to get additional error information when
DoModal returns IDABORT. See the DoModal member function in the derived
classes for information about specific error messages.

See Also: COleBusyDialog::DoModal, COleChangeIconDialog::DoModal,
COleChangeSourceDialog: :DoModal, COleConvertDialog: :DoModal,
COleInsertDialog: :DoModal, COleLinksDialog: :DoModal,
COlePasteSpecialDialog: :DoModal, COlePropertiesDialog: :DoModal,
COleUpdateDialog: :DoModal

COleDialog: : GetLastError

1333

COleDispatchDriver

COleDispatchDri ver
COleDispatchDriver does not have a base class.

The COleDispatchDriver class implements the client side of OLE automation. OLE
dispatch interfaces provide access to an object's methods and properties. Member
functions of COleDispatchDriver attach, detach, create, and release a dispatch
connection of type IDispatch. Other member functions use variable argument lists to
simplify calling IDispatch::lnvoke.

For more information, see IDispatch and IDispatch::lnvoke in the Win32 SDK OLE
Programmer's Reference.

This class can be used directly, but it is generally used only by classes created by
Class Wizard. When you create new C++ classes by importing a type library,
ClassWizard derives the new classes from COleDispatchDriver.

For more information on using COleDispatchDriver, see the following articles in
Visual c++ Programmer's Guide online:

• Automation Clients

• Automation Servers

• ClassWizard: Automation Support

#include <afxdisp.h>

See Also: CCmdTarget

COleDispatchDriver Class Members

1334

Data Members

m_bAutoRelease

Construction

COleDispatchDriver

Operations

CreateDispatch

AttachDispatch

DetachDispatch

Specifies whether to release the IDispatch during ReleaseDispatch
or object destruction.

Indicates the pointer to the IDispatch interface attached to this
COleDispatchDriver.

Constructs a COleDispatchDriver object.

Creates an IDispatch connection and attaches it to the
COleDispatchDriver object.

Attaches an IDispatch connection to the COleDispatchDriver
object.

Detaches an IDispatch connection, without releasing it.

COleDispatchDriver: :COleDispatchDriver

Operations (continued)

ReleaseDispatch

InvokeHelper

SetProperty

GetProperty

Releases an IDispatch connection.

Helper for calling automation methods.

Sets an automation property.

Gets an automation property.

Member Functions
COleDispatchDriver: : AttachDispatch

void AttachDispatch(LPDISPATCH lpDispatch, BOOL bAutoRelease = TRUE);

Parameters

Remarks

lpDispatch Pointer to an OLE IDispatch object to be attached to the
COleDispatchDriver object.

bAutoRelease Specifies whether the dispatch is to be released when this object goes
out of scope.

Call the AttachDispatch member function to attach an IDispatch pointer to the
COleDispatchDriver object. This function releases any IDispatch pointer that is
already attached to the COleDispatchDriver object.

See Also: COleDispatchDriver: :DetachDispatch,
COleDispatchDriver: : ReleaseDispatch, COleDispatchDriver:: CreateDispatch,
COleDispatchDriver: : m_lpDispatch , COleDispatchDriver: :m_bAutoRelease

COleDispatchDri ver: : COleDispatchDri ver
COleDispatchDriver();
COleDispatchDriver(LPDISPATCH lpDispatch, BOOL bAutoRelease = TRUE);
COleDispatchDriver(const COleDispatchDriver& dispatchSrc);

Parameters
lpDispatch Pointer to an OLE IDispatch object to be attached to the

COleDispatchDriver object.

bAutoRelease Specifies whether the dispatch is to be released when this object goes
out of scope.

dispatchSrc Reference to an existing COleDispatchDriver object.

1335

COleDispatchDriver: :CreateDispatch

Remarks
Constructs a COleDispatchDriver object. The form
COleDispatchDriver(LPDISPATCH IpDispatch, BOOL bAutoRelease = TRUE)
connects the IDispatch interface.

The form COleDispatchDriver(const COleDispatchDriver& dispatchSrc) copies an
existing COleDispatchDriver object and increments the reference count.

The form COleDispatchDriver() creates a COleDispatchDriver object but does not
connect the IDispatch interface. Before using COleDispatchDriver() without
arguments, you should connect an IDispatch to it using either
COleDispatchDriver::CreateDispatch or COleDispatchDriver::AttachDispatch.

See Also: COleDispatchDriver: :AttachDispatch,
COleDispatchDriver:: CreateDispatch

COleDispatchDriver: :CreateDispatch
BOOL CreateDispatch(REFCLSID clsid, COleException* pError = NULL);
BOOL CreateDispatch(LPCTSTR IpszProgID, COleException* pError = NULL);

Return Value
Nonzero on success; otherwise O.

Parameters

Remarks

clsid Class ID of the IDispatch connection object to be created.

pError Pointer to an OLE exception object, which will hold the status code resulting
from the creation.

ipszProgID Pointer to the programmatic identifier, such as "Excel.Document.5", of
the automation object for which the dispatch object is to be created.

Creates an IDispatch object and attaches it to the COleDispatchDriver object.

See Also: COleDispatchDriver: :DetachDispatch,
COleDispatchDriver: : ReleaseDispatch, COleDispatchDriver: :AttachDispatch,
COleException, COleDispatchDriver: :m_lpDispatch

COleDispatchDri ver: : DetachDispatch
LPDISPATCH DetachDispatch();

Return Value
A pointer to the previously attached OLE IDispatch object.

1336

CO leDispatchDri ver: :InvokeHel per

Remarks
Detaches the current IDispatch connection from this object. The IDispatch is not
released.

For more information about the LPDISPATCH type, see IDispatch in the OLE
Programmer's Reference.

See Also: COleDispatchDriver: : ReleaseDispatch,
COleDispatchDriver:: CreateDispatch, COleDispatchDriver: :AttachDispatch,
COleDispatchDriver: :m_lpDispatch

COleDispatchDriver: : GetProperty
void GetProperty(DISPID dwDispID, VARTYPE vtProp, void* pvProp) const;

Parameters

Remarks

dwDispID Identifies the property to be retrieved. This value is usually supplied by
Class Wizard.

vtProp Specifies the property to be retrieved. For possible values, see the Remarks
section for COleDispatchDriver: : InvokeHelper.

pvProp Address of the variable that will receive the property value. It must match the
type specified by vtProp.

Gets the object property specified by dwDispID.

See Also: COleDispatchDriver: :InvokeHelper,
COleDispatchDriver: :SetProperty

COleDispatchDriver: : InvokeHelper
void InvokeHelper(DISPID dwDispID, WORD wFlags, VARTYPE vtRet,

10+ void* pvRet, const BYTE FAR* pbParamlnfo, ...);
throw(COleException);
throw(COleDispatchException);

Parameters
dwDispID Identifies the method or property to be invoked. This value is usually

supplied by Class Wizard.

wFlags Flags describing the context of the call to IDispatch::lnvoke. For possible
values, see the OLE Programmer's Reference.

vtRet Specifies the type of the return value. For possible values, see the Remarks
section.

1337

COleDispatchDriver: :InvokeHelper

Remarks

1338

pvRet Address of the variable that will receive the property value or return value. It
must match the type specified by vtRet.

pbParamlnfo Pointer to a null-terminated string of bytes specifying the types of the
parameters following pbParamlnfo.

Variable list of parameters, of types specified in pbParamlnfo.

Calls the object method or property specified by dwDispID, in the context specified
by wFlags. The pbParamlnfo parameter specifies the types of the parameters passed
to the method or property. The variable list of arguments is represented by ••• in the
syntax declaration.

Possible values for the vtRet argument are taken from the VARENUM enumeration.
Possible values are as follows:

Symbol Return Type

VT_EMPTY void

VT_I2 short

VT_I4 long

VT_R4 float

VT_RS double

VT_CY CY

VT_DATE DATE

VT_BSTR BSTR

VT_DISPATCH LPDISPATCH

VT_ERROR SCODE

VT_BOOL BOOL

VT_VARIANT VARIANT

VT_UNKNOWN LPUNKNOWN

The pbParamlnfo argument is a space-separated list of VTS_ constants. One or more
of these values, separated by spaces (not commas), specifies the function's parameter
list. Possible values are listed with the EVENT_CUSTOM macro.

This function converts the parameters to VARIANTARG values, then invokes the
IDispatch::Invoke method. If the call to Invoke fails, this function will throw an
exception. If the SCODE (status code) returned by IDispatch::Invoke is
DISP _E_EXCEPTION, this function throws a COleException object; otherwise it
throws a COleDispatchException.

For more information, see VARIANTARG, IDispatch, IDispatch::Invoke, and
"Structure of OLE Error Codes" in the Win32 SDK OLE Programmer's Reference.

See Also: COleException, COleDispatchException

COleDispatchDri ver: :m_bAutoRelease

COleDispatchDriver: :ReleaseDispatch

Remarks

void ReleaseDispatch();

Releases the IDispatch connection. If auto release has been set for this connection,
this function calls IDispatch: :Release before releasing the interface.

See Also: COleDispatchDriver: :DetachDispatch,
COleDispatchDriver:: CreateDispatch, COleDispatchDriver: :AttachDispatch,
COleDispatchDriver: :m_lpDispatch, COleDispatchDriver: :m_bAutoRelease

COleDispatchDri ver: : SetProperty
void SetProperty(DISPID dwDispID, VARTYPE vtProp, ...);

Parameters

Remarks

dwDispID Identifies the property to be set. This value is usually supplied by
Class Wizard.

vtProp Specifies the type of the property to be set. For possible values, see the
Remarks section for COleDispatchDriver::lnvokeHelper.

... A single parameter of the type specified by vtProp.

Sets the OLE object property specified by dwDispID.

See Also: COleDispatchDriver::lnvokeHelper,
COleDispatchDriver: : GetProperty

Data Members
COleDispatchDri ver:: m_bAutoRelease
Remarks

If TRUE, the COM object accessed by m_lpDispatch will be automatically released
when ReleaseDispatch is called or when this COleDispatchDriver object is
destroyed.

By default, m_bAutoRelease is set to TRUE in the constructor.

For more information on releasing COM objects, see "Implementing Reference
Counting" and IUnknown::Release in the OLE 2 Programmer's Reference, Volume 1.

See Also: COleDispatchDriver: :AttachDispatch,
COleDispatchDriver: : ReleaseDispatch, COleDispatchDriver: :m_lpDispatch

1339

COleDispatchDri ver: :m_IpDispatch

COleDispatchDriver: :m_IpDispatch
Remarks

1340

The pointer to the IDispatch interface attached to this COleDispatchDriver. The
m_lpDispatch data member is a public variable of type LPDISPATCH.

For more information, see IDispatch in the OLE Programmer's Reference.

See Also: COleDispatchDriver: :AttachDispatch,
COleDispatchDriver::ReleaseDispatch, COleDispatchDriver::CreateDispatch,
COleDispatchDriver: : DetachDispatch

COleDispatchException

CO leDispatchException

The COleDispatchException class handles exceptions specific to the OLE IDispatch
interface, which is a key part of OLE automation.

Like the other exception classes derived from the CException base class,
COleDispatchException can be used with the THROW, THROW_LAST, TRY,
CATCH, AND_CATCH, and END_CATCH macros.

In general, you should call AfxThrowOleDispatchException to create and throw a
COleDispatchException object.

For more information on exceptions, see the articles "Exceptions" and "Exceptions:
OLE Exceptions" in Visual C++ Programmer's Guide online.

#include <afxdisp.h>

See Also: COleDispatchDriver, COleException

COleDispatchException Class Members
Data Members

rn_wCode

rn_strDescription

rn_dwHelpContext

rn_strHeJpFile

rn_strSource

IDispatch-specific error code.

Verbal error description.

Help context for error.

Help file to use with rn_dwHelpContext.

Application that generated the exception.

1341

COleDispatchException: :m_dwHelpContext

Data Members
COleDispatchException: :m_dw HelpContext

Remarks

DWORD m_dwHelpContext;

Identifies a help context in your application's help (.HLP) file. This member is set by
the function AfxThrowOleDispatchException when an exception is thrown.

See Also: COleDispatchException: :m_strDescription,
COleDispatchException: :m_ wCode, AfxThrowOleDispatchException

COleDispatchException: :m_strDescription

Remarks

CString m_strDescription;

Contains a verbal error description, such as "Disk full." This member is set by the
function AfxThrowOleDispatchException when an exception is thrown.

See Also: COleDispatchException: :m_dwHelpContext,
COleDispatchException: :m_ wCode, AfxThrowOleDispatchException

COleDispatchException: :m_strHelpFile

Remarks

CString m_strHelpFile;

The framework fills in this string with the name of the application's help file.

See Also: AfxThrowOleDispatchException

COleDispatchException: : m_strSource

Remarks

1342

CString m_strSource;

The framework fills in this string with the name of the application that generated the
exception.

See Also: AfxThrowOleDispatchException

COleDispatchException: :m_ wCode

COleDispatchException: :m_ wCode

Remarks

WORD m_wCode;

Contains an error code specific to your application. This member is set by the function
AfxThrowOleDispatchException when an exception is thrown.

See Also: COleDispatchException: :m_strDescription,
COleDispatchException: :m_dw HelpContext, AfxThrowOleDispatchException

1343

COleDocument

COleDocument

1344

COleDocument is the base class for OLE documents that support visual editing.
COleDocument is derived from CDocument, which allows your OLE applications
to use the document/view architecture provided by the Microsoft Foundation Class
Library.

COleDocument treats a document as a collection of CDocItem objects to handle
OLE items. Both container and server applications require such an architecture
because their documents must be able to contain OLE items. The COleServerltem
and COleClientItem classes, both derived from CDocItem, manage the interactions
between applications and OLE items.

If you are writing a simple container application, derive your document class from
COleDocument. If you are writing a container application that supports linking
to the embedded items contained by its documents, derive your document class
from COleLinkingDoc. If you are writing a server application or combination
container/server, derive your document class from COleServerDoc.
COleLinkingDoc and COleServerDoc are derived from COleDocument, so these
classes inherit all the services available in COleDocument and CDocument.

To use COleDocument, derive a class from it and add functionality to manage the
application's non-OLE data as well as embedded or linked items. If you define
CDocItem-derived classes to store the application's native data, you can use the
default implementation defined by COleDocument to store both your OLE and
non-OLE data. You can also design your own data structures for storing your
non-OLE data separately from the OLE items. For more information, see the article
"Containers: Compound Files" in Visual C++ Programmer's Guide online.

CDocument supports sending your document via mail if mail support (MAPI) is
present. COleDocument has updated OnFileSendMail to handle compound
documents correctly. For more information, see the articles "MAPI Topics" and
"MAPI Support in MFC" in Visual C++ Programmer's Guide online.

#include <afxole.h>

COleDocument Class Members
Construction

COleDocument

Operations

HasBlankltems

EnableCompoundFile

GetlnPlaceActiveltem

GetStartPosition

GetNextltem

GetNextClientltem

GetNextServerItem

UpdateModifiedFlag

Apply PrintDevice

AddItem

RemoveItem

Overridables

GetPrimarySelectedltem

OnShowViews

Mail Functions

OnFileSendMail

Message Handlers

OnEditChangelcon

OnEditConvert

OnEditLinks

OnUpdateEditChangelcon

OnUpdateEditLinksMenu

Constructs a COleDocument object.

Checks for blank items in the document.

Causes documents to be stored using the OLE Structured
Storage file format.

Returns the OLE item that is currently in-place active.

Gets the initial position to begin iteration.

Gets the next document item for iterating.

Gets the next client item for iterating.

Gets the next server item for iterating.

Marks the document as modified if any of the contained OLE
items have been modified.

Sets the print-target device for all client items in the
document.

Adds an item to the list of items maintained by the document.

Removes an item from the list of items maintained by the
document.

Returns the primary selected OLE item in the document.

Called when the document becomes visible or invisible.

Sends a mail message with the document attached.

Handles events in the Change Icon menu command.

Handles the conversion of an embedded or linked object from
one type to another.

Handles events in the Links command on the Edit menu.

Called by the framework to update the command VI for the
Edit/Change Icon menu option.

Called by the framework to update the command VI for the
EditlLinks menu option.

(continued)

COleDocument

1345

COleDocument::AddItem

Message Handlers (continued)

OnUpdateObjectVerbMenu Called by the framework to update the command VI for the
EditJObjectName menu option and the Verb submenu
accessed from EditJObjectName.

OnUpdatePasteLinkMenu Called by the framework to update the command VI for the
Paste Special menu option.

OnUpdatePasteMenu Called by the framework to update the command VI for the
Paste menu option.

Member Functions
COleDocument: : AddItem

virtual void Addltem(CDocItem* pltem);

Parameters

Remarks

pltem Pointer to the document item being added.

Call this function to add an item to the document. You do not need to call this function
explicitly when it is called by the COleClientItem or COleServerItem constructor
that accepts a pointer to a document.

See Also: CDocItem, COleDocument::Removeltem,
COleServerltem: :COleServerltem, COleClientItem: :COleClientltem

COleDocument: : ApplyPrintDevice
BOOL ApplyPrintDevice(const DVTARGETDEVICE FAR* ptd);
BOOL ApplyPrintDevice(const PRINTDLG* ppd);

Return Value
Nonzero if the function was successful; otherwise O.

Parameters

1346

ptd Pointer to a DVTARGETDEVICE data structure, which contains information
about the new print-target device. Can be NULL.

ppd Pointer to a PRINTDLG data structure, which contains information about the
new print-target device. Can be NULL.

COleDocument: :EnableCompoundFile

Remarks
Call this function to change the print-target device for all embedded COleClientItem
items in your application's container document. This function updates the print-target
device for all items but does not refresh the presentation cache for those items. To
update the presentation cache for an item, call COleClientltem::UpdateLink.

The arguments to this function contain information that OLE uses to identify the target
device. The PRINTDLG structure contains information that Windows uses to
initialize the common Print dialog box. After the user closes the dialog box, Windows
returns information about the user's selections in this structure. The m_pd member of
a CPrintDialog object is a PRINTDLG structure.

For more information, see the PRINTDLG structure in the Win32 SDK
documentation.

For more information, see the DVTARGETDEVICE structure in the OLE 2
Programmer's Reference, Volume 1.

See Also: CPrintDialog

COleDocument: :COleDocument
COleDocument();

Remarks
Constructs a COleDocument object.

COleDocument: : EnableCompoundFile
void EnableCompoundFile(BOOL bEnable = TRUE);

Parameters

Remarks

bEnable Specifies whether compound file support is enabled or disabled.

Call this function if you want to store the document using the compound-file format.
This is also called structured storage. You typically call this function from the
constructor of your COleDocument-derived class. For more information about
compound documents, see the article "Containers: Compound Files" in Visual C++
Programmer's Guide online.

If you do not call this member function, documents will be stored in a nonstructured
("flat") file format.

After compound file support is enabled or disabled for a document, the setting should
not be changed during the document's lifetime.

See Also: COleClientItem

1347

COleDocument: : GetInPlaceActiveItem

COleDocument: : GetInPlaceActiveItem
COleClientItem* GetInPlaceActiveItem(CWnd* p Wnd);

Return Value
A pointer to the single, in-place active OLE item; NULL if there is no OLE item
currently in the "in-place active" state.

Parameters

Remarks

p Wnd Pointer to the window that displays the container document.

Call this function to get the OLE item that is currently activated in place in the frame
window containing the view identified by p Wnd.

See Also: COleClientItem

COleDocument: : GetNextClientItem
COleClientItem* GetNextClientItem(POSITION& pos) const;

Return Value
A pointer to the next client item in the document, or NULL if there are no more client
items.

Parameters

Remarks

Example

1348

pos A reference to a POSITION value set by a previous call to GetNextClientItem;
the initial value is returned by the GetStartPosition member function.

Call this function repeatedly to access each of the client items in your document. After
each call, the value of pos is set for the next item in the document, which might or
might not be a client item.

II Example for COleDocument::GetNextClientItem
II pDoc points to a COleDocument object
POSITION pos - pDoc-)GetStartPosition():
COleClientItem *pItem:
while ((pItem - pDoc-)GetNextClientItem(pos)) !- NULL)
{

II Use pItem
}

See Also: COleClientItem, COleDocument::GetStartPosition,
COleDocument: : GetNextServerItem, COleDocument::GetNextItem

COleDocument: :GetNextServerItem

COleDocument: : GetN extItem
virtual CDocItem* GetNextItem(POSITION& pos) const;

Return Value
A pointer to the document item at the specified position.

Parameters

Remarks

Example

pos A reference to a POSITION value set by a previous call to GetNextItem; the
initial value is returned by the GetStartPosition member function.

Call this function repeatedly to access each of the items in your document. After each
call, the value of pos is set to the POSITION value of the next item in the document.
If the retrieved element is the last element in the document, the new value of pos is
NULL.

II Example for COleDocument::GetNextItem
II pDoc points to a COleDocument object
POSITION pos - pDoc->GetStartPosition();
CDocItem *pItem;
while(pos !- NULL)
{

pItem - pDoc->GetNextItem(pos);
II Use pItem

See Also: COleDocument: : GetStartPosition,
COleDocument::GetNextClientItem, COleDocument::GetNextServerItem

COleDocument: : GetN extServerItem
COleServerltem* GetNextServerItem(POSITION& pos) const;

Return Value
A pointer to the next server item in the document, or NULL if there are no more
server items.

Parameters
pos A reference to a POSITION value set by a previous call to

GetNextServerItem; the initial value is returned by the GetStartPosition member
function.

1349

COleDocument::GetPrimarySelectedltem

Remarks

Example

Call this function repeatedly to access each of the server items in your document.
After each call, the value of pos is set for the next item in the document, which might
or might not be a server item.

II Example for COleDocument::GetNextServerItem
II pDoc points to a COleDocument object
POSITION pos - pDoc-)GetStartPosition();
COleServerItem *pltem;
while ((pItem - pDoc-)GetNextServerltem(pos)) !- NULL)
{

I I Use pltem
}

See Also: COleServerItem, COleDocument: : GetStartPosition,
COleDocument: : GetNextClientItem, COleDocument: : GetNextItem

COleDocument: : GetPrimarySelectedItem
virtual COleClientItem* GetPrimarySelectedItem(CView* p View);

Return Value
A pointer to the single, selected OLE item; NULL if no OLE items are selected or if
more than one is selected.

Parameters

Remarks

p View Pointer to the active view object displaying the document.

Called by the framework to retrieve the currently selected OLE item in the specified
view. The default implementation searches the list of contained OLE items for a single
selected item and returns a pointer to it. If there is no item selected, or if there is more
than one item selected, the function returns NULL. You must override the
CView: :IsSelected member function in your view class for this function to work.
Override this function if you have your own method of storing contained OLE items.

See Also: CView::IsSelected

COleDocument: : GetS tartPosition
virtual POSITION GetStartPosition() const;

Return Value

1350

A POSITION value that can be used to begin iterating through the document's items;
NULL if the document has no items.

COleDocument: :OnEditConvert

Remarks
Call this function to get the position of the first item in the document. Pass the value
returned to GetNextltem, GetNextClientltem, or GetNextServerltem.

See Also: COleDocument: :GetN extltem, COleDocument:: GetN extClientltem,
COleDocument: : GetNextServerltem

COleDocument: : HasBlankItems
BOOL HasBlankltems() const;

Return Value

Remarks

Nonzero if the document contains any blank items; otherwise O.

Call this function to determine whether the document contains any blank items. A
blank item is one whose rectangle is empty.

See Also: CDocItem::IsBlank

COleDocument: :OnEditChangeIcon

Remarks

afx_msg void OnEditChangelcon();

Displays the OLE Change Icon dialog box and changes the icon representing the
currently selected OLE item to the icon the user selects in the dialog box.
OnEditChangelcon creates and launches a COleChangelconDialog Change Icon
dialog box.

See Also: COleDocument: :OnUpdateEditChangelcon, COleChangelconDialog

COleDocument:: OnEditConvert

Remarks

afx_msg void OnEditConvert();

Displays the OLE Convert dialog box and converts or activates the currently selected
OLE item according to user selections in the dialog box. OnEditConvert creates and
launches a COleConvertDialog Convert dialog box.

An example of conversion is converting a Microsoft Word document into a WordPad
document.

See Also: COleDocument::OnUpdateObjectVerbMenu, COleConvertDialog

1351

COleDocument: :OnEditLinks

COleDocument: :OnEditLinks
afx_msg void OnEditLinks();

Remarks
Displays the OLE EditlLinks dialog box. OnEditLinks creates and launches a
COleLinksDialog Links dialog box that allows the user to change the linked objects.

See Also: COleDocument::OnUpdateEditLinksMenu, COleLinksDialog

COleDocument: : OnFileSendMail
afx_msg void OnFileSendMail();

Remarks
Sends a message via the resident mail host (if any) with the document as an
attachment. OnFileSendMail calls OnSaveDocument to serialize (save) untitled and
modified documents to a temporary file, which is then sent via electronic mail. If the
document has not been modified, a temporary file is not needed; the original is sent.
OnFileSendMailloads MAPI32.DLL if it has not already been loaded.

Unlike the implementation of OnFileSendMail for CDocument, this function
handles compound files correctly.

For more information, see the "MAPI Topics" and "MAPI Support in MFC" articles
in Visual C++ Programmer's Guide online.

See Also: CDocument::OnFileSendMail, CDocument::OnUpdateFileSendMail,
CDocument: :OnSaveDocument

COleDocument: : OnShow Views
virtual void OnShowViews(BOOL bVisible);

Parameters

Remarks

1352

b Visible Indicates whether the document has become visible or invisible.

The framework calls this function after the document's visibility state changes.

The default version of this function does nothing. Override it if your application must
perform any special processing when the document's visibility changes.

COleDocument: :OnUpdateObjectVerbMenu

COleDocument:: On U pdateEditChangeIcon
afx_msg void OnUpdateEditChangelcon(CCmdUI* pCmdUI);

Parameters

Remarks

pCmdUI A pointer to a CCmdUI structure that represents the menu that generated
the update command. The update handler calls the Enable member function of the
CCmdUI structure through pCmdUI to update the user interface.

Called by the framework to update the Change Icon command on the Edit menu.
OnUpdateEditChangelcon updates the command's user interface depending on
whether or not a valid icon exists in the document. Override this function to change
the behavior.

See Also: COleDocument: :OnEditChangeIcon, CCmdUI

COleDocument::OnUpdateEditLinksMenu
afx_msg void OnUpdateEditLinksMenu(CCmdUI* pCmdUI);

Parameters

Remarks

pCmdUI A pointer to a CCmdUI structure that represents the menu that generated
the update command. The update handler calls the Enable member function of the
CCmdUI structure through pCmdUI to update the user interface.

Called by the framework to update the Links command on the Edit menu. Starting
with the first OLE item in the document, OnUpdateEditLinksMenu accesses each
item, tests whether the item is a link, and, if it is a link, enables the Links command.
Override this function to change the behavior.

See Also: COleDocument::OnEditLinks, COleDocument::GetStartPosition,
COleDocument: : GetNextClientItem, CCmdUI

COleDocument::OnUpdateObjectVerbMenu
afx_msg void OnUpdateObjectVerbMenu(CCmdUI* pCmdUI);

Parameters
pCmdUI A pointer to a CCmdUI structure that represents the menu that generated

the update command. The update handler calls the Enable member function of the
CCmdUI structure through pCmdUI to update the user interface.

1353

COleDocument: :OnUpdatePasteLinkMenu

Remarks
Called by the framework to update the ObjectName command on the Edit menu and
the Verb submenu accessed from the ObjectName command, where ObjectName is the
name of the OLE object embedded in the document. OnUpdateObjectVerbMenn
updates the ObjectName command's user interface depending on whether or not a
valid object exists in the document. If an object exists, the ObjectName command on
the Edit menu is enabled. When this menu command is selected, the Verb submenu is
displayed. The Verb submenu contains all the verb commands available for the object,
such as Edit, Properties, and so on. Override this function to change the behavior.

See Also: COleDocnment::OnEditConvert, CCmdUI

COleDocument: : On U pdatePasteLinkMenu
afx_msg void OnUpdatePasteLinkMenn(CCmdUI* pCmdUI);

Parameters

Remarks

pCmdUI A pointer to a CCmdUI structure that represents the menu that generated
the update command. The update handler calls the Enable member function of the
CCmdUI structure through pCmdUI to update the user interface.

Called by the framework to determine whether a linked OLE item can be pasted from
the Clipboard. The Paste Special menu command is enabled or disabled depending on
whether the item can be pasted into the document or not.

See Also: COleDocnment::OnUpdatePasteMenn, CCmdUI

COleDocument: : On U pdatePasteMenu
afx_msg void OnUpdatePasteMenn(CCmdUI* pCmdUI);

Parameters

Remarks

1354

pCmdUI A pointer to a CCmdUI structure that represents the menu that generated
the update command. The update handler calls the Enable member function of the
CCmdUI structure through pCmdUI to update the user interface.

Called by the framework to determine whether an embedded OLE item can be pasted
from the Clipboard. The Paste menu command and button are enabled or disabled
depending on whether the item can be pasted into the document or not.

See Also: COleDocnment::OnUpdatePasteLinkMenn, CCmdUI

COleDocument:: UpdateModifiedFlag

COleDocument: : RemoveItem
virtual void RemoveItem(CDocItem* pltem);

Parameters

Remarks

pltem Pointer to the document item to be removed.

Call this function to remove an item from the document. You typically do not need to
call this function explicitly; it is called by the destructors for COleClientItem and
COleServerItem.

See Also: COleServerItem, COleClientItem, COleDocument::AddItem,
CDocItem

COleDocument:: UpdateModifiedFlag
void UpdateModifiedFlag();

Remarks
Call this function to mark the document as modified if any of the contained OLE
items have been modified. This allows the framework to prompt the user to save the
document before closing, even if the native data in the document has not been
modified.

See Also: CDocument: :SetModifiedFlag, COleClientItem: :IsModified

1355

COleDropSource

COleDropSource

A COleDropSource object allows data to be dragged to a drop target. The
COleDropTarget class handles the receiving portion of the drag-and-drop operation.
The COleDropSource object is responsible for detennining when a drag operation
begins, providing feedback during the drag operation, and detennining when the drag
operation ends.

To use a COleDropSource object, just call the constructor. This simplifies the process
of determining what events, such as a mouse click, begin a drag operation using
COleDataSource: :DoDragDrop, COleClientItem: :DoDragDrop, or
COleServerItem::DoDragDrop function. These functions will create a
COleDropSource object for you. You might want to modify the default behavior of
the COleDropSource overridable functions. These member functions will be called at
the appropriate times by the framework.

For more information on drag-and-drop operations using OLE, see the article "Drag
and Drop (OLE)" in Visual C++ Programmer's Guide online.

For more information, see IDropSource in the OLE 2 Programmer's Reference,
Volume 1.

#include <afxole.h>

COleDropSource Class Members

1356

Construction

COleDropSource

Overridables

GiveFeedback

OnBeginDrag

QueryContinueDrag

Constructs a COleDropSource object.

Changes the cursor during a drag-and-drop operation.

Handles mouse capture during a drag-and-drop operation.

Checks to see whether dragging should continue.

COleDropSource: :GiveFeedback

Member Functions
COleDropSource: :COleDropSource

COleDropSource();

Remarks
Constructs a COleDropSource object.

See Also: COleDropTarget

COleDropSource::GiveFeedback
virtual SCODE GiveFeedback(DROPEFFECT dropEffect);

Return Value
Returns DRAGDROP _S_USEDEFAULTCURSORS if dragging is in progress,
NOERROR if it is not.

Parameters

Remarks

dropEffect The effect you would like to display to the user, usually indicating what
would happen if a drop occurred at this point with the selected data. Typically, this
is the value returned by the most recent call to CView::OnDragEnter or
CView::OnDragOver. It can be one or more of the following:

• DROPEFFECT_NONE A drop would not be allowed.

• DROPEFFECT_COPY A copy operation would be performed.

• DROPEFFECT_MOVE A move operation would be performed.

• DROPEFFECT_LINK A link from the dropped data to the original data
would be established.

• DROPEFFECT_SCROLL A drag scroll operation is about to occur or is
occurring in the target.

Called by the framework after calling COleDropTarget: :OnDragOver or
COleDropTarget::DragEnter. Override this function to provide feedback to the user
about what would happen if a drop occurred at this point. The default implementation
uses the OLE default cursors. For more information on drag-and-drop operations
using OLE, see the article "Drag and Drop (OLE)" in Visual C++ Programmer's
Guide online.

For more information, see IDropSource::GiveFeedback, IDropTarget::DragOver,
and IDropTarget::DragEnter in the OLE 2 Programmer's Reference, Volume 1.

See Also: CView::OnDragEnter, CView::OnDragOver

1357

COleDropSource: :OnBeginDrag

COleDropSource::OnBeginDrag
virtual BOOL OnBeginDrag(CWnd* pWnd);

Return Value
Nonzero if dragging is allowed, otherwise O.

Parameters

Remarks

p Wnd Points to the window that contains the selected data.

Called by the framework when an event occurs that could begin a drag operation, such
as pressing the left mouse button. Override this function if you want to modify the
way the dragging process is started. The default implementation captures the mouse
and stays in drag mode until the user clicks the left or right mouse button or hits ESC,
at which time it releases the mouse.

See Also: COleDropSource: : GiveFeedback

COleDropSource:: QueryContinueDrag
virtual SCODE QueryContinueDrag(BOOL bEscapePressed, DWORD dwKeyState);

Return Value
DRAGDROP _S_CANCEL if the ESC key or right button is pressed, or left button is
raised before dragging starts. DRAGDROP _S_DROP if a drop operation should
occur. Otherwise S_ OK.

Parameters

Remarks

1358

bEscapePressed States whether the ESC key has been pressed since the last call to
COleDropSource:: QueryContinueDrag.

dwKeyState Contains the state of the modifier keys on the keyboard. This is a
combination of any number of the following: MK_ CONTROL, MK_SHIFT,
MK_ALT, MK_LBUTTON, MK_MBUTTON, and MK_RBUTTON.

After dragging has begun, this function is called repeatedly by the framework until the
drag operation is either canceled or completed. Override this function if you want to
change the point at which dragging is canceled or a drop occurs.

The default implementation initiates the drop or cancels the drag as follows. It cancels
a drag operation when the ESC key or the right mouse button is pressed. It initiates a
drop operation when the left mouse button is raised after dragging has started.
Otherwise, it returns S_OK and performs no further operations.

Because this function is called frequently, it should be optimized as much as possible.

See Also: COleDropSource: :OnBeginDrag, COleDropTarget: :OnDrop

COleDropTarget

A COleDropTarget object provides the communication mechanism between a
window and the OLE libraries. Creating an object of this class allows a window to
accept data through the OLE drag-and-drop mechanism.

To get a window to accept drop commands, you should first create an object of the
COleDropTarget class, and then call the Register function with a pointer to the
desired CWnd object as the only parameter.

For more information on drag-and-drop operations using OLE, see the article "Drag
and Drop (OLE)" in Visual C++ Programmer's Guide online.

#include <afxole.h>

See Also: COleDropSource

COleDropTarget Class Members
Construction

COleDropTarget

Operations

Register

Revoke

Overridables

OnDragEnter

OnDragLeave

OnDragOver

OnDragScroll

OnDrop

OnDropEx

Constructs a COleDropTarget object.

Registers the window as a valid drop target.

Causes the window to cease being a valid drop target.

Called when the cursor first enters the window.

Called when the cursor is dragged out of the window.

Called repeatedly when the cursor is dragged over the window.

Called to determine whether the cursor is dragged into the scroll
region of the window.

Called when data is dropped into the window, default handler.

Called when data is dropped into the window, initial handler.

COleDropTarget

1359

COleDropTarget: :COleDropTarget

Member Functions
COleDropTarget: :COleDropTarget

Remarks

COleDropTarget();

Constructs an object of class COleDropTarget. Call Register to associate this object
with a window.

See Also: COleDropSource, COleDropTarget::Register,
COleDropTarget: : Revoke

COleDropTarget:: OnDragEnter
virtual DROPEFFECT OnDragEnter(CWnd* pWnd,

~ COleDataObject* pDataObject, DWORD dwKeyState, CPoint point);

Return Value
The effect that would result if a drop were attempted at the location specified by point.
It can be one or more of the following:

• DROPEFFECT_NONE A drop would not be allowed.

• DROPEFFECT_COPY A copy operation would be performed.

• DROPEFFECT_MOVE A move operation would be performed.

• DROPEFFECT_LINK A link from the dropped data to the original data would
be established.

• DROPEFFECT_SCROLL A drag scroll operation is about to occur or is
occurring in the target.

Parameters

Remarks

1360

p Wnd Points to the window the cursor is entering.

pDataObject Points to the data object containing the data that can be dropped.

dwKeyState Contains the state of the modifier keys. This is a combination of any
number of the following: MK_CONTROL, MK_SHIFT, MK_ALT,
MK_LBUTTON, MK_MBUTTON, and MK_RBUTTON.

point Contains the current location of the cursor in client coordinates.

Called by the framework when the cursor is first dragged into the window. Override
this function to allow drop operations to occur in the window. The default
implementation calls CView::OnDragEnter, which simply returns
DROPEFFECT_NONE by default.

CO leDropTarget:: OnDragOver

For more information, see IDropTarget::DragEnter in the OLE 2 Programmer's
Reference, Volume 1.

See Also: COleDropTarget::OnDragOver, COleDropTarget::OnDragLeave,
COleDropTarget: :OnDrop, COleDropTarget: :OnDropEx, CView: :OnDragEnter

COleDropTarget::OnDragLeave
virtual void OnDragLeave(CWnd * pWnd);

Parameters

Remarks

p Wnd Points to the window the cursor is leaving.

Called by the framework when the cursor leaves the window while a dragging
operation is in effect. Override this function if you want special behavior when the
drag operation leaves the specified window. The default implementation of this
function calls CView::OnDragLeave.

For more information, see IDropTarget::DragLeave in the OLE 2 Programmer's
Reference, Volume 1.

See Also: COleDropTarget::OnDragEnter, COleDropTarget::OnDragOver,
COleDropTarget: :OnDrop, COleDropTarget: :OnDropEx

COleDropTarget: : OnDragOver
virtual DROPEFFECT OnDragOver(CWnd* pWnd,

... COleDataObject* pDataObject, DWORD dwKeyState, CPoint point);

Return Value
The effect that would result if a drop were attempted at the location specified by point.
It can be one or more of the following:

• DROPEFFECT_NONE A drop would not be allowed.

• DROPEFFECT_COPY A copy operation would be performed.

• DROPEFFECT_MOVE A move operation would be performed.

• DROPEFFECT_LINK A link from the dropped data to the original data would
be established.

• DROPEFFECT_SCROLL Indicates that a drag scroll operation is about to
occur or is occurring in the target.

1361

COleDropTarget: :OnDragScroll

Parameters

Remarks

p Wnd Points to the window that the cursor is over.

pDataObject Points to the data object that contains the data to be dropped.

dwKeyState Contains the state of the modifier keys. This is a combination of any
number of the following: MK_CONTROL, MK_SHIFT, MK_ALT,
MK_LBUTTON, MK_MBUTTON, and MK_RBUTTON.

point Contains the current location of the cursor in client coordinates.

Called by the framework when the cursor is dragged over the window. This function
should be overridden to allow drop operations to occur in the window. The default
implementation of this function calls CView::OnDragOver, which returns
DROPEFFECT_NONE by default. Because this function is called frequently during
a drag-and-drop operation, it should be optimized as much as possible.

For more information, see IDropTarget::DragOver in the OLE 2 Programmer's
Reference, Volume 1.

See Also: COleDropTarget: :OnDragEnter, COleDropTarget: :OnDragLeave,
COleDropTarget: :OnDrop, COleDropTarget: :OnDropEx

COleDropTarget::OnDragScroll
virtual DROPEFFECT OnDragScroll(CWnd* pWnd,

.. DWORD dwKeyState, CPoint point);

Return Value
The effect that would result if a drop were attempted at the location specified by point.
It can be one or more of the following:

• DROPEFFECT_NONE A drop would not be allowed.

• DROPEFFECT_COPY A copy operation would be performed.

• DROPEFFECT_MOVE A move operation would be performed.

• DROPEFFECT_LINK A link from the dropped data to the original data would
be established.

• DROPEFFECT _SCROLL Indicates that a drag scroll operation is about to
occur or is occurring in the target.

Parameters

1362

p Wnd Points to the window the cursor is currently over.

dwKeyState Contains the state of the modifier keys. This is a combination of any
number of the following: MK_CONTROL, MK_SHIFT, MK_ALT,
MK_LBUTTON, MK_MBUTTON, and MK_RBUTTON.

point Contains the location of the cursor, in pixels, relative to the screen.

COleDropTarget:: OnDrop

Remarks
Called by the framework before calling OnDragEnter or OnDragOver to determine
whether point is in the scrolling region. Override this function when you want to
provide special behavior for this event. The default implementation of this function
calls CView::OnDragScroll, which returns DROPEFFECT_NONE and scrolls the
window when the cursor is dragged into the default scroll region inside the border of
the window.

COleDropTarget: : OnDrop
virtual BOOL OnDrop(CWnd* pWnd, COleDataObject* pDataObject,

... DROPEFFECT dropEffect, CPoint point);

Return Value
Nonzero if the drop is successful; otherwise O.

Parameters

Remarks

p Wnd Points to the window the cursor is currently over.

pDataObject Points to the data object that contains the data to be dropped.

drop Effect The effect that the user chose for the drop operation. It can be one or
more of the following:

• DROPEFFECT_COPY A copy operation would be performed.

• DROPEFFECT_MOVE A move operation would be performed.

• DROPEFFECT_LINK A link from the dropped data to the original data
would be established.

point Contains the location of the cursor, in pixels, relative to the screen.

Called by the framework when a drop operation is to occur. The framework first calls
OnDropEx. If the OnDropEx function does not handle the drop, the framework then
calls this member function, OnDrop. Typically, the application overrides OnDropEx
in the view class to handle right mouse-button drag and drop. Typically, the view class
OnDrop is used to handle simple drag and drop.

The default implementation of COleDropTarget: : On Drop calls CView: :OnDrop,
which simply returns FALSE by default.

For more information, see IDropTarget::Drop in the OLE 2 Programmer's
Reference, Volume 1.

See Also: COleDropTarget::OnDragOver, COleDropTarget::OnDragEnter,
COleDropTarget: :OnDropEx

1363

COleDropTarget: :OnDropEx

COleDropTarget: :OnDropEx
virtual DROPEFFECT OnDropEx(CWnd* pWnd, COleDataObject* pDataObject,

.. DROPEFFECT dropDefault, DROPEFFECT dropList, CPoint point);

Return Value
The drop effect that resulted from the drop attempt at the location specified by point.
Drop effects are discussed in the Remarks section.

Parameters

Remarks

1'21::11 ,,,,"T

p Wnd Points to the window the cursor is currently over.

pDataObject Points to the data object that contains the data to be dropped.

dropDefault The effect that the user chose for the default drop operation based on the
current key state. It can be DROPEFFECT_NONE. Drop effects are discussed in
the Remarks section.

dropList A list of the drop effects that the drop source supports. Drop effect values
can be combined using the bitwise OR (I) operation. Drop effects are discussed in
the Remarks section.

point Contains the location of the cursor, in pixels, relative to the screen.

Called by the framework when a drop operation is to occur. The framework first calls
this function. If it does not handle the drop, the framework then calls OnDrop.
Typically, you will override OnDropEx in the view class to support right
mouse-button drag and drop. Typically, the view class OnDrop is used to handle the
case of support for simple drag and drop.

The default implementation of COleDropTarget::OnDropEx calls
CView::OnDropEx. By default, CView::OnDropEx simply returns a dummy value
to indicate the OnDrop member function should be called.

Drop effects describe the action associated with a drop operation. See the following
list of drop effects:

• DROPEFFECT_NONE A drop would not be allowed.

• DROPEFFECT_COPY A copy operation would be performed.

• DROPEFFECT_MOVE A move operation would be performed.

• DROPEFFECT_LINK A link from the dropped data to the original data would
be established.

• DROPEFFECT_SCROLL Indicates that a drag scroll operation is about to
occur or is occurring in the target.

COleDropTarget: : Revoke

For more information, see IDropTarget::Drop in the OLE 2 Programmer's
Reference, Volume 1.

See Also: COleDropTarget::OnDragOver, COleDropTarget::OnDragEnter

COleDropTarget: :Register
BOOL Register(CWnd* pWnd);

Return Value
Nonzero if registration is successful; otherwise O.

Parameters

Remarks

p Wnd Points to the window that is to be registered as a drop target.

Call this function to register your window with the OLE DLLs as a valid drop target.
This function must be called for drop operations to be accepted.

For more information, see RegisterDragDrop in the OLE 2 Programmer's Reference,
Volume 1.

See Also: COleDropTarget: :Revoke, COleDropTarget:: COleDropTarget

COleDropTarget: : Revoke

Remarks

virtual void Revoke();

Call this function before destroying any window that has been registered as a drop
target through a call to Register to remove it from the list of drop targets. This
function is called automatically from the OnDestroy handler for the window that
was registered, so it is usually not necessary to call this function explicitly.

For more information, see RevokeDragDrop in the OLE 2 Programmer's Reference,
Volume 1.

1365

COleException

COleException

A COleException object represents an exception condition related to an OLE
operation. The COleException class includes a public data member that holds the
status code indicating the reason for the exception.

In general, you should not create a COleException object directly; instead, you
should call AfxThrowOleException.

For more information on exceptions, see the articles "Exceptions" and "Exceptions:
OLE Exceptions" in Visual C++ Programmer's Guide online.

#include <afxole.h>

COleException Class Members
Data Members

Contains the status code that indicates the reason for the exception.

Operations

Process Translates a caught exception into an OLE return code.

Member Functions
COleException: :Process

static SCODE PASCAL Process(const CException* pAnyException);

Return Value
An OLE status code.

Parameters
pAnyException Pointer to a caught exception.

1366

Remarks
Call the Process member function to translate a caught exception into an OLE status
code.

Note This function is static.

For more information on SCODE, see "Structure of OLE Error Codes" in the OLE 2
Programmer's Reference, Volume 1.

See Also: CException

Data Members
COleException: :m_sc

Remarks
This data member holds the OLE status code that indicates the reason for the
exception. This variable's value is set by AfxThrowOleException.

For more information on SCODE, see "Structure of OLE Error Codes" in the OLE 2
Programmer's Reference, Volume 1.

See Also: AfxThrowOleException

COleException: :m_sc

1367

COlelnsertDialog

COleInsertDialog

The COleInsertDialog class is used for the OLE Insert Object dialog box. Create
an object of class COleInsertDialog when you want to call this dialog box. After a
COlelnsertDialog object has been constructed, you can use the m_io structure to
initialize the values or states of controls in the dialog box. The m_io structure is of
type OLEUIINSERTOBJECT. For more information about using this dialog class,
see the DoModal member function.

Note AppWizard-generated container code uses this class.

For more information, see the OLEUIINSERTOBJECT structure in the OLE 2.01
User Interface Library.

For more information regarding OLE-specific dialog boxes, see the article "Dialog
Boxes in OLE" in Visual c++ Programmer's Guide online.

#include <afxodlgs.h>

See Also: COleDialog

COleInsertDialog Class Members
Data Members

Construction

COlelnsertDialog

1368

A structure of type OLEUIINSERTOBJECT
that controls the behavior of the dialog box.

Constructs a COlelnsertDialog object.

CO leInsertDialog: :COleInsertDialog

Operations and Attributes

DoModal

Createltem

GetSelectionType

GetClassID

GetDraw Aspect

GetlconicMetafile

Displays the OLE Insert Object dialog box.

Creates the item selected in the dialog box.

Gets the type of object selected.

Gets the CLSID associated with the chosen item.

Tells whether to draw the item as an icon.

Gets a handle to the metafile associated with the iconic form
of this item.

GetPathName Gets the full path to the file chosen in the dialog box.

Member Functions
co leInsertDialo g: : co leInsertDialo g

COleInsertDialog (DWORD dwFlags = IOF _SELECTCREATENEW,
... CWnd* pParentWnd = NULL);

Parameters
dwFlags Creation flag that contains any number of the following values to be

combined using the bitwise-OR operator:

• IOF _SHOWHELP Specifies that the Help button will be displayed when the
dialog box is called.

• IOF _SELECTCREATENEW Specifies that the Create New radio button will
be selected initially when the dialog box is called. This is the default and cannot
be used with IOF _SELECTCREATEFROMFILE.

• IOF _SELECTCREATEFROMFILE Specifies that the Create From File
radio button will be selected initially when the dialog box is called. Cannot be
used with IOF _SELECTCREATENEW.

• IOF _CHECKLINK Specifies that the Link check box will be checked
initially when the dialog box is called.

• IOF _DISABLELINK Specifies that the Link check box will be disabled
when the dialog box is called.

• IOF_CHECKDISPLAYASICON Specifies that the Display As Icon check
box will be checked initially, the current icon will be displayed, and the Change
Icon button will be enabled when the dialog box is called.

• IOF _ VERIFYSERVERSEXIST Specifies that the dialog box should validate
the classes it adds to the list box by ensuring that the servers specified in the
registration database exist before the dialog box is displayed. Setting this flag
can significantly impair performance.

1369

CO leInsertDialog: :CreateItem

Remarks

pParentWnd Points to the parent or owner window object (of type CWnd) to which
the dialog object belongs. If it is NULL, the parent window of the dialog object is
set to the main application window.

This function constructs only a COlelnsertDialog object. To display the dialog box,
call the DoModal function.

See Also: COlelnsertDialog: :DoModal

COleInsertDialog: :CreateItem
BOOL Createltem(COleClientItem* pItem);

Return Value
Nonzero if item was created; otherwise O.

Parameters

Remarks

pItem Points to the item to be created.

Call this function to create an object of type COleClientltem only if DoModal
returns IDOK. You must allocate the COleClientItem object before you can call this
function.

See Also: COleClientltem: :CreateLiokFromFile,
COleClientltem:: CreateFromFile, COleClientltem: :CreateNewltem,
COleClientItem: :SetDraw Aspect, COlelnsertDialog:: GetSelectionType,
COleInsertDialog: :DoModal

COleInsertDialog: :DoModal
virtual iot DoModal();

Return Value

1370

Completion status for the dialog box. One of the following values:

• IDOK if the dialog box was successfully displayed.

• IDCANCEL if the user canceled the dialog box.

• IDABORT if an error occurred. If IDABORT is returned, call the
COleDialog::GetLastError member function to get more information about the
type of error that occurred. For a listing of possible errors, see the
OleUIInsertObject function in the OLE 2.01 User Interface Library.

COleInsertDialog: :GetDraw Aspect

Remarks
Call this function to display the OLE Insert Object dialog box.

If you want to initialize the various dialog box controls by setting members of the
m_io structure, you should do this before calling DoModal, but after the dialog object
is constructed.

If DoModal returns IDOK, you can call other member functions to retrieve the
settings or information input into the dialog box by the user.

See Also: COleDialog: : GetLastError , CDialog: :DoModal,
COlelnsertDialog: : GetSelectionType, COlelnsertDialog:: GetClassID,
COlelnsertDialog: :GetDraw Aspect, COlelnsertDialog: : GetlconicMetafile,
COlelnsertDialog: : GetPathName, COlelnsertDialog: :m_io

COleInsertDialog: : GetClassID
const CLSID& GetClassID() const;

Return Value

Remarks

Returns the CLSID associated with the selected item.

Call this function to get the CLSID associated with the selected item only if DoModal
returns IDOK and the selection type is COlelnsertDialog::createNewItem.

For more information, see CLSID Key in the OLE 2 Programmer's Reference,
Volume 1.

See Also: COlelnsertDialog: :DoModal, COlelnsertDialog: : GetSelectionType

COleInsertDialog: : GetDraw Aspect
DVASPECT GetDrawAspect() const;

Return Value

Remarks

The method needed to render the object.

• DVASPECT_CONTENT Returned if the Display As Icon check box was not
checked.

• DVASPECT_ICON Returned if the Display As Icon check box was checked.

Call this function to determine if the user chose to display the selected item as an icon.
Call this function only if DoModal returns IDOK.

For more information on drawing aspect, see FORMATETC data structure in the
OLE 2 Programmer's Reference, Volume 1.

See Also: COlelnsertDialog::DoModal, COlelnsertDialog::COlelnsertDialog

1371

COleInsertDialog: :GetIconicMetafile

COleInsertDialog: : GetIconicMetafile
HGLOBAL GetIconicMetafile() const;

Return Value

Remarks

The handle to the metafile containing the iconic aspect of the selected item, if the
Display As Icon check box was checked when the dialog was dismissed by choosing
OK; otherwise NULL.

Call this function to get a handle to the metafile that contains the iconic aspect of the
selected item.

See Also: COleInsertDialog: :DoModal, COleInsertDialog: : GetDraw Aspect

COleInsertDialog: : GetPathN arne
CString GetPathName() const;

Return Value

Remarks

The full path to the file selected in the dialog box. If the selection type is
createNewltem, this function returns a meaningless CString in release mode or
causes an assertion in debug mode.

Call this function to get the full path of the selected file only if DoModal returns
IDOK and the selection type is not COleInsertDialog::createNewltem.

See Also: COleInsertDialog: :GetSelectionType, COleInsertDialog: :DoModal

COleInsertDialog::GetSelectionType
UINT GetSelectionType() const;

Return Value

Remarks

1372

Type of selection made.

Call this function to get the selection type chosen when the Insert Object dialog box
was dismissed by choosing OK.

The return type values are specified by the Selection enumeration type declared in the
COleInsertDialog class.

enum Selection
{

} :

createNewItem,
insertFromFile,
1 i nkToFil e

COleInsertDialog: :m_io

Brief descriptions of these values follow:

• COleInsertDialog::createNewItem The Create New radio button was selected.

• COleInsertDialog::insertFromFile The Create From File radio button was
selected and the Link check box was not checked.

• COleInsertDialog: :linkToFile The Create From File radio button was selected
and the Link check box was checked.

See Also: COleInsertDialog::DoModal, COleInsertDialog::COleInsertDialog

Data Members
COleInsertDialog: :m_io
Remarks

Structure of type OLEUIINSERTOBJECT used to control the behavior of the
Insert Object dialog box. Members of this structure can be modified either directly
or through member functions.

For more information, see the OLEUIINSERTOBJECT structure in the OLE 2.01
User Interface Library.

See Also: COleInsertDialog::COleInsertDialog, COleInsertDialog::DoModal

1373

COleIPFrameWnd

COleIPFrame Wnd

COlelPFrameWnd

Use the COleIPFrameWnd class as the base for your application's in-place
editing window. This class creates and positions control bars within the container
application's document window. It also handles notifications generated by an
embedded COleResizeBar object when the user resizes the in-place editing window.

For more information on using COleIPFrameWnd, see the article "Activation" in
Visual c++ Programmer's Guide online.

#include <afxole.h>

See Also: CFrameWnd

COleIPFrameWnd Class Members
Construction

COleIPFrame Wnd

Overridables

Constructs a COleIPFrameWnd object.

OnCreateControlBars Called by the framework when an item is activated for in-place
editing.

RepositionFrame Called by the framework to reposition the in-place editing window.

Member Functions
COleIPFrame W nd: :COleIPFrame Wnd

Remarks

1374

COleIPFrameWnd();

Constructs a COleIPFrameWnd object and initializes its in-place state information,
which is stored in a structure of type OLEINPLACEFRAMEINFO.

COleIPFrame Wnd: :RepositionFrame

For more information, see OLEINPLACEFRAMEINFO in the OLE 2
Programmer's Reference, Volume 1.

See Also: COleServerDoc::ActivatelnPlace

COleIPFrame W nd: : OnCreateControlB ars
virtual BOOL OnCreateControIBars(CWnd* pWndFrame, CWnd* pWndDoc);

Return Value
Nonzero on success; otherwise, O.

Parameters

Remarks

pWndFrame Pointer to the container application's frame window.

pWndDoc Pointer to the container's document-level window. Can be NULL if the
container is an SDI application.

The framework calls the OnCreateControlBars function when an item is activated
for in-place editing.

The default implementation does nothing. Override this function to perform any
special processing required when control bars are created.

See Also: COleServerDoc::ActivatelnPlace

COleIPFrame W nd: : RepositionFrame
virtual void RepositionFrame(LPCRECT IpPosRect, LPCRECT IpClipRect);

Parameters

Remarks

IpPosRect Pointer to a RECT structure or a CRect object containing the in-place
frame window's current position coordinates, in pixels, relative to the client area.

IpClipRect Pointer to a RECT structure or a CRect object containing the in-place
frame window's current clipping-rectangle coordinates, in pixels, relative to the
client area.

The framework calls the RepositionFrame member function to layout control bars
and reposition the in-place editing window so all of it is visible.

Layout of control bars in the container window differs from that performed by a
non-OLE frame window. The non-OLE frame window calculates the positions of
control bars and other objects from a given frame-window size, as in a call to
CFrameWnd::RecaIcLayout. The client area is what remains after space for control
bars and other objects is subtracted. A COleIPFrameWnd window, on the other

1375

COleIPFrame Wnd::RepositionFrame

1376

hand, positions toolbars in accordance with a given client area. In other words,
CFrameWnd::RecaIcLayout works "from the outside in," whereas
COleIPFrameWnd::RepositionFrame works "from the inside out."

See Also: CFrameWnd::RecaIcLayout

COleLinkingDoc

The COleLinkingDoc class is the base class for OLE container documents that
support linking to the embedded items they contain. A container application that
supports linking to embedded items is called a "link container." The OCLIENT
sample application is an example of a link container.

When a linked item's source is an embedded item in another document, that
containing document must be loaded in order for the embedded item to be edited.
For this reason, a link container must be able to be launched by another container
application when the user wants to edit the source of a linked item. Your application
must also use the COleTemplateServer class so that it can create documents when
launched programmatically.

To make your container a link container, derive your document class from
COleLinkingDoc instead of COleDocument. As with any other OLE container, you
must design your class for storing the application's native data as well as embedded or
linked items. Also, you must design data structures for storing your native data. If you
define a CDocItem-derived class for your application's native data, you can use the
interface defined by COleDocument to store your native data as well as your
OLE data.

To allow your application to be launched programmatically by another container,
declare a COleTemplateServer object as a member of your application's
CWinApp-derived class:

class COleClientApp : public CWinApp
{

/ / ...
protected:

COleTemplateServer m_server;
/ / ...
} ;

In the Initlnstance member function of your CWinApp-derived class, create a
document template and specify your COleLinkingDoc-derived class as the document
class:

COleLinkingDoc

1377

COleLinkingDoc

II CMainDoc is derived from COleLinkingDoc
CMultiDocTemplate* pDocTemplate = new CMultiDocTemplate(IDR_OCLIENTTYPE,

RUNTIME_CLASS(CMainDoc),
RUNTIME_CLASS(CSplitFrame),
RUNTIME_CLASS(CMainView»;

pDocTemplate->SetContainerInfo(
IDR_OCLIENTTYPE_CNTR_IP);

AddDocTemplate(pDocTemplate);

Connect your COleTemplateServer object to your document templates by calling the
object's ConnectTemplate member function, and register all class objects with the
OLE system by calling COleTemplateServer::RegisterAll:

m_server.ConnectTemplate(clsid, pDocTemplate, FALSE);
COleTemplateServer::RegisterAll();

For a sample CWinApp-derived class definition and InitInstance function, see
OCLIENT.H and OCLIENT.CPP in the MFC sample OCLIENT.

For more information on using COleLinkingDoc, see the articles "Containers:
Implementing a Container" and "Containers: Advanced Features" in Visual C++
Programmer's Guide online.

#include <afxole.h>

See Also: CDocTemplate, COleTemplateServer

COleLinkingDoc Class Members

1378

Construction

COleLinkingDoc

Operations

Register

Revoke

Overridables

OnFindEmbeddedltem

OnGetLinkedltem

Constructs a COleLinkingDoc object.

Registers the document with the OLE system DLLs.

Revokes the document's registration.

Finds the specified embedded item.

Finds the specified linked item.

COleLinkingDoc: :OnGetLinkedItem

Member Functions
COleLinkingDoc': :COleLinkingDoc

Remarks

COleLinkingDoc();

Constructs a COleLinkingDoc object without beginning communications with the
OLE system DLLs. You must call the Register member function to inform OLE that
the document is open.

See Also: COleLinkingDoc: : Register

COleLinkingDoc:: OnFindEmbeddedItem
virtual COleClientltem* OnFindEmbeddedItem(LPCTSTR IpszltemName);

Return Value
A pointer to the specified item; NULL if the item is not found.

Parameters

Remarks

IpszltemName Pointer to the name of the embedded OLE item requested.

Called by the framework to determine whether the document contains an embedded
OLE item with the specified name. The default implementation searches the list of
embedded items for an item with the specified name (the name comparison is case
sensitive). Override this function if you have your own method of storing or naming
embedded OLE items.

See Also: COleClientltem, COleLinkingDoc::OnGetLinkedItem

COleLinkingDoc: : OnGetLinkedItem
virtual COleServerItem* OnGetLinkedItem(LPCTSTR IpszltemName);

Return Value
A pointer to the specified item; NULL if the item is not found.

Parameters

Remarks

Ipsz/temName Pointer to the name of the linked OLE item requested.

Called by the framework to check whether the document contains a linked server item
with the specified name. The default COleLinkingDoc implementation always returns
NULL. This function is overriden in the derived class COleServerDoc to search the

1379

COleLinkingDoc::Register

list of OLE server items for a linked item with the specified name (the name
comparison is case sensitive). Override this function if you have implemented your
own method of storing or retrieving linked server items.

See Also: COleServerltem::GetItemName, COleServerItem::SetItemName,
COleLinkingDoc: :OnFindEmbeddedltem

COleLinkingDoc: : Register
BOOL Register(COleObjectFactory* pFactory, LPCTSTR /pszPathName);

Return Value
Nonzero if the document is successfully registered; otherwise O.

Parameters

Remarks

pFactory Pointer to an OLE factory object (can be NULL).

/pszPathName Pointer to the fully qualified path of the container document.

Informs the OLE system DLLs that the document is open. Call this function when
creating or opening a named file to register the document with the OLE system DLLs.
There is no need to call this function if the document represents an embedded item.

If you are using COleTemplateServer in your application, Register is called for you
by COleLinkingDoc's implementation of OnNewDocument, OnOpenDocument,
and OnSaveDocument.

See Also: COleTemplateServer, COleObjectFactory,
CDocument: :OnNewDocument, CDocument: :OnOpenDocument

COleLinkingDoc: : Revoke

Remarks

1380

void Revoke();

Informs the OLE system DLLs that the document is no longer open. Call this function
to revoke the document's registration with the OLE system DLLs.

You should call this function when closing a named file, but you usually do not need
to call it directly. Revoke is called for you by COleLinkingDoc's implementation of
OnCloseDocument, OnNewDocument, OnOpenDocument, and
OnSaveDocument.

See Also: COleTemplateServer, CDocument: :OnCloseDocument,
CDocument: :OnNewDocument, CDocument: :OnOpenDocument,
CDocument: :OnSaveDocument

COleLinksDialog

The COleLinksDialog object is used for the OLE Edit Links dialog box. Create an
object of class COleLinksDialog when you want to call this dialog box. After a
COleLinksDialog object has been constructed, you can use the ill_el structure to
initialize the values or states of controls in the dialog box. The ill_el structure is of
type OLEUIEDITLINKS. For more information about using this dialog class, see the
DoModal member function.

Note AppWizard-generated container code uses this class.

For more information, see the OLEUIEDITLINKS structure in the OLE 2.01 User
1nteiface Library.

For more information regarding OLE-specific dialog boxes, see the article "Dialog
Boxes in OLE" in Visual C++ Programmer's Guide online.

#include <afxodlgs.h>

See Also: COleDialog

COleLinksDialog Class Members
Data Members

Construction

COleLinksDialog

Operations

DoModal

A structure of type OLEUIEDITLINKS that controls
the behavior of the dialog box.

Constructs a COleLinksDialog object.

Displays the OLE Edit Links dialog box.

COleLinksDialog

1381

COleLinksDialog: :COleLinksDialog

Member Functions
COleLinksDialog: :COleLinksDialog

COleLinksDialog (COleDocument* pDoc, CView* p View, DWORD dwFlags = 0,
10+ CWnd* pParentWnd = NULL);

Parameters

Remarks

pDoc Points to the OLE document that contains the links to be edited.

pView Points to the current view onpDoc.

dwFlags Creation flag, which contains either 0 or ELF _SHOWHELP to specify
whether the Help button will be displayed when the dialog box is displayed.

pParentWnd Points to the parent or owner window object (of type CWnd) to which
the dialog object belongs. If it is NULL, the parent window of the dialog box is set
to the main application window.

This function constructs only a COleLinksDialog object. To display the dialog box,
call the DoModal function.

See Also: COleDocument, COleLinksDialog::DoModal, CView, CWnd

COleLinksDialog: :DoModal
virtual int DoModal();

Return Value

Remarks

1382

Completion status for the dialog box. One of the following values:

• IDOK if the dialog box was successfully displayed.

• IDCANCEL if the user canceled the dialog box.

• IDABORT if an error occurred. If IDABORT is returned, call the
COleDialog::GetLastError member function to get more information about the
type of error that occurred. For a listing of possible errors, see the OleUIEditLinks
function in the OLE 2.01 User 1nteiface Library.

Call this function to display the OLE Edit Links dialog box.

If you want to initialize the various dialog box controls by setting members of the
m_el structure, you should do it before calling DoModal, but after the dialog object is
constructed.

See Also: COleDialog::GetLastError, CDialog::DoModal,
COleLinksDialog: :m_el

COleLinksDialog: :m_el

Data Members
COleLinksDialog: :m_el
Remarks

Structure of type OLEUIEDITLINKS used to control the behavior of the Edit Links
dialog box. Members of this structure can be modified either directly or through
member functions.

For more information, see the OLEUIEDITLINKS structure in the OLE 2.01 User
Inteiface Library.

See Also: COleLinksDialog: :COleLinksDialog, COleLinksDialog: :DoModal

1383

COleMessageFilter

COleMessageFilter

The COleMessageFilter class manages the concurrency required by the interaction of
OLE applications.

The COleMessageFilter class is useful in visual editing server and container
applications, as well as OLE automation applications. For server applications that are
being called, this class can be used to make the application "busy" so that incoming
calls from other container applications are either canceled or retried later. This class
can also be used to determine the action to be taken by a calling application when the
called application is busy.

Common usage is for a server application to call BeginBusyState and EndBusyState
when it would be dangerous for a document or other OLE accessible object to be
destroyed. These calls are made in CWinApp::OnIdle during user-interface updates.

By default, a COleMessageFilter object is allocated when the application is
initialized. It can be retrieved with AfxOleGetMessageFilter.

This is an advanced class; you seldom need to work with it directly.

For more information, see the article "Servers: Implementing a Server" in Visual c++
Programmer's Guide online.

#include <afxole.h>

See Also: CCmdTarget, AfxOleGetMessageFilter, CWinApp: :OnIdle

COleMessageFilter Class Members

1384

Construction

COleMessageFilter

Operations

Register

Revoke

BeginBusyState

Constructs a COleMessageFilter object.

Registers the message filter with the OLE system DLLs.

Revokes the message filter's registration with the OLE
system DLLs.

Puts the application in the busy state.

COleMessageFilter: :BeginBusyState

Operations (continued)

EndBusyState

SetBusyReply

SetRetry Reply

SetMessagePendingDelay

EnableBusyDialog

EnableNotRespondingDialog

Overridables

OnMessagePending

Terminates the application's busy state.

Determines the busy application's reply to an OLE call.

Determines the calling application's reply to a busy
application.

Determines how long the application waits for a response
to an OLE call.

Enables and disables the dialog box that appears when a
called application is busy.

Enables and disables the dialog box that appears when a
called application is not responding.

Called by the framework to process messages while an
OLE call is in progress.

Member Functions
COleMessageFilter: :BeginBusyState

Remarks

virtual void BeginBusyState();

Call this function to begin a busy state. It works in conjunction with EndBusyState
to control the application's busy state. The function SetBusyReply determines the
application's reply to calling applications when it is busy.

The BeginBusyState and EndBusyState calls increment and decrement, respectively,
a counter that determines whether the application is busy. For example, two calls to
BeginBusyState and one call to EndBusyState still result in a busy state. To cancel
a busy state it is necessary to call EndBusyState the same number of times
BeginBusyState has been called.

By default, the framework enters the busy state during idle processing, which is
performed by CWinApp::Onldle. While the application is handling
ON_COMMANDUPDATEUI notifications, incoming calls are handled later,
after idle processing is complete.

See Also: COleMessageFilter: :EndBusyState,
COleMessageFilter: :SetBusy Reply, CWinApp: :Onldle

1385

COleMessageFilter::COleMessageFilter

COleMessageFilter: : COleMessageFilter
COleMessageFilter();

Remarks
Creates a COleMessageFilter object.

See Also: COleMessageFilter::Register, COleMessageFilter::Revoke

COleMessageFilter: : EnableB usy Dialog
void EnableBusyDialog(BOOL bEnableBusy = TRUE);

Parameters

Remarks

bEnableBusy Specifies whether the "busy" dialog box is enabled or disabled.

Enables and disables the busy dialog box, which is displayed when the
message-pending delay expires (see SetRetryReply) during an OLE call.

See Also: COleMessageFilter::EnableNotRespondingDialog,
COleMessageFilter: : BeginBusyState, COleMessageFilter: :SetBusy Reply,
COleMessageFilter: :SetRetry Reply, COleBusy Dialog

COleMessageFilter: : EnableNotRespondingDialog
void EnableNotRespondingDialog(BOOL bEnableNotResponding = TRUE);

Parameters

Remarks

1386

bEnableNotResponding Specifies whether the "not responding" dialog box is
enabled or disabled.

Enables and disables the "not responding" dialog box, which is displayed if a
keyboard or mouse message is pending during an OLE call and the call has timed out.

See Also: COleMessageFilter: :EnableBusyDialog,
COleMessageFilter: :BeginBusyState, COleMessageFilter: :SetBusy Reply,
COleBusyDialog

CO IeMessageFilter:: OnMessagePending

COleMessageFilter: :EndBusyState

Remarks

virtual void EndBusyState();

Call this function to end a busy state. It works in conjunction with BeginBusyState to
control the application's busy state. The function SetBusyReply determines the
application's reply to calling applications when it is busy.

The BeginBusyState and EndBusyState calls increment and decrement, respectively,
a counter that determines whether the application is busy. For example, two calls to
BeginBusyState and one call to EndBusyState still result in a busy state. To cancel a
busy state it is necessary to call EndBusyState the same number of times
BeginBusyState has been called.

By default, the framework enters the busy state during idle processing, which is
performed by CWinApp::Onldle. While the application is handling
ON_UPDATE_COMMAND_UI notifications, incoming calls are handled after idle
processing is complete.

See Also: COleMessageFilter: :BeginBusyState,
COleMessageFilter: :SetBusy Reply, CWinApp: :Onldle

COleMessageFilter: : OnMessagePending
virtual BOOL OnMessagePending(const MSG* pMsg);

Return Value
Nonzero on success; otherwise O.

Parameters

Remarks

pMsg Pointer to the pending message.

Called by the framework to process messages while an OLE call is in progress.

When a calling application is waiting for a call to be completed, the framework calls
OnMessagePending with a pointer to the pending message. By default, the
framework dispatches WM_PAINT messages, so that window updates can occur
during a call that is taking a long time.

You must register your message filter by means of a call to Register before it can
become active.

See Also: COleMessageFilter::Register, AfxOlelnit, CWinApp::lnitlnstance

1387

COleMessageFilter: :Register

COleMessageFilter: :Register
BOOL Register();

Return Value

Remarks

Nonzero on success; otherwise O.

Registers the message filter with the OLE system DLLs. A message filter has no effect
unless it is registered with the system DLLs. Usually your application's initialization
code registers the application's message filter. Any other message filter registered by
your application should be revoked before the program terminates by a call to
Revoke.

The framework's default message filter is automatically registered during initialization
and revoked at termination.

See Also: COleMessageFilter: :Revoke

COleMessageFilter: : Revoke

Remarks

void Revoke();

Revokes a previous registration performed by a call to Register. A message filter
should be revoked before the program terminates.

The default message filter, which is created and registered automatically by the
framework, is also automatically revoked.

See Also: COleMessageFilter: :Register

COleMessageFilter: : SetB usy Reply
void SetBusyReply(SERVERCALL nBusyReply);

Parameters

1388

nBusyReply A value from the SERVERCALL enumeration, which is defined in
COMPOBJ.H. It can have anyone of the following values:

• SERVERCALL_ISHANDLED The application can accept calls but may fail
in processing a particular call.

• SERVER CALL_REJECTED The application probably will never be able to
process a call.

• SERVERCALL_RETRYLATER The application is temporarily in a state in
which it cannot process a call.

COleMessageFilter: :SetRetry Reply

Remarks
This function sets the application's "busy reply." The BeginBusyState and
EndBusyState functions control the application's busy state.

When an application has been made busy with a call to BeginBusyState, it responds
to calls from the OLE system DLLs with a value determined by the last setting of
SetBusyReply. The calling application uses this busy reply to determine what action
to take.

By default, the busy reply is SERVERCALL_RETRYLATER. This reply causes the
calling application to retry the call as soon as possible.

See Also: COleMessageFilter: :BeginBusyState,
COleMessageFilter: :EndBusyState

COleMessageFilter::SetMessagePendingDelay
void SetMessagePendingDelay(DWORD nTimeout = 5000);

Parameters

Remarks

nTimeout Number of milliseconds for the message-pending delay.

Determines how long the calling application waits for a response from the called
application before taking further action.

This function works in concert with SetRetryReply.

See Also: COleMessageFilter: :SetRetry Reply

COleMessageFilter: : SetRetry Reply
void SetRetryReply(DWORD nRetryReply = 0);

Parameters

Remarks

nRetryReply Number of milliseconds between retries.

Determines the calling application's action when it receives a busy response from a
called application.

When a called application indicates that it is busy, the calling application may decide
to wait until the server is no longer busy, to retry right away, or to retry after a
specified interval. It may also decide to cancel the call altogether.

The caller's response is controlled by the functions SetRetryReply and
SetMessagePendingDelay. SetRetry Reply determines how long the calling
application should wait between retries for a given call. SetMessagePendingDelay

1389

COleMessageFilter: :SetRetry Reply

1390

determines how long the calling application waits for a response from the server
before taking further action.

Usually the defaults are acceptable and do not need to be changed. The framework
retries the call every nRetryReply milliseconds until the call goes through or the
message-pending delay has expired. A value of 0 for nRetryReply specifies an
immediate retry, and -1 specifies cancellation of the call.

When the message-pending delay has expired, the OLE "busy dialog box" (see
COleBusyDialog) is displayed so that the user can choose to cancel or retry the call.
Call EnableBusyDialog to enable or disable this dialog box.

When a keyboard or mouse message is pending during a call and the call has timed
out (exceeded the message-pending delay), the "not responding" dialog box is
displayed. Call EnableNotRespondingDialog to enable or disable this dialog box.
Usually this state of affairs indicates that something has gone wrong and the user is
getting impatient.

When the dialogs are disabled, the current "retry reply" is always used for calls to
busy applications.

See Also: COleBusyDialog, COleMessageFilter::EnableNotRespondingDialog,
COleMessageFilter: : EnableBusyDialog,
COleMessageFilter: :SetMessagePendingDelay

COleObjectFactory

The COleObjectFactory class implements the OLE class factory, which creates OLE
objects such as servers, automation objects, and documents.

The COleObjectFactory class has member functions for performing the following
functions:

• Managing the registration of objects.

• Updating the OLE system register, as well as the run-time registration that informs
OLE that objects are running and ready to receive messages.

• Enforcing licensing by limiting use of the control to licensed developers at design
time and to licensed applications at run time.

• Registering control object factories with the OLE system registry.

For more information about object creation, see the articles "Data Objects and Data
Sources (OLE)" and "Data Objects and Data Sources: Creation and Destruction".
For more about registration, see the article "Registration". These articles are in
Visual C++ Programmer's Guide online.

#include <afxdisp.h>

See Also: COleTemplateServer

COleObjectFactory Class Members
Construction

COleObjectFactory Constructs a COleObjectFactory object.

Operations

Register

Register All

Revoke

Registers this object factory with the OLE system DLLs.

Registers all of the application's object factories with OLE system
DLLs.

Revokes this object factory's registration with the OLE system DLLs.

(continued)

COleObjectFactory

1391

COleObjectFactory::COleObjectFactory

Operations (continued)

RevokeAll

UpdateRegistry All

Attributes

IsRegistered

GetClassID

Overridables

OnCreateObject

UpdateRegistry

Verify User License

GetLicenseKey

VerifyLicenseKey

Revokes an application's object factories' registrations with the OLE
system DLLs.

Registers all of the application's object factories with the OLE system
registry.

Indicates whether the object factory is registered with the OLE
system DLLs.

Returns the OLE class ID of the objects this factory creates.

Called by the framework to create a new object of this factory's type.

Registers this object factory with the OLE system registry.

Verifies that the control is licensed for design-time use.

Requests a unique key from the control's DLL.

Verifies that the key embedded in the control matches the key
embedded in the container.

Member Functions
COleObjectFactory::COleObjectFactory

COleObjectFactory(REFCLSID clsid, CRuntimeClass* pRuntimeClass,
... BOOL bMultilnstance, LPCTSTR ipszProgID);

Parameters

Remarks

1392

clsid Reference to the OLE class ID this object factory represents.

pRuntimeClass Pointer to the run-time class of the C++ objects this factory can
create.

bMultiInstance Indicates whether a single instance of the application can support
multiple instantiations. If TRUE, multiple instances of the application are launched
for each request to create an object.

ipszProgID Pointer to a string containing a verbal program identifier, such as
"Microsoft Excel."

Constructs a COleObjectFactory object, initializes it as an unregistered object
factory, and adds it to the list of factories. To use the object, however, you must
register it.

COleObjectFactory: :GetLicenseKey

For more information, see CLSID Key in the OLE 2 Programmer's Reference,
Volume 1.

See Also: CRuntimeClass

COleObj ectFactory: : GetClassID
REFCLSID GetClassID() const;

Return Value

Remarks

Reference to the OLE class ID this factory represents.

Returns a reference to the OLE class ID this factory represents.

For more information, see CLSID Key in the OLE 2 Programmer's Reference,
Volume 1.

See Also: COleObjectFactory::COleObjectFactory

COleObj ectFactory: : GetLicenseKey
virtual BOOL GetLicenseKey(DWORD dwReserved, BSTR *pbstrKey);

Return Value
Nonzero if the license-key string is not NULL; otherwise O.

Parameters

Remarks

dwReserved Reserved for future use.

pbstrKey Pointer to a BSTR that will store the license key.

Requests a unique license key from the control's DLL and stores it in the BSTR
pointed to by pbstrKey.

The default implementation of this function returns 0 and stores nothing in the BSTR.
If you use MFC ActiveX ControlWizard to create your project, ControlWizard
supplies an override that retrieves the control's license key.

See Also: COleObjectFactory:: Verify User License,
COleObjectFactory:: Verify LicenseKey

1393

COleObjectFactory: :IsRegistered

CO leO bj ectF actory: : IsRe gistered
BOOL IsRegistered() const;

Return Value

Remarks

Nonzero if the factory is registered; otherwise O.

Returns a nonzero value if the factory is registered with the OLE system DLLs.

See Also: COleObjectFactory: :Register, COleObjectFactory: :Revoke

COleObjectFactory: : OnCreateObject
virtual CCmdTarget* OnCreateObject();

Return Value

Remarks

A pointer to the created object. It can throw a memory exception if it fails.

Called by the framework to create a new object. Override this function to create the
object from something other than the CRuntimeClass passed to the constructor.

See Also: COleObjectFactory::COleObjectFactory, CRuntimeClass

COleObjectFactory: :Register
BOOL Register();

Return Value

Remarks

Nonzero if the factory is successfully registered; otherwise O.

Registers this object factory with the OLE system DLLs. This function is usually
called by CWinApp::InitInstance when the application is launched.

See Also: COleObjectFactory: :Revoke, COleObjectFactory: : Register All,
CWinApp: : InitInstance

COleObjectFactory: : RegisterAII
static BOOL PASCAL RegisterAll();

Return Value
Nonzero if the factories are successfully registered; otherwise O.

1394

COleObjectFactory:: UpdateRegistry

Remarks
Registers all of the application's object factories with the OLE system DLLs. This
function is usually called by CWinApp::lnitInstance when the application is
launched.

See Also: COleObjectFactory::Revoke, COleObjectFactory::Register,
CWinApp::lnitInstance

COleObjectFactory: : Revoke

Remarks

void Revoke();

Revokes this object factory's registration with the OLE system DLLs. The framework
calls this function automatically before the application terminates. If necessary, call it
from an override of CWinApp::ExitInstance.

See Also: COleObjectFactory::RevokeAll, COleObjectFactory::Register,
CWinApp: :ExitInstance

COleObjectFactory: : RevokeAl1

Remarks

static void PASCAL RevokeAll();

Revokes all of the application's object factories' registrations with the OLE system
DLLs. The framework calls this function automatically before the application
terminates. If necessary, call it from an override of CWinApp: :ExitInstance.

See Also: COleObjectFactory: :Revoke, COleObjectFactory: : RegisterAll,
CWinApp::ExitInstance

COleObjectFactory:: Up dateRegi stry
void UpdateRegistry(LPCTSTR IpszProgID = NULL);
virtual void UpdateRegistry(BOOL bRegister) = 0;

Parameters
IpszProgID Pointer to a string containing the human-readable program identifier,

such as "Excel.Document.5."

bRegister Determines whether the control class's object factory is to be registered.

1395

COleObjectFactory:: UpdateRegistry All

Remarks
Brief discussions of the two forms for this function follow:

• UpdateRegistry(lpszProgID) Registers this object factory with the OLE system
registry. This function is usually called by CWinApp::lnitInstance when the
application is launched.

• UpdateRegistry(bRegister) This form of the function is overridable. If
bRegister is TRUE, this function registers the control class with the system
registry. Otherwise, it unregisters the class.

If you use MFC ActiveX Control Wizard to create your project, ControlWizard
supplies an override to this pure virtual function.

See Also: COleObjectFactory: :Revoke, COleObjectFactory: :Register,
COleObjectFactory::UpdateRegistryAll, CWinApp::lnitInstance

COleObjectFactory: : U pdateRegistry All

Remarks

static void PASCAL UpdateRegistryAll();

Registers all of the application's object factories with the OLE system registry. This
function is usually called by CWinApp: :InitInstance when the application is
launched.

See Also: COleObjectFactory: : Revoke, COleObjectFactory: :Register,
COleObjectFactory::UpdateRegistry, CWinApp::lnitInstance

COleObjectFactory:: VerifyLicenseKey
virtual BOOL VerifyLicenseKey(BSTR bstrKey);

Return Value
Nonzero if the run-time license is valid; otherwise o.

Parameters

Remarks

1396

bstrKey A BSTR storing the container's version of the license string.

This function verifies that the container is licensed to use the OLE control. The default
version calls GetLicenseKey to get a copy of the control's license string and
compares it with the string in bstrKey. If the two strings match, the function returns a
nonzero value; otherwise it returns O.

You can override this function to provide customized verification of the license.

The function VerifyUserLicense verifies the design-time license.

See Also: COleObjectFactory:: VerifyUserLicense,
COleObjectFactory: :GetLicenseKey

COleObj ectF actory: : Verify U serLicense
virtual BOOL VerifyUserLicense();

Return Value

Remarks

Nonzero if the design-time license is valid; otherwise O.

Verifies the design-time license for the OLE control.

See Also: COleObjectFactory::VerifyLicenseKey,
COleObjectFactory: : GetLicenseKey

COleObjectFactory:: VerifyUserLicense

1397

COlePasteSpecialDialog

CO lePasteSpecialDialo g

The COlePasteSpecialDialog class is used for the OLE Paste Special dialog box.
Create an object of class COlePasteSpecialDialog when you want to call this dialog
box. After a COlePasteSpecialDialog object has been constructed, you can use the
AddFormat and AddStandardFormats member functions to add Clipboard formats
to the dialog box. You can also use the m_ps structure to initialize the values or states
of controls in the dialog box. The m_ps structure is of type
OLEUIPASTESPECIAL.

For more information, see the OLEUIPASTESPECIAL structure in the OLE 2.01
User Inteiface Library.

For more information regarding OLE-specific dialog boxes, see the article "Dialog
Boxes in OLE" in Visual C++ Programmer's Guide online.

#include <afxodlgs.h>

See Also: COleDialog

COlePasteSpecialDialog Class Members
Data Members

Construction

COlePasteSpecialDialog

1398

A structure of type OLEUIPASTESPECIAL that controls
the function of the dialog box.

Constructs a COlePasteSpecialDialog object.

COlePasteSpecialDialog::AddFormat

Operations and Attributes

DoModal

AddFormat

AddStandardFormats

Createltem

GetSelectionType

GetDraw Aspect

GetlconicMetafile

GetPasteIndex

Displays the OLE Paste Special dialog box.

Adds custom formats to the list of formats your application
can paste.

Adds CF _BITMAP, CF _DIB, CF _METAFILEPICT, and
optionally CF _LINKSOURCE to the list of formats your
application can paste.

Creates the item in the container document using the specified
format.

Gets the type of selection chosen.

Tells whether to draw item as an icon or not.

Gets a handle to the metafile associated with the iconic form
of this item.

Gets the index of available paste options that was chosen
by the user.

Member Functions
COlePasteSpecialDialog: : AddFormat

void AddFormat(const FORMATETC&fint, LPTSTR lpstrFormat,
... LPTSTR lpstrResult, DWORD flags);

void AddFormat(UINT cf, DWORD tymed, UINT nFormatID,
... BOOL bEnableIcon, BOOL bLink);

Parameters
fint Reference to the data type to add.

lpstrFormat String that describes the format to the user.

lpstrResult String that describes the result if this format is chosen in the dialog box.

flags The different linking and embedding options available for this format. This flag
is a bitwise combination of one or more of the different values in the
OLEUIPASTEFLAG enumerated type.

cf The clipboard format to add.

tymed The types of media available in this format. This is a bitwise combination of
one or more of the values in the TYMED enumerated type.

nFormatID The ID of the string that identifies this format. The format of this string
is two separate strings separated by a '\n' character. The first string is the same that
would be passed in the lpstrFormat parameter, and the second is the same as the
lpstrResult parameter.

1399

COlePasteSpecialDialog::AddStandardFormats

Remarks

bEnableIcon Flag that determines whether the Display As Icon check box is enabled
when this format is chosen in the list box.

bLink Flag that determines whether the Paste Link radio button is enabled when this
format is chosen in the list box.

Call this function to add new formats to the list of formats your application can
support in a Paste Special operation. This function can be called to add either standard
formats such as CF _TEXT or CF _TIFF or custom formats that your application has
registered with the system. For more information about pasting data objects into your
application, see the article "Data Objects and Data Sources: Manipulation" in
Visual C++ Programmer's Guide online.

For more information, see the TYMED enumeration type and the FORMATETC
structure in the OLE 2 Programmer's Reference, Volume 1.

For more information, see the OLEUIPASTEFLAG enumerated type in the
OLE 2.01 User Interface Library.

See Also: COlePasteSpecialDialog: :AddStandardFormats

COlePasteSpecialDialog: : AddStandardFormats
void AddStandardFormats(BOOL bEnableLink = TRUE);

Parameters

Remarks

1400

bEnableLink Flag that determines whether to add CF _LINKSOURCE to the list of
formats your application can paste.

Call this function to add the following Clipboard formats to the list of formats your
application can support in a Paste Special operation:

• CF_BITMAP

• CF_DIB

• CF _METAFILEPICT

• "Embedded Object"

• (optionally) "Link Source"

These formats are used to support embedding and linking.

See Also: COlePasteSpecialDialog: :AddFormat

COlePasteSpecialDialog: :Createltem

COlePasteSpecialDialog: :COlePasteSpecialDialog
COlePasteSpecialDialog(DWORD dwFlags = PSF _SELECTPASTE,

... COleDataObject* pDataObject = NULL, CWnd* pParentWnd = NULL);

Parameters

Remarks

dwFlags Creation flag, contains any number of the following flags combined using
the bitwise-OR operator:

• PSF _SELECTPASTE Specifies that the Paste radio button will be checked
initially when the dialog box is called. Cannot be used in combination with
PSF _SELECTPASTELINK. This is the default.

• PSF _SELECTPASTELINK Specifies that the Paste Link radio button will be
checked initially when the dialog box is called. Cannot be used in combination
with PSF _SELECTPASTE.

• PSF_CHECKDISPLAYASICON Specifies that the Display As Icon check
box will be checked initially when the dialog box is called.

o PSF _SHOWHELP Specifies that the Help button will be displayed when the
dialog box is called.

pDataObject Points to the COleDataObject for pasting. If this value is NULL, it
gets the COleDataObject from the Clipboard.

pParentWnd Points to the parent or owner window object (of type CWnd) to which
the dialog object belongs. If it is NULL, the parent window of the dialog box is set
to the main application window.

This function only constructs a COlePasteSpecialDialog object. To display the dialog
box, call the DoModal function.

For more information, see the OLEUIPASTEFLAG enumerated type in the
OLE 2.01 User Interface Library.

See Also: COleDataObject, COlePasteSpecialDialog: :DoModal

COlePasteSpecialDialog: :CreateItem
BOOL CreateItem(COleClientItem* pNewItem);

Return Value
Nonzero if the item was created successfully; otherwise O.

Parameters
pNewItem Points to a COleClientItem instance. Cannot be NULL.

1401

C01ePasteSpecialDialog: :DoModal

Remarks
Call this function to create the new item that was chosen in the Paste Special dialog
box. This function should only be called after DoModal returns IDOK.

See Also: COleClientltem, COlePasteSpeciaIDialog::DoModal,
COlePasteSpecialDialog: :GetSelectionType,
COlePasteSpeciaIDialog:: COlePasteSpecialDialog

COleP.asteSpeciaIDialog: :DoModal
virtual int DoModal();

Return Value

Remarks

Completion status for the dialog box. One of the following values:

• IDOK if the dialog box was successfully displayed.

• IDCANCEL if the user canceled the dialog box.

• IDABORT if an error occurred. If IDABORT is returned, call the
COleDialog::GetLastError member function to get more information about the
type of error that occurred. For a listing of possible errors, see the
OleUIPasteSpecial function in the OLE 2.01 User Inteiface Library.

Call this function to display the OLE Paste Special dialog box.

If you want to initialize the various dialog box controls by setting members of the
m_ps structure, you should do this before calling DoModal, but after the dialog
object is constructed.

If DoModal returns IDOK, you can call other member functions to retrieve the
settings or information input by the user into the dialog box.

See Also: COleDataObject, COleDialog::GetLastError, CDialog::DoModal,
COlePasteSpeciaIDialog::COlePasteSpeciaIDialog,
COlePasteSpeciaIDialog:: GetDraw Aspect,
COlePasteSpecialDialog: : GetlconicMetafile,
COlePasteSpecialDialog: : GetPastelndex,
COlePasteSpeciaIDialog:: GetSelectionType

COlePasteSpecialDialog: : GetDraw Aspect
DVASPECT GetDrawAspect() const;

Return Value
The method needed to render the object.

1402

CO lePasteSpecialDialog: :GetPasteIndex

Remarks

• DVASPECT_CONTENT Returned if the Display As Icon check box was not
checked when the dialog box was dismissed.

• DVASPECT_ICON Returned if the Display As Icon check box was checked
when the dialog box was dismissed.

Call this function to determine if the user chose to display the selected item as an icon.
Only call this function after DoModal returns IDOK.

For more information on drawing aspect, see the FORMATETC structure in the
OLE 2 Programmer's Reference, Volume 1.

See Also: COlePasteSpecialDialog: :DoModal

CO lePas teSpecialDialo g: : GetIconicMetafile
HGLOBAL GetIconicMetafile() const;

Return Value

Remarks

The handle to the metafile containing the iconic aspect of the selected item, if the
Display As Icon check box was selected when the dialog box was dismissed by
choosing OK; otherwise NULL.

Gets the metafile associated with the item selected by the user.

See Also: COlePasteSpeciaIDialog::GetDrawAspect,
COlePasteSpecialDialog: :DoModal

CO lePasteSpecialDialo g: : GetPasteIndex
int GetPastelndex() const;

Return Value

Remarks

The index into the array of OLEUIPASTEENTRY structures that was selected by the
user. The format that corresponds to the selected index should be used when
performing the paste operation.

Gets the index value associated with the entry the user selected.

For more information, see the OLEUIPASTEENTRY structure in the OLE 2.01 User
Inteiface Library.

See Also: COlePasteSpecialDialog: :DoModal

1403

COlePasteSpeciaIDialog: :GetSelectionType

CO lePasteS pecialDial 0 g: : GetSelection Type
UINT GetSelectionType() const;

Return Value

Remarks

Returns type of selection made.

Call this function to determine the type of selection the user made.

The return type values are specified by the Selection enumeration type declared in the
COlePasteSpecialDialog class.

enum Selection
{

} :

pasteLink.
pasteNormal.
pasteOther.
pasteStatic

Brief desccriptions of these values follow:

• COlePasteSpeciaIDialog::pasteLink The Paste Link radio button was checked
and the chosen format was a standard OLE format.

• COlePasteSpeciaIDialog::pasteNormal The Paste radio button was checked and
the chosen format was a standard OLE format.

• COlePasteSpecialDialog: :pasteOther The selected format is not a standard OLE
format.

• COlePasteSpecialDialog: :pasteStatic The chosen format was a metafile.

See Also: COlePasteSpeciaIDialog::DoModal

Data Members
COlePasteSpecialDialog: :m_ps
Remarks

1404

Structure of type OLEUIPASTESPECIAL used to control the behavior of the Paste
Special dialog box. Members of this structure can be modified directly or through
member functions.

For more information, see the OLEUIPASTESPECIAL structure in the OLE 2.01
User 1nterface Library.

See Also: COlePasteSpeciaIDialog::COlePasteSpeciaIDialog,
COlePasteSpecialDialog: :DoModal

COlePropertiesDialog

COlePropertiesDialog

The COlePropertiesDialog class encapsulates the Windows common OLE Object
Properties dialog box. Common OLE Object Properties dialog boxes provide an easy
way to display and modify the properties of an OLE document item in a manner
consistent with Windows standards. These properties include, among others,
information on the file represented by the document item, options for displaying the
icon and image scaling, and information on the item's link (if the item is linked).

To use a COlePropertiesDialog object, first create the object using the
COlePropertiesDialog constructor. After the dialog box has been constructed, call
the DoModal member function to display the dialog box and allow the user to modify
any properties of the item. DoModal returns whether the user selected the OK
(IDOK) or the Cancel (IDCANCEL) button. In addition to the OK and Cancel
buttons, there is an Apply button. When the user selects Apply, any changes made
to the properties of the document item are applied to the item and its image is
automatically updated, but remains active.

The m_psh data member is a pointer to a PROPSHEETHEADER structure, and in
most cases you will not need to access it explicitly. One exception is when you need
additional property pages beyond the default General, View, and Link pages. In this
case, you can modify the m_psh data member to include your custom pages before
calling the DoModal member function.

For more information on OLE dialog boxes, see the article "Dialog Boxes in OLE" in
Visual C++ Programmer's Guide online.

#include <afxodlgs.h>

See Also: COleDialog, CPropertyPage

1405

COlePropertiesDialog: :COlePropertiesDialog

COlePropertiesDialog Class Members
Construction

COlePropertiesDialog

Data Members

Operations

DoModal

Overridables

OnApplyScale

Constructs a COlePropertiesDialog object.

A structure used to initialize the "General" page of a
COlePropertiesDialog object.

A structure used to initialize the "Link" page of a
COlePropertiesDialog object.

A structure used to initialize theCOlePropertiesDialog object.

A structure used to add additional custom property pages.

A structure used to customize the "View" page of a
COlePropertiesDialog object.

Displays the dialog box and allows the user to make a selection.

Called by the framework when the scaling of the document item
has changed.

Member Functions
co lePropertiesDialo g: : co lePropertiesDialo g

COlePropertiesDialog(COleClientItem* pltem, UINT nScaleMin = 10,
... UINT nScaleMax = 500, CWnd* pParentWnd = NULL);

Parameters

Remarks

1406

pltem Pointer to the document item whose properties are being accessed.

nScaleMin Minimum scaling percentage for the document item image.

nScaleMax Maximum scaling percentage for the document item image.

pParentWnd Pointer to the dialog box's parent or owner.

Creates a COlePropertiesDialog object. Derive your common OLE Object Properties
dialog class from COlePropertiesDialog in order to implement scaling for your
document items. Any dialog boxes implemented by an instance of this class will not
support scaling of the document item.

COlcPropertiesDialog: :OnApplyScale

By default, the common OLE Object Properties dialog box has three default pages:

• General

This page contains system information for the file represented by the selected
document item. From this page, the user can convert the selected item to
another type.

• View

This page contains options for displaying the item, changing the icon, and
changing the scaling of the image.

• Link

This page contains options for changing the location of the linked item and
updating the linked item. From this page, the user can break the link of the
selected item.

To add pages beyond those provided by default, modify the m_psh member variable
before exiting the constructor of your COlePropertiesDialog-derived class. This is
an advanced implementation of the COlePropertiesDialog constructor.

See Also: COlePropertiesDialog::OnApplyScale

COlePropertiesDialog: :DoModal
virtual int DoModal();

Return Value

Remarks

IDOK or IDCANCEL if successful; otherwise O. IDOK and IDCANCEL are
constants that indicate whether the user selected the OK or Cancel button.

If IDCANCEL is returned, you can call the Windows CommDlgExtendedError
function to determine whether an error occurred.

Call this member function to display the Windows common OLE Object Properties
dialog box and allow the user to view and/or change the various properties of the
document item.

See Also: COlePropertiesDialog: :OnApplyScale, COlePropertiesDialog: :m_psh

COlePropertiesDialog::OnApplyScale
virtual BOOL OnApplyScale(COleClientItem* pltem, int nCurrentScale,

... BOOL bRelativeToOrig);

Return Value
Nonzero if handled; otherwise O.

1407

COlePropertiesDialog: :m~p

Parameters

Remarks

pltem Pointer to the document item whose properties are being accessed.

nCurrentScale Numerical value of the dialog scale.

bRelativeToOrig Indicates whether scaling applies to the original size of the
document item.

Called by the framework when the scaling value has changed and either OK or Apply
was selected. The default implementation does nothing. You must override this
function to enable the scaling controls.

Note Before the common OLE Object Properties dialog box is displayed, the framework calls
this function with a NULL for pltem and a-1 for nCurrentScale. This is done to determine if the
scaling controls should be enabled.

See Also: COlePropertiesDialog: :DoModal

Data Members
COlePropertiesDialog: :m_gp
Remarks

A structure of type OLEUIGNRLPROPS, used to initialize the General page of
the OLE Object Properties dialog box. This page shows the type and size of an
embedding and allows the user access to the Convert dialog box. This page also
shows the link destination if the object is a link.

For more information on the OLEUIGNRLPROPS structure, see the OLE
documentation.

COlePropertiesDialog: :m_Ip
Remarks

1408

A structure of type OLEUILINKPROPS, used to initialize the Link page of the OLE
Object Properties dialog box. This page shows the location of the linked item and
allows the user to update, or break, the link to the item.

For more information on the OLEUILINKPROPS structure, see the OLE
documentation.

COlePropertiesDialog: :m_ vp

COlePropertiesDialog: :m_ op
Remarks

A structure of type OLEUIOBJECTPROPS, used to initialize the common OLE
Object Properties dialog box. This structure contains members used to initialize the
General, Link, and View pages.

For more information, see the OLEUIOBJECTPROPS and OLEUILINKPROPS
structures in the OLE documentation.

COlePropertiesDialog: :m_psh
Remarks

A structure of type PROPSHEETHEADER, whose members store the characteristics
of the dialog object. After constructing a COlePropertiesDialog object, you can use
m_psh to set various aspects of the dialog box before calling the DoModal member
function.

If you modify the m_psh data member directly, you will override any default
behavior.

For more information on the PROPSHEETHEADER structure, see the Win32 SDK
documentation.

See Also: COlePropertiesDialog: :DoModal

COlePropertiesDialog: :m_ Vp
Remarks

A structure of type OLEUIVIEWPROPS, used to initialize the View page of the
OLE Object Properties dialog box. This page allows the user to toggle between
"content" and "iconic" views of the object, and change its scaling within the
container. It also allows the user access to the Change Icon dialog box when the
object is being displayed as an icon.

For more information on the OLEUIVIEWPROPS structure, see the OLE
documentation.

1409

COlePropertyPage

COleProperty Page

The COlePropertyPage class is used to display the properties of a custom control in
a graphical interface, similar to a dialog box. For instance, a property page may
include an edit control that allows the user to view and modify the control's caption
property.

Each custom or stock control property can have a dialog control that allows the
control's user to view the current property value and modify that value if needed.

For more information on using COlePropertyPage, see the article "ActiveX
Controls: Property Pages" in Visual C++ Programmer's Guide online and "Modifying
the Default Property Page" in Visual C++ Tutorials online.

#include <afxctl.h>

See Also: CDialog

COlePropertyPage Class Members

1410

Construction

COlePropertyPage

Operations

GetObjectArray

SetModifiedFlag

IsModified

GetPageSite

SetDialogResource

SetPageName

SetHelplnfo

Constructs a COlePropertyPage object.

Returns the array of objects being edited by the property page.

Sets a flag indicating whether the user has modified the property page.

Indicates whether the user has modified the property page.

Returns a pointer to the property page's IPropertyPageSite interface.

Sets the property page's dialog resource.

Sets the property page's name (caption).

Sets the property page's brief help text, the name of its help file, and
its help context.

COleProperty Page:: GetControlStatus

Operations (continued)

GetControlStatus

SetControlStatus

IgnoreApply

Overridables

OnEditProperty

OnHelp

OnlnitDialog

OnObjectsChanged

OnSetPageSite

Indicates whether the user has modified the value in the control.

Sets a flag indicating whether the user has modified the value in
the control.

Determines which controls do not enable the Apply button.

Called by the framework when the user edits a property.

Called by the framework when the user invokes help.

Called by the framework when the property page is initialized.

Called by the framework when another OLE control, with new
properties, is chosen.

Called by the framework when the property frame provides the
page's site.

Member Functions
COleProperty Page: : COleProperty Page

COlePropertyPage(UINT idDlg, UINT idCaption);

Parameters

Remarks

idDlg Resource ID of the dialog template.

idCaption Resource ID of the property page's caption.

When you implement a subclass of COlePropertyPage, your subclass's constructor
should use the COlePropertyPage constructor to identify the dialog-template
resource on which the property page is based and the string resource containing its
caption.

COleProperty Page: : GetControlStatus
BOOL GetControlStatus(UINT nID);

Return Value
TRUE if the control value has been modified; otherwise FALSE.

Parameters
nID Resource ID of a property page control.

1411

COlePropertyPage: :GetObjectArray

Remarks
Call this function to determine whether the user has modified the value of the property
page control with the specified resource ID.

See Also: COlePropertyPage::SetControlStatus

COlePropertyPage::GetObjectArray
LPDISPATCH FAR* GetObjectArray(ULONG FAR* pnObjects);

Return Value
Pointer to an array of IDispatch pointers, which are used to access the properties of
each control on the property page. The caller must not release these interface pointers.

Parameters

Remarks

pnObjects Pointer to an unsigned long integer that will receive the number of objects
being edited by the page.

Each property page object maintains an array of pointers to the IDispatch interfaces
of the objects being edited by the page. This function sets its pnObjects argument to
the number of elements in that array and returns a pointer to the first element of the
array.

COleProperty Page: : GetPageSite
LPPROPERTYPAGESITE GetPageSite();

Return Value

Remarks

1412

A pointer to the property page's IPropertyPageSite interface.

Call this function to get a pointer to the property page's IPropertyPageSite interface.

Controls and containers cooperate so that users can browse and edit control properties.
The control provides property pages, each of which is an OLE object that allows the
user to edit a related set of properties. The container provides a property frame that
displays the property pages. For each page, the property frame provides a page site,
which supports the IPropertyPageSite interface.

See Also: COlePropertyPage::OnSetPageSite

COleProperty Page: :OnEditProperty

COlePropertyPage::IgnoreApply
void IgnoreApply(UINT nID);

Parameters

Remarks

nID ID of the control to be ignored.

The property page's Apply button is enabled only when values of property page
controls have been changed. Use this function to specify controls that do not cause the
Apply button to be enabled when their values change.

See Also: COlePropertyPage: : GetControlStatus

COleProperty Page: : IsModified
BOOL IsModified();

Return Value

Remarks

TRUE if the property page has been modified.

Call this function to determine whether the user has changed any values on the
property page.

See Also: COlePropertyPage::SetModifiedFlag

COleProperty Page: : OnEditProperty
virtual BOOL OnEditProperty(DISPID dispid);

Return Value
The default implementation returns FALSE. Overrides of this function should return
TRUE.

Parameters

Remarks

dispid Dispatch ID of the property being edited.

The framework calls this function when a specific property is to be edited. You can
override it to set the focus to the appropriate control on the page. The default
implementation does nothing and returns FALSE.

1413

COlePropertyPage::OnHelp

COleProperty Page:: OnHelp
virtual BOOL OnHelp(LPCTSTR IpszHelpDir);

Return Value
The default implementation returns FALSE.

Parameters

Remarks

IpszHelpDir Directory containing the property page's help file.

The framework calls this function when the user requests online help. Override it if
your property page must perform any special action when the user accesses help. The
default implementation does nothing and returns FALSE, which instructs the
framework to call WinHelp.

COlePropertyPage::OnInitDialog
virtual BOOL OnlnitDialog();

Return Value

Remarks

The default implementation returns FALSE.

The framework calls this function when the property page's dialog is initialized.
Override it if any special action is required when the dialog is initialized. The default
implementation calls CDialog::OnlnitDialog and returns FALSE.

See Also: CDialog: :OnlnitDialog

COlePropertyPage::OnObjectsChanged

Remarks

1414

virtual void OnObjectsChanged();

When viewing the properties of an OLE control in the developer environment, a
modeless dialog box is used to display its property pages. If another control is
selected, a different set of property pages must be displayed for the new set of
properties. The framework calls this function to notify the property page of the
change.

Override this function to receive notification of this action and perform any special
actions.

CO leProperty Page:: SetDialogResource

COleProperty Page: : OnSetPageSite
virtual void OnSetPageSite();

Remarks
The framework calls this function when the property frame provides the property
page's page site. The default implementation loads the page's caption and attempts to
determine the page's size from the dialog resource. Override this function if your
property page requires any further action; your override should call the base-class
implementation.

See Also: COlePropertyPage::GetPageSite

COleProperty Page: : SetControlStatus
BOOL SetControlStatus(UINT nID, BOOL IsDirty);

Return Value
TRUE, if the specified control was set; otherwise FALSE.

Parameters

Remarks

nID Contains the ID of a property page control.

IsDirty Specifies if a field of the property page has been modified. Set to TRUE if
the field has been modified, FALSE if it has not been modified.

Call this function to change the status of a property page control.

If the status of a property page control is dirty when the property page is closed or the
Apply button is chosen, the control's property will be updated with the appropriate
value.

See Also: COlePropertyPage::GetControIStatus

COleProperty Page:: SetDialogResource
void SetDialogResource(HGLOBAL hDialog);

Parameters
hDialog Handle to the property page's dialog resource.

Remarks
Call this function to set the property page's dialog resource.

1415

COleProperty Page: :SetHelpInfo

COlePropertyPage:: SetHelpInfo
void SetHeJplnfo(LPCTSTR lpszDocString, LPCTSTR lpszHelpFile = NULL,

.. DWORD dwHelpContext = 0);

Parameters

Remarks

lpszDocString A string containing brief help information for display in a status bar or
other location.

lpszHelpFile Name of the property page's help file.

dwHelpContext Help context for the property page.

Use this function to specify "tool tip" information, the help filename, and the help
context for your property page.

See Also: COlePropertyPage::OnHeJp

COleProperty Page: : SetModifiedFlag
void SetModifiedFlag(BOOL bModified = TRUE);

Parameters

Remarks

bModified Specifies the new value for the property page's modified flag.

Use this function to indicate whether the user has modified the property page.

See Also: COlePropertyPage::IsModified

COleProperty Page: : SetPageN arne
void SetPageName(LPCTSTR lpszPageName);

Parameters

Remarks

1416

lpszPageName Pointer to a string containing the property page's name.

Use this function to set the property page's name, which the property frame will
typically display on the page's tab.

COleResizeBar

COleResizeBar

An object of the class COleResizeBar is a type of control bar that supports resizing
of in-place OLE items. COleResizeBar objects appear as a CRectTracker with a
hatched border and outer resize handles.

COleResizeBar objects are usually embedded members of frame-window objects
derived from the COleIPFrameWnd class.

For more information, see the article Activation in Visual C++ Programmer's Guide
online.

#include <afxole.h>

See Also: COleServerDoc, CRectTracker, COleIPFrameWnd

COleResizeBar Class Members
Construction

COleResizeBar

Create

Constructs a COleResizeBar object.

Creates and initializes a Windows child window and associates it to the
COleResizeBar object.

Member Functions
COleResizeBar: : Create

BOOL Create(CWnd* pParentWnd, DWORD dwStyle = WS_CHILD I WS_ VISIBLE,
10+ UINT nID = AFX_IDW _RESIZE_BAR);

Return Value
Nonzero if the resize bar was created; otherwise O.

COleResizeBar

1417

COleResizeB ar: :COleResizeBar

Parameters

Remarks

pParentWnd Pointer to the parent window of the resize bar.

dwStyle Specifies the window style attributes.

nID The resize bar's child window ID.

Creates a child window and associates it with the COleResizeBar object.

See Also: CWnd::Create, CControIBar

COleResizeB ar: : COleResizeB ar
COleResizeBar();

Remarks

1418

Constructs a COleResizeBar object. Call Create to create the resize bar object.

See Also: COleResizeBar: : Create

COleSafeArray
Class COleSafeArray is a class for working with arrays of arbitrary type and
dimension. COleSafeArray derives from the OLE VARIANT structure. The OLE
SAFEARRAY member functions are available through COleSafeArray, as well as a
set of member functions specifically designed for one-dimensional arrays of bytes.

#include <afxdisp.h>

See Also: COle Variant, CRecordSet, CDatabase

COleSafeArray Class Members
Construction

COleSafeArray

Operations

Attach

Clear

Detach

Win32 API Wrappers

AccessData

AllocData

AllocDescriptor

Copy

Create

Destroy

DestroyData

DestroyDescriptor

GetDim

GetElement

GetElemSize

GetLBound

GetUBound

Lock

Constructs a COleSafeArray object.

Gives control of the existing VARIANT array to the
COleSafeArray object.

Frees all data in the underlying VARIANT.

Detaches the V ARIANT array from the COleSafeArray object
(so that the data will not be freed).

Retrieves a pointer to the array data.

Allocates memory for the array.

Allocates memory for the safe array descriptor.

Creates a copy of an existing array.

Creates a safe array.

Destroys an existing array.

Destroys data in a safe array.

Destroys a descriptor of a safe array.

Returns the number of dimensions in the array.

Retrieves a single element of the safe array.

Returns the size, in bytes, of one element in a safe array.

Returns the lower bound for any dimension of a safe array.

Returns the upper bound for any dimension of a safe array.

Increments the lock count of an array and places a pointer to the
array data in the array descriptor.

(continued)

COleSafeArray

1419

COleSafeArray: :AccessData

Win32 API Wrappers (continued)

PtrOtlndex

PutElement

Redim

UnaccessData

Unlock

Returns a pointer to the indexed element.

Assigns a single element into the array.

Changes the least significant (rightmost) bound of a safe array.

Decrements the lock count of an array and invalidates the pointer
retrieved by AccessData.

Decrements the lock count of an array so it can be freed or
resized.

One-Dimensional Array Operations

CreateOneDim

GetOneDimSize

ResizeOneDim

Operators

Creates a one-dimensional COleSafeArray object.

Returns the number of elements in the one-dimensional
COleSafeArray object.

Changes the number of elements in a one-dimensional
COleSafeArray object.

operator = Copies values into a COleSafeArray object (SAFEARRA Y,
VARIANT, COleVariant, or COleSafeArray array).

operator == Compares two variant arrays (SAFEARRA Y, VARIANT,
COleVariant, or COleSafeArray arrays).

operator LPV ARIANT Accesses the underlying VARIANT structure of the
COleSafeArray object.

operator LPCV ARIANT Accesses the underlying V ARIANT structure of the
COleSafeArray object.

Member Functions
COleSafeArray: :AccessData

void AccessData(void** ppvData);

Parameters

Remarks

1420

ppvData A pointer to a pointer to the array data.

Retrieves a pointer to the array data. On error, the function throws a
CMemoryException or COleException.

See Also: COleSafeArray:: UnaccessData, SafeArray AccessData

COleSafeArray: :Clear

COleSafeArray: : AllocData

Remarks

void AllocData();

Call this function to allocate memory for a safe array. On error, the function throws a
CMemoryException or COleException.

See Also: COleSafeArray::AllocDescriptor, SafeArrayAllocData

COleSafeArray: : AllocDescriptor
void AllocDescriptor(DWORD dwDims);

Parameters

Remarks

dwDims Number of dimensions in the safe array.

Call this function to allocate memory for the descriptor of a safe array. On error, the
function throws a CMemoryException or COleException.

See Also: COleSafeArray: :AllocData, SafeArray AllocDescriptor

COleSafeArray: : Attach
void Attach(VARIANT& varSrc);

Parameters

Remarks

varSrc A VARIANT object. The varSrc parameter must have the VARTYPE
VT_ARRAY.

Call this function to give control of the data in an existing VARIANT array to the
COleSafeArray object. The source VARIANT's type is set to VT_EMPTY. This
function clears the current array data, if any.

See Also: COleSafeArray::Detach

COleSafeArray: : Clear

Remarks

void Clear();

Call this function to clear the safe array. The function clears a safe array by setting the
VARTYPE of the object to VT_EMPTY. The current contents are released and the
array is freed.

1421

COleSafeArray: :COleSafeArray

See Also: Variant Clear

COleSafeArray::COleSafeArray
COleSafeArray();
COleSafeArray(const SAFEARRAY& saSrc, VARTYPE vtSrc);
COleSafeArray(LPCSAFEARRAY psaSrc, VARTYPE vtSrc);
COleSafeArray(const COleSafeArray& saSrc);
COleSafeArray(const VARIANT& varSrc);
COleSafeArray(LPCVARIANT pSrc);
COleSafeArray(const COleVariant& varSrc);

Parameters

Remarks

saSrc An existing COleSafeArray object or SAFEARRAY to be copied into the
new COleSafeArray object.

vtSrc The VARTYPE of the new COleSafeArray object.

psaSrc A pointer to a SAFEARRAY to be copied into the new COleSafeArray
object.

varSrc An existing VARIANT or COleVariant object to be copied into the new
COleSafeArray object.

pSrc A pointer to a VARIANT object to be copied into the new COleSafeArray
object.

All of these constructors create new COleSafeArray objects. If there is no parameter,
an empty COleSafeArray object is created (VT_EMPTY). If the COleSafeArray is
copied from another array whose VARTYPE is known implicitly (a COleSafeArray,
COleVariant, or VARIANT), the VARTYPE of the source array is retained and need
not be specified. If the COleSafeArray is copied from another array whose
VARTYPE is not known (SAFEARRAY), the VARTYPE must be specified in the
vtSrc parameter.

On error, the function throws a CMemoryException or COleException.

See Also: VariantCopy

COleSafeArray: : Copy
void Copy(LPSAFEARRAY* ppsa);

Parameters
ppsa Pointer to a location in which to return the new array descriptor.

1422

COleSafeArray: :CreateOneDim

Remarks
Creates a copy of an existing safe array. On error, the function throws a
CMemoryException or COleException.

See Also: SafeArrayCopy

COleSafeArray: : Create
void Create(VARTYPE vtSrc, DWORD dwDims, DWORD* rgElements);
void Create(VARTYPE vtSrc, DWORD dwDims, SAFEARRAYBOUND* rgsabounds);

Parameters

Remarks

vtSrc The base type of the array (that is, the VARTYPE of each element of the
array). The VARTYPE is restricted to a subset of the variant types. Neither the
VT_ARRAY nor the VT_BYREF flag can be set. VT_EMPTY and VT_NULL
are not valid base types for the array. All other types are legal.

dwDims Number of dimensions in the array. This can be changed after the array is
created with Redim.

rgElements Pointer to an array of the number of elements for each dimension in the
array.

rgsabounds Pointer to a vector of bounds (one for each dimension) to allocate for the
array.

Call this function to allocate and initialize the data for the array. This function will
clear the current array data if necessary. On error, the function throws a
CMemoryException.

See Also: SafeArrayCreate

COleSafeArray:: CreateOneDim
void CreateOneDim(VARTYPE vtSrc, DWORD dwElements,

... void pvSrcData = NULL, long nLBound = 0);

Parameters
vtSrc The base type of the array (that is, the VARTYPE of each element of the

array).

dwElements Number of elements in the array. This can be changed after the array is
created with ResizeOneDim.

pvSrcData Pointer to the data to copy into the array.

nLBound The lower bound of the array.

1423

COleSafeArray: :Destroy

Remarks
Call this function to create a new one-dimensional COleSafeArray object. The
function allocates and initializes the data for the array, copying the specified data if
the pointer pvSrcData is not NULL.

On error, the function throws a CMemoryException.

See Also: COleSafeArray: : GetOneDimSize, COleSafeArray: :ResizeOneDim,
COleSafeArray::Create

COleSafeArray: : Destroy
void Destroy();

Remarks
Call this function to destroy an existing array descriptor and all the data in the array. If
objects are stored in the array, each object is released. On error, the function throws a
CMemoryException or COleException.

See Also: COleSafeArray: :DestroyData, COleSafeArray: : DestroyDescriptor ,
SafeArray Destroy

COleSafeArray: :Destroy Data
void DestroyData();

Remarks
Call this function to destroy all the data in a safe array. If objects are stored in the
array, each object is released. On error, the function throws a CMemoryException or
COleException.

See Also: COleSafeArray::Destroy, COleSafeArray::DestroyDescriptor,
SafeArrayDestroyData

COleSafeArray: :DestroyDescriptor

Remarks

1424

void DestroyDescriptor();

Call this function to destroy a descriptor of a safe array. On error, the function throws
a CMemoryException or COleException.

See Also: COleSafeArray::Destroy, COleSafeArray::DestroyData,
SafeArrayDestroyDescriptor

CO leSafeArray: :GetElement

COleSafeArray: :Detach
VARIANT Detach();

Return Value

Remarks

The underlying VARIANT value in the COleSafeArray object.

Call this function to detach the VARIANT data from the COleSafeArray object. The
function detaches the data in a safe array by setting the VARTYPE of the object to
VT_EMPTY. It is the caller's responsibility to free the array by calling the Windows
function VariantClear.

On error, the function throws a COleException.

See Also: COleSafeArray: :Attach, VariantClear

COleSafeArray: : GetDim
DWORD GetDim();

Return Value

Remarks

The number of dimensions in the safe array.

Call this function to return the number of dimensions in the COleSafeArray object.

See Also: COleSafeArray::Create, COleSafeArray::Redim, SafeArrayGetDim

COleSafeArray: : GetElement
void GetElement(long* rglndices, void* pvData);

Parameters

Remarks

rglndices Pointer to an array of indexes for each dimension of the array.

pvData Pointer to the location to place the element of the array.

Call this function to retrieve a single element of the safe array. This function
automatically calls the windows functions SafeArrayLock and SafeArrayUnlock
before and after retrieving the element. If the data element is a string, object, or
variant, the function copies the element in the correct way. The parameter pvData
should point to a large enough buffer to contain the element.

On error, the function throws a CMemoryException or COleException.

See Also: COleSafeArray: :PutElement, SafeArrayGetElement

1425

COleSafeArray: :GetElemSize

COleSafeArray: : GetElemSize
DWORD GetElemSize();

Return Value

Remarks

The size, in bytes, of the elements of a safe array.

Call this function to retrieve the size of an element in a COleSafeArray object.

See Also: COleSafeArray: :GetDim, SafeArrayGetElemSize

COleSafeArray::GetLBound
void GetLBound(DWORD dwDim, long* pLBound);

Parameters

Remarks

dwDim The array dimension for which to get the lower bound.

pLBound Pointer to the location to return the lower bound.

Call this function to return the lower bound for any dimension of a COleSafeArray
object. On error, the function throws a COleException.

See Also: COleSafeArray: : GetUBound, SafeArrayGetLBound

COleSafeArray::GetOneDimSize
DWORD GetOneDimSize();

Return Value

Remarks

The number of elements in the one-dimensional safe array.

Call this function to return the number of elements in the one-dimensional
COleSafeArray object.

See Also: COleSafeArray::CreateOneDimSize, COleSafeArray::ResizeOneDim,
SafeArrayRedim

COleSafeArray::GetUBound
void GetUBound(DWORD dwDim, long* pUBound);

Parameters
dwDim The array dimension for which to get the upper bound.

pUBound Pointer to the location to return the upper bound.

1426

COleSafeArray: :PutElement

Remarks
Call this function to return the upper bound for any dimension of a safe array. On
error, the function throws a COleException.

See Also: COleSafeArray: :GetLBound, SafeArrayGetUBound

COleSafeArray: :Lock

Remarks

void Lock();

Call this function to increment the lock count of an array and place a pointer to the
array data in the array descriptor. On error, it throws a COleException.

The pointer in the array descriptor is valid until Unlock is called. Calls to Lock can be
nested; an equal number of calls to Unlock are required.

An array cannot be deleted while it is locked.

See Also: COleSafeArray::Unlock, SafeArrayLock

COleSafeArray: :PtrOfindex
void PtrOf1ndex(long* rglndices, void** ppvData);

Parameters

Remarks

rglndices An array of index values that identify an element of the array. All indexes
for the element must be specified.

ppvData On return, pointer to the element identified by the values in rglndices.

Call this function to return a pointer to the element specified by the index values.

See Also: SafeArrayPtrOf1ndex

COleSafeArray: :PutElement
void PutElement(long* rglndices, LPVOID pvData);

Parameters
rglndices Pointer to an array of indexes for each dimension of the array.

pvData Pointer to the data to assign to the array. VT_DISPATCH,
VT_UNKNOWN, and VT_BSTR variant types are pointers and do not require
another level of indirection.

1427

COleSafeArray: :Redim

Remarks
Call this function to assign a single element into the array. This function automatically
calls the Windows functions SafeArrayLock and SafeArrayUnlock before and after
assigning the element. If the data element is a string, object, or variant, the function
copies it correctly, and if the existing element is a string, object, or variant, it is
cleared correctly.

Note that you can have multiple locks on an array, so you can put elements into an
array while the array is locked by other operations.

On error, the function throws a CMemoryException or COleException.

See Also: COleSafeArray: :GetElement, SafeArrayPutElement

COleSafeArray: : Redim
void Redim(SAFEARRAYBOUND* psaboundNew);

Parameters

Remarks

psaboundNew Pointer to a new safe array bound structure containing the new array
bound. Only the least significant dimension of an array may be changed.

Call this function to change the least significant (rightmost) bound of a safe array. On
error, the function throws a COleException.

See Also: COleSafeArray: :Create, COleSafeArray: : GetDim,
COleSafeArray: : ResizeOneDim, SafeArrayRedim

COleSafeArray: : ResizeOneDim
void ResizeOneDim(DWORD dwElements);

Parameters

Remarks

1428

dwElements Number of elements in the one-dimensional safe array.

Call this function to change the number of elements in a one-dimensional
COleSafeArray object. On error, the function throws a COleException.

See Also: COleSafeArray: :Redim, COleSafeArray: : GetOneDimSize,
COleSafeArray: :CreateOneDim, SafeArrayRedim

/

COleSafeArray::operator =

COleSafeArray:: UnaccessData

Remarks

void UnaccessData();

Call this function to decrement the lock count of an array and invalidate the pointer
retrieved by AccessData. On error, the function throws a COleException.

See Also: COleSafeArray::AccessData, SafeArrayUnaccessData

COleSafeArray:: Unlock

Remarks

void Unlock();

Call this function to decrement the lock count of an array so it can be freed or resized.
This function is called after access to the data in an array is finished. On error, it
throws a COleException.

See Also: COleSafeArray: :Lock, SafeArrayUnlock

Operators
COleSafeArray::operator =

Remarks

COleSafeArray& operator =(const COleSafeArray& saSrc);
COleSafeArray& operator =(const VARIANT& varSrc);
COleSafeArray& operator =(LPCVARIANT pSrc);
COleSafeArray& operator =(const COleVariant& varSrc);

These overloaded assignment operators copy the source value into this
COleSafeArray object. A brief description of each operator follows:

• operator =(saSrc) Copies an existing COleSafeArray object into this object.

• operator =(varSrc) Copies an existing VARIANT or COleVariant array into
this object.

• operator =(pSrc) Copies the VARIANT array object accessed by pSrc into this
object.

See Also: VariantCopy

1429

COleSafeArray::operator ==

COleSafeArray::operator ==

Remarks

BOOL operator ==(const SAFEARRAY & saSrc) const;
BOOL operator ==(LPCSAFEARRAY pSrc) const;
BOOL operator ==(const COleSafeArray& saSrc) const;
BOOL operator ==(const VARIANT& varSrc) const;
BOOL operator ==(LPCVARIANT pSrc) const;
BOOL operator ==(const COle Variant& varSrc) const;

This operator compares two arrays (SAFEARRAY, VARIANT, COleVariant, or
COleSafeArray arrays) and returns nonzero if they are equal; otherwise O. Two
arrays are equal if they have an equal number of dimensions, equal size in each
dimension, and equal element values.

COleSafeArray: : operator LPCVARIANT

Remarks

operator LPCVARIANT() const;

Call this casting operator to access the underlying VARIANT structure for this
COleSafeArray object.

COleSafeArray::operator LPVARIANT

Remarks

1430

operator LPVARIANT();

Call this casting operator to access the underlying VARIANT structure for this
COleSafeArray object.

Note that changing the value in the VARIANT structure accessed by the pointer
returned by this function will change the value of this COleSafeArray object.

COleServerDoc

COleServerDoc is the base class for OLE server documents. A server document can
contain COleServerItem objects, which represent the server interface to embedded
or linked items. When a server application is launched by a container to edit an
embedded item, the item is loaded as its own server document; the COleServerDoc
object contains just one COleServerItem object, consisting of the entire document.
When a server application is launched by a container to edit a linked item, an existing
document is loaded from disk; a portion of the document's contents is highlighted to
indicate the linked item.

COleServerDoc objects can also contain items of the COleClientItem class. This
allows you to create container-server applications. The framework provides functions
to properly store the COleClientItem items while servicing the COleServerItem
objects.

If your server application does not support links, a server document will always
contain only one server item, which represents the entire embedded object as a
document. If your server application does support links, it must create a server
item each time a selection is copied to the Clipboard.

To use COleServerDoc, derive a class from it and implement the
OnGetEmbeddedItem member function, which allows your server to support
embedded items. Derive a class from COleServerItem to implement the items in
your documents, and return objects of that class from OnGetEmbeddedItem.

To support linked items, COleServerDoc provides the OnGetLinkedItem member
function. You can use the default implementation or override it if you have your own
way of managing document items.

You need one COleServerDoc-derived class for each type of server document your
application supports. For example, if your server application supports worksheets and
charts, you need two COleServerDoc-derived classes.

For more information on servers, see the article "Servers: Implementing a Server" in
Visual C++ Programmer's Guide online.

COleServerDoc

1431

COleServerDoc

#include <afxole.h>

See Also: COleDocument, COleLinkingDoc, COleTemplateServer,
COleServerItem

COleServerDoc Class Members

1432

Construction

COleServerDoc

Attributes

IsEmbedded

IsInPlaceActive

GetEmbeddedltem

GetltemPosition

GetltemClipRect

GetZoomFactor

Operations

OnExecOleCmd

NotifyChanged

NotifyRename

NotifySaved

NotifyClosed

SaveEmbedding

ActivatelnPlace

DeactivateAndUndo

DiscardUndoState

RequestPositionChange

Scroll Container By

UpdateAllItems

Overridables

GetDocObjectServer

OnUpdateDocument

Constructs a COleServerDoc object.

Indicates whether the document is embedded in a container
document or running stand-alone.

Returns TRUE if the item is currently activated in place.

Returns a pointer to an item representing the entire document.

Returns the current position rectangle, relative to the container
application's client area, for in-place editing.

Returns the current clipping rectangle for in-place editing.

Returns the zoom factor in pixels.

Executes a specified command or displays help for the
command.

Notifies containers that the user has changed the document.

Notifies containers that the user has renamed the document.

Notifies containers that the user has saved the document.

Notifies containers that the user has closed the document.

Tells the container application to save the document.

Activates the document for in-place editing.

Deactivates the server's user interface.

Discards undo-state information.

Changes the position of the in-place editing frame.

Scrolls the container document.

Notifies containers that the user has changed the document.

Override this function to create a new CDocObjectServer
object and indicate that this document is a DocObject container.

Called by the framework when a server document that is an
embedded item is saved, updating the container's copy of
the item.

CO leServerDoc: :ActivatelnPlace

Overridables (continued)

OnGetEmbeddedItem Called to get a COleServerItem that represents the entire
document; used to get an embedded item. Implementation
required.

On Close Called by the framework when a container requests to close
the document.

OnSetHostNames Called by the framework when a container sets the window title
for an embedded object.

OnShowDocument Called by the framework to show or hide the document.

OnDeactivate Called by the framework when the user deactivates an item that
was activated in place.

OnDeactivateUI Called by the framework to destroy controls and other
user-interface elements created for in-place activation.

OnSetItemRects Called by the framework to position the in-place editing frame
window within the container application's window.

OnReactivateAndUndo Called by the framework to undo changes made during in-place
editing.

OnFrameWindowActivate Called by the framework when the container's frame window is
activated or deactivated.

OnDocWindowActivate Called by the framework when the container's document frame
window is activated or deactivated.

OnShowControlBars Called by the framework to show or hide control bars for
in-place editing.

OnResizeBorder Called by the framework when the container application's
frame window or document window is resized.

CreatelnPlaceFrame Called by the framework to create a frame window for in-place
editing.

DestroylnPlaceFrame Called by the framework to destroy a frame window for
in-place editing.

Member Functions
COleServerDoc::ActivateInPlace

BOOL ActivatelnPlace();

Return Value
Nonzero if successful; otherwise 0, which indicates that the item is fully open.

Remarks
Activates the item for in-place editing.

1433

COleServerDoc: :COleServerDoc

This function performs all operations necessary for in-place activation. It creates an
in-place frame window, activates it and sizes it to the item, sets up shared menus and
other controls, scrolls the item into view, and sets the focus to the in-place frame
window.

This function is called by the default implementation of COleServerItem::OnShow.
Call this function if your application supports another verb for in-place activation
(such as Play).

See Also: COleServerItem::OnShow

COleServerDoc: :COleServerDoc

Remarks

COleServerDoc();

Constructs a COleServerDoc object without connecting with the OLE system DLLs.
You must call COleLinkingDoc::Register to open communications with OLE. If you
are using COleTemplateServer in your application, COleLinkingDoc::Register is
called for you by COleLinkingDoc's implementation of OnNewDocument,
OnOpenDocument, and OnSaveDocument.

See Also: COleLinkingDoc::Register

COleServerDoc::DeactivateAndUndo
BOOL DeactivateAndUndo();

Return Value

Remarks

1434

Nonzero on success; otherwise O.

Call this function if your application supports Undo and the user chooses Undo after
activating an item but before editing it. If the container application is written using the
Microsoft Foundation Class Library, calling this function causes
COleClientltem::OnDeactivateAndUndo to be called, which deactivates the
server's user interface.

See Also: COleClientItem: :OnDeactivateAndUndo

CO leServerDoc: :DiscardU ndoState

COleServerDoc: : CreateInPlaceFrame
virtual COleIPFrameWnd* CreatelnPlaceFrame(CWnd* pParentWnd);

Return Value
A pointer to the in-place frame window, or NULL if unsuccessful.

Parameters

Remarks

pParentWnd Pointer to the container application's parent window.

The framework calls this function to create a frame window for in-place editing. The
default implementation uses information specified in the document template to create
the frame. The view used is the first view created for the document. This view is
temporarily detached from the original frame and attached to the newly created frame.

This is an advanced overridable.

See Also: COleServerDoc: :Destroy InPlaceFrame

COleServerDoc: :Destroy InPlaceFrame
virtual void DestroylnPlaceFrame(COleIPFrameWnd* pFrame);

Parameters

Remarks

pFrame Pointer to the in-place frame window to be destroyed.

The framework calls this function to destroy an in-place frame window and return the
server application's document window to its state before in-place activation.

This is an advanced overridable.

See Also: COleServerDoc::CreatelnPlaceFrame

COleServerDoc: :DiscardU ndoState
BOOL DiscardUndoState();

Return Value

Remarks

Nonzero on success; otherwise O.

If the user performs an editing operation that cannot be undone, call this function to
force the container application to discard its undo-state information.

1435

COleServerDoc:: GetDocObjectServer

This function is provided so that servers that support Undo can free resources that
would otherwise be consumed by undo-state information that cannot be used.

See Also: COleServerDoc: :OnReactivateAndUndo

COleServerDoc: : GetDocObj ectServer
virtual CDocObjectServer* GetDocObjectServer(LPOLEDOCUMENTSITE pSite);

Return Value
A pointer to a CDocObjectServer; NULL if the operation failed.

Parameters

Remarks

pSite Pointer to the IOleDocumentSite interface that will connect this document to
the server.

Override this function to create a new CDocObjectServer item and return a pointer to
it. When a DocObject server is activated, the return of a non-NULL pointer shows
that the client can support DocObjects. The default implementation returns NULL.

A typical implementation for a document that supports DocObjects will simply
allocate a new CDocObjectServer object and return it to the caller. For example:

CDocObjectServer* COleServerDoc::GetDocObjectServer(LPOLEDOCUMENTSITE pSite)
{

return new CDocObjectServer(this, pSite);

See Also: CDocObjectServer::CDocObjectServer

COleServerDoc::GetEmbeddedItem
COleServerItem* GetEmbeddedItem();

Return Value

Remarks

1436

A pointer to an item representing the entire document; NULL if the operation failed.

Call this function to get a pointer to an item representing the entire document. It calls
COleServerDoc::OnGetEmbeddedItem, a virtual function with no default
implementation.

See Also: COleServerDoc::OnGetEmbeddedItem

COlcScrvcrDoc::GetZoomFactor

COleServerDoc::GetItemClipRect
void GetItemClipRect(LPRECT IpClipRect) const;

Parameters

Remarks

IpClipRect Pointer to a RECT structure or a CRect object to receive the
clipping-rectangle coordinates of the item.

Call the GetltemClipRect member function to get the clipping-rectangle coordinates
of the item that is being edited in place. Coordinates are in pixels relative to the
container application window's client area.

Drawing should not occur outside the clipping rectangle. Usually, drawing is
automatically restricted. Use this function to determine whether the user has scrolled
outside the visible portion of the document; if so, scroll the container document as
needed by means of a call to ScrollContainerBy.

See Also: COleServerDoc: : GetltemPosition,
COleServerDoc::ScrollContainerBy

COleServerDoc::GetItemPosition
void GetItemPosition(LPRECT IpPosRect) const;

Parameters

Remarks

IpPosRect Pointer to a RECT structure or a CRect object to receive the coordinates
of the item.

Call the GetItemPosition member function to get the coordinates of the item being
edited in place. Coordinates are in pixels relative to the container application
window's client area.

The item's position can be compared with the current clipping rectangle to determine
the extent to which the item is visible (or not visible) on the screen.

See Also: COleServerDoc::GetltemClipRect

COleServerDoc: : GetZoomFactor
BOOL GetZoomFactor(LPSIZE IpSizeNum = NULL,

... LPSIZE IpSizeDenom = NULL, LPCRECT lpPosRect = NULL) const;

Return Value
Nonzero if the item is activated for in-place editing and its zoom factor is other than
100% (1:1); otherwise O.

1437

COleServerDoc: :IsEmbedded

Parameters

Remarks

lpSizeNum Pointer to an object of class CSize that will hold the zoom factor's
numerator. Can be NULL.

lpSizeDenom Pointer to an object of class CSize that will hold the zoom factor's
denominator. Can be NULL.

lpPosRect Pointer to an object of class CRect that describes the item's new position.
If this argument is NULL, the function uses the item's current position.

The GetZoomFactor member function determines the "zoom factor" of an item that
has been activated for in-place editing. The zoom factor, in pixels, is the proportion of
the item's size to its current extent. If the container application has not set the item's
extent, its natural extent (as determined by COleServerItem::OnGetExtent) is used.

The function sets its first two arguments to the numerator and denominator of the
item's "zoom factor." If the item is not being edited in place, the function sets these
arguments to a default value of 100% (or 1: 1) and returns zero. For further
information, see Technical Note 40 online, MFC/OLE In-Place Resizing and
Zooming.

See Also: COleServerDoc: : GetItemPosition, COleServerDoc: : GetItemClipRect,
COleServerDoc:: OnSetItemRects

COleServerDoc: : IsEmbedded
BOOL IsEmbedded() const;

Return Value

Remarks

Nonzero if the COleServerDoc object is a document that represents an object
embedded in a container; otherwise O.

Call the IsEmbedded member function to determine whether the document represents
an object embedded in a container. A document loaded from a file is not embedded
although it may be manipulated by a container application as a link. A document
which is an embedding in a container document is considered to be embedded.

COleServerDoc: : IsInPlaceActive
BOOL IsInPlaceActive() const;

Return Value
Nonzero if the COleServerDoc object is active in place; otherwise O.

1438

COleServerDoc::NotifyRename

Remarks
Call the IsInPlaceActive member function to determine whether the item is currently
in the in-place active state.

See Also: COleClientltem: :OnActivate,
COleServerDoc: :OnReactivateAndU ndo, COleServerDoc: :ActivatelnPlace

COleServerDoc::N otifyChanged

Remarks

. void NotifyChanged();

Call this function to notify all linked items connected to the document that the
document has changed. Typically, you call this function after the user changes some
global attribute such as the dimensions of the server document. If an OLE item is
linked to the document with an automatic link, the item is updated to reflect the
changes. In container applications written with the Microsoft Foundation Class
Library, the OnChange member function of COleClientltem is called.

Note This function is included for compatibility with OLE 1. New applications should use
UpdateAllltems.

See Also: OleServerDoc::NotifyClosed, COleServerDoc::NotifySaved,
COleClientltem::OnChange

COleServerDoc::N otifyClosed

Remarks

void NotifyClosed();

Call this function to notify the container(s) that the document has been closed. When
the user chooses the Close command from the File menu, NotifyClosed is called by
COleServerDoc's implementation of the OnCloseDocument member function. In
container applications written with the Microsoft Foundation Class Library, the
On Change member function of COleClientltem is called.

See Also: COleServerDoc::NotifyChanged, COleServerDoc::NotifySaved,
COleClientltem: :OnChange, CDocument: :OnCloseDocument

COleServerDoc: :N otify Rename
void NotifyRename(LPCTSTR IpszNewName);

Parameters
lpszNewName Pointer to a string specifying the new name of the server document;

this is typically a fully qualified path.

1439

COleServerDoc::NotifySaved

Remarks
Call this function after the user renames the server document. When the user chooses
the Save As command from the File menu, NotifyRename is called by
COleServerDoc's implementation of the OnSaveDocument member function. This
function notifies the OLE system DLLs, which in turn notify the containers. In
container applications written with the Microsoft Foundation Class Library, the
On Change member function of COleClientltem is called.

See Also: COleServerDoc::NotifySaved, CDocument::OnSaveDocument

COleServerDoc::N otifySaved

Remarks

void NotifySaved();

Call this function after the user saves the server document. When the user chooses the
Save command from the File menu, NotifySaved is called for you by
COleServerDoc's implementation of OnSaveDocument. This function notifies the
OLE system DLLs, which in turn notify the containers. In container applications
written with the Microsoft Foundation Class Library, the OnChange member function
of COleClientltem is called.

See Also: COleServerDoc::NotifyChanged, COleServerDoc::NotifyClosed,
COleClientltem: :OnChange, CDocument: :OnSaveDocument

COleServerDoc: :OnClose
virtual void OnClose(OLE CLOSE dwCloseOption);

Parameters

Remarks

1440

dwCloseOption A value from the enumeration OLECLOSE. This parameter can
have one of the following values:

• OLECLOSE_SAVEIFDIRTY The file is saved if it has been modified.

• OLECLOSE_NOSAVE The file is closed without being saved.

• OLECLOSE_PROMPTSAVE If the file has been modified, the user is
prompted about saving it.

Called by the framework when a container requests that the server document be
closed. The default implementation calls CDocument::OnCloseDocument.

For more information and additional values, see OLECLOSE in the OLE
documentation.

See Also: COleException, CDocument::OnCloseDocument

COleServerDoc: :OnDoc Window Activate

COleServerDoc: :OnDeactivate

Remarks

virtual void OnDeactivate();

Called by the framework when the user deactivates an embedded or linked item that is
currently in-place active. This function restores the container application's user
interface to its original state and destroys any menus and other controls that were
created for in-place activation.

The undo state information should be unconditionally released at this point.

For more information, see the article "Activation" in Visual C++ Programmer's
Guide online.

See Also: COleServerDoc: :ActivateInPlace, COleServerDoc: :OnDeactivateUI,
COleServerDoc: :DestroyInPlaceFrame

COleServerDoc: :OnDeactivateUI
virtual void OnDeactivateUI(BOOL bUndoable);

Parameters

Remarks

bUndoable Specifies whether the editing changes can be undone.

Called when the user deactivates an item that was activated in place. This function
restores the container application's user interface to its original state, hiding any
menus and other controls that were created for in-place activation.

The framework always sets bUndoable to FALSE. If the server supports undo and
there is an operation that can be undone, call the base-class implementation with
bUndoable set to TRUE.

See Also: COleServerDoc: :OnDeactivate

COleServerDoc: : OnDoc Window Activate
virtual void OnDocWindowActivate(BOOL bActivate);

Parameters

Remarks

bActivate Specifies whether the document window is to be activated or deactivated.

The framework calls this function to activate or deactivate a document window for
in-place editing. The default implementation removes or adds the frame-level user

1441

COleServerDoc: :OnExecOleCmd

interface elements as appropriate. Override this function if you want to perform
additional actions when the document containing your item is activated or deactivated.

For more information, see the article "Activation" in Visual C++ Programmer's
Guide online.

See Also: COleServerDoc: :ActivateInPlace,
COleServerDoc: :OnReactivateAndUndo, COleServerDoc: :OnShowControIBars,
COleServerDoc: :OnDeactivateUI, COleServerDoc: :OnFrame Window Activate,
COleIPFrameWnd

COleServerDoc::OnExecOleCmd
HRESULT OnExecOleCmd(const GUID* pGroup, DWORD nCmdID,

... DWORD nCmdExecOut, VARIANTARG* pvaln, VARIANTARG* pvaOut);

Return Value
Returns S_OK if successful; otherwise, one of the following error codes:

Value Description

E_UNEXPECTED Unexpected error occurred

E_F AIL Error occurred

E_NOTIMPL Indicates MFC itself should attempt to translate
and dispatch the command

OLECMDERR_E_UNKNOWNGROUP pGroup is non-NULL but does not specify a
recognized command group

OLECMDERR_E_NOTSUPPORTED nCmdID is not recognized as a valid command
in the group pGroup

OLECMDERR_DISABLED The command identified by nCmdID is disabled
and cannot be executed

OLECMDERR_NOHELP Caller asked for help on the command identified
by nCmdID but no help is available

OLECMDERR_CANCELED User canceled the execution

Parameters

1442

pGroup A pointer to a OUID that identifies a set of commands. Can be NULL to
indicate the default command group.

nCmdID The command to execute. Must be in the group identified by pGroup.

nCmdExecOut The way the object should execute the command, one or more of the
following values from the OLECMDEXECOPT enumeration:

• OLECMDEXECOPT_DODEFAULT

• OLECMDEXECOPT_PROMPTUSER

• OLECMDEXECOPT_DONTPROMPTUSER

• OLECMDEXECOPT_SHOWHELP

COleServerDoc: :OnFrame Window Activate

Remarks

pvaln Pointer to a VARIANTARG containing input arguments for the command.
Can be NULL.

pvaOut Pointer to a VARIANTARG to receive the output return values from the
command. Can be NULL.

The framework calls this function to execute a specified command or display help for
the command.

COleCmdUI can be used to enable, update, and set other properties of DocObject
user interface commands. After the commands are initialized, you can execute them
with OnExecOleCmd.

The framework calls the function before attempting to translate and dispatch an OLE
document command. You don't need to override this function to handle standard OLE
document commands, but you must supply an override to this function if you want to
handle your own custom commands or handle commands that accept parameters or
return results.

Most of the commands do not take arguments or return values. For a majority of
commands the caller can pass NULLs for pvaln and pvaOut. For commands that
expect input values, the caller can declare and initialize a VARIANTARG variable
and pass a pointer to the variable in pvaln. For commands that require a single value,
the argument can be stored directly in the VARIANTARG and passed to the function.
Multiple arguments must be packaged within the VARIANTARG using one of the
supported types (such as IDispatch and SAFEARRAY).

Similarly, if a command returns arguments the caller is expected to declare a
VARIANTARG, initialize it to VT_EMPTY, and pass its address inpvaOut.1f a
command returns a single value, the object can store that value directly in pvaOut.
Multiple output values must be packaged in some way appropriate for the
VARIANTARG.

The base-class implementation of this function will walk the
OLE_COMMAND_MAP structures associated with the command target and try to
dispatch the command to an appropriate handler. The base-class implementation
works only with commands that do not accept arguments or return values. If you need
to handle commands that do accept arguments or return values, you must override this
function and work with the pvaln and pvaOut parameters yourself.

See Also: COleCmdUI

COleServerDoc::OnFrameWindowActivate
virtual void OnFrameWindowActivate(BOOL bActivate);

Parameters
bActivate Specifies whether the frame window is to be activated or deactivated.

1443

COleServerDoc: :OnGetEmbeddedltem

Remarks
The framework calls this function when the container application's frame window is
activated or deactivated.

The default implementation cancels any help modes the frame window might be in.
Override this function if you want to perform special processing when the frame
window is activated or deactivated.

For more information, see the article "Activation" in Visual C++ Programmer's
Guide online.

See Also: COleServerDoc::OnDocWindowActivate

COleServerDoc: :OnGetEmbeddedItem
virtual COleServerItem* OnGetEmbeddedltem() = 0;

Return Value

Remarks

A pointer to an item representing the entire document; NULL if the operation failed.

Called by the framework when a container application calls the server application to
create or edit an embedded item. There is no default implementation. You must
override this function to return an item that represents the entire document. This return
value should be an object of a COleServerItem-derived class.

See Also: COleLinkingDoc: :OnGetLinkedltem, COleServerItem

COleServerDoc::OnReactivateAndUndo
virtual BOOL OnReactivateAndUndo();

Return Value

Remarks

1444

Nonzero if successful; otherwise O.

The framework calls this function when the user chooses to undo changes made to an
item that has been activated in place, changed, and subsequently deactivated. The
default implementation does nothing except return FALSE to indicate failure.

Override this function if your application supports undo. Usually you would perform
the undo operation, then activate the item by calling ActivateInPlace. If the container
application is written with the Microsoft Foundation Class Library, calling
COleClientItem::ReactivateAndUndo causes this function to be called.

See Also: COleServerDoc: :ActivateInPlace, COleServerDoc: :IsInPlaceActive,
COleClientItem: : ReactivateAndU ndo

COleServerDoc: :OnSetHostN ames

COleServerDoc: : OnResizeBorder
virtual void OnResizeBorder(LPCRECT lpRectBorder,

... LPOLEINPLACEUIWINDOW lpUIWindow, BOOL bFrame);

Parameters

Remarks

IpRectBorder Pointer to a RECT structure or a CRect object that specifies the
coordinates of the border.

lpUIWindow Pointer to an object of class IOlelnPlaceUIWindow that owns the
current in-place editing session.

bFrame TRUE if lpUIWindow points to the container application's top-level frame
window, or FALSE if lpUIWindow points to the container application's
document-level frame window.

The framework calls this function when the container application's frame windows
change size. This function resizes and adjusts toolbars and other user-interface
elements in accordance with the new window size.

For more information, see IOlelnPlaceUIWindow in the OLE documentation.

This is an advanced overridable.

See Also: COleServerDoc::OnShowControIBars

COleServerDoc::OnSetHostNames
virtual void OnSetHostNames(LPCTSTR IpszHost, LPCTSTR IpszHostObj);

Parameters

Remarks

lpszHost Pointer to a string that specifies the name of the container application.

lpszHostObj Pointer to a string that specifies the container's name for the document.

Called by the framework when the container sets or changes the host names for this
document. The default implementation changes the document title for all views
referring to this document.

Override this function if your application sets the titles through a different mechanism.

See Also: COleClientItem::SetHostNames

1445

COleServerDoc: :OnSetItemRects

COleServerDoc: :OnSetItemRects
virtual void OnSetltemRects(LPCRECT IpPosRect, LPCRECT IpClipRect);

Parameters

Remarks

IpPosRect Pointer to a RECT structure or a CRect object that specifies the in-place
frame window's position relative to the container application's client area.

IpClipRect Pointer to a RECT structure or a CRect object that specifies the in-place
frame window's clipping rectangle relative to the container application's client
area.

The framework calls this function to position the in-place editing frame window
within the container application's frame window. Override this function to update the
view's zoom factor, if necessary.

This function is usually called in response to a RequestPositionChange call, although
it can be called at any time by the container to request a position change for the
in-place item.

See Also: COleServerDoc: : RequestPositionChange,
COleIPFrame Wnd: : RepositionFrame, COleClientltem: :SetltemRects,
COleServerDoc: : GetZoomFactor

COleServerDoc: :OnShowControlBars
virtual void OnShowControlBars(CFrameWnd *pFrameWnd, BOOL bShow);

Parameters

Remarks

1446

pFrame Wnd Pointer to the frame window whose control bars should be hidden or
shown.

bShow Determines whether control bars are shown or hidden.

The framework calls this function to show or hide the server application's control bars
associated with the frame window identified by pFrame Wnd. The default
implementation enumerates all control bars owned by that frame window and hides or
shows them.

See Also: COleServerDoc: :ActivatelnPlace,
COleServerDoc: :OnReactivateAndUndo,
COleServerDoc: :OnFrame Window Activate, COleServerDoc: :IsInPlaceActive

COleServerDoc:: RequestPositionChange

COleServerDoc::OnShowDocument
virtual void OnShowDocument(BOOL bShow);

Parameters

Remarks

bShow Specifies whether the user interface to the document is to be shown or
hidden.

The framework calls the OnShowDocument function when the server document must
be hidden or shown. If bShow is TRUE, the default implementation activates the
server application, if necessary, and causes the container application to scroll its
window so that the item is visible. If bShow is FALSE, the default implementation
deactivates the item through a call to OnDeactivate, then destroys or hides all frame
windows that have been created for the document, except the first one. If no visible
documents remain, the default implementation hides the server application.

See Also: COleServerDoc::ActivateInPlace, COleServerItem::OnDoVerb,
COleServerDoc: : IsInPlaceActive, COleServerDoc: :OnDeactivateUI

COleServerDoc: : On U pdateDocument
virtual BOOL OnUpdateDocument();

Return Value

Remarks

Nonzero if the document was successfully updated; otherwise O.

Called by the framework when saving a document that is an embedded item in a
compound document. The default implementation calls the
COleServerDoc::NotifySaved and COleServerDoc::SaveEmbedding member
functions and then marks the document as clean. Override this function if you want to
perform special processing when updating an embedded item.

See Also: COleServerDoc::NotifySaved, COleServerDoc::SaveEmbedding,
CDocument: :OnSaveDocument

COleServerDoc: : RequestPositionChange
void RequestPositionChange(LPCRECT lpPosRect);

Parameters
lpPosRect Pointer to a RECT structure or a CRect object containing the item's new

position.

1447

COleServerDoc: :SaveEmbeddi ng

Remarks
Call this member function to have the container application change the item's
position. This function is usually called (in conjunction with UpdateAllltems) when
the data in an in-place active item has changed. Following this call, the container
might or might not perform the change by calling OnSetltemRects. The resulting
position might be different from the one requested.

See Also: COleServerDoc: :ScrollContainerBy

COleServerDoc:: SaveEmbedding

Remarks

void SaveEmbedding();

Call this function to tell the container application to save the embedded object. This
function is called automatically from OnUpdateDocument. Note that this function
causes the item to be updated on disk, so it is usually called only as a result of a
specific user action.

See Also: COleServerDoc::NotifyClosed

COleServerDoc::ScrollContainerBy
BOOL ScrollContainerBy(CSize sizeScroll);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

sizeScroll Indicates how far the container document is to scroll.

Call the ScrollContainerBy member function to scroll the container document by the
amount, in pixels, indicated by sizeScroll. Positive values indicate scrolling down and
to the right; negative values indicate scrolling up and to the left.

See Also: COleClientltem::OnScrollBy

COleServerDoc:: UpdateAIIItems
void UpdateAllltems(COleServerItem* pSender, LPARAM IHint = OL,

... CObject* pHint = NULL, DVASPECT nDrawAspect = DVASPECT_CONTENT);

Parameters

1448

pSender Pointer to the item that modified the document, or NULL if all items are to
be updated.

Remarks

COleServerDoc:: UpdateAllItems

tHint Contains information about the modification.

pHint Pointer to an object storing information about the modification.

nDrawAspect Determines how the item is to be drawn. This is a value from the
DVASPECT enumeration. This parameter can have one of the following values:

• DVASPECT_CONTENT Item is represented in such a way that it can be
displayed as an embedded object inside its container.

• DVASPECT_THUMBNAIL Item is rendered in a "thumbnail" representation
so that it can be displayed in a browsing tool.

• DVASPECT_ICON Item is represented by an icon.

• DVASPECT_DOCPRINT Item is represented as if it were printed using the
Print command from the File menu.

Call this function to notify all linked items connected to the document that the
document has changed. You typically call this function after the user changes the
server document. If an OLE item is linked to the document with an automatic link, the
item is updated to reflect the changes. In container applications written with the
Microsoft Foundation Class Library, the On Change member function of
COleClientItem is called.

This function calls the OnUpdate member function for each of the document's items
except the sending item, passing pHint, tHint, and nDrawAspect. Use these parameters
to pass information to the items about the modifications made to the document. You
can encode information using tHint or you can define a CObject-derived class to
store information about the modifications and pass an object of that class using pHint.
Override the OnUpdate member function in your COleServerItem-derived class to
optimize the updating of each item depending on whether its presentation has
changed.

See Also: COleServerDoc::NotifyChanged, COleServerItem::OnUpdate,
COleServerDoc: :NotifySaved, COleClientI~em: :OnChange

1449

COleServerItem

COleServerItem

COleServerltem

The COleServerltem class provides the server interface to OLE items. A linked item
can represent some or all of a server document. An embedded item always represents
an entire server document.

The COleServerltem class defines several overridable member functions that are
called by the OLE system dynamic-link libraries (DLLs), usually in response to
requests from the container application. These member functions allow the container
application to manipulate the item indirectly in various ways, such as by displaying it,
executing its verbs, or retrieving its data in various formats.

To use COleServerltem, derive a class from it and implement the OnDraw and
Serialize member functions. The OnDraw function provides the metafile
representation of an item, allowing it to be displayed when a container application
opens a compound document. The Serialize function of CObject provides the native
representation of an item, allowing an embedded item to be transferred between the
server and container applications. OnGetExtent provides the natural size of the item
to the container, enabling the container to size the item.

For more information about servers and related topics, see the articles "Servers:
Implementing a Server" and "Creating a Container/Server Application" in the article
"Containers: Advanced Features." Both articles are in Visual C++ Programmer's
Guide online.

#include <afxole.h>

See Also: COleClientItem, COleServerDoc, COleTemplateServer,
CObject: : Serialize

COleServerItem Class Members

1450

Status

GetDocument

GetltemName

Returns the server document that contains the item.

Returns the name of the item. Used for linked items only.

Status (continued)

SetItemName

IsConnected

IsLinkedItem

Operations

CopyToClipboard

NotifyChanged

DoDragDrop

GetClipboardData

GetEmbedSourceData

AddOtherClipboardData

GetLinkSourceData

GetObjectDescriptorData

Construction

COleServerItem

GetDataSource

Overridables

OnDraw

OnDrawEx

OnUpdate

OnlnitFromData

OnGetExtent

OnSetExtent

OnGetClipboardData

OnSetColorScheme

OnSetData

OnDoVerb

OnQueryUpdateItems

OnRenderData

OnRenderFileData

Sets the name of the item. Used for linked items only.

Indicates whether the item is currently attached to an active
container.

Indicates whether the item represents a linked OLE item.

Copies the item to the Clipboard.

Updates all containers with automatic link update.

Performs a drag-and-drop operation.

Gets the data source for use in data transfer (drag and drop or
Clipboard).

Gets the CF _EMBEDSOURCE data for an OLE item.

Places presentation and conversion formats in a
COleDataSource object.

Gets the CF _LINKSOURCE data for an OLE item.

Gets the CF _OBJECTDESCRIPTOR data for an OLE item.

Constructs a COleServerItem object.

Gets the object used to store conversion formats.

Called when the container requests to draw the item;
implementation required.

Called for specialized item drawing.

Called when some portion of the document the item belongs in
is changed.

Called by the framework to initialize an OLE item using the
contents of the data transfer object specified.

Called by the framework to retrieve the size of the OLE item.

Called by the framework to set the size of the OLE item.

Called by the framework to get the data that would be copied to
the Clipboard.

Called to set the item's color scheme.

Called to set the item's data.

Called to execute a verb.

Called to determine whether any linked items require updating.

Retrieves data as part of delayed rendering.

Retrieves data into a CFile object as part of delayed rendering.

(continued)

COleServerItem

1451

COleServerItem: :AddOtherClipboardData

Overridables (continued)

OnRenderGlobalData

OnUpdateItems

OnOpen

OnShow

OnHide

Data Members

Retrieves data into an HGLOBAL as part of delayed rendering.

Called to update the presentation cache of all items in the server
document.

Called by the framework to display the OLE item in its own
top-level window.

Called when the container requests to show the item.

Called by the framework to hide the OLE item.

Informs the server about how much of the OLE item is visible.

Member Functions
COleServerItem: : AddOtherClipboardData

void AddOtherClipboardData(COleDataSource* pDataSource);

Parameters

Remarks

pDataSource Pointer to the COleDataSource object in which the data should be
placed.

Call this function to place the presentation and conversion fonnats for the OLE item
in the specified COleDataSource object. You must have implemented the OnDraw
member function to provide the presentation fonnat (a metafile picture) for the item.
To support other conversion fonnats, register them using the COleDataSource object
returned by GetDataSource and override the OnRenderData member function to
provide data in the fonnats you want to support.

See Also: COleDataSource, COleServerItem::GetDataSource,
COleServerItem: : GetEmbedSourceData, COleServerItem: :OnDraw

COleServerItem: :COleServerItem
COleServerItem(COleServerDoc* pServerDoc, BOOL bAutoDelete);

Parameters

1452

pServerDoc Pointer to the document that will contain the new item.

bAutoDelete Flag indicating whether the object can be deleted when a link to it is
released. Set this to FALSE if the COleServerItem object is an integral part of
your document's data which you must delete. Set this to TRUE if the object is a

COleServerItem: :DoDragDrop

Remarks

secondary structure used to identify a range in your document's data that can be
deleted by the framework.

Constructs a COleServerltem object and adds it to the server document's collection
of document items.

See Also: COleDocument: : Addltem

COleServerItem: :CopyToClipboard
void CopyToClipboard(BOOL blncludeLink = FALSE);

Parameters

Remarks

blncludeLink Set this to TRUE if link data should be copied to the Clipboard. Set
this to FALSE if your server application does not support links.

Call this function to copy the OLE item to the Clipboard. The function uses the
OnGetClipboardData member function to create a COleDataSource object
containing the OLE item's data in the formats supported. The function then places the
COleDataSource object on the Clipboard by using the COleDataSource::SetClipboard
function. The COleDataSource object includes the item's native data and its
representation in CF _METAFILEPICT format, as well as data in any conversion
formats you choose to support. You must have implemented Serialize and OnDraw
for this member function to work.

See Also: COleDataSource: :SetClipboard, COleDataSource,
COleServer Item: :AddOtherClipboardData,
COleServerltem::GetClipboardData, COleServerltem::OnDraw,
CObject::Serialize

COleServerItem: : DoDragDrop
DROPEFFECT DoDragDrop(LPCRECT lpltemRect, CPoint ptOf!set,

Return Value

... BOOL blncludeLink = FALSE, DWORD dwEf!ects = DROPEFFECT_COPY I

... DROPEFFECT_MOVE, LPCRECT lpRectStartDrag = NULL);

A value from the DROPEFFECT enumeration. If it is DROPEFFECT_MOVE, the
original data should be removed.

Parameters
lpltemRect The item's rectangle on screen, in pixels, relative to the client area.

ptOf!set The offset from lpltemRect where the mouse position was at the time of
the drag.

1453

COleServerItem: :GetClipboardData

Remarks

blncludeLink Set this to TRUE if link data should be copied to the Clipboard. Set it
to FALSE if your application does not support links.

dwEffects Determines the effects that the drag source will allow in the drag operation
(a combination of Copy, Move, and Link).

IpRectStartDrag Pointer to the rectangle that defines where the drag actually starts.
For more information, see the following Remarks section.

Call the DoDragDrop member function to perform a drag-and-drop operation. The
drag-and-drop operation does not start immediately. It waits until the mouse cursor
leaves the rectangle specified by IpRectStartDrag or until a specified number of
milliseconds have passed. If IpRectStartDrag is NULL, the size of the rectangle is one
pixel. The delay time is specified by the DragDelay value in the [Windows] section of
WIN.INI. If this value is not in WIN.INI, the default value of 200 milliseconds is used.

See Also: COleDataSource: :DoDragDrop, COleServerItem: :CopyToClipboard

COleServerItem::GetClipboardData
void GetClipboardData(COleDataSource* pDataSource,

... BOOL blncludeLink = FALSE, LPPOINT IpOffset = NULL,

... LPSIZE IpSize = NULL);

Parameters

Remarks

1454

pDataSource Pointer to the COleDataSource object that will receive the OLE item's
data in all supported formats.

blncludeLink TRUE if link data should be copied to the Clipboard. FALSE if your
server application does not support links.

IpOffset The offset, in pixels, of the mouse cursor from the origin of the object.

IpSize The size of the object in pixels.

Call this function to fill the specified COleDataSource object with all the data that
would be copied to the Clipboard if you called CopyToClipboard (the same data
would also be transferred if you called DoDragDrop). This function calls the
GetEmbedSourceData member function to get the native data for the OLE item and
calls the AddOtherClipboardData member function to get the presentation format
and any supported conversion formats. If blncludeLink is TRUE, the function also
calls GetLinkSourceData to get the link data for the item.

Override this function if you want to put formats in a COleDataSource object before
or after those formats supplied by CopyToClipboard.

CO leServerItem: :GetDocument

See Also: COleDataSource, COleServerItem::AddOtherClipboardData,
COleServerItem:: CopyToClipboard, COleServerItem: :DoDragDrop,
COleServerltem::GetEmbedSourceData, COleServerItem::GetLinkSourceData

COleServerItem: : GetDataSource
COleDataSource* GetDataSource();

Return Value

Remarks

A pointer to the COleDataSource object used to store the conversion formats.

Call this function to get the COleDataSource object used to store the conversion
formats that the server application supports. If you want your server application to
offer data in a variety of formats during data transfer operations, register those formats
with the COleDataSource object returned by this function. For example, if you want
to supply a CF _TEXT representation of the OLE item for Clipboard or drag-and-drop
operations, you would register the format with the COleDataSource object this
function returns, and then override the OnRenderXxxData member function to
provide the data.

See Also: COleDataSource, COleDataSource: :Delay RenderData,
COleServerItem:: CopyToClipboard, COleServerItem: :DoDragDrop,
COleServer Item:: OnRenderData, COleServer Item:: OnRender FileData,
COleServerltem::OnRenderGlobaIData

COleServerItem: : GetDocument
COleServerDoc* GetDocument() const;

Return Value

Remarks

A pointer to the document that contains the item; NULL if the item is not part of a
document.

Call this function to get a pointer to the document that contains the item. This allows
access to the server document that you passed as an argument to the COleServerItem
constructor.

See Also: COleServerItem::COleServerItem, COleServerDoc

1455

COleServer Item: : GetEmbedSourceData

COleServerItern: : GetErnbedSourceData
void GetEmbedSourceData(LPSTGMEDIUM IpStgMedium);

Parameters

Remarks

lpStgMedium Pointer to the STGMEDIUM structure that will receive the
CF _EMBEDSOURCE data for the OLE item.

Call this function to get the CF _EMBEDSOURCE data for an OLE item. This
format includes the item's native data. You must have implemented the Serialize
member function for this function to work properly.

The result can then be added to a data source by using
COleDataSource::CacheData. This function is called automatically by
COleServerltem::OnGetClipboardData.

For more information, see STGMEDIUM in the OLE 2 Programmer's Reference,
Volume 1.

See Also: COleServerltem: :GetLinkSourceData,
COleServerltem::GetObjectDescriptorData, COleDataSource::CacheData,
CObject: :Serialize

COleServerItern: : GetIternN arne
const CString& GetltemName() const;

Return Value

Remarks

The name of the item.

Call this function to get the name of the item. You typically call this function only for
linked items.

See Also: COleServerItem::SetItemName, COleLinkingDoc::OnGetLinkedltem

COleServerItern: : GetLinkSourceData
BOOL GetLinkSourceData(LPSTGMEDIUM IpStgMedium);

Return Value
Nonzero if successful; otherwise O.

Parameters

1456

lpStgMedium Pointer to the STGMEDIUM structure that will receive the
CF _LINKSOURCE data for the OLE item.

COleServerItem:: IsConnected

Remarks
Call this function to get the CF _LINKSOURCE data for an OLE item. This format
includes the CLSID describing the type of the OLE item and the information needed
to locate the document containing the OLE item.

The result can then be added to a data source with COleDataSource: :CacheData.
This function is called automatically by OnGetClipboardData.

For more information, see STGMEDIUM in the OLE 2 Programmer's Reference,
Volume 1.

See Also: COleServerItem::GetEmbedSourceData,
COleServerltem::GetObjectDescriptorData

COleServerItem::GetObjectDescriptorData
void GetObjectDescriptorData(LPPOINT* IpOffset, LPSIZE* IpSize,

.. LPSTGMEDIUM IpStgMedium);

Parameters

Remarks

IpOffset Offset of the mouse click from the upper-left corner of the OLE item. Can
be NULL.

IpSize Size of the OLE item. Can be NULL.

IpStgMedium Pointer to the STGMEDIUM structure that will receive the
CF _OBJECTDESCRIPTOR data for the OLE item.

Call this function to get the CF _OBJECTDESCRIPTOR data for an OLE item. The
information is copied into the STGMEDIUM structure pointed to by IpStgMedium.
This format includes the information needed for the Paste Special dialog.

For more information, see STGMEDIUM in the OLE 2 Programmer's Reference,
Volume 1.

See Also: COleServerltem: :AddOtherClipboardData,
COleServerltem:: GetEmbedSourceData, COleServer Item: :GetLinkSourceData,
COlePasteSpecialDialog

COleServerItem: :IsConnected
BOOL IsConnected() const;

Return Value
Nonzero if the item is connected; otherwise O.

1457

CO leServerItem: :IsLinkedItem

Remarks
Call this function to see if the OLE item is connected. An OLE item is considered
connected if one or more containers have references to the item. An item is connected
if its reference count is greater than 0 or if it is an embedded item.

See Also: COleServerItem::IsLinkedItem, COleLinkingDoc::OnGetLinkedItem

COleServerItem: : IsLinkedItem
BOOL IsLinkedItem() const;

Return Value

Remarks

Nonzero if the item is a linked item; otherwise O.

Call this function to see if the OLE item is a linked item. An item is linked if the item
is valid and is not returned in the document's list of embedded items. A linked item
might or might not be connected to a container.

It is common to use the same class for both linked and embedded items.
IsLinkedItem allows you to make linked items behave differently than embedded
items, although many times the code is common.

See Also: COleServerItem: :IsConnected, COleLinkingDoc: :OnGetLinkedItem

COleServerItem::N otifyChanged
void NotifyChanged(DVASPECT nDrawAspect = DVASPECT_CONTENT);

Parameters

Remarks

1458

nDrawAspect A value from the DVASPECT enumeration that indicates which
aspect of the OLE item has changed. This parameter can have any of the following
values:

• DVASPECT_CONTENT Item is represented in such a way that it can be
displayed as an embedded object inside its container.

• DVASPECT_THUMBNAIL Item is rendered in a "thumbnail" representation
so that it can be displayed in a browsing tool.

• DVASPECT_ICON Item is represented by an icon.

• DVASPECT_DOCPRINT Item is represented as if it were printed using the
Print command from the File menu.

Call this function after the linked item has been changed. If a container item is linked
to the document with an automatic link, the item is updated to reflect the changes. In

COleServerItem: :OnOo Verb

container applications written using the Microsoft Foundation Class Library,
COleClientItem::OnChange is called in response.

See Also: COleClientItem::OnChange, COleServerItem::OnUpdate,
COleServer Doc::N otifyChanged

COleServerItem: :OnDo Verb
virtual void OnDo Verb(LONG iVerb);

Parameters

Remarks

iVerb Specifies the verb to execute. It can be anyone of the following:

Value Meaning Symbol

o Primary verb OLEIVERB_PRIMARY

Secondary verb (None)

-1 Display item for editing OLEIVERB_SHOW

-2

-3

Edit item in separate window

Hide item

OLEIVERB_OPEN

OLEIVERB_HIDE

The -1 value is typically an alias for another verb. If open editing is not supported,
-2 has the same effect as -1. For additional values, see IOleObject::DoVerb in the
OLE 2 Programmer's Reference, Volume 1.

Called by the framework to execute the specified verb. If the container application was
written with the Microsoft Foundation Class Library, this function is called when the
COleClientItem: :Activate member function of the corresponding COleClientItem
object is called. The default implementation calls the On Show member function if the
primary verb or OLEIVERB_SHOW is specified, OnOpen if the secondary verb or
OLEIVERB_OPEN is specified, and OnHide if OLEIVERB_HIDE is specified. The
default implementation calls OnShow if iVerb is not one of the verbs listed above.

Override this function if your primary verb does not show the item. For example, if
the item is a sound recording and its primary verb is Play, you would not have to
display the server application to play the item.

For more information, see IOleObject::DoVerb in the OLE 2 Programmer's
Reference, Volume 1.

See Also: COleClientItem::Activate, COleServerItem::OnShow,
COleServerItem::OnOpen, COleServerltem::OnHide

1459

COleServerItem: :OnDraw

COleServerItem: :OnDraw
virtual BOOL OnDraw(CDC* pDC, CSize& rSize) = 0;

Return Value
Nonzero if the item was successfully drawn; otherwise O.

Parameters

Remarks

pDC A pointer to the CDC object on which to draw the item. The display context is
automatically connected to the attribute display context so you can call attribute
functions, although doing so would make the metafile device-specific.

rSize Size, in HIMETRIC units, in which to draw the metafile.

Called by the framework to render the OLE item into a metafile. The metafile
representation of the OLE item is used to display the item in the container application.
If the container application was written with the Microsoft Foundation Class
Library, the metafile is used by the Draw member function of the corresponding
COleClientItem object. There is no default implementation. You must override
this function to draw the item into the device context specified.

See Also: COleClientItem: :Draw

COleServerItem: :OnDrawEx
virtual BOOL OnDrawEx(CDC* pDC, DVASPECT nDrawAspect, CSize& rSize);

Return Value
Nonzero if the item was successfully drawn; otherwise O.

Parameters

1460

pDC A pointer to the CDC object on which to draw the item. The DC is
automatically connected to the attribute DC so you can call attribute functions,
although doing so would make the metafile device-specific.

nDrawAspect A value from the DVASPECT enumeration. This parameter can have
any of the following values:

• DVASPECT_CONTENT Item is represented in such a way that it can be
displayed as an embedded object inside its container.

• DVASPECT_THUMBNAIL Item is rendered in a "thumbnail" representation
so that it can be displayed in a browsing tool.

• DVASPECT_ICON Item is represented by an icon.

• DVASPECT_DOCPRINT Item is represented as if it were printed using the
Print command from the File menu.

rSize Size of the item in HIMETRIC units.

CO leServerItem: :OnGetExtent

Remarks
Called by the framework for all drawing. The default implementation calls OnDraw
when DVASPECT is equal to DVASPECT_CONTENT; otherwise it fails.

Override this function to provide presentation data for aspects other than
DVASPECT_CONTENT, such as DVASPECT_ICON or
DVASPECT_THUMBNAIL.

See Also: COleServerltem::OnDraw

COleServerItem: :OnGetClipboardData
virtual COleDataSource* OnGetClipboardData(BOOL blncludeLink,

... LPPOINT IpOffset, LPSIZE IpSize);

Return Value
A pointer to a COleDataSource object containing the Clipboard data.

Parameters

Remarks

blncludeLink Set this to TRUE if link data should be copied to the Clipboard.
Set this to FALSE if your server application does not support links.

IpOffset The offset of the mouse cursor from the origin of the object in pixels.

IpSize The size of the object in pixels.

Called by the framework to get a COleDataSource object containing all the data
that would be placed on the Clipboard by a call to the CopyToClipboard member
function. The default implementation of this function calls GetClipboardData.

See Also: COleDataSource, COleDataSource: :SetClipboard,
COleServerltem:: CopyToClipboard, COleServer Item: :GetClipboardData

COleServerItem:: OnGetExtent
virtual BOOL OnGetExtent(DVASPECT nDrawAspect, CSize& rSize);

Return Value
Nonzero if successful; otherwise O.

Parameters
nDrawAspect Specifies the aspect of the OLE item whose bounds are to be retrieved.

This parameter can have any of the following values:

• DVASPECT_CONTENT Item is represented in such a way that it can be
displayed as an embedded object inside its container .

• DVASPECT_THUMBNAIL Item is rendered in a "thumbnail" representation
so that it can be displayed in a browsing tool.

1461

COleServerItem:: OnHide

Remarks

• DVASPECT_ICON Item is represented by an icon .

• DVASPECT_DOCPRINT Item is represented as if it were printed using the
Print command from the File menu.

rSize Reference to a CSize object that will receive the size of the OLE item.

Called by the framework to retrieve the size, in HIMETRIC units, of the OLE item.

If the container application was written with the Microsoft Foundation Class Library,
this function is called when the GetExtent member function of the corresponding
COle~lientItem object is called. The default implementation does nothing. You must
implement it yourself. Override this function if you want to perform special
processing when handling a request for the size of the OLE item.

See Also: COleClientltem::Draw, COleClientltem::GetExtent

COleServerItem: :OnHide

Remarks

virtual void OnHide();

Called by the framework to hide the OLE item. The default calls
COleServerDoc::OnShowDocument(FALSE). The function also notifies the
container that the OLE item has been hidden. Override this function if you want to
perform special processing when hiding an OLE item.

See Also: COleServerItem: :OnOpen, COleServerItem: :OnShow,
COleServerDoc: :OnShowDocument

COleServerItem: :OnInitFromData
virtual BOOL OnlnitFromData(COleDataObject* pDataObject, BOOL bCreation);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

1462

pDataObject Pointer to an OLE data object containing data in various formats for
initializing the OLE item.

bCreation TRUE if the function is called to initialize an OLE item being newly
created by a container application. FALSE if the function is called to replace the
contents of an already existing OLE item.

Called by the framework to initialize an OLE item using the contents of pDataObject.
If bCreation is TRUE, this function is called if a container implements Insert New

COleServerltem::OnQueryUpdateltems

Object based on the current selection. The data selected is used when creating the new
OLE item. For example, when selecting a range of cells in a spreadsheet program and
then using the Insert New Object to create a chart based on the values in the selected
range. The default implementation does nothing. Override this function to choose an
acceptable format from those offered by pDataObject and initialize the OLE item
based on the data provided. This is an advanced overridable.

For more information, see IOleObject::InitFromData in the OLE 2 Programmer's
Reference, Volume 1.

COleServerItem: :OnOpen

Remarks

virtual void OnOpen();

Called by the framework to display the OLE item in a separate instance of the server
application, rather than in place.

The default implementation activates the first frame window displaying the document
that contains the OLE item; if the application is a mini-server, the default
implementation shows the main window. The function also notifies the container that
the OLE item has been opened.

Override this function if you want to perform special processing when opening an
OLE item. This is especially common with linked items where you want to set the
selection to the link when it is opened.

For more information, see IOleClientSite: :OnShowWindow in the
OLE 2 Programmer's Reference, Volume 1.

See Also: COleServerltem: :OnShow

COleServerItem::OnQueryUpdateItems
virtual BOOL OnQueryUpdateItems();

Return Value

Remarks

Nonzero if the document has items needing updates; 0 if all items are up to date.

Called by the framework to determine whether any linked items in the current server
document are out of date. An item is out of date if its source document has been
changed but the linked item has not been updated to reflect the changes in the
document.

See Also: COleServerltem::OnUpdate, COleServerItem::OnUpdateItems

1463

COleServerItem: :OnRenderData

COleServerItem: :OnRenderData
virtual BOOL OnRenderData(LPFORMATETC IpFormatEtc,

... LPSTGMEDIUM IpStgMedium);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

IpFormatEtc Points to the FORMATETC structure specifying the format in which
information is requested.

IpStgMedium Points to a STGMEDIUM structure in which the data is to be
returned.

Called by the framework to retrieve data in the specified format. The specified format
is one previously placed in the COleDataSource object using the DelayRenderData
or DelayRenderFileData member function for delayed rendering. The default
implementation of this function calls OnRenderFileData or OnRenderGlobalData,
respectively, if the supplied storage medium is either a file or memory. If neither of
these formats is supplied, the default implementation returns 0 and does nothing.

If IpStgMedium->tymed is TYMED_NULL, the STGMEDIUM should allocated
and filled as specified by IpFormatEtc->tymed. If not TYMED_NULL, the
STGMEDIUM should be filled in place with the data.

This is an advanced overridable. Override this function to provide your data in the
requested format and medium. Depending on your data, you may want to override one
of the other versions of this function instead. If your data is small and fixed in size,
override OnRenderGlobalData. If your data is in a file, or is of variable size,
override OnRenderFileData.

For more information, see IDataObject::GetData, STGMEDIUM, FORMATETC,
and TYMED in the OLE 2 Programmer's Reference, Volume 1.

See Also: COleServeritem: :OnRenderFileData

COleServerItem: :OnRenderFileData
virtual BOOL OnRenderFileData(LPFORMATETC IpFormatEtc, CFile* pFile);

Return Value
Nonzero if successful; otherwise O.

Parameters

1464

IpFormatEtc Points to the FORMATETC structure specifying the format in which
information is requested.

COleServerltem: :OnRenderGlobalData

Remarks

pFiie Points to a CFile object in which the data is to be rendered.

Called by the framework to retrieve data in the specified format when the
storage medium is a file. The specified format is one previously placed in the
COleDataSource object using the DelayRenderData member function for delayed
rendering. The default implementation of this function simply returns FALSE.

This is an advanced overridable. Override this function to provide your data in the
requested format and medium. Depending on your data, you might want to override
one of the other versions of this function instead. If you want to handle multiple
storage mediums, override OnRenderData. If your data is in a file, or is of variable
size, override OnRenderFileData.

For more information, see IDataObject::GetData and FORMATETC in the
OLE 2 Programmer's Reference, Volume 1.

See Also: COleServerItem::OnRenderData

COleServerItem: :OnRenderGlobalData
virtual BOOL OnRenderGlobalData(LPFORMATETC IpFormatEtc,

.. HGLOBAL* phGlobal);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

IpFormatEtc Points to the FORMATETC structure specifying the format in which
information is requested.

phGlobal Points to a handle to global memory in which the data is to be returned.
If no memory has been allocated, this parameter can be NULL.

Called by the framework to retrieve data in the specified format when the specified
storage medium is global memory. The specified format is one previously placed in
the COleDataSource object using the DelayRenderData member function for
delayed rendering. The default implementation of this function simply returns
FALSE.

If ph Global is NULL, then a new HGLOBAL should be allocated and returned in
ph Global. Otherwise, the HGLOBAL specified by phGlobal should be filled with the
data. The amount of data placed in the HGLOBAL must not exceed the current size
of the memory block. Also, the block cannot be reallocated to a larger size.

This is an advanced overridable. Override this function to provide your data in the
requested format and medium. Depending on your data, you may want to override one

1465

COleServerItem: :OnSetColorScheme

of the other versions of this function instead. If you want to handle multiple storage
mediums, override OnRenderData. If your data is in a file, or is of variable size,
override OnRenderFileData.

For more information, see IDataObject::GetData and FORMATETC in the
OLE 2 Programmer's Reference, Volume 1.

See Also: COleServerItem::OnRenderData

COleServerItem: :OnSetColorScheme
virtual BOOL OnSetColorScheme(const LOGPALETTE FAR* IpLogPalette);

Return Value
Nonzero if the color palette is used; otherwise O.

Parameters

Remarks

IpLogPalette Pointer to a Windows LOGPALETTE structure.

Called by the framework to specify a color palette to be used when editing the OLE
item. If the container application was written using the Microsoft Foundation Class
Library, this function is called when the IOleObject::SetColorScheme function of
the corresponding COleClientltem object is called. The default implementation
returns FALSE. Override this function if you want to use the recommended palette.
The server application is not required to use the suggested palette.

For more information, see IOleObject::SetColorScheme in the OLE 2 Programmer's
Reference, Volume 1.

COleServerItem: :OnSetData
virtual BOOL OnSetData(LPFORMATETC pFormatEtc,

... LPSTGMEDIUM pStgMedium, BOOL bRelease);

Return Value
Nonzero if successful; otherwise O.

Parameters

1466

pFormatEtc Pointer to a FORMATETC structure specifying the format of the data.

pStgMedium Pointer to a STGMEDIUM structure in which the data resides.

bRelease Indicates who has ownership of the storage medium after completing the
function call. The caller decides who is responsible for releasing the resources
allocated on behalf of the storage medium. The caller does this by setting bRelease.

COleServerItem: :OnSetExtent

Remarks

If bRelease is nonzero, the server item takes ownership, freeing the medium when
it has finished using it. When bRelease is 0, the caller retains ownership and the
server item can use the storage medium only for the duration of the call.

Called by the framework to replace the OLE item's data with the specified data. The
server item does not take ownership of the data until it has successfully obtained it.
That is, it does not take ownership if it returns O. If the data source takes ownership, it
frees the storage medium by calling the ReleaseStgMedium function.

The default implementation does nothing. Override this function to replace the OLE
item's data with the specified data. This is an advanced overridable.

For more information, see STGMEDIUM, FORMATETC, and ReleaseStgMedium
in the OLE 2 Programmer's Reference, Volume 1.

See Also: COleDataSource: :OnSetData

COleServerItem: :OnSetExtent
virtual BOOL OnSetExtent(DVASPECT nDrawAspect, const CSize& size);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

nDrawAspect Specifies the aspect of the OLE item whose bounds are being
specified. This parameter can have any of the following values:

• DVASPECT_CONTENT Item is represented in such a way that it can be
displayed as an embedded object inside its container.

• DVASPECT_THUMBNAIL Item is rendered in a "thumbnail" representation
so that it can be displayed in a browsing tool.

• DVASPECT_ICON Item is represented by an icon.

• DVASPECT_DOCPRINT Item is represented as if it were printed using the
Print command from the File menu.

size A CSize structure specifying the new size of the OLE item.

Called by the framework to tell the OLE item how much space is available to it in the
container document. If the container application was written with the Microsoft
Foundation Class Library, this function is called when the SetExtent member function of
the corresponding COleClientltem object is called. The default implementation sets the
m_sizeExtent member to the specified size if nDrawAspect is DVASPECT_CONTENT;
otherwise it returns o. Override this function to perform special processing when you
change the size of the item.

1467

COleServerItem: :OnShow

See Also: COleClientItem: :SetExtent, COleServerItem: :OnGetExtent,
COleServerItem: :m_sizeExtent

COleServerItem: :OnShow

Remarks

virtual void OnShow();

Called by the framework to instruct the server application to display the OLE item in
place. This function is typically called when the user of the container application
creates an item or executes a verb, such as Edit, that requires the item to be shown.
The default implementation attempts in-place activation. If this fails, the function calls
the OnOpen member function to display the OLE item in a separate window.

Override this function if you want to perform special processing when an OLE item is
shown.

See Also: COleServerItem: :OnOpen, COleClientItem: :Activate

COleServerItem::OnUpdate
virtual void OnUpdate(COleServerItem* pSender, LPARAM tHint,

... CObject* pHint, DVASPECT nDrawAspect);

Parameters

Remarks

1468

pSender Pointer to the item that modified the document. Can be NULL.

tHint Contains information about the modification.

pHint Pointer to an object storing information about the modification.

nDrawAspect A value from the DVASPECT enumeration. This parameter can have
anyone of the following values:

• DVASPECT_CONTENT Item is represented in such a way that it can be
displayed as an embedded object inside its container.

• DVASPECT_THUMBNAIL Item is rendered in a "thumbnail" representation
so that it can be displayed in a browsing tool.

• DVASPECT_ICON Item is represented by an icon.

• DVASPECT_DOCPRINT Item is represented as if it were printed using the
Print command from the File menu.

Called by the framework when an item has been modified. The default
implementation calls NotifyChanged, regardless of the hint or sender.

See Also: COleServerItem::NotifyChanged

COleServerltem::m_sizeExtent

COleServerItern::OnUpdateIterns

Remarks

virtual void OnUpdateltems();

Called by the framework to update all items in the server document. The default
implementation calls UpdateLink for all COleClientltem objects in the document.

See Also: COleServerItem: :OnUpdate, COleServerltem: :OnQueryUpdateltems

COleServerItern: :SetItemN arne
void SetltemName(LPCTSTR IpszltemName);

Parameters

Remarks

IpszltemName Pointer to the new name of the item.

Call this function when you create a linked item to set its name. The name must be
unique within the document. When a server application is called to edit a linked item,
the application uses this name to find the item. You do not need to call this function
for embedded items.

See Also: COleServerItem: : GetltemName, COleLinkingDoc: :OnGetLinkedltem

Data Members
COleServerItern: :rn_sizeExtent

Remarks

CSize m_sizeExtent;

This member tells the server how much of the object is visible in the container
document. The default implementation of OnSetExtent sets this member.

See Also: COleServerltem: :OnSetExtent

1469

COleStreamFile

COleStreamFile

COleStreamFile

A COleStreamFile object represents a stream of data (IStream) in a compound file
as part of OLE Structured Storage. An IStorage object must exist before the stream
can be opened or created unless it is a memory stream.

COleStreamFile objects are manipulated exactly like CFile objects.

For more information about manipulating streams and storages, see the article
"Containers: Compound Files" in Visual C++ Programmer's Guide online.

For more information, see IStream and IStorage in the OLE 2 Programmer's
Reference, Volume 1.

#include <afxole.h>

See Also: CFile

COleStreamFile Class Members

1470

Construction

COleStreamFile

Attributes and Operations

Attach

CreateMemoryStream

CreateStream

Detach

GetStream

OpenStream

Constructs a COleStreamFile object.

Associates a stream with the object.

Creates a stream from global memory and associates it with
the object.

Creates a stream and associates it with the object.

Disassociates the stream from the object.

Returns the current stream.

Safely opens a stream and associates it with the object.

COleS treamFile: :CreateMemoryS tream

Member Functions
COleStreamFile: : Attach

void Attach(LPSTREAM IpStream);

Parameters

Remarks

IpStream Points to the OLE stream (IStream) to be associated with the object.
Cannot be NULL.

Associates the supplied OLE stream with the COleStreamFile object. The object
must not already be associated with an OLE stream.

For more information, see IStream in the OLE 2 Programmer's Reference, Volume 1.

See Also: COleStreamFile: :Detach

COleStreamFile::COleStreamFile
COleStreamFile(LPSTREAM IpStream = NULL);

Parameters

Remarks

IpStream Pointer to the OLE stream to be associated with the object.

Creates a COleStreamFile object. If IpStream is NULL, the object is not associated
with an OLE stream, otherwise, the object is associated with the supplied OLE stream.

For more information, see IStream in the OLE 2 Programmer's Reference, Volume 1.

See Also: COleStreamFile::Attach, CFile

COleStreamFile: :CreateMemoryStream
BOOL CreateMemoryStream(CFileException* pError = NULL);

Return Value
Nonzero if the stream is created successfully; otherwise O.

Parameters
pError Points to a CFileException object or NULL that indicates the completion

status of the create operation. Supply this parameter if you want to monitor
possible exceptions generated by attempting to create the stream.

1471

COleStreamFile: :CreateStream

Remarks
Safely creates a new stream out of global, shared memory where a failure is a normal,
expected condition. The memory is allocated by the OLE subsystem.

For more information, see CreateStreamOnHGlobal in the OLE 2 Programmer's
Reference, Volume 1.

See Also: COleStreamFile::OpenStream, COleStreamFile::CreateStream,
CFileException

COleStreamFile: :CreateStream
BOOL CreateStream(LPSTORAGE IpStorage, LPCTSTR lpszName,

... DWORD nOpenFlags = modeReadWritelshareExclusivelmodeCreate,

... CFileException* pError = NULL);

Return Value
Nonzero if the stream is created successfully; otherwise O.

Parameters

Remarks

IpStorage Points to the OLE storage object that contains the stream to be created.
Cannot be NULL.

lpszStreamName Name of the stream to be created. Cannot be NULL.

nOpenFlags Access mode to use when opening the stream. Exclusive, read/write,
and create modes are used by default. For a complete list of the available modes,
see CFile::CFile.

pError Points to a CFileException object or NULL. Supply this parameter if you
want to monitor possible exceptions generated by attempting to create the stream.

Safely creates a new stream in the supplied storage object where a failure is a normal,
expected condition. A file exception will be thrown if the open fails and pError is not
NULL.

For more information, see IStorage::CreateStream in the OLE 2 Programmer's
Reference, Volume 1.

See Also: COleStreamFile: :OpenStream,
COleStreamFile:: CreateMemoryStream, CFileException

COleStreamFile: :Detach
LPSTREAM Detach();

Return Value
A pointer to the stream (IStream) that was associated with the object.

1472

COleStreamFile::OpenStream

Remarks
Disassociates the stream from the object without closing the stream. The stream must
be closed in some other fashion before the program terminates.

For more information, see IStream in the OLE 2 Programmer's Reference, Volume 1.

See Also: COleStreamFile: :Attach

COleStreamFile::GetStream
IStream* GetStream() const;

Return Value
A pointer to the current stream interface (IStream).

Remarks
Call this function to return a pointer to current stream.

COleStreamFile: :OpenStream
BOOL OpenStream(LPSTORAGE IpStorage, LPCTSTR IpszName,

... DWORD nOpenFlags = modeReadWritelshareExclusive,

... CFileException* pError = NULL);

Return Value
Nonzero if the stream is opened successfully; otherwise O.

Parameters

Remarks

IpStorage Points to the OLE storage object that contains the stream to be opened.
Cannot be NULL.

IpszName Name of the stream to be opened. Cannot be NULL.

nOpenFlags Access mode to use when opening the stream. Exclusive and read/write
modes are used by default. For the complete list of the available modes, see
CFile::CFile.

pError Points to a CFileException object or NULL. Supply this parameter if you
want to monitor possible exceptions generated by attempting to open the stream.

Opens an existing stream. A file exception will be thrown if the open fails and pError
is not NULL.

For more information, see IStorage::OpenStream in the OLE 2 Programmer's
Reference, Volume 1.

See Also: COleStreamFile::CreateStream,
COleStreamFile:: CreateMemoryStream, CFileException

1473

COleTemplateServer

COleTemplateServer

The COleTemplateServer class is used for OLE visual editing servers,
automation servers, and link containers (applications that support links to
embeddings). This class is derived from the class COleObjectFactory; usually,
you can use COleTemplateServer directly rather than deriving your own class.
COleTemplateServer uses a CDocTemplate object to manage the server documents.
Use COleTemplateServer when implementing a full server, that is, a server that can
be run as a standalone application. Full servers are typically multiple document
interface (MDI) applications, although single document interface (SDI) applications
are supported. One COleTemplateServer object is needed for each type of server
document an application supports; that is, if your server application supports both
worksheets and charts, you must have two COleTemplateServer objects.

COleTemplateServer overrides the OnCreatelnstance member function defined by
COleObjectFactory. This member function is called by the framework to create a
C++ object of the proper type.

For more information about servers, see the article "Servers: Implementing a Server"
in Visual C++ Programmer's Guide online.

#include <afxdisp.h>

See Also: COleServerDoc, COleServerltem

COleTemplateServer Class Members

1474

Construction

COleTemplateServer

Operations

ConnectTernplate

U pdateRegistry

Constructs a COleTernplateServer object.

Connects a document template to the underlying
COleObjectFactory object.

Registers the document type with the OLE system registry.

COleTemplateServer:: U pdateRegistry

Member Functions
COleTemplateServer: : COleTemplateServer

Remarks

COleTemplateServer();

Constructs a COleTemplateServer object.

For a brief description of the use of the COleTemplateServer class, see the
COleLinkingDoc class overview.

COleTemplateServer: :ConnectTemplate
void ConnectTemplate(REFCLSID clsid, CDocTemplate* pDocTemplate,

.. BOOL bMultiInstance);

Parameters

Remarks

clsid Reference to the OLE class ID that the template requests.

pDocTemplate Pointer to the document template.

bMultiInstance Indicates whether a single instance of the application can support
multiple instantiations. If TRUE, multiple instances of the application are launched
for each request to create an object.

Connects the document template pointed to by pDocTemplate to the underlying
COleObjectFactory object.

For more information, see CLSID Key in the OLE 2 Programmer's Reference,
Volume 1.

See Also: CDocTemplate

COleTemplateServer:: UpdateRegistry
void UpdateRegistry(OLE_APPTYPE nAppType = OAT_INPLACE_SERVER,

.. LPCSTR* rglpszRegister = NULL, LPCSTR FAR* rglpszOverwrite = NULL);

Parameters
nAppType A value from the OLE_APPTYPE enumeration, which is defined in

AFXDISP.H. It can have anyone of the following values:

• OAT_INPLACE_SERVER Server has full server user-interface .

• OAT_SERVER Server supports only embedding.

1475

COleTemplateServer:: UpdateRegistry

Remarks

1476

• OAT_CONTAINER Container supports links to embedded objects.

• OAT_DISPATCH_OBJECT Object is IDispatch-capable.

• OAT_DOCOBJECT_SERVER Server supports both embedding and the
Document Object component model.

rglpszRegister A list of entries that is written into the registry only if no entries exist.

rglpszOverwrite A list of entries that is written into the registry regardless of whether
any preceding entries exist.

Loads file-type information from the document-template string and places that
information in the OLE system registry.

The registration information is loaded by means of a call to
CDocTemplate::GetDocString. The substrings retrieved are those identified by the
indexes regFileTypeld, regFileTypeName, and flleNewName, as described in the
GetDocString reference pages.

If the regFileTypeld substring is empty or if the call to GetDocString fails for any
other reason, this function fails and the file information is not entered in the registry.

The information in the arguments rglpszRegister and rglpszOverwrite is written to the
registry through a call to AfxOleRegisterServerClass. The default information, which
is registered when the two arguments are NULL, is suitable for most applications.
For information on the structure of the information in these arguments, see
AfxOleRegisterServerClass.

For more information, see IDispatch in the Win32 SDK OLE Programmer's
Reference.

See Also: CDocTemplate::GetDocString, AfxOleRegisterServerClass

COleUpdateDialog

The COleUpdateDialog class is used for a special case of the OLE Edit Links dialog
box, which should be used when you need to update only existing linked or embedded
objects in a document.

For more information regarding OLE-specific dialog boxes, see the article "Dialog
Boxes in OLE" in Visual C++ Programmer's Guide online.

#include <afxodIgs.h>

See Also: COleLinksDialog

COleUpdateDialog Class Members
Construction

COleUpdateDialog

Operations

DoModal

Constructs a COleUpdateDialog object.

Displays the Edit Links dialog box in an update mode.

Member Functions
COleUpdateDialog::COleUpdateDialog

COleUpdateDialog(COleDocument* pDoc, BOOL bUpdateLinks = TRUE,
... BOOL bUpdateEmbeddings = FALSE, CWnd* pParentWnd = NULL);

COleUpdateDialog

1477

COleUpdateDialog: :DoModal

Parameters

Remarks

pDoc Points to the document containing the links that may need updating.

bUpdateLinks Flag that determines whether linked objects are to be updated.

bUpdateEmbeddings Flag that determines whether embedded objects are to be
updated.

pParentWnd Points to the parent or owner window object (of type CWnd) to which
the dialog object belongs. If it is NULL, the parent window of the dialog box will
be set to the main application window.

This function constructs only a COleUpdateDialog object. To display the dialog box,
call DoModal. This class should be used instead of COleLinksDialog when you want
to update only existing linked or embedded items.

See Also: COleDialog, COleLinksDialog, COleDocument, CWnd, CDialog,
COleUpdateDialog::DoModal

COle UpdateDialog: :DoModal
virtual int DoModal();

Return Value

Remarks

1478

Completion status for the dialog box. One of the following values:

• IDOK if the dialog box returned successfully.

• IDCANCEL if none of the linked or embedded items in the current document need
updating.

• IDABORT if an error occurred. If IDABORT is returned, call the
COleDialog::GetLastError member function to get more information about the
type of error that occurred. For a listing of possible errors, see the OleUIEditLinks
function in the OLE 2.01 User Interface Library.

Call this function to display the Edit Links dialog box in update mode. All links
and/or embeddings are updated unless the user selects the Cancel button.

See Also: COleDialog: : GetLastError , COleLinksDialog: :DoModal

COle Variant
COle Variant does not have a base class.

A COleVariant object encapsulates the VARIANT data type. This data type is used
in OLE automation. Specifically, the DISPPARAMS structure contains a pointer to
an array of VARIANT structures. A DISPPARAMS structure is used to pass
parameters to IDispatch::Invoke.

Note This class is derived from the VARIANT structure. This means you can pass a
COleVariant in a parameter that calls for a VARIANT and that the data members of the
VARIANT structure are accessible data members of COleVariant.

The two related MFC classes COleCurrency and COleDateTime encapsulate the
variant data types CURRENCY (VT_CY) and DATE (VT_DATE). The
COleVariant class is used extensively in the DAO classes; see these classes for
typical usage of this class, for example CDaoQueryDef and CDaoRecordset.

For more information, see the VARIANT, CURRENCY, DISPPARAMS, and
IDispatch::Invoke entries in the Win32 SDK OLE Programmer's Reference.

For more information on the COle Variant class and its use in OLE automation, see
"Passing Parameters in OLE Automation" in the article "Automation" in Visual C++
Programmers Guide online.

#include <afxdisp.h>

COle Variant Class Members
Construction

COleVariant

Operations

Attach

ChangeType

Clear

Detach

Operators

Constructs a COle Variant object.

Attaches a VARIANT to a COle Variant.

Changes the variant type of this COle Variant object.

Clears this COleVariant object.

Detaches a VARIANT from a COleVariant and returns the
VARIANT.

operator LPCV ARIANT Converts a COle Variant value into an LPCV ARIANT.

operator LPVARIANT Converts a COleVariant object into an LPVARIANT.

operator = Copies a COle Variant value.

operator == Compares two COle Variant values.

COle Variant

1479

COle Variant: : Attach

Archive/Dump

operator «

operator »

Outputs a COle Variant value to CArchive or CDumpContext.

Inputs a COle Variant object from CArchive.

Member Functions
COle Variant: : Attach

void Attach(VARIANT& varSrc);

Parameters

Remarks

varSrc An existing VARIANT object to be attached to the current COleVariant
object.

Call this function to attach the given VARIANT object to the current COleVariant
object. This function sets the VARTYPE of varSrc to VT_EMPTY.

For more information, see the VARIANT and VARTYPE entries in the Win32 SDK
OLE Programmer's Reference.

See Also: COle Variant: :operator LPCVARIANT, COle Variant: :operator
LPVARIANT

COle Variant: :COle Variant

1480

COleVariant();
COleVariant(const VARIANT& varSrc);
COleVariant(const COleVariant& varSrc);
COleVariant(LPCVARIANT pSrc);
COle Variant(LPCTSTR lpszSrc);
COleVariant(LPCTSTR lpszSrc, VARTYPE vtSrc);
COleVariant(CString& strSrc);
COle Variant(BYTE nSrc);
COleVariant(short nSrc, VARTYPE vtSrc = VT_I2);
COleVariant(long ISrc, VARTYPE vtSrc = VT_I4);
COleVariant(const COleCurrency& curSrc);
COleVariant(floatjltSrc);
COle Variant(double dblSrc);
COle Variant(const COleDateTime& dateSrc);
COleVariant(const CByteArray& arrSrc);
COleVariant(const CLongBinary& lbSrc);

COle Variant: :COle Variant

Parameters

Remarks

varSrc An existing COleVariant or VARIANT object to be copied into the new
COle Variant object.

pSrc A pointer to a VARIANT object that will be copied into the new COleVariant
object.

IpszSrc A null-terminated string to be copied into the new COle Variant object.

vtSrc The VARTYPE for the new COleVariant object.

strSrc A CString object to be copied into the new COle Variant object.

nSrc,ISrc A numerical value to be copied into the new COleVariant object.

vtSrc The VARTYPE for the new COleVariant object.

curSrc A COleCurrency object to be copied into the new COle Variant object.

jltSrc, dblSrc A numerical value to be copied into the new COleVariant object.

dateSrc A COleDateTime object to be copied into the new COle Variant object.

arrSrc A CByteArray object to be copied into the new COle Variant object.

IbSrc A CLongBinary object to be copied into the new COle Variant object.

All of these constructors create new COle Variant objects initialized to the specified
value. A brief description of each of these constructors follows.

• COleVariant() Creates an empty COleVariant object, VT_EMPTY.

• COleVariant(varSrc) Copies an existing VARIANT or COleVariant object.
The variant type is retained.

• COleVariant(pSrc) Copies an existing VARIANT or COleVariant object. The
variant type is retained.

• COleVariant(IpszSrc) Copies a string into the new object, VT_BSTR
(UNICODE).

• COle Variant(IpszSrc, vtSrc) Copies a string into the new object. The parameter
vtSrc must be VT_BSTR (UNICODE) or VT_BSTRT (ANSI).

• COleVariant(strSrc) Copies a string into the new object, VT_BSTR
(UNICODE).

• COleVariant(nSrc) Copies an 8-bit integer into the new object, VT_UIl.

• COleVariant(nSrc, vtSrc) Copies a 16-bit integer (or Boolean value) into the
new object. The parameter vtSrc must be VT_I2 or VT_BOOL.

• COleVariant(ISrc, vtSrc) Copies a 32-bit integer (or SCODE value) into the
new object. The parameter vtSrc must be VT_I4, VT_ERROR, or VT_BOOL.

• COle Variant(curSrc) Copies a COle Currency value into the new object,
VT_CY.

1481

COleVariant::ChangeType

• COle Variant(fltSrc) Copies a 32-bit floating-point value into the new object,
VT_R4.

• COle Variant(dblSrc) Copies a 64-bit floating-point value into the new object,
VT_RS.

• COle Variant(dateSrc) Copies a COleDateTime value into the new object,
VT_DATE.

• COle Variant(arrSrc) Copies a CByteArray object into the new object,
VT_EMPTY.

• COleVariant(IbSrc) Copies a CLongBinary object into the new object,
VT_EMPTY.

For more information, see the VARIANT and VARTYPE entries in the Win32 SDK
OLE Programmer's Reference.

For more information on SCODE, see "Structure of OLE Error Codes" in the
Win32 SDK OLE Programmer's Reference.

See Also: COleVariant::operator =, CString, COleCurrency, COleDateTime

COle Variant: :ChangeType
void ChangeType(VARTYPE vartype, LPVARIANT pSrc = NULL);

Parameters

Remarks

vartype The VARTYPE for this COleVariant object.

pSrc A pointer to the VARIANT object to be converted. If this value is NULL, this
COle Variant object is used as the source for the conversion.

Call this function to convert the type of variant value in this COleVariant object.

For more information, see the VARIANT, VARTYPE, and VariantChangeType
entries in the Win32 SDK OLE Programmer's Reference.

See Also: COleVariant::operator =

COle Variant: : Clear

Remarks

1482

void Clear();

Call this function to clear the VARIANT. This sets the VARTYPE for this object to
VT _EMPTY. The COle Variant destructor calls this function.

For more information, see the VARIANT, VARTYPE, and VariantClear entries in
the Win32 SDK OLE Programmer's Reference.

COle Variant: :SetString

COle Variant: :Detach
VARIANT Detacb();

Return Type

Remarks

The underlying VARIANT value of this COleVariant object.

Call this function to detach the underlying VARIANT object from this COleVariant
object. This function sets the VARTYPE for this COleVariant object to
VT_EMPTY.

Note After calling Detach, it is the caller's responsibility to call VariantClear on the resulting
VARIANT structure.

For more information, see the VARIANT, VARTYPE, and VariantClear entries in
the Win32 SDK OLE Programmer's Reference.

See Also: COle Variant: :operator LPCVARIANT, COle Variant: :operator
LPVARIANT

COle Variant:: SetString
void SetString(LPCTSTR ipszSrc, VARTYPE vtSrc);

Parameters

Remarks

ipszSrc A null-terminated string to be copied into the new COleVariant object.

vtSrc The VARTYPE for the new COleVariant object.

Call this function to set the string to a particular type. The parameter vtSrc must be
VT_BSTR (UNICODE) or VT_BSTRT (ANSI). SetString is typically used to set
strings to ANSI, since the default for the COleVariant::COleVariant constructor
with a string or string pointer parameter and no VARTYPE is UNICODE.

A DAO recordset in a non-UNICODE build expects strings to be ANSI. Thus, for
DAO functions that use COleVariant objects, if you are not creating a UNICODE
recordset, you must use the COleVariant::COleVariant(ipszSrc, vtSrc) form of
constructor with vtSrc set to VT_BSTRT (ANSI) or use SetString with vtSrc set to
VT_BSTRT to make ANSI strings. For example, the CDAORecordset functions
CDAORecordset::Seek and CDAORecordset::SetFieldValue use COleVariant
objects as parameters. These objects must be ANSI if the DAO recordset is not
UNICODE.

See Also: COleVariant::COleVariant, CDAORecordset::Seek,
CDAORecordset: :SetFieldValue

1483

COleVariant::operator =

Operators
COleVariant::operator =

Remarks

1484

const COleVariant& operator =(const VARIANT& varSrc);
const COleVariant& operator =(LPCVARIANT pSrc);
const COleVariant& operator =(const COleVariant& varSrc);
const COleVariant& operator =(const LPCTSTR IpszSrc);
const COle Variant& operator =(const CString& strSrc);
const COleVariant& operator =(const BYTE nSrc);
const COle Variant& operator =(const short nSrc);
const COleVariant& operator =(const long ISrc);
const COleVariant& operator =(const COleCurrency& curSrc);
const COleVariant& operator =(const floatfltSrc);
const COle Variant& operator =(const double dblSrc);
const COleVariant& operator =(const COleDateTime& dateSrc);
const COleVariant& operator =(const CByteArray& arrSrc);
const COleVariant& operator =(const CLongBinary& IbSrc);

These overloaded assignment operators copy the source value into this COle Variant
object. A brief description of each operator follows:

• operator =(varSrc) Copies an existing VARIANT or COleVariant object into
this object.

• operator =(pSrc) Copies the VARIANT object accessed by pSrc into this
object.

• operator =(IpszSrc) Copies a null-terminated string into this object and sets the
VARTYPE to VT_BSTR.

• operator =(strSrc) Copies a CString object into this object and sets the
VARTYPE to VT_BSTR.

• operator =(nSrc) Copies an 8- or 16-bit integer value into this object. If nSrc is
an 8-bit value, the VARTYPE of this is set to VT_UIl. If nSrc is a 16-bit value
and the VARTYPE of this is VT_BOOL, it is kept; otherwise, it is set to VT_I2.

• operator =(ISrc) Copies a 32-bit integer value into this object. If the VARTYPE
of this is VT_ERROR, it is kept; otherwise, it is set to VT_I4.

• operator =(curSrc) Copies a COleCurrency object into this object and sets the
VARTYPE to VT_CY.

• operator =(fltSrc) Copies a 32-bit floating-point value into this object and sets
the VARTYPE to VT_R4.

• operator =(dblSrc) Copies a 64-bit floating-point value into this object and sets
the VARTYPE to VT_RS.

COleVariant::operator LPVARIANT

• operator =(dateSrc) Copies a COleDateTime object into this object and sets the
VARTYPE to VT_DATE.

• operator =(arrSrc) Copies a CByteArray object into this COle Variant object.

• operator =(IbSrc) Copies a CLongBinary object into this COleVariant object.

For more information, see the VARIANT and VARTYPE entries in the Win32 SDK
OLE Programmer's Reference.

See Also: COleVariant::COleVariant, COleCurrency, COleDateTime

COleVariant::operator ==

Remarks

BOOL operator ==(const VARIANT& varSrc) const;
BOOL operator ==(LPCVARIANT pSrc) const;

This operator compares two variant values and returns nonzero if they are equal;
otherwise O.

See Also: COle Variant: :operator =

COle Variant: : operator LPCVARIANT

Remarks

operator LPCVARIANT() const;

This casting operator returns a VARIANT structure whose value is copied from this
COle Variant object.

For more information, see the VARIANT entry in the Win32 SDK OLE Programmer's
Reference.

See Also: COle Variant: :operator LPVARIANT

COleVariant::operator LPVARIANT

Remarks

operator LPVARIANT();

Call this casting operator to access the underlying VARIANT structure for this
COle Variant object.

Caution Changing the value in the VARIANT structure accessed by the pointer returned by
this function will change the value of this COleVariant object.

1485

COleVariant::operator «,»

For more information, see the VARIANT entry in the Win32 SDK OLE Programmer's
Reference.

See Also: COle Variant: :operator LPCVARIANT

COleVariant::operator «, »

Remarks

1486

friend CDumpContext& AFXAPI operator «(CDumpContext& dc,
... OleVariant varSrc);

friend CArchive& AFXAPI operator «(CArchive& ar, COleVariant varSrc);
friend CArchive& AFXAPI operator »(CArchive& ar, COleVariant& varSrc);

The COle Variant insertion «<) operator supports diagnostic dumping and storing to
an archive. The extraction (») operator supports loading from an archive.

See Also: CDumpContext, CArchive

CPageSetupDialog

The CPageSetupDialog class encapsulates the services provided by the Windows
common OLE Page Setup dialog box with additional support for setting and
modifying print margins. This class is designed to take the place of the Print Setup
dialog box.

To use a CPageSetupDialog object, first create the object using the
CPageSetupDialog constructor. Once the dialog box has been constructed, you can
set or modify any values in the m_psd data member to initialize the values of the
dialog box's controls. The m_psd structure is of type PAGESETUPDLG. The topic
"Setting Up the Printed Page" in the Win32 SDK documentation show an example of
the initialization of this structure.

After initializing the dialog box controls, call the DoModal member function to
display the dialog box and allow the user to select print options. DoModal returns
whether the user selected the OK (IDOK) or Cancel (IDCANCEL) button.

If DoModal returns IDOK, you can use several of CPageSetupDialog's member
functions, or access the m_psd data member, to retrieve information input by the user.

Note After the common OLE Page Setup dialog box is dismissed, any changes made by the
user will not be saved by the framework. It is up to the application itself to save any values from
this dialog box to a permanent location, such as member of the application's document or
application class.

#include <afxdlgs.h>

CPageSetupDialog Class Members
Attributes

CreatePrinterDC

GetDeviceName

Creates a device context for printing.

Returns the device name of the printer.
(continued)

CPageSetupDialog

1487

CPageSetupDialog::CPageSetupDialog

Attributes (continued)

GetDevMode

GetDriverName

GetMargins

GetPortName

GetPaperSize

Construction

CPageSetupDialog

Data Members

m_psd

Operations

DoModal

Overridables

OnDrawPage

PreDrawPage

Returns the current DEVMODE of the printer.

Returns the driver used by the printer.

Returns the current margin settings of the printer.

Returns the output port name.

Returns the paper size of the printer.

Constructs a CPageSetupDialog object.

A structure used to customize a CPageSetupDialog object.

Displays the dialog box and allows the user make a selection.

Called by the framework to render a screen image of a printed page.

Called by the framework before rendering a screen image of a
printed page.

Member Functions
CPageSetupDialog: :CPageSetupDialog

CPageSetupDialog(DWORD dwFlags = PSD_MARGINS I PSD_INWININIINTLMEASURE,
... CWnd* pParentWnd = NULL);

Parameters

1488

dwFlags One or more flags you can use to customize the settings of the dialog box.
The values can be combined using the bitwise-OR operator. These values have the
following meanings:

• PSD_DEFAULTMINMARGINS Sets the minimum allowable widths for the
page margins to be the same as the printer's minimums. This flag is ignored if
the PSD_MARGINS and PSD_MINMARGINS flags are also specified.

• PSD_INWININIINTLMEASURE Not implemented.

• PSD_MINMARGINS Causes the system to use the values specified in the
rtMinMargin member as the minimum allowable widths for the left, top, right,
and bottom margins. The system prevents the user from entering a width that is

CPageSetupDialog: :CPageSetupDialog

less than the specified minimum. If PSD_MINMARGINS is not specified, the
system sets the minimum allowable widths to those allowed by the printer.

• PSD_MARGINS Activates the margin control area.

• PSD_INTHOUSANDTHSOFINCHES Causes the units of the dialog box to
be measured in 111000 of an inch.

• PSD _INHUNDREDTHSOFMILLIMETERS Causes the units of the dialog
box to be measured in 11100 of a millimeter.

• PSD_DISABLEMARGINS Disables the margin dialog box controls.

• PSD_DISABLEPRINTER Disables the Printer button.

• PSD_NOWARNING Prevents the warning message from being displayed
when there is no default printer.

• PSD_DISABLEORIENTATION Disables the page orientation dialog
control.

• PSD_RETURNDEFAULT Causes CPageSetupDialog to return DEVMODE
and DEVNAMES structures that are initialized for the system default printer
without displaying a dialog box. It is assumed that both hDevNames and
hDevMode are NULL; otherwise, the function returns an error. If the system
default printer is supported by an old printer driver (earlier than Windows
version 3.0), only hDevNames is returned; hDevMode is NULL.

• PSD_DISABLEPAPER Disables the paper selection control.

• PSD _SHOWHELP Causes the dialog box to show the Help button. The
hwndOwner member must not be NULL if this flag is specified.

• PSD_ENABLEPAGESETUPHOOK Enables the hook function specified in
IpfnSetupHook.

• PSD_ENABLEPAGESETUPTEMPLATE Causes the operating system to
create the dialog box by using the dialog template box identified by hlnstance
and IpSetupTemplateName.

• PSD_ENABLEPAGESETUPTEMPLATEHANDLE Indicates that
hlnstance identifies a data block that contains a preloaded dialog box template.
The system ignores IpSetupTemplateName if this flag is specified.

• PSD_ENABLEPAGEPAINTHOOK Enables the hook function specified in
IpfnPagePaintHook.

• PSD_DISABLEPAGEPAINTING Disables the draw area of the dialog box.

pParentWnd Pointer to the dialog box's parent or owner.

1489

CPageSetupDialog: :CreatePrinterDC

Remarks
Call this function to construct a CPageSetupDialog object. Use the DoModal
function to display the dialog box.

See Also: CPrintDialog, CPageSetupDialog

CPageSetupDialog: : CreatePrinterDC
HDC CreatePrinterDC();

Return Value

Remarks

Handle to the newly created printer device context (DC).

Creates a printer device context from the DEVMODE and DEVNAMES structures.

See Also: CPageSetupDialog::GetDevMode,
CPageSetupDialog:: GetDeviceN arne, CPageSetupDialog:: GetDriverN arne

CPageSetupDialog: :DoModal
virtual int DoModal();

Return Value

Remarks

1490

IDOK or IDCANCEL if successful; otherwise O. IDOK and IDCANCEL are
constants that indicate whether the user selected the OK or Cancel button.

If IDCANCEL is returned, you can call the Windows CornrnDlgExtendedError
function to determine whether an error occurred.

Call this function to display the Windows common OLE Page Setup dialog box and
allow the user to select various print setup options such as the printing margins, size
and orientation of the paper, and destination printer. In addition, the user can access
the printer setup options such as network location and properties specific to the
selected printer.

If you want to initialize the various Page Setup dialog options by setting members of
the rn_psd structure, you should do so before calling DoModal, and after the dialog
object is constructed. After calling DoModal, call other member functions to retrieve
the settings or information input by the user into the dialog box.

If you want to propagate the current settings entered by the user, make a call to
CWinApp::SelectPrinter. This function takes the information from the
CPageSetupDialog object and initializes and selects a new printer DC with the proper
attributes.

AfxGetApp()->SelectPrinter(dlg.m_psd.hOevNames, dlg.m_psd.hOevMode);

CPageSetu pDialog: :GetMargins

See Also: CPageSetupDialog::m_psd

CPageSetupDialog: : GetDeviceN arne
CString GetDeviceName() const;

Return Value
The device name used by the CPageSetupDialog object.

Remarks
Call this function after DoModal to retrieve the name of the currently selected printer.

CPageSetupDialog: : GetDev Mode
LPDEVMODE GetDevMode() const;

Return Value

Remarks

The DEVMODE data structure, which contains information about the device
initialization and environment of a print driver.

Call this function after calling DoModal to retrieve information about the printer
device context of the CPageSetupDialog object.

CPageSetupDialog: : GetDriverN arne
CString GetDriverName() const;

Return Value

Remarks

The name of the currently selected printer device driver.

Call this function after calling DoModal to retrieve the name of the currently selected
printer device driver.

See Also: CPageSetupDialog::GetDeviceName,
CPageSetupDialog: :GetDevMode, CPageSetupDialog: :GetPortName

CPageSetupDialog: : GetMargins
void GetMargins(LPRECT IpRectMargins, LPRECT IpRectMinMargins) const;

Parameters
IpRectMargins Pointer to a RECT structure or CRect object that describes (in

111000 inches or 11100 mm) the print margins for the currently selected printer.
Pass NULL for this parameter, if you are not interested in this rectangle.

1491

CPageSetupDialog: :GetPaperSize

Remarks

[pReetMinMargins Pointer to a RECT structure or CRect object that describes (in
111000 inches or 11100 mm) the minimum print margins for the currently selected
printer. Pass NULL for this parameter, if you are not interested in this rectangle.

Call this function after a call to DoModal to retrieve the margins of the printer device
driver.

CPageSetupDialog: : GetPaperSize
CSize GetPaperSize() const;

Return Value

Remarks

A CSize object containing the size of the paper (in 111 000 inches or 111 00 mm)
selected for printing.

Call this function to retrieve the size of the paper selected for printing.

CPageSetupDialog: : GetPortN arne
CString GetPortName() const;

Return Value

Remarks

The name of the currently selected printer port.

Call this function after calling DoModal to retrieve the name of the currently selected
printer port.

See Also: CPageSetupDialog::GetDeviceName,
CPageSetupDialog: : GetDriverName

CPageSetupDialog::OnDrawPage
virtual UINT OnDrawPage(CDC* pDC, UINT nMessage, LPRECT [pReet);

Return Value
Nonzero value if handled; otherwise O.

Parameters
pDC Pointer to the printer device context.

nMessage Specifies a message, indicating the area of the page currently being drawn.
Can be one of the following:

• WM_PSD_FULLPAGERECT The entire page area.

1492

CPageSetupDialog::PreDrawPage

Remarks

• WM_PSD_MINMARGINRECT Current minimum margins.

• WM_PSD_MARGINRECT Current margins.

• WM_PSD_GREEKTEXTRECT Contents of the page.

• WM_PSD _ENVSTAMPRECT Area reserved for a postage stamp
representation.

• WM_PSD_YAFULLPAGERECT Area for a return address representation.
This area extends to the edges of the sample page area.

IpRect Pointer to a CRect or RECT object containing the coordinates of the drawing
area.

Called by the framework to draw a screen image of a printed page. This image is
then displayed as part of the common OLE Page Setup dialog box. The default
implementation draws an image of a page of text.

Override this function to customize the drawing of a specific area of the image, or
the entire image. You can do this by using a switch statement with case statements
checking the value of nMessage. For example, to customize the rendering of the
contents of the page image, you could use the following example code:

switch (nType)
{

} ;

case WM_PSO_GREEKTEXTRECT:
OrawMylmage(pOC. lpRect);
return 1;

default:

/ / d raw s my s pee i a 1 9 rap hie

return ::Oraw(COC* pOC. UINT nOrawType. LPRECT lpRect);

Note that you do not need to handle every case of nMessage. You can choose to
handle one component of the image, several components of the image, or the whole
area.

See Also: CPageSetupDialog::PreDrawPage

CPageSetupDialog: :PreDrawPage
virtual UINT PreDrawPage(WORD wPaper, WORD wFlags,

... LPPAGESETUPDLG pPSD);

Return Value
Nonzero value if handled; otherwise O.

Parameters
wPaper Specifies a value that indicates the paper size. This value can be one of the

DMPAPER_ values listed in the description of the DEVMODE structure.

1493

CPageSetupDialog::m_psd

Remarks

wFlags Indicates the orientation of the paper or envelope, and whether the printer is
a dot-matrix or HPPCL (Hewlett Packard Printer Control Language) device. This
parameter can have one of the following values:

• OxOOl Paper in landscape mode (dot matrix)

• Ox003 Paper in landscape mode (HPPCL)

• Ox005 Paper in portrait mode (dot matrix)

• Ox007 Paper in portrait mode (HPPCL)

• OxOOb Envelope in landscape mode (HPPCL)

• OxOOd Envelope in portrait mode (dot matrix)

• OxOl9 Envelope in landscape mode (dot matrix)

• OxOlf Envelope in portrait mode (dot matrix)

pPSD Pointer to a PAGESETUPDLG structure. For more information on this
structure, see the Win32 documentation.

Called by the framework before drawing the screen image of a printed page. Override
this function to customize the drawing of the image. If you override this function and
return TRUE, you must draw the entire image. If you override this function and return
FALSE, the entire default image is drawn by the framework.

See Also: CPageSetupDialog::OnDrawPage

Data Members
CPageSetupDialog: :m_psd
Remarks

1494 .

A structure of type PAGESETUPDLG, whose members store the characteristics of
the dialog object. After constructing a CPageSetupDialog object, you can use m_psd
to set various aspects of the dialog box before calling the DoModal member function.

If you modify the m_psd data member directly, you will override any default
behavior.

For more information on the PAGESETUPDLG structure, see the Win32
documentation.

CPaintDC

CPaintDC

The CPaintDC class is a device-context class derived from CDC. It performs a
CWnd::BeginPaint at construction time and CWnd::EndPaint at destruction time.

A CPaintDC object can only be used when responding to a WM_PAINT message,
usually in your OnPaint message-handler member function.

For more information on using CPaintDC, see "Device Contexts" in Visual C++
Programmer's Guide online.

#include <afxwin.h>

CPaintDC Class Members
Data Members

m_ps

m_hWnd

Construction

CPaintDC

Contains the PAINTSTRUCT used to paint the client area.

The HWND to which this CPaintDC object is attached.

Constructs a CPaintDC connected to the specified CWnd.

Member Functions
CPaintDC: : CPaintDC

CPaintDC(CWnd* pWnd); throw(CResourceException);

Parameters

Remarks

p Wnd Points to the CWnd object to which the CPaintDC object belongs.

Constructs a CPaintDC object, prepares the application window for painting, and
stores the PAINTSTRUCT structure in the m_ps member variable.

CPaintDC

1495

CPaintDC::m_hWnd

An exception (of type CResourceException) is thrown if the Windows GetDC call
fails. A device context may not be available if Windows has already allocated all of its
available device contexts. Your application competes for the five common display
contexts available at any given time under Windows.

Data Members
CPaintDC: :m_h Wnd
Remarks

The HWND to which this CPaintDC object is attached. m_h Wnd is a protected
variable of type HWND.

CPaintDC: :m_ps
Remarks

1496

m_ps is a public member variable of type PAINTSTRUCT. It is the
PAINTSTRUCT that is passed to and filled out by CWnd: : BeginPaint.

The PAINTSTRUCT contains information that the application uses to paint the client
area of the window associated with a CPaintDC object.

Note that you can access the device-context handle through the PAINTSTRUCT.
However, you can access the handle more directly through the m_hDC member
variable that CPaintDC inherits from CDC.

CPalette

The CPalette class encapsulates a Windows color palette. A palette provides an
interface between an application and a color output device (such as a display device).
The interface allows the application to take full advantage of the color capabilities of
the output device without severely interfering with the colors displayed by other
applications. Windows uses the application's logical palette (a list of needed colors)
and the system palette (which defines available colors) to determine the colors used.

A CPalette object provides member functions for manipulating the palette referred to
by the object. Construct a CPalette object and use its member functions to create the
actual palette, a graphics device interface (GDI) object, and to manipulate its entries
and other properties.

For more information on using CPalette, see "Graphic Objects" in Visual C++
Programmer s Guide online.

#include <afxwin.h>

See Also: CPalette::GetPaletteEntries, CPalette::SetPaletteEntries

CPalette Class Members
Construction

CPalette

Initialization

CreatePalette

CreateHalftonePalette

Constructs a CPalette object with no attached Windows palette.
You must initialize the CPalette object with one of the
initialization member functions before it can be used.

Creates a Windows color palette and attaches it to the CPalette
object.

Creates a halftone palette for the device context and attaches it to
the CPalette object.

CPaiette

1497

CPalette: :AnimatePalette

Operations

FromHandle

AnimatePalette

GetN earestPalettelndex

ResizePalette

Attributes

GetEntryCount

GetPaletteEntries

SetPaletteEntries

operator HPALETTE

Returns a pointer to a CPalette object when given a handle
to a Windows palette object.

Replaces entries in the logical palette identified by the CPalette
object. The application does not have to update its client area,
because Windows maps the new entries into the system palette
immediatel y.

Returns the index of the entry in the logical palette that most
closely matches a color value.

Changes the size of the logical palette specified by the CPalette
object to the specified number of entries.

Retrieves the number of palette entries in a logical palette.

Retrieves a range of palette entries in a logical palette.

Sets RGB color values and flags in a range of entries in a
logical palette.

Returns the HPALETTE attached to the CPalette.

Member Functions
CPalette: : AnimatePalette

void AnimatePalette(UINT nStartlndex, UINT nNumEntries,
.. LPPALETTEENTRY lpPaletteColors);

Parameters

Remarks

1498

nStartIndex Specifies the first entry in the palette to be animated.

nNumEntries Specifies the number of entries in the palette to be animated.

lpPaletteColors Points to the first member of an array of PALETTEENTRY
structures to replace the palette entries identified by nStartIndex and nNumEntries.

Replaces entries in the logical palette attached to the CPalette object. When an
application calls AnimatePalette, it does not have to update its client area, because
Windows maps the new entries into the system palette immediately.

The AnimatePalette function will only change entries with the PC_RESERVED flag
set in the corresponding palPaletteEntry member of the LOGPALETTE structure
that is attached to the CPalette object. See LOGPALETTE in the Win32 SDK
Programmer's Reference for more information about this structure.

See Also: CPalette::CreatePalette, ::AnimatePalette

CPalette: :CreatePalette

CPalette: :CPalette

Remarks

CPalette();

Constructs a CPalette object. The object has no attached palette until you call
CreatePalette to attach one.

See Also: CPalette::CreatePalette

CPalette: : CreateHalftonePalette
BOOL CreateHalftonePalette(CDC* pDC);

Return Value
Nonzero if the function is successful; otherwise O.

Parameters

Remarks

pDC Identifies the device context.

Creates a halftone palette for the device context. An application should create a
halftone palette when the stretching mode of a device context is set to HALFTONE.
The logical halftone palette returned by the CreateHalftonePalette member function
should then be selected and realized into the device context before the
CDC::StretchBIt or ::StretchDIBits function is called.

See the Win32 SDK Programmer's Reference for more information about
CreateHalftonePalette and StretchDIBits.

See Also: CDC::RealizePalette, CDC::SelectPalette, CDC::SetStretchBItMode,
: :CreateHalftonePalette, : :StretchDIBits

CPalette: : CreatePalette
BOOL CreatePalette(LPLOGPALETTE IpLogPalette);

Return Value
Nonzero if successful; otherwise o.

Parameters

Remarks

/pLogPalette Points to a LOGPALETTE structure that contains information about
the colors in the logical palette.

Initializes a CPalette object by creating a Windows logical color palette and attaching
it to the CPalette object.

1499

CPalette: :FromHandle

See the Win32 SDK Programmer's Reference for more information about the
LOGPALETTE structure.

See Also: ::CreatePalette, LOGPALETTE

CPalette: : FromHandle
static CPalette* PASCAL FromHandle(HPALETTE hPalette);

Return Value
A pointer to a CPalette object if successful; otherwise NULL.

Parameters

Remarks

hPalette A handle to a Windows GDI color palette.

Returns a pointer to a CPalette object when given a handle to a Windows palette
object. If a CPalette object is not already attached to the Windows palette, a
temporary CPalette object is created and attached. This temporary CPalette object is
valid only until the next time the application has idle time in its event loop, at which
time all temporary graphic objects are deleted. In other words, the temporary object is
valid only during the processing of one window message.

CPalette: : GetEntryCount
int GetEntryCount();

Return Value

Remarks

Number of entries in a logical palette.

Call this member function to retrieve the number of entries in a given logical palette.

See Also: CPalette: : GetPaletteEntries, CPalette: :SetPaletteEntries

CPalette: : GetN earestPaletteIndex
UINT GetNearestPaletteIndex(COLORREF crColor) const;

Return Value
The index of an entry in a logical palette. The entry contains the color that most nearly
matches the specified color.

Parameters
crColor Specifies the color to be matched.

1500

CPalette::operator HPALETTE

Remarks
Returns the index of the entry in the logical palette that most closely matches the
specified color value.

See Also: ::GetNearestPaletteIndex

CPalette: : GetPaletteEntries
UINT GetPaletteEntries(UINT nStartIndex, UINT nNumEntries,

.. LPPALETTEENTRY IpPaletteColors) const;

Return Value
The number of entries retrieved from the logical palette; 0 if the function failed.

Parameters

Remarks

nStartlndex Specifies the first entry in the logical palette to be retrieved.

nNumEntries Specifies the number of entries in the logical palette to be retrieved.

IpPaletteColors Points to an array of PALETTEENTRY data structures to receive
the palette entries. The array must contain at least as many data structures as
specified by nNumEntries.

Retrieves a range of palette entries in a logical palette.

See Also: ::GetPaletteEntries, CPalette::SetPaletteEntries

CPalette: : operator HPALETTE
operator HPALETTE() const;

Return Value

Remarks

If successful, a handle to the Windows GDI object represented by the CPalette object;
otherwise NULL.

Use this operator to get the attached Windows GDI handle of the CPalette object.
This operator is a casting operator, which supports direct use of an HPALETTE
object.

For more information about using graphic objects, see the article "Graphic Objects" in
the Win32 SDK Programmer's Reference.

1501

CPalette: :ResizePalette

CPalette: : ResizePalette
BOOL ResizePalette(UINT nNumEntries);

Return Value
Nonzero if the palette was successfully resized; otherwise O.

Parameters

Remarks

nNumEntries Specifies the number of entries in the palette after it has been resized.

Changes the size of the logical palette attached to the CPalette object to the number
of entries specified by nNumEntries. If an application calls ResizePalette to reduce
the size of the palette, the entries remaining in the resized palette are unchanged. If the
application calls ResizePalette to enlarge the palette, the additional palette entries are
set to black (the red, green, and blue values are all 0), and the flags for all additional
entries are set to O.

For more information on the Windows API ResizePalette, see: : ResizePalette in the
Win32 SDK Programmer's Reference.

See Also: ::ResizePalette

CPalette:: SetPaletteEntries
UINT SetPaletteEntries(UINT nStartlndex, UINT nNumEntries,

.. LPPALETTEENTRY IpPaletteColors);

Return Value
The number of entries set in the logical palette; 0 if the function failed.

Parameters

Remarks

1502

nStartIndex Specifies the first entry in the logical palette to be set.

nNumEntries Specifies the number of entries in the logical palette to be set.

IpPaletteColors Points to an array of PALETTEENTRY data structures to receive
the palette entries. The array must contain at least as many data structures as
specified by nNumEntries.

Sets RGB color values and flags in a range of entries in a logical palette.

If the logical palette is selected into a device context when the application calls
SetPaletteEntries, the changes will not take effect until the application calls
CDC: : RealizePalette.

For more information on the Windows structure PALETTEENTRY, see
PALETTEENTRY in the Win32 SDK Programmer's Reference.

See Also: CDC: :RealizePalette, CPalette: : GetPaletteEntries, : :SetPaletteEntries

CPen

The CPen class encapsulates a Windows graphics device interface (GDI) pen.

For more information on using CPen, see "Graphic Objects" in Visual C++
Programmer's Guide online.

#include <afxwin.h>

See Also: CBrush

CPen Class Members
Construction

CPen

Initialization

CreatePen

CreatePenlndirect

Operations

FromHandle

Attributes

operator HPEN

GetLogPen

GetExtLogPen

Constructs a CPen object.

Creates a logical cosmetic or geometric pen with the
specified style, width, and brush attributes, and attaches
it to the CPen object.

Creates a pen with the style, width, and color given in a
LOGPEN structure, and attaches it to the CPen object.

Returns a pointer to a CPen object when given a
Windows HPEN.

Returns the Windows handle attached to the CPen object.

Gets a LOGPEN underlying structure.

Gets an EXTLOGPEN underlying structure.

CPen

1503

CPen::CPen

Member Functions
CPen::CPen

CPen();
CPen(int nPenStyle, int n Width, COLORREF crColor);

throw(CResourceException);
CPen(int nPenStyle, int n Width, const LOGBRUSH* pLogBrush,

.. int nStyleCount = 0, const DWORD* IpStyle = NULL);
throw(CResourceException);

Parameters

1504

nPenStyle Specifies the pen style. This parameter in the first version of the
constructor can be one of the following values:

• PS_SOLID Creates a solid pen.

• PS_DASH Creates a dashed pen. Valid only when the pen width is I or less,
in device units.

• PS_DOT Creates a dotted pen. Valid only when the pen width is I or less,
in device units.

.. PS_DASHDOT Creates a perl witl. altelliatillg uasil~~ allU Jut~. Valid Uilly
when the pen width is I or less, in device units.

• PS_DASHDOTDOT Creates a pen with alternating dashes and double dots.
Valid only when the pen width is I or less, in device units.

• PS_NULL Creates a null pen.

• PS_INSIDEFRAME Creates a pen that draws a line inside the frame of
closed shapes produced by the Windows GDI output functions that specify a
bounding rectangle (for example, the Ellipse, Rectangle, RoundRect, Pie, and
Chord member functions). When this style is used with Windows GDI output
functions that do not specify a bounding rectangle (for example, the LineTo
member function), the drawing area of the pen is not limited by a frame.

The second version of the CPen constructor specifies a combination of type, style,
end cap, and join attributes. The values from each category should be combined by
using the bitwise OR operator (I). The pen type can be one of the following values:

• PS_GEOMETRIC Creates a geometric pen.

• PS_COSMETIC Creates a cosmetic pen.

The second version of the CPen constructor adds the following pen styles for
nPenStyle:

Remarks

• PS_ALTERNATE Creates a pen that sets every other pixel. (This style is
applicable only for cosmetic pens.)

• PS_USERSTYLE Creates a pen that uses a styling array supplied by the user.

The end cap can be one of the following values:

• PS_ENDCAP _ROUND End caps are round.

• PS_ENDCAP _SQUARE End caps are square.

• PS_ENDCAP _FLAT End caps are flat.

The join can be one of the following values:

• PS_JOIN_BEVEL Joins are beveled.

• PS_JOIN_MITER Joins are mitered when they are within the current limit set
by the ::SetMiterLimit function. If the join exceeds this limit, it is beveled.

• PS_JOIN_ROUND Joins are round.

n Width Specifies the width of the pen.

• For the first version of the constructor, if this value is 0, the width in device
units is always 1 pixel, regardless of the mapping mode.

• For the second version of the constructor, if nPenStyle is PS_GEOMETRIC,
the width is given in logical units. If nPenStyle is PS_COSMETIC, the width
must be set to 1.

crColor Contains an RGB color for the pen.

pLogBrush Points to a LOGBRUSH structure. If nPenStyle is PS_COSMETIC, the
IbColor member of the LOGBRUSH structure specifies the color of the pen and
the IbStyle member of the LOGBRUSH structure must be set to BS_SOLID. If
nPenStyle is PS_GEOMETRIC, all members must be used to specify the brush
attributes of the pen.

nStyleCount Specifies the length, in doubleword units, of the IpStyle array. This
value must be zero if nPenStyle is not PS_USERSTYLE.

IpStyle Points to an array of doubleword values. The first value specifies the length
of the first dash in a user-defined style, the second value specifies the length of the
first space, and so on. This pointer must be NULL if nPenStyle is not
PS_USERSTYLE.

If you use the constructor with no arguments, you must initialize the resulting CPen
object with the CreatePen, CreatePenlndirect, or CreateStockObject member
functions. If you use the constructor that takes arguments, then no further initialization
is necessary. The constructor with arguments can throw an exception if errors are
encountered, while the constructor with no arguments will always succeed.

CPen::CPen

1505

CPen: :CreatePen

See Also: CPen: :CreatePen, CPen: :CreatePenlndirect,
CGdiObject:: CreateStockObject

CPen: :CreatePen
BOOL CreatePen(int nPenStyle, int n Width, COLORREF crColor);
BOOL CreatePen(int nPenStyle, int n Width, const LOGBRUSH* pLogBrush,

.. int nStyleCount = 0, const DWORD* lpStyle = NULL);

Return Value
Nonzero, or the handle of a logical pen, if successful; otherwise o.

Parameters

Remarks

1506

nPenStyle Specifies the style for the pen. For a list of possible values, see the
nPenStyle parameter in the CPen constructor.

n Width Specifies the width of the pen.

• For the first version of CreatePen, if this value is 0, the width in device units is
always 1 pixel, regardless of the mapping mode.

• For the second version of CreatePen, if nPenStyle is PS_GEOMETRIC, the
width is given in logical units. If nPenStyle is PS_COSMETIC, the width must
be set to 1.

crColor Contains an ROB color for the pen.

pLogBrush Points to a LOGBRUSH structure. If nPenStyle is PS_COSMETIC, the
IbColor member of the LOGBRUSH structure specifies the color of the pen and
the IbStyle member of the LOGBRUSH structure must be set to BS_SOLID. If
nPenStyle is PS_GEOMETRIC, all members must be used to specify the brush
attributes of the pen.

nStyleCount Specifies the length, in doubleword units, of the IpStyle array. This
value must be zero if nPenStyle is not PS_USERSTYLE.

lpStyle Points to an array of doubleword values. The first value specifies the length of
the first dash in a user-defined style, the second value specifies the length of the first
space, and so on. This pointer must be NULL if nPenStyle is not PS_USERSTYLE.

The first version of CreatePen initializes a pen with the specified style, width, and
color. The pen can be subsequently selected as the current pen for any device context.

Pens that have a width greater than 1 pixel should always have either the PS_NULL,
PS_SOLID, or PS_INSIDEFRAME style.

If a pen has the PS_INSIDEFRAME style and a color that does not match a color in
the logical color table, the pen is drawn with a dithered color. The PS_SOLID pen style
cannot be used to create a pen with a dithered color. The style PS_INSIDEFRAME is
identical to PS_SOLID if the pen width is less than or equal to 1.

CPen: :CreatePenIndirect

The second version of CreatePen initializes a logical cosmetic or geometric pen that
has the specified style, width, and brush attributes. The width of a cosmetic pen is
always 1; the width of a geometric pen is always specified in world units. After an
application creates a logical pen, it can select that pen into a device context by calling
the CDC::SelectObject function. After a pen is selected into a device context, it can
be used to draw lines and curves .

• If nPenStyle is PS_COSMETIC and PS_USERSTYLE, the entries in the lpStyle
array specify lengths of dashes and spaces in style units. A style unit is defined by
the device in which the pen is used to draw a line .

• If nPenStyle is PS_GEOMETRIC and PS_USERSTYLE, the entries in the
lpStyle array specify lengths of dashes and spaces in logical units.

• If nPenStyle is PS_ALTERNATE, the style unit is ignored and every other pixel
is set.

When an application no longer requires a given pen, it should call the
CGdiObject: :DeleteObject member function to delete the pen from the device
context.

See Also: CPen::CreatePenlndirect, CPen::CPen, CGdiObject::DeleteObject,
LOGBRUSH

CPen: : CreatePenIndirect
BOOL CreatePenlndirect(LPLOGPEN lpLogPen);

Return Value
Nonzero if the function is successful; otherwise O.

Parameters

Remarks

IpLogPen Points to the Windows LOGPEN structure that contains information about
the pen.

Initializes a pen that has the style, width, and color given in the structure pointed to by
lpLogPen.

Pens that have a width greater than I pixel should always have either the PS_NULL,
PS_SOLID, or PS_INSIDEFRAME style.

If a pen has the PS_INSIDEFRAME style and a color that does not match a color in
the logical color table, the pen is drawn with a dithered color. The
PS_INSIDEFRAME style is identical to PS_SOLID if the pen width is less than or
equal to 1.

See Also: CPen::CreatePen, CPen::CPen

1507

CPen: :FromHandle

CPen: : FromHandle
static CPen* PASCAL FromHandle(HPEN hPen);

Return Value
A pointer to a CPen object if successful; otherwise NULL.

Parameters

Remarks

hPen HPEN handle to Windows GDI pen.

Returns a pointer to a CPen object given a handle to a Windows GDI pen object. If
a CPen object is not attached to the handle, a temporary CPen object is created and
attached. This temporary CPen object is valid only until the next time the application
has idle time in its event loop, at which time all temporary graphic objects are deleted.
In other words, the temporary object is only valid during the processing of one
window message.

CPen: : GetExtLo gPen
int GetExtLogPen(EXTLOGPEN* pLogPen);

Return Value

Nonzero if successful; otherwise O.

Parameters

Remarks

Example

1508

pLogPen Points to an EXTLOGPEN structure that contains information about the
pen.

Call this member function to get an EXTLOGPEN underlying structure. The
EXTLOGPEN structure defines the style, width, and brush attributes of a pen. For
example, call GetExtLogPen to match the particular style of a pen.

See the following topics in the Win 32 SDK Programmer's Reference for information
about pen attributes:

• GetObject

• EXTLOGPEN

• LOGPEN

• ExtCreatePen

The following code example demonstrates calling GetExtLogPen to retrieve a pen's
attributes, and then create a new, cosmetic pen with the same color.

EXTLOGPEN extlogpen;
penExisting.GetExtLogPen(&extlogpen);
CPen penOther;

LOGBRUSH LogBrush~{ extlogpen.elpBrushStyle. extlogpen.elpColor.
~ extlogpen.elpHatch };
penOther.CreatePen(PS_COSMETIC. 1. &LogBrush);

See Also: CPen::GetLogPen, CPen::CreatePen

CPen: : GetLogPen
int GetLogPen(LOGPEN* pLogPen);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

Example

pLogPen Points to a LOGPEN structure to contain information about the pen.

Call this member function to get a LOGPEN underlying structure. The LOGPEN
structure defines the style, color, and pattern of a pen.

For example, call GetLogPen to match the particular style of pen.

See the following topics in the Win 32 SDK Programmer's Reference for information
about pen attributes:

• GetObject

• LOGPEN

The following code example demonstrates calling GetLogPen to retrieve a pen
character, and then create a new, solid pen with the same color.

LOGPEN logpen;
penExisting.GetLogPen(&logpen);
CPen penOther(PS_SOLID. 0. logpen.lopnColor);

See Also: CPen::GetExtLogPen

CPen::operator HPEN
operator HPEN() const;

Return Value

Remarks

If successful, a handle to the Windows GDI object represented by the CPen object;
otherwise NULL.

Use this operator to get the attached Windows GDI handle of the CPen object. This
operator is a casting operator, which supports direct use of an HPEN object.

For more information about using graphic objects, see the article "Graphic Objects"
in Win 32 SDK Programmer's Reference.

CPen::operator HPEN

1509

CPictureHolder

CPictureHolder
CPictureHolder does not have a base class.

The purpose of the CPictureHolder class is implementation of a Picture property,
which allows the user to display a picture in your control. With the stock Picture
property, the developer can specify a bitmap, icon, or metafile for display.

For information on creating custom picture properties, see the article "ActiveX
Controls: Using Pictures in an ActiveX Control" in Visual C++ Programmer's Guide
online.

#include <afxctl.h>

See Also: CFontHolder

CPictureHolder Class Members

1510

Data Members

Construction

CPictureHolder

Operations

GetDisplayString

CreateEmpty

CreateFromBitmap

CreateFromMetafile

CreateFromlcon

GetPictureDispatch

SetPictureDispatch

GetType

Render

A pointer to a picture object.

Constructs a CPictureHolder object.

Retrieves the string displayed in a control container's
property browser.

Creates an empty CPictureHolder object.

Creates a CPictureHolder object from a bitmap.

Creates a CPictureHolder object from a metafile.

Creates a CPictureHolder object from an icon.

Returns the CPictureHolder object's IDispatch interface.

Sets the CPictureHolder object's IDispatch interface.

Tells whether the CPictureHolder object is a bitmap,
a metafile, or an icon.

Renders the picture.

CPictureHolder:: CreateFromBitmap

Member Functions
CPictureHolder: : CPictureHolder

CPictureHolder();

Remarks
Constructs a CPictureHolder object.

See Also: CPictureHolder:: CreateEmpty

CPictureHolder: : CreateEmpty
BOOL CreateEmpty();

Return Value

Remarks

Nonzero if the object is successfully created; otherwise O.

Creates an empty CPictureHolder object and connects it to an IPicture interface.

See Also: CPictureHolder::CreateFromBitmap,
CPictureHolder:: CreateFromIcon, CPictureHolder:: CreateFromMetafile

CPictureHolder: : CreateFromBitmap
BOOL CreateFromBitmap(UINT idResource);
BOOL CreateFromBitmap(CBitmap* pBitmap, CPalette* pPal = NULL,

~ BOOL bTransferOwnership = TRUE);
BOOL CreateFromBitmap(HBITMAP hbm, HPALETTE hpal = NULL);

Return Value
Nonzero if the object is successfully created; otherwise O.

Parameters
idResource Resource ID of a bitmap resource.

pBitmap Pointer to a CBitmap object.

pPal Pointer to a CPalette object.

bTransferOwnership Indicates whether the picture object will take ownership of the
bitmap and palette objects.

hbm Handle to the bitmap from which the CPictureHolder object is created.

hpal Handle to the palette used for rendering the bitmap.

1511

CPictureHolder: :CreateFromIcon

Remarks
Uses a bitmap to initialize the picture object in a CPictureHolder. If
bTransferOwnership is TRUE, the caller should not use the bitmap or palette object
in any way after this call returns. If bTransferOwnership is FALSE, the caller is
responsible for ensuring that the bitmap and palette objects remain valid for the
lifetime of the picture object.

See Also: CPictureHolder::CreateEmpty, CPictureHolder::CreateFromIcon,
CPictureHolder:: CreateFromMetafile

CPictureHolder: : CreateFromIcon
BOOL CreateFromIcon(UINT idResource);
BOOL CreateFromIcon(HICON hIcon, BOOL bTransferOwnership = FALSE);

Return Value
Nonzero if the object is successfully created; otherwise O.

Parameters

Remarks

idResource Resource ID of a bitmap resource.

hlcon Handle to the icon from which the CPictureHolder object is created.

bTransferOwnership Indicates whether the picture object will take ownership of the
icon object.

Uses an icon to initialize the picture object in a CPictureHolder. If
bTransferOwnership is TRUE, the caller should not use the icon object in any way
after this call returns. If bTransferOwnership is FALSE, the caller is responsible for
ensuring that the icon object remains valid for the lifetime of the picture object.

See Also: CPictureHolder:: CreateEmpty, CPictureHolder: :CreateFromBitmap,
CPictureHolder:: CreateFromMetafile

CPictureHolder: :CreateFromMetafile
BOOL CreateFromMetafile(HMETAFILE hmf, int xExt, int yExt,

.. BaOL bTransferOwnership = FALSE);

Return Value
Nonzero if the object is successfully created; otherwise O.

Parameters
hmf Handle to the metafile used to create the CPictureHolder object.

xExt X extent of the picture.

yExt Y extent of the picture.

1512

CPictureHolder:: GetType

Remarks

bTransferOwnership Indicates whether the picture object will take ownership of the
metafile object.

Uses a metafile to initialize the picture object in a CPictureHolder. If
bTransferOwnership is TRUE, the caller should not use the metafile object in any
way after this call returns. If bTransferOwnership is FALSE, the caller is responsible
for ensuring that the metafile object remains valid for the lifetime of the picture
object.

See Also: CPictureHolder:: CreateEmpty, CPictureHolder:: CreateFromBitmap,
CPictureHolder:: CreateFromlcon

CPictureHolder: : GetDisplayString
B~OL GetDisplayString(CString& strValue);

Return Value
Nonzero if the string is successfully retrieved; otherwise o.

Parameters
strValue Reference to the CString that is to hold the display string.

Remarks
Retrieves the string that is displayed in a container's property browser.

CPictureHolder: : GetPictureDispatch
LPPICTUREDISP GetPictureDispatch();

Return Value

Remarks

A pointer to the CPictureHolder object's IPictureDisp interface.

This function returns a pointer to the CPictureHolder object's IPictureDisp
interface. The caller must call Release on this pointer when finished with it.

See Also: CPictureHolder::SetPictureDispatch

CPictureHolder: : GetType
short GetType();

Return Value
A value indicating the type of the picture. Possible values and their meanings are
as follows:

1513

CPictureHolder: :Render

Remarks

Value

PICTYPE_UNINITIALIZED

PICTYPE_NONE

PICTYPE_BITMAP

PIC TYPE_METAFILE

PICTYPE_ICON

Meaning

CPictureHolder object is unititialized.

CPictureHolder object is empty.

Picture is a bitmap.

Picture is a metafile.

Picture is an icon.

Indicates whether the picture is a bitmap, metafile, or icon.

CPictureHolder: : Render
void Render(CDC* pDC, const CRect& reRender, const CRect& reWBounds);

Parameters

Remarks

pDC Pointer to the display context in which the picture is to be rendered.

reRender Rectangle in which the picture is to be rendered.

re WBounds A rectangle representing the bounding rectangle of the object rendering
the picture. For a control, this rectangle is the reBounds parameter passed to an
override of COleControl::OnDraw.

Renders the picture in the rectangle referenced by reRender.

CPictureHolder: : SetPictureDispatch
void SetPictureDispatch(LPPICTUREDISP pDisp);

Parameters

Remarks

pDisp Pointer to the new IPictureDisp interface.

Connects the CPictureHolder object to a IPictureDisp interface.

See Also: CPictureHolder: : GetPictureDispatch

Data Members
CPictureHolder: :m_pPict
Remarks

A pointer to the CPictureHolder object's IPicture interface.

1514

CPoint
The CPoint class is similar to the Windows POINT structure. It also includes
member functions to manipulate CPoint and POINT structures.

A CPoint object can be used wherever a POINT structure is used. The operators of
this class that interact with a "size" accept either CSize objects or SIZE structures,
since the two are interchangeable.

Note This class is derived from the tag POINT structure. (The name tag POINT is a
less-commonly-used name for the POINT structure.) This means that the data members of
the POINT structure, x and y, are accessible data members of CPoint.

#include <afxwin.h>

See Also: CRect, CSize

CPoint Class Members
Construction

CPoint

Operations

Offset

operator ==

operator !=

Constructs a CPoint.

Adds values to the x and y members of the CPoint.

Checks for equality between two points.

Checks for inequality between two points.

Operators Returning CPoint Values

operator +=

operator -=

operator +

operator -

Offsets CPoint by adding a size or point.

Offsets CPoint by subtracting a size or point.

Returns the sum of a CPoint and a size or point.

Returns the difference of a CPoint and a size,
or the negation of a point.

Operators Returning CSize Values

operator- Returns the size difference between two points.

Operators Returning CRect Values

operator +

operator -

Returns a CRect offset by a size.

Returns a CRect offset by a negative size.

CPoint

1515

CPoint: :CPoint

Member Functions
CPoint:: CPoint

CPoint();
CPoint(int initX, int initY);
CPoint(POINT initPt);
CPoint(SIZE initSize);
CPoint(DWORD dwPoint);

Parameters

Remarks

initX Specifies the value of the x member of CPoint.

initY Specifies the value of the y member of CPoint.

initPt POINT structure or CPoint that specifies the values used to initialize CPoint.

initSize SIZE structure or CSize that specifies the values used to initialize CPoint.

dwPoint Sets the x member to the low-order word of dwPoint and the y member to
the high-order word of dwPoint.

Constructs a CPoint object. If no arguments are given, x and y members are not
initialized.

CPoint: : Offset
void Offset(int xOffset, int yOffset);
void Offset(POINT point);
void Offset(SIZE size);

Parameters

Remarks

1516

xOffset Specifies the amount to offset the x member of the CPoint.

yOffset Specifies the amount to offset the y member of the CPoint.

point Specifies the amount (POINT or CPoint) to offset the CPoint.

size Specifies the amount (SIZE or CSize) to offset the CPoint.

Adds values to the x and y members of the CPoint.

See Also: CPoint::operator +=, CPoint::operator-=

Operators
CPoint::operator ==

BOOL operator ==(POINT point) const;

Return Value
Nonzero if the points are equal; otherwise O.

Parameters

Remarks

point Contains a POINT structure or CPoint object.

Checks for equality between two points.

See Also: CPoint::Operator!=

CPoint::operator !=
BOOL operator !=(POINT point) const;

Return Value
Nonzero if the points are not equal; otherwise O.

Parameters

Remarks

point Contains a POINT structure or CPoint object.

Checks for inequality between two points.

See Also: CPoint::Operator ==

CPoint: : operator +=
void operator +=(SIZE size);
void operator +=(POINT point);

Parameters

Remarks

size Contains a SIZE structure or CSize object.

point Contains a POINT structure or CPoint object.

The first overload adds a size to the CPoint.

The second overload adds a point to the CPoint.

CPoint::operator +=

1517

CPoint: : operator -=

In both cases, addition is done by adding the x (or ex) member of the right-hand
operand to the x member of the CPoint and adding the y (or cy) member of the
right-hand operand to the y member of the CPoint.

For example, adding CPo; nt (5, -7) to a variable which contains CPo; nt(30, 40)

changes the variable to CPo; nt (35, 33).

See Also: CPoint::operator -=, CPoint::operator +, CPoint::Offset

CPoint::operator -=
void operator -=(SIZE size);
void operator-=(POINT point);

Parameters

Remarks

size Contains a SIZE structure or CSize object.

point Contains a POINT structure or CPoint object.

The first overload subtracts a size from the CPoint.

The second overload subtracts a point from the CPoint.

right-hand operand from the x member of the CPoint and subtracting the y (or cy)
member of the right-hand operand from the y member of the CPoint.

For example, subtracting CPo; n t (5, - 7) from a variable which contains CPo; n t (30 ,

40) changes the variable to CPo; nt (25, 47).

See Also: CPoint::operator -, CPoint::operator +=, CPoint::Offset

CPoint::operator +
CPoint operator +(SIZE size) const;
CPoint operator +(POINT point) const;
CRect operator +(const RECT* lpRect) const;

Return Value
A CPoint that is offset by a size, a CPoint that is offset by a point, or a CRect offset
by a point.

Parameters
size Contains a SIZE structure or CSize object.

point Contains a POINT structure or CPoint object.

IpRect Contains a pointer to a RECT structure or CRect object.

1518

Remarks
Use this operator to offset CPoint by a CPoint or CSize object, or to offset a CRect
by a CPoint.

For example, using one of the first two overloads to offset the point
CPoint(25, -19) byapointCPoint(15, 5) orsizeCSize(15, 5) returns the value
CPoint(40, -14).

Adding a rectangle to a point returns the rectangle after being offset by the the x and y
values specified in the point. For example, using the last overload to offset a rectangle
CRect(125, 219, 325, 419) byapointCPoint(25, -19) returns CRect(150, 200,
350, 400).

See Also: CPoint::operator -=, CPoint::operator -, CPoint::operator +=,
CSize::operator +, CRect::operator +, CPoint::Offset, CRect::OffsetRect

CPoint: : operator -
CSize operator -(POINT point) const;
CPoint operator -(SIZE size) const;
CRect operator -(const RECT* lpRect) const;
CPoint operator -() const;

Return Value
A CSize that is the difference between two points, a CPoint that is offset by the
negation of a size, a CRect that is offset by the negation of a point, or a CPoint that
is the negation of a point.

Parameters

Remarks

point A POINT structure or CPoint object.

size A SIZE structure or CSize object.

lpRect A pointer to a RECT structure or a CRect object.

Use one of the first two overloads to subtract a CPoint or CSize object from CPoint.
The third overload offsets a CRect by the negation of CPoint. Finally, use the unary
operator to negate CPoint.

For example, using the first overload to find the difference between two points
CPoint(25, -19) and CPoint(15, 5) returns CSize(10, -24).

Subtracting a CSize from CPoint does the same calculation as above but returns a
CPoint object, not a CSize object. For example, using the second overload to find the
difference between the point
CPoint(25, -19) and the size CSize(15, 5) returns
CPoint(10, -24).

CPoint: :operator -

1519

CPoint::operator -

1520

Subtracting a rectangle from a point returns the rectangle offset by the negatives of
the x and y values specified in the point. For example, using the last overload to offset
therectangleCRect(125. 200. 325. 400) bythepointCPoint(25. -19) returns
CRect(100. 219. 300. 419).

Use the unary operator to negate a point. For example, using the unary operator with
thepointCPoint(25. -19) returns CPoint(-25. 19).

See Also: CPoint::operator -=, CPoint::operator +=, CPoint::operator +,
CSize::operator -, CRect::operator -, CPoint::Offset, CRect::OffsetRect

CPrintDialog

The CPrintDialog class encapsulates the services provided by the Windows
common dialog box for printing. Common print dialog boxes provide an easy
way to implement Print and Print Setup dialog boxes in a manner consistent with
Windows standards.

If you wish, you can rely on the framework to handle many aspects of the printing
process for your application. In this case, the framework automatically displays the
Windows common dialog box for printing. You can also have the framework handle
printing for your application but override the common Print dialog box with your own
print dialog box. For more information on using the framework to handle printing
tasks, see the article "Printing" in Visual C++ Programmer's Guide online.

If you want your application to handle printing without the framework's involvement,
you can use the CPrintDialog class "as is" with the constructor provided, or you can
derive your own dialog class from CPrintDialog and write a constructor to suit your
needs. In either case, these dialog boxes will behave like standard MFC dialog boxes
because they are derived from class CCommonDialog.

To use a CPrintDialog object, first create the object using the CPrintDialog
constructor. Once the dialog box has been constructed, you can set or modify any
values in the m_pd structure to initialize the values of the dialog box's controls. The
m_pd structure is of type PRINTDLG. For more information on this structure, see
the Win32 SDK documentation.

If you do not supply your own handles in m_pd for the hDevMode and hDevNames
members, be sure to call the Windows function GlobalFree for these handles
when you are done with the dialog box. When using the framework's Print Setup
implementation provided by CWinApp::OnFilePrintSetup, you do not have to free
these handles. The handles are maintained by CWinApp and are freed in CWinApp's
destructor. It is only necessary to free these handles when using CPrintDialog
stand-alone.

CPrintDialog

1521

CPrintDiaiog

After initializing the dialog box controls, call the DoModal member function to
display the dialog box and allow the user to select print options. DoModal returns
whether the user selected the OK (IDOK) or Cancel (IDCANCEL) button.

If DoModal returns IDOK, you can use one of CPrintDialog's member functions to
retrieve the information input by the user.

The CPrintDialog: : GetDefaults member function is useful for retrieving the current
printer defaults without displaying a dialog box. This member function requires no
user interaction.

You can use the Windows CommDlgExtendedError function to determine whether
an error occurred during initialization of the dialog box and to learn more about the
error. For more information on this function, see the Win32 SDK documentation.

CPrintDialog relies on the COMMDLG.DLL file that ships with Windows versions
3.1 and later.

To customize the dialog box, derive a class from CPrintDialog, provide a custom
dialog template, and add a message map to process the notification messages from the
extended controls. Any unprocessed messages should be passed on to the base class.
Customizing the hook function is not required.

To process the same message differently depending on whether the dialog box is Print
or Print Setup, you must derive a class for each dialog box. You must also override the
Windows AttachOnSetup function, which handles the creation of a new dialog box
when the Print Setup button is selected within a Print dialog box.

For more information on using CPrintDialog, see "Common Dialog Classes" in
Visual C++ Programmer's Guide online.

#include <afxdlgs.h>

See Also: CPrintInfo

CPrintDialog Class Members

1522

Data Members

m_pd

Construction

CPrintDialog

Operations

CreatePrinterDC

DoModal

GetCopies

A structure used to customize a CPrintDialog object.

Constructs a CPrintDialog object.

Creates a printer device context without displaying the Print dialog box.

Displays the dialog box and allows the user to make a selection.

Retrieves the number of copies requested.

CPrintDialog: :CPrintDialog

Operations (continued)

GetDefaults

GetDeviceName

GetDevMode

GetDriverName

GetFromPage

GetToPage

GetPortName

GetPrinterDC

PrintAII

Print Collate

PrintRange

PrintSelection

Retrieves device defaults without displaying a dialog box.

Retrieves the name of the currently selected printer device.

Retrieves the DEVMODE structure.

Retrieves the name of the currently selected printer driver.

Retrieves the starting page of the print range.

Retrieves the ending page of the print range.

Retrieves the name of the currently selected printer port.

Retrieves a handle to the printer device context.

Determines whether to print all pages of the document.

Determines whether collated copies are requested.

Determines whether to print only a specified range of pages.

Determines whether to print only the currently selected items.

Member Functions
CPrintDialog: :CPrintDialog

CPrintDialog(BOOL bPrintSetupOnly, DWORD dwFlags = PD_ALLPAGES I
~ PD_USEDEVMODECOPIES I PD_NOPAGENUMS I PD_HIDEPRINTTOFILE I
~ PD_NOSELECTION, CWnd* pParentWnd = NULL);

Parameters

Remarks

bPrintSetupOnly Specifies whether the standard Windows Print dialog box or Print
Setup dialog box is displayed. Set this parameter to TRUE to display the standard
Windows Print Setup dialog box. Set it to FALSE to display the Windows Print
dialog box. If bPrintSetupOnly is FALSE, a Print Setup option button is still
displayed in the Print dialog box.

dwFlags One or more flags you can use to customize the settings of the dialog box,
combined using the bitwise OR operator. For example, the PD_ALLPAGES flag
sets the default print range to all pages of the document. See the PRINTDLG
structure in the Win32 SDK documentation for more information on these flags.

pParentWnd A pointer to the dialog box's parent or owner window.

Constructs either a Windows Print or Print Setup dialog object. This member
function only constructs the object. Use the DoModal member function to display
the dialog box.

1523

CPrintDialog::CreatePrinterDC

Note that when you call the constructor with bPrintSetupOnly set to FALSE, the
PD_RETURNDC flag is automatically used. After calling DoModal, GetDefaults,
or GetPrinterDC, a printer DC will be returned in m_pd. hOC. This DC must be freed
by the caller of CPrintDialog.

See Also: CPrintDialog: :DoModal, : :PrintDlg

CPrintDialog: :CreatePrinterDC
HDC CreatePrinterDC();

Return Value

Remarks

Handle to the newly created printer device context.

Creates a printer device context (DC) from the DEVMODE and DEVNAMES
structures. This DC is assumed to be the current printer DC, and any other previously
obtained printer DCs must be deleted by the user. This function can be called, and the
resulting DC used, without ever displaying the Print dialog box.

See Also: CPrintDialog::GetDevMode

1'""'1'04_': 4_';"'",",': ,.,. 1 ,.... ..-- •• ",",.,..... 1\ Ir .,.....,.1 ~ 1 \-r 1111lLJldlUg •• LJUIV.lUUdl.

virtual int DoModal();

Return Value

Remarks

1524

IDOK or IDCANCEL if the function is successful; otherwise O. IDOK and
IDCANCEL are constants that indicate whether the user selected the OK or Cancel
button.

If IDCANCEL is returned, you can call the Windows CommDlgExtendedError
function to determine whether an error occurred.

Call this function to display the Windows common print dialog box and allow the user
to select various printing options such as the number of copies, page range, and
whether copies should be collated.

If you want to initialize the various print dialog options by setting members of the
m_pd structure, you should do this before calling DoModal, but after the dialog
obj ect is constructed.

After calling DoModal, you can call other member functions to retrieve the settings or
information input by the user into the dialog box.

See Also: CPrintDialog:: CPrintDialog, CDialog: :DoModal

CPrintDialog::GetDeviceName

CPrintDialog: : GetCopies
int GetCopies() const;

Return Value

Remarks

The number of copies requested.

Call this function after calling DoModal to retrieve the number of copies requested.

See Also: CPrintDialog: :PrintCollate

CPrintDialog::GetDefaults
BOOL GetDefaults();

Return Value

Remarks

Nonzero if the function was successful; otherwise O.

Call this function to retrieve the device defaults of the default printer without
displaying a dialog box. The retrieved values are placed in the m_pd structure.

In some cases, a call to this function will call the constructor for CPrintDialog with
bPrintSetupOnly set to FALSE. In these cases, a printer DC and hDevNames and
hDevMode (two handles located in the m_pd data member) are automatically
allocated.

If the constructor for CPrintDialog was called with bPrintSetupOnly set to FALSE,
this function will not only return hDevNames and hDevMode (located in
m_pd.hDevNames and m_pd.hDevMode) to the caller, but will also return a printer
DC in m_pd.hDC. It is the responsibility of the caller to delete the printer DC and call
the Windows GlobalFree function on the handles when you are finished with the
CPrintDialog object.

See Also: CPrintDialog: :m_pd

CPrintDialog: : GetDeviceN arne
CString GetDeviceName() const;

Return Value

Remarks

The name of the currently selected printer.

Call this function after calling DoModal to retrieve the name of the currently selected
printer.

1525

CPrintDialog: :GetDev Mode

See Also: CPrintDialog::GetDriverNarne, CPrintDialog::GetDevMode,
CPrintDialog: : GetPortN arne

CPrintDialog: : GetDev Mode
LPDEVMODE GetDevMode() const;

Return Value

Remarks

The DEVMODE data structure, which contains information about the device
initialization and environment of a print driver. You must free the memory taken by
this structure with the Windows GlobalFree function. See PRINTDLG in the Win32
SDK documentation for more information about using GlobalFree.

Call this function after calling DoModal to retrieve information about the printing
device.

See Also: CDC::GetDeviceCaps

CPrintDialog::GetDriverName
CString GetDriverNarne() const;

Return Value

Remarks

The name of the currently selected printer device driver.

Call this function after calling DoModal to retrieve the name of the currently selected
printer device driver.

See Also: CPrintDialog: : GetDeviceNarne, CPrintDialog: :GetDevMode,
CPrintDialog: : GetPortN arne

CPrintDialog: : GetFromPage
int GetFrornPage() const;

Return Value

Remarks

1526

The starting page number in the range of pages to be printed.

Call this function after calling DoModal to retrieve the starting page number in the
range of pages to be printed.

See Also: CPrintDialog::GetToPage, CPrintDialog::PrintRange

CPrintDialog: :PrintAll

CPrintDialog:: GetPortN arne
CString GetPortName() const;

Return Value

Remarks

The name of the currently selected printer port.

Call this function after calling DoModal to retrieve the name of the currently selected
printer port.

See Also: CPrintDialog: :GetDriverName, CPrintDialog: : GetDeviceName

CPrintDialog::GetPrinterDC
HDC GetPrinterDC() const;

Return Value

Remarks

A handle to the printer device context if successful; otherwise NULL.

If the bPrintSetupOnly parameter of the CPrintDialog constructor was FALSE
(indicating that the Print dialog box is displayed), then GetPrinterDC returns a
handle to the printer device context. You must call the Windows DeleteDC function to
delete the device context when you are done using it.

CPrintDialog: : GetToPage
int GetToPage() const;

Return Value

Remarks

The ending page number in the range of pages to be printed.

Call this function after calling DoModal to retrieve the ending page number in the
range of pages to be printed.

See Also: CPrintDialog:: GetFromPage, CPrintDialog: :PrintRange

CPrintDialog: :PrintAII
BOOL PrintAll() const;

Return Value
Nonzero if all pages in the document are to be printed; otherwise O.

1527

CPrintDialog: :PrintCollate

Remarks
Call this function after calling DoModal to determine whether to print all pages in the
document.

See Also: CPrintDialog: :PrintRange, CPrintDialog: :PrintSelection

CPrintDialog: :PrintCollate
BOOL PrintCollate() const;

Return Value

Remarks

Nonzero if the user selects the collate check box in the dialog box; otherwise O.

Call this function after calling DoModal to determine whether the printer should
collate all printed copies of the document.

See Also: CPrintDialog::GetCopies

CPrintDialog: :PrintRange
BOOL PrintRange() const;

Return Value

Remarks

Nonzero if only a range of pages in the document are to be printed; otherwise O.

Call this function after calling DoModal to determine whether to print only a range of
pages in the document.

See Also: CPrintDialog: : PrintAll , CPrintDialog: :PrintSelection,
CPrintDialog: : GetFromPage, CPrintDialog: : GetToPage

CPrintDialog: : PrintS election
BOOL PrintSelection() const;

Return Value

Remarks

1528

Nonzero if only the selected items are to be printed; otherwise O.

Call this function after calling DoModal to determine whether to print only the
currently selected items.

See Also: CPrintDialog: :PrintRange, CPrintDialog: :PrintAll

Data Members
CPrintDialog: :m_pd

Remarks

PRINTDLG& m_pd;

A structure whose members store the characteristics of the dialog object. After
constructing a CPrintDialog object, you can use m_pd to set various aspects of the
dialog box before calling the DoModal member function. For more information on
the m_pd structure, see PRINTDLG in the Win32 SDK documentation.

If you modify the m_pd data member directly, you will override any default behavior.

CPrintDialog: :m_pd

1529

CPrintlnfo

CPrintInfo
CPrintlnfo does not have a base class.

CPrintlnfo stores information about a print or print-preview job. The framework
creates an object of CPrintlnfo each time the Print or Print Preview command is
chosen and destroys it when the command is completed.

CPrintlnfo contains information about both the print job as a whole, such as the
range of pages to be printed, and the current status of the print job, such as the page
currently being printed. Some information is stored in an associated CPrintDialog
object; this object contains the values entered by the user in the Print dialog box.

A CPrintlnfo object is passed between the framework and your view class during the
printing process and is used to exchange information between the two. For example,
the framework informs the view class which page of the document to print by
assigning a value to the m_nCurPage member of CPrintlnfo; the view class
retrieves the value and performs the actual printing of the specified page.

Another example is the case in which the length of the document is not known until it
is printed. In this situation, the view class tests for the end of the document each time
a page is printed. When the end is reached, the view class sets the
m_bContinuePrinting member of CPrintlnfo to FALSE; this informs the
framework to stop the print loop.

CPrintlnfo is used by the member functions of CView listed under "See Also." For
more information about the printing architecture provided by the Microsoft
Foundation Class Library, see "Frame Window Topics" and "DocumentlView
Architecture Topics" and the articles "Printing" and "Printing: Multipage Documents"
in Visual C++ Programmer's Guide online.

#include <afxext.h>

See Also: CView: :OnBeginPrinting, CView: :OnEndPrinting,
CView: :OnEndPrintPreview, CView: :OnPrepareDC,
CView: :OnPreparePrinting, CView: :OnPrint

CPrintInfo Class Members

1530

Data Members

m_dwFlags

m_nOffsetPage

Contains a flag indicating whether the document being printed
is a DocObject.

Specifies DocObject printing operations.

Specifies offset of a particular DocObject's first page in a
combined DocObject print job.

CPrintInfo:: GetFromPage

Data Members (continued)

m_bContinuePrinting

m_nCurPage

m_nNumPreviewPages

m_lpUserData

m_rectDraw

m_strPageDesc

Attributes

SetMinPage

SetMaxPage

GetMinPage

GetMaxPage

GetOffsetPage

GetFromPage

GetToPage

Contains a pointer to the CPrintDialog object used for the Print
dialog box.

Contains a flag indicating whether the document is being printed
directly (without displaying the Print dialog box).

Contains a flag indicating whether the document is being
previewed.

Contains a flag indicating whether the framework should continue
the print loop.

Identifies the number of the page currently being printed.

Identifies the number of pages displayed in the preview window;
either 1 or 2.

Contains a pointer to a user-created structure.

Specifies a rectangle defining the current usable page area.

Contains a format string for page-number display.

Sets the number of the first page of the document.

Sets the number of the last page of the document.

Returns the number of the first page of the document.

Returns the number of the last page of the document.

Returns the number of the pages preceding the first page of a
DocObject item being printed in a combined DocObject print job.

Returns the number of the first page being printed.

Returns the number of the last page being printed.

Member Functions
CPrintInfo: : GetFromPage

UINT GetFromPage() const;

Return Value

Remarks

The number of the first page to be printed.

Call this function to retrieve the number of the first page to be printed. This is the
value specified by the user in the Print dialog box, and it is stored in the
CPrintDialog object referenced by the m_pPD member. If the user has not specified
a value, the default is the first page of the document.

1531

CPrintlnfo: : GetMaxPage

See Also: CPrintlnfo: :m_nCurPage, CPrintlnfo: :m_pPD,
CPrintlnfo: : GetToPage

CPrintInfo: : GetMaxPage
UINT GetMaxPage() const;

Return Value

Remarks

The number of the last page of the document.

Call this function to retrieve the number of the last page of the document. This value
is stored in the CPrintDialog object referenced by the m_pPD member.

See Also: CPrintlnfo: :m_nCurPage, CPrintlnfo: :m_pPD,
CPrintlnfo::GetMinPage, CPrintlnfo::SetMaxPage, CPrintlnfo::SetMinPage

CPrintInfo: : GetMinPage
UINT GetMinPage() const;

Return Value

Remarks

The number of the first page of the document.

Call this function to retrieve the number of the first page of the document. This value
is stored in the CPrintDialog object referenced by the m_pPD member.

See Also: CPrintlnfo: :m_nCurPage, CPrintlnfo: :m_pPD,
CPrintlnfo: : GetMaxPage, CPrintlnfo: :SetMaxPage, CPrintlnfo: :SetMinPage

CPrintInfo: : GetOffsetPage
UINT GetOffsetPage() const;

Return Value

Remarks

1532

The number of pages preceding the first page of a DocObject item being printed in a
combined DocObject print job.

Call this function to retrieve the offset when printing multiple DocObject items from a
DocObject client. This value is referenced by the m_nOffsetPage member. The first
page of your document will be numbered the m_nOffsetPage value + 1 when printed
as a DocObject with other active documents. The m_nOffsetPage member is valid
only if the m_bDocObject value is TRUE.

See Also: CPrintlnfo: :m_nOffsetPage, CPrintlnfo: :m_bDocObject

CPrintInfo:: SetMinPage

CPrintInfo: : GetToPage
UINT GetToPage() const;

Return Value

Remarks

The number of the last page to be printed.

Call this function to retrieve the number of the last page to be printed. This is the
value specified by the user in the Print dialog box, and it is stored in the
CPrintDialog object referenced by the m_pPD member. If the user has not specified
a value, the default is the last page of the document.

See Also: CPrintInfo::m_nCurPage, CPrintInfo::m_pPD,
CPrintInfo: : GetFromPage

CPrintInfo: :SetMaxPage
void SetMaxPage(UINT nMaxPage);

Parameters

Remarks

nMaxPage Number of the last page of the document.

Call this function to specify the number of the last page of the document. This value is
stored in the CPrintDialog object referenced by the m_pPD member. If the length of
the document is known before it is printed, call this function from your override of
CView: :OnPreparePrinting. If the length of the document depends on a setting
specified by the user in the Print dialog box, call this function from your override of
CView: :OnBeginPrinting. If the length of the document is not known until it is
printed, use the m_bContinuePrinting member to control the print loop.

See Also: CPrintInfo::m_bContinuePrinting, CPrintInfo::m_nCurPage,
CPrintInfo: :m_pPD, CPrintInfo: : GetMinPage, CPrintInfo: : GetToPage,
CPrintInfo: :SetMinPage, CView: :OnBeginPrinting, CView: :OnPreparePrinting

CPrintInfo: :SetMinPage
void SetMinPage(UINT nMinPage);

Parameters
nMinPage Number of the first page of the document.

1533

CPrintlnfo: :m_bContinuePrinting

Remarks
Call this function to specify the number of the first page of the document. Page
numbers normally start at 1. This value is stored in the CPrintDialog object
referenced by the m_pPD member.

See Also: CPrintlnfo::m_nCurPage, CPrintlnfo::m_pPD,
CPrintlnfo: : GetMaxPage, CPrintlnfo: : GetMinPage, CPrintlnfo: :SetMaxPage

Data Members
CPrintInfo: :m_bContinuePrinting
Remarks

Contains a flag indicating whether the framework should continue the print loop. If
you are doing print-time pagination, you can set this member to FALSE in your
override of CView: :OnPrepareDC once the end of the document has been reached.
You do not have to modify this variable if you have specified the length of the
document at the beginning of the print job using the SetMaxPage member function.
The m_bContinuePrinting member is a public variable of type BOOL.

See Also: CPrintlnfo: :SetMaxPage, CView: :OnPrepareDC

CPrintInfo: :m_bDirect
Remarks

The framework sets this member to TRUE if the Print dialog box will be bypassed for
direct printing; FALSE otherwise. The Print dialog is normally bypassed when you
print from the shell or when printing is done using the command ID
ID _FILE_PRINT_DIRECT.

You normally don't change this member, but if you do change it, change it before you
call CView: :DoPreparePrinting in your override of CView: :OnPreparePrinting.

See Also: CView::DoPreparePrinting, CView::OnPreparePrinting

CPrintInfo::m_bDocObject
Remarks

1534

Contains a flag indicating whether the document being printed is a DocObject. Data
members m_dwFlags and m_nOffsetPage are invalid unless this flag is TRUE.

See Also: CPrintlnfo: :m_dwFlags, CPrintlnfo: :m_nOffsetPage

CPrintInfo: :m_nCurPage

CPrintInfo: :m_bPreview
Remarks

Contains a flag indicating whether the document is being previewed. This is set by the
framework depending on which command the user executed. The Print dialog box is
not displayed for a print-preview job. The m_bPreview member is a public variable
of type BOOL.

See Also: CView: :DoPreparePrinting, CView: :OnPreparePrinting

CPrintInfo: :m_dwFlags
Remarks

Contains a combination of flags specifying DocObject printing operations. Valid only
if data member m_bDocObject is TRUE.

The flags can be one or more of the following values:

PRINTFLAG_MAYBOTHERUSER
PRINTFLAG_PROMPTUSER
PRINTFLAG_ USERMAYCHANGEPRINTER
PRINTFLAG_RECOMPOSETODEVICE
PRINTFLAG_DONTACTUALLYPRINT
PRINTFLAG_FORCEPROPERTIES
PRINTFLAG_PRINTTOFILE

See Also: CPrintlnfo: :m_bDocObject, CPrintlnfo: :m_nOffsetPage

CPrintInfo: :m_lp U serData
Remarks

Contains a pointer to a user-created structure. You can use this to store
printing-specific data that you do not want to store in your view class. The
m_lpUserData member is a public variable of type LPVOID.

CPrintInfo: :m_nCurPage
Remarks

Contains the number of the current page. The framework calls
CView::OnPrepareDC and CView::OnPrint once for each page of the document,
specifying a different value for this member each time; its values range from the value
returned by GetFromPage to that returned by GetToPage. Use this member in your
overrides of CView::OnPrepareDC and CView::OnPrint to print the specified page
of the document.

1535

CPrintInfo: :m_nNumPreviewPages

When preview mode is first invoked, the framework reads the value of this member to
determine which page of the document should be previewed initially. You can set the
value of this member in your override of CView::OnPreparePrinting to maintain the
user's current position in the document when entering preview mode. The
m_nCurPage member is a public variable of type UINT.

See Also: CPrintInfo::GetFromPage, CPrintInfo::GetToPage,
CView: :OnPrepareDC, CView: :OnPreparePrinting, CView: :OnPrint

CPrintInfo: :m_nN umPreview Pages
Remarks

Contains the number of pages displayed in preview mode; it can be either 1 or 2.
The m_nNumPreviewPages member is a public variable of type UINT.

See Also: CPrintInfo: :m_strPageDesc

CPrintInfo: :m_nOffsetPage
Remarks

Contains the number of pages preceding the first page of a particular DocObject in a
combined DocObject print job.

See Also: CPrintInfo: :m_bDocObject, CPrintInfo: :m_dwFlags

CPrintInfo: :m_pPD
Remarks

Contains a pointer to the CPrintDialog object used to display the Print dialog box for
the print job. The m_pPD member is a public variable declared as a pointer to
CPrintDialog.

See Also: CPrintDialog

CPrintInfo: :m_rectDraw
Remarks

1536

Specifies the usable drawing area of the page in logical coordinates. You may want to
refer to this in your override of CView::OnPrint. You can use this member to keep
track of what area remains usable after you print headers, footers, and so on. The
m_rectDraw member is a public variable of type CRect.

See Also: CView::OnPrint

CPrintlnfo: :m_strPageDesc

CPrintInfo: :m_strPageDesc
Remarks

Contains a format string used to display the page numbers during print preview; this
string consists of two substrings, one for single-page display and one for double-page
display, each terminated by a '\n' character. The framework uses "Page %u\nPages
%u-%u\n" as the default value. If you want a different format for the page numbers,
specify a format string in your override of CView::OnPreparePrinting. The
m_strPageDesc member is a public variable of type CString.

See Also: CView:: OnPreparePrinting

1537

CProgressCtrl

CProgressCtrl

A "progress bar control" is a window that an application can use to indicate the
progress of a lengthy operation. It consists of a rectangle that is gradually filled, from
left to right, with the system highlight color as an operation progresses.

The CProgressCtri class provides the functionality of the Windows common
progress bar control. This control (and therefore the CProgressCtri class) is available
only to programs running under Windows 95 and Windows NT version 3.51 and later.

A progress bar control has a range and a current position. The range represents the
entire duration of the operation, and the current position represents the progress the
application has made toward completing the operation. The window procedure uses
the range and the current position to determine the percentage of the progress bar to
fill with the highlight color and to determine the text, if any, to display within the
progress bar. Because the range and current position values are expressed as unsigned
integers, the highest possible range or current position value is 65,535.

For more information on using CProgressCtrl, see Technical Note 60 online.

#include <afxcmn.h>

CProgressCtrl Class Members

1538

Construction

CProgressCtrl

Create

Attributes

SetRange

SetPos

OffsetPos

SetStep

Constructs a CProgressCtrl object.

Creates a progress bar control and attaches it to a CProgressCtrl object.

Sets the minimum and maximum ranges for a progress bar control and
redraws the bar to reflect the new ranges.

Sets the current position for a progress bar control and redraws the bar to
reflect the new position.

Advances the current position of a progress bar control by a specified
increment and redraws the bar to reflect the new position.

Specifies the step increment for a progress bar control.

CProgressCtrl::Create

Operations

StepIt Advances the current position for a progress bar control by the step
increment (see SetStep) and redraws the bar to reflect the new position.

Member Functions
CProgressCtrl: :CProgressCtrl

CProgressCtrl();

Remarks
Constructs a CProgressCtrl object.

After constructing the CProgressCtrl object, call CProgressCtrl: : Create to create
the progress bar control.

See Also: CProgressCtrl::Create

CProgressCtrl: : Create
BOOL Create(DWORD dwStyle, const RECT& reet, CWnd* pParentWnd, UINT nID);

Return Value
TRUE if the CProgressCtrl object is successfully created; otherwise FALSE.

Parameters

Remarks

dwStyle Specifies the progress bar control's style. Apply any combination of window
styles to the control.

reet Specifies the progress bar control's size and position. It can be either a CRect
object or a RECT structure

pParentWnd Specifies the progress bar control's parent window, usually a CDialog.
It must not be NULL.

nID Specifies the progress bar control's ID.

You construct a CProgressCtrl object in two steps. First call the constructor, which
creates the CProgressCtrl object; then call Create, which creates the progress bar
control.

See Also: CProgressCtrl::CProgressCtrl

1539

CProgressCtrl: :OffsetPos

CProgressCtrl: : OffsetPos
int OffsetPos(int nPos);

Return Value
The previous position of the progress bar control.

Parameters

Remarks

nPos Amount to advance the position.

Advances the progress bar control's current position by the increment specified by
nPos and redraws the bar to reflect the new position.

See Also: CProgressCtrl: :SetPos, CProgressCtrl: :SetRange,
CProgressCtrl: :Steplt

CProgressCtrl: : SetPos
int SetPos(int nPos);

Return Value
The previous position of the progress bar control.

Parameters

Remarks

nPos New position of the progress bar control.

Sets the progress bar control's current position as specified by nPos and redraws the
bar to reflect the new position.

See Also: CProgressCtrl::OffsetPos, CProgressCtrl::SetRange,
CProgressCtrl: :Steplt

CProgressCtrl: :SetRange
void SetRange(int nLower, int nUpper);

Parameters

Remarks

1540

nLower Specifies the lower limit of the range (default is zero).

n Upper Specifies the upper limit of the range (default is 100).

Sets the upper and lower limits of the progress bar control's range and redraws the bar
to reflect the new ranges.

See Also: CProgressCtrl: :OffsetPos, CProgressCtrl: :SetPos,
CProgressCtrl: :StepIt

CProgressCtrl: :SetStep
int SetStep(int nStep);

Return Value
The previous step increment.

Parameters

Remarks

nStep New step increment.

Specifies the step increment for a progress bar control. The step increment is the
amount by which a call to CProgressCtrl::StepIt increases the progress bar's current
position.

The default step increment is 10.

See Also: CProgressCtrl::OffsetPos, CProgressCtrl::SetPos,
CProgressCtrl: :StepIt

CProgressCtrl:: StepIt
int StepIt();

Return Value

Remarks

The previous position of the progress bar control.

Advances the current position for a progress bar control by the step increment and
redraws the bar to reflect the new position. The step increment is set by the
CProgressCtrl: :SetStep member function.

See Also: CProgressCtrl: :SetPos, CProgressCtrl: :SetRange,
CProgressCtrl: :SetStep

CProgressCtrl:: S teplt

1541

CProperty Page

CProperty Page

Objects of class CPropertyPage represent individual pages of a property sheet,
otherwise known as a tab dialog box. As with standard dialog boxes, you derive a
class from CPropertyPage for each page in your property sheet. To use
CPropertyPage-derived objects, first create a CPropertySheet object, and then
create an object for each page that goes in the property sheet. Call
CPropertySheet: :AddPage for each page in the sheet, and then display the property
sheet by calling CPropertySheet::DoModal for a modal property sheet, or
CPropertySheet::Create for a modeless property sheet.

You can create a type of tab dialog box called a wizard, which consists of a property
sheet with a sequence of property pages that guide the user through the steps of an
operation, such as setting up a device or creating a newsletter. In a wizard-type tab
dialog box, the property pages do not have tabs, and only one property page is visible
at a time. Also, instead of having OK and Apply Now buttons, a wizard-type tab
dialog box has a Back button, a Next or Finish button, and a Cancel button.

For more information on establishing a property sheet as a wizard, see
CPropertySheet::SetWizardMode. For more information on using CPropertyPage
objects, see the article "Property Sheets" in Visual C++ Programmer's Guide online.

#include <afxdlgs.h>

See Also: CPropertySheet, CDialog, CPropertySheet::SetWizardMode

CPropertyPage Class Members
Data Members

1542

The Windows PROPSHEETPAGE structure. Provides access to
basic property page parameters.

CPropertyPage::CancelToClose

Construction

CProperty Page

Construct

Operations

CancelToClose

SetModified

QuerySiblings

Overridables

OnCancel

OnKillActive

OnOK

OnSetActive

OnApply

OnReset

OnQueryCancel

On WizardBack

On WizardNext

On WizardFinish

Constructs a CPropertyPage object.

Constructs a CPropertyPage object. Use Construct if you want to
specify your parameters at run time, or if you are using arrays.

Changes the OK button to read Close, and disables the Cancel button,
after an unrecoverable change in the page of a modal property sheet.

Call to activate or deactivate the Apply Now button.

Forwards the message to each page of the property sheet.

Called by the framework when the Cancel button is clicked.

Called by the framework when the current page is no longer the active
page. Perform data validation here.

Called by the framework when the OK, Apply Now, or Close button
is clicked.

Called by the framework when the page is made the active page.

Called by the framework when the Apply Now button is clicked.

Called by the framework when the Cancel button is clicked.

Called by the framework when the Cancel button is clicked, and
before the cancel has taken place.

Called by the framework when the Back button is clicked while using
a wizard-type property sheet.

Called by the framework when the Next button is clicked while using
a wizard-type property sheet.

Called by the framework when the Finish button is clicked while
using a wizard-type property sheet.

Member Functions
CProperty Page: : Cancel ToClose

Remarks

void CanceIToClose();

Call this function after an unrecoverable change has been made to the data in a page
of a modal property sheet. This function will change the OK button to Close and
disable the Cancel button. This change alerts the user that a change is permanent and
the modifications cannot be cancelled.

1543

CPropertyPage: :Construct

The CancelToClose member function does nothing in a modeless property sheet,
because a modeless property sheet does not have a Cancel button by default.

See Also: CPropertyPage::OnKillActive, CPropertyPage::SetModified

CProperty Page: : Construct
void Construct(UINT nIDTemplate, UINT nIDCaption = 0);
void Construct(LPCTSTR lpszTemplateName, UINT nIDCaption = 0);

Parameters

Remarks

nIDTemplate ID of the template used for this page.

nIDCaption ID of the name to be placed in the tab for this page. If 0, the name will be
taken from the dialog template for this page.

lpszTemplateName Contains a null-terminated string that is the name of a template
resource.

Call this member function to construct a CPropertyPage object. The object is
displayed after all of the following conditions are met:

• The page has been added to a property sheet using CPropertySheet: :AddPage.

• The property sheet's DoModal or Create function has been called.

• The user has selected (tabbed to) this page.

Call Construct if one of the other class constructors has not been called. The
Construct member function is flexible because you can leave the parameter statement
blank and then specify multiple parameters and construction at any point in your code.

You must use Construct when you work with arrays, and you must call Construct for
each member of the array so that the data members are assigned proper values.

See Also: CPropertyPage::CPropertyPage, CPropertySheet::DoModal,
CPropertySheet: :AddPage

CProperty Page: : CProperty Page
CPropertyPage();
CPropertyPage(UINT nIDTemplate, UINT nIDCaption = 0);
CPropertyPage(LPCTSTR lpszTemplateName, UINT nIDCaption = 0);

Parameters

1544

nIDTemplate ID of the template used for this page.

nIDCaption ID of the name to be placed in the tab for this page. If 0, the name will
be taken from the dialog template for this page.

CPropertyPage::OnApply

Remarks

lpszTemplateName Points to a string containing the name of the template for this
page. Cannot be NULL.

Constructs a CPropertyPage object. The object is displayed after all of the following
conditions are met:

• The page has been added to a property sheet using CPropertySheet: :AddPage.

• The property sheet's DoModal or Create function has been called.

• The user has selected (tabbed to) this page.

If you have multiple parameters (for example, if you are using an array), use
CPropertySheet::Construct instead of CPropertyPage.

See Also: CPropertySheet:: Create, CPropertySheet: :DoModal,
CPropertySheet: :AddPage, CProperty Page:: Construct

CPropertyPage: :OnApply
virtual BOOL OnApply();

Return Value

Remarks

Nonzero if the changes are accepted; otherwise O.

This member function is called by the framework when the user chooses the OK or
the Apply Now button. When the framework calls this function, changes made on
all property pages in the property sheet are accepted, the property sheet retains focus,
and OnApply returns TRUE (the value 1). Before OnApply can be called by the
framework, you must have called SetModified and set its parameter to TRUE. This
will activate the Apply Now button as soon as the user makes a change on the
property page.

Override this member function to specify what action your program takes when the
user clicks the Apply Now button. When overriding, the function should return
TRUE to accept changes and FALSE to prevent changes from taking effect.

The default implementation of OnApply calls OnOK.

For more information about notification messages sent when the user presses the
Apply Now or OK button in a property sheet, see "PSN_APPLY" in the Win32
documentation.

See Also: CPropertyPage::SetModified, CPropertyPage::OnOK

1545

CProperty Page: :OnCancel

CProperty Page: : OnCancel

Remarks

virtual void OnCancel();

This member function is called by the framework when the Cancel button is selected.
Override this member function to perform Cancel button actions. The default negates
any changes that have been made.

See Also: CPropertyPage::OnApply, CDialog::OnCancel,
CPropertyPage: :OnOK

CProperty Page: : OnKillActi ve
virtual BOOL OnKillActive();

Return Value

Remarks

Nonzero if data was updated successfully, otherwise O.

This member function is called by the framework when the page is no longer the
active page. Override this member function to perform special data validation tasks.

The default implementation of this member function copies settings from the controls
in the property page to the member variables of the property page. If the data was not
updated successfully due to a dialog data validation (DDV) error, the page retains
focus.

After this member function returns successfully, the framework will call the page's
On OK function.

See Also: CWnd::UpdateData, CPropertyPage::OnOK,
CProperty Page: :OnSetActive

CProperty Page: : On 0 K

Remarks

1546

virtual void OnOK();

This member function is called by the framework when the user chooses either the
OK or Apply Now button, immediately after the framework calls OnKillActive.
Override this member function to implement additional behavior specific to the
currently active page when user dismisses the entire property sheet.

The default implementation of this member function marks the page as "clean" to
reflect that the data was updated in the OnKillActive function.

See Also: CDialog::OnOK, CPropertyPage::OnKillActive

CPropertyPage::OnSetActive

CProperty Page: : On QueryCancel
virtual BOOL OnQueryCancel();

Return Value

Remarks

Returns FALSE to prevent the cancel operation or TRUE to allow it.

This member function is called by the framework when the user clicks the Cancel
button and before the cancel action has taken place.

Override this member function to specify an action the program takes when the user
clicks the Cancel button.

The default implementation of OnQueryCancel returns TRUE.

CProperty Page:: OnReset

Remarks

virtual void OnReset();

This member function is called by the framework when the user chooses the Cancel
button. When the framework calls this function, changes to all property pages that
were made by the user previously choosing the Apply Now button are discarded, and
the property sheet retains focus.

Override this member function to specify what action the program takes when the user
clicks the Cancel button.

The default implementation of OnReset does nothing.

See Also: CPropertyPage: :OnCancel, CPropertyPage: :OnApply

CProperty Page: : OnSetActi ve
virtual BOOL OnSetActive();

Return Value

Remarks

Nonzero if the page was successfully set active; otherwise O.

This member function is called by the framework when the page is chosen by the user
and becomes the active page. Override this member function to perform tasks when a
page is activated. Your override of this member function should call the default
version before any other processing is done.

The default implementation creates the window for the page, if not previously created,
and makes it the active page.

1547

CProperty Page: :On WizardBack

See Also: CPropertyPage::OnKillActive

CProperty Page: : On WizardBack
virtual LRESULT On WizardBackO;

Return Value

Remarks

o to automatically advance to the next page; -1 to prevent the page from changing.
To jump to a page other than the next one, return the identifier of the dialog to be
displayed.

This member function is called by the framework when the user clicks on the Back
button in a wizard.

Override this member function to specify some action the user must take when the
Back button is pressed.

For more information on how to make a wizard-type property sheet, see
CPropertySheet: :Set WizardMode.

See Also: CPropertySheet::SetWizardMode

CProperty Page: : On WizardFinish
virtual BOOL OnWizardFinish();

Return Value

Remarks

1548

Zero if the property sheet is not destroyed when the wizard finishes; otherwise
nonzero.

This member function is called by the framework when the user clicks on the Finish
button in a wizard. When the framework calls this function, the property sheet is
not destroyed when the wizard finishes and OnWizardFinish returns FALSE (the
value 0).

Override this member function to specify some action the user must take when the
Finish button is pressed. When overriding this function, return FALSE to prevent the
property sheet from being destroyed.

For more information about notification messages sent when the user presses the
Finish button in a wizard property sheet, see "PSN_ WIZFINISH" in the Win32
documentation.

For more information on how to make a wizard-type property sheet, see
CPropertySheet: :SetWizardMode.

See Also: CPropertySheet::SetWizardMode

CProperty Page: :SetModified

CPropertyPage: :On WizardNext
virtual LRESULT OnWizardNextO;

Return Value

Remarks

o to automatically advance to the next page; -1 to prevent the page from changing.
To jump to a page other than the next one, return the identifier of the dialog to be
displayed.

This member function is called by the framework when the user clicks on the Next
button in a wizard.

Override this member function to specify some action the user must take when the
Next button is pressed.

For more information on how to make a wizard-type property sheet, see
CPropertySheet: :SetWizardMode.

See Also: CPropertySheet::SetWizardMode

CPropertyPage::QuerySiblings
LRESULT QuerySiblings(WPARAM wParam, LPARAM lParam);

Return Value
The nonzero value from a page in the property sheet, or 0 if all pages return a
value of O.

Parameters

Remarks

wParam Specifies additional message-dependent information.

lParam Specifies additional message-dependent information

Call this member function to forward a message to each page in the property sheet.
If a page returns a nonzero value, the property sheet does not send the message to
subsequent pages.

CProperty Page: : SetModified
void SetModified(BOOL bChanged = TRUE);

Parameters
bChanged TRUE to indicate that the property page settings have been modified

since the last time they were applied; FALSE to indicate that the property page
settings have been applied, or should be ignored.

1549

CPropertyPage::m_psp

Remarks
Call this member function to enable or disable the Apply Now button, based on
whether the settings in the property page should be applied to the appropriate external
object.

The framework keeps track of which pages are "dirty," that is, property pages for
which you have called SetModified(TRUE). The Apply Now button will always
be enabled if you call SetModified(TRUE) for one of the pages. The Apply Now
button will be disabled when you call SetModified(FALSE) for one of the pages,
but only if none of the other pages is "dirty."

See Also: CPropertyPage::CanceIToClose

Data Members
CPropertyPage: :m_psp
Remarks

1550

m_psp is a structure whose members store the characteristics of
PROPSHEETPAGE. Use this structure to initialize the appearance of a property
page after it is constructed.

For more information on this structure, including a listing of its members, see
PROPSHEETPAGE in the Windows SDK Programmer's Reference.

See Also: CPropertySheet, PROPSHEETPAGE

CPropertySheet

Objects of class CPropertySheet represent property sheets, otherwise known as tab
dialog boxes. A property sheet consists of a CPropertySheet object and one or more
CPropertyPage objects. A property sheet is displayed by the framework as a window
with a set of tab indices, with which the user selects the current page, and an area for
the currently selected page.

Even though CPropertySheet is not derived from CDialog, managing a
CPropertySheet object is similar to managing a CDialog object. For example,
creation of a property sheet requires two-part construction: call the constructor, and
then call DoModal for a modal property sheet or Create for a modeless property
sheet. CPropertySheet has two types of constructors: CPropertySheet::Construct
and CPropertySheet: :CPropertySheet.

Exchanging data between a CPropertySheet object and some external object is
similar to exchanging data with a CDialog object. The important difference is that the
settings of a property sheet are normally member variables of the CPropertyPage
objects rather than of the CPropertySheet object itself.

You can create a type of tab dialog box called a wizard, which consists of a property
sheet with a sequence of property pages that guide the user through the steps of an
operation, such as setting up a device or creating a newsletter. In a wizard-type tab
dialog box, the property pages do not have tabs, and only one property page is visible
at a time. Also, instead of having OK and Apply Now buttons, a wizard-type tab
dialog box has a Back button, a Next or Finish button, a Cancel button, and a Help
button.

To create a wizard-type dialog box, follow the same steps you would follow to create
a standard property sheet, but call SetWizardMode before you call DoModal. To
enable the wizard buttons, call SetWizardButtons, using flags to customize their
function and appearance. To enable the Finish button, call SetFinishText after the
user has taken action on the last page of the wizard.

For more information on how to use CPropertySheet objects, see the article
"Property Sheets" in Visual C++ Programmer's Guide online.

#include <afxdlgs.h>

CPropertySheet

1551

CPropertySheet: : AddPage

CPropertySheet Class Members
Data Members

Construction

CPropertySheet

Construct

Attributes

GetActivelndex

GetPagelndex

GetPageCount

GetPage

GetActivePage

SetActivePage

SetTitle

GetTabControl

SetFinishText

SetWizardButtons

SetWizardMode

Operations

DoModal

Create

AddPage

RemovePage

PressButton

EndDialog

The Windows PROPSHEETHEADER structure.
Provides access to basic property sheet parameters.

Constructs a CPropertySheet object.

Constructs a CPropertySheet object.

Retrieves the index of the active page of the property sheet.

Retrieves the index of the specified page of the property sheet.

Retrieves the number of pages in the property sheet.

Retrieves a pointer to the specified page.

Returns the active page object.

Programmatically sets the active page object.

Sets the caption of the property sheet.

Retrieves a pointer to a tab control.

Sets the text for the Finish button.

Enables the wizard buttons.

Enables the wizard mode.

Displays a modal property sheet.

Displays a modeless property sheet.

Adds a page to the property sheet.

Removes a page from the property sheet.

Simulates the choice of the specified button in a property sheet.

Terminates the property sheet.

Member Functions
CPropertySheet: : AddPage

void AddPage(CPropertyPage *pPage);

Parameters
pPage Points to the page to be added to the property sheet. Cannot be NULL.

1552

CPropertySheet: :Construct

Remarks
This member function adds the supplied page with the rightmost tab in the property
sheet. Add pages to the property sheet in the left-to-right order you want them to
appear.

AddPage adds the CPropertyPage object to the CPropertySheet object's list of
pages but does not actually create the window for the page. The framework postpones
creation of the window for the page until the user selects that page.

It is not necessary to wait until creation of the property sheet window to call
AddPage. Typically, you will call AddPage before calling DoModal or Create.

If you call AddPage after displaying the property page, the tab row will reflect the
newly added page.

See Also: CPropertySheet: : RemovePage

CPropertySheet: : Construct
void Construct(UINT nIDCaption, CWnd* pParentWnd = NULL,

.. UINT iSelectPage = 0);
void Construct(LPCTSTR pszCaption, CWnd* pParentWnd = NULL,

.. UINT iSelectPage = 0);

Parameters

Remarks

Example

nIDCaption ID of the caption to be used for the property sheet.

pParentWnd Pointer to the parent window of the property sheet. If NULL, the parent
window will be the main window of the application.

iSelectPage The index of the page that will initially be on top. Default is the first
page added to the sheet.

pszCaption Pointer to a string containing the caption to be used for the property
sheet. Cannot be NULL.

Call this member function to construct a CPropertySheet object. Call this member
function if one of the class constructors has not already been called. For example, call
Construct when you declare or allocate arrays of CPropertySheet objects. In the
case of arrays, you must call Construct for each member in the array.

To display the property sheet, call DoModal or Create. The string contained in the
first parameter will be placed in the caption bar for the property sheet.

The following example demonstrates under what circumstances you would call
Construct.

i nt i;
CPropertySheet grpropsheet[4];

1553

CPropertySheet: :CPropertySheet

CPropertySheet someSheet; II no need to call Construct for this one

UINT rgID[4] = {IDD_SHEETI. IDD_SHEET2. IDD_SHEET3. IDD_SHEET4};

for (i = 0; i < 4; i++)
grpropsheet[i].Construct(rgID[i]);

See Also: CPropertySheet::CPropertySheet, CPropertySheet::DoModal,
CPropertySheet:: Create

CPropertySheet: : CPropertySheet
CPropertySheet();
CPropertySheet(UINT nIDCaption, CWnd *pParentWnd = NULL,

... UINT iSelectPage = 0);
CPropertySheet(LPCTSTR pszCaption, CWnd *pParentWnd = NULL,

... UINT iSelectPage = 0);

Parameters

Remarks

nIDCaption ID of the caption to be used for the property sheet.

pParentWnd Points to the parent window of the property sheet. If NULL, the parent
window will be the main window of the application.

iSelectPage The index of the page that will initially be on top. Default is the first
page added to the sheet.

pszCaption Points to a string containing the caption to be used for the property sheet.
Cannot be NULL.

Use this member function to construct a CPropertySheet object. To display the
property sheet, call DoModal or Create. The string contained in the first parameter
will be placed in the caption bar for the property sheet.

If you have multiple parameters (for example, if you are using an array), use
Construct instead of CPropertySheet.

See Also: CPropertySheet:: Construct, CPropertySheet: :DoModal,
CPropertySheet:: Create, CProperty Page

CPropertySheet: : Create
BOOL Create(CWnd* pParentWnd = NULL, DWORD dwStyle = (DWORD)-l,

... DWORD dwExStyle = 0);

Return Value
Nonzero if the property sheet is created successfully; otherwise O.

1554

CProperty Sheet:: DoModal

Parameters

Remarks

pParentWnd Points to parent window. If NULL, parent is the desktop.

dwStyie Window styles for property sheet. For a complete list of available styles, see
"Window Styles" in the "Styles Used By MFC" section of this manual.

dwExStyie Extended window styles for property sheet. For a complete list of
available styles, see "Extended Window Styles" in the "Styles Used By MFC"
section of this manual.

Call this member function to display a modeless property sheet. The call to Create
can be inside the constructor, or you can call it after the constructor is invoked.

The default style, expressed by passing -1 as dwStyie, is actually WS_SYSMENU I
WS_POPUP I WS_CAPTION I DS_MODALFRAME I DS_CONTEXT_HELP I
WS_ VISIBLE. The default extended window style, expressed by passing 0 as
dwExStyie, is actually WS_EX_DLGMODALFRAME.

The Create member function returns immediately after creating the property sheet.
To destroy the property sheet, call CWnd::DestroyWindow.

Modeless property sheets displayed with a call to Create do not have OK, Cancel,
Apply Now, and Help buttons as modal property sheets do. Desired buttons must be
created by the user.

To display a modal property sheet, call DoModal instead.

See Also: CDialog:: Create, CPropertySheet: :DoModal

CPropertySheet: :DoModal
virtual int DoModal();

Return Value

Remarks

IDOK or IDCANCEL if the function was successful; otherwise O. If the property
sheet has been established as a wizard (see SetWizardMode), DoModal returns
either ID_ WIZFINISH or IDCANCEL.

Call this member function to display a modal property sheet. The return value
corresponds to the ID of the control that closed the property sheet. After this function
returns, the windows corresponding to the property sheet and all the pages will have
been destroyed. The objects themselves will still exist. Typically, you will retrieve
data from the CPropertyPage objects after DoModal returns IDOK.

To display a modeless property sheet, call Create instead.

1555

CPropertySheet: :EndDialog

Note The first time a property page is created from its corresponding dialog resource, it may
cause a first-chance exception. This is a result of the property page changing the style of the
dialog resource to the required style prior to creating the page. Because resources are
generally read-only, this causes an exception. The exception is handled by the system, and a
copy of the modified resource is made automatically by the system. The first-chance exception
can thus be ignored.

Since this exception must be handled by the operating system, do not wrap calls to
CPropertySheet::DoModal with a C++ try/catch block in which the catch handles all
exceptions, for example, cat c h (...). This will handle the exception intended for the
operating system, causing unpredictable behavior. Using C++ exception handling with specific
exception types or using structured exception handling where the Access Violation exception is
passed through to the operating system is safe, however.

See Also: CDialog::DoModal, CPropertySheet::Create

CPropertySheet: : EndDialog
void EndDialog(int nEndID);

Parameters

Remarks

nEndID Identifier to be used as return value of the property sheet.

Use this member function to terminate the property sheet. This member function is
called by the framework when the OK, Cancel, or Close button is pressed. Call this
member function if an event occurs that should close the property sheet.

This member function is only used with a modal dialog box.

See Also: CPropertyPage::OnOK, CPropertyPage::OnCancel,
CWnd: :DestroyWindow

CPropertySheet: : GetActiveIndex
int GetActiveIndex() const;

Return Value

Remarks

1556

The index number of the active page.

Call this member function to get the index number of the property sheet window's
active page, then use the returned index number as the parameter for GetPage.

See Also: CPropertySheet::GetPage, CPropertySheet::GetActivePage

CPropertySheet: :GetPageIndex

CPropertySheet: : GetActivePage
CPropertyPage* GetActivePage() const;

Return Value

Remarks

The pointer to the active page.

Call this member function to retrieve the property sheet window's active page.
Use this member function to perform some action on the active page.

See Also: CPropertySheet:: GetPage

CPropertySheet: : GetPage
CPropertyPage* GetPage(int nPage) const;

Return Value
The pointer to the page corresponding to the nPage parameter.

Parameters

Remarks

nPage Index of the desired page, starting at O. Must be between 0 and one less than
the number of pages in the property sheet, inclusive.

This member function returns a pointer to the specified page in this property sheet.

See Also: CPropertySheet::AddPage, CPropertySheet::GetActivePage,
CPropertySheet:: GetPageCount, CPropertySheet: :RemovePage,
CPropertySheet: :SetTitle

CPropertySheet: : GetPageIndex
int GetPagelndex(CPropertyPage* pPage) const;

Return Value
The index number of a page.

Parameters

Remarks

pPage Points to the page with the index to be found. Cannot be NULL.

Use this member function to retreive the index number of the specified page in the
property sheet. For example, you would use GetPagelndex to get the page index in
order to use SetActivePage or GetPage.

See Also: CPropertySheet::SetActivePage, CPropertySheet::GetPage

1557

CPropertySheet: :GetPageCount

CPropertySheet: : GetPageCount
int GetPageCount();

Return Value

Remarks

The number of pages in the property sheet.

Call this member function to determine the number of pages currently in the
property sheet.

See Also: CPropertySheet:: GetPage, CPropertySheet: :AddPage,
CPropertySheet: : RemovePage

CPropertySheet: : GetTabControl
CTabCtrl* GetTabControl();

Return Value

Remarks

A pointer to a tab control.

Use this member function to retrieve a pointer to a tab control to do something
specific to the tab control (that is, to use any of the APIs in CTabCtrl). For example,
call this member function if you want to add bitmaps to each of the tabs during
initialization.

See Also: CTabCtrl::CTabCtrl

CPropertySheet: :PressButton
BOOL PressButton(int nButton);

Return Value
Nonzero if successful; otherwise zero.

Parameters

1558

nButton nButton: Identifies the button to be pressed. This parameter can be one
of the following values:

• PSBTN_BACK Chooses the Back button.

• PSBTN_NEXT Chooses the Next button.

• PSBTN_FINISH Chooses the Finish button.

• PSBTN_OK Chooses the OK button.

CPropertySheet: :SetActi vePage

Remarks

• PSBTN_APPLYNOW Chooses the Apply Now button .

• PSBTN_CANCEL Chooses the Cancel button.

• PSBTN_HELP Chooses the Help button.

Call this member function to simulate the choice of the specified button in a property
sheet. See PSM_PRESSBUTTON for more information about the Windows SDK
Pressbutton message.

CPropertySheet: : RemovePage
void RemovePage(CPropertyPage *pPage);
void RemovePage(int nPage);

Parameters

Remarks

pPage Points to the page to be removed from the property sheet. Cannot be NULL.

nPage Index of the page to be removed. Must be between 0 and one less than the
number of pages in the property sheet, inclusive.

This member function removes a page from the property sheet and destroys the
associated window. The CPropertyPage object itself is not destroyed until the owner
of the CPropertySheet window is closed.

See Also: CPropertySheet: :AddPage

CPropertySheet: :SetActivePage
BOOL SetActivePage(int nPage);
BOOL SetActivePage(CPropertyPage* pPage);

Return Value
Nonzero if the property sheet is activated successfully; otherwise O.

Parameters

Remarks

nPage Index of the page to set. It must be between 0 and one less than the number of
pages in the property sheet, inclusive.

pPage Points to the page to set in the property sheet. It cannot be NULL.

Use this member function to change the active page. For example, use SetActivePage
if a user's action on one page should cause another page to become the active page.

1559

CPropertySheet: :SetFinishText

CPropertySheet:: SetFinishText
void SetFinishText(LPCTSTR lpszText);

Parameters

Remarks

lpszText Points to the text to be displayed on the Finish command button.

Call this member function to set the text in the Finish command button. Call
SetFinishText to display the text on the Finish command button and hide the Next
and Back buttons after the user completes action on the last page of the wizard.

CPropertySheet: : SetTitle
void SetTitle(LPCTSTR lpszText, UINT nStyle = 0);

Parameters

Remarks

nStyle Specifies the style of the property sheet title. The style must be specified at 0
or as PSH_PROPTITLE. If the style is set as PSH_PROPTITLE, the words
"Properties for" appear before the text specified as the caption.

lpszText Points to the text to be used as the caption in the title bar of the property
sheet.

Call this member function to specify the property sheet's caption (the text displayed in
the title bar of a frame window).

By default, a property sheet uses the caption parameter in the property sheet
constructor.

See Also: CPropertySheet: : GetPage, CPropertySheet: : GetActivePage

CPropertySheet::SetWizardButtons
void SetWizardButtons(DWORD dwFlags);

Parameters

1560

dwFlags A set of flags that customize the function and appearance of the wizard
buttons. This parameter can be a combination of the following values:

• PSWIZB_BACK Back button

• PSWIZB_NEXT Next button

• PSWIZB_FINISH Finish button

• PSWIZB_DISABLEDFINISH Disabled Finish button

CPropertySheet: :m_psh

Remarks
Call this member function to enable or disable the Back, Next, or Finish button in a
wizard property sheet. Call SetWizardButtons only after the dialog is open; you can't
call SetWizardButtons before you call DoModal. Typically, you should call
SetWizardButtons from CPropertyPage::OnSetActive.

If you want to change the text on the Finish button or hide the Next and Back buttons
once the user has completed the wizard, call SetFinishText. Note that the same button
is shared for Finish and Next. You can display a Finish or a Next button at one time,
but not both.

CPropertySheet::SetWizardMode

Remarks

Example

void SetWizardMode();

Call this member function to establish a property page as a wizard. A key
characteristic of a wizard property page is that the user navigates using Next or Finish,
Back, and Cancel buttons instead of tabs.

Call SetWizardMode before calling DoModal. After you call SetWizardMode,
DoModal will return either ID_ WIZFINISH (if the user closes with the Finish
button) or IDCANCEL.

SetWizardMode sets the PSF _WIZARD flag.

CPropertySheet dlg;
CPropertyPage pagel. page2;

dlg.AddPage(&pagel);
dlg.AddPage(&page2);
dlg.SetWizardMode();
dlg.DoModal();

See Also: CPropertySheet: :DoModal

Data Members
CPropertySheet: :m_psh
Remarks

m_psh is a structure whose members store the characteristics of
PROPSHEETHEADER. Use this structure to initialize the appearance

1561

CPropertySheet: :m_psh

1562

of the property sheet after it is constructed but before it is displayed with the
DoModal member function. For example, set the dwSize member of m_psh
to the size you want the property sheet to have.

For more information on this structure, including a listing of its members, see
PROPSHEETHEADER in the Windows SDK Programmer's Reference.

See Also: CPropertySheet: :DoModal

CPropExchange
CPropExchange does not have a base class.

Establishes the context and direction of a property exchange.

The CPropExchange class supports the implementation of persistence for your
OLE controls. Persistence is the exchange of the control's state information, usually
represented by its properties, between the control itself and a medium.

The framework constructs an object derived from CPropExchange when it is notified
that an OLE control's properties are to be loaded from or stored to persistent storage.

The framework passes a pointer to this CPropExchange object to your control's
DoPropExchange function. If you used ClassWizard to create the starter files for your
control, your control's DoPropExchange function calls COleControl::DoPropExchange.
The base-class version exchanges the control's stock properties; you modify your derived
class's version to exchange properties you have added to your control.

CPropExchange can be used to serialize a control's properties or initialize a
control's properties upon the load or creation of a control. The ExchangeProp and
ExchangeFontProp member functions of CPropExchange are able to store
properties to and load them from different media.

For more information on using CPropExchange, see the article "ActiveX Controls:
Property Pages" in Visual C++ Programmer's Guide online.

#include <afxctl.h>

See Also: COleControl: : DoPropExchange

CPropExchange Class Members
Operations

ExchangeFontProp

ExchangeProp

ExchangeBlobProp

ExchangePersistentProp

Exchange Version

IsLoading

GetVersion

Exchanges a font property.

Exchanges properties of any built-in type.

Exchanges a binary large object (BLOB) property.

Exchanges a property between a control and a file.

Exchanges the version number of an OLE control.

Indicates whether properties are being loaded into the
control or saved from it.

Retrieves the version number of an OLE control.

CPropExchange

1563

CPropExchange: :ExchangeBlobProp

Member Functions
CPropExchange: : ExchangeBlobProp

virtual BOOL ExchangeBlobProp(LPCTSTR pszPropName, void** ppvBlob,
.. const void* pvBlobDefault = NULL) = 0;

Return Value
Nonzero if the exchange was successful; 0 if unsuccessful.

Parameters

Remarks

pszPropName The name of the property being exchanged.

ppvBlob Pointer to a variable pointing to where the property is stored
(variable is typically a member of your class).

pvBlobDefault Default value for the property.

Serializes a property that stores binary large object (BLOB) data.

The property's value is read from or written to, as appropriate, the variable referenced
by ppvBlob. If pvBlobDefault is specified, it will be used as the property's default
value. This value is used if, for any reason, the control's serialization fails.

The functions CArchivePropExchange: :ExchangeBlobProp,
CResetPropExchange: :ExchangeBlobProp, and
CPropsetPropExchange: :ExchangeBlobProp override this pure virtual function.

See Also: COleControl: :DoPropExchange,
CPropExchange: :ExchangeFontProp,
CPropExchange: :ExchangePersistentProp, CPropExchange: :ExchangeProp

CPropExchange: : ExchangeFontProp
virtual BOOL ExchangeFontProp(LPCTSTR pszPropName, CFontHolder& font,

.. const FONTDESC FAR* pFontDesc, LPFONTDISP pFontDispAmbient) = 0;

Return Value
Nonzero if the exchange was successful; 0 if unsuccessful.

Parameters

1564

pszPropName The name of the property being exchanged.

font A reference to a CFontHolder object that contains the font property.

pFontDesc A pointer to a FONTDESC structure containing values for initializing
the default state of the font property when pFontDispAmbient is NULL.

CPropExchange: :ExchangePersistentProp

Remarks

pFontDispAmbient A pointer to the IFontDisp interface of a font to be used for
initializing the default state of the font property.

Exchanges a font property between a storage medium and the control.

If the font property is being loaded from the medium to the control, the font's
characteristics are retrieved from the medium and the CFontHolder object referenced
by font is initialized with them. If the font property is being stored, the characteristics
in the font object are written to the medium.

The functions CArchivePropExchange: :ExchangeFontProp,
CResetPropExchange: :ExchangeFontProp, and
CPropsetPropExchange: : ExchangeFontProp override this pure virtual function.

See Also: COleControl::DoPropExchange,
CPropExchange: :ExchangeBlobProp,
CPropExchange: : ExchangePersistentProp , CPropExchange: : ExchangeProp

CPropExchange: : ExchangePersistentProp
virtual BOOL ExchangePersistentProp(LPCTSTR pszPropName,

... LPUNKNOWN FAR* ppUnk, REFIID iid, LPUNKNOWN pUnkDefault) = 0;

Return Value
Nonzero if the exchange was successful; 0 if unsuccessful.

Parameters

Remarks

pszPropName The name of the property being exchanged.

ppUnk A pointer to a variable containing a pointer to the property's IUnknown
interface (this variable is typically a member of your class).

iid Interface ID of the interface on the property that the control will use.

pUnkDefault Default value for the property.

Exchanges a property between the control and a file.

If the property is being loaded from the file to the control, the property is created and
initialized from the file. If the property is being stored, its value is written to the file.

The functions CArchivePropExchange: :ExchangePersistentProp,
CResetPropExchange: : ExchangePersistentProp , and
CPropsetPropExchange: : ExchangePersistentProp override this pure virtual
function.

See Also: COleControl: :DoPropExchange,
CPropExchange: :ExchangeBlobProp, CPropExchange: : ExchangeFontProp,
CPropExchange: :ExchangeProp

1565

CPropExchange: : ExchangeProp

CPropExchange: : ExchangeProp
virtual BOOL ExchangeProp(LPCTSTR pszPropName, VARTYPE vtProp,

... void* pvProp, const void* pvDefault = NULL) = 0;

Return Value
Nonzero if the exchange was successful; 0 if unsuccessful.

Parameters

Remarks

1566

pszPropName The name of the property being exchanged.

vtProp A symbol specifying the type of the property being exchanged.
Possible values are:

Symbol Property Type

VT_I2 short

VT_I4 long

VT_BOOL BOOL

VT_BSTR CString

VT_CY CY

VT_R4 float

VT_RS double

pvProp A pointer to the property's value.

pvDefault Pointer to a default value for the property.

Exchanges a property between a storage medium and the control.

If the property is being loaded from the medium to the control, the property's value
is retrieved from the medium and stored in the object pointed to by pvProp. If the
property is being stored to the medium, the value of the object pointed to by pvProp
is written to the medium.

The functions CArchivePropExchange: :ExchangeProp,
CResetPropExchange: :ExchangeProp, and
CPropsetPropExchange::ExchangeProp override this pure virtual function.

See Also: COleControl: :DoPropExchange,
CPropExchange: :ExchangeBlobProp, CPropExchange: : ExchangeFontProp ,
CPropExchange: :ExchangePersistentProp

CPropExchange:: IsLoading

CPropExchange: :Exchange Version
BOOL ExchangeVersion(DWORD& dwVersionLoaded,

... DWORD dwVersionDefault, BOOL bCollvert);

Return Value
Nonzero if the function succeeded; 0 otherwise.

Parameters

Remarks

dwVersionLoaded Reference to a variable where the version number of the persistent
data being loaded will be stored.

dwVersionDefault The current version number of the control.

bConvert Indicates whether to convert persistent data to the current version or keep it
at the same version that was loaded.

Called by the framework to handle persistence of a version number.

See Also: COleControl: :Exchange Version

CPropExchange: : Get Version
DWORD GetVersion();

Return Value
The version number of the control.

Remarks
Call this function to retrieve the version number of the control.

CPropExchange: :IsLoading
BOOL IsLoading();

Return Value

Remarks

Nonzero if properties are being loaded; otherwise O.

Call this function to determine whether properties are being loaded to the control or
saved from it.

See Also: COleControl: : DoPropExchange

1567

CPtrArray

CPtrArray

1568

The CPtrArray class supports arrays of void pointers.

The member functions of CPtr Array are similar to the member functions of class
CObArray. Because of this similarity, you can use the CObArray reference
documentation for member function specifics. Wherever you see a CObject pointer
as a function parameter or return value, substitute a pointer to void.

CObject* CObArray::GetAt(int <nlndex>) canst:

for example, translates to

vaid* CPtrArray::GetAt(int <nlndex>) canst:

CPtrArray incorporates the IMPLEMENT_DYNAMIC macro to support run-time
type access and dumping to a CDumpContext object. If you need a dump of
individual pointer array elements, you must set the depth of the dump context to 1
or greater.

Note Before using an array, use SetSize to establish its size and allocate memory for it. If you
do not use SetSize, adding elements to your array causes it to be frequently reallocated and
copied. Frequent reallocation and copying are inefficient and can fragment memory.

Pointer arrays cannot be serialized.

When a pointer array is deleted, or when its elements are removed, only the pointers
are removed, not the entities they reference.

For more information on using CPtrArray, see the article "Collections" in
Visual C++ Programmer's Guide online.

#include <afxcoll.h>

See Also: CObArray

CPtrArray Class Members
Construction

CPtrArray

Bounds

GetSize

GetUpperBound

SetSize

Operations

FreeExtra

RemoveAll

Element Access

GetAt

SetAt

ElementAt

GetData

Growing the Array

SetAtGrow

Add

Append

Copy

Insertion/Removal

InsertAt

RemoveAt

Operators

operator []

Constructs an empty array for void pointers.

Gets number of elements in this array.

Returns the largest valid index.

Sets the number of elements to be contained in this array.

Frees all unused memory above the current upper bound.

Removes all the elements from this array.

Returns the value at a given index.

Sets the value for a given index; array is not allowed to grow.

Returns a temporary reference to the element pointer within the array.

Allows access to elements in the array. Can be NULL.

Sets the value for a given index; grows the array if necessary.

Adds an element to the end of the array; grows the array if necessary.

Appends another array to the array; grows the array if necessary.

Copies another array to the array; grows the array if necessary.

Inserts an element (or all the elements in another array) at a specified
index.

Removes an element at a specific index.

Sets or gets the element at the specified index.

CPtrArray

1569

CPtrList

CPtrList

The CPtrList class supports lists of void pointers.

The member functions of CPtrList are similar to the member functions of class
CObList. Because of this similarity, you can use the CObList reference
documentation for member function specifics. Wherever you see a CObject pointer as
a function parameter or return value, substitute a pointer to void.

CObject*& CObList::GetHead() canst:

for example, translates to

vaid*& CPtrList::GetHead() canst:

CPtrList incorporates the IMPLEMENT_DYNAMIC macro to support run-time
type access and dumping to a CDumpContext object. If you need a dump of
individual pointer list elements, you must set the depth of the dump context to 1 or
greater.

Pointer lists cannot be serialized.

When a CPtrList object is deleted, or when its elements are removed, only the
pointers are removed, not the entities they reference.

For more information on using CPtrList, see the article "Collections" in Visual C++
Programmer s Guide online.

#include <afxcoll.h>

See Also: CObList

CPtrList Class Members

1570

Construction

CPtrList

HeadITaii Access

GetHead

GetTail

Constructs an empty list for void pointers.

Returns the head element of the list (cannot be empty).

Returns the tail element of the list (cannot be empty).

Operations

RemoveHead

RemoveTaii

AddHead

AddTail

RemoveAll

Iteration

GetHeadPosition

GetTailPosition

GetNext

GetPrev

Retrieval/Modification

GetAt

SetAt

RemoveAt

Insertion

InsertBefore

InsertAfter

Searching

Find

FindIndex

Status

GetCount

IsEmpty

Removes the element from the head of the list.

Removes the element from the tail of the list.

Adds an element (or all the elements in another list) to the head of
the list (makes a new head).

Adds an element (or all the elements in another list) to the tail of the
list (makes a new tail).

Removes all the elements from this list.

Returns the position of the head element of the list.

Returns the position of the tail element of the list.

Gets the next element for iterating.

Gets the previous element for iterating.

Gets the element at a given position.

Sets the element at a given position.

Removes an element from this list, specified by position.

Inserts a new element before a given position.

Inserts a new element after a given position.

Gets the position of an element specified by pointer value.

Gets the position of an element specified by a zero-based index.

Returns the number of elements in this list.

Tests for the empty list condition (no elements).

CPtrList

1571

CRecentFileList

CRecentFileList

CRecentFileList is a CObject class that supports control of the most recently used
(MRU) file list. Files can be added to or deleted from the MRU file list, the file list
can be read from or written to the registry or an .INI file, and the menu displaying the
MRU file list can be updated.

#include <afxadv.h>

CRecentFileList Class Members
Construction

CRecentFileList

Attributes

GetSize

Operations

Remove

Add

GetDisplayName

UpdateMenu

ReadList

WriteList

Operators

operator[]

Constructs a CRecentFileList object.

Retrieves the number of files in the MRU file list.

Removes a file from the MRU file list.

Adds a file to the MR U file list.

Provides a display name for menu display of an MRU filename.

Updates the menu display of the MRU file list.

Reads the MRU file list from the registry or .INI file.

Writes the MRU file list from the registry or .INI file.

Returns a CString object at a given position.

Member Functions
CRecentFileList: :Add

virtual void Add(LPCTSTR IpszPathName);

Parameters
IpszPathName Pathname to be added to the list.

1572

CRecentFileList::GetDisplayName

Remarks
Call this function to add the file whose path is given in lpszPathName to the most
recently used (MRU) file list. The file name will be added to the top of the MRU list.
If the file name already exists in the MRU list, it will be moved to the top.

See Also: CRecentFileList::Remove CRecentFileList::UpdateMenu

CRecentFileList: :CRecentFileList
CRecentFileList(UINT nStart, LPCTSTR lpszSection, LPCTSTR lpszEntryFormat,

... int nSize, int nMaxDispLen = AFX_ABBREV _FILENAME_LEN);

Parameters

Remarks

nStart Offset for the numbering in the menu display of the MRU (most recently
used) file list.

lpszSection Points to the name of the section of the registry or the application's .INI
file where the MRU file list is read and/or written.

IpszEntryFormat Points to a format string to be used for the names of the entries
stored in the registry or the application's .INI file.

nSize Maximum number of files in the MRU file list.

nMaxDispLen Maximum length, in characters, available for the menu display of a
filename in the MRU file list.

Constructs a CRecentFileList object.

The format string pointed to by lpszEntryFormat should contain "%d", which will be
used for substituting the index of each MRU item. For example, if the format string is
"fi 1 e%d" then the entries will be named fi 1 e0, fi 1 el, and so on.

CRecentFileList: : GetDisplay N arne
BOOL GetDisplayName(CString& strName, int nlndex, LPCTSTR lpszCurDir,

... int nCurDir, BOOL bAtLeastName = TRUE) const;

Return Value
FALSE if there is no filename at the specified index in the MRU (most recently used)
file list.

Parameters
strName Full path of the file whose name is to be displayed in the menu list of MRU

files.

nlndex Zero-based index of the file in the MRU file list.

lpszCurDir String holding the current directory.

1573

CRecentFileList: :GetSize

Remarks

nCurDir Length of the current directory string.

bAtLeastName If nonzero, indicates that the base name of the file should be returned,
even if it exceeds the maximum display length (passed as the nMaxDispLen
parameter to the CRecentFileList constructor).

Call this function to obtain a display name for a file in the MRU file list, for use in the
menu display of the MRU list. If the file is in the current directory, the function leaves
the directory off the display. If the filename is too long, the directory and extension
are stripped. If the filename is still too long, the display name is set to an empty string
unless bAtLeastName is nonzero.

See Also: CRecentFiIeList: :ReadList CRecentFileList:: WriteList

CRecentFileList: : GetSize
int GetSize() const;

Return Value
The number of files in the current MRU (most recently used) file list.

See Also: CRecentFileList: :Add, CRecentFileList: :Remove

CRecentFileList: : ReadList

Remarks

virtual void ReadList();

Call this function to read the most recently used (MRU) file list from the registry or
the application's .INI file.

See Also: CRecentFileList:: WriteList

CRecentFileList: : Remove
virtual void Remove(int nlndex);

Parameters

Remarks

1574

nlndex Zero-based index of the file to be removed from the MRU (most recently
used) file list.

Call this function to remove a file from the MRU file list.

See Also: CRecentFileList: :Add, CRecentFileList:: UpdateMenu

CRecentFileList::operator []

CRecentFileList:: UpdateMenu
virtual void UpdateMenu(CCmdUI* pCmdUI);

Parameters

Remarks

pCmdUI A pointer to the MRU (most recently used) file list menu, which is a
CCmdUI object.

Updates the menu display of the MRU file list.

See Also: CRecentFileList::Add, CRecentFileList::Remove

CRecentFileList:: WriteList

Remarks

virtual void WriteList();

Call this function to write the most recently used (MRU) file list into the registry or
the application's .IN! file.

See Also: CRecentFileList: :ReadList

Operators
CRecentFileList: : operator []

CString& operator[](int nlndex);

Parameters

Remarks

nlndex Zero-based index of a CString in a set of CStrings.

The overloaded subscript ([]) operator returns a single CString specified by the
zero-based index in nlndex.

1575

CRecordset

CRecordset

1576

A CRecordset object represents a set of records selected from a data source. Known
as "recordsets," CRecordset objects are typically used in two forms: dynasets and
snapshots. A dynaset stays synchronized with data updates made by other users. A
snapshot is a static view of the data. Each form represents a set of records fixed at the
time the recordset is opened, but when you scroll to a record in a dynaset, it reflects
changes subsequently made to the record, either by other users or by other recordsets
in your application.

Note If you are working with the Data Access Objects (DAO) classes rather than the Open
Database Connectivity (ODBC) classes, use class CDaoRecordset instead. For more
information, see the article "Database Topics (General)" and the article "DAO and MFC."
Both articles are in Visual C++ Programmer's Guide online.

To work with either kind of recordset, you typically derive an application-specific
recordset class from CRecordset. Recordsets select records from a data source, and
you can then:

• Scroll through the records.

• Update the records and specify a locking mode.

• Filter the recordset to constrain which records it selects from those available on the
data source.

• Sort the recordset.

• Parameterize the recordset to customize its selection with information not known
until run time.

To use your class, open a database and construct a recordset object, passing the
constructor a pointer to your CDatabase object. Then call the recordset's Open
member function, where you can specify whether the object is a dynaset or a snapshot.
Calling Open selects data from the data source. After the recordset object is opened,
use its member functions and data members to scroll through the records and operate
on them. The operations available depend on whether the object is a dynaset or a
snapshot, whether it is updatable or read-only (this depends on the capability of the
Open Database Connectivity (ODBC) data source), and whether you have
implemented bulk row fetching. To refresh records that may have been changed or
added since the Open call, call the object's Requery member function. Call the
object's Close member function and destroy the object when you finish with it.

In a derived CRecordset class, record field exchange (RFX) or bulk record field
exchange (Bulk RFX) is used to support reading and updating of record fields.

For more information about recordsets and record field exchange, see the articles
"Database Topics (General)," "Recordset (ODBC)," "Recordset: Fetching Records in
Bulk (ODBC)," and "Record Field Exchange." For a focus on dynasets and snapshots,
see the articles "Dynaset" and "Snapshot." All articles are in Visual C++
Programmer s Guide online.

#include <afxdb.h>

See Also: CDatabase, CRecordView

CRecordset Class Members
Data Members

Construction

CRecordset

Open

Close

Recordset Attributes

CanAppend

CanBookmark

Contains the ODBC statement handle for the recordset.
Type HSTMT.

Contains the number of field data members in the recordset.
Type UINT.

Contains the number of parameter data members in the
recordset. Type UINT.

Contains a pointer to the CDatabase object through which
the recordset is connected to a data source.

Contains a CString that specifies a Structured Query Language
(SQL) WHERE clause. Used as a filter to select only those
records that meet certain criteria.

Contains a CString that specifies an SQL ORDER BY clause.
Used to control how the records are sorted.

Constructs a CRecordset object. Your derived class must
provide a constructor that calls this one.

Opens the recordset by retrieving the table or performing the
query that the recordset represents.

Closes the recordset and the ODBC HSTMT associated
with it.

Returns nonzero if new records can be added to the recordset
via the AddNew member function.

Returns nonzero if the recordset supports bookmarks.

(continued)

CRecordset

1577

CRecordset

1578

Recordset Attributes (continued)

CanRestart

CanScroII

CanTransact

CanUpdate

GetODBCFieldCount

GetRecordCount

GetStatus

GetTableName

GetSQL

IsOpen

IsBOF

IsEOF

IsDeleted

Recordset Update Operations

AddNew

CancelUpdate

Delete

Edit

Update

Returns nonzero if Requery can be called to run the
recordset's query again.

Returns nonzero if you can scroll through the records.

Returns nonzero if the data source supports transactions.

Returns nonzero if the recordset can be updated (you can
add, update, or delete records).

Returns the number of fields in the recordset.

Returns the number of records in the recordset.

Gets the status of the recordset: the index of the current
record and whether a final count of the records has been
obtained.

Gets the name of the table on which the recordset is based.

Gets the SQL string used to select records for the recordset.

Returns nonzero if Open has been called previously.

Returns nonzero if the recordset has been positioned before
the first record. There is no current record.

Returns nonzero if the recordset has been positioned after
the last record. There is no current record.

Returns nonzero if the recordset is positioned on a deleted
record.

Prepares for adding a new record. Call Update to complete
the addition.

Cancels any pending updates due to an AddNew or Edit
operation.

Deletes the current record from the recordset. You must
explicitly scroll to another record after the deletion.

Prepares for changes to the current record. Call Update to
complete the edit.

Completes an Add New or Edit operation by saving the new
or edited data on the data source.

Recordset Navigation Operations

GetBookmark

Move

MoveFirst

MoveLast

Assigns the bookmark value of a record to the parameter
object.

Positions the recordset to a specified number of records
from the current record in either direction.

Positions the current record on the first record in the recordset.
Test for IsBOF first.

Positions the current record on the last record or on the last
rowset. Test for IsEOF first.

Recordset Navigation Operations (continued)

MoveNext

MovePrev

SetAbsolutePosition

SetBookmark

Other Recordset Operations

Cancel

FlushResultSet

GetFieldValue

GetODBCFieldlnfo

GetRowsetSize

GetRowsFetched

GetRowStatus

IsFieldDirty

IsFieldNull

IsFieldN ullable

RefreshRowset

Requery

SetFieldDirty

SetFieldN ull

SetLockingMode

SetParamNull

SetRowsetCursorPosition

Positions the current record on the next record or on
the next rowset. Test for IsEOF first.

Positions the current record on the previous record or on
the previous rowset. Test for IsBOF first.

Positions the recordset on the record corresponding to the
specified record number.

Positions the recordset on the record specified by the
bookmark.

Cancels an asynchronous operation or a process from a
second thread.

Returns nonzero if there is another result set to be retrieved,
when using a predefined query.

Returns the value of a field in a recordset.

Returns specific kinds of information about the fields in a
recordset.

Returns the number of records you wish to retrieve during
a single fetch.

Returns the actual number of rows retrieved during a fetch.

Returns the status of the row after a fetch.

Returns nonzero if the specified field in the current record
has been changed.

Returns nonzero if the specified field in the current record
is Null (has no value).

Returns nonzero if the specified field in the current record
can be set to Null (having no value).

Refreshes the data and status of the specified row(s).

Runs the recordset's query again to refresh the selected
records.

Marks the specified field in the current record as changed.

Sets the value of the specified field in the current record
to Null (having no value).

Sets the locking mode to "optimistic" locking (the default)
or "pessimistic" locking. Determines how records are
locked for updates.

Sets the specified parameter to Null (having no value).

Positions the cursor on the specified row within
the rowset.

CRecordset

1579

CRecordset: :AddN ew

Recordset Overridables

Check

CheckRowsetError

DoBulkFieldExchange

DoFieldExchange

GetDefaultConnect

GetDefaultSQL

OnSetOptions

SetRowsetSize

Called to examine the return code from an OnBC
API function.

Called to handle errors generated during record fetching.

Called to exchange bulk rows of data from the data source
to the recordset. Implements bulk record field exchange
(BulkRFX).

Called to exchange data (in both directions) between the field
data members of the recordset and the corresponding record
on the data source. Implements record field exchange (RFX).

Called to get the default connect string.

Called to get the default SQL string to execute.

Called to set options for the specified OnBC statement.

Specifies the number of records you wish to retrieve during
a fetch.

Member Functions
CRecordset: : AddN ew

Remarks

1580

virtual void AddNew();
throw(CDBException);

Call this member function to prepare for adding a new record to the table. You must
call the Requery member function to see the newly added record. The record's fields
are initially Null. (In database terminology, Null means "having no value" and is not
the same as NULL in C++.) To complete the operation, you must call the Update
member function. Update saves your changes to the data source.

Note If you have implemented bulk row fetching, you cannot call AddNew. This will result in a
failed assertion. Although class CRecordset does not provide a mechanism for updating bulk
rows of data, you can write your own functions by using the DOBC API function SQLSetPos.
For an example of how to do this, see the sample "OBFETCH" online. For more information
about bulk row fetching, see the article "Recordset: Fetching Records in Bulk (DOBC") in
Visual C++ Programmer's Guide online.

AddNew prepares a new, empty record using the recordset's field data members. After
you call AddNew, set the values you want in the recordset's field data members. (You
do not have to call the Edit member function for this purpose; use Edit only for
existing records.) When you subsequently call Update, changed values in the field
data members are saved on the data source.

CRecordset:: CanBookmark

Example

Caution If you scroll to a new record before you call Update, the new record is lost, and no
warning is given.

If the data source supports transactions, you can make your AddNew call part of a
transaction. For more information about transactions, see class CDatabase. Note that
you should call CDatabase: :BeginTrans before calling AddNew.

Important For dynasets, new records are added to the recordset as the last record. Added
records are not added to snapshots-you must call Requery to refresh the recordset.

It is illegal to call AddNew for a recordset whose Open member function has not
been called. A CDBException is thrown if you call AddNew for a recordset that
cannot be appended to. You can determine whether the recordset is updatable by
calling CanAppend.

For more information, see the following articles in Visual C++ Programmer's Guide
online: "Recordset: How Recordsets Update Records (ODBC)," "Recordset: Adding,
Updating, and Deleting Records (ODBC),", and "Transaction (ODBC)."

See the article "Transaction: Performing a Transaction in a Recordset (ODBC" in
Visual C++ Programmer's Guide online.

See Also: CRecordset: :Edit, CRecordset: :Delete, CRecordset:: Update,
CRecordset: :Requery, CDatabase: : BeginTrans, CDBException

CRecordset: : CanAppend
BOOL CanAppend() const;

Return Value

Remarks

Nonzero if the recordset allows adding new records; otherwise O. CanAppend will
return 0 if you opened the recordset as read-only.

Call this member function to determine whether the previously opened recordset
allows you to add new records.

See Also: CRecordset::AddNew, CRecordset::Requery

CRecordset: : CanBookmark
BOOL CanBookmark() const;

Return Value
Nonzero if the recordset supports bookmarks; otherwise O.

1581

CRecordset: :Cancel

Remarks
Call this member function to determine whether the recordset allows you to mark
records using bookmarks. This function is independent of the
CRecordset: :useBookmarks option in the dwOptions parameter of the Open
member function. CanBookmark indicates whether the given ODBC driver and
cursor type support bookmarks. CRecordset: :useBookmarks indicates whether
bookmarks will be available, provided they are supported.

Note Bookmarks are not supported on forward-only recordsets.

For more information about bookmarks and recordset navigation, see the articles
"Recordset: Bookmarks and Absolute Positions (ODBC)" and "Recordset: Scrolling
(ODBC)" in Visual c++ Programmer's Guide online.

See Also: CRecordset::GetBookmark, CRecordset::SetBookmark

CRecordset: :Cancel

Remarks

void Cancel();

Call this member function to request that the data source cancel either an
asynchronous operation in progress or a process from a second thread. Note that the
MFC ODBC classes no longer use asynchronous processing; to perform an
asychronous operation, you must directly call the ODBC API function
SQLSetConnectOption. For more information, see the topic "Executing Functions
Asynchronously" in the ODBC SDK Programmer's Guide online.

CRecordset: : Cancel Update

Remarks

1582

void CancelUpdate();

Call this member function to cancel any pending updates, due to an Edit or AddNew
operation, before Update is called.

Note This member function is not applicable on recordsets that are using bulk row fetching,
since such recordsets cannot call Edit, AddNew, or Update. For more information about bulk
row fetching, see the article "Recordset: Fetching Records in Bulk (GDBe)" in Visual C++
Programmer's Guide online.

If automatic dirty field checking is enabled, CancelUpdate will restore the member
variables to the values they had before Edit or AddNew was called; otherwise, any
value changes will remain. By default, automatic field checking is enabled when the
recordset is opened. To disable it, you must specify the

CRecordset: :CanTransact

CRecordset::noDirtyFieldCheck in the dwOptions parameter of the Open member
function.

For more information about updating data, see the article "Recordset: Adding,
Updating, and Deleting Records (ODBC)" in Visual C++ Programmer's Guide
online.

See Also: CRecordset::AddNew, CRecordset::Edit, CRecordset::Update

CRecordset: : CanRestart
BOOL CanRestart() const;

Return Value

Remarks

Nonzero if requery is allowed; otherwise O.

Call this member function to determine whether the recordset allows restarting its
query (to refresh its records) by calling the Requery member function.

See Also: CRecordset: :Requery

CRecordset: : CanScrol1
BOOL CanScroll() const;

Return Value

Remarks

Nonzero if the recordset allows scrolling; otherwise O.

Call this member function to determine whether the recordset allows scrolling.

For more information about scrolling, see the article "Recordset: Scrolling (ODBC)"
in Visual C++ Programmer's Guide online.

CRecordset: : Can Transact
BOOL CanTransact() const;

Return Value

Remarks

Nonzero if the recordset allows transactions; otherwise O.

Call this member function to determine whether the recordset allows transactions. For
more information, see the article "Transaction (ODBC)" in Visual C++ Programmer's
Guide online.

1583

CRecordset: :Can Update

See Also: CDatabase::BeginTrans, CDatabase::CommitTrans,
CDatabase: :Rollback

CRecordset: : Can Update
BOOL CanUpdate() const;

Return Value

Remarks

Nonzero if the recordset can be updated; otherwise O.

Call this member function to determine whether the recordset can be updated. A
recordset might be read-only if the underlying data source is read-only or if you
specified CRecordset: :readOnly in the dwOptions parameter when you opened the
recordset.

See Also: CRecordset: :Open, CRecordset: :AddNew, CRecordset: :Edit,
CRecordset: :Delete, CRecordset:: Update

CRecordset: : Check
virtual BOOL Check(RETCODE nRetCode) const;

Return Value
Nonzero if the value of nRetCode is SQL_SUCCESS,
SQL_SUCCESS_ WITH_INFO, SQL_NO_DATA_FOUND or
SQL_NEED_DATA; otherwise O.

Parameters

Remarks

1584

nRetCode An ODBC API function return code. For details, see Remarks.

Call this member function to examine the return code from an ODBC API function.
The following table lists the possible values for nRetCode.

nRetCode Description

SQL_SUCCESS Function completed successfully; no additional
information is available.

SQL_SUCCESS_ WITH_INFO Function completed successfully, possibly with a nonfatal
error. Additional information can be obtained by calling
SQLError.

SQL_NO_DATA_FOUND All rows from the result set have been fetched.

SQL_ERROR Function failed. Additional information can be obtained
by calling SQLError.

CRecordset: :CheckRowsetError

Example

(continued)

nRetCode Description

Function failed due to an invalid environment handle,
connection handle, or statement handle. This indicates a
programming error. No additional information is available
from SQLError.

A function that was started asynchronously is still
executing. Note that by default, MFC will never pass this
value to Check because MFC uses only synchronous
processing.

While processing a statement, the driver determined that
the application needs to send parameter data values.

For more information about SQLError, see the ODBC SDK Programmer's Reference.

See the macro AFX_ODBC_CALL.

See Also: AFX_ODBC_CALL

CRecordset: : CheckRowsetError
virtual void CheckRowsetError(RETCODE nRetCode);

throw(CDBException);

Parameters

Remarks

nRetCode An ODBC API function return code. For details, see Remarks.

This virtual member function handles errors that occur when records are fetched,
and is useful during bulk row fetching. You may want to consider overriding
CheckRowsetError in order to implement your own error handling.

CheckRowsetError is called automatically in a cursor navigation operation, such as
Open, Requery, or any Move operation. It is passed the return value of the ODBC
API function SQLExtendedFetch. The following table lists the possible values for
the nRetCode parameter.

nRetCode Description

Function completed successfully; no additional
information is available.

Function completed successfully, possibly with a nonfatal
error. Additional information can be obtained by calling
SQLError.

(continued)

1585

CRecordset: :Close

(continued)

nRetCode

SQL_NO_DATA_FOUND

SQL_ERROR

Description

All rows from the result set have been fetched.

Function failed. Additional information can be obtained
by calling SQLError.

Function failed due to an invalid environment handle,
connection handle, or statement handle. This indicates a
programming error. No additional information is available
from SQLError.

A function that was started asynchronously is still
executing. Note that by default, MFC will never pass this
value to CheckRowsetError; MFC will continue calling
SQLExtendedFetch until it no longer returns
SQL_STILL_EXECUTING.

For more information about SQLError, see the ODBC SDK Programmer's Reference.
For more information about bulk row fetching, see the article "Recordset: Fetching
Records in Bulk (ODBC)" in Visual C++ Programmer's Guide online.

See Also: CRecordset: :DoBulkFieldExchange, CRecordset: : GetRowsetSize,
CRecordset: :SetRowsetSize, CRecordset: :Move

CRecordset: :Close

Remarks

Example

1586

virtual void Close();

Call this member function to close the recordset. The ODBC HSTMT and all memory
the framework allocated for the recordset are deallocated. Usually after calling Close,
you delete the C++ recordset object if it was allocated with new.

You can call Open again after calling Close. This lets you reuse the recordset object.
The alternative is to call Requery.

II Example for CRecordset::Close

II Construct a snapshot object
CCustSet rsCustSet(NULL);

if(!rsCustSet.Open())
return FALSE;

II Use the snapshot ...

II Close the snapshot
rsCustSet.Close();

II Destructor is called when the function exits

See Also: CRecordset::CRecordset, CRecordset::Open, CRecordset::Requery

CRecordset: : CRecordset
CRecordset(CDatabase* pDatabase = NULL);

Parameters

Remarks

Example

pDatabase Contains a pointer to a CDatabase object or the value NULL. If not
NULL and the CDatabase object's Open member function has not been called
to connect it to the data source, the recordset attempts to open it for you during
its own Open call. If you pass NULL, a CDatabase object is constructed and
connected for you using the data source information you specified when you
derived your recordset class with Class Wizard.

Constructs a CRecordset object. You can either use CRecordset directly or derive
an application-specific class from CRecordset. You can use ClassWizard to derive
your recordset classes.

Note A derived class must supply its own constructor. In the constructor of your derived
class, call the constructor CRecordset::CRecordset, passing the appropriate parameters
along to it.

Pass NULL to your recordset constructor to have a CDatabase object constructed
and connected for you automatically. This is a useful shorthand that does not require
you to construct and connect a CDatabase object prior to constructing your recordset.

For more information, see the article "Recordset: Declaring a Class for a Table
(ODBC)" in Visual C++ Programmer's Guide online.

See Also: CRecordset::Open, CRecordset::Close

CRecordset: :Delete

Remarks

virtual void Delete();
throw(CDBException);

Call this member function to delete the current record. After a successful deletion, the
recordset's field data members are set to a Null value, and you must explicitly call one
of the Move functions in order to move off the deleted record. Once you move off the
deleted record, it is not possible to return to it. If the data source supports transactions,
you can make the Delete call part of a transaction. For more information, see the
article "Transaction (ODBC)" in Visual C++ Programmer's Guide online.

CRecordset: :Delete

1587

CRecordset: :Delete

Example

1588

Note If you have implemented bulk row fetching, you cannot call Delete. This will result in a
failed assertion. Although class CRecordset does not provide a mechanism for updating bulk
rows of data, you can write your own functions by using the OOBC API function SQLSetPos.
For an example of how to do this, see the sample "OBFETCH" online. For more information
about bulk row fetching, see the article "Recordset: Fetching Records in Bulk (OOBC)" in
Visual C++ Programmer's Guide online.

Caution The recordset must be updatable and there must be a valid record current in the
recordset when you call Delete; otherwise, an error occurs. For example, if you delete a record
but do not scroll to a new record before you call Delete again, Delete throws a CDBException.

Unlike AddNew and Edit, a call to Delete is not followed by a call to Update. If a
Delete call fails, the field data members are left unchanged.

This example shows a recordset created on the frame of a function. The example
assumes the existence of m_dbCust, a member variable of type CDatabase already
connected to the data source.

II Create a derived CRecordset object
CCustSet rsCustSet(&m_dbCust);
rsCustSet.Open();

if(rsCustSet.IsEOF() I I !rsCustSet.CanUpdate() I I
!rsCustSet.CanTransact())

return;

if(!m_dbCust.BeginTrans())
{

II Do something to handle a failure

else
{

}

II

II Perhaps scroll to a new record ...
II Delete the current record
rsCustSet.Delete();
II

II Finished commands for this transaction
if(<the user confirms the transaction>)

m_dbCust.CommitTrans();
else II User changed mind

m_dbCust.Rollback();

See Also: Database: :BeginTrans, CDatabase: :CommitTrans,
CDatabase: : Rollback, CDBException

CRecordset:: DoB ulkFieldExchange

CRecordset: :DoB ulkFieldExchange
virtual void DoBulkFieldExchange(CFieldExchange* pFX);

throw(CDBException);

Parameters

Remarks

pFX A pointer to a CFieldExchange object. The framework will already have set up
this object to specify a context for the field exchange operation.

When bulk row fetching is implemented, the framework calls this member function to
automatically transfer data from the data source to your recordset object.
DoBulkFieldExchange also binds your parameter data members, if any, to parameter
placeholders in the SQL statement string for the recordset's selection.

If bulk row fetching is not implemented, the framework calls DoFieldExchange. To
implement bulk row fetching, you must specify the CRecordset::useMuItiRowFetch
option of the dwOptions parameter in the Open member function.

Note DoBulkFieldExchange is available only if you are using a class derived from
CRecordset. If you have created a recordset object directly from CRecordset, you must call
the GetFieldValue member function to retrieve data.

Bulk record field exchange (Bulk RFX) is similar to record field exchange (RFX).
Data is automatically transferred from the data source to the recordset object.
However, you cannot call AddNew, Edit, Delete, or Update to transfer changes back
to the data source. Class CRecordset currently does not provide a mechanism for
updating bulk rows of data; however, you can write your own functions by using the
ODBC API function SQLSetPos.

Note that ClassWizard does not support bulk record field exchange; therefore, you
must override DoBulkFieldExchange manually by writing calls to the Bulk RFX
functions. For more information about these functions, see the topic "Record Field
Exchange Functions" online.

For an example of how to implement bulk record field exchange, see the sample
"DBFETCH" online. For more information about bulk row fetching, see the article
"Recordset: Fetching Records in Bulk (ODBC)." For related information, see the
article "Record Field Exchange (RFX)." Both articles are in Visual C++
Programmer's Guide online.

See Also: CRecordset: :m_nFields, CRecordset: :m_nParams,
CRecordset: :DoFieldExchange, CRecordset: : GetFieldValue, CFieldExchange,
"Record Field Exchange Functions" online

1589

CRecordset: : DoFieldExchange

CRecordset: : DoFieldExchange
virtual void DoFieldExchange(CFieldExchange* pFX);

throw(CDBException);

Parameters

Remarks

1590

pFX A pointer to a CFieldExchange object. The framework will already have set up
this object to specify a context for the field exchange operation.

When bulk row fetching is not implemented, the framework calls this member
function to automatically exchange data between the field data members of your
recordset object and the corresponding columns of the current record on the data
source. DoFieldExchange also binds your parameter data members, if any, to
parameter placeholders in the SQL statement string for the recordset's selection.

If bulk row fetching is implemented, the framework calls DoBulkFieldExchange. To
implement bulk row fetching, you must specify the CRecordset: :useMultiRowFetch
option of the dwOptions parameter in the Open member function.

Note DoFieldExchange is available only if you are using a class derived from CRecordset.
If you have created a recordset object directly from CRecordset, you must call the
GetFieldValue member function to retrieve data.

The exchange of field data, called record field exchange (RFX), works in both
directions: from the recordset object's field data members to the fields of the record
on the data source, and from the record on the data source to the recordset object.

The only action you must normally take to implement DoFieldExchange for your
derived recordset class is to create the class with ClassWizard and specify the names
and data types of the field data members. You might also add code to what
ClassWizard writes to specify parameter data members or to deal with any columns
you bind dynamically. For more information, see the article "Recordset: Dynamically
Binding Data Columns (ODBC)" in Visual C++ Programmer's Guide online.

When you declare your derived recordset class with ClassWizard, the wizard writes
an override of DoFieldExchange for you, which resembles the following example:

void CCustSet::DoFieldExchange(CFieldExchange* pFX)
{

//{{AFX_FIELD_MAP(CCustSet)
pFX->SetFieldType(CFieldExchange::outputColumn);
RFX_Text(pFX, "Name", m_strName);
RFX_Int(pFX, "Age", m_wAge);
//}}AFX_FIELD_MAP

For more information about the RFX functions, see the topic "Record Field Exchange
Functions" online.

For further examples and details about DoFieldExchange, see the article "Record
Field Exchange: How RFX Works." For general information about RFX, see the
article "Record Field Exchange." Both articles are in Visual C++ Programmer's
Guide online.

See Also: CRecordset: :m_nFields, CRecordset: :m_nParams,
CRecordset: :DoBulkFieldExchange, CRecordset: : GetFieldValue,
CFieldExchange, "Record Field Exchange Functions" online

CRecordset: :Edit

Remarks

virtual void Edit();
throw(CDBException, CMemoryException);

Call this member function to allow changes to the current record. After you call
Edit, you can change the field data members by directly resetting their values. The
operation is completed when you subsequently call the Update member function to
save your changes on the data source.

Note If you have implemented bulk row fetching, you cannot call Edit. This will result in a
failed assertion. Although class CRecordset does not provide a mechanism for updating bulk
rows of data, you can write your own functions by using the DOBC API function SQLSetPos.
For an example of how to do this, see the sample "OBFETCH." For more information about bulk
row fetching, see the article "Recordset: Fetching Records in Bulk (DOBC)" in Visual C++
Programmer's Guide online.

Edit saves the values of the recordset's data members. If you call Edit, make changes,
then call Edit again, the record's values are restored to what they were before the first
Edit call.

In some cases, you may want to update a column by making it Null (containing no
data). To do so, call SetFieldNull with a parameter of TRUE to mark the field Null;
this also causes the column to be updated. If you want a field to be written to the data
source even though its value has not changed, call SetFieldDirty with a parameter of
TRUE. This works even if the field had the value Null.

If the data source supports transactions, you can make the Edit call part of
a transaction. Note that you should call CDatabase::BeginTrans before
calling Edit and after the recordset has been opened. Also note that calling
CDatabase::CommitTrans is not a substitute for calling Update to complete the
Edit operation. For more information about transactions, see class CDatabase.

Depending on the current locking mode, the record being updated may be locked by
Edit until you call Update or scroll to another record, or it may be locked only during
the Edit call. You can change the locking mode with SetLockingMode.

CRecordset: :Edit

1591

CRecordset: :FlushResultSet

Example

The previous value of the current record is restored if you scroll to a new record
before calling Update. A CDBException is thrown if you call Edit for a recordset
that cannot be updated or if there is no current record.

For more information, see the articles "Transaction (ODBC)" and "Recordset:
Locking Records (ODBC)" in Visual C++ Programmer's Guide online.

II Example for CRecordset::Edit
II To edit a record.
II First set up the edit buffer
rsCustSet. Edi t();

II Then edit field data members for the record
rsCustSet.m_dwCustID = 2795;
rsCustSet.m_strCustomer = "Jones Mfg";

II Finally. complete the operation
if(! rsCustSet. Update())

II Handle the failure to update

See Also: CRecordset::Update, CRecordset::AddNew, CRecordset::Delete,
CRecordset: :SetFieldDirty, CRecordset: :SetFieldNull, CRecordset: :CanUpdate,
CRecordset: :CanTransact, CRecordset: :SetLockingMode

CRecordset: :FlushResultSet
BOOL FlushResultSet() const;

throw(CDBException);

Return Value

Remarks

1592

Nonzero if there are more result sets to be retrieved; otherwise O.

Call this member function to retrieve the next result set of a predefined query (stored
procedure), if there are multiple result sets. You should call FlushResultSet only
when you are completely finished with the cursor on the current result set. Note that
when you retrieve the next result set by calling FlushResultSet, your cursor is not
valid on that result set; you should call the MoveNext member function after calling
FlushResultSet.

If a predefined query uses an output parameter or input/output parameters, you must
call FlushResultSet until it returns FALSE (the value 0), in order to obtain these
parameter values.

FlushResultSet calls the ODBC API function SQLMoreResults. If
SQLMoreResults returns SQL_ERROR or SQL_INVALID_HANDLE, then
FlushResultSet will throw an exception. For more information about
SQLMoreResults, see the ODBC SDK Programmer's Reference.

Example

CRecordset: :FlushResultSet

The following code assumes that COutParamRecordset is a CRecordset-derived
object based on a predefined query with an input parameter and an output parameter,
and having multiple result sets. Note the structure of the DoFieldExchange override.

II DoFieldExchange override
II
II Only necessary to handle parameter bindings.
II Don't use CRecordset-derived class with bound
II fields unless all result sets have same schema
II OR there is conditional binding code.

void COutParamRecordset: :DoFieldExchange(CFieldExchange* pFX)
{

pFX-)SetFieldType(CFieldExchange::outputParam);
RFX_Long(pFX. "Paraml". m_nOutParamlnstructorCount);

II The "Paraml" name here is a dummy name
II that is never used

pFX-)SetFieldType(CFieldExchange::inputParam);
RFX_Text(pFX. "Param2". m_strlnParamName);

II The "Param2" name here is a dummy name
II that is never used

II Now implement COurParamRecordset.

II Assume db is an already open CDatabase object
COutParamRecordset rs(&db);
rs.m_strlnParamName = _T("Some_Input_Param_Value");

II Get the first result set
II NOTE: SOL Server requires forwardOnly cursor
II type for multiple rowset returning stored
II procedures
rs.Open(CRecordset::forwardOnly.

"{? = CALL GetCourses (?)}".
CRecordset::readOnly);

II Loop through all the data in the first result set
while (!rs.lsEOF())
{

CString strFieldValue;
for(int nlndex = 0;

nlndex < rs.GetODBCFieldCount();
nlndex++)

rs.GetFieldValue(nlndex. strFieldValue);

II TO DO: Use field value string.

rs . MoveNext ();

1593

CRecordset: :GetBookmark

II Retrieve other result sets ...
while(rs.FlushResultSet())
{

II must call MoveNext because cursor is invalid
rs .MoveNext();

while (!rs.IsEOF())
{

CString strFieldValue;
for(int nIndex = 0:

nIndex < rs.GetODBCFieldCount();
nIndex++)

rs.GetFieldValue(nIndex, strFieldValue):

II TO DO: Use field value string.

rs. MoveNext ();

II All result sets have been flushed. Cannot
II use the cursor, but the output parameter,
II m_nOutParamInstructorCount, has now been written.
II Note that m_nOutParamInstructorCount not valid until
II CRecordset: :FlushResultSet has returned FALSE,
II indicating no more result sets will be returned.

II TO DO: Use m_nOutParamInstructorCount

II Cleanup
rs.Close();
db.Close();

See Also: CFieldExchange: :SetFieldType

CRecordset: : GetBookmark
void GetBookmark(CDBVariant& varBookmark);

throw(CDBException, CMemoryException);

Parameters

Remarks

1594

varBookmark A reference to a CDBVariant object representing the bookmark
on the current record.

Call this member function to obtain the bookmark value for the current record.
To determine if bookmarks are supported on the recordset, call CanBookmark.
To make bookmarks available if they are supported, you must set the
CRecordset: :useBookmarks option in the dwOptions parameter of the Open
member function.

CRecordset: :GetDefaultSQL

Note If bookmarks are unsupported or unavailable, calling GetBookmark will result in an
exception being thrown. Bookmarks are not supported on forward-only recordsets.

GetBookmark assigns the value of the bookmark for the current record to a
CDBVariant object. To return to that record at any time after moving to a different
record, call SetBookmark with the corresponding CDBVariant object.

Note After certain recordset operations, bookmarks may no longer be valid. For example, if
you call GetBookmark followed by Requery, you may not be able to return to the record with
SetBookmark. Call CDatabase::GetBookmarkPersistence to check whether you can safely
call Set Bookmark.

For more information about bookmarks and recordset navigation, see the articles
"Recordset: Bookmarks and Absolute Positions (ODBC)" and "Recordset: Scrolling
(ODBC)" in Visual C++ Programmer's Guide online.

See Also: CRecordset:: CanBookmark, CRecordset: :SetBookmark,
CDatabase:: GetBookmarkPersistence

CRecordset:: GetDefaultConnect
virtual CString GetDefaultConnect();

Return Value

Remarks

A CString that contains the default connect string.

The framework calls this member function to get the default connect string for the
data source on which the recordset is based. ClassWizard implements this function for
you by identifying the same data source you use in Class Wizard to get information
about tables and columns. You will probably find it convenient to rely on this default
connection while developing your application. But the default connection may not be
appropriate for users of your application. If that is the case, you should reimplement
this function, discarding ClassWizard's version. For more information about connect
strings, see the article "Data Source (ODBC)" in Visual C++ Programmer's Guide
online.

CRecordset: : GetDefaultSQL
virtual CString GetDefaultSQL();

Return Value

Remarks

A CString that contains the default SQL statement.

The framework calls this member function to get the default SQL statement on which
the recordset is based. This might be a table name or an SQL SELECT statement.

1595

CRecordset:: GetFieldV alue

You indirectly define the default SQL statement by declaring your recordset class with
Class Wizard, and Class Wizard performs this task for you.

If you need the SQL statement string for your own use, call GetSQL, which returns
the SQL statement used to select the recordset's records when it was opened. You can
edit the default SQL string in your class's override of GetDefaultSQL. For example,
you could specify a call to a predefined query using a CALL statement. For more
information, see the article "Recordset: Declaring a Class for a Table (ODBC)" in
Visual c++ Programmer's Guide online.

Caution The table name will be empty if the framework could not identify a table name, if
multiple table names were supplied, or if a CALL statement could not be interpreted. Note that
when using a CALL statement, you must not insert whitespace between the curly brace and the
CALL keyword, nor should you insert whitespace before the curly brace or before the SELECT
keyword in a SELECT statement.

See Also: CRecordset::GetSQL

CRecordset: : GetFieldValue
void GetFieldValue(LPCTSTR IpszName, CDBVariant& varValue,

... short nFieldType = DEFAULT_FIELD_TYPE);
throw(CDBException, CMemoryException);

void GetFieldValue(short nlndex, CDBVariant& varValue,
... short nFieldType = DEFAULT_FIELD_TYPE);
throw(CDBException, CMemoryException);

void GetFieldValue(LPCTSTR IpszName, CString& strValue);
throw(CDBException, CMemoryException);

void GetFieldValue(short nlndex, CString& strValue);
throw(CDBException, CMemoryException);

Parameters

1596

IpszName The name of a field.

varValue A reference to a CDBVariant object that will store the field's value.

nFieldType The ODBC C data type of the field. Using the default value,
DEFAULT_FIELD_TYPE, forces GetFieldValue to determine the C data type
from the SQL data type, based on the following table. Otherwise, you can specify
the data type directly or choose a compatible data type; for example, you can store
any data type into SQL_C_CHAR.

C data type

SQL_C_BIT

SQL_C_UTINYINT

SQL_C_SSHORT

SOL data type

SQL_BIT

SQL_TINYINT

SQL_SMALLINT

Remarks

CRecordset:: GetFieldV alue

(continued)

C data type

SQL_C_SLONG

SQL_C_FLOAT

SQL_C_DOUBLE

SQL_C_TIMESTAMP

SQL_C_CHAR

Sal data type

SQL_INTEGER

SQL_REAL

SQL_FLOAT
SQL_DOUBLE

SQL_DATE
SQL_TIME
SQL_TIMESTAMP

SQL_NUMERIC
SQL_DECIMAL
SQL_BIGINT
SQL_CHAR
SQL_ V ARCHAR
SQL_LONGV ARCHAR

SQL_BINARY
SQL_ V ARBINARY
SQL_LONGV ARBINARY

For more information about ODBC data types, see the topics "SQL Data Types"
and "C Data Types" in Appendix D of the ODBC SDK Programmer's Reference.

nlndex The zero-based index of the field.

strValue A reference to a CString object that will store the field's value converted to
text, regardless of the field's data type.

Call this member function to retrieve field data in the current record. You can look up
a field either by name or by index. You can store the field value in either a
CDBVariant object or a CString object.

If you have implemented bulk row fetching, the current record is always positioned on
the first record in a rowset. To use GetFieldValue on a record within a given row set,
you must first call the SetRowsetCursorPosition member function to move the
cursor to the desired row within that rowset. Then call GetFieldValue for that row. To
implement bulk row fetching, you must specify the CRecordset: :useMultiRowFetch
option of the dwOptions parameter in the Open member function.

You can use GetFieldValue to dynamically fetch fields at run time rather than
statically binding them at design time. For example, if you have declared a recordset
object directly from CRecordset, you must use GetFieldValue to retrieve the field
data; record field exchange (RFX), or bulk record field exchange (Bulk RFX), is not
implemented.

Note If you declare a recordset object without deriving from CRecordset, do not have the
DOSC Cursor Library loaded. The cursor library requires that the recordset have at least one
bound column; however, when you use CRecordset directly, none of the columns are bound.

1597

CRecordset: : GetFieldValue

Example

1598

The member functions CDatabase::OpenEx and CDatabase::Open control whether the cursor
library will be loaded.

GetFieldValue calls the ODBC API function SQLGetData. If your driver outputs the
value SQL_NO_TOTAL for the actual length of the field value, GetFieldValue
throws an exception. For more information about SQLGetData, see the ODBC SDK
Programmer's Reference.

The following sample code illustrates calls to GetFieldValue for a recordset object
declared directly from CRecordset.

II Create and open a database object;
II do not load the cursor library
CDatabase db;
db.OpenEx(NULL, CDatabase::forceOdbcDialog);

II Create and open a recordset object
II directly from CRecordset. Note that a
II table must exist in a connected database.
II Use forwardOnly type recordset for best
II performance, since only MoveNext is required
CRecordset rs(&db);
rs.Open(CRecordset::forwardOnly,

_T("SELECT * FROM SomeTabl e"));

II Create a CDBVariant object to
II store field data
CDBVariant varValue;

II Loop through the recordset,
II using GetFieldValue and
II GetODBCFieldCount to retrieve
II data in all columns
short nFields = rs.GetODBCFieldCount();
while(!rs.IsEOF())
{

for(short index = 0; index < nFields; index++
(

}

rs.GetFieldValue(index, varValue);
II do something with varValue

rs .MoveNext();

rs.Close();
db.Close();

Note Unlike the DAD class CDaoRecordset, CRecordset does not have a SetFieldValue
member function. If you create an object directly from CRecordset, it is effectively read-only.

CRecordset: :GetODBCFieldInfo

For more information about bulk row fetching, see the article "Recordset: Fetching
Records in Bulk (ODBC)" in Visual C++ Programmer's Guide online.

See Also: CRecordset:: DoFieldExchange, CRecordset:: DoBulkFieldExchange,
CRecordset: : GetODBCFieldCount, CRecordset: :GetODBCFieldlnfo,
CRecordset: :SetRowsetCursorPosition

CRecordset: : GetOD BCFieldCount
short GetODBCFieldCount() const;

Return Value

Remarks

The number of fields in the recordset.

Call this member function to retrieve the total number of fields in your recordset
object.

For more information about creating recordsets, see the article "Recordset: Creating
and Closing Recordsets (ODBC)" in Visual C++ Programmer's Guide online.

See Also: CRecordset::GetFieldValue

CRecordset: : GetO D BCFieldInfo
void GetODBCFieldlnfo(LPCTSTR IpszName, CODBCFieldlnfo& fieldinfo);

throw(CDBException);
void GetODBCFieldlnfo(short nlndex, CODBCFieldlnfo& fieldinfo);

throw(CDBException);

Parameters

Remarks

IpszName The name of a field.

fieldinfo A reference to a CODBCFieldlnfo structure.

nlndex The zero-based index of the field.

Call this member function to obtain information about the fields in the recordset. One
version of the function lets you look up a field by name. The other version lets you
look up a field by index.

For a description about the information returned, see the CODBCFieldlnfo structure.

For more information about creating recordsets, see the article "Recordset: Creating
and Closing Recordsets (ODBC)" in Visual C++ Programmer's Guide online.

See Also: CRecordset::GetFieldValue, CODBCFieldlnfo

1599

CRecordset: : GetRecordCount

CRecordset: : GetRecordCount
long GetRecordCount() const;

Return Value

Remarks

The number of records in the recordset; 0 if the recordset contains no records;
or -1 if the record count cannot be determined.

Call this member function to determine the size of the recordset.

Caution The record count is maintained as a "high water mark"-the highest-numbered
record yet seen as the user moves through the records. The total number of records is only
known after the user has moved beyond the last record. For performance reasons, the count is
not updated when you call MoveLast. To count the records yourself, call MoveNext repeatedly
untillsEOF returns nonzero. Adding a record via CRecordset:AddNew and Update increases
the count; deleting a record via CRecordset::Delete decreases the count.

See Also: CRecordset::MoveLast, CRecordset::MoveNext, CRecordset::IsEOF,
CRecordset: : GetStatus

CRecordset: : GetRowsetSize
DWORD GetRowsetSize() const;

Return Value

Remarks

1600

The number of rows to retrieve during a given fetch.

Call this member function to obtain the current setting for the number of rows you
wish to retrieve during a given fetch. If you are using bulk row fetching, the default
row set size when the recordset is opened is 25; otherwise, it is 1.

To implement bulk row fetching, you must specify the
CRecordset::useMultiRowFetch option in the dwOptions parameter of the Open
member function. To change the setting for the rowset size, call SetRowsetSize.

For more information about bulk row fetching, see the article "Recordset: Fetching
Records in Bulk (ODBC)" in Visual C++ Programmer's Guide online.

See Also: CRecordset: :Open, CRecordset: :SetRowsetSize,
CRecordset:: CheckRowsetError, CRecordset: :DoBulkFieldExchange

CRecordset: :GetRowsFetched

CRecordset: : GetRowsFetched
DWORD GetRowsFetched() const;

Return Value

Remarks

Example

The number of rows retrieved from the data source after a given fetch.

Call this member function to determine how many records were actually retrieved
after a fetch. This is useful when you have implemented bulk row fetching. The
row set size normally indicates how many rows will be retrieved from a fetch;
however, the total number of rows in the recordset also affects how many rows will
be retrieved in a rowset. For example, if your recordset has 10 records with a rowset
size setting of 4, then looping through the recordset by calling MoveNext will result
in the final rowset having only 2 records.

To implement bulk row fetching, you must specify the
CRecordset::useMultiRowFetch option in the dWOptions parameter of the Open
member function. To specify the rowset size, call SetRowsetSize.

For more information about bulk row fetching, see the article "Recordset: Fetching
Records in Bulk (ODBC)" in Visual C++ Programmer's Guide online.

MultiRowSet rs;

II Set the rowset size
rS.SetRowsetSize(5);

II Open the recordset
rs.Open(CRecordset::dynaset. NULL.

CRecordset::useMultiRowFetch);

II loop through the recordset by rowsets
while(!rs.IsEOF())
{

for(int rowCount = 0;
rowCount < (int)rs.GetRowsFetched();
rowCount++)

{

II do something

rS.MoveNext();

rS.Close();

See Also: CRecordset: :SetRowsetSize, CRecordset: :CheckRowsetError

1601

CRecordset: :GetRowStatus

CRecordset: : GetRowStatus
WORD GetRowStatus(WORD wRow) const;

Return Value
A status value for the row. For details, see Remarks.

Parameters

Remarks

wRow The one-based position of a row in the current rowset. This value can range
from 1 to the size of the rowset.

Call this member function to obtain the status for a row in the current rowset.
GetRowStatus returns a value that indicates either any change in status to the row
since it was last retrieved from the data source, or that no row corresponding to wRow
was fetched. The following table lists the possible return values.

Status value

SQL_ROW _SUCCESS

SQL_ROW _UPDATED

SQL_ROW _DELETED

SQL_ROW _ADDED

SQL_ROW _ERROR

SQL_ROW _NOROW

Description

The row is unchanged.

The row has been updated.

The row has been deleted.

The row has been added.

The row is unretrievable due to an error.

There is no row that corresponds to wRow.

For more information, see the ODBC API function SQLExtendedFetch in the ODBC
SDK Programmer's Reference.

See Also: CRecordset::CheckRowsetError, CRecordset::GetRowsFetched,
CRecordset: : RefreshRowset

CRecordset: : GetS tatus
void GetStatus(CRecordsetStatus& rStatus) const;

Parameters

Remarks

1602

rStatus A reference to a CRecordsetStatus object. See the Remarks section for more
information.

Call this member function to determine the index of the current record in the recordset
and/or whether the last record has been seen. CRecordset attempts to track the index,
but under some circumstances this may not be possible. See GetRecordCount for an
explanation.

The CRecordsetStatus structure has the following form:

struct CRecordsetStatus
{

} :

long m_1CurrentRecord;
BOOl m_bRecordCountFinal;

The two members of CRecordsetStatus have the following meanings:

• m_lCurrentRecord Contains the zero-based index of the current record in the
recordset, if known. If the index cannot be determined, this member contains
AFX_CURRENT_RECORD_UNDEFINED (-2). If IsBOF is TRUE (empty
recordset or attempt to scroll before first record), then m_lCurrentRecord is set to
AFX_CURRENT_RECORD_BOF (-1). If on the first record, then it is set to 0,
second record 1, and so on .

• m_bRecordCountFinal Nonzero if the total number of records in the recordset
has been determined. Generally this must be accomplished by starting at the
beginning of the recordset and calling MoveNext until IsEOF returns nonzero. If
this member is zero, the record count as returned by GetRecordCount, if not -1,
is only a "high water mark" count of the records.

See Also: CRecordset::GetRecordCount

CRecordset: : GetSQ L
const CString& GetSQL() const;

Return Value

Remarks

A const reference to a CString that contains the SQL statement.

Call this member function to get the SQL statement that was used to select the
recordset's records when it was opened. This will generally be an SQL SELECT
statement. The string returned by GetSQL is read-only.

The string returned by GetSQL is typically different from any string you may have
passed to the recordset in the IpszSQL parameter to the Open member function. This
is because the recordset constructs a full SQL statement based on what you passed to
Open, what you specified with ClassWizard, what you may have specified in the
m_strFilter and m_strSort data members, and any parameters you may have
specified. For details about how the recordset constructs this SQL statement, see the
article "Recordset: How Recordsets Select Records (ODBC)" in Visual C++
Programmer's Guide online.

Important Call this member function only after calling Open.

See Also: CRecordset: : GetDefaultSQL, CRecordset: :Open,
CRecordset: :m_strFilter, CRecordset: :m_strSort

CRecordset: :GetSQL

1603

CRecordset: : GetTableN arne

CRecordset: : GetTableN arne
const CString& GetTableName() const;

Return Value

Remarks

A const reference to a CString that contains the table name, if the recordset is based
on a table; otherwise, an empty string.

Call this member function to get the name of the SQL table on which the recordset's
query is based. GetTableName is only valid if the recordset is based on a table, not a
join of multiple tables or a predefined query (stored procedure). The name is
read-only.

Important Call this member function only after calling Open.

CRecordset: :IsBOF
BOOL IsBOF() const;

Return Value

Remarks

Example

1604

Nonzero if the recordset contains no records or if you have scrolled backward before
the first record; otherwise O.

Call this member function before you scroll from record to record to learn whether
you have gone before the first record of the recordset. You can also use IsBOF along
with IsEOF to determine whether the recordset contains any records or is empty.
Immediately after you call Open, if the recordset contains no records, IsBOF returns
nonzero.When you open a recordset that has at least one record, the first record is the
current record and IsBOF returns O.

If the first record is the current record and you call MovePrev, IsBOF will
subsequently return nonzero. If IsBOF returns nonzero and you call MovePrev, an
error occurs. If IsBOF returns nonzero, the current record is undefined, and any
action that requires a current record will result in an error.

This example uses IsBOF and IsEOF to detect the limits of a recordset as the code
scrolls through the recordset in both directions.

II Open a recordset; first record is current
CCustSet rsCustSet(NULL);
rsCustSet.Open();

if(rsCustSet.IsBOF(
return;
II The recordset is empty

II Scroll to the end of the recordset. past
II the last record. so no record is current
while (!rsCustSet.IsEOF())

rsCustSet.MoveNext();

II Move to the last record
rsCustSet.MoveLast();

II Scroll to beginning of the recordset. before
II the first record. so no record is current
while(!rsCustSet.IsBOF())

rsCustSet.MovePrev();

II First record is current again
rsCustSet. MoveFi rst();

See Also: CRecordset: :IsEOF, CRecordset: :MoveFirst, CRecordset: :MovePrev

CRecordset: : IsDeleted
BOOL IsDeleted() const;

Return Value

Remarks

Nonzero if the recordset is positioned on a deleted record; otherwise O.

Call this member function to determine whether the current record has been deleted.
If you scroll to a record and IsDeleted returns TRUE (nonzero), then you must scroll
to another record before you can perform any other recordset operations.

Be aware that the result of IsDeleted depends on many factors, such as your
recordset type, whether your recordset is updatable, whether you specified the
CRecordset::skipDeletedRecords option when you opened the recordset,
whether your driver packs deleted records, and whether there are multiple users.

For more information about CRecordset::skipDeletedRecords and driver packing,
see the Open member function.

Note If you have implemented bulk row fetching, you should not calilsDeleted. Instead, call
the GetRowStatus member function. For more information about bulk row fetching, see the
article "Recordset: Fetching Records in Bulk (DOBe)" in Visual e++ Programmer's Guide
online.

See Also: CRecordset: :Delete, CRecordset: :IsBOF, CRecordset: :IsEOF

CRecordset: :IsDeleted

1605

CRecordset: :IsEOF

CRecordset: :IsEOF
BOOL IsEOF() const;

Return Value

Remarks

Example

Nonzero if the recordset contains no records or if you have scrolled beyond the last
record; otherwise O.

Call this member function as you scroll from record to record to learn whether you
have gone beyond the last record of the recordset. You can also use IsEOF to
determine whether the recordset contains any records or is empty. Immediately after
you call Open, if the recordset contains no records, IsEOF returns nonzero. When
you open a recordset that has at least one record, the first record is the current record
and IsEOF returns O.

If the last record is the current record when you call MoveNext, IsEOF will
subsequently return nonzero. If IsEOF returns nonzero and you call MoveNext, an
error occurs. If IsEOF returns nonzero, the current record is undefined, and any
action that requires a current record will result in an error.

See the example for IsBOF.

See Also: CRecordset::IsBOF, CRecordset::MoveLast, CRecordset::MoveNext

CRecordset: : IsFieldDirty
BOOL IsFieldDirty(void* pv);

throw(CMemoryException);

Return Value
Nonzero if the specified field data member has changed since calling AddNew or
Edit; otherwise O.

Parameters

Remarks

1606

pv A pointer to the field data member whose status you want to check, or NULL to
determine if any of the fields are dirty.

Call this member function to determine whether the specified field data member has
been changed since Edit or AddNew was called. The data in all dirty field data
members will be transferred to the record on the data source when the current record
is updated by a call to the Update member function of CRecordset (following a call
to Edit or AddNew).

CRecordset: :IsFieldN ull

Note This member function is not applicable on recordsets that are using bulk row fetching.
If you have implemented bulk row fetching, then IsFieldDirty will always return FALSE and
will result in a failed assertion. For more information about bulk row fetching, see the article
"Recordset: Fetching Records in Bulk (DDBC)" in Visual C++ Programmer's Guide online.

Calling IsFieldDirty will reset the effects of preceding calls to SetFieldDirty since
the dirty status of the field is re-evaluated. In the AddNew case, if the current field
value differs from the pseudo null value, the field status is set dirty. In the Edit case,
if the field value differs from the cached value, then the field status is set dirty.

IsFieldDirty is implemented through DoFieldExchange.

For more information on the dirty flag, see the article "Recordset: How Recordsets
Select Records (ODBC)" in Visual C++ Programmer's Guide online.

See Also: CRecordset: :SetFieldDirty, CRecordset: : IsFieldNull

CRecordset: : IsFieldN ull
BOOL IsFieldNull(void* pv);

throw(CMemoryException);

Return Value
Nonzero if the specified field data member is flagged as Null; otherwise O.

Parameters

Remarks

pv A pointer to the field data member whose status you want to check, or NULL to
determine if any of the fields are Null.

Call this member function to determine whether the specified field data member of a
recordset has been flagged as Null. (In database terminology, Null means "having no
value" and is not the same as NULL in C++.) If a field data member is flagged as
Null, it is interpreted as a column of the current record for which there is no value.

Note This member function is not applicable on recordsets that are using bulk row fetching. If
you have implemented bulk row fetching, then IsFieldNull will always return FALSE and will
result in a failed assertion. For more information about bulk row fetching, see the article
"Recordset: Fetching Records in Bulk (DDBC)" in Visual C++ Programmer's Guide online.

IsFieldNull is implemented through DoFieldExchange.

See Also: CRecordset::SetFieldNull, CRecordset::IsFieldDirty

1607

CRecordset::IsFieldNullable

CRecordset: : IsFieldNullable
BOOL IsFieldNullable(void* pv);

throw(CDBException)

Parameters

Remarks

pv A pointer to the field data member whose status you want to check, or NULL
to determine if any of the fields can be set to a Null value.

Call this member function to to determine whether the specified field data member is
"nullable" (can be set to a Null value; C++ NULL is not the same as Null, which, in
database terminology, means "having no value").

Note If you have implemented bulk row fetching, you cannot call1sFieldNullable. Instead,
call the GetODBCFieldlnfo member function to determine whether a field can be set to a Null
value. Note that you can always call GetODBCFieldlnfo, regardless of whether you have
implemented bulk row fetching. For more information about bulk row fetching, see the article
"Recordset: Fetching Records in Bulk (DDBe)" in Visual C++ Programmer's Guide online.

A field that cannot be Null must have a value. If you attempt to set a such a field to
Null when adding or updating a record, the data source rejects the addition or update,
and Update will throw an exception. The exception occurs when you call Update,
not when you call SetFieldNull.

Using NULL for the first argument of the function will apply the function only to
outputColumns, not params. For instance, the call

SetFieldNull(NULL);

will set only outputColumns to NULL. Params will be unaffected.

To work on params, you must supply the actual address of the individual param you
want to work on, such as:

SetFieldNull(&m_strParam);

This means you cannot set all params NULL, as you can with outputColumns.

IsFieldNullable is implemented through DoFieldExchange.

See Also: CRecordset: : IsFieldNull, CRecordset: :SetFieldNull

CRecordset: :IsOpen
BOOL IsOpen() const;

Return Value

1608

Nonzero if the recordset object's Open or Requery member function has previously
been called and the recordset has not been closed; otherwise O.

Remarks
Call this member function to determine if the recordset is already open.

CRecordset: :Move
virtual void Move(long nRows, WORD wFetchType = SQL_FETCH_RELATIVE);

throw(CDBException, CMemoryException);

Parameters

Remarks

nRows The number of rows to move forward or backward. Positive values move
forward, toward the end of the recordset. Negative values move backward, toward
the beginning.

wFetchType Determines the row set that Move will fetch. For details, see Remarks.

Call this member function to move the current record pointer within the recordset,
either forward or backward. If you pass a value of 0 for nRows, Move refreshes the
current record; Move will end any current AddNew or Edit mode, and will restore
the current record's value before AddNew or Edit was called.

Note When moving through a recordset, deleted records may not be skipped. See the
IsDeleted member function for details.

Move repositions the recordset by rowsets. Based on the values for nRows and
wFetchType, Move fetches the appropriate row set and then makes the first record
in that rowset the current record. If you have not implemented bulk row fetching,
then the rowset size is always 1. When fetching a row set, Move directly calls the
CheckRowsetError member function to handle any errors resulting from the fetch.

Depending on the values you pass, Move is equivalent to other CRecordset member
functions. In particular, the value of wFetchType may indicate a member function that
is more intuitive and often the preferred method for moving the current record.

The following table lists the possible values for wFetchType, the rowset that Move
will fetch based on wFetchType and nRows, and any equivalent member function
corresponding to wFetchType.

wFetchType

SQL_FETCH_RELATIVE
(the default value)

Fetched row set

The rowset starting nRows
row(s) from the first row in
the current rowset.

The next rowset; nRows is
ignored.

Equivalent member function

MoveNext

(continued)

CRecordset: :Move

1609

CRecordset: :Move

1610

(continued)

wFetchType Fetched rowset

The previous rowset; nRows
is ignored.

The first rowset in the
recordset; nRows is ignored.

The last complete rowset in
the recordset; nRows is
ignored.

If nRows > 0, the rowset
starting nRows row(s)
from the beginning of the
recordset. If nRows < 0, the
rowset starting nRows row(s)
from the end of the record set.
If nRows = 0, then a
beginning-of-file (BOF)
condition is returned.

The rowset starting at the
row whose bookmark value
corresponds to nRows.

Equivalent member function

MovePrev

MoveFirst

MoveLast

SetAbsolutePosition

SetBookmark

Note For foward-only recordsets, Move is only valid with a value of SQl_FETCH_NEXT
for wFetch Type.

Caution Calling Move throws an exception if the recordset has no records. To determine
whether the recordset has any records, callisBOF and IsEOF.

If you have scrolled past the beginning or end of the recordset (lsBOF or IsEOF returns
nonzero), calling a Move function will possibly throw a CDBException. For example, if Is
EOF returns nonzero and IsBOF does not, then MoveNext will throw an exception, but
MovePrev will not.

If you call Move while the current record is being updated or added, the updates are lost
without warning.

For more information about recordset navigation, see the articles "Recordset:
Scrolling (ODBC)" and "Recordset: Bookmarks and Absolute Positions (ODBC)"
in Visual C++ Programmer's Guide online. For more information about bulk
row fetching, see the article "Recordset: Fetching Records in Bulk (ODBC)" in
Visual C++ Programmer's Guide online. For related information, see the ODBC
API function SQLExtendedFetch in the ODBC SDK Programmer's Reference.

Example
II rs is a CRecordset or a
II CRecordset-derived object

II Change the rowset size to 5
rS.SetRowsetSize(5);

II Move to the first record
II in therecordset
rs.MoveFirst();

II Move to the sixth record
rS.Move(5);
II Other equivalent ways to
II move to the sixth record:
II rS.Move(6. SOL_FETCH_ABSOLUTE);
II rs.SetAbsolutePosition(6);
II In this case. the sixth record is
II the first record in the next rowset.
II so the following are also equivalent:
II rS.Move(1. SOL_FETCH_NEXT);
II rs.MoveNext();

See Also: CRecordset::MoveNext, CRecordset::MovePrev,
CRecordset: :MoveFirst, CRecordset: :MoveLast,
CRecordset: :SetAbsolutePosition, CRecordset: :SetBookmark,
CRecordset::IsBOF, CRecordset::IsEOF, CRecordset::CheckRowsetError

CRecordset: : MoveFirst

Remarks

void MoveFirst();
throw(CDBException, CMemoryException);

Call this member function to make the first record in the first row set the current
record. Regardless of whether bulk row fetching has been implemented, this will
always be the first record in the recordset.

You do not have to call MoveFirst immediately after you open the recordset. At that
time, the first record (if any) is automatically the current record.

Note This member function is not valid for forward-only recordsets.

Note When moving through a recordset, deleted records may not be skipped. See the
Is Deleted member function for details.

CRecordset: :MoveFirst

1611

CRecordset: :MoveLast

Example

Caution Calling any of the Move functions throws an exception if the recordset has no
records. To determine whether the recordset has any records, callisBOF and IsEOF.

If you call any of the Move functions while the current record is being updated or added,
the updates are lost without warning.

For more information about recordset navigation, see the articles "Recordset:
Scrolling (ODBC)" and "Recordset: Bookmarks and Absolute Positions (ODBC)"
in Visual C++ Programmer's Guide online. For more information about bulk
row fetching, see the article "Record set: Fetching Records in Bulk (ODBC)" in
Visual C++ Programmer's Guide online.

See the example for IsBOF.

See Also: CRecordset: :Move, CRecordset: :MoveLast, CRecordset: :MoveNext,
CRecordset: :MovePrev, CRecordset: :IsBOF, CRecordset: :IsEOF

CRecordset: :MoveLast

Remarks

Example

1612

void MoveLast();
throw(CDBException, CMemoryException);

Call this member function to make the first record in the last complete rowset the
current record. If you have not implemented bulk row fetching, your recordset has
a row set size of 1, so MoveLast simply moves to the last record in the recordset.

Note This member function is not valid for forward-only recordsets.

Note When moving through a recordset, deleted records may not be skipped. See the
IsDeleted member function for details.

Caution Calling any of the Move functions throws an exception if the recordset has no
records. To determine whether the recordset has any records, callisBOF and IsEOF.

If you call any of the Move functions while the current record is being updated or added,
the updates are lost without warning.

For more information about recordset navigation, see the articles "Recordset:
Scrolling (ODBC)" and "Recordset: Bookmarks and Absolute Positions (ODBC)"
in Visual C++ Programmer's Guide online. For more information about bulk
row fetching, see the article "Recordset: Fetching Records in Bulk (ODBC)" in
Visual C++ Programmer's Guide online.

See the example for IsBOF.

CRecordset: :MoveNext

See Also: CRecordset: :Move, CRecordset: :MoveFirst, CRecordset: :MoveNext,
CRecordset: :MovePrev, CRecordset: :IsBOF, CRecordset: :IsEOF

CRecordset: :MoveN ext

Remarks

Example

void MoveNext();
throw(CDBException, CMemoryException);

Call this member function to make the first record in the next row set the current
record. If you have not implemented bulk row fetching, your recordset has a rowset
size of 1, so MoveNext simply moves to the next record.

Note When moving through a recordset, deleted records may not be skipped. See the
IsDeleted member function for details.

Caution Calling any of the Move functions throws an exception if the recordset has no
records. To determine whether the recordset has any records, callisBOF and IsEOF.

It is also recommended that you caliisEOF before calling MoveNext. For example, if you
have scrolled past the end of the recordset, IsEOF will return nonzero; a subsequent call
to MoveNext would throw an exception.

If you call any of the Move functions while the current record is being updated or added,
the updates are lost without warning.

For more information about recordset navigation, see the articles "Recordset:
Scrolling (ODBC)" and "Recordset: Bookmarks and Absolute Positions (ODBC)"
in Visual C++ Programmer's Guide online. For more information about bulk
row fetching, see the article "Recordset: Fetching Records in Bulk (ODBC)" in
Visual C++ Programmer's Guide online.

See the example for IsBOF.

See Also: CRecordset: :Move, CRecordset: :MovePrev, CRecordset: :MoveFirst,
CRecordset: :MoveLast, CRecordset: :IsBOF, CRecordset: :IsEOF

1613

CRecordset: : MovePrev

CRecordset: : MovePrev

Remarks

Example

void MovePrev();
throw(CDBException, CMemoryException);

Call this member function to make the first record in the previous rowset the current
record. If you have not implemented bulk row fetching, your recordset has a rowset
size of 1, so MovePrev simply moves to the previous record.

Note This member function is not valid for forward-only recordsets.

Note When moving through a recordset, deleted records may not be skipped. See the
IsOeleted member function for details.

Caution Calling any of the Move functions throws an exception if the recordset has no
records. To determine whether the recordset has any records, callisBOF and IsEOF.

It is also recommended that you callisBOF before calling MovePrev. For example, if you have
scrolled ahead of the beginning of the recordset, IsBOF will return nonzero; a subsequent call
to MovePrev would throw an exception.

If you call any of the Move functions while the current record is being updated or added, the
updates are lost without warning.

For more information about recordset navigation, see the articles "Recordset:
Scrolling (ODBC)" and "Recordset: Bookmarks and Absolute Positions (ODBC)"
in Visual c++ Programmer's Guide online. For more information about bulk
row fetching, see the article "Recordset: Fetching Records in Bulk (ODBC)" in
Visual C++ Programmer's Guide online.

See the example for IsBOF.

See Also: CRecordset: :Move, CRecordset: :MoveN ext, CRecordset: : MoveFirst,
CRecordset: :MoveLast, CRecordset: :IsBOF, CRecordset: :IsEOF

CRecordset: : OnSetOptions
virtual void OnSetOptions(HSTMT hstmt);

Parameters
hstmt The HSTMT of the ODBC statement whose options are to be set.

1614

Remarks
The framework calls this member function to set initial options for the recordset.
OnSetOptions determines the data source's support for scrollable cursors and for
cursor concurrency and sets the recordset's options accordingly.

Override OnSetOptions to set additional options specific to the driver or the data
source. For example, if your data source supports opening for exclusive access, you
might override OnSetOptions to take advantage of that ability.

For more information about cursors, see the article "ODBC" in Visual C++
Programmer's Guide online.

See Also: CDatabase:: OnSetOptions

CRecordset: : Open
virtual BOOL Open(UINT nOpenType = AFX_DB_USE_DEFAULT_TYPE,

... LPCTSTR IpszSQL = NULL, DWORD dwOptions = none);
throw(CDBException, CMemoryException);

Return Value
Nonzero if the CRecordset object was successfully opened; otherwise 0 if
CDatabase::Open (if called) returns O.

Parameters
nOpenType Accept the default value, AFX_DB_USE_DEFAULT_TYPE, or use

one of the following values from the enum OpenType:

• CRecordset::dynaset A recordset with bi-directional scrolling. The
membership and ordering of the records are determined when the recordset is
opened, but changes made by other users to the data values are visible following
a fetch operation. Dynasets are also known as keyset-driven recordsets.

• CRecordset::snapshot A static recordset with bi-directional scrolling. The
membership and ordering of the records are determined when the recordset is
opened; the data values are determined when the records are fetched. Changes
made by other users are not visible until the recordset is closed and then
reopened.

• CRecordset::dynamic A recordset with bi-directional scrolling. Changes
made by other users to the membership, ordering, and data values are visible
following a fetch operation. Note that many ODBC drivers do not support this
type of recordset.

• CRecordset::forwardOnly A read-only recordset with only forward scrolling.

For CRecordset, the default value is CRecordset::snapshot. The default-value
mechanism allows the Visual C++ wizards to interact with both ODBC
CRecordset and DAO CDaoRecordset, which have different defaults.

CRecordset: :Open

1615

CRecordset: :Open

1616

For more information about these recordset types, see the article "Record set
(ODBC)" in Visual C++ Programmer's Guide online. For related information, see
the article "Using Block and Scrollable Cursors" in the ODBC SDK Programmer's
Reference.

Caution If the requested type is not supported, the framework throws an exception.

IpszSQL A string pointer containing one of the following:

• A NULL pointer.

• The name of a table.

• An SQL SELECT statement (optionally with an SQL WHERE or ORDER BY
clause).

• A CALL statement specifying the name of a predefined query (stored
procedure). Be careful that you do not insert whitespace between the curly brace
and the CALL keyword.

For more information about this string, see the table and the discussion of
ClassWizard's role under Remarks.

Note The order of the columns in your result set must match the order of the RFX or Bulk
RFX function calls in your DoFieldExchange or DoBulkFieldExchange function override.

dwOptions A bitmask which can specify a combination of the values listed below.
Some of these are mutually exclusive. The default value is none.

• CRecordset::none No options set. This parameter value is mutually exclusive
with all other values. By default, the recordset can be updated with Edit or
Delete and allows appending new records with AddNew. Updatability
depends on the data source as well as on the nOpenType option you specify.
Optimization for bulk additions is not available. Bulk row fetching will not be
implemented. Deleted records will not be skipped during recordset navigation.
Bookmarks are not available. Automatic dirty field checking is implemented.

• CRecordset::appendOnly Do not allow Edit or Delete on the recordset.
Allow AddNew only. This option is mutually exclusive with
CRecordset: :readOnly.

• CRecordset::readOnly Open the recordset as read-only. This option is
mutually exclusive with CRecordset::appendOnly.

• CRecordset::optimizeBulkAdd Use a prepared SQL statement to optimize
adding many records at one time. Applies only if you are not using the ODBC
API function SQLSetPos to update the recordset. The first update determines
which fields are marked dirty. This option is mutually exclusive with
CRecordset::useMultiRowFetch.

• CRecordset: :useMultiRowFetch Implement bulk row fetching to allow
mUltiple rows to be retrieved in a single fetch operation. This is an advanced
feature designed to improve performance; however, bulk record field exchange
is not supported by ClassWizard. This option is mutually exclusive with
CRecordset::optimizeBulkAdd. Note that if you specify
CRecordset::useMultiRowFetch, then the option
CRecordset::noDirtyFieldCheck will be turned on automatically (double
buffering will not be available); on forward-only recordsets, the option
CRecordset::useExtendedFetch will be turned on automatically. For more
information about bulk row fetching, see the article "Recordset: Fetching
Records in Bulk (ODBC)" in Visual C++ Programmer's Guide online.

• CRecordset::skipDeletedRecords Skip all deleted records when navigating
through the recordset. This will slow performance in certain relative fetches.
This option is not valid on forward-only recordsets. Note that
CRecordset::skipDeletedRecords is similar to driver packing, which means
that deleted rows are removed from the recordset. However, if your driver packs
records, then it will skip only those records that you delete; it will not skip
records deleted by other users while the recordset is open.
CRecordset: :skipDeletedRecords will skip rows deleted by other users.

• CRecordset: :useBookmarks May use bookmarks on the recordset, if
supported. Bookmarks slow data retrieval but improve performance for data
navigation. Not valid on forward-only recordsets. For more information, see the
article "Recordset: Bookmarks and Absolute Positions (ODBC)" in Visual C++
Programmer's Guide online.

• CRecordset::noDirtyFieldCheck Turn off automatic dirty field checking
(double buffering). This will improve performance; however, you must
manually mark fields as dirty by calling the SetFieldDirty and SetFieldNull
member functions.Note that double buffering in class CRecordset is similar to
double buffering in class CDaoRecordset. However, in CRecordset, you
cannot enable double buffering on individual fields; you either enable it for all
fields or disable it for all fields. For more information about double buffering,
see the DAO article "DAO Record Field Exchange: Double Buffering Records"
in Visual C++ Programmer's Guide online. Note that if you specify the option
CRecordset::useMultiRowFetch, then CRecordset::noDirtyFieldCheck will
be turned on automatically; however, SetFieldDirty and SetFieldNull cannot be
used on recordsets that implement bulk row fetching.

• CRecordset: :executeDirect Do not use a prepared SQL statement. For
improved performance, specify this option if the Requery member function will
never be called.

• CRecordset: :useExtendedFetch Implement SQLExtendedFetch instead
of SQLFetch. This is designed for implementing bulk row fetching on
forward-only recordsets. If you specify the option

CRecordset:: Open

1617

CRecordset: :Open

Remarks

1618

CRecordset: :useMultiRowFetch on a forward-only recordset, then
CRecordset: :useExtendedFetch will be turned on automatically.

• CRecordset::userAllocMultiRowBuffers The user will allocate
storage buffers for the data. Use this option in conjunction with
CRecordset::useMultiRowFetch if you want to allocate your own storage;
otherwise, the framework will automatically allocate the necessary storage.
For more information, see the article "Recordset: Fetching Records in Bulk
(ODBC)" in Visual C++ Programmer's Guide online. Note that specifying
CRecordset: :user AllocMultiRowBuffers without specifying
CRecordset::useMultiRowFetch will result in a failed assertion.

You must call this member function to run the query defined by the recordset. Before
calling Open, you must construct the recordset object.

This recordset's connection to the data source depends on how you construct the
recordset before calling Open. If you pass a CDatabase object to the recordset
constructor that has not been connected to the data source, this member function uses
GetDefaultConnect to attempt to open the database object. If you pass NULL to the
recordset constructor, the constructor constructs a CDatabase object for you, and
Open attempts to connect the database object. For details on closing the recordset and
the connection under these varying circumstances, see Close.

Note Access to a data source through a CRecordset object is always shared. Unlike the
CDaoRecordset class, you cannot use a CRecordset object to open a data source with
exclusive access.

When you call Open, a query, usually an SQL SELECT statement, selects records
based on criteria shown in the following table.

Value of the IpszSQL parameter Records selected are determined by

NULL

SQL table name

Predefined query (stored
procedure) name

SELECT column-list
FROM table-list

The string returned by
GetDefauItSQL.

All columns of the table-list
in DoFieldExchange or
DoBulkFieldExchange.

The columns the query is defined
to return.

The specified columns from the
specified table(s).

Example

"Customer"

"{call
OverDueAccts}"

"SELECT CustId,
CustName FROM
Customer"

Warning Be careful that you do not insert extra whitespace in your Sal string. For example,
if you insert whitespace between the curly brace and the CALL keyword, MFC will misinterpret
the Sal string as a table name and incorporate it into a SELECT statement, which will result
in an exception being thrown. Similarly, if your predefined query uses an output parameter, do

Example

not insert whitespace between the curly brace and the I?, symbol. Finally, you must not insert
whitespace before the curly brace in a CALL statement or before the SELECT keyword in a
SELECT statment.

The usual procedure is to pass NULL to Open; in this case, Open calls
GetDefaultSQL. If you are using a derived CRecordset class, GetDefualtSQL
gives the table name(s) you specified in ClassWizard. You can instead specify other
information in the IpszSQL parameter.

Whatever you pass, Open constructs a final SQL string for the query (the string may
have SQL WHERE and ORDER BY clauses appended to the IpszSQL string you
passed) and then executes the query. You can examine the constructed string by
calling GetSQL after calling Open. For additional details about how the recordset
constructs an SQL statement and selects records, see the article "Recordset: How
Recordsets Select Records (ODBC)" in Visual c++ Programmer's Guide online.

The field data members of your recordset class are bound to the columns of the data
selected. If any records are returned, the first record becomes the current record.

If you want to set options for the recordset, such as a filter or sort, specify these after
you construct the recordset object but before you call Open. If you want to refresh the
records in the recordset after the recordset is already open, call Requery.

For more information, including additional examples, see the articles "Recordset
(ODBC)," "Recordset: How Recordsets Select Records (ODBC)," and "Recordset:
Creating and Closing Recordsets (ODBC)" in Visual C++ Programmer's Guide
online.

The following code examples show different forms of the Open call.

II rs is a CRecordset or
II CRecordset-derived object

II Open rs using the default SOL statement.
II implement bookmarks. and turn off
II automatic dirty field checking
rs.Open(CRecordset::snapshot. NULL.

CRecordset::useBookmarks I
CRecordset::noDirtyFieldCheck);

II Pass a complete SELECT statement
II and open as a dynaset
rs.Open(CRecordset: :dynaset.

_T("Select L_Name from Customer"));

II Accept all defaults
rs.Open();

CRecordset:: Open

1619

CRecordset: : RefreshRowset

See Also: CRecordset::CRecordset, CRecordset::Close,
CRecordset: : GetDefaultSQL, CRecordset: :GetSQL, CRecordset: :m_strFilter,
CRecordset: :m_strSort, CRecordset: :Requery

CRecordset: : RefreshRowset
void RefreshRowset(WORD wRow,

... WORD wLockType = SQL_LOCK_NO_CHANGE);

Parameters

Remarks

1620

wRow The one-based position of a row in the current rowset. This value can range
from zero to the size of the rowset.

wLockType A value indicating how to lock the row after it has been refreshed. For
details, see Remarks.

Call this member function to update the data and the status for a row in the current
row set. If you pass a value of zero for wRow, then every row in the rowset will be
refreshed.

To use RefreshRowset, you must have implemented bulk row fetching by specifying
the CRecordset::useMulitRowFetch option in the Open member function.

RefreshRowset calls the ODBC API function SQLSetPos. The wLockType parameter
specifies the lock state of the row after SQLSetPos has executed. The following table
describes the possible values for wLockType.

wLockType

SQL_LOCK_NO_CHANGE
(the default value)

Description

The driver or data source ensures that the row is in the
same locked or unlocked state as it was before
RefreshRowset was called.

The driver or data source locks the row exclusively.
Not all data sources support this type of lock.

The driver or data source unlocks the row. Not all data
sources support this type of lock.

For more information about SQLSetPos, see the ODBC SDK Programmer's
Reference. For more information about bulk row fetching, see the article "Recordset:
Fetching Records in Bulk (ODBC)" in Visual C++ Programmer's Guide online.

See Also: CRecordset: :SetRowsetCursorPosition, CRecordset: :SetRowsetSize

CRecordset: : Requery
virtual BOOL Requery();

throw(CDBException, CMemoryException);

Return Value

Remarks

Example

Nonzero if the recordset was successfully rebuilt; otherwise O.

Call this member function to rebuild (refresh) a recordset. If any records are returned,
the first record becomes the current record.

In order for the recordset to reflect the additions and deletions that you or other users
are making to the data source, you must rebuild the recordset by calling Requery. If
the recordset is a dynaset, it automatically reflects updates that you or other users
make to its existing records (but not additions). If the recordset is a snapshot, you
must call Requery to reflect edits by other users as well as additions and deletions.

For either a dynaset or a snapshot, call Requery any time you want to rebuild the
recordset using a new filter or sort, or new parameter values. Set the new filter or
sort property by assigning new values to m_strFilter and m_strSort before calling
Requery. Set new parameters by assigning new values to parameter data members
before calling Requery. If the filter and sort strings are unchanged, you can reuse the
query, which improves performance.

If the attempt to rebuild the recordset fails, the recordset is closed. Before you call
Requery, you can determine whether the recordset can be requeried by calling the
CanRestart member function. CanRestart does not guarantee that Requery will
succeed.

Caution Call Requery only after you have called Open.

This example rebuilds a recordset to apply a different sort order.

II Example for CRecordset::Requery

CCustSet rsCustSet(NULL);

II Open the recordset
rsCustSet.Open();

II Use the recordset ...

II Set the sort order and Requery the recordset
rsCustSet.m_strSort = "District. Last_Name";
if(!rsCustSet.CanRestart())

return; II Unable to requery

i f(! rsCustSet. Requery())
II Requery failed. so take action

CRecordset: :Requery

1621

CRecordset:: SetAbsolutePosition

See Also: CRecordset:: CanRestart, CRecordset: :m_strFilter,
CRecordset: :m_strSort

CRecordset: : SetAbsolutePosition
void SetAbsolutePosition(long nRows);

throw(CDBException, CMemoryException);

Parameters

Remarks

nRows The one-based ordinal position for the current record in the recordset.

Call this member function to position the recordset on the record corresponding to the
specified record number. SetAbsolutePosition moves the current record pointer based
on this ordinal position.

Note This member function is not valid on forward-only recordsets.

For ODBC recordsets, an absolute position setting of 1 refers to the first record in the
recordset; a setting of 0 refers to the beginning-of-file (BOF) position.

You can also pass negative values to SetAbsolutePosition. In this case the recordset's
position is evaluated from the end of the recordset. For example,
SetAbs 01 ute Pas it ion (-1) moves the current record pointer to the last record
in the recordset.

Note Absolute position is not intended to be used as a surrogate record number. Bookmarks
are still the recommended way of retaining and returning to a given position, since a record's
position changes when preceding records are deleted. In addition, you cannot be assured that a
given record will have the same absolute position if the recordset is re-created again because
the order of individual records within a recordset is not guaranteed unless it is created with an
Sal statement using an ORDER BY clause.

For more information about recordset navigation and bookmarks, see the articles
"Recordset: Scrolling (ODBC)" and "Recordset: Bookmarks and Absolute Positions
(ODBC)" in Visual C++ Programmer's Guide online.

See Also: CRecordset: :SetBookmark

CRecordset: : SetBookmark
void SetBookmark(const CDBVariant& varBookmark);

throw(CDBException, CMemoryException);

Parameters

1622

varBookmark A reference to a CDBVariant object containing the bookmark value
for a specific record.

CRecordset:: SetFieldDirty

Remarks
Call this member function to position the recordset on the record containing the
specified bookmark. To determine if bookmarks are supported on the recordset, call
CanBookmark. To make bookmarks available if they are supported, you must set the
CRecordset: :useBookmarks option in the dWOptions parameter of the Open
member function.

Note If bookmarks are unsupported or unavailable, calling SetBookmark will result in an
exception being thrown. Bookmarks are not supported on forward-only recordsets.

To first retrieve the bookmark for the current record, call GetBookmark, which saves
the bookmark value to a CDBVariant object. Later, you can return to that record by
calling SetBookmark using the saved bookmark value.

Note After certain recordset operations, you should check the bookmark persistence before
calling SetBookmark. For example, if you retrieve a bookmark with GetBookmark and then
call Requery, the bookmark may no longer be valid. Call
CDatabase::GetBookmarkPersistence to check whether you can safely call SetBookmark.

For more information about bookmarks and recordset navigation, see the articles
"Recordset: Bookmarks and Absolute Positions (ODBC)" and "Recordset: Scrolling
(ODBC)" in Visual C++ Programmer's Guide online.

See Also: CRecordset::CanBookmark, CRecordset::GetBookmark,
CRecordset: :SetAbsolutePosition, CDatabase: : GetBookmarkPersistence

CRecordset: : SetFieldDirty
void SetFieldDirty(void* pv, BOOL bDirty = TRUE);

Parameters

Remarks

pv Contains the address of a field data member in the recordset or NULL. If NULL,
all field data members in the recordset are flagged. (C++ NULL is not the same as
Null in database terminology, which means "having no value.")

bDirty TRUE if the field data member is to be flagged as "dirty" (changed).
Otherwise FALSE if the field data member is to be flagged as "clean"
(unchanged).

Call this member function to flag a field data member of the recordset as changed or
as unchanged. Marking fields as unchanged ensures the field is not updated and
results in less SQL traffic.

Note This member function is not applicable on recordsets that are using bulk row fetching. If
you have implemented bulk row fetching, then SetFieldDirty will result in a failed assertion. For
more information about bulk row fetching, see the article "Recordset: Fetching Records in Bulk
(GOBC)" in Visual C++ Programmer's Guide online.

1623

CRecordset:: SetFieldNull

The framework marks changed field data members to ensure they will be written to
the record on the data source by the record field exchange (RFX) mechanism.
Changing the value of a field generally sets the field dirty automatically, so you will
seldom need to call SetFieldDirty yourself, but you might sometimes want to ensure
that columns will be explicitly updated or inserted regardless of what value is in the
field data member.

Important Call this member function only after you have called Edit or Add New.

Using NULL for the first argument of the function will apply the function only to
outputColumns, not params. For instance, the call

SetFieldNull(NULL);

will set only outputColumns to NULL. Params will be unaffected.

To work on params, you must supply the actual address of the individual param you
want to work on, such as:

SetFieldNull(&m_strParam);

This means you cannot set all params NULL, as you can with outputColumns.

See Also: CRecordset::IsFieldDirty, CRecordset::SetFieldNull,
CRecordset: :Edit, CRecordset:: Update

CRecordset: : SetFieldN ull
void SetFieldNull(void* pv, BOOL bNuli = TRUE);

Parameters

Remarks

1624

pv Contains the address of a field data member in the recordset or NULL. If NULL,
all field data members in the recordset are flagged. (C++ NULL is not the same as
Null in database terminology, which means "having no value.")

bNuli Nonzero if the field data member is to be flagged as having no value (Null).
Otherwise 0 if the field data member is to be flagged as non-Null.

Call this member function to flag a field data member of the recordset as Null
(specifically having no value) or as non-Null. When you add a new record to a
recordset, all field data members are initially set to a Null value and flagged as "dirty"
(changed). When you retrieve a record from a data source, its columns either already
have values or are Null.

Note Do not call this member function on recordsets that are using bulk row fetching. If you
have implemented bulk row fetching, calling SetFieldNull results in a failed assertion. For more
information about bulk row fetching, see the article "Recordset: Fetching Records in Bulk
(DDBC)" in Visual C++ Programmer's Guide online.

CRecordset: :SetLockingMode

If you specifically wish to designate a field of the current record as not having a value,
call SetFieldNull with bNull set to TRUE to flag it as Null. If a field was previously
marked Null and you now want to give it a value, simply set its new value. You do not
have to remove the Null flag with SetFieldNull. To determine whether the field is
allowed to be Null, call IsFieldNullable.

Important Call this member function only after you have called Edit or Add New.

U sing NULL for the first argument of the function will apply the function only to
outputColumns, not params. For instance, the call

SetFieldNull(NULL);

will set only outputColumns to NULL. Params will be unaffected.

To work on params, you must supply the actual address of the individual param you
want to work on, such as:

SetFieldNull(&m_strParam);

This means you cannot set all params NULL, as you can with outputColumns.

Note When setting parameters to Null, a call to SetFieldNull before the recordset is opened
results in an assertion. In this case, call SetParamNul1.

SetFieldNull is implemented through DoFieldExchange.

See Also: CRecordset: : IsFieldNull, CRecordset: :SetFieldDirty,
CRecordset: :Edit, CRecordset:: Update, CRecordset: :IsFieldNullable

CRecordset: : SetLockingMode
void SetLockingMode(UINT nMode);

Parameters

Remarks

nMode Contains one of the following values from the enum LockMode:

• optimistic Optimistic locking locks the record being updated only during the
call to Update.

• pessimistic Pessimistic locking locks the record as soon as Edit is called and
keeps it locked until the Update call completes or you move to a new record.

Call this member function if you need to specify which of two record-locking
strategies the recordset is using for updates. By default, the locking mode of a
recordset is optimistic. You can change that to a more cautious pessimistic locking
strategy. Call SetLockingMode after you construct and open the recordset object but
before you call Edit.

See Also: CRecordset: :Edit, CRecordset:: Update

1625

CRecordset: :SetParamNull

CRecordset: : SetParamN ull
void SetParamNull(int nlndex, BOOL bNull = TRUE);

Parameters

Remarks

nlndex The zero-based index of the parameter.

bNull If TRUE (the default value), the parameter is flagged as Null. Otherwise, the
parameter is flagged as non-Null.

Call this member function to flag a parameter as Null (specifically having no value) or
as non-Null. Unlike SetFieldNull, you can call SetParamNull before you have
opened the recordset.

SetParamNull is typically used with predefined queries (stored procedures).

See Also: CRecordset: : FlushResultSet

CRecordset: : SetRowsetCursorPosition
void SetRowsetCursorPosition(WORD wRow,

~ WORD wLockType = SQL_LOCK_NO_CHANGE);

Parameters

Remarks

1626

wRow The one-based position of a row in the current rowset. This value can range
from 1 to the size of the row set.

wLockType Value indicating how to lock the row after it has been refreshed. For
details, see Remarks.

Call this member function to move the cursor to a row within the current row set.
When implementing bulk row fetching, records are retrieved by rowsets, where the
first record in the fetched row set is the current record. In order to make another record
within the rowset the current record, call SetRowsetCursorPosition. For example,
you can combine SetRowsetCursorPosition with the GetFieldValue member
function to dynamically retrieve the data from any record of your recordset.

To use SetRowsetCursorPosition, you must have implemented bulk row fetching by
specifying the CRecordset::useMultiRowFetch option of the dwOptions parameter
in the Open member function.

SetRowsetCursorPosition calls the ODBC API function SQLSetPos. The
wLockType parameter specifies the lock state of the row after SQLSetPos has
executed. The following table describes the possible values for wLockType.

CRecordset:: SetRowsetSize

wLockType

SQL_LOCK_NO_CHANGE
(the default value)

Description

The driver or data source ensures that the row is in
the same locked or unlocked state as it was before
SetRowsetCursorPosition was called.

The driver or data source locks the row exclusively.
Not all data sources support this type of lock.

The driver or data source unlocks the row. Not all
data sources support this type of lock.

For more information about SQLSetPos, see the ODBC SDK Programmer's
Reference. For more information about bulk row fetching, see the article "Recordset:
Fetching Records in Bulk (ODBC)" in Visual C++ Programmer's Guide online.

See Also: CRecordset: : RefreshRowset, CRecordset: :SetRowsetSize

CRecordset: : SetRowsetSize
virtual void SetRowsetSize(DWORD dwNewRowsetSize);

Parameters

Remarks

dwNewRowsetSize The number of rows to retrieve during a given fetch.

This virtual member function specifies how many rows you wish to retrieve during a
single fetch when using bulk row fetching. To implement bulk row fetching, you must
set the CRecordset: :useMultiRowFetch option in the dwOptions parameter of the
Open member function.

Note Calling SetRowsetSize without implementing bulk row fetching will result in a failed
assertion.

Call SetRowsetSize before calling Open to initially set the row set size for the
recordset. The default rowset size when implementing bulk row fetching is 25.

Note Use caution when calling SetRowsetSize. If you are manually allocating storage for the
data (as specified by the CRecordset::userAllocMultiRowBuffers option of the dwOptions
parameter in Open), you should check whether you need to reallocate these storage buffers
after you call SetRowsetSize, but before you perform any cursor navigation operation.

To obtain the current setting for the rowset size, call GetRowsetSize.

For more information about bulk row fetching, see the article "Recordset: Fetching
Records in Bulk (ODBC)" in Visual C++ Programmer's Guide online.

See Also: CRecordset: :Open, CRecordset: :GetRowsetSize,
CRecordset:: CheckRowsetError, CRecordset: :DoBulkFieldExchange

1627

CRecordset:: Update

CRecordset:: Update
virtual BOOL Update();

throw(CDBException);

Return Value

Remarks

Example

1628

Nonzero if one record was successfully updated; otherwise 0 if no columns have
changed. If no records were updated, or if more than one record was updated, an
exception is thrown. An exception is also thrown for any other failure on the data
source.

Call this member function after a call to the AddNew or Edit member function. This
call is required to complete the AddNew or Edit operation.

Note If you have implemented bulk row fetching, you cannot call Update. This will result in a
failed assertion. Although class CRecordset does not provide a mechanism for updating bulk
rows of data, you can write your own functions by using the OOBC API function SQLSetPos.
For an example of how to do this, see the sample "OBFETCH" online. For more information
about bulk row fetching, see the article "Recordset: Fetching Records in Bulk (OOBC)" in
Visual C++ Programmer's Guide online.

Both AddNew and Edit prepare an edit buffer in which the added or edited data is
placed for saving to the data source. Update saves the data. Only those fields marked
or detected as changed are updated.

If the data source supports transactions, you can make the Update call (and its
corresponding AddNew or Edit call) part of a transaction. For more information
about transactions, see the article "Transaction (ODBC)" in Visual C++
Programmer's Guide online.

Caution If you call Update without first calling either Add New or Edit, Update throws a
CDBException. If you call AddNew or Edit, you must call Update before you call a Move
operation or before you close either the recordset or the data source connection. Otherwise,
your changes are lost without notification.

For details on handling Update failures, see the article "Recordset: How Recordsets
Update Records (ODBC)" in Visual C++ Programmer's Guide online.

See the article "Transaction: Performing a Transaction in a Recordset (ODBC)" in
Visual C++ Programmer's Guide online.

See Also: CRecordset::Edit, CRecordset::AddNew, CRecordset::SetFieldDirty,
CDBException

CRecordset: :m_nFields

Data Members
CRecordset: :m_hstmt
Remarks

Contains a handle to the ODBC statement data structure, of type HSTMT, associated
with the recordset. Each query to an ODBC data source is associated with an HSTMT.

Caution Do not use m_hstmt before Open has been called.

Normally you do not need to access the HSTMT directly, but you might need it for
direct execution of SQL statements. The ExecuteSQL member function of class
CDatabase provides an example of using m_hstmt.

See Also: CDatabase: :ExecuteSQL

CRecordset: :m_nFields
Remarks

Example

Contains the number of field data members in the recordset class - the number of
columns selected by the recordset from the data source. The constructor for the
recordset class must initialize m_nFields with the correct number. If you have not
implemented bulk row fetching, ClassWizard writes this initialization for you when
you use it to declare your recordset class. You can also write it manually.

The framework uses this number to manage interaction between the field data
members and the corresponding columns of the current record on the data source.

Important This number must correspond to the number of "output columns" registered in
DoFieldExchange or DoBulkFieldExchange after a call to SetFieldType with the parameter
CFieldExchange::outputColumn.

You can bind columns dynamically, as explained in the article "Record set:
Dynamically Binding Data Columns." If you do so, you must increase the count
in m_nFields to reflect the number of RFX or Bulk RFX function calls in your
DoFieldExchange or DoBulkFieldExchange member function for the dynamically
bound columns.

For more information, see the articles "Recordset: Dynamically Binding Data
Columns (ODBC)" and "Recordset: Fetching Records in Bulk (ODBC)" in
Visual C++ Programmer's Guide online.

See the article "Record Field Exchange: Using RFX" in Visual C++ Programmer's
Guide online.

1629

CRecordset: :m_nParams

See Also: CRecordset: :DoFieldExchange, CRecordset: :DoBulkFieldExchange,
CRecordset: : m_nParams , CFieldExchange: :SetFieldType

CRecordset: :m_nParams
Remarks

Example

Contains the number of parameter data members in the recordset class - the number
of parameters passed with the recordset's query. If your recordset class has any
parameter data members, the constructor for the class must initialize m_nParams
with the correct number. The value of m_nParams defaults to o. If you add parameter
data members - which you must do manually - you must also manually add an
initialization in the class constructor to reflect the number of parameters (which must
be at least as large as the number of'?' placeholders in your m_strFilter or
m_strSort string).

The framework uses this number when it parameterizes the recordset's query.

Important This number must correspond to the number of "params" registered in
Do Field Exchange or DoBulkFieldExchange after a call to SetFieldType with a parameter
value of CFieldExchange::inputParam, CFieldExchange::param,
CFieldExchange::outputParam, or CFieldExchange::inoutParam.

See the articles "Recordset: Parameterizing a Recordset (ODBC)" and "Record Field
Exchange: Using RFX" in Visual C++ Programmer's Guide online.

See Also: CRecordset: :DoFieldExchange, CRecordset: :DoBulkFieldExchange,
CRecordset: :m_nFields, CFieldExchange: :SetFieldType

CRecordset: :m_pDatabase
Remarks

1630

Contains a pointer to the CDatabase object through which the recordset is connected
to a data source. This variable is set in two ways. Typically, you pass a pointer to an
already connected CDatabase object when you construct the recordset object. If you
pass NULL instead, CRecordset creates a CDatabase object for you and connects it.
In either case, CRecordset stores the pointer in this variable.

Normally you will not directly need to use the pointer stored in m_pDatabase. If you
write your own extensions to CRecordset, however, you might need to use the
pointer. For example, you might need the pointer if you throw your own
CDBExceptions. Or you might need it if you need to do something using the same
CDatabase object, such as running transactions, setting timeouts, or calling the
ExecuteSQL member function of class CDatabase to execute SQL statements
directly.

CRecordset: :m_strSort

CRecordset: :m_strFilter
Remarks

Example

After you construct the recordset object, but before you call its Open member
function, use this data member to store a CString containing an SQL WHERE
clause. The recordset uses this string to constrain - or filter - the records it selects
during the Open or Requery call. This is useful for selecting a subset of records, such
as "all salespersons based in California" ("state = CA"). The ODBC SQL syntax for a
WHERE clause is

WHERE search-condition

Note that you do not include the WHERE keyword in your string. The framework
supplies it.

You can also parameterize your filter string by placing '?' placeholders in it, declaring
a parameter data member in your class for each placeholder, and passing parameters to
the recordset at run time. This lets you construct the filter at run time. For more
information, see the article "Recordset: Parameterizing a Recordset (ODBC)" in
Visual C++ Programmer's Guide online.

For more information about SQL WHERE clauses, see the article "SQL." For more
information about selecting and filtering records, see the article "Recordset: Filtering
Records (ODBC)." Both articles are in Visual C++ Programmer's Guide online.

II Example for CRecordset::m_strFilter

CCustSet rsCustSet(NULL);

II Set the filter
rsCustSet.m_strFilter = "state = 'CA"';

II Run the filtered query
rsCustSet.Open(CRecordset::snapshot, "Customers");

See Also: CRecordset: :m_strSort, CRecordset: :Requery

CRecordset: :m_strSort
Remarks

After you construct the recordset object, but before you call its Open member
function, use this data member to store a CString containing an SQL ORDER BY
clause. The recordset uses this string to sort the records it selects during the Open or
Requery call. You can use this feature to sort a recordset on one or more columns.
The ODBC SQL syntax for an ORDER BY clause is

ORDER BY sort-specification [, sort-specification] ...

1631

CRecordset: : m_strSort

Example

1632

where a sort-specification is an integer or a column name. You can also specify
ascending or descending order (the order is ascending by default) by appending
"ASC" or "DESC" to the column list in the sort string. The selected records are sorted
first by the first column listed, then by the second, and so on. For example, you might
order a "Customers" recordset by last name, then first name. The number of columns
you can list depends on the data source. For more information, see the ODBC SDK
Programmer's Reference.

Note that you do not include the ORDER BY keyword in your string. The framework
supplies it.

For more information about SQL clauses, see the article "SQL." For more information
about sorting records, see the article "Record set: Sorting Records (ODBC)." Both
articles are in Visual C++ Programmer's Guide online.

II Example for CRecordset::m_strSort

CCustSet rsCustSet(NULL);

II Set the sort string
rsCustSet.m_strSort - "District, Last_Name";

II Run the sorted query
rsCustSet.Open(CRecordset::snapshot, "Customers»);

See Also: CRecordset::m_strFilter, CRecordset::Requery

CRecordView

CRecordView

A CRecordView object is a view that displays database records in controls. The view
is a form view directly connected to a CRecordset object. The view is created from
a dialog template resource and displays the fields of the CRecordset object in the
dialog template's controls. The CRecordView object uses dialog data exchange
(DDX) and record field exchange (RFX) to automate the movement of data between
the controls on the form and the fields of the recordset. CRecordView also supplies
a default implementation for moving to the first, next, previous, or last record and
an interface for updating the record currently on view.

Note If you are working with the Data Access Objects (DAO) classes rather than the Open
Database Connectivity (ODSC) classes, use class CDaoRecordView instead. For more
information, see the articles "Database Topics (General)" and "DAD and MFC" in Visual C++
Programmer's Guide online.

The most common way to create your record view is with App Wizard. App Wizard
creates both the record view class and its associated recordset class as part of your
skeleton starter application. If you don't create the record view class with AppWizard,
you can create it later with Class Wizard. If you simply need a single form, the
App Wizard approach is easier. Class Wizard lets you decide to use a record view
later in the development process. Using ClassWizard to create a record view and a
recordset separately and then connect them is the most flexible approach because it
gives you more control in naming the recordset class and its .H/.CPP files. This
approach also lets you have mUltiple record views on the same recordset class.

To make it easy for end-users to move from record to record in the record view,
AppWizard creates menu (and optionally toolbar) resources for moving to the first,
next, previous, or last record. If you create a record view class with ClassWizard, you
need to create these resources yourself with the menu and bitmap editors. For more
information about these resources, see "Overview: Creating a Program That Supports
a Database" and "ClassWizard: Creating a Database Form."

CRecordView

1633

CRecordView

For information about the default implementation for moving from record to record,
see IsOnFirstRecord and IsOnLastRecord and the article "Record Views: Using a
Record View."

CRecordView keeps track of the user's position in the recordset so that the record
view can update the user interface. When the user moves to either end of the
recordset, the record view disables user interface objects - such as menu items or
toolbar buttons - for moving further in the same direction.

For more information about declaring and using your record view and recordset
classes, see "Designing and Creating a Record View" in the article "Record Views."
For more information about how record views work and how to use them, see the
article "Record Views: Using a Record View." All the articles mentioned above are
in Visual C++ Programmer's Guide online.

#include <afxdb.h>

See Also: CRecordset, CForm View

CRecordView Class Members
Construction

CRecordView

Attributes

OnGetRecordset

IsOnFirstRecord

IsOnLastRecord

Operations

OnMove

1634

Constructs a CRecordView object.

Returns a pointer to an object of a class derived
from CRecordset. ClassWizard overrides this function
for you and creates the recordset if necessary.

Returns nonzero if the current record is the first
record in the associated recordset.

Returns nonzero if the current record is the last
record in the associated recordset.

If the current record has changed, updates it on
the data source, then moves to the specified record
(next, previous, first, or last).

CRecordView: :CRecordView

Member Functions
CRecordView: :CRecordView

CRecordView(LPCSTR IpszTemplateName);
CRecordView(UINT nIDTemplate);

Parameters

Remarks

Example

IpszTemplateName Contains a null-terminated string that is the name of a dialog
template resource.

nIDTemplate Contains the ID number of a dialog template resource.

When you create an object of a type derived from CRecordView, call either form of
the constructor to initialize the view object and identify the dialog resource on which
the view is based. You can either identify the resource by name (pass a string as the
argument to the constructor) or by its ID (pass an unsigned integer as the argument).
U sing a resource ID is recommended.

Note Your derived class must supply its own constructor. In the constructor of your derived
class, call the constructor CRecordView::CRecordView with the resource name or ID as an
argument, as shown in the example below.

CRecordView::OnInitiaIUpdate calls UpdateData, which calls DoDataExchange.
This initial call to DoDataExchange connects CRecordView controls (indirectly) to
CRecordset field data members created by Class Wizard. These data members cannot
be used until after you call the base class CFormView::OnInitiaIUpdate member
function.

Note If you use ClassWizard, the wizard defines an enum value CRecordVi ew: : IDD and
specifies it in the member initialization list for the constructor where you see I DO_MY Fa RM in the
example. The example shows how you can specify the dialog template resource ID if you write
the code yourself without the wizard.

CMyRecordView::CMyRecordView()
: CRecordView(IDD_MYFORM)

II{{AFX_DATA_INIT(CMyRecordView
II NOTE: the ClassWizard will add member initialization here

II}}AFX_DATA_INIT
II Other construction code, such as data initialization

See Also: CRecordset::DoFieldExchange, CView::OnInitiaIUpdate,
CWnd::UpdateData

1635

CRecordView: :IsOnFirstRecord

CRecordView: : IsOnFirstRecord
BOOL IsOnFirstRecord();

Return Value

Remarks

Nonzero if the current record is the first record in the record set; otherwise O.

Call this member function to determine whether the current record is the first record in
the recordset object associated with this record view. This function is useful for
writing your own implementations of default command update handlers written by
Class Wizard.

If the user moves to the first record, the framework disables any user interface objects
you have for moving to the first or the previous record.

See Also: CRecordView: :OnMove, CRecordView: :IsOnLastRecord,
CRecordset: :IsBOF, CRecordset: :GetRecordCount

CRecordView: : IsOnLastRecord
BOOL IsOnLastRecord();

Return Value

Remarks

1636

Nonzero if the current record is the last record in the recordset; otherwise O.

Call this member function to determine whether the current record is the last record
in the recordset object associated with this record view. This function is useful for
writing your own implementations of the default command update handlers that
ClassWizard writes to support a user interface for moving from record to record.

Caution The result of this function is reliable except that the view cannot detect the end of the
recordset until the user has moved past it. The user must move beyond the last record before
the record view can tell that it must disable any user interface objects for moving to the next or
last record. If the user moves past the last record and then moves back to the last record (or
before it), the record view can track the user's position in the recordset and disable user
interface objects correctly. IsOnLastRecord is also unreliable after a call to the implementation
function OnRecordLast, which handles the ID_RECORD_LAST command, or
CRecordset: :MoveLast.

See Also: CRecordView: :OnMove, CRecordView: :IsOnFirstRecord,
CRecordset: :IsEOF, CRecordset: : GetRecordCount

CRecordView: :OnMove

CRecordView: :OnGetRecordset
virtual CRecordset* OnGetRecordset() = 0;

Return Value

Remarks

A pointer to a CRecordset-derived object if the object was successfully created;
otherwise a NULL pointer.

Returns a pointer to the CRecordset-derived object associated with the record view.
You must override this member function to construct or obtain a recordset object and
return a pointer to it. If you declare your record view class with ClassWizard, the
wizard writes a default override for you. Class Wizard's default implementation returns
the recordset pointer stored in the record view if one exists. If not, it constructs a
recordset object of the type you specified with ClassWizard and calls its Open
member function to open the table or run the query, and then returns a pointer to the
object.

For more information and examples, see the article "Record Views: Using a Record
View" in Visual C++ Programmer's Guide online.

See Also: CRecordset, CRecordset: :Open

CRecordView: : OnMove
virtual BOOL OnMove(UINT nIDMoveCommand);

throw(CDBException);

Return Value
Nonzero if the move was successful; otherwise 0 if the move request was denied.

Parameters

Remarks

nIDMoveCommand One of the following standard command ID values:

• ID _RECORD_FIRST Move to the first record in the recordset.

• ID _RECORD _LAST Move to the last record in the recordset.

• ID _RECORD_NEXT Move to the next record in the recordset.

• ID _RECORD _PREY Move to the previous record in the recordset.

Call this member function to move to a different record in the recordset and display
its fields in the controls of the record view. The default implementation calls the
appropriate Move member function of the CRecordset object associated with the
record view.

1637

CRecordView: :OnMove

1638

By default, OnMove updates the current record on the data source if the user has
changed it in the record view.

AppWizard creates a menu resource with First Record, Last Record, Next Record, and
Previous Record menu items. If you select the Dockable Toolbar option, AppWizard
also creates a toolbar with buttons corresponding to these commands.

If you move past the last record in the recordset, the record view continues to display
the last record. If you move backward past the first record, the record view continues
to display the first record.

Caution Calling OnMove throws an exception if the recordset has no records. Call
the appropriate user interface update handler function-OnUpdateRecordFirst,
OnUpdateRecordLast, OnUpdateRecordNext, or OnUpdateRecordPrev-before
the corresponding move operation to determine whether the recordset has any records.
For information about the update handlers, see "Overview: Creating a Program That
Supports a Database" in Visual C++ Programmer's Guide online.

See Also: CRecordset: :Move

CRect
The CRect class is similar to a Windows RECT structure. CRect also includes
member functions to manipulate CRect objects and Windows RECT structures.

A CRect object can be passed as a function parameter wherever a RECT structure,
LPCRECT, or LPRECT can be passed.

Note This class is derived from the tagRECT structure. (The name tagRECT is a
less-commonly-used name for the RECT structure.) This means that the data members
(left, top, right, and bottom) of the RECT structure are accessible data members of CRect.

A CRect contains member variables that define the top-left and bottom-right points
of a rectangle.

When specifying a CRect, you must be careful to construct it so that it is normalized
in other words, such that the value of the left coordinate is less than the right and the top
is less than the bottom. For example, a top left of (10,10) and bottom right of (20,20)
defines a normalized rectangle but a top left of (20,20) and bottom right of (10,10)
defines a non-normalized rectangle. If the rectangle is not normalized, many CRect
member functions may return incorrect results. (See CRect::NormalizeRect for a list
of these functions.) Before you call a function that requires normalized rectangles, you
can normalize non-normalized rectangles by calling the NormalizeRect function.

Use caution when manipulating a CRect with the CDC::DPtoLP and CDC::LPtoDP
member functions. If the mapping mode of a display context is such that the y-extent
is negative, as in MM_LOENGLISH, then CDC::DPtoLP will transform the CRect
so that its top is greater than the bottom. Functions such as Height and Size will then
return negative values for the height of the transformed CRect, and the rectangle will
be non-normalized.

When using overloaded CRect operators, the first operand must be a CRect; the
second can be either a RECT structure or a CRect object.

#include <afxwin.h>

See Also: CPoint, CSize, RECT

CRect Class Members
Construction

CRect Constructs a CRect object.

eRect

1639

CRect

1640

Operations

Width

Height

Size

Top Left

BottomRight

CenterPoint

IsRectEmpty

IsRectNull

PtInRect

SetRect

SetRectEmpty

CopyRect

EqualRect

InflateRect

DeflateRect

NormalizeRect

OffsetRect

SubtractRect

IntersectRect

UnionRect

Operators

operator LPCRECT

operator LPRECT

operator =
operator ==
operator !=

operator +=

operator -=

operator &=

operator 1=

operator +

operator -

Calculates the width of CRect.

Calculates the height of CRect.

Calculates the size of CRect.

Returns the top-left point of CRect.

Returns the bottom-right point of CRect.

Returns the centerpoint of CRect.

Determines whether CRect is empty. CRect is empty if the width
and/or height are O.

Determines whether the top, bottom, left, and right member
variables are all equal to O.

Determines whether the specified point lies within CRect.

Sets the dimensions of CRect.

Sets CRect to an empty rectangle (all coordinates equal to 0).

Copies the dimensions of a source rectangle to CRect.

Determines whether CRect is equal to the given rectangle.

Increases the width and height of CRect.

Decreases the width and height of CRect.

Standardizes the height and width of CRect.

Moves CRect by the specified offsets.

Subtracts one rectangle from another.

Sets CRect equal to the intersection of two rectangles.

Sets CRect equal to the union of two rectangles.

Converts a CRect to an LPCRECT.

Converts a CRect to an LPRECT.

Copies the dimensions of a rectangle to CRect.

Determines whether CRect is equal to a rectangle.

Determines whether CRect is not equal to a rectangle.

Adds the specified offsets to CRect or inflates CRect.

Subtracts the specified offsets from CRect or deflates CRect.

Sets CRect equal to the intersection of CRect and a rectangle.

Sets CRect equal to the union of CRect and a rectangle.

Adds the given offsets to CRect or inflates CRect and returns the
resulting CRect.

Subtracts the given offsets from CRect or deflates CRect and returns
the resulting CRect.

Operators (continued)

operator &

operator I

Creates the intersection of CRect and a rectangle and returns the
resulting CRect.

Creates the union of CRect and a rectangle and returns the resulting
CRect.

Member Functions
CRect: :BottomRight

CPoint& BottomRight();
const CPoint& BottomRight() const;

Return Value

Remarks

The coordinates of the bottom-right corner of the rectangle.

The coordinates are returned as a reference to a CPoint obj ect that is contained in
CRect.

You can use this function to either get or set the bottom-right corner of the rectangle.
Set the corner by using this function on the left side of the assignment operator.

See Also: CRect::TopLeft, CPoint, CRect::CenterPoint

CRect: : CenterPoint
CPoint CenterPoint() const;

Return Value

Remarks

A CPoint object that is the centerpoint of CRect.

Calculates the centerpoint of CRect by adding the left and right values and dividing
by two, and adding the top and bottom values and dividing by two.

See Also: CRect:: Width, CRect: :Height, CRect: :Size, CRect: : TopLeft,
CRect::BottomRight, CRect::lsRectNull, Cpoint

CRect: :CenterPoint

1641

CRect: :CopyRect

CReet: : Copy Reet
void CopyRect(LPCRECT IpSrcRect);

Parameters

Remarks

IpSrcRect Points to the RECT structure or CRect object that is to be copied.

Copies the IpSrcRect rectangle into Crect.

See Also: CRect::CRect, CRect::operator =, CRect::SetRect,
CRect: :SetRectEmpty

CReet: :CReet
CRect();
CRect(int I, int t, int r, int b);
CRect(const RECT & srcRect);
CRect(LPCRECT IpSrcRect);
CRect(POINT point, SIZE size);
CRect(POINT topLeft, POINT bottomRight);

Parameters

Remarks

1642

1 Specifies the left position of CRect.

t Specifies the top of CRect.

r Specifies the right position of CRect.

b Specifies the bottom of CRect.

srcRect Refers to the RECT structure with the coordinates for CRect.

IpSrcRect Points to the RECT structure with the coordinates for CRect.

point Specifies the origin point for the rectangle to be constructed. Corresponds to
the top-left corner.

size Specifies the displacement from the top-left comer to the bottom-right corner
of the rectangle to be constructed.

topLeft Specifies the top-left position of CRect.

bottomRight Specifies the bottom-right position of CRect.

Constructs a CRect object. If no arguments are given, left, top, right, and bottom
members are not initialized.

The CRect(const RECT &) and CRect(LPCRECT) constructors perform a
CopyRect. The other constructors initialize the member variables of the object
directly.

See Also: CRect::SetRect, CRect::CopyRect, CRect::operator =,
CRect: :SetRectEmpty

eRect: : DeflateRect
void DeflateRect(int x, int y);
void DeflateRect(SIZE size);
void DeflateRect(LPCRECT IpReet);
void DeflateRect(int I, int t, int r, int b);

Parameters

Remarks

x Specifies the number of units to deflate the left and right sides of CRect.

y Specifies the number of units to deflate the top and bottom of CRect.

size A SIZE or CSize that specifies the number of units to deflate CRect.
The ex value specifies the number of units to deflate the left and right sides
and the ey value specifies the number of units to deflate the top and bottom.

lpReet Points to a RECT structure or CRect that specifies the number of units
to deflate each side.

Specifies the number of units to deflate the left side of CRect.

Specifies the number of units to deflate the top of CRect.

r Specifies the number of units to deflate the right side of CRect.

b Specifies the number of units to deflate the bottom of CRect.

DeflateRect deflates CRect by moving its sides toward its center. To do this,
DeflateRect adds units to the left and top and subtracts units from the right and
bottom. The parameters of DeflateRect are signed values; positive values deflate
CRect and negative values inflate it.

The first two overloads deflate both pairs of opposite sides of CRect so that its total
width is decreased by two times x (or ex) and its total height is decreased by two times
y (or ey). The other two overloads deflate each side of CRect independently of the
others.

See Also: CRect::InflateRect, CRect::operator -, CRect::operator -=,
: : InflateRect

eRect: :DeflateRect

1643

eRect: :EqualRect

eRect: : EqualRect
BOOL EqualRect(LPCRECT IpRect) const;

Return Value
Nonzero if the two rectangles have the same top, left, bottom, and right values;
otherwise O.

Note Both of the rectangles must be normalized or this function may fail. You can call
NormalizeRect to normalize the rectangles before calling this function.

Parameters
IpRect Points to a RECT structure or CRect object that contains the upper-left and

lower-right corner coordinates of a rectangle.

See Also: CRect::operator ==, CRect::operator !=, CRect::NormalizeRect,
: :EqualRect

eRect: : Height
int Height() const;

Return Value

Remarks

The height of CRect.

Calculates the height of CRect by subtracting the top value from the bottom value.
The resulting value can be negative.

Note The rectangle must be normalized or this function may fail. You can call NormalizeRect
to normalize the rectangle before calling this function.

See Also: CRect::Width, CRect::Size, CRect::CenterPoint,
CRect: :IsRectEmpty, CRect: :IsRectNull, CRect: :NormalizeRect

eRect: : InflateRect
void InflateRect(int x, int y);
void InflateRect(SIZE size);
void InflateRect(LPCRECT IpRect);
void InflateRect(int I, int t, int r, int b);

Parameters
x Specifies the number of units to inflate the left and right sides of CRect.

y Specifies the number of units to inflate the top and bottom of CRect.

1644

Remarks

size A SIZE or CSize that specifies the number of units to inflate CRect.
The ex value specifies the number of units to inflate the left and right sides
and the ey value specifies the number of units to inflate the top and bottom.

lpReet Points to a RECT structure or CRect that specifies the number of units
to inflate each side.

Specifies the number of units to inflate the left side of CRect.

Specifies the number of units to inflate the top of CRect.

r Specifies the number of units to inflate the right side of CRect.

b Specifies the number of units to inflate the bottom of CRect.

InflateRect inflates CRect by moving its sides away from its center. To do this,
InflateRect subtracts units from the left and top and adds units to the right and
bottom. The parameters of InflateRect are signed values; positive values inflate
CRect and negative values deflate it.

The first two overloads inflate both pairs of opposite sides of CRect so that its total
width is increased by two times x (or ex) and its total height is increased by two times
y (or ey). The other two overloads inflate each side of CRect independently of the
others.

See Also: CRect::DeflateRect, CRect::operator +, CRect::operator +=,
::InflateRect

eRect: : IntersectRect
BOOL IntersectRect(LPCRECT lpReetl, LPCRECT lpReet2);

Return Value
Nonzero if the intersection is not empty; 0 if the intersection is empty.

Parameters

Remarks

lpReetl Points to a RECT structure or CRect object that contains a source rectangle.

lpReet2 Points to a RECT structure or CRect object that contains a source rectangle.

Makes a CRect equal to the intersection of two existing rectangles. The intersection is
the largest rectangle contained in both existing rectangles.

Note Both of the rectangles must be normalized or this function may fail. You can call
NormalizeRect to normalize the rectangles before calling this function.

See Also: CRect::operator &=, CRect::operator &, CRect::UnionRect,
CRect: :SubtractRect, CRect::N ormalizeRect, : : IntersectRect

eRect: :IntersectRect

1645

eRect: :!sRectEmpty

eRect: : IsRectEmpty
BOOL IsRectEmpty() const;

Return Value

Remarks

Nonzero if CRect is empty; 0 if CRect is not empty.

Determines whether CRect is empty. A rectangle is empty if the width and/or height
are 0 or negative. Differs from IsRectNull, which determines whether all coordinates
of the rectangle are zero.

Note The rectangle must be normalized or this function may fail. You can call NormalizeRect
to normalize the rectangle before calling this function.

See Also: CRect::IsRectNull, CRect::SetRectEmpty, CRect::NormalizeRect,
: :IsRectEmpty

eRect: : IsRectNul1
BOOL IsRectNull() const;

Return Value

Remarks

Nonzero if CRect's top, left, bottom, and right values are all equal to 0; otherwise O.

Determines whether the top, left, bottom, and right values of CRect are all equal to O.
Differs from IsRectEmpty, which determines whether the rectangle is empty.

See Also: CRect::IsRectEmpty, CRect::SetRectEmpty

eRect: :N ormalizeRect

Remarks

1646

void NormalizeRect();

Normalizes CRect so that both the height and width are positive. The rectangle is
normalized for fourth-quadrant positioning, which Windows typically uses for
coordinates. NormalizeRect compares the top and bottom'values, and swaps them
if the top is greater than the bottom. Similarly, it swaps the left and right values if
the left is greater than the right. This function is useful when dealing with different
mapping modes and inverted rectangles.

Note The following eRect member functions require normalized rectangles in order to
work properly: Height, Width, Size, IsRectEmpty, PtlnRect, EqualRect, UnionRect,
IntersectRect, SubtractRect, operator ==, operator !=, operator I, operator 1=,
operator &, and operator &=.

CRect: :OffsetRect
void OffsetRect(int x, int y);
void OffsetRect(POINT point);
void OffsetRect(SIZE size);

Parameters

Remarks

x Specifies the amount to move left or right. It must be negative to move left.

y Specifies the amount to move up or down. It must be negative to move up.

point Contains a POINT structure or CPoint object specifying both dimensions by
which to move.

size Contains a SIZE structure or CSize object specifying both dimensions by which
to move.

Moves CRect by the specified offsets. Moves CRect x units along the x-axis and y
units along the y-axis. The x and y parameters are signed values, so CRect can be
moved left or right and up or down.

See Also: CRect: :operator +, CRect: :operator +=, CRect: :operator -,
CRect::operator -=

CRect: :PtInRect
BOOL PtInRect(POINT point) const;

Return Value
Nonzero if the point lies within CRect; otherwise O.

Parameters

Remarks

point Contains a POINT structure or CPoint object.

Determines whether the specified point lies within CRect. A point is within CRect if
it lies on the left or top side or is within all four sides. A point on the right or bottom
side is outside CRect.

Note The rectangle must be normalized or this function may fail. You can call NormalizeRect
to normalize the rectangle before calling this function.

See Also: CRect::NormalizeRect, ::PtInRect

eRect: :PtlnRect

1647

eRect:: SetRect

CRect: :SetRect
void SetRect(int xl, int yl, int x2, int y2);

Parameters

Remarks

xl Specifies the x-coordinate of the upper-left comer.

yl Specifies the y-coordinate of the upper-left comer.

x2 Specifies the x-coordinate of the lower-right comer.

y2 Specifies the y-coordinate of the lower-right comer.

Sets the dimensions of CRect to the specified coordinates.

See Also: CRect::CRect, CRect::operator =, CRect::CopyRect,
CRect: :SetRectEmpty, : :SetRect

CRect: : SetRectEmpty

Remarks

void SetRectEmpty();

Makes CRect a null rectangle by setting all coordinates to zero.

See Also: CRect::CRect, CRect::SetRect, CRect::CopyRect, CRect::operator =,
CRect::IsRectEmpty, CRect::IsRectNull, ::SetRectEmpty

CRect::Size
CSize Size() const;

Return Value

Remarks

1648

A CSize object that contains the size of CRect.

The ex and ey members of the return value contain the height and width of CRect.
Either the height or width can be negative.

Note The rectangle must be normalized or this function may fail. You can call NormalizeRect
to normalize the rectangle before calling this function.

See Also: CRect: :Height, CRect:: Width, CRect: : IsRectEmpty ,
CRect: : IsRectNull , CRect: : NormalizeRect

CRect: : SubtractRect
BOOL SubtractRect(LPCRECT IpRectSrc1, LPCRECT IpRectSrc2);

Return Value
Nonzero if the function is successful; otherwise 0.

Parameters

Remarks

IpRectSrcl Points to the RECT structure or CRect object from which a rectangle is
to be subtracted.

IpRectSrc2 Points to the RECT structure or CRect object that is to be subtracted
from the rectangle pointed to by the IpRectSrcl parameter.

Makes the dimensions of the IpRectSrcl rectangle equal to the subtraction of
IpRectSrc2 from IpRectSrcl. The subtraction is the smallest rectangle that contains
all of the points in IpRectScr 1 that are not in the intersection of IpRectScr 1 and
IpRectScr2.

The rectangle specified by IpRectSrc1 will be unchanged if the rectangle specified by
IpRectSrc2 doesn't completely overlap the rectangle specified by IpRectSrcl in at least
one of the x- or y-directions.

For example, if IpRectSrc1 were (10,10, 100,100) and IpRectSrc2 were (50,50, 150,150),
the rectangle pointed to by IpRectSrc1 would be unchanged when the function returned.
If IpRectSrcl were (10,10, 100,100) and IpRectSrc2 were (50,10, 150,150), however,
the rectangle pointed to by IpRectSrcl would contain the coordinates (10,10, 50,100)
when the function returned.

SubtractRect is not the same as operator - nor operator -=. Neither of these
operators ever calls SubtractRect.

Note Both of the rectangles must be normalized or this function may fail. You can call
NormalizeRect to normalize the rectangles before calling this function.

See Also: CRect: :operator -, CRect: :operator -=, CRect: :IntersectRect,
CRect:: UnionRect, CRect: :NormalizeRect, : :SubtractRect

CRect: : TopLeft
CPoint& TopLeft();
const CPoint& TopLeft() const;

Return Value
The coordinates of the top-left corner of the rectangle.

CRect: :TopLeft

1649

CRect::UnionRect

Remarks
The coordinates are returned as a reference to a CPoint object that is contained in
CRect.

You can use this function to either get or set the top-left corner of the rectangle.
Set the corner by using this function on the left side of the assignment operator.

See Also: CRect::BottomRight, CPoint, CRect::CenterPoint

CRect: : U nionRect
BOOL UnionRect(LPCRECT lpRectl, LPCRECT lpRect2);

Return Value
Nonzero if the union is not empty; 0 if the union is empty.

Parameters

Remarks

lpRectl Points to a RECT or CRect that contains a source rectangle.

lpRect2 Points to a RECT or CRect that contains a source rectangle.

Makes the dimensions of CRect equal to the union of the two source rectangles.
The union is the smallest rectangle that contains both source rectangles.

Windows ignores the dimensions of an empty rectangle; that is, a rectangle that
has no height or has no width.

Note Both of the rectangles must be normalized or this function may fail. You can call
NormalizeRect to normalize the rectangles before calling this function.

See Also: CRect::operator 1=, CRect::operator I, CRect::lntersectRect,
CRect: :SubtractRect, CRect: :NormalizeRect, :: UnionRect

CRect: : Width
int Width() const;

Return Value

Remarks

1650

The width of CRect.

Calculates the width of CRect by subtracting the left value from the right value.
The width can be negative.

Note The rectangle must be normalized or this function may fail. You can call NormalizeRect
to normalize the rectangle before calling this function.

See Also: CRect::Height, CRect::Size, CRect::CenterPoint,
CRect: : IsRectEmpty , CRect: :IsRectNull, CRect: :NormalizeRect

Operators
CRect: : operator LPCRECT

Remarks

operator LPCRECT() const;

Converts a CRect to an LPCRECT. When you use this function, you don't need the
address-of (&) operator. This operator will be automatically used when you pass a
CRect object to a function that expects an LPCRECT.

See Also: CRect::operator LPRECT

CRect: : operator LPRECT

Remarks

operator LPRECT();

Converts a CRect to an LPRECT. When you use this function, you don't need the
address-of (&) operator. This operator will be automatically used when you pass a
CRect object to a function that expects an LPRECT.

See Also: CRect: :operator LPCRECT

CRect: : operator =
void operator =(const RECT& sreReet);

Parameters

Remarks

sreReet Refers to a source rectangle. Can be a RECT or CRect.

Assigns sreReet to CRect.

See Also: CRect::CRect, CRect::SetRect, CRect::CopyRect,
CRect: :SetRectEmpty, :: Copy Rect

CRect::operator ==
BOOL operator ==(const RECT & reet) const;

Return Value
Nonzero if equal; otherwise O.

CRect: : operator ==

1651

CRect::operator !=

Parameters

Remarks

reet Refers to a source rectangle. Can be a RECT or CRect.

Determines whether reet is equal to CRect by comparing the coordinates of their
upper-left and lower-right comers.

Note Both of the rectangles must be normalized or this function may fail. You can call
NormalizeRect to normalize the rectangles before calling this function.

See Also: CRect::operator !=, CRect::NormalizeRect, ::EquaIRect

CRect: : operator !=
BOOL operator !=(const RECT & reet) const;

Return Value
Nonzero if not equal; otherwise O.

Parameters

Remarks

reet Refers to a source rectangle. Can be a RECT or CRect.

Determines whether reet is not equal to CRect by comparing the coordinates of their
upper-left and lower-right comers.

Note Both of the rectangles must be normalized or this function may fail. You can call
NormalizeRect to normalize the rectangles before calling this function.

See Also: CRect::operator ==, CRect::NormalizeRect, ::EquaIRect

CRect::operator +=
void operator +=(POINT point);
void operator +=(SIZE size);
void operator +=(LPCRECT IpReet);

Parameters

1652

point A POINT structure or CPoint object that specifies the number of units to
move the rectangle.

size A SIZE structure or CSize object that specifies the number of units to move the
rectangle.

IpReet Points to a RECT structure or CRect object that contains the number of units
to inflate each side of CRect.

Remarks
The first two overloads move CRect by the specified offsets. The parameter's x and y
(or ex and ey) values are added to CRect.

The third overload inflates CRect by the number of units specifed in each member of
the parameter.

See Also: CRect::OffsetRect, CRect::InflateRect, CRect::operator +,
CRect: :operator -=

CRect: : operator -
void operator -=(POINT point);
void operator -=(SIZE size);
void operator -=(LPCRECT IpReet);

Parameters

Remarks

point A POINT structure or CPoint object that specifies the number of units to
move the rectangle.

size A SIZE structure or CSize object that specifies the number of units to move the
rectangle.

IpReet Points to a RECT structure or CRect object that contains the number of units
to deflate each side of CRect.

The first two overloads move CRect by the specified offsets. The parameter's x and y
(or ex and ey) values are subtracted from CRect.

The third overload deflates CRect by the number of units specifed in each member of
the parameter. Note that this overload functions like DeflateRect.

See Also: CRect::OffsetRect, CRect::DeflateRect, CRect::SubtractRect,
CRect::operator -, CRect::operator +=

CRect: : operator &=
void operator &=(const RECT& reet);

Parameters

Remarks

reet Contains a RECT or CRect.

Sets CRect equal to the intersection of CRect and reet. The intersection is the largest
rectangle that is contained in both rectangles.

Note Both of the rectangles must be normalized or this function may fail. You can call
NormalizeRect to normalize the rectangles before calling this function.

CRect: :operator &=

1653

CRect::operator 1=

See Also: CRect::operator &, CRect::operator 1=, CRect::IntersectRect,
CRect::N ormalizeRect, : : IntersectRect

CRect::operator 1=
void operator 1=(const RECT & reet);

Parameters

Remarks

reet Contains a CRect or RECT.

Sets CRect equal to the union of CRect and reet. The union is the smallest rectangle
that contains both source rectangles.

Note Both of the rectangles must be normalized or this function may fail. You can call
NormalizeRect to normalize the rectangles before calling this function.

See Also: CRect::operator I, CRect::operator &=, CRect::UnionRect,
CRect::NormalizeRect, ::UnionRect

CRect: : operator +
CRect operator +(POINT point) const;
CRect operator +(LPCRECT /pReet) const;
CRect operator +(SIZE size) const;

Return Value
The CRect resulting from moving or inflating CRect by the number of units specified
in the parameter.

Parameters

Remarks

1654

point A POINT structure or CPoint object that specifies the number of units to
move the return value.

size A SIZE structure or CSize object that specifies the number of units to move the
return value.

/pReet Points to a RECT structure or CRect object that contains the number of units
to inflate each side of the return value.

The first two overloads return a CRect object that is equal to CRect displaced by the
specified offsets. The parameter's x and y (or ex and ey) parameters are added to
CRect's position.

The third overload returns a new CRect that is equal to CRect inflated by the number
of units specifed in each member of the parameter.

See Also: CRect::operator +=, CRect::operator -, CRect::OffsetRect,
CRect: :InflateRect

CRect: : operator -
CRect operator -(POINT point) const;
CRect operator -(SIZE size) const;
CRect operator -(LPCRECT lpReet) const;

Return Value
The CRect resulting from moving or deflating CRect by the number of units specified
in the parameter.

Parameters

Remarks

point A POINT structure or CPoint object that specifies the number of units to
move the return value.

size A SIZE structure or CSize object that specifies the number of units to move the
return value.

lpReet Points to a RECT structure or CRect object that contains the number of units
to deflate each side of the return value.

The first two overloads return a CRect object that is equal to CRect displaced by the
specified offsets. The parameter's x and y (or ex and ey) parameters are subtracted
from CRect's position.

The third overload returns a new CRect that is equal to CRect deflated by the number
of units specifed in each member of the parameter. Note that this overload functions
like DeflateRect, not SubtractRect.

See Also: CRect::operator -=, CRect::operator +, CRect::OffsetRect,
CRect: : DeflateRect, CRect: :SubtractRect

CRect: : operator &
CRect operator &(const RECT & rect2) const;

Return Value
A CRect that is the intersection of CRect and reet2.

Parameters

Remarks

reet2 Contains a RECT or CRect.

Returns a CRect that is the intersection of CRect and rect2. The intersection is the
largest rectangle that is contained in both rectangles.

CRect::operator &

1655

CRect::operator I

Note Both of the rectangles must be normalized or this function may fail. You can call
NormalizeRect to normalize the rectangles before calling this function.

See Also: CRect::lntersectRect, CRect::operator &=, CRect::operator I,
CRect::NormalizeRect

CRect::operator I
CRect operator I(const RECT & rect2) const;

Return Value
A CRect that is the union of CRect and rect2.

Parameters

Remarks

1656

rect2 Contains a RECT or CRect.

Returns a CRect that is the union of CRect and rect2. The union is the smallest
rectangle that contains both rectangles.

Note Both of the rectangles must be normalized or this function may fail. You can call
NormalizeRect to normalize the rectangles before calling this function.

See Also: CRect::UnionRect, CRect::operator 1=, CRect::operator &,
CRect::N ormalizeRect

CRectTracker
CRectTracker does not have a base class.

The CRectTracker class allows an item to be displayed, moved, and resized in
different fashions. Although the CRectTracker class is designed to allow the user to
interact with OLE items by using a graphical interface, its use is not restricted to
OLE-enabled applications. It can be used anywhere such a user interface is required.

CRectTracker borders can be solid or dotted lines. The item can be given a hatched
border or overlaid with a hatched pattern to indicate different states of the item. You
can place eight resize handles on either the outside or the inside border of the item.
(For an explanation of the resize handles, see GetHandleMask.) Finally, a
CRectTracker allows you to change the orientation of an item during resizing.

To use CRectTracker, construct a CRectTracker object and specify which display
states are initialized. You can then use this interface to give the user visual feedback
on the current status of the OLE item associated with the CRectTracker object.

For more information on using CRectTracker, see the article "Trackers" in
Visual C++ Programmer's Guide online.

#include <afxext.h>

See Also: COleResizeBar, CRect, CRectTracker::GetHandleMask

CRectTracker Class Members
Data Members

m_nHandleSize

m_rect

m_sizeMin

m_nStyle

Construction

CRectTracker

Operations

Determines size of resize handles.

Current position (in pixels) of the rectangle.

Determines minimum rectangle width and height.

Current style(s) of the tracker.

Constructs a CRectTracker object.

Renders the rectangle. Draw

GetTrueRect

HitTest

Returns width and height of rectangle, including resize handles.

Returns the current position of the cursor related to the
CRectTracker object.

(continued)

CRectTracker

1657

CRectTracker: :AdjustRect

Operations (continued)

NormalizeHit

SetCursor

Track

TrackRubberBand

Overridables

AdjustRect

DrawTrackerRect

OnChangedRect

GetHandleMask

Normalizes a hit-test code.

Sets the cursor, depending on its position over the rectangle.

Allows the user to manipulate the rectangle.

Allows the user to "rubber-band" the selection.

Called when the rectangle is resized.

Called when drawing the border of a CRectTracker object.

Called when the rectangle has been resized or moved.

Called to get the mask of a CRectTracker item's resize handles.

Member Functions
CRectTracker: : AdjustRect

virtual void AdjustRect(int nHandle, LPRECT IpRect);

Parameters

Remarks

1658

nHandle Index of handle used.

IpRect Pointer to the current size of the rectangle. (The size of a rectangle is given
by its height and width.)

Called by the framework when the tracking rectangle is resized by using a resize
handle. The default behavior of this function allows the rectangle's orientation to
change only when Track and TrackRubberBand are called with inverting allowed.

Override this function to control the adjustment of the tracking rectangle during a
dragging operation. One method is to adjust the coordinates specified by IpRect
before returning.

Special features that are not directly supported by CRectTracker, such as
snap-to-grid or keep-aspect-ratio, can be implemented by overriding this function.

See Also: CRectTracker: :Track, CRectTracker: : TrackRubberBand,
CRectTracker: :OnChangedRect

CRectTracker: : CRectTracker
CRectTracker();
CRectTracker(LPCRECT lpSrcRect, UINT nStyle);

Parameters

Remarks

lpSrcRect The coordinates of the rectangle object.

nStyle Specifies the style of the CRectTracker object. The following styles are
supported:

• CRectTracker: :solidLine Use a solid line for the rectangle border.

• CRectTracker::dottedLine Use a dotted line for the rectangle border.

• CRectTracker::hatchedBorder Use a hatched pattern for the rectangle
border.

• CRectTracker::resizeInside Resize handles located inside the rectangle.

• CRectTracker::resizeOutside Resize handles located outside the rectangle.

• CRectTracker::hatchInside Hatched pattern covers the entire rectangle.

Creates and initializes a CRectTracker object.

The default constructor initializes the CRectTracker object with the values from
lpSrcRect and initializes other sizes to system defaults. If the object is created with no
parameters, the m_rect and m_nStyJe data members are uninitialized.

See Also: CRect::CRect

CRectTracker: : Draw
void Draw(CDC* pDC) const;

Parameters

Remarks

pDC Pointer to the device context on which to draw.

Call this function to draw the rectangle's outer lines and inner region. The style of the
tracker determines how the drawing is done. See the constructor for CRectTracker
for more information on the styles available.

See Also: CRectTracker: :DrawTracker Rect, CRectTracker:: CRectTracker,
CRect::N ormalizeRect

CRectTracker: :Draw

1659

CRectTracker::DrawTrackerRect

CRectTracker: : DrawTrackerRect
virtual void DrawTrackerRect(LPCRECT IpRect, CWnd* p WndClipTo,

10+ CDC* pDC, CWnd* pWnd);

Parameters

Remarks

IpRect Pointer to the RECT that contains the rectangle to draw.

p WndClipTo Pointer to the window to use in clipping the rectangle.

pDC Pointer to the device context on which to draw.

p Wnd Pointer to the window on which the drawing will occur.

Called by the framework whenever the position of the tracker has changed while
inside the Track or TrackRubberBand member function. The default
implementation makes a call to CDC: :DrawFocusRect, which draws a dotted
rectangle.

Override this function to provide different feedback during the tracking operation.

See Also: CRectTracker: : Track, CRectTracker: : TrackRubberBand,
CDC: :DrawFocusRect

CRectTracker: : GetHandleMask
virtual UINT GetHandleMask() const;

Return Value

Remarks

1660

The mask of a CRectTracker item's resize handles.

The framework calls this member function to retrieve the mask for a rectangle's resize
handles.

The resize handles appear on the sides and corners of the rectangle and allow the user
to control the shape and size of the rectangle.

A rectangle has 8 resize handles numbered 0-7. Each resize handle is represented by
a bit in the mask; the value of that bit is 2An, where n is the resize handle number. Bits
0-3 correspond to the corner resize handles, starting at the top left moving clockwise.
Bits 4-7 correspond to the side resize handles starting at the top moving clockwise.
The following illustration shows a rectangle's resize handles and their corresponding
resize handle numbers and values:

CRectTracker: :HitTest

o

7

3

Handle numbers
4

__ --__ 1----1.

6

5 128

2 8

Bit values
16 ------1----1.

64

2

32

4

The default implementation of GetHandleMask returns the mask of the bits so that
the resize handles appear. If the single bit is on, the corresponding resize handle will
be drawn.

Override this member function to hide or show the indicated resize handles.

See Also: CRectTracker: :AdjustRect

CRectTracker: : GetTrueRect
void GetTrueRect(LPRECT lpTrueRect) const;

Parameters

Remarks

lpTrueRect Pointer to the RECT structure that will contain the device coordinates of
the CRectTracker object.

Call this function to retrieve the coordinates of the rectangle. The dimensions of the
rectangle include the height and width of any resize handles located on the outer
border. Upon returning, *lpTrueRect is always a normalized rectangle in device
coordinates.

See Also: CRect::NormalizeRect

CRectTracker: : HitTest
int HitTest(CPoint point) const;

Return Value
The value returned is based on the enumerated type CRectTracker::TrackerHit and
can have one of the following values:

• CRectTracker::hitNothing -1

1661

CRectTracker::N ormalizeHit

• CRectTracker: :hitTopLeft 0

• CRectTracker: :hitTopRight 1

• CRectTracker: :hitBottomRight 2

• CRectTracker:hitBottomLeft 3

• CRectTracker:hitTop 4

• CRectTracker:hitRight 5

• CRectTracker:hitBottom 6

• CRectTracker:hitLeft 7

• CRectTracker:hitMiddle 8

Parameters

Remarks

point The point, in device coordinates, to test.

Call this function to find out whether the user has grabbed a resize handle.

See Also: CRectTracker::NormalizeHit, CRectTracker::SetCursor

CRectTracker: :N ormalizeHit
int NormalizeHit(int nHandle) const;

Return Value
The index of the normalized handle.

Parameters

Remarks

1662

nHandle Handle selected by the user.

Call this function to convert a potentially inverted handle.

When CRectTracker::Track or CRectTracker::TrackRubberBand is called with
inverting allowed, it is possible for the rectangle to be inverted on the x-axis, the
y-axis, or both. When this happens, HitTest will return handles that are also inverted
with respect to the rectangle. This is inappropriate for drawing cursor feedback
because the feedback depends on the screen position of the rectangle, not the portion
of the rectangle data structure that will be modified.

See Also: CRectTracker: :HitTest, CRectTracker: : Track,
CRectTracker: : TrackRubberBand

CRectTracker: :OnChangedRect
virtual void OnChangedRect(const CRect& rectOld);

Parameters

Remarks

rectOld Contains the old device coordinates of the CRectTracker object.

Called by the framework whenever the tracker rectangle has changed during a call to
Track. At the time this function is called, all feedback drawn with DrawTrackerRect
has been removed. The default implementation of this function does nothing.

Override this function when you want to perform any actions after the rectangle has
been resized.

See Also: CRectTracker: :AdjustRect, CRectTracker: :Track,
CRectTracker: : TrackRubberBand

CRectTracker: :SetCursor
BOOL SetCursor(CWnd* p Wnd, UINT nHitTest) const;

Return Value
Nonzero if the previous hit was over the tracker rectangle; otherwise O.

Parameters

Remarks

p Wnd Points to the window that currently contains the cursor.

nHitTest Results of the previous hit test, from the WM_SETCURSOR message.

Call this function to change the cursor shape while it is over the CRectTracker
object's region.

Call this function from inside the function of your window that handles the
WM_SETCURSOR message (typically OnSetCursor).

See Also: CRectTracker:: N ormalizeHit, CRectTracker:: HitTest,
CWinApp: :LoadCursor, CWnd: :OnSetCursor

CRectTracker: : Track
BOOL Track(CWnd* pWnd, CPointpoint, BOOL bAllowlnvert = FALSE,

.. CWnd* pWndClipTo = NULL);

Return Value
If the ESC key is pressed, the tracking process is halted, the rectangle stored in the
tracker is not altered, and 0 is returned. If the change is committed, by moving the

CRectTracker: : Track

1663

CRectTracker::TrackRubberBand

mouse and releasing the left mouse button, the new position and/or size is recorded
in the tracker's rectangle and nonzero is returned.

Parameters

Remarks

p Wnd The window object that contains the rectangle.

point Device coordinates of the current mouse position relative to the client area.

bAllowlnvert If TRUE, the rectangle can be inverted along the x-axis or y-axis;
otherwise FALSE.

p WndClipTo The window that drawing operations will be clipped to. If NULL,
p Wnd is used as the clipping rectangle.

Call this function to display the user interface for resizing the rectangle. This is
usually called from inside the function of your application that handles the
WM_LBUTTONDOWN message (typically OnLButtonDown).

This function will capture the mouse until the user releases the left mouse button,
presses the ESC key, or presses the right mouse button. As the user moves the mouse
cursor, the feedback is updated by calling DrawTrackerRect and OnChangedRect.

If bAllowlnvert is TRUE, the tracking rectangle can be inverted on either the x-axis or
y-axis.

See Also: CRectTracker: : DrawTrackerRect, CRectTracker: :OnChangedRect,
CRectTracker: :CRectTracker, CRectTracker: : TrackRubberBand

CRectTracker: : TrackRubberB and
BOOL TrackRubberBand(CWnd* pWnd, CPointpoint,

10+ BOOL bAllowlnvert = TRUE);

Return Value
Nonzero if the mouse has moved and the rectangle is not empty; otherwise O.

Parameters

Remarks

1664

p Wnd The window object that contains the rectangle.

point Device coordinates of the current mouse position relative to the client area.

bAllowlnvert If TRUE, the rectangle can be inverted along the x-axis or y-axis;
otherwise FALSE.

Call this function to do rubber-band selection. It is usually called from inside the
function of your application that handles the WM_LBUTTONDOWN message
(typically OnLButtonDown).

CRectTracker: :m_nSty Ie

This function will capture the mouse until the user releases the left mouse button,
presses the ESC key, or presses the right mouse button. As the user moves the mouse
cursor, the feedback is updated by calling DrawTrackerRect and OnChangedRect.

Tracking is performed with a rubber-band-type selection from the lower-right handle.
If inverting is allowed, the rectangle can be sized by dragging either up and to the left
or down and to the right.

See Also: CRectTracker: :DrawTracker Rect, CRectTracker: :On ChangedRect,
CRectTracker: : CRectTracker

Data Members
CRectTracker: :m_nHandleSize
Remarks

The size, in pixels, of the CRectTracker resize handles. Initialized with the default
system value.

CRectTracker: :m_rect
Remarks

The current position of the rectangle in client coordinates (pixels).

See Also: CRectTracker::CRectTracker, CRectTracker::Track,
CRectTracker: :TrackRubberBand

CRectTracker: :m_sizeMin
Remarks

The minimum size of the rectangle. Both default values, cx and cy, are calculated
from the default system value for the border width. This data member is used only by
the AdjustRect member function.

See Also: CRectTracker::Track, CRectTracker::TrackRubberBand,
CRectTracker: :AdjustRect

CRectTracker: :m_nStyle
Remarks

Current style of the rectangle. See CRectTracker::CRectTracker for a list of
possible styles.

See Also: CRectTracker::CRectTracker, CRectTracker::Draw

1665

CResourceException

CResourceException

A CResourceException object is generated when Windows cannot find or allocate
a requested resource. No further qualification is necessary or possible.

For more information on using CResourceException, see the article "Exceptions"
in Visual C++ Programmer's Guide online.

#include <afxwin.h>

CResourceException Class Members
Construction

CResourceException Constructs a CResourceException object.

Member Functions
CResourceException: :CResourceException

Remarks

1666

CResourceException();

Constructs a CResourceException object.

Do not use this constructor directly, but rather call the global function
AfxThrowResourceException. For more information about exceptions,
see the article "Exceptions" in Visual C++ Programmer's Guide online.

See Also AfxThrowResourceException, Exception Processing

CRgn

The CRgn class encapsulates a Windows graphics device interface (GDI) region.
A region is an elliptical or polygonal area within a window. To use regions, you use
the member functions of class CRgn with the clipping functions defined as members
of class CDC.

The member functions of CRgn create, alter, and retrieve information about the
region object for which they are called.

For more information on using CRgn, see "Graphic Objects" in Visual C++
Programmer's Guide online.

#include <afxwin.h>

CRgn Class Members
Construction

CRgn

Initialization

Constructs a CRgn object.

CreateRectRgn Initializes a CRgn object with a rectangular region.

CreateRectRgnIndirect Initializes a CRgn object with a rectangular region defined by a
RECT structure.

CreateEllipticRgn Initializes a CRgn object with an elliptical region.

CreateEllipticRgnIndirect Initializes a CRgn object with an elliptical region defined by a
RECT structure.

CreatePolygonRgn Initializes a CRgn object with a polygonal region. The system
closes the polygon automatically, if necessary, by drawing a
line from the last vertex to the first.

CreatePolyPolygonRgn Initializes a CRgn object with a region consisting of a series of
closed polygons. The polygons may be disjoint, or they may
overlap.

CreateRoundRectRgn Initializes a CRgn object with a rectangular region with
rounded comers.

(continued)

CRgn

1667

CRgn: :CombineRgn

Initialization (continued)

CombineRgn

CopyRgn

CreateFromPath

CreateFromData

Operations

EquaIRgn

FromHandle

GetRegionData

GetRgnBox

OffsetRgn

PtlnRegion

RectlnRegion

SetRectRgn

Operators

operator HRGN

Sets a CRgn object so that it is equivalent to the union of two
specified CRgn objects.

Sets a CRgn object so that it is a copy of a specified CRgn
object.

Creates a region from the path that is selected into the given
device context.

Creates a region from the given region and transformation data.

Checks two CRgn objects to determine whether they are
equivalent.

Returns a pointer to a CRgn object when given a handle to a
Windows region.

Fills the specified buffer with data describing the given region.

Retrieves the coordinates of the bounding rectangle of a
CRgn object.

Moves a CRgn object by the specified offsets.

Determines whether a specified point is in the region.

Determines whether any part of a specified rectangle is within
the boundaries of the region.

Sets the CRgn object to the specified rectangular region.

Returns the Windows handle contained in the CRgn object.

Member Functions
CRgn: : CombineRgn

int CombineRgn(CRgn* pRgnl, CRgn* pRgn2, int nCombineMode);

Return Value
Specifies the type of the resulting region. It can be one of the following values:

• COMPLEXREGION New region has overlapping borders.

• ERROR No new region created.

• NULLREGION New region is empty.

• SIMPLEREGION New region has no overlapping borders.

1668

Parameters

Remarks

pRgnl Identifies an existing region.

pRgn2 Identifies an existing region.

nCombineMode Specifies the operation to be performed when combining the two
source regions. It can be anyone of the following values:

• RGN_AND Uses overlapping areas of both regions (intersection).

• RGN_COPY Creates a copy of region 1 (identified by pRgnl).

• RGN_DIFF Creates a region consisting of the areas of region 1 (identified by
pRgnl) that are not part of region 2 (identified by pRgn2).

• RGN_OR Combines both regions in their entirety (union).

• RGN_XOR Combines both regions but removes overlapping areas.

Creates a new GDI region by combining two existing regions. The regions are
combined as specified by nCombineMode.

The two specified regions are combined, and the resulting region handle is stored in
the CRgn object. Thus, whatever region is stored in the CRgn object is replaced by
the combined region.

The size of a region is limited to 32,767 by 32,767 logical units or 64K of memory,
whichever is smaller.

Use CopyRgn to simply copy one region into another region.

See Also: CRgn::CopyRgn, ::CombineRgn

CRgn: :CopyRgn
int CopyRgn(CRgn* pRgnSrc);

Return Value
Specifies the type of the resulting region. It can be one of the following values:

• COMPLEXREGION New region has overlapping borders.

• ERROR No new region created.

• NULL REGION New region is empty.

• SIMPLEREGION New region has no overlapping borders.

Parameters
pRgnSrc Identifies an existing region.

CRgn: :CopyRgn

1669

CRgo: :CreateEllipticRgo

Remarks
Copies the region defined by pRgnSrc into the CRgn object. The new region replaces
the region formerly stored in the CRgn object. This function is a special case of the
CombineRgn member function.

See Also: CRgn::CombineRgn, ::CombineRgn

CRgn: :CreateEllipticRgn
BOOL CreateEllipticRgn(int xl, int yl, int x2, int y2);

Return Value
Nonzero if the operation succeeded; otherwise O.

Parameters

Remarks

xl Specifies the logical x-coordinate of the upper-left comer of the bounding
rectangle of the ellipse.

yl Specifies the logical y-coordinate of the upper-left comer of the bounding
rectangle of the ellipse.

x2 Specifies the logical x-coordinate of the lower-right comer of the bounding
rectangle of the ellipse.

y2 Specifies the logical y-coordinate of the lower-right comer of the bounding
rectangle of the ellipse.

Creates an elliptical region. The region is defined by the bounding rectangle specified
by xl, yl, x2, and y2. The region is stored in the CRgn object.

The size of a region is limited to 32,767 by 32,767 logical units or 64K of memory,
whichever is smaller.

When it has finished using a region created with the CreateEllipticRgn function,
an application should select the region out of the device context and use the
DeleteObject function to remove it.

See Also: CRgn:: CreateEllipticRgnlndirect, :: CreateEllipticRgn

CRgn: : CreateElli pticRgnIndirect
BOOL CreateEllipticRgnlndirect(LPCRECT /pRect);

Return Value
Nonzero if the operation succeeded; otherwise O.

1670

Parameters

Remarks

IpRect Points to a RECT structure or a CRect object that contains the logical
coordinates of the upper-left and lower-right corners of the bounding rectangle
of the ellipse.

Creates an elliptical region. The region is defined by the structure or object pointed
to by IpRect and is stored in the CRgn object.

The size of a region is limited to 32,767 by 32,767 logical units or 64K of memory,
whichever is smaller.

When it has finished using a region created with the CreateEllipticRgnlndirect
function, an application should select the region out of the device context and use
the DeieteObject function to remove it.

See Also: CRgn::CreateEllipticRgn, ::CreateEllipticRgnlndirect

CRgn: :CreateFromData
BOOL CreateFromData(const XFORM* IpXForm, int nCount,

... const RGNDATA * pRgnData);

Return Value
Nonzero if the function is successful; otherwise O.

Parameters

Remarks

IpXForm Points to an XFORM data structure that defines the transformation to
be performed on the region. If this pointer is NULL, the identity transformation
is used.

nCount Specifies the number of bytes pointed to by pRgnData.

pRgnData Points to a RGNDATA data structure that contains the region data.

Creates a region from the given region and transformation data. An application can
retrieve data for a region by calling the CRgn::GetRegionData function.

See Also: CRgn::GetRegionData, ::ExtCreateRegion

CRgn: :CreateFromPath
BOOL CreateFromPath(CDC* pDC);

Return Value
Nonzero if the function is successful; otherwise O.

CRgo: :CreateFromPath

1671

CRgn: :CreatePolygonRgn

Parameters

Remarks

pDC Identifies a device context that contains a closed path.

Creates a region from the path that is selected into the given device context. The
device context identified by the pDC parameter must contain a closed path. After
CreateFromPath converts a path into a region, Windows discards the closed path
from the device context.

See Also: CDC::BeginPath, CDC::EndPath, CDC::SetPolyFillMode

CRgn: :CreatePolygonRgn
BOOL CreatePolygonRgn(LPPOINT lpPoints, int nCount, int nMode);

Return Value
Nonzero if the operation succeeded; otherwise O.

Parameters

Remarks

1672

lpPoints Points to an array of POINT structures or an array of CPoint objects. Each
structure specifies the x-coordinate and y-coordinate of one vertex of the polygon.
The POINT structure has the following form:

typedef struct tagPOINT {
int x;
int y;

} POINT;

nCount Specifies the number of POINT structures or CPoint objects in the array
pointed to by lpPoints.

nMode Specifies the filling mode for the region. This parameter may be either
ALTERNATE or WINDING.

Creates a polygonal region. The system closes the polygon automatically, if necessary,
by drawing a line from the last vertex to the first. The resulting region is stored in the
CRgn object.

The size of a region is limited to 32,767 by 32,767 logical units or 64K of memory,
whichever is smaller.

When the polygon-filling mode is ALTERNATE, the system fills the area between
odd-numbered and even-numbered polygon sides on each scan line. That is, the
system fills the area between the first and second side, between the third and fourth
side, and so on.

When the polygon-filling mode is WINDING, the system uses the direction in which
a figure was drawn to determine whether to fill an area. Each line segment in a
polygon is drawn in either a clockwise or a counterclockwise direction. Whenever an

CRgn::CreatePolyPolygonRgn

imaginary line drawn from an enclosed area to the outside of a figure passes through a
clockwise line segment, a count is incremented. When the line passes through a
counterclockwise line segment, the count is decremented. The area is filled if the
count is nonzero when the line reaches the outside of the figure.

When an application has finished using a region created with the CreatePolygonRgn
function, it should select the region out of the device context and use the
DeleteObject function to remove it.

See Also: CRgn::CreatePolyPolygonRgn, ::CreatePolygonRgn

CRgn::CreatePolyPolygonRgn
BOOL CreatePolyPolygonRgn(LPPOINT IpPoints, LPINT IpPolyCounts,

... int nCount, int nPolyFiliMode);

Return Value
Nonzero if the operation succeeded; otherwise O.

Parameters

Remarks

lpPoints Points to an array of POINT structures or an array of CPoint objects that
defines the vertices of the polygons. Each polygon must be explicitly closed
because the system does not close them automatically. The polygons are specified
consecutively. The POINT structure has the following form:

typedef struct tagPOINT {
int x;
int y;
POINT;

IpPolyCounts Points to an array of integers. The first integer specifies the number of
vertices in the first polygon in the IpPoints array, the second integer specifies the
number of vertices in the second polygon, and so on.

nCount Specifies the total number of integers in the IpPolyCounts array.

nPolyFillMode Specifies the polygon-filling mode. This value may be either
ALTERNATE or WINDING.

Creates a region consisting of a series of closed polygons. The resulting region is
stored in the CRgn object.

The polygons may be disjoint, or they may overlap.

The size of a region is limited to 32,767 by 32,767 logical units or 64K of memory,
whichever is smaller.

When the polygon-filling mode is ALTERNATE, the system fills the area between
odd-numbered and even-numbered polygon sides on each scan line. That is, the

1673

CRgn: :CreateRectRgn

system fills the area between the first and second side, between the third and fourth
side, and so on.

When the polygon-filling mode is WINDING, the system uses the direction in
which a figure was drawn to determine whether to fill an area. Each line segment in
a polygon is drawn in either a clockwise or a counterclockwise direction. Whenever
an imaginary line drawn from an enclosed area to the outside of a figure passes
through a clockwise line segment, a count is incremented. When the line passes
through a counterclockwise line segment, the count is decremented. The area is
filled if the count is nonzero when the line reaches the outside of the figure.

When an application has finished using a region created with the
CreatePolyPolygonRgn function, it should select the region out of the device
context and use the CGDIObject: :DeleteObject member function to remove it.

See Also: CRgn::CreatePolygonRgn, CDC::SetPolyFillMode,
:: CreatePolyPolygonRgn

CRgn: :CreateRectRgn
BOOL CreateRectRgn(int xl, int yl, int x2, int y2);

Return Value
Nonzero if the operation succeeded; otherwise O.

Parameters

Remarks

1674

xl Specifies the logical x-coordinate of the upper-left comer of the region.

yl Specifies the logical y-coordinate of the upper-left comer of the region.

x2 Specifies the logical x-coordinate of the lower-right comer of the region.

y2 Specifies the logical y-coordinate of the lower-right comer of the region.

Creates a rectangular region that is stored in the CRgn object.

The size of a region is limited to 32,767 by 32,767 logical units or 64K of memory,
whichever is smaller.

When it has finished using a region created by CreateRectRgn, an application should
use the CGDIObject::DeleteObject member function to remove the region.

See Also: CRgn: :CreateRectRgnIndirect, CRgn: :CreateRoundRectRgn,
:: CreateRectRgn

CRgn: :CreateRoundRectRgn

CRgn: : CreateRectRgnIndirect
BOOL CreateRectRgnlndirect(LPCRECT IpRect);

Return Value
Nonzero if the operation succeeded; otherwise O.

Parameters

Remarks

IpRect Points to a RECT structure or CRect object that contains the logical
coordinates of the upper-left and lower-right comers of the region. The RECT
structure has the following form:

typedef struct tagRECT {
int left;
int top;
int right;
int bottom;
RECT;

Creates a rectangular region that is stored in the CRgn object.

The size of a region is limited to 32,767 by 32,767 logical units or 64K of memory,
whichever is smaller.

When it has finished using a region created by CreateRectRgnlndirect, an
application should use the CGDIObject::DeleteObject member function to remove
the region.

See Also: CRgn::CreateRectRgn, CRgn::CreateRoundRectRgn,
:: CreateRectRgnlndirect

CRgn: : CreateRoundRectRgn
BOOL CreateRoundRectRgn(int xl, int yl, int x2, int y2, int x3, int y3);

Return Value
Nonzero if the operation succeeded; otherwise O.

Parameters
xl Specifies the logical x-coordinate of the upper-left corner of the region.

yl Specifies the logical y-coordinate of the upper-left comer of the region.

x2 Specifies the logical x-coordinate of the lower-right corner of the region.

y2 Specifies the logical y-coordinate of the lower-right corner of the region.

x3 Specifies the width of the ellipse used to create the rounded corners.

y3 Specifies the height of the ellipse used to create the rounded corners.

1675

CRgn::CRgn

Remarks
Creates a rectangular region with rounded comers that is stored in the CRgn object.

The size of a region is limited to 32,767 by 32,767 logical units or 64K of memory,
whichever is smaller.

When an application has finished using a region created with the
CreateRoundRectRgn function, it should select the region out of the device context
and use the CGDIObject::DeleteObject member function to remove it.

See Also: CRgn::CreateRectRgn, CRgn::CreateRectRgnlndirect,
: :CreateRoundRectRgn

CRgn::CRgn

Remarks

CRgn();

Constructs a CRgn object. The m_hObject data member does not contain a valid
Windows GDI region until the object is initialized with one or more of the other
CRgn member functions.

CRgn: : EqualRgn
BOOL EqualRgn(CRgn* pRgn) const;

Return Value
Nonzero if the two regions are equivalent; otherwise O.

Parameters

Remarks

pRgn Identifies a region.

Determines whether the given region is equivalent to the region stored in the CRgn
object.

See Also: : :EqualRgn

CRgn: : FromHandle
static CRgn* PASCAL FromHandle(HRGN hRgn);

Return Value

1676

A pointer to a CRgn object. If the function was not successful, the return value is
NULL.

Parameters

Remarks

hRgn Specifies a handle to a Windows region.

Returns a pointer to a CRgn object when given a handle to a Windows region.
If a CRgn object is not already attached to the handle, a temporary CRgn object is
created and attached. This temporary CRgn object is valid only until the next time the
application has idle time in its event loop, at which time all temporary graphic objects
are deleted. Another way of saying this is that the temporary object is only valid
during the processing of one window message.

CRgn: : GetRegionData
Int GetRegionData(LPRGNDATA IpRgnData, int nCount) const;

Return Value
Specifies the type of the resulting region. It can be one of the following values:

• COMPLEXREGION New region has overlapping borders.

• ERROR No new region created.

• NULLREGION New region is empty.

• SIMPLEREGION New region has no overlapping borders.

Parameters

Remarks

IpRgnData Points to a RGNDATA data structure that receives the information. If
this parameter is NULL, the return value contains the number of bytes needed for
the region data.

nCount Specifies the size, in bytes, of the IpRgnData buffer.

Fills the specified buffer with data describing the region. This data includes the
dimensions of the rectangles that make up the region. This function is used in
conjunction with the CRgn::CreateFromData function.

See Also: CRgn::CreateFromData

CRgn: : GetRgnBox
int GetRgnBox(LPRECT IpRect) const;

Return Value
Specifies the region's type. It can be any of the following values:

• COMPLEXREGION Region has overlapping borders.

• NULLREGION Region is empty.

CRgn::GetRgnBox

1677

CRgn: :OffsetRgn

• ERROR CRgo object does not specify a valid region.

• SIMPLEREGION Region has no overlapping borders.

Parameters

Remarks

IpRect Points to a RECT structure or CRect object to receive the coordinates of the
bounding rectangle. The RECT structure has the following form:

typedef struct tagRECT (
int left;
int top;
int right;
int bottom;
RECT;

Retrieves the coordinates of the bounding rectangle of the CRgo object.

See Also: ::GetRgoBox

CRgn: : OffsetRgn
iot OffsetRgo(iot x, iot y);
iot OffsetRgo(POINT point);

Return Value
The new region's type. It can be anyone of the following values:

• COMPLEXREGION Region has overlapping borders.

• ERROR Region handle is not valid.

• NULLREGION Region is empty.

• SIMPLEREGION Region has no overlapping borders.

Parameters

Remarks

1678

x Specifies the number of units to move left or right.

y Specifies the number of units to move up or down.

point The x-coordinate of point specifies the number of units to move left or right.
The y-coordinate of point specifies the number of units to move up or down. The
point parameter may be either a POINT structure or a CPoiot object.

Moves the region stored in the CRgo object by the specified offsets. The function
moves the region x units along the x-axis and y units along the y-axis.

The coordinate values of a region must be less than or equal to 32,767 and greater
than or equal to -32,768. The x and y parameters must be carefully chosen to prevent
invalid region coordinates.

See Also: : :OffsetRgo

CRgn: :PtInRegion
BOOL PtInRegion(int x, int y) const;
BOOL PtInRegion(POINT point) const;

Return Value
Nonzero if the point is in the region; otherwise O.

Parameters

Remarks

x Specifies the logical x-coordinate of the point to test.

y Specifies the logical y-coordinate of the point to test.

point The x- and y-coordinates of point specify the x- and y-coordinates of the point
to test the value of. The point parameter can either be a POINT structure or a
CPoint object.

Checks whether the point given by x and y is in the region stored in the CRgn object.

See Also: : :PtInRegion

CRgn: : RectInRegion
BOOL RectInRegion(LPCRECT /pRect) const;

Return Value
Nonzero if any part of the specified rectangle lies within the boundaries of the region;
otherwise O.

Parameters

Remarks

/pRect Points to a RECT structure or CRect object. The RECT structure has the
following form:

typedef struct tagRECT {
i nt 1 eft;
int top;
int right;
int bottom;
RECT;

Determines whether any part of the rectangle specified by /pRect is within the
boundaries of the region stored in the CRgn object.

See Also: : :RectInRegion

eRgn: :RectInRegion

1679

eRgn:: SetRectRgn

CRgn: :SetRectRgn
void SetRectRgn(int xl, int yl, int x2, int y2);
void SetRectRgn(LPCRECT IpRect);

Parameters

Remarks

xl Specifies the x-coordinate of the upper-left comer of the rectangular region.

yl Specifies the y-coordinate of the upper-left comer of the rectangular region.

x2 Specifies the x-coordinate of the lower-right comer of the rectangular region.

y2 Specifies the y-coordinate of the lower-right comer of the rectangular region.

IpRect Specifies the rectangular region. Can be either a pointer to a RECT structure
or a CRect object.

Creates a rectangular region. Unlike CreateRectRgn, however, it does not allocate
any additional memory from the local Windows application heap. Instead, it uses the
space allocated for the region stored in the CRgn object. This means that the CRgn
object must already have been initialized with a valid Windows region before calling
SetRectRgn. The points given by xl, yl, x2, and y2 specify the minimum size of the
allocated space.

Use this function instead of the CreateRectRgn member function to avoid calls to the
local memory manager.

See Also: CRgn::CreateRectRgn, ::SetRectRgn

Operators
CRgn::operator HRGN

operator HRGN() const;

Return Value

Remarks

1680

If successful, a handle to the Windows GDI object represented by the CRgn object;
otherwise NULL.

Use this operator to get the attached Windows GDI handle of the CRgn object. This
operator is a casting operator, which supports direct use of an HRGN object.

For more information about using graphic objects, see the article "Graphic Objects"
in the Win 32 SDK Programmer's Reference.

CRichEditCntrItem

CRich EditCntrltem

A "rich edit control" is a window in which the user can enter and edit text. The text
can be assigned character and paragraph formatting, and can include embedded
OLE objects. Rich edit controls provide a programming interface for formatting text.
However, an application must implement any user interface components necessary to
make formatting operations available to the user.

The CRichEditCntrltem class, with CRichEditView and CRichEditDoc, provides
the functionality of the rich edit control within the context of MFC's document view
architecture. CRichEditView maintains the text and formatting characteristic of text.
CRichEditDoc maintains the list of OLE client items which are in the view.
CRichEditCntrltem provides container-side access to the OLE client item.

This Windows Common control (and therefore the CRichEditCtrl and related
classes) is available only to programs running under Windows 95 and Windows NT
versions 3.51 and later.

For an example of using rich edit container items in an MFC application, see the
WORDPAD sample application online.

#include <afxrich.h>

See Also: CRichEditDoc, CRichEditView

CRichEditCntrItem Class Members
Constructor

CRichEditCntrltem Constructs a CRichEditCntrltem object.

Operations

SyncToRichEditObject Activates the item as another type.

CRichEditCntrItem

1681

CRichEditCntrItem: :CRichEditCntrItem

Member Functions
CRichEditCntr Item: : CRichEditCntrItem

CRichEditCntrItem(REOBJECT* preo = NULL,
... CRichEditDoc* pContainer = NULL);

Parameters

Remarks

preo Pointer to an REOBJECT structure which describes an OLE item. The new
CRichEditCntrItem object is constructed around this OLE item. If preo is NULL,
the client item is empty.

pContainer Pointer to the container document that will contain this item. If
pContainer is NULL, you must explicitly call COleDocument::AddItem to add
this client item to a document.

Call this function to create a CRichEditCntrItem object and add it to the container
document. This function does not perform any OLE initialization.

For more information, see the REOBJECT structure in the Win32 documentation.

See Also: COleDocument: :AddItem, CRichEditDoc

CRichEditCntrItem: : SyncToRichEditObj ect
void SyncToRichEditObject(REOBJECT& reo);

Parameters

Remarks

1682

reo Reference to an REOBJECT structure which describes an OLE item.

Call this function to synchronize the device aspect, DVASPECT, of this
CRichEditCntrltem to that specified by reo.

For more information, see DVASPECT in the OLE documentation.

CRichEditCtrl

CRich EditCtrl

A "rich edit control" is a window in which the user can enter and edit text. The text
can be assigned character and paragraph formatting, and can include embedded
OLE objects. Rich edit controls provide a programming interface for formatting text.
However, an application must implement any user interface components necessary to
make formatting operations available to the user.

The CRichEditCtrl class provides the functionality of the rich edit control. This
Windows Common control (and therefore the CRichEditCtrl class) is available only
to programs running under Windows 95 and Windows NT versions 3.51 and later.

For more information on using CRichEditCtrl, see Technical Note 60 online.

For an example of using a rich edit control in an MFC application, see the
WORD PAD sample application online.

#include <afxcmn.h>

See Also: CEdit, CRichEditView

CRichEditCtrl Class Members
Construction

CRichEditCtrl

Create

Line Operations

GetLineCount

GetLine

GetFirst VisibleLine

Linelndex

Constructs a CRichEditCtri object.

Creates the Windows rich edit control and associates it with this
CRichEditCtrl object.

Retrieves the number of lines in this CRichEditCtrl object.

Retrieves a line of text from this CRichEditCtri object.

Determines the topmost visible line in this CRichEditCtri
object.

Retrieves the character index of a given line in this
CRichEditCtrl object.

(continued)

CRichEditCtrl

1683

CRichEditCtrl

1684

Line Operations (continued)

LineFromChar

LineLength

LineScroIl

Selection Operations

GetSel

GetSelText

GetSelectionType

Clear

SetSel

ReplaceSel

HideSelection

Formatting Operations

Determines which line contains the given character.

Retrieves the length of a given line in this CRichEditCtrl object.

Scrolls the text in this CRichEditCtrl object.

Gets the starting and ending positions of the current selection in
this CRichEditCtrl object.

Gets the text of the current selection in this CRichEditCtrl
object

Retrieves the type of contents in the current selection in this
CRichEditCtrl object.

Clears the current selection.

Sets the selection in this CRichEditCtrl object.

Replaces the current selection in this CRichEditCtrl object with
specified text.

Shows or hides the the current selection.

GetDefauItCharFormat Retrieves the current default character formatting attributes in
this CRichEditCtrl object.

GetSelectionCharFormat Retrieves the character formatting attributes in the current
selection in this CRichEditCtrl object.

GetParaFormat Retrieves the paragraph formatting attributes in the current
selection in this CRichEditCtrl object.

SetDefauItCharFormat Sets the current default character formatting attributes in this
CRichEditCtrl object.

SetSelectionCharFormat Sets the character formatting attributes in the current selection in
this CRichEditCtrI object.

SetWordCharFormat Sets the character formatting attributes in the current word in this
CRichEditCtrI object.

SetParaFormat Sets the paragraph formatting attributes in the current selection in
this CRichEditCtrl object.

Editing Operations

Undo

CanUndo

EmptyUndoBuffer

StreamIn

Stream Out

Reverses the last editing operation.

Determines if an editing operation can be undone.

Resets (clears) the undo flag of this CRichEditCtrl object.

Inserts text from an input stream into this CRichEditCtrI object.

Stores text from this CRichEditCtrI object into an output
stream.

General Operations

GetModify

SetModify

FindText

GetRect

SetRect

GetCharPos

SetOptions

SetReadOnly

GetTextLength

GetLimitText

LimitText

GetEventMask

SetEventMask

RequestResize

SetBackgroundColor

SetTargetDevice

FormatRange

DisplayBand

Clipboard Operations

Copy

Cut

Paste

PasteSpecial

CanPaste

OLE Operations

GetlRichEditOle

SetOLECallback

Determines if the contents of this CRichEditCtrl object have
changed since the last save.

Sets or clears the modification flag for this CRichEditCtrl
object.

Locates text within this CRichEditCtrl object.

Retrieves the formatting rectangle for this CRichEditCtrl
object.

Sets the formatting rectangle for this CRichEditCtrl object.

Determines the location of a given character within this
CRichEditCtrl object.

Sets the options for this CRichEditCtrl object.

Sets the read-only option for this CRichEditCtrl object.

Retrieves the length of the text in this CRichEditCtrl object.

Gets the limit on the amount of text a user can enter into this
CRichEditCtrl object.

Limits the amount of text a user can enter into the
CRichEditCtrl object.

Retrieves the event mask for this CRichEditCtrl object.

Sets the event mask for this CRichEditCtrl object.

Forces this CRichEditCtrl object to send request resize
notifications.

Sets the background color in this CRichEditCtrl object.

Sets the target output device for this CRichEditCtrl object.

Formats a range of text for the target output device.

Displays a portion of the contents of this CRichEditCtrl object.

Copies the current selection to the Clipboard.

Cuts the current selection to the Clipboard.

Inserts the contents of the Clipboard into this rich edit control.

Inserts the contents of the Clipboard into this rich edit control in
the specified data format.

Determines if the contents of the Clipboard can be pasted into
this rich edit control.

Retrieves a pointer to the IRichEditOle interface for this rich
edit control.

Sets the IRichEditOleCallback COM object for this rich edit
control.

CRichEditCtrl

1685

CRichEditCtrl: :CanPaste

Member Functions
CRichEditCtrl: :CanPaste

BOOL CanPaste(UINT nFormat = 0) const;

Return Value
Nonzero if the Clipboard format can be pasted; otherwise 0.

Parameters

Remarks

nFormat The Clipboard data format to query. This parameter can be one of the
predefined Clipboard formats or the value returned by RegisterClipboardFormat.

Call this function to determine if the rich edit control can paste the specified
Clipboard format. If nFormat is 0, CanPaste will try any format currently on the
Clipboard.

For more information, see EM_CANPASTE message and
RegisterClipboardFormat function in the Win32 documentation.

See Also: CRichEditCtrl: :Paste, CRichEditCtrl: :PasteSpecial

CRichEditCtrl: :CanUndo
BOOL CanUndo() const;

Return Value

Remarks

Nonzero if the last edit operation can be undone by a call to the Undo member
function; ° if it cannot be undone.

Call this function to determine if the last editing operation can be undone.

For more information, see EM_CANUNDO in the Win32 documentation.

See Also: CRichEditCtrl:: Undo, CRichEditCtrl: :EmptyUndoBuffer

CRichEditCtrl: : Clear

Remarks

1686

void Clear();

Call this function to delete (clear) the current selection (if any) in the rich edit control.

The deletion performed by Clear can be undone by calling the Undo member
function.

CRichEditCtrl::Create

To delete the current selection and place the deleted contents onto the Clipboard, call
the Cut member function.

For more information, see WM_ CLEAR in the Win32 documentation.

See Also: CRichEditCtrl::Undo, CRichEditCtrl::Cut, CRichEditCtrl::Copy,
CRichEditCtrl: :Paste

CRichEditCtrl: :Copy

Remarks

void Copy();

Call this function to copy the current selection (if any) in the rich edit control to the
Clipboard.

For more information, see WM_COPY in the Win32 documentation.

See Also: CRichEditCtrl: :Paste, CRichEditCtrl:: Cut

CRichEditCtrl: : Create
BOOL Create(DWORD dwStyle, const RECT& reet, CWnd* pParentWnd, UINT nID);

Return Value
Nonzero if initialization is successful; otherwise, O.

Parameters

Remarks

dwStyle Specifies the edit control's style. Apply any combination of edit styles to the
control.

reet Specifies the edit control's size and position. Can be a CRect object or RECT
structure.

pParentWnd Specifies the edit control's parent window (often a CDialog). It must
not be NULL.

nID Specifies the edit control's ID.

You construct a CRichEditCtrl object in two steps. First, call the CRichEditCtrl
constructor, then call Create, which creates the Windows edit control and attaches it
to the CRichEditCtrl object.

When Create executes, Windows sends the WM_NCCREATE,
WM_NCCALCSIZE, WM_CREATE, and WM_GETMINMAXINFO messages
to the edit control.

These messages are handled by default by the OnNcCreate, OnNcCalcSize,
OnCreate, and OnGetMinMaxInfo member functions in the CWnd base class.

1687

CRichEditCtrl: :CRichEditCtrl

To extend the default message handling, derive a class from CRichEditCtrl, add
a message map to the new class, and override the above message-handler member
functions. Override OnCreate, for example, to perform needed initialization for
the new class.

Apply the following window styles to an edit control.

• WS_CHILD Always.

• WS_ VISIBLE Usually.

• WS_DISABLED Rarely.

• WS_GROUP To group controls.

• WS_TABSTOP To include edit control in the tabbing order.

See Also: CRichEditCtrl:: CRichEditCtrl

CRichEditCtrl: :CRichEditCtrl

Remarks

CRichEditCtrl();

Constructs a CRichEditCtri object. Use Create to construct the Windows rich edit
control.

See Also: CRichEditCtrl::Create

CRichEditCtrl: :Cut

Remarks

1688

void Cut();

Call this function to delete (cut) the current selection (if any) in the rich edit control
and copy the deleted text to the Clipboard.

The deletion performed by Cut can be undone by calling the Undo member function.

To delete the current selection without placing the deleted text into the Clipboard, call
the Clear member function.

For more information, see WM_ CUT in the Win32 documentation.

See Also: CRichEditCtrl::Copy, CRichEditCtrl::Undo, CRichEditCtrl::Clear

CRichEditCtrl: :FindText

CRichEditCtrl: :Display Band
BOOL DisplayBand(LPRECT pDisplayRect);

Return Value
Nonzero if the display of the formatted text succeeds, otherwise, O.

Parameters

Remarks

pDisplayRect Pointer to a RECT or CRect object specifying the area of the device
to display the text.

Call this function to display a portion of the contents of the rich edit control (text and
OLE items), as previously formatted by FormatRange. The text and OLE items are
clipped to the area specified by the pointer pDisplayRect.

For more information, see EM_DISPLAYBAND in the Win32 documentation.

See Also: CRichEditCtrl: :FormatRange

CRichEditCtrl::EmptyUndoBuffer
void EmptyUndoBuffer();

Remarks
Call this function to reset (clear) the undo flag of this rich edit control. The control
will now be unable to undo the last editing operation. The undo flag is set whenever
an operation within the rich edit control can be undone.

The undo flag is automatically cleared whenever you call the CWnd member function
Set WindowText.

For more information, see EM_EMPTYUNDOBUFFER in the Win32
documentation.

See Also: CRichEditCtrl::CanUndo~ CRichEditCtrl::Undo,
CWnd: :SetWindowText

CRichEditCtrl: : FindText
long FindText(DWORD dwFlags, FINDTEXTEX* pFindText) const;

Return Value
Zero-based character position of the next match; -1 if there are no more matches.

Parameters
dwFlags Flags for the match criteria. Can be zero or more of the following values:

• FR_MATCHCASE Indicates that the search is case sensitive.

1689

CRichEditCtrl: :FormatRange

Remarks

• FR_ WHOLEWORD Indicates that the word boundaries should be considered
in the search.

pFindText Pointer to the FINDTEXTEX structure giving the parameters for the
search and returning the range where the match was found.

Call this function to find text within the rich edit control. You can search either up or
down by setting the proper range parameters in the CHARRANGE structure within
the FINDTEXTEX structure.

For more information, see EM_FINDTEXTEX message and FINDTEXTEX
structure in the Win32 documentation.

See Also: CRichEditCtrl: :SetSel

CRichEditCtrl: : FormatRange
long FormatRange(FORMATRANGE* pfr, BOOL bDisplay = TRUE);

Return Value
The index of the last character that fits in the region plus one.

Parameters

Remarks

pfr Pointer to the FORMATRANGE structure which contains information about the
output device. NULL indicates that cached information within the rich edit control
can be freed.

bDisplay Indicates if the text should be rendered. If FALSE, the text is just
measured.

Call this function to format a range of text in a rich edit control for a specific device.
Typically, this call is followed by a call to DisplayBand.

For more information, see EM_FORMATRANGE message and FORMATRANGE
structure in the Win32 documentation.

See Also: CRichEditCtrl::DisplayBand

CRichEditCtrl: : GetCharPos
CPoint GetCharPos(long lChar) const;

Return Value
The location of the top-left corner of the character specified by lChar.

Parameters
lChar Zero-based index of the character.

1690

CRichEditCtrl::GetEventMask

Remarks
Call this function to get the position (top-left corner) of a given character within this
CRichEditCtrl object. The character is specified by giving its zero-based index
value. If [Char is greater than the index of the last character in this CRichEditCtrl
object, the return value specifies the coordinates of the character position just past the
last character in this CRichEditCtrl object.

For more information, see EM_POSFROMCHAR in the Win32 documentation.

See Also: CRichEditCtrl::FindText

CRichEditCtrl: : GetDefaultCharFormat
DWORD GetDefaultCharFormat(CHARFORMAT& cf) const;

Return Value
The dwMask data member of cf. It specified the default character formatting
attributes.

Parameters

Remarks

cf Pointer to a CHARFORMAT structure which will hold the default character
formatting attributes.

Call this function to get the default character formatting attributes of this
CRichEditCtrl object.

For more information, see EM_GETCHARFORMAT message and
CHARFORMAT structure in the Win32 documentation.

See Also: CRichEditCtrl: :SetDefaultCharFormat,
CRichEditCtrl:: GetSelectionCharFormat, CRichEditCtrl:: GetParaFormat

CRichEditCtrl: : GetEventMask
long GetEventMask() const;

Return Value

Remarks

The event mask for this CRichEditCtrl object.

Call this function to get the event mask for this CRichEditCtrl object. The event
mask specifies which notification messages the CRichEditCtrl object sends to its
parent window.

For more information, see EM_GETEVENTMASK in the Win32 documentation.

See Also: CRichEditCtrl: :SetEventMask, CRichEditCtrl:: CRichEditCtrl

1691

CRichEditCtr1: :GetFirstVisibleLine

CRichEditCtrl: : GetFirst VisibleLine
int GetFirstVisibleLine() const;

Return Value

Remarks

Zero-based index of the uppermost visible line in this CRichEditCtrl object.

Call this function to determine the topmost visible line in this CRichEditCtrl object.

For more information, see EM_GETFIRSTVISIBLELINE in the Win32
documentation.

See Also: CRichEditCtrl: :GetLine, CRichEditCtrl: :GetLineCount

CRichEditCtrl::GetIRichEditOle
IRichEditOle* GetIRichEditOle() const;

Return Value

Remarks

Pointer to the IRichEditOle interface that can be used to access this CRichEditCtrl
object's OLE functionality; NULL if the interface is not accessible.

Call this member function to access the IRichEditOle interface for this
CRichEditCtrl object. Use this interface to access this CRichEditCtrl object's OLE
functionality.

For more information, see EM_GETOLEINTERFACE message and IRichEditOle
interface in the Win32 documentation.

See Also: CRichEditCtrl: :SetOLECallback

CRichEditCtrl: : GetLimitText
long GetLimitText() const;

Return Value

Remarks

1692

The current text limit, in bytes, for this CRichEditCtrl object.

Call this member function to get the text limit for this CRichEditCtrl object. The text
limit is the maximum amount of text, in bytes, the rich edit control can accept.

For more information, see EM_GETLIMITTEXT in the Win32 documentation.

See Also: CRichEditCtrl::LimitText

CRichEditCtrl: : GetModify

CRichEditCtrl: : GetLine
int GetLine(int nlndex, LPTSTR lpszBuJfer) const;
int GetLine(int nlndex, LPTSTR lpszBuJfer, int nMaxLength) const;

Return Value
The number of characters copied into lpszBuJfer.

Parameters

Remarks

nlndex Zero-based index of the line to retrieve.

lpszBuJfer Points to the buffer to receive the text. The first word of the buffer must
specify the maximum number of bytes that can be copied into the buffer.

nMaxLength Maximum number of characters that can be copied into lpszBuJfer. The
second form of GetLine places this value into the first word of the buffer specified
by lpszBuJfer.

Call this function to retrieve a line of text from this CRichEditCtrl object. The copied
line does not contain a terminating null character.

Note Because the first word of the buffer stores the number of characters to be copied, make
sure that your buffer is at least 4 bytes long.

For more information, see EM_GETLINE in the Win32 documentation.

See Also: CRichEditCtrl::LineLength

CRichEditCtrl: : GetLineCount
int GetLineCount() const;

Return Value

Remarks

The number of lines in this CRichEditCtrl object.

Call this function to retrieve the number of lines in the CRichEditCtrl object.

For more information, see EM_GETLINECOUNT in the Win32 documentation.

See Also: CRichEditCtrl: :GetLine

CRichEditCtrl: : GetModify
BOOL GetModify() const;

Return Value
Nonzero if the text in this CRichEditCtrl object has been modified; otherwise O.

1693

CRichEditCtrl: : GetParaFormat

Call this function to determine if the contents of this CRichEditCtrl object have been
modified.

Windows maintains an internal flag indicating whether the contents of the rich edit
control have been changed. This flag is cleared when the edit control is first created
and can also be cleared by calling the SetModify member function.

For more information, see EM_GETMODIFY in the Win32 documentation.

See Also: CRichEditCtrl: :SetModify

CRichEditCtrl::GetParaFormat
DWORD GetParaFormat(PARAFORMAT& pI) const;

Return Value
The dwMask data member of pf It specifies the paragraph formatting attributes that
are consistent throughout the current selection.

Parameters

Remarks

pI Pointer to a PARAFORMAT structure to hold the paragraph formatting attributes
of the current selection.

Call this function to get the paragraph formatting attributes of the current selection. If
more than one paragraph is selected, pI receives the attributes of the first selected
paragraph. The return value specifies which attributes are consistent throughout the
selection.

For more information, see EM_GETPARAFORMAT message and PARAFORMAT
structure in the Win32 documentation.

See Also: CRichEditCtrl::SetParaFormat,
CRichEditCtrl:: GetSelectionCharFormat

CRichEditCtr 1: : GetRect
void GetRect(LPRECT lpRect) const;

Parameters

Remarks

1694

lpRect CRect or pointer to a RECT to receive the formatting rectangle of this
CRichEditCtrlobject.

Call this function to retrieve the formatting rectangle for this CRichEditCtrl object.
The formatting rectangle is the bounding rectangle for the text. This value is
independent of the size of the CRichEditCtrl object.

CRichEditCtrl:: GetSelectionCharFormat

For more information, see EM_GETRECT in the Win32 documentation.

See Also: CRichEditCtrl: :SetRect

CRichEditCtrl: :GetSel
void GetSel(CHARRANGE& cr) const;
void GetSel(long& nStartChar, long& nEndChar) const;

Parameters

Remarks

cr Reference to a CHARRANGE structure to receive the bounds of the current
selection.

nStartChar Zero-based index of the first character in the current selection.

nEndChar Zero-based index of the last character in the current selection.

Call this function to retrieve the bounds of the current selection in this CRichEditCtrl
object.

The two forms of this function provide alternate ways to get the bounds for the
selection. Brief descriptions of these forms follow:

• GetSel(cr) This form uses the CHARRANGE structure with its cpMin and
cpMax members to return the bounds.

• GetSel(nStartChar, nEndChar) This form returns the bounds in the parameters
nStartChar and nEndChar.

The selection includes everything if the beginning (cpMin or nStartChar) is 0 and the
end (cpMax or nEndChar) is -1.

For more information, see EM_EXGETSEL message and CHARRANGE structure
in the Win32 documentation.

See Also: CRichEditCtrl: :SetSel, CRichEditCtrl: : GetSelText,
CRichEditCtrl:: GetParaFormat, CRichEditCtrl: :GetSelectionCharFormat

CRichEditCtrl::GetSelectionCharFormat
DWORD GetSelectionCharFormat(CHARFORMAT& cf) const;

Return Value
The dwMask data member of cf It specifies the character formatting attributes that
are consistent throughout the current selection.

Parameters
cf Pointer to a CHARFORMAT structure to receive the character formatting

attributes of the current selection.

1695

CRichEditCtrl: :GetSelectionType

Call this function to get the character formatting attributes of the current selection.
The cfparameter receives the attributes of the first character in the current selection.
The return value specifies which attributes are consistent throughout the selection.

For more information, see EM_GETCHARFORMAT message and
CHARFORMAT structure in the Win32 documentation.

See Also: CRichEditCtrl::GetDefaultCharFormat,
CRichEditCtrl: : GetParaFormat, CRichEditCtrl: :SetSelectionCharFormat,
CRichEditCtrl: : GetSelText

CRichEditCtrl: : GetSelectionType
WORD GetSelectionType() const;

Return Value

Remarks

Flags indicating the contents of the current selection. A combination of the following
flags:

• SEL_EMPTY Indicates that there is no current selection.

• SEL_TEXT Indicates that the current selection contains text.

• SEL_OBJECT Indicates that the current selection contains at least one OLE
item.

• SEL_MULTICHAR Indicates that the current selection contains more than one
character of text.

• SEL_MULTIOBJECT Indicates that the current selection contains more than
one OLE object.

Call this function to determine the selection type in this CRichEditCtrl object.

For more information, see EM_SELECTIONTYPE in the Win32 documentation.

See Also: CRichEditCtrl:: GetSel, CRichEditCtrl:: GetSelText

CRichEditCtrl:: GetSel Text
long GetSelText(LPTSTR lpBuf) const;
CString GetSelText() const;

Return Value

1696

Depends on the form:

• GetSelText(lpBuf) The number of characters copied into lpBuf, not including the
null termination.

CRichEditCtrl: :HideSelection

• GetSeIText() The string containing the current selection.

Parameters

Remarks

IpBuJ Pointer to the buffer to receive the text in the current selection.

Call this function to retrieve the text from the current selection in this CRichEditCtrl
object.

If you use the first form, GetSelText(IpBuJ), you must ensure that the buffer is large
enough for the text it will receive. Call GetSel to determine the number of characters
in the current selection.

For more information, see EM_GETSELTEXT in the Win32 documentation.

See Also: CRichEditCtrl: :GetSel, CRichEditCtrl: : GetSelectionType

CRichEditCtrl: : GetTextLength
long GetTextLength();

Return Value

Remarks

The length of the text in this CRichEditCtrl object.

Call this function to retrieve the length of the text in this CRichEditCtrl object.

For more information, see WM_GETTEXTLENGTH in the Win32 documentation.

See Also: CRichEditCtrl: : LimitText, CRichEditCtrl: : GetLimitText

CRichEditCtrl: :HideSelection
void HideSelection(BOOL bHide, BOOL bPerm);

Parameters

Remarks

bHide Indicates if the selection should be shown or hidden, TRUE to hide the
selection.

pPerm Indicates if this change in visibility for the selection should be permanent.

Call the function to change the visibility of the selection.

WhenpPerm is TRUE, it changes the ECO_NOHIDESEL option for this
CRichEditCtrl object. For a brief description of this option, see SetOptions. You can
use this function to set all the options for this CRichEditCtrl object.

For more information, see EM_HIDESELECTION in the Win32 documentation.

1697

CRichEditCtrl::LimitText

See Aiso: CRichEditCtri: :SetSei, CRichEditCtri: : GetSeiectiunType

CRichEditCtrl: : LimitText
void LimitText(long nChars = 0);

Parameters

Remarks

nChars Specifies the length (in bytes) of the text that the user can enter. If this
parameter is 0, the text length is set to UINT_MAX bytes. This is the default
behavior.

Call this function to limit the length of the text that the user can enter into an edit
control.

Changing the text limit restricts only the text the user can enter. It has no effect on any
text already in the edit control, nor does it affect the length of the text copied to the
edit control by the SetWindowText member function in CWnd. If an application uses
the SetWindowText function to place more text into an edit control than is specified
in the call to LimitText, the user can delete any of the text within the edit control.
However, the text limit will prevent the user from replacing the existing text with new
text, unless deleting the current selection causes the text to fall below the text limit.

Note For the text limit, each OLE item counts as a single character.

For more information, see EM_EXLIMITTEXT in the Win32 documentation.

See Also: CRichEditCtrl::GetLimitText

CRichEditCtrl: : LineFromChar
long LineFromChar(long nlndex) const;

Return Value
The zero-based line number of the line containing the character index specified by
nlndex. If nlndex is -1, the number of the line that contains the first character of the
selection is returned. If there is no selection, the current line number is returned.

Parameters

Remarks

1698

nlndex Contains the zero-based index value for the desired character in the text of
the edit control, or contains -1. If nlndex is -1, it specifies the current line, that is,
the line that contains the caret.

Call this function to retrieve the line number of the line that contains the specified
character index. A character index is the number of characters from the beginning of

CRichEditCtrl: :LineLength

the rich edit control. For character counting, an OLE item is counted as a single
character.

For more information, see EM_EXLINEFROMCHAR in the Win32 documentation.

See Also: CRichEditCtrl::GetLineCount, CRichEditCtrl::GetLine,
CRichEditCtrl: :Linelndex

CRichEditCtrl: : LineIndex
int Linelndex(int nLine = -1) const;

Return Value
The character index of the line specified in nLine or -1 if the specified line number is
greater then the number of lines in the edit control.

Parameters

Remarks

nLine Contains the index value for the desired line in the text of the edit control, or
contains -1. If nLine is -1, it specifies the current line, that is, the line that contains
the caret.

Call this function to retrieve the character index of a line within this CRichEditCtrl
object. The character index is the number of characters from the beginning of the rich
edit control to the specified line.

For more information, see EM_LINEINDEX in the Win32 documentation.

See Also: CRichEditCtrl::LineFromChar, CRichEditCtrl::GetLineCount

CRichEditCtrl: : LineLength
int LineLength(int nLine = -1) const;

Return Value
When LineLength is called for a multiple-line edit control, the return value is the
length (in bytes) of the line specified by nLine. When LineLength is called for a
single-line edit control, the return value is the length (in bytes) of the text in the edit
control.

Parameters
nLine Specifies the character index of a character in the line whose length is to be

retrieved. If this parameter is -1, the length of the current line (the line that
contains the caret) is returned, notinc1uding the length of any selected text within
the line. When LineLength is called for a single-line edit control, this parameter
is ignored.

1699

CRichEditCtrl: :LineScroll

Remarks
Call this function to retrieve the length of a line in a rich edit control.

Use the Linelndex member function to retrieve a character index for a given line
number within this CRichEditCtrl object.

For more information, see EM_LINELENGTH in the Win32 documentation.

See Also: CRichEditCtrl: :Linelndex

CRichEditCtrl: :LineScroll
void LineScroll(int nLines, int nChars = 0);

Parameters

Remarks

nLines Specifies the number of lines to scroll vertically.

nChars Specifies the number of character positions to scroll horizontally. This value
is ignored if the rich edit control has either the ES_RIGHT or ES_CENTER style.
Edit styles are specified in Create.

Call this function to scroll the text of a multiple-line edit control.

The edit control does not scroll vertically past the last line of text in the edit control. If
the current line plus the number of lines specified by nLines exceeds the total number
of lines in the edit control, the value is adjusted so that the last line of the edit control
is scrolled to the top of the edit-control window.

LineScroll can be used to scroll horizontally past the last character of any line.

For more information, see EM_LINESCROLL in the Win32 documentation.

See Also: CRichEditCtrl: :Linelndex

CRichEditCtrl: :Paste

Remarks

1700

void Paste();

Call this function to insert the data from the Clipboard into the CRichEditCtri at the
insertion point, the location of the caret. Data is inserted only if the Clipboard contains
data in a recognized format.

For more information, see WM_PASTE in the Win32 documentation.

See Also: CRichEditCtrl::Copy, CRichEditCtrl::Cut,
CRichEditCtrl: :PasteSpecial

CRichEditCtrl: :ReplaceSel

CRichEditCtrl: :PasteSpecial
void PasteSpecial(UINT nClipFormat, DWORD dvAspect = 0,

... HMETAFILE hMF = 0);

Parameters

Remarks

nClipFormat Clipboard format to paste into this CRichEditCtrl object.

dvAspect Device aspect for the data to be retrieved from the Clipboard.

hMF Handle to the metafile containing the iconic view of the object to be pasted.

Call this function to paste data in a specific Clipboard format into this CRichEditCtrl
object. The new material is inserted at the insertion point, the location of the caret.

For more information, see EM_PASTESPECIAL in the Win32 documentation.

See Also: CRichEditCtrl::Paste, CRichEditCtrl::Copy, CRichEditCtrl::Cut

CRichEditCtrl: :ReplaceSel
void ReplaceSel(LPCTSTR IpszNewText, BOOL bCanUndo = FALSE);

Parameters

Remarks

IpszNe w Text Pointer to a null-terminated string containing the replacement text.

bCanUndo To specify that this function can be undone, set the value of this
parameter to TRUE. The default value is FALSE.

Call this function to replace the current selection in this CRichEditCtrl object with
the specified text. To replace all the text in this CRichEditCtrl object, use
CWnd::SetWindowText.

If there is no current selection, the replacement text is inserted at the insertion point,
that is, the current caret location.

For more information, see EM_REPLACESEL in the Win32 documentation.

See Also: CRichEditCtrl::CanUndo, CRichEditCtrl::Undo,
CWnd: :SetWindowText

1701

CRichEditCtrl: :RequestResize

CRichEditCtrl: : RequestResize

Remarks

void RequestResize();

Call this function to force this CRichEditCtrl object to send
EN_REQUESTRESIZE notification messages to its parent window. This function is
useful during CWnd: :OnSize processing for a bottomless CRichEditCtrl object.

For more information, see the EM_REQUESTRESIZE message and the "Bottomless
Rich Edit Controls" article in the Win32 documentation.

See Also: CWnd::OnSize, CRichEditCtrl::Create

CRichEditCtrl: : SetB ackgroundColor
COLORREF SetBackgroundColor(BOOL bSysColor, COLORREF cr);

Return Value
The previous background color for this CRichEditCtrl object.

Parameters

Remarks

bSysColor Indicates if the background color should be set to the system value. If this
value is TRUE, cr is ignored.

cr The requested background color. Used only if bSysColor is FALSE.

Call this function to set the background color for this CRichEditCtrl object. The
background color can be set to the system value or to a specified COLORREF value.

For more information, see EM_SETBKGNDCOLOR message and COLORREF
structure in the Win32 documentation.

See Also: CDC::SetBkColor

CRichEditCtrl::SetDefaultCharFormat
BOOL SetDefaultCharFormat(CHARFORMAT& cf);

Return Value
Nonzero if successful; otherwise, O.

Parameters

1702

cf CHARFORMAT structure containing the new default character formatting
attributes.

CRichEditCtrl: :SetModify

Remarks
Call this function to set the character formatting attributes for new text in this
CRichEditCtrl object. Only the attributes specified by the dwMask member of cf are
changed by this function.

For more information, see EM_SETCHARFORMAT message and
CHARFORMAT structure in the Win32 documentation.

See Also: CRichEditCtrl: : GetDefaultCharFormat,
CRichEditCtrl: :SetSelectionCharFormat

CRichEditCtrl::SetEventMask
DWORD SetEventMask(DWORD dwEventMask);

Return Value
The previous event mask.

Parameters

Remarks

dwEventMask The new event mask for this CRichEditCtrl object.

Call this function to set the event mask for this CRichEditCtrl object. The event
mask specifies which notification messages the CRichEditCtrl object sends to its
parent window.

For more information, see EM_SETEVENTMASK in the Win32 documentation.

See Also: CRichEditCtrl::GetEventMask

CRichEditCtrl::SetModify
void SetModify(BOOL bModified = TRUE);

Parameters

Remarks

bModified A value of TRUE indicates that the text has been modified, and a value of
FALSE indicates it is unmodified. By default, the modified flag is set.

Call this function to set or clear the modified flag for an edit control. The modified
flag indicates whether or not the text within the edit control has been modified. It is
automatically set whenever the user changes the text. Its value can be retrieved with
the GetModify member function.

For more information, see EM_SETMODIFY in the Win32 documentation.

See Also: CRichEditCtrl::GetModify

1703

CRichEditCtrl:: SetOLECallback

CRichEditCtrl:: SetOLECallback
BOOL SetOLECallback(IRichEditOleCallback* pCallback);

Parameters
pCallback Pointer to an IRichEditOleCallback object that this CRichEditCtrl

object will use to get OLE-related resources and information.

Return Value

Remarks

Nonzero if successful; otherwise, O.

Call this function to give this CRichEditCtrl object an IRichEditOleCallback object
to use to access OLE-related resources and information. This CRichEditCtrl object
will call IUnknown::AddRef to increment the usage count for the COM object
specified by pCallback.

For more information, see EM_SETOLEINTERFACE message and
IRichEditOleCallback interface in the Win32 documentation.

See Also: CRichEditCtrl: : GetIRichEditOle

CRichEditCtrl: : SetOptions
void SetOptions(WORD wOp, DWORD dwFlags);

Parameters

Remarks

1704

wOp Indicates the type of operation. One of the following values:

• ECOOP _SET Set the options to those specified by dwFlags.

• ECOOP _OR Combine the current options with those specified by dwFlags.

• ECOOP _AND Retain only those current options that are also specified by
dwFlags.

• ECOOP _XOR Retain only those current options that are not specified by
dwFlags.

dwFlags Rich edit options. The flag values are listed in the Remarks section.

Call this function to set the options for this CRichEditCtri object.

The options can be a combination of the following values:

• ECO_AUTOWORDSELECTION Automatic word selection on double-click .

• ECO_AUTOVSCROLL Automatically scrolls text to the right by 10 characters
when the user types a character at the end of the line. When the user presses the
ENTER key, the control scrolls all text back to position zero.

CRichEditCtrl: :SetParaFonnat

• ECO_AUTOHSCROLL Automatically scrolls text up one page when the user
presses the ENTER key on the last line.

• ECO_NOHIDESEL Negates the default behavior for an edit control. The default
behavior hides the selection when the control loses the input focus and shows the
selection when the control receives the input focus. If you specify
ECO_NOHIDESEL, the selected text is inverted, even if the control does not
have the focus.

• ECO_READONLY Prevents the user from typing or editing text in the edit
control.

• ECO_ WANTRETURN Specifies that a carriage return be inserted when the
user presses the ENTER key while entering text into a multiple-line rich edit
control in a dialog box. If you do not specify this style, pressing the ENTER key
sends a command to the rich edit control's parent window, which mimics clicking
the parent window's default button (for example, the OK button in a dialog box).
This style has no effect on a single-line edit control.

• ECO_SAVESEL Preserves the selection when the control loses the focus. By
default, the entire contents of the control are selected when it regains the focus.

• ECO_ VERTICAL Draws text and objects in a vertical direction. Available for
Asian languages only.

For more information, see EM_SETOPTIONS in the Win32 documentation.

See Also: CRichEditCtrl: :HideSelection, CRichEditCtrl: :SetReadOnly

CRichEditCtrl::SetParaFormat
BOOL SetParaFormat(PARAFORMAT& pI);

Return Value
Nonzero if successful; otherwise, O.

Parameters

Remarks

pI PARAFORMAT structure containing the new default paragraph formatting
attributes.

Call this function to set the paragraph formatting attributes for the current selection in
this CRichEditCtrl object. Only the attributes specified by the dwMask member of
pI are changed by this function.

For more information, see EM_SETPARAFORMAT message and PARAFORMAT
structure in the Win32 documentation.

See Also: CRichEditCtrl: : GetParaFormat,
CRichEditCtrl: :SetSelectionChar Format

1705

CRichEditCtrl: :SetReadOnly

CRichEditCtrl:: SetReadOnly
BOOL SetReadOnly(BOOL bReadOnly = TRUE);

Return Value
Nonzero if successful; otherwise, O.

Parameters

Remarks

bReadOnly Indicates if this CRichEditCtrl object should be read only.

Call this member function to change the ECO_READONLY option for this
CRichEditCtrl object. For a brief description of this option, see SetOptions. You can
use this function to set all the options for this CRichEditCtrl object.

For more information, see EM_SETREADONLY in the Win32 documentation.

See Also: CRichEditCtrl::Create, CRichEditCtrl::SetOptions

CRichEditCtrl: :SetRect
void SetRect(LPCRECT IpRect);

Parameters

Remarks

IpRect CRect or pointer to a RECT that indicates the new bounds for the formatting
rectangle.

Call this function to set the formatting rectangle for this CRichEditCtrl object. The
formatting rectangle is the limiting rectangle for the text. The limiting rectangle is
independent of the size of the rich edit control window. When this CRichEditCtrl
object is first created, the formatting rectangle is the same size as the client area of the
window. Use SetRect to make the formatting rectangle larger or smaller than the rich
edit window.

For more information, see EM_SETRECT in the Win32 documentation.

See Also: CRichEditCtrl::GetRect

CRichEditCtrl: :SetSel
void SetSel(long nStartChar, long nEndChar);
void SetSel(CHARRANGE& cr);

Parameters
nStartChar Zero-based index of the first character for the selection.

nEndChar Zero-based index of the last character for the selection.

cr CHARRANGE structure which holds the bounds of the current selection.

1706

CRichEdi tCtrI:: SctSelectionCharFormat

Remarks
Call this function to set the selection within this CRichEditCtrl object.

The two forms of this function provide alternate ways to set the bounds for the
selection. Brief descriptions of these forms follow:

• SetSel(cr) This form uses the CHARRANGE structure with its cpMin and
cpMax members to set the bounds.

• SetSel(nStartChar, nEndChar) This form use the parameters nStartChar and
nEndChar to set the bounds.

The caret is placed at the end of the selection indicated by the greater of the start
(cpMin or nStartChar) and end (cpMax or nEndChar) indices. This function does not
scroll the contents of the CRichEditCtrl so that the caret is visible.

To select all the text in this CRichEditCtrl object, call SetSel with a start index of 0
and an end index of -1.

For more information, see EM_EXSETSEL message and CHARRANGE structure
in the Win32 documentation.

See Also: CRichEditCtrl::GetSel, CRichEditCtrl::GetSelectionType

CRichEditCtrl: : SetSelectionCharF ormat
BOOL SetSelectionCharFormat(CHARFORMAT & cf);

Return Value
Nonzero if successful; otherwise, O.

Parameters

Remarks

cf CHARFORMAT structure containing the new character formatting attributes for
the current selection.

Call this function to set the character formatting attributes for the text in the current
selection in this CRichEditCtrl object. Only the attributes specified by the dwMask
member of cf are changed by this function.

For more information, see EM_SETCHARFORMAT message and
CHARFORMAT structure in the Win32 documentation.

See Also: CRichEditCtrl: :GetSelectionCharFormat,
CRichEditCtrl: :SetDefaultChar Format

1707

CRichEditCtrl: :SetTargetDevice

CRichEditCtrl:: SetTargetDevice
BOOL SetTargetDevice(HDC hDC, long lLineWidth);
BOOL SetTargetDevice(CDC& dc, long lLineWidth);

Return Value
Nonzero if successful; otherwise, O.

Parameters

Remarks

hDC Handle to the device context for the new target device.

lLine Width Line width to use for formatting.

de CDC for the new target device.

Call this function to set the target device and line width used for WYSIWYG (what
you see is what you get) formatting in this CRichEditCtrl object.

If this function is successful, the rich edit control owns the device context passed as a
parameter. In that case, the calling function should not destroy the device context.

For more information, see EM_SETTARGETDEVICE in the Win32 documentation.

See Also: CRichEditCtrl: :FormatRange, CRichEditCtrl: :Display Band

CRichEditCtrl::SetWordCharFormat
BOOL SetWordCharFormat(CHARFORMAT& ef);

Return Value
Nonzero if successful; otherwise, O.

Parameters

Remarks

1708

ef CHARFORMAT structure containing the new character formatting attributes for
the currently selected word.

Call this function to set the character formatting attributes for the currently selected
word in this CRichEditCtrl object. Only the attributes specified by the dwMask
member of ef are changed by this function.

For more information, see EM_SETCHARFORMAT message and
CHARFORMAT structure in the Win32 documentation.

See Also: CRichEditCtrl::SetSelectionCharFormat

CRichEditCtrl:: Stream Out

CRichEditCtrl: :StreamIn
long StreamIn(int nFormat, EDITSTREAM& es);

Return Value
Number of characters read from the input stream.

Parameters

Remarks

nFormat Flags specifying the input data formats. See the Remarks section for more
information.

es EDITSTREAM structure specifying the input stream. See the Remarks section
for more information.

Call this function to replace text in this CRichEditCtrl object with text from the
specified input stream.

The value of nFormat must be one of the following:

• SF_TEXT Indicates reading text only.

• SF_RTF Indicates reading text and formatting.

Either of these values can be combined with SFF _SELECTION. If
SFF _SELECTION is specified, StreamIn replaces the current selection with the
contents of the input stream. If it is not specified, StreamIn replaces the entire
contents of this CRichEditCtrl object.

In the EDITSTREAM parameter es, you specify a callback function which fills a
buffer with text. This callback function is called repeatedly, until the input stream is
exhausted.

For more information, see EM_STREAMIN message and EDITSTREAM structure
in the Win32 documentation.

See Also: CRichEditCtrl::StreamOut

CRichEditCtrl: :StreamOut
long StreamOut(int nFormat, EDITSTREAM& es);

Return Value
Number of characters written to the output stream.

Parameters
nFormat Flags specifying the output data formats. See the Remarks section for more

information.

es EDITSTREAM structure specifying the output stream. See the Remarks section
for more information.

1709

CRichEditCtrl: : Undo

Remarks
Call this function to write out the contents of this CRichEditCtri object to the
specified output stream.

The value of nFormat must be one of the following:

• SF_TEXT Indicates writing text only.

• SF_RTF Indicates writing text and formatting.

• SF _RTFNOOBJS Indicates writing text and formatting, replacing OLE items
with spaces.

• SF _TEXTIZED Indicates writing text and formatting, with textual
representations of OLE items.

Any of these values can be combined with SFF _SELECTION. If
SFF _SELECTION is specified, StreamOut writes out the current selection into the
output stream. If it is not specified, Stream Out writes out the the entire contents of
this CRichEditCtrl object.

In the EDITSTREAM parameter es, you specify a callback function which fills a buffer
with text. This callback function is called repeatedly, until the output stream is exhausted.

For more information, see EM_STREAMOUT message and EDITSTREAM
structure in the Win32 documentation.

See Also: CRichEditCtrl: :StreamIn

CRichEditCtrl:: Undo
BOOL Undo();

Return Value

Remarks

1710

Nonzero if the undo operation is successful; otherwise, O.

Call this function to undo the last operation in the rich edit control.

An undo operation can also be undone. For example, you can restore deleted text with
the first call to Undo. As long as there is no intervening edit operation, you can
remove the text again with a second call to Undo.

For more information, see EM_UNDO in the Win32 documentation.

See Also: CRichEditCtrl:: Can Undo, CRichEditCtrl: :Empty U ndoBuffer

CRichEditDoc

CRichEditDoc

A "rich edit control" is a window in which the user can enter and edit text. The text
can be assigned character and paragraph formatting, and can include embedded
OLE objects. Rich edit controls provide a programming interface for formatting text.
However, an application must implement any user interface components necessary to
make formatting operations available to the user.

The CRichEditDoc class, with CRichEditView and CRichEditCntrltem, provides
the functionality of the rich edit control within the context of MFC's document
view architecture. CRichEditView maintains the text and formatting characteristic
of text. CRichEditDoc maintains the list of client items which are in the view.
CRichEditCntrItem provides container-side access to the OLE client items.

This Windows Common control (and therefore the CRichEditCtrl and related
classes) is available only to programs running under Windows 95 and Windows NT
versions 3.51 and later.

For an example of using a rich edit document in an MFC application, see the
WORDPAD sample application online.

#include <afxrich.h>

See Also: CRichEditView, CRichEditCntrltem, COleDocument, CRichEditCtrl

CRichEditDoc Class Members
Attributes

GetStreamFormat

GetView

Indicates whether stream input and output should include
formatting information.

Retrieves the asssociated CRichEditView object.

CRichEditDoc

1711

CRichEditDoc: :CreateClientItem

Data Members

Indicates whether stream 1/0 should include formatting.

Overridables

CreateClientltem Called to perform cleanup of the document.

Member Functions
CRichEditDoc: :CreateClientItem

virtual CRichEditCntrltem* CreateClientltem(REOBJECT* preo = NULL) const = 0;

Return Value
Pointer to a new CRichEditCntrltem object which has been added to this document.

Parameters

Remarks

preo Pointer to an REOBJECT structure which describes an OLE item. The new
CRichEditCntrltem object is constructed around this OLE item. If preo is NULL,
the new client item is empty.

Call this function to create a CRichEditCntrltem object and add it to this document.
This function does not perform any OLE initialization.

For more information, see the REOBJECT structure in the Win32 documentation.

See Also: CRichEditCntrltem: :CRichEditCntrItem, COleDocument: :AddItem

CRichEditDoc::GetStreamFormat
int GetStreamFormat() const;

Return Value

Remarks

1712

One of the following flags:

• SF_TEXT Indicates that the rich edit control does not maintain formatting
information.

• SF_RTF Indicates that the rich edit control does maintain formatting information.

Call this function to determine the text format for streaming the contents of the rich
edit. The return value is based on the m_bRTF data member. This function returns
SF_RTF ifm_bRTF is TRUE; otherwise, SF_TEXT.

See Also: CRichEditDoc: :m_bRTF, CRichEditCtrl: :StreamIn,
CRichEditCtrl: :StreamOut

CRichEditDoc: :m_bRTF

CRichEditDoc: : GetView
CRichEditView* GetView() const;

Return Value

Remarks

Pointer to the CRichEditView object associated with the document.

Call this function to access the CRichEditView object associated with this
CRichEditDoc object. The text and formatting information are contained within the
CRichEditView object. The CRichEditDoc object maintains the OLE items for
serialization. There should be only one CRichEditView for each CRichEditDoc.

See Also: CRichEditView, CDocument::GetNextView

Data Members
CRichEditDoc: :m_bRTF
Remarks

When TRUE, indicates that CRichEditCtrl: :Streamln and
CRichEditCtrl::StreamOut should store paragraph and character-formatting
characteristics.

See Also: CRichEditDoc:: GetStreamFormat

1713

CRichEditView

CRichEditView

CRichEditView

A "rich edit control" is a window in which the user can enter and edit text. The text
can be assigned character and paragraph formatting, and can include embedded
OLE objects. Rich edit controls provide a programming interface for formatting text.
However, an application must implement any user interface components necessary to
make formatting operations available to the user.

The CRichEditView class, with CRichEditDoc and CRichEditCntrltem, provides
the functionality of the rich edit control within the context of MFC's document view
architecture. CRichEditView maintains the text and formatting characteristic of text.
CRichEditDoc maintains the list of OLE client items which are in the view.
CRichEditCntrltem provides container-side access to the OLE client item.

This Windows Common control (and therefore the CRichEditCtrl and related
classes) is available, only to programs running under Windows 95 and Windows NT
versions 3.51 and later.

For an example of using a rich edit view in an MFC application, see the WORDPAD
sample application online.

#include <afxrich.h>

See Also: CRichEditDoc, CRichEditCntrltem

CRichEditView Class Members

1714

Constructor

CRichEdit View Constructs a CRichEditView object.

Attributes

GetDocument Retrieves a pointer to the related CRichEditDoc.

GetCharFormatSelection Retrieves the character formatting attributes for the current
selection.

Attributes (continued)

SetCharFormat

GetParaFormatSelection

SetParaFormat

GetTextLength

GetPaperSize

SetPaperSize

GetMargins

SetMargins

GetPrintWidth

GetPrintRect

GetPageRect

GetSelectedltem

GetInPlaceActiveItem

GetRichEditCtrl

Data Members

m_nBulletIndent

m_nWordWrap

Operations

FindText

FindTextSimple

IsRichEditFormat

CanPaste

DoPaste

InsertItem

InsertFileAsObject

AdjustDialogPosition

OnCharEffect

OnParaAlign

Sets the character formatting attributes for the current
selection.

Retrieves the paragraph formatting attributes for the
current selection.

Sets the paragraph formatting attributes for the current
selection.

Retrieves the length of the text in the rich edit view.

Retrieves the paper size for this rich edit view.

Sets the paper size for this rich edit view.

Retrieves the margins for this rich edit view.

Sets the margins for this rich edit view.

Retrieves the print width for this rich edit view.

Retrieves the print rectangle for this rich edit view.

Retrieves the page rectangle for this rich edit view.

Retrieves the selected item from the rich edit view.

Retrieves the OLE item that is currently in-place active
in the rich edit view.

Retrieves the rich edit control.

Indicates the amount of indent for bullet lists.

Indicates the word wrap constraints.

Finds the specified text, invoking the wait cursor.

Finds the specified text.

Tells whether the Clipboard contains data in a rich edit
or text format.

Tells whether the Clipboard contains data that can be
pasted into the rich edit view.

Pastes an OLE item into this rich edit view.

Inserts a new item as an OLE item.

Inserts a file as an OLE item.

Moves a dialog box so that it doesn't obscure the
current selection.

Changes the character formatting for the current
selection.

Changes the alignment of paragraphs.

(continued)

CRichEditView

1715

CRichEdit View: :Ad justDialogPosition

Operations (con iin uedj

OnUpdateCharEffect

On UpdateParaAIign

PrintInsideRect

PrintPage

Overridables

OnInitialUpdate

IsSelected

OnFindNext

OnTextNotFound

OnReplaceAll

OnReplaceSel

Query AcceptData

OnPasteNativeObject

OnPrinterChanged

WrapChanged

GetCIipboardData

GetContextMenu

Updates the Command UI for character public member
functions.

Updates the Command UI for paragraph public member
functions.

Formats the specified text within the given rectangle.

Formats the specified text within the given page.

Refreshes a view when it is first attached to a document.

Indicates if the given OLE item is selected or not.

Finds the next occurrence of a substring.

Handles user notification that the requested text was
not found.

Replaces all occurrences of a given string with a
new string.

Replaces the current selection.

Queries to see about the data on the IDataObject.

Retrieves native data from an OLE item.

Sets the print characteristics to the given device.

Adjusts the target output device for this rich edit view,
based on the value of m_nWordWrap.

Retrieves a Clipboard object for a range in this rich
edit view.

Retrieves a context menu to use on a right
mouse-button down.

Member Functions
CRichEdit View: : AdjustDialogPosition

void AdjustDialogPosition(CDialog* pDlg);

Parameters

Remarks

1716

pDlg Pointer to a CDialog object.

Call this function to move the given dialog box so that it does not obscure the
current selection.

See Also: CRichEditCtrl: :GetSel

CRichEditView: :DoPaste

CRichEditView: :CanPaste
BOOL CanPaste() const;

Return Value

Remarks

Nonzero if the Clipboard contains data in a format which this rich edit view can
accept; otherwise, O.

Call this function to determine if the Clipboard contains information that can be
pasted into this rich edit view.

See Also: CRichEditCtrl::Paste, CRichEditView::DoPaste,
CRichEditView: :IsRichEditFormat

CRichEditView::CRichEditView

Remarks

CRichEditView();

Call this function to create a CRichEditView object.

See Also: CRichEditDoc, CRichEditCtrl

CRichEditView: :DoPaste
void DoPaste(COleDataObject& dataobj, CLIPFORMAT cf,

... HMETAFILEPICT hMetaPict);

Parameters

Remarks

dataobj The COleDataObject containing the data to paste.

cf The desired Clipboard format.

hMetaPict The metafile that represents the item to be pasted.

Call this function to paste the OLE item in dataobj into this rich edit document/view.
The framework calls this function as part of the default implementation of
Query AcceptData.

This function determines the type of paste based on the results of the handler for Paste
Special. If cf is 0, the new item uses the current iconic representation. If cf is nonzero
and hMetaPict is not NULL, the new item uses hMetaPict for its representation.

See Also: CRichEditCtrl::Paste, CRichEditView::IsRichEditFormat,
CRichEditView::lnsertltem

1717

CRichEdit View: :FindText

CRichEdit View: : FindText
BOOL FindText(LPCTSTR lpszFind, BOOL bCase = TRUE, BOOL bWord = TRUE);

Return Value
Nonzero if the lpszFind text is found; otherwise O.

Parameters

Remarks

lpszFind Contains the string to search for.

bCase Indicates if the search is case sensitive.

bWord Indicates if the search should match whole words only, not parts of words.

Call this function to find the specified text and set it to be the current selection. This
function displays the wait cursor during the find operation.

See Also: CRichEditCtrl: :FindText, CRichEditCtrl: :SetSel,
CRichEditView: : FindTextSimple, CWaitCursor

CRichEditView: : FindTextSimple
BOOL FindTextSimple(LPCTSTR lpszFind, BOOL bCase = TRUE,

... BOOL b Word = TRUE);

Return Value
Nonzero if the lpszFind text is found; otherwise O.

Parameters

Remarks

lpszFind Contains the string to search for.

bCase Indicates if the search is case sensitive.

bWord Indicates if the search should match whole words only, not parts of words.

Call this function to find the specified text and set it to be the current selection.

See Also: CRichEditCtrl: :FindText, CRichEditCtrl: :SetSel,
CRichEditView: : FindText

CRichEdit View: : GetCharFormatSelection
CHARFORMAT & GetCharFormatSelection();

Return Value

1718

A CHARFORMAT structure which contains the character formatting attributes of
the current selection.

CRichEdit View: :GetClipboardData

Remarks
Call this function to get the character formatting attributes of the current selection.

For more information, see the EM_GETCHARFORMAT message and the
CHARFORMAT structure in the Win32 documentation.

See Also: CRichEditView::SetCharFormat,
CRichEditView: : GetParaFormatSelection,
CRichEditCtrl: :GetSelectionCharFormat

CRichEditView: : GetClipboardData
virtual HRESULT GetClipboardData(CHARRANGE* /pchrg, DWORD dwReco,

.. LPDATAOBJECT /pRichDataObj, LPDATAOBJECT* Ip/pdataobj);

Return Value
An HRESULT value reporting the success of the operation. For more information on
HRESULT, see "Structure of OLE Error Codes" in the OLE documentation.

Parameters

Remarks

/pchrg Pointer to the CHARRANGE structure specifying the range of characters
(and OLE items) to copy to the data object specified by /plpdataobj.

dwReco Clipboard operation flag. Can be one of these values.

• RECO_COPY Copy to the Clipboard.

• RECO_CUT Cut to the Clipboard.

• RECO_DRAG Drag operation (drag and drop).

• RECO_DROP Drop operation (drag and drop).

• RECO_PASTE Paste from the Clipboard.

/pRichDataObj Pointer to an IDataObject object containing the Clipboard data from
the rich edit control (IRichEditOle::GetClipboardData).

/p/pdataobj Pointer to the pointer variable that receives the address of the
IDataObject object representing the range specified in the /pchrg parameter. The
value of lp/pdataobj is ignored if an error is returned.

The framework calls this function as part of the processing of
IRichEditOleCallback: :GetClipboardData. If the return value indicates success,
IRichEditOleCallback::GetClipboardData returns the IDataObject accessed by
/p/pdataobj; otherwise, it returns the one accessed by /pRichDataObj. Override this
function to supply your own Clipboard data. The default implementation of this
function returns E_NOTIMPL.

This is an advanced overridable.

1719

CRichEdit View: : GetContextMenu

For more information, see !RichEditO!e::GetCIipboardData,
IRichEditOleCallback::GetClipboardData, and CHARRANGE in the Win32
documentation and see IDataObject in the OLE documentation.

See Also: COleServerltem: : GetClipboardData

CRichEdit View: : GetContextMenu
virtual HMENU GetContextMenu(WORD seltyp, LPOLEOBJECT lpoleobj,

... CHARRANGE* lpchrg);

Return Value
Handle to the context menu.

Parameters

Remarks

1720

seltyp The selection type. The selection type values are described in the Remarks
section.

lpoleobj Pointer to a OLEOBJECT structure specifying the first selected OLE
object if the selection contains one or more OLE items. If the selection contains no
items, lpoleobj is NULL. The OLEOBJECT structure holds a pointer to an OLE
object v-table.

lpchrg Pointer to a CHARRANGE structure containing the current selection.

The framework calls this function as part of the processing of
IRichEditOleCallback::GetContextMenu. This function is a typical part of right
mouse-button down processing.

The selection type can be any combination of the following flags:

• SEL_EMPTY Indicates that there is no current selection.

• SEL_TEXT Indicates that the current selection contains text.

• SEL_OBJECT Indicates that the current selection contains at least one OLE
item.

• SEL_MULTICHAR Indicates that the current selection contains more than one
character of text.

• SEL_MULTIOBJECT Indicates that the current selection contains more than
one OLE object.

The default implementation returns NULL. This is an advanced overridable.

For more information, see IRichEditOleCallback::GetContextMenu and
CHARRANGE in the Win32 documentation.

CRichEditView: :GetMargins

For more information on the OLEOBJECT type, see the "OLE Data Structures and
Structure Allocation" article in the OLE Knowledge Base.

See Also: CRichEditCtrl: :GetSelectionType

CRichEdit View: : GetDocument
CRichEditDoc* GetDocument() const;

Return Value
Pointer to a CRichEditDoc object associated with your CRichEditView object.

Remarks
Call this function to get a pointer to the CRichEditDoc associated with this view.

See Also: CRichEditDoc, CView: :GetDocument, COleClientItem: :GetDocument

CRichEditView::GetInPlaceActiveItem
CRichEditCntrItem* GetInPlaceActiveItem() const;

Return Value

Remarks

A pointer to the single, in-place active CRichEditCntrltem object in this rich edit
view; NULL if there is no OLE item currently in the in-place active state.

Call this function to get the OLE item that is currently activated in place in this
CRichEditViewobject.

See Also: COleDocument::GetInPlaceActiveltem, CRichEditCntrItem,
CRichEdit View: : GetSelectedltem

CRichEdit View: : GetMargins
CRect GetMargins() const;

Return Value

Remarks

The margins used in printing, measured in MM_ TWIPS.

Call this function to retrieve the current margins used in printing.

See Also: CRichEditView: :SetMargins, CRichEditView: : GetPrintWidth,
CRichEdit View: : GetPrintRect, CRichEdit View:: GetPaperSize,
CRichEdit View: :PrintPage, CRichEdit View:: Wrap Changed

1721

CRichEditView::GetPageRect

CRichEditView: : GetPageRect
CRect GetPageRect() const;

Return Value

Remarks

The bounds of the page used in printing, measured in MM_ TWIPS.

Call this function to get the dimensions of the page used in printing. This value is
based on the paper size.

See Also: CRichEditView::GetMargins, CRichEditView::GetPrintWidth,
CRichEdit View:: GetPrintRect, CRichEdit View:: GetPaperSize,
CRichEdit View: :PrintPage

CRichEditView::GetPaperSize
CSize GetPaperSize() const;

Return Value

Remarks

The size of the paper used in printing, measured in MM_ TWIPS.

Call this function to retrieve the current paper size.

See Also: CRichEditView::SetPaperSize, CRichEditView::GetMargins,
CRichEdit View: : GetPrint Width, CRichEdit View:: GetPrintRect,
CRichEdit View: : GetPageRect, CRichEdit View: :PrintPage

CRichEdit View: : GetParaForrnatSelection
PARAFORMAT& GetParaFormatSelection();

Return Value

Remarks

1722

A PARAFORMAT structure which contains the paragraph formatting attributes of
the current selection.

Call this function to get the paragraph formatting attributes of the current selection.

For more information, see EM_ GETPARAFORMAT message and PARAFORMAT
structure in the Win32 documentation.

See Also: CRichEditView::GetCharFormatSelection,
CRichEditView: :SetParaFormat, CRichEditCtrl: : GetParaFormat

CRichEditView: :GetRichEditCtrl

CRichEdit View: : GetPrintRect
CRect GetPrintRect() const;

Return Value

Remarks

The bounds of the image area used in printing, measured in MM_TWIPS.

Call this function to retrieve the bounds of the printing area within the page
rectangle.

See Also: CRichEditView::GetMargins, CRichEditView::GetPrintWidth,
CRichEdit View: :GetPaperSize, CRichEdit View: : GetPageRect,
CRichEdit View: :PrintPage

CRichEditView::GetPrintWidth
int GetPrintWidth() const;

Return Value

Remarks

The width of the printing area, measured in MM_TWIPS.

Call this function to determine the width of the printing area.

See Also: CRichEditView::GetMargins, CRichEditView::GetPrintRect,
CRichEdit View:: GetPaperSize, CRichEdit View: : GetPageRect,
CRichEditView: :PrintPage, CRichEditView:: Wrap Changed

CRichEdit View: : GetRichEditCtrl
CRichEditCtrl& GetRichEditCtrl() const;

Return Value

Remarks

The CRichEditCtrl object for this view.

Call this function to retrieve the CRichEditCtrl object associated with the
CRichEditView object.

See Also: CRichEditCtrl, CEditView::GetEditCtrl, CTreeView::GetTreeCtrl,
CList View: : GetListCtrl

1723

CRichEditView::GetSelectedItem

CRichEditView::GetSelectedItem
CRichEditCntrltem* GetSelectedltem() const;

Return Value

Remarks

Pointer to a CRichEditCntrltem object selected in the CRichEditView object;
NULL if no item is selected in this view.

Call this function to retrieve the OLE item (a CRichEditCntrltem object) currently
selected in this CRichEditView object.

See Also: CRichEditCntrltem, CRichEditView::GetlnPlaceActiveltem

CRichEditView::GetTextLength
long GetTextLength() const;

Return Value

Remarks

The length of the text in this CRichEditView object.

Call this function to retrieve the length of the text in this CRichEditView object.

See Also: CRichEditCtrI: : GetTextLength

CRichEditView::InsertFileAsObject
void InsertFiIeAsObject(LPCTSTR IpszFileName);

Parameters

Remarks

IpszFileName String containing the name of the file to be inserted.

Call this function to insert the specified file (as a CRichEditCntrltem object) into a
rich edit view.

See Also: CRichEditView::Insertltem, CRichEditCntrltem

CRichEditView::InsertItem
HRESULT Insertltem(CRichEditCntrltem* pltem);

Return Value
An HRESULT value indicating the success of the insertion.

1724

CRichEdit View: :IsSelected

Parameters

Remarks

pltem Pointer to the item to be inserted.

Call this function to insert a CRichEditCntrltem object into a rich edit view.

For more information on HRESULT, see "Structure of OLE Error Codes" in the OLE
documentation.

See Also: CRichEditView::lnsertFileAsObject, CRichEditCntrltem

CRichEdit View: : IsRichEditFormat
BOOL IsRichEditFormat(CLIPFORMAT cf);

Return Value
Nonzero if cfis a rich edit or text Clipboard format.

Parameters

Remarks

cf The Clipboard format of interest.

Call this function to determine if cf is a Clipboard format which is text, rich text, or
rich text with OLE items.

See Also: CRichEditCtrl::CanPaste, CRichEditCtrl::Paste,
CRichEditView: :DoPaste

CRichEdit View: :IsSelected
virtual BOOL IsSelected(const CObject* pDocItem) const;

Return Value
Nonzero if the object is selected; otherwise O.

Parameters

Remarks

pDocItem Pointer to an object in the view.

Call this function to determine if the specified OLE item is currently selected in this
view.

Override this function if your derived view class has a different method for handling
selection of OLE items.

See Also: CRichEdit View:: GetSelectedltem,
CRichEdit View:: GetlnPlaceActiveItem

1725

CRichEdit View: :OnCharEffect

CRichEdit View: : Un Charbffect
void OnCharEffect(DWORD dwMask, DWORD dwEffect);

Parameters

Remarks

dwMask The character formatting effects to modify in the current selection.

dwEffect The desired list of character formatting effects.

Call this function to change the character formatting effects for the current selection.

For more information on the dwMask and dwEffect parameters and their potential
values, see the corresponding data members of CHARFORMAT in the Win32
documentation.

See Also: CRichEditView::SetCharFormat

CRichEdit View: : OnFindN ext
virtual void OnFindNext(LPCTSTR IpszFind, BOOL bNext, BOOL bCase,

.. BOOL bWord);

Parameters

Remarks

lpszFind The string to find.

bNext The direction to search: TRUE indicates down~ FALSE, up.

bCase Indicates whether the search is to be case sensitive.

b Word Indicates whether the search is to match whole words only or not.

Called by the framework when processing commands from the FindlReplace dialog
box. Call this function to find text within the CRichEditView. Override this function
to alter search characterics for your derived view class.

See Also: CRichEditView::FindText, CRichEditView::FindTextSimple

CRichEditView::OnInitiaIUpdate
virtual void OnInitialUpdate();

Remarks

1726

Called by the framework after the view is first attached to the document, but before
the view is initially displayed. The default implementation of this function calls the
CView::OnUpdate member function with no hint information (that is, using the
default values of 0 for the lHint parameter and NULL for the pHint parameter).

CRichEditView: :OnParaAlign

Override this function to perform anyone-time initialization that requires information
about the document. For example, if your application has fixed-sized documents, you
can use this function to initialize a view's scrolling limits based on the document size.
If your application supports variable-sized documents, use OnUpdate to update the
scrolling limits every time the document changes.

See Also: CView::OnUpdate

CRichEditView::OnPasteNativeObject
virtual BOOL OnPasteNativeObject(LPSTORAGE lpStg);

Return Value
Nonzero if successful; otherwise, 0;

Parameters

Remarks

lpStg Pointer to an IStorage object.

Use this function to load native data from an embedded item. Typically, you would do
this by creating a COleStreamFile around the IStorage. The COleStreamFile can be
attached to an archive and CObject::Serialize called to load the data.

This is an advanced overridable.

For more information, see IStorage in the OLE documentation.

See Also: COleStreamFile~ CObject: :Serialize, CArchive

CRichEditView::OnParaAlign
void OnParaAlign(WORD wAlign);

Parameters

Remarks

wAlign Desired paragraph alignment. One of the following values:

• PFA_LEFT Align the paragraphs with the left margin.

• PFA_RIGHT Align the paragraphs with the right margin.

• PFA_CENTER Center the paragraphs between the margins.

Call this function to change the paragraph alignment for the selected paragraphs.

See Also: CRichEditView::OnUpdateParaAlign

1727

CRichEdit View: :OnPrinterChanged

CKichbdit View: : OnPrinterChanged
virtual void OnPrinterChanged(const CDC& dcPrinter);

Parameters

Remarks

dcPrinter A CDC object for the new printer.

Override this function to change characteristics for this rich edit view when the printer
changes. The default implementation sets the paper size to the physical height and
width for the output device (printer). If there is no device context associated wtih
dcPrinter, the default implementation sets the paper size to 8.5 by 11 inches.

See Also: CRichEditView::SetPaperSize, CRichEditView::WrapChanged

CRichEdit View: : OnReplaceAl1
virtual void OnReplaceAII(LPCTSTR IpszFind, LPCTSTR IpszReplace,

... BOOL bCase, BOOL b Word);

Parameters

Remarks

IpszFind The text to be replaced.

IpszReplace The replacement text.

bCase Indicates if the search is case sensitive.

b Word Indicates if the search must select whole words or not.

Called by the framework when processing Replace All commands from the Replace
dialog box. Call this function to replace all occurrences of some given text with
another string. Override this function to alter search characterics for this view.

See Also: CRichEditView::OnReplaceSel, CRichEditView::OnFindNext

CRichEdit View: :OnReplaceSel
virtual void OnReplaceSel(LPCTSTR IpszFind, BOOL bNext, BOOL bCase,

... BOOL b Word, LPCTSTR IpszReplace);

Parameters

1728

/pszFind The text to be replaced.

bNext Indicates the direction of the search: TRUE is down; FALSE, up.

bCase Indicates if the search is case sensitive.

b Word Indicates if the search must select whole words or not.

IpszRep/ace The replacement text.

CRichEditView::OnUpdateCharEffect

Remarks
Called by the framework when processing Replace commands from the Replace
dialog box. Call this function to replace one occurrence of some given text with
another string. Override this function to alter search characterics for this view.

See Also: CRichEditView::OnReplaceAll

CRichEdit View:: OnTextN otFound
virtual void OnTextNotFound(LPCTSTR IpszFind);

Parameters

Remarks

pszFind The text which was not found.

Called by the framework whenever a search fails. Override this function to change
the output notification from a MessageBeep.

For more information, see MessageBeep in the Win32 documentation.

See Also: CRichEditView::FindText, CRichEditView::FindTextSimple,
CRichEditView::OnFindNext

CRichEditView::OnUpdateCharEffect
void OnUpdateCharEffect(CCmdUI* pCmdUI, DWORD dwMask,

~ DWORD dwEffect);

Parameters

Remarks

pCmdUI Pointer to a CCmdUI object.

dwMask Indicates the character formatting mask.

dwEffect Indicates the character formatting effect.

The framework calls this function to update the command VI for character effect
commands. The mask dwMask specifies which character formatting attributes to
check. The flags dwEffect list the character formatting attributes to set/clear.

For more information on the dwMask and dwEffect parameters and their potential
values, see the corresponding data members of CHARFORMAT in the Win32
documentation.

1729

CRichEditView::OnUpdateParaAlign

CRichEdit View: : On U pdateParaAlign
void OnParaAlign(CCmdUI* pCmdUI, WORD wAlign);

Parameters

Remarks

pCmdUI Pointer to a CCmdUI object.

wAlign The paragraph alignment to check. One of the following values:

• PFA_LEFT Align the paragraphs with the left margin.

• PFA_RIGHT Align the paragraphs with the right margin.

• PFA_ CENTER Center the paragraphs between the margins.

The framework calls this function to update the command VI for paragraph effect
commands.

See Also: CRichEditView: :GetParaFormatSelection,
CRichEditView::OnParaAlign, CRichEditView::SetParaFormat

CRichEdit View: :PrintInsideRect
long PrintInsideRect(CDC* pDC, RECT & rectLayout, long nlndexStart,

'+ long nlndexStop, BOOL bOutput);

Return Value
The index of the last character that fits in the output area plus one.

Parameters

Remarks

1730

pDC Pointer to a device context for the output area.

rectLayout RECT or CRect which defines the output area.

nlndexStart Zero-based index of the first character to be formatted.

nlndexStop Zero-based index of the last character to be formatted.

bOutput Indicates if the text should be rendered. If FALSE, the text is just
measured.

Call this function to format a range of text in a rich edit control to fit within
rectLayout for the device specified by pDC. Typically, this call is followed by
a call to CRichEditCtrl::DisplayBand which generates the output.

CRichEditCtrl: :FormatRange, CRichEdit View: :PrintPage,
CRichEditCtrl: :DisplayBand

CRichEditView: : Query AcceptData

CRichEditView: :PrintPage
long PrintPage(CDC* pDC, long nlndexStart, long nlndexStop);

Return Value
The index of the last character that fits on the page plus one.

Parameters

Remarks

pDC Pointer to a device context for page output.

nlndexStart Zero-based index of the first character to be formatted.

nlndexStop Zero-based index of the last character to be formatted.

Call this function to format a range of text in a rich edit control for the output device
specified by pDC. The layout of each page is controlled by GetPageRect and
GetPrintRect. Typically, this call is followed by a call to
CRichEditCtrl::DisplayBand which generates the output.

Note that margins are relative to the physical page, not the logical page. Thus, margins
of zero will often clip the text since many printers have unprintable areas on the page.
To avoid clipping your text, you should call SetMargins and set reasonable margins
before printing.

See Also: CRichEditView::PrintInsideRect, CRichEditView::GetPageRect,
CRichEdit View:: GetPrintRect, CRichEdit View: :SetMargins

CRichEditView: : Query AcceptData
virtual HRESULT QueryAcceptData(LPDATAOBJECT /pdataobj,

Return Value

.. CLIPFORMAT FAR * IpcfFormat, DWORD dwReco, BOOL bRealiy,

.. HGLOBAL hMetaFile);

An HRESULT value reporting the success of the operation.

Parameters
lpdataobj Pointer to the IDataObject to query.

IpcfFormat Pointer to the acceptable data format.

dwReco Not used.

bRealiy Indicates if the paste operation should continue or not.

hMetaFile A handle to the metafile used for drawing the item's icon.

1731

CRichEditView::SetCharFormat

Remarks
Called by the framework to paste an object into the rich edit. Override this function to
handle different organization of OLE items in your derived document class. This is an
advanced overridable.

For more information on HRESULT and IDataObject, see "Structure of OLE Error
Codes" and IDataObject, respectively, in the OLE documentation.

CRichEditView::SetCharFormat
void SetCharFormat(CHARFORMAT cf);

Parameters

Remarks

cf CHARFORMAT structure containing the new default character formatting
attributes.

Call this function to set the character formatting attributes for new text in this
CRichEditView object. Only the attributes specified by the dwMask member of cf
are changed by this function.

For more information, see EM_SETCHARFORMAT message and
CHARFORMAT structure in the Win32 documentation.

See Also: CRichEdit View:: GetCharFormatSelection,
CRichEditView: :SetParaFormat

CRichEditView::SetMargins
void SetMargins(const CRect& rectMargin);

Parameters

Remarks

1732

rectMargin The new margin values for printing, measured in MM_TWIPS.

Call this function to set the printing margins for this rich edit view. If
m_n WordWrap is WrapToTargetDevice, you should call WrapChanged after
using this function to adjust printing characteristics.

Note that the margins used by PrintPage are relative to the physical page, not the
logical page. Thus, margins of zero will often clip the text since many printers have
unprintable areas on the page. To avoid clipping your text, you should call use
SetMargins to set reasonable printer margins before printing.

CRichEditView::SetParaFormat

See Also: CRichEditView::GetMargins, CRichEditView::GetPrintWidth,
CRichEdit View:: GetPrintRect, CRichEdit View: :GetPaperSize,
CRichEdit View:: GetPageRect, CRichEdit View: :PrintPage,
CRichEditView:: WrapChanged

CRichEdit View: : SetPaperSize
void SetPaperSize(CSize sizePaper);

Parameters

Remarks

sizePaper The new paper size values for printing, measured in MM_TWIPS.

Call this function to set the paper size for printing this rich edit view. If
m_n WordWrap is WrapToTargetDevice, you should call Wrap Changed after
using this function to adjust printing characteristics.

See Also: CRichEditView::GetPaperSize, CRichEditView::GetMargins,
CRichEditView::GetPrintWidth, CRichEditView::GetPrintRect,
CRichEdit View: :GetPageRect, CRichEdit View: :PrintPage,
CRichEditView:: Wrap Changed

CRichEditView::SetParaFormat
void SetParaFormat(PARAFORMAT& pi);

Parameters

Remarks

pi PARAFORMAT structure containing the new default paragraph formatting
attributes.

Call this function to set the paragraph formatting attributes for the current selection in
this CRichEditView object. Only the attributes specified by the dwMask member of
pi are changed by this function.

For more information, see EM_SETPARAFORMAT message and PARAFORMAT
structure in the Win32 documentation.

See Also: CRichEditView::GetParaFormatSelection,
CRichEditView: :SetCharFormat

1733

CRichEditView:: WrapChanged

CRichEdit View: : WrapChanged

Remarks

virtual void WrapChanged();

Call this function when the printing characteristics have changed (SetMargins or
SetPaperSize).

Override this function to modify the way the rich edit view responds to changes in
m_n WordWrap or the printing characteristics (OnPrinterChanged).

See Also: CRichEdit View: :m_n WordWrap,
CRichEdit View:: OnPrinterChanged, CRichEdit View: :SetMargins,
CRichEdit View: :SetPaperSize

Data Members
CRichEditView::m_nBulletIndent
Remarks

The indentation for bullet items in a list; by default, 720 units, which is 112 inch.

CRichEditView: :m_n WordWrap
Remarks

1734

Indicates the type of word wrap for this rich edit view. One of the following values:

• WrapNone Indicates no automatic word wrapping.

• WrapTo Window Indicates word wrapping based on the width of the window.

• WrapToTargetDevice Indicates word wrapping based on the characteristics of
the target device.

See Also: CRichEditView::WrapChanged

CRuntimeClass
CRuntimeClass does not have a base class.

Each class derived from CObject is associated with a CRuntimeClass structure
that you can use to obtain information about an object or its base class at run time.
The ability to determine the class of an object at run time is useful when extra type
checking of function arguments is needed, or when you must write special-purpose
code based on the class of an object. Run-time class information is not supported
directly by the C++ language.

The structure has the following members:

LPCSTR m_lpszClassName A null-terminated string containing the ASCII class
name.

int m_nObjectSize The size of the object, in bytes. If the object has data members
that point to allocated memory, the size of that memory is not included.

UINT m_ wSchema The schema number (-1 for nonserializable classes). See the
IMPLEMENT_SERIAL macro for a description of the schema number.

CObject* (PASCAL* m_pfnCreateObject)() A function pointer to the default
constructor that creates an object of your class (valid only if the class supports
dynamic creation; otherwise, returns NULL).

CRuntimeClass* (PASCAL* m_pfn_GetBaseClass)() If your application is
dynamically linked to the AFXDLL version of MFC, a pointer to a function that
returns the CRuntimeClass structure of the base class.

CRuntimeClass* m_pBaseClass If your application is statically linked to MFC,
a pointer to the CRuntimeClass structure of the base class.

Feature Only in Professional and Enterprise Editions Static linking to MFC is supported
only in Visual C++ Professional and Enterprise Editions. For more information, see
Visual C++ Editions online.

CObject* CreateObject(); Classes derived from CObject can support dynamic
creation, which is the ability to create an object of a specified class at run time.
Document, view, and frame classes, for example, should support dynamic creation.
The CreateObject member function can be used to implement this function and
create objects for these classes during run time. For more information on dynamic
creation and the CreateObject member, see "CObject Class Topics" and "CObject
Class: Specifying Levels of Functionality" in Visual C++ Programmer's Guide
online.

BOOL IsDerivedFrom(const CRuntimeClass* pBaseClass) const; Returns
TRUE if the class of the class member calling IsDerivedFrom is derived from
the base class whose CRuntimeClass structure is given as a parameter.
IsDerivedFrom walks from the member's class up the chain of derived classes all
the way to the top and returns FALSE only if no match is found for the base class.

CRuntimeClass

1735

CRuntimeClass

1736

Note To use the CRuntimeClass structure, you must include the IMPLEMENT_DYNAMIC,
IMPLEMENT _DYNCREATE, or IMPLEMENT_SERIAL macro in the implementation of the
class for which you want to retrieve run-time object information.

For more information on using CRuntimeClass, see the article "CObject Class:
Accessing Run-Time Class Information" in Visual C++ Programmer's Guide online.

See Also: CObject: :GetRuntimeClass, CObject: :IsKindOf, RUNTIME_CLASS,
IMPLEMENT_DYNAMIC,IMPLEMENT_DYNCREATE,
IMPLEMENT_SERIAL

CScrollBar

The CScrollBar class provides the functionality of a Windows scroll-bar control.

You create a scroll-bar control in two steps. First, call the constructor CScrollBar
to construct the CScrollBar object, then call the Create member function to create
the Windows scroll-bar control and attach it to the CScrollBar object.

If you create a CScrollBar object within a dialog box (through a dialog resource),
the CScrollBar is automatically destroyed when the user closes the dialog box.

If you create a CScrollBar object within a window, you may also need to
destroy it.

If you create the CScrollBar object on the stack, it is destroyed automatically.
If you create the CScrollBar object on the heap by using the new function, you
must call delete on the object to destroy it when the user terminates the Windows
scroll bar.

If you allocate any memory in the CScrollBar object, override the CScrollBar
destructor to dispose of the allocations.

For related information about using CScrollBar, see "Control Topics" in Visual C++
Programmer's Guide online.

#include <afxwin.h>

See Also: CWnd, CButton, CComboBox, CEdit, CListBox, CStatic, CDialog

CScrollBar Class Members
Construction

CScrollBar

Initialization

Create

Constructs a CScrollBar object.

Creates the Windows scroll bar and attaches it to the
CScrollBar object.

CScrollBar

1737

CScrollBar: :Create

Operations

GetScrollPos

SetScrollPos

GetScrollRange

SetScrollRange

ShowScrollBar

EnableScrollBar

SetScrolllnfo

GetScrollInfo

GetScrollLimit

Retrieves the current position of a scroll box.

Sets the current position of a scroll box.

Retrieves the current minimum and maximum scroll-bar positions for the
given scroll bar.

Sets minimum and maximum position values for the given scroll bar.

Shows or hides a scroll bar.

Enables or disables one or both arrows of a scroll bar.

Sets information about the scroll bar.

Retrieves information about the scroll bar.

Retrieves the limit of the scroll bar

Member Functions
CScrollBar: : Create

BOOL Create(DWORD dwStyle, const RECT& reet, CWnd* pParentWnd, UINT nID);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

1738

dwStyle Specifies the scroll bar's style. Apply any combination of scroll-bar styles to
the scroll bar.

reet Specifies the scroll bar's size and position. Can be either a RECT structure or a
CRect object.

pParentWnd Specifies the scroll bar's parent window, usually a CDialog object. It
must not be NULL.

nlD The scroll bar's control ID.

You construct a CScrollBar object in two steps. First call the constructor, which
constructs the CScrollBar object; then call Create, which creates and initializes the
associated Windows scroll bar and attaches it to the CScrollBar object.

Apply the following window styles to a scroll bar:

• WS_CHILD Always

• WS_ VISIBLE Usually

• WS_DISABLED Rarely

• WS_GROUP To group controls

CScrollBar: : GetScrollInfo

See Also: CScrollBar::CScrollBar

CScrollBar: :CScrollBar

Remarks

CScrollBar();

Constructs a CScrollBar object. After constructing the object, call the Create
member function to create and initialize the Windows scroll bar.

See Also: CScrollBar:: Create

CScrollB ar: :EnableScrollB ar
BOOL EnableScrollBar(UINT nArrowFlags = ESB_ENABLE_BOTH);

Return Value
Nonzero if the arrows are enabled or disabled as specified; otherwise 0, which
indicates that the arrows are already in the requested state or that an error occurred.

Parameters

Remarks

nArrowFlags Specifies whether the scroll arrows are enabled or disabled and which
arrows are enabled or disabled. This parameter can be one of the following values:

• ESB_ENABLE_BOTH Enables both arrows of a scroll bar.

• ESB_DISABLE_LTUP Disables the left arrow of a horizontal scroll bar or
the up arrow of a vertical scroll bar.

• ESB_DISABLE_RTDN Disables the right arrow of a horizontal scroll bar or
the down arrow of a vertical scroll bar.

• ESB_DISABLE_BOTH Disables both arrows of a scroll bar.

Enables or disables one or both arrows of a scroll bar.

See Also: CWnd::EnableScrollBar, ::EnableScrollBar

CScrollB ar: : GetScrollInfo
BOOL GetScrollInfo(LPSCROLLINFO IpScrolllnfo, UINT nMask);

Return Value
If the message retrieved any values, the return is TRUE. Otherwise, it is FALSE.

1739

CScrollBar:: GetScrollLimit

P8r8meierS

Remarks

/pScrolllnfo A pointer to a SCROLLINFO structure. See the Win32 Programmer's
Reference for more information about this structure.

nMask Specifies the scroll bar parameters to retrieve. Typical usage, SIF _ALL,
specifies a combination of SIF _PAGE, SIF _POS, SIF _TRACKPOS, and
SIF _RANGE. See SCROLLINFO for more information on the nMask values.

Call this member function to retrieve the information that the SCROLLINFO
structure maintains about a scroll bar. GetScrolllnfo enables applications to use 32-bit
scroll positions.

The SCROLLINFO structure contains information about a scroll bar, including the
minimum and maximum scrolling positions, the page size, and the position of the
scroll box (the thumb). See the SCROLLINFO structure topic in the Win32 SDK
Programmer's Reference for more information about changing the structure defaults.

The MFC Windows message handlers that indicate scroll bar position,
CWnd::OnHScroll and CWnd::OnVScroll, provide only 16 bits of position data.
GetScrolllnfo and SetScrolllnfo provide 32 bits of scroll bar position data. Thus, an
application can call GetScrolllnfo while processing either CWnd::OnHScroll or
CWnd: :On VScroll to obtain 32-bit scroll bar position data.

See Also: CScrollBar::SetScrolllnfo, CWnd::SetScrolllnfo,
CWnd::SetScrollPos, CWnd::OnVScroll, CWnd::OnHScroll, SCROLLINFO

CScrollBar: : GetScrollLimit
int GetScrollLimit();

Return Value

Remarks

Specifies the maximum position of a scroll bar if successful; otherwise O.

Call this member function to retrieve the maximum scrolling position of the scroll bar.

See Also: CWnd::GetScrollLimit

CScrollBar: : GetScrollPos
int GetScrollPos() const;

Return Value
Specifies the current position of the scroll box if successful; otherwise o.

1740

CScrollBar:: SetScrollInfo

Remarks
Retrieves the current position of a scroll box. The current position is a relative value
that depends on the current scrolling range. For example, if the scrolling range is 100
to 200 and the scroll box is in the middle of the bar, the current position is 150.

See Also: CScrollBar::SetScrollPos, CScrollBar::GetScrollRange,
CScrollBar: :SetScrollRange, : : GetScrollPos

CScrollB ar: : GetScrollRange
void GetScrollRange(LPINT IpMinPos, LPINT IpMaxPos) const;

Parameters

Remarks

IpMinPos Points to the integer variable that is to receive the minimum position.

IpMaxPos Points to the integer variable that is to receive the maximum position.

Copies the current minimum and maximum scroll-bar positions for the given scroll
bar to the locations specified by IpMinPos and IpMaxPos.

The default range for a scroll-bar control is empty (both values are 0).

See Also: : : GetScrollRange, CScrollBar: :SetScrollRange,
CScrollBar:: GetScrollPos, CScrollBar: :SetScrollPos

CScrollB ar: : SetScrolllnfo
BOOL SetScrolllnfo(LPSCROLLINFO IpScrolllnfo, BOOL bRedraw = TRUE);

Return Value
If successful, the return is TRUE. Otherwise, it is FALSE.

Parameters

Remarks

IpScrolllnfo A pointer to a SCROLLINFO structure.

bRedraw Specifies whether the scroll bar should be redrawn to reflect the new
information. If bRedraw is TRUE, the scroll bar is redrawn. If it is FALSE, it is
not redrawn. The scroll bar is redrawn by default.

Call this member function to set the information that the SCROLLINFO structure
maintains about a scroll bar. You must provide the values required by the
SCROLLINFO structure parameters, including the flag values.

The SCROLLINFO structure contains information about a scroll bar, including the
minimum and maximum scrolling positions, the page size, and the position of the
scroll box (the thumb). See the SCROLLINFO structure topic in the Win32 SDK
Programmer's Reference for more information about changing the structure defaults.

1741

CScrollBar:: SetScrollPos

See Also: CScrollBar::GetScrolllnfo, CWnd::SetScrolllnfo,
CWnd: :SetScrollPos, CWnd: :On VScroll, CWnd: :OnHScroll,
CWnd::GetScrolllnfo, SCROLLINFO

CScroIIBar:: SetScrollPos
int SetScrollPos(int nPos, BOOL bRedraw = TRUE);

Return Value
Specifies the previous position of the scroll box if successful; otherwise O.

Parameters

Remarks

nPos Specifies the new position for the scroll box. It must be within the scrolling
range.

bRedraw Specifies whether the scroll bar should be redrawn to reflect the new
position. If bRedraw is TRUE, the scroll bar is redrawn. If it is FALSE, it is not
redrawn. The scroll bar is redrawn by default.

Sets the current position of a scroll box to that specified by nPos and, if specified,
redraws the scroll bar to reflect the new position.

Set bRedraw to FALSE whenever the scroll bar will be redrawn by a subsequent call
to another function to avoid having the scroll bar redrawn twice within a short
interval.

See Also: CScrollBar: :GetScrollPos, CScrollBar: : GetScrollRange,
CScrollBar: :SetScrollRange, : :SetScrollPos

CScrollBar: :SetScrollRange
void SetScrollRange(int nMinPos, int nMaxPos, BOOL bRedraw = TRUE);

Parameters

Remarks

1742

nMinPos Specifies the minimum scrolling position.

nMaxPos Specifies the maximum scrolling position.

bRedraw Specifies whether the scroll bar should be redrawn to reflect the change. If
bRedraw is TRUE, the scroll bar is redrawn; if FALSE, it is not redrawn. It is
redrawn by default.

Sets minimum and maximum position values for the given scroll bar. Set nMinPos and
nMaxPos to 0 to hide standard scroll bars.

Do not call this function to hide a scroll bar while processing a scroll-bar notification
message.

CScrollBar::ShowScrollBar

If a call to SetScrollRange immediately follows a call to the SetScrollPos member
function, set bRedraw in SetScrollPos to 0 to prevent the scroll bar from being
redrawn twice.

The difference between the values specified by nMinPos and nMaxPos must not be
greater than 32,767. The default range for a scroll-bar control is empty (both nMinPos
and nMaxPos are 0).

See Also: CScrollBar::GetScrollPos, CScrollBar::SetScrollPos,
CScrollBar: :GetScrollRange, :: SetScrollRange

CScrollBar: :ShowScrollBar
void ShowScrollBar(BOOL bShow = TRUE);

Parameters

Remarks

bShow Specifies whether the scroll bar is shown or hidden. If this parameter is
TRUE, the scroll bar is shown; otherwise it is hidden.

Shows or hides a scroll bar.

An application should not call this function to hide a scroll bar while processing a
scroll-bar notification message.

See Also: CScrollBar::GetScrollPos, CScrollBar::GetScrollRange,
CWnd: :ScrollWindow, CScrollBar: :SetScrollPos, CScrollBar: :SetScrollRange

1743

CScrollView

CScrollView

1744

The CScrollView class is a CView with scrolling capabilities.

You can handle standard scrolling yourself in any class derived from CView by
overriding the message-mapped OnHScroll and OnVScroll member functions.
But CScrollView adds the following features to its CView capabilities:

• It manages window and viewport sizes and mapping modes.

• It scrolls automatically in response to scroll-bar messages.

• It scrolls automatically in response to messages from the keyboard,
a non-scrolling mouse, or the IntelliMouse wheel.

You can handle mouse wheel scrolling yourself by overriding the message-mapped
OnMouseWheel and OnRegisteredMollseWheel member functions. As they are for
CScrollView, these member functions support the recommended behaviour for
WM_MOUSEWHEEL, the wheel rotation message.

To take advantage of automatic scrolling, derive your view class from CScrollView
instead of from CView. When the view is first created, if you want to calculate the
size of the scroll able view based on the size of the document, call the SetScrollSizes
member function from your override of either CView::OnlnitiaIUpdate or
CView::OnUpdate. (You must write your own code to query the size of the
document. For an example, see "Enhancing Views" in Visual c++ Tutorials online.)

The call to the SetScrollSizes member function sets the view's mapping mode, the
total dimensions of the scroll view, and the amounts to scroll horizontally and
vertically. All sizes are in logical units. The logical size of the view is usually
calculated from data stored in the document, but in some cases you may want to
specify a fixed size. For examples of both approaches, see
CScrollView: :SetScrollSizes.

You specify the amounts to scroll horizontally and vertically in logical units. By
default, if the user clicks a scroll bar shaft outside of the scroll box, CScrollView
scrolls a "page." If the user clicks a scroll arrow at either end of a scroll bar,
CScrollView scrolls a "line." By default, a page is 1110 of the total size of the view;
a line is III 0 of the page size. Override these default values by passing custom sizes

in the SetScrollSizes member function. For example, you might set the horizontal size
to some fraction of the width of the total size and the vertical size to the height of a
line in the current font.

Instead of scrolling, CScrollView can automatically scale the view to the current
window size. In this mode, the view has no scroll bars and the logical view is
stretched or shrunk to exactly fit the window's client area. To use this scale-to-fit
capability, call CScrollView::SetScaleToFitSize. (Call either SetScaleToFitSize or
SetScrollSizes, but not both.)

Before the OnDraw member function of your derived view class is called, CScrollView
automatically adjusts the viewport origin for the CPaintDC device-context object that
it passes to OnDraw.

To adjust the viewport origin for the scrolling window, CScrollView overrides
CView::OnPrepareDC. This adjustment is automatic for the CPaintDC device
context that CScrollView passes to OnDraw, but you must call
CScrollView::OnPrepareDC yourself for any other device contexts you use,
such as a CClientDC. You can override CScrollView::OnPrepareDC to set
the pen, background color, and other drawing attributes, but call the base class
to do scaling.

Scroll bars can appear in three places relative to a view, as shown in the following
cases:

• Standard window-style scroll bars can be set for the view using the
WS_HSCROLL and WS_ VSCROLL styles.

• Scroll-bar controls can also be added to the frame containing the view, in which
case the framework forwards WM_HSCROLL and WM_ VSCROLL messages
from the frame window to the currently active view.

• The framework also forwards scroll messages from a CSplitterWnd splitter
control to the currently active splitter pane (a view). When placed in a
CSplitterWnd with shared scroll bars, a CScrollView object will use the shared
ones rather than creating its own.

For more information on using CScrollView, see "DocumentlView Architecture
Topics" and "Derived View Classes" in Visual C++ Programmer's Guide
online.

#include <afxwin.h>

See Also: CView, CSplitterWnd

CScrollView

1745

CScroIlView: :CScroIlView

CScrollView Class Members
Operations

FilIOutsideRect

GetDeviceScrollPosition

GetDeviceScrollSizes

GetScrollPosition

GetTotalSize

ResizeParentToFit

ScrollToPosition

SetScaleToFitSize

SetScrollSizes

Construction

CScrollView

Fills the area of a view outside the scrolling area.

Gets the current scroll position in device units.

Gets the current mapping mode, the total size,
and the line and page sizes of the scrollable view.
Sizes are in device units.

Gets the current scroll position in logical units.

Gets the total size of the scroll view in logical units.

Causes the size of the view to dictate the size of
its frame.

Scrolls the view to a given point, specified in
logical units.

Puts the scroll view into scale-to-fit mode.

Sets the scroll view's mapping mode, total size,
and horizontal and vertical scroll amounts.

Constructs a CScrollView object.

Member Functions
CScrollView: :CScrollView

Remarks

CScrollView();

Constructs a CScrollView object. You must call either SetScrollSizes or
SetScaleToFitSize before the scroll view is usable.

See Also: CScrollView: :SetScrollSizes, CScrollView: :SetScaleToFitSize

CScrollView: : FillOutsideRect
void FiIlOutsideRect(CDC* pDC, CBrush* pBrush);

Parameters
pDC Device context in which the filling is to be done.

pBrush Brush with which the area is to be filled.

1746

CScrollView: :GetDeviceScrollSizes

Remarks

Example

Call FillOutsideRect to fill the area of the view that appears outside of the scrolling
area. Use FillOutsideRect in your scroll view's OnEraseBkgnd handler function to
prevent excessive background repainting.

Baal CScaleView::OnEraseBkgnd(CDC* pDC
{

CBrush br(GetSysColor(COLOR_WINDOW);
FillOutsideRect(pDC. &br);
return TRUE; II Erased

See Also: CWnd::OnEraseBkgnd

CScrollView: : GetDeviceScrollPosition
CPoint GetDeviceScrollPosition() const;

Return Value

Remarks

The horizontal and vertical positions (in device units) of the scroll boxes as a CPoint
object.

Call GetDeviceScrollPosition when you need the current horizontal and vertical
positions of the scroll boxes in the scroll bars. This coordinate pair corresponds to the
location in the document to which the upper-left corner of the view has been scrolled.
This is useful for offsetting mouse-device positions to scroll-view device positions.

GetDeviceScrollPosition returns values in device units. If you want logical units, use
GetScrollPosition instead.

See Also: CScrollView:: GetScrollPosition

CScroll View: : GetDeviceScrollSizes
void GetDeviceScrollSizes(int& nMapMode, SIZE& sizeTotal, SIZE& sizePage,

~ SIZE& sizeLine) const;

Parameters
nMapMode Returns the current mapping mode for this view. For a list of possible

values, see SetScrollSizes.

size Total Returns the current total size of the scroll view in device units.

sizePage Returns the current horizontal and vertical amounts to scroll in each
direction in response to a mouse click in a scroll-bar shaft. The cx member contains
the horizontal amount. The cy member contains the vertical amount.

1747

CScrollView: :GetScrollPosition

Remarks

sheLine Returns the current horizontai and vertical amounts to scroll in each
direction in response to a mouse click in a scroll arrow. The ex member contains
the horizontal amount. The ey member contains the vertical amount.

GetDeviceScrollSizes gets the current mapping mode, the total size, and the line and
page sizes of the scrollable view. Sizes are in device units. This member function is
rarely called.

See Also: CScroIlView::SetSerolISizes, CScrolIView::GetTotaISize

CScrollView: : GetScrollPosition
CPoint GetSerolIPosition() const;

Return Value

Remarks

The horizontal and vertical positions (in logical units) of the scroll boxes as a CPoint
object.

Call GetScrollPosition when you need the current horizontal and vertical positions of
the scroll boxes in the scroll bars. This coordinate pair corresponds to the location in
the document to which the upper-left comer of the view has been scrolled.

GetScrolIPosition returns values in logical units. If you want device units, use
GetDeviceScrolIPosition instead.

See Also: CScrollView: : GetDeviceScrollPosition

CScroIIView:: GetTotalSize
CSize GetTotalSize() eonst;

Return Value

Remarks

1748

The total size of the scroll view in logical units. The horizontal size is in the cx
member of the CSize return value. The vertical size is in the cy member.

Call GetTotalSize to retrieve the current horizontal and vertical sizes of the scroll
view.

See Also: CScrollView:: GetDeviceScrollSizes, CScrollView: :SetScrollSizes

CScrollView::ScrollToPosition

CScrollView: : ResizeParentToFit
void ResizeParentToFit(BOOL bShrinkOniy = TRUE);

Parameters

Remarks

bShrinkOniy The kind of resizing to perform. The default value, TRUE, shrinks the
frame window if appropriate. Scroll bars will still appear for large views or small
frame windows. A value of FALSE causes the view always to resize the frame
window exactly. This can be somewhat dangerous since the frame window could
get too big to fit inside the multiple document interface (MDI) frame window or
the screen.

Call ResizeParentToFit to let the size of your view dictate the size of its frame
window. This is recommended only for views in MDI child frame windows. Use
ResizeParentToFit in the OnInitialUpdate handler function of your derived
CSerollView class. For an example of this member function, see
CSerollView: :SetSerollSizes.

ResizeParentToFit assumes that the size of the view window has been set. If the view
window size has not been set when ResizeParentToFit is called, you will get an
assertion. To ensure that this does not happen, make the following call before calling
ResizeParentToFit:

GetParentFrame()->RecalcLayout();

See Also: CView::OnInitiaIUpdate, CSerollView::SetSerollSizes

CScroIIView:: ScrollToPosition
void SerollToPosition(POINT pt);

Parameters

Remarks

pt The point to scroll to, in logical units. The ex member must be a positive value
(greater than or equal to 0, up to the total size of the view). The same is true for the
cy member when the mapping mode is MM_TEXT. The ey member is negative in
mapping modes other than MM_TEXT.

Call ScrollToPosition to scroll to a given point in the view. The view will be scrolled
so that this point is at the upper-left comer of the window. This member function must
not be called if the view is scaled to fit.

See Also: CSerollView::GetDeviceScrollPosition,
CSerollView: :SetSealeToFitSize, CScrollView: :SetSerollSizes

1749

CScrollView: :SetScaleToFitSize

CScrollView:: SetScalerroFitSize
void SetSealeToFitSize(SIZE sizeTotal);

Parameters

Remarks

size Total The horizontal and vertical sizes to which the view is to be scaled. The
scroll view's size is measured in logical units. The horizontal size is contained in
the ex member. The vertical size is contained in the ey member. Both ex and ey
must be greater than or equal to O.

Call SetSealeToFitSize when you want to scale the viewport size to the current
window size automatically. With scroll bars, only a portion of the logical view may be
visible at any time. But with the scale-to-fit capability, the view has no scroll bars and
the logical view is stretched or shrunk to exactly fit the window's client area. When
the window is resized, the view draws its data at a new scale based on the size of the
window.

You'll typically place the call to SetSealeToFitSize in your override of the view's
OnInitialUpdate member function. If you do not want automatic scaling, call the
SetSerollSizes member function instead.

SetSealeToFitSize can be used to implement a "Zoom to Fit" operation. Use
SetSerollSizes to reinitialize scrolling.

SetSealeToFitSize assumes that the size of the view window has been set. If the view
window size has not been set when SetSealeToFitSize is called, you will get an
assertion. To ensure that this does not happen, make the following call before calling
SetSealeToFitSize:

GetParentFrame()-)RecalcLayout();

See Also: CSerollView::SetSerollSizes, CView::OnInitiaIUpdate

CScroIIView:: SetScrollSizes
void SetSerollSizes(int nMapMode, SIZE sizeTotal, eonst SIZE& sizePage = sizeDefault,

... eonst SIZE& sizeLine = sizeDefault);

Parameters

1750

nMapMode The mapping mode to set for this view. Possible values include:

Mapping Mode Logical Unit Positive y-axis Extends ...

MM_TEXT

MM_HIMETRIC

MM_TWIPS

MM_HIENGLISH

1 pixel

0.01 mm

111440 in

0.001 in

Downward

Upward

Upward

Upward

Remarks

Example

CScrollView: :SetScrollSizes

(continued)

Mapping Mode

MM_LOMETRIC

MM_LOENGLISH

Logical Unit

0.1 mm

0.01 in

Positive y-axis Extends ...

Upward

Upward

All of these modes are defined by Windows. Two standard mapping modes,
MM_ISOTROPIC and MM_ANISOTROPIC, are not used for CSerollView. The
class library provides the SetSealeToFitSize member function for scaling the view to
window size. Column three in the table above describes the coordinate orientation.

size Total The total size of the scroll view. The ex member contains the horizontal
extent. The ey member contains the vertical extent. Sizes are in logical units. Both
ex and ey must be greater than or equal to O.

sizePage The horizontal and vertical amounts to scroll in each direction in response
to a mouse click in a scroll-bar shaft. The ex member contains the horizontal
amount. The ey member contains the vertical amount.

sizeLine The horizontal and vertical amounts to scroll in each direction in response
to a mouse click in a scroll arrow. The ex member contains the horizontal amount.
The ey member contains the vertical amount.

Call SetSerollSizes when the view is about to be updated. Call it in your override of
the OnUpdate member function to adjust scrolling characteristics when, for example,
the document is initially displayed or when it changes size.

You will typically obtain size information from the view's associated document by
calling a document member function, perhaps called GetMyDocSi ze, that you supply
with your derived document class. The following code shows this approach:

SetScrollSizes(nMapMode, GetDocument()->GetMyDocSize());

Alternatively, you might sometimes need to set a fixed size, as in the following code:

SetScrollSizes(nMapMode, CSize(100, 100));

You must set the mapping mode to any of the Windows mapping modes except
MM_ISOTROPIC or MM_ANISOTROPIC. If you want to use an unconstrained
mapping mode, call the SetSealeToFitSize member function instead of SetSerollSizes.

void CScaleView::OnUpdate(
{

II
II Implement a GetDocSize() member function in
II your document class; it returns a CSize.
SetScrollSizes(MM_LOENGLISH, GetDocument()->GetDocSize());
ResizeParentToFit(); II Default bShrinkOnly argument
I I ...

See Also: CSerollView: :SetSealeToFitSize, CSerollView:: GetDevieeSerollSizes,
CSerollView:: GetTotalSize

1751

CSemaphore

CSemaphore

1752

An object of class CSemaphore represents a "semaphore" - a synchronization
object that allows a limited number of threads in one or more processes to access a
resource. A CSemaphore object maintains a count of the number of threads currently
accessing a specified resource.

Semaphores are useful in controlling access to a shared resource that can only support
a limited number of users. The current count of the CSemaphore object is the number
of additional users allowed. When the count reaches zero, all attempts to use the
resource controlled by the CSemaphore object will be inserted into a system queue
and wait until they either time out or the count rises above O. The maximum number
of users who can access the controlled resource at one time is specified during
construction of the CSemaphore object.

To use a CSemaphore object, construct the CSemaphore object when it is needed.
Specify the name of the semaphore you wish to wait on, and that your application
should initially own it. You can then access the semaphore when the constructor
returns. Call CSyncObject:: Unlock when you are done accessing the controlled
resource.

An alternative method for using CSemaphore objects is to add a variable of type
CSemaphore as a data member to the class you wish to control. During construction
of the controlled object, call the constructor of the CSemaphore data member
specifying the initial access count, maximum access count, name of the semaphore
(if it will be used across process boundaries), and desired security attributes.

To access resources con tolled by CSemaphore objects in this manner, first create a
variable of either type CSingleLock or type CMultiLock in your resource's access
member function. Then call the lock object's Lock member function (for example,
CSingleLock::Lock). At this point, your thread will either gain access to the
resource, wait for the resource to be released and gain access, or wait for the resource
to be released and time out, failing to gain access to the resource. In any case, your
resource has been accessed in a thread-safe manner. To release the resource, use the
lock object's Unlock member function (for example, CSingleLock::Unlock), or
allow the lock object to fall out of scope.

Alternatively, you can create a CSemaphore object stand-alone, and access it
explicitly before attempting to access the controlled resource. This method, while
clearer to someone reading your source code, is more prone to error.

CSemaphore: :CSemaphore

For more information on how to use CSemaphore objects, see the article
"Multithreading: How to Use the Synchronization Classes" in Visual C++
Programmer's Guide online.

#include <afxmt.h>

CSemaphore Class Members
Construction

CSemaphore Constructs a CSemaphore object.

Member Functions
CSemaphore: :CSemaphore

CSemaphore(LONG lInitialCount = 1, LONG IMaxCount = 1,
... LPCTSTR pstrName = NULL,
... LPSECURITY _ATTRIBUTES IpsaAttributes = NULL);

Parameters

Remarks

lInitialCount The initial usage count for the semaphore. Must be greater than or
equal to 0, and less than or equal to IMaxCount.

IMaxCount The maximum usage count for the semaphore. Must be greater than O.

pstrName The name of the semaphore. Must be supplied if the semaphore will be
accessed across process boundaries. If NULL, the object will be unnamed. If the
name matches an existing semaphore, the constructor builds a new CSemaphore
object which references the semaphore of that name. If the name matches an
existing synchronization object that is not a semaphore, the construction will fail.

IpsaAttributes Security attributes for the semaphore object. For a full description of
this structure, see SECURITY _ATTRIBUTES in the Win32 Programmer's
Reference.

Constructs a named or unnamed CSemaphore object. To access or release a
CSemaphore object, create a CMultiLock or CSingleLock object and call its Lock
and Unlock member functions.

See Also: CMutex, CEvent, CMultiLock, CSingleLock

1753

CSharedFile

CSharedFile

CSharedFile

CSharedFile is the CMemFile-derived class that supports shared memory files.
Memory files behave like disk files except that the file is stored in RAM rather than
on disk. A memory file is useful for fast temporary storage or for transferring raw
bytes or serialized objects between independent processes.

Shared memory files differ from other memory files in that memory for them is
allocated with the GlobalAlloc Windows function. The CSharedFile class stores data
in a globally allocated memory block (created using GlobaIAlloc), and this memory
block can be shared using DDE, the Clipboard, or other OLE/COM uniform data
transfer operations, for example, using IDataObject.

GlobalAlloc returns an HGLOBAL handle rather than a pointer to memory, such as
the pointer returned by malloc. The HGLOBAL handle is needed in certain
applications. For example, to put data on the Clipboard you need an HGLOBAL
handle.

Please note that CSharedFile does not use memory-mapped files, and the data cannot
be directly shared between processes.

CSharedFile objects can automatically allocate their own memory or you can attach
your own memory block to the CSharedFile object by calling
CSharedFile: :SetHandle. In either case, memory for growing the memory file
automatically is allocated in nGrowBytes-sized increments if nGrowBytes is not zero.

For more information, see the article "Files in MFC" in the Visual C++ Programmer's
Guide online and "File Handling" in the Run-Time Library Reference.

#include <afxadv.h>

See Also: CMemFile, GlobalAlloc, GlobalFree, GlobalReallocss

CSharedFile Class Members
Construction

CSharedFile Constructs a CSharedFile object.

1754

CSharedFile:: SetHandle

Operations

Detach

SetHandle

Closes the shared memory file and returns the handle of
its memory block.

Attaches the shared memory file to a memory block.

Member Functions
CSharedFile: : CSharedFile

CSharedFile(UINT nAllocFlags = GMEM_DDESHARE I GMEM_MOVEABLE,
... UINT nGrowBytes = 4096);

Parameters

Remarks

nAllocFlags Flags indicating how memory is to be allocated. See GlobalAlloc for a
list of valid flag values.

nGrowBytes The memory allocation increment in bytes.

Constructs a CSharedFile object and allocates memory for it.

See Also: CSharedFile: :Detach CSharedFile: :SetHandle

CSharedFile: :Detach
HGLOBAL Detach();

Return Value

Remarks

The handle of the memory block that contains the contents of the memory file.

Call this function to close the memory file and detach it from the memory block.
You can reopen it by calling SetHandle, using the handle returned by Detach.

See Also: CSharedFile: :CSharedFile, CSharedFile: :SetHandle

CSharedFile: : SetHandle
void SetHandle(HGLOBAL hGlobalMemory, BOOL bAllowGrow = TRUE);

Parameters
hGlobalMemory Handle to the global memory to be attached to the CSharedFile.

bAllowGrow Specifies whether the memory block is allowed to grow.

1755

CSharedFile: :SetHandle

Remarks

1756

Call this function to attach a block of global memory to the CSharedFile object. If
bAllowGrow is nonzero, the size of the memory block is increased as necessary, for
example, if an attempt is made to write more bytes to the file than were allocated for
the memory block.

See Also: CSharedFile::CSharedFile, CSharedFile::Detach

CSingleDocTemplate

The CSingleDocTemplate class defines a document template that implements the
single document interface (SDI). An SDI application uses the main frame window to
display a document; only one document can be open at a time.

A document template defines the relationship between three types of classes:

• A document class, which you derive from CDocument.

• A view class, which displays data from the document class listed above. You can
derive this class from CView, CScrollView, CFormView, or CEditView. (You
can also use CEditView directly.)

• A frame window class, which contains the view. For an SDI document template,
you can derive this class from CFrameWnd; if you do not need to customize the
behavior of the main frame window, you can use CFrameWnd directly without
deriving your own class.

An SDI application typically supports one type of document, so it has only one
CSingleDocTemplate object. Only one document can be open at a time.

You don't need to call any member functions of CSingieDocTempiate except the
constructor. The framework handles CSingieDocTempiate objects internally.

For more information on using CSingieDocTempiate, see "Document Templates and
the DocumentlView Creation Process" in Visual C++ Programmer's Guide online.

See Also: CDocTempiate, CDocument, CFrameWnd, CMultiDocTempiate,
CView, CWinApp

CSingleDocTemplate

CSingleDocTemplate Class Members
Construction

CSingleDocTemplate Constructs a CSingleDocTemplate object.

1757

CSingleDocTemplate: :CSingleDocTemplate

Member Functions
CSingleDocTemplate: : CSingleDocTemplate

CSingleDocTemplate(UINT nIDResource, CRuntimeClass* pDocClass,
"+ CRuntimeClass* pFrameClass, CRuntimeClass* p View Class);

Parameters

Remarks

Example

1758

nIDResource Specifies the ID of the resources used with the document type.
This may include menu, icon, accelerator table, and string resources.

The string resource consists of up to seven substrings separated by the '\n'
character (the '\n' character is needed as a placeholder if a substring is not
included; however, trailing '\n' characters are not necessary); these substrings
describe the document type. For information about the substrings, see
CDocTemplate::GetDocString. This string resource is found in the
application's resource file. For example:

II MYCAlC.RC
STRINGTABlE PRELOAD OISCAROABlE
BEGIN

lOR_MAINFRAME "MyCalc Windows Application\nSheet\nWorksheet\n
.. Worksheets (*. myc) \n. myc\nMyCa 1 cSheet\n MyCa 1 c Worksheet"

END

You can edit this string using the string editor; the entire string appears as a single
entry in the String Editor, not as seven separate entries.

For more information about these resource types, see the "String Editor" in the
Developer Studio User's Guide online.

pDocClass Points to the CRuntimeClass object of the document class. This class is
a CDocument-derived class you define to represent your documents.

pFrameClass Points to the CRuntimeClass object of the frame window class. This
class can be a CFrameWnd-derived class, or it can be CFrameWnd itself if you
want default behavior for your main frame window.

p ViewClass Points to the CRuntimeClass object of the view class. This class is a
CView-derived class you define to display your documents.

Constructs a CSingleDocTemplate object. Dynamically allocate a
CSingleDocTemplate object and pass it to CWinApp::AddDocTemplate from the
Initlnstance member function of your application class.

II example for CSingleOocTemplate::CSingleOocTemplate
Baal CMyApp::lnitlnstance()
{

II ...

CSingleDocTemplate: :CSingleDocTemplate

II Establish the document type
II supported by the application

AddOocTemplate(new CSingleOocTemplate(lOR_MAINFRAME,
RUNTIME_CLASS(CSheetOoc),
RUNTIME_CLASS(CFrameWnd),
RUNTIME_CLASS(CSheetView)));

II

See Also: CDocTemplate::GetDocString, CWinApp::AddDocTemplate,
CWinApp::Initlnstance, CRuntimeClass, RUNTIME_CLASS

1759

CSingleLock

CSingleLock
CSingleLock does not have a base class.

An object of class CSingleLock represents the access-control mechanism used in
controlling access to a resource in a multithreaded program. In order to use the
synchronization classes CSemaphore, CMutex, CCriticalSection, and CEvent, you
must create either a CSingleLock or CMultiLock object to wait on and release the
synchronization object. Use CSingleLock when you only need to wait on one object
at a time. Use CMultiLock when there are multiple objects that you could use at a
particular time.

To use a CSingleLock object, call its constructor inside a member function in the
controlled resource's class. Then call the IsLocked member function to determine if
the resource is available. If it is, continue with the remainder of the member function.
If the resource is unavailable, either wait for a specified amount of time for the
resource to be released, or return failure. After use of the resource is complete, either
call the Unlock function if the CSingleLock object is to be used again, or allow the
CSingleLock object to be destroyed.

CSingleLock objects require the presence of an object derived from CSyncObject.
This is usually a data member of the controlled resource's class. For more information
on how to use CSingleLock objects, see the article "Multithreading: How to Use the
Synchronization Classes" in Visual C++ Programmers Guide online.

#include <afxmt.h>

See Also: CMultiLock

CSingleLock Class Members

1760

Construction

CSingleLock

Methods

IsLocked

Lock

Unlock

Constructs a CSingleLock object.

Determines if the object is locked.

Waits on a synchronization object.

Releases a synchronization object.

Member Functions
CSingleLock: : CSingleLock

CSingleLock(CSyncObject* pObject, BOOL blnitialLock = FALSE);

Parameters

Remarks

pObject Points to the synchronization object to be accessed. Cannot be NULL.

blnitialLock Specifies whether to initially attempt to access the supplied object.

Constructs a CSingleLock object. This function is generally called from within an
access member function of the controlled resource.

CSingleLock: :IsLocked
BOOL IsLocked();

Return Value

Remarks

Nonzero if the object is locked; otherwise O.

Determines if the object associated with the CSingleLock object is nonsignaled
(unavailable).

CSingleLock: :Lock
BOOL Lock(DWORD dwTimeOut = INFINITE);

Return Value
Nonzero if the function was successful; otherwise O.

Parameters

Remarks

dwTimeOut Specifies the amount of time to wait for the synchronization object to be
available (signaled). If INFINITE, Lock will wait until the object is signaled
before returning.

Call this function to gain access to the resource controlled by the synchronization
object supplied to the CSingleLock constructor. If the synchronization object is
signaled, Lock will return successfully and the thread now owns the object. If the
synchronization object is nonsignaled (unavailable), Lock will wait for the
synchronization object to become signaled up to the number of milliseconds specified
in the dwTimeOut parameter. If the synchronization object did not become signaled in
the specified amount of time, Lock returns failure.

CSingleLock: :Lock

1761

CSingleLock:: Unlock

CSingleLock: : Unlock
BOOL Unlock();
BOOL Unlock(LONG lCount, LPLONG lPrevCount = NULL);

Return Value
Nonzero if the function was successful; otherwise O.

Parameters

Remarks

1762

lCount Number of accesses to release. Must be greater than O. If the specified
amount would cause the object's count to exceed its maximum, the count is not
changed and the function returns FALSE.

lPrevCount Points to a variable to receive the previous count of the synchronization
object. If NULL, the previous count is not returned.

Releases the synchronization object owned by CSingleLock. This function is called
by CSingleLock' s destructor.

If you need to release more than one access count of a semaphore, use the .second
form of Unlock and specify the number of accesses to release.

CSize
The CSize class is similar to the Windows SIZE structure, which implements a
relative coordinate or position.

Note This class is derived from the SIZE structure. This means you can pass a CSize in a
parameter that calls for a SIZE and that the data members of the SIZE structure are accessible
data members of CSize.

The cx and cy members of SIZE (and CSize) are public. In addition, CSize
implements member functions to manipulate the SIZE structure.

#include <afxwin.h>

Sample MFC Sample MDI

See Also CRect, CPoint

CSize Class Members
Construction

CSize

Operators

operator ==

operator !=

operator +=

operator-=

Constructs a CSize object.

Checks for equality between CSize and a size.

Checks for inequality between CSize and a size.

Adds a size to CSize.

Subtracts a size from CSize.

Operators Returning CSize Values

operator +

operator-

Adds two sizes.

Subtracts two sizes.

Member Functions
CSize: :CSize

CSize();
CSize(int initCX, int initCY);
CSize(SIZE initSize);
CSize(POINT initPt);
CSize(DWORD dwSize);

CSize

1763

CSize::operator ==

Parameters

Remarks

initCX Sets the ex member for the CSize.

initCY Sets the ey member for the CSize.

initSize SIZE structure or CSize object used to initialize CSize.

initPt POINT structure or CPoint object used to initialize CSize.

dwSize DWORD used to initialize CSize. The low-order word is the ex member
and the high-order word is the ey member.

Constructs a CSize object. If no arguments are given, ex and ey members are not
initialized.

Operators
CSize: : operator ==

BOOL operator ==(SIZE size) eonst;

Remarks
Checks for equality between two sizes. Returns nonzero if the sizes are equal,
otherwize O.

See Also CSize::operator!=

CSize::operator !=

Remarks

BOOL operator !=(SIZE size) eonst;

Checks for inequality between two sizes. Returns nonzero if the sizes are not equal,
otherwise O.

See Also CSize: :operator ==

CSize::operator +=
void operator +=(SIZE size);

Remarks
Adds a size to this Csize.

See Also CSize::operator +

1764

CSizeCSize::operator -

CSize::operator -=
void operator -=(SIZE size);

Remarks
Subtracts a size from this CSize.

See Also CSize::operator-

CSize::operator +

Remarks

CSize operator +(SIZE size) const;
CPoint operator +(POINT point) const;
CRect operator +(const RECT* lpRect) const;

These operators add this CSize value to the value of parameter. See the following
descriptions of the individual operators:

• operator +(size) This operation adds two CSize values.

• operator +(point) This operation offsets (moves) a POINT (or CPoint) value
by this CSize value. The ex and cy members of this CSize value are added to the x
and y data members of the POINT value. It is analogous to the version of
CPoint::operator + that takes a SIZE parameter.

• operator +(lpRect) This operation offsets (moves) a RECT (or CRect) value by
this CSize value. The ex and cy members of this CSize value are added to the left,
top, right, and bottom data members of the RECT value. It is analogous to the
version of CRect: :operator + that takes a SIZE parameter.

See Also CPoint::operator +, CRect::operator +

CSize::operator -

Remarks

CSize operator -(SIZE size) const;
CPoint operator -(POINT point) const;
CRect operator -(const RECT* lpRect) const;
CSize operator -() const;

The first three of these operators subtract this CSize value to the value of parameter.
The fourth operator, the unary minus, changes the sign of the CSize value. See the
following descriptions of the individual operators:

• operator -(size) This operation subtracts two CSize values.

1765

CSize::operator -

1766

• operator -(point) This operation offsets (moves) a POINT or CPoint value
by the additive inverse of this CSize value. The ex and ey of this CSize value are
subtracted from the x and y data members of the POINT value. It is analogous to
the version of CPoint: :operator - that takes a SIZE parameter.

• operator -(IpRect) This operation offsets (moves) a RECT or CReet value
by the additive inverse of this CSize value. The ex and ey members of this CSize
value are subtracted from the left, top, right, and bottom data members of the
RECT value. It is analogous to the version of CReet: :operator - that takes a
SIZE parameter.

• operator -() This operation returns the additive inverse of this CSize value.

See Also CPoint::operator -, CRect::operator-

CSliderCtrl

A "slider control" (also known as a trackbar) is a window containing a slider and
optional tick marks. When the user moves the slider, using either the mouse or the
direction keys, the control sends notification messages to indicate the change.

Slider controls are useful when you want the user to select a discrete value or a set of
consecutive values in a range. For example, you might use a slider control to allow the
user to set the repeat rate of the keyboard by moving the slider to a given tick mark.

The CSliderCtrl class provides the functionality of the Windows common slider
control. This control (and therefore the CSliderCtrl class) is available only to
programs running under Windows 95 and Windows NT version 3.51 and later.

The slider moves in increments that you specify when you create it. For example, if
you specify that the slider should have a range of five, the slider can only occupy six
positions: a position at the left side of the slider control and one position for each
increment in the range. Typically, each of these positions is identified by a tick mark.

You create a slider by using the constructor and the Create member function of
CSliderCtrl. Once you have created a slider control, you can use member functions in
CSliderCtrl to change many of its properties. Changes that you can make include
setting the minimum and maximum positions for the slider, drawing tick marks,
setting a selection range, and repositioning the slider.

For more information on using CSliderCtrl, see Technical Note 60 online.

#include <afxcmn.h>

See Also: CProgressCtrl

CSliderCtrl Class Members
Construction

CSliderCtrl

Create

Constructs a CSliderCtrl object.

Creates a slider control and attaches it to a CSliderCtrl object.

CSliderCtrl

1767

CSliderCtr1: :ClearSeI

Attributes

GetLineSize

SetLineSize

GetPageSize

SetPageSize

GetRangeMax

GetRangeMin

GetRange

SetRangeMin

SetRangeMax

SetRange

GetSelection

SetSelection

GetChannelRect

GetThumbRect

GetPos

SetPos

GetNumTics

GetTicArray

GetTic

GetTicPos

SetTic

SetTicFreq

Operations

ClearSel

VerifyPos

ClearTics

Retrieves the line size of a slider control.

Sets the line size of a slider control.

Retrieves the page size of a slider control.

Sets the page size of a slider control.

Retrieves the maximum position for a slider.

Retrieves the minimum position for a slider.

Retrieves the minimum and maximum positions for a slider.

Sets the minimum position for a slider.

Sets the maximum position for a slider.

Sets the minimum and maximum positions for a slider.

Retrieves the range of the current selection.

Sets the range of the current selection.

Retrieves the size of the slider control's channel.

Retrieves the size of the slider control's thumb.

Retrieves the current position of the slider.

Sets the current position of the slider.

Retrieves the number of tick marks in a slider control.

Retrieves the array of tick mark positions for a slider control.

Retrieves the position of the specified tick mark.

Retrieves the position of the specified tick mark, in client coordinates.

Sets the position of the specified tick mark.

Sets the frequency of tick marks per slider control increment.

Clears the current selection in a slider control.

Verifies that the position of a slider control is between the minimum
and maximum values.

Removes the current tick marks from a slider control.

Member Functions
CSliderCtrl: :ClearSel

void ClearSel(BOOL bRedraw = FALSE);

Parameters

1768

bRedraw Redraw flag. If this parameter is TRUE, the slider is redrawn after the
selection is cleared; otherwise the slider is not redrawn.

CSliderCtr1: :Create

Remarks
Call this function to clear the current selection in a slider control.

See Also: CSliderCtrl: :GetSelection, CSliderCtrl: :SetSelection

CSliderCtrl: : ClearTics
void ClearTics(BOOL bRedraw = FALSE);

Parameters

Remarks

bRedraw Redraw flag. If this parameter is TRUE, the slider is redrawn after the tick
marks are cleared; otherwise the slider is not redrawn.

Call this function to remove the current tick marks from a slider control.

See Also: CSliderCtrl::GetTicArray, CSliderCtrl::GetTic,
CSliderCtrl: : GetNumTics

CSliderCtrl: : Create
BOOL Create(DWORD dwStyle, const RECT & reet, CWnd* pParentWnd, UINT nID);

Return Value
Nonzero if initialization was successful; otherwise O.

Parameters

Remarks

dwStyle Specifies the slider control's style. Apply any combination of slider control
styles to the control.

reet Specifies the slider control's size and position. It can be either a CRect object or
a RECT structure.

pParentWnd Specifies the slider control's parent window, usually a CDialog. It must
not be NULL.

nID Specifies the slider control's ID.

You construct a CSliderCtrl in two steps. First call the constructor, then call Create,
which creates the slider control and attaches it to the CSliderCtrl object.

Slider controls can have either a vertical or horizontal orientation. They can have tick
marks on either side, both sides, or neither. They can also be used to specify a range of
consecutive values. These properties are controlled by using slider styles, which you
specify when you create the slider control:

• TBS_HORZ Orients the slider horizontally. This is the default orientation.

1769

CSliderCtrl: :CSliderCtrl

• TBS_ VERT Orients the slider vertically. If you do not specify an orientation, the
slider is oriented horizontally.

• TBS_AUTOTICKS Creates a slider that has a tick mark for each increment in its
range of values. These tick marks are added automatically when an application
calls the SetRange member function. You cannot use the SetTic and SetTicFreq
member functions to specify the position of the tick marks if you use this style. Use
the ClearTics member function instead.

• TBS_NOTICKS Creates a slider that does not display tick marks.

• TBS_BOTTOM Displays tick marks on the bottom of a horizontal slider. Can be
used with the TBS_TOP style to display tick marks on both sides of the slider
control.

• TBS_ TOP Displays tick marks on the top of a horizontal slider. Can be used with
the TBS_BOTTOM style to display tick marks on both sides of the slider control.

• TBS_RIGHT Displays tick marks on the right of a vertical slider. Can be used
with the TBS_LEFT style to display tick marks on both sides of the slider control.

• TBS_LEFT Displays tick marks on the left of a vertical slider. Can be used with
the TBS_RIGHT style to display tick marks on both sides of the slider control.

• TBS_BOTH Displays tick marks on both sides of the slider in any orientation.

• TBS_ENABLESELRANGE Displays a selection range. When a slider control
has this style, the tick marks at the starting and ending positions of a selection
range are displayed as triangles (instead of vertical dashes) and the selection range
is highlighted. For example, selection ranges might be useful in a simple
scheduling application. The user could select a range of tick marks corresponding
to hours in a day to identify a scheduled meeting time.

See Also: CSliderCtrl::CSliderCtrl

CSliderCtrl: :CSliderCtrl

Remarks

1770

CSliderCtrl();

Constructs a CSliderCtrl object.

See Also: CSliderCtrl::Create

CS liderCtrl: :GetN umTics

CSliderCtrl: : GetChannelRect
void GetChannelRect(LPRECT lpre) const;

Parameters

Remarks

lpre A pointer to a CRect object that contains the size and position of the channel's
bounding rectangle when the function returns.

Call this function to retrieve the size and position of the bounding rectangle for a
slider control's channel. The channel is the area over which the slider moves and
which contains the highlight when a range is selected.

See Also: CSliderCtrl::GetThumbRect

CS liderCtr 1: : GetLineS ize
int GetLineSize() const;

Return Value

Remarks

The size of a line for the slider control.

Call this function to retrieve the size of the line for a slider control. The line size
affects how much the slider moves for the TB_LINEUP and TB_LINEDOWN
notifications. The default setting for the line size is 1.

See Also: CSliderCtrl::SetLineSize, CSliderCtrl::GetPageSize

CSliderCtrl: : GetNumTics
UINT GetNumTics() const;

Return Value
The number of tick marks in the slider control.

Remarks
Call this function to retrieve the number of tick marks in a slider control.

See Also: CSliderCtrl::GetTicArray, CSliderCtrl::GetTic,
CSliderCtrl:: GetTicPos, CSliderCtrl:: SetTicFreq, CSliderCtrl:: ClearTics

1771

CSliderCtrl::GetPageSize

CSliderCtrl::GetPageSize
int GetPageSize() const;

Return Value

Remarks

The size of a page for the slider control.

Call this function to retrieve the size of the page for a slider control. The page size
affects how much the slider moves for the TB_PAGEUP and TB_PAGEDOWN
notifications.

See Also: CSliderCtrl::GetLineSize, CSliderCtrl::SetPageSize

CSliderCtrl: : GetPos
int GetPos() const;

Return Value

Remarks

The current position.

Call this function to retrieve the current position of the slider in a slider control.

See Also: CSliderCtrl::SetPos, CSliderCtrl::GetTicPos

CSliderCtrl: : GetRange
void GetRange(int& nMin, int& nMax) const;

Parameters

Remarks

1772

nMin Reference to an integer that receives the minimum position.

nMax Reference to an integer that receives the maximum position.

Call this function to retrieve the maximum and minimum positions for the slider in a
slider control. This function copies the values into the integers referenced by nMin
andnMax.

See Also: CSliderCtrl: : GetRangeMin, CSliderCtrl: : GetRangeMax,
CSliderCtrl: :SetRange

CSliderCtrl: :GetSelection

CSliderCtrl: : GetRangeMax
int GetRangeMax() const;

Return Value

Remarks

The control's maximum position.

Call this function to retrieve the maximum position for the slider in a slider control.

See Also: CSliderCtrl::GetRangeMin, CSliderCtrl::GetRange,
CSliderCtrl: :SetRange

CSliderCtrl: : GetRangeMin
int GetRangeMin() const;

Return Value

Remarks

The control's minimum position.

Call this function to retrieve the minimum position for the slider in a slider control.

See Also: CSliderCtrl::GetRange, CSliderCtrl::GetRangeMax,
CSliderCtrl: :SetRange

CSliderCtrl: : GetSelection
void GetSelection(int& nMin, int& nMax) const;

Parameters

Remarks

nMin Reference to an integer that receives the starting position of the current
selection.

nMax Reference to an integer that receives the ending position of the current
selection.

Call this function to retrieve the starting and ending positions of the current selection
in a slider control.

See Also: CSliderCtrl::SetSelection, CSliderCtrl::ClearSel

1773

CSliderCtrl: : GetThumbRect

CSliderCtrl: : GetThumbRect
void GetThumbRect(LPRECT lpre) const;

Parameters

Remarks

lpre A pointer to a CRect object that contains the bounding rectangle for the slider
when the function returns.

Call this function to retrieve the size and position of the bounding rectangle for the
slider (thumb) in a slider control.

See Also: CSliderCtrl: :GetChannelRect

CSliderCtrl: : GetTic
int GetTic(int nTie) const;

Return Value
The position of the specified tick mark or -1 if nTie does not specify a valid index.

Parameters

Remarks

nTie Zero-based index identifying a tick mark.

Call this function to retrieve the position of a tick mark in a slider control.

See Also: CSliderCtrl: :SetTic, CSliderCtrl: : GetTicArray ,
CSliderCtrl: : GetTicPos, CSliderCtrl: :SetTicFreq, CSliderCtrl: :ClearTics

CSliderCtrl::GetTicArray
DWORD* GetTicArray() const;

Return Value

Remarks

1774

The address of the array containing tick mark positions for the slider control.

Call this function to retrieve the address of the array containing the positions of tick
marks for a slider control.

See Also: CSliderCtrl::SetTic, CSliderCtrl::GetTic, CSliderCtrl::GetTicPos,
CSliderCtrl: :SetTicFreq, CSliderCtrl: :ClearTics

CSliderCtrl:: SetPageSize

CSliderCtrl: : GetTicPos
int GetTicPos(int nTic) const;

Return Value
The physical position, in client coordinates, of the specified tick mark or -1 if nTic
does not specify a valid index.

Parameters

Remarks

nTic Zero-based index identifying a tick mark.

Call this function to retrieve the current physical position of a tick mark in a slider
control.

See Also: CSliderCtrl: :SetTic, CSliderCtrl: :GetTic, CSliderCtrl: :SetTicFreq,
CSliderCtrl:: ClearTics

CSliderCtrl::SetLineSize
int SetLineSize(int nSize);

Return Value
The previous line size.

Parameters

Remarks

nSize The new line size of the slider control.

Call this function to set the size of the line for a slider control. The line size affects
how much the slider moves for the TB_LINEUP and TB_LINEDOWN notifications.

See Also: CSliderCtrl: :GetLineSize, CSliderCtrl: :SetPageSize

CSliderCtrl: : SetPageSize
int SetPageSize(int nSize);

Return Value
The previous page size.

Parameters
nSize The new page size of the slider control.

1775

CSliderCtrl: :SetPos

Remarks
Call this function to set the size of the page for a slider control. The page size affects
how much the slider moves for the TB_PAGEUP and TB_PAGEDOWN
notifications.

See Also: CSliderCtrl: :GetPageSize, CSliderCtrl: :GetLineSize

CSliderCtrl: : SetPos
void SetPos(int nPos);

Parameters
nPos Specifies the new slider position.

Remarks
Call this function to set the current position of the slider in a slider control.

See Also: CSliderCtrl::GetPos, CSliderCtrl::SetTic, CSliderCtrl::VerifyPos

CSliderCtrl: : SetRange
void SetRange(int nMin, int nMax, BOOL bRedraw = FALSE);

Parameters

Remarks

nMin Minimum position for the slider.

nMax Maximum position for the slider.

bRedraw The redraw flag. If this parameter is TRUE, the slider is redrawn after the
range is set~ otherwise the slider is not redrawn.

Call this function to set the range (minimum and maximum positions) for the slider in
a slider control.

See Also: CSHderCtrl::GetRange, CSHderCtrl::SetRangeMax,
CSliderCtrl: :SetRangeMin

CSliderCtrl: :SetRangeMax
void SetRangeMax(int nMax, BOOL bRedraw = FALSE);

Parameters

1776

nMax Maximum position for the slider.

bRedraw The redraw flag. If this parameter is TRUE, the slider is redrawn after the
range is set~ otherwise the slider is not redrawn.

Remarks
Call this function to set the maximum range for the slider in a slider control.

See Also: CSliderCtrl::SetRange, CSliderCtrl::GetRangeMax,
CSliderCtrl: :SetRangeMin

CSliderCtrl::SetRangeMin
void SetRangeMin(int nMin, BOOL bRedraw = FALSE);

Parameters

Remarks

nMin Minimum position for the slider.

bRedraw The redraw flag. If this parameter is TRUE, the slider is redrawn after the
range is set; otherwise the slider is not redrawn.

Call this function to set the minimum range for the slider in a slider control.

See Also: CSliderCtrl::SetRange, CSliderCtrl::GetRangeMin,
CSliderCtrl: :SetRangeMax

CSliderCtrl: : SetSelection
void SetSelection(int nMin, int nMax);

Parameters

Remarks

nMin Starting position for the slider.

nMax Ending position for the slider.

Call this function to set the starting and ending positions for the current selection in a
slider control.

See Also: CSliderCtrl::GetSelection, CSliderCtrl::ClearSel

CSliderCtrl: :SetTic
BOOL SetTic(int nTie);

Return Value
Nonzero if the tick mark is set; otherwise O.

Parameters
nTie Position of the tick mark. This parameter must specify a positive value.

CS liderCtrl: :SetTic

1777

CSliderCtrl::SetTicFreq

Remarks
Call this function to set the position of a tick mark in a slider control.

See Also: CSIiderCtrl::GetTic, CSIiderCtrl::GetTicArray,
CSliderCtrl: : GetTicPos, CSIiderCtrl: : SetTicFreq , CSliderCtrl: :ClearTics

CSliderCtrl: :SetTicFreq
void SetTicFreq(int nFreq);

Parameters

Remarks

nFreq Frequency of the tick marks.

Call this function to set the frequency with which tick marks are displayed in a slider.
For example, if the frequency is set to 2, a tick mark is displayed for every other
increment in the slider's range. The default setting for the frequency is 1 (that is, every
increment in the range is associated with a tick mark).

You must create the control with the TBS_AUTOTICKS style to use this function.
For more information, see CSliderCtrl::Create.

See Also: CSliderCtrl::Create, CSIiderCtrl::SetTic, CSliderCtrl::GetTicArray

CSliderCtrl:: VerifyPos

Remarks

1778

void VerifyPos();

Call this function to verify that the current position of the slider in a slider control is
between the minimum and maximum values.

See Also: CSliderCtrl: : GetRange, CSliderCtrl: :SetPos, CSliderCtrl: : GetTicPos

CSocket

Class CSocket derives from CAsyncSocket and inherits its encapsulation of the
Windows Sockets API. A CSocket object represents a higher level of abstraction of
the Windows Sockets API than that of a CAsyncSocket object. CSocket works with
classes CSocketFile and CArchive to manage the sending and receiving of data.

A CSocket object also provides blocking, which is essential to the synchronous
operation of CArchive. Blocking functions, such as Receive, Send, ReceiveFrom,
SendTo, and Accept (all inherited from CAsyncSocket), do not return a
WSAEWOULDBLOCK error in CSocket. Instead, these functions wait until the
operation completes. Additionally, the original call will terminate with the error
WSAEINTR if CancelBlockingCall is called while one of these functions is
blocking.

To use a CSocket object, call the constructor, then call Create to create the
underlying SOCKET handle (type SOCKET). The default parameters of Create
create a stream socket, but if you are not using the socket with a CArchive object,
you can specify a parameter to create a datagram socket instead, or bind to a specific
port to create a server socket. Connect to a client socket using Connect on the client
side and Accept on the server side. Then create a CSocketFile object and associate
it to the CSocket object in the CSocketFile constructor. Next, create a CArchive
object for sending and one for receiving data (as needed), then associate them with
the CSocketFile object in the CArchive constructor. When communications are
complete, destroy the CArchive, CSocketFile, and CSocket objects. The SOCKET
data type is described in the article "Windows Sockets: Background" in Visual C++
Programmers Guide online.

For more information, see "Windows Sockets in MFC," "Windows Sockets: Using
Sockets with Archives," "Windows Sockets: How Sockets with Archives Work,"
"Windows Sockets: Sequence of Operations," "Windows Sockets: Example of
Sockets Using Archives," and related articles in Visual C++ Programmer's Guide
online. Also see "Overview of Windows Sockets 2" and "Windows Sockets
Programming Considerations" in the Win32 SDK documentation.

#include <afxsock.h>

See Also: CAsyncSocket, CSocketFile

CSocket

1779

CSocket: :Attach

CSocket Class Members
Construction

CSocket

Create

Attributes

IsBlocking

FromHandle

Attach

Operations

CancelBlockingCall

Overridables

OnMessagePending

Constructs a CSocket object.

Creates a socket.

Determines whether a blocking call is in progress.

Returns a pointer to a CSocket object, given a SOCKET
handle.

Attaches a SOCKET handle to a CSocket object.

Cancels a blocking call that is currently in progress.

Called to process pending messages while waiting for a
blocking call to complete.

Member Functions
CSocket: : Attach

BOOL Attach(SOCKET hSocket);

Return Value
Nonzero if the function is successful.

Parameters

Remarks

1780

hSocket Contains a handle to a socket.

Call this member function to attach the hSocket handle to a CSocket object. The
SOCKET handle is stored in the object's m_hSocket data member.

For more information, see "Windows Sockets: Using Sockets with Archives" and
related articles in Visual c++ Programmer's Guide online. Also see "Windows
Sockets Programming Considerations" in the Win32 SDK documentation.

See Also: CAsyncSocket::Attach

CSocket: :CancelBlockingCall

Remarks

void CanceIBlockingCall();

Call this member function to cancel a blocking call currently in progress. This
function cancels any outstanding blocking operation for this socket. The original
blocking call will terminate as soon as possible with the error WSAEINTR.

In the case of a blocking Connect operation, the Windows Sockets implementation
will terminate the blocking call as soon as possible, but it may not be possible for the
socket resources to be released until the connection has completed (and then been
reset) or timed out. This is likely to be noticeable only if the application immediately
tries to open a new socket (if no sockets are available), or to connect to the same peer.

Canceling any operation other than Accept can leave the socket in an indeterminate
state. If an application cancels a blocking operation on a socket, the only operation
that the application can depend on being able to perform on the socket is a call
to Close, although other operations may work on some Windows Sockets
implementations. If you desire maximum portability for your application, you
must be careful not to depend on performing operations after a cancel.

For more information, see "Windows Sockets: Using Sockets with Archives" and
related articles in Visual C++ Programmer's Guide online. Also see "Windows
Sockets Programming Considerations" in the Win32 SDK documentation.

See Also: CAsyncSocket: :Accept, CAsyncSocket:: Close,
CAsyncSocket:: Connect, CSocket: :IsBlocking, :: WSASetBlockingHook

CSocket::Create
BOOL Create(UINT nSocketPort = 0, int nSocketType = SOCK_STREAM,

... LPCTSTR IpszSocketAddress = NULL);

Return Value
Nonzero if the function is successful; otherwise 0, and a specific error code can be
retrieved by calling GetLastError.

Parameters
nSocketPort A particular port to be used with the socket, or ° if you want MFC to

select a port.

nSocketType SOCK_STREAM or SOCK_DGRAM.

IpszSockAddress A pointer to a string containing the network address of the
connected socket, a dotted number such as "128.56.22.8".

CSocket: :Create

1781

CSocket: :CSocket

Remarks
Call the Create member function after constructing a socket object to create the
Windows socket and attach it. Create then calls Bind to bind the socket to the
specified address. The following socket types are supported:

• SOCK_STREAM Provides sequenced, reliable, two-way, connection-based byte
streams. Uses Transmission Control Protocol (TCP) for the Internet address family .

• SOCK_DGRAM Supports datagrams, which are connectionless, unreliable
buffers of a fixed (typically small) maximum length. Uses User Datagram Protocol
(UDP) for the Internet address family. To use this option, you must not use the
socket with a CArchive object.

Note The Accept member function takes a reference to a new, empty CSocket object as its
parameter. You must construct this object before you call Accept. Keep in mind that if this
socket object goes out of scope, the connection closes. Do not call Create for this new socket
object.

For more information about stream and datagram sockets, see the articles "Windows
Sockets: Background," "Windows Sockets: Ports and Socket Addresses," and
"Windows Sockets: Using Sockets with Archives" in Visual C++ Programmer's
Guide online and "Windows Sockets Programming Considerations" in the Win32
SDK documentation.

See Also: CAsyncSocket:: Create, CAsyncSocket: :Bind

CSocket: :CSocket

Remarks

CSocket();

Constructs a CSocket object. After construction, you must call the Create member
function.

For more infonnation, see "Windows Sockets: Using Sockets with Archives" and
related articles in Visual C++ Programmer's Guide online. Also see "Windows
Sockets Programming Considerations" in the Win32 SDK documentation.

See Also: CAsyncSocket::Create

CSocket: : FromHandle
static CSocket* PASCAL FromHandle(SOCKET hSocket);

Return Value

1782

A pointer to a CSocket object, or NULL if there is no CSocket object attached to
hSocket.

CSocket: :OnMessagePending

Parameters

Remarks

hSocket Contains a handle to a socket.

Returns a pointer to a CSocket object. When given a SOCKET handle, if a CSocket
object is not attached to the handle, the member function returns NULL and does not
create a temporary object.

For more information, see "Windows Sockets: Using Sockets with Archives" and
related articles in Visual C++ Programmer's Guide online. Also see "Windows
Sockets Programming Considerations" in the Win32 SDK documentation.

See Also: CAsyncSocket::FromHandle

CSocket: : IsB locking
BOOL IsBlocking();

Return Value

Remarks

Nonzero if the socket is blocking; otherwise O.

Call this member function to determine if a blocking call is in progress.

For more information, see "Windows Sockets: Using Sockets with Archives" and
related articles in Visual C++ Programmer's Guide online. Also see "Windows
Sockets Programming Considerations" in the Win32 SDK documentation.

See Also: CSocket:: CancelBlockingCall

CSocket: : OnMessagePending
virtual BOOL OnMessagePending();

Return Value

Remarks

Nonzero if the message was handled; otherwise O.

Override this member function to look for particular messages from Windows and
respond to them in your socket. This is an advanced overridable.

The framework calls OnMessagePending while the socket is pumping Windows
messages to give you an opportunity to deal with messages of interest to your
application. For examples of how you might use OnMessagePending, see the article
"Windows Sockets: Deriving from Socket Classes" in Visual C++ Programmer's
Guide online.

1783

CSocket: :OnMessagePending

1784

For more information, see "Windows Sockets: Using Sockets with Archives" and
related articles in Visual c++ Programmer's Guide online. Also see "Windows
Sockets Programming Considerations" in the Win32 SDK documentation.

See Also: CSocket:: CancelBlockingCall, CSocket: :IsBlocking

CSocketFile

CSocketFile

A CSocketFile object is a CFile object used for sending and receiving data across a
network via Windows Sockets. You can attach the CSocketFile object to a CSocket
object for this purpose. You also can - and usually do - attach the CSocketFile
object to a CArchive object to simplify sending and receiving data using MFC
serialization.

To serialize (send) data, you insert it into the archive, which calls CSocketFile
member functions to write data to the CSocket object. To deserialize (receive) data,
you extract from the archive. This causes the archive to call CSocketFile member
functions to read data from the CSocket object.

Tip Besides using CSocketFile as described here, you can use it as a stand-alone file
object, just as you can with CFile, its base class. You can also use CSocketFile with any
archive-based MFC serialization functions. Because CSocketFile does not support all of
CFile's functionality, some default MFC serialize functions are not compatible with CSocketFile.
This is particularly true of the CEditView class. You should not try to serialize CEditView data
through a CArchive object attached to a CSocketFile object using CEditView::SerializeRaw;
use CEditView::Serialize instead. The SerializeRaw function expects the file object to have
functions, such as Seek, that CSocketFile does not have.

For more information, see "Windows Sockets in MFC," "Windows Sockets: Using
Sockets with Archives," and related articles in Visual C++ Programmer's Guide
online, as well as "Overview of Windows Sockets 2" and "Windows Sockets
Programming Considerations" in the Win32 SDK documentation.

#include <afxsock.h>

See Also: CAsyncSocket, CSocket

CSocketFile Class Members
Construction

CSocketFile Constructs a CSocketFile object.

CSocketFile

1785

CSocketFile: :CSocketFile

Member Functions
CSocketFile: :CSocketFile

CSocketFile(CSocket* pSocket, BOOL bArchiveCompatible = TRUE);

Parameters

Remarks

1786

pSocket The socket to attach to the CSocketFile object.

bArchiveCompatible Specifies whether the file object is for use with a CArchive
object. Pass FALSE only if you want to use the CSocketFile object in a
stand-alone manner as you would a stand-alone CFile object, with certain
limitations. This flag changes how the CArchive object attached to the
CSocketFile object manages its buffer for reading.

Constructs a CSocketFile object. The object's destructor disassociates itself from the
socket object when the object goes out of scope or is deleted.

Note A CSocketFile can also be used as a (limited) file without a CArchive object. By default,
the CSocketFile constructor's bArchiveCompatible parameter is TRUE. This specifies that the
file object is for use with an archive. To use the file object without an archive, pass FALSE in the
bArchiveCompatible parameter.

In its "archive compatible" mode, a CSocketFile object provides better performance
and reduces the danger of a "deadlock." A deadlock occurs when both the sending and
receiving sockets are waiting on each other, or for a common resource. This situation
might occur if the CArchive object worked with the CSocketFile the way it does
with a CFiIe object. With CFile, the archive can assume that if it receives fewer
bytes than it requested, the end of file has been reached.

With CSocketFile, however, data is message based; the buffer can contain multiple
messages, so receiving fewer than the number of bytes requested does not imply
end of file. The application does not block in this case as it might with CFile, and
it can continue reading messages from the buffer until the buffer is empty. The
CArchive: :IsBufferEmpty function is useful for monitoring the state of the
archive's buffer in such a case.

For more information on the use of CSocketFile, see the articles "Windows Sockets:
Using Sockets with Archives" and "Windows Sockets: Example of Sockets Using
Archives" in Visual c++ Programmer's Guide online.

See Also: CFile::CFile, CFile::Read

CSpinButtonCtrl

A "spin button control" (also known as an up-down control) is a pair of arrow buttons
that the user can click to increment or decrement a value, such as a scroll position or
a number displayed in a companion control. The value associated with a spin button
control is called its current position. A spin button control is most often used with a
companion control, called a "buddy window."

The CSpinButtonCtrl class provides the functionality of the Windows common spin
button control. This control (and therefore the CSpinButtonCtrl class) is available
only to programs running under Windows 95 and Windows NT version 3.51 and
later.

To the user, a spin button control and its buddy window often look like a single
control. You can specify that a spin button control automatically position itself next to
its buddy window, and that it automatically set the caption of the buddy window to its
current position. You can use a spin button control with an edit control to prompt the
user for numeric input.

Clicking the up arrow moves the current position toward the maximum, and clicking
the down arrow moves the current position toward the minimum. By default, the
minimum is 100 and the maximum is O. Any time the minimum setting is greater than
the maximum setting (for example, when the default settings are used), clicking the up
arrow decreases the position value and clicking the down arrow increases it.

A spin button control without a buddy window functions as a sort of simplified scroll
bar. For example, a tab control sometimes displays a spin button control to enable the
user to scroll additional tabs into view.

For more information on using CSpinButtonCtrl, see Technical Note 60 online.

#include <afxcmn.h>

See Also: CSliderCtrl

CSpinButtonCtrl

1787

CS pinB uttonCtrl:: Create

CSpinButtonCtrl Class Members
Construction

CSpinButtonCtrI

Create

Attributes

SetAcceI

GetAcceI

SetBase

GetBase

SetBuddy

GetBuddy

SetPos

GetPos

SetRange

GetRange

Constructs a CSpinButtonCtrI object.

Creates a spin button control and attaches it to a
CSpinButtonCtrI object.

Sets the acceleration for a spin button control.

Retrieves acceleration information for a spin button control.

Sets the base for a spin button control.

Retrieves the current base for a spin button control.

Sets the buddy window for a spin button control.

Retrieves a pointer to the current buddy window.

Sets the current position for the control.

Retrieves the current position of a spin button control.

Sets the upper and lower limits (range) for a spin
button control.

Retrieves the upper and lower limits (range) for a spin
button control.

Member Functions
CSpinButtonCtrl: : Create

BOOL Create(DWORD dwStyle, const RECT& reet,
... CWnd* pParentWnd, UINT nID);

Return Value
Nonzero if initialization was successful; otherwise O.

Parameters

1788

dwStyle Specifies the spin button control's style. Apply any combination of spin
button control styles to the control.

reet Specifies the spin button control's size and position. It can be either a CRect
object or a RECT structure

pParentWnd A pointer to the spin button control's parent window, usually a
CDialog. It must not be NULL.

nID Specifies the spin button control's ID.

CSpinB uttonCtrl: :GetAccel

Remarks
You construct a CSpinButtonCtrl object in two steps. First call the constructor, then
call Create, which creates the spin button control and attaches it to the
CSpinButtonCtrl object.

The following styles are specific to spin button controls:

• UDS_HORZ Causes the control's arrows to point left and right instead of up and
down.

• UDS_ WRAP Causes the position to "wrap" if it is incremented or decremented
beyond the ending or beginning of the range.

• UDS_ARROWKEYS Causes the control to increment and decrement the
position when the UP ARROW and DOWN ARROW keys are pressed.

• UDS_SETBUDDYINT Causes the control to set the text of the buddy window
(using the WM_SETTEXT message) when the position changes. The text consists
of the position formatted as a decimal or hexadecimal string.

• UDS_NOTHOUSANDS Does not insert a thousands separator between every
three decimal digits.

• UDS_AUTOBUDDY Automatically selects the previous window in the Z-order
as the control's buddy window.

• UDS_ALIGNRIGHT Positions the spin button control next to the right edge of
the buddy window. The width of the buddy window is decreased to accommodate
the width of the control.

• UDS_ALIGNLEFT Positions the spin button control next to the left edge of the
buddy window. The buddy window is moved to the right and its width decreased to
accommodate the width of the control.

See Also: CSpinButtonCtrl:: CSpinButtonCtrl

CSpinButtonCtrl::CSpinButtonCtrl

Remarks

CSpinButtonCtrl();

Constructs a CSpinButtonCtrl object.

See Also: CSpinButtonCtrl::Create

CSpinButtonCtrl::GetAccel
UINT GetAccel(int nAccel, UDACCEL* pAccel) const;

Return Value
Number of accelerator structures retrieved.

1789

CSpinButtonCtr1::GetBase

Parameters

Remarks

nAccel Number of elements in the array specified by pAccel.

pAccel Pointer to an array of UDACCEL structures that receives acceleration
information. For more information on the definition of the UDACCEL structure,
see CSpinButtonCtrl::SetAccel.

Call this function to retrieve acceleration information for a spin button control.

See Also: CSpinButtonCtrl::SetAccel

CSpinButtonCtrl::GetBase
UINT GetBase() const;

Return Value

Remarks

The current base value.

Call this function to retrieve the current base for a spin button control.

See Also: CSpinButtonCtrl::SetBase

CSpinButtonCtrl: : GetBuddy
CWnd* GetBuddy() const;

Return Value

Remarks

A pointer to the current buddy window.

Call this function to retrieve a pointer to the current buddy window.

See Also: CSpinButtonCtrl: :SetBuddy

CSpinButtonCtrl: : GetPos
int GetPos() const;

Return Value

Remarks

1790

The current position in the low-order word. The high-order word is nonzero if an error
occurred.

Call this function to retrieve the current position of a spin button control. When it
processes the value returned, the control updates its current position based on the

CSpinButtonCtrl::SetAccel

caption of the buddy window. The control returns an error if there is no buddy
window or if the caption specifies an invalid or out-of-range value.

See Also: CSpinButtonCtrl::SetPos

CSpinButtonCtrl::GetRange
DWORD GetRange() eonst;
void GetRange(int &lower, int& upper) eonst;

Return Value
The first version returns a 32-bit value containing the upper and lower limits. The
low-order word is the upper limit for the control, and the high-order word is the lower
limit.

Parameters

Remarks

lower Reference to an integer that receives the lower limit for the control.

upper Reference to an integer that receives the upper limit for the control.

Call this function to retrieve the upper and lower limits (range) for a spin button
control.

See Also: CSpinButtonCtrl::SetRange

CSpinButtonCtrl::SetAccel
BOOL SetAeeel(int nAccel, UDACCEL* pAccel);

Return Value
Nonzero if successful; otherwise o.

Parameters

Remarks

nAccel Number of UDACCEL structures specified by pAccel.

pAccel Pointer to an array of UDACCEL structures, which contain acceleration
information. Elements should be sorted in ascending order based on the nSee
member.

Call this function to set the acceleration for a spin button control. The UDACCEL
structure is defined as follows:

typedef struct
int nSec;
int nIne;

} UDACCEL;

1791

CSpinButtonCtrl::SetBase

nSee Amount of elapsed time, in seconds, before the position-change increment
specified by nIne is used.

nIne Position-change increment to use after the time specified by nSee elapses.

See Also: CSpinButtonCtrl::GetAeeel

CSpinButtonCtrl::SetBase
int SetBase(int nBase);

Return Value
The previous base value if successful, or zero if an invalid base is given.

Parameters

Remarks

nBase New base value for the control. It can be 10 for decimal or 16 for
hexadecimal.

Call this function to set the base for a spin button control. The base value determines
whether the buddy window displays numbers in decimal or hexadecimal digits.
Hexadecimal numbers are always unsigned; decimal numbers are signed.

See Also: CSpinButtonCtrl::GetBase

CSpinButtonCtrl::SetBuddy
CWnd* SetBuddy(CWnd* pWndBuddy);

Return Value
A pointer to the previous buddy window.

Parameters

Remarks

p WndBuddy Pointer to the new buddy window.

Call this function to set the buddy window for a spin button control.

See Also: CSpinButtonCtrl::GetBuddy

CSpinButtonCtrl: :SetPos
int SetPos(int nPos);

Return Value
The previous position.

1792

CSpinButtonCtrl::SetRange

Parameters

Remarks

nPos New position for the control. This value must be in the range specified by the
upper and lower limits for the control.

Call this function to set the current position for a spin button control.

See Also: CSpinButtonCtrl::SetRange, CSpinButtonCtrl::GetPos

CSpinB uttonCtrl: : SetRange
void SetRange(int nLower, int nUpper);

Parameters

Remarks

nLower and nUpper Upper and lower limits for the control. Neither limit can be
greater than UD _MAXVAL or less than UD _MINVAL. In addition, the difference
between the two limits cannot exceed UD_MAXVAL.

Call this function to set the upper and lower limits (range) for a spin button control.

Note The default range for the spin button has the maximum set to zero (0) and the minimum
set to 100. Since the maximum value is less than the minimum value, clicking the up arrow will
decrease the position and clicking the down arrow will increase it. Use
CSpinButtonCtrl::SetRange'to adjust these values.

See Also: CSpinButtonCtrl::GetRange, CSpinButtonCtrl::GetPos, "Using
CSpinButtonCtrl" online

1793

CSplitterWnd

CSplitterWnd

1794

The CSplitterWnd class provides the functionality of a splitter window, which is a
window that contains multiple panes. A pane is usually an application-specific object
derived from CView, but it can be any CWnd object that has the appropriate child
window ID.

A CSplitterWnd object is usually embedded in a parent CFrameWnd or
CMDIChildWnd object. Create a CSplitterWnd object using the following steps:

1. Embed a CSplitterWnd member variable in the parent frame.

2. Override the parent frame's CFrameWnd::OnCreateClient member function.

3. From within the overridden OnCreateClient, call the Create or CreateStatic
member function of CSplitterWnd.

Call the Create member function to create a dynamic splitter window. A dynamic
splitter window typically is used to create and scroll a number of individual panes, or
views, of the same document. The framework automatically creates an initial pane for
the splitter; then the framework creates, resizes, and disposes of additional panes as
the user operates the splitter window's controls.

When you call Create, you specify a minimum row height and column width that
determine when the panes are too small to be fully displayed. After you call Create,
you can adjust these minimums by calling the SetColumnInfo and SetRowInfo
member functions.

Also use the SetColumnInfo and SetRowInfo member functions to set an "ideal"
width for a column and "ideal" height for a row. When the framework displays a
splitter window, it first displays the parent frame, then the splitter window. The
framework then lays out the panes in columns and rows according to their ideal
dimensions, working from the upper-left to the lower-right comer of the splitter
window's client area.

All panes in a dynamic splitter window must be of the same class. Familiar
applications that support dynamic splitter windows include Microsoft Word and
Microsoft Excel.

Use the CreateStatic member function to create a static splitter window. The user
can change only the size of the panes in a static splitter window, not their number or
order.

You must specifically create all the static splitter's panes when you create the static
splitter. Make sure you create all the panes before the parent frame's
OnCreateClient member function returns, or the framework will not display the
window correctly.

The CreateStatic member function automatically initializes a static splitter with a
minimum row height and column width of o. After you call Create, adjust these
minimums by calling the SetColumnlnfo and SetRowlnfo member functions. Also
use SetColumnlnfo and SetRowlnfo after you call CreateStatic to indicate desired
ideal pane dimensions.

The individual panes of a static splitter often belong to different classes. For
examples of static splitter windows, see the graphics editor and the Windows File
Manager.

A splitter window supports special scroll bars (apart from the scroll bars that panes
may have). These scroll bars are children of the CSplitterWnd object and are shared
with the panes.

You create these special scroll bars when you create the splitter window. For example,
a CSplitterWnd that has one row, two columns, and the WS_ VSCROLL style will
display a vertical scroll bar that is shared by the two panes. When the user moves the
scroll bar, WM_ VSCROLL messages are sent to both panes. When the panes set the
scroll-bar position, the shared scroll bar is set.

For further information on splitter windows, see Technical Note 29 online. For more
information on how to create dynamic splitter windows, see "Adding Splitter
Windows to Scribble" in "Enhancing Views" in Visual C++ Tutorials online, and the
MFC General sample "VIEWEX."

#include <afxext.h>

See Also: CView, CWnd

CSplitterWnd Class Members
Construction

CSplitterWnd

Create

CreateStatic

CreateView

Call to construct a CSplitterWnd object.

Call to create a dynamic splitter window and attach it to the
CSplitterWnd object.

Call to create a static splitter window and attach it to the
CSplitterWnd object.

Call to create a pane in a splitter window.

CSplitterWnd

1795

CSplitterWnd

1796

Operations

GetRowCount

GetColumnCount

GetRowlnfo

SetRowlnfo

GetColumnlnfo

SetColumnlnfo

GetPane

IsChildPane

IdFromRowCol

RecalcLayout

GetScrollStyle

SetScrollStyle

Overridables

OnDrawSplitter

OnlnvertTracker

CreateScroIlBarCtrl

DeleteView

SplitRow

SplitColumn

DeleteRow

DeleteColumn

GetActivePane

SetActivePane

CanActivateNext

ActivateNext

DoKeyboardSplit

DoScroll

DoScroIlBy

Returns the current pane row count.

Returns the current pane column count.

Returns information on the specified row.

Call to set the specified row information.

Returns information on the specified column.

Call to set the specified column information.

Returns the pane at the specified row and column.

Call to determine whether the window is currently a child pane
of this splitter window.

Returns the child window ID of the pane at the specified row
and column.

Call to redisplay the splitter window after adjusting row or
column size.

Returns the shared scroll-bar style.

Specifies the new scroll-bar style for the splitter window's
shared scroll-bar support.

Renders an image of a split window.

Renders the image of a split window to be the same size and
shape as the frame window.

Creates a shared scroll bar control.

Deletes a view from the splitter window.

Indicates where a frame window splits horizontally.

Indicates where a frame window splits vertically.

Deletes a row from the splitter window.

Deletes a column from the splitter window.

Determines the active pane from the focus or active view in the
frame.

Sets a pane to be the active one in the frame.

Checks to see if the Next Pane or Previous Pane command is
currently possible.

Performs the Next Pane or Previous Pane command.

Performs the keyboard split command, usually "Window Split."

Performs synchronized scrolling of split windows.

Scrolls split windows by a given number of pixels.

Member Functions
CSplitter W nd: : Acti vateN ext

virtual void ActivateNext(BOOL bPrev = FALSE);

Parameters

Remarks

bPrev Indicates which window to activate. TRUE for previous; FALSE
for next.

This member function is called by the framework to perform the Next Pane
or Previous Pane command.

This member function is a high level command that is used by the CView
class to delegate to the CSplitterWnd implementation.

See Also: CView, CSplitterWnd::CanActivateNext,
CSplitterWnd: :SetActivePane

CSplitterWnd: :CanActivateN ext
virtual BOOL CanActivateNext(BOOL bPrev = FALSE);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

bPrev Indicates which window to activate. TRUE for previous; FALSE
for next.

This member function is called by the framework to check to see if the
Next Pane or Previous Pane command is currently possible.

This member function is a high level command that is used by the CView
class to delegate to the CSplitterWnd implementation.

See Also: CSplitterWnd: :ActivateNext, CSplitterWnd: :SetActivePane

CSplitterWnd::CanActivateNext

1797

CSplitterWnd: : Create

CSplitterWnd: : Create
BOOL Create(CWnd* pParentWnd, int nMaxRows, int nMaxCols, SIZE sizeMin,

.. CCreateContext* pContext, DWORD dwStyle = WS_CHILD I WS_ VISIBLE I

.. WS_HSCROLL I WS_ VSCROLL I SPLS_DYNAMIC_SPLIT, UINT nlD =

.. AFX_IDW _PANE_FIRST);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

1798

pParentWnd The parent frame window of the splitter window.

nMaxRows The maximum number of rows in the splitter window. This value must
not exceed 2.

nMaxCols The maximum number of columns in the splitter window. This value must
not exceed 2.

sizeMin Specifies the minimum size at which a pane may be displayed.

pContext A pointer to a CCreateContext structure. In most cases, this can be the
pContext passed to the parent frame window.

dwStyle Specifies the window style.

nlD The child window ID of the window. The ID can be AFX_IDW _PANE_FIRST
unless the splitter window is nested inside another splitter window.

To create a dynamic splitter window, call the Create member function.

You can embed a CSplitterWnd in a parent CFrameWnd or CMDIChildWnd
object by taking the following steps:

1. Embed a CSpIitterWnd member variable in the parent frame.

2. Override the parent frame's CFrameWnd::OnCreateCIient member function.

3. Call the Create member function from within the overridden OnCreateClient.

When you create a splitter window from within a parent frame, pass the parent frame's
pContext parameter to the splitter window. Otherwise, this parameter can be NULL.

The initial minimum row height and column width of a dynamic splitter window are
set by the sizeMin parameter. These minimums, which determine whether a pane is too
small to be shown in its entirety, can be changed with the SetRowInfo and
SetColumnInfo member functions.

For more on dynamic splitter windows, see "Splitter Windows" in the article
"Multiple Document Types, Views, and Frame Windows" in Visual C++
Programmer's Guide online, Technical Note 29 online, and the CSplitterWnd class
overview.

CSplitterWnd::CreateStatic

See Also: CSplitterWnd::CreateStatic, CFrameWnd::OnCreateClient,
CSplitterWnd::SetRowlnfo, CSplitterWnd::SetColumnlnfo,
CSplitterWnd::CreateView

CSplitterWnd::CreateScroIIBarCtrl
virtual BOOL CreateScrollBarCtrl(DWORD dwStyle, UINT nID);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

dwStyle Specifies the window style.

nID The child window ID of the window. The ID can be AFX_IDW _PANE_FIRST
unless the splitter window is nested inside another splitter window.

This member function is called by the framework to create a shared scroll bar control.
Override CreateScrollBarCtrl to include extra controls next to a scroll bar. The
default behavior is to create normal Windows scroll bar controls.

See Also: AfxGetlnstanceHandle

CSplitterWnd: :CreateStatic
BOOL CreateStatic(CWnd* pParentWnd, int nRows, int nCols, DWORD

... dwStyle = WS_CHILD I WS_ VISIBLE, UINT nID = AFX_IDW _PANE_FIRST);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

pParentWnd The parent frame window of the splitter window.

nRows The number of rows. This value must not exceed 16.

nCols The number of columns. This value must not exceed 16.

dwStyle Specifies the window style.

nID The child window ID of the window. The ID can be AFX_IDW _PANE_FIRST
unless the splitter window is nested inside another splitter window.

To create a static splitter window, call the CreateStatic member function.

A CSplitterWnd is usually embedded in a parent CFrameWnd or CMDIChildWnd
object by taking the following steps:

1. Embed a CSplitterWnd member variable in the parent frame.

1799

CSplitterWnd: : Create View

2. Override the parent frame's OnCreateCIient member function.

3. Call the CreateStatic member function from within the overridden
CFrame Wnd: :OnCreateClient.

A static splitter window contains a fixed number of panes, often from different
classes.

When you create a static splitter window, you must at the same time create all its
panes. The Create View member function is usually used for this purpose, but you can
create other nonview classes as well.

The initial minimum row height and column width for a static splitter window is O.
These minimums, which determine when a pane is too small to be shown in its
entirety, can be changed with the SetRowInfo and SetColumnInfo member
functions.

To add scroll bars to a static splitter window, add the WS_HSCROLL and
WS_ VSCROLL styles to dwStyle.

See "Splitter Windows" in the article "Multiple Document Types, Views, and Frame
Windows" in Visual c++ Programmer's Guide online, Technical Note 29 online, and
the CSplitterWnd class overview for more on static splitter windows.

See Also: CSpIitterWnd::Create, CFrameWnd::OnCreateClient,
CSpIitterWnd: :SetRow Info, CSplitterWnd: :SetColumnInfo,
CSplitterWnd::CreateView

CSplitterWnd: : Create View
virtual BOOL CreateView(int row, int col, CRuntimeClass* pViewClass,

.. SIZE size/nit, CCreateContext* pContext);

Return Value
Nonzero if successful; otherwise O.

Parameters

1800

row Specifies the splitter window row in which to place the new view.

col Specifies the splitter window column in which to place the new view.

p ViewClass Specifies the CRuntimeClass of the new view.

size/nit Specifies the initial size of the new view.

pContext A pointer to a creation context used to create the view (usually the
pContext passed into the parent frame's overridden
CFrameWnd::OnCreateCIient member function in which the splitter window is
being created).

CSpli tterW nd:: DeleteRow

Remarks
Call this member function to create the panes for a static splitter window. All panes of
a static splitter window must be created before the framework displays the splitter.

The framework also calls this member function to create new panes when the user of a
dynamic splitter window splits a pane, row, or column.

See Also: CSplitterWnd::Create

CSplitterWnd: :CSplitterWnd

Remarks

CSplitterWnd();

Construct a CSplitterWnd object in two steps. First call the constructor, which
creates the CSplitterWnd object, then call the Create member function, which
creates the splitter window and attaches it to the CSplitterWnd object.

See Also: CSplitterWnd::Create

CSplitterW nd: : DeleteColumn
virtual void DeleteColumn(int coIDelete);

Parameters

Remarks

colDelete Specifies the column to be deleted.

This member function is called when a column is to be deleted.

This member function is called by the framework to implement the logic of the
dynamic splitter window (that is, if the splitter window has the
SPLS_DYNAMIC_SPLIT style). It can be customized, along with the virtual
function CreateView, to implement more advanced dynamic splitters.

See Also: CSplitterWnd::DeleteRow, CSplitterWnd::CreateView,
CSplitterWnd: :Delete View

CSplitterWnd: : DeleteRow
virtual void DeleteRow(int rowDelete);

Parameters
rowDelete Specifies the row to be deleted.

Remarks
DeleteRow is called when a row is to be deleted.

1801

CS plitterW nd: :Delete View

This member function is called by the framework to implement the logic of the
dynamic splitter window (that is, if the splitter window has the
SPLS_DYNAMIC_SPLIT style). It can be customized, along with the virtual
function CreateView, to implement more advanced dynamic splitters.

See Also: CSpIitterWnd::DeleteColumn, CSpIitterWnd::CreateView,
CSpIitterWnd: :Delete View

CSplitterWnd: :Delete View
virtual void DeleteView(int row, int col);

Parameters

Remarks

row Specifies the splitter window row at which to delete the view.

col Specifies the splitter window column at which to delete the view.

DeleteView is called when a view is to be deleted. If the active view is being deleted,
the next view will become active. The default implementation assumes the view will
auto delete in PostNcDestroy.

This member function is called by the framework to implement the logic of the
dynamic splitter window (that is, if the splitter window has the
SPLS_DYNAMIC_SPLIT style). It can be customized, along with the virtual
function Create View, to implement more advanced dynamic splitters.

See Also: CWnd::PostNcDestroy, CSplitterWnd::CreateView,
CSpIitterWnd::DeleteColumn, CSpIitterWnd::DeleteRow

CSplitterWnd::DoKeyboardSplit
virtual BOOL DoKeyboardSpIit();

Return Value

Remarks

1802

Nonzero if successful; otherwise O.

This member function is called by the framework to perform a keyboard split
command, usually Window Split.

This member function is a high level command that is used by the CView class to
delegate to the CSpIitterWnd implementation.

See Also: CView

CSplitterWnd::DoScrollBy

CSplitterWnd: :DoScroll
virtual BOOL DoScroll(CView* pViewFrom, UINT nScrollCode,

.. BOOL bDoScroll = TRUE);

Return Value
Nonzero if synchronized scrolling occurs; otherwise O.

Parameters

Remarks

p ViewFrom A pointer to the view from which the scrolling message originates.

nScrollCode A scroll-bar code that indicates the user's scrolling request. This
parameter is composed of two parts: a low-order byte, which determines the type
of scrolling occurring horizontally, and a high-order byte, which determines the
type of scrolling occurring vertically:

• SB_BOTTOM Scrolls to bottom.

• SB_LINEDOWN Scrolls one line down.

• SB_LINEUP Scrolls one line up.

• SB_PAGEDOWN Scrolls one page down.

• SB_PAGEUP Scrolls one page up.

• SB_TOP Scrolls to top.

bDoScroll Determines whether the specified scrolling action occurs. If bDoScroll is
TRUE (that is, if a child window exists, and if the split windows have a scroll
range), then the specified scrolling action can take place; if bDoScroll is FALSE
(that is, if no child window exists, or the split views have no scroll range), then
scrolling does not occur.

This member function is called by the framework to perform synchronized scrolling
of split windows when the view receives a scroll message.

Override to require an action by the user before synchronized scrolling is allowed.

See Also: CSplitterWnd: :DoScrollBy, CView: :OnScroll

CSplitterW nd: :DoScrollBy
virtual BOOL DoScrollBy(CView* p ViewFrom, CSize sizeScroll,

.. BOOL bDoScroll = TRUE);

Return Value
Nonzero if synchronized scrolling occurs; otherwise O.

1803

CSplitterWnd::GetActivePane

Parameters

Remarks

pViewFrom A pointer to the view from which the scrolling message originates.

sizeScroll Number of pixels to be scrolled horizontally and vertically.

bDoScroll Determines whether the specified scrolling action occurs. If bDoScroll
is TRUE (that is, if a child window exists, and if the split windows have a scroll
range), then the specified scrolling action can take place; if bDoScroll is FALSE
(that is, if no child window exists, or the split views have no scroll range), then
scrolling does not occur.

This member function is called by the framework in response to a scroll message,
to perform synchronized scrolling of the split windows by the amount, in pixels,
indicated by sizeScroll. Positive values indicate scrolling down and to the right;
negative values indicate scrolling up and to the left.

Override to require an action by the user before allowing scroll.

See Also: CSplitterWnd: :DoScroll, CView: :OnScroll

CSplitterWnd: : GetActivePane
virtual CWnd* GetActivePane(int* pRow = NULL, int* pCol = NULL);

Return Value
Pointer to the active pane. NULL if no active pane exists.

Parameters

Remarks

pRow A pointer to an int to retrieve the row number of the active pane.

pCol A pointer to an int to retrieve the column number of the active pane.

This member function is called by the framework to determine the active pane in a
splitter window.

Override to require an action by the user before getting the active pane.

See Also: CSplitterWnd::SetActivePane,
CFrame Wnd: : GetActive View,CWnd: : GetParentFrame, CWnd: :GetFocus

CSplitterW nd: : GetColumnCount
int GetColumnCount();

Return Value

1804

Returns the current number of columns in the splitter. For a static splitter, this will also
be the maximum number of columns.

CSplitterWnd: :GetRow Info

See Also: CSplitterWnd::GetRowCount

CSplitterW nd: : GetColumnInfo
void GetColumnlnfo(int col, int& cxCur, int& cxMin);

Parameters
col Specifies a column.

cxCur A reference to an int to be set to the current width of the column.

cxMin A reference to an int to be set to the current minimum width of the column.

Remarks
Call this member function to obtain information about the specified column.

See Also: CSplitterWnd::SetColumnlnfo, CSplitterWnd::GetRowlnfo

CSplitterWnd: : GetPane
CWnd* GetPane(int row, int col);

Return Value
Returns the pane at the specified row and column. The returned pane is usually a
CView-derived class.

Parameters
row Specifies a row.

col Specifies a column.

See Also: CSplitterWnd: : GetActivePane, CSplitterWnd: :IdFromRowCol,
CSplitterW nd: :IsChildPane

CSplitterWnd: : GetRowCount
int GetRowCount();

Return Value
Returns the current number of rows in the splitter window. For a static splitter
window, this will also be the maximum number of rows.

See Also: CSplitterWnd::GetColumnCount

CSplitterWnd::GetRowInfo
void GetRowlnfo(int row, int& cyCur, int& cyMin);

1805

CSplitterWnd::GetScrollStyle

Parameters

Remarks

row Specifies a row.

eyCur Reference to int to be set to the current height of the row in pixels.

eyMin Reference to int to be set to the current minimum height of the row in pixels.

Call this member function to obtain information about the specified row. The eyCur
parameter is filled with the current height of the specified row, and eyMin is filled
with the minimum height of the row.

See Also: CSplitterWnd::SetRowInfo, CSplitterWnd::GetColumnInfo

CSplitterWnd::GetScroIIStyle
DWORD GetScrolIStyle() const;

Return Value

Remarks

One or more of the following windows style flags, if successful:

• WS_HSCROLL If the splitter currently manages shared horizontal scroll bars.

• WS_ VSCROLL If the splitter currently manages shared vertical scroll bars.

If zero, the splitter window does not currently manage any shared scroll bars.

Returns the shared scroll-bar style for the splitter window.

See Also: CSplitterWnd::SetScroIIStyle

CSplitterWnd: : IdFromRowCol
int IdFromRowCol(int row, int col);

Return Value
The child window ID for the pane.

Parameters

Remarks

1806

row Specifies the splitter window row.

col Specifies the splitter window column.

Call this member function to obtain the child window ID for the pane at the specified
row and column. This member function is used for creating non views as panes and
may be called before the pane exists.

See Also: CSplitterWnd: :GetPane, CSplitterWnd: :IsChildPane

CSplitterWnd::OnDrawSplitter

CSplitterWnd: : IsChildPane
BOOL IsChiidPane(CWnd* p Wnd, int& row, int& col);

Return Value
If nonzero, p Wnd is currently a child pane of this splitter window, and row and col are
filled in with the position of the pane in the splitter window. If p Wnd is not a child
pane of this splitter window, 0 is returned.

Parameters

Remarks

p Wnd A pointer to a CWnd object to be tested.

row Reference to an int in which to store row number.

col Reference to an int in which to store a column number.

Call this member function to determine whether p Wnd is currently a child pane of this
splitter window.

See Also: CSplitterWnd::GetPane

CSplitterWnd: :OnDrawSplitter
virtual void OnDrawSplitter(CDC* pDC, ESplitType nType, const CRect& rect);

Parameters

Remarks

pDC A pointer to the device context in which to draw. If pDC is NULL, then
CWnd::RedrawWindow is called by the framework and no split window is
drawn.

nType A value of the enum ESplitType, which can be one of the following:

• splitBox The splitter drag box.

• splitBar The bar that appears between the two split windows.

• splitIntersection The intersection of the split windows. This element will not
be called when running on Windows 95.

• splitBorder The split window borders.

rect A reference to a CRect object specifying the size and shape of the split
windows.

This member function is called by the framework to draw and specify the exact
characteristics of a splitter window.

Override OnDrawSplitter for advanced customization of the imagery for the various
graphical components of a splitter window. The default imagery is similar to the

1807

CSplitterWnd::OnInvertTracker

splitter in Microsoft Works for Windows or Microsoft Windows 95, in that the
intersections of the splitter bars are blended together.

For more on dynamic splitter windows, see "Splitter Windows" in the article
"Multiple Document Types, Views, and Frame Windows" in Visual C++
Programmer's Guide online, Technical Note 29 online, and the CSplitterWnd class
overview.

See Also: CSplitterWnd::OnInvertTracker

CSplitterWnd: :OnInvertTracker
virtual void OnInvertTracker(const CRect& reet);

Parameters

Remarks

reet Reference to a CRect object specifying the tracking rectangle.

This member function is called by the framework during resizing of splitters.

Override OnInvertTracker for advanced customization of the imagery of the splitter
window. The default imagery is similar to the splitter in Microsoft Works for
Windows or Microsoft Windows 95, in that the intersections of the splitter bars are
blended together.

For more on dynamic splitter windows, see "Splitter Windows" in the article
"Multiple Document Types, Views, and Frame Windows" in Visual C++
Programmer's Guide online, Technical Note 29 online, and the CSplitterWnd class
overview.

See Also: CSplitterWnd::OnDrawSplitter

CSplitterW nd: : RecalcLayout

Remarks

1808

void RecalcLayout();

Call this member function to correctly redisplay the splitter window after you have
adjusted row and column sizes with the SetRowInfo and SetColumnInfo member
functions. If you change row and column sizes as part of the creation process before
the splitter window is visible, it is not necessary to call this member function.

The framework calls this member function whenever the user resizes the splitter
window or moves a split.

See Also: CSplitterWnd: :SetRowInfo, CSplitterWnd: :SetColumnInfo

CSplitterWnd::SetRowInfo

CSplitterW nd: :SetActivePane
virtual void SetActivePane(int row, int col, CWnd* p Wnd = NULL);

Parameters

Remarks

row If pWnd is NULL, specifies the row in the pane that will be active.

col If p Wnd is NULL, specifies the column in the pane that will be active.

p Wnd A pointer to a CWnd object. If NULL, the pane specified by row and col is
set active. If not NULL, specifies the pane that is set active.

This member function is called by the framework to set a pane as active when the user
changes the focus to a pane within the frame window. You may explicitly call
SetActivePane to change the focus to the specified view.

Specify pane by providing either row and column, or by providing p Wnd.

See Also: CSplitterWnd::GetActivePane, CSplitterWnd::GetPane,
CFrame Wnd: :SetActive View

CSplitterW nd:: SetColumnlnfo
void SetColumnlnfo(int col, int cxldeal, int cxMin);

Parameters

Remarks

col Specifies a splitter window column.

cxldeal Specifies an ideal width for the splitter window column in pixels.

cxMin Specifies a minimum width for the splitter window column in pixels.

Call this member function to set a new minimum width and ideal width for a column.
The column minimum value determines when the column will be too small to be fully
displayed.

When the framework displays the splitter window, it lays out the panes in columns
and rows according to their ideal dimensions, working from the upper-left to the
lower-right comer of the splitter window's client area.

See Also: CSplitterWnd::GetRowlnfo, CSplitterWnd::RecaIcLayout

CSplitterWnd::SetRowlnfo
void SetRowlnfo(int row, int cyldeal, int cyMin);

Parameters
row Specifies a splitter window row.

1809

CSplitterWnd::SetScrollStyle

Remarks

cyldeal Specifies an ideal height for the splitter window row in pixels.

cyMin Specifies a minimum height for the splitter window row in pixels.

Call this member function to set a new minimum height and ideal height for a row.
The row minimum value determines when the row will be too small to be fully
displayed.

When the framework displays the splitter window, it lays out the panes in columns
and rows according to their ideal dimensions, working from the upper-left to the
lower-right comer of the splitter window's client area.

See Also: CSplitterWnd::GetRowlnfo, CSplitterWnd::SetColumnlnfo,
CSplitterWnd::RecalcLayout

CSpIitter W nd: : SetScrollSty Ie
void SetScrollStyle(DWORD dwStyle);

Parameters

Remarks

dwStyle The new scroll style for the splitter window's shared scroll-bar support,
which can be one of the following values:

• WS_HSCROLL Create/show horizontal shared scroll bars.

• WS_ VSCROLL Create/show vertical shared scroll bars.

Specifies the new scroll style for the splitter window's shared scroll-bar support. Once
a scroll bar is created it will not be destroyed even if SetScrollStyle is called without
that style; instead those scroll bars are hidden. This allows the scroll bars to retain
their state even though they are hidden. After calling SetScrollStyle it is necessary
to call RecalcLayout for all the changes to take effect.

See Also: CSplitterWnd: : GetScrollStyle

CSpIitterWnd: :SpIitColumn
virtual BOOL SplitColumn(iot cxBefore);

Return Value
Nonzero if successful; otherwise O.

Parameters
cxBefore The position, in pixels, before which the split occurs.

1810

Remarks
This member function is called when a vertical splitter window is created.
SplitColumn indicates the default location where the split occurs.

SplitColumn is called by the framework to implement the logic of the dynamic
splitter window (that is, if the splitter window has the SPLS_DYNAMIC_SPLIT
style). It can be customized, along with the virtual function CreateView, to
implement more advanced dynamic splitters.

See Also: CSplitterWnd::CreateView, CSplitterWnd::SplitRow,
CSplitterWnd::RecalcLayout

CSplitterWnd:: SplitRow
virtual BOOL SplitRow(int cyBefore);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

cyBefore The position, in pixels, before which the split occurs.

This member function is called when a horizontal splitter window is created.
SplitRow indicates the default location where the split occurs.

SplitRow is called by the framework to implement the logic of the dynamic splitter
window (that is, if the splitter window has the SPLS_DYNAMIC_SPLIT style). It
can be customized, along with the virtual function CreateView, to implement more
advanced dynamic splitters.

See Also: CSplitterWnd::SplitColumn, CSplitterWnd::CreateView,
CSplitterWnd: :RecalcLayout

CSplitterWnd::SplitRow

1811

CStatic

CStatic

The CStatic class provides the functionality of a Windows static control. A static
control displays a text string, box, rectangle, icon, cursor, bitmap, or enhanced
metafile. It can be used to label, box, or separate other controls. A static control
normally takes no input and provides no output; however, it can notify its parent of
mouse clicks if it's created with SS_NOTIFY style.

Create a static control in two steps. First, call the constructor to construct the CStatic
object, then call the Create member function to create the static control and attach it
to the CStatic object.

If you create a CStatic object within a dialog box (through a dialog resource), the
CStatic object is automatically destroyed when the user closes the dialog box.

If you create a CStatic object within a window, you may also need to destroy it. A
CStatic object created on the stack within a window is automatically destroyed. If you
create the CStatic object on the heap by using the new function, you must call delete
on the object to destroy it when the you are done with it.

#include <afxwin.h>

See Also: CWnd, CButton, CComboBox, CEdit, CListBox, CScrollBar, CDialog

CStatic Class Members

1812

Construction

CStatic

Initialization

Create

Operations

SetBitmap

GetBitmap

SetIcon

Constructs a CStatic object.

Creates the Windows static control and attaches it to the CStatic object.

Specifies a bitmap to be displayed in the static control.

Retrieves the handle of the bitmap previously set with SetBitmap.

Specifies an icon to be displayed in the static control.

Operations (continued)

Getlcon

SetCursor

GetCursor

SetEnhMetaFile

GetEnhMetaFile

Retrieves the handle of the icon previously set with Setlcon.

Specifies a cursor image to be displayed in the static control.

Retrieves the handle of the cursor image previously set with SetCursor.

Specifies an enhanced metafile to be displayed in the static control.

Retrieves the handle of the enhanced metafile previously set with
SetEnhMetaFile.

Member Functions
CStatic::Create

BOOL Create(LPCTSTR IpszText, DWORD dwStyle, const RECT & reet,
... CWnd* pParentWnd, UINT nID = Oxffff);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

IpszText Specifies the text to place in the control. If NULL, no text will be visible.

dwStyle Specifies the static control's window style. Apply any combination of static
control styles to the control.

reet Specifies the position and size of the static control. It can be either a RECT
structure or a CRect object.

pParentWnd Specifies the CStatic parent window, usually a CDialog object. It must
not be NULL.

nID Specifies the static control's control ID.

Construct a CStatic object in two steps. First call the constructor CStatic, then call
Create, which creates the Windows static control and attaches it to the CStatic object.

Apply the following window styles to a static control:

• WS_ CHILD Always

• WS_ VISIBLE Usually

• WS_DISABLED Rarely

If you're going to display a bitmap, cursor, icon, or metafile in the static control,
you'll need to apply one of the following styles:

• SS_BITMAP Use this style for bitmaps.

CStatic::Create

1813

CStatic: :CStatic

• SS_ICON Use this style for cursors and icons.

• SS_ENHMETAFILE Use this style for enhanced metafiles.

For cursors, bitmaps, or icons, you may also want to use the following style:

• SS_CENTERIMAGE Use to center the image in the static control.

See Also: CStatic::Cstatic

CStatic: :CStatic

Remarks

CStatic();

Constructs a CStatic object.

See Also: CStatic::Create

CStatic: : GetBitmap
HBITMAP GetBitmap() const;

Return Value

Remarks

A handle to the current bitmap, or NULL if no bitmap has been set.

Call this member function to get the handle of the bitmap, previously set with
SetBitmap, that is associated with CStatic.

See Also: CStatic::SetBitmap, STM_GETIMAGE, "Bitmaps" online

CStatic: : GetCursor
HCURSOR GetCursor();

Return Value

Remarks

1814

A handle to the current cursor, or NULL if no cursor has been set.

Call this member function to get the handle of the cursor, previously set with
SetCursor, that is associated with CStatic.

See Also: CStatic::SetCursor, STM_GETIMAGE, "Cursors" online

CStatic: : GetEnhMetaFile
HENHMETAFILE GetEnhMetaFile() const;

Return Value

Remarks

A handle to the current enhanced metafile, or NULL if no enhanced metafile has
been set.

Call this member function to get the handle of the enhanced metafile, previously set
with SetEnhMetafile, that is associated with Cstatic.

See Also: CStatic::SetEnhMetafile, STM_GETIMAGE

CStatic: : GetIcon
HICON GetIcon() const;

Return Value

Remarks

A handle to the current icon, or NULL if no icon has been set.

Call this member function to get the handle of the icon, previously set with SetIcon,
that is associated with CStatic.

See Also: CStatic::SetIcon, STM_GETICON, "Icons" online

CStatic: :SetBitmap
HBITMAP SetBitmap(HBITMAP hBitmap);

Return Value
The handle of the bitmap previously associated with the static control, or NULL if no
bitmap was associated with the static control.

Parameters

Remarks

hBitmap Handle of the bitmap to be drawn in the static control.

Call this member function to associate a new bitmap with the static control.

The bitmap will be automatically drawn in the static control. By default, it will be
drawn in the upper-left corner and the static control will be resized to the size of the
bitmap.

You can use various window and static control styles, including the following:

• SS_BITMAP Use this style always for bitmaps.

CStatic::SetBitmap

1815

CStatic: :SetCursor

• SS_CENTERIMAGE Use to center in the static control. If the image is larger
than the static control, it will be clipped. If it is smaller than the static control, the
empty space around the image will be filled by the color of the pixel in the upper
left corner of the bitmap.

See Also: CStatic::GetBitmap, STM_SETIMAGE, "Bitmaps" online

CStatic:: SetCursor
HCURSOR SetCursor(HCURSOR hCursor);

Return Value
The handle of the cursor previously associated with the static control, or NULL if no
cursor was associated with the static control.

Parameters

Remarks

hCursor Handle of the cursor to be drawn in the static control.

Call this member function to associate a new cursor image with the static control.

The cursor will be automatically drawn in the static control. By default, it will be
drawn in the upper-left corner and the static control will be resized to the size of the
cursor.

You can use various window and static control styles, including the following:

• SS_ICON Use this style always for cursors and icons.

• SS_CENTERIMAGE Use to center in the static control. If the image is larger
than the static control, it will be clipped. If it is smaller than the static control, the
empty space around the image will be filled with the background color of the static
control.

See Also: CStatic::GetCursor, STM_SETIMAGE, "Cursors" online

CStatic: : SetEnhMetaFile
HENHMETAFILE SetEnhMetaFile(HENHMETAFILE hMetaFile);

Return Value
The handle of the enhanced metafile previously associated with the static control, or
NULL if no enhanced metafile was associated with the static control.

Parameters
hMetaFile Handle of the enhanced metafile to be drawn in the static control.

1816

Remarks
Call this member function to associate a new enhanced metafile image with the static
control.

The enhanced metafile will be automatically drawn in the static control. The enhanced
metafile is scaled to fit the size of the static control.

You can use various window and static control styles, including the following:

• SS_ENHMETAFILE Use this style always for enhanced metafiles.

See Also: CStatic::GetEnhMetafile, STM_SETIMAGE

CStatic: :SetIcon
HICON Setlcon(HICON hIcon);

Return Value
The handle of the icon previously associated with the static control, or NULL if no
icon was associated with the static control.

Parameters

Remarks

hlcon Handle of the icon to be drawn in the static control.

Call this member function to associate a new icon image with the static control.

The icon will be automatically drawn in the static control. By default, it will be drawn
in the upper-left comer and the static control will be resized to the size of the icon.

You can use various window and static control styles, including the following:

• SS_ICON Use this style always for cursors and icons.

• SS_CENTERIMAGE Use to center in the static control. If the image is larger
than the static control, it will be clipped. If it is smaller than the static control, the
empty space around the image will be filled with the background color of the static
control.

See Also: CStatic::Getlcon, STM_SETICON, "Icons" online

CStatic: :SetIcon

1817

CStatusBar

CStatusBar

1818

A CStatusBar object is a control bar with a row of text output panes, or "indicators."
The output panes commonly are used as message lines and as status indicators.
Examples include the menu help-message lines that briefly explain the selected menu
command and the indicators that show the status of the SCROLL LOCK, NUM LOCK,

and other keys.

CStatusBar::GetStatusBarCtrl, a member function new to MFC 4.0, allows
you to take advantage of the Windows common control's support for status bar
customization and additional functionality. CStatusBar member functions give you
most of the functionality of the Windows common controls; however, when you call
GetStatusBarCtrl, you can give your status bars even more of the characteristics of a
Windows 95 status bar. When you call GetStatusBarCtrl, it will return a reference to
a CStatusBarCtrl object. See CStatusBarCtrl for more information about designing
toolbars using Windows common controls. For more general information about
common controls, see "Common Controls" in the Windows 95 SDK Programmer s
Reference.

The framework stores indicator information in an array with the leftmost indicator
at position O. When you create a status bar, you use an array of string IDs that the
framework associates with the corresponding indicators. You can then use either a
string ID or an index to access an indicator.

By default, the first indicator is "elastic": it takes up the status-bar length not used
by the other indicator panes, so that the other panes are right -aligned.

To create a status bar, follow these steps:

1. Construct the CStatusBar object.

2. Call the Create function to create the status-bar window and attach it to the
CStatusBar object.

3. Call Setlndicators to associate a string ID with each indicator.

There are three ways to update the text in a status-bar pane:

l. Call CWnd::SetWindowText to update the text in pane 0 only.

CStatusBar::CommandToIndex

2. Call CCmdUI::SetText in the status bar's ON_UPDATE_COMMAND_UI
handler.

3. Call SetPaneText to update the text for any pane.

Call SetPaneStyle to update the style of a status-bar pane.

For more information on using CStatusBar, see the article "Status Bars" in
Visual C++ Programmer's Guide online and Technical Note 31 online, Control Bars.

#include <afxext.h>

See Also: CStatusBarCtrl, CControlBar, CWnd::SetWindowText,
CStatusBar: :Setlndicators

CStatusBar Class Members
Construction

CStatusBar

Create

Setlndicators

Attributes

CommandTolndex

GetItemID

GetItemRect

GetPanelnfo

GetPaneStyle

GetPaneText

GetStatusBarCtrl

SetPaneStyle

SetPaneText

SetPanelnfo

Constructs a CStatusBar object.

Creates the status bar, attaches it to the CStatusBar object,
and sets the initial font and bar height.

Sets indicator IDs.

Gets index for a given indicator ID.

Gets indicator ID for a given index.

Gets display rectangle for a given index.

Gets indicator ID, style, and width for a given index.

Gets indicator style for a given index.

Gets indicator text for a given index.

Allows direct access to the underlying common control.

Sets indicator style for a given index.

Sets indicator text for a given index.

Sets indicator ID, style, and width for a given index.

Member Functions
CStatusBar: :CommandToIndex

int CommandToIndex(UINT nIDFind) const;

Return Value
The index of the indicator if successful; -1 if not successful.

1819

CStatusBar: : Create

Parameters

Remarks

nIDFind String ID of the indicator whose index is to be retrieved.

Gets the indicator index for a given ID. The index of the first indicator is O.

See Also: CStatusBar: : GetItemID

CS tatusB ar: : Create
BOOL Create(CWnd* pParentWnd,

.. DWORD dwStyle = WS_CHILD I WS_ VISIBLE I CBRS_BOTTOM,

.. UINT nID = AFX_IDW _STATUS_BAR);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

pParentWnd Pointer to the CWnd object whose Windows window is the parent of
the status bar.

dwStyle The status-bar style. In addition to the standard Windows styles, these styles
are supported.

• CBRS_TOP Control bar is at top of frame window.

• CBRS_BOTTOM Control bar is at bottom of frame window.

• CBRS_NOALIGN Control bar is not repositioned when the parent is resized.

nID The toolbar's child-window ID.

Creates a status bar (a child window) and associates it with the CStatusBar object.
Also sets the initial font and sets the status bar's height to a default value.

See Also: CStatusBar::Setlndicators

CStatusBar: :CStatusBar

Remarks

1820

CStatusBar();

Constructs a CStatusBar object, creates a default status-bar font if necessary, and sets
the font characteristics to default values.

See Also: CStatusBar::Create

CS tatusBar:: GetPanelnfo

CStatusB ar: : GetItemID
UINT GetltemID(int nlndex) const;

Return Value
The ID of the indicator specified by nlndex.

Parameters

Remarks

nlndex Index of the indicator whose ID is to be retrieved.

Returns the ID of the indicator specified by nlndex.

See Also: CStatusBar::CommandToIndex

CStatusB ar: : GetItemRect
void GetltemRect(int nlndex, LPRECT IpRect) const;

Parameters

Remarks

nlndex Index of the indicator whose rectangle coordinates are to be retrieved.

IpRect Points to a RECT structure or a CRect object that will receive the
coordinates of the indicator specified by nlndex.

Copies the coordinates of the indicator specified by nlndex into the structure pointed
to by IpRect. Coordinates are in pixels relative to the upper-left corner of the status
bar.

See Also: CStatusBar: :CommandToIndex, CStatusBar: : GetPaneInfo

CS tatusB ar: : GetPaneInfo
void GetPaneInfo(int nlndex, UINT& nID, UINT& nStyle, int& cxWidth) const;

Parameters

Remarks

nlndex Index of the pane whose information is to be retrieved.

nID Reference to a UINT that is set to the ID of the pane.

nStyle Reference to a UINT that is set to the style of the pane.

cxWidth Reference to an integer that is set to the width of the pane.

Sets nID, nStyle, and cxWidth to the ID, style, and width of the indicator pane at the
location specified by nlndex.

1821

CStatusBar::GetPaneStyle

See Also: CStatusBar::SetPaneInfo, CStatusBar::GetItemID,
CStatusBar: : GetItemRect

CStatusBar: : GetPaneStyle
UINT GetPaneStyle(int nlndex) const;

Return Value
The style of the status-bar pane specified by nlndex.

Parameters

Remarks

nlndex Index of the pane whose style is to be retrieved.

Call this member function to retrieve the style of a status bar's pane. A pane's style
determines how the pane appears.

For a list of styles available for status bars, see Create.

See Also: CStatusBar::Create, CStatusBar::SetPaneStyle

CStatusBar: : GetPaneText
CString GetPaneText(int nlndex) const;
void GetPaneText(int nlndex, CString& rString) const;

Return Value
A CString object containing the pane's text.

Parameters

Remarks

nlndex Index of the pane whose text is to be retrieved.

rString A reference to a CString object that contains the text to be retrieved.

Call this member function to retrieve the text that appears in a status-bar pane. The
second form of this member function fills a CString object with the string text.

See Also: CStatusBar: :SetPaneText

CS tatusB ar: : GetS tatusB arCtr 1
CStatusBarCtrl& GetStatusBarCtrl() const;

Return Value
Contains a reference to a CStatusBarCtrl object.

1822

CS tatusB ar:: SetPaneInfo

Remarks
This member function allows direct access to the underlying common control.

Use GetStatusBarCtrl to take advantage of the functionality of the Windows
status-bar common control, and to take advantage of the support CStatusBarCtrl
provides for status-bar customization. For example, by using the common control, you
can specify a style that includes a sizing grip on the status bar, or you can specify a
style to have the status bar appear at the top of the parent window's client area.

For more general information about common controls, See "Common Controls" in the
Windows 95 SDK Programmer's Reference.

CStatusBar: :SetIndicators
BOOL Setlndicators(const UINT* lpIDArray, int nIDCount);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

lpIDArray Pointer to an array of IDs.

nIDCount Number of elements in the array pointed to by lpIDArray.

Sets each indicator's ID to the value specified by the corresponding element of the
array lpIDArray, loads the string resource specified by each ID, and sets the
indicator's text to the string.

See Also: CStatusBar::CStatusBar, CStatusBar::Create,
CStatusBar: :SetPaneInfo, CStatusBar: :SetPaneText

CStatusBar:: SetPaneInfo
void SetPaneInfo(int nlndex, UINT nID, UINT nStyle, int cxWidth);

Parameters
nlndex Index of the indicator pane whose style is to be set.

nID New ID for the indicator pane.

nStyle New style for the indicator pane.

cxWidth New width for the indicator pane.

Remarks
Sets the specified indicator pane to a new ID, style, and width.

1823

CStatusBar::SetPaneStyle

The following indicator styles are supported:

• SBPS_NOBORDERS No 3-D border around the pane.

• SBPS_POPOUT Reverse border so that text "pops out."

• SBPS_DISABLED Do not draw text.

• SBPS_STRETCH Stretch pane to fill unused space. Only one pane per status bar
can have this style.

• SBPS_NORMAL No stretch, borders, or pop-out.

See Also: CStatusBar::GetPaneInfo

CS tatusB ar: : SetPaneS ty Ie
void SetPaneStyle(int nlndex, UINT nStyle);

Parameters

Remarks

nlndex Index of the pane whose style is to be set.

nStyle Style of the pane whose style is to be set.

Call this member function to set the style of a status bar's pane. A pane's style
determines how the pane appears.

For a list of styles available for status bars, see SetPaneInfo.

See Also: CStatusBar::Create, CStatusBar::GetPaneStyle

CStatusBar:: SetPaneText
BOOL SetPaneText(int nlndex, LPCTSTR IpszNewText, BOOL bUpdate = TRUE);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

1824

nlndex Index of the pane whose text is to be set.

IpszNewText Pointer to the new pane text.

bUpdate If TRUE, the pane is invalidated after the text is set.

Sets the pane text to the string pointed to by IpszNewText.

See Also: CStatusBar::GetPaneText

CS tatusB arCtrl

CStatusBarCtrl

A "status bar control" is a horizontal window, usually displayed at the bottom of a
parent window, in which an application can display various kinds of status
information. The status bar control can be divided into parts to display more than one
type of information.

The CStatusBarCtrl class provides the functionality of the Windows common status
bar control. This control (and therefore the CStatusBarCtrl class) is available only to
programs running under Windows 95 and Windows NT version 3.51 and later.

For more information on using CStatusBarCtrl, see Technical Note 60 online.

#include <afxcmn.h>

See Also: CToolBarCtrl

CStatusBarCtrl Class Members
Construction

CStatusBarCtrl

Create

Attributes

SetText

GetText

GetTextLength

SetParts

GetParts

Constructs a CStatusBarCtrl object.

Creates a status bar control and attaches it to a CStatusBarCtrl
object.

Sets the text in the given part of a status bar control.

Retrieves the text from the given part of a status bar control.

Retrieve the length, in characters, of the text from the given part of a
status bar control.

Sets the number of parts in a status bar control and the coordinate of
the right edge of each part.

Retrieves a count of the parts in a status bar control.

(continued)

CStatusBarCtrl

1825

CStatusBarCtrl: : Create

Attributes (continued)

GetBorders

SetMinHeight

SetSimple

GetRect

Overridables

Drawltem

Retrieves the current widths of the horizontal and vertical borders of
a status bar control.

Sets the minimum height of a status bar control's drawing area.

Specifies whether a status bar control displays simple text or displays
all control parts set by a previous call to SetParts.

Retrieves the bounding rectangle of a part in a status bar control.

Called when a visual aspect of an owner-draw status bar control
changes.

Member Functions
CStatusBarCtrl: : Create

BOOL Create(DWORD dwStyle, const RECT& reet, CWnd* pParentWnd, UINT nID);

Return Value
Nonzero if successful; otherwise zero.

Parameters

Remarks

1826

dwStyle Specifies the status bar control's style. Apply any combination of status bar
control styles to the control. This parameter must include the WS_CHILD style. It
should also include the WS_ VISIBLE style. See the Remarks section for more
information.

reet Specifies the status bar control's size and position. It can be either a CRect
object or a RECT structure.

pParentWnd Specifies the status bar control's parent window, usually a CDialog. It
must not be NULL.

nID Specifies the status bar control's ID.

You construct a CStatusBarCtrl in two steps. First call the constructor, then call
Create, which creates the status bar control and attaches it to the CStatusBarCtrl
object.

The dwStyle parameter can have any combination of the following values:

• CCS_BOTTOM Causes the control to position itself at the bottom of the parent
window's client area and sets the width to be the same as the parent window's
width. Status bar controls have this style by default.

CStatusBarCtrl: :Draw Item

• CCS_NODIVIDER Prevents a two-pixel highlight from being drawn at the top
of the control.

• CCS_NOHILITE Prevents a one-pixel highlight from being drawn at the top of
the control.

• CCS_NOMOVEY Causes the control to resize and move itself horizontally, but
not vertically, in response to a WM_SIZE message. If the CCS_NORESIZE style
is used, this style does not apply.

• CCS_NOPARENTALIGN Prevents the control from automatically moving to
the top or bottom of the parent window. Instead, the control keeps its position
within the parent window despite changes to the size of the parent window. If the
CCS_ TOP or CCS_BOTTOM style is also used, the height is adjusted to the
default, but the position and width remain unchanged.

• CCS_NORESIZE Prevents the control from using the default width and height
when setting its initial size or a new size. Instead, the control uses the width and
height specified in the request for creation or sizing.

• CCS_TOP Causes the control to position itself at the top of the parent window's
client area and sets the width to be the same as the parent window's width.

The default position of a status window is along the bottom of the parent window, but
you can specify the CCS_TOP style to have it appear at the top of the parent
window's client area. You can specify the SBARS_SIZEGRIP style to include a
sizing grip at the right end of the status window. Combining the CCS_TOP and
SBARS_SIZEGRIP styles is not recommended, because the resulting sizing grip is
not functional even though the system draws it in the status window.

See Also: CStatusBarCtrl::CStatusBarCtrl

CStatusBarCtrl: :CStatusBarCtrl

Remarks

CStatusBarCtrl();

Constructs a CStatusBarCtrl object.

See Also: CStatusBarCtrl::Create

CStatusBarCtrl: : Draw Item
virtual void Drawltem(LPDRAWITEMSTRUCT lpDrawltemStruct);

Parameters
lpDrawltemStruct A long pointer to a DRAWITEMSTRUCT structure that contains

information about the type of drawing required.

1827

CStatusBarCtrl: :GetBorders

Remarks
Called by the framework when a visual aspect of an owner-draw status bar control
changes. The itemAction member of the DRAWITEMSTRUCT structure defines
the drawing action that is to be performed.

By default, this member function does nothing. Override this member function to
implement drawing for an owner-draw CStatusBarCtrl object.

The application should restore all graphics device interface (GDI) objects selected for
the display context supplied in IpDrawltemStruct before this member function
terminates.

See Also: CWnd: :OnDrawltem

CStatusBarCtrl::GetBorders
BOOL GetBorders(int* pBorders) const;
BOOL GetBorders(int& nHorz, int& n Vert, int& nSpacing) const;

Return Value
Nonzero if successful; otherwise zero.

Parameters

Remarks

pBorders Address of an integer array having three elements. The first element
receives the width of the horizontal border, the second receives the width of the
vertical border, and the third receives the width of the border between rectangles.

nHorz Reference to an integer that receives the width of the horizontal border.

n Vert Reference to an integer that receives the width of the vertical border.

nSpacing Reference to an integer that receives the width of the border between
rectangles.

Call this function to retrieve the status bar control's current widths of the horizontal
and vertical borders and of the space between rectangles. These borders determine the
spacing between the outside edge of the control and the rectangles within the control
that contain text.

See Also: CStatusBarCtrl: : GetParts, CStatusBarCtrl: :SetParts

CStatusBarCtrl::GetParts
int GetParts(int nParts, int* pParts) const;

Return Value
The number of parts in the control if successful, or zero otherwise.

1828

CStatusBarCtrl::GetText

Parameters

Remarks

nParts Number of parts for which to retrieve coordinates. If this parameter is greater
than the number of parts in the control, the message retrieves coordinates for
existing parts only.

pParts Address of an integer array having the same number of elements as the
number of parts specified by nParts. Each element in the array receives the client
coordinate of the right edge of the corresponding part. If an element is set to -1,
the position of the right edge for that part extends to the right edge of the status bar.

Call this function to retrieve a count of the parts in a status bar control. This member
function also retrieves the coordinate of the right edge of the given number of parts.

See Also: CStatusBarCtrl::GetBorders, CStatusBarCtrl::SetParts

CS tatusB arCtr 1: : GetRect
BOOL GetRect(int nPane, LPRECT IpRect) const;

Return Value
Nonzero if successful; otherwise zero.

Parameters

Remarks

nPane Zero-based index of the part whose bounding rectangle is to be retrieved.

lpRect Address of a RECT structure that receives the bounding rectangle.

Retrieves the bounding rectangle of a part in a status bar control.

See Also: CStatusBarCtrl::GetParts

CStatusB arCtrl: : GetText
int GetText(LPCTSTR lpszText, int nPane, int* pType) const;

Return Value
The length, in characters, of the text.

Parameters
lpszText Address of the buffer that receives the text. This parameter is a

null-terminated string.

nPane Zero-based index of the part from which to retrieve text.

pType Pointer to an integer that receives the type information. The type can be one of
these values:

1829

CStatusBarCtrl: :GetTextLength

Remarks

• 0 The text is drawn with a border to appear lower than the plane of the status
bar.

• SBT_NOBORDERS The text is drawn without borders.

• SBT_POPOUT The text is drawn with a border to appear higher than the
plane of the status bar.

Call this function to retrieve the text from the given part of a status bar control.

See Also: CStatusBarCtrl: :SetText, CStatusBarCtrl: : GetTextLength

CS tatusB arCtr 1: : GetTextLength
int GetTextLength(int nPane, int* pType) const;

Return Value
The length, in characters, of the text.

Parameters

Remarks

nPane Zero-based index of the part from which to retrieve text.

pType Pointer to an integer that receives the type information. The type can be one of
these values:

• 0 The text is drawn with a border to appear lower than the plane of the status
bar.

• SBT_NOBORDERS The text is drawn without borders.

• SBT_OWNERDRAW The text is drawn by the parent window.

• SBT_POPOUT The text is drawn with a border to appear higher than the
plane of the status bar.

Call this function to retrieve the length, in characters, of the text from the given part of
a status bar control.

See Also: CStatusBarCtrl: : GetText, CStatusBarCtrl: :SetText

CS tatusB arCtr 1: : S etMinHeight
void SetMinHeight(int nMin);

Parameters
nMin Minimum height, in pixels, of the control.

1830

CStatusBarCtrl: :SetSimple

Remarks
Call this function to set the minimum height of a status bar control's drawing area.
The minimum height is the sum of nMin and twice the width, in pixels, of the vertical
border of the status bar control.

See Also: CStatusBarCtrl::GetRect, CStatusBarCtrl::GetBorders

CStatusBarCtrl: :SetParts
BOOL SetParts(int nParts, int* pWidths);

Return Value
Nonzero if successful; otherwise zero.

Parameters

Remarks

nParts Number of parts to set. The number of parts cannot be greater than 255.

p Widths Address of an integer array having the same number of elements as parts
specified by nParts. Each element in the array specifies the position, in client
coordinates, of the right edge of the corresponding part. If an element is -1, the
position of the right edge for that part extends to the right edge of the control.

Call this function to set the number of parts in a status bar control and the coordinate
of the right edge of each part.

See Also: CStatusBarCtrl::GetBorders, CStatusBarCtrl::GetParts

CStatusBarCtrl::SetSimple
BOOL SetSimple(BOOL bSimpie = TRUE);

Return Value
Zero if an error occurs.

Parameters

Remarks

bSimpie Display-type flag. If this parameter is TRUE, the control displays simple
text; if it is FALSE, it displays multiple parts.

Call this function to specify whether a status bar control displays simple text or
displays all control parts set by a previous call to SetParts.

If the status bar control is being changed from nonsimple to simple, or vice versa, the
control is immediately redrawn.

See Also: CStatusBarCtrl: :SetParts

1831

CStatusBarCtrl: :SetText

CS tatusB arCtr 1: : S etText
BOOL SetText(LPCTSTR lpszText, iot nPane, iot nType);

Return Value
Nonzero if successful; otherwise zero.

Parameters

Remarks

1832

IpszText Address of a null-terminated string specifying the text to set. If nType is
SBT_OWNERDRAW, IpszText represents 32 bits of data.

nPane Zero-based index of the part to set. If this value is 255, the status bar control
is assumed to be a simple control having only one part.

nType Type of drawing operation. It can be one of these values:

• 0 The text is drawn with a border to appear lower than the plane of the status
bar.

• SBT_NOBORDERS The text is drawn without borders.

• SBT_OWNERDRAW The text is drawn by the parent window.

• SBT_POPOUT The text is drawn with a border to appear higher than the
plane of the status bar.

Call this function to set the text in the given part of a status bar control. The message
invalidates the portion of the control that has changed, causing it to display the new
text when the control next receives the WM_PAINT message.

See Also: CStatusBarCtrl::GetText, CStatusBarCtrl::GetTextLeogth

CStdioFile

CStdioFile

A CStdioFile object represents a C run-time stream file as opened by the run-time
function fop en. Stream files are buffered and can be opened in either text mode (the
default) or binary mode.

Text mode provides special processing for carriage retum-linefeed pairs. When you
write a newline character (OxOA) to a text-mode CStdioFile object, the byte pair
(OxOA, OxOD) is sent to the file. When you read, the byte pair (OxOA, OxOD) is
translated to a single OxOA byte.

The CFile functions Duplicate, LockRange, and UnlockRange are not supported for
CStdioFile.

If you call these functions on a CStdioFile, you will get a CNotSupportedException.

For more information on using CStdioFile, see the article "Files in MFC" in
Visual C++ Programmer's Guide online and "File Handling" in the Run-Time Library
Reference.

#include <afx.h>

See Also: CFile, CFile::Duplicate, CFile::LockRange, CFile::UnlockRange,
CNotSupportedException

CStdioFile Class Members
Data Members

m_pStream

Construction

CStdioFile

Text ReacllWrite

ReadString

WriteString

Contains a pointer to an open file.

Constructs a CStdioFile object from a
path or file pointer.

Reads a single line of text.

Writes a single line of text.

CStdioFile

1833

CS tdioFile: :CStdioFile

Member Functions
CStdioFile: :CStdioFile

CStdioFile();
CStdioFile(FILE* pOpenStream);
CStdioFile(LPCTSTR lpszFileName, DINT nOpenFlags);

throw(CFileException);

Parameters

Remarks

Example

1834

pOpenStream Specifies the file pointer returned by a call to the C run-time function
fopen.

lpszFileName Specifies a string that is the path to the desired file. The path can be
relative or absolute.

nOpenFlags Sharing and access mode. Specifies the action to take when the file is
opened. You can combine options by using the bitwise OR (I) operator. One access
permission and a text-binary specifier are required; the create and noInherit
modes are optional. See CFile::CFile for a list of mode options and other flags.
In MFC version 3.0 and later, share flags are allowed.

The default version of the constructor works in conjunction with the CFile::Open
member function to test errors.

The one-parameter version constructs a CStdioFile object from a pointer to a file
that is already open. Allowed pointer values include the predefined input/output file
pointers stdin, stdont, or stderr.

The two-parameter version constructs a CStdioFile object and opens the
corresponding operating-system file with the given path.

CFileException is thrown if the file cannot be opened or created.

II example for CStdioFile::CStdioFile
char* pFileName = "test.dat";
CStdioFile f1;
if(!f1.0pen(pFileName, CFile::modeCreate

}

I CFile::modeWrite I CFile::typeText)) {
tfifdef _DEBUG
afxDump « "Unable to open file" « "\n";

tfendif
exit(1);

CStdioFile f2(stdout);
TRY

CStdioFile::ReadString

CStdioFile f3(pFileName,
CFile::modeCreate I CFile::modeWrite I CFile::typeText);

CATCH(CFileException, e)
{

#ifdef _DEBUG
afxDump « "File could not be opened"

« e->m_cause « "\n";
#endif

CStdioFile: : ReadString
virtual LPTSTR ReadString(LPTSTR lpsz, UINT nMax);

throw(CFileException);
BOOL ReadString(CString& rString);

throw(CFileException);

Return Value
A pointer to the buffer containing the text data. NULL if end-of-file was reached
without reading any data; or if boolean, FALSE if end-of-file was reached without
reading any data.

Parameters

Remarks

lpsz Specifies a pointer to a user-supplied buffer that will receive a null-terminated
text string.

nMax Specifies the maximum number of characters to read. Should be one less than
the size of the lpsz buffer.

rString A reference to a CString object that will contain the string when the function
returns.

Reads text data into a buffer, up to a limit of nMax-l characters, from the file
associated with the CStdioFile object. Reading is stopped by a carriage return
linefeed pair. If, in that case, fewer than nMax-l characters have been read, a newline
character is stored in the buffer. A null character ('\0') is appended in either case.

CFile::Read is also available for text-mode input, but it does not terminate on a
carriage return-linefeed pair.

Note The CString version of this function removes the • / n' if present; the LPTSTR version
does not.

1835

CStdioFile:: WriteString

Example
II example for CStdioFile::ReadString
extern CStdioFile f;
char buf[100];

f.ReadString(buf. 99);

See Also: CStdioFile::WriteString, CFile::Read

CStdioFile:: WriteString
virtual void WriteString(LPCTSTR lpsz);

throw(CFileException);

Parameters

Remarks

Example

lpsz Specifies a pointer to a buffer containing a null-terminated text string.

Writes data from a buffer to the file associated with the CStdioFile object. The
terminating null character ('\0') is not written to the file. Any newline character in
lpsz is written to the file as a carriage return-linefeed pair.

WriteString throws an exception in response to several conditions, including the
disk-full condition.

This is a text-oriented write function available to CStdioFile and its descendents, and
to CArchive. CFile::Write is also available, but rather than terminating on a null
character, it writes the requested number of bytes to the file.

II example for CStdioFile::WriteString
extern CStdioFile f;
cha r buf[] "" "test stri ng";

f.WriteString(buf);

See Also: CArchive::ReadString, CFile::Write

Data Members
CStdioFile: :m_pStream
Remarks

1836

The m_pStream data member is the pointer to an open file as returned by the
C run-time function fopen. It is NULL if the file has never been opened or has
been closed.

CString
CString does not have a base class.

A CString object consists of a variable-length sequence of characters. CString
provides functions and operators using a syntax similar to that of Basic. Concatenation
and comparison operators, together with simplified memory management, make
CString objects easier to use than ordinary character arrays.

CString is based on the TCHAR data type. If the symbol_UNICODE is defined for
your program, TCHAR is defined as type wchar_t, a 16-bit character type; otherwise,
it is defined as char, the normal 8-bit character type. Under Unicode, then, CString
objects are composed of 16-bit characters. Without Unicode, they are composed of
8-bit char type.

When not using _UNICODE, CString is enabled for multibyte character sets
(MBCS, also known as double-byte character sets, DBCS). Note that for MBCS
strings, CString still counts, returns, and manipulates strings based on 8-bit
characters, and your application must interpret MBCS lead and trail bytes itself.

CString objects also have the following characteristics:

o CString objects can grow as a result of concatenation operations.

• CString objects follow "value semantics." Think of a CString object as an actual
string, not as a pointer to a string.

• You can freely substitute CString objects for const char* and LPCTSTR function
arguments.

• A conversion operator gives direct access to the string's characters as a read-only
array of characters (a C-style string).

Tip Where possible, allocate CString objects on the frame rather than on the heap. This
saves memory and simplifies parameter passing.

CString assists you in conserving memory space by allowing two strings sharing
the same value also to share the same buffer space. However, if you attempt to
change the contents of the buffer directly (not using MFC), you can alter both strings
unintentionally. CString provides two member functions, CString: :LockBuffer and
CString::UnlockBuffer, to help you protect your data. When you call LockBuffer,
you create a copy of a string, then set the reference count to -I, which "locks" the
buffer. While the buffer is locked, no other string can reference the data in that string,
and the locked string will not reference another string. By locking the string in the
buffer, you ensure that the string's exclusive hold on the data will remain intact. When
you have finished with the data, call UnlockBuffer to reset the reference count to 1.

CString

1837

CString

For more information, see the "Strings in MFC" and "Strings: Unicode and Multibyte
Character Set (MBCS) Support" articles in Visual C++ Programmer's Guide online
and "String Manipulation Routines" in the Run-Time Library Reference.

#include <afx.h>

See Also: In Visual C++ Programmer's Guide online: "Strings: Basic CString
Operations," "Strings: CString Semantics," "Strings: CString Operations Relating to
C-Style Strings," "Strings: CString Exception Cleanup," "Strings: CString Argument
Passing"

CString Class Members

1838

Construction

CString

The String as an Array

GetLength

IsEmpty

Empty

GetAt

operator []

SetAt

operator LPCTSTR

AssignmentiConcatenation

operator =
operator +

operator +=

Comparison

operator == <, etc.

Compare

CompareNoCase

Collate

Constructs CString objects in various ways.

Returns the number of characters in a CString object. For
multi byte characters, counts each 8-bit character; that is, a
lead and trail byte in one multi byte character are counted as
two characters.

Tests whether a CString object contains no characters.

Forces a string to have 0 length.

Returns the character at a given position.

Returns the character at a given position-operator
substitution for GetAt.

Sets a character at a given position.

Directly accesses characters stored in a CString object as a
C-style string.

Assigns a new value to a CString object.

Concatenates two strings and returns a new string.

Concatenates a new string to the end of an existing string.

Comparison operators (case sensitive).

Compares two strings (case sensitive).

Compares two strings (case insensitive).

Compares two strings (case sensitive, uses locale-specific
information).

Extraction

Mid

Left

Right

Spanlncluding

SpanExcluding

Other Conversions

MakeUpper

MakeLower

MakeReverse

Format

TrimLeft

TrimRight

FormatMessage

Searching

Find

ReverseFind

FindOneOf

Archive/Dump

operator «

operator »

Buffer Access

GetBuffer

GetBufferSetLength

ReleaseBuffer

FreeExtra

LockBuffer

UnlockBuffer

Extracts the middle part of a string (like the Basic MID$
function).

Extracts the left part of a string (like the Basic LEFf$
function).

Extracts the right part of a string (like the Basic RIGHT$
function).

Extracts a substring that contains only the characters in a set.

Extracts a substring that contains only the characters not
in a set.

Converts all the characters in this string to uppercase
characters.

Converts all the characters in this string to lowercase
characters.

Reverses the characters in this string.

Format the string as sprintf does.

Trim leading whitespace characters from the string.

Trim trailing whitespace characters from the string.

Formats a message string.

Finds a character or substring inside a larger string.

Finds a character inside a larger string; starts from the end.

Finds the first matching character from a set.

Inserts a CString object to an archive or dump context.

Extracts a CString object from an archive.

Returns a pointer to the characters in the CString.

Returns a pointer to the characters in the CString, truncating
to the specified length.

Releases control of the buffer returned by GetBuffer.

Removes any overhead of this string object by freeing any
extra memory previously allocated to the string.

Disables reference counting and protects the string in the
buffer.

Enables reference counting and releases the string in the
buffer.

CString

1839

CString::AllocSysString

Windows-Specific

AllocSysString

SetSysString

LoadString

AnsiToOem

OcmToAnsi

Allocates a BSTR from CString data.

Sets an existing BSTR object with data from a CString
object.

Loads an existing CString object from a Windows resource.

Makes an in-place conversion from the ANSI character set to
the OEM character set.

Makes an in-place conversion from the OEM character set to
the ANSI character set.

Member Functions
CString: :AllocSysString

BSTR AllocSysString () const;
throw(CMemoryException);

Return Value

Remarks

Points to the newly allocated string.

Allocates a new OLE Automation-compatible string of the type BSTR and copies
the contents of the CString object into it, including the terminating null character.
A CMemoryException is thrown if insufficient memory exists. This function is
normally used to return strings for OLE Automation.

Use ::SysFreeString in the rare case that you need to deallocate the returned string.

For more information about OLE allocation functions in Windows, see
::SysAllocString and ::SysFreeString in the Win32 SDK OLE Programmer's
Reference.

See Also: ::SysAllocString, ::SysFreeString, CMemoryException

CString: : AnsiToOem
void AnsiToOem();

Remarks

1840

Converts all the characters in this CString object from the ANSI character set to the
OEM character set. See the "ANSI Character Codes Chart" in the C++ Language
Reference.

The function is not available if _UNICODE is defined.

See Also: CString::OemToAnsi

CString: : Collate
int Collate(LPCTSTR /psz) const;

Return Value
Zero if the strings are identical, -1 if this CString object is less than /psz, or 1 if this
CString object is greater than /psz.

Parameters

Remarks

/psz The other string used for comparison.

Compares this CString object with another string using the generic-text function
_tcscoll. The generic-text function _tcscoll, which is defined in TCHAR.H, maps to
either strcoll, wcscoll, or _mbscoll depending on the character set that is defined at
compile time. Each of these functions performs a case-sensitive comparison of the
strings according to the code page currently in use. For more information, see strcat,
wcscat, _mhscat in the Run-Time Library Reference.

See Also: CString::Compare, CString::CompareNoCase

CString: : Compare
int Compare(LPCTSTR /psz) const;

Return Value
Zero if the strings are identical, < 0 if this CString object is less than /psz, or > 0 if
this CString object is greater than /psz.

Parameters

Remarks

Example

/psz The other string used for comparison.

Compares this CString object with another string using the generic-text function
_tcscmp. The generic-text function _tcscmp, which is defined in TCHAR.H, maps to
either strcmp, wcscmp, or _mhscmp depending on the character set that is defined at
compile time. Each of these functions performs a case-sensitive comparison of the
strings, and is not affected by locale. For more information, see strcmp, wcscmp,
_mhscmp in the Run-Time Library Reference.

The following example demonstrates the use of CString::Compare.

II example for CString::Compare
CStri ng sl("abc");
CString s2("abd");
ASSERT(51.Compare(52) == -1); II Compare with another CString.
ASSERT(51.Compare("abe") == -1); II Compare with LPTSTR string.

See Also: CString::CompareNoCase

CString: :Comparc

1841

CString: :CompareN oCase

CString: :CompareN oCase
int CompareNoCase(LPCTSTR lpsz) const;

Return Value

Remarks

Example

Zero if the strings are identical (ignoring case), -1 if this CString object is less than
lpsz (ignoring case), or 1 if this CString object is greater than lpsz (ignoring case).

Compares this CString object with another string using the generic-text function
_tcsicmp. The generic-text function _tcsicmp, which is defined in TCHAR.H, maps
to either _stricmp, _ wcsicmp, _mbsicmp depending on the character set that is
defined at compile time. Each of these functions performs a case-insensitive
comparison of the strings, and is not affected by locale. For more information, see
_stricmp, _wcsicmp, _mbsicmp in the Run-Time Library Reference.

The following example demonstrates the use of CString::CompareNoCase.

II example for CString::CompareNoCase
CStri ng sl("abc");
CString s2("ABO");
ASSERT(s1.CompareNoCase(s2) == -1); II Compare with a CString.
ASSERT(s1.Compare("ABE") == -1); II Compare with LPTSTR string.

See Also: CString::Compare, CString::Collate

CString::CString
CString();
CString(const CString& stringSrc);

throw(CMemoryException);
CString(TCHAR ch, int nRepeat = 1);

throw(CMemoryException);
CString(LPCTSTR lpch, int nLength);

throw(CMemoryException);
CString(const unsigned char* psz);

throw(CMemoryException);
CString(LPCWSTR lpsz);

throw(CMemoryException);
CString(LPCSTR lpsz);

throw(CMemoryException);
Parameters

stringSrc An existing CString object to be copied into this CString object.

ch A single character to be repeated nRepeat times.

nRepeat The repeat count for ch.

lpch A pointer to an array of characters of length nLength, not null-terminated.

1842

Remarks

Example

nLength A count of the number of characters in pch.

psz A null-terminated string to be copied into this CString object.

lpsz A null-terminated string to be copied into this CString object.

Each of these constructors initializes a new CString object with the specified data.

Because the constructors copy the input data into new allocated storage, you should be
aware that memory exceptions may result. Note that some of these constructors act as
conversion functions. This allows you to substitute, for example, an LPTSTR where a
CString object is expected.

Several forms of the constructor have special purposes:

• CString(LPCSTR lpsz) Constructs a Unicode CString from an ANSI string. You
can also use this constructor to load a string resource as shown in the example below.

• CString(LPCWSTR lpsz) Constructs a CString from a Unicode string.

• CString(const unsigned char* psz) Allows you to construct a CString from a
pointer to unsigned char.

For more information, see "Strings: CString Exception Cleanup" in Visual c++
Programmer's Guide online.

The following example demonstrates the use of CString::CString.

II example for CString::CString
CString sl;
CString s2("cat");
CString s3 = s2;
CString s4(s2 + " " + s3);

CString s5('x');
CString s6('x', 6);

II Empty stri ng
II From a C string literal
II Copy constructor
II From a string expression

II s5 "x"
II s6 "xxxxxx"

CString s7«LPCSTR)ID_FILE_NEW); II s7 "Create a new document"

CString city = "Philadelphia";

See Also: CString: :operator =
II NOT the assignment operator

CString: : Empty

Remarks

void Empty();

Makes this CString object an empty string and frees memory as
appropriate.

For more information, see "Strings: CString Exception Cleanup" in
Visual C++ Programmer's Guide online.

CString: :Empty

1843

CString: :Find

Example
The following example demonstrates the use of CString::Empty.

II example for CString::Empty
CString s("abc");
s.Empty();
ASSERT(s.GetLength() == 0);

See Also: CString: :IsEmpty

CString: :Find
int Find(TCHAR ch) const;
int Find(LPCTSTR IpszSub) const;

Return Value
The zero-based index of the first character in this CString object that matches the
requested substring or characters; -1 if the substring or character is not found.

Parameters

Remarks

Example

ch A single character to search for.

IpszSub A substring to search for.

Searches this string for the first match of a substring. The function is overloaded to
accept both single characters (similar to the run-time function strchr) and strings
(similar to strstr).

The following example demonstrates the use of CString: :Find.

II example for CString::Find
CString s("abcdef");
ASSERT(s.Find('c') == 2);
ASSERT(s. Fi nd("de") == 3);

See Also: CString: : ReverseFind, CString: :FindOneOf

CString: :FindOneOf
int FindOneOf(LPCTSTR IpszCharSet) const;

Return Value
The zero-based index of the first character in this string that is also in IpszCharSet; -1
if there is no match.

Parameters
IpszCharSet String containing characters for matching.

1844

CString: :ForrnatMessage

Remarks

Example

Searches this string for the first character that matches any character contained in
lpszCharSet.

The following example demonstrates the use of CString: :FindOneOf.

II example for CString::FindOneOf
CString s("abcdef");
ASSERT(s. Fi ndOneOf("xd") == 3); I I'd' ; s fi rst match

See Also: CString: :Find

CString: : Format
void Format(LPCTSTR lpszFormat, .••);
void Format(UINT nFormatID, ...);

Parameters

Remarks

IpszFormat A format-control string.

nFormatID The string resource identifier that contains the format-control string.

Call this member function to write formatted data to a CString in the same way that
sprintf formats data into a C-style character array. This function formats and stores a
series of characters and values in the CString. Each optional argument (if any) is
converted and output according to the corresponding format specification in
lpszFormat or from the string resource identified by nFormatID.

When you pass a character string as an optional argument, you must cast it explicitly
as LPCTSTR. The format has the same form and function as the format argument for
the printf function. (For a description of the format and arguments, see printf in the
Run-Time Library Reference.) A null character is appended to the end of the
characters written.

For more information, see sprintf in the Run-Time Library Reference.

See Also: CString::GetBuffer

CString: : FormatMes sage
void FormatMessage(LPCTSTR lpszFormat, •.•);
void FormatMessage(UINT nFormatID, •.•);

Parameters
lpszFormat Points to the format-control string. It will be scanned for inserts and

formatted accordingly. The format string is similar to run-time function printf-style

1845

CString: : FreeExtra

Remarks

format strings, except it allows for the parameters to be inserted in an arbitrary
order.

nFormatID The string resource identifier that contains the unformatted message text.

Call this member function to format a message string. The function requires a message
definition as input. The message definition is determined by lpszFormat or from the
string resource identified by nFormatID. The function copies the formatted message
text to the CString, processing any embedded insert sequences if requested.

Each insert must have a corresponding parameter following the lpszFormat or
nFormatID parameter. Within the message text, several escape sequences are
supported for dynamically formatting the message. For a description of these escape
sequences and their meanings, see the Windows : :FormatMessage function in the
Win32 SDK Programmer's Reference.

See Also: ::FormatMessage, CString::LoadString, CString::Format

CString: : FreeExtra

Remarks

void FreeExtra();

Call this member function to free any extra memory previously allocated by the string
but no longer needed. This should reduce the memory overhead consumed by the
string object. The function reallocates the buffer to the exact length returned by
GetLength.

CString::GetAt
TCHAR GetAt(int nlndex) const;

Return Value
A TCHAR containing the character at the specified position in the string.

Parameters

Remarks

1846

nlndex Zero-based index of the character in the CString object. The nlndex
parameter must be greater than or equal to 0 and less than the value returned by
GetLength. The Debug version of the Microsoft Foundation Class Library
validates the bounds of nlndex; the Release version does not.

You can think of a CString object as an array of characters. The GetAt member
function returns a single character specified by an index number. The overloaded
subscript ([]) operator is a convenient alias for GetAt.

Example
The following example demonstrates the use of CString::GetAt.

II example for CString: :GetAt
CString s("abcdef");
ASSERT< s.GetAt(2) == 'c');

See Also: CString::GetAt, CString::GetLength, CString::operator []

CString: : GetBuffer
LPTSTR GetBuffer(int nMinBufLength); throw(CMemoryException);

Return Value
An LPTSTR pointer to the object's (null-terminated) character buffer.

Parameters

Remarks

Example

nMinBufLength The minimum size of the character buffer in characters. This value
does not include space for a null terminator.

Returns a pointer to the internal character buffer for the CString object. The returned
LPTSTR is not const and thus allows direct modification of CString contents.

If you use the pointer returned by GetBuffer to change the string contents, you must
call ReleaseBuffer before using any other CString member functions.

The address returned by GetBuffer may not be valid after the call to ReleaseBuffer
since additional CString operations may cause the CString buffer to be reallocated.
The buffer will not be reallocated if you do not change the length of the CString.

The buffer memory will be freed automatically when the CString object is destroyed.

Note that if you keep track of the string length yourself, you should not append the
terminating null character. You must, however, specify the final string length when
you release the buffer with ReleaseBuffer. If you do append a terminating null
character, you should pass -1 for the length to ReleaseBuffer and ReleaseBuffer
will perform a strlen on the buffer to determine its length.

The following example demonstrates the use of CString::GetBuffer.

II example for CString::GetBuffer
CString s("abed");
IIi fdef _DEBUG
afxDump « "CString s " « s « "\n";
/fendif
LPTSTR p = s.GetBuffer(10);
strcpy(p, "Hello");11 directly access CString buffer
s. Rel easeBuffer();
/fifdef _DEBUG
afxDump « "CString s " « s « "\n";
/fendif

cs tring:: GetB uffer

1847

CString: :GetB ufferSetLength

See Also: CString::GetBufferSetLength, CString::ReleaseBuffer

CString:: GetBufferSetLength
LPTSTR GetBufferSetLength(int nNewLength);

throw(CMemoryException);

Return Value
An LPTSTR pointer to the object's (null-terminated) character buffer.

Parameters

Remarks

1848

nNewLength The exact size of the CString character buffer in characters.

Returns a pointer to the internal character buffer for the CString object, truncating or
growing its length if necessary to exactly match the length specified in nNewLength.
The returned LPTSTR pointer is not const and thus allows direct modification of
CString contents.

If you use the pointer returned by GetBuffer to change the string contents, you must
call ReleaseBuffer before using any other CString member functions.

The address returned by GetBufferSetLength may not be valid after the call to
ReleaseBuffer since additional CString operations may cause the CString buffer to
be reallocated. The buffer will not be reassigned if you do not change the length of the
CString.

The buffer memory will be freed automatically when the CString object is destroyed.

Note that if you keep track of the string length yourself, you should not append the
terminating null character. You must, however, specify the final string length when
you release the buffer with ReleaseBuffer. If you do append a terminating null
character when you call ReleaseBuffer, you should pass -1 (the default) for the
length. ReleaseBuffer will perform a strlen on the buffer to determine its length.

For more information about reference counting, see the following articles:

• "Managing Object Lifetimes through Reference Counting" in the Win32 SDK
Programmer's Reference

• "Implementing Reference Counting" in the Win32 SDK Programmer's Reference

• "Rules for Managing Reference Counts" in the Win32 SDK Programmer's
Reference

See Also: CString: : GetBuffer, CString: : ReleaseBuffer

CString: : GetLength
int GetLength() const;

Return Value

Remarks

Example

A count of the bytes in the string.

Call this member function to get a count of the bytes in this CString object. The count
does not include a null terminator.

For multibyte character sets (MBCS), GetLength counts each 8-bit character; that is,
a lead and trail byte in one multi byte character are counted as two bytes.

The following example demonstrates the use of CString: :GetLength.

II example for CString::GetLength
CString s("abcdef");
ASSERT(s.GetLength() == 6);

See Also: CString::lsEmpty

CString: : IsEmpty
BOOL IsEmpty() const;

Return Value

Remarks

Example

Nonzero if the CString object has 0 length; otherwise O.

Tests a CString object for the empty condition.

The following example demonstrates the use of CString::lsEmpty.

II example for CString::IsEmpty
CString s;
ASSERT< s.IsEmpty());

See Also: CString::GetLength

CString: : Left
CString Left(int nCount) const;

throw(CMemoryException);

Return Value
A CString object containing a copy of the specified range of characters. Note that the
returned CString object may be empty.

CString::Left

1849

CString: :LoadString

Parameters

Remarks

Example

nCount The number of characters to extract from this CString object.

Extracts the first (that is, leftmost) nCount characters from this CString object and
returns a copy of the extracted substring. If nCount exceeds the string length, then the
entire string is extracted. Left is similar to the Basic LEFT$ function (except that
indexes are zero-based).

For multibyte character sets (MBCS), nCount refers to each 8-bit character; that is, a
lead and trail byte in one multi byte character are counted as two characters.

The following example demonstrates the use of CString::Left.

II example for CString::Left
CString s(_T(nabcdefn));
ASSERT(s.Left(2) == _T(nab n));

See Also: CString: :Mid, CString: :Right

CString: : LoadString
BOOL LoadString(UINT nID);

throw(CMemoryException);

Return Value
Nonzero if resource load was successful; otherwise O.

Parameters

Remarks

Example

1850

nID A Windows string resource ID.

Reads a Windows string resource, identified by nID, into an existing CString object.

The following example demonstrates the use of CString: :LoadString.

II example for CString::LoadString
#define IDS_FILENOTFOUND 1
CString s;
if (1 s.LoadString(IDS_FILENOTFOUND))
{

AfxMessageBox(nError Loading String: IDS_FILENOTFOUND n);

}

CS tring: : LockB uffer
LPTSTR LockBuffer();

Return Value

Remarks

A pointer to a CString object or a NULL-terminated string.

Call this member function to lock a string in the buffer.

By calling LockBuffer, you create a copy of the string, and then set the reference
count to -1. When the reference count is set to -1, the string in the buffer is considered
to be in a "locked" state. While in a locked state, the string is protected in two ways:

• No other string can get a reference to the data in the locked string, even if that
string is assigned to the locked string.

• The locked string will never reference another string, even if that other string is
copied to the locked string.

By locking the string in the buffer, you ensure that the string's exclusive hold on the
buffer will remain intact.

After you have finished with LockBuffer, call UnlockBuffer to reset the reference
count to 1.

For more information about reference counting, see the following articles:

• "Managing Object Lifetimes through Reference Counting" in the Win32 SDK
Programmer's Reference

• "Implementing Reference Counting" in the Win32 SDK Programmer's Reference

• "Rules for Managing Reference Counts" in the Win32 SDK Programmer's
Reference

See Also: CString::UnlockBuffer, CString::GetBuffer, CString::ReleaseBuffer

CString: : MakeLower
void MakeLower();

Remarks

Example

Converts this CString object to a lowercase string.

The following example demonstrates the use of CString: :MakeLower.
II example for CString::MakeLower
CString s("ABC");
s .MakeLower();
ASSERT(s == "abc");

See Also: CString::MakeUpper

CS tring: :MakeLower

1851

CString::MakeReverse

CString: : MakeReverse
void MakeReverse();

Remarks
Reverses the order of the characters in this CString object.

Example
The following example demonstrates the use of CString::MakeReverse.

II example for CString::MakeReverse
CString s("abc");
s.MakeReverse();
ASSERT(s == "cba");

CString: : Make Upper
void MakeUpper();

Remarks
Converts this CString object to an uppercase string.

Example
The following example demonstrates the use of CString::MakeUpper.

II example for CString::MakeUpper
CString s("abc");
s.MakeUpper();
ASSERT(s == "ABC");

See Also: CString: :MakeLower

CString::Mid
CString Mid(int nFirst) const;

throw(CMemoryException);
CString Mid(int nFirst, int nCount) const;

throw(CMemoryException);

Return Value
A CString object that contains a copy of the specified range of characters. Note that
the returned CString object may be empty.

Parameters

1852

nFirst The zero-based index of the first character in this CString object that is to be
included in the extracted substring.

nCount The number of characters to extract from this CString object. If this
parameter is not supplied, then the remainder of the string is extracted.

CS tring: :Re1easeB uffer

Remarks

Example

Extracts a substring of length nCount characters from this CString object, starting at
position nFirst (zero-based). The function returns a copy of the extracted substring.
Mid is similar to the Basic MID$ function (except that indexes are zero-based).

For multibyte character sets (MBCS), nCount refers to each 8-bit character; that is,
a lead and trail byte in one multibyte character are counted as two characters.

The following example demonstrates the use of CString::Mid.

II example for CString: :Mid
CString s(_T("abcdef"));
ASSERT(s.Mid(2. 3) -- _T("cde"));

See Also: CString: :Left, CString: :Right

CString: : Oem ToAnsi

Remarks

void OemToAnsi();

Converts all the characters in this CString object from the OEM character set to the
ANSI character set. See the "ANSI Character Codes Chart" in the c++ Language
Reference.

This function is not available if _UNICODE is defined.

See Also: CString::AnsiToOem

CS tring: : ReleaseB uffer
void ReleaseBuffer(int nNewLength = -1);

Parameters

Remarks

nNewLength The new length of the string in characters, not counting a null
terminator. If the string is null-terminated, the -1 default value sets the CString
size to the current length of the string.

Use ReleaseBuffer to end use of a buffer allocated by GetBuffer. If you know that
the string in the buffer is null-terminated, you can omit the nNewLength argument. If
your string is not null-terminated, then use nNewLength to specify its length. The
address returned by GetBuffer is invalid after the call to ReleaseBuffer or any other
CString operation.

1853

CString: :ReverseFind

Example
The following example demonstrates the use of CString::ReleaseBuffer.

II example for CString::ReleaseBuffer
CString s;
s = "abc";
LPTSTR P = s.GetBuffer(1024);
strcpy(p, "abc"); II use the buffer directly
ASSERT(s.GetLength() == 3); II String length = 3
s.ReleaseBuffer(); II Surplus memory released, p is now invalid.
ASSERT(s.GetLength() == 3); II Length still 3

See Also: CString::GetBuffer

CString: : ReverseFind
int ReverseFind(TCHAR ch) const;

Return Value
The index of the last character in this CString object that matches the requested
character; -1 if the character is not found.

Parameters

Remarks

Example

ch The character to search for.

Searches this CString object for the last match of a substring. The function is similar
to the run-time function strrchr.

The following example demonstrates the use of CString: :ReverseFind.

II example for CString::ReverseFind
CString s("abcabc");
ASSERT< s.ReverseFind('b') == 4);

See Also: CString::Find, CString::FindOneOf

CString::Right
CString Right(int nCount) const;

throw(CMemoryException);

Return Value
A CString object that contains a copy of the specified range of characters. Note that
the returned CString object may be empty.

Parameters
nCount The number of characters to extract from this CString object.

1854

Remarks

Example

Extracts the last (that is, rightmost) nCount characters from this CString object and
returns a copy of the extracted substring. If nCount exceeds the string length, then the
entire string is extracted. Right is similar to the Basic RIGHT$ function (except that
indexes are zero-based).

For multibyte character sets (MBCS), nCoullt refers to each 8-bit character; that is, a
lead and trail byte in one multibyte character are counted as two characters.

The following example demonstrates the use of CString: : Right.

II example for CString: :Right
CString s(_T<"abcdef"));
ASSERT< s.Right(2) == _T<"ef"));

See Also: CString::Mid, CString::Left

CString: :SetAt
void SetAt(int nlndex, TCHAR ch);

Parameters

Remarks

nlndex Zero-based index of the character in the CString object. The nlndex
parameter must be greater than or equal to 0 and less than the value returned by
GetLength. The Debug version of the Microsoft Foundation Class Library will
validate the bounds of nlndex; the Release version will not.

ch The character to insert. Must not be '\ 0' .

You can think of a CString object as an array of characters. The SetAt member
function overwrites a single character specified by an index number. SetAt will not
enlarge the string if the index exceeds the bounds of the existing string.

See Also: CString::GetAt, CString::operator []

CString: :SetSysString
BSTR SetSysString(BSTR* pbstr) const;

Return Value
The new string.

Parameters
pbstr A pointer to a character string.

CString::SetSysString

1855

CString::SpanExc1uding

Remarks
Reallocates the BSTR pointed to by pbstr and copies the contents of the CString
object into it, including the NULL character. The value of the BSTR referenced by
pbstr may change. The function throws a CMemoryException if insufficient memory
exists.

This function is normally used to change the value of strings passed by reference for
OLE Automation.

For more information about OLE reallocation functions in Windows, see
::SysReallocStringLen and ::SysFreeString in the Win32 SDK OLE Programmer's
Reference.

CString:: SpanExcluding
CString SpanExcluding(LPCTSTR IpszCharSet) const;

throw(CMemoryException);

Return Value
A substring that contains characters in the string that are not in IpszCharSet, beginning
with the first character in the string and ending with the first character found in the
string that is also in IpszCharSet (that is, starting with the first character in the string
and up to but excluding the first character in the string that is found IpszCharSet). It
returns the entire string if no character in IpszCharSet is found in the string.

Parameters

Remarks

Example

1856

IpszCharSet A string interpreted as a set of characters.

Use this function to search the string for the first occurrence of any character in the
specified set IpszCharSet. SpanExcluding extracts and returns all characters
preceding the first occurrence of a character from IpszCharSet (in other words, the
character from IpszCharSet and all characters following it in the string, are not
returned). If no character from IpszCharSet is found in the string, then
SpanExcluding returns the entire string.

The following function returns the first portion of the src paramo

II Portions are delimited by a semi-colon(;),
II a comma(,), a period(.), a dash(-),
liar a colon(:).

CString GetFirstPart(CString src)
{

return src.SpanExcluding(";,.- :");

See Also: CString::Spanlncluding

CString: :SpanIncluding
CString SpanIncluding(LPCTSTR IpszCharSet) const;

throw(CMemoryException);

Return Value
A substring that contains characters in the string that are in IpszCharSet, beginning
with the first character in the string and ending when a character is found in the string
that is not in IpszCharSet. SpanIncluding returns an empty substring if the first
character in the string is not in the specified set.

Parameters

Remarks

Example

IpszCharSet A string interpreted as a set of characters.

Call this member function to extract characters from the string, starting with the
first character, that are in the set of characters identified by IpszCharSet. If the first
character of the string is not in the character set, then SpanIncluding returns an
empty string. Otherwise, it returns a sequence of consecutive characters which are
in the set.

The following example demonstrates the use of CString::SpanIncluding.

II example for CString::Spanlncluding
CString str("cabbage");
CString res -= str.Spanlncluding("abc");
ASSERT(res == "cabba");
res = str.Spanlncluding("xyz");
ASSERT(res.IsEmpty());

See Also: CString: :SpanExcluding

CString: : TrimLeft

Remarks

void TrimLeft();

Call this member function to trim leading whitespace characters from the string.
Removes newline, space, and tab characters.

For more information, see "Strings Topics" in Visual C++ Programmer's Guide
online.

See Also: CString: : TrimRight, CString: :Mid, CString: :Left, CString: :Right,
CString: :MakeUpper, CString: :MakeLower, CString: :MakeReverse,
CString: :Format

CS tring: :TrimLeft

1857

CString: :TrimRight

CString: : TrimRight
void TrimRight();

Remarks
Call this member function to trim trailing whitespace characters from the string.
Removes trailing newline, space, and tab characters from the string.

For more information, see "Strings Topics" in Visual C++ Programmer's Guide
online.

See Also: CString::TrimLeft, CString::Mid, CString::Left, CString::Right,
CString: :MakeUpper, CString: :MakeLower, CString: : MakeReverse,
CString: :Format

CString:: UnlockBuffer
void UnlockBuffer();

Remarks
Call this member function to unlock the buffer that was previously secured by calling
LockBuffer. UnlockBuffer resets the reference count to 1.

The CString destructor implies UnlockBuffer to ensure that you do not leave the
buffer locked when the destructor is called.

See Also: CString::LockBuffer, CString::GetBuffer, CString::ReleaseBuffer

Operators
CString::operator =

Remarks

1858

const CString& operator =(const CString& stringSrc);
throw(CMemoryException);

const CString& operator =(TCHAR ch);
throw(CMemoryException);

const CString& operator =(const unsigned char* psz);
throw(CMemoryException);

const CString& operator =(LPCWSTR lpsz);
throw(CMemoryException);

const CString& operator =(LPCSTR lpsz);
throw(CMemoryException);

The CString assignment (=) operator reinitializes an existing CString object with
new data. If the destination string (that is, the left side) is already large enough to store
the new data, no new memory allocation is performed. You should be aware that

CString::operator «, »

Example

memory exceptions may occur whenever you use the assignment operator because
new storage is often allocated to hold the resulting CString object.

The following example demonstrates the use of CString::operator =.

II example for CString: :operator =

CString sl, s2; II Empty CString objects

sl = "cat"; II sl = "cat"
52 = 51; II 51 and 52 each ~ "cat"
51 "the " + 51; II Or expressions
sl = I x'; II Or just individual characters

See Also: CString::CString

CString::operator LPCTSTR
operator LPCTSTR () const;

Return Value

Remarks

A character pointer to the string's data.

This useful casting operator provides an efficient method to access the null-terminated
C string contained in a CString object. No characters are copied; only a pointer is
returned. Be careful with this operator. If you change a CString object after you have
obtained the character pointer, you may cause a reallocation of memory that
invalidates the pointer.

CString::operator «, »

Remarks

Example

friend CArchive& operator «(CArchive& ar, const CString& string);
throw(CArchiveException);

friend CArchive& operator »(CArchive& ar, CString& string);
throw(CArchiveException);

friend CDumpContext& operator «(CDumpContext& dc, const CString& string);

The CString insertion «<) operator supports diagnostic dumping and storing to an
archive. The extraction (») operator supports loading from an archive.

The CDumpContext operators are valid only in the Debug version of the Microsoft
Foundation Class Library.

The following example demonstrates the use of CString::operator «, ».
II example for CString::operator «, »

extern CArchive ar;
CString s("abc");

1859

CString::operator +

4foifdef _DEBUG
afxDump «s; II Prints the value (abc)
afxDump «&s; II Prints the address

#endif

if(ar.IsLoading()
ar » s;

else
ar « s;

See Also: CDumpContext

CString::operator +
friend CString operator +(const CString& string 1 ,const CString& string2);

throw(CMemoryException);
friend CString operator +(const CString& string, TCHAR ch);

throw(CMemoryException);
friend CString operator +(TCHAR ch, const CString& string);

throw(CMemoryException);
friend CString operator +(const CString& string, LPCTSTR /psz);

throw(CMemoryException);
friend CString operator +(LPCTSTR /psz, const CString& string);

throw(CMemoryException);

Return Value
A CString object that is the temporary result of the concatenation. This return value
makes it possible to combine several concatenations in the same expression.

Parameters

Remarks

Example

1860

string, string 1, string 2 CString objects to concatenate.

ch A character to concatenate to a string or to concatenate a string to.

/psz A pointer to a null-terminated character string.

The + concatenation operator joins two strings and returns a CString object. One of
the two argument strings must be a CString object. The other can be a character
pointer or a character. You should be aware that memory exceptions may occur
whenever you use the concatenation operator since new storage may be allocated to
hold temporary data.

The following example demonstrates the use of CString::operator +.
II example for CString::operator +
CStri ng sl("abc");
CString s2("def");
ASSERT((s1 + s2) == "abcdef");
CString s3;
s3 = CString("abc") + "def" ; II Correct

CString Comparison Operators

s3 ~ "abc" + "def";
II Wrong! The first argument must be a CString.

See Also: CString: :operator +=

CString::operator +=
const CString& operator +=(const C8tring& string);

throw(CMemoryException);
const CString& operator +=(TCHAR ch);

throw(CMemoryException);
const CString& operator +=(LPCTSTR lpsz);

throw(CMemoryException);

Parameters

Remarks

Example

string A CString to concatenate to this string.

ch A character to concatenate to this string.

lpsz A pointer to a null-terminated string to concatenate to this string.

The += concatenation operator joins characters to the end of this string. The operator
accepts another CString object, a character pointer, or a single character. You should be
aware that memory exceptions may occur whenever you use this concatenation operator
because new storage may be allocated for characters added to this CString object.

The following example demonstrates the use of CString::operator +=.

II example for CString::operator +=
CString s("abc");
ASSERT((s += "def") ~== "abcdef");

See Also: CString::operator +

CString Comparison Operators
BOOL operator ==(const CString& sl, const CString& s2);
BOOL operator ==(const CString& sl, LPCTSTR s2);
BOOL operator ==(LPCTSTR sl, const CString& s2);
BOOL operator !=(const CString& sl, const CString& s2);
BOOL operator !=(const CString& sl, LPCTSTR s2);
BOOL operator !=(LPCTSTR sl, const CString& s2);
BOOL operator « const CString& sl, const CString& s2);
BOOL operator « const CString& sl, LPCTSTR s2);
BOOL operator « LPCTSTR sl, const CString& s2);
BOOL operator >(const CString& sl, const CString& s2);
BOOL operator >(const CString& sl, LPCTSTR s2);

1861

CString::operator []

BOOL operator >(LPCTSTR sl, const CString& s2);
BOOL operator <=(const CString& sl, const CString& s2);
BOOL operator <=(const CString& sl, LPCTSTR s2);
BOOL operator <=(LPCTSTR sl, const CString& s2);
BOOL operator >=(const CString& sl, const CString& s2);
BOOL operator >=(const CString& sl, LPCTSTR s2);
BOOL operator >=(LPCTSTR sl, const CString& s2);

Return Value
Nonzero if the strings meet the comparison condition; otherwise O.

Parameters

Remarks

Example

sl, s2 CString objects to compare.

These comparison operators compare two strings. The operators are a convenient
substitute for the case-sensitive Compare member function.

The following example demonstrates the use of CString Comparison Operators.

II example for CString Comparison Operators
CString sl("abc");
CString s2("abd");
ASSERT(s1 < s2); II Operator is overloaded for both.
ASSERT("ABC" < s1); II CString and char*
ASSERT(s2 > "abe");

CString: : operator []
TCHAR operator [](int nlndex) const;

Parameters

Remarks

Example

1862

nlndex Zero-based index of a character in the string.

You can think of a CString object as an array of characters. The overloaded subscript
([D operator returns a single character specified by the zero-based index in nlndex.
This operator is a convenient substitute for the GetAt member function.

Important You can use the subscript ([]) operator to get the value of a character in a CString,
but you cannot use it to change the value of a character in a CString.

The following example demonstrates the use of CString::operator [].

II example for CString::operator []
CString s("abc");
ASSERT(s[1] == 'b');

See Also: CString::GetAt, CString::SetAt

CStringArray

The CStringArray class supports arrays of CString objects.

The member functions of CStringArray are similar to the member functions of
class CObArray. Because of this similarity, you can use the CObArray reference
documentation for member function specifics. Wherever you see a CObject pointer
as a return value, substitute a CString (not a CString pointer). Wherever you see a
CObject pointer as a function parameter, substitute a LPCTSTR.

CObject* CObArray::GetAt(int <nlndex>) const;

for example, translates to

CString CStringArray::GetAt(int <nlndex>) const;

and

void SetAt(int <nlndex>, CObject* <newElement>)

translates to

void SetAt(int <nlndex>, LPCTSTR <newElement>)

CStringArray incorporates the IMPLEMENT_SERIAL macro to support
serialization and dumping of its elements. If an array of CString objects is stored to
an archive, either with an overloaded insertion operator or with the Serialize member
function, each element is serialized in turn.

Note Before using an array, use SetSize to establish its size and allocate memory for it. If you
do not use SetSize, adding elements to your array causes it to be frequently reallocated and
copied. Frequent reallocation and copying are inefficient and can fragment memory.

If you need a dump of individual string elements in the array, you must set the depth
of the dump context to 1 or greater.

When a CString array is deleted, or when its elements are removed, string memory is
freed as appropriate.

For more information on using CStringArray, see the article "Collections" in
Visual C++ Programmer's Guide online.

#include <afxcoll.h>

CStringArray

1863

CStringArray

CStringArray Class Members

1864

Construction

CStringArray

Bounds

GetSize

GetUpperBound

SetSize

Operations

FreeExtra

RemoveAll

Element Access

GetAt

SetAt

ElementAt

GetData

Growing the Array

SetAtGrow

Add

Append

Copy

Insertion/Removal

InsertAt

RemoveAt

Operators

operator []

Constructs an empty array for CString objects.

Gets number of elements in this array.

Returns the largest valid index.

Sets the number of elements to be contained in this array.

Frees all unused memory above the current upper bound.

Removes all the elements from this array.

Returns the value at a given index.

Sets the value for a given index; array not allowed to grow.

Returns a temporary reference to the element pointer within the array.

Allows access to elements in the array. Can be NULL.

Sets the value for a given index; grows the array if necessary.

Adds an element to the end of the array; grows the array if necessary.

Appends another array to the array; grows the array if necessary.

Copies anolther array to the array; grows the array if necessary.

Inserts an element (or all the elements in another array) at a specified
index.

Removes an element at a specific index.

Sets or gets the element at the specified index.

CStringList

List

The CStringList class supports lists of CString objects. All comparisons are done by
value, meaning that the characters in the string are compared instead of the addresses
of the strings.

The member functions of CStringList are similar to the member functions of class
CObList. Because of this similarity, you can use the CObList reference
documentation for member function specifics. Wherever you see a CObject pointer
as a return value, substitute a CString (not a CString pointer). Wherever you see a
CObject pointer as a function parameter, substitute an LPCTSTR.

CObject*& CObList::GetHead() canst;

for example, translates to

CString& CStringList::GetHead() canst;

and

POSITION AddHead(CObject* <newElement>);

translates to

POSITION AddHead(LPCTSTR <newElement>);

CStringList incorporates the IMPLEMENT_SERIAL macro to support serialization
and dumping of its elements. If a list of CString objects is stored to an archive, either
with an overloaded insertion operator or with the Serialize member function, each
CString element is serialized in turn.

If you need a dump of individual CString elements, you must set the depth of the
dump context to 1 or greater.

When a CStringList object is deleted, or when its elements are removed, the CString
objects are deleted as appropriate.

For more information on using CStringList, see the article "Collections" in
Visual C++ Programmer's Guide online.

#include <afxcoll.h>

CStringList

1865

CStringList

CStringList Class Members

1866

Construction

CStringList

Headrrail Access

GetHead

GetTail

Operations

RemoveHead

RemoveTaiI

Add Head

AddTaiI

RemoveAII

Iteration

GetHeadPosition

GetTaiIPosition

GetNext

GetPrev

Retrieval/Modification

GetAt

SetAt

RemoveAt

Insertion

InsertBefore

InsertAfter

Searching

Find

Findlndex

Status

GetCount

IsEmpty

Constructs an empty list for CString objects.

Returns the head element of the list (cannot be empty).

Returns the tail element of the list (cannot be empty).

Removes the element from the head of the list.

Removes the element from the tail of the list.

Adds an element (or all the elements in another list) to the head of
the list (makes a new head).

Adds an element (or all the elements in another list) to the tail of
the list (makes a new tail).

Removes all the elements from this list.

Returns the position of the head element of the list.

Returns the position of the tail element of the list.

Gets the next element for iterating.

Gets the previous element for iterating.

Gets the element at a given position.

Sets the element at a given position.

Removes an element from this list as specified by position.

Inserts a new element before a given position.

Inserts a new element after a given position.

Gets the position of an element specified by string value.

Gets the position of an element specified by a zero-based index.

Returns the number of elements in this list.

Tests for the empty list condition (no elements).

CSyncObject

The CSyncObject class is a pure virtual class that provides functionality common
to the synchronization objects in Win32. The Microsoft Foundation Class Library
provides several classes derived from CSyncObject. These are CEvent, CMutex,
CCriticalSection, and CSemaphore.

For information on how to use the synchronization objects, see the article
"Multithreading: How to Use the Synchronization Classes" in Visual C++
Programmer s Guide online.

#include <afxmt.h>

CSyncObject Class Members
Construction

CSyncObject

Methods

Lock

Unlock

Attributes

operator
HANDLE

Constructs a CSyncObject object.

Gains access to the synchronization object.

Releases access to the synchronization object.

Gains access to the synchronization object.

Member Functions
CSyncObject: :CSyncObject

CSyncObject(LPCTSTR pstrName);
virtual-CSyncObject();

Parameters
pstrName The name of the object. If NULL, pstrName will be null.

CSyncObject

1867

CSyncObject: :Lock

Remarks
Constructs a synchronization object with the supplied name.

CSyncObject: :Lock
virtual BOOL Lock(DWORD dwTimeout = INFINITE);

Return Value
Nonzero if the function was successful; otherwise o.

Parameters

Remarks

dwTimeout Specifies the amount of time to wait for the synchronization object to
be available (signaled). If INFINITE, Lock will wait until the object is signaled
before returning.

Call this function to gain access to the resource controlled by the synchronization
object. If the synchronization object is signaled, Lock will return successfully
and the thread now owns the object. If the synchronization object is non signaled
(unavailable), Lock will wait for the synchronization object to become signaled
up to the number of milliseconds specified in the dwTimeOut parameter. If the
synchronization object did not become signaled in the specified amount of time,
Lock returns failure.

CSyncObject::operator HANDLE
operator HANDLE() const;

Return Value

Remarks

If successful, the handle of the synchronization object; otherwise, NULL.

Use this operator to get the handle of the CSyncObject object. You can use the handle
to call Windows APIs directly.

CSyncObject:: Unlock
virtual BOOL Unlock() = 0;
virtual BOOL Unlock(LONG lCount, LPLONG lpPrevCount = NULL);

Return Value
Default implementation always returns TRUE.

Parameters
lCount Not used by default implementation.

1868

Remarks

IpPrevCount Not used by default implementation.

The declaration of Unlock with no parameters is a pure virtual function, and must be
overridden by all classes deriving from CSyncObject. The default implementation of
the declaration with two parameters always returns TRUE. This function is called to
release access to the synchronization object owned by the calling thread. The second
declaration is provided for synchronization objects such as semaphores that allow
more than one access of a controlled resource.

CSyncObject:: Unlock

1869

CTabCtrl

CTabCtrl

A "tab control" is analogous to the dividers in a notebook or the labels in a file
cabinet. By using a tab control, an application can define multiple pages for the same
area of a window or dialog box. Each page consists of a set of information or a group
of controls that the application displays when the user selects the corresponding tab.
A special type of tab control displays tabs that look like buttons. Clicking a button
should immediately perform a command instead of displaying a page.

The CTabCtrl class provides the functionality of the Windows common tab control.
This control (and therefore the CTabCtrl class) is available only to programs running
under Windows 95 and Windows NT version 3.51 and later.

For more information on using CTabCtrl, see Technical Note 60 online.

#include <afxcmn.h>

See Also: CHeaderCtrl, CListCtrl

CTabCtrl Class Members

1870

Construction

CTabCtrl

Create

Attributes

GetlmageList

SetlmageList

GetltemCount

Getltem

Setltem

Constructs a CTabCtrl object.

Creates a tab control and attaches it to an instance
of a CTabCtrl object.

Retrieves the image list associated with a tab control.

Assigns an image list to a tab control.

Retrieves the number of tabs in the tab control.

Retrieves information about a tab in a tab control.

Sets some or all of a tab's attributes.

Attributes (continued)

GetltemRect

GetCurSel

SetCurSel

SetltemSize

SetPadding

GetRowCount

GetTooltips

SetTooltips

GetCurFocus

Operations

Insertltem

Deleteltem

DeleteAllItems

AdjustRect

Removelmage

HitTest

Overridables

Drawltem

Retrieves the bounding rectangle for a tab in a tab control.

Determines the currently selected tab in a tab control.

Selects a tab in a tab control.

Sets the width and height of an item.

Sets the amount of space (padding) around each tab's icon
and label in a tab control.

Retrieves the current number of rows of tabs in a tab control.

Retrieves the handle of the tool tip control associated with a
tab control.

Assigns a tool tip control to a tab control.

Retrieves the tab with the current focus of a tab control.

Inserts a new tab in a tab control.

Removes an item from a tab control.

Removes all items from a tab control.

Calculates a tab control's display area given a window rectangle,
or calculates the window rectangle that would correspond to a
given display area.

Removes an image from a tab control's image list.

Determines which tab, if any, is at a specified screen position.

Draws a specified item of a tab control.

Member Functions
CTabCtrl: : AdjustRect

void AdjustRect(BOOL bLarger, LPRECT lpRect);

Parameters
bLarger Indicates which operation to perform. If this parameter is TRUE, lpRect

specifies a display rectangle and receives the corresponding window rectangle.
If this parameter is FALSE, lpRect specifies a window rectangle and receives
the corresponding display rectangle.

lpRect Pointer to a RECT structure that specifies the given rectangle and receives
the calculated rectangle.

CTabCtrl: :AdjustRect

1871

CTabCtrl: :Create

Remarks
Call this function to calculate a tab control's display area given a window rectangle,
or calculate the window rectangle that would correspond to a given display area.

See Also: CTabCtrl::SetltemSize, CTabCtrl::GetItemRect,
CTabCtrl: :AdjustRect

CTabCtrl: : Create
BOOL Create(DWORD dwStyle, const RECT& reet, CWnd* pParentWnd, UINT nID);

Return Value
TRUE if initialization of the object was successful; otherwise FALSE.

Parameters

Remarks

1872

dwStyle Specifies the tab control's style. Apply any combination of tab control styles
to the control.

reet Specifies the tab control's size and position. It can be either a CRect object or a
RECT structure.

pParentWnd Specifies the tab control's parent window, usually a CDialog. It must
not be NULL.

nID Specifies the tab control's ID.

You construct a CTabCtrl object in two steps. First call the constructor, then call
Create, which creates the tab control and attaches it to the CTabCtrl object.

The following styles can be applied to a tab control:

• TCS_BUTTONS Modifies the appearance of the tabs to look like buttons.

• TCS_FIXEDWIDTH Makes all tabs the same width. (By default, the tab control
automatically sizes each tab to fit its icon.) You cannot use this style with the
TCS_RIGHTJUSTIFY style.

• TCS_FOCUSNEVER Specifies that a tab never receives the input focus.

• TCS_FOCUSONBUTTONDOWN Specifies that a tab receives the input focus
when clicked. This style is typically used only with the TCS_BUTTONS style.

• TCS_FORCEICONLEFT Forces the icon to the left, but leaves the tab label
centered. (By default, the control centers the icon and label with the icon to the left
of the label.)

• TCS_FORCELABELLEFT Left-aligns both the icon and label.

• TCS_MULTILINE Causes a tab control to display multiple rows of tabs. Thus
all tabs can be displayed at once. (By default, a tab control displays a single row
of tabs.)

o TCS_OWNERDRAWFIXED Specifies that the parent window draws the tabs in
the control.

o TCS_RIGHTJUSTIFY Right justifies tabs. (By default, tabs are left-justified
within each row.)

o TCS_SHAREIMAGELISTS Specifies that a tab control's image lists are not
destroyed when the control is destroyed.

o TCS_ TOOLTIPS Specifies that the tab control has a tool tip control associated
with it.

o TCS_TABS Tabs appear as tabs, and a border is drawn around the display area.
This style is the default.

o TCS_SINGLELINE Displays only one row of tabs. The user can scroll to see
more tabs, if necessary. This style is the default.

o TCS_RAGGEDRIGHT Does not stretch each row of tabs to fill the entire width
of the control. This style is the default.

In addition, you can apply the following window styles to a tab control:

• WS_ CHILD Creates a child window that represents the tab control. Cannot be
used with the WS_POPUP style.

o WS_ VISIBLE Creates a tab control that is initially visible.

o WS_DISABLED Creates a window that is initially disabled.

o WS_GROUP Specifies the first control of a group of controls in which the user
can move from one control to the next with the arrow keys. All controls defined
with the WS_GROUP style after the first control belong to the same group. The
next control with the WS_GROUP style ends the style group and starts the next
group (that is, one group ends where the next begins).

o WS_ TABSTOP Specifies one of any number of controls through which the user
can move by using the TAB key. The TAB key moves the user to the next control
specified by the WS_TABSTOP style.

See Also: CTabCtrl:: CTabCtrl

CTabCtrl: : CTabCtrl

Remarks

CTabCtrl();

Call this function to construct a CTabCtrl object.

See Also: CTabCtrl:: Create

CTabCtrl: :CTabCtrl

1873

CTabCtrl: : DeleteAllItems

CTabCtrl: : DeleteAllItems
BOOL DeleteAllItems();

Return Value
Nonzero if successful; otherwise O.

Remarks
Call this function to remove all items from a tab control.

See Also: CTabCtrl::DeleteItem

CTabCtrl: : DeleteItem
BOOL DeleteItem(int nltem);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

nltem Zero-based value of the item to delete.

Call this function to remove the specified item from a tab control.

See Also: CTabCtrl::DeleteAllItems

CTabCtrl::DrawItem
void DrawItem(LPDRAWITEMSTRUCT IpDrawltemStruct);

Parameters

Remarks

1874

IpDrawltemStruct A pointer to a DRAWITEMSTRUCT structure describing the
item to be painted.

Called by the framework when a visual aspect of an owner-draw tab control changes.
The itemAction member of the DRAWITEMSTRUCT structure defines the drawing
action that is to be performed.

By default, this member function does nothing. Override this member function to
implement drawing for an owner-draw CTabCtrl object.

The application should restore all graphics device interface (GDI) objects selected for
the display context supplied in IpDrawltemStruct before this member function
terminates.

See Also: CWnd::OnDrawItem

CTabCtrl: : GetCurFocus
int GetCurFocus() const;

Return Value
The zero-based index of the tab with the current focus.

Remarks
Call this function to retrieve the index of the tab with the current focus.

See Also: CTabCtrl::GetCurSel

CTabCtrl: : GetCurSel
int GetCurSel() const;

Return Value
Zero-based index of the selected tab if successful or -1 if no tab is selected.

Remarks
Call this function to retrieve the currently selected tab in a tab control.

See Also: CTabCtrl::SetCurSel, CTabCtrl::GetCurFocus

CTabCtrl: : GetImageList
HIMAGELIST GetImageList() const;

Return Value
The handle of the image list of the tab control if successful; otherwise NULL.

Remarks
Call this function to retrieve the image list associated with a tab control.

See Also: CTabCtrl: :SetImageList, ClmageList

CTabCtrl: : GetItem
BOOL GetItem(int nltem, TC_ITEM* pTabCtrlItem) const;

Return Value
Returns TRUE if successful; FALSE otherwise.

Parameters
nltem Zero-based index of the tab.

CTabCtrl: :GetItem

1875

CTabCtrl::GetItem

Remarks

1876

pTabCtrlItem Pointer to a TC_ITEM structure, used to specify the information to
retrieve. Also used to receive information about the tab. This structure is used with
the Insertltem, Getltem, and Setltem member functions.

Call this function to retrieve information about a tab in a tab control.

When the message is sent, the mask member specifies which attributes to return.
If the mask member specifies the TCIF _TEXT value, the pszText member must
contain the address of the buffer that receives the item text and the cchTextMax
member must specify the size of the buffer.

The TC_ITEM structure is defined as follows:

typedef struct _TC_ITEM {
UINT mask;
UINT lpReservedl; II reserved; do not use
UINT lpReserved2; II reserved; do not use
LPSTR pszText;
int cchTextMax;
int ilmage;
LPARAM lParam;

TC_ITEM;

mask Value specifying which members to retrieve or set. This member can be
TCIF _ALL (meaning all members), zero, or a combination of the following
values:

• TCIF _TEXT The pszText member is valid.

• TCIF _IMAGE The iImage member is valid.

• TCIF _PARAM The IParam member is valid.

pszText Pointer to a null-terminated string containing the tab text if the structure
contains information about a tab. If the structure is receiving information, this
member specifies the address of the buffer that receives the tab text.

cchTextMax Size of the buffer pointed to by pszText. This member is ignored if the
structure is not receiving information.

iImage Index into the tab control's image list, or -1 if there is no image for the tab.

IParam Application-defined data associated with the tab. If there are more than four
bytes of application-defined data per tab, an application must define a structure and
use it instead of the TC_ITEM structure. The first member of the
application-defined structure must be a TC_ITEMHEADER structure. The
TC_ITEMHEADER structure is identical to the TC_ITEM structure, but without
the IParam member. The difference between the size of your structure and the size
of the TC_ITEMHEADER structure should equal the number of extra bytes
per tab.

See Also: CTabCtrl: :Insertltem, CTabCtrl: :Setltem

CTabCtr1: :GetRowCount

CTabCtrl: : GetItemCount
int GetltemCount() const;

Return Value
Number of items in the tab control.

Remarks
Call this function to retrieve the number of tabs in the tab control.

See Also: CTabCtrl::Getltem, CTabCtrl::Setltem

CTabCtrl: : GetItemRect
BOOL GetltemRect(int nltem, LPRECT lpRect) const;

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

nltem Zero-based index of the tab item.

lpRect Pointer to a RECT structure that receives the bounding rectangle of the tab.
These coordinates use the viewport's current mapping mode.

Retrieves the bounding rectangle for the specified tab in a tab control.

See Also: CTabCtrl::SetltemSize, CTabCtrl::AdjustRect

CTabCtrl: : GetRowCount
int GetRowCount() const;

Return Value

Remarks

The number of rows of tabs in the tab control.

Retrieves the current number of rows in a tab control. Only tab controls that have the
TCS_MULTILINE style can have multiple rows of tabs.

See Also: CTabCtrl::Create

1877

CTabCtr1: :GetTooltips

CTabCtrl: : GetTooltips
CWnd* GetTooltips() const;

Return Value

Remarks

Handle of the tool tip control if successful; otherwise NULL.

Retrieves the handle of the tool tip control associated with a tab control. A tab control
creates a tool tip control if it has the TCS_TOOLTIPS style. You can also assign a
tool tip control to a tab control by using the SetTooltips member function.

See Also: CTabCtrl::SetTooltips, CTabCtrl::Create

CTabCtrl: : HitTest
int HitTest(TC_HITTESTINFO* pHitTestlnfo) const;

Return Value
Returns the zero-based index of the tab or -1 if no tab is at the specified position.

Parameters

Remarks

1878

pHitTestlnfo Pointer to a TC_HITTESTINFO structure, which specifies the screen
position to test.

Call this function to determine which tab, if any, is at the specified screen position.

The TC_HITTESTINFO structure is defined as follows:

typedef struct _TC_HITTESTINFO {
POINT pt; II position to hit test, in client coordinates
UINT flags; II receives results of hit test

} TC_HITTESTINFO;

flags Variable that receives the results of a hit test. The tab control sets this member
to one of the following values:

• TCHT_NOWHERE The position is not over a tab.

• TCHT_ONITEM The position is over a tab, but not over its icon or its text.
For owner-drawn tab controls, this value is specified if the position is anywhere
over a tab. TCHT_ONITEM is a bitwise-OR operation on the
TCHT_ONITEMICON and TCHT_ONITEMLABEL values.

• TCHT_ONITEMICON The position is over a tab's icon.

• TCHT_ONITEMLABEL The position is over a tab's text.

CTabCtrl: : InsertItem
BOOL IosertItem(iot nltem, TC_ITEM* pTabCtrlItem);

Return Value
Zero-based index of the new tab if successful; otherwise -1.

Parameters

Remarks

nltem Zero-based index of the new tab.

pTabCtrlItem Pointer to a TC_ITEM structure that specifies the attributes of the tab.
For a description of this structure, see the CTabCtrl::GetItem member function.

Call this function to insert a new tab in an existing tab control.

See Also: CTabCtrl::GetItem, CTabCtrl::SetItem

CTabCtrl: : RemoveImage
void RemoveImage(iot nlmage);

Parameters

Remarks

nlmage Zero-based index of the image to remove.

Call this function to remove the specified image from a tab control's image list. The
tab control updates each tab's image index so that each tab remains associated with the
same image.

See Also: CTabCtrl: : GetImageList, CTabCtrl: :SetImageList

CTabCtrl:: SetCurSel
iot SetCurSel(iot nltem);

Return Value
Zero-based index of the previously selected tab if successful, otherwise -1.

Parameters

Remarks

nltem The zero-based index of the item to be selected.

Selects a tab in a tab control. A tab control does not send a TCN_SELCHANGING
or TCN_SELCHANGE notification message when a tab is selected using this
function. These notifications are sent, using WM_NOTIFY, when the user clicks or
uses the keyboard to change tabs.

See Also: CTabCtrl::GetCurSel, CTabCtrl::GetCurFocus

CTabCtrl: :SetCurSel

1879

CTabCtrl:: SetlmageList

CTabCtrl: :SetImageList
CImageList * SetlmageList(CImageList * plmageList);

Return Value
Returns the handle of the previous image list or NULL if there is no previous image
list.

Parameters

Remarks

plmageList Pointer to the image list to be assigned to the tab control.

Call this function to assign an image list to a tab control.

See Also: CTabCtrl: : GetlmageList, CImageList

CTabCtrl::SetItem
BOOL SetItem(int nltem, TC_ITEM* pTabCtrlItem);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

nltem Zero-based index of the item.

pTabCtrlItem Pointer to a TC_ITEM structure that contains the new item attributes.
The mask member specifies which attributes to set. If the mask member specifies
the TCIF _TEXT value, the pszText member is the address of a null-terminated
string and the cchTextMax member is ignored. For a description of this structure,
see the CTabCtrl: : Getltem member function.

Call this function to set some or all of a tab's attributes.

See Also: CTabCtrl::Insertltem, CTabCtrl::Getltem

CTabCtrl: : SetItemSize
CSize SetltemSize(CSize size);

Return Value
Returns the old width and height of the tab control items.

Parameters
size The new width and height, in pixels, of the tab control items.

1880

Remarks
Call this function to set the width and height of the tab control items.

See Also: CTabCtrl: :AdjustRect, CTabCtrl: : GetItemRect,
CTabCtrl: :SetItemSize

CTabCtrl:: SetPadding
void SetPadding(CSize size);

Parameters

Remarks

size Sets the amount of space (padding) around each tab's icon and label in a tab
control.

Call this function to set the amount of space (padding) around each tab's icon and
label in a tab control.

CTabCtrl:: SetTooltips
void SetTooltips(CTooltipCtrl* pWndTip);

Parameters

Remarks

p WndTip Handle of the tool tip control.

Call this function to assign a tool tip control to a tab control. You can get the tool tip
control associated with a tab control by making a call to GetTooltips.

See Also: CTabCtrl: : GetTooltips

CTabCtrl: :SetTooltips

1881

CTime

CTime

1882

CTime does not have a base class.

A CTime object represents an absolute time and date. The CTime class incorporates
the ANSI time_t data type and its associated run-time functions, including the ability
to convert to and from a Gregorian date and 24-hour time.

CTime values are based on coordinated universal time (UTC), which is equivalent
to Greenwich mean time (GMT). The local time zone is controlled by the TZ
environment variable.

When creating a CTime, field to 0 to indicate that standard time is in effect, or to a
value greater than 0 to indicate that daylight savings time is in effect, or to a value
less than zero to have the C run-time library code compute whether standard time or
daylight savings time is in effect. tm_isdst is a required field. If not set, its value is
undefined and the return value from mktime is unpredictable. If timeptr points to
a tm structure returned by a previous call to asctime, gmtime, or localtime, the
tm_isdst field contains the correct value.

See the Run-Time Library Reference for more information on the time_t data
type and the run-time functions that are used by CTime. Note that CTime
uses the strftime function, which is not supported for Windows dynamic-link
libraries (DLL). Therefore, CTime cannot be used in Windows DLLs.

A companion class, CTimeSpan, represents a time interval-the difference
between two CTime objects.

The CTime and CTimeSpan classes are not designed for derivation. Because there
are no virtual functions, the size of CTime and CTimeSpan objects is exactly 4 bytes.
Most member functions are inline.

For more information on using CTime, see the article "Date and Time" in Visual C++
Programmer's Guide online and "Time Management" in the Run-Time Library
Reference.

#include <afx.h>

See Also: Run-time functions: asctime, _ftime, gmtime, localtime,
strftime, time

CTime Class Members
Construction

CTime

GetCurrentTime

Extraction

GetTime

GetYear

GetMonth

GetDay

GetHour

GetMinute

GetSecond

GetDayOfWeek

Conversion

GetGmtTm

GetLocalTm

Format

FormatGmt

Operators

operator =
operator +
operator +=, -=

operator ==, < , etc.

Archive/Dump

operator «

operator »

Constructs CTime objects in various ways.

Creates a CTime object that represents the current time (static
member function).

Returns a time_t that corresponds to this CTime object.

Returns the year that this CTime object represents.

Returns the month that this CTime object represents (l through 12).

Returns the day that this CTime object represents (l through 31).

Returns the hour that this CTime object represents (0 through 23).

Returns the minute that this CTime object represents (0 through 59).

Returns the second that this CTime object represents (0 through 61).

Returns the day of the week (1 for Sunday, 2 for Monday, and
so forth).

Breaks down a CTime object into components-based on UTC.

Breaks down a CTime object into components-based on the local
time zone.

Converts a CTime object into a formatted string-based on the local
time zone.

Converts a CTime object into a formatted string-based on UTC.

Assigns new time values.

Add and subtract CTimeSpan and CTime objects.

Add and subtract a CTimeSpan object to and from this
CTime object.

Compare two absolute times.

Outputs a CTime object to CArchive or CDumpContext.

Inputs a CTime object from CArchive.

CTime

1883

CTime: :CTime

Member Functions
CTime: :CTime

CTime();
CTime(const CTime& timeSrc);
CTime(time_t time);
CTime(int nYear, int nMonth, int nDay, int nHour, int nMin, int nSec, int nDST = -1);
CTime(WORD wDosDate, WORD wDosTime, int nDST= -1);
CTime(const SYSTEMTIME& sysTime, int nDST= -1);
CTime(const FILETIME&fileTime, int nDST= -1);

Parameters

Remarks

1884

timeSrc Indicates a CTime object that already exists.

time Indicates a time value.

nYear, nMonth, nDay, nHour, nMin, nSec Indicates the date and time values to be
copied into the new CTime object.

nDST Indicates whether daylight savings time is in effect. Can have one of three
values, as follows:

• nDST set to 0 Standard time is in effect.

• nDST set to a value greater than 0 Daylight savings time is in effect.

• nDST set to a value less than 0 The default. Automatically computes whether
standard time or daylight savings time is in effect.

wDosDate, wDosTime MS-DOS date and time values to be converted to a date/time
value and copied into the new CTime object.

sysTime A SYSTEMTIME structure to be converted to a date/time value and copied
into the new CTime object.

file Time A FILETIME structure to be converted to a date/time value and copied into
the new CTime object.

All these constructors create a new CTime object initialized with the specified
absolute time, based on the current time zone.

Each constructor is described below:

• CTime(); Constructs an unitialized CTime object. This constructor allows you to
define CTime object arrays. You should initialize such arrays with valid times
prior to use.

• CTime(const CTime&); Constructs a CTime object from another CTime
value.

• CTime(time_t); Constructs a CTime object from a time_t type.

Example

• CTime(int, int, etc.); Constructs a CTime object from local time components
with each component constrained to the following ranges:

Component Range

nYear 1970-2038*

nMonth 1-12

nDay 1-31

nHour no constraint

nMin no constraint

nSec no constraint

* The upper date limit is 1/18/2038. For a wider range of dates, see COleDateTime.

This constructor makes the appropriate conversion to UTC. The Debug version of
the Microsoft Foundation Class Library asserts if one or more of the year, month,
or day components is out of range. It is your responsibility to validate the
arguments prior to calling.

• CTime(WORD, WORD); Constructs a CTime object from the specified
MS-DOS date and time values.

• CTime(const SYSTEMTIME&); Constructs a CTime object from a
SYSTEMTIME structure.

• CTime(const FILETIME&); Constructs a CTime object from a FILETIME
structure. You most likely will not use CTime FILE TIME initialization directly.
If you use a CFile object to manipulate a file, CFile: :GetStatus retrieves the file
time stamp for you via a CTime object initialized with a FILETIME structure.

For more information on the time_t data type, see the time function in the Run-Time
Library Reference.

For more information, see the SYSTEMTIME and FILETIME structure in the
Win32 SDK Programmer's Reference.

For more information, see the "MS-DOS Date and Time" entry in the Win32 SDK
documentation.

II example for CTime::CTime
time_t osBinaryTime; II C run-time time (defined in <time.h»
time(&osBinaryTime); II Get the current time from the

II operating system.
CTime time!; II Empty CTime. (0 is illegal time value.)
CTime time2 = time!; II Copy constructor.
CTime time3(osBinaryTime); II CTime from C run-time time
CTime time4(1999. 3. 19. 22. 15. 0); II 10:15PM March 19. 1999

See Also: CTime::GetTime, GetCurrentTime, operator =

CTime: :CTime

1885

CTime: : Format

CTime: : Format
CString Format(LPCTSTRpFormat) const;
CString Format(UINT nFormatID) const;

Return Value
A CString that contains the formatted time.

Parameters

Remarks

Example

pFormat A formatting string similar to the printf formatting string. Formatting
codes, preceded by a percent (%) sign, are replaced by the corresponding CTime
component. Other characters in the formatting string are copied unchanged to the
returned string. See the run-time function strftime for details. The value and
meaning of the formatting codes for Format are listed below:

• % D Total days in this CTime

• %H Hours in the current day

• % M Minutes in the current hour

• %S Seconds in the current minute

• % % Percent sign

nFormatID The ID of the string that identifies this format.

Call this member function to create a formatted representation of the date/time value.
If the status of this CTime object is null, the return value is an empty string. If the
status of CTime is invalid, the return value is an empty string.

II example for CTime: :Format and CTime::FormatGmt
CTime t(1999. 3. 19. 22. 15. 0);
II 10:15PM March 19. 1999
CString s = t.Format("%A. %B %d. %Y");
ASSERT(5 == "Friday. March 19.1999");

See Also: CTime: :FormatGmt

CTime: : FormatGmt
CString FormatGmt(LPCTSTR pFormat) const;
CString FormatGmt(UINT nFormatID) const;

Return Value
A CString that contains the formatted time.

1886

CTime: :GetDayOtW eek

Parameters

Remarks

pFor11lat Specifies a formatting string similar to the printf formatting string. See the
run-time function strftime for details.

nFor11latID The ID of the string that identifies this format.

Generates a formatted string that corresponds to this CTime object. The time value is
not converted and thus reflects UTe.

See Also: CTime: :Format

CTime: : GetCurrentTime
static CTime PASCAL GetCurrentTime();

Remarks

Example

Returns a CTime object that represents the current time.

II example for CTime::GetCurrentTime
CTime t = CTime::GetCurrentTime();

CTime: : GetDay
int GetDay() const;

Remarks

Example

Returns the day of the month, based on local time, in the range 1 through 31. This
function calls GetLocalTm, which uses an internal, statically allocated buffer. The
data in this buffer is overwritten as a result of calls to other CTime member functions.

II example for CTime::GetDay. CTime::GetMonth. and CTime::GetYear
CTime t(1999. 3. 19. 22. 15. 0); II 10:15PM March 19. 1999
ASSERT(t.GetDay() == 19);
ASSERT(t.GetMonth() == 3);
ASSERT(t.GetYear() == 1999);

See Also: CTime: : GetDayOfWeek

CTime: : GetDayOfWeek

Remarks

int GetDayOfWeek() const;

Returns the day of the week based on local time; 1 = Sunday, 2 = Monday, ... , 7 =
Saturday. This function calls GetLocalTm, which uses an internal, statically allocated
buffer. The data in this buffer is overwritten as a result of calls to other CTime
member functions.

1887

CTime::GetGmtTm

CTirne: : GetGrntTrn
struct tm* GetGmtTm(struct tm* ptm = NULL) const;

Return Value
A pointer to a filled-in struct tm as defined in the include file TIME.H. The members
and the values they store are as follows:

• tm_sec Seconds

• tm_min Minutes

• tm_hour Hours (0-23)

• tm_mday Day of month (1-31)

• tm_mon Month (0-11 ; January = 0)

• tm-year Year (actual year minus 1900)

• tm_ wday Day of week (1-7; Sunday = 1)

• tm-yday Day of year (0-365; January 1 = 0)

• tm_isdst Always 0

Note The year in struct tm is in the range 70 to 138; the year in the CTime interface is in the
range January 1, 1970 to January 18, 2038 (inclusive).

Parameters

Remarks

Example

1888

ptm Points to a buffer that will receive the time data. If this pointer is NULL, an
internal, statically allocated buffer is used. The data in this default buffer is
overwritten as a result of calls to other CTime member functions.

Gets a struct tm that contains a decomposition of the time contained in this CTime
object. GetGmtTm returns UTe.

This function calls GetLocalTm, which uses an internal, statically allocated buffer.
The data in this buffer is overwritten as a result of calls to other CTime member
functions.

See the example for GetLocalTm.

CTime::GetHour

Remarks

Example

int GetHour() const;

Returns the hour, based on local time, in the range 0 through 23. This function calls
GetLocalTm, which uses an internal, statically allocated buffer. The data in this
buffer is overwritten as a result of calls to other CTime member functions.

II example for CTime::GetHour, CTime::GetMinute, and CTime::GetSecond,
CTime t(1999, 3, 19, 22, 15, 0); II 10:15PM March 19, 1999
ASSERT(t.GetSecond() == 0);
ASSERT(t.GetMinute() -- 15);
ASSERT(t.GetHour() =- 22);

CTime: : GetLocal Tm
struct tm* GetLocalTm(struct tm* ptm = NULL) const;

Return Value
A pointer to a filled-in struct tm as defined in the include file TIME.H. See
GetGmtTm for the structure layout.

Parameters

Remarks

Example

ptm Points to a buffer that will receive the time data. If this pointer is NULL, an
internal, statically allocated buffer is used. The data in this default buffer is
overwritten as a result of calls to other CTime member functions.

Gets a struct tm containing a decomposition of the time contained in this CTime
object. GetLocalTm returns local time.

II example for CTime::GetLocalTm
CTime t(1999, 3, 19, 22, 15, 0); II 10:15PM March 19, 1999
struct tm* osTime; II A pointer to a structure containing time

/I elements.
osTime = t.GetLocalTm(NULL);
ASSERT(osTime->tm_mon == 2); II Note zero-based month!

CTime: :GetLocalTm

1889

CTime: :GetMinute

CTime::GetMinute

Remarks

iot GetMioute() coost;

Returns the minute, based on local time, in the range 0 through 59. This function calls
GetLocalTm, which uses an internal, statically allocated buffer. The data in this
buffer is overwritten as a result of calls to other CTime member functions.

CTime::GetMonth

Remarks

Example

iot GetMooth() coost;

Returns the month, based on local time, in the range 1 through 12 (1 = January). This
function calls GetLocalTm, which uses an internal, statically allocated buffer. The
data in this buffer is overwritten as a result of calls to other CTime member functions.

See the example for GetDay.

CTime: : GetSecond

Remarks

iot GetSecood() coost;

Returns the second, based on local time, in the range 0 through 59. This function calls
GetLocalTm, which uses an internal, statically allocated buffer. The data in this
buffer is overwritten as a result of calls to other CTime member functions.

CTime: : GetTime

Remarks

Example

1890

time_t GetTime() coost;

Returns a time_t value for the given CTime object.

II example for CTime::GetTime
CTime t(1999, 3, 19, 22, 15, 0); II 10:15PM March 19, 1999
time_t osBinaryTime = t.GetTime(); II time_t defined in <time.h>
printf("time_t = %ld\n", osBinaryTime);

See Also: CTime::CTime

CTime: : Get Year

Remarks

Example

int GetYear() const;

Returns the year, based on local time, in the range January 1,1970 to January 18,2038
(inclusive). This function calls GetLocalTm, which uses an internal, statically
allocated buffer. The data in this buffer is overwritten as a result of calls to other
CTime member functions.

See the example for GetDay.

See Also: CTime:: CTime

Operators
CTime: : operator =

Remarks

Example

const CTime& operator =(const CTime& timeSrc);
const CTime& operator =(time_t t);

These overloaded assignment operators copy the source time into this CTime object.

The internal time storage in a CTime object is independent of time zone. Time-zone
conversion is not necessary during assignment.

II example for CTime::operator -
time_t osBinaryTime; II C run-time time (defined in <time.h»
CTime tl = osBinaryTime; II Assignment from time_t
CTime t2 = tl; II Assignment from CTime
See Also: CTime: :CTime

CTime::operator +, -

Remarks

CTime operator +(CTimeSpan timeSpan) const;
CTime operator -(CTimeSpan timeSpan) const;
CTimeSpan operator -(CTime time) const;

CTime objects represent absolute time. CTimeSpan objects represent relative time.
The first two operators allow you to add and subtract CTimeSpan objects to and from
CTime objects. The third allows you to subtract one CTime object from another to
yield a CTimeSpan object.

CTime::operator +,-

1891

CTime::operator +=,-=

Example
II example for CTime::operator +. -
CTime tl(1999. 3. 19. 22. 15. 0); II 10:15PM March 19. 1999
CTime t2(1999. 3. 20. 22. 15. 0); II 10:15PM March 20. 1999
CTimeSpan ts = t2 - tl; II Subtract 2 CTimes
ASSERT(ts.GetTotalSeconds() == 86400L);
ASSERT((tl + ts) == t2); II Add a CTimeSpan to a CTime.
ASSERT((t2 - ts) == tl); II Subtract a CTimeSpan from a Ctime.

CTime::operator +=, --

Remarks

Example

const CTime& operator +=(CTimeSpan timeSpan);
const CTime& operator -=(CTimeSpan timeS pan);

These operators allow you to add and subtract a CTimeSpan object to and from this
CTime object.

II example for CTime::operator -=
CTime t(1999. 3. 19. 22. 15. 0); II 10:15PM March 19. 1999
t += CTimeSpan(0. 1. 0. 0); II 1 hour exactly
ASSERT(t.GetHour() == 23);

CTime Comparison Operators

Remarks

Example

1892

BOOL operator ==(CTime time) const;
BOOL operator !=(CTime time) const;
BOOL operator « CTime time) const;
BOOL operator >(CTime time) const;
BOOL operator <=(CTime time) const;
BOOL operator >=(CTime time) const;

These operators compare two absolute times and return nonzero if the condition is
true; otherwise O.

II example for CTime comparison operators
CTime tl = CTime::GetCurrentTime();
CTime t2 = tl + CTimeSpan(0. 1. 0. 0); II 1 hour later
ASSERT(tl != t2);
ASSERT(tl < t2);
ASSERT(tl <= t2);

CTime: : operators «, »

CTime::operators «, »

Remarks

Example

friend CDumpContext& AFXAPI operator«(CDumpContext& dc, CTime time);
friend CArchive& AFXAPI operator«(CArchive& ar, CTime time);
friend CArchive& AFXAPI operator»(CArchive& ar, CTime& rtime);

The CTime insertion «<) operator supports diagnostic dumping and storing to an
archive. The extraction (») operator supports loading from an archive.

When you send a CTime object to the dump context, the local time is displayed in
readable date-time format.

II example for CTime::operators «~, »
CTime t(1999. 3. 19. 22. 15. 0); II 10:15PM March 19. 1999
afxDump « t « "\n"; II Prints 'CTime("Fri Mar 19 22:15:00 1999")'.

extern CArchive ar;
if(ar.IsLoading())

ar » t;
else

ar « t;

See Also: CArchive, CDumpContext

1893

CTimeSpan

CTimeSpan
CTimeSpan does not have a base class.

A CTimeSpan object represents a relative time span. The CTimeSpan class
incorporates the ANSI time_t data type and its associated run-time functions.
These functions convert seconds to various combinations of days, hours, minutes,
and seconds.

A CTimeSpan object keeps time in seconds. Because the CTimeSpan object is
stored as a signed number in 4 bytes, the maximum allowed span is approximately
± 68 years.

A companion class, CTime, represents an absolute time. A CTimeSpan is the
difference between two CTime values.

The CTime and CTimeSpan classes are not designed for derivation. Because there
are no virtual functions, the size of both CTime and CTimeSpan objects is exactly
4 bytes. Most member functions are inline.

For more information on using CTimeSpan, see the article "Date and Time" in
Visual C++ Programmer's Guide online and "Time Management" in the Run-Time
Library Reference.

#include <afx.h>

See Also: Run-time functions: asctime, _ftime, gmtime, localtime, strftime, time

CTimeSpan Class Members

1894

Construction

CTimeSpan

Extraction

GetDays

GetHours

GetTotalHours

GetMinutes

GetTotalMinutes

GetSeconds

GetTotalSeconds

Conversion

Format

Constructs CTimeSpan objects in various ways.

Returns the number of complete days in this CTimeSpan.

Returns the number of hours in the current day (-23 through 23).

Returns the total number of complete hours in this CTimeSpan.

Returns the number of minutes in the current hour (-59 through 59).

Returns the total number of complete minutes in this CTimeSpan.

Returns the number of seconds in the current minute (-59 through 59).

Returns the total number of complete seconds in this CTimeSpan.

Converts a CTimeSpan into a formatted string.

CTimeSpan::CTimeSpan

Operators

operator =
operator +
operator += -=

operator == < etc.

Archive/Dump

operator «

operator »

Assigns new time-span values.

Adds and subtracts CTimeSpan objects.

Adds and subtracts a CTimeSpan object to and from this
CTimeSpan.

Compares two relative time values.

Outputs a CTimeSpan object to CArchive or CDumpContext.

Inputs a CTimeSpan object from CArchive.

Member Functions
CTimeSpan: : CTimeSpan

CTimeSpan();
CTimeSpan(const CTimeSpan& timeSpanSrc);
CTimeSpan(time_t time);
CTimeSpan(LONG [Days, int nHours, int nMins, int nSecs);

Parameters

Remarks

timeSpanSrc A CTimeSpan object that already exists.

time A time_t time value.

[Days, nHours, nMins, nSecs Days, hours, minutes, and seconds, respectively.

All these constructors create a new CTimeSpan object initialized with the specified
relative time. Each constructor is described below:

• CTimeSpan(); Constructs an uninitialized CTimeSpan object.

• CTimeSpan(const CTimeSpan&); Constructs a CTimeSpan object from
another CTimeSpan value.

• CTimeSpan(time_t); Constructs a CTimeSpan object from a time_t type. This
value should be the difference between two absolute time_t values.

• CTimeSpan(LONG, int, int, int); Constructs a CTimeSpan object from
components with each component constrained to the following ranges:

Component Range

IDays

nHours

nMins

nSecs

0-25,000 (approximately)

0-23

0-59

0-59

1895

CTimeSpan: :Format

Example

Note that the Debug version of the Microsoft Foundation Class Library asserts if one
or more of the time-day components is out of range. It is your responsibility to
validate the arguments prior to calling.

II example for CTimeSpan: :CTimeSpan
CTimeSpan tsl; II Uninitialized time value
CTimeSpan ts2a(tsl); II Copy constructor
CTimeSpan ts2b = tsl; II Copy constructor again
CTimeSpan ts3(100); II 100 seconds
CTimeSpan ts4(0, 1, 5, 12); II 1 hour, 5 minutes, and 12 seconds

CTimeSpan: : Format
CString Format(LPCSTR pFormat) const;
CString Format(LPCTSTR pFormat) const;
CString Format(DINT nID) const;

Return Value
A CString object that contains the formatted time.

Parameters

Remarks

Example

1896

pFormat A formatting string similar to the printf formatting string. Formatting
codes, preceded by a percent (%) sign, are replaced by the corresponding
CTimeSpan component. Other characters in the formatting string are copied
unchanged to the returned string. The value and meaning of the formatting codes
for Format are listed below:

• %D Total days in this CTimeSpan

• %H Hours in the current day

• %M Minutes in the current hour

• %S Seconds in the current minute

• % % Percent sign

nID The ID of the string that identifies this format.

Generates a formatted string that corresponds to this CTimeSpan.

The Debug version of the library checks the formatting codes and asserts if the code is
not in the list above.

II example for CTimeSpan::Format
CTimeSpan ts(3, 1, 5, 12); II 3 days, 1 hour, 5 min, and 12 sec
CString s == ts.Format("Total days: %D, hours: %H, mins: %M, secs: %S");
ASSERT(s == "Tota 1 days: 3, hours: 01, mi ns: 05, secs: 12");

CTimeS pan: :GetSeconds

CTimeSpan: : GetDays

Remarks

Example

LONG GetDays() const;

Returns the number of complete days. This value may be negative if the time span is
negative.

II example for CTimeSpan::GetDays
CTimeSpan ts(3. 1. 5. 12); II 3 days. 1 hour. 5 min. and 12 sec
ASSERT(ts.GetDays() =~ 3);

CTimeSpan: : GetHours

Remarks

Example

int GetHours() const;

Returns the number of hours in the current day. The range is -23 through 23.

II example for CTimeSpan::GetHours
CTimeSpan ts(3. 1. 5. 12); II 3 days. 1 hour. 5 min. and 12 sec
ASSERT(ts.GetHours() == 1);
ASSERT(ts.GetMinutes() 5);
ASSERT(ts.GetSeconds() == 12);

CTimeSpan: : GetMinutes
int GetMinutes() const;

Remarks
Returns the number of minutes in the current hour. The range is -59 through 59.

Example
See the example for GetHours.

CTimeSpan: : GetSeconds
int GetSeconds() const;

Remarks
Returns the number of seconds in the current minute. The range is -59 through 59.

Example
See the example for GetHours.

1897

CTimeSpan: : GetTotalHours

CTimeSpan: : GetTotalHours

Remarks

Example

LONG GetTotalHours() const;

Returns the total number of complete hours in this CTimeSpan.

II example for CTimeSpan::GetTotalHours
CTimeSpan ts(3, I, 5, 12); II 3 days, 1 hour, 5 min, and 12 sec
ASSERT(ts.GetTotalHours() == 73);
ASSERT(ts.GetTotalMinutes() ~- 4385);
ASSERT(ts.GetTotalSeconds() == 263112);

CTimeSpan: : GetTotalMinutes
LONG GetTotalMinutes() const;

Remarks
Returns the total number of complete minutes in this CTimeSpan.

Example
See the example for GetTotalHours.

CTimeSpan: : GetTotalSeconds
LONG GetTotaISeconds() const;

Remarks
Returns the total number of complete seconds in this CTimeSpan.

Example
See the example for GetTotalHours.

Operators
CTimeSpan::operator =

Remarks

1898

const CTimeSpan& operator =(const CTimeSpan& timeSpanSrc);

The overloaded assignment operator copies the source CTimeSpan timeSpanSrc
object into this CTimeSpan object.

CTimeSpan Comparison Operators

Example
II example for CTimeSpan::operator =
CTimeSpan tsl;
CTimeSpan ts2(3, 1, 5, 12); II 3 days, 1 hour, 5 min, and 12 sec
tsl ~ ts2;
ASSERT(tsl == ts2);

See Also: CTimeSpan: :CTimeSpan

CTimeSpan::operator +, -

Remarks

Example

CTimeSpan operator +(CTimeSpan timeSpan) const;
CTimeSpan operator -(CTimeSpan timeSpan) const;

These two operators allow you to add and subtract CTimeSpan objects to and from
each other.

II example for CTimeSpan::operator +, -
CTimeSpan tsl(3, 1, 5, 12); II 3 days, 1 hour, 5 min, and 12 sec
CTimeSpan ts2(100); II 100 seconds
CTimeSpan ts3 = tsl + ts2;
ASSERT(ts3.GetSeconds() == 52); II 6 mins, 52 secs

CTimeSpan::operator +=,

Remarks

Example

const CTimeSpan& operator +=(CTimeSpan timeSpan);
const CTimeSpan& operator -=(CTimeSpan timeSpan);

These operators allow you to add and subtract a CTimeSpan object to and from this
CTimeSpan.

II example for CTimeSpan::operator +=,
CTimeSpan tsl(10); II 10 seconds
CTimeSpan ts2(100); II 100 seconds
ts2 -= tsl;
ASSERT(ts2.GetTotalSeconds() == 90);

CTimeSpan Comparison Operators
BOOL operator ==(CTimeSpan timeSpan) const;
BOOL operator !=(CTimeSpan timeSpan) const;
BOOL operator « CTimeSpan timeSpan) const;
BOOL operator >(CTimeSpan timeSpan) const;
BOOL operator <=(CTimeSpan timeSpan) const;
BOOL operator >=(CTimeSpan timeS pan) const;

1899

CTimeSpan::operators «, »

Remarks

Example

These operators compare two relative time values. They return nonzero if the
condition is true; otherwise O.

II example for CTimeSpan comparison operators
CTimeSpan tsl(100);
CTimeSpan ts2(110);
ASSERT((tsl != ts2) && (tsl < ts2) && (tsl <= ts2));

CTimeSpan::operators «, »

Remarks

Example

1900

friend CDumpContext& AFXAPI operator«(CDumpContext& dc,
... CTimeSpan timeSpan);

friend CArchive& AFXAPI operator«(CArchive& ar, CTimeSpan timeS pan);
friend CArchive& AFXAPI operator»(CArchive& ar, CTimeSpan& rtimeSpan);

The CTimeSpan insertion «<) operator supports diagnostic dumping and storing to
an archive. The extraction (») operator supports loading from an archive.

When you send a CTimeSpan object to the dump context, the value is displayed in an
alphanumeric format that shows days, hours, minutes, and seconds.

II example for CTimeSpan::operators «, »
CTimeSpan ts(3, 1, 5, 12); II 3 days, 1 hour, 5 min, and 12 sec
41ifdef _DEBUG
afxDump « ts « "\n";
41endif
II Prints 'CTimeSpan(3 days, 1 hours, 5 minutes and 12 seconds)'

extern CArchive ar;
if(ar.IsLoading())

a r » ts;
else

ar « ts;

CToolBar

Objects of the class CToolBar are control bars that have a row of bitmapped buttons
and optional separators. The buttons can act like pushbuttons, check-box buttons, or
radio buttons. CToolBar objects are usually embedded members of frame-window
objects derived from the class CFrameWnd or CMDIFrameWnd.

CToolBar: :GetTooIBarCtrl, a member function new to MFC 4.0, allows you to
take advantage of the Windows common control's support for toolbar customization
and additional functionality. CToolBar member functions give you most of the
functionality of the Windows common controls; however, when you call
GetToolBarCtrl, you can give your toolbars even more of the characteristics of
Windows 95 toolbars. When you call GetToolBarCtrl, it will return a reference to
a CToolBarCtrl object. See CToolBarCtrl for more information about designing
toolbars using Windows common controls. For more general information about
common controls, see "Common Controls" in the Windows 95 SDK Programmer's
Reference.

Visual C++ provides you with two methods to create a toolbar. To create a toolbar
resource using the Resource Editor, follow these steps:

I. Create a toolbar resource.

2. Construct the CToolBar object.

3. Call the Create function to create the Windows toolbar and attach it to the
CToolBar object.

4. Call LoadToolBar to load the toolbar resource.

Otherwise, follow these steps:

1. Construct the CToolBar object.

2. Call the Create function to create the Windows toolbar and attach it to the
CToolBar object.

3. Call LoadBitmap to load the bitmap that contains the toolbar button images.

4. Call SetButtons to set the button style and associate each button with an image in
the bitmap.

CToolBar

1901

CToolBar

1902

All the button images in the toolbar are taken from one bitmap, which must contain
one image for each button. All images must be the same size; the default is 16 pixels
wide and 15 pixels high. Images must be side by side in the bitmap.

The SetButtons function takes a pointer to an array of control IDs and an integer that
specifies the number of elements in the array. The function sets each button's ID to the
value of the corresponding element of the array and assigns each button an image
index, which specifies the position of the button's image in the bitmap. If an array
element has the value ID_SEPARATOR, no image index is assigned.

The order of the images in the bitmap is typically the order in which they are drawn
on the screen, but you can use the SetButtonlnfo function to change the relationship
between image order and drawing order.

All buttons in a toolbar are the same size. The default is 24 x 22 pixels, in accordance
with Windows Interface Guidelines for Software Design. Any additional space
between the image and button dimensions is used to form a border around the image.

Each button has one image. The various button states and styles (pressed, up, down,
disabled, disabled down, and indeterminate) are generated from that one image.
Although bitmaps can be any color, you can achieve the best results with images in
black and shades of gray.

Toolbar buttons imitate pushbuttons by default. However, toolbar buttons can also
imitate check-box buttons or radio buttons. Check-box buttons have three states:
checked, cleared, and indeterminate. Radio buttons have only two states: checked
and cleared.

To set an individual button or separator style without pointing to an array, call
GetButtonStyle to retrieve the style, and then call SetButtonStyle instead of
SetButtons. SetButtonStyle is most useful when you want to change a button's
style at run time.

To assign text to appear on a button, call GetButtonText to retrieve the text to
appear on the button, and then call SetButtonText to set the text.

To create a check-box button, assign it the style TBBS_CHECKBOX or use a
CCmdUI object's SetCheck member function in an
ON_UPDATE_COMMAND_UI handler. Calling SetCheck turns a pushbutton
into a check-box button. Pass SetCheck an argument of 0 for unchecked, 1 for
checked, or 2 for indeterminate.

To create a radio button, call a CCmdUI object's SetRadio member function from
an ON_UPDATE_COMMAND_UI handler. Pass SetRadio an argument of 0 for
unchecked or nonzero for checked. In order to provide a radio group's mutually
exclusive behavior, you must have ON_UPDATE_COMMAND_UI handlers for
all of the buttons in the group.

For more information on using CToolBar, see the article "Toolbars" in Visual C++
Programmer's Guide online and Technical Note 31 online, "Control Bars."

#include <afxext.h>

See Also: CToolBarCtrl, CControlBar, CTooIBar::Create,
CToolBar: :LoadBitmap, CToolBar: :SetButtons, CCmdUI: :SetCheck,
CCmdUI: :SetRadio

CToolBar Class Members
Construction

CToolBar

Create

SetSizes

SetHeight

LoadToolBar

LoadBitmap

SetBitmap

SetButtons

Attributes

CommandTolndex

GetltemID

GetltemRect

GetButtonStyle

SetButtonStyle

GetButtonlnfo

SetButtonInfo

GetButtonText

SetButtonText

GetToolBarCtrl

Constructs a CToolBar object.

Creates the Windows toolbar and attaches it to the
CToolBar object.

Sets the sizes of buttons and their bitmaps.

Sets the height of the toolbar.

Loads a toolbar resource created with the resource
editor.

Loads the bitmap containing bitmap-button images.

Sets a bitmapped image.

Sets button styles and an index of button images
within the bitmap.

Returns the index of a button with the given
command ID.

Returns the command ID of a button or separator
at the given index.

Retrieves the display rectangle for the item at the
given index.

Retrieves the style for a button.

Sets the style for a button.

Retrieves the ID, style, and image number of a button.

Sets the ID, style, and image number of a button.

Retrieves the text that will appear on a button.

Sets the text that will appear on a button.

Allows direct access to the underlying common
control.

CToolBar

1903

CToolBar: :CommandTolndex

Member Functions
CToolBar: :CommandToIndex

int CommandTolndex(UINT nIDFind);

Return Value
The index of the button, or -1 if no button has the given command ID.

Parameters

Remarks

nIDFind Command ID of a toolbar button.

This member function returns the index of the first toolbar button, starting at position
0, whose command ID matches nIDFind.

See Also: CToolBar: :GetItemld

CToolBar: : Create
BOOL Create(CWnd* pParentWnd,

... DWORD dwStyle = WS_CHILD I WS_ VISIBLE I CBRS_TOP,

... UINT nID = AFX_IDW_TOOLBAR);

Return Value
Nonzero if successful; otherwise O.

Parameters

1904

pParentWnd Pointer to the window that is the toolbar's parent.

dwStyle The toolbar style. Additional toolbar styles supported are:

• CBRS_TOP Control bar is at top of the frame window.

• CBRS_BOTTOM Control bar is at bottom of the frame window.

• CBRS_NOALIGN Control bar is not repositioned when the parent is resized.

• CBRS_TOOLTIPS Control bar displays tool tips.

• CBRS_SIZE_DYNAMIC Control bar is dynamic.

• CBRS_SIZE_FIXED Control bar is fixed.

• CBRS_FLOATING Control bar is floating.

• CBRS_FLYBY Status bar displays information about the button.

• CBRS_HIDE_INPLACE Control bar is not displayed to the user.

nID The toolbar's child-window ID.

CToolBar: :GetButtonlnfo

Remarks
This member function creates a Windows toolbar (a child window) and associates it
with the CToolBar object. It also sets the toolbar height to a default value.

See Also: CTooIBar::CTooIBar, CTooIBar::LoadBitmap, CTooIBar::SetButtons,
CToolBar: :LoadTooIBar, CControIBar:: CalcDynamicLayout,
CControIBar:: CalcFixedLayout

CToolBar: : CToolBar

Remarks

CToolBar();

This member function constructs a CToolBar object and sets the default sizes.

Call the Create member function to create the toolbar window.

See Also: CTooIBar::Create

CToolB ar: : GetB uttonInfo
void GetButtonInfo(int nlndex, UINT& nID, UINT& nStyle, int& iImage) const;

Parameters

Remarks

nlndex Index of the toolbar button or separator whose information is to be retrieved.

nID Reference to a UINT that is set to the command ID of the button.

nStyle Reference to a UINT that is set to the style of the button.

ilmage Reference to an integer that is set to the index of the button's image within
the bitmap.

This member function retrieves the control ID, style, and image index of the toolbar
button or separator at the location specified by nlndex. Those values are assigned to
the variables referenced by nID, nStyle, and ilmage. The image index is the position
of the image within the bitmap that contains images for all the toolbar buttons. The
first image is at position O.

If nlndex specifies a separator, iImage is set to the separator width in pixels.

See Also: CTooIBar::SetButtonInfo, CTooIBar::GetltemID

1905

CToolBar: :GetButtonStyle

CToo IB ar: : GetB u ttonS ty Ie
UINT GetButtonStyle(int nlndex) const;

Return Value
The style of the button or separator specified by nlndex.

Parameters

Remarks

nlndex The index of the toolbar button or separator style to be retrieved.

Call this member function to retrieve the style of a button or separator on the toolbar.
A button's style determines how the button appears and how it responds to user input.
See SetButtonStyle for examples of button styles.

See Also: CToolBar: :SetButtonStyle

CTooIBar: : GetButtonText
CString GetButtonText(int nlndex) const;
void GetButtonText(int nlndex, CString& rString) const;

Return Value
A CString object containing the button text.

Parameters

Remarks

nlndex Index of the text to be retrieved.

rString A reference to a CString object that will contain the text to be retrieved.

Call this member function to retrieve the text that appears on a button. The second
form of this member function fills a CString object with the string text.

See Also: CTooIBar::SetButtonText, Cstring

CTooIBar: : GetItemID
UINT GetItemID(int nlndex) const;

Return Value
The command ID of the button or separator specified by nlndex.

Parameters
nlndex Index of the item whose ID is to be retrieved.

1906

CToolBar::GetToolBarCtrl

Remarks
This member function returns the command ID of the button or separator specified by
nlndex. Separators return ID_SEPARATOR.

See Also: CToolBar::CommandToIndex, CControIBar::GetCount

CToolB ar: : GetItemRect
virtual void GetItemRect(int nlndex, LPRECT IpRect);

Parameters

Remarks

nlndex Index of the item (button or separator) whose rectangle coordinates are to be
retrieved.

IpRect Address of the RECT structure that will contain the item's coordinates.

This member function fills the RECT structure whose address is contained in IpRect
with the coordinates of the button or separator specified by nlndex. Coordinates are in
pixels relative to the upper-left corner of the toolbar.

Use GetItemRect to get the coordinates of a separator you want to replace with a
combo box or other control.

See Also: CToolBar:: CommandToIndex

CToolBar: : GetToolBarCtrl
CToolBarCtrl& GetToolBarCtrl() const;

Return Value

Remarks

A reference to a CToolBarCtrl object.

This member function allows direct access to the underlying common control.

Use GetToolBarCtrl to take advantage of the functionality of the Windows toolbar
common control, and to take advantage of the support CToolBarCtrl provides for
toolbar customization.

For more information about using common controls, see the article "Control Topics"
in Visual C++ Programmer's Guide online and "Common Controls" in the
Windows 95 SDK Programmer's Reference.

See Also: CToolBarCtrl

1907

CToolBar: :LoadBitmap

CToolBar: :LoadBitmap
BOOL LoadBitmap(LPCTSTR IpszResourceName);
BOOL LoadBitmap(UINT nIDResource);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

IpszResourceName Pointer to the resource name of the bitmap to be loaded.

nIDResource Resource ID of the bitmap to be loaded.

Call this member function to load the bitmap specified by IpszResourceName or
nIDResource. The bitmap should contain one image for each toolbar button. If the
images are not of the standard size (16 pixels wide and 15 pixels high), call SetSizes
to set the button sizes and their images.

See Also: CTooIBar::Create, CTooIBar::SetButtons, CTooIBar::SetSizes,
CToolBar: :LoadToolBar

CToolbar: :LoadToolBar
BOOL LoadToolBar(LPCTSTR IpszResourceName);
BOOL LoadToolBar(UINT nIDResource);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

1908

IpszResourceName Pointer to the resource name of the toolbar to be loaded.

nIDResource Resource ID of the toolbar to be loaded.

Call this member function to load the tool bar specified by IpszResourceName or
nIDResource.

See toolbar editor in the Developer Studio User's Guide online for more information
about creating a toolbar resource.

See Also: CTooIBar::Create, CToolbar::LoadBitmap, CTooIBar::SetButtons

CToolBar::SetButtonlnfo

CToolBar:: SetBitmap
BOOL SetBitmap(HBITMAP hbmlmageWell);

Return Value
Nonzero if successful; otherwise o.

Parameters

Remarks

hbmlmage Well Handle of a bitmap image that is associated with a toolbar.

Call this member function to set the bitmap image for the toolbar. For example, call
SetBitmap to change the bitmapped image after the user takes an action on a
document that changes the action of a button.

CToolB ar: : SetB uttonInfo
void SetButtonInfo(int nlndex, UINT nID, UINT nStyle, int ilmage);

Parameters

Remarks

nlndex Index of the button or separator whose information is to be set.

nID The value to which the button's command ID is set.

nStyle The new button style. The following button styles are supported:

• TBBS_BUTTON Standard pushbutton (default)

• TBBS_SEPARATOR Separator

• TBBS_CHECKBOX Auto check-box button

• TBBS_GROUP Marks the start of a group of buttons

• TBBS_CHECKGROUP Marks the start of a group of check-box buttons

ilmage New index for the button's image within the bitmap.

Call this member function to set the button's command ID, style, and image number.
For separators, which have the style TBBS_SEPARATOR, this function sets the
separator's width in pixels to the value stored in ilmage.

For information on bitmap images and buttons, see the CToolBar Overview and
CToolBar: :LoadBitmap.

See Also: CTooIBar::GetButtonInfo

1909

CToolBar: :SetButtons

CToolBar: :SetButtons
BOOL SetButtons(const UINT* IpIDArray, int nIDCount);

Return Value
Nonzero if successful; otherwise 0.

Parameters

Remarks

IpIDArray Pointer to an array of command Ids. It can be NULL to allocate empty
buttons.

nIDCount Number of elements in the array pointed to by IpIDArray.

This member function sets each toolbar button's command ID to the value specified
by the corresponding element of the array IpIDArray. If an element of the array has
the value ID_SEPARATOR, a separator is created in the corresponding position of
the toolbar. This function also sets each button's style to TBBS_BUTTON and each
separator's style to TBBS_SEPARATOR, and assigns an image index to each button.
The image index specifies the position of the button's image within the bitmap.

You do not need to account for separators in the bitmap because this function does not
assign image indexes for separators. If your toolbar has buttons at positions 0, 1, and 3
and a separator at position 2, the images at positions 0, 1, and 2 in your bitmap are
assigned to the buttons at positions 0, 1, and 3, respectively.

If IpIDArray is NULL, this function allocates space for the number of items specified
by nIDCount. Use SetButtonInfo to set each item's attributes.

See Also: CTooIBar::Create, CTooIBar::SetButtonInfo,
CToolBar: :SetButtonStyle, CToolBar: :LoadToolBar

CTooIBar::SetButtonStyle
void SetButtonStyle(int nlndex, UINT nStyle);

Parameters
nlndex Index of the button or separator whose information is to be set.

nStyle The button style. The following button styles are supported:

• TBBS_BUTTON Standard pushbutton (default)

• TBBS_SEPARATOR Separator

• TBBS_CHECKBOX Auto check-box button

• TBBS_GROUP Marks the start of a group of buttons

• TBBS_CHECKGROUP Marks the start of a group of check-box buttons

1910

Remarks
Call this member function to set the style of a button or separator, or to group buttons.
A button's style determines how the button appears and how it responds to user input.

Before calling SetButtonStyle, call the GetButtonStyle member function to retrieve
the button or separator style.

See Also: CTooIBar::GetButtonStyle

CToolBar: :SetButtonText
BOOL SetButtonText(int nlndex, LPCTSTR IpszText);

Return Value
Nonzero if successful; otherwise O.

Parameters
nlndex Index of the button whose text is to be set.

IpszText Points to the text to be set on a button.

Remarks
Call this function to set the text on a button.

See Also: CTooIBar::GetButtonText

CToolB ar: : SetHeight
void SetHeight(int cyHeight);

Parameters

Remarks

cyHeight The height in pixels of the toolbar.

This member function sets the toolbar's height to the value, in pixels, specified in
cyHeight.

After calling SetSizes, use this member function to override the standard toolbar
height. If the height is too small, the buttons will be clipped at the bottom.

If this function is not called, the framework uses the size of the button to determine
the toolbar height.

See Also: CToolBar: :SetSizes, CToolBar: :SetButtonInfo, CToolBar: :SetButtons

CToolBar: :SetHeight

1911

CToolBar::SetSizes

CToolBar: :SetSizes
void SetSizes(SIZE sizeButton, SIZE sizelmage);

Parameters

Remarks

1912

sizeButton The size in pixels of each button.

sizelmage The size in pixels of each image.

Call this member function to set the toolbar's buttons to the size, in pixels, specified in
sizeButton. The sizelmage parameter must contain the size, in pixels, of the images in
the toolbar's bitmap. The dimensions in sizeButton must be sufficient to hold the
image plus 7 pixels extra in width and 6 pixels extra in height. This function also sets
the toolbar height to fit the buttons.

Call this member function only for toolbars that do not follow Windows lnteiface
Guidelines for Software Design recommendations for button and image sizes.

See Also: CToolBar: : LoadBitmap, CToolBar: :SetButtonInfo,
CToolBar: :SetButtons,

CToolBarCtrl

CToolBarCtrl

The CToolBarCtrl class provides the functionality of the Windows toolbar common
control. This control (and therefore the CToolBarCtrl class) is available only to
programs running under Windows 95 and Windows NT version 3.51 and later.

A Windows toolbar common control is a rectangular child window that contains one
or more buttons. These buttons can display a bitmap image, a string, or both. When
the user chooses a button, it sends a command message to the toolbar's owner
window. Typically, the buttons in a toolbar correspond to items in the application's
menu; they provide a more direct way for the user to access an application's
commands.

CToolBarCtrl objects contain several important internal data structures: a list of
button image bitmaps, a list of button label stings, and a list of TBBUTTON
structures which associate an image and/or string with the position, style, state, and
command ID of the button. Each of the elements of these data structures is referred to
by a zero-based index. Before you can use a CToolBarCtrl object, you must set up
these data structures. The list of strings can only be used for button labels; you cannot
retrieve strings from the toolbar.

To use a CToolBarCtrl object, you will typically follow these steps:

1. Construct the CToolBarCtrl object.

2. Call Create to create the Windows toolbar common control and attach it to the
CToolBarCtrl object.

3. If you want bitmap images for buttons, add the button bitmaps to the toolbar by
calling AddBitmap. If you want string labels for buttons, add the strings to the
toolbar by calling AddString and/or AddStrings.

4. Add button structures to the toolbar by calling AddButtons.

5. If you want tool tips for a toolbar button in an owner window that is not a
CFrameWnd, you need to handle the TTN_NEEDTEXT messages in the
toolbar's owner window as described in "CTooIBarCtrl: Handling Tool Tip
Notifications." If the parent window of the toolbar is derived from CFrameWnd,
tool tips are displayed without any extra effort from you because CFrameWnd
provides a default handler.

CToolBarCtrl

1913

CToolBarCtrl

6. If you want your user to be able to customize the toolbar, handle customization
notification messages in the owner window as described in "CTooIBarCtrl:
Handling Customization Notifications."

You can use SaveState to save the current state of a toolbar control in the registry and
RestoreState to restore the state based on information previously stored in the
registry. In addition to saving the toolbar state between uses of the application,
applications typically store the state before the user begins customizing the toolbar in
case the user later wants to restore the toolbar to its original state.

For more information on using CToolBarCtrl, see Technical Note 60 online.

#include <afxcmn.h>

See Also: CToolBar

CToolBarCtrl Class Members

1914

Construction

CToolBarCtrl

Create

Attributes

IsButtonEnabled

IsButtonChecked

IsButtonPressed

IsButtonHidden

IsButtonIndeterminate

SetState

GetState

GetButton

GetButtonCount

GetItemRect

Constructs a CToolBarCtrl object.

Creates a toolbar control and attaches it to a CToolBarCtrl
object.

Tells whether the specified button in a toolbar control is
enabled.

Tells whether the specified button in a toolbar control is
checked.

Tells whether the specified button in a toolbar control is
pressed.

Tells whether the specified button in a toolbar control is hidden.

Tells whether the state of the specified button in a toolbar
control is indeterminate (gray).

Sets the state for the specified button in a toolbar control.

Retrieves information about the state of the specified button in
a toolbar control, such as whether it is enabled, pressed, or
checked.

Retrieves information about the specified button in a toolbar
control.

Retrieves a count of the buttons currently in the toolbar control.

Retrieves the bounding rectangle of a button in a toolbar
control.

Attributes (continued)

SetButtonStructSize

SetB uttonSize

SetBitmapSize

GetToolTips

SetToolTips

SetOwner

SetRows

GetRows

SetCmdID

GetBitmapFlags

Operations

EnableButton

CheckButton

PressButton

HideButton

Indeterminate

AddBitmap

AddButtons

InsertButton

DeleteButton

CommandToIndex

RestoreState

SaveS tate

Customize

AddString

AddStrings

AutoSize

Specifies the size of the TBBUTTON structure.

Sets the size of the buttons to be added to a toolbar control.

Sets the size of the bitmapped images to be added to a toolbar
control.

Retrieves the handle of the tool tip control, if any, associated
with the toolbar control.

Associates a tool tip control with the toolbar control.

Sets the window to receive notification messages from the
toolbar control.

Sets the number of rows of buttons displayed in the toolbar.

Retrieves the number of rows of buttons currently displayed in
the toolbar.

Sets the command identifier to be sent to the owner window
when the specified button is pressed.

Gets flags associated with the toolbar's bitmap.

Enables or disables the specified button in a toolbar control.

Checks or clears a given button in a toolbar control.

Presses or releases the specified button in a toolbar control.

Hides or shows the specified button in a toolbar control.

Sets or clears the indeterminate (gray) state of the specified
button in a toolbar control.

Adds one or more bitmap button images to the list of button
images available for a toolbar control.

Adds one or more buttons to a toolbar control.

Inserts a button in a toolbar control.

Deletes a button from the toolbar control.

Retrieves the zero-based index for the button associated with
the specified command identifier.

Restores the state of the toolbar control.

Saves the state of the toolbar control.

Displays the Customize Toolbar dialog box.

Adds a new string, passed as a resource ID, to the toolbar's
internal list of strings.

Adds a new string or strings, passed as a pointer to a buffer of
null-separated strings, to the toolbar's internal list of strings.

Resizes a toolbar control.

CToolBarCtrl

1915

CToolBarCtrl

CToolBarCtrl: Handling Tool Tip
Notifications

When you specify the TBSTYLE_TOOLTIPS style, the toolbar creates and manages
a tool tip control. A tool tip is a small pop-up window that contains a line of text
describing a toolbar button. The tool tip is hidden, appearing only when the user puts
the cursor on a toolbar button and leaves it there for approximately one-half second.
The tool tip is displayed near the cursor.

Before the tool tip is displayed, the TTN_NEEDTEXT notification message is sent to
the toolbar's owner window to retrieve the descriptive text for the button. If the
toolbar's owner window is a CFrameWnd window, tool tips are displayed wihout
any extra effort, because CFrameWnd has a default handler for the
TTN_NEEDTEXT notification. If the toolbar's owner window is not derived from
CFrame Wnd, such as a dialog box or form view, you must add an entry to your
owner window's message map and provide a notification handler in the message map.
The entry to your owner window's message map is as follows:

ON_NOTIFY _EX(TTN_NEEDTEXT, 0, memberFxn)

memberFxn The member function to be called when text is needed for this button.

Note that the id of a tool tip is always 0.

In addition to the TTN_NEEDTEXT notification, a tool tip control can send the
following notifications to a toolbar control:

Notification

TTN_NEEDTEXTA

TTN_NEEDTEXTW

Meaning

Tool tip control requires ASCII text (Win95 only)

Tool tip control requires UNICODE text (Windows NT only)

For an example handler function and more information about enabling tool tips, see
"Tool Tips" in Visual C++ Programmer's Guide online.

CToolBarCtrl: Handling Customization
Notifications

1916

A Windows toolbar common control has built-in customization features, including a
system-defined customization dialog box, which allow the user to insert, delete, or
rearrange toolbar buttons. The application determines whether the customization
features are available and controls the extent to which the user can customize the
toolbar.

You can make these customization features available to the user by giving the toolbar
the CCS_ADJUSTABLE style. The customization features allow the user to drag a
button to a new position or to remove a button by dragging it off the toolbar. In
addition, the user can double-click the toolbar to display the Customize Toolbar dialog
box, which allows the user to add, delete, and rearrange toolbar buttons. The
application can display the dialog box by using the Customize member function.

The toolbar control sends notification messages to the parent window at each step in
the customization process. If the user holds the SHIff key down and begins dragging
a button, the toolbar automatically handles the drag operation. The toolbar sends the
TBN_QUERYDELETE notification message to the parent window to determine
whether the button may be deleted. The drag operation ends if the parent window
returns FALSE. Otherwise, the toolbar captures mouse input and waits for the user to
release the mouse button.

When the user releases the mouse button, the toolbar control determines the location
of the mouse cursor. If the cursor is outside the toolbar, the button is deleted. If the
cursor is on another toolbar button, the toolbar sends the TBN_QUERYINSERT
notification message to the parent window to determine if a button may be inserted to
the left of the given button. The button is inserted if the parent window returns
TRUE; otherwise, it is not. The toolbar sends the TBN_TOOLBARCHANGE
notification message to signal the end of the drag operation.

If the user begins a drag operation without holding down the SHIff key, the toolbar
control sends the TBN_BEGINDRAG notification message to the owner window. An
application that implements its own button-dragging code can use this message as a
signal to begin a drag operation. The toolbar sends the TBN_ENDDRAG notification
message to signal the end of the drag operation.

A toolbar control sends notification messages when the user customizes a toolbar by
using the Customize Toolbar dialog box. The toolbar sends the
TBN_BEGINADJUST notification message after the user double-clicks the toolbar,
but before the dialog box is created. Next, the toolbar begins sending a series of
TBN_QUERYINSERT notification messages to determine whether the toolbar
allows buttons to be inserted. When the parent window returns TRUE, the toolbar
stops sending TBN_QUERYINSERT notification messages. If the parent window
does not return TRUE for any button, the toolbar destroys the dialog box.

Next, the toolbar control determines if any buttons may be deleted from the toolbar by
sending one TBN_QUERYDELETE notification message for each button in the
toolbar. The parent window returns TRUE to indicate that a button may be deleted;
otherwise, it returns FALSE. The toolbar adds all toolbar buttons to the dialog box,
but grays those that may not be deleted.

Whenever the toolbar control needs information about a button in the Customize
Toolbar dialog box, it sends the TBN_GETBUTTONINFO notification message,
specifying the index of the button for which it needs information and the address of a

CToolBarCtrl

1917

CToolBarCtrl

1918

TBNOTIFY structure. The parent window must fill the structure with the relevant
information.

The Customize Toolbar dialog box includes a Help button and a Reset button. When
the user chooses the Help button, the toolbar control sends the TBN_ CUSTHELP
notification message. The parent window should respond by displaying help
information. The dialog box sends the TBN_RESET notification message when the
user selects the Reset button. This message signals that the toolbar is about to
reinitialize the dialog box.

These messages are all WM_NOTIFY messages, and they can be handled in your
owner window by adding message-map entries of the following form to your owner
window's message map:

ON_NOTIFY(wNotifyCode, idControl, memberFxn)

wNotifyCode Notification message identifier code, such as TBN_BEGINADJUST.

idControl The identifier of the control sending the notification.

memberFxn The member function to be called when this notification is received.

Your member function would be declared with the following prototype:

afx_msg void memberFxn(NMHDR * pNotifyStruct, LRESULT * result);

If the notification message handler returns a value, it should put it in the LRESULT
pointed to by result.

For each message, pNotifyStruct points to either an NMHDR structure or a
TBNOTIFY structure. These structures are described below:

The NMHDR structure contains the following members:

typedef struct tagNMHDR {
HWND hwndFrom; II handle of control sending message
UINT idFrom; II identifier of control sending message
UINT code; II notification code; see below

NMHDR;

hwndFrom Window handle of the control that is sending the notification. To convert
this handle to a CWnd pointer, use CWnd::FromHandle.

idFrom Identifier of the control sending the notification.

code Notification code. This member can be a value specific to a control type, such
as TBN_BEGINADJUST or TTN_NEEDTEXT, or it can be one of the common
notification values listed below:

• NM_CLICK The user has clicked the left mouse button within the control.

• NM_DBLCLK The user has double-clicked the left mouse button within the
control.

• NM_KILLFOCUS The control has lost the input focus.

• NM_OUTOFMEMORY The control could not complete an operation
because there is not enough memory available.

• NM_RCLICK The user has clicked the right mouse button within the control.

• NM_RDBLCLK The user has double-clicked the right mouse button within
the control.

• NM_RETURN The control has the input focus, and the user has pressed the
ENTER key.

• NM_SETFOCUS The control has received the input focus.

The TBNOTIFY structure contains the following members:

typedef struct
NMHDR hdr; II information common to all WM_NOTIFY messages
int iltem; II index of button associated with notification
TBBUTTON tbButton; II info about button associated with notification
int cchText; II count of characters in button text
LPSTR lpszText; II address of button text

TBNOTIFY. FAR* LPTBNOTIFY;

hdr Information common to all WM_NOTIFY messages.

iItem Index of button associated with notification.

tbButton TBBUTTON structure that contains information about the toolbar button
associated with the notification.

cchText Count of characters in button text.

IpszText Pointer to button text.

The notifications the toolbar sends are as follows:

• TBN_BEGINADJUST Sent when the user begins customizing a toolbar control.
The pointer points to an NMHDR structure that contains information about the
notification. The handler doesn't need to return any specific value.

• TBN_BEGINDRAG Sent when the user begins dragging a button in a toolbar
control. The pointer points to a TBNOTIFY structure. The iItem member contains
the zero-based index of the button being dragged. The handler doesn't need to
return any specific value.

• TBN_ CUSTHELP Sent when the user chooses the Help button in the Customize
Toolbar dialog box. No return value. The pointer points to an NMHDR structure
that contains information about the notification message. The handler doesn't need
to return any specific value.

• TBN_ENDADJUST Sent when the user stops customizing a toolbar control. The
pointer points to an NMHDR structure that contains information about the
notification message. The handler doesn't need to return any specific value.

CToolBarCtrl

1919

CToolBarCtrl: :AddBitmap

• TBN_ENDDRAG Sent when the user stops dragging a button in a toolbar
control. The pointer points to a TBNOTIFY structure. The iItem member contains
the zero-based index of the button being dragged. The handler doesn't need to
return any specific value.

• TBN_GETBUTTONINFO Sent when the user is customizing a toolbar control.
The toolbar uses this notification message to retrieve information needed by the
Customize Toolbar dialog box. The pointer points to a TBNOTIFY structure. The
iItem member specifies the zero-based index of a button. The pszText and cchText
members specify the address and length, in characters, of the current button text.
An application should fill the structure with information about the button. Return
TRUE if button information was copied to the structure, or FALSE otherwise.

• TBN_QUERYDELETE Sent while the user is customizing a toolbar to
determine whether a button may be deleted from a toolbar control. The pointer
points to a TBNOTIFY structure. The iItem member contains the zero-based
index of the button to be deleted. Return TRUE to allow the button to be deleted or
FALSE to prevent the button from being deleted.

• TBN_QUERYINSERT Sent while the user is customizing a toolbar control to
determine whether a button may be inserted to the left of the given button. The
pointer points to a TBNOTIFY structure. The iItem member contains the
zero-based index of the button to be inserted. Return TRUE to allow a button to be
inserted in front of the given button or FALSE to prevent the button from being
inserted.

• TBN_RESET Sent when the user resets the content of the Customize Toolbar
dialog box. The pointer points to an NMHDR structure that contains information
about the notification message. The handler doesn't need to return any specific
value.

• TBN_TOOLBARCHANGE Sent after the user has customized a toolbar control.
The pointer points to an NMHDR structure that contains information about the
notification message. The handler doesn't need to return any specific value.

Member Functions
CToolBarCtrl: : AddBitmap

int AddBitmap(int nNumButtons, UINT nBitmapID);
int AddBitmap(int nNumButtons, CBitmap* pBitmap);

Return Value
Zero-based index of the first new image if successful; otherwise -1.

Parameters
nNumButtons Number of button images in the bitmap.

1920

CToolBarCtrl::AddButtons

Remarks

nBitmapID Resource identifier of the bitmap that contains the button image
or images to add.

pBitmap Pointer to the CBitmap object that contains the button image or images
to add.

Call this function to add one or more button images to the list of button images stored
in the toolbar control. You can use the Windows API CreateMappedBitmap to map
colors before adding the bitmap to the toolbar.

If you pass a pointer to a CBitMap object, you must ensure that the bitmap is not
destroyed until after the toolbar is destroyed.

See Also: CToolBarCtrl: :AddButtons, CToolBarCtrl: :InsertButton,
CToolBarCtrl: :AddString, CToolBarCtrl: :AddStrings

CToolBarCtrl: : AddButtons
BOOL AddButtons(int nNumButtons, LPTBBUTTON /pButtons);

Return Value
Nonzero if successful; otherwise zero.

Parameters

Remarks

nNumButtons Number of buttons to add.

/pButtons Address of an array of TBBUTTON structures that contains information
about the buttons to add. There must be the same number of elements in the array
as buttons specified by nNumButtons.

Call this function to add one or more buttons to a toolbar control.

The /pButtons pointer points to an array of TBBUTTON structures. Each
TBBUTTON structure associates the button being added with the button's style,
image and/or string, command ID, state, and user-defined data:

typedef struct _TBBUTTON {
int iBitmap; II zero-based index of button image
int idCommand; II command to be sent when button pressed
BYTE fsState; II button state--see below
BYTE fsStyle; II button style--see below
DWORD dwData; II application-defined value
int iString; II zero-based index of button label string

TBBUTTON;

The members are as follows:

iBitmap Zero-based index of button image. NULL if no image for this button.

1921

CToolBarCtrl::AddButtons

1922

idCommand Command identifier associated with the button. This identifier is sent
in a WM_ COMMAND message when the button is chosen. If the fsStyle member
has the TBSTYLE_SEP value, this member must be zero.

fsState Button state flags. It can be a combination of the values listed below:

• TBSTATE_CHECKED The button has the TBSTYLE_CHECKED style
and is being pressed.

• TBSTATE_ENABLED The button accepts user input. A button that does not
have this state does not accept user input and is grayed.

• TBSTATE_HIDDEN The button is not visible and cannot receive user input.

• TBSTATE_INDETERMINATE The button is grayed.

• TBSTATE_PRESSED The button is being pressed.

• TBSTATE_ WRAP A line break follows the button. The button must also
have the TBSTATE_ENABLED state.

fsStyle Button style. It can be a combination of the values listed below:

• TBSTYLE_BUTTON Creates a standard push button.

• TBSTYLE_CHECK Creates a button that toggles between the pressed and
unpressed states each time the user clicks it. The button has a different
background color when it is in the pressed state.

• TBSTYLE_CHECKGROUP Creates a check button that stays pressed until
another button in the group is pressed.

• TBSTYLE_GROUP Creates a button that stays pressed until another button
in the group is pressed.

• TBSTYLE_SEP Creates a separator, providing a small gap between button
groups. A button that has this style does not receive user input.

dwData User-defined data.

iString Zero-based index of the string to use as the button's label. NULL if there is
no string for this button.

The image and/or string whose index you provide must have previously been added to
the toolbar control's list using AddBitmap, AddString, and/or AddStrings.

See Also: CTooIBarCtrl::lnsertButton, CTooIBarCtrl::DeleteButton,
CToolBarCtrl: :AddBitmap, CToolBarCtrl: :AddString,
CToolBarCtrl: :AddStrings

CToolBarCtrl::AddStrings

CToolBarCtrl: : AddString
int AddString(UINT nStringID);

Return Value
The zero-based index of the first new string added if successful; otherwise -1.

Parameters

Remarks

nStringID Resource identifier of the string resource to add to the toolbar control's
string list.

Call this function to add a new string, passed as a resource ID, to the toolbar's internal
list of strings.

See Also: CToolBarCtrl: :AddStrings, CToolBarCtrl: :AddButtons,
CToolBarCtrl: :InsertButton, CToolBarCtrl: :AddBitmap

CToolBarCtrl: : AddStrings
int AddStrings(LPCTSTR IpszStrings);

Return Value
The zero-based index of the first new string added if successful; otherwise -1

Parameters

Remarks

ipszStrings Address of a buffer that contains one or more null-terminated strings to
add to the toolbar's string list. The last string must be terminated with two null
characters.

Call this function to add a new string or strings to the list of strings available for a
toolbar control. Strings in the buffer must be separated by a null character.

You must ensure that the last string has two null terminators. To properly format a
constant string, you might write it as:

or:

II one null added automatically
lpszStrings ... "Only one string to add\0";

II adds three strings with one call
lpszStrings = "String 1\0String 2\0String 3\0";

You should not pass a CString object to this function since it is not possible to have
more than one null character in a CString.

See Also: CToolBarCtrl: :AddString, CToolBarCtrl: :AddButtons,
CToolBarCtrl: :InsertButton, CToolBarCtrl: :AddBitmap

1923

CToolBarCtrl::AutoSize

CToolBarCtrl: :AutoSize

Remarks

void AutoSize();

Call this function to resize the entire toolbar control. You should call this function
when the size of the parent window changes or when the size of the toolbar changes
(such as when you set the button or bitmap size, or add strings).

See Also: CTooIBarCtrI: :SetBitmapSize, CTooIBarCtrI: :SetButtonSize,
CTooIBarCtrI: :AddString, CTooIBarCtrl: :AddStrings

CTooIBarCtrl::CheckButton
BOOL CheckButton(int nID, BOOL bCheck = TRUE);

Return Value
Nonzero if successful; otherwise zero.

Parameters

Remarks

nID Command identifier of the button to check or clear.

bCheck TRUE to check the button, FALSE to clear it.

Call this function to check or clear a given button in a toolbar control. When a button
has been checked, it appears to have been pressed. If you want to change more than
one button state, consider calling SetS tate instead.

See Also: CTooIBarCtrI: :IsButtonChecked, CTooIBarCtrI: : EnableButton,
CTooIBarCtrI: :PressButton, CTooIBarCtrI: :HideButton,
CTooIBarCtrI: : Indeterminate, CTooIBarCtrI: :GetState, CTooIBarCtrI: :SetState

CToolB arCtrl: : CommandToIndex
UINT CommandToIndex(UINT nID) const;

Return Value
The zero-based index for the button associated with the command ID.

Parameters

Remarks

1924

nID Command ID whose button index you want to find.

Call this function to retrieve the zero-based index for the button associated with the
specified command identifier.

CToolBarCtrl: :Create

See Also: CTooIBarCtrl::SetCmdID, CTooIBarCtrl::GetButton,
CToolBarCtrl: :AddButtons, CToolBarCtrl: :InsertButton

CToolBarCtrl: : Create
BOOL Create(DWORD dwStyle, const RECT& reet, CWnd* pParentWnd, UINT nlD);

Return Value
Nonzero if successful; otherwise zero.

Parameters

Remarks

dwStyle Specifies the toolbar control's style. Toolbars must always have the
WS_CHILD style. In addition, you can specify any combination of toolbar styles
and window styles as described under Remarks.

reet Optionally specifies the toolbar control's size and position. It can be either a
CRect object or a RECT structure.

pParentWnd Specifies the toolbar control's parent window. It must not be NULL.

nlD Specifies the toolbar control's ID.

You construct a CToolBarCtrl in two steps. First call the constructor, then call
Create, which creates the toolbar control and attaches it to the CToolBarCtrl object.

The toolbar control automatically sets the size and position of the toolbar window.
The height is based on the height of the buttons in the toolbar. The width is the same
as the width of the parent window's client area. The CCS_TOP and CCS_BOTTOM
styles determine whether the toolbar is positioned along the top or bottom of the client
area. By default, a toolbar has the CCS_TOP style.

Apply the following window styles to a toolbar control.

• WS_ CHILD Always

• WS_ VISIBLE Usually

• WS_DISABLED Rarely

Next, you may want to apply one or more of the common control styles:

• CCS_ADJUSTABLE Allows toolbars to be customized by the user. If this style
is used, the toolbar's owner window must handle the customization notification
messages sent by the toolbar, as described in "CTooIBarCtrl: Handling
Customization Notifications."

• CCS_BOTTOM Causes the control to position itself at the bottom of the parent
window's client area and sets the width to be the same as the parent window's
width.

1925

CToolB arCtrl: :CToolB arCtrl

• CCS_NODIVIDER Prevents a two-pixel highlight from being drawn at the top
of the control.

• CCS_NOHILITE Prevents a one-pixel highlight from being drawn at the top of
the control.

• CCS_NOMOVEY Causes the control to resize and move itself horizontally, but
not vertically, in response to a WM_SIZE message. If the CCS_NORESIZE style
is used, this style does not apply.

• CCS_NOPARENTALIGN Prevents the control from automatically moving to
the top or bottom of the parent window. Instead, the control keeps its position
within the parent window despite changes to the size of the parent window. If the
CCS_TOP or CCS_BOTTOM style is also used, the height is adjusted to the
default, but the position and width remain unchanged.

• CCS_NORESIZE Prevents the control from using the default width and height
when setting its initial size or a new size. Instead, the control uses the width and
height specified in the request for creation or sizing.

• CCS_TOP Causes the control to position itself at the top of the parent window's
client area and sets the width to be the same as the parent window's width.
Toolbars have this style by default.

Finally, you may want to apply one or both of the following toolbar control styles to a
toolbar control:

• TBSTYLE_TOOLTIPS Causes the toolbar to create and manage a tool tip
control. A tool tip is a small pop-up window that contains a line of text describing a
toolbar button. It appears only when the user puts the cursor on a toolbar button
and leaves it there for approximately one-half second. The tool tip is displayed near
the cursor. If you use this style, you must handle tool tip notifications as described
in "CTooIBarCtrl: Handling Tool Tip Notifications."

• TBSTYLE_ WRAPABLE Creates a toolbar control that can have multiple lines
of buttons. Toolbar buttons can "wrap" to the next line when the toolbar becomes
too narrow to include all buttons on the same line.

See Also: CTooIBarCtrl::CTooIBarCtrl, CTooIBarCtrl::SetBuUonStructSize

CToolBarCtrl: :CToolBarCtrl

Remarks

1926

CToolBarCtrl();

Constructs a CToolBarCtrl object. You must call Create to make the toolbar usable.

See Also: CToolBarCtrl: :Create

CToolBarCtrl::EnableButton

CToolBarCtrl: : Customize

Remarks

void Customize();

Call this function to display the Customize Toolbar dialog box. This dialog box allows
the user to customize the toolbar by adding and deleting buttons.

To support customization, your toolbar's parent window must handle the
customization notification messages as described in "CTooIBarCtrl: Handling
Customization Notifications." Your toolbar must also have been created with the
CCS_ADJUSTABLE style, as described in CTooIBarCtrl::Create.

See Also: "CTooIBarCtrl: Handling Customization Notifications"

CToolBarCtrl: : DeleteButton
BOOL DeleteButton(int nlndex);

Return Value
Nonzero if successful; otherwise zero.

Parameters

Remarks

nlndex Zero-based index of the button to delete.

Call this function to delete a button from the toolbar control.

See Also: CToolBarCtrl: :AddButtons, CToolBarCtrl: :AutoSize,
CToolBarCtrl: : InsertButton

CToolBarCtrl: : EnableButton
BOOL EnableButton(int nID, BOOL bEnable = TRUE);

Return Value
Nonzero if successful; otherwise zero.

Parameters

Remarks

nID Command identifier of the button to enable or disable.

bEnable TRUE to enable the button; FALSE to disable the button.

Call this function to enable or disable the specified button in a toolbar control. When a
button has been enabled, it can be pressed and checked. If you want to change more
than one button state, consider calling SetS tate instead.

1927

CToolBarCtrl: :GetBitmapFlags

See Also: CToolBarCtrl: :IsButtonEnabled, CToolBarCtrl: :CheckButton,
CToolBarCtrl: :PressButton, CToolBarCtrl: : HideButton,
CToolBarCtrl: : Indeterminate, CToolBarCtrl: :GetState, CToolBarCtrl: :SetState

CToolBarCtrl: : GetBitmapFlags
UINT GetBitmapFlags() const;

Return Value

Remarks

A UINT that has the TBBF _LARGE flag set if the display can support large toolbar
bitmaps, clear otherwise.

Call this function to retrieve the bitmap flags from the toolbar. You should call it after
creating the toolbar but before adding bitmaps to the tool bar.

The return value indicates whether the display supports large bitmaps or not. If the
display supports large bitmaps and if you choose to use them, call SetBitmapSize and
SetButtonSize before adding your large bitmap using AddBitmap.

See Also: CToolBarCtrl: :AddBitmap, CToolBarCtrl: :SetBitmapSize,
CToolBarCtrl: :SetButtonSize

CToolBarCtrl: : GetButton
BOOL GetButton(int nlndex, LPTBBUTTON IpButton) const;

Return Value
Nonzero if successful; otherwise zero.

Parameters

Remarks

1928

nlndex Zero-based index of the button for which to retrieve information.

IpButton Address of the TBBUTTON structure that is to receive a copy of the button
information. See CToolBarCtrl: :AddButtons for information about the
TBBUTTON structure.

Call this function to retrieve information about the specified button in a toolbar
control.

See Also: CToolBarCtrl: : GetState, CToolBarCtrl: :SetState,
CToolBarCtrl: : GetButtonCount, CToolBarCtrl: : GetltemRect,
CToolBarCtrl: :CommandToIndex, CToolBarCtrl: :AddButtons,
CToolBarCtrl: :InsertButton

CToolBarCtrl: :GetRows

CToolBarCtrl: : GetButtonCount
int GetButtonCount() const;

Return Value

Remarks

The count of the buttons.

Call this function to retrieve a count of the buttons currently in the toolbar control.

See Also: CTooIBarCtrl::GetButton, CTooIBarCtrl::GetState,
CTooIBarCtrl:: GetItemRect, CToolBarCtrl: :AddButtons,
CToolBarCtrl: :InsertButton, CToolBarCtrl: :DeleteButton

CToolBarCtrl: : GetItemRect
BOOL GetItemRect(int nlndex, LPRECT IpRect) const;

Return Value
Nonzero if successful; otherwise zero.

Parameters

Remarks

nlndex Zero-based index of the button for which to retrieve information.

IpRect Address of a RECT structure or a CRect object that receives the coordinates
of the bounding rectangle.

Call this function to retrieve the bounding rectangle of a button in a toolbar control.
This function does not retrieve the bounding rectangle for buttons whose state is set to
TBSTATE_HIDDEN.

See Also: CTooIBarCtrl::GetButton, CTooIBarCtrl::GetButtonCount,
CToolBarCtrl: :GetState, CToolBarCtrl: :SetButtonSize,
CToolBarCtrl: :SetBitmapSize

CToolBarCtrl: : GetRows
int GetRows() const;

Return Value

Remarks

Number of rows of buttons currently displayed on the toolbar.

Call this function to retrieve the number of rows of buttons currently displayed by the
toolbar control. Note that the number of rows will always be one unless the toolbar
was created with the TBSTYLE_ WRAPABLE style.

1929

CToolBarCtrl::GetState

See Also: TBSTYLE_ WRAPABLE in CToolBarCtrl: : Create,
CToolBarCtrl: :SetRows

CToolBarCtrl: : GetS tate
int GetState(int nID) const;

Return Value
The button state information if successful or -1 otherwise. The button state
information can be a combination of the values listed in CToolBarCtrl: :AddButtons.

Parameters

Remarks

nID Command identifier of the button for which to retrieve information.

Call this function to retrieve information about the state of the specified button in a
toolbar control, such as whether it is enabled, pressed, or checked.

This function is especially handy if you want to retrieve more than one of the button
states. To just retrieve one state, use one of the following member functions:
IsButtonEnabled, IsButtonChecked, IsButtonPressed, IsButtonHidden, or
IsButtonlndeterminate. However, the GetState member function is the only way to
detect the TBSTATE_ WRAP button state.

See Also: CToolBarCtrl: :SetState, CToolBarCtrl: : GetltemRect,
CToolBarCtrl: :IsButtonEnabled, CToolBarCtrl: :IsButtonChecked,
CToolBarCtrl: :IsButtonPressed, CToolBarCtrl: :IsButtonHidden,
CToolBarCtrl: :IsButtonlndeterminate

CTooIBarCtrl::GetTooITips
CToolTipCtrl* GetToolTips() const;

Return Value

Remarks

1930

A pointer to the CToolTipCtrl object associated with this toolbar or NULL if the
toolbar has no associated tool tip control.

Call this function to retrieve the handle of the tool tip control, if any, associated with
the toolbar control. Since the toolbar control normally creates and maintains its own
tool tip control, most programs don't need to call this function.

See Also: CTooIBarCtrl::SetTooITips, "CTooIBarCtrl: Handling Tool Tip
Notifications," CToolTipCtrl

CToolBarCtrl: :Indeterminate

CToolBarCtrl: : HideButton
BOOL HideButton(int IlID, BOOL bRide = TRUE);

Return Value
Nonzero if successful; otherwise zero.

Parameters

Remarks

nID Command identifier of the button to hide or show.

bRide TRUE to hide the button, FALSE to show it.

Call this function to hide or show the specified button in a toolbar control. If you want
to change more than one button state, consider calling SetS tate instead.

See Also: CTooIBarCtrl::IsButtonHidden, CTooIBarCtrl::EnableButton,
CTooIBarCtrl:: CheckButton, CToolBarCtrl: :PressButton,
CToolBarCtrl: :Indeterminate, CToolBarCtrl: :GetState, CToolBarCtrl: :SetState

CToolBarCtrl: : Indeterminate
BOOL Indeterminate(int nID, BOOL blndeterminate = TRUE);

Return Value
Nonzero if successful; otherwise zero.

Parameters

Remarks

nID Command identifier of the button whose indeterminate state is to be set or
cleared.

blndeterminate TRUE to set the indeterminate state for the specified button, FALSE
to clear it.

Call this function to set or clear the indeterminate state of the specified button in a
toolbar control. Indeterminate buttons are displayed grayed, such as the way the bold
button on the toolbar of a word processor would look when the text selected contains
both bold and regular characters.

If you want to change more than one button state, consider calling SetState instead.

See Also: Button styles in CTooIBarCtrl::AddButtons,
CToolBarCtrl: : IsButtonlndeterminate, CToolBarCtrl: :EnableButton,
CToolBarCtrl: :CheckButton, CToolBarCtrl: :PressButton,
CToolBarCtrl: : HideButton, CToolBarCtrl: : GetState, CToolBarCtrl: :SetState

1931

CToolBarCtrl::InsertButton

CToolBarCtrl: : InsertButton
BOOL InsertButton(int nlndex, LPTBBUTTON lpButton);

Return Value
Nonzero if successful; otherwise zero.

Parameters

Remarks

nlndex Zero-based index of a button. This function inserts the new button to the left
of this button.

lpButton Address of a TBBUTTON structure containing information about the
button to insert. See CTooIBarCtrl::AddButtons for a description of the
TBBUTTON structure.

Call this function to insert a button in a toolbar control.

The image and/or string whose index you provide must have previously been
added to the toolbar control's list using AddBitmap, AddString, and/or
AddStrings.

See Also: CToolBarCtrl: :AddButtons, CToolBarCtrl: : DeleteButton,
CToolBarCtrl: :AddBitmap, CToolBarCtrl: :AddString,
CToolBarCtrl: :AddStrings

CToolBarCtrl: : IsButtonChecked
BOOL IsButtonChecked(int nID) const;

Return Value
Nonzero if the button is checked; otherwise zero.

Parameters

Remarks

1932

nID Command identifier of the button in the tool bar.

Call this function to determine whether the specified button in a toolbar control
is checked. Consider calling GetState if you want to retrieve more than one
button state.

See Also: CTooIBarCtrl::CheckButton, CTooIBarCtrl::GetState,
CToolBarCtrl: :SetState, CToolBarCtrl: :IsButtonEnabled,
CToolBarCtrl: :IsButtonPressed, CToolBarCtrl: :IsButtonHidden,
CToolBarCtrl: :IsButtonlndeterminate

CToolBarCtrl: :IsButtonIndetenninate

CToolBarCtrl: : IsButtonEnabled
BOOL IsButtonEnabled(int nID) const;

Return Value
Nonzero if the button is enabled; otherwise zero.

Parameters

Remarks

nID Command identifier of the button in the toolbar.

Call this function to determine whether the specified button in a toolbar control is
enabled. Consider calling GetState if you want to retrieve more than one button state.

See Also: CTooIBarCtrl::EnableButton, CTooIBarCtrl::GetState,
CTooIBarCtrl:: SetS tate, CToolBarCtrl: :IsButtonChecked,
CToolBarCtrl: : IsButtonPressed, CToolBarCtrl: :IsButtonHidden,
CTooIBarCtrl:: IsButtonlndeterminate

CToolBarCtrl::IsButtonHidden
BOOL IsButtonHidden(int nID) const;

Return Value
Nonzero if the button is hidden; otherwise zero.

Parameters

Remarks

nID Command identifier of the button in the toolbar.

Call this function to determine whether the specified button in a toolbar control is
hidden. Consider calling GetState if you want to retrieve more than one button state.

See Also: CTooIBarCtrl::HideButton, CTooIBarCtrl::GetState,
CToolBarCtrl: :SetState, CToolBarCtrl: : IsButtonEnabled,
CToolBarCtrl: :IsButtonChecked, CToolBarCtrl: :IsButtonPressed,
CToolBarCtrl: : IsButtonlndeterminate

CToo IB arCtr 1: : IsB u ttonIndeterminate
BOOL IsButtonlndeterminate(int nID) const;

Return Value
Nonzero if the button is indeterminate; otherwise zero.

Parameters
nID Command identifier of the button in the toolbar.

1933

CToolBarCtr1::IsButtonPressed

Remarks
Call this function to determine whether the specified button in a toolbar control is
indeterminate. Indeterminate buttons are displayed grayed, such as the way the bold
button on the toolbar of a word processor would look when the text selected contains
both bold and regular characters.

Consider calling GetState if you want to retrieve more than one button state.

See Also: CToolBarCtrl: :Indeterminate, CToolBarCtrl: :GetState,
CToolBarCtrl: :SetState, CToolBarCtrl: :IsButtonEnabled,
CToolBarCtrl: :IsButtonChecked, CToolBarCtrl: :IsButtonPressed,
CToolBarCtrl: :IsButtonHidden

CToolBarCtrl::IsButtonPressed
BOOL IsButtonPressed(int nID) const;

Return Value
Nonzero if the button is pressed, otherwise zero.

Parameters

Remarks

nID Command identifier of the button in the tool bar.

Call this function to determine whether the specified button in a toolbar control is
pressed. Consider calling GetState if you want to retrieve more than one button state.

See Also: CToolBarCtrl: :PressButton, CToolBarCtrl: :GetState,
CToolBarCtrl: :SetState, CToolBarCtrl: :IsButtonEnabled,
CToolBarCtrl: :IsButtonChecked, CToolBarCtrl: : IsButtonHidden,
CToolBarCtrl: : IsButtonlndeterminate

CToolBarCtrl: :PressButton
BOOL PressButton(int nID, BOOL bPress = TRUE);

Return Value
Nonzero if successful; otherwise zero.

Parameters

Remarks

1934

nID Command identifier of the button to press or release.

bPress TRUE to press the specified button; FALSE to release the specified button.

Call this function to press or release the specified button in a toolbar control. If you
want to change more than one button state, consider calling SetS tate instead.

CToolBarCtrl::SaveState

See Also: CToolBarCtrl: : IsButtonPressed, CToolBarCtrl: :EnableButton,
CToolBarCtrl: :CheckButton, CToolBarCtrl: :HideButton,
CToolBarCtrl: :Indeterminate, CToolBarCtrl: :GetState, CToolBarCtrl: :SetState

CToolBarCtrl: : RestoreState
void RestoreState(HKEY hKeyRoot, LPCTSTR /pszSubKey, LPCTSTR /pszValueName);

Parameters

Remarks

hKeyRoot Identifies a currently open key in the registry or any of the following
predefined reserved handle values:

• HKEY_CLASSES_ROOT

• HKEY_CURRENT_USER

• HKEY_LOCAL_MACHINE

• HKEY_USERS

IpszSubKey Points to a null-terminated string containing the name of the subkey with
which a value is associated. This parameter can be null or a pointer to an empty
string. If the parameter is NULL, the value will be added to the key identified by
the hKeyRoot parameter.

IpszValueName Points to a string containing the name of the value to retrieve. If a
value with this name is not already present in the key, the function adds it to the
key.

Call this function to restore the state of the toolbar control from the location in the
registry specified by the parameters.

See Also: CTooIBarCtrl::SaveState

CToolBarCtrl:: SaveState
void SaveState(HKEY hKeyRoot, LPCTSTR IpszSubKey, LPCTSTR IpszValueName);

Parameters
hKeyRoot Identifies a currently open key in the registry or any of the following

predefined reserved handle values:

• HKEY_CLASSES_ROOT

• HKEY_CURRENT_USER

• HKEY_LOCAL_MACHINE

• HKEY_USERS

1935

CToolBarCtrl::SetBitmapSize

Remarks

lpszSubKey Points to a null-terminated string containing the name of the subkey with
which a value is associated. This parameter can be null or a pointer to an empty
string. If the parameter is NULL, the value will be added to the key identified by
the hKeyRoot parameter.

lpszValueName Points to a string containing the name of the value to set. If a value
with this name is not already present in the key, the function adds it to the key.

Call this function to save the state of the toolbar control in the location in the registry
specified by the parameters.

See Also: CToolBarCtrl: :RestoreState

CTooIBarCtrl::SetBitmapSize
BOOL SetBitmapSize(CSize size);

Return Value
Nonzero if successful; otherwise zero.

Parameters

Remarks

size Width and height, in pixels, of the bitmapped images.

Call this function to set the size of the actual bitmapped images to be added to a
toolbar control.

This function must be called only before adding any bitmaps to the toolbar. If the
application does not explicitly set the bitmap size, it defaults to 16 by 15 pixels.

See Also: CTooIBarCtrl::SetButtonSize, CTooIBarCtrl::GetltemRect

CTooIBarCtrl::SetButtonSize
BOOL SetButtonSize(CSize size);

Return Value
Nonzero if successful; otherwise zero.

Parameters

Remarks

1936

size Width and height, in pixels, of the buttons.

Call this function to set the size of the buttons in the toolbar control. The button size
must always be at least as large as the bitmap size it encloses.

This function must be called only before adding any bitmaps to the toolbar. If the
application does not explicitly set the button size, it defaults to 24 by 22 pixels.

CToolBarCtrl::SetOwner

See Also: CTooIBarCtrl::SetBitmapSize, CTooIBarCtrl::GetltemRect

CTooIBarCtrl:: SetButtonStructSize
void SetButtonStructSize(int nSize);

Parameters

Remarks

nSize Size, in bytes, of the TBBUTTON structure.

Call this function to specify the size of the TBBUTTON structure. If you wanted to
store extra data in the TBBUTTON structure, you could either derive a new structure
from TBBUTTON, adding the members you needed, or create a new structure that
contains a TBBUTTON structure as its first member. You would then call this
function to tell the toolbar control the size of the new structure.

See CTooIBarCtrl::AddButtons for more information on the TBBUTTON structure.

See Also: CTooIBarCtrl:: Create, CToolBarCtrl: :AddButtons,
CToolBarCtrl: : InsertButton, CToolBarCtrl: : GetButton

CTooIBarCtrl:: SetCmdID
BOOL SetCmdID(int nlndex, UINT nID);

Return Value
Returns nonzero if successful; otherwise zero.

Parameters

Remarks

nlndex The zero-based index of the button whose command ID is to be set.

nID The command ID to set the selected button to.

Call this function to set the command identifier which will be sent to the owner
window when the specified button is pressed.

See Also: CTooIBarCtrl::CommandToIndex, CTooIBarCtrl::GetButton,
CToolBarCtrl: :AddButtons, CToolBarCtrl: :InsertButton

CToolBarCtrl: :SetOwner
void SetOwner(CWnd* pWnd);

Parameters
p Wnd Pointer to the CWnd or CWnd-derived object that will be the new owner

window for the toolbar control.

1937

CToolBarCtrl::SetRows

Remarks
Call this function to set the owner window for the toolbar control. The owner window
is the window that receives notifications from the toolbar.

See Also: CToolBarCtrl: : Create

CToolB arCtrl: : SetRows
void SetRows(int nRows, BOOL bLarger, LPRECT lpRect);

Parameters

Remarks

1938

nRows Requested number of rows.

bLarger Tells whether to use more rows or fewer rows if the toolbar cannot be
resized to the requested number of rows.

lpRect Points to the CRect object or RECT structure that will receive the new
bounding rectangle of the toolbar.

Call this function to ask the toolbar control to resize itself to the requested number of
rows.

If the toolbar cannot resize itself to the requested number or rows, it will resize itself
to either the next larger or next smaller valid size, depending on the value of bLarger.
If bLarger is TRUE, the new number of rows will be larger than the number
requested. If bLarger is FALSE, the new number of rows will be smaller than the
number requested.

A given number of rows is valid for the toolbar if the buttons can be arranged such
that all of the rows have the same number of buttons (except perhaps the last row).
For example, a toolbar that contains four buttons could not be sized to three rows
because the last two rows would have to be shorter. If you attempted to size it to three
rows, you would get four rows if bLarger was TRUE and two rows if bLarger was
FALSE.

If there are separators in the toolbar, the rules for when a given number of rows is
valid are more complicated. The layout is computed such that button groups (buttons
with a separator before the first and the last button in the group) are never broken up
on several rows unless the group cannot fit on one row.

If a group does not fit on one row, the next group will start on the next row even if it
would fit on the row where the large group ended. The purpose of this rule is to make
the separation between large groups more noticeable. The resulting vertical separators
are counted as rows.

Note also that the SetRows member function will always chose the layout that results
in the smallest toolbar size. Creating a toolbar with the TBSTYLE_ WRAPABLE

CToolBarCtrl::SetToolTips

style and then resizing the control will simply apply the method outlined above given
the width of the control.

This function can only be called for toolbars that were created with the
TBSTYLE_ WRAPABLE style.

See Also: Toolbar styles in CTooIBarCtrl::Create, CTooIBarCtrl::GetRows

CToolB arCtrl: : SetState
BOOL SetState(int nID, UINT nState);

Return Value
Nonzero if successful; otherwise zero.

Parameters

Remarks

nID Command identifier of the button.

nState State flags. It can be a combination of the values listed for button states in
CToolBarCtrl: :AddButtons.

Call this function to set the state for the specified button in a toolbar control.

This function is especially handy if you want to set more than one of the button states.
To just set one state, use one of the following member functions: EnableButton,
CheckButton, HideButton, Indeterminate, or PressButton.

See Also: CToolBarCtrl: :GetState, CToolBarCtrl: :AddButtons,
CToolBarCtrl: :EnableButton, CTooIBarCtrl:: CheckButton,
CToolBarCtrl: :HideButton, CToolBarCtrl: :Indeterminate,
CToolBarCtrl: :PressButton

CToolBarCtrl:: SetToolTips
void SetToolTips(CToolTipCtrl* pTip);

Parameters

Remarks

pTip Pointer to the CToolTipCtrl object.

Call this function to associate a tool tip control with a toolbar control.

See Also: CToolBarCtrl: : GetToolTips, "CToolBarCtr1: Handling Tool Tip
Notifications," CToolTipCtrl

1939

CToolTipCtrl

CTool TipCtrl

The CToolTipCtrl class encapsulates the functionality of a "tool tip control," a small
pop-up window that displays a single line of text describing the purpose of a tool in
an application. A "tool" is either a window, such as a child window or control, or
an application-defined rectangular area within a window's client area. A tool tip is
hidden most of the time, appearing only when the user puts the cursor on a tool and
leaves it there for approximately one-half second. The tool tip appears near the cursor
and disappears when the user clicks a mouse button or moves the cursor off of the
tool.

A single tool tip control can provide information for more than one tool.

The CToolTipCtrl class provides the functionality of the Windows common tool tip
control. This control (and therefore the CToolTipCtrl class) is available only to
programs running under Windows 95 and Windows NT versions 3.51 and later.

For more information about enabling tool tips, see "Tool Tips" in Visual C++
Programmer s Guide online.

For more information on using CToolTipCtrl, see Technical Note 60 online.

#include <afxcmn.h>

See Also: CToolBar

CToolTipCtrl Class Members

1940

Construction

CToolTipCtrl

Create

Attributes

GetText

GetToolInfo

SetToolInfo

GetToolCount

Constructs a CToolTipCtrl object.

Creates a tool tip control and attaches it to a CToolTipCtrl object.

Retrieves the text that a tool tip control maintains for a tool.

Retrieves the information that a tool tip control maintains about a tool.

Sets the information that a tool tip maintains for a tool.

Retrieves a count of the tools maintained by a tool tip control.

CToolTipCtrl: :AddTool

Operations

Activate

AddTool

DelTool

HitTest

RelayEvent

SetToolRect

SetDelayTime

UpdateTipText

Activates and deactivates the tool tip control.

Registers a tool with the tool tip control.

Removes a tool from the tool tip control.

Tests a point to determine whether it is within the bounding rectangle
of the given tool and, if so, retrieves information about the tool.

Passes a mouse message to a tool tip control for processing.

Sets a new bounding rectangle for a tool.

Sets the delay time for a tool tip control.

Sets the tool tip text for a tool.

Member Functions
CToolTipCtrl: : Activate

void Activate(BOOL bActivate);

Parameters

Remarks

bActivate Specifies whether the tool tip control is to be activated or deactivated.

Call this function to activate or deactivate a tool tip control. If bActivate is TRUE, the
control is activated; if FALSE, it is deactivated.

When a tool tip control is active, the tool tip information appears when the cursor is
on a tool that is registered with the control; when it is inactive, the tool tip information
does not appear, even when the cursor is on a tool.

See Also: CTooITipCtrl:: Update Tip Text, CToolTipCtrl: :SetDelayTime

CToolTipCtrl: : AddTool
BOOL AddTool(CWnd* pWnd, UINT nIDText, LPCRECT IpRectTool = NULL,

... UINT nIDTool = 0);
BOOL AddTool(CWnd* pWnd, LPCTSTR IpszText = LPSTR_TEXTCALLBACK,

... LPCRECT IpRectTool = NULL, UINT nIDTool = 0);

Return Value
Nonzero if successful; otherwise O.

Parameters
p Wnd Pointer to the window that contains the tool.

nIDText ID of the string resource that contains the text for the tool.

1941

CToolTipCtrl: : Create

Remarks

lpRectTool Pointer to a RECT structure containing coordinates of the tool's
bounding rectangle. The coordinates are relative to the upper-left comer of the
client area of the window identified by p Wnd.

nlDTool ID of the tool.

lpszText Pointer to the text for the tool. If this parameter contains the value
LPSTR_TEXTCALLBACK, TTN_NEEDTEXT notification messages go to
the parent of the window that p Wnd points to.

A tool tip control can be associated with more than one tool. Call this function to
register a tool with the tool tip control, so that the information stored in the tool tip
is displayed when the cursor is on the tool.

See Also: CTooITipCtrl::DeITool

CToolTipCtrl: : Create
BOOL Create(CWnd* pParentWnd, DWORD dwStyle = 0);

Return Value
Nonzero if the CToolTipCtrl object is successfully created; otherwise O.

Parameters

Remarks

1942

pParentWnd Specifies the tool tip control's parent window, usually a CDialog.
It must not be NULL.

dwStyle Specifies the tool tip control's style. Apply any combination of control
styles needed to the control.

You construct a CToolTipCtrl in two steps. First call the constructor to construct the
CToolTipCtrl object; then call Create to create the tool tip control and attach it to the
CToolTipCtrl object.

The dwStyle parameter can be any combination of Window Styles. In addition, a tool
tip control has two class-specific styles: TTS_ALWAYSTIP and TTS_NOPREFIX.

Style Meaning

TTS_ALWA YSTIP

TTS_NOPREFIX

Specifies that the tool tip will appear when the cursor is on a tool,
regardless of whether the tool tip control's owner window is active
or inactive. Without this style, the tool tip control appears when the
tool's owner window is active, but not when it is inactive.

This style prevents the system from stripping the ampersand (&)
character from a string. If a tool tip control does not have the
TTS_NOPREFIX style, the system automatically strips
ampersand characters, allowing an application to use the same
string as both a menu item and as text in a tool tip control.

CToolTipCtrl::GetText

A tool tip control has the WS_POPUP and WS_EX_TOOLWINDOW window
styles, regardless of whether you specify them when creating the control.

See Also: CTooITipCtrl:: CToolTipCtrl

CToolTipCtrl: :CToolTipCtrl

Remarks

CToolTipCtrl();

Constructs a CToolTipCtrl object. You must call Create after constructing the object.

See Also: CTooITipCtrl::Create

CToolTipCtrl: :DelTool
void DelTool(CWnd* pWnd, UINT nIDTool = 0);

Parameters

Remarks

p Wnd Pointer to the window that contains the tool.

nIDTool ID of the tool.

Call this function to remove the tool specified by p Wnd and nIDTool from the
collection of tools supported by a tool tip control.

See Also: CTooITipCtrl::AddTool

CToolTipCtrl: : GetText
void GetText(CString& str, CWnd* pWnd, UINT nIDTool = 0) const;

Parameters

Remarks

str Reference to a CString object that receives the tool's text.

p Wnd Pointer to the window that contains the tool.

nIDTool ID of the tool.

Call this function to retrieve the text that a tool tip control maintains for a tool. The
p Wnd and nIDTool parameters identify the tool. If that tool has been previously
registered with the tool tip control through a previous call to CToolTip: :AddTool, the
object referenced by the str parameter is assigned the tool's text.

See Also: CToolTipCtrl: :AddTool, CToolTipCtrl: :DelTool

1943

CToolTipCtrl::GetToolCount

CToolTipCtrl: : GetToolCount
int GetToolCount() const;

Return Value

Remarks

A count of tools registered with the tool tip control.

Call this function to retrieve a count of the tools registered with the tool tip control.

See Also: CToolTipCtrl: :AddTool, CToolTipCtrl: :DelTool

CToolTipCtrl: : GetToolInfo
BOOL GetToolInfo(CToolInfo& CToolInfo, CWnd* pWnd, DINT nIDTool = 0) const;

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

1944

CToolInfo Reference to a TOOLINFO object that receives the tool's text.

p Wnd Pointer to the window that contains the tool.

nIDTool ID of the tool.

Call this function to retrieve the information that a tool tip control maintains about a
tool. The hwnd and uId members of the TOOLINFO structure referenced by
CToolInfo identify the tool. If that tool has been registered with the tool tip control
through a previous call to AddTool, the TOOLINFO structure is filled with
information about the tool.

The TOOLINFO structure is defined as follows:

typedef struct {
UINT cbSize;
UINT uFlags;
HWND hwnd;
UINT uld;
RECT rect;
HINSTANCE hinst;
LPSTR lpszText;

TOOLINFO. NEAR *PTOOLINFO. FAR *LPTOOLINFO;

cbSize Size, in bytes, of this structure.

uFlags Flag that determines how the uId member is interpreted. If uFlags is equal to
TTF _IDISHWND, uId is the handle of the tool. Otherwise, uId is the identifier of
the tool.

CToolTipCtrl::HitTest

hwnd Handle of the window that contains the tool. If IpszText includes the
LPSTR_TEXTCALLBACK value, hwnd identifies the window that receives
TTN_NEEDTEXT notification messages.

uId Application-defined identifier of the tool, if uFlags is not equal to
TTF _ WIDISHWND. If uFlags is equal to TTF _ WIDISHWND, uId specifies
the window handle of the tool.

rect Coordinates of the tool's bounding rectangle. The coordinates are relative to the
upper-left corner of the client area of the window identified by hwnd. If uFlags is
equal to TTF _ WIDISHWND, this member is ignored.

hinst Handle of the instance that contains the string resource for the tool. If IpszText
specifies the identifier of a string resource, this member is used.

IpszText Address of the buffer that contains the text for the tool, or identifier of the
string resource that contains the text. If this member is set to the
LPSTR_TEXTCALLBACK value, the control sends the TTN_NEEDTEXT
notification message to the parent window to retrieve the text.

See Also: CTooITipCtrl::AddTool

CToolTipCtrl: : HitTest
BOOL HitTest(CWnd* p Wnd, CPoint pt, LPTOOLINFO IpToolInfo) const;

Return Value
Nonzero if the point specified by the hit-test information is within the tool's bounding
rectangle; otherwise O.

Parameters

Remarks

p Wnd Pointer to the window that contains the tool.

pt Pointer to a CPoint structure containing the coordinates of the point to be tested.

IpToolInfo Pointer to TOOLINFO structure that contains information about the tool.
For information on this structure, see CTooITipCtrl::GetToolInfo.

Call this function to test a point to determine whether it is within the bounding
rectangle of the given tool and, if so, retrieve information about the tool.

If this function returns a nonzero value, the structure pointed to by lpToolInfo is filled
with information on the tool within whose rectangle the point lies.

The TTHITTESTINFO structure is defined as follows:

typedef struct _TT_HITTESTINFO { II tthti
HWND hwnd; II handle of tool or window with tool
POINT pt; II client coordinates of point to test
TOOLINFO ti; II receives information about the tool

TTHITTESTINFO, FAR * LPHITTESTINFO;

1945

CToolTipCtrl:: Relay Event

hwnd Specifies the tool's handle.

pt Specifies the coordinates of a point if the point is in the tool's bounding rectangle.

ti Information about the tool. For more information about the TOOLINFO structure,
see CToolTipCtrl: : GetToolInfo.

See Also: CToolTipCtrl: : GetToolInfo

CToolTipCtrl: : Relay Event
void RelayEvent(LPMSG IpMsg);

Parameters

Remarks

IpMsg Pointer to a MSG structure that contains the message to relay.

Call this function to pass a mouse message to a tool tip control for processing. A tool
tip control processes only the following messages, which are sent to it by
RelayEvent:

WM_LBUTTONDOWN

WM_LBUTTONUP

WM_MBUTTONDOWN

WM_MBUTTONUP

WM_MOUSEMOVE

WM_RBUTTONDOWN

WM_RBUTTONUP

See Also: CWnd::PreTranslateMessage, CWinApp::PreTranslateMessage

CTool TipCtrl: : SetDelayTime
void SetDelayTime(UINT nDelay);

Parameters

Remarks

1946

nDelay Specifies the new delay time, in milliseconds.

Call this function to set the delay time for a tool tip control. The delay time is the
length of time the cursor must remain on a tool before the tool tip window appears.
The default delay time is 500 milliseconds.

See Also: CToolTipCtrl: :Activate, CToolTipCtrl: : HitTest

CToolTipCtrl::UpdateTipText

CTooITipCtrl:: SetToolInfo
void SetToolInfo(LPTOOLINFO IpToolInfo);

Parameters

Remarks

IpToolInfo A pointer to a TOOLINFO structure that specifies the information
to set. For more information about the TOOLINFO structure, see
CTooITipCtrl:: GetToolInfo.

Call this function to set the information that a tool tip maintains for a tool.

See Also: CToolTipCtrl: : GetToolInfo

CTooITipCtrl::SetTooIRect
void SetToolRect(CWnd* p Wnd, UINT nIDTool, LPCRECT IpRect);

Parameters

Remarks

p Wnd Pointer to the window that contains the tool.

nIDTool ID of the tool.

IpRect Pointer to a RECT structure specifying the new bounding rectangle.

Call this function to set a new bounding rectangle for a tool.

See Also: CTooITipCtrl::GetToolInfo

CTooITipCtrl:: UpdateTipText
void UpdateTipText(LPCTSTR IpszText, CWnd* pWnd, UINT nIDTool = 0);
void UpdateTipText(UINT nIDText, CWnd* pWnd, UINT nIDTool = 0);

Parameters

Remarks

IpszText Pointer to the text for the tool.

p Wnd Pointer to the window that contains the tool.

nIDTool ID of the tool.

nIDText ID of the string resource that contains the text for the tool.

Call this function to update the tool tip text for this control's tools.

See Also: CTooITipCtrl::GetToolInfo

1947

CTreeCtrl

CTreeCtrl

A "tree view control" is a window that displays a hierarchical list of items, such as the
headings in a document, the entries in an index, or the files and directories on a disk.
Each item consists of a label and an optional bitmapped image, and each item can
have a list of subitems associated with it. By clicking an item, the user can expand
and collapse the associated list of subitems.

The CTreeCtri class provides the functionality of the Windows common tree view
control. This control (and therefore the CTreeCtrl class) is available only to programs
running under Windows 95 and Windows NT versions 3.51 and later.

For more information on using CTreeCtrl, see Technical Note 60 online.

#include <afxcmn.h>

See Also: CImageList

CTreeCtrl Class Members

1948

Construction

CTreeCtrl

Create

Attributes

GetCount

Getlndent

Setlndent

GetlmageList

SetlmageList

Constructs a CTreeCtrl object.

Creates a tree view control and attaches it to a
CTreeCtrl object.

Retrieves the number of tree items associated with a tree view
control.

Retrieves the offset (in pixels) of a tree view item from its
parent.

Sets the offset (in pixels) of a tree view item from its parent.

Retrieves the handle of the image list associated with a tree
view control.

Sets the handle of the image list associated with a tree view
control.

Attributes (continued)

GetNextltem

ItemHasChiidren

GetChiidItem

GetNextSiblingItem

GetPrevSiblingItem

GetParentItem

GetFirst VisibleItem

GetNextVisibleItem

GetPrev VisibleItem

GetSelectedItem

GetDropHilightltem

GetRootltem

GetItem

SetItem

GetltemState

SetItemState

GetltemImage

SetItemImage

GetltemText

SetItemText

GetItemData

SetltemData

GetltemRect

GetEditControl

Get VisibleCount

Operations

InsertItem

DeleteItem

DeleteAlIItems

Retrieves the next tree view item that matches a specified
relationship.

Returns nonzero if the specified item has child items.

Retrieves the child of a specified tree view item.

Retrieves the next sibling of the specified tree view item.

Retrieves the previous sibling of the specified tree view
item.

Retrieves the parent of the specified tree view item.

Retrieves the first visible item of the specified tree view
item.

Retrieves the next visible item of the specified tree view
item.

Retrieves the previous visible item of the specified tree
view item.

Retrieves the currently selected tree view item.

Retrieves the target of a drag-and-drop operation.

Retrieves the root of the specified tree view item.

Retrieves the attributes of a specified tree view item.

Sets the attributes of a specified tree view item.

Returns the state of an item.

Sets the state of an item.

Retrieves the images associated with an item.

Associates images with an item.

Returns the text of an item.

Sets the text of an item.

Returns the 32-bit application-specific value associated
with an item.

Sets the 32-bit application-specific value associated
with an item.

Retrieves the bounding rectangle of a tree view item.

Retrieves the handle of the edit control used to edit the
specified tree view item.

Retrieves the number of visible tree items associated with
a tree view control.

Inserts a new item in a tree view control.

Deletes a new item in a tree view control.

Deletes all items in a tree view control.

(continued)

CTreeCtrl

1949

CTreeCtrl: :Create

Operations (continued)

Expand

Select

Selectltem

SelectDropTarget

SelectSetFirstVisible

EditLabel

HitTest

CreateDraglmage

SortChildren

Ensure Visible

SortChildrenCB

Expands, or collapses, the child items of the specified
tree view item.

Selects, scrolls into view, or redraws a specified tree view
item.

Selects a specified tree view item.

Redraws the tree item as the target of a drag-and-drop
operation.

Selects a specified tree view item as the first visible item.

Edits a specified tree view item in-place.

Returns the current position of the cursor related to the
CTreeCtrl object.

Creates a dragging bitmap for the specified tree view item.

Sorts the children of a given parent item.

Ensures that a tree view item is visible in its tree view
control.

Sorts the children of a given parent item using an
application-defined sort function.

Member Functions
CTreeCtrl: : Create

BOOL Create(DWORD dwStyie, const RECT& reet, CWnd* pParentWnd,
... UINT nID);

Return Value
Nonzero if initialization was successful; otherwise O.

Parameters

Remarks

1950

dwStyle Specifies the tree view control's style. Apply any combination of tree view
control styles to the control.

reet Specifies the tree view control's size and position. It can be either a CRect
object or a RECT structure.

pParentWnd Specifies the tree view control's parent window, usually a CDialog.1t
must not be NULL.

nID Specifies the tree view control's rD.

You construct a CTreeCtrl in two steps. First call the constructor, then call Create,
which creates the tree view control and attaches it to the CTreeCtrl object.

CTreeCtrl:: CreateDraglmage

The following styles can be applied to a tree view control:

• TVS_HASLINES The tree view control has lines linking child items to their
corresponding parent items.

• TVS_LINESATROOT The tree view control has lines linking child items to the
root of the hierarchy.

• TVS_HASBUTTONS The tree view control adds a button to the left of each
parent item.

• TVS_EDITLABELS The tree view control allows the user to edit the labels of
tree view items.

• TVS_SHOWSELALWAYS Causes a selected item to remain selected when the
tree-view control loses focus.

• TVS_DISABLEDRAGDROP The tree-view control is prevented from sending
TVN_BEGINDRAG notification messages.

See Also: CTreeCtrl::CTreeCtrl

CTreeCtrl: :CreateDragImage
ClmageList* CreateDraglmage(HTREEITEM hltem);

Return Value
Pointer to the image list to which the dragging bitmap was added, if successful;
otherwise NULL.

Parameters

Remarks

hltem Handle of the tree item to be dragged.

Call this function to create a dragging bitmap for the given item in a tree view
control, create an image list for the bitmap, and add the bitmap to the image list.
An application uses the image-list functions to display the image when the item is
being dragged.

The ClmageList object is permanent, and you must delete it when finished. For
example:

ClmageList* plmageList = MyTreeCtrl .CreateDraglmage(nltem. &point);

delete plmageList;

See Also: CTreeCtrl::SelectDropTarget, CTreeCtrl::GetDropHilightltem,
CTreeCtrl: :SetlmageList

1951

CTreeCtrl: :CTreeCtrl

CTreeCtrl: :CTreeCtrl

Remarks

CTreeCtrl();

Constructs a CTreeCtrl object.

See Also: CTreeCtrl::Create

CTreeCtrl: : DeleteAllItems
BOOL DeleteAllItems();

Return Value
Nonzero if successful; otherwise O.

Remarks
Call this function to delete all items from the tree view control.

See Also: CTreeCtrl: :DeleteItem, CTreeCtrl: :InsertItem

CTreeCtrl: : DeleteItem
BOOL DeleteItem(HTREEITEM hltem);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

hltem Handle of the tree item to be deleted. If hitem has the TVI_ROOT value, all
items are deleted from the tree view control.

Call this function to delete an item from the tree view control.

See Also: CTreeCtrl: :DeleteAllItems, CTreeCtrl: : Insertltem

CTreeCtrl: : EditLabel
CEdit* EditLabel(HTREEITEM hltem);

Return Value
If successful, a pointer to the CEdit object that is used to edit the item text; otherwise
NULL.

Parameters
hltem Handle of the tree item to be edited.

1952

Remarks
Call this function to begin in-place editing of the specified item's text. The editing is
accomplished by replacing the text of the item with a single-line edit control
containing the text.

See Also: CTreeCtrl::GetEditControl

CTreeCtrl: : Ensure Visible
BOOL EnsureVisible(HTREEITEM hltem);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

hltem Handle of the tree item being made visible.

Call this function to ensure that a tree view item is visible. If necessary, the function
expands the parent item or scrolls the tree view control so that the item is visible.

See Also: CTreeCtrl::GetFirstVisibleltem, CTreeCtrl::GetVisibleCount

CTreeCtrl: :Expand
BOOL Expand(HTREEITEM hltem, DINT nCode);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

hltem Handle of the tree item being expanded.

nCode A flag indicating the type of action to be taken. This flag can have one of the
following values:

• TVE_COLLAPSE Collapses the list.

• TVE_COLLAPSERESET Collapses the list and removes the child items.

• TVE_EXPAND Expands the list.

• TVE_TOGGLE Collapses the list if it is currently expanded or expands it if it
is currently collapsed.

Call this function to expand or collapse the list of child items, if any, associated with
the given parent item.

See Also: CTreeCtrl: :Ensure Visible

CTreeCtrl: :Expand

1953

CTreeCtrl:: GetChildItem

CTreeCtrl: : GetChildItem
HTREEITEM GetChildltem(HTREEITEM hltem);

Return Value
The handle of the child item if successful; otherwise NULL.

Parameters

Remarks

hltem Handle of a tree item.

Call this function to retrieve the tree view item that is the child of the item specified
by hltem.

See Also: CTreeCtrl::GetItem, CTreeCtrl::GetParentltem,
CTreeCtrl: :SortChildren

CTreeCtrl: : GetCount
UINT GetCount();

Return Value
The number of items in the tree view control; otherwise -1.

Remarks
Call this function to retrieve a count of the items in a tree view control.

See Also: CTreeCtrl: : GetVisibleCount

CTreeCtrl: : GetDropHilightItem
HTREEITEM GetDropHilightItem();

Return Value

Remarks

The handle of the item dropped if successful; otherwise NULL.

Call this function to retrieve the item that is the target of a drag-and-drop operation.

See Also: CTreeCtrl::SelectDropTarget

CTreeCtrl::GetEditControl
CEdit* GetEditControl();

Return Value
A pointer to the edit control used to edit the item text, if successful; otherwise NULL.

1954

CTreeCtrl: :GetlmageList

Remarks
Call this function to retrieve the handle of the edit control being used to edit a tree
view item's text.

See Also: CTreeCtrl::EditLabel

CTreeCtrl: : GetFirst VisibleItem
HTREEITEM GetFirstVisibleItem();

Return Value

Remarks

The handle of the first visible item; otherwise NULL.

Call this function to retrieve the first visible item of the tree view control.

See Also: CTreeCtrl: :GetN ext VisibleItem, CTreeCtrl: : GetPrev VisibleItem,
CTreeCtrl: :Ensure Visible, CTreeCtrl: :GetVisibleCount

CTreeCtr 1: : GetImageList
CImageList* GetImageList(UINT nlmage);

Return Value
Pointer to the control's image list if successful; otherwise NULL.

Parameters

Remarks

nlmage Type of image list to retrieve. The image list can be one of the following
values:

• TVSIL_NORMAL Retrieves the normal image list, which contains the
selected and nonselected images for the tree view item.

• TVSIL_STATE Retrieves the state image list, which contains the images for
tree view items that are in a user-defined state.

Call this function to retrieve the handle of the normal or state image list associated
with the tree view control. Each item in a tree view control can have a pair of
bitmapped images associated with it. One image is displayed when the item is
selected, and the other is displayed when the item is not selected. For example, an
item might display an open folder when it is selected and a closed folder when it is not
selected.

For more information on image lists, see the CImageList class.

See Also: CImageList, CTreeCtrl::SetImageList

1955

CTreeCtrl: : GetIndent

CTreeCtrl: : GetIndent
UINT Getlndent{);

Return Value

Remarks

The amount of indentation measured in pixels.

Call this function to retrieve the amount, in pixels, that child items are indented
relative to their parent items.

See Also: CTreeCtrl::Setlndent

CTreeCtrl: : GetItem
BOOL Getltem{ TV _ITEM* pltem);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

1956

pltem A pointer to a TV_ITEM structure.

Call this function to retrieve the attributes of the specified tree view item.

The TV_ITEM structure is defined as follows:

typedef struct _TV_ITEM { tv;
UINT mask;
HTREEITEM hltem; II item this structure refers to
UINT state;
UINT stateMask;
LPSTR pszText;
int cchTextMax;
int ilmage;
int iSelectedlmage;
int cChildren;
LPARAM lParam; II 32-bit value to associate with item

TV_ITEM;

mask Array of flags that indicate which of the other structure members contain valid
data or which are to be filled in. It can be a combination of these values:

• TVIF _CHILDREN The cChildren member is valid.

• TVIF _HANDLE The hltem member is valid.

• TVIF _IMAGE The iImage member is valid.

• TVIF _PARAM The IParam member is valid.

• TVIF _SELECTEDIMAGE The iSelectedImage member is valid.

• TVIF _STATE The state and stateMask members are valid.

• TVIF _TEXT The pszText and cchTextMax members are valid.

state and stateMask Variables specifying the current state of the item and the valid
tates of the item. They can be any valid combination of state values. Valid states
are:

• TVIS_BOLD The item is bold.

• TVIS_CUT The item is selected as part of a cut and paste operation.

• TVIS_DROPHILITED The item is selected as a drag-and-drop target.

• TVIS_EXPANDED The item's list of child items is currently expanded; that
is, the child items are visible. This value applies only to parent items.

• TVIS_EXPANDEDONCE The item's list of child items has been expanded at
least once. The TVN_ITEMEXPANDING and TVN_ITEMEXPANDED
notification messages are not sent for parent items that have specified this value.
This value applies only to parent items.

• TVIS_OVERLAYMASK The item's overlay image is included when the item
is drawn. The index of the overlay image must be specified in the state member
of the TV_ITEM structure by using the Win32 INDEXTOOVERLAYMASK
macro. The overlay image must be added to the tree view's image list by using
the CImageList::SetOveriayImage function. This value should not be
combined with any other value.

• TVIS_SELECTED The item is selected. The appearance of a selected item
depends on whether it has the focus and on whether the system colors are used
for selection.

• TVIS_STATEIMAGEMASK The item's state image is included when the
item is drawn. The index of the state image must be specified in the state
member of the TV_ITEM structure by using the Win32
INDEXTOSTATEIMAGEMASK macro. This value should not be combined
with any other value.

• TVIS_USERMASK Same as TVIS_STATEIMAGEMASK.

pszText Address of a null-terminated string containing the item text if the structure
specifies item attributes. If this member is the LPSTR_TEXTCALLBACK value,
the parent window is responsible for storing the name. In this case, the tree view
control sends the parent window a TVN_GETDISPINFO notification message
when it needs the item text for displaying, sorting, or editing, and the tree view
sends a TVN_SETDISPINFO notification when the item text changes. If the
structure is receiving item attributes, this member is the address of the buffer that
receives the item text.

CTreeCtrl:: Getltem

1957

CTreeCtrl: : GetItemData

cchTextMax Size of the buffer pointed to by the pszText member if the structure is
receiving item attributes. This member is ignored if the structure specifies item
attributes.

iImage and iSelectedlmage Indexes of the icon image and selected icon image
within the image list. If either member is the I_IMAGECALLBACK value, the
parent window is responsible for storing the corresponding images. In this case, the
tree view control sends the parent a TVN_GETDISPINFO notification message
when it needs to display the images and a TVN_SETDISPINFO notification
message when the images change.

cChildren Flag indicating whether the item has assoicated child items. Can be one of
the following values:

• 0 The item has no child items.

• 1 The item has one or more child items.

• I_CHILDRENCALLBACK The parent window keeps track of whether the
item has child items. In this case, the tree view control sends the parent a
TVN_GETDISPINFO notification message when it needs to display the child
items and a TVN_SETDISPINFO notification message when the attributes of a
child item change.

See Also: CTreeCtrl: :SetItem, CTreeCtrl: : GetChildItem,
CTreeCtrl: : GetNextItem, CTreeCtrl: :SelectItem

CTreeCtrl: : GetItemData
DWORD GetItemData(HTREEITEM hltem) const;

Return Value
A 32-bit application-specific value associated with the item specified by hltem.

Parameters

Remarks

hltem Handle of the item whose data is to be retrieved.

Call this function to retrieve the 32-bit application-specific value associated with the
specified item.

See Also: CTreeCtrl: :SetItemData

CTreeCtrl: : GetItemImage
BOOL GetItemlmage(HTREEITEM hltem, int& nlmage, int& nSelectedlmage) const;

Return Value
Nonzero if successful; otherwise O.

1958

CTreeCtrl::GetItemState

Parameters

Remarks

IzItem The handle of the item whose image is to be retrieved.

nlmage An integer that receives the index of the item's image within the tree view
control's image list.

nSelectedlmage An integer that receives the index of the item's selected image
within the tree view control's image list.

Each item in a tree view control can have a pair of bitmapped images associated with
it. The images appear on the left side of an item's label. One image is displayed when
the item is selected, and the other is displayed when the item is not selected. For
example, an item might display an open folder when it is selected and a closed folder
when it is not selected.

Call this function to retrieve the index of the item's image and its selected image
within the tree view control's image list.

See Also: CTreeCtrl::SetltemImage, CImageList

CTreeCtrl: : GetItemRect
BOOL GetltemRect(HTREEITEM hltem, LPRECT lpRect, BOOL bTextOnly);

Return Value
Nonzero if the item is visible, with the bounding rectangle contained in lpRect.
Otherwise, 0 with lpRect uninitialized.

Parameters

Remarks

hltem The handle of a tree view control item.

lpRect Pointer to a RECT structure that receives the bounding rectangle. The
coordinates are relative to the upper-left comer of the tree view control.

bTextOnly If this parameter is nonzero, the bounding rectangle includes only the text
of the item. Otherwise it includes the entire line that the item occupies in the tree
view control.

Call this function to retrieve the bounding rectangle for hltem and determine whether
it is visible or not.

See Also: CTreeCtrl:: Get VisibleCount, CTreeCtrl:: GetN ext Visibleltem,
CTreeCtrl: : GetPrevVisibleltem, CTreeCtrl: :Ensure Visible

CTreeCtrl: : GetItemState
UINT GetltemState(HTREEITEM hltem, UINT nStateMask) const;

1959

CTreeCtrl: : GetItemText

Return Value
A UINT specifying the item's state. For information on possible values, see
CTreeCtrl: : Getltem.

Parameters

Remarks

hltem Handle of the item whose state is to be retrieved.

nStateMask Mask indicating which states are to be retrieved. For more information
on possible values for nStateMask, see the discussion of the state and stateMask
members of the TV_ITEM structure in CTreeCtrl: : Getltem.

Returns the state of the item specified by hltem.

See Also: CTreeCtrl::Getltem

CTreeCtrl: : GetItemText
CString GetItemText(HTREEITEM hltem) const;

Return Value
A CString object containing the item's text.

Parameters

Remarks

hltem Handle of the item whose text is to be retrieved.

Returns the text of the item specified by hltem.

See Also: CTreeCtrl: :SetltemText

CTreeCtrl: : GetNextItem
HTREEITEM GetNextltem(HTREEITEM hltem, UINT nCode);

Return Value
The handle of the next item if successful; otherwise NULL.

Parameters

1960

hltem Handle of a tree item.

nCode A flag indicating the type of relation to hltem. This flag can be one of the
following values:

• TVGN_CARET Retrieves the currently selected item .

• TVGN_CHILD Retrieves the first child item. The hltem parameter must be
NULL.

CTreeCtrl::GetNextVisibleItem

Remarks

• TVGN_DROPHILITE Retrieves the item that is the target of a drag-and-drop
operation.

• TVGN_FIRSTVISIBLE Retrieves the first visible item.

• TVGN_NEXT Retrieves the next sibling item.

• TVGN_NEXTVISIBLE Retrieves the next visible item that follows the
specified item.

• TVGN_PARENT Retrieves the parent of the specified item.

• TVGN_PREVIOUS Retrieves the previous sibling item.

• TVGN_PREVIOUSVISIBLE Retrieves the first visible item that precedes
the specified item.

• TVGN_ROOT Retrieves the first child item of the root item of which the
specified item is a part.

Call this function to retrieve the tree view item that has the specified relationship,
indicated by the nCode parameter, to hltem.

See Also: CTreeCtrl::Setltem, CTreeCtrl::GetChildltem, CTreeCtrl::GetItem,
CTreeCtrl: :SelectItem, CTreeCtrl: : GetPrevSiblingltem

CTreeCtrl: : GetNextSiblingItem
HTREEITEM GetNextSiblingItem(HTREEITEM hltem);

Return Value
The handle of the next sibling item; otherwise NULL.

Parameters

Remarks

hltem Handle of a tree item.

Call this function to retrieve the next sibling of hltem.

See Also: CTreeCtrl: : GetPrevSiblingltem, CTreeCtrl: : GetChildltem,
CTreeCtrl: : Getltem, CTreeCtrl: :Selectltem, CTreeCtrl: : GetParentltem

CTreeCtrl: : GetN ext VisibleItem
HTREEITEM GetNextVisibleltem(HTREEITEM hltem);

Return Value
The handle of the next visible item; otherwise NULL.

1961

CTreeCtrl: : GetParentltem

Parameters

Remarks

hltem Handle of a tree item.

Call this function to retrieve the next visible item of hltem.

See Also: CTreeCtrl:: GetPrevVisibleItem, CTreeCtrl: : GetFirst VisibleItem,
CTreeCtrl: :Ensure Visible, CTreeCtrl: : GetParentItem

CTreeCtrl: : GetParentItem
HTREEITEM GetParentltem(HTREEITEM hltem);

Return Value
The handle of the parent item; otherwise NULL.

Parameters

Remarks

hltem Handle of a tree item.

Call this function to retrieve the parent of hltem.

See Also: CTreeCtrl::GetChildItem, CTreeCtrl::GetRootItem,
CTreeCtrl: : Getltem, CTreeCtrl: : GetPrevSiblingItem

CTreeCtrl:: GetPrevSiblingItem
HTREEITEM GetPrevSiblingItem(HTREEITEM hltem);

Return Value
The handle of the previous sibling; otherwise NULL.

Parameters

Remarks

hltem Handle of a tree item.

Call this function to retrieve the previous sibling of hltem.

See Also: CTreeCtrl::GetNextSiblingItem, CTreeCtrl::GetParentltem,
CTreeCtrl: : GetChildItem

CTreeCtrl:: GetPrev VisibleItem
HTREEITEM GetPrevVisibleItem(HTREEITEM hltem);

Return Value
The handle of the previous visible item; otherwise NULL.

1962

CTreeCtrl: :Get VisibleCount

Parameters

Remarks

hltem Handle of a tree item.

Call this function to retrieve the previous visible item of hltem.

See Also: CTreeCtrl::GetNextVisibleItem, CTreeCtrl::GetFirstVisibleItem,
CTreeCtrl::EnsureVisible, CTreeCtrl::GetVisibleCount

CTreeCtrl: : GetRootItem
HTREEITEM GetRootItem();

Return Value

Remarks

The handle of the root item; otherwise NULL.

Call this function to retrieve the root item of the tree view control.

See Also: CTreeCtrl::GetItem, CTreeCtrl::GetChildItem,
CTreeCtrl:: GetParentltem

CTreeCtrl:: GetSelectedItem
HTREEITEM GetSelectedItem();

Return Value

Remarks

The handle of the selected item; otherwise NULL.

Call this function to retrieve the currently selected item of the tree view control.

See Also: CTreeCtrl: :Select, CTreeCtrl: :SelectDropTarget,
CTreeCtrl: : GetDropHilightltem

CTreeCtrl:: Get VisibleCount
UINT GetVisibleCount();

Return Value
The number of visible items in the tree view control; otherwise -1.

Remarks
Call this function to retrieve a count of the visible items in a tree view control.

See Also: CTreeCtrl: :GetCount, CTreeCtrl: :Ensure Visible

1963

CTreeCtrl::HitTest

CTreeCtrl: : HitTest
HTREEITEM HitTest(CPoint pt, UINT* pFlags);
HTREEITEM HitTest(TV _HITTESTINFO* pHitTestlnfo);

Return Value
The handle of the tree view item that occupies the specified point or NULL if no item
occupies the point.

Parameters

Remarks

1964

pt Client coordinates of the point to test.

pFlags Pointer to an integer that receives information about the results of the hit test.
It can be one or more of the values listed under the flags member in the Remarks
section.

pHitTestlnfo Address of a TV _HITTESTINFO structure that contains the position
to hit test and that receives information about the results of the hit test.

Call this function to determine the location of the specified point relative to the client
area of a tree view control.

When this function is called, the pt parameter specifies the coordinates of the point to
test. The function returns the handle of the item at the specified point or NULL if no
item occupies the point. In addition, the pFlags parameter contains a value that
indicates the location of the specified point.

The TV _HITTESTINFO structure is defined as follows:

typedef struct _TVHITTESTINFO {
POINT pt; II client coordinates of point to test
UINT flags; II see below
HTREEITEM hltem; II handle of item that occupies point

TV_HITTESTINFO. FAR *LPTV_HITTESTINFO;

flags Variable that receives information about the results of a hit test. It can be one or
more of these values:

• TVHT_ABOVE Above the client area.

• TVHT_BELOW Below the client area.

• TVHT_NOWHERE In the client area but below the last item.

• TVHT_ONITEM On the bitmap or label associated with an item.

• TVHT_ONITEMBUTTON On the button associated with an item.

• TVHT_ONITEMICON On the bitmap associated with an item.

• TVHT_ONITEMINDENT In the indentation associated with an item.

CTreeCtrl: :InsertItem

• TVHT_ONITEMLABEL On the label (string) associated with an item.

• TVHT_ONITEMRIGHT In the area to the right of an item.

• TVHT_ONITEMSTATEICON On the state icon for a tree view item that is
in a user-defined state.

• TVHT_TOLEFT To the right of the client area.

• TVHT_TORIGHT To the left of the client area.

See Also: CTreeCtrl: : GetItemRect

CTreeCtrl: : InsertItem
HTREEITEM InsertItem(LPTV _INSERTSTRUCT IplnsertStruct);
HTREEITEM Insertltem(UINT nMask, LPCTSTR Ipsz/tem, int nlmage,

... int nSelectedlmage, UINT nState, UINT nStateMask, LPARAM IParam,

... HTREEITEM hParent, HTREEITEM hlnsertAfter);
HTREEITEM Insertltem(LPCTSTR lpsz/tem, HTREEITEM hParent = TVI_ROOT,

... HTREEITEM hlnsertAfter = TVI_LAST);
HTREEITEM Insertltem(LPCTSTR lpszltem, int nlmage, int nSelectedlmage,

... HTREEITEM hParent = TVI_ROOT, HTREEITEM hlnsertAfter = TVI_LAST);

Return Value
Handle of the new item if successful; otherwise NULL.

Parameters

Remarks

IplnsertStruct A pointer to a TV _INSERTSTRUCT that specifies the attributes
of the tree view item to be inserted.

nMask Integer specifying which attributes to set.

lpszltem Address of a string containing the item's text.

nlmage Index of the item's image in the tree view control's image list.

nSelectedlmage Index of the item's selected image in the tree view
control's image list.

nState Specifies values for the item's states.

nStateMask Specifies which states are to be set.

IParam A 32-bit application-specific value associated with the item.

hParent Handle of the inserted item's parent.

hlnsertAfter Handle of the item after which the new item is to be
inserted.

Call this function to insert a new item in a tree view control.

1965

CTreeCtrl: :ItemHasChildren

The TV _INSERTSTRUCT structure is defined as follows:

typedef struct _TV_INSERTSTRUCT
HTREEITEM hParent;
HTREEITEM hlnsertAfter;
TV_ITEM item;

TV_INSERTSTRUCT;

hParent Handle of the parent item. If this parameter is the TVI_ROOT value or
NULL, the item is inserted at the root of the tree view control.

hInsertAfter Handle of the item after which the new item is to be inserted or
one of the following values:

• TVI_FIRST Inserts the item at the beginning of the list.

• TVI_LAST Inserts the item at the end of the list.

• TVI_SORT Inserts the item into the list in alphabetical order.

item A TV_ITEM structure, which contains information about the item to be
added to the tree view control. For more information on this structure, see
CTreeCtrl:: GetItem.

See Also: CTreeCtrl: :DeleteItem, CTreeCtrl: :HitTest,
CTreeCtrl: :SelectDropTarget, CTreeCtrl: : GetItem

CTreeCtrl: : ItemHasChildren
BOOL ItemHasChildren{ HTREEITEM hltem);

Return Value
Nonzero if the tree item specified by hltem has child items; 0 if it does not.

Parameters

Remarks

hltem Handle of a tree item.

Use this function to determine whether the tree item specified by hltem has child
items. If so, you can then use CTreeCtrl::GetChildItem to retrieve those child items.

See Also: CTreeCtrl::GetChildItem

CTreeCtrl::Select
BOOL Select{ HTREEITEM hltem, UINT nCode);

Return Value
Nonzero if successful; otherwise O.

Parameters
hltem Handle of a tree item.

1966

CTreeCtrl:: SelectItem

Remarks

nCode The type of action to take. This parameter can be one of the following values:

• TVGN_CARET Sets the selection to the given item.

• TVGN_DROPHILITE Redraws the given item in the style used to indicate
the target of a drag-and-drop operation.

• TVGN_FIRSTVISIBLE Scrolls the tree view vertically so that the given item
is the first visible item.

Call this function to select the given tree view item, scroll the item into view, or
redraw the item in the style used to indicate the target of a drag-and-drop operation.

If nCode contains the value TVGN_CARET, the parent window receives the
TVN_SELCHANGING and TVN_SELCHANGED notification messages. In
addition, if the specified item is the child of a collapsed parent item, the parent's list
of child items is expanded to reveal the specified item. In this case, the parent window
receives the TVN_ITEMEXPANDING and TVN_ITEMEXPANDED notification
messages.

See Also: CTreeCtrl::SelectItem, CTreeCtrl::GetSelectedItem,
CTreeCtrl: :SelectDropTarget

CTreeCtrl:: SelectDropTarget
BOOL SelectDropTarget(HTREEITEM hltem);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

hltem Handle of a tree item.

Call this function to redraw the item in the style used to indicate the target of a
drag-and-drop operation.

See Also: CTreeCtrl::SelectItem, CTreeCtrl::GetDropHilightItem,
CTreeCtrl:: CreateDragImage

CTreeCtrl: : SelectItem
BOOL SelectItem(HTREEITEM hltem);

Return Value
Nonzero if successful; otherwise O.

1967

CTreeCtr1: :SelectSetFirst Visible

Parameters

Remarks

hltem Handle of a tree item.

Call this function to select the given tree view item.

See Also: CTreeCtrl: :Select, CTreeCtrl: : GetSelectedltem,
CTreeCtrl: :SelectDropTarget

CTreeCtrl: : SelectSetFirst Visible
BOOL SelectSetFirstVisible(HTREEITEM hltem);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

hltem Handle of the tree item to be set as the first visible item.

Call this function to scroll the tree view vertically so that the given item is the first
visible item. The function sends a message to the window with the
TVM_SELECTITEM and TVGN_FIRSTVISIBLE message parameters.

See Also: CTreeCtrl::Select, CTreeCtrl::Selectltem,
CTreeCtrl:: SelectDropTarget

CTreeCtrl: :SetImageList
ClmageList* SetlmageList(ClmageList * plmageList, int nlmageListType);

Return Value
Pointer to the previous image list, if any; otherwise NULL.

Parameters

1968

plmageList Pointer to the image list to assign. If plmageList is NULL, all images are
removed from the tree view control.

nlmageListType Type of image list to set. The image list can be one of the following
values:

• TVSIL_NORMAL Sets the normal image list, which contains the selected
and nonselected images for the tree view item.

• TVSIL_STATE Sets the state image list, which contains the images for tree
view items that are in a user-defined state.

Remarks
Call this function to set the normal or state image list for a tree view control and
redraw the control using the new images.

See Also: CImageList, CTreeCtrl: :GetImageList

CTreeCtrl: :SetIndent
void SetIndent(UINT nlndent);

Parameters

Remarks

nlndent Width, in pixels, of the indentation. If nlndellt is less than the
system-defined minimum width, the new width is set to the system-defined
minimum.

Call this function to set the width of indentation for a tree view control and redraw the
control to reflect the new width.

See Also: CTreeCtrl::GetIndent, CTreeCtrl::GetItemRect

CTreeCtrl: :SetItem
BOOL SetItem(TV _ITEM* pltem);
BOOL Setltem(HTREEITEM hltem, UINT llMask, LPCTSTR lpszltem,

CTreeCtrl::SetItem

... int llImage, int llSelectedlmage, UINT llState, UINT llStateMask, LPARAM IParam);

Return Value
Nonzero if successful; otherwise O.

Parameters
pltem A pointer to a TV_ITEM structure that contains the new item attributes. For

more information on the TV_ITEM structure, see CTreeCtrl: :GetItem.

hltem Handle of the item whose attributes are to be set.

nMask Integer specifying which attributes to set.

lpszltem Address of a string containing the item's text.

nlmage Index of the item's image in the tree view control's image list.

llSelectedlmage Index of the item's selected image in the tree view control's image
list.

llState Specifies values for the item's states.

llStateMask Specifies which states are to be set.

IParam A 32-bit application-specific value associated with the item.

1969

CTreeCtrl: :SetltemData

Remarks
Call this function to set the attributes of the specified tree view item.

In the TV_ITEM structure, the hltem member identifies the item, and the mask
member specifies which attributes to set.

If the mask member or the nMask parameter specifies the TVIF _TEXT value, the
pszText member or the Ipszltem is the address of a null-terminated string and the
cchTextMax member is ignored. If mask (or nMask) specifies the TVIF _STATE
value, the stateMask member or the nStateMask parameter specifies which item states
to change and the state member or nState parameter contains the values for those
states.

See Also: C'freeCtrl: : GetItem

CTreeCtrl: :SetItemData
BOOL SetltemData(HTREEITEM hltem, DWORD dwData);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

hltem Handle of the item whose data is to be retrieved.

dwData A 32-bit application-specific value associated with the item specified by
hltem.

Call this function to set the 32-bit application-specific value associated with the
specified item.

See Also: C'freeCtrl::GetItemData

CTreeCtrl: :SetItemImage
BOOL SetItemImage(HTREEITEM hltem, int nlmage, int nSelectedlmage);

Return Value
Nonzero if successful; otherwise O.

Parameters

1970

hltem Handle of the item whose image is to be set.

nlmage Index of the item's image in the tree view control's image list.

nSelectedlmage Index of the item's selected image in the tree view control's image
list.

CTreeCtrl::SetltemText

Remarks
Each item in a tree view control can have a pair of bitmapped images associated with
it. The images appear on the left side of an item's label. One image is displayed when
the item is selected, and the other is displayed when the item is not selected. For
example, an item might display an open folder when it is selected and a closed folder
when it is not selected.

Call this function to set the index of the item's image and its selected image within the
tree view control's image list.

For more information on images, see CImageList.

See Also: CTreeCtrl::GetItemImage, CImageList

CTreeCtrl: :SetItemState
BOOL SetItemState(HTREEITEM hltem, UINT nState, UINT nStateMask);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

hltem Handle of the item whose state is to be set.

nState Specifies new states for the item.

nStateMask Specifies which states are to be changed.

Sets the state of the item specified by hltem. For information on states, see
CTreeCtrl:: Getltem.

See Also: CTreeCtrl::Getltem, CTreeCtrl::GetItemState

CTreeCtrl: :SetItemText
BOOL SetItemText(HTREEITEM hltem, LPCTSTR IpszItem);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

hltem Handle of the item whose text is to be set.

IpszItem Address of a string containing the new text for the item

Sets the text of the item specified by hltem.

See Also: CTreeCtrl::GetItemText

1971

CTreeCtr1:: SortChildren

CTreeCtrl: : SortChildren
BOOL SortChildren(HTREEITEM hItem);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

hItem Handle of the parent item whose child items are to be sorted.

Call this function to sort the child items of the given parent item in a tree view control.
If hItem is NULL, the entire tree control is sorted.

See Also: CTreeCtrl: :SortChildrenCB

CTreeCtrl:: SortChildrenCB
BOOL SortChildrenCB(LPTV _SORTCB pSort);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

1972

pSort Pointer to a TV _SORTCB structure.

Call this function to sort tree view items using an application-defined callback
function that compares the items.

The TV _SORTCB structure is defined as follows:

typedef struct _TV_SORTCB { tvscb
HTREEITEM hParent; II handle of parent item
PFNTVCOMPARE lpfnCompare;
LPARAM lParam; II application-defined 32-bit value

TV_SORTCB;

IpfnCompare Pointer to an application-defined comparison function. It is called
during a sort operation each time the relative order of two list items needs to be
compared. The comparison function has the following form:

int CALLBACK CompareFunc(LPARAM lParaml, LPARAM lParam2, LPARAM
1 Pa ramSort) ;

The comparison function must return a negative value if the first item should precede
the second, a positive value if the first item should follow the second, or zero if the
two items are equivalent.

CTreeCtrl: :SortChildrenCB

The IParami and IParam2 parameters correspond to the IParam member of the
TV_ITEM structure for the two items being compared. For more information on the
TV_ITEM structure, see CTreeCtrl::Getltem. The IParamSort parameter
corresponds to the IParam member of the TV _SORTCB structure.

See Also: CTreeCtrl::SortChildren

1973

CTreeView

CTreeView

The CTree View class simplifies use of the tree control and of CTreeCtrl, the class
that encapsulates tree-control functionality, with MFC's document-view architecture.
For more information on this architecture, see the overview for the CView class and
the cross-references cited there.

#include <afxcview.h>

See Also: CView, CCtrlView, CTreeCtrl

CTree View Class Members
Construction

CTreeView Constructs a CTree View object.

Attributes

GetTreeCtrl Returns the tree control associated with the view.

Member Functions
CTree View: :CTree View

Remarks

1974

CTree View();

Constructs a CTree View object.

See Also: CTreeCtrl

CTree View: : GetTreeCtrl

CTree View: : GetTreeCtrl
CTreeCtrl& GetTreeCtrl() const;

Remarks
Returns a reference to the tree control associated with the view.

See Also: CTreeCtrl

1975

CTypedPtr Array

CTypedPtrArray

template< class BASE_CLASS, class TYPE>
... class CTypedPtrArray: public BASE_CLASS

Parameters

Remarks

BASE_CLASS Base class of the typed pointer array class; must be an array class
(CObArray or CPtrArray).

TYPE Type of the elements stored in the base-class array.

The CTypedPtrArray class provides a type-safe "wrapper" for objects of class
CPtrArray or CObArray. When you use CTypedPtrArray rather than CPtrArray
or CObArray, the C++ type-cliecking facility helps eliminate errors caused by
mismatched pointer types.

In addition, the CTypedPtrArray wrapper performs much of the casting that would
be required if you used CObArray or CPtrArray.

Because all CTypedPtr Array functions are inline, use of this template does not
significantly affect the size or speed of your code.

For more information on using CTypedPtrArray, see the articles "Collections" and
"Collections: Template-Based Classes" in Visual C++ Programmer's Guide online.

#include <afxtempl.h>

See Also: CPtrArray, CObArray

CTypedPtrArray Class Members

1976

Element Access

GetAt

ElementAt

SetAt

SetAtGrow

Add

Returns the value at a given index.

Returns a temporary reference to the element pointer within
the array.

Sets the value for a given index; array not allowed to grow.

Sets the value for a given index; grows the array if necessary.

Adds a new element to the end of an array. Grows the array
if necessary

Element Access (continued)

Append

Copy

InsertAt

Operators

operator[]

Adds the contents of one array to the end of another. Grows the
array if necessary

Copies another array to the array; grows the array if necessary.

Inserts an element (or all the elements in another array) at a
specified index.

Sets or gets the element at the specified index.

Member Functions
CTypedPtrArray: :Add

int Add(TYPE newElement);

Return Value
The index of the added element.

Parameters

Remarks

TYPE Template parameter specifying the type of element to be added to
the array.

newElement The element to be added to this array.

This member function calls BASE_CLASS::Add. For more detailed remarks,
see CObArray::Add.

CTypedPtrArray: : Append
int Append(const CTypedPtrArray<BASE_CLASS, TYPE>& src);

Return Value
The index of the first appended element.

Parameters
BASE_CLASS Base class of the typed pointer array class; must be an array class

(CObArray or CPtrArray).

TYPE Type of the elements stored in the base-class array.

src Source of the elements to be appended to an array.

CTypedPtr Array: :Append

1977

CTypedPtrArray: :Copy

Remarks
This member function calls BASE_CLASS::Append. For more detailed remarks, see
CObArray: :Append.

CTypedPtrArray: : Copy
void Copy(const CTypedPtrArray<BASE_CLASS, TYPE>& src);

Parameters

Remarks

BASE_CLASS Base class of the typed pointer array class; must be an array class
(CObArray or CPtrArray).

TYPE Type of the elements stored in the base-class array.

src Source of the elements to be copied to an array.

This member function calls BASE_CLASS::Copy. For more detailed remarks, see
CObArray::Copy.

CTypedPtrArray: : ElementAt
TYPE& ElementAt(int nlndex);

Return Value
A temporary reference to the element at the location specified by nlndex. This element
is of the type specified by the template parameter TYPE.

Parameters

Remarks

TYPE Template parameter specifying the type of elements stored in this array.

nlndex An integer index that is greater than or equal to 0 and less than or equal to the
value returned by BASE_CLASS::GetUpperBound.

This inline function calls BASE_CLASS::ElementAt. For more detailed remarks, see
CObArray: : ElementAt.

See Also: CObArray::ElementAt, CObArray::GetUpperBound

CTypedPtrArray: : GetAt
TYPE GetAt(int nlndex) const;

Return Value

1978

A copy of the element at the location specified by nlndex. This element is of the type
specified by the template parameter TYPE.

CTypedPtrArray: :SetAt

Parameters

Remarks

TYPE Template parameter specifying the type of elements stored in the array.

nlndex An integer index that is greater than or equal to 0 and less than or equal to the
value returned by BASE_CLASS::GetUpperBound.

This inline function calls BASE_CLASS::GetAt. For more detailed remarks, see
CObArray::GetAt.

See Also: CObArray::GetAt, CObArray::GetUpperBound

CTypedPtrArray: : InsertAt
void InsertAt(int nlndex, TYPE newElement, int nCount = 1);
void InsertAt(int nStartIndex, CTypedPtrArray<BASE_CLASS, TYPE>* pNewArray);

Parameters

Remarks

nlndex An integer index that may be greater than the value returned by
CObArray::GetUpperBound.

TYPE Type of the elements stored in the base-class array.

newElement The object pointer to be placed in this array. A newElement of value
NULL is allowed.

nCount The number of times this element should be inserted (defaults to 1).

nStartlndex An integer index that may be greater than the value returned by
CObArray::GetUpperBound.

BASE_CLASS Base class of the typed pointer array class; must be an array class
(CObArray or CPtrArray).

pNewArray Another array that contains elements to be added to this array.

This member function calls BASE_CLASS::InsertAt. For more detailed remarks,
see CObArray: : InsertAt.

CTypedPtrArray: :SetAt
void SetAt(int nlndex, TYPE ptr);

Parameters
nlndex An integer index that is greater than or equal to 0 and less than or equal to the

value returned by CObArray::GetUpperBound.

TYPE Type of the elements stored in the base-class array.

1979

CTypedPtrArray: :SetAtGrow

Remarks

ptr A pointer to the element to be inserted in the array at the nlndex. A NULL value
is allowed.

This member function calls BASE_CLASS::SetAt. For more detailed remarks,
see CObArray::SetAt.

CTypedPtrArray: :SetAtGrow
void SetAtGrow(int nlndex, TYPE newElement);

Parameters

Remarks

nlndex An integer index that is greater than or equal to O.

TYPE Type of the elements stored in the base-class array.

newElement The object pointer to be added to this array. A NULL value is allowed.

This member function calls BASE_CLASS::SetAtGrow. For more detailed remarks,
see CObArray: :SetAtGrow.

Operators
CTypedPtrArray: : operator []

TYPE& operator[](int nlndex);
TYPE operator[](int nlndex) const;

Parameters

Remarks

1980

TYPE Template parameter specifying the type of elements stored in the array.

nlndex An integer index that is greater than or equal to 0 and less than or equal to the
value returned by BASE_CLASS::GetUpperBound.

These inline operators call BASE_CLASS::operator [].

The first operator, called for arrays that are not const, can be used on either the right
(r-value) or the left (I-value) of an assignment statement. The second, invoked for
const arrays, can be used only on the right.

The Debug version of the library asserts if the subscript (either on the left or right side
of an assignment statement) is out of bounds.

See Also: CObArray::operator []

CTypedPtrList

template< class BASE_CLASS, class TYPE> class CTypedPtrList : public BASE_CLASS

Parameters

Remarks

BASE_CLASS Base class of the typed pointer list class; must be a pointer list class
(CObList or CPtrList).

TYPE Type of the elements stored in the base-class list.

The CTypedPtrList class provides a type-safe "wrapper" for objects of class
CPtrList. When you use CTypedPtrList rather than CObList or CPtrList, the C++
type-checking facility helps eliminate errors caused by mismatched pointer types.

In addition, the CTypedPtrList wrapper performs much of the casting that would be
required if you used CObList or CPtrList.

Because all CTypedPtrList functions are inline, use of this template does not
significantly affect the size or speed of your code.

Lists derived from CObList can be serialized, but those derived from CPtrList
cannot.

When a CTypedPtrList object is deleted, or when its elements are removed, only the
pointers are removed, not the entities they reference.

For more information on using CTypedPtrList, see the articles "Collections"
and ~'Collections: Template-Based Classes" in Visual C++ Programmer's
Guide online.

#include <afxtempl.h>

See Also: CPtrList, CObList

CTypedPtrList Class Members
HeadlTaii Access

GetHead

GetTail

Returns the head element of the list (cannot be empty).

Returns the tail element of the list (cannot be empty).

CTypedPtrList

1981

CTypedPtrList: :AddHead

Operations

RemoveHead

RemoveTaii

AddHead

AddTail

Iteration

GetNext

GetPrev

Retrieval/Modification

GetAt

SetAt

Removes the element from the head of the list.

Removes the element from the tail of the list.

Adds an element (or all the elements in another list) to the head of the
list (makes a new head).

Adds an element (or all the elements in another list) to the tail of the list
(makes a new tail).

Gets the next element for iterating.

Gets the previous element for iterating.

Gets the element at a given position.

Sets the element at a given position.

Member Functions
CTypedPtrList: : AddHead

POSITION AddHead(TYPE newElement);
void AddHead(CTypedPtrList<BASE_CLASS, TYPE> *pNewList);

Return Value
The first version returns the POSITION value of the newly inserted element.

Parameters

Remarks

1982

TYPE Type of the elements stored in the base-class list.

newElement The object pointer to be added to this list. A NULL value is allowed.

BASE_CLASS Base class of the typed pointer list class; must be a pointer list class
(CObList or CPtrList).

pNewList A pointer to another CTypedPtrList object. The elements in pNewList will
be added to this list.

This member function calls BASE_CLASS::AddHead. The first version adds a new
element before the head of the list. The second version adds another list of elements
before the head.

CTypedPtrList:: GetAt

CTypedPtrList: : AddTail
POSITION AddTail(TYPE newElement);
void AddTail(CTypedPtrList<BASE_CLASS, TYPE> *pNewList);

Return Value
The first version returns the POSITION value of the newly inserted element.

Parameters

Remarks

TYPE Type of the elements stored in the base-class list.

newElement The object pointer to be added to this list. A NULL value is allowed.

BASE_CLASS Base class of the typed pointer list class; must be a pointer list class
(CObList or CPtrList).

pNewList A pointer to another CTypedPtrList object. The elements in pNewList will
be added to this list.

This member function calls BASE_CLASS::AddTail. The first version adds a new
element after the tail of the list. The second version adds another list of elements after
the tail of the list.

CTypedPtrList: : GetAt
TYPE& GetAt(POSITION position);
TYPE GetAt(POSITION position) const;

Return Value
If the list is accessed through a pointer to a const CTypedPtrList, then GetAt returns
a pointer of the type specified by the template parameter TYPE. This allows the
function to be used only on the right side of an assignment statement and thus protects
the list from modification.

If the list is accessed directly or through a pointer to a CTypedPtrList, then GetAt
returns a reference to a pointer of the type specified by the template parameter TYPE.
This allows the function to be used on either side of an assignment statement and thus
allows the list entries to be modified.

Parameters
TYPE Template parameter specifying the type of elements stored in the list.

position A POSITION value returned by a previous GetHeadPosition or Find
member function call.

1983

CTypedPtrList: :GetHead

Remarks
A variable of type POSITION is a key for the list. It is not the same as an index, and
you cannot operate on a POSITION value yourself. GetAt retrieves the CObject
pointer associated with a given position.

You must ensure that your POSITION value represents a valid position in the list. If
it is invalid, then the Debug version of the Microsoft Foundation Class Library
asserts.

This inline function calls BASE_CLASS::GetAt.

See Also: CObList::GetAt

CTypedPtrList: : GetHead
TYPE& GetHead();
TYPE GetHead() const;

Return Value
If the list is accessed through a pointer to a const CTypedPtrList, then GetHead
returns a pointer of the type specified by the template parameter TYPE. This allows
the function to be used only on the right side of an assignment statement and thus
protects the list from modification.

If the list is accessed directly or through a pointer to a CTypedPtrList, then GetHead
returns a reference to a pointer of the type specified by the template parameter TYPE.
This allows the function to be used on either side of an assignment statement and thus
allows the list entries to be modified.

Parameters

Remarks

1984

TYPE Template parameter specifying the type of elements stored in the list.

Gets the pointer that represents the head element of this list.

You must ensure that the list is not empty before calling GetHead. If the list is empty,
then the Debug version of the Microsoft Foundation Class Library asserts. Use
IsEmpty to verify that the list contains elements.

See Also: CPtrList::IsEmpty, CTypedPtrList::GetTail,
CTypedPtrList: : GetNext, CTypedPtrList: : GetPrev

CTypedPtrList:: GetPrev

CTypedPtrList: : GetN ext
TYPE& GetNext(POSITION& rPosition);
TYPE GetNext(POSITION& rPosition) const;

Return Value
If the list is accessed through a pointer to a const CTypedPtrList, then GetNext
returns a pointer of the type specified by the template parameter TYPE. This allows
the function to be used only on the right side of an assignment statement and thus
protects the list from modification.

If the list is accessed directly or through a pointer to a CTypedPtrList, then GetNext
returns a reference to a pointer of the type specified by the template parameter TYPE.
This allows the function to be used on either side of an assignment statement and thus
allows the list entries to be modified.

Parameters

Remarks

TYPE Template parameter specifying the type of elements contained in this list.

rPosition A reference to a POSITION value returned by a previous GetNext,
GetHeadPosition, or other member function call.

Gets the list element identified by rPosition, then sets rPosition to the POSITION
value of the next entry in the list. You can use GetNext in a forward iteration loop if
you establish the initial position with a call to GetHeadPosition or CPtrList::Find.

You must ensure that your POSITION value represents a valid position in the list. If
it is invalid, then the Debug version of the Microsoft Foundation Class Library
asserts.

If the retrieved element is the last in the list, then the new value of rPosition is set to
NULL.

It is possible to remove an element during an iteration. See the example for
CObList::RemoveAt.

See Also: CObList::Find, CObList::GetHeadPosition,
CObList: : GetTailPosition, CTypedPtrList: : GetPrev , CTypedPtrList: :GetHead,
CTypedPtrList:: GetTail

CTypedPtrList: : GetPrev
TYPE& GetPrev(POSITION& rPosition);
TYPE GetPrev(POSITION& rPosition) const;

Return Value
If the list is accessed through a pointer to a const CTypedPtrList, then GetPrev
returns a pointer of the type specified by the template parameter TYPE. This allows

1985

CTypedPtrList:: GetTail

the function to be used only on the right side of an assignment statement and thus
protects the list from modification.

If the list is accessed directly or through a pointer to a CTypedPtrList, then GetPrev
returns a reference to a pointer of the type specified by the template parameter TYPE.
This allows the function to be used on either side of an assignment statement and thus
allows the list entries to be modified.

Parameters

Remarks

TYPE Template parameter specifying the type of elements contained in this list.

rPosition A reference to a POSITION value returned by a previous GetPrev or
other member function call.

Gets the list element identified by rPosition, then sets rPosition to the POSITION
value of the previous entry in the list. You can use GetPrev in a reverse iteration loop
if you establish the initial position with a call to GetTailPosition or Find.

You must ensure that your POSITION value represents a valid position in the list. If
it is invalid, then the Debug version of the Microsoft Foundation Class Library
asserts.

If the retrieved element is the first in the list, then the new value of rPosition is set to
NULL.

See Also: CPtrList: :Find, CPtrList: : GetTailPosition,
CPtrList:: GetHeadPosition, CTypedPtrList: :GetN ext, CTypedPtrList: :GetHead,
CTypedPtrList:: GetTaii

CTypedPtrList: : GetTail
TYPE& GetTail();
TYPE GetTail() const;

Return Value
If the list is accessed through a pointer to a const CTypedPtrList, then GetTail
returns a pointer of the type specified by the template parameter TYPE. This allows
the function to be used only on the right side of an assignment statement and thus
protects the list from modification.

If the list is accessed directly or through a pointer to a CTypedPtrList, then GetTail
returns a reference to a pointer of the type specified by the template parameter TYPE.
This allows the function to be used on either side of an assignment statement and thus
allows the list entries to be modified.

Parameters
TYPE Template parameter specifying the type of elements stored in the list.

1986

CTypedPtrList: :RemoveTail

Remarks
Gets the pointer that represents the head element of this list.

You must ensure that the list is not empty before calling GetTail. If the list is empty,
then the Debug version of the Microsoft Foundation Class Library asserts. Use
IsEmpty to verify that the list contains elements.

See Also: CPtrList::IsEmpty, CPtrList::Find, CPtrList::GetTailPosition,
CPtr List:: GetHeadPosition, CTypedPtrList: : GetPrev , CTypedPtrList:: GetN ext,
CTypedPtrList:: GetHead

CTypedPtrList: : RemoveHead
TYPE RemoveHead();

Return Value
The pointer previously at the head of the list. This pointer is of the type specified by
the template parameter TYPE.

Parameters

Remarks

TYPE Template parameter specifying the type of elements stored in the list.

Removes the element from the head of the list and returns it.

You must ensure that the list is not empty before calling RemoveHead. If the list is
empty, then the Debug version of the Microsoft Foundation Class Library asserts. Use
IsEmpty to verify that the list contains elements.

See Also: CTypedPtrList::RemoveTail, CPtrList::IsEmpty, CPtrList::GetHead,
CPtrList: :AddHead

CTypedPtrList: : RemoveTail
TYPE RemoveTail();

Return Value
The pointer previously at the tail of the list. This pointer is of the type specified by the
template parameter TYPE.

Parameters
TYPE Template parameter specifying the type of elements stored in the list.

Remarks
Removes the element from the tail of the list and returns it.

1987

CTypedPtrList:: SetAt

You must ensure that the list is not empty before calling RemoveTail. If the list is
empty, then the Debug version of the Microsoft Foundation Class Library asserts. Use
IsEmpty to verify that the list contains elements.

See Also: CTypedPtrList: :RemoveHead, CPtrList: : IsEmpty , CPtrList: : GetTail,
CPtrList: : Add Tail

CTypedPtrList: :SetAt
void SetAt(POSITION pos, TYPE newElement);

Parameters

Remarks

1988

pos The POSITION of the element to be set.

TYPE Type of the elements stored in the base-class list.

newElement The object pointer to be written to the list.

This member function calls BASE_CLASS::SetAt.

A variable of type POSITION is a key for the list. It is not the same as an index, and
you cannot operate on a POSITION value yourself. SetAt writes the object pointer to
the specified position in the list.

You must ensure that your POSITION value represents a valid position in the list. If
it is invalid, then the Debug version of the Microsoft Foundation Class Library
asserts.

For more detailed remarks, see CObList: :SetAt.

CTypedPtrMap

template< class BASE_CLASS, class KEY, class VALUE>
.. class CTypedPtrMap : public BASE_CLASS

Parameters

Remarks

BASE_CLASS Base class of the typed pointer map class; must be a pointer map class
(CMapPtrToPtr, CMapPtrToWord, CMapWordToPtr, or CMapStringToPtr).

KEY Class of the object used as the key to the map.

VALUE Class of the object stored in the map.

The CTypedPtrMap class provides a type-safe "wrapper" for objects of the
pointer-map classes CMapPtrToPtr, CMapPtrToWord, CMapWordToPtr, and
CMapStringToPtr. When you use CTypedPtrMap, the C++ type-checking facility
helps eliminate errors caused by mismatched pointer types.

Because all CTypedPtrMap functions are inline, use of this template does not
significantly affect the size or speed of your code.

For more information on using CTypedPtrMap, see the articles "Collections" and
"Collections: Template-Based Classes" in Visual C++ Programmer's Guide online.

#include <afxtempl.h>

See Also: CMapPtrToPtr, CMapPtrToWord, CMapWordToPtr,
CMapStringToPtr

CTypedPtrMap Class Members
Element Access

Lookup

GetNextAssoc

RemoveKey

SetAt

Operators

operator[]

Returns a KEY based on a VALUE.

Gets the next element for iterating.

Removes an element specified by a key.

Inserts an element into the map; replaces an existing element if a
matching key is found.

Inserts an element into the map.

CTypedPtrMap

1989

CTypedPtrMap: : GetNextAssoc

Member Functions
CTypedPtrMap: : GetN extAssoc

void GetNextAssoc(POSITION& rPosition, KEY& rKey, VALUE& rValue) const;

Parameters

Remarks

rPosition Specifies a reference to a POSITION value returned by a previous
GetNextAssoc or BASE_CLASS::GetStartPosition call.

KEY Template parameter specifying the type of the map's keys.

rKey Specifies the returned key of the retrieved element.

VALUE Template parameter specifying the type of the map's values.

rValue Specifies the returned value of the retrieved element.

Retrieves the map element at rNextPosition, then updates rNextPosition to refer to the
next element in the map. This function is most useful for iterating through all the
elements in the map. Note that the position sequence is not necessarily the same as the
key value sequence.

If the retrieved element is the last in the map, then the new value of rNextPosition is
set to NULL.

This inline function calls BASE_CLASS::GetNextAssoc.

See Also: CMapStringToOb::GetNextAssoc,
CMapStringToOb: : GetStartPosition

CTypedPtrMap: : Lookup
BOOL Lookup(BASE_CLASS::BASE_ARG_KEY key, VALUE& rValue) const;

Return Value
Nonzero if the element was found; otherwise O.

Parameters

Remarks

1990

BASE_CLASS Template parameter specifying the base class of this map's class.

key The key of the element to be looked up.

VALUE Template parameter specifying the type of values stored in this map.

rValue Specifies the returned value of the retrieved element.

Lookup uses a hashing algorithm to quickly find the map element with a key that
matches exactly.

CTypedPtrMap::operator []

This inline function calls BASE_CLASS::Lookup.

See Also: CMapStringToOb: :Lookup

CTypedPtrMap: : RemoveKey
BOOL RemoveKey(KEY key);

Return Value
Nonzero if the entry was found and successfully removed; otherwise O.

Parameters

Remarks

KEY Template parameter specifying the type of the map's keys.

key Key for the element to be removed.

This member function calls BASE_CLASS::RemoveKey. For more detailed remarks,
see CMapStringToOb: :RemoveKey.

CTypedPtrMap: :SetAt
void SetAt(KEY key, VALUE newValue);

Parameters

Remarks

KEY Template parameter specifying the type of the map's keys.

key Specifies the key value of the newValue.

newValue Specifies the object pointer that is the value of the new element.

This member function calls BASE_CLASS::SetAt. For more detailed remarks, see
CMapStringToOb: :SetAt.

Operators
CTypedPtrMap::operator []

VALUE& operator [](BASE_CLASS::BASE_ARG_KEY key);

Parameters
VALUE Template parameter specifying the type of values stored in this map.

BASE_CLASS Template parameter specifying the base class of this map's class.

key The key of the element to be looked up or created in the map.

1991

CTypedPtrMap: :operator []

Remarks

1992

This operator can be used only on the left side of an assignment statement (an
I-value). If there is no map element with the specified key, then a new element is
created. There is no "right side" (r-value) equivalent to this operator because there is a
possibility that a key may not be found in the map. Use the Lookup member function
for element retrieval.

See Also: CTypedPtrMap: :Lookup

CUIntArray

The CUIntArray class supports arrays of unsigned integers. An unsigned integer, or
UINT, differs from words and doublewords in that the physical size of a UINT can
change depending on the target operating environment. Under Windows version 3.1, a
UINT is the same size as a WORD. Under Windows NT and Windows 95, a UINT is
the same size as a doubleword.

The member functions of CUIntArray are similar to the member functions of class
CObArray. Because of this similarity, you can use the CObArray reference
documentation for member function specifics. Wherever you see a CObject pointer as
a function parameter or return value, substitute a UINT.

CObject* CObArray::GetAt(int <nlndex>) canst;

for example, translates to

UINT CUlntArray::GetAt(int <nlndex>) canst;

CUIntArray incorporates the IMPLEMENT_DYNAMIC macro to support
run-time type access and dumping to a CDumpContext object. If you need a dump of
individual unsigned integer elements, you must set the depth of the dump context to 1
or greater. Unsigned integer arrays cannot be serialized.

Note Before using an array, use SetSize to establish its size and allocate memory for it. If you
do not use SetSize, adding elements to your array causes it to be frequently reallocated and
copied. Frequent reallocation and copying are inefficient and can fragment memory.

For more information on using CUIntArray, see the article "Collections" in
Visual C++ Programmer's Guide online.

#include <afxcoll.h>

CUIntArray Class Members
Construction

CUlntArray

Bounds

GetSize

GetUpperBound

SetSize

Constructs an empty array for unsigned integers.

Gets the number of elements in this array.

Returns the largest valid index.

Sets the number of elements to be contained in this array.

CUIntArray

1993

CUlntArray

1994

Operations

FreeExtra

RemoveAll

Element Access

GetAt

SetAt

ElementAt

GetData

Growing the Array

SetAtGrow

Add

Append

Copy

Insertion/Removal

InsertAt

RemoveAt

Operators

operator []

Frees all unused memory above the current upper bound.

Removes all the elements from this array.

Returns the value at a given index.

Sets the value for a given index; the array is not allowed to grow.

Returns a temporary reference to the element pointer within the
array.

Allows access to elements in the array. Can be NULL.

Sets the value for a given index; grows the array if necessary.

Adds an element to the end of the array; grows the array if
necessary.

Appends another array to the array; grows the array if necessary.

Copies another array to the array; grows the array if necessary.

Inserts an element (or all the elements in another array) at a specified
index.

Removes an element at a specific index.

Sets or gets the element at the specified index.

CD serException

A CUserException is thrown to stop an end-user operation. Use CUserException
when you want to use the throwlcatch exception mechanism for application-specific
exceptions. "User" in the class name can be interpreted as "my user did something
exceptional that I need to handle."

A CUserException is usually thrown after calling the global function
AfxMessageBox to notify the user that an operation has failed. When you write an
exception handler, handle the exception specially since the user usually has already
been notified of the failure. The framework throws this exception in some cases. To
throw a CUserException yourself, alert the user and then call the global function
AfxThrowUserException.

In the example below, a function containing operations that may fail alerts the user
and throws a CUserException. The calling function catches the exception and
handles it specially:

void DoSomeOperation(
{

II Processing
II If something goes wrong ...
AfxMessageBox("The x operation failed");
AfxThrowUserException();

BOOl TrySomething(
{

TRY
{

}

II Could throw a CUserException or other exception.
DoSomeOperati on ();

CATCH(CUserException, e)
(

return FALSE; II User already notified.

AND_CATCH(CException, e)
(

II For other exception types, notify user here.
AfxMessageBox("Some operation failed");
return FALSE;

CU serException

1995

CU serException

1996

END_CATCH
return TRUE; II No exception thrown.

For more information on using CUserException, see the article "Exceptions" in
Visual C++ Programmer's Guide online.

#include <afxwin.h>

See Also: CException, AfxMessageBox, AfxThrowUserException

CView

The CView class provides the basic functionality for user-defined view classes.
A view is attached to a document and acts as an intermediary between the document
and the user: the view renders an image of the document on the screen or printer and
interprets user input as operations upon the document.

A view is a child of a frame window. More than one view can share a frame window,
as in the case of a splitter window. The relationship between a view class, a frame
window class, and a document class is established by a CDocTemplate object. When
the user opens a new window or splits an existing one, the framework constructs a
new view and attaches it to the document.

A view can be attached to only one document, but a document can have multiple
views attached to it at once- for example, if the document is displayed in a splitter
window or in multiple child windows in a multiple document interface (MDI)
application. Your application can support different types of views for a given
document type; for example, a word-processing program might provide both a
complete text view of a document and an outline view that shows only the section
headings. These different types of views can be placed in separate frame windows
or in separate panes of a single frame window if you use a splitter window.

A view may be responsible for handling several different types of input, such as
keyboard input, mouse input or input via drag-and-drop, as well as commands from
menus, toolbars, or scroll bars. A view receives commands forwarded by its frame
window. If the view does not handle a given command, it forwards the command to
its associated document. Like all command targets, a view handles messages via a
message map.

The view is responsible for displaying and modifying the document's data but not for
storing it. The document provides the view with the necessary details about its data.
You can let the view access the document's data members directly, or you can provide
member functions in the document class for the view class to call.

When a document's data changes, the view responsible for the changes typically calls
the CDocument:: UpdateAllViews function for the document, which notifies all the
other views by calling the OnUpdate member function for each. The default
implementation of OnUpdate invalidates the view's entire client area. You can

CView

1997

CView

1998

override it to invalidate only those regions of the client area that map to the modified
portions of the document.

To use CView, derive a class from it and implement the OnDraw member function to
perform screen display. You can also use OnDraw to perform printing and print
preview. The framework handles the print loop for printing and previewing your
document.

A view handles scroll-bar messages with the CWnd::OnHScroll and
CWnd::OnVScroll member functions. You can implement scroll-bar message
handling in these functions, or you can use the CView derived class CScrollView to
handle scrolling for you.

Besides CScollView, the Microsoft Foundation Class Library provides nine other
classes derived from CView:

• CCtriView, a view that allows usage of document-view architecture with tree, list,
and rich edit controls.

• CDaoRecordView, a view that displays database records in dialog-box controls.

• CEditView, a view that provides a simple multiline text editor. You can use a
CEditView object as a control in a dialog box as well as a view on a document.

• CFormView, a scrollable view that contains dialog-box controls and is based on a
dialog template resource.

• CListView, a view that allows usage of document-view architecture with list
controls.

• CRecordView, a view that displays database records in dialog-box controls.

• CRichEditView, a view that allows usage of document-view architecture with rich
edit controls.

• CScrollView, a view that automatically provides scrolling support.

• CTreeView, a view that allows usage of document-view architecture with tree
controls.

The CView class also has a derived implementation class named CPreviewView,
which is used by the framework to perform print previewing. This class provides
support for the features unique to the print-preview window, such as a toolbar, single
or double-page preview, and zooming, that is, enlarging the previewed image. You
don't need to call or override any of CPreviewView's member functions unless you
want to implement your own interface for print preview (for example, if you want to
support editing in print preview mode). For more information on using CView, see
"DocumentlView Architecture Topics" and "Printing" in Visual c++ Programmer's
Guide online. In addition, see Technical Note 30 online for more details on
customizing print preview.

#include <afxwin.h>

See Also: CWnd, CFrameWnd, CSplitterWnd, CDC, CDocTemplate,
CDocument

CView Class Members
Operations

DoPreparePrinting

GetDocument

OLE Overridables

OnDragEnter

OnDragLeave

OnDragOver

OnDrop

OnDropEx

OnDragScroll

OnlnitialU pdate

OnScrollBy

OnScroll

Overridables

IsSelected

OnActivate View

OnActivateFrame

OnBeginPrinting

OnDraw

OnEndPrinting

Displays Print dialog box and creates printer device context; call
when overriding the OnPreparePrinting member function.

Returns the document associated with the view.

Called when an item is first dragged into the drag-and-drop
region of a view.

Called when a dragged item leaves the drag-and-drop region of a
view.

Called when an item is dragged over the drag-and-drop region of
a view.

Called when an item has been dropped into the drag-and-drop
region of a view, default handler.

Called when an item has been dropped into the drag-and-drop
region of a view, primary handler.

Called to determine whether the cursor is dragged into the scroll
region of the window.

Called after a view is first attached to a document.

Called when a view containing active in-place OLE items is
scrolled.

Called when OLE items are dragged beyond the borders of the
view.

Tests whether a document item is selected. Required for OLE
support.

Called when a view is activated.

Called when the frame window containing the view is activated
or deactivated.

Called when a print job begins; override to allocate graphics
device interface (GDI) resources.

Called to render an image of the document for screen display,
printing, or print preview. Implementation required.

Called when a print job ends; override to deallocate GDI
resources.

(continued)

CView

1999

CView::CView

Overridables (continued)

OnEndPrintPreview

OnPrepareDC

OnPreparePrinting

OnPrint

OnUpdate

Constructors

CView

Called when preview mode is exited.

Called before the OnDraw member function is called for screen
display or the OnPrint member function is called for printing or
print preview.

Called before a document is printed or previewed; override to
initialize Print dialog box.

Called to print or preview a page of the document.

Called to notify a view that its document has been modified.

Constructs a CView object.

Member Functions
CView::CView

Remarks

CView();

Constructs a CView object. The framework calls the constructor when a new frame
window is created or a window is split. Override the OnInitialUpdate member
function to initialize the view after the document is attached.

See Also: CView::OnInitialUpdate

CView: : DoPreparePrinting
BOOL DoPreparePrinting(CPrintInfo* pInfo);

Return Value
Nonzero if printing or print preview can begin; 0 if the operation has been canceled.

Parameters

Remarks

2000

pInfo Points to a CPrintInfo structure that describes the current print job.

Call this function from your override of OnPreparePrinting to invoke the Print
dialog box and create a printer device context.

This function's behavior depends on whether it is being called for printing or print
preview (specified by the m_bPreview member of the pInfo parameter). If a file is
being printed, this function invokes the Print dialog box, using the values in the

CPrintlnfo structure that plnfo points to; after the user has closed the dialog box, the
function creates a printer device context based on settings the user specified in the
dialog box and returns this device context through the plnfo parameter. This device
context is used to print the document.

If a file is being previewed, this function creates a printer device context using the
current printer settings; this device context is used for simulating the printer during
preview.

See Also: CPrintlnfo, CView: :OnPreparePrinting

CView: : GetDocument
CDocument* GetDocument() const;

Return Value

Remarks

A pointer to the CDocument object associated with the view. NULL if the view is not
attached to a document.

Call this function to get a pointer to the view's document. This allows you to call the
document's member functions.

See Also: CDocument

CView: :IsSelected
virtual BOOL IsSelected(const CObject* pDocItem) const;

Return Value
Nonzero if the specified document item is selected; otherwise O.

Parameters

Remarks

pDocItem Points to the document item being tested.

Called by the framework to check whether the specified document item is selected.
The default implementation of this function returns FALSE. Override this function if
you are implementing selection using CDocItem objects. You must override this
function if your view contains OLE items.

See Also: CDocItem, COleClientltem

CView: :IsSe1ected

2001

CView: :OnActivateFrame

CView: : OnActi v ate Frame
virtual void OnActivateFrame(UINT nState, CFrameWnd* pFrameWnd);

Parameters

Remarks

nState Specifies whether the frame window is being activated or deactivated. It can
be one of the following values:

• WA_INACTIVE The frame window is being deactivated.

• WA_ACTIVE The frame window is being activated through some method
other than a mouse click (for example, by use of the keyboard interface to select
the window).

• WA_CLICKACTIVE The frame window is being activated by a mouse click

pFrame Wnd Pointer to the frame window that is to be activated.

Called by the framework when the frame window containing the view is activated or
deactivated. Override this member function if you want to perform special processing
when the frame window associated with the view is activated or deactivated. For
example, CForm View performs this override when it saves and restores the control
that has focus.

See Also: CWnd: :OnActivate, CForm View

CView: :OnActivate View
virtual void OnActivateView(BOOL bActivate, CView* pActivateView,

... CView* pDeactiveView);

Parameters

Remarks

2002

bActivate Indicates whether the view is being activated or deactivated.

pActivateView Points to the view object that is being activated.

pDeactive View Points to the view object that is being deactivated.

Called by the framework when a view is activated or deactivated. The default
implementation of this function sets the focus to the view being activated. Override
this function if you want to perform special processing when a view is activated or
deactivated. For example, if you want to provide special visual cues that distinguish
the active view from the inactive views, you would examine the bActivate parameter
and update the view's appearance accordingly.

CView: :OnBeginPrinting

The pActivate View and pDeactive View parameters point to the same view if the
application's main frame window is activated with no change in the active view%for
example, if the focus is being transferred from another application to this one, rather
than from one view to another within the application or when switching amongst MDI
child windows. This allows a view to re-realize its palette, if needed.

These parameters differ when CFrameWnd::SetActiveView is called with a view
that is different from what CFrameWnd::GetActiveView would return. This happens
most often with splitter windows.

See Also: CWnd::OnActivate, CFrameWnd::SetActiveView,
CFrame Wnd: : GetActive View

CVie\y: :OnBeginPrinting
virtual void OnBeginPrinting(CDC* pDC, CPrintInfo* plnfo);

Parameters

Remarks

pDC Points to the printer device context.

plnfo Points to a CPrintInfo structure that describes the current print job.

Called by the framework at the beginning of a print or print preview job, after
OnPreparePrinting has been called. The default implementation of this function does
nothing. Override this function to allocate any GDI resources, such as pens or fonts,
needed specifically for printing. Select the GDI objects into the device context from
within the OnPrint member function for each page that uses them. If you are using
the same view object to perform both screen display and printing, use separate
variables for the GDI resources needed for each display; this allows you to update the
screen during printing.

You can also use this function to perform initializations that depend on properties of
the printer device context. For example, the number of pages needed to print the
document may depend on settings that the user specified from the Print dialog box
(such as page length). In such a situation, you cannot specify the document length in
the OnPreparePrinting member function, where you would normally do so; you
must wait until the printer device context has been created based on the dialog box
settings. OnBeginPrinting is the first overridable function that gives you access to the
CDC object representing the printer device context, so you can set the document
length from this function. Note that if the document length is not specified by this
time, a scroll bar is not displayed during print preview.

See Also: CView::OnEndPrinting, CView::OnPreparePrinting, CView::OnPrint

2003

CView: :OnDragEnter

CView: :OnDragEnter
virtual DROPEFFECT OnDragEnter(COleDataObject* pDataObject,

... DWORD dwKeyState, CPoint point);

Return Value
A value from the DROPEFFECT enumerated type, which indicates the type of drop
that would occur if the user dropped the object at this position. The type of drop
usually depends on the current key state indicated by dwKeyState. A standard
mapping of key states to DROPEFFECT values is:

• DROPEFFECT_NONE The data object cannot be dropped in this window.

• DROPEFFECT_LINK for MK_CONTROL I MK_SHIFT Creates a linkage
between the object and its server.

• DROPEFFECT_COPY for MK_CONTROL Creates a copy of the dropped
object.

• DROPEFFECT_MOVE for MK_ALT Creates a copy of the dropped object and
delete the original object. This is typically the default drop effect, when the view
can accept this data object.

For more information, see the MFC Advanced Concepts sample OCLIENT.

Parameters

Remarks

2004

pDataObject Points to the COleDataObject being dragged into the drop area of the
view.

dwKeyState Contains the state of the modifier keys. This is a combination of any
number of the following: MK_CONTROL, MK_SHIFT, MK_ALT,
MK_LBUTTON, MK_MBUTTON, and MK_RBUTTON.

point The current mouse position relative to the client area of the view.

Called by the framework when the mouse first enters the non-scrolling region of the
drop target window. Default implementation is to do nothing and return
DROPEFFECT_NONE.

Override this function to prepare for future calls to the OnDragOver member
function. Any data required from the data object should be retrieved at this time for
later use in the OnDragOver member function. The view should also be updated at
this time to give the user visual feedback. For more information, see the article "Drag
and Drop: Implementing a Drop Target" in Visual C++ Programmer's Guide online.

See Also: CView::OnDragOver, CView::OnDrop, CView::OnDropEx,
CView: :OnDragLeave, COleDropTarget: :OnDragEnter

CView: :OnDragLeave

Remarks

virtual void OnDragLeave();

Called by the framework during a drag operation when the mouse is moved out of the
valid drop area for that window.

Override this function if the current view needs to clean up any actions taken during
OnDragEnter or OnDragOver calls, such as removing any visual user feedback
while the object was dragged and dropped.

See Also: CView::OnDragEnter, CView::OnDragOver, CView::OnScroll,
COleDropTarget: :OnDragLeave

CView::OnDragOver
virtual DROPEFFECT OnDragOver(COleDataObject* pDataObject,

... DWORD dwKeyState, CPoint point);

Return Value
A value from the DROPEFFECT enumerated type, which indicates the type of drop
that would occur if the user dropped the object at this position. The type of drop often
depends on the current key state as indicated by dwKeyState. A standard mapping of
keystates to DROPEFFECT values is:

• DROPEFFECT_NONE The data object cannot be dropped in this window.

• DROPEFFECT_LINK for MK_CONTROL I MK_SHIFT Creates a linkage
between the object and its server.

• DROPEFFECT_COPY for MK_CONTROL Creates a copy of the dropped
object.

• DROPEFFECT_MOVE for MK_ALT Creates a copy of the dropped object and
delete the original object. This is typically the default drop effect, when the view
can accept the data object.

For more information, see the MFC Advanced Concepts sample OCLIENT online.

Parameters
pDataObject Points to the COleDataObject being dragged over the drop target.

dwKeyState Contains the state of the modifier keys. This is a combination of any
number of the following: MK_ CONTROL, MK_SHIFT, MK_ALT,
MK_LBUTTON, MK_MBUTTON, and MK_RBUTTON.

point The current mouse position relative to the view client area.

CView: :OnDragOver

2005

CView: :OnDragScroll

Remarks
Called by the framework during a drag operation when the mouse is moved over the
drop target window. The default implementation is to do nothing and return
DROPEFFECT_NONE.

Override this function to give the user visual feedback during the drag operation.
Since this function is called continuously, any code contained within it should be
optimized as much as possible. For more information, see the article "Drag and Drop:
Implementing a Drop Target" in Visual C++ Programmer's Guide online.

See Also: CView: :OnDragEnter, CView: :OnDrop, CView: :OnDropEx,
CView: :OnDragLeave, COleDropTarget: :OnDragOver

CView: :OnDragScroll
virtual DROPEFFECT OnDragScroll(DWORD dwKeyState, CPoint point);

Return Value
A value from the DROPEFFECT enumerated type, which indicates the type of drop
that would occur if the user dropped the object at this position. The type of drop
usually depends on the current key state indicated by dwKeyState. A standard
mapping of keystates to DROPEFFECT values is:

• DROPEFFECT_NONE The data object cannot be dropped in this window.

• DROPEFFECT_LINK for MK_CONTROL I MK_SHIFT Creates a linkage
between the object and its server.

• DROPEFFECT_COPY for MK_CONTROL Creates a copy of the dropped
object.

• DROPEFFECT_MOVE for MK_ALT Creates a copy of the dropped object and
delete the original object.

• DROPEFFECT_SCROLL Indicates that a drag scroll operation is about to
occur or is occurring in the target view.

For more information, see the MFC Advanced Concepts sample OCLIENT online.

Parameters

Remarks

2006

dwKeyState Contains the state of the modifier keys. This is a combination of any
number of the following: MK_CONTROL, MK_SHIFT, MK_ALT,
MK_LBUTTON, MK_MBUTTON, and MK_RBUTTON.

point Contains the location of the cursor, in pixels, relative to the screen.

Called by the framework before calling OnDragEnter or OnDragOver to determine
whether the point is in the scrolling region. Override this function when you want to
provide special behavior for this event. The default implementation automatically
scrolls windows when the cursor is dragged into the default scroll region inside the

border of each window. For more information, see the article "Drag and Drop:
Implementing a Drop Target" in Visual C++ Programmer's Guide online.

See Also: CView::OnDragEnter, CView::OnDragOver, CView::OnDrop,
CView: :OnDragLeave, COleDropTarget: :OnDragScroll

CView: :OnDraw
virtual void OnDraw(CDC* pDC) = 0;

Parameters

Remarks

pDC Points to the device context to be used for rendering an image of the document.

Called by the framework to render an image of the document. The framework calls
this function to perform screen display, printing, and print preview, and it passes a
different device context in each case. There is no default implementation.

You must override this function to display your view of the document. You can make
graphic device interface (ODI) calls using the CDC object pointed to by the pDC
parameter. You can select ODI resources, such as pens or fonts, into the device
context before drawing and then deselect them afterwards. Often your drawing code
can be device-independent; that is, it doesn't require information about what type of
device is displaying the image.

To optimize drawing, call the RectVisible member function of the device context to
find out whether a given rectangle will be drawn. If you need to distinguish between
normal screen display and printing, call the IsPrinting member function of the device
context.

See Also: CDC::IsPrinting, CDC::RectVisible, CView::OnPrint,
CWnd::OnCreate, CWnd::OnDestroy, CWnd::PostNcDestroy

CView::OnDrop
virtual BOOL OnDrop(COleDataObject* pDataObject,

... DROPEFFECT dropEffect, CPoint point);

Return Value
Nonzero if the drop was successful; otherwise O.

Parameters
pDataObject Points to the COleDataObject that is dropped into the drop target.

dropEffect The drop effect that the user has requested .

• DROPEFFECT_COPY Creates a copy of the data object being dropped.

• DROPEFFECT_MOVE Moves the data object to the current mouse location.

CView::OnDrop

2007

CView: :OnDropEx

Remarks

• DROPEFFECT_LINK Creates a link between a data object and its server.

point The current mouse position relative to the view client area.

Called by the framework when the user releases a data object over a valid drop target.
The default implementation does nothing and returns FALSE.

Override this function to implement the effect of an OLE drop into the client area of
the view. The data object can be examined via pDataObject for Clipboard data
formats and data dropped at the specified point.

Note The framework does not call this function if there is an override to OnDropEx in this view
class.

See Also: CView::OnDragEnter, CView::OnDragOver, CView::OnDropEx,
CView: :OnDragLeave, COleDropTarget: :OnDrop

CView::OnDropEx
virtual DROPEFFECT OnDropEx(COleDataObject* pDataObject,

... DROPEFFECT dropDefault, DROPEFFECT dropList, CPoint point);

Return Value
The drop effect that resulted from the drop attempt at the location specified by point.
This must be one of the values indicated by dropEfJectList. Drop effects are discussed
in the Remarks section.

Parameters

Remarks

2008

pDataObject Points to the COleDataObject that is dropped into the drop target.

dropDefault The effect that the user chose for the default drop operation based on the
current key state. It may be DROPEFFECT_NONE. Drop effects are discussed in
the Remarks section.

dropList A list of the drop effects that the drop source supports. Drop effect values
can be combined using the bitwise OR (I) operation. Drop effects are discussed in
the Remarks section.

point The current mouse position relative to the view client area.

Called by the framework when the user releases a data object over a valid drop target.
The default implementation is to do nothing and return a dummy value (-1) to
indicate that the framework should call the OnDrop handler.

Override this function to implement the effect of an right mouse-button drag and drop.
Right mouse-button drag and drop typically displays a menu of choices when the right
mouse-button is released.

CView: :OnEndPrinting

Your override of OnDropEx should query for the right mouse-button. You can call
GetKeyState or store the right mouse-button state from your OnDragEnter handler.

• If the right mouse-button is down, your override should display a popup menu
which offers the drop effects support by the drop source.

• Examine dropList to determine the drop effects supported by the drop source.
Enable only these actions on the popup menu.

• Use SetMenuDefaultltem to set the default action based on dropDefault.

• Finally, take the action indicated by the user selection from the popup menu.

o If the right mouse-button is not down, your override should process this as a
standard drop request. Use the drop effect specified in dropDefault. Alternately,
your override can return the dummy value (-1) to indicate that OnDrop will
handle this drop operation.

Use pDataObject to examine the COleDataObject for Clipboard data format and data
dropped at the specified point.

Drop effects describe the action associated with a drop operation. See the following
list of drop effects:

• DROPEFFECT_NONE A drop would not be allowed.

o DROPEFFECT_COPY A copy operation would be performed.

• DROPEFFECT_MOVE A move operation would be performed.

• DROPEFFECT_LINK A link from the dropped data to the original data would
be established.

o DROPEFFECT_SCROLL Indicates that a drag scroll operation is about to
occur or is occurring in the target.

For more information on setting the default menu command, see
SetMenuDefaultItem in the Win32 documentation and CMenu: : GetSafeHmenu in
this volume.

See Also: CView::OnDragEnter, CView::OnDragOver, CView::OnDrop,
CView: :OnDragLeave, COleDropTarget: :OnDropEx

CView: :OnEndPrinting
virtual void OnEndPrinting(CDC* pDC, CPrintInfo* plnfo);

Parameters
pDC Points to the printer device context.

plnfo Points to a CPrintInfo structure that describes the current print job.

2009

CView: :OnEndPrintPreview

Remarks
Called by the framework after a document has been printed or previewed. The default
implementation of this function does nothing. Override this function to free any GDI
resources you allocated in the OnBeginPrinting member function.

See Also: CView:: OnBeginPrinting

CView: : OnEndPrintPreview
virtual void OnEndPrintPreview(CDC* pDC, CPrintInfo* pInfo,

... POINT point, CPreviewView* pView);

Parameters

Remarks

pDC Points to the printer device context.

pInfo Points to a CPrintInfo structure that describes the current print job.

point Specifies the point on the page that was last displayed in preview mode.

p View Points to the view object used for previewing.

Called by the framework when the user exits print preview mode. The default
implementation of this function calls the OnEndPrinting member function and
restores the main frame window to the state it was in before print preview began.
Override this function to perform special processing when preview mode is
terminated. For example, if you want to maintain the user's position in the document
when switching from preview mode to normal display mode, you can scroll to the
position described by the point parameter and the m_nCurPage member of the
CPrintInfo structure that the pInfo parameter points to.

Always call the base class version of OnEndPrintPreview from your override,
typically at the end of the function.

See Also: CPrintInfo, CView::OnEndPrinting

CView: :OnInitialUpdate
virtual void OnInitiaIUpdate();

Remarks

2010

Called by the framework after the view is first attached to the document, but before
the view is initially displayed. The default implementation of this function calls the
OnUpdate member function with no hint information (that is, using the default values
of 0 for the lHint parameter and NULL for the pHint parameter). Override this
function to perform anyone-time initialization that requires information about the
document. For example, if your application has fixed-sized documents, you can use
this function to initialize a view's scrolling limits based on the document size. If your

CView::OnPrepareDC

application supports variable-sized documents, use OnUpdate to update the scrolling
limits every time the document changes.

See Also: CView::OnUpdate

CView: :OnPrepareDC
virtual void OnPrepareDC(CDC* pDC, CPrintlnfo* plnfo = NULL);

Parameters

Remarks

pDC Points to the device context to be used for rendering an image of the document.

plnfo Points to a CPrintlnfo structure that describes the current print job if
OnPrepareDC is being called for printing or print preview; the m_nCurPage
member specifies the page about to be printed. This parameter is NULL if
OnPrepareDC is being called for screen display.

Called by the framework before the OnDraw member function is called for screen
display and before the OnPrint member function is called for each page during
printing or print preview. The default implementation of this function does nothing if
the function is called for screen display. However, this function is overridden in
derived classes, such as CScrollView, to adjust attributes of the device context;
consequently, you should always call the base class implementation at the beginning
of your override.

If the function is called for printing, the default implementation examines the page
information stored in the plnfo parameter. If the length of the document has not been
specified, OnPrepareDC assumes the document to be one page long and stops the
print loop after one page has been printed. The function stops the print loop by setting
the m_bContinuePrinting member of the structure to FALSE.

Override OnPrepareDC for any of the following reasons:

• To adjust attributes of the device context as needed for the specified page. For
example, if you need to set the mapping mode or other characteristics of the device
context, do so in this function.

• To perform print-time pagination. Normally you specify the length of the document
when printing begins, using the OnPreparePrinting member function. However, if
you don't know in advance how long the document is (for example, when printing
an undetermined number of records from a database), override OnPrepareDC to
test for the end of the document while it is being printed. When there is no more of
the document to be printed, set the m_bContinuePrinting member of the
CPrintlnfo structure to FALSE.

• To send escape codes to the printer on a page-by-page basis. To send escape codes
from OnPrepareDC, call the Escape member function of the pDC parameter.

2011

CView: :OnPreparePrinting

Call the base class version of OnPrepareDC at the beginning of your override.

See Also: CDC::Escape, CPrintlnfo, CView::OnBeginPrinting,
CView: :OnDraw, CView: :OnPreparePrinting, CView: :OnPrint

CView::OnPreparePrinting
virtual BOOL OnPreparePrinting(CPrintlnfo* pInfo);

Return Value
Nonzero to begin printing; 0 if the print job has been canceled.

Parameters

Remarks

Example

2012

pInfo Points to a CPrintlnfo structure that describes the current print job.

Called by the framework before a document is printed or previewed. The default
implementation does nothing.

You must override this function to enable printing and print preview. Call the
DoPreparePrinting member function, passing it the pInfo parameter, and then return
its return value; DoPreparePrinting displays the Print dialog box and creates a
printer device context. If you want to initialize the Print dialog box with values other
than the defaults, assign values to the members of pInfo. For example, if you know the
length of the document, pass the value to the SetMaxPage member function of pInfo
before calling DoPreparePrinting. This value is displayed in the To: box in the
Range portion of the Print dialog box.

DoPreparePrinting does not display the Print dialog box for a preview job. If you
want to bypass the Print dialog box for a print job, check that the m_bPreview
member of pInfo is FALSE and then set it to TRUE before passing it to
DoPreparePrinting; reset it to FALSE afterwards.

If you need to perform initializations that require access to the CDC object
representing the printer device context (for example, if you need to know the page
size before specifying the length of the document), override the OnBeginPrinting
member function.

If you want to set the value of the m_nNumPreviewPages or m_strPageDesc
members of the pInfo parameter, do so after calling DoPreparePrinting. The
DoPreparePrinting member function sets m_nNumPreviewPages to the value found
in the application's .INI file and sets m_strPageDesc to its default value.

The following is an override of OnPreparePrinting provided by App Wizard if you
select the printing option when you create a set of starter files. This override is
sufficient unless you want to initialize the Print dialog box.

BOOL CMyView::OnPreparePrinting(CPrintlnfo *plnfo)
{

return DoPreparePrinting(plnfo);

See Also: CPrintInfo, CView::DoPreparePrinting, CView::OnBeginPrinting,
CView: :OnPrepareDC, CView: :OnPrint

CView: :OnPrint
virtual void OnPrint(CDC* pDC, CPrintInfo* plnfo);

Parameters

Remarks

pDC Points to the printer device context.

plnfo Points to a CPrintInfo structure that describes the current print job.

Called by the framework to print or preview a page of the document. For each page
being printed, the framework calls this function immediately after calling the
OnPrepareDC member function. The page being printed is specified by the
m_nCurPage member of the CPrintInfo structure that plnfo points to. The default
implementation calls the OnDraw member function and passes it the printer device
context.

Override this function for any of the following reasons:

• To allow printing of multipage documents. Render only the portion of the
document that corresponds to the page currently being printed. If you're using
OnDraw to perform the rendering, you can adjust the viewport origin so that only
the appropriate portion of the document is printed.

• To make the printed image look different from the screen image (that is, if your
application is not WYSIWYG). Instead of passing the printer device context to
OnDraw, use the device context to render an image using attributes not shown on
the screen.

If you need GDI resources for printing that you don't use for screen display, select
them into the device context before drawing and deselect them afterwards. These
GDI resources should be allocated in OnBeginPrinting and released in
OnEndPrinting.

• To implement headers or footers. You can still use OnDraw to do the rendering by
restricting the area that it can print on.

Note that the m_rectDraw member of the plnfo parameter describes the printable area
of the page in logical units.

Do not call OnPrepareDC in your override of OnPrint; the framework calls
OnPrepareDC automatically before calling OnPrint.

CView::OnPrint

2013

CView::OnScroll

Example
The following is a skeleton for an overridden OnPrint function:

void CMyView::OnPrint(CDC *pDC. CPrintlnfo *plnfo)
{

II Print headers andlor footers. if desired.
II Find portion of document corresponding to plnfo->m_nCurPage.
OnDraw(pDC);

See Also: CView::OnBeginPrinting, CView::OnEndPrinting,
CView: :OnPrepareDC, CView: :OnDraw

CView::OnScroll
virtual BOOL CView::OnScroll(UINT nScrollCode, UINT nPos,

... BOOL bDoScroll = TRUE);

Return Value
If bDoScroll is TRUE and the view was actually scrolled, then return nonzero;
otherwise O. If bDoScroll is FALSE, then return the value that you would have
returned if bDoScroll were TRUE, even though you don't actually do the scrolling.

Parameters

2014

nScrollCode A scroll-bar code that indicates the user's scrolling request. This
parameter is composed of two parts: a low-order byte, which determines the type of
scrolling occurring horizontally, and a high-order byte, which determines the type
of scrolling occurring vertically:

• SB_BOTTOM Scrolls to bottom.

• SB_LINEDOWN Scrolls one line down.

• SB_LINEUP Scrolls one line up.

• SB_PAGEDOWN Scrolls one page down.

• SB_PAGEUP Scrolls one page up.

• SB_THUMBTRACK Drags scroll box to specified position. The current
position is specified in nPos.

• SB_TOP Scrolls to top.

nPos Contains the current scroll-box position if the scroll-bar code is
SB_THUMBTRACK; otherwise it is not used. Depending on the initial scroll
range, nPos may be negative and should be cast to an int if necessary.

bDoScroll Determines whether you should actually do the specified scrolling action.
If TRUE, then scrolling should take place; if FALSE, then scrolling should not
occur.

Remarks
Called by the framework to determine whether scrolling is possible.

In one case this function is called by the framework with bDoScroli set to TRUE
when the view receives a scrollbar message. In this case, you should actually scroll
the view. In the other case this function is called with bDoScroli set to FALSE when
an OLE item is initially dragged into the auto-scrolling region of a drop target before
scrolling actually takes place. In this case, you should not actually scroll the view.

See Also: CView::OnScrollBy, COleClientItem

CView::OnScrollBy
BOOL CView::OnScrollBy(CSize sizeScroll, BOOL bDoScroli = TRUE);

Return Value
Nonzero if the view was able to be scrolled; otherwise O.

Parameters

Remarks

sizeScroli Number of pixels scrolled horizontally and vertically.

bDoScroli Determines whether scrolling of the view occurs. If TRUE, then scrolling
takes place; if FALSE, then scrolling does not occur.

Called by the framework when the user views an area beyond the present view of the
document, either by dragging an OLE item against the view's current borders or by
manipulating the vertical or horizontal scroll bars. The default implementation does
nothing. In derived classes the function checks to see whether the view is scrollable in
the direction the user requested and then updates the new region if necessary. This
function is automatically called by CWnd::OnHScroll and CWnd::OnVScroll to
perform the actual scrolling request.

CView::OnUpdate
virtual void OnUpdate(CView* pSender, LPARAM [Hint, CObject* pHint);

Parameters

Remarks

pSender Points to the view that modified the document, or NULL if all views are to
be updated.

[Hint Contains information about the modifications.

pHint Points to an object storing information about the modifications.

Called by the framework after the view's document has been modified; this function is
called by CDocument::UpdateAllViews and allows the view to update its display to

CView::OnUpdate

2015

CView::OnUpdate

2016

reflect those modifications. It is also called by the default implementation of
OnlnitialUpdate. The default implementation invalidates the entire client area,
marking it for painting when the next WM_PAINT message is received. Override this
function if you want to update only those regions that map to the modified portions of
the document. To do this you must pass information about the modifications using the
hint parameters.

To use [Hint, define special hint values, typically a bitmask or an enumerated type,
and have the document pass one of these values. To use pHint, derive a hint class from
CObject and have the document pass a pointer to a hint object; when overriding
OnUpdate, use the CObject::IsKindOf member function to determine the run-time
type of the hint object.

Typically you should not perform any drawing directly from OnUpdate. Instead,
determine the rectangle describing, in device coordinates, the area that requires
updating; pass this rectangle to CWnd: : InvalidateRect. This causes painting to occur
the next time a WM_PAINT message is received.

If [Hint is 0 and pHint is NULL, the document has sent a generic update notification.
If a view receives a generic update notification, or if it cannot decode the hints, it
should invalidate its entire client area.

See Also: CDocument:: U pdateAllViews, CView:: OnlnitialU pdate,
CWnd::lnvalidate, CWnd::lnvalidateRect

CWaitCursor
CWaitCursor does not have a base class.

The CWaitCursor class provides a one-line way to show a wait cursor, which
is usually displayed as an hourglass, while you're doing a lengthy operation.
Good Windows programming practices require that you display a wait cursor
whenever you're performing an operation that takes a noticeable amount of time.

To display a wait cursor, just define a CWaitCursor variable before the code
that performs the lengthy operation. The object's constructor automatically
causes the wait cursor to be displayed.

When the object goes out of scope (at the end of the block in which the
CWaitCursor object is declared), its destructor sets the cursor to the previous
cursor. In other words, the object performs the necessary clean-up automatically.

Note Because of how their constructors and destructors work, CWaitCursor objects
are always declared as local variables-they're never declared as global variables nor
are they allocated with new.

If you perform an operation which might cause the cursor to be changed, such
as displaying a message box or dialog box, call the Restore member function
to restore the wait cursor. It is okay to call Restore even when a wait cursor is
currently displayed.

Another way to display a wait cursor is to use the combination of
CCmdTarget: :Begin WaitCursor, CCmdTarget: :EndWaitCursor, and
perhaps CCmdTarget::RestoreWaitCursor. However, CWaitCursor is easier
to use because you don't need to set the cursor to the previous cursor when you're
done with the lengthy operation.

Note MFC sets and restores the cursor using the CWinApp::DoWaitCursor virtual function.
You can override this function to provide custom behavior.

#include <afxwin.h>

See Also: CCmdTarget: :Begin WaitCursor,
CCmdTarget: :EndWaitCursor, CCmdTarget: : Restore WaitCursor,
CWinApp: :Do WaitCursor

CWaitCursor

2017

CWaitCursor: :CWaitCursor

CWaitCursor Class Members
Construction/Destruction

CWaitCursor Constructs a CWaitCursor object and displays the wait cursor.

Operations

Restore Restores the wait cursor after it's been changed.

Member Functions
CWaitCursor: :CWaitCursor

Remarks

Example

2018

CWaitCursor();

To display a wait cursor, just declare a CWaitCursor object before the code that
performs the lengthy operation. The constructor automatically causes the wait cursor
to be displayed.

When the object goes out of scope (at the end of the block in which the CWaitCursor
object is declared), its destructor sets the cursor to the previous cursor. In other words,
the object performs the necessary clean-up automatically.

You can take advantage of the fact that the destructor is called at the end of the block
(which might be before the end of the function) to make the wait cursor active in only
part of your function. This technique is shown in the second example below.

Note Because of how their constructors and destructors work, CWaitCursor objects are
always declared as local variables-they're never declared as global variables, nor are they
allocated with new.

II The following example illustrates the most common case
II of displaying the wait cursor during some lengthy
II processing.

void LengthyFunction(
{

II perhaps you display a dialog box before displaying a
I I wait cursor

CWaitCursor wait; II display wait cursor

II do some lengthy processing

II destructor automatically removes the wait cursor

II This example shows using a CWaitCursor object inside a block
II so the wait cursor is displayed only while the program is
II performing a lengthy operation.

void ConditionalFunction(
{

if (SomeCondition)
{

CWaitCursor wait; II display wait cursor in this block only

II do some lengthy processing

II at this point. the destructor removes the wait cursor
else
{

II no wait cursor--only quick processing

See Also: CWaitCursor::Restore, CCmdTarget::BeginWaitCursor,
CCmdTarget: :EndWaitCursor

CWaitCursor: : Restore

Remarks

Examples

void Restore();

To restore the wait cursor, call this function after performing an operation, such as
displaying a message box or dialog box, which might change the wait cursor to
another cursor.

It is OK to call Restore even when the wait cursor is currently displayed.

If you need to restore the wait cursor while in a function other than the one in which
the CWaitCursor object is declared, you can call
CCmdTarget::RestoreWaitCursor.

II This example illustrates performing an operation
II which changes the wait cursor. You should call
II CWaitCursor::Restore to restore the wait
II cursor after an operation which changes the cursor.

void AnotherLengthyFunction()
{

CWaitCursor wait; II display wait cursor

II do some lengthy processing

II The dialog box will normally change the cursor to
II the standard arrow cursor.
CSomeDialog dlg;
dlg.DoModal();

CWaitCursor: :Restore

2019

CWaitCursor: : Restore

2020

II It is necessary to call Restore here in order
II to change the cursor back to the wait cursor.
wait.Restore();

II do some more lengthy processing

II destructor automatically removes the wait cursor

II If the wait cursor is changed by a function called by
II the function which created the wait cursor, you
II can call CCmdTarget::RestoreWaitCursor to restore
II the wait cursor.
void CalledFunction()
{

CSomeOialog dlg;
dlg.OoModal();

II Since CWinApp is derived from CCmdTarget, we can use a
II pointer to our application object to make the call to
II CCmdTarget::RestoreWaitCursor.
AfxGetApp()->RestoreWaitCursor();

II Yet more lengthy processing ...

See Also: CCmdTarget: :Restore WaitCursor

CWinApp

The CWinApp class is the base class from which you derive a Windows application
object. An application object provides member functions for initializing your
application (and each instance of it) and for running the application.

Each application that uses the Microsoft Foundation classes can only contain one
object derived from CWinApp. This object is constructed when other C++ global
objects are constructed and is already available when Windows calls the WinMain
function, which is supplied by the Microsoft Foundation Class Library. Declare your
derived CWinApp object at the global level.

When you derive an application class from CWinApp, override the InitInstance
member function to create your application's main window object.

In addition to the CWinApp member functions, the Microsoft Foundation Class
Library provides the following global functions to access your CWinApp object
and other global information:

• AfxGetApp Obtains a pointer to the CWinApp object.

• AfxGetInstanceHandle Obtains a handle to the current application instance.

• AfxGetResourceHandle Obtains a handle to the application's resources.

• AfxGetAppName Obtains a pointer to a string containing the application's name.
Alternately, if you have a pointer to the CWinApp object, use m_pszExeName to
get the application's name.

See "CWinApp: The Application Class" in Visual C++ Programmer's Guide online
for more on the CWinApp class, including an overview of the following:

• CWinApp-derived code written by AppWizard.

• CWinApp's role in the execution sequence of your application.

• CWinApp's default member function implementations.

• CWinApp's key overridables.

#include <afxwin.h>

CWinApp

2021

CWinApp

CWinApp Class Members

2022

Data Members

m_pszAppName

m_hInstance

m_hPrevInstance

m_lpCmdLine

m_nCmdShow

m_bHelpMode

m_pszExeName

m_pszHelpFilePath

m_pszProfileName

m_pszRegistryKey

Construction

CWinApp

Operations

LoadCursor

LoadStandardCursor

LoadOEMCursor

LoadIcon

LoadStandardIcon

LoadOEMIcon

RunAutomated

RunEmbedded

Specifies the name of the application.

Identifies the current instance of the application.

Set to NULL in a 32-bit application.

Points to a null-terminated string that specifies the
command line for the application.

Specifies how the window is to be shown initially.

Indicates if the user is in Help context mode (typically
invoked with SHIff +Fl).

Pointer to the main window of the container
application when an OLE server is in-place active.

The module name of the application.

The path to the application's Help file.

The application's .INI filename.

Used to determine the full registry key for storing
application profile settings.

Constructs a CWinApp object.

Loads a cursor resource.

Loads a Windows predefined cursor that the IDC_
constants specify in WINDOWS.H.

Loads a Windows OEM predefined cursor that the
OCR_ constants specify in WINDOWS.H.

Loads an icon resource.

Loads a Windows predefined icon that the IDC
constants specify in WINDOWS.H.

Loads a Windows OEM predefined icon that the OIC_
constants specify in WINDOWS.H.

Tests the application's command line for the
IAutomation option. Obsolete. Use the value in
CCommandLineInfo: :m_bRunEmbedded after
calling ParseCommandLine. instead.

Tests the application's command line for the
/Embedding option. Obsolete. Use the value in
CCommandLineInfo: :m_bRunEmbedded after
calling ParseCommandLine. instead.

Operations (continued)

ParseCommandLine

ProcessShellCommand

GetProfilelnt

WriteProfilelnt

GetProfileString

WriteProfileString

AddDocTemplate

GetFirstDocTemplatePosition

GetNextDocTemplate

OpenDocumentFile

AddToRecentFileList

SelectPrinter

CreatePrinterDC

GetPrinterDeviceDefaults

Overridables

InitInstance

Run

Onldle

ExitInstance

HideApplication

CloseAllDocuments

PreTranslateMessage

Parses individual parameters and flags in the
command line.

Handles command-line arguments and flags.

Retrieves an integer from an entry in the application's
.INI file.

Writes an integer to an entry in the application's .INI
file.

Retrieves a string from an entry in the application's
.INI file.

Writes a string to an entry in the application's
.INI file.

Adds a document template to the application's list of
available document templates.

Retrieves the position of the first document template.

Retrieves the position of a document template. Can be
used recursively.

Called by the framework to open a document from a
file.

Adds a filename to the most recently used (MRU) file
list.

Selects a printer previously indicated by a user
through a print dialog box.

Creates a printer device context.

Retrieves the printer device defaults.

Override to perform Windows instance initialization,
such as creating your window objects.

Runs the default message loop. Override to customize
the message loop.

Override to perform application-specific idle-time
processing.

Override to clean up when your application
terminates.

Hides the application before closing all documents.

Closes all open documents.

Filters messages before they are dispatched to the
Windows functions: :TranslateMessage and
: :DispatchMessage.

(continued)

CWinApp

2023

CWinApp

2024

Overridables (continued)

SaveAllModified

DoMessageBox

ProcessMessageFilter

ProcessWndProcException

DoWaitCursor

OnDDECommand

WinHelp

Initialization

LoadStdProfileSettings

SetDialogBkColor

SetRegistry Key

EnableSheIIOpen

RegisterSheIIFileTypes

Enable3dControIs

Enable3dControIsStatic

Command Handlers

OnFileNew

OnFileOpen

OnFilePrintSetup

OnContextHelp

OnHelp

OnHelpIndex

OnHelpFinder

OnHelpUsing

Prompts the user to save all modified documents.

Implements AfxMessageBox for the application.

Intercepts certain messages before they reach the
application.

Intercepts all unhandled exceptions thrown by the
application's message and command handlers.

Turns the wait cursor on and off.

Called by the framework in response to a dynamic
data exchange (DDE) execute command.

Calls the WinHelp Windows function.

Loads standard .INI file settings and enables the MRU
file list feature.

Sets the default background color for dialog boxes and
message boxes.

Causes application settings to be stored in the registry
instead of .INI files.

Allows the user to open data files from the Windows
File Manager.

Registers all the application's document types with the
Windows File Manager.

Enables controls with three-dimensional appearance.

Enables controls with a three-dimensional appearance.

Implements the ID_FILE_NEW command.

Implements the ID_FILE_OPEN command.

Implements the ID_FILE_PRINT_SETUP
command.

Handles SHIFT +FI Help within the application.

Handles FI Help within the application (using the
current context).

Handles the ID_HELP _INDEX command and
provides a default Help topic.

Handles the ID_HELP _FINDER and
ID _DEFAULT_HELP commands.

Handles the ID_HELP _USING command.

CWinApp: :AddToRecentFileList

Member Functions
CWinApp: : AddDo cTempl ate

void AddDocTemplate(CDocTemplate* pTemplate);

Parameters

Remarks

Example

pTemplate A pointer to the CDocTemplate to be added.

Call this member function to add a document template to the list of available
document templates that the application maintains. You should add all document
templates to an application before you call RegisterShellFileTypes.

BOOl CMyApp::lnitlnstance()
{

II
II The following code is produced by AppWizard when you
II choose the MOl (multiple document interface) option.
CMultiOocTemplate* pOocTemplate;
pOocTemplate = new CMultiOocTemplate(

lOR_MYTYPE,
RUNTlME_ClASS(CMyOoc),
RUNTlME_ClASS(CMOlChildWnd), II standard MOl child frame
RUNTlME_ClASS(CMyView»;

AddOocTemplate(pOocTemplate);
II ...

See Also: CWinApp::RegisterShellFileTypes, CMultiDocTemplate,
CSingleDocTemplate

CWinApp: : AddToRecentFileList
virtual void AddToRecentFileList(LPCTSTR IpszPathName);

Parameters

Remarks

IpszPathName The path of the file.

Call this member function to add IpszPathName to the MRU file list. You should call
the LoadStdProfileSettings member function to load the current MRU file list before
you use this member function.

The framework calls this member function when it opens a file or executes the Save
As command to save a file with a new name.

2025

CWinApp: :CloseAllDocuments

Example
II This adds the pathname c:\temp\test.doc to the top of
II the most recently used (MRU) list in the File menu.
AfxGetApp () ->AddToRecent Fil eli st ("c: \ \ temp \ \ tes t. doc") ;

See Also: CWinApp: : LoadStdProfileSettings

CWinApp: : CloseAllDocuments
void CloseAllDocuments(BOOL bEndSession);

Parameters

Remarks

bEndSession Specifies whether or not the Windows session is being ended. It is
TRUE if the session is being ended; otherwise FALSE.

Call this member function to close all open documents before exiting. Call
HideApplication before calling CloseAllDocuments.

See Also: CWinApp: :SaveAllModified, CWinA pp: : HideApplication

CWinApp::CreatePrinterDC
BOOL CreatePrinterDC(CDC& de);

Return Value
Nonzero if the printer device context is created successfully; otherwise O.

Parameters

Remarks

de A reference to a printer device context.

Call this member function to create a printer device context (DC) from the selected
printer.

See Also: CWinApp::SelectPrinter

CWinApp::CWinApp
CWinApp(LPCTSTR /pszAppName = NULL);

Parameters

2026

/pszAppName A null-terminated string that contains the application name that
Windows uses. If this argument is not supplied or is NULL, CWinApp uses the
resource string AFX_IDS_APP _TITLE or the filename of the executable file.

CWinApp::DoWaitCursor

Remarks
Constructs a CWinApp object and passes IpszAppName to be stored as the
application name. You should construct one global object of your CWinApp-derived
class. You can have only one CWinApp object in your application. The constructor
stores a pointer to the CWinApp object so that WinMain can call the object's
member functions to initialize and run the application.

CWinApp: :DoMessageBox
virtual int DoMessageBox(LPCTSTR IpszPrompt, UINT nType, UINT nIDPrompt);

Return Value
Returns the same values as AfxMessageBox.

Parameters

Remarks

lpszPrompt Address of text in the message box.

nType The message box style.

nIDPrompt An index to a Help context string.

The framework calls this member function to implement a message box for the global
function AfxMessageBox.

Do not call this member function to open a message box; use AfxMessageBox
instead.

Override this member function to customize your application-wide processing of
AfxMessageBox calls.

See Also: AfxMessageBox,: :MessageBox

CWinApp: :Do WaitCursor
virtual void DoWaitCursor(int nCode);

Parameters

Remarks

nCode If this parameter is 1, a wait cursor appears. If 0, the wait cursor is restored
without incrementing the reference count. If -1, the wait cursor ends.

This member function is called by the framework to implement CWaitCursor,
CCmdTarget: :Begin WaitCursor, CCmdTarget: :EndWaitCursor, and
CCmdTarget::RestoreWaitCursor. The default implements an hourglass cursor.
Do WaitCursor maintains a reference count. When positive, the hourglass cursor is
displayed.

2027

CWinApp: :Enable3dControls

While you would not normally call Do WaitCursor directly, you could override this
member function to change the wait cursor or to do additional processing while the
wait cursor is displayed.

For an easier, more streamlined way to implement a wait cursor, use CWaitCursor.

See Also: CCmdTarget: :Begin WaitCursor, CCmdTarget: :EndWaitCursor,
CCmdTarget: : Restore WaitCursor, CWaitCursor

CWinApp: :Enable3dControls
BOOL Enable3dControls();
BOOL Enable3dControisStatic();

Note Both Enable3dControis and Enable3dControisStatic are described in this topic.

Return Value

Remarks

2028

TRUE if the CTL3D32.DLL is loaded successfully; otherwise FALSE.

This function will return FALSE if the operating system supports the
three-dimensional look for controls.

Call either of these member functions from your override of the Initlnstance
member function to enable dialog boxes and windows whose controls have a
three-dimensional appearance. These member functions load the CTL3D32.DLL
and registers the application with the DLL. If you call Enable3dControis or
Enable3dControlsStatic, you do not need to call the SetDialogBkColor member
function.

Enable3dControis should be used when linking to the MFC DLLs.
Enable3dControisStatic should be used when statically linking to the MFC libraries.

Feature Only in Professional and Enterprise Editions Static linking to MFC is supported
only in Visual C++ Professional and Enterprise Editions. For more information, see Visual C++
Editions online.

MFC automatically provides 3D control effects for the following classes of windows:

• CDialog

• CDialogBar

• CFormView

• CPropertyPage

• CPropertySheet

• CControlBar

• CToolBar

Example

CWinApp: :EnableShellOpen

If the controls for which you want a 3D effect are in a window of any of these types,
all you need is the enabling call to Enable3dControls or Enable3dControlsStatic. If
you want to give a 3D effect to controls in windows based on other classes, you must
call the CTL3D32 API functions directly.

/lifdef _AFXDll
Enable3dControls(); IICall Enable3dControls

fie 1 se
Enable3dControlsStatic();

IICall Enable3dControlsStatic
flendif

See Also: CWinApp::lnitlnstance, CWinApp::SetDialogBkColor

CWinApp::EnableShellOpen

Remarks

Example

void EnableShellOpen();

Call this function, typically from your Initlnstance override, to enable your
application's users to open data files when they double-click the files from within the
Windows File Manager. Call the RegisterShellFileTypes member function in
conjunction with this function, or provide a .REG file with your application for
manual registration of document types.

BOOl CMyApp::lnitlnstance()
{

I I ...

CMultiOocTemplate* pOocTemplate;
pOocTemplate = new CMultiOocTemplate(

IOR_MYTYPE,
RUNTIME_ClASS(CMyDoc),
RUNTIME_ClASS(CMOIChildWnd), II standard MOl child frame
RUNTIME_ClASS(CMyView));

AddOocTemplate(pOocTemplate);

II Create main MOl Frame window.
CMainFrame* pMainFrame = new CMainFrame;
if (!pMainFrame->LoadFrame(IDR_MAINFRAME))

return FALSE;
II Save the pointer to the main frame window. This is the
II only way the framework will have knowledge of what the
II main frame window is.
m_pMainWnd = pMainFrame;

II enable file manager drag/drop and DOE Execute open
EnableShellOpen();
RegisterShellFileTypes();
I I ...

2029

CWinApp: :Exitlnstance

II Show the main window using the nCmdShow parameter
II passed to the application when it was first launched.
pMainFrame-)ShowWindow(m_nCmdShow);
pMainFrame-)UpdateWindow();

I I ...

See Also: CWinApp::OnDDECommand, CWinApp::RegisterShellFileTypes

CWinApp: : ExitInstance
virtual int Exitlnstance();

Return Value

Remarks

The application's exit code; 0 indicates no errors, and values greater than 0 indicate an
error. This value is used as the return value from WinMain.

Called by the framework from within the Run member function to exit this instance of
the application.

Do not call this member function from anywhere but within the Run member
function.

The default implementation of this function writes framework options to the
application's .INI file. Override this function to clean up when your application
terminates.

See Also: CWinApp::Run, CWinApp::Initlnstance

CWinApp: : GetFirstDocTemplatePosition
POSITION GetFirstDocTempiatePosition() const;

Return Value

Remarks

2030

A POSITION value that can be used for iteration or object pointer retrieval; NULL if
the list is empty.

Gets the position of the first document template in the application. Use the
POSITION value returned in a call to GetNextDocTemplate to get the first
CDocTemplate object.

See Also: CWinApp::AddDocTemplate, CWinApp::GetNextDocTemplate

CWinApp:: GetPrinterDeviceDefaults

CWinApp: : GetN extDocTemplate
CDocTemplate* GetNextDocTemplate(POSITION& pas) const;

Return Value
A pointer to a CDocTemplate object.

Parameters

Remarks

pas A reference to a POSITION value returned by a previous call to
GetNextDocTemplate or GetFirstDocTemplatePosition. The value is updated to
the next position by this call.

Gets the document template identified by pas, then sets pas to the POSITION value.
You can use GetNextDocTemplate in a forward iteration loop if you establish the
initial position with a call to GetFirstDocTemplatePosition.

You must ensure that your POSITION value is valid. If it is invalid, then the Debug
version of the Microsoft Foundation Class Library asserts.

If the retrieved document template is the last available, then the new value of pas is
set to NULL.

See Also: CWinApp::AddDocTemplate,
CWinApp:: GetFirstDocTemplatePosition

CWinApp: : GetPrinterDeviceDefaults
BOOL GetPrinterDeviceDefaults(PRINTDLG* pPrintDlg);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

pPrintDlg A pointer to a PRINTDLG structure.

Call this member function to prepare a printer device context for printing. Retrieves
the current printer defaults from the Windows .INI file as necessary, or uses the last
printer configuration set by the user in Print Setup.

See Also: CPrintDialog

2031

CWinApp: : GetProfilelnt

CWinApp: : GetProfileInt
UINT GetProfileInt(LPCTSTR lpszSection, LPCTSTR lpszEntry, int nDefault);

Return Value
The integer value of the string that follows the specified entry if the function is
successful. The return value is the value of the nDefault parameter if the function does
not find the entry. The return value is 0 if the value that corresponds to the specified
entry is not an integer.

This member function supports hexadecimal notation for the value in the .INI file.
When you retrieve a signed integer, you should cast the value into an int.

Parameters

Remarks

lpszSection Points to a null-terminated string that specifies the section containing the
entry.

lpszEntry Points to a null-terminated string that contains the entry whose value is to
be retrieved.

nDefault Specifies the default value to return if the framework cannot find the entry.
This value can be an unsigned value in the range 0 through 65,535 or a signed
value in the range -32,768 through 32,767.

Call this member function to retrieve the value of an integer from an entry within a
specified section of the application's .INI file.

This member function is not case sensitive, so the strings in the lpszSection and
lpszEntry parameters may differ in case.

See Also: CWinApp::GetProfileString, CWinApp::WriteProfileInt,
: : GetPrivateProfileInt

CWinApp: : GetProfileString
CString GetProfileString(LPCTSTR lpszSection, LPCTSTR lpszEntry,

... LPCTSTR lpszDeJault = NULL);

Return Value
The return value is the string from the application's .INI file or lpszDeJault if the
string cannot be found. The maximum string length supported by the framework is
_MAX_PATH. If lpszDefault is NULL, the return value is an empty string.

Parameters

2032

lpszSection Points to a null-terminated string that specifies the section containing the
entry.

CWinApp:: InitInstance

Remarks

Example

lpszEntry Points to a null-terminated string that contains the entry whose string is to
be retrieved. This value must not be NULL.

lpszDeJault Points to the default string value for the given entry if the entry cannot
be found in the initialization file.

Call this member function to retrieve the string associated with an entry within the
specified section in the application's .INI file.

CString strSection
CString strStringItem
CString strIntItem

- "My Section";
.,. "My String Item";
- "My Int Item";

CWinApp* pApp - AfxGetApp();

pApp->WriteProfileString(strSection. strStringItem. "test");

CString strValue;
strValue - pApp->GetProfileString(strSection. strStringItem);
ASSERT(strValue == "test");

pApp->WriteProfileInt(strSection. strIntItem. 1234);
int nValue;
nValue - pApp->GetProfileInt(strSection. strIntItem. 0);
ASSERT(nValue == 1234);

See Also: CWinApp::GetProfilelnt, CWinApp::WriteProfileString,
:: GetPrivateProfileString

CWinApp: : HideApplication

Remarks

void HideApplication();

Call this member function to hide an application before closing the open documents.

See Also: CWinApp::CloseAllDocuments

CWinApp: : InitInstance
virtual BOOL InitInstance();

Return Value

Remarks

Nonzero if initialization is successful; otherwise O.

Windows allows several copies of the same program to run at the same time.
Application initialization is conceptually divided into two sections: one-time

2033

CWinA pp: :InitInstance

Example

2034

application initialization that is done the first time the program runs, and instance
initialization that runs each time a copy of the program runs, including the first time.
The framework's implementation of WinMain calls this function.

Override Initlnstance to initialize each new instance of your application running
under Windows. Typically, you override Initlnstance to construct your main window
object and set the CWinThread: :m_pMain Wnd data member to point to that
window. For more information on overriding this member function, see "CWinApp:
The Application Class" in Visual C++ Programmer's Guide online.

II AppWizard implements the InitInstance overridable function
II according to options you select. For example. the single document
II interface (SDI) option was chosen for the AppWizard code created
II below. You can add other per-instance initializations to the code
II created by AppWizard.

BOOl CMyApp::InitInstance()
{

}

II Standard initialization
II If you are not using these features and wish to reduce the size
II of your final executable. you should remove from the following
II the specific initialization routines you do not need.

SetDialogBkColor();
loadStdProfileSettings();

II Set dialog background color to gray
II load standard INI file options (including MRU)

II Register the application's document templates. Document templates
II serve as the connection between documents. frame windows and views.

CSingleDocTemplate* pDocTemplate;
pDocTemplate = new CSingleDocTemplate(

IDR_MAINFRAME.
RUNTIME_ClASS(CMyDoc).
RUNTIME_ClASS(CMainFrame). II main SDI frame window
RUNTIME_ClASS(CMyView»;

AddDocTemplate(pDocTemplate);

II create a new (empty) document
OnFil eNew();

if (m_lpCmdline[0] !- '\0')
{

II TODO: add command line processing here

return TRUE;

CWinApp: : LoadCursor
HCURSOR LoadCursor(LPCTSTR IpszResourceName) const;
HCURSOR LoadCursor(UINT nIDResource) const;

Return Value
A handle to a cursor if successful; otherwise NULL.

Parameters

Remarks

Example

IpszResourceName Points to a null-terminated string that contains the name of the
cursor resource. You can use a CString for this argument.

nIDResource ID number of the cursor resource.

Loads the cursor resource named by IpszResourceName or specified by nIDResource
from the current executable file. LoadCursor loads the cursor into memory only if it
has not been previously loaded; otherwise, it retrieves a handle of the existing
resource.

Use the LoadStandardCursor or LoadOEMCursor member function to access the
predefined Windows cursors.

HCURSOR hCursor;

II Load a cursor resource that was originally created using
II the Graphics Editor and assigned the i .d. IDC_MYCURSOR.
hCursor = AfxGetApp()->LoadCursor(IDC_MYCURSOR);

See Also: CWinApp::LoadStandardCursor, CWinApp::LoadOEMCursor,
::LoadCursor

CWinApp: :LoadIcon
HICON LoadIcon(LPCTSTR IpszResourceName) const;
HICON LoadIcon(UINT nIDResource) const;

Return Value
A handle to an icon if successful; otherwise NULL.

Parameters
IpszResourceName Points to a null-terminated string that contains the name of the

icon resource. You can also use a CString for this argument.

nIDResource ID number of the icon resource.

CWinApp: :LoadIcon

2035

CWinApp: :LoadOEMCursor

Remarks
Loads the icon resource named by lpszResourceName or specified by nIDResource
from the executable file. LoadIcon loads the icon only if it has not been previously
loaded; otherwise, it retrieves a handle of the existing resource.

You can use the LoadStandardIcon or LoadOEMIcon member function to access
the predefined Windows icons.

Note This member function calls the Win32 API function Loadlcon, which can only load an
icon whose size conforms to the SM_CXICON and SM_CYICON system metric values.

See Also: CWinApp: :LoadStandardIcon, CWinApp: : LoadOEMIcon,
::Loadlcon

CWinApp: : LoadOEMCursor
HCURSOR LoadOEMCursor(UINT nIDCursor) const;

Return Value
A handle to a cursor if successful; otherwise NULL.

Parameters

Remarks

Example

2036

nIDCursor An OCR_ manifest constant identifier that specifies a predefined
Windows cursor. You must have #define OEMRESOURCE before #include
<afxwin.h> to gain access to the OCR_ constants in WINDOWS.H.

Loads the Windows predefined cursor resource specified by nIDCursor.

Use the LoadOEMCursor or LoadStandardCursor member function to access the
predefined Windows cursors.

II In the stdafx.h file,
II include the windows.h
#define OEMRESOURCE
#include <afxwin.h>
#include <afxext.h>

HCURSOR hCursor;

add #define OEMRESOURCE to
definitions of OCR_ values.

II MFC core and standard components
II MFC extensions (including VB)

II Load the predefined WIndows "size all" cursor.
hCursor = AfxGetApp()->LoadOEMCursor(OCR_SIZEALL);

See Also: CWinApp::LoadCursor, CWinApp::LoadStandardCursor,
::LoadCursor

CWinApp: :LoadStandardCursor

CWinApp: :LoadOEMIcon
HICON LoadOEMIcon(UINT nIDIcon) const;

Return Value
A handle to an icon if successful; otherwise NULL.

Parameters

Remarks

nIDIcon An OIC_ manifest constant identifier that specifies a predefined Windows
icon. You must have #define OEMRESOURCE before #include <afxwin.h> to
access the OIC_ constants in WINDOWS.H.

Loads the Windows predefined icon resource specified by nIDIcon.

Use the LoadOEMIcon or LoadStandardIcon member function to access the
predefined Windows icons.

See Also: CWinApp::LoadStandardIcon, CWinApp::LoadIcon, ::LoadIcon

CWinApp: :LoadStandardCursor
HCURSOR LoadStandardCursor(LPCTSTR lpszCursorNa11le) const;

Return Value
A handle to a cursor if successful; otherwise NULL.

Parameters
lpszCursorNa11le An IDC_ manifest constant identifier that specifies a predefined

Windows cursor. These identifiers are defined in WINDOWS.H. The following list
shows the possible predefined values and meanings for lpszCursorNa11le:

• IDC_ARROW Standard arrow cursor

• IDC_IBEAM Standard text-insertion cursor

• IDC_ WAIT Hourglass cursor used when Windows performs a
time-consuming task

• IDC_CROSS Cross-hair cursor for selection

• IDC_UPARROW Arrow that points straight up

• IDC_SIZE Obsolete and unsupported; use IDC_SIZEALL

• IDC_SIZEALL A four-pointed arrow. The cursor to use to resize a window.

• IDC_ICON Obsolete and unsupported. Use IDC_ARROW.

• IDC_SIZENWSE Two-headed arrow with ends at upper left and lower right

• IDC_SIZENESW Two-headed arrow with ends at upper right and lower left

2037

CWinApp: :LoadStandardIcon

Remarks

Example

• IDC_SIZEWE Horizontal two-headed arrow

• IDC_SIZENS Vertical two-headed arrow

Loads the Windows predefined cursor resource that lpszCursorName specifies.

Use the LoadStandardCursor or LoadOEMCursor member function to access the
predefined Windows cursors.

HCURSOR hCursor:

II Load the predefined Windows "up arrow" cursor.
hCursor - AfxGetApp()-)LoadStandardCursor(IDC_UPARROW):

See Also: CWinApp::LoadOEMCursor, CWinApp::LoadCursor, ::LoadCursor

CWinApp: : LoadStandardIcon
HICON LoadStandardlcon(LPCTSTR lpsZlconName) const;

Return Value
A handle to an icon if successful; otherwise NULL.

Parameters

Remarks

2038

lpsz/conName A manifest constant identifier that specifies a predefined Windows
icon. These identifiers are defined in WINDOWS.H. The following list shows the
possible predefined values and meanings for lpsz/conName:

• IDI_APPLICATION Default application icon

• IDI_HAND Hand-shaped icon used in serious warning messages

• IDI_QUESTION Question-mark shape used in prompting messages

• IDI_EXCLAMATION Exclamation point shape used in warning messages

• IDI_ASTERISK Asterisk shape used in informative messages

Loads the Windows predefined icon resource that lpsz/conName specifies.

Use the LoadStandardlcon or LoadOEMlcon member function to access the
predefined Windows icons.

See Also: CWinApp::LoadOEMlcon, CWinApp::Loadlcon, ::Loadlcon

CWinApp::OnDDECommand

CWinApp: : LoadStdProfileSettings
void LoadStdProfileSettings(UINT nMaxMRU = _AFX_MRU_COUNT);

Parameters

Remarks

nMaxMRU The number of recently used files to track.

Call this member function from within the InitInstance member function to enable
and load the list of most recently used (MRU) files and last preview state. If
nMaxMRU is 0, no MRU list will be maintained.

See Also: CWinApp::OnFileOpen, CWinApp::AddToRecentFileList

CWinApp: :OnContextHelp

Remarks

afx_msg void OnContextHelp();

You must add an

ON_COMMAND(ID_CONTEXT_HELP, OnContextHelp)

statement to your CWinApp class message map and also add an accelerator table
entry, typically SHIFT+Fl, to enable this member function.

OnContextHelp puts the application into Help mode. The cursor changes to an arrow
and a question mark, and the user can then move the mouse pointer and press the left
mouse button to select a dialog box, window, menu, or command button. This member
function retrieves the Help context of the object under the cursor and calls the
Windows function WinHelp with that Help context.

See Also: CWinApp::OnHelp, CWinApp::WinHelp

CWinApp: :OnDDECommand
virtual BOOL OnDDECommand(LPTSTR lpszCommand);

Return Value
Nonzero if the command is handled; otherwise 0.

Parameters

Remarks

lpszCommand Points to a DDE command string received by the application.

Called by the framework when the main frame window receives a DDE execute
message. The default implementation checks whether the command is a request to
open a document and, if so, opens the specified document. The Windows File

2039

CWinApp: :OnFileNew

Example

Manager usually sends such DDE command strings when the user double-clicks a
data file. Override this function to handle other DDE execute commands, such as the
command to print.

BOOl CMyApp::OnDDECommand(lPTSTR lpszCommand)
{

if (CWinApp::OnDDECommand(lpszCommand))
return TRUE;

II Handle any DOE commands recognized by your application
II and return TRUE. See implementation of CWinApp::OnDDEComand
II for example of parsing the DOE command string.

II Return FALSE for any DOE commands you do not handle.
return FALSE;

See Also: CWinApp: :EnableShellOpen

CWinApp::OnFileNew

Remarks

Example

2040

afx_msg void OnFileNew();

You must add an

ON_COMMAND(ID_FIlE_NEW. OnFileNew)

statement to your CWinApp class message map to enable this member function.

If enabled, this function handles execution of the File New command.

See Technical Note 22 online for information on default behavior and guidance on
how to override this member function.

II The following message map. produced by AppWizard. binds the
II File New. Open. and Print Setup menu commands to default
II framework implementations of these commands.
BEGIN_MESSAGE_MAP(CMyApp. CWinApp)

11{{AFX_MSG_MAP(CMyApp)
ON_COMMAND(ID_APP_ABOUT. OnAppAbout)

II NOTE - the ClassWizard will add and remove mapping macros here.
II DO NOT EDIT what you see in these blocks of generated code!

I/} lAFX_MSG_MAP
II Standard file based document commands
ON_COMMAND(ID_FIlE_NEW. CWinApp::OnFileNew)
ON_COMMAND(ID_FIlE_OPEN. CWinApp::OnFileOpen)
II Standard print setup command
ONLCOMMAND(ID_FIlE_PRINT_SETUP. CWinApp::OnFilePrintSetup)

END_MESSAGE_MAP()

CWinApp: :OnFileOpen

II The following message map illustrates how to rebind the
II File New. Open and Print Setup menu commands to handlers that
II you implement in your CWinApp-derived class. You can use
II ClassWizard to bind the commands. as illustrated below. since
II the message map entries are bracketed by II{{AFX_MSG_MAP
II and IIJJAFX_MSG_MAP. Note. you can name the handler
II CMyApp::OnFileNew instead of CMyApp::OnMyFileNew. and likewise
II for the other handlers. if desired.
BEGIN_MESSAGE_MAP(CMyApp. CWinApp)

11{{AFX_MSG_MAP(CMyApp)
ON_COMMAND(ID_APP_ABOUT. OnAppAbout)
ON_COMMAND(ID_FILE_NEW. OnMyFileNew)
ON_COMMAND(ID_FILE_OPEN. OnMyFileOpen)
ON_COMMAND(ID_FILE_PRINT_SETUP. OnMyFilePrintSetup)
I/} J AFX_MSG_MAP

END_MESSAGE_MAP()

See Also: CWinApp::OnFileOpen

CWinApp: : OnFileOpen
afx_msg void OnFileOpen();

Remarks

Example

You must add an

ON_COMMAND(ID_FILE_OPEN. OnFileOpen)

statement to your CWinApp class message map to enable this member function.

If enabled, this function handles execution of the File Open command.

For information on default behavior and guidance on how to override this member
function, see Technical Note 22 online.

II The following message map. produced by AppWizard. binds the
II File New. Open. and Print Setup menu commands to default
II framework implementations of these commands.
BEGIN_MESSAGE_MAP(CMyApp. CWinApp)

11{{AFX_MSG_MAP(CMyApp)
ON_COMMAND(ID_APP_ABOUT. OnAppAbout)

II NOTE - the ClassWizard will add and remove mapping macros here.
II DO NOT EDIT what you see in these blocks of generated code!

I/} JAFX_MSG_MAP
II Standard file based document commands
ON_COMMAND(ID_FILE_NEW. CWinApp::OnFileNew)
ON_COMMAND(ID_FILE_OPEN. CWinApp::OnFileOpen)
II Standard print setup command
ON_COMMAND(ID_FILE_PRINT_SETUP. CWinApp::OnFilePrintSetup)

END_MESSAGE_MAP()

2041

CWinApp::OnFilePrintSetup

II The following message map illustrates how to rebind the
II File New. Open and Print Setup menu commands to handlers that
II you implement in your CWinApp-derived class. You can use
II ClassWizard to bind the commands. as illustrated below. since
II the message map entries are bracketed by II{{AFX_MSG_MAP
II and II}}AFX_MSG_MAP. Note. you can name the handler
II CMyApp::OnFileNew instead of CMyApp::OnMyFileNew. and likewise
II for the other handlers. if desired.
BEGIN_MESSAGE_MAP(CMyApp. CWinApp)

11{{AFX_MSG_MAP(CMyApp)
ON_COMMAND(ID_APP_ABOUT. OnAppAbout)
ON_COMMAND(ID_FILE_NEW. OnMyFileNew)
ON_COMMAND(ID_FILE_OPEN. OnMyFileOpen)
ON_COMMAND(ID_FILE_PRINT_SETUP. OnMyFilePrintSetup)
I/} }AFX_MSG_MAP

END_MESSAGE_MAP()

See Also: CWinApp::OnFileNew

CWinApp: : OnFilePrintSetup

Remarks

Example

2042

afx_msg void OnFiIePrintSetup();

You must add an

ON_COMMAND(ID_FILE_PRINT_SETUP. OnFilePrintSetup)

statement to your CWinApp class message map to enable this member function.

If enabled, this function handles execution of the File Print command.

For information on default behavior and guidance on how to override this member
function, see Technical Note 22 online.

II The following message map. produced by AppWizard. binds the
II File New. Open. and Print Setup menu commands to default
II framework implementations of these commands.
BEGIN_MESSAGE_MAP(CMyApp. CWinApp)

11{{AFX_MSG_MAP(CMyApp)
ON_COMMAND(ID_APP_ABOUT. OnAppAbout)

II NOTE - the ClassWizard will add and remove mapping macros here.
II DO NOT EDIT what you see in these blocks of generated code!

I/} }AFX_MSG_MAP
II Standard file based document commands
ON_COMMAND(ID_FILE_NEW. CWinApp::OnFileNew)
ON_COMMAND(ID_FILE_OPEN. CWinApp::OnFileOpen)
II Standard print setup command
ON_COMMAND(ID_FILE_PRINT_SETUP. CWinApp::OnFilePrintSetup)

END_MESSAGE_MAP()

II The following message map illustrates how to rebind the
II File New. Open and Print Setup menu commands to handlers that
II you implement in your CWinApp-derived class. You can use
II ClassWizard to bind the commands. as illustrated below. since
II the message map entries are bracketed by II{{AFX_MSG_MAP
II and II}}AFX_MSG_MAP. Note. you can name the handler
II CMyApp: :OnFileNew instead of CMyApp::OnMyFileNew. and likewise
II for the other handlers. if desired.
BEGIN_MESSAGE_MAP(CMyApp. CWinApp)

11{{AFX_MSG_MAP(CMyApp)
ON_COMMAND(ID_APP_ABOUT. OnAppAbout)
ON_COMMAND(ID_FILE_NEW. OnMyFileNew)
ON_COMMAND(ID_FILE_OPEN. OnMyFileOpen)
ON_COMMAND(ID_FILE_PRINT_SETUP. OnMyFilePrintSetup)
I/}} AFX_MSG_MAP

END_MESSAGE_MAP()

See Also: CWinApp::OnFileNew

CWinApp::OnHelp
afx_msg void OnHelp();

Remarks
You must add an

ON_COMMAND(ID_HELP. OnHelp)

statement to your CWinApp class message map to enable this member function.
Usually you will also add an accelerator-key entry for the FI key. Enabling the FI key
is only a convention, not a requirement.

If enabled, called by the framework when the user presses the FI key.

The default implementation of this message-handler function determines the Help
context that corresponds to the current window, dialog box, or menu item and then
calls WINHELP.EXE. If no context is currently available, the function uses the
default context.

Override this member function to set the Help context to something other than the
window, dialog box, menu item, or toolbar button that currently has the focus. Call
WinHelp with the desired Help context ID.

See Also: CWinApp::OnContextHelp, CWinApp::OnHelpUsing,
CWinApp: :OnHelplndex, CWinApp:: WinHelp

CWinApp::OnHelp

2043

CWinApp::OnHelpFinder

CWinApp: : OnHelpFinder

Remarks

afx_msg void OnHelpFinder();

You must add an

ON_COMMAND(ID_HELP_FINDER. OnHelpFinder)

statement to your CWinApp class message map to enable this member function.

If enabled, the framework calls this message-handler function when the user of your
application selects the Help Finder command to invoke Win Help with the standard
HELP_FINDER topic.

See Also: CWinApp::OnHelp, CWinApp::OnHelpUsing, CWinApp::WinHelp,
CWinApp: :OnHelpIndex

CWinApp: : OnHelpIndex
afx_msg void OnHelpIndex();

Remarks
You must add an

ON_COMMAND(ID_HELP_INDEX. OnHelplndex)

statement to your CWinApp class message map to enable this member function.

If enabled, the framework calls this message-handler function when the user of your
application selects the Help Index command to invoke WinHelp with the standard
HELP_INDEX topic.

See Also: CWinApp::OnHelp, CWinApp::OnHelpUsing, CWinApp::WinHelp

CWinApp: :OnHelpU sing
afx_msg void OnHelpUsing();

Remarks

2044

You must add an

ON_COMMAND(ID_HELP_USING. OnHelpUsing)

statement to your CWinApp class message map to enable this member function.

The framework calls this message-handler function when the user of your application
selects the Help Using command to invoke the Win Help application with the standard
HELP _HELP ON HELP topic.

See Also: CWinApp::OnHelp, CWinApp::OnHelpIndex, CWinApp::WinHelp

CWinApp: :OnIdle
virtual BOOL Ooldle(LONG lCount);

Return Value
Nonzero to receive more idle processing time; 0 if no more idle time is needed.

Parameters

Remarks

lCount A counter incremented each time Ooldle is called when the application's
message queue is empty. This count is reset to 0 each time a new message is
processed. You can use the lCount parameter to determine the relative length of
time the application has been idle without processing a message.

Override this member function to perform idle-time processing. Ooldle is called in
the default message loop when the application's message queue is empty. Use your
override to call your own background idle-handler tasks.

Ooldle should return 0 to indicate that no idle processing time is required. The lCount
parameter is incremented each time Ooldle is called when the message queue is
empty and resets to 0 each time a new message is processed. You can call your
different idle routines based on this count.

The following summarizes idle loop processing:

1. If the message loop in the Microsoft Foundation Class Library checks the message
queue and finds no pending messages, it calls On I d 1 e for the application object and
supplies 0 as the lCount argument.

2. On I d 1 e performs some processing and returns a nonzero value to indicate it should
be called again to do further processing.

3. The message loop checks the message queue again. If no messages are pending, it
calls On I d 1 e again, incrementing the lCount argument.

4. Eventually, On Idl e finishes processing all its idle tasks and returns O. This tells the
message loop to stop calling On I d 1 e until the next message is received from the
message queue, at which point the idle cycle restarts with the argument set to O.

Do not perform lengthy tasks during Ooldle because your application cannot process
user input until Ooldle returns.

Note The default implementation of Onldle updates command user-interface objects such as
menu items and tool bar buttons, and it performs internal data structure cleanup. Therefore, if
you override Onldle, you must call CWinApp::Onldle with the ICount in your overridden
version. First call all base-class idle processing (that is, until the base class Onldle returns 0). If
you need to perform work before the base-class processing completes, review the base-class
implementation to select the proper ICount during which to do your work.

CWinApp: :OnIdle

2045

CWinApp: :OnIdle

Example
The following two examples show how to use Onldle. The first example processes
two idle tasks using the [Count argument to prioritize the tasks. The first task is high
priority, and you should do it whenever possible. The second task is less important
and should be done only when there is a long pause in user input. Note the call to the
base-class version of Onldle. The second example manages a group of idle tasks with
different priorities.

BOOl CMyApp::OnIdle(lONG lCount)
{

BOOl bMore = CWinApp::OnIdle(lCount);

if (lCount == 0)
{

TRACE("App idle for short period of time\n");
bMore = TRUE;
}

else if (lCount == 10)
{

TRACE("App idle for longer amount of time\n");
bMore = TRUE;

else if (lCount == 100)
{

TRACE("App idle for even longer amount of time\n");
bMore = TRUE;

else if (lCount == 1000)
{

}

TRACE("App idle for quite a long period of time\n");
II bMore is not set to TRUE. no longer need idle
II IMPORTANT: bMore is not set to FALSE since CWinApp::OnIdle may
II have more idle tasks to complete.

return bMore;
II return TRUE as long as there is any more idle tasks

Second Example

2046

II In this example. four idle loop tasks are given various
II opportunities to run:
II Task1 is always given a chance to run during idle time. provided
II that no message has queued up while the framework was processing
II its own idle loop tasks (at lCount levels 0 and 1).
II Task2 is given a chance to run only if Task1 has already run.
II provided that no message has queued up while Task1 was running.
II Task3 and Task4 are given a chance to run only if both Task1 and
II Task2 have already run. and no message has queued up in the mean
II time. If Task3 gets its chance to run. then Task4 always gets
II a chance to run immediately after Task3.

CWinApp: :OpenDocumentFile

BOOl CMyApp::OnIdle(lONG lCount)
{

II In this example, as in most applications, you should let the
II base class CWinApp::OnIdle complete its processing before you
II attempt any additional idle loop processing.
if (CWinApp::OnIdle(lCount))

return TRUE;

II The base class CWinApp::OnIdle reserves the lCount values 0
II and 1 for the framework's own idle processing. If you wish to
II share idle processing time at a peer level with the framework,
II then replace the above if-statement with a straight call to
II CWinApp::OnIdle; and then add a case statement for lCount value
II 0 andlor 1. Study the base class implementation first to
II understand how your idle loop tasks will compete with the
II framework's idle loop processing.

switch (lCount)
{

case 2:
Taskl() ;
return TRUE; II next time give Task2 a chance

case 3:
Task2();
return TRUE; II next time give Task3 and Task4 a chance

case 4:
Task3();
Task4();
return FALSE; II cycle through the idle loop tasks again

return FALSE;

CWinApp: : OpenDocumentFile
virtual CDocument* OpenDocumentFile(LPCTSTR IpszFileName);

Return Value
A pointer to a CDocument if successful; otherwise NULL.

Parameters

Remarks

IpszFileName The name of the file to be opened.

The framework calls this member function to open the named CDocument file for the
application. If a document with that name is already open, the first frame window that
contains that document will be activated. If an application supports multiple document
templates, the framework uses file extension to find the appropriate document
template to attempt to load the document. If successful, the document template then
creates a frame window and view for the document.

2047

CWinApp: :ParseCommandLine

Example
Baal CMyApp::InitInstance()
{

II
if (m_lpCmdline[0J =- '\0')
{

II Create a new (empty) document.
OnFileNew();

else
{

II

II Open a file passed as the first command line parameter.
OpenDocumentFile(m_lpCmdline);

CWinApp: :ParseCommandLine
void ParseCommandLine(CCommandLineInfo& rCmdlnfo);

Parameters

Remarks

2048

rCmdlnfo A reference to a CCommandLineInfo object.

Call this member function to parse the command line and send the parameters, one at
a time, to CCommandLineInfo: :ParseParam.

When you start a new MFC project using AppWizard, AppWizard will create a local
instance of CCommandLineInfo, and then call ProcessShellCommand and
ParseCommandLine in the Initlnstance member function. A command line follows
the route described below:

1. After being created in Initlnstance, the CCommandLineInfo object is passed to
ParseCommandLine.

2. ParseCommandLine then calls CCommandLineInfo::ParseParam repeatedly,
once for each parameter.

3. ParseParam fills the CCommandLineInfo object, which is then passed to
ProcessShellCommand.

4. ProcessShellCommand handles the command-line arguments and flags.

Note that you can call ParseCommandLine directly as needed.

For a description of the command-line flags, see
CCommandLineInfo: :m_nShellCommand.

CWinApp::ProcessMessageFilter

See Also: CCommandLinelnfo, CWinApp::lnitInstance,
CCommandLinelnfo: :ParseParam, CWinApp: :ProcessShellCommand,
CCommandLinelnfo: :m_nShellCommand

CWinApp: :PreTranslateMessage
virtual BOOL PreTranslateMessage(MSG* pMsg);

Return Value
Nonzero if the message was fully processed in PreTranslateMessage and should not
be processed further. Zero if the message should be processed in the normal way.

Parameters

Remarks

pMsg A pointer to a MSG structure that contains the message to process.

Override this function to filter window messages before they are dispatched to the
Windows functions TranslateMessage and DispatchMessage The default
implementation performs accelerator-key translation, so you must call the
CWinApp::PreTranslateMessage member function in your overridden version.

See Also: : :DispatchMessage, : :TranslateMessage

CWinApp: :ProcessMessageFilter
virtual BOOL ProcessMessageFilter(int code, LPMSG IpMsg);

Return Value
Nonzero if the message is processed; otherwise O.

Parameters

Remarks

code Specifies a hook code. This member function uses the code to determine how to
process IpMsg.

IpMsg A pointer to a Windows MSG structure.

The framework's hook function calls this member function to filter and respond to
certain Windows messages. A hook function processes events before they are sent to
the application's normal message processing.

If you override this advanced feature, be sure to call the base-class version to maintain
the framework's hook processing.

See Also: MessageProc, WH_MSGFILTER

2049

CWinApp::ProcessShellCommand

CWinApp: :ProcessShellCommand
BOOL ProcessShellCommand(CCommandLinelnfo& rCmdlnfo);

Return Value
Nonzero if the shell command is processed successfully. If 0, return FALSE from
Initlnstance.

Parameters

Remarks

2050

rCmdlnfo A reference to a CCommandLinelnfo object.

This member function is called by Initlnstance to accept the parameters passed from
the CCommandLinelnfo object identified by rCmdlnfo, and perform the indicated
action.

When you start a new MFC project using App Wizard, App Wizard will create a local
instance of CCommandLinelnfo, and then call ProcessShellCommand and
ParseCommandLine in the Initlnstance member function. A command line follows
the route described below:

1. After being created in Initlnstance, the CCommandLinelnfo object is passed to
ParseCommandLine.

2. ParseCommandLine then calls CCommandLinelnfo: :ParseParam repeatedly,
once for each parameter.

3. ParseParam fills the CCommandLinelnfo object, which is then passed to
ProcessShellCommand.

4. ProcessShellCommand handles the command-line arguments and flags.

The data members of the CCommandLinelnfo object, identified by
CCommandLinelnfo: :m_nSheIlCommand, are of the following enumerated type,
which is defined within the CCommandLinelnfo class.

enum{

} ;

FileNew.
FileOpen.
FilePrint.
FilePrintTo.
FileDDE.

For a brief description of each of these values, see
CCommandLinelnfo: :m_nSheIlCommand.

See Also: CWinApp: :ParseCommandLine, CCommandLinelnfo,
CCommandLinelnfo: : ParseParam , CCommandLinelnfo: :m_nSheIlCommand

CWinApp:: RegisterShellFileTypes

CWinApp: :Process W ndProcException
virtual LRESULT ProcessWndProcException(CException* e, const MSG* pMsg);

Return Value
The value that should be returned to Windows. Normally this is OL for windows
messages, lL (TRUE) for command messages.

Parameters

Remarks

e A pointer to an uncaught exception.

pMsg A MSG structure that contains information about the windows message that
caused the framework to throw an exception.

The framework calls this member function whenever the handler does not catch an
exception thrown in one of your application's message or command handlers.

Do not call this member function directly.

The default implementation of this member function creates a message box. If the
uncaught exception originates with a menu, toolbar, or accelerator command failure,
the message box displays a "Command failed" message; otherwise, it displays an
"Internal application error" message.

Override this member function to provide global handling of your exceptions. Only
call the base functionality if you wish the message box to be displayed.

See Also: CWnd::WindowProc, CException

CWinApp: : RegisterShellFileTypes
void RegisterShellFileTypes(BOOL bCompat = FALSE);

Parameters

Remarks

bCompat TRUE adds registration entries for shell commands Print and Print To,
allowing a user to print files directly from the shell, or by dragging the file to a
printer object. It also adds a DefaultIcon key. By default, this parameter is FALSE
for backward compatibility.

Call this member function to register all of your application's document types with the
Windows File Manager. This allows the user to open a data file created by your
application by double-clicking it from within File Manager. Call
RegisterShellFileTypes after you call AddDocTemplate for each of the document
templates in your application. Also call the EnableShellOpen member function when
you call RegisterShellFileTypes.

2051

CWinApp::Run

RegisterShellFileTypes iterates through the list of CDocTemplate objects that the
application maintains and, for each document template, adds entries to the registration
database that Windows maintains for file associations. File Manager uses these entries
to open a data file when the user double-clicks it. This eliminates the need to ship a
.REG file with your application.

If the registration database already associates a given filename extension with another
file type, no new association is created. See the CDocTemplate class for the format of
strings necessary to register this information.

See Also: CDocTemplate, CWinApp::EnableShellOpen,
CWinApp: :AddDocTemplate

CWinApp: : Run
virtual int Run();

Return Value

Remarks

An int value that is returned by WinMain.

Provides a default message loop. Run acquires and dispatches Windows messages
until the application receives a WM_QUIT message. If the application's message
queue currently contains no messages, Run calls Onldle to perform idle-time
processing. Incoming messages go to the PreTranslateMessage member function for
special processing and then to the Windows function TranslateMessage for standard
keyboard translation; finally, the DispatchMessage Windows function is called.

Run is rarely overridden, but you can override it to provide special behavior.

See Also: CWinApp: :PreTranslateMessage, WM_ QUIT, : :DispatchMessage,
: : TranslateMessage

CWinApp: : RunAutomated
BOOL RunAutomated();

Return Value

Remarks

2052

Nonzero if the option was found; otherwise O.

Call this function to determine whether the "/Automation" or "-Automation" option
is present, which indicates whether the server application was launched by a client
application. If present, the option is removed from the command line. For more
information on OLE Automation, see the article "Automation Servers" in Visual C++
Programmer's Guide online.

See Also: CWinApp::RunEmbedded

CWinApp::Se1ectPrinter

CWinApp: : RunEmbedded
BOOL RunEmbedded();

Return Value

Remarks

Nonzero if the option was found; otherwise O.

Call this function to determine whether the "!Embedding" or "-Embedding" option
is present, which indicates whether the server application was launched by a client
application. If present, the option is removed from the command line. For more
information on embedding, see the article "Servers: Implementing a Server" in
Visual C++ Programmer's Guide online.

See Also: CWinApp::RunAutomated

CWinApp::SaveAIIModified
virtual BOOL SaveAllModified();

Return Value

Remarks

Nonzero if safe to terminate the application; 0 if not safe to terminate the application.

Called by the framework to save all documents when the application's main frame
window is to be closed, or through a WM_QUERYENDSESSION message.

The default implementation of this member function calls the
CDocument::SaveModified member function in turn for all modified documents
within the application.

CWinApp: : SelectPrinter
void SelectPrinter(HANDLE hDevNames, HANDLE hDevMode,

... BOOL bFreeOld = TRUE);

Parameters

Remarks

hDevNames A handle to a DEVNAMES structure that identifies the driver, device,
and output port names of a specific printer.

hDevMode A handle to a DEVMODE structure that specifies information about the
device initialization and environment of a printer.

bFreeOld Frees the previously-selected printer.

Call this member function to select a specific printer, and release the printer that was
previously selected in the Print Dialog box.

2053

CWinApp: :SetDialogBkColor

If both hDevMode and hDevNames are NULL, SelectPrinter uses the current default
printer.

See Also: CPrintDialog, DEVMODE, DEVNAMES

CWinApp: : SetDialogBkColor
void SetDialogBkColor(COLORREF clrCtlBk = RGB(192, 192, 192),

... COLORREF clrCtlText = RGB(O, 0, 0));

Parameters

Remarks

Example

clrCtlBk The dialog background color for the application.

clrCtlText The dialog control color for the application.

Call this member function from within the Initlnstance member function to set the
default background and text color for dialog boxes and message boxes within your
application.

BOOl CMyApp::InitInstance()
{

II Standard initialization

SetDialogBkColor();
loadStdProfileSettings();

I I ...

II Set dialog background color to gray
II load standard INI file options (including MRU)

CWinApp: :SetRegistry Key
void SetRegistryKey(LPCTSTR lpszRegistryKey);
void SetRegistryKey(UINT nIDRegistryKey);

Parameters

Remarks

2054

lpszRegistryKey Pointer to a string containing the name of the key.

nIDRegistryKey ID/index of a key in the registry.

Causes application settings to be stored in the registry instead of INI files. This
function sets mJJszRegistryKey, which is then used by the GetProfileInt,
GetProfileString, WriteProfileInt, and WriteProfileString member functions of
CWinApp. If this function has been called, the list of most recently-used (MRU) files
is also stored in the registry. The registry key is usually the name of a company. It is
stored in a key of the following form: HKEY_CURRENT_USER\Software\<company
name>\<application name>\<section name>\<value name>.

See Also: CWinApp::InitInstance, CWinApp::GetProfileInt,
CWinApp::GetProfileString, CWinApp::WriteProfileInt,
CWinApp::WriteProfileString

CWinApp:: WinHelp
virtual void WinHelp(DWORD dwData, UINT nCmd = HELP_CONTEXT);

Parameters

Remarks

Example

dwData Specifies additional data. The value used depends on the value of the nCmd
parameter.

nCmd Specifies the type of help requested. For a list of possible values and how they
affect the dwData parameter, see the WinHelp Windows function.

Call this member function to invoke the WinHelp application. The framework also
calls this function to invoke the WinHelp application.

The framework will automatically close the WinHelp application when your
application terminates.

II Header File: HELPIDS.H
II
II This example header file is #include'd twice:
II (1) It is #include'd by the .CPP file that passes the DWORD
II context i .d. to CWinApp::WinHelp.
II (2) It is #include'd in the [MAP] section of the .HPJ file,
II to associate the help context string "HID_MYTOPIC" with
II the help context numeric i .d., 101.
II The help context string "HID_MYTOPIC" is what identifies the
II help topic in the help .RTF source file, in the "#" footnote:
II # HID_MYTOPIC
II
II Note, it is not necessary to manage help context id's this way
II for help topics associated with command id's and user interface
II id's defined in your RESOURCE.H file; you should use the MAKEHM
II tool, or the MAKEHELP.BAT file produced by AppWizard's Context
II Help option, to produce a help map (.HM) file for these id's.
II It is necessary to manage help context id's as illustrated here
II only for help topics not associated with command id's or user
II interface id's.

#define HID_MYTOPIC 101

II Show the custom help topic that has the context string
II "HID_MYTOPIC" in the help .RTF file, and which is mapped
II to the DWORD i.d. HID_MYTOPIC in the above HELPIDS.H file.
AfxGetApp()->WinHelp(HID_MYTOPIC);

CWinApp::WinHelp

2055

CWinApp:: WriteProfileInt

II The following is one line of code in the help map (.HM)
II file produced by the MAKEHM tool, which in turn is called
II by the MAKEHELP.BAT file produced by the AppWizard Context
II Help option. The MAKEHM tool reads the following #define
II in the application's RESOURCE.H file:
II #define ID_MYCOMMAND 0x08004
II and adds a help id offset value of 0x10000 to create the
II help context DWORD value 0x18004. See MFC Tech Note 28
II for more information on help id offset values.

HID_MYCOMMAND 0x18004

II Rarely will you need to directly call WinHelp yourself
II with the help context i .d. for a command or user interface
II object. The framework will call WinHelp automatically when
II the user. for example. hits Fl when the focus is on a
II My Command menu item. However. if you do want to directly
II call WinHelp for the help topic associated with the command.
II here is how you would do it:

AfxGetApp()-)WinHelp(0x10000 + ID_MYCOMMAND);

See Also: CWinApp::OnContextHelp, CWinApp::OnHelpUsing,
CWinApp::OnHelp, CWinApp::OnHelplndex, ::WinHelp

CWinApp:: WriteProfileInt
BOOL WriteProfilelnt(LPCTSTR IpszSection, LPCTSTR IpszEntry, int n Value);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

2056

ipszSection Points to a null-terminated string that specifies the section containing the
entry. If the section does not exist, it is created. The name of the section is case
independent; the string may be any combination of uppercase and lowercase letters.

IpszEntry Points to a null-terminated string that contains the entry into which the
value is to be written. If the entry does not exist in the specified section, it is
created.

n Value Contains the value to be written.

Call this member function to write the specified value into the specified section of the
application's .INI file.

CWinApp:: WriteProfileS tring

Example
CString strSection
CString strStringItem
CString strIntItem

~ "My Section";
= "My String Item";
"" "My I nt Item";

CWinApp* pApp "" AfxGetApp();

pApp->WriteProfileString(strSection. strStringItem. "test");

CString strValue;
strValue ~ pApp->GetProfileString(strSection. strStringItem);
ASSERT(strVa 1 ue ~= "test");

pApp->WriteProfileInt(strSection. strIntItem. 1234);
int nValue;
nValue "" pApp-)GetProfilelnt(strSection. strlntltem. 0);
ASSERT(nValue == 1234);

See Also: CWinApp::GetProfileInt, CWinApp::WriteProfileString

CWinApp:: WriteProfileString
BOOL WriteProfileString(LPCTSTR IpszSection, LPCTSTR lpszEntry,

.. LPCTSTR IpszValue);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

Example

lpszSection Points to a null-terminated string that specifies the section containing the
entry. If the section does not exist, it is created. The name of the section is case
independent; the string may be any combination of uppercase and lowercase letters.

lpszEntry Points to a null-terminated string that contains the entry into which the
value is to be written. If the entry does not exist in the specified section, it is
created.

lpszValue Points to the string to be written. If this parameter is NULL, the entry
specified by the IpszEntry parameter is deleted.

Call this member function to write the specified string into the specified section of the
application's .INI file.

CString strSection
CString strStringltem
CString strlntltem

"My Section";
"My Stri ng Item";
"My Int Item";

CWinApp* pApp = AfxGetApp();

pApp-)WriteProfileString(strSection. strStringItem. "test");

2057

CWinApp::m_hHelpMode

CString strValue;
strValue = pApp->GetProfileString(strSection. strStringItem);
ASSERT(strValue == "test");

pApp->WriteProfileInt(strSection. strIntItem. 1234);
int nValue;
nValue = pApp->GetProfileInt(strSection. strIntItem. 0);
ASSERT(nValue == 1234);

See Also: CWinApp::GetProfileString, CWinApp::WriteProfilelnt,
:: WritePrivateProfileString

Data Members
CWinApp: :m_bHelpMode
Remarks

TRUE if the application is in Help context mode (conventionally invoked with SHIff
+ Fl); otherwise FALSE. In Help context mode, the cursor becomes a question mark
and the user can move it about the screen. Examine this flag if you want to implement
special handling when in the Help mode. m_hHelpMode is a public variable of type
BOOL.

CWinApp: :m_hInstance
Remarks

Example

2058

Corresponds to the hlnstance parameter passed by Windows to WinMain. The
m_hlnstance data member is a handle to the current instance of the application
running under Windows. This is returned by the global function
AfxGetInstanceHandle. m_hlnstance is a public variable of type HINSTANCE.

II Typically you do not need to pass the application's hInstance
II to Windows APIs directly because there are equivalent MFC
II member functions that pass the hInstance for you. The following
II example is not typical:

HCURSOR hCursor;
hCursor = ::LoadCursor(AfxGetApp()->m_hInstance.

MAKEINTRESOURCE(IDC_MYCURSOR»;

II A more direct way to get the application's hInstance is to
II call AfxGetInstanceHandle:
hCursor = ::LoadCursor(AfxGetInstanceHandle().

MAKEINTRESOURCE(IDC_MYCURSOR»;

CWinApp::m_IpCmdLine

II If you need the hInstance to load a resource. it is better
II to call AfxGetResourceHandle instead of AfxGetInstanceHandle:
hCursor = ::loadCursor(AfxGetResourceHandle().

MAKEINTRESOURCE(IDC_MYCURSOR));

II A better way to load the cursor resource is to call
II CWinApp::loadCursor
hCursor = AfxGetApp()-)loadCursor(IDC_MYCURSOR);

CWinApp: :m_hPrev Instance
Remarks

Corresponds to the hPrevlnstance parameter passed by Windows to WinMain.

The m_hPrevlnstance data member is always set to NULL in a Win32 application.
To find previous instances of an application, use CWnd::FindWindow.

CWinApp: :m_lpCmdLine
Remarks

Example

Corresponds to the IpCmdLine parameter passed by Windows to WinMain. Points to
a null-terminated string that specifies the command line for the application. Use
m_IpCmdLine to access any command-line arguments the user entered when the
application was started. m_IpCmdLine is a public variable of type LPSTR.

BOOl CMyApp::InitInstance()
{

II

if (m_lpCmdline[0] == '\0')
{

II Create a new (empty) document.
On Fil eNew() ;

else
{

II

II Open a file passed as the first command line parameter.
OpenDocumentFile(m_lpCmdLine);

2059

CWinApp::m_nCmdShow

CWinApp: :rn_nCrndShow
Remarks

Example

Corresponds to the nCmdShow parameter passed by Windows to WinMain. You
should pass m_nCmdShow as an argument when you call CWnd::ShowWindow for
your application's main window. m_nCmdShow is a public variable of type int.

BOOl CMyApp::lnitlnstance()
{

II

II Create main MOl Frame window.
CMainFrame* pMainFrame = new CMainFrame;
if (!pMainFrame-)loadFrame(lOR_MAlNFRAME))

return FALSE;
II Save the pointer to the main frame window. This is the
II only way the framework will have knowledge of what the
II main frame window is.
m_pMainWnd = pMainFrame;

II Show the main window using the nCmdShow parameter
II passed to the application when it was first launched.
pMainFrame-)ShowWindow(m_nCmdShow);
pMainFrame->UpdateWindow();

I I ...

CWinApp: :rn_pActive Wnd
Remarks

Use this data member to store a pointer to the main window of the OLE container
application that has your OLE server application in-place activated. If this data
member is NULL, the application is not in-place active.

The framework sets this member variable when the frame window is in-place
activated by an OLE container application.

See Also: AfxGetMainWnd, CWinThread::m_pMainWnd

CWinApp: :rn_pszAppN arne
Remarks

2060

Specifies the name of the application. The application name can come from the
parameter passed to the CWinApp constructor, or, if not specified, to the resource
string with the ID of AFX_IDS_APP _TITLE. If the application name is not found in
the resource, it comes from the program's .EXE filename.

Example

Returned by the global function AfxGetAppName. m_pszAppName is a public
variable of type const char*.

CWinApp::m_pszExeName

Note If you assign a value to m_pszAppName, it must be dynamically allocated on the heap.
The CWinApp destructor calls free() with this pointer. You many want to use the _tcsdup()
run-time library function to do the allocating. Also, free the memory associated with the current
pointer before assigning a new value. For example:

IIFirst free the string allocated by MFC at CWinApp startup.
liThe string is allocated before InitInstance is called.
freeCCvoid*)m_pszAppName);
IIChange the name of the application file.
liThe CWinApp destructor will free the memory.
m_pszAppName""_tcsdup(_TC"d:\\somedir\\myapp.exe"));

CWnd* pWnd;
II Set pWnd to some CWnd object whose window has already
II been created.

II The following call to CWnd::MessageBox uses the application
II title as the message box caption.
pWnd->MessageBox("Some message". AfxGetApp()->m_pszAppName);

II A more direct way to get the application title is to
II call AfxGetAppName:
pWnd->MessageBox("Some message", AfxGetAppName());

II An easier way to display a message box using the application
II title as the message box caption is to call AfxMessageBox:
AfxMessageBoxC"Some message");

CWinApp: :rn_pszExeN arne
Remarks

Contains the name of the application's executable file without an extension. Unlike
m_pszAppName, this name cannot contain blanks. m_pszExeName is a public
variable of type const char*.

Note If you assign a value to m_pszExeName, it must be dynamically allocated on the heap.
The CWinApp destructor calls free() with this pOinter. You many want to use the _tcsdup()
run-time library function to do the allocating. Also, free the memory associated with the current
pointer before assigning a new value. For example:

IIFirst free the string allocated by MFC at CWinApp startup.
liThe string is allocated before InitInstance is called.
freeCCvoid*)m_pszExeName);
IIChange the name of the .EXE file.
liThe CWinApp destructor will free the memory.
m_pszExeName=_tcsdupC_T("d:\\somedir\\myapp"));

2061

CWinApp: :m_pszHelpFilePath

CWinApp: :rn_pszHelpFilePath
Remarks

Contains the path to the application's Help file. By default, the framework initializes
m_pszHelpFilePath to the name of the application with ".HLP" appended. To change
the name of the help file, set m_pszHelpFilePath to point to a string that contains the
complete name of the desired help file. A convenient place to do this is in the
application's InitInstance function. m_pszHelpFilePath is a public variable of type
const char*.

Note If you assign a value to m_pszHelpFilePath, it must be dynamically allocated on the
heap. The CWinApp destructor calls free() with this pointer. You many want to use the
_tcsdup() run-time library function to do the allocating. Also, free the memory associated with
the current pOinter before assigning a new value. For example:
IIFirst free the string allocated by MFC at CWinApp startup.
liThe string is allocated before InitInstance is called.
free«void*)m_pszHelpFilePath);
IIChange the name of the .HLP file.
liThe CWinApp destructor will free the memory.
m_pszHelpFilePath~_tcsdup(_T("d:\\somedir\\myhelp.hlp"));

CWinApp: :rn_pszProfileN arne
Remarks

2062

Contains the name of the application's .IN! file. m_pszProfileName is a public
variable of type const char*.

Note If you assign a value to m_pszProfileName, it must be dynamically allocated on the
heap. The CWinApp destructor calls free() with this pointer. You many want to use the
_tcsdup() run-time library function to do the allocating. Also, free the memory associated with
the current pointer before assigning a new value. For example:
IIFirst free the string allocated by MFC at CWinApp startup.
liThe string is allocated before InitInstance is called.
free«void*)m_pszProfileName);
IIChange the name of the .INI file.
liThe CWinApp destructor will free the memory.
m_pszProfileName=_tcsdup(_T("d:\\somedir\\myini .ini"»;

See Also: CWinApp::GetProfileString, CWinApp::GetProfilelnt,
CWinApp:: WriteProfilelnt, CWinApp:: WriteProfileString

CWinApp: :m_pszRegistry Key

CWinApp::m_pszRegistryKey

Remarks

LPCTSTR m_pszRegistry Key;

Used to determine the full registry key for storing application profile settings.
Normally, this data member is treated as read-only.

Note If you assign a value to m_pszRegistryKey, it must be dynamically allocated on the
heap. The CWinApp destructor calls free() with this pointer. You many want to use the
_tcsdup() run-time library function to do the allocating. Also, free the memory associated
with the current pointer before assigning a new value. For example:

IIFirst free the string allocated by MFC at CWinApp startup.
lIThe string is allocated before Initlnstance is called.
free«void*)m_pszRegistryKey);
IIChange the name of the registry key.
lIThe CWinApp destructor will free the memory.
m_pszRegistryKey~_tcsdup(_T("HKEY_CURRENT_USER\\Software

~ \\mycompany\\myapp\\thissection\\thisvalue"));

See Also: CWinApp::SetRegistryKey

2063

CWindowDC

CWindowDC

CWindowDC

The CWindowDC class is derived from CDC. It calls the Windows functions
GetWindowDC at construction time and ReleaseDC at destruction time. This means
that a CWindowDC object accesses the entire screen area of a CWnd (both client and
nonclient areas).

For more information on using CWindowDC, see "Device Contexts" in Visual c++
Programmer's Guide online.

#include <afxwin.h>

See Also: CDC

CWindowDC Class Members
Construction

CWindowDC Constructs a CWindowDC object.

Data Members

The HWND to which this CWindowDC is attached.

Member Functions
CWindowDC: :CWindow DC

CWindowDC(CWnd* pWnd); throw(CResourceException);

Parameters

Remarks

2064

p Wnd The window whose client area the device-context object will access.

Constructs a CWindowDC object that accesses the entire screen area (both client and
nonclient) of the CWnd object pointed to by p Wnd. The constructor calls the Windows
function GetWindowDC.

CWindowDC::m_hWnd

An exception (of type CResourceException) is thrown if the Windows GetWindowDC
call fails. A device context may not be available if Windows has already allocated all of
its available device contexts. Your application competes for the five common display
contexts available at any given time under Windows.

See Also: CDC, CClientDC, CWnd

Data Members
CWindowDC: :m_h Wnd
Remarks

The HWND of the CWnd pointer is used to construct the CWindowDC object.
m_hWnd is a protected variable of type HWND.

2065

CWinThread

CWinThread

2066

CWinThread

A CWinThread object represents a thread of execution within an application. The
main thread of execution is usually provided by an object derived from CWinApp;
CWinApp is derived from CWinThread. Additional CWinThread objects allow
multiple threads within a given application.

There are two general types of threads that CWinThread supports: worker threads
and user-interface threads. Worker threads have no message pump: for example,
a thread that performs background calculations in a spreadsheet application.
User-interface threads have a message pump and process messages received from the
system. CWinApp and classes derived from it are examples of user-interface threads.
Other user-interface threads can also be derived directly from CWinThread.

Objects of class CWinThread typically exist for the duration of the thread. If you
wish to modify this behavior, set m_bAutoDelete to FALSE.

The CWinThread class is necessary to make your code and MFC fully thread-safe.
Thread-local data used by the framework to maintain thread-specific information is
managed by CWinThread objects. Because of this dependence on CWinThread to
handle thread-local data, any thread that uses MFC must be created by MFC. For
example, a thread created by the run-time function _beginthreadex cannot use any
MFC APIs.

To create a thread, call AfxBeginThread. There are two forms, depending on whether
you want a worker or user-interface thread. If you want a user-interface thread, pass
to AfxBeginThread a pointer to the CRuntimeClass of your CWinThread-derived
class. If you want to create a worker thread, pass to AfxBeginThread a pointer to the
controlling function and the parameter to the controlling function. For both worker
threads and user-interface threads, you can specify optional parameters that modify
priority, stack size, creation flags, and security attributes. AfxBeginThread will return
a pointer to your new CWinThread object.

Instead of calling AfxBeginThread, you can construct a CWinThread-derived object
and then call CreateThread. This two-stage construction method is useful if you want
to reuse the CWinThread object between successive creation and terminations of
thread executions.

For more information on CWinThread, see the articles "Multithreading with C++ and
MFC," "Multithreading: Creating User-Interface Threads," "Multithreading: Creating

Worker Threads," and "Multithreading: How to Use the Synchronization Classes" in
Visual C++ Programmer's Guide online.

See Also: CWinApp, CCmdTarget

CWinThread Class Members
Data Members

m_bAutoDelete

m_hThread

m_nThreadID

m_pMainWnd

m_pActiveWnd

Construction

CWinThread

CreateThread

Operations

GetMainWnd

GetThreadPriority

PostThreadMessage

ResumeThread

SetThreadPriority

SuspendThread

Overridables

Exitlnstance

Initlnstance

Onldle

PreTranslateMessage

IsIdleMessage

Process WndProcException

ProcessMessageFilter

Run

Specifies whether to destroy the object at thread termination.

Handle to the current thread.

ID of the current thread.

Holds a pointer to the application's main window.

Pointer to the main window of the container application
when an OLE server is in-place active.

Constructs a CWinThread object.

Starts execution of a CWinThread object.

Retrieves a pointer to the main window for the thread.

Gets the priority of the current thread.

Posts a message to another CWinThread object.

Decrements a thread's suspend count.

Sets the priority of the current thread.

Increments a thread's suspend count.

Override to clean up when your thread terminates.

Override to perform thread instance initialization.

Override to perform thread-specific idle-time processing.

Filters messages before they are dispatched to the Windows
functions TranslateMessage and DispatchMessage.

Checks for special messages.

Intercepts all unhandled exceptions thrown by the thread's
message and command handlers.

Intercepts certain messages before they reach the application.

Controlling function for threads with a message pump.
Override to customize the default message loop.

CWinThread

2067

CWinThread: :CreateThread

Member Functions
CWin Thread: : CreateThread

BOOL CreateThread(DWORD dwCreateFlags = 0, UINT nStackSize = 0,
... LPSECURITY _ATTRIBUTES lpSecurityAttrs = NULL);

Return Value
Nonzero if the thread is created successfully; otherwise O.

Parameters

Remarks

dwCreateFlags Specifies an additional flag that controls the creation of the thread.
This flag can contain one of two values:

• CREATE_SUSPENDED Start the thread with a suspend count of one. The
thread will not execute until ResumeThread is called.

• ° Start the thread immediately after creation.

nStackSize Specifies the size in bytes of the stack for the new thread. If 0, the stack
size defaults to the same size as that of the process's primary thread.

lpSecurityAttrs Points to a SECURITY_ATTRIBUTES structure that specifies the
security attributes for the thread.

Creates a thread to execute within the address space of the calling process. Use
AfxBeginThread to create a thread object and execute it in one step. Use
CreateThread if you want to reuse the thread object between successive creation and
termination of thread executions.

See Also: AfxBeginThread, CWinThread: :CWinThread, : :CreateThread

CWinThread: :CWinThread

Remarks

2068

CWinThread();

Constructs a CWinThread object. To begin the thread's execution, call
the CreateThread member function. You will usually create threads
by calling AfxBeginThread, which will call this constructor and
CreateThread.

See Also: CWinThread::CreateThread

CWinThread::GetMainWnd

CWinThread: : ExitInstance
virtual int ExitInstance();

Return Value

Remarks

The thread's exit code; 0 indicates no errors, and values greater than 0 indicate an
error. This value can be retrieved by calling ::GetExitCodeThread.

Called by the framework from within a rarely overridden Run member function to
exit this instance of the thread, or if a call to InitInstance fails.

Do not call this member function from anywhere but within the Run member
function. This member function is used only in user-interface threads.

The default implementation of this function deletes the CWinThread object if
m_bAutoDelete is TRUE. Override this function if you wish to perform additional
clean-up when your thread terminates. Your implementation of ExitInstance should
call the base class's version after your code is executed.

See Also: CWinApp::ExitInstance

CWinThread: : GetMain Wnd
virtual CWnd * GetMainWnd();

Return Value

Remarks

This function returns a pointer to one of two types of windows. If your thread is part
of an OLE server and has an object that is in-place active inside an active container,
this function returns the CWinApp::m_pActiveWnd data member of the
CWinThread object.

If there is no object that is in-place active within a container or your application is not
an OLE server, this function returns the m_pMain Wnd data member of your thread
object.

If your application is an OLE server, call this function to retrieve a pointer to the
active main window of the application instead of directly referring to the
m_pMain Wnd member of the application object. For user-interface threads, this is
equivalent to directly referring to the m_pActiveWnd member of your application
object.

If your application is not an OLE server, then calling this function is equivalent to
directly referring to the m_pMainWnd member of your application object.

Override this function to modify the default behavior.

See Also: AfxGetMain Wnd

2069

CWinThread: : GetThreadPriority

CWinThread: : GetThreadPriority
int GetThreadPriority();

Return Value

Remarks

The current thread priority level within its priority class. The value
returned will be one of the following, listed from highest priority
to lowest:

• THREAD_PRIORITY _TIME_CRITICAL

• THREAD_PRIORITY_HIGHEST

• THREAD_PRIORITY_ABOVE_NORMAL

• THREAD_PRIORITY_NORMAL

• THREAD_PRIORITY_BELOW_NORMAL

• THREAD_PRIORITY_LOWEST

• THREAD_PRIORITY_IDLE

For more information on these priorities, see ::SetThreadPriority in the Win32 SDK
Programmer's Reference, Volume 4.

Gets the current thread priority level of this thread.

See Also: CWinThread::SetThreadPriority, ::GetThreadPriority

CWinThread: : InitInstance
virtual BOOL InitInstance();

Return Value

Remarks

2070

Nonzero if initialization is successful; otherwise O.

InitInstance must be overridden to initialize each new instance of a
user-interface thread. Typically, you override InitInstance to perform
tasks that must be completed when a thread is first created.

This member function is used only in user-interface threads. Perform
initialization of worker threads in the controlling function passed to
AfxBeginThread.

See Also: CWinApp::InitInstance

CWinThread: :IsIdleMessage
virtual BOOL IsIdleMessage(MSG* pMsg);

Return Value
Nonzero if OnIdle should be called after processing message; otherwise O.

Parameters

Remarks

pMsg Points to the current message being processed.

Override this function to keep OnIdle from being called after specific messages are
generated. The default implementation does not call OnIdle after redundant mouse
messages and messages generated by blinking carets.

If an application has created a short timer, OnIdle will be called frequently, causing
performance problems. To improve such an application's performance, override
IsIdleMessage in the application's CWinApp-derived class to check for
WM_TIMER messages as follows:

BOOl CMyApp::IsldleMessage(MSG* pMsg)
{

if (!CWinApp::IsldleMessage(pMsg) I I
pMsg->message == WM_TIMER)
return FALSE;

else
return TRUE;

Handling WM_ TIMER in this fashion will improve performance of applications that
use short timers.

CWinThread: :OnIdle
virtual BOOL OnIdle(LONG lCounf);

Return Value
Nonzero to receive more idle processing time; 0 if no more idle processing time is
needed.

Parameters
lCounf A counter incremented each time OnIdle is called when the thread's message

queue is empty. This count is reset to 0 each time a new message is processed. You
can use the lCounf parameter to determine the relative length of time the thread has
been idle without processing a message.

CWinThread: :Onldle

2071

CWinThread::PostThreadMessage

Remarks
Override this member function to perform idle-time processing. OnIdle is called in
the default message loop when the thread's message queue is empty. Use your
override to call your own background idle-handler tasks.

OnIdle should return 0 to indicate that no additional idle processing time is required.
The lCount parameter is incremented each time OnIdle is called when the message
queue is empty and is reset to 0 each time a new message is processed. You can call
your different idle routines based on this count.

The default implementation of this member function frees temporary objects and
unused dynamic link libraries from memory.

This member function is used only in user-interface threads.

Because the application cannot process messages until OnIdle returns, do not perform
lengthy tasks in this function.

See Also: CWinApp::OnIdle

CWinThread: :PostThreadMessage
BOOL PostThreadMessage(UINT message, WPARAM wParam, LPARAM lParam);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

message ID of the user-defined message.

wParam First message parameter.

lParam Second message parameter.

Called to post a user-defined message to another CWinThread object. The posted
message is mapped to the proper message handler by the message map macro
ON_THREAD_MESSAGE.

See Also: ON_THREAD_MESSAGE

CWinThread: :PreTranslateMessage
virtual BOOL PreTranslateMessage(MSG *pMsg);

Return Value

2072

Nonzero if the message was fully processed in PreTranslateMessage and should not
be processed further. Zero if the message should be processed in the normal way.

CWinThread: :Process W ndProcException

Parameters

Remarks

pMsg Points to a MSG structure containing the message to process.

Override this function to filter window messages before they are dispatched to the
Windows functions ::TranslateMessage and ::DispatchMessage.

This member function is used only in user-interface threads.

See Also: CWinApp::PreTranslateMessage

CWinThread: :ProcessMessageFilter
virtual BOOL ProcessMessageFilter(int code, LPMSG IpMsg);

Return Value
Nonzero if the message is processed; otherwise o.

Parameters

Remarks

code Specifies a hook code. This member function uses the code to determine how to
process lpMsg.

lpMsg A pointer to a Windows MSG structure.

The framework's hook function calls this member function to filter and respond to
certain Windows messages. A hook function processes events before they are sent to
the application's normal message processing.

If you override this advanced feature, be sure to call the base-class version to maintain
the framework's hook processing.

See Also: MessageProc, WH_MSGFILTER

CWinThread: :Process W ndProcException
virtual LRESULT ProcessWndProcException(CException *e, const MSG *pMsg);

Return Value
-1 if a WM_CREATE exception is generated; otherwise o.

Parameters

Remarks

e Points to an unhandled exception.

pMsg Points to a MSG structure containing information about the windows message
that caused the framework to throw an exception.

The framework calls this member function whenever the handler does not catch an
exception thrown in one of your thread's message or command handlers.

2073

CWinThread: :ResumeThread

Do not call this member function directly.

The default implementation of this member function handles only exceptions
generated from the following messages:

Command

WM_CREATE

WM_PAINT

Action

Fail.

Validate the affected window, thus preventing another WM_PAINT
message from being generated.

Override this member function to provide global handling of your exceptions. Call the
base functionality only if you wish to display the default behavior.

This member function is used only in threads that have a message pump.

See Also: CWinApp::ProcessWndProcException

CWinThread: : ResumeThread
DWORD ResumeThread();

Return Value

Remarks

The thread's previous suspend count if successful; 0xFFFFFFFF otherwise. If the return
value is zero, the current thread was not suspended. If the return value is one, the
thread was suspended, but is now restarted. Any return value greater than one means
the thread remains suspended.

Called to resume execution of a thread that was suspended by the SuspendThread
member function, or a thread created with the CREATE_SUSPENDED flag. The
suspend count of the current thread is reduced by one. If the suspend count is reduced
to zero, the thread resumes execution; otherwise the thread remains suspended.

See Also: CWinThread::SuspendThread, ::ResumeThread

CWinThread: :Run
virtual int Run();

Return Value

Remarks

2074

An int value that is returned by the thread. This value can be retrieved by calling
:: GetExitCodeThread.

Provides a default message loop for user-interface threads. Run acquires and
dispatches Windows messages until the application receives a WM_QUIT message.
If the thread's message queue currently contains no messages, Run calls Onldle to
perform idle-time processing. Incoming messages go to the PreTranslateMessage

CWinThread: :SuspendThread

member function for special processing and then to the Windows function
::TranslateMessage for standard keyboard translation. Finally, the
::DispatchMessage Windows function is called.

Run is rarely overridden, but you can override it to implement special behavior.

This member function is used only in user-interface threads.

See Also: CWinApp: :Run

CWinThread::SetThreadPriority
BOOL SetThreadPriority(int nPriority);

Return Value
Nonzero if function was successful; otherwise O.

Parameters

Remarks

nPriority Specifies the new thread priority level within its priority class. This
parameter must be one of the following values, listed from highest priority to
lowest:

• THREAD_PRIORITY_TIME_CRITICAL

• THREAD_PRIORITY_HIGHEST

• THREAD_PRIORITY_ABOVE_NORMAL

• THREAD_PRIORITY_NORMAL

• THREAD_PRIORITY_BEL OW_NORMAL

• THREAD_PRIORITY_LOWEST

• THREAD _PRIORITY _IDLE

For more information on these priorities, see ::SetThreadPriority in the Win32 SDK
Programmer's Reference, Volume 4.

This function sets the priority level of the current thread within its priority class. It can
only be called after CreateThread successfully returns.

See Also: CWinThread::GetThreadPriority, ::SetThreadPriority

CWin Thread: : SuspendThread
DWORD SuspendThread();

Return Value
The thread's previous suspend count if successful; 0xFFFFFFFF otherwise.

2075

CWinThread: :m_bAutoDe1ete

Remarks
Increments the current thread's suspend count. If any thread has a suspend count
above zero, that thread does not execute. The thread can be resumed by calling the
ResumeThread member function.

See Also: CWinThread: :ResumeThread, : :SuspendThread

Data Members
CWinThread: :m_bAutoDelete
Remarks

Specifies whether the CWinThread object should be automatically deleted at thread
termination. The m_bAutoDelete data member is a public variable of type BOOL.

CWinThread: :m_hThread
Remarks

Handle to the thread attached to this CWinThread. The m_hThread data member is
a public variable of type HANDLE. It is only valid if underlying thread currently
exists.

CWinThread: :m_nThreadID
Remarks

ID of the thread attached to this CWinThread. The m_nThreadID data member is a
public variable of type DWORD. It is only valid if underlying thread currently exists.

CWinThread: :m_pActive Wnd
Remarks

2076

Use this data member to store a pointer to your thread's active window object. The
Microsoft Foundation Class Library will automatically terminate your thread when the
window referred to by m_pActive Wnd is closed. If this thread is the primary thread
for an application, the application will also be terminated. If this data member is
NULL, the active window for the application's CWinApp object will be inherited.
m_pActiveWnd is a public variable of type CWnd*.

Typically, you set this member variable when you override Initlnstance. In a worker
thread, the value of this data member is inherited from its parent thread.

See Also: CWinThread: : Initlnstance, CWinThread: :m_pMain Wnd

CWinThread: :m_pMain Wnd

CWinThread: :m_pMain Wnd
Remarks

Use this data member to store a pointer to your thread's main window object. The
Microsoft Foundation Class Library will automatically terminate your thread when the
window referred to by m_pMain Wnd is closed. If this thread is the primary thread
for an application, the application will also be terminated. If this data member is
NULL, the main window for the application's CWinApp object will be used to
determine when to terminate the thread. m_pMain Wnd is a public variable of type
CWnd*.

Typically, you set this member variable when you override Initlnstance. In a worker
thread, the value of this data member is inherited from its parent thread.

See Also: CWinThread: : Initlnstance

2077

CWnd

CWnd

2078

The CWnd class provides the base functionality of all window classes in the
Microsoft Foundation Class Library.

A CWnd object is distinct from a Windows window, but the two are tightly linked.
A CWnd object is created or destroyed by the CWnd constructor and destructor.
The Windows window, on the other hand, is a data structure internal to Windows
that is created by a Create member function and destroyed by the CWnd virtual
destructor. The DestroyWindow function destroys the Windows window without
destroying the object.

The CWnd class and the message-map mechanism hide the WndProc function.
Incoming Windows notification messages are automatically routed through the
message map to the proper OnMessage CWnd member functions. You override
an OnMessage member function to handle a member's particular message in your
derived classes.

The CWnd class also lets you create a Windows child window for your application.
Derive a class from CWnd, then add member variables to the derived class to store
data specific to your application. Implement message-handler member functions and a
message map in the derived class to specify what happens when messages are directed
to the window.

You create a child window in two steps. First, call the constructor CWnd to construct
the CWnd object, then call the Create member function to create the child window
and attach it to the CWnd object.

When the user terminates your child window, destroy the CWnd object, or call the
DestroyWindow member function to remove the window and destroy its data
structures.

Within the Microsoft Foundation Class Library, further classes are derived from
CWnd to provide specific window types. Many of these classes, including
CFrameWnd, CMDIFrameWnd, CMDIChildWnd, CView, and CDialog, are
designed for further derivation. The control classes derived from CWnd, such as
CButton, can be used directly or can be used for further derivation of classes.

For more information on using CWnd, see "Frame Window Topics" and "Window
Object Topics" in Visual C++ Programmer's Guide online.

#include <afxwin.h>

See Also: CFrame Wnd, CView

CWnd Class Members
Data Members

m_hWnd

Construction/Destruction

CWnd

DestroyWindow

Initialization

Create

PreCreate Window

Calc WindowRect

GetStyle

GetExStyle

Attach

Detach

PreSubclassWindow

SubclassWindow

UnsubclassWindow

FromHandle

FromHandlePermanent

DeleteTempMap

GetSafeH wnd

CreateEx

Create Control

Indicates the HWND attached to this CWnd.

Constructs a CWnd object.

Destroys the attached Windows window.

Creates and initializes the child window associated with the
CWnd object.

Called before the creation of the Windows window attached
to this CWnd object.

Called to calculate the window rectangle from the client
rectangle.

Returns the current window style.

Returns the window's extended style.

Attaches a Windows handle to a CWnd object.

Detaches a Windows handle from a CWnd object and
returns the handle.

Allows other necessary subclassing to occur before
SubclassWindow is called.

Attaches a window to a CWnd object and makes it route
messages through the CWnd's message map.

Detaches a window from a CWnd object

Returns a pointer to a CWnd object when given a handle to
a window. If a CWnd object is not attached to the handle, a
temporary CWnd object is created and attached.

Returns a pointer to a CWnd object when given a handle to
a window. If a CWnd object is not attached to the handle,
NULL is returned.

Called automatically by the CWinApp idle-time handler
and deletes any temporary CWnd objects created by
FromHandle.

Returns m_hWnd, or NULL if the this pointer is NULL.

Creates a Windows overlapped, pop-up, or child window
and attaches it to a CWnd object.

Create an OLE control that will be represented in an MFC
program by a CWnd object.

CWnd

2079

CWnd

2080

Window State Functions

IsWindowEnabled

EnableWindow

GetActive Window

SetActive Window

GetCapture

SetCapture

GetFocus

SetFocus

GetDesktop Window

GetForegroundWindow

SetForegroundWindow

GetIcon

SetIcon

Get WindowContextHelpld

SetWindowContextHelpld

ModifyStyle

ModifyStyleEx

Window Size and Position

GetWindowPlacement

SetWindowPlacement

GetWindowRgn

SetWindow Rgn

IsIconic

IsZoomed

MoveWindow

SetWindowPos

Arrangelconic Windows

BringWindowToTop

GetWindowRect

GetClientRect

Determines whether the window is enabled for mouse and
keyboard input.

Enables or disables mouse and keyboard input.

Retrieves the active window.

Activates the window.

Retrieves the CWnd that has the mouse capture.

Causes all subsequent mouse input to be sent to the CWnd.

Retrieves the CWnd that currently has the input focus.

Claims the input focus.

Retrieves the Windows desktop window.

Returns a pointer to the foreground window (the top-level
window with which the user is currently working).

Puts the thread that created the window into the foreground
and activates the window.

Retrieves the handle to an icon.

Sets the handle to a specific icon.

Retrieves the help context identifier.

Sets the help context identifier.

Modifies the current window style.

Modifies the window's extended style.

Retrieves the show state and the normal (restored),
minimized, and maximized positions of a window.

Sets the show state and the normal (restored), minimized,
and maximized positions for a window.

Retrieves a copy of the window region of a window.

Sets the region of a window.

Determines whether CWnd is minimized (iconic).

Determines whether CWnd is maximized.

Changes the position and dimensions of CWnd.

Changes the size, position, and ordering of child, pop-up,
and top-level windows.

Arranges all the minimized (iconic) child windows.

Brings CWnd to the top of a stack of overlapping windows.

Gets the screen coordinates of CWnd.

Gets the dimensions of the CWnd client area.

Window Access Functions

ChiidWindow FromPoint

FindWindow

GetNextWindow

GetOwner

SetOwner

GetTop Window

GetWindow

GetLastActivePopup

IsChiid

GetParent

GetSafeOwner

SetParent

WindowFromPoint

GetDlgltcm

GetDIgCtrlID

SetDIgCtrlID

GetDescendantWindow

GetParentFrame

SendMessageToDescendants

GetTopLevelParent

GetTopLevelOwner

GetParentOwner

GetTopLevelFrame

UpdateDialogControls

UpdateData

CenterWindow

Determines which, if any, of the child windows contains the
specified point.

Returns the handle of the window, which is identified by its
window name and window class.

Returns the next (or previous) window in the window
manager's list.

Retrieves a pointer to the owner of a CWnd.

Changes the owner of a CWnd.

Returns the first child window that belongs to the CWnd.

Returns the window with the specified relationship to this
window.

Determines which pop-up window owned by CWnd was
most recently active.

Indicates whether CWnd is a child window or other direct
descendant of the specified window.

Retrieves the parent window of CWnd (if any).

Retrieves the safe owner for the given window.

Changes the parent window.

Identifies the window that contains the given point.

Retrieves the control with the specified ID from the specified
dialog box.

If the CWnd is a child window, calling this function returns
its ID value.

Sets the window or control ID for the window (which can be
any child window, not only a control in a dialog box).

Searches all descendant windows and returns the window
with the specified ID.

Retrieves the CWnd object's parent frame window.

Sends a message to all descendant windows of the window.

Retrieves the window's top-level parent.

Retrieves the top-level window.

Returns a pointer to a child window's parent window.

Retrieves the window's top-level frame window.

Call to update the state of dialog buttons and other controls.

Initializes or retrieves data from a dialog box.

Centers a window relative to its parent.

CWnd

2081

CWnd

2082

Update/Painting Functions

BeginPaint

EndPaint

Print

PrintClient

Lock WindowUpdate

Unlock Window Update

GetDC

GetDCEx

RedrawWindow

GetWindowDC

ReleaseDC

UpdateWindow

SetRedraw

GetUpdateRect

GetUpdateRgn

Invalidate

InvalidateRect

InvalidateRgn

ValidateRect

ValidateRgn

ShowWindow

IsWindowVisible

ShowOwnedPopups

EnableScrollBar

Prepares CWnd for painting.

Marks the end of painting.

Draws the current window in the specified device context.

Draws any window in the specified device context (usually a
printer device context).

Disables or reenables drawing in the given window.

Unlocks a window that was locked with
CWnd::LockWindowUpdate.

Retrieves a display context for the client area.

Retrieves a display context for the client area, and enables
clipping while drawing.

Updates the specified rectangle or region in the client area.

Retrieves the display context for the whole window,
including the caption bar, menus, and scroll bars.

Releases client and window device contexts, freeing them for
use by other applications.

Updates the client area.

Allows changes in CWnd to be redrawn or prevents changes
from being redrawn.

Retrieves the coordinates of the smallest rectangle that
completely encloses the CWnd update region.

Retrieves the CWnd update region.

Invalidates the entire client area.

Invalidates the client area within the given rectangle by
adding that rectangle to the current update region.

Invalidates the client area within the given region by adding
that region to the current update region.

Validates the client area within the given rectangle by
removing the rectangle from the current update region.

Validates the client area within the given region by removing
the region from the current update region.

Shows or hides the window.

Determines whether the window is visible.

Shows or hides all pop-up windows owned by the window.

Enables or disables one or both arrows of a scroll bar.

Coordinate Mapping Functions

Map WindowPoints

ClientToScreen

ScreenToClient

Window Text Functions

SetWindowText

Get WindowText

Get WindowTextLength

SetFont

GetFont

Scrolling Functions

GetScrollPos

GetScrollRange

ScrollWindow

ScrollWindowEx

GetScrollInfo

GetScrollLimit

SetScrollInfo

SetScrollPos

SetScrollRange

ShowScrollBar

EnableScrollBarCtrl

GetScrollBarCtrl

RepositionBars

Drag-Drop Functions

DragAcceptFiles

Converts (maps) a set of points from the coordinate space of
the CWnd to the coordinate space of another window.

Converts the client coordinates of a given point or rectangle
on the display to screen coordinates.

Converts the screen coordinates of a given point or rectangle
on the display to client coordinates.

Sets the window text or caption title (if it has one) to the
specified text.

Returns the window text or caption title (if it has one).

Returns the length of the window's text or caption title.

Sets the current font.

Retrieves the current font.

Retrieves the current position of a scroll box.

Copies the current minimum and maximum scroll-bar
positions for the given scroll bar.

Scrolls the contents of the client area.

Scrolls the contents of the client area. Similar to
ScrollWindow, with additional features.

Retrieves the information that the SCROLLINFO structure
maintains about a scroll bar.

Retrieves the limit of the scroll bar.

Sets information about the scroll bar.

Sets the current position of a scroll box and, if specified,
redraws the scroll bar to reflect the new position.

Sets minimum and maximum position values for the given
scroll bar.

Displays or hides a scroll bar.

Enables or disables a sibling scroll-bar control.

Returns a sibling scroll-bar control.

Repositions control bars in the client area.

Indicates the window will accept dragged files.

CWnd

2083

CWnd

2084

Caret Functions

CreateCaret

CreateSoIid Caret

CreateGrayCaret

GetCaretPos

SetCaretPos

HideCaret

ShowCaret

Dialog-Box Item Functions

CheckDIgButton

CheckRadioButton

GetCheckedRadioButton

DIgDirList

DIgDirListComboBox

DIgDirSelect

DIgDirSelectComboBox

GetDIgItemlnt

GetDIgltemText

GetNextDIgGroupltem

GetNextDIgTabltem

IsDIgButtonChecked

IsDialogMessage

SendDIgltemMessage

Creates a new shape for the system caret and gets ownership
of the caret.

Creates a solid block for the system caret and gets ownership
of the caret.

Creates a gray block for the system caret and gets ownership
of the caret.

Retrieves the client coordinates of the caret's current
position.

Moves the caret to a specified position.

Hides the caret by removing it from the display screen.

Shows the caret on the display at the caret's current position.
Once shown, the caret begins flashing automatically.

Places a check mark next to or removes a check mark from a
button control.

Checks the specified radio button and removes the check
mark from all other radio buttons in the specified group of
buttons.

Returns the ID of the currently checked radio button in a
group of buttons.

Fills a list box with a file or directory listing.

Fills the list box of a combo box with a file or directory
listing.

Retrieves the current selection from a list box.

Retrieves the current selection from the list box of a combo
box.

Translates the text of a control in the given dialog box to an
integer value.

Retrieves the caption or text associated with a control.

Searches for the next (or previous) control within a group of
controls.

Retrieves the first control with the WS_TABSTOP style that
follows (or precedes) the specified control.

Determines whether a button control is checked.

Determines whether the given message is intended for the
modeless dialog box and, if so, processes it.

Sends a message to the specified control.

Dialog-Box Item Functions (continued)

SetDIgltemlnt

SetDIgltemText

SubclassDIgltem

ExecuteDIglnit

RunModalLoop

ContinueModal

EndModalLoop

Data-Binding Functions

BindDefaultProperty

BindProperty

GetDSCCursor

Menu Functions

GetMenu

SetMenu

DrawMenuBar

GetSystemMenu

HiliteMenultem

ToolTip Functions

EnableToolTips

CancelToolTips

FilterToolTipMessage

OnToolHitTest

Sets the text of a control to the string that represents an
integer value.

Sets the caption or text of a control in the specified dialog
box.

Attaches a Windows control to a CWnd object and makes it
route messages through the CWnd's message map.

Initiates a dialog resource.

Retrieves, translates, or dispatches messages for a window
that is in modal status.

Continues a window's modal status.

Ends a window's modal status.

Binds the calling object's default simple bound property, as
marked in the type library, to a cursor associated with a
data-source control.

Binds a cursour-bound property on a data-bound control to a
data-source control and registers that relationship with the
MFC binding manager.

Retrieves a pointer to the underlying cursor that is defined by
the DataSource, UserName, Password, and SQL properties
of a data-source control.

Retrieves a pointer to the specified menu.

Sets the menu to the specified menu.

Redraws the menu bar.

Allows the application to access the Control menu for
copying and modification.

Highlights or removes the highlighting from a top-level
(menu-bar) menu item.

Enables the tooHip control.

Disables the tooltip control.

Retrieves the title or text associated with a control in a dialog
box.

Detemines whether a point is in the bounding rectangle of
the specified tool and retrieves information about the tool.

CWnd

2085

CWnd

2086

Timer Functions

SetTimer

KiIlTimer

Alert Functions

Flash Window

MessageBox

Window Message Functions

GetCurrentMessage

Default

PreTranslateMessage

SendMessage

PostMessage

SendNotifyMessage

Clipboard Functions

ChangeCIipboardChain

SetCIipboardViewer

Open Clipboard

GetCIipboardOwner

GetOpenCIipboardWindow

GetCIipboardViewer

Installs a system timer that sends a WM_TIMER message
when triggered.

Kills a system timer.

Flashes the window once.

Creates and displays a window that contains an
application-supplied message and caption.

Returns a pointer to the message this window is currently
processing. Should only be called when in an OnMessage
message-handler member function.

Calls the default window procedure, which provides default
processing for any window messages that an application
does not process.

U sed by CWinApp to filter window messages before they
are dispatched to the TranslateMessage and
DispatchMessage Windows functions.

Sends a message to the CWnd object and does not return
until it has processed the message.

Places a message in the application queue, then returns
without waiting for the window to process the message.

Sends the specified message to the window and returns as
soon as possible, depending on whether the calling thread
created the window.

Removes CWnd from the chain of Clipboard viewers.

Adds CWnd to the chain of windows that are notified
whenever the contents of the Clipboard are changed.

Opens the Clipboard. Other applications will not be able to
modify the Clipboard until the Windows CloseCIipboard
function is called.

Retrieves a pointer to the current owner of the Clipboard.

Retrieves a pointer to the window that currently has the
Clipboard open.

Retrieves a pointer to the first window in the chain of
Clipboard viewers.

OLE Controls

SetProperty

OnAmbientProperty

GetControlUnknown

GetProperty

InvokeHelper

Overridables

WindowProc

DefWindowProc

PostNcDestroy

OnNotify

OnChildN otify

DoDataExchange

Initialization Message Handlers

OnlnitMenu

OnlnitMenuPopup

System Message Handlers

OnSysChar

OnSysCommand

OnSysDeadChar

OnSysKeyDown

OnSysKeyUp

OnCompacting

Sets an OLE control property.

Implement ambient property values.

Retrieves a pointer to an unknown OLE control.

Retrieves an OLE control property.

Invokes an OLE control method or property.

Provides a window procedure for a CWnd. The default
dispatches messages through the message map.

Calls the default window procedure, which provides default
processing for any window messages that an application
does not process.

This virtual function is called by the default OnNcDestroy
function after the window has been destroyed.

Called by the framework to inform a parent window an event
has occurred in one of its controls or that the control needs
information.

Called by a parent window to give a notifying control a
chance to respond to a control notification.

For dialog data exchange and validation. Called by
UpdateData.

Called when a menu is about to become active.

Called when a pop-up menu is about to become active.

Called when a keystroke translates to a system character.

Called when the user selects a command from the Control
menu, or when the user selects the Maximize or Minimize
button.

Called when a keystroke translates to a system dead
character (such as accent characters).

Called when the user holds down the ALT key and then
presses another key.

Called when the user releases a key that was pressed while
the AL T key was held down.

Called when Windows detects that system memory is low.

(continued)

CWnd

2087

CWnd

2088

System Message Handlers (continued)

OnDevModeChange

OnFontChange

OnPaletteIsChanging

OnPaletteChanged

OnSysColorChange

On WindowPosChanging

On WindowPosChanged

OnDropFiles

OnSpoolerStatus

OnTimeChange

On WinIniChange

General Message Handlers

OnCommand

OnActivate

OnActivateApp

OnCancelMode

On ChiidActivate

On Close

OnCreate

OnCtlColor

OnDestroy

Called for all top-level windows when the user changes
device-mode settings.

Called when the pool of font resources changes.

Informs other applications when an application is going to
realize its logical palette.

Called to allow windows that use a color palette to realize
their logical palettes and update their client areas.

Called for all top-level windows when a change is made in
the system color setting.

Called when the size, position, or Z-order is about to change
as a result of a call to SetWindowPos or another
window-management function.

Called when the size, position, or Z-order has changed as a
result of a call to SetWindowPos or another
window-management function.

Called when the user releases the left mouse button over a
window that has registered itself as the recipient of dropped
files.

Called from Print Manager whenever a job is added to or
removed from the Print Manager queue.

Called for all top-level windows after the system time
changes.

Called for all top-level windows after the Windows
initialization file, WIN.lNI, is changed.

Called when the user selects a command.

Called when CWnd is being activated or deactivated.

Called when the application is about to be activated or
deactivated.

Called to allow CWnd to cancel any internal modes, such as
mouse capture.

Called for multiple document interface (MDI) child windows
whenever the size or position of CWnd changes or CWnd is
activated.

Called as a signal that CWnd should be closed.

Called as a part of window creation.

Called if CWnd is the parent of a control when the control is
about to be drawn.

Called when CWnd is being destroyed.

General Message Handlers (continued)

OnEnable

OnEndSession

OnEnterldle

OnEraseBkgnd

OnGetMinMaxlnfo

OnIconEraseBkgnd

OnKiIIFocus

OnMenuChar

OnMenuSelect

OnMove

OnMoving

OnDeviceChange

OnStyleChanged

OnStyleChanging

OnPaint

OnParentNotify

OnQueryDraglcon

OnQueryEndSession

OnQueryNewPalette

OnQueryOpen

OnSetFocus

OnShowWindow

OnSize

OnSizing

Called when CWnd is enabled or disabled.

Called when the session is ending.

Called to inform an application's main window procedure
that a modal dialog box or a menu is entering an idle state.

Called when the window background needs erasing.

Called whenever Windows needs to know the maximized
position or dimensions, or the minimum or maximum
tracking size.

Called when CWnd is minimized (iconic) and the
background of the icon must be filled before painting the
icon.

Called immediately before CWnd loses the input focus.

Called when the user presses a menu mnemonic character
that doesn't match any of the predefined mnemonics in the
current menu.

Called when the user selects a menu item.

Called after the position of the CWnd has been changed.

Indicates that a user is moving a CWnd object.

Notifies an application or device driver of a change to the
hardware configuration of a device or the computer.

Indicates that the ::SetWindowLong Windows function has
changed one or more of the window's styles.

Indicates that the ::SetWindowLong Windows function is
about to change one or more of the window's styles.

Called to repaint a portion of the window.

Called when a child window is created or destroyed, or when
the user clicks a mouse button while the cursor is over the
child window.

Called when a minimized (iconic) CWnd is about to be
dragged by the user.

Called when the user chooses to end the Windows session.

Informs CWnd that it is about to receive the input focus.

Called when CWnd is an icon and the user requests that the
icon be opened.

Called after CWnd gains the input focus.

Called when CWnd is to be hidden or shown.

Called after the size of CWnd has changed.

Indicates that the user is resizing the rectangle.

(continued)

CWnd

2089

CWnd

2090

General Message Handlers (continued)

OnStyleChanged

OnStyleChanging

Control Message Handlers

OnCharToltem

OnCompareltem

OnDeleteltem

OnDrawltem

OnDSCNotify

OnGetDIgCode

OnMeasureltem

SendChiidNotifyLastMsg

ReflectChiIdN otify

OnWndMsg

ReflectLastMsg

On VKeyToltem

Input Message Handlers

On Char

OnDeadChar

OnHScroII

OnKeyDown

OnKeyUp

Indicates that one or more of the window's styles has
changed.

Indicates that one or more of the window's styles is about to
change.

Called by a child list box with the
LBS_ WANTKEYBOARDINPUT style in response to a
WM_ CHAR message.

Called to determine the relative position of a new item in a
child sorted owner-draw combo box or list box.

Called when an owner-draw child list box or combo box is
destroyed or when items are removed from the control.

Called when a visual aspect of an owner-draw child button
control, combo-box control, list-box control, or menu needs
to be drawn.

Called in response to an event that a data-source control fires
when a control to which the data-source control is bound
modifies or attempts to modify the underlying cursor.

Called for a control so the control can process arrow-key and
TAB-key input itself.

Called for an owner-draw child combo box, list box, or menu
item when the control is created. CWnd informs Windows
of the dimensions of the control.

Provides a notification message to a child window, from the
parent window, so the child window can handle a task.

Helper function which reflects a message to its source.

Indicates if a windows message was handled.

Reflects the last message to the child window.

Called by a list box owned by CWnd in response to a
WM_KEYDOWN message.

Called when a keystroke translates to a non system character.

Called when a keystroke translates to a nonsystem dead
character (such as accent characters).

Called when the user clicks the horizontal scroll bar of
CWnd.

Called when a nonsystem key is pressed.

Called when a nonsystem key is released.

Input Message Handlers (continued)

OnLButtonDblClk

OnLButtonDown

OnLButtonUp

OnMButtonDblClk

OnMButtonDown

OnMButtonUp

OnMouseActivate

OnMouseMove

OnMouse Wheel

OnRegisteredMouse Wheel

OnRButtonDblClk

OnRButtonDown

OnRButtonUp

OnSet Cursor

OnTimer

OnVScroll

OnCaptureChanged

Nonclient-Area Message Handlers

OnNcActivate

OnNcCalcSize

OnNcCreate

OnNcDestroy

OnNcHitTest

OnNcLButtonDblClk

OnNcLButtonDown

Called when the user double-clicks the left mouse button.

Called when the user presses the left mouse button.

Called when the user releases the left mouse button.

Called when the user double-clicks the middle mouse button.

Called when the user presses the middle mouse button.

Called when the user releases the middle mouse button.

Called when the cursor is in an inactive window and the user
presses a mouse button.

Called when the mouse cursor moves.

Called when a user rotates the mouse wheel. Uses
Windows NT 4.0 message handling.

Called when a user rotates the mouse wheel. Uses
Windows 95 and Windows NT 3.51 message-handling.

Called when the user double-clicks the right mouse button.

Called when the user presses the right mouse button.

Called when the user releases the right mouse button.

Called if mouse input is not captured and the mouse causes
cursor movement within a window.

Called after each interval specified in SetTimer.

Called when the user clicks the window's vertical scroll bar.

Sends a message to the window that is losing the mouse
capture.

Called when the nonclient area needs to be changed to
indicate an active or inactive state.

Called when the size and position of the client area need to
be calculated.

Called prior to OnCreate when the nonclient area is being
created.

Called when the nonclient area is being destroyed.

Called by Windows every time the mouse is moved if
CWnd contains the cursor or has captured mouse input with
SetCapture.

Called when the user double-clicks the left mouse button
while the cursor is within a nonclient area of CWnd.

Called when the user presses the left mouse button while the
cursor is within a nonclient area of CWnd.

(continued)

CWnd

2091

CWnd

2092

Nonclient·Area Message Handlers (continued)

OnNcLButtonUp

OnNcMButtonDblClk

OnNcMButtonDown

OnNcMButtonUp

OnNcMouseMove

OnNcPaint

OnNcRButtonDblClk

OnNcRButtonDown

OnNcRButtonUp

MDI Message Handlers

OnMDIActivate

Clipboard Message Handlers

OnAskCbFormatName

OnChangeCbChain

OnDestroyClipboard

OnDrawClipboard

OnHScrollClipboard

OnPaintClipboard

OnRenderAIIFormats

OnRenderFormat

Called when the user releases the left mouse button while the
cursor is within a nonclient area of CWnd.

Called when the user double-clicks the middle mouse button
while the cursor is within a nonclient area of CWnd.

Called when the user presses the middle mouse button while
the cursor is within a nonclient area of CWnd.

Called when the user releases the middle mouse button while
the cursor is within a nonclient area of CWnd.

Called when the cursor is moved within a nonclient area of
CWnd.

Called when the nonclient area needs painting.

Called when the user double-clicks the right mouse button
while the cursor is within a nonclient area of CWnd.

Called when the user presses the right mouse button while
the cursor is within a nonclient area of CWnd.

Called when the user releases the right mouse button while
the cursor is within a nonclient area of CWnd.

Called when an MDI child window is activated or
deactivated.

Called by a Clipboard viewer application when a Clipboard
owner will display the Clipboard contents.

Notifies that a specified window is being removed from the
chain.

Called when the Clipboard is emptied through a call to the
Windows EmptyClipboard function.

Called when the contents of the change.

Called when a Clipboard owner should scroll the Clipboard
image, invalidate the appropriate section, and update the
scroll-bar values.

Called when the client area of the Clipboard viewer needs
repainting.

Called when the owner application is being destroyed and
needs to render all its formats.

Called for the Clipboard owner when a particular format
with delayed rendering needs to be rendered.

Clipboard Message Handlers (continued)

OnSizeClipboard

On VScrollClipboard

Menu Loop Notification

OnEnterMenuLoop

OnExitMenuLoop

Called when the size of the client area of the
Clipboard-viewer window has changed.

Called when the owner should scroll the Clipboard image,
invalidate the appropriate section, and update the scroll-bar
values.

Called when a menu modal loop has been entered.

Called when a menu modal loop has been exited.

Member Functions
cw nd: : ArrangeIconic Windows

UINT ArrangeIconicWindows();

Return Value

Remarks

The height of one row of icons if the function is successful; otherwise o.

Arranges all the minimized (iconic) child windows.

This member function also arranges icons on the desktop window, which covers the
entire screen. The GetDesktop Window member function retrieves a pointer to the
desktop window object.

To arrange iconic MDI child windows in an MDI client window, call
CMDIFrame Wnd: :MDIIconArrange.

See Also: CWnd::GetDesktopWindow, CMDIFrameWnd::MDIIconArrange,
: :ArrangeIconic Windows

CWnd::Attach
BOOL Attach(HWND h WndNew);

Return Value
Nonzero if successful; otherwise O.

Parameters
h WndNew Specifies a handle to a Windows window.

Remarks
Attaches a Windows window to a CWnd object.

See Also: CWnd::Detach, CWnd::m_hWnd, CWnd::SubclassWindow

CWnd::Attach

2093

CWnd::BeginPaint

CWnd::BeginPaint
CDC* BeginPaint(LPPAINTSTRUCT IpPaint);

Return Value
Identifies the device context for CWnd. The pointer may be temporary and should not
be stored beyond the scope of EndPaint.

Parameters

Remarks

IpPaint Points to the PAINTSTRUCT structure that is to receive painting
information.

Prepares CWnd for painting and fills a PAINTSTRUCT data structure with
information about the painting.

The paint structure contains a RECT data structure that has the smallest rectangle
that completely encloses the update region and a flag that specifies whether the
background has been erased.

The update region is set by the Invalidate, InvalidateRect, or InvalidateRgn
member functions and by the system after it sizes, moves, creates, scrolls, or performs
any other operation that affects the client area. If the update region is marked for
erasing, BeginPaint sends an WM_ONERASEBKGND message.

Do not call the BeginPaint member function except in response to a WM_PAINT
message. Each call to the BeginPaint member function must have a matching call
to the EndPaint member function. If the caret is in the area to be painted, the
BeginPaint member function automatically hides the caret to prevent it from being
erased.

See Also: CWnd: :EndPaint, CWnd: :Invalidate, CWnd: : InvalidateRgn,
: :BeginPaint, CPaintDC

CWnd: : BindDefaultProperty
void BindDefaultProperty(DISPID dwDispID, VARTYPE vtProp,

... LPCTSTR szFieldName, CWnd * pDSCWnd);

Parameters

2094

dwDispID Specifies the DISPID of a property on a data-bound control that is to be
bound to a data-source control.

vtProp Specifies the type of the property to be bound % for example, VT _BSTR,
VT_VARIANT, and so on.

szFieldName Specifies the name of the column, in the cursor provided by the
data-source control, to which the property will be bound.

Remarks

pDSCWnd Points to the window that hosts the data-source control to which the
property will be bound. Call GetDIgUem with the resource ID of the DCS's host
window to retrieve this pointer.

Binds the calling object's default simple bound property (such as an edit control), as
marked in the type library, to the underlying cursor that is defined by the DataSource,
UserName, Password, and SQL properties of the data-source control. The CWnd
object on which you call this function must be a data-bound control.
BindDefaultProperty might be used in the following context:

BOOl CMyDlg::OnInitDialog()
{

CWnd* pDSC = GetDlgItem(IDC_REMOTEDATACONTROl);
CWnd* plist = GetDlgItem(IDC_DBlISTBOX);
plist->BindDefaultProperty(0x2,

VT_BSTR, _T("CourseID"), pDSC);
CWnd* pEdit = GetDlgItem(IDC_MASKEDBOX);
pEdit->BindDefaultProperty(0x16.

VT_BSTR, _T("InstuctorID"), pDSC);

return TRUE;

See Also: CWnd::GetDSCCursor, CWnd::BindProperty

CWnd: : BindProperty
void BindProperty(DISPID dwDispID, CWnd * pWndDSC);

Parameters

Remarks

dwDispID Specifies the DISPID of a property on a data-bound control that is to be
bound to a data-source control.

p WndDSC Points to the window that hosts the data-source control to which the
property will be bound. Call GetDIgUem with the resource ID of the DCS's host
window to retrieve this pointer.

Binds a cursor-bound property on a data-bound control (such as a grid control) to
a data-source control and registers that relationship with the MFC binding manager.
The CWnd object on which you call this function must be a data-bound control.
BindProperty might be used in the following context:

BOOl CMyDlg::OnInitDialog()
{

CWnd* pDSC = GetDlgItem(IDC_REMOTEDATACONTROl);
CWnd* plist= GetDlgItem(IDC_DBlISTBOX);
plist.BindProperty(0x9, pDSC);

CWnd::BindProperty

2095

CWnd::BringWindowToTop

return TRUE;

See Also: CWnd::GetDSCCursor, CWnd::BindDefaultProperty

CWnd: : BringWindowToTop

Remarks

void BringWindowToTop();

Brings CWnd to the top of a stack of overlapping windows. In addition,
BringWindowToTop activates pop-up, top-level, and MDI child windows. The
BringWindowToTop member function should be used to uncover any window that
is partially or completely obscured by any overlapping windows.

Calling this function is similar to calling the SetWindowPos function to change
a window's position in the Z-order. The BringWindowToTop function does not
change the window style to make it a top-level window of the desktop.

See Also: ::BringWindowToTop

CW nd: : Calc Window Rect
virtual void CalcWindowRect(LPRECT lpClientRect,

... UINT nAdjustType = adjustBorder);

Parameters

Remarks

2096

lpClientRect Points to a RECT structure or CRect object that contains the resultant
value of the window rectangle.

nAdjustType An enumerated type used for in-place editing. It can have the following
values: CWnd::adjustBorder = 0, which means that scroll-bar sizes are ignored in
calculation; and CWnd: :adjustOutside = 1, which means that they are added into
the final measurements of the rectangle.

Call this member function to compute the required size of the window rectangle based
on the desired client-rectangle size. The resulting window rectangle (contained in
lpClientRect) can then be passed to the Create member function to create a window
whose client area is the desired size.

Called by the framework to size windows prior to creation.

A client rectangle is the smallest rectangle that completely encloses a client area. A
window rectangle is the smallest rectangle that completely encloses the window.

See Also: ::AdjustWindowRectEx

CW nd: :ChangeClipboardChain

CWnd: :CancelToolTips
static void PASCAL CancelToolTips(BOOL hKeys = FALSE);

Parameters

Remarks

hKeys TRUE to cancel tooltips when a key is pressed and set the status bar text to
the default; otherwise FALSE.

Call this member function to remove a tooltip from the screen if a tooltip is currently
displayed.

Note Using this member function has no effect on tooltips managed by your code. It only
affects the tooltip control managed by CWnd::EnableTooITips.

See Also: EnableToolTips, TTM_ACTIVATE

CWnd: :CenterWindow
void CenterWindow(CWnd* pAlternateOwner = NULL);

Parameters

Remarks

pAlternateOwner Pointer to an alternate window relative to which it will be centered
(other than the parent window).

Centers a window relative to its parent. Usually called from CDialog::OnlnitDialog
to center dialog boxes relative to the main window of the application. By default, the
function centers child windows relative to their parent window, and pop-up windows
relative to their owner. If the pop-up window is not owned, it is centered relative to
the screen. To center a window relative to a specific window which is not the owner
or parent, the pAlternateOwner parameter may be set to a valid window. To force
centering relative to the screen, pass the value returned by
CWnd: : GetDesktop Window as pAlternateOwner.

See Also: CWnd::GetDesktopWindow, CDialog::OnlnitDialog

CW nd: : ChangeClipboardChain
BOOL ChangeClipboardChain(HWND h WndNext);

Return Value
Nonzero if successful; otherwise O.

Parameters
h WndNext Identifies the window that follows CWnd in the Clipboard-viewer chain.

2097

CWnd::CheckDIgButton

Remarks
Removes CWnd from the chain of Clipboard viewers and makes the window
specified by hWndNext the descendant of the CWnd ancestor in the chain.

See Also: CWnd::SetClipboardViewer, ::ChangeClipboardChain

CWnd: :CheckDIgButton
void CheckDIgButton(int nIDButton, UINT nCheck);

Parameters

Remarks

nIDButton Specifies the button to be modified.

nCheck Specifies the action to take. If nCheck is nonzero, the CheckDIgButton
member function places a check mark next to the button; if 0, the check mark is
removed. For three-state buttons, if nCheck is 2, the button state is indeterminate.

Selects (places a check mark next to) or clears (removes a check mark from) a button,
or it changes the state of a three-state button.

The CheckDIgButton function sends a BM_SETCHECK message to the specified
button.

See Also: CWnd::IsDlgButtonChecked, CButton::SetCheck, ::CheckDlgButton

CW nd: : CheckRadioB utton
void CheckRadioButton(int nIDFirstButton, int nIDLastButton, int nIDCheckButton);

Parameters

Remarks

2098

nIDFirstButton Specifies the integer identifier of the first radio button in the group.

nIDLastButton Specifies the integer identifier of the last radio button in the group.

nIDCheckButton Specifies the integer identifier of the radio button to be checked.

Selects (adds a check mark to) a given radio button in a group and clears (removes a
check mark from) all other radio buttons in the group.

The CheckRadioButton function sends a BM_SETCHECK message to the specified
radio button.

See Also: CWnd: : GetCheckedRadioButton, CButton: :SetCheck,
: :CheckRadioButton

CWnd: :ClientToScreen

CW nd: : ChildWindow FromPoint
CWnd* ChildWindowFromPoint(POINT point) const;
CWnd* ChildWindowFromPoint(POINT point, UINT nFlags) const;

Return Value
Identifies the child window that contains the point. It is NULL if the given point lies
outside of the client area. If the point is within the client area but is not contained
within any child window, CWnd is returned.

This member function will return a hidden or disabled child window that contains the
specified point.

More than one window may contain the given point. However, this function returns
only the CWnd* of the first window encountered that contains the point.

The CWnd* that is returned may be temporary and should not be stored for later use.

Parameters

Remarks

point Specifies the client coordinates of the point to be tested.

nflags Specifies which child windows to skip. This parameter can be a combination
of the following values:

Value

CWP_ALL

CWP _SKIPINVISIBLE

CWP _SKIPDISABLED

CWP _SKIPTRANSPARENT

Meaning

Do not skip any child windows

Skip invisible child windows

Skip disabled child windows

Skip transparent child windows

Determines which, if any, of the child windows belonging to CWnd contains the
specified point.

See Also: CWnd::WindowFromPoint, ::ChildWindowFromPoint

CWnd: : ClientToScreen
void ClientToScreen(LPPOINT lpPoint) const;
void ClientToScreen(LPRECT lpReet) const;

Parameters
lpPoint Points to a POINT structure or CPoint object that contains the client

coordinates to be converted.

lpReet Points to a RECT structure or CRect object that contains the client
coordinates to be converted.

2099

CWnd: :ContinueModal

Remarks
Converts the client coordinates of a given point or rectangle on the display to screen
coordinates. The ClientToScreen member function uses the client coordinates in the
POINT or RECT structure or the CPoint or CRect object pointed to by IpPoint or
IpReet to compute new screen coordinates; it then replaces the coordinates in the
structure with the new coordinates. The new screen coordinates are relative to the
upper-left corner of the system display.

The ClientToScreen member function assumes that the given point or rectangle is in
client coordinates.

See Also: CWnd::ScreenToClient, ::ClientToScreen

CW nd: : ContinueModal
BOOL ContinueModal();

Return Value

Remarks

Nonzero if modal loop is to be continued; 0 when EndModalLoop is called.

This member function is called by RunModalLoop to determine when the modal
state should be exited. By default, it returns non-zero until EndModalLoop is called.

See Also: RunModalLoop, EndModalLoop

CWnd::Create
virtual BOOL Create(LPCTSTR IpszClassName, LPCTSTR IpszWindowName,

-. DWORD dwStyle, const RECT& reet, CWnd* pParentWnd, UINT nID,
-. CCreateContext* pContext = NULL);

Return Value
Nonzero if successful; otherwise O.

Parameters

2100

IpszClassName Points to a null-terminated character string that names the Windows
class (a WNDCLASS structure). The class name can be any name registered with
the global AfxRegisterWndClass function or any of the predefined control-class
names. If NULL, uses the default CWnd attributes.

IpszWindowName Points to a null-terminated character string that contains the
window name.

dwStyle Specifies the window style attributes. WS_POPUP cannot be used. If you
wish to create a pop-up window, use CWnd::CreateEx instead.

reet The size and position of the window, in client coordinates of pParentWnd.

CWnd: :CreateControl

Remarks

pParentWnd The parent window.

nID The ID of the child window.

pContext The create context of the window.

Creates a Windows child window and attaches it to the CWnd object.

You construct a child window in two steps. First, call the constructor, which
constructs the CWnd object. Then call Create, which creates the Windows child
window and attaches it to CWnd. Create initializes the window's class name and
window name and registers values for its style, parent, and ID.

See Also: CWnd::CWnd, CWnd::CreateEx

CWnd: :CreateCaret
void CreateCaret(CBitmap* pBitmap);

Parameters

Remarks

pBitmap Identifies the bitmap that defines the caret shape.

Creates a new shape for the system caret and claims ownership of the caret.

The bitmap must have previously been created by the CBitmap::CreateBitmap
member function, the CreateDIBitmap Windows function, or the
CBitmap: :LoadBitmap member function.

CreateCaret automatically destroys the previous caret shape, if any, regardless of
which window owns the caret. Once created, the caret is initially hidden. To show the
caret, the ShowCaret member function must be called.

The system caret is a shared resource. CWnd should create a caret only when it has
the input focus or is active. It should destroy the caret before it loses the input focus or
becomes inactive.

See Also: CBitmap::CreateBitmap, ::CreateDIBitmap, ::DestroyCaret,
CBitmap: :LoadBitmap, CWnd: :ShowCaret, : :CreateCaret

CW nd: : CreateControl
BOOL CWnd::CreateControl(LPCTSTR lpszClass, LPCTSTR lpszWindowName,

'+ DWORD dwStyle, const RECT& reet, CWnd* pParentWnd, UINT nID,
'+ CFile* pPersist = NULL, BOOL bStorage = FALSE, BSTR bstrLieKey = NULL);

BOOL CWnd::CreateControl(REFCLSID clsid, LPCTSTR lpszWindowName,
'+ DWORD dwStyle, const RECT& reet, CWnd* pParentWnd, UINT nID,
'+ CFile* pPersist = NULL, BOOL bStorage = FALSE, BSTR bstrLieKey = NULL);

2101

CWnd::CreateControl

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

2102

lpszClass This string may contain the OLE "short name" (ProgID) for the class,
e.g., "CIRC3.Circ3Ctrl.l". The name needs to match the same name registered
by the control. Alternatively, the string may contain the string form of a CLSID,
contained in braces, e.g., "{9DBAFCCF-592F-IOIB-85CE-00608CEC297B }".
In either case, CreateControl converts the string to the corresponding class ID.

lpsz WindowName A pointer to the text to be displayed in the control. Sets the value
of the control's Caption or Text property (if any). If NULL, the control's Caption
or Text property is not changed.

dwStyle Windows styles. The available styles are listed under Remarks.

reet Specifies the control's size and position. It can be either a CRect object or a
RECT structure.

pParentWnd Specifies the control's parent window. It must not be NULL.

nID Specifies the control's ID.

pPersist A pointer to a CFile containing the persistent state for the control. The
default value is NULL, indicating that the control initializes itself without restoring
its state from any persistent storage. If not NULL, it should be a pointer to a
CFile-derived object which contains the control's persistent data, in the form
of either a stream or a storage. This data could have been saved in a previous
activation of the client. The CFile can contain other data, but must have its
read-write pointer set to the first byte of persistent data at the time of the call to
CreateControl.

bStorage Indicates whether the data in pPersist should be interpreted as IStorage or
IStream data. If the data in pPersist is a storage, bStorage should be TRUE. If the
data in pPersist is a stream, bStorage should be FALSE. The default value is
FALSE.

bstrLieKey Optional license key data. This data is needed only for creating controls
that require a run-time license key. If the control supports licensing, you must
provide a license key for the creation of the control to succeed. The default value
is NULL.

clsid The unique class ID of the control.

Use this member function to create an OLE control that will be represented in the
MFC program by a CWnd object. CreateControl is a direct analog of the
CWnd::Create function, which creates the window for a CWnd. Create Control
creates an OLE control instead of an ordinary window.

Only a subset of the Windows dwStyle flags are supported for CreateControl:

• WS_ VISIBLE Creates a window that is initially visible. Required if you want the
control to be visible immediately, like ordinary windows.

• WS_DISABLED Creates a window that is initially disabled. A disabled window
cannot receive input from the user. Can be set if the control has an Enabled
property.

• WS_BORDER Creates a window with a thin-line border. Can be set if control
has a BorderStyle property.

• WS_GROUP Specifies the first control of a group of controls. The user can
change the keyboard focus from one control in the group to the next by using the
direction keys. All controls defined with the WS_GROUP style after the first
control belong to the same group. The next control with the WS_GROUP style
ends the group and starts the next group.

• WS_TABSTOP Specifies a control that can receive the keyboard focus when the
user presses the TAB key. Pressing the TAB key changes the keyboard focus to the
next control of the WS_TABSTOP style.

See Also: In Visual C++ Programmer's Guide online: "ActiveX Control Topics"

CW nd: : CreateEx
BOOL CreateEx(DWORD dwExStyle, LPCTSTR IpszClassName,

'+ LPCTSTR IpszWindowName, DWORD dwStyle, int x, int y,
'+ int nWidth, int nHeight, HWND hwndParent, HMENU nIDorHMenu,
'+ LPVOID IpParam = NULL);

BOOL CreateEx(DWORD dwExStyle, LPCTSTR IpszClassName,

Return Value

'+ LPCTSTR IpszWindowName, DWORD dwStyle, const RECT& reet,
'+ CWnd* pParentWnd, UINT nID, LPVOID IpParam = NULL);

Nonzero if successful; otherwise O.

Parameters
dwExStyle Specifies the extended style of the CWnd being created. Apply any of the

extended window styles to the window.

IpszClassName Points to a null-terminated character string that names the Windows
class (a WNDCLASS structure). The class name can be any name registered with
the global AfxRegisterWndClass function or any of the predefined control-class
names. It must not be NULL.

IpszWindowName Points to a null-terminated character string that contains the
window name.

dwStyle Specifies the window style attributes. See "Window Styles" and
CWnd::Create for a description of the possible values.

CWnd::CreateEx

2103

CWnd::CreateEx

Remarks

2104

x Specifies the initial x-position of the CWnd window.

y Specifies the initial top position of the CWnd window.

n Width Specifies the width (in device units) of the CWnd window.

nHeight Specifies the height (in device units) of the CWnd window.

hwndParent Identifies the parent or owner window of the CWnd window being
created. Use NULL for top-level windows.

nIDorHMenu Identifies a menu or a child-window identifier. The meaning depends
on the style of the window.

IpParam Points to the data referenced by the IpCreateParams field of the
CREATESTRUCT structure.

reet The size and position of the window, in client coordinates of pParentWnd.

pParentWnd The parent window.

nID The ID of the child window.

Creates an overlapped, pop-up, or child window with the extended style specified in
dwExStyle.

The CreateEx parameters specify the WNDCLASS, window title, window style, and
(optionally) initial position and size of the window. CreateEx also specifies the
window's parent (if any) and ID.

When CreateEx executes, Windows sends the WM_GETMINMAXINFO,
WM_NCCREATE, WM_NCCALCSIZE, and WM_CREATE messages to the
window.

To extend the default message handling, derive a class from CWnd, add a
message map to the new class, and provide member functions for the above
messages. Override OnCreate, for example, to perform needed initialization
for a new class.

Override further OnMessage message handlers to add further functionality to your
derived class.

If the WS_ VISIBLE style is given, Windows sends the window all the messages
required to activate and show the window. If the window style specifies a title
bar, the window title pointed to by the IpszWindowName parameter is displayed
in the title bar.

The dwStyle parameter can be any combination of window styles.

See Also: CWnd::Create, ::CreateWindowEx

CWnd::CreateSolidCaret

CW nd: : CreateGrayCaret
void CreateGrayCaret(int n Width, int nHeight);

Parameters

Remarks

n Width Specifies the width of the caret (in logical units). If this parameter is 0, the
width is set to the system-defined window-border width.

nHeight Specifies the height of the caret (in logical units). If this parameter is 0, the
height is set to the system-defined window-border height.

Creates a gray rectangle for the system caret and claims ownership of the caret. The
caret shape can be a line or a block.

The parameters n Width and nHeight specify the caret's width and height (in logical
units); the exact width and height (in pixels) depend on the mapping mode.

The system's window-border width or height can be retrieved by the
GetSystemMetrics Windows function with the SM_CXBORDER and
SM_CYBORDER indexes. Using the window-border width or height ensures that the
caret will be visible on a high-resolution display.

The CreateGrayCaret member function automatically destroys the previous caret
shape, if any, regardless of which window owns the caret. Once created, the caret is
initially hidden. To show the caret, the ShowCaret member function must be called.

The system caret is a shared resource. CWnd should create a caret only when it has
the input focus or is active. It should destroy the caret before it loses the input focus or
becomes inactive.

See Also: ::DestroyCaret, ::GetSystemMetrics, CWnd::ShowCaret,
:: CreateCaret

CWnd: :CreateSolidCaret
void CreateSolidCaret(int n Width, int nHeight);

Parameters

Remarks

n Width Specifies the width of the caret (in logical units). If this parameter is 0, the
width is set to the system-defined window-border width.

nHeight Specifies the height of the caret (in logical units). If this parameter is 0, the
height is set to the system-defined window-border height.

Creates a solid rectangle for the system caret and claims ownership of the caret. The
caret shape can be a line or block.

2105

CWnd::CWnd

The parameters n Width and nHeight specify the caret's width and height (in
logical units); the exact width and height (in pixels) depend on the mapping

mode.

The system's window-border width or height can be retrieved by the
GetSystemMetrics Windows function with the SM_CXBORDER and
SM_ CYBORDER indexes. Using the window-border width or height
ensures that the caret will be visible on a high-resolution display.

The CreateSolidCaret member function automatically destroys the previous
caret shape, if any, regardless of which window owns the caret. Once created,
the caret is initially hidden. To show the caret, the ShowCaret member function
must be called.

The system caret is a shared resource. CWnd should create a caret only when
it has the input focus or is active. It should destroy the caret before it loses the
input focus or becomes inactive.

See Also: ::DestroyCaret, ::GetSystemMetrics, CWnd::ShowCaret,
:: CreateCaret

CWnd::CWnd

Remarks

CWnd();

Constructs a CWnd object. The Windows window is not created and attached
until the CreateEx or Create member function is called.

See Also: CWnd::CreateEx, CWnd::Create

CWnd::Default
LRESULT Default();

Return Value

Remarks

2106

Depends on the message sent.

Calls the default window procedure. The default window procedure provides
default processing for any window message that an application does not process.
This member function ensures that every message is processed.

See Also: CWnd: :DefWindowProc, : : DefWindowProc

CWnd::DestroyWindow

CWnd: : DefWindowProc
virtual LRESULT DefWindowProc(UINT message, WPARAM wParam,

... LPARAM IParam);

Return Value
Depends on the message sent.

Parameters

Remarks

message Specifies the Windows message to be processed.

wParam Specifies additional message-dependent information.

IParam Specifies additional message-dependent information.

Calls the default window procedure, which provides default processing for any
window message that an application does not process. This member function ensures
that every message is processed. It should be called with the same parameters as those
received by the window procedure.

See Also: CWnd::Default, ::DefWindowProc

CW nd: : DeleteTempMap

Remarks

static void PASCAL DeleteTempMap();

Called automatically by the idle time handler of the CWinApp object. Deletes any
temporary CWnd objects created by the FromHandle member function.

See Also: CWnd: :FromHandle

CWnd: : DestroyWindow
virtual BOOL DestroyWindow();

Return Value

Remarks

Nonzero if the window is destroyed; otherwise O.

Destroys the Windows window attached to the CWnd object. The DestroyWindow
member function sends appropriate messages to the window to deactivate it and
remove the input focus. It also destroys the window's menu, flushes the application
queue, destroys outstanding timers, removes Clipboard ownership, and breaks the
Clipboard-viewer chain if CWnd is at the top of the viewer chain. It sends
WM_DESTROY and WM_NCDESTROY messages to the window. It does
not destroy the CWnd object.

2107

CWnd::Detach

DestroyWindow is a place holder for performing cleanup. Because DestroyWindow
is a virtual function, it is shown in any CWnd-derived class in ClassWizard. But even
though you override this function in your CWnd-derived class, DestroyWindow is
not necessarily called. If DestroyWindow is not called in the MFC code, then you
have to explicitly call it in your own code if you want it to be called.

Assume, for example, you have overridden DestroyWindow in a CView-derived
class. Since MFC source code does not call DestroyWindow in any of its
CFrameWnd-derived classes, your overridden DestroyWindow will not be called
unless you call it explicitly.

If the window is the parent of any windows, these child windows are automatically
destroyed when the parent window is destroyed. The DestroyWindow member
function destroys child windows first and then the window itself.

The DestroyWindow member function also destroys modeless dialog boxes created
by CDialog::Create.

If the CWnd being destroyed is a child window and does not have the
WS_EX_NOPARENTNOTIFY style set, then the WM_PARENTNOTIFY
message is sent to the parent.

See Also: CWnd::OnDestroy, CWnd::Detach, ::DestroyWindow

CWnd::Detach
HWND Detach();

Return Value

Remarks

A HWND to the Windows object.

Detaches a Windows handle from a CWnd object and returns the handle.

See Also: CWnd::Attach

CWnd: :DIgDirList
int DlgDirList(LPTSTR lpPathSpec, int nIDListBox, int nIDStaticPath,

10+ UINT nFileType);

Return Value
Nonzero if the function is successful; otherwise O.

Parameters

2108

lpPathSpec Points to a null-terminated string that contains the path or filename.
DlgDirList modifies this string, which should be long enough to contain the
modifications. For more information, see the following Remarks section.

Remarks

nIDListBox Specifies the identifier of a list box. If nIDListBox is 0, DIgDirList
assumes that no list box exists and does not attempt to fill one.

nIDStaticPath Specifies the identifier of the static-text control used to display the
current drive and directory. If nIDStaticPath is 0, DIgDirList assumes that no such
text control is present.

nFUeType Specifies the attributes of the files to be displayed. It can be any
combination of the following values:

• DDL_READWRITE Read-write data files with no additional attributes.

• DDL_READONLY Read-only files.

• DDL_HIDDEN Hidden files.

• DDL_SYSTEM System files.

• DDL_DIRECTORY Directories.

• DDL_ARCHIVE Archives.

• DDL_POSTMSGS LB_DIR flag. If the LB_DIR flag is set, Windows places
the messages generated by DIgDirList in the application's queue; otherwise,
they are sent directly to the dialog-box procedure.

• DDL_DRIVES Drives. If the DDL_DRIVES flag is set, the
DDL_EXCLUSIVE flag is set automatically. Therefore, to create a directory
listing that includes drives and files, you must call DIgDirList twice: once with
the DDL_DRIVES flag set and once with the flags for the rest of the list.

• DDL_EXCLUSIVE Exclusive bit. If the exclusive bit is set, only files of the
specified type are listed; otherwise normal files and files of the specified type
are listed.

Fills a list box with a file or directory listing. DIgDirList sends
LB_RESETCONTENT and LB_DIR messages to the list box. It fills the list box
specified by nIDListBox with the names of all files that match the path given by
IpPathSpec.

The IpPathSpec parameter has the following form:

[drive:] [[\u]directory[\idirectory]. .. \u] [filename]

In this example, drive is a drive letter, directory is a valid directory name, and
filename is a valid filename that must contain at least one wildcard. The wildcards are
a question mark (?), which means match any character, and an asterisk (*), meaning
match any number of characters.

If you specify a O-length string for IpPathSpec, or if you specify only a directory name
but do not include any file specification, the string will be changed to "*. *".

CWnd::DIgDirList

2109

CWnd::DIgDirListComboBox

If lpPathSpec includes a drive and/or directory name, the current drive and directory
are changed to the designated drive and directory before the list box is filled. The text
control identified by nIDStaticPath is also updated with the new drive and/or
directory name.

After the list box is filled, lpPathSpec is updated by removing the drive and/or
directory portion of the path.

See Also: CWnd: :DIgDirListComboBox, : :DIgDirList

CWnd: : DlgDirListComboB OX

int DIgDirListComboBox(LPTSTR lpPathSpec, int nIDComboBox,
.. int nIDStaticPath, UINT nFileType);

Return Value
Specifies the outcome of the function. It is nonzero if a listing was made, even an
empty listing. A ° return value implies that the input string did not contain a valid
search path.

Parameters

2110

lpPathSpec Points to a null-terminated string that contains the path or filename.
DIgDirListComboBox modifies this string, which should be long enough to
contain the modifications. For more information, see the following Remarks
section.

nIDComboBox Specifies the identifier of a combo box in a dialog box. If
nIDComboBox is 0, DIgDirListComboBox assumes that no combo box exists
and does not attempt to fill one.

nIDStaticPath Specifies the identifier of the static-text control used to display the
current drive and directory. If nIDStaticPath is 0, DIgDirListComboBox assumes
that no such text control is present.

nFileType Specifies DOS file attributes of the files to be displayed. It can be any
combination of the following values:

• DDL_READWRITE Read-write data files with no additional attributes.

• DDL_READONLY Read-only files.

• DDL_HIDDEN Hidden files.

• DDL_SYSTEM System files.

• DDL_DIRECTORY Directories.

• DDL_ARCHIVE Archives.

• DDL_POSTMSGS CB_DIR flag. If the CB_DIR flag is set, Windows places
the messages generated by DIgDirListComboBox in the application's queue;
otherwise, they are sent directly to the dialog-box procedure.

Remarks

• DDL_DRIVES Drives. If the DDL_DRIVES flag is set, the
DDL_EXCLUSIVE flag is set automatically. Therefore, to create a directory
listing that includes drives and files, you must call DIgDirListComboBox
twice: once with the DDL_DRIVES flag set and once with the flags for the rest
of the list.

• DDL_EXCLUSIVE Exclusive bit. If the exclusive bit is set, only files of the
specified type are listed; otherwise normal files and files of the specified type
are listed.

Fills the list box of a combo box with a file or directory listing.
DIgDirListComboBox sends CB_RESETCONTENT and CB_DIR messages to the
combo box. It fills the list box of the combo box specified by nIDComboBox with the
names of all files that match the path given by IpPathSpec.

The IpPathSpec parameter has the following form:

[drive:] [[\u]directory[\idirectory] ... \u] [filename]

In this example, drive is a drive letter, directory is a valid directory name, and
filename is a valid filename that must contain at least one wildcard. The wildcards are
a question mark (?), which means match any character, and an asterisk (*), which
means match any number of characters.

If you specify a zero-length string for lpPathSpec, or if you specify only a directory
name but do not include any file specification, the string will be changed to "*. *".

If IpPathSpec includes a drive and/or directory name, the current drive and directory
are changed to the designated drive and directory before the list box is filled. The text
control identified by nIDStaticPath is also updated with the new drive and/or
directory name.

After the combo-box list box is filled, IpPathSpec is updated by removing the drive
and/or directory portion of the path.

See Also: CWod::DlgDirList, CWod::DlgDirSelect, ::DIgDirListComboBox

CWnd: :DlgDirSelect
BOOL DIgDirSelect(LPTSTR IpString, iot nIDListBox);

Return Value
Nonzero if successful; otherwise O.

Parameters
ipString Points to a buffer that is to receive the current selection in the list box.

nIDListBox Specifies the integer ID of a list box in the dialog box.

CWnd: :DlgDirSelect

2111

CWnd::DIgDirSelectComboBox

Remarks
Retrieves the current selection from a list box. It assumes that the list box has been
filled by the DIgDirList member function and that the selection is a drive letter, a file,
or a directory name.

The DIgDirSelect member function copies the selection to the buffer given by
IpString. If there is no selection, IpString does not change.

DIgDirSelect sends LB_GETCURSEL and LB_GETTEXT messages to the list
box.

It does not allow more than one filename to be returned from a list box. The list box
must not be a multiple-selection list box.

See Also: CWnd::DIgDirList, CWnd::DIgDirListComboBox,
CWnd: :DIgDirSelectComboBox, : :DIgDirSelectEx

CWnd: :DIgDirSelectComboBox
BOOL DIgDirSelectComboBox(LPTSTR IpString, int nIDComboBox);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

IpString Points to a buffer that is to receive the selected path.

nIDComboBox Specifies the integer ID of the combo box in the dialog box.

Retrieves the current selection from the list box of a combo box. It assumes that the
list box has been filled by the DIgDirListComboBox member function and that the
selection is a drive letter, a file, or a directory name.

The DIgDirSelectComboBox member function copies the selection to the specified
buffer. If there is no selection, the contents of the buffer are not changed.

DIgDirSelectComboBox sends CB_GETCURSEL and CB_GETLBTEXT
messages to the combo box.

It does not allow more than one filename to be returned from a combo box.

See Also: CWnd: :DIgDirListComboBox, : :DIgDirSelectComboBoxEx

CW nd: : DoDataExchange
virtual void DoDataExchange(CDataExchange* pDX);

Parameters
pDX A pointer to a CDataExchange object.

2112

Remarks

CWnd: :DoDataExchange

Called by the framework to exchange and validate dialog data.

Never call this function directly. It is called by the UpdateData member function.
Call UpdateData to initialize a dialog box's controls or retrieve data from a
dialog box.

When you derive an application-specific dialog class from CDialog, you need to
override this member function if you wish to utilize the framework's automatic data
exchange and validation. ClassWizard will write an overridden version of this member
function for you containing the desired "data map" of dialog data exchange (DDX)
and validation (DDV) global function calls.

To automatically generate an overridden version of this member function, first create a
dialog resource with the dialog editor, then derive an application-specific dialog class.
Then call Class Wizard and use it to associate variables, data, and validation ranges
with various controls in the new dialog box. ClassWizard then writes the overridden
DoDataExchange, which contains a data map. The following is an example
DDXlDDV code block generated by ClassWizard:

void CPenWidthsDlg::DoDataExchange(CDataExchange* pDX)
{

CDialog::DoDataExchange(pDX);
//{{AFX_DATA_MAP(CPenWidthsDlg)

DDV_MinMaxInt(pDX. m_nThinWidth. 1. 20);

DDV_MinMaxInt(pDX. m_nThickWidth. 1. 20);
/ /} lAFX_DATA_MAP

ClassWizard will maintain the code within the \\{ { and \\} } delimiters. You should not
modify this code.

The DoDataExchange overridden member function must precede the macro
statements in your source file.

For more information on dialog data exchange and validation, see "Displaying and
Manipulating Data in a Form" in the article ODBC and MFC, "Dialog Data Exchange
and Validation," and "Using ClassWizard" in the Visual C++ Programmer's Guide
online. For a description of the DDX_ and DDV _ macros generated by ClassWizard,
see Technical Note 26 online.

See Also: CWnd::UpdateData

2113

CWnd: :DragAcceptFiles

CW nd: : DragAcceptFiles
void DragAcceptFiles(BOOL bAccept = TRUE);

Parameters

Remarks

bAccept Flag that indicates whether dragged files are accepted.

Call this member function from within the main window in your application's
CWinApp: :InitInstance function to indicate that your main window and all child
windows accept dropped files from the Windows File Manager.

To discontinue receiving dragged files, call the member function with bAccept equal
to FALSE.

See Also: ::DragAcceptFiles, WM_DROPFILES

CWnd::DrawMenuBar

Remarks

void DrawMenuBar();

Redraws the menu bar. If a menu bar is changed after Windows has created the
window, call this function to draw the changed menu bar.

See Also: ::DrawMenuBar

CWnd: : EnableScrollBar
BOOL EnableScrollBar(int nSBFlags, UINT nArrowFlags = ESB_ENABLE_BOTH);

Return Value
Nonzero if the arrows are enabled or disabled as specified. Otherwise it is 0, which
indicates that the arrows are already in the requested state or that an error occurred.

Parameters

2114

nSBFlags Specifies the scroll-bar type. Can have one of the following values:

• SB_BOTH Enables or disables the arrows of the horizontal and vertical scroll
bars associated with the window.

• SB_HORZ Enables or disables the arrows of the horizontal scroll bar
associated with the window.

• SB_ VERT Enables or disables the arrows of the vertical scroll bar associated
with the window.

nArrowFlags Specifies whether the scroll-bar arrows are enabled or disabled and
which arrows are enabled or disabled. Can have one of the following values:

CWnd::EnableTooITips

Remarks

• ESB_ENABLE_BOTH Enables both arrows of a scroll bar (default).

• ESB_DISABLE_LTUP Disables the left arrow of a horizontal scroll bar or
the up arrow of a vertical scroll bar.

• ESB_DISABLE_RTDN Disables the right arrow of a horizontal scroll bar or
the down arrow of a vertical scroll bar.

• ESB_DISABLE_BOTH Disables both arrows of a scroll bar.

Enables or disables one or both arrows of a scroll bar.

See Also: CWnd::ShowScrollBar, CScrollBar::EnableScrollBar

CW nd: :EnableScrollB arCtrl
void EnableScrollBarCtrl(int nBar, BOOL bEnable = TRUE);

Parameters

Remarks

nBar The scroll-bar identifier.

bEnable Specifies whether the scroll bar is to be enabled or disabled.

Call this member function to enable or disable the scroll bar for this window. If the
window has a sibling scroll-bar control, that scroll bar is used; otherwise the window's
own scroll bar is used.

See Also: CWnd::GetScrollBarCtrl

CWnd: : EnableToolTips
BOOL EnableToolTips(BOOL bEnable);

Return Value
TRUE if tooltips are enabled; otherwise FALSE.

Parameters

Remarks

bEnable Specifies whether the tooltip control is enabled or disabled. TRUE enables
the control; FALSE disables the control.

Call this member function to enable tooltips for the given window. Override
OnToolHitTest to provide the TOOLINFO struct(s) for the window.

Note Some windows, such as CToolBar, provide a built-in implementation of OnToolHitTest.

2115

CWnd: :Enable Window

See TOOLINFO in the Win32'SDK Programmer's Reference for more information
on this structure.

Simply calling EnableToolTips is not enough to display tool tips for your child
controls unless the parent window is derived from CFrameWnd. This is because
CFrame Wnd provides a default handler for the TTN_NEEDTEXT notification.
If your parent window is not derived from CFrameWnd, that is, if it is a dialog box
or a form view, tool tips for your child controls will not display correctly unless you
provide a handler for the TTN_NEEDTEXT tool tip notification. See "Tool Tips"
in Visual C++ Programmer's Guide online for a sample handler.

The default tool tips provided for your windows by EnableToolTips do not have
text associated with them. In order to retrieve text for the tool tip to display, the
TTN_NEEDTEXT notification is sent to the tool tip control's parent window just
before the tool tip window is displayed. If there is no handler for this message to
assign some value to the pszText member of the TOOLTIPTEXT structure, there will
be no text displayed for the tool tip.

See Also: CWnd::CanceITooITips, CWnd::OnTooIHitTest, CToolBar,
TOOLINFO

CWnd: : Enable Window
BOOL EnableWindow(BOOL bEnable = TRUE);

Return Value
Indicates the state before the Enable Window member function was called. The return
value is nonzero if the window was previously disabled. The return value is 0 if the
window was previously enabled or an error occurred.

Parameters

Remarks

2116

bEnable Specifies whether the given window is to be enabled or disabled. If this
parameter is TRUE, the window will be enabled. If this parameter is FALSE, the
window will be disabled.

Enables or disables mouse and keyboard input. When input is disabled, input such as
mouse clicks and keystrokes is ignored. When input is enabled, the window processes
all input.

If the enabled state is changing, the WM_ENABLE message is sent before this
function returns.

If disabled, all child windows are implicitly disabled, although they are not sent
WM_ENABLE messages.

A window must be enabled before it can be activated. For example, if an application is
displaying a modeless dialog box and has disabled its main window, the main window

must be enabled before the dialog box is destroyed. Otherwise, another window will
get the input focus and be activated. If a child window is disabled, it is ignored when
Windows tries to determine which window should get mouse messages.

By default, a window is enabled when it is created. An application can specify the
WS_DISABLED style in the Create or CreateEx member function to create a
window that is initially disabled. After a window has been created, an application can
also use the EnableWindow member function to enable or disable the window.

An application can use this function to enable or disable a control in a dialog box. A
disabled control cannot receive the input focus, nor can a user access it.

See Also: ::EnableWindow, CWnd::OnEnable

CW nd: : EndModalLoop
void EndModalLoop(int nResult);

Parameters

Remarks

nResult Contains the value to be returned to the caller of RunModalLoop.

Call this member function to terminate a call to RunModalLoop. The nResult
parameter is propagated to the return value from RunModalLoop.

See Also: CWnd::RunModaILoop, CWnd::ContinueModal

CWnd::EndPaint
void EndPaint(LPPAINTSTRUCT IpPaint);

Parameters

Remarks

ipPaint Points to a PAINTSTRUCT structure that contains the painting information
retrieved by the BeginPaint member function.

Marks the end of painting in the given window. The EndPaint member function is
required for each call to the BeginPaint member function, but only after painting is
complete.

If the caret was hidden by the BeginPaint member function, EndPaint restores the
caret to the screen.

See Also: CWnd::BeginPaint, ::EndPaint, CPaintDC

CWnd: :EndPaint

2117

CWnd::ExecuteDlgInit

CWnd: : ExecuteDIgInit
BOOL ExecuteDlglnit(LPCTSTR lpszResourceName);
BOOL ExecuteDlglnit(LPVOID lpResource);

Return Value
TRUE if a dialog resource is executed; otherwise FALSE.

Parameters

Remarks

lpszResourceName A pointer to a null-terminated string specifying the name
of the resource.

lpResource A pointer to a resource.

Call this member function to initiate a dialog resource.

ExecuteDlglnit will use resources bound to the executing module, or resources
from other sources. To accomplish this, ExecuteDlglnit finds a resource handle

by calling AfxFindResourceHandle. If your MFC application does not use
the shared DLL (MFCxO[UHD].DLL), AfxFindResourceHandle calls
AfxGetResourceHandle, which returns the current resource handle for the
executable. If your MFC application that uses MFCxO[UHD].DLL,
AfxFindResourceHandle traverses the CDynLinkLibrary object list of
shared and extension DLLs looking for the correct resource handle.

See Also: CDialog: :OnlnitDialog, :: WM_INITDIALOG

CWnd: : FilterToolTipMes sage
void FilterToolTipMessage(MSG* pMsg);

Parameters

Remarks

2118

pMsg A pointer to the tooltip message.

This member function is called by the framework to to display the tooltip
message associated with a button on the toolbar. It is normally called from
PreTranslateMessage.

Call it when the framework does not call it for you.

See Also: CWnd::OnToolHitTest

CWnd: :Flash Window

CWnd: : FindWindow
static CWnd* PASCAL FindWindow(LPCTSTR lpszClassName,

... LPCTSTR lpszWindowNa11le);

Return Value
Identifies the window that has the specified class name and window name. It is NULL
if no such window is found.

The CWnd* may be temporary and should not be stored for later use.

Parameters

Remarks

2

lpszClassNa11le Points to a null-terminated string that specifies the window's class
name (a WNDCLASS structure). If lpClassName is NULL, all class names match.

lpszWindowNa11le Points to a null-terminated string that specifies the window name
(the window's title). If lpWindowNa11le is NULL, all window names match.

Returns the top-level CWnd whose window class is given by lpszClassNa11le and
whose window name, or title, is given by lpszWindowNa11le. This function does not
search child windows.

See Also: ::FindWindow

CW nd: :Flash Window
BOOL FlashWindow(BOOL blnvert);

Return Value
Nonzero if the window was active before the call to the Flash Window member
function; otherwise O.

Parameters

Remarks

blnvert Specifies whether the CWnd is to be flashed or returned to its original state.
The CWnd is flashed from one state to the other if blnvert is TRUE. If blnvert is
FALSE, the window is returned to its original state (either active or inactive).

Flashes the given window once. For successive flashing, create a system timer and
repeatedly call FlashWindow. Flashing the CWnd means changing the appearance of
its title bar as if the CWnd were changing from inactive to active status, or vice versa.

2119

CW nd: :FromHandle

(An inactive title bar changes to an active title bar; an active title bar changes to an
inactive title bar.)

Typically, a window is flashed to inform the user that it requires attention but that it
does not currently have the input focus.

The blnvert parameter should be FALSE only when the window is getting the input
focus and will no longer be flashing; it should be TRUE on successive calls while
waiting to get the input focus.

This function always returns nonzero for minimized windows. If the window is
minimized, Flash Window will simply flash the window's icon; blnvert is ignored
for minimized windows.

See Also: ::FlashWindow

CW nd: : FromHandle
static CWnd* PASCAL FromHandIe(HWND h Wnd);

Return Value
Returns a pointer to a CWnd object when given a handle to a window. If a CWnd
object is not attached to the handle, a temporary CWnd object is created and attached.

The pointer may be temporary and should not be stored for later use.

Parameters
h Wnd An HWND of a Windows window.

See Also: CWnd::DeleteTempMap

CWnd: : FromHandlePermanent
static CWnd* PASCAL FromHandlePermanent(HWND h Wnd);

Return Value
A pointer to a CWnd object.

Parameters

Remarks

2120

h Wnd An HWND of a Windows window.

Returns a pointer to a CWnd object when given a handle to a window. If a CWnd
object is not attached to the handle, NULL is returned.

This function, unlike FromHandIe, does not create temporary objects.

See Also: CWnd::FromHandIe

CW nd: : GetActi ve Window
static CWnd* PASCAL GetActiveWindow();

Return Value

Remarks

The active window or NULL if no window was active at the time of the call.
The pointer may be temporary and should not be stored for later use.

Retrieves a pointer to the active window. The active window is either the window
that has the current input focus or the window explicitly made active by the
SetActive Window member function.

See Also: CWnd::SetActiveWindow, ::GetActiveWindow

CW nd: : GetCapture
static CWnd* PASCAL GetCapture();

Return Value

Remarks

Identifies the window that has the mouse capture. It is NULL if no window has the
mouse capture.

The return value may be temporary and should not be stored for later use.

Retrieves the window that has the mouse capture. Only one window has the
mouse capture at any given time. A window receives the mouse capture when the
SetCapture member function is called. This window receives mouse input whether
or not the cursor is within its borders.

See Also: CWnd: :SetCapture, : : GetCapture

CW nd: : GetCaretPos
static CPoint PASCAL GetCaretPos();

Return Value

Remarks

CPoint object containing the coordinates of the caret's position.

Retrieves the client coordinates of the caret's current position and returns them as a
CPoint.

The caret position is given in the client coordinates of the CWnd window.

See Also: ::GetCaretPos

CWnd: :GetCaretPos

2121

CWnd::GetCheckedRadioButton

CWnd::GetCheckedRadioButton
int GetCheckedRadioButton(int nIDFirstButton, int nIDLastButton);

Return Value
ID of the checked radio button, or 0 if none is selected.

Parameters

Remarks

nIDFirstButton Specifies the integer identifier of the first radio button in the group.

nIDLastButton Specifies the integer identifier of the last radio button in the group.

Retrieves the ID of the currently checked radio button in the specified group.

See Also: CWnd::CheckRadioButton

CW nd: : GetClientRect
void GetClientRect(LPRECT /pRect) const;

Parameters

Remarks

IpRect Points to a RECT structure or a CRect object to receive the client
coordinates. The left and top members will be 0. The right and bottom members
will contain the width and height of the window.

Copies the client coordinates of the CWnd client area into the structure pointed to by
IpRect. The client coordinates specify the upper-left and lower-right corners of the
client area. Since client coordinates are relative to the upper-left corners of the CWnd
client area, the coordinates of the upper-left comer are (0,0).

See Also: CWnd::GetWindowRect, ::GetClientRect

CW nd: : GetClipboardOwner
static CWnd* PASCAL GetClipboardOwner();

Return Value

Remarks

2122

Identifies the window that owns the Clipboard if the function is successful. Otherwise,
it is NULL.

The returned pointer may be temporary and should not be stored for later use.

Retrieves the current owner of the Clipboard.

The Clipboard can still contain data even if it is not currently owned.

CWnd: :GetCurrentMessage

See Also: CWnd::GetClipboardViewer, ::GetClipboardOwner

CWnd: : GetClipboardViewer
static CWnd* PASCAL GetClipboardViewer();

Return Value

Remarks

Identifies the window currently responsible for displaying the Clipboard if successful;
otherwise NULL (for example, if there is no viewer).

The returned pointer may be temporary and should not be stored for later use.

Retrieves the first window in the Clipboard-viewer chain.

See Also: CWnd::GetClipboardOwner, ::GetClipboardViewer

CWnd: : GetControlUnknown
LPUNKNOWN GetControlUnknown();

Return Value

Remarks

A pointer to the IUnknown interface of the OLE control represented by this CWnd
object. If this object does not represent an OLE control, the return value is NULL.

Call this member function to retrieve a pointer to an unknown OLE control. You
should not release this IUnknown pointer. Typically, you would use to obtain a
specific interface of the control.

The interface pointer returned by GetControlUnknown is not reference-counted.
Do not call IUnknown::Release on the pointer unless you have previously called
IUnknown::AddRef on it.

See Also: IUnknown::Release, IUnknown::Querylnterface

CW nd: : GetCurrentMessage
static const MSG* PASCAL GetCurrentMessage();

Return Value
Returns a pointer to the MSG structure that contains the message the window is
currently processing. Should only be called when in an OnMessage handler.

2123

CWnd::GetDC

CWnd::GetDC
CDC* GetDC();

Return Value

Remarks

Identifies the device context for the CWnd client area if successful; otherwise, the
return value is NULL. The pointer may be temporary and should not be stored for
later use.

Retrieves a pointer to a common, class, or private device context for the client area
depending on the class style specified for the CWnd. For common device contexts,
GetDC assigns default attributes to the context each time it is retrieved. For class
and private contexts, GetDC leaves the previously assigned attributes unchanged.
The device context can be used in subsequent graphics device interface (GDI)
functions to draw in the client area.

Unless the device context belongs to a window class, the ReleaseDC member
function must be called to release the context after painting. Since only five common
device contexts are available at any given time, failure to release a device context can
prevent other applications from accessing a device context.

A device context belonging to the CWnd class is returned by the GetDC member
function if CS_CLASSDC, CS_OWNDC, or CS_PARENTDC was specified as a
style in the WNDCLASS structure when the class was registered.

See Also: CWnd::GetDCEx, CWnd::ReleaseDC, CWnd::GetWindowDC,
::GetDC, CClientDC

CWnd: : GetDCEx
CDC* GetDCEx(CRgn* prgnClip, DWORD flags);

Return Value
The device context for the specified window if the function is successful; otherwise
NULL.

Parameters

2124

prgnClip Identifies a clipping region that may be combined with the visible region of
the client window.

flags Can have one of the following preset values:

• DCX_ CA CRE Returns a device context from the cache rather than the
OWNDC or CLASSDC window. Overrides CS_OWNDC and
CS_CLASSDC .

• DCX_CLIPCRILDREN Excludes the visible regions of all child windows
below the CWnd window.

Remarks

• DCX_CLIPSIBLINGS Excludes the visible regions of all sibling windows
above the CWnd window.

• DCX_EXCLUDERGN Excludes the clipping region identified by prgnClip
from the visible region of the returned device context.

• DCX_INTERSECTRGN Intersects the clipping region identified by prgnClip
within the visible region of the returned device context.

• DCX_LOCKWINDOWUPDATE Allows drawing even if there is a
LockWindowUpdate call in effect that would otherwise exclude this window.
This value is used for drawing during tracking.

• DCX_PARENTCLIP Uses the visible region of the parent window and
ignores the parent window's WS_CLIPCHILDREN and WS_PARENTDC
style bits. This value sets the device context's origin to the upper-left corner of
the CWnd window.

• DCX_ WINDOW Returns a device context that corresponds to the window
rectangle rather than the client rectangle.

Retrieves the handle of a device context for the CWnd window. The device context
can be used in subsequent GDI functions to draw in the client area.

This function, which is an extension to the GetDC function, gives an application more
control over how and whether a device context for a window is clipped.

Unless the device context belongs to a window class, the ReleaseDC function must
be called to release the context after drawing. Since only five common device contexts
are available at any given time, failure to release a device context can prevent other
applications from gaining access to a device context.

In order to obtain a cached device context, an application must specify
DCX_CACHE. If DCX_CACHE is not specified and the window is neither
CS_OWNDC nor CS_CLASSDC, this function returns NULL.

A device context with special characteristics is returned by the GetDCEx function
if the CS_CLASSDC, CS_OWNDC, or CS_PARENTDC style was specified in
the WNDCLASS structure when the class was registered.

For more information about these characteristics, see the description of the
WNDCLASS structure in the Win32 SDK documentation.

See Also: CWnd::BeginPaint, CWnd::GetDC, CWnd::GetWindowDC,
CWnd::ReleaseDC, ::GetDCEx

CWnd::GetDCEx

2125

CW nd: :GetDescendantWindow

CW nd: : GetDescendant Window
CWnd* GetDescendantWindow(int nID, BOOL bOnlyPerm = FALSE) const;

Return Value
A pointer to a CWnd object, or NULL if no child window is found.

Parameters

Remarks

nID Specifies the identifier of the control or child window to be retrieved.

bOnlyPerm Specifies whether the window to be returned can be temporary. If
TRUE, only a permanent window can be returned; if FALSE, the function can
return a temporary window. For more information on temporary windows see
Technical Note 3 online.

Call this member function to find the descendant window specified by the given ID.
This member function searches the entire tree of child windows, not only the windows
that are immediate children.

See Also: CWnd: : GetParentFrame, CWnd: :IsChild, CWnd: :GetDIgltem

CW nd: : GetDesktop Window
static CWnd* PASCAL GetDesktopWindow();

Return Value

Remarks

Identifies the Windows desktop window. This pointer may be temporary and should
not be stored for later use.

Returns the Windows desktop window. The desktop window covers the entire screen
and is the area on top of which all icons and other windows are painted.

See Also: ::GetDesktopWindow

CWnd: : GetDIgCtrlID
int GetDlgCtrlID() const;

Return Value

Remarks

2126

The numeric identifier of the CWnd child window if the function is successful;
otherwise O.

Returns the window or control ID value for any child window, not only that of a
control in a dialog box. Since top-level windows do not have an ID value, the return
value of this function is invalid if the CWnd is a top-level window.

CWnd: : GetDlgltemInt

See Also: ::GetDIgCtrlID

CWnd: : GetDlgItem
CWnd* GetDIgItem(int nID) const;
void CWnd::GetDIgItem(int nID, HWND* phWnd) const;

Return Value
A pointer to the given control or child window. If no control with the integer ID given
by the nID parameter exists, the value is NULL.

The returned pointer may be temporary and should not be stored for later use.

Parameters

Remarks

nID Specifies the identifier of the control or child window to be retrieved.

ph Wnd A pointer to a child window.

Retrieves a pointer to the specified control or child window in a dialog box or other
window. The pointer returned is usually cast to the type of control identified by nID.

See Also: CWnd::GetWindow, CWnd::GetDescendantWindow,
CWnd::GetWindow, ::GetDIgItem

CWnd: : GetDlgItemInt
UINT GetDIgItemInt(int nID, BOOL* IpTrans = NULL,

... BOOL bSigned = TRUE) const;

Return Value
Specifies the translated value of the dialog-box item text. Since 0 is a valid return
value, IpTrans must be used to detect errors. If a signed return value is desired, cast it
as an int type.

The function returns 0 if the translated number is greater than 32,767 (for signed
numbers) or 65,535 (for unsigned).

When errors occur, such as encountering nonnumeric characters and exceeding the
above maximum, GetDIgItemInt copies 0 to the location pointed to by IpTrans. If
there are no errors, IpTrans receives a nonzero value. If IpTrans is NULL,
GetDIgItemInt does not warn about errors.

Parameters
nID Specifies the integer identifier of the dialog-box control to be translated.

IpTrans Points to the Boolean variable that is to receive the translated flag.

bSigned Specifies whether the value to be retrieved is signed.

2127

CWnd::GetDlgltemText

Remarks
Retrieves the text of the control identified by nID. It translates the text of the specified
control in the given dialog box into an integer value by stripping any extra spaces at
the beginning of the text and converting decimal digits. It stops the translation when it
reaches the end of the text or encounters any nonnumeric character.

If bSigned is TRUE, GetDlgltemInt checks for a minus sign (-) at the beginning of
the text and translates the text into a signed number. Otherwise, it creates an unsigned
value.

It sends a WM_GETTEXT message to the control.

See Also: CWnd::GetDlgltemText, ::GetDIgltemInt

CWnd: : GetDIgItemText
int GetDIgltemText(int nID, LPTSTR IpStr, int nMaxCount) const;
int GetDlgltemText(int nID, CString& rString) const;

Return Value
Specifies the actual number of bytes copied to the buffer, not including the
terminating null character. The value is 0 if no text is copied.

Parameters

Remarks

nID Specifies the integer identifier of the control whose title is to be retrieved.

IpStr Points to the buffer to receive the control's title or text.

nMaxCount Specifies the maximum length (in bytes) of the string to be copied to
IpStr. If the string is longer than nMaxCount, it is truncated.

rString A reference to a CString.

Call this member function to retrieve the title or text associated with a control in a
dialog box. The GetDlgltemText member function copies the text to the location
pointed to by IpStr and returns a count of the number of bytes it copies.

See Also: CWnd::GetDlgltem, CWnd::GetDIgltemInt, ::GetDlgltemText,
WM_GETTEXT

CW nd: : GetDSCCursor
IUnknown * GetDSCCursor();

Return Value

2128

A pointer to a cursor that is defined by a data-source control. MFC takes care of
calling AddRef for the pointer.

Remarks
Call this member function to retrieve a pointer to the underlying cursor that is defined
by the DataSource, UserName, Password, and SQL properties of the data-source
control. Use the returned pointer to set the ICursor property of a complex data-bound
control, such as the data-bound grid control. A data-source control will not become
active until the first bound control requests its cursor. This can happen either explicitly
by a call to GetDSCCursor or implicitly by the MFC binding manager. In either case,
you can force a data-source control to become active by calling GetDSCCursor and
then calling Release on the returned pointer to IUnknown. Activation will cause the
data-source control to attempt to connect to the underlying data source. The returned
pointer might be used in the following context:

BOOL CMyDlg::OnlnitDialog()
{

II Find the child controls on the dialog
CWnd* pDSC = GetDlgltem(IDC_REMOTEDATACONTROL);
CDBListBox* pList = (CDBListBox*)
GetDlgltem(IDC_DBLISTBOX);

II Tell the MFC binding manager that we are
II binding DISPID 3 to the data-source control.
pList->BindProperty(0x3. pDSC);

II Tell the listbox which field to expose as its
II bound column
pList->SetBoundColumn(_T("CourseID"»;

II Tell the listbox which cursor and column
II to populate its list from
pList->SetListField(_T("CourseID"»;
IPUNKNOWN *pcursor = pDSC->GetDSCCursor();

if (!pcursor)
{

II The pointer was not successfully assigned.
return FALSE;

}

II The pointer was successfully assigned.
pList->SetRowSource(pcursor);

pcursor->Release();
return TRUE;

See Also: CWnd::BindDefaultProperty, CWnd::BindProperty

CWnd::GetExStyle
DWORD GetExStyle() const;

Return Value
The window's extended style.

CWnd: :GetExStyle

2129

CWnd::GetFocus

See Also: CWnd::GetStyie, ::GetWindowLong

CWnd::GetFocus
static CWnd* PASCAL GetFocus();

Return Value

Remarks

A pointer to the window that has the current focus, or NULL if there is no focus
window.

The pointer may be temporary and should not be stored for later use.

Retrieves a pointer to the CWnd that currently has the input focus.

See Also: CWnd: :GetActive Window, CWnd: :GetCapture, CWnd: :SetFocus,
::GetFocus

CWnd::GetFont
CFont* GetFont() const;

Return Value
A pointer to a CFont that contains the current font.

The pointer may be temporary and should not be stored for later use.

Remarks
Gets the current font for this window.

See Also: CWnd::SetFont, WM_GETFONT, CFont

CWnd::GetForegroundWindow
static CWnd* PASCAL GetForegroundWindow();

Return Value

Remarks

2130

A pointer to the foreground window. This may be a temporary CWnd object.

Returns a pointer to the foreground window (the window with which the user is
currently working). The foreground window applies only to top-level windows
(frame windows or dialog boxes).

See Also: CWnd: :SetForegroundWindow

CW nd: : GetIcon
HICON Getlcon(BOOL hBig/con) const;

Return Value
A handle to an icon. If unsuccessful, returns NULL.

Parameters

Remarks

hBig/con Specifies a 32 pixel by 32 pixel icon if TRUE; specifies a 16 pixel
by 16 pixel icon if FALSE.

Call this member function to get the handle to either a big (32x32) or the handle
to a small (16x 16) icon, as indicated by hBig/con.

See Also: Setlcon

CW nd: : GetLastActi vePopup
CWnd* GetLastActivePopup() const;

Return Value

Remarks

Identifies the most recently active pop-up window. The return value will be the
window itself if any of the following conditions are met:

• The window itself was most recently active.

• The window does not own any pop-up windows.

• The window is not a top-level window or is owned by another window.

The pointer may be temporary and should not be stored for later use.

Determines which pop-up window owned by CWnd was most recently active.

See Also: ::GetLastActivePopup

CW nd:: GetMenu
CMenu* GetMenu() const;

Return Value
Identifies the menu. The value is NULL if CWnd has no menu. The return value is
undefined if CWnd is a child window.

The returned pointer may be temporary and should not be stored for later use.

CWnd: :GetMenu

2131

CWnd: : GetNextDIgGroupItem

Remarks
Retrieves a pointer to the menu for this window. This function should not be used for
child windows because they do not have a menu.

See Also: : :GetMenu

CWnd::GetNextDIgGroupItem
CWnd* GetNextDlgGroupltem(CWnd* pWndCtl, BOOL bPrevious = FALSE) const;

Return Value
Pointer to the previous (or next) control in the group if the member function is
successful.

The returned pointer may be temporary and should not be stored for later use.

Parameters

Remarks

p WndCtl Identifies the control to be used as the starting point for the search.

bPrevious Specifies how the function is to search the group of controls in the dialog
box. If TRUE, the function searches for the previous control in the group; if
FALSE, it searches for the next control in the group.

Searches for the previous (or next) control within a group of controls in a dialog box.
A group of controls begins with a control that was created with the WS_GROUP
style and ends with the last control that was not created with the WS_GROUP style.

By default, the GetNextDlgGroupltem member function returns a pointer to the next
control in the group. If p WndCtl identifies the first control in the group and bPrevious
is TRUE, GetNextDlgGroupltem returns a pointer to the last control in the group.

See Also: CWnd::GetNextDlgTabltem, ::GetNextDlgGroupltem

CW nd: : GetN extD IgTabItem
CWnd* GetNextDlgTabltem(CWnd* p WndCtl, BOOL bPrevious = FALSE) const;

Return Value
Pointer to the previous (or next) control that has the WS_TABSTOP style, if the
member function is successful.

The returned pointer may be temporary and should not be stored for later use.

Parameters
pWndCtl Identifies the control to be used as the starting point for the search.

2132

CWnd::GetOpenClipboardWindow

Remarks

bPrevious Specifies how the function is to search the dialog box. If TRUE, the
function searches for the previous control in the dialog box; if FALSE, it searches
for the next control.

Retrieves a pointer to the first control that was created with the WS_TABSTOP style
and that precedes (or follows) the specified control.

See Also: CWnd::GetNextDlgGroupltem, ::GetNextDlgTabltem

CWnd: : GetNextWindow
CWnd* GetNextWindow(UINT nFlag = GW_HWNDNEXT) const;

Return Value
Identifies the next (or the previous) window in the window manager's list if the
member function is successful.

The returned pointer may be temporary and should not be stored for later use.

Parameters

Remarks

nFlag Specifies whether the function returns a pointer to the next window or
the previous window. It can be either GW _HWNDNEXT, which returns the
window that follows the CWnd object on the window manager's list, or
GW _HWNDPREV, which returns the previous window on the window
manager's list.

Searches for the next (or previous) window in the window manager's list. The
window manager's list contains entries for all top-level windows, their associated
child windows, and the child windows of any child windows.

If CWnd is a top-level window, the function searches for the next (or previous)
top-level window; if CWnd is a child window, the function searches for the next
(or previous) child window.

See Also: ::GetNextWindow

CWnd: : GetOpenClipboardWindow
static CWnd* PASCAL GetOpenClipboardWindow();

Return Value

Remarks

The handle of the window that currently has the Clipboard open if the function is
successful; otherwise NULL.

Retrieves the handle of the window that currently has the Clipboard open.

2133

CWnd::GetOwner

See Also: CWnd::GetClipboardOwner, CWnd::GetClipboardViewer,
CWnd: : Open Clipboard, : : GetOpenClipboardWindow

CWnd: : GetOwner
CWnd* GetOwner() const;

Return Value

Remarks

A pointer to a CWnd object.

Retrieves a pointer to the owner of the window. If the window has no owner, then a
pointer to the parent window object is returned by default. Note that the relationship
between the owner and the owned differs from the parent-child aspect in several
important aspects. For example, a window with a parent is confined to its parent
window's client area. Owned windows can be drawn at any location on the desktop.

The ownership concept of this function is different from the ownership concept of
GetWindow.

See Also: CWnd::GetParent, CWnd::SetOwner

CWnd: : GetParent
CWnd* GetParent() const;

Return ~alue

Remarks

Identifies the parent window if the member function is successful. Otherwise, the
value is NULL, which indicates an error or no parent window.

The returned pointer may be temporary and should not be stored for later use.

Call this function to get a pointer to a child window's parent window (if any).
The GetParent function returns a pointer the immediate parent. In contrast, the
GetParentOwner function returns a pointer to the most immediate parent or owner
window that is not a child window (does not have the WS_CHILD style). If you
have a child window within a child window GetParent and GetParentOwner
return different results.

See Also: CWnd::GetParentOwner, CWnd::GetOwner, CWnd::SetOwner,
CWnd::SetParent, ::GetParent

CW nd: : GetParentFrame
CFrameWnd* GetParentFrame() const;

2134

Return Value

Remarks

A pointer to a frame window if successful; otherwise NULL.

Call this member function to retrieve the parent frame window. The member function
searches up the parent chain until a CFrameWnd (or derived class) object is found.

See Also: CWnd::GetDescendantWindow, CWnd::GetParent,
CFrame Wnd: :GetActive View

CW nd: : GetParentOwner
CWnd* GetParentOwner() const;

Return Value

Remarks

A pointer to a CWnd object. If a CWnd object is not attached to the handle, a
temporary CWnd object is created and attached. The pointer may be temporary and
should not be stored for later use.

Call this member function to get a pointer to a child window's parent window or
owner window. GetParentOwner returns a pointer to the most immediate parent or
owner window that is not a child window (does not have the WS_CHILD style). The
current owner window can be set with SetOwner. By default, the parent of a window
is its owner.

lIn contrast, the GetParent function returns a pointer to the immediate parent, whether
it is a child window or not. If you have a child window within a child window
GetParent and GetParentOwner return different results.

See Also: CWnd::GetParent, CWnd::GetOwner, CWnd::SetOwner,
CWnd::SetParent, ::GetParent

CW nd: : GetProperty
void GetProperty(DISPID dwDispID, VARTYPE vtProp, void* pvProp)const;

Parameters
dwDispID Identifies the property to be retrieved. This value is usually supplied by

Component Gallery.

vtProp Specifies the type of the property to be retrieved. For possible values, see the
Remarks section for COleDispatchDriver::lnvokeHelper.

pvProp Address of the variable that will that will receive the property value. It must
match the type specified by vtProp.

CW nd:: GetProperty

2135

CWnd::GetSafeHwnd

Remarks
Call this member function to get the OLE control property specified by dwDispID.
GetProperty then returns the value through pvProp.

Note This function should be called only on a CWnd object that represents an OLE control.

For more information about using this member function with OLE Control
Containers, see the article "ActiveX Control Containers: Programming ActiveX
Controls in an ActiveX Control Container," in Visual C++ Programmer's Guide
online.

See Also: CWnd::lnvokeHelper, COleDispatchDriver, CWnd::CreateControl

CWnd::GetSafeHwnd
HWND GetSafeHwnd() const;

Return Value
Returns the window handle for a window. Returns NULL if the CWnd is not attached
to a window or if it is used with a NULL CWnd pointer.

CW nd: : GetSafeOwner
CWnd* PASCAL GetSafeOwner(CWnd* pParent, HWND* p WndTop);

Return Value
A pointer to the safe owner for the given window.

Parameters

Remarks

2136

pParent A pointer to a parent CWnd window.

p WndTop A pointer to the window that is currently on top. May
be NULL.

Call this member function to retrieve the owner window that should be used for dialog
boxes or other modal windows. The safe owner is the first non-child parent window
of pParentWnd. If pParentWnd is NULL, the thread's main window (retrieved via
AfxGetMain Wnd) is used to find an owner.

Note The framework itself uses this function to determine the correct owner window for dialog
boxes and property sheets where the owner is not specified.

See Also: AfxGetMain Wnd

CWnd: : GetScrollBarCtrl
virtual CScrollBar* GetScrollBarCtrl(int nBar) const;

Return Value
A sibling scroll-bar control, or NULL if none.

Parameters

Remarks

nBar Specifies the type of scroll bar. The parameter can take one of the following
values:

• SB_HORZ Retrieves the position of the horizontal scroll bar.

• SB_ VERT Retrieves the position of the vertical scroll bar.

Call this member function to obtain a pointer to the specified sibling scroll bar or
splitter window.

This member function does not operate on scroll bars created when the
WS_HSCROLL or WS_ VSCROLL bits are set during the creation of a window.
The CWnd implementation of this function simply returns NULL. Derived classes,
such as CView, implement the described functionality.

See Also: CWnd: :EnableScrollBarCtrl

CWnd: : GetScrollInfo
BOOL GetScrollInfo(int nBar, LPSCROLLINFO IpScrolllnfo,

~ UINT nMask = SIF _ALL);

Return Value
If the message retrieved any values, the return is TRUE. Otherwise, it is FALSE.

Parameters
nBar Specifies whether the scroll bar is a control or part of a window's nonclient

area. If it is part of the nonclient area, nBar also indicates whether the scroll bar
is positioned horizontally, vertically, or both. It must be one of the following:

• SB_BOTH Specifies the horizontal and vertical scroll bars of the window.

• SB_HORZ Specifies that the window is a horizontal scroll bar.

• SB_ VERT Specifies that the window is a vertical scroll bar.

IpScrolllnfo A pointer to a SCROLLINFO structure. See the Win32 SDK
Programmer's Reference for more information about this structure.

nMask Specifies the scroll bar parameters to retrieve. The default specifies a
combination of SIF _PAGE, SIF _POS, SIF _TRACKPOS, and SIF _RANGE.
See SCROLLINFO for more information on the nMask values.

CWnd: :GetScrollInfo

2137

CWnd: : GetScroIlLimit

Remarks
Call this member function to retrieve the information that the SCROLLINFO
structure maintains about a scroll bar. GetScroIllnfo enables applications to use 32-bit
scroll positions.

The SCROLLINFO structure contains information about a scroll bar, including the
minimum and maximum scrolling positions, the page size, and the position of the
scroll box (the thumb). See the SCROLLINFO structure topic in the Win32 SDK
Programmer's Reference for more information about changing the structure defaults.

The MFC Windows message handlers that indicate scroll-bar position,
CWnd::OnHScroIl and CWnd::OnVScroll, provide only 16 bits of position data.
GetScroIllnfo and SetScroIllnfo provide 32 bits of scroll-bar position data. Thus,
an application can call GetScroIllnfo while processing either CWnd::OnHScroll
or CWnd::OnVScroIl to obtain 32-bit scroll-bar position data.

See Also: CScrollBar: : GetScrolllnfo, CWnd: :SetScrolllnfo,
CWnd: :SetScroIlPos, CWnd: :On VScroIl, CWnd: :OnHScroIl, SCROLLINFO

CWnd: : GetScrollLimit
int GetScroIlLimit(int nBar);

Return Value
Specifies the maximum position of a scroll bar if successful; otherwise O.

Parameters

Remarks

nBar Specifies the type of scroll bar. The parameter can take one of the following
values:

• SB_HORZ Retrieves the scroll limit of the horizontal scroll bar.

• SB_ VERT Retrieves the scroll limit of the vertical scroll bar.

Call this member function to retrieve the maximum scrolling position of the scroll bar.

See Also: CScroIlBar::GetScroIlLimit

CW nd: : GetScrollPos
int GetScrollPos(int nBar) const;

Return Value

2138

Specifies the current position of the scroll box in the scroll bar if successful;
otherwise O.

Parameters

Remarks

nBar Specifies the scroll bar to examine. The parameter can take one of the
following values:

• SB_HORZ Retrieves the position of the horizontal scroll bar.

• SB_ VERT Retrieves the position of the vertical scroll bar.

Retrieves the current position of the scroll box of a scroll bar. The current position is a
relative value that depends on the current scrolling range. For example, if the scrolling
range is 50 to 100 and the scroll box is in the middle of the bar, the current position
is 75.

See Also: ::GetScrollPos, CScrollBar::GetScrollPos

CW nd: : GetScrollRange
void GetScrollRange(int nBar, LPINT IpMinPos, LPINT IpMaxPos) const;

Parameters

Remarks

nBar Specifies the scroll bar to examine. The parameter can take one of the
following values:

• SB_HORZ Retrieves the position of the horizontal scroll bar.

• SB_ VERT Retrieves the position of the vertical scroll bar.

IpMinPos Points to the integer variable that is to receive the minimum position.

IpMaxPos Points to the integer variable that is to receive the maximum position.

Copies the current minimum and maximum scroll-bar positions for the given scroll
bar to the locations specified by IpMinPos and IpMaxPos. If CWnd does not have
a scroll bar, then the GetScrollRange member function copies 0 to IpMinPos and
IpMaxPos.

The default range for a standard scroll bar is 0 to 100. The default range for a
scroll-bar control is empty (both values are 0).

See Also: ::GetScrollRange

CWnd::GetStyle
DWORD GetStyle() const;

Return Value
The window's style.

See Also: ::GetWindowLong

CWnd::GetStyle

2139

CWnd::GetSystemMenu

CWnd: : GetSystemMenu
CMenu* GetSystemMenu(BOOL bRevert) const;

Return Value
Identifies a copy of the Control menu if bRevert is FALSE. If bRevert is TRUE,
the return value is undefined.

The returned pointer may be temporary and should not be stored for later use.

Parameters

Remarks

bRevert Specifies the action to be taken. If bRevert is FALSE, GetSystemMenu
returns a handle to a copy of the Control menu currently in use. This copy is
initially identical to the Control menu but can be modified. If bRevert is TRUE,
GetSystemMenu resets the Control menu back to the default state. The previous,
possibly modified, Control menu, if any, is destroyed. The return value is
undefined in this case.

Allows the application to access the Control menu for copying and modification.

Any window that does not use GetSystemMenu to make its own copy of the Control
menu receives the standard Control menu.

The pointer returned by the GetSystemMenu member function can be used with the
CMenu::AppendMenu, CMenu::lnsertMenu, or CMenu::ModifyMenu functions
to change the Control menu.

The Control menu initially contains items identified with various ID values such as
SC_CLOSE, SC_MOVE, and SC_SIZE. Items on the Control menu generate
WM_SYSCOMMAND messages. All predefined Control-menu items have ID
numbers greater than OxFOOO. If an application adds items to the Control menu, it
should use ID numbers less than FOOO.

Windows may automatically dim items on the standard Control menu. CWnd can
carry out its own checking or dimming by responding to the WM_INITMENU
messages, which are sent before any menu is displayed.

See Also: CMenu::AppendMenu, CMenu::lnsertMenu, CMenu::ModifyMenu,
: : GetSystemMenu

CW nd: : GetTopLevelFrame
CFrameWnd* GetTopLeveIFrame() const;

Return Value
Identifies the top-level frame window of the window.

The returned pointer may be temporary and should not be stored for later use.

2140

CW nd: :GetTop Window

Remarks
Call this member function to retrieve the window's top level frame window, if any. If
CWnd has no attached window, or its top-level parent is not a CFrameWnd-derived
object, this function returns NULL.

See Also: CWnd::GetTopLeveIOwner, CWnd::GetTopLeveIParent

CW nd: : GetTopLevelOwner
CWnd* GetTopLeveIOwner() const;

Return Value

Remarks

Identifies the top-level window. The returned pointer may be temporary and should
not be stored for later use.

Call this member function to retrieve the top-level window. The top-level window
is the window that is a child of the desktop. If CWnd has no attached window, this
function returns NULL.

See Also: CWnd::GetTopLeveIFrame, CWnd::GetTopLeveIParent

CW nd: : GetTopLevelParent
CWnd* GetTopLeveIParent() const;

Return Value

Remarks

Identifies the top-level parent window of the window.

The returned pointer may be temporary and should not be stored for later use.

Call this member function to retrieve the window's top-level parent.
GetTopLevelParent is similar to GetTopLevelFrame and GetTopLevelOwner;
however, it ignores the value set as the current owner window.

See Also: CWnd::GetTopLeveIOwner, CWnd::GetTopLeveIFrame,
CWnd::GetOwner, CWnd::SetOwner

CWnd: : GetTop Window
CWnd* GetTopWindow() const;

Return Value
Identifies the top-level child window in a CWnd linked list of child windows. If no
child windows exist, the value is NULL.

2141

CWnd: : GetUpdateRect

Remarks

The returned pointer may be temporary and should not be stored for later use.

Searches for the top-level child window that belongs to CWnd. If CWnd has no
children, this function returns NULL.

See Also: ::GetTopWindow

CWnd: : GetUpdateRect
BOOL GetUpdateRect(LPRECT IpRect, BOOL bErase = FALSE);

Return Value
Specifies the status of the update region. The value is nonzero if the update region is
not empty; otherwise o.
If the IpRect parameter is set to NULL, the return value is nonzero if an update region
exists; otherwise o.

Parameters

Remarks

2142

IpRect Points to a CRect object or RECT structure that is to receive the client
coordinates of the update that encloses the update region.

Set this parameter to NULL to determine whether an update region exists within
the CWnd. If IpRect is NULL, the GetUpdateRect member function returns
nonzero if an update region exists and 0 if one does not. This provides a way to
determine whether a WM_PAINT message resulted from an invalid area. Do not
set this parameter to NULL in Windows version 3.0 and earlier.

bErase Specifies whether the background in the update region is to be erased.

Retrieves· the coordinates of the smallest rectangle that completely encloses the update
region. If CWnd was created with the CS_OWNDC style and the mapping mode is
not MM_TEXT, the GetUpdateRect member function gives the rectangle in logical
coordinates. Otherwise, GetUpdateRect gives the rectangle in client coordinates. If
there is no update region, GetUpdateRect sets the rectangle to be empty (sets all
coordinates to 0).

The bErase parameter specifies whether GetUpdateRect should erase the background
of the update region. If bErase is TRUE and the update region is not empty, the
background is erased. To erase the background, GetUpdateRect sends the
WM_ERASEBKGND message.

The update rectangle retrieved by the BeginPaint member function is identical to that
retrieved by the GetUpdateRect member function.

The BeginPaint member function automatically validates the update region, so any
call to GetUpdateRect made immediately after a call to BeginPaint retrieves an
empty update region.

See Also: CWnd::BeginPaint, ::GetUpdateRect, CWnd::OnPaint,
CWnd: : RedrawWindow

CW nd: : Get U pdateRgn
int GetUpdateRgn(CRgn* pRgn, BOOL bErase = FALSE);

Return Value
Specifies a short-integer flag that indicates the type of resulting region. The value can
take anyone of the following:

• SIMPLEREGION The region has no overlapping borders.

• COMPLEXREGION The region has overlapping borders.

• NULLREGION The region is empty.

• ERROR No region was created.

Parameters

Remarks

pRgn Identifies the update region.

bErase Specifies whether the background will be erased and nonclient areas of child
windows will be drawn. If the value is FALSE, no drawing is done.

Retrieves the update region into a region identified by pRgn. The coordinates of this
region are relative to the upper-left corner (client coordinates).

The BeginPaint member function automatically validates the update region, so any
call to GetUpdateRgn made immediately after a call to BeginPaint retrieves an
empty update region.

See Also: CWnd::BeginPaint, ::GetUpdateRgn

CWnd::GetWindow
CWnd* GetWindow(UINT nCmd) const;

Return Value
Returns a pointer to the window requested, or NULL if none.

The returned pointer may be temporary and should not be stored for later use.

Parameters
nCmd Specifies the relationship between CWnd and the returned window. It can

take one of the following values:

• GW _CHILD Identifies the CWnd first child window.

CWnd::GetWindow

2143

CWnd::GetWindowContextHelpld

• GW _HWNDFIRST If CWnd is a child window, returns the first sibling
window. Otherwise, it returns the first top-level window in the list.

• GW _HWNDLAST If CWnd is a child window, returns the last sibling
window. Otherwise, it returns the last top-level window in the list.

• GW_HWNDNEXT Returns the next window on the window manager's list.

• GW _HWNDPREV Returns the previous window on the window manager's
list.

• GW_OWNER Identifies the CWnd owner.

See Also: CWnd::GetParent, CWnd::GetNextWindow, ::GetWindow

CW nd: : Get WindowContextHelpId
DWORD GetWindowContextHelpld() const;

Return Value

Remarks

The help context identifier. Returns 0 if the window has none.

Call this member function to retrieve the help context identifier, if any, associated with
the window.

CWnd: : GetWindow DC
CDC* GetWindowDC();

Return Value

Remarks

2144

Identifies the display context for the given window if the function is successful;
otherwise NULL.

The returned pointer may be temporary and should not be stored for later use.
ReleaseDC should be called once for each successful call to GetWindowDC.

Retrieves the display context for the entire window, including caption bar, menus, and
scroll bars. A window display context permits painting anywhere in CWnd, since the
origin of the context is the upper-left comer of CWnd instead of the client area.

Default attributes are assigned to the display context each time it retrieves the context.
Previous attributes are lost.

GetWindowDC is intended to be used for special painting effects within the CWnd
non client area. Painting in nonclient areas of any window is not recommended.

CWnd: :GetWindowRect

The GetSystemMetrics Windows function can be used to retrieve the dimensions of
various parts of the nonc1ient area, such as the caption bar, menu, and scroll bars.

After painting is complete, the ReleaseDC member function must be called to release
the display context. Failure to release the display context will seriously affect painting
requested by applications due to limitations on the number of device contexts that can
be open at the same time.

See Also: ::GetSystemMetrics, CWnd::ReleaseDC, ::GetWindowDC,
CWnd::GetDC, CWindowDC

CW nd: : Get Window Placement
BOOL GetWindowPlacement(WINDOWPLACEMENT* lpwndpl) const;

Return Value
Nonzero if the function is successful; otherwise O.

Parameters

Remarks

lpwndpl Points to the WINDOWPLACEMENT structure that receives the show
state and position information.

Retrieves the show state and the normal (restored), minimized, and maximized
positions of a window.

The flags member of the WINDOWPLACEMENT structure retrieved by this
function is always O. If CWnd is maximized, the showCmd member of
WINDOWPLACEMENT is SW _SHOWMAXIMIZED. If the window is
minimized, it is SW _SHOWMINIMIZED. It is SW _SHOWNORMAL otherwise.

See Also: CWnd::SetWindowPlacement, ::GetWindowPlacement

CWnd: : GetWindow Rect
void GetWindowRect(LPRECT lpRect) const;

Parameters

Remarks

lpRect Points to a CRect object or a RECT structure that will receive the screen
coordinates of the upper-left and lower-right comers.

Copies the dimensions of the bounding rectangle of the CWnd object to the structure
pointed to by lpRect. The dimensions are given in screen coordinates relative to the
upper-left comer of the display screen. The dimensions of the caption, border, and
scroll bars, if present, are included.

2145

CWnd::GetWindowRgn

See Also: CWnd::GetClientRect, CWnd::MoveWindow,
CWnd::SetWindowPos, ::GetWindowRect

CWnd:: GetWindowRgn
int GetWindowRgn(HRGN hRgn)const;

Return Value
The return value specifies the type of the region that the function obtains. It can be
one of the following values:

• NULLREGION The region is empty.

• SIMPLEREGION The region is a single rectangle.

• COMPLEXREGION The region is more than one rectangle.

• ERROR An error occurred; the region is unaffected.

Parameters

Remarks

hRgn A handle to a window region.

Call this member function to get the window region of a window. The window region
determines the area within the window where the operating system permits drawing.
The operating system does not display any portion of a window that lies outside of
the window region.

The coordinates of a window's window region are relative to the upper-left corner
of the window, not the client area of the window.

To set the window region of a window, call CWnd::SetWindowRgn.

See Also: CWnd::SetWindowRgn

CWnd: : GetWindowText
int GetWindowText(LPTSTR lpszStringBuf, int nMaxCount) const;
void GetWindowText(CString& rString) const;

Return Value
Specifies the length, in bytes, of the copied string, not including the terminating
null character. It is 0 if CWnd has no caption or if the caption is empty.

Parameters

2146

lpszStringBuJ Points to the buffer that is to receive the copied string of the
window's title.

Remarks

nMaxCount Specifies the maximum number of characters to be copied to the buffer.
If the string is longer than the number of characters specified in nMaxCount, it is
truncated.

rString A CString object that is to receive the copied string of the window's title.

Copies the CWnd caption title (if it has one) into the buffer pointed to by
lpszStringBujor into the destination string rString. If the CWnd object is a control,
the GetWindowText member function copies the text within the control instead of
copying the caption.

This member function causes the WM_GETTEXT message to be sent to the CWnd
object.

See Also: CWnd::SetWindowText, WM_GETTEXT,
CWnd: : GetWindowTextLength

CW nd: : Get WindowTextLength
int GetWindowTextLength() const;

Return Value

Remarks

Specifies the text length, not including any null-termination character. The value is 0
if no such text exists.

Returns the length of the CWnd object caption title. If CWnd is a control, the
GetWindowTextLength member function returns the length of the text within the
control instead of the caption.

This member function causes the WM_GETTEXTLENGTH message to be sent to
the CWnd object.

See Also: ::GetWindowTextLength, WM_GETTEXTLENGTH,
CWnd: : GetWindowText

CWnd::HideCaret

Remarks

void HideCaret();

Hides the caret by removing it from the display screen. Although the caret is no longer
visible, it can be displayed again by using the ShowCaret member function. Hiding
the caret does not destroy its current shape.

Hiding is cumulative. If HideCaret has been called five times in a row, the
ShowCaret member function must be called five times before the caret will be shown.

CWnd::HideCaret

2147

CWnd: :HiliteMenuItem

See Also: CWnd::ShowCaret, ::HideCaret

CWnd: : HiliteMenuItem
BOOL HiliteMenultem(CMenu* pMenu, UINT nIDHiliteltem, UINT nHilite);

Return Value
Specifies whether the menu item was highlighted. Nonzero if the item was
highlighted; otherwise O.

Parameters

Remarks

pMenu Identifies the top-level menu that contains the item to be highlighted.

nIDHiliteltem Specifies the menu item to be highlighted, depending on the value of
the nHilite parameter.

nHilite Specifies whether the menu item is highlighted or the highlight is removed.
It can be a combination of MF _HILITE or MF _UNHILITE with
MF _BYCOMMAND or MF _BYPOSITION. The values can be combined
using the bitwise OR operator. These values have the following meanings:

• MF _BY COMMAND Interprets nIDHiliteItem as the menu-item ID (the
default interpretation).

• MF _BYPOSITION Interprets nIDHiliteltem as the zero-based offset of the
menu item.

• MF _HILITE Highlights the item. If this value is not given, the highlight is
removed from the item.

• MF _UNHILITE Removes the highlight from the item.

Highlights or removes the highlight from a top-level (menu-bar) menu item.

The MF _HILITE and MF _UNHILITE flags can be used only with this member
function; they cannot be used with the CMenu::ModifyMenu member function.

See Also: CMenu::ModifyMenu, ::HiliteMenultem

CWnd: : Invalidate
void Invalidate(BOOL bErase = TRUE);

Parameters

Remarks

2148

bErase Specifies whether the background within the update region is to be erased.

Invalidates the entire client area of CWnd. The client area is marked for painting
when the next WM_PAINT message occurs. The region can also be validated before

CWnd::lnvalidateRect

a WM_PAINT message occurs by the ValidateRect or ValidateRgn member
function.

The bErase parameter specifies whether the background within the update area is to
be erased when the update region is processed. If bErase is TRUE, the background
is erased when the BeginPaint member function is called; if bErase is FALSE, the
background remains unchanged. If bErase is TRUE for any part of the update region,
the background in the entire region, not just in the given part, is erased.

Windows sends a WM_PAINT message whenever the CWnd update region is not
empty and there are no other messages in the application queue for that window.

See Also: CWnd::BeginPaint, CWnd::ValidateRect, CWnd::ValidateRgn,
: :InvalidateRect

CW nd: : InvalidateRect
void InvalidateRect(LPCRECT IpRect, BOOL bErase = TRUE);

Parameters

Remarks

IpRect Points to a CRect object or a RECT structure that contains the rectangle
(in client coordinates) to be added to the update region. If IpRect is NULL, the
entire client area is added to the region.

bErase Specifies whether the background within the update region is to be erased.

Invalidates the client area within the given rectangle by adding that rectangle to the
CWnd update region. The invalidated rectangle, along with all other areas in the
update region, is marked for painting when the next WM_PAINT message is sent.
The invalidated areas accumulate in the update region until the region is processed
when the next WM_PAINT call occurs, or until the region is validated by the
ValidateRect or ValidateRgn member function.

The bErase parameter specifies whether the background within the update area is to
be erased when the update region is processed. If bErase is TRUE, the background
is erased when the BeginPaint member function is called; if bErase is FALSE, the
background remains unchanged. If bErase is TRUE for any part of the update region,
the background in the entire region is erased, not just in the given part.

Windows sends a WM_PAINT message whenever the CWnd update region is not
empty and there are no other messages in the application queue for that window.

See Also: CWnd: :BeginPaint, CWnd:: ValidateRect, CWnd:: ValidateRgn,
::InvalidateRect

2149

CWnd: : InvalidateRgn

CWnd: : InvalidateRgn
void InvalidateRgn(CRgn* pRgn, BOOL bErase = TRUE);

Parameters

Remarks

pRgn A pointer to a CRgn object that identifies the region to be added to the update
region. The region is assumed to have client coordinates. If this parameter is
NULL, the entire client area is added to the update region.

bErase Specifies whether the background within the update region is to be erased.

Invalidates the client area within the given region by adding it to the current update
region of CWnd. The invalidated region, along with all other areas in the update
region, is marked for painting when the WM_PAINT message is next sent. The
invalidated areas accumulate in the update region until the region is processed when
a WM_PAINT message is next sent, or until the region is validated by the
ValidateRect or ValidateRgn member function.

The bErase parameter specifies whether the background within the update area is to
be erased when the update region is processed. If bErase is TRUE, the background
is erased when the BeginPaint member function is called; if bErase is FALSE, the
background remains unchanged. If bErase is TRUE for any part of the update region,
the background in the entire region, not just in the given part, is erased.

Windows sends a WM_PAINT message whenever the CWnd update region is not
empty and there are no other messages in the application queue for that window.

The given region must have been previously created by one of the region functions.

See Also: CWnd: :BeginPaint, CWnd:: ValidateRect, CWnd:: ValidateRgn,
: : InvalidateRgn

CW nd: : InvokeHelper
void InvokeHelper(DISPID dwDispID, WORD wFlags, VARTYPE vtRet,

"+ void* pvRet, const BYTE* pbParamlnfo, ...);
throw(COleException);
throw(COleDispatchException);

Parameters

2150

dwDispID Identifies the method or property to be invoked. This value is usually
supplied by Component Gallery.

wFlags Flags describing the context of the call to IDispatch::Invoke. For possible
wFlags values, see IDispatch::Invoke in the Win32 SDK OLE Programmer's
Reference.

vtRet Specifies the type of the return value. For possible values, see the Remarks
section for COleDispatchDriver::InvokeHelper.

Remarks

pvRet Address of the variable that will that will receive the property value or return
value. It must match the type specified by vtRet.

pbParamlnfo Pointer to a null-terminated string of bytes specifying the types of the
parameters following pbParamlnfo. For possible values, see the Remarks section
for COleDispatchDriver:: InvokeHelper.

Variable List of parameters, of types specified in pbParamlnfo.

Call this member function to invoke the OLE control method or property specified by
dwDispID, in the context specified by wFlags. The pbParamlnfo parameter specifies
the types of the parameters passed to the method or property. The variable list of
arguments is represented by ... in the syntax declaration.

This function converts the parameters to VARIANTARG values, then invokes the
IDispatch::Invoke method on the OLE control. If the call to IDispatch::Invoke
fails, this function will throw an exception. If the SCODE (status code) returned
by IDispatch::Invoke is DISP _E_EXCEPTION, this function throws a
COleException object, otherwise it throws a COleDispatchException.

Note This function should be called only on a CWnd object that represents an OLE control.

For more information about using this member function with OLE Control
Containers, see the article "ActiveX Control Containers: Programming ActiveX
Controls in an ActiveX Control Container," in Visual C++ Programmer's Guide
online.

See Also: CWnd::GetProperty, CWnd::SetProperty, COleDispatchDriver,
CWnd: : Create Control

CWnd::IsChild
BOOL IsChild(const CWnd* p Wnd) const;

Return Value
Specifies the outcome of the function. The value is nonzero if the window identified
by p Wnd is a child window of CWnd; otherwise O.

Parameters

Remarks

p Wnd Identifies the window to be tested.

Indicates whether the window specified by p Wnd is a child window or other direct
descendant of CWnd. A child window is the direct descendant of CWnd if the
CWnd object is in the chain of parent windows that leads from the original pop-up
window to the child window.

See Also: ::IsChiid

CWnd::IsChild

2151

CWnd: :IsDialogMessage

CWnd: :IsDialogMessage
BOOL IsDialogMessage(LPMSG IpMsg);

Return Value
Specifies whether the member function has processed the given message. It is
nonzero if the message has been processed; otherwise O. If the return is 0, call the
CWnd::PreTranslateMessage member function of the base class to process the
message. In an override of the CWnd: :PreTranslateMessage member function
the code looks like this:

BOOl CMyDlg::PreTranslateMessage(msg)
{

if(IsDialogMessage(msg))
return TRUE;

else
return CWnd::PreTranslateMessage(msg);

Parameters

Remarks

IpMsg Points to an MSG structure that contains the message to be checked.

Call this member function to determine whether the given message is intended for
a modeless dialog box; if it is, this function processes the message. When the
IsDialogMessage function processes a message, it checks for keyboard messages and
converts them to selection commands for the corresponding dialog box. For example,
the TAB key selects the next control or group of controls, and the DOWN ARROW
key selects the next control in a group.

You must not pass a message processed by IsDialogMessage to the
::TranslateMessage or ::DispatchMessage Windows functions, because it has
already been processed.

See Also: ::DispatchMessage, ::TranslateMessage, ::GetMessage,
CWnd: :PreTranslateMessage, : :IsDialogMessage

CWnd: : IsDIgButtonChecked
UINT IsDlgButtonChecked(int nIDButton) const;

Return Value
Nonzero if the given control is checked, and 0 if it is not checked. Only radio buttons
and check boxes can be checked. For three-state buttons, the return value can be 2 if
the button is indeterminate. This member function returns 0 for a pushbutton.

Parameters
nIDButton Specifies the integer identifier of the button control.

2152

CWnd::IsWindowVisible

Remarks
Determines whether a button control has a check mark next to it. If the button is a
three-state control, the member function determines whether it is dimmed, checked,
or neither.

See Also: ::IsDIgButtonChecked, CButton::GetCheck

CWnd::IsIconic
BOOL IsIconic() const;

Return Value

Remarks

Nonzero if CWnd is minimized; otherwise O.

Specifies whether CWnd is minimized (iconic).

See Also: ::IsIconic

CWnd: :Is WindowEnabled
BOOL IsWindowEnabled() const;

Return Value

Remarks

Nonzero if CWnd is enabled; otherwise O.

Specifies whether CWnd is enabled for mouse and keyboard input.

See Also: ::IsWindowEnabled

CWnd: :Is Window Visible
BOOL IsWindowVisible() const;

Return Value

Remarks

Nonzero if CWnd is visible (has the WS_ VISIBLE style bit set, and parent window
is visible). Because the return value reflects the state of the WS_ VISIBLE style bit,
the return value may be nonzero even though CWnd is totally obscured by other
windows.

Determines the visibility state of the given window.

A window possesses a visibility state indicated by the WS_ VISIBLE style bit. When
this style bit is set with a call to the ShowWindow member function, the window is

2153

CWnd::IsZoomed

displayed and subsequent drawing to the window is displayed as long as the window
has the style bit set.

Any drawing to a window that has the WS_ VISIBLE style will not be displayed if the
window is covered by other windows or is clipped by its parent window.

See Also: CWnd::ShowWindow, ::IsWindowVisible

CWnd: :IsZoomed
BOOL IsZoomed() const;

Return Value
Nonzero if CWnd is maximized; otherwise O.

Remarks
Determines whether CWnd has been maximized.

See Also: : :IsZoomed

CWnd::KillTimer
BOOL KillTimer(int nIDEvent);

Return Value
Specifies the outcome of the function. The value is nonzero if the event was killed.
It is 0 if the KillTimer member function could not find the specified timer event.

Parameters

Remarks

nIDEvent The value of the timer event passed to SetTimer.

Kills the timer event identified by nIDEvent from the earlier call to SetTimer. Any
pending WM_TIMER messages associated with the timer are removed from the
message queue.

See Also: CWnd::SetTimer, ::KillTimer

CWnd: : LockWindowUpdate
BOOL LockWindowUpdate();

Return Value

2154

Nonzero if the function is successful. It is 0 if a failure occurs or if the
LockWindowUpdate function has been used to lock another window.

CW nd: :Map Window Points

Remarks
Disables drawing in the given window. A locked window cannot be moved.
Only one window can be locked at a time. To unlock a window locked with
LockWindowUpdate, call UnlockWindowUpdate.

If an application with a locked window (or any locked child windows) calls the
GetDC, GetDCEx, or BeginPaint Windows function, the called function returns a
device context whose visible region is empty. This will occur until the application
unlocks the window by calling the LockWindowUpdate member function.

While window updates are locked, the system keeps track of the bounding rectangle
of any drawing operations to device contexts associated with a locked window. When
drawing is reenabled, this bounding rectangle is invalidated in the locked window and
its child windows to force an eventual WM_PAINT message to update the screen.
If no drawing has occurred while the window updates were locked, no area is
invalidated.

The LockWindowUpdate member function does not make the given window
invisible and does not clear the WS_ VISIBLE style bit.

See Also: CWnd::GetDCEx, ::LockWindowUpdate

CWnd: :Map WindowPoints
void MapWindowPoints(CWnd* pwndTo, LPRECT lpRect) const;
void MapWindowPoints(CWnd* pwndTo, LPPOINT lpPoint, UINT nCount) const;

Parameters

Remarks

pwndTo Identifies the window to which points are converted. If this parameter
is NULL, the points are converted to screen coordinates.

lpRect Specifies the rectangle whose points are to be converted. The first
version of this function is available only for Windows 3.1 and later.

ipPoint A pointer to an array of POINT structures that contain the set of
points to be converted.

nCount Specifies the number of POINT structures in the array pointed to
by lpPoint.

Converts (maps) a set of points from the coordinate space of the CWnd to the
coordinate space of another window.

See Also: CWnd::ClientToScreen, CWnd::ScreenToClient, ::MapWindowPoints

2155

CWnd::MessageBox

CWnd: :MessageBox
int MessageBox(LPCTSTR IpszText, LPCTSTR IpszCaption = NULL,

1+ UINT nType = MB_OK);

Return Value
Specifies the outcome of the function. It is 0 if there is not enough memory to create
the message box.

Parameters

Remarks

IpszText Points to a CString object or null-terminated string containing the message
to be displayed. .

IpszCaption Points to a CString object or null-terminated string to be used for the
message-box caption. If IpszCaption is NULL, the default caption "Error" is used.

nType Specifies the contents and behavior of the message box.

Creates and displays a window that contains an application-supplied message and
caption, plus a combination of the predefined icons and pushbuttons described in the
Message-Box Styles list. Use the global function AfxMessageBox instead of this
member function to implement a message box in your application.

The following shows the various system icons that can be used in a message box:

MB_ICONHAND, MB_ICONSTOP, and MB_ICONERROR

MB_ICONQUESTION

MB_ICONEXCLAMATION and MB_ICONWARNING

MB_ICONASTERISK and MB_ICONINFORMATION

See Also: : :MessageBox, AfxMessageBox

CWnd: : ModifyStyle
BOOL ModifyStyle(DWORD dwRemove, DWORD dwAdd, UINT nFlags = 0);

Return Value
Nonzero if style was successfully modified; otherwise, O.

Parameters

2156

dwRemove Specifies window styles to be removed during style modification.

dwAdd Specifies window styles to be added during style modification.

nFlags Flags to be passed to SetWindowPos, or zero if SetWindowPos should not
be called. The default is zero. See the Remarks section for a list of preset flags.

CWnd::ModifyStyleEx

Remarks
Call this member function to modify a window's style. Styles to be added or removed
can be combined by using the bitwise OR (I) operator. See the topics "General
Window Styles" and ::CreateWindow in the Win32 SDK Programmer's Reference
for information about the available window styles.

If nFlags is nonzero, ModifyStyle calls the Windows API function ::SetWindowPos
and redraws the window by combining nFlags with the following four preset flags:

• SWP _NOSIZE Retains the current size.

• SWP _NOMOVE Retains the current position.

• SWP _NOZORDER Retains the current Z order.

• SWP _NOACTIVATE Does not activate the window.

To modify a window's extended styles, see ModifyStyleEx.

See Also: SetWindowPos, CWnd::ModifyStyleEx, "General Window Styles,"
: :SetWindowPos

CWnd::ModifyStyleEx
BOOL ModifyStyleEx(DWORD dwRemove, DWORD dwAdd, UINT nFlags = 0);

Return Value
Nonzero if style was successfully modified; otherwise, O.

Parameters

Remarks

dwRemove Specifies extended styles to be removed during style modification.

dwAdd Specifies extended styles to be added during style modification.

nFlags lags to be passed to SetWindowPos, or zero if SetWindowPos should not be
called. The default is zero. See the Remarks section for a list of preset flags.

Call this member function to modify a window's extended style. Styles to be added
or removed can be combined by using the bitwise OR (I) operator. See the topics
"Extended Window Styles" in this book and ::CreateWindowEx in the Win32 SDK
Programmer's Reference for information about the available extended styles

If nFlags is nonzero, ModifyStyleEx calls the Windows API function
::SetWindowPos and redraws the window by combining nFlags with the following
four preset flags:

• SWP _NOSIZE Retains the current size.

• SWP _NOMOVE Retains the current position.

• SWP _NOZORDER Retains the current Z order.

• SWP _NOACTIVATE Does not activate the window.

2157

CWnd::MoveWindow

To modify windows using regular window styles, see ModifyStyle.

See Also: CWnd::ModifyStyle, CreateWindowEx

CWnd: :Move Window
void MoveWindow(int x, int y, int nWidth, int nHeight, BOOL bRepaint = TRUE);
void MoveWindow(LPCRECT IpRect, BOOL bRepaint = TRUE);

Parameters

Remarks

x Specifies the new position of the left side of the CWnd.

y Specifies the new position of the top of the CWnd.

n Width Specifies the new width of the CWnd.

nHeight Specifies the new height of the CWnd.

bRepaint Specifies whether CWnd is to be repainted. If TRUE, CWnd receives a
WM_PAINT message in its OnPaint message handler as usual. If this parameter
is FALSE, no repainting of any kind occurs. This applies to the client area, to the
nonclient area (including the title and scroll bars), and to any part of the parent
window uncovered as a result of Cwnd's move. When this parameter is FALSE,
the application must explicitly invalidate or redraw any parts of CWnd and parent
window that must be redrawn.

IpRect The CRect object or RECT structure that specifies the new size and position.

Changes the position and dimensions.

For a top-level CWnd object, the x and y parameters are relative to the upper-left
comer of the screen. For a child CWnd object, they are relative to the upper-left
comer of the parent window's client area.

The MoveWindow function sends the WM_GETMINMAXINFO message.
Handling this message gives CWnd the opportunity to modify the default values for
the largest and smallest possible windows. If the parameters to the MoveWindow
member function exceed these values, the values can be replaced by the minimum or
maximum values in the WM_GETMINMAXINFO handler.

See Also: CWnd::SetWindowPos, WM_GETMINMAXINFO, ::MoveWindow

CW nd: : OnActi vate
afx_msg void OnActivate(UINT nState, CWnd* p WndOther, BOOL bMinimized);

Parameters

2158

nState Specifies whether the CWnd is being activated or deactivated. It can be one
of the following values:

CWnd::OnActivateApp

Remarks

• WA_INACTIVE The window is being deactivated.

• WA_ACTIVE The window is being activated through some method other
than a mouse click (for example, by use of the keyboard interface to select the
window).

• WA_CLICKACTIVE The window is being activated by a mouse click.

pWndOther Pointer to the CWnd being activated or deactivated. The pointer can
be NULL, and it may be temporary.

bMinimized Specifies the minimized state of the CWnd being activated or
deactivated. A value of TRUE indicates the window is minimized.

If TRUE, the CWnd is being activated; otherwise deactivated.

The framework calls this member function when a CWnd object is being activated
or deactivated. First, the main window being deactivated has OnActivate called,
and then the main window being activated has OnActivate called.

If the CWnd object is activated with a mouse click, it will also receive an
OnMouseActivate member function call.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: WM_MOUSEACTIVATE, WM_NCACTIVATE, WM_ACTIVATE

CW nd: : OnActi vateApp
afx_msg void OnActivateApp(BOOL bActive, HTASK hTask);

Parameters

Remarks

bActive Specifies whether the CWnd is being activated or deactivated. TRUE means
the CWnd is being activated. FALSE means the CWnd is being deactivated.

hTask Specifies a task handle. If bActive is TRUE, the handle identifies the task that
owns the CWnd being deactivated. If bActive is FALSE, the handle identifies the
task that owns the CWnd being activated.

The framework calls this member function to all top-level windows of the task being
activated and for all top-level windows of the task being deactivated.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by

2159

CWnd: :OnAmbientProperty

the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: WM_ACTIVATEAPP

CWnd: :OnArnbientProperty
BOOL OnAmbientProperty(COleControlSite* pSite, DISPID dispid, VARIANT* pvar)

Return Value
TRUE if the ambient property is supported; FALSE if not.

Parameters

Remarks

pSite Pointer to the site of the control that requested the ambient property.

dispid The dispatch ID of the requested ambient property.

pvar Pointer to a caller-allocated VARIANT structure, through which the ambient
property's value will be returned.

The framework calls this member function to obtain ambient property values from a
window that contains OLE controls. Override this function to alter the default ambient
property values returned by an OLE control container to its controls. Any ambient
property requests not handled by an overriding function should be forwarded to the
base class implementation.

CWnd: :OnAskCbForrnatN arne
afx_msg void OnAskCbFormatName(UINT nMaxCount, LPTSTR IpszString);

Parameters

Remarks

2160

nMaxCount Specifies the maximum number of bytes to copy.

IpszString Points to the buffer where the copy of the format name is to be stored.

The framework calls this member function when the Clipboard contains a data handle
for the CF _OWNERDISPLAY format (that is, when the Clipboard owner will
display the Clipboard contents). The Clipboard owner should provide a name for its
format.

Override this member function and copy the name of the CF _OWNERDISPLAY
format into the specified buffer, not exceeding the maximum number of bytes
specified.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by

CWnd: :OnCaptureChanged

the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: WM_ASKCBFORMATNAME

CWnd: :OnCancelMode

Remarks

afx_msg void OnCanceIMode();

The framework calls this member function to inform CWnd to cancel any internal
mode. If the CWnd object has the focus, its OnCancelMode member function is
called when a dialog box or message box is displayed. This gives the CWnd the
opportunity to cancel modes such as mouse capture.

The default implementation responds by calling the ReleaseCapture Windows
function. Override this member function in your derived class to handle other modes.

See Also: CWnd: :Default, : :ReleaseCapture, WM_ CAN CELMODE

CW nd: : OnCaptureChanged
afx_msg void OnCaptureChanged(CWnd* pWnd);

Parameters

Remarks

p Wnd A pointer to the window to gain mouse capture

The framework calls this member function to notify the window that is losing the
mouse capture.

A window receives this message even if it calls ::ReleaseCapture itself. An
application should not attempt to set the mouse capture in response to this message.
When it receives this message, a window should redraw itself, if necessary, to reflect
the new mouse-capture state.

See the Win32 SDK Programmer's Reference for information on the ReleaseCapture
Windows function.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: WM_CAPTURECHANGED

2161

CWnd: :OnChangeCbChain

CWnd:: OnChangeCbChain
afx_msg void OnChangeCbChain(HWND h WndRemove, HWND h WndAfter);

Parameters

Remarks

h WndRemove Specifies the window handle that is being removed from the
Clipboard-viewer chain.

h WndAfter Specifies the window handle that follows the window being removed
from the Clipboard-viewer chain.

The framework calls this member function for each window in the Clipboard-viewer
chain to notify it that a window is being removed from the chain.

Each CWnd object that receives an OnChangeCbChain call should use the
SendMessage Windows function to send the WM_ CHANGECBCHAIN message
to the next window in the Clipboard-viewer chain (the handle returned by
SetClipboardViewer). If h WndRemove is the next window in the chain, the window
specified by h WndAfter becomes the next window, and Clipboard messages are passed
on to it.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: CWnd: :ChangeClipboardChain, : :SendMessage

CWnd::OnChar
afx_msg void OnChar(DINT nChar, DINT nRepCnt, DINT nFZags);

Parameters

2162

nChar Contains the character code value of the key.

nRepCnt Contains the repeat count, the number of times the keystroke is repeated
when user holds down the key.

nFZags Contains the scan code, key-transition code, previous key state, and context
code, as shown in the following list:

Value Description of nFlags

0-7 Scan code (OEM-dependent value).

8 Extended key, such as a function key or a key on the numeric keypad
(1 if it is an extended key; otherwise 0).

9-10 Not used.

CWnd::OnCharToItem

Remarks

(continued)

Value Description of nFlags

11-12 Used internally by Windows.

13 Context code (1 if the AL T key is held down while the key is pressed;
otherwise 0).

14 Previous key state (1 if the key is down before the call; 0 if the key is up).

15 Transition state (1 if the key is being released; 0 if the key is being pressed).

The framework calls this member function when a keystroke translates to a nonsystem
character. This function is called before the OnKeyUp member function and after the
OnKeyDown member function are called. On Char contains the value of the
keyboard key being pressed or released.

Because there is not necessarily a one-to-one correspondence between keys pressed
and On Char calls generated, the information in nFlags is generally not useful to
applications. The information in nFlags applies only to the most recent call to the
OnKeyUp member function or the OnKeyDown member function that precedes the
call to OnChar.

For IBM Enhanced 101- and 102-key keyboards, enhanced keys are the right ALT
and the right CTRL keys on the main section of the keyboard; the INS, DEL, HOME,
END, PAGE UP, PAGE DOWN, and arrow keys in the clusters to the left of the
numeric keypad; and the slash (/) and ENTER keys in the numeric keypad. Some
other keyboards may support the extended-key bit in nFlags.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: WM_CHAR, WM_KEYDOWN, WM_KEYUP

CWnd: :OnCharToItem
afx_msg int OnCharToltem(UINT nChar, CListBox* pListBox, UINT nlndex);

Return Value
The framework calls this member function to specify the action that the application
performed in response to the call. A return value of -2 indicates that the application
handled all aspects of selecting the item and wants no further action by the list box.
A return value of -1 indicates that the list box should perform the default action in
response to the keystroke. A return value of 0 or greater specifies the zero-based
index of an item in the list box and indicates that the list box should perform the
default action for the keystroke on the given item.

2163

CW nd:: OnChildActi vate

Parameters

Remarks

nChar Specifies the value of the key pressed by the user.

pListBox Specifies a pointer to the list box. It may be temporary.

nlndex Specifies the current caret position.

Called when a list box with the LBS_ WANTKEYBOARDINPUT style sends its
owner a WM_ CHARTOITEM message in response to a WM_ CHAR message.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: WM_CHAR, WM_CHARTOITEM

CWnd: :OnChildActivate

Remarks

afx_msg void OnChildActivate();

If the CWnd object is a multiple document interface (MDI) child window,
OnChildActivate is called by the framework when the user clicks the window's title
bar or when the window is activated, moved, or sized.

See Also: CWnd::SetWindowPos, WM_CHILDACTIVATE

CWnd::OnChildNotify
virtual BOOL OnChildNotify(UINT message, WPARAM wParam,

... LPARAM IParam, LRESULT* pLResult);

Return Value
Nonzero if this window is responsible for handling the message sent to its parent;
otherwise O.

Parameters
message A Windows message number sent to a parent window.

wParam The wparam associated with the message.

IParam The lparam associated with the message.

pLResult A pointer to a value to be returned from the parent's window procedure.
This pointer will be NULL if no return value is expected.

2164

Remarks
This member function is called by this window's parent window when it receives a
notification message that applies to this window.

Never call this member function directly.

The default implementation of this member function returns 0, which means that the
parent should handle the message.

Override this member function to extend the manner in which a control responds to
notification messages.

CWnd: :OnClose

Remarks

afx_msg void OnClose();

The framework calls this member function as a signal that the CWnd or an
application is to terminate. The default implementation calls DestroyWindow.

See Also: CWnd::DestroyWindow, WM_CLOSE

CWnd: :OnCommand
virtual BOOL OnCommand(WPARAM wParam, LPARAM lParam);

Return Value
An application returns nonzero if it processes this message; otherwise O.

Parameters

Remarks

wParam The low-order word of wParam identifies the command ID of the menu
item or control. The high-order word of wParam specifies the notification message
if the message is from a control. If the message is from an accelerator, the
high-order word is 1. If the message is from a menu, the high-order word is O.

IParam Identifies the control that sends the message if the message is from a control.
Otherwise, lParam is O.

The framework calls this member function when the user selects an item from a menu,
when a child control sends a notification message, or when an accelerator keystroke is
translated.

OnCommand processes the message map for control notification and
ON_ COMMAND entries, and calls the appropriate member function.

Override this member function in your derived class to handle the WM_COMMAND
message. An override will not process the message map unless the base class
OnCommand is called.

CWnd::OnCommand

2165

CWnd::OnCompacting

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: WM_COMMAND, CCmdTarget::OnCmdMsg

CWnd: :OnCompacting
afx_msg void OnCompacting(UINT nCpuTime);

Parameters

Remarks

nCpuTime Specifies the ratio of CPU time currently spent by Windows compacting
memory to CPU time spent performing other operations. For example, 8000h
represents 50 percent of CPU time spent compacting memory.

The framework calls this member function for all top-level windows when Windows
detects that more than 12.5 percent of system time over a 30- to 60-second interval is
being spent compacting memory. This indicates that system memory is low.

When a CWnd object receives this call, it should free as much memory as possible,
taking into account the current level of activity of the application and the total number
of applications running in Windows. The application can call the Windows function to
determine how many applications are running.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: WM_COMPACTING

CWnd: :OnCompareItem
afx_msg int OnCompareItem(int nIDCtl,

... LPCOMPAREITEMSTRUCT lpCompareltemStruct);

Return Value
Indicates the relative position of the two items. It may be any of the following values:

Value Meaning

-1 Item 1 sorts before item 2.

o Item 1 and item 2 sort the same.

Item 1 sorts after item 2.

2166

CW nd: :OnContextMenu

Parameters

Remarks

IlIDCtl The identifier of the control that sent the WM_COMPAREITEM message.

IpCampareltemStruct Contains a long pointer to a COMPAREITEMSTRUCT data
structure that contains the identifiers and application-supplied data for two items in
the combo or list box.

The framework calls this member function to specify the relative position of a new
item in a child sorted owner-draw combo or list box.

If a combo or list box is created with the CBS_SORT or LBS_SORT style, Windows
sends the combo-box or list-box owner a WM_COMPAREITEM message whenever
the application adds a new item.

Two items in the combo or list box are reformed in a COMPAREITEMSTRUCT
structure pointed to by IpCampareltemStruct. OnCompareItem should return a value
that indicates which of the items should appear before the other. Typically, Windows
makes this call several times until it determines the exact position for the new item.

If the hwndltem member of the COMPAREITEMSTRUCT structure belongs to a
CListBox or CComboBox object, then the CompareItem virtual function of the
appropriate class is called. Override CComboBox::CompareItem or
CListBox::CompareItem in your derived CListBox or CComboBox class to do the
item comparison.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: COMPAREITEMSTRUCT, WM_COMPAREITEM,
CListBox: :CompareItem, CComboBox: :CompareItem

CWnd: :OnContextMenu
afx_msg void OnContextMenu(CWnd* p Wild, CPoint pas);

Parameters
p Wild Handle to the window in which the user right clicked the mouse. This can be a

child window of the window receiving the message. For more information about
processing this message, see the Remarks section.

pas Position of the cursor, in screen coordinates, at the time of the mouse click.

2167

CWnd::OnCreate

Remarks
Called by the framework when the user has clicked the right mouse button
(right clicked) in the window. You can process this message by displaying
a context menu using the TrackPopupMenu.

If you do not display a context menu you should pass this message onto
the DefWindowProc function. If your window is a child window,
DefWindowProc sends the message to the parent. Otherwise, DefWindowProc
displays a default context menu if the specified position is in the
window's caption.

CWnd::OnCreate
afx_msg int OnCreate(LPCREATESTRUCT IpCreateStruct);

Return Value
OnCreate must return 0 to continue the creation of the CWnd object. If the
application returns -1, the window will be destroyed.

Parameters

Remarks

2168

IpCreateStruct Points to a CREATESTRUCT structure that contains information
about the CWnd object being created.

The framework calls this member function when an application requests that the
Windows window be created by calling the Create or CreateEx member function.
The CWnd object receives this call after the window is created but before it
becomes visible. OnCreate is called before the Create or CreateEx member
function returns.

Override this member function to perform any needed initialization of a derived
class.

The CREATESTRUCT structure contains copies of the parameters used to create the
window.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: CWnd::CreateEx, CWnd::OnNcCreate, WM_CREATE,
CWnd::Default, CWnd::FromHandle

CWnd::OnCtIColor
afx_msg HBRUSH OnCtlColor(CDC* pDC, CWnd* p Wnd, UINT nCtlColor);

Return Value
OnCtlColor must return a handle to the brush that is to be used for painting the
control background.

Parameters

Remarks

pDC Contains a pointer to the display context for the child window. May be
temporary.

p Wnd Contains a pointer to the control asking for the color. May be temporary.

nCtlColor Contains one of the following values, specifying the type of control:

• CTLCOLOR_BTN Button control

• CTLCOLOR_DLG Dialog box

• CTLCOLOR_EDIT Edit control

• CTLCOLOR_LISTBOX List-box control

• CTLCOLOR_MSGBOX Message box

• CTLCOLOR_SCROLLBAR Scroll-bar control

• CTLCOLOR_STATIC Static control

The framework calls this member function when a child control is about to be drawn.
Most controls send this message to their parent (usually a dialog box) to prepare the
pDC for drawing the control using the correct colors.

To change the text color, call the SetTextColor member function with the desired red,
green, and blue (RGB) values.

To change the background color of a single-line edit control, set the brush handle in
both the CTLCOLOR_EDIT and CTLCOLOR_MSGBOX message codes, and call
the CDC::SetBkColor function in response to the CTLCOLOR_EDIT code.

OnCtlColor will not be called for the list box of a drop-down combo box because the
drop-down list box is actually a child of the combo box and not a child of the window.
To change the color of the drop-down list box, create a CComboBox with an override
of OnCtlColor that checks for CTLCOLOR_LISTBOX in the nCtlColor parameter.
In this handler, the SetBkColor member function must be used to set the background
color for the text.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by

CWnd::OnCtlColor

2169

CWnd::OnDeadChar

the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: CDC: :SetBkColor

CWnd: :OnDeadChar
afx_IDsg void OnDeadChar(UINT nChar, UINT nRepCnt, UINT nFlags);

Parameters

Remarks

2170

nChar Specifies the dead-key character value.

nRepCnt Specifies the repeat count.

nFlags Specifies the scan code, key-transition code, previous key state, and context
code, as shown in the following list:

Value Description

0-7

8

9-10

11-12

13

14

15

Scan code (OEM-dependent value). Low byte of high-order word.

Extended key, such as a function key or a key on the numeric keypad
(l if it is an extended key; otherwise 0).

Not used.

Used internally by Windows.

Context code (1 if the AL T key is held down while the key is pressed;
otherwise 0).

Previous key state (l if the key is down before the call, 0 if the key is up).

Transition state (1 if the key is being released, 0 if the key is being pressed).

The framework calls this member function when the OnKeyUp member function and
the OnKeyDown member functions are called. This member function can be used to
specify the character value of a dead key. A dead key is a key, such as the umlaut
(double-dot) character, that is combined with other characters to form a composite
character. For example, the umlaut-O character consists of the dead key, umlaut, and
the 0 key.

An application typically uses OnDeadChar to give the user feedback about each key
pressed. For example, an application can display the accent in the current character
position without moving the caret.

Since there is not necessarily a one-to-one correspondence between keys pressed and
OnDeadChar calls, the information in nFlags is generally not useful to applications.
The information in nFlags applies only to the most recent call to the OnKeyUp
member function or the OnKeyDown member function that precedes the
OnDeadChar call.

CWnd: :OnDeleteltem

For IBM Enhanced 101- and 102-key keyboards, enhanced keys are the right ALT and
the right CTRL keys on the main section of the keyboard; the INS, DEL, HOME, END,
PAGE UP, PAGE DOWN, and arrow keys in the clusters to the left of the numeric
keypad; and the slash (/) and ENTER keys in the numeric keypad. Some other
keyboards may support the extended-key bit in nFlags.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: WM_DEADCHAR

CW nd: : OnDeleteltem
afx_msg void OnDeleteItem(int nIDCtl,

~ LPDELETEITEMSTRUCT IpDeleteltemStruct);

Parameters

Remarks

nIDCtl The identifier of the control that sent the WM_DELETEITEM message.

IpDeleteItemStruct Specifies a long pointer to a DELETEITEMSTRUCT data
structure that contains information about the deleted list box item.

The framework calls this member function to inform the owner of an owner-draw list
box or combo box that the list box or combo box is destroyed or that items have been
removed by CComboBox: :DeleteString, CListBox: :DeleteString,
CComboBox: :ResetContent, or CListBox: : ResetContent.

If the hwndItem member of the DELETEITEMSTRUCT structure belongs to a
combo box or list box, then the Deleteltem virtual function of the appropriate class is
called. Override the DeleteItem member function of the appropriate control's class to
delete item-specific data.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: CComboBox::DeleteString, CListBox::DeleteString,
CComboBox: :ResetContent, CListBox: :ResetContent, WM_DELETEITEM,
CListBox: :DeleteItem, CComboBox: : DeleteItem

2171

CWnd::OnDestroy

CWnd: :OnDestroy

Remarks

afx_msg void OnDestroy();

The framework calls this member function to inform the CWnd object that it is being
destroyed. OnDestroy is called after the CWnd object is removed from the screen.

OnDestroy is called first for the CWnd being destroyed, then for the child windows
of CWnd as they are destroyed. It can be assumed that all child windows still exist
while OnDestroy runs.

If the CWnd object being destroyed is part of the Clipboard-viewer chain (set by
calling the SetCIipboardViewer member function), the CWnd must remove itself
from the Clipboard-viewer chain by calling the ChangeClipboardChain member
function before returning from the OnDestroy function.

See Also: CWnd::ChangeCIipboardChain, CWnd::DestroyWindow,
CWnd: :SetClipboardViewer

CWnd: :OnDestroyClipboard
afx_msg void OnDestroyCIipboard();

Remarks
The framework calls this member function for the Clipboard owner when the
Clipboard is emptied through a call to the EmptyClipboard Windows function.

See Also: ::EmptyClipboard, WM_DESTROYCLIPBOARD

CW nd: : OnDeviceChange
afx_msg BOOL OnDeviceChange(UINT nEventType, DWORD dwData);

Parameters

Remarks

2172

nEventType An event type. See the Remarks section for a description of the available
values

dwData The address of a structure that contains event-specific data. Its meaning
depends on the given event.

The framework calls this member function to notify an application or device driver of
a change to the hardware configuration of a device or the computer.

For devices that offer software-controllable features, such as ejection and locking, the
operating system typically sends a DBT_DEVICEREMOVEPENDING message to
let applications and device drivers end their use of the device gracefully.

CWnd::OnDevModeChange

If the operating system forcefully removes of a device, it may not send a
DBT_DEVICEQUERYREMOVE message before doing so.

The nEvent parameter can be one of these values:

• DBT_DEVICEARRIVAL A device has been inserted and is now available.

• DBT_DEVICEQUERYREMOVE Permission to remove a device is requested.
Any application can deny this request and cancel the removal.

• DBT_DEVICEQUERYREMOVEFAILED Request to remove a device has
been canceled.

• DBT_DEVICEREMOVEPENDING Device is about to be removed. Cannot be
denied.

• DBT_DEVICEREMOVECOMPLETE Device has been removed.

• DBT_DEVICETYPESPECIFIC Device-specific event.

• DBT_CONFIGCHANGED Current configuration has changed.

• DBT_DEVNODES_CHANGED Device node has changed.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: WM_DEVICECHANGE

CW nd:: OnDev ModeChange
afx_msg void OnDevModeChange(LPTSTR IpDeviceName);

Parameters

Remarks

IpDeviceName Points to,the device name specified in the Windows initialization file,
WIN.INI.

The framework calls this member function for all top-level CWnd objects when the
user changes device-mode settings.

Applications that handle the 'WM_DEVMODECHANGE message may reinitialize
their device-mode settings. Applications that use the Windows ExtDeviceMode
function to save and restore device settings typically do not process this function.

This function is not called when the user changes the default printer from Control
Panel. In this case, the OnWinlniChange function is called.

2173

CWnd: :OnDrawClipboard

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: WM_DEVMODECHANGE

CWnd: :OnDrawClipboard

Remarks

afx_msg void OnDrawCIipboard();

The framework calls this member function for each window in the Clipboard-viewer
chain when the contents of the Clipboard change. Only applications that have joined
the Clipboard-viewer chain by calling the SetCIipboardViewer member function
need to respond to this call.

Each window that receives an OnDrawClipboard call should call the SendMessage
Windows function to pass a WM_DRAWCLIPBOARD message on to the next
window in the Clipboard-viewer chain. The handle of the next window is returned by
the SetCIipboardViewer member function; it may be modified in response to an
OnChangeCbChain member function call.

See Also: ::SendMessage, CWnd::SetClipboardViewer,
WM_CHANGECBCHAIN, WM_DRAWCLIPBOARD

CWnd::OnDrawItem
afx_msg void OnDrawltem(int nIDCtl, LPDRAWITEMSTRUCT IpDrawltemStruct);

Parameters

Remarks

2174

nIDCtl Contains the identifier of the control that sent the WM_DRAWITEM
message. If a menu sent the message, nIDCtl contains O.

IpDrawltemStruct Specifies a long pointer to a DRAWITEMSTRUCT data
structure that contains information about the item to be drawn and the type of
drawing required.

The framework calls this member function for the owner of an owner-draw button
control, combo-box control, list-box control, or menu when a visual aspect of the
control or menu has changed.

The itemAction member of the DRAWITEMSTRUCT structure defines the drawing
operation that is to be performed. The data in this member allows the owner of the
control to determine what drawing action is required.

Before returning from processing this message, an application should ensure that the
device context identified by the hDC member of the DRAWITEMSTRUCT
structure is restored to the default state.

If the hwndItem member belongs to a CButton, CMenu, CListBox, or
CComboBox object, then the DrawItem virtual function of the appropriate class is
called. Override the DrawItem member function of the appropriate control's class to
draw the item.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: DRAWITEMSTRUCT, WM_DRAWITEM, CButton::DrawItem,
CMenu: :DrawItem, CListBox: :DrawItem, CComboBox: : DrawItem

CWnd: :OnDropFiles
afx_msg void OnDropFiles(HDROP hDroplnfo);

Parameters

Remarks

hDroplnfo A pointer to an internal data structure that describes the dropped
files. This handle is used by the DragFinish, DragQueryFile, and
DragQueryPoint Windows functions to retrieve information about the
dropped files.

The framework calls this member function when the user releases the left mouse
button over a window that has registered itself as the recipient of dropped files.

Typically, a derived class will be designed to support dropped files and it will register
itself during window construction.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: CWnd::DragAcceptFiles, WM_DROPFILES, ::DragAcceptFiles,
::DragFinish, ::DragQueryFile, ::DragQueryPoint

CWnd::OnDropFiles

2175

CWnd::OnDSCN otify

CWnd::OnDSCNotify
afx_msg BOOL OnDSCNotify(DSCSTATE nState, DSCREASON nReason, BOOL pRool);

Return Value
Returns TRUE if the operation represented by nReason and nState was handled.
Otherwise, returns FALSE.

Parameters

Remarks

2176

nState One of the named constants found in the DSCSTATE enumerator, which are
listed under Remarks.

nReason One of the named constants found in the DSCREASON enumerator, which
are listed under Remarks.

pRool A Boolean answer indicating whether the operation represented by nState and
nReason should continue.

This sink notification is called in response to an event that a data-source control fires
when a control to which the data-source control is bound modifies or attempts to
modify the underlying cursor. Use it to trap reasons (nReason) and states (nState)
generated by a data-source control. All combinations of states and reasons are allowed
by default. Write your code to test the states and reasons that are important to your
application and return TRUE or FALSE as appropriate.

To use OnDSCNotify, declare a sink map and a handler for the sink notification in the
header of the class that wishes to receive the sink notification as follows:

class CMyDlg : public CDialog
(

} ;

DEClARE_EVENTSINK_MAP()
BOOl OnDSCNotify(DSCSTATE nState,

DSCREASON nReason, BOOl* pBool);

Then, in the implementation of your class, define the sink map and specify the
function to receive the events as follows:

BEGIN_EVENTSINK_MAP(CMyDlg, CDialog)
ON_DSCNOTIFY(CMyDlg, IDC_RDCCTRll, OnDSCNotify)

END_EVENTSINK_MAP()

The notification callback function, your implementation of OnDSCNotify, will be
called when the following events occur inside the data-source control:

enum DSCREASON
{

} ;

dscNoReason = 0,
dscClose, dscCommit, dscDelete,
dscEdit, dsclnsert, dscModify, dscMove

It will also be called multiple times for each of the following states:

enum DSCSTATE
{

} ;

dscNoState = 0,
dscOKToDo,
dscCancelled,
dscSyncBefore,
dscAboutToDo,
dscFailedToDo,
dscSyncAfter,
dscDidEvent

The multiple calls allow you to trap an event at different times. For example, since
events are usually generated in response to modification of the cursor state by a
control, the first thing that the data-source control will do is to fire events asking if it
is okay to actually perform that action; hence the reason for the dscOKToDo state. If
all clients that monitor the event (the data control, your application, and so on) accept
the event, the data-source control will then move into the dscSyncBefore state, at
which time all outstanding data will be flushed, if necessary. For example, if the
content of an edit field has changed, the change will be committed to the cursor.
Following this event, the data-source control moves into the dscAboutToDo and
dscSyncAfter states and finally into the dscDidEvent state. These provide you with
further opportunities to catch notifications from the data-source control.

See Also: CWnd::GetDSCCursor, CWnd::BindDefaultProperty,
CWnd: :BindProperty

CWnd::OnEnable
afx_msg void OnEnable(BOOL bEnable);

Parameters

Remarks

bEnable Specifies whether the CWnd object has been enabled or disabled. This
parameter is TRUE if the CWnd has been enabled; it is FALSE if the CWnd has
been disabled.

The framework calls this member function when an application changes the enabled
state of the CWnd object. OnEnable is called before the EnableWindow member
function returns, but after the window enabled state (WS_DISABLED style bit) has
changed.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

CWnd::OnEnable

2177

CWnd: :OnEndSession

See Also: CWnd: :EnableWindow, WM_ENABLE

CWnd: :OnEndSession
afx_msg void OnEndSession(BOOL bEnding);

Parameters

Remarks

bEnding Specifies whether or not the session is being ended. It is TRUE if the
session is being ended; otherwise FALSE.

The framework calls this member function after the CWnd object has returned a
nonzero value from a OnQueryEndSession member function call. The
OnEndSession call informs the CWnd object whether the session is actually ending.

If bEnding is TRUE, Windows can terminate any time after all applications have
returned from processing this call. Consequently, have an application perform all tasks
required for termination within OnEndSession.

You do not need to call the DestroyWindow member function or PostQuitMessage
Windows function when the session is ending.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: CWnd::DestroyWindow, CWnd::OnQueryEndSession,
: : ExitWindows , : :PostQuitMessage, WM_ QUERYENDSESSION,
CWnd::Default, WM_ENDSESSION

CWnd::OnEnterIdle
afx_msg void OnEnterldle(UINT n Why, CWnd* p Who);

Parameters

2178

n Why Specifies whether the message is the result of a dialog box or a menu being
displayed. This parameter can be one of the following values:

• MSGF _DIALOGBOX The system is idle because a dialog box is being
displayed.

• MSGF _MENU The system is idle because a menu is being displayed.

p Who Specifies a pointer to the dialog box (if n Why is MSGF _DIALOG BOX), or
the window that contains the displayed menu (if n Why is MSGF _MENU). This
pointer may be temporary and should not be stored for later use.

CWnd::OnEraseBkgnd

Remarks
The framework calls this member function to inform an application's main window
procedure that a modal dialog box or a menu is entering an idle state. A modal dialog
box or menu enters an idle state when no messages are waiting in its queue after it has
processed one or more previous messages.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: WM_ENTERIDLE

CWnd: :OnEnterMenuLoop
afx_msg void OnEnterMenuLoop(BOOL bIsTrackPopupMenu);

Parameters

Remarks

bIsTrackPopupMenu Specifies whether the menu involved is a popup menu. Has a
nonzero value if the function is successful; otherwise o.

The framework calls this member function when a menu modal loop has been entered.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: CWnd: :OnExitMenuLoop, WM_ENTERMENULOOP

CW nd: : OnEraseBkgnd
afx_msg BOOL OnEraseBkgnd(CDC* pDC);

Return Value
Nonzero if it erases the background; otherwise O.

Parameters

Remarks

pDC Specifies the device-context object.

The framework calls this member function when the CWnd object background needs
erasing (for example, when resized). It is called to prepare an invalidated region for
painting.

2179

CWnd: :OnExitMenuLoop

The default implementation erases the background using the window class
background brush specified by the hbrBackground member of the window class
structure.

If the hbrBackground member is NULL, your overridden version of
OnEraseBkgnd should erase the background color. Your version should also align
the origin of the intended brush with the CWnd coordinates by first calling
UnrealizeObject for the brush, and then selecting the brush.

An overridden OnEraseBkgnd should return nonzero in response to
WM_ERASEBKGND if it processes the message and erases the background; this
indicates that no further erasing is required. If it returns 0, the window will remain
marked as needing to be erased. (Typically, this means that the fErase member of the
PAINTSTRUCT structure will be TRUE.)

Windows assumes the background is computed with the MM_TEXT mapping mode.
If the device context is using any other mapping mode, the area erased may not be
within the visible part of the client area.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: WM_ICONERASEBKGND, CGdiObject::UnrealizeObject,
WM_ERASEBKGND

CWnd: :OnExitMenuLoop
afx_msg void OnExitMenuLoop(BOOL bIsTrackPopupMenu);

Parameters

Remarks

2180

bIsTrackPopupMenu Specifies whether the menu involved is a pop-up menu. Has a
nonzero value if the function is successful; otherwise O.

The framework calls this member function when a menu modal loop has been exited.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: CWnd::OnEnterMenuLoop; WM_EXITMENULOOP

CWnd::OnGetDlgCode

CW nd: : OnF ontChange
afx_msg void OnFontChange();

Remarks
All top-level windows in the system receive an OnFontChange call from the
framework after the application changes the pool of font resources.

An application that adds or removes fonts from the system (for example, through the
AddFontResource or RemoveFontResource Windows function) should send the
WM_FONTCHANGE message to all top-level windows.

To send this message, use the SendMessage Windows function with the h Wnd
parameter set to HWND_BROADCAST.

See Also: : :AddFontResource, : :RemoveFontResource, : :SendMessage,
WM_FONTCHANGE

CWnd: :OnGetDlgCode
afx_msg UINT OnGetDIgCode();

Return Value
One or more of the following values, indicating which type of input the application
processes:

• DLGC_BUTTON Button (generic).

• DLGC_DEFPUSHBUTTON Default pushbutton.

• DLGC_HASSETSEL EM_SETSEL messages.

• DLGC_UNDEFPUSHBUTTON No default pushbutton processing. (An
application can use this flag with DLGC_BUTTON to indicate that it processes
button input but relies on the system for default pushbutton processing.)

• DLGC_RADIOBUTTON Radio button.

• DLGC_STATIC Static control.

• DLGC_ WANTALLKEYS All keyboard input.

• DLGC_ WANTARROWS Arrow keys.

• DLGC_ WANTCHARS WM_CHAR messages.

• DLGC_ WANTMESSAGE All keyboard input. The application passes this
message on to the control.

• DLGC_ WANTTAB TAB key.

2181

CWnd::OnGetMinMaxlnfo

Remarks
Normally, Windows handles all arrow-key and TAB-key input to a CWnd control. By
overriding OnGetDlgCode, a CWnd control can choose a particular type of input to
process itself.

The default OnGetDlgCode functions for the predefined control classes return a code
appropriate for each class.

See Also: WM_GETDLGCODE

CWnd: :OnGetMinMaxInfo
afx_msg void OnGetMinMaxlnfo(MINMAXINFO FAR* IpMMI);

Parameters

Remarks

IpMMI Points to a MINMAXINFO structure that contains information about a
window's maximized size and position and its minimum and maximum tracking
size. For more about this structure, see the MINMAXINFO structure.

The framework calls this member function whenever Windows needs to know the
maximized position or dimensions, or the minimum or maximum tracking size. The
maximized size is the size of the window when its borders are fully extended. The
maximum tracking size of the window is the largest window size that can be achieved
by using the borders to size the window. The minimum tracking size of the window is
the smallest window size that can be achieved by using the borders to size the
window.

Windows fills in an array of points specifying default values for the various positions
and dimensions. The application may change these values in OnGetMinMaxlnfo.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: WM_GETMINMAXINFO

CWnd::OnHelpInfo
afx_msg BOOL OnHelplnfo(HELPINFO* IpHelplnJo);

Parameters

2182

lpHelplnJo Pointer to a HELPINFO structure that contains information about the
menu item, control, dialog box, or window for which help is requested.

Remarks
Called by the framework when the user presses the PI key.

If a menu is active when PI is pressed, WM_HELP is sent to the window associated
with the menu; otherwise, WM_HELP is sent to the window that has the keyboard
focus. If no window has the keyboard focus, WM_HELP is sent to the currently
active window.

See Also: CWinApp::OnHelp, CWinApp::WinHelp

CWnd: :OnHScroll
afx_msg void OnHScroll(UINT nSBCode, UINT nPos, CScrollBar* pScroliBar);

Parameters

Remarks

nSBCode Specifies a scroll-bar code that indicates the user's scrolling request. This
parameter can be one of the following:

• SB_LEFT Scroll to far left.

• SB_ENDSCROLL End scroll.

• SB _LINELEFT Scroll left.

• SB_LINERIGHT Scroll right.

• SB_PAGELEFT Scroll one page left.

• SB_PAGERIGHT Scroll one page right.

• SB_RIGHT Scroll to far right.

• SB_THUMBPOSITION Scroll to absolute position. The current position is
specified by the nPos parameter.

• SB_THUMBTRACK Drag scroll box to specified position. The current
position is specified by the nPos parameter.

nPos Specifies the scroll-box position if the scroll-bar code is
SB_THUMBPOSITION or SB_THUMBTRACK; otherwise, not used.
Depending on the initial scroll range, nPos may be negative and should be cast to
an int if necessary.

pScrollBar If the scroll message came from a scroll-bar control, contains a pointer to
the control. If the user clicked a window's scroll bar, this parameter is NULL. The
pointer may be temporary and should not be stored for later use.

The framework calls this member function when the user clicks a window's horizontal
scroll bar.

CWnd::OnHScroll

2183

CWnd: :OnHScrollClipboard

The SB_THUMBTRACK scroll-bar code typically is used by applications that give
some feedback while the scroll box is being dragged.

If an application scrolls the contents controlled by the scroll bar, it must also reset the
position of the scroll box with the SetScrolIPos member function.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: CWnd::SetScrolIPos, WM_ VSCROLL, WM_HSCROLL

CW nd: : OnHScroll Clipboard
afx_msg void OnHScrolIClipboard(CWnd* pC/ipApp Wnd, UINT nSBCode, UINT nPos);

Parameters

Remarks

2184

pCUpAppWnd Specifies a pointer to a Clipboard-viewer window. The pointer may be
temporary and should not be stored for later use.

nSBCode Specifies one of the following scroll-bar codes in the low-order word:

• SB_BOTTOM Scroll to lower right.

• SB_ENDSCROLL End scroll.

• SB_LINEDOWN Scroll one line down.

• SB_LINEUP Scroll one line up.

• SB_PAGEDOWN Scroll one page down.

• SB_PAGEUP Scroll one page up.

• SB_THUMBPOSITION Scroll to the absolute position. The current position
is provided in nPos.

• SB_TOP Scroll to upper left.

nPos Contains the scroll-box position if the scroll-bar code is
SB_THUMBPOSITION; otherwise not used.

The Clipboard owner's OnHScrolIClipboard member function is called by the
Clipboard viewer when the Clipboard data has the CF_OWNERDISPLAY format
and there is an event in the Clipboard viewer's horizontal scroll bar. The owner should
scroll the Clipboard image, invalidate the appropriate section, and update the
scroll-bar values.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: CWnd: :On VScrollClipboard, WM_HSCROLLCLIPBOARD

CW nd: : OnIconEraseBkgnd
afx_msg void OnlconEraseBkgnd(CDC* pDC);

Parameters

Remarks

pDC Specifies the device-context object of the icon. May be temporary and should
not be stored for later use.

The framework calls this member function for a minimized (iconic) CWnd object
when the background of the icon must be filled before painting the icon. CWnd
receives this call only if a class icon is defined for the window default
implementation; otherwise OnEraseBkgnd is called.

The DefWindowProc member function fills the icon background with the background
brush of the parent window.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: CWnd::OnEraseBkgnd, WM_ICONERASEBKGND

CWnd::OnInitMenu
afx_msg void OnlnitMenu(CMenu* pMenu);

Parameters

Remarks

pMenu Specifies the menu to be initialized. May be temporary and should not be
stored for later use.

The framework calls this member function when a menu is about to become active.
The call occurs when the user clicks an item on the menu bar or presses a menu key.
Override this member function to modify the menu before it is displayed.

CWnd::OnlnitMenu

2185

CWnd: :OnInitMenuPopup

OnInitMenu is only called when a menu is first accessed; OnInitMenu is called only
once for each access. This means, for example, that moving the mouse across several
menu items while holding down the button does not generate new calls. This call does
not provide information about menu items.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: CWnd::OnInitMenuPopup, WM_INITMENU

CWnd: :OnInitMenuPopup
afx_msg void OnInitMenuPopup(CMenu* pPopupMenu,

.. UINT nlndex, BOOL bSysMenu);

Parameters

Remarks

pPopupMenu Specifies the menu object of the pop-up menu. May be temporary and
should not be stored for later use.

nlndex Specifies the index of the pop-up menu in the main menu.

bSysMenu TRUE if the pop-up menu is the Control menu; otherwise FALSE.

The framework calls this member function when a pop-up menu is about to become
active. This allows an application to modify the pop-up menu before it is displayed
without changing the entire menu.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: CWnd: :OnInitMenu, WM_INITMENUPOPUP

CWnd::OnKeyDown
afx_msg void OnKeyDown(UINT nChar, UINT nRepCnt, UINT nFlags);

Parameters

2186

nChar Specifies the virtual-key code of the given key.

nRepCnt Repeat count (the number of times the keystroke is repeated as a result of
the user holding down the key).

Remarks

nFlags Specifies the scan code, key-transition code, previous key state, and context
code, as shown in the following list:

Value Description

0-7 Scan code (OEM-dependent value).

8 Extended key, such as a function key or a key on the numeric keypad (1 if it
is an extended key).

9-10 Not used.

11-12 Used internally by Windows.

13 Context code (1 if the ALT key is held down while the key is pressed;
otherwise 0).

14 Previous key state (1 if the key is down before the call, 0 if the key is up).

15 Transition state (1 if the key is being released, 0 if the key is being pressed).

For a WM_KEYDOWN message, the key-transition bit (bit 15) is 0 and the
context-code bit (bit 13) is O.

The framework calls this member function when a nonsystem key is pressed. A
nonsystem key is a keyboard key that is pressed when the ALT key is not pressed
or a keyboard key that is pressed when CWnd has the input focus.

Because of auto-repeat, more than one OnKeyDown call may occur before an
OnKeyUp member function call is made. The bit that indicates the previous key state
can be used to determine whether the OnKeyDown call is the first down transition or
a repeated down transition.

For IBM Enhanced 101- and 102-key keyboards, enhanced keys are the right ALT
and the right CTRL keys on the main section of the keyboard; the INS, DEL, HOME,
END, PAGE UP, PAGE DOWN, and arrow keys in the clusters to the left of the
numeric keypad; and the slash (/) and ENTER keys in the numeric keypad. Some
other keyboards may support the extended-key bit in nFlags.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: WM_CHAR, WM_KEYUP, WM_KEYDOWN

CWnd: :OnKeyUp
afx_msg void OnKeyUp(UINT nChar, UINT nRepCnt, UINT nFlags);

Parameters
nChar Specifies the virtual-key code of the given key.

CWnd::OnKeyUp

2187

CWnd::OnKillFocus

Remarks

nRepCnt Repeat count (the number of times the keystroke is repeated as a result of
the user holding down the key).

nFlags Specifies the scan code, key-transition code, previous key state, and context
code, as shown in the following list:

Value Description

0-7 Scan code (OEM-dependent value). Low byte of high-order word.

S Extended key, such as a function key or a key on the numeric keypad
(1 if it is an extended key; otherwise 0).

9-10 Not used.

11-12 Used internally by Windows.

13 Context code (1 if the AL T key is held down while the key is pressed;
otherwise 0).

14 Previous key state (1 if the key is down before the call, 0 if the key is up).

15 Transition state (l if the key is being released, 0 if the key is being pressed).

For a WM_KEYUP message, the key-transition bit (bit 15) is 1 and the
context-code bit (bit 13) is o.

The framework calls this member function when a non system key is released. A
nonsystem key is a keyboard key that is pressed when the ALT key is not pressed
or a keyboard key that is pressed when the CWnd has the input focus.

For IBM Enhanced 101- and 102-key keyboards, enhanced keys are the right ALT
and the right CTRL keys on the main section of the keyboard; the INS, DEL, HOME,
END, PAGE UP, PAGE DOWN, and arrow keys in the clusters to the left of the
numeric keypad; and the slash (/) and ENTER keys in the numeric keypad. Some
other keyboards may support the extended-key bit in nFlags.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: WM_CHAR, WM_KEYUP, CWnd::Default, WM_KEYDOWN

CWnd::OnKiIIFocus
afx_msg void OnKillFocus(CWnd* pNewWnd);

Parameters

2188

pNew Wnd Specifies a pointer to the window that receives the input focus (may be
NULL or may be temporary).

CWnd::OnLButtonDblClk

Remarks
The framework calls this member function immediately before losing the input focus.

If the CWnd object is displaying a caret, the caret should be destroyed at this point.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: CWnd::SetFocus, WM_KILLFOCUS

CWnd: :OnLButtonDblClk
afx_msg void OnLButtonDblClk(UINT nFlags, CPoint point);

Parameters

Remarks

nFlags Indicates whether various virtual keys are down. This parameter can be
any combination of the following values:

• MK_CONTROL Set if the CTRL key is down.

• MK_LBUTTON Set if the left mouse button is down.

• MK_MBUTTON Set if the middle mouse button is down.

• MK_RBUTTON Set if the right mouse button is down.

• MK_SHIFT Set if the SHIFT key is down.

point Specifies the x- and y-coordinate of the cursor. These coordinates are
always relative to the upper-left corner of the window.

The framework calls this member function when the user double-clicks the left
mouse button.

Only windows that have the CS_DBLCLKS WNDCLASS style will receive
OnLButtonDblClk calls. This is the default for Microsoft Foundation Class
windows. Windows calls OnLButtonDblClk when the user presses, releases,
and then presses the left mouse button again within the system's double-click time
limit. Double-clicking the left mouse button actually generates four events:
WM_LBUTTONDOWN, WM_LBUTTONUP messages, the
WM_LBUTTONDBLCLK call, and another WM_LBUTTONUP message when
the button is released.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of

2189

CWnd::OnLButtonDown

this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: CWnd::OnLButtonDown, CWnd::OnLButtonUp,
WM_LBUTTONDBLCLK

CWnd: :OnLB uttonDown
afx_msg void OnLButtonDown(UINT nFlags, CPoint point);

Parameters

Remarks

nFlags Indicates whether various virtual keys are down. This parameter can be any
combination of the following values:

• MK_CONTROL Set if the CTRL key is down.

• MK_LBUTTON Set if the left mouse button is down.

• MK_MBUTTON Set if the middle mouse button is down.

• MK_RBUTTON Set if the right mouse button is down.

• MK_SHIFT Set if the SHIFf key is down.

point Specifies the x- and y-coordinate of the cursor. These coordinates are always
relative to the upper-left corner of the window. .

The framework calls this member function when the user presses the left mouse
button.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: CWnd::OnLButtonDbIClk, CWnd::OnLButtonUp,
WM_LBUTTONDOWN

CWnd::OnLButtonUp
afx_msg void OnLButtonUp(UINT nFlags, CPoint point);

Parameters

2190

nFlags Indicates whether various virtual keys are down. This parameter can be any
combination of the following values:

• MK_CONTROL Set if the CTRL key is down.

CWnd::OnMButtonDbIClk

Remarks

• MK_MBUTTON Set if the middle mouse button is down.

• MK_RBUTTON Set if the right mouse button is down.

• MK_SHIFT Set if the SHIFf key is down.

point Specifies the x- and y-coordinate of the cursor. These coordinates are always
relative to the upper-left corner of the window.

The framework calls this member function when the user releases the left mouse
button.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: CWnd::OnLButtonDblClk, CWnd::OnLButtonDown,
WM_LBUTTONUP

CWnd: :OnMButtonDblClk
afx_msg void OnMButtonDblClk(UINT nFlags, CPoint point);

Parameters

Remarks

nFlags Indicates whether various virtual keys are down. This parameter can be
any combination of the following values:

• MK_CONTROL Set if the CTRL key is down.

• MK_LBUTTON Set if the left mouse button is down.

• MK_MBUTTON Set if the middle mouse button is down.

• MK_RBUTTON Set if the right mouse button is down.

• MK_SHIFT Set if the SHIFf key is down.

point Specifies the x- and y-coordinate of the cursor. These coordinates are
always relative to the upper-left corner of the window.

The framework calls this member function when the user double-clicks the middle
mouse button.

Only windows that have the CS_DBLCLKS WNDCLASS style will receive
OnMButtonDblClk calls. This is the default for all Microsoft Foundation Class
windows. Windows generates an OnMButtonDblClk call when the user presses,
releases, and then presses the middle mouse button again within the system's

2191

CWnd::OnMButtonDown

double-click time limit. Double-clicking the middle mouse button actually generates
four events: WM_MBUTTONDOWN and WM_MBUTTONUP messages, the
WM_MBUTTONDBLCLK call, and another WM_MBUTTONUP message.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: CWnd::OnMButtonDown, CWnd::OnMButtonUp,
WM_MBUTTONDBLCLK

CWnd:: OnMButtonDown
afx_msg void OnMButtonDown(UINT nFlags, CPoint point);

Parameters

Remarks

2192

nFlags Indicates whether various virtual keys are down. This parameter can be any
combination of the following values:

• MK_CONTROL Set if the CTRL key is down.

• MK_LBUTTON Set if the left mouse button is down.

• MK_MBUTTON Set if the middle mouse button is down.

• MK_RBUTTON Set if the right mouse button is down.

• MK_SHIFT Set if the SHIFf key is down.

point Specifies the x- and y-coordinate of the cursor. These coordinates are always
relative to the upper-left corner of the window.

The framework calls this member function when the user presses the middle mouse
button.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: CWnd::OnMButtonDbIClk, CWnd::OnMButtonUp,
WM_MBUTTONDOWN

CWnd::OnMDIActivate

CWnd::OnMButtonUp
afx_msg void OnMButtonUp(UINT nFlags, CPoint point);

Parameters

Remarks

nFlags Indicates whether various virtual keys are down. This parameter can be any
combination of the following values:

• MK_CONTROL Set if the CTRL key is down.

• MK_LBUTTON Set if the left mouse button is down.

• MK_RBUTTON Set if the right mouse button is down.

• MK_SHIFT Set if the SHIFT key is down.

point Specifies the x- and y-coordinate of the cursor. These coordinates are always
relative to the upper-left corner of the window.

The framework calls this member function when the user releases the middle mouse
button.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: CWnd::OnMButtonDbIClk, CWnd::OnMButtonDown,
WM_MBUTTONUP

CWnd: :OnMDIActivate
afx_msg void OnMDIActivate(BOOL bActivate, CWnd* pActivateWnd,

... CWnd* pDeactivateWnd);

Parameters
bActivate TRUE if the child is being activated and FALSE if it is being deactivated.

pActivateWnd Contains a pointer to the MDI child window to be activated. When
received by an MDI child window, pActivateWnd contains a pointer to the child
window being activated. This pointer may be temporary and should not be stored
for later use.

pDeactivateWnd Contains a pointer to the MDI child window being deactivated.
This pointer may be temporary and should not be stored for later use.

2193

CWnd::OnMeasureItem

Remarks
The framework calls this member function for the child window being deactivated
and the child window being activated.

An MDI child window is activated independently of the MDI frame window.
When the frame becomes active, the child window that was last activated with a
OnMDIActivate call receives an WM_NCACTIVATE message to draw an active
window frame and caption bar, but it does not receive another OnMDIActivate call.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: CMDIFrameWnd::MDIActivate, WM_MDIACTIVATE

CW nd: : OnMeasureltem
afx_msg void OnMeasureltem(int nIDCtl,

'+ LPMEASUREITEMSTRUCT IpMeasureItemStruct);

Parameters

Remarks

2194

nIDCtl The ID of the control.

IpMeasureltemStruct Points to a MEASUREITEMSTRUCT data structure that
contains the dimensions of the owner-draw control.

The framework calls this member function by the framework for the owner of an
owner-draw button, combo box, list box, or menu item when the control is created.

Override this member function and fill in the MEASUREITEMSTRUCT data
structure pointed to by IpMeasureltemStruct and return; this informs Windows of
the dimensions of the control and allows Windows to process user interaction with
the control correctly.

If a list box or combo box is created with the LBS_OWNERDRAWVARIABLE
or CBS_OWNERDRAWVARIABLE style, the framework calls this function for
the owner for each item in the control; otherwise this function is called once.

Windows initiates the call to OnMeasureItem for the owner of combo boxes
and list boxes created with the OWNERDRAWFIXED style before sending the
WM_INITDIALOG message. As a result, when the owner receives this call,
Windows has not yet determined the height and width of the font used in the control;
function calls and calculations that require these values should occur in the main
function of the application or library.

CWnd::OnMenuChar

If the item being measured is a CMenu, CListBox or CComboBox object, then
the Measureltem virtual function of the appropriate class is called. Override the
Measureltem member function of the appropriate control's class to calculate and
set the size of each item.

OnMeasureItem will be called only if the control's class is created at run time,
or it is created with the LBS_OWNERDRAWVARIABLE or
CBS_OWNERDRAWVARIABLE style. If the control is created by the dialog
editor, OnMeasureItem will not be called. This is because the
WM_MEASUREITEM message is sent early in the creation process of the control.
If you subclass by using DDX_Control, SubclassDlgItem, or SubclassWindow, the
subclassing usually occurs after the creation process. Therefore, there is no way to
handle the WM_MEASUREITEM message in the control's OnChildNotify
function, which is the mechanism MFC uses to implement
ON_ WM_MEASUREITEM_REFLECT.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: CMenu: :MeasureItem, CListBox: :MeasureItem,
CComboBox: : MeasureItem, WM_MEASUREITEM

CWnd: :OnMenuChar
afx_msg LRESULT OnMenuChar(UINT nChar, UINT nFlags, CMenu* pMenu);

Return Value
The high-order word of the return value should contain one of the following command
codes:

Value Description

o Tells Windows to discard the character that the user pressed and creates a short beep
on the system speaker.

Tells Windows to close the current menu.

2 Informs Windows that the low-order word of the return value contains the item
number for a specific item. This item is selected by Windows.

The low-order word is ignored if the high-order word contains 0 or 1. Applications
should process this message when accelerator (shortcut) keys are used to select
bitmaps placed in a menu.

Parameters
nChar Depending on the build settings, specifies the ANSI or Unicode character that

the user pressed.

2195

CWnd: :OnMenuSelect

Remarks

nFlags Contains the MF _POPUP flag if the menu is a pop-up menu. It contains the
MF _SYSMENU flag if the menu is a Control menu.

pMenu Contains a pointer to the selected CMenu. The pointer may be temporary and
should not be stored.

The framework calls this member function when the user presses a menu mnemonic
character that doesn't match any of the predefined mnemonics in the current menu. It
is sent to the CWnd that owns the menu. OnMenuChar is also called when the user
presses ALT and any other key, even if the key does not correspond to a mnemonic
character. In this case, pMenu points to the menu owned by the CWnd, and nFlags is
O.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: WM_MENUCHAR

CW nd: : OnMenuSelect
afx_msg void OnMenuSelect(UINT nltemID, UINT nFlags HMENU hSysMenu);

Parameters

2196

nltemID Identifies the item selected. If the selected item is a menu item, nltemID
contains the menu-item ID. If the selected item contains a pop-up menu, nltemID
contains the pop-up menu index, and hSysMenu contains the handle of the main
(clicked-on) menu.

nFlags Contains a combination of the following menu flags:

• MF _BITMAP Item is a bitmap.

• MF _CHECKED Item is checked.

• MF _DISABLED Item is disabled.

• MF_GRAYED Item is dimmed.

• MF _MOUSESELECT Item was selected with a mouse.

• MF_OWNERDRAW Item is an owner-draw item.

• MF _POPUP Item contains a pop-up menu.

• MF_SEPARATOR Item is a menu-item separator.

• MF _SYSMENU Item is contained in the Control menu.

CWnd::OnMouseActivate

Remarks

hSysMenu If nFlags contains MF _SYSMENU, identifies the menu associated with
the message. If nFlags contains MF _POPUP, identifies the handle of the main
menu. If nFlags contains neither MF _SYSMENU nor MF _POPUP, it is unused.

If the CWnd object is associated with a menu, OnMenuSelect is called by the
framework when the user selects a menu item.

If nFlags contains OxFFFF and hSysMenu contains 0, Windows has closed the menu
because the user pressed the ESC key or clicked outside the menu.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: WM_MENUSELECT

CW nd: : OnMouseActi vate
afx_msg int OnMouseActivate(CWnd* pDesktop Wnd, UINT nHitTest, UINT message);

Return Value
Specifies whether to activate the CWnd and whether to discard the mouse event.
It must be one of the following values:

• MA_ACTIVATE Activate CWnd object.

• MA_NOACTIVATE Do not activate CWnd object.

• MA_ACTIVATEANDEAT Activate CWnd object and discard the mouse event.

• MA_NOACTIVATEANDEAT Do not activate CWnd object and discard the
mouse event.

Parameters

Remarks

pDesktopWnd Specifies a pointer to the top-level parent window of the window
being activated. The pointer may be temporary and should not be stored.

nHitTest Specifies the hit-test area code. A hit test is a test that determines the
location of the cursor.

message Specifies the mouse message number.

The framework calls this member function when the cursor is in an inactive window
and the user presses a mouse button.

The default implementation passes this message to the parent window before any
processing occurs. If the parent window returns TRUE, processing is halted.

2197

CWnd::OnMouseMove

For a description of the individual hit-test area codes, see the OnNcHitTest member
function

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: CWnd::OnNcHitTest, WM_MOUSEACTIVATE

CWnd: :OnMouseMove
afx_msg void OnMouseMove(UINT nFlags, CPoint point);

Parameters

Remarks

2198

nFlags Indicates whether various virtual keys are down. This parameter can be any
combination of the following values:

• MK_ CONTROL Set if the CTRL key is down.

• MK_LBUTTON Set if the left mouse button is down.

• MK_MBUTTON Set if the middle mouse button is down.

• MK_RBUTTON Set if the right mouse button is down.

• MK_SHIFT Set if the SHIFT key is down.

point Specifies the x- and y-coordinate of the cursor. These coordinates are always
relative to the upper-left corner of the window.

The framework calls this member function when the mouse cursor moves. If the
mouse is not captured, the WM_MOUSEMOVE message is received by the CWnd
object beneath the mouse cursor; otherwise, the message goes to the window that has
captured the mouse.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: CWnd::SetCapture, CWnd::OnNCHitTest, WM_MOUSEMOVE

CWnd: :OnMouse Wheel

CW nd:: OnMouse Wheel
afx_msg BOOL OnMouseWheel(UINT nFlags, short zDelta, CPoint pt);

Return Value
Nonzero if mouse wheel scrolling is enabled; otherwise O.

Parameters

Remarks

nFlags Indicates whether various virtual keys are down. This parameter can be any
combination of the following values:

• MK_CONTROL Set if the CTRL key is down.

• MK_LBUTTON Set if the left mouse button is down.

• MK_MBUTTON Set if the middle mouse button is down.

• MK_RBUTTON Set if the right mouse button is down.

• MK_SHIFT Set if the SHIFT key is down.

zDelta Indicates distance rotated. The zDelta value is expressed in multiples or
divisions of WHEEL_DELTA, which is 120. A value less than zero indicates
rotating back (toward the user) while a value greater than zero indicates rotating
forward (away from the user). The user can reverse' this response by changing the
Wheel setting in the mouse software. See the Remarks for more information about
this parameter.

pt Specifies the x- and y-coordinate of the cursor. These coordinates are always
relative to the upper-left corner of the window.

The framework calls this member function as a user rotates the mouse wheel and
encounters the wheel's next notch. Unless overridden, OnMouseWheel calls the
default of WM_MOUSEWHEEL. Windows automatically routes the message to the
control or child window that has the focus. The Win32 function DefWindowProc
propagates the message up the parent chain to the window that processes it.

The zDelta parameter is a multiple of WHEEL_DELTA, which is set at 120. This
value is the threshold for an action to be taken, and one such action (for example,
scrolling forward one notch) should occur for each delta.

The delta was set to 120 to allow for future finer-resolution wheels, such as a
freely-rotating wheel with no notches. Such a device might send more messages per
rotation, but with a smaller value in each message. To support this possibility, either
aggregate the incoming delta values until WHEEL_DELTA is reached (so you get
the same response for a given delta-rotation), or scroll partial lines in response to the
more frequent messages. You could also choose your scroll granularity and
accumulate deltas until WHEEL_DELTA is reached.

Override this member function to provide your own mouse-wheel scrolling behavior.

2199

CWnd::OnMove

Note OnMouseWheel handles messages for Windows NT 4.0. For Windows 95 or
Windows NT 3.51 message handling, use OnRegisteredMouseWheel.

See Also: mouse_event

CWnd: :OnMove
afx_msg void OnMove(int x, int y);

Parameters

Remarks

x Specifies the new x-coordinate location of the upper-left corner of the client area.
This new location is given in screen coordinates for overlapped and pop-up
windows, and parent-client coordinates for child windows.

y Specifies the new y-coordinate location of the upper-left corner of the client area.
This new location is given in screen coordinates for overlapped and pop-up
windows, and parent-client coordinates for child windows.

The framework calls this member function after the CWnd object has been moved.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: WM_MOVE

CWnd::OnMoving
afx_msg void OnMoving(DINT nSide, LPRECT lpRect);

Parameters

Remarks

2200

nSide The edge of window to be moved.

lpRect Address of the CRect or RECT structure that will contain the item's
coordinates.

The framework calls this member function while a user is moving a CWnd object.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: WM_MOVING

CWnd::OnNcCalcSize

CW nd: : OnN cActi vate
afx_msg BOOL OnNcActivate(BOOL bActive);

Return Value
Nonzero if Windows should proceed with default processing; 0 to prevent the caption
bar or icon from being deactivated.

Parameters

Remarks

bActive Specifies when a caption bar or icon needs to be changed to indicate an
active or inactive state. The bActive parameter is TRUE if an active caption or icon
is to be drawn. It is FALSE for an inactive caption or icon.

The framework calls this member function when the nonclient area needs to be
changed to indicate an active or inactive state. The default implementation draws the
title bar and title-bar text in their active colors if bActive is TRUE and in their inactive
colors if bActive is FALSE.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: CWnd::Default, WM_NCACTIVATE

CW nd: : OnN cCalcSize
afx_msg void OnNcCalcSize(BOOL bCalcValidRects,

... NCCALCSIZE_PARAMS* lpncsp);

Parameters

Remarks

bCalc Va lidRects Specifies whether the application should specify which part of the
client area contains valid information. Windows will copy the valid information
to the specified area within the new client area. If this parameter is TRUE, the
application should specify which part of the client area is valid.

lpncsp Points to a NCCALCSIZE_PARAMS data structure that contains
information an application can use to calculate the new size and position of the
CWnd rectangle (including client area, borders, caption, scroll bars, and so on).

The framework calls this member function when the size and position of the client
area needs to be calculated. By processing this message, an application can control the
contents of.the window's client area when the size or position of the window changes.

2201

CWnd: :OnNcCreate

Regardless of the value of bCalcValidRects, the first rectangle in the array specified
by the rgrc structure member of the NCCALCSIZE_PARAMS structure contains
the coordinates of the window. For a child window, the coordinates are relative to
the parent window's client area. For top-level windows, the coordinates are screen
coordinates. An application should modify the rgrc[O] rectangle to reflect the size
and position of the client area.

The rgrc[1] and rgrc[2] rectangles are valid only if bCalcValidRects is TRUE. In
this case, the rgrc[l] rectangle contains the coordinates of the window before it was
moved or resized. The rgrc[2] rectangle contains the coordinates of the window's
client area before the window was moved. All coordinates are relative to the parent
window or screen.

The default implementation calculates the size of the client area based on the window
characteristics (presence of scroll bars, menu, and so on), and places the result in
lpncsp.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: WM_NCCALCSIZE, CWnd::MoveWindow, CWnd::SetWindowPos

CW nd: : OnN cCreate
afx_msg BOOL OnNcCreate(LPCREATESTRUCT IpCreateStruct);

Return Value
Nonzero if the nonclient area is created. It is 0 if an error occurs; the Create function
will return failure in this case.

Parameters

Remarks

2202

IpCreateStruct Points to the CREATESTRUCT data structure for CWnd.

The framework calls this member function prior to the WM_ CREATE message when
the CWnd object is first created.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: CWnd::Create, CWnd::CreateEx, WM_NCCREATE

CWnd::OnNcDestroy

Remarks

afx_msg void OnNcDestroy();

Called by the framework when the nonclient area is being destroyed, and is the
last member function called when the Windows window is destroyed. The default
implementation performs some cleanup, then calls the virtual member function
PostNcDestroy.

Override PostNcDestroy if you want to perform your own cleanup, such as a delete
this operation. If you override OnNcDestroy, you must call OnNcDestroy in your
base class to ensure that any memory internally allocated for the window is freed.

See Also: CWnd::DestroyWindow, CWnd::OnNcCreate, WM_NCDESTROY,
CWnd: :Default, CWnd: :PostNcDestroy

CW nd: : OnN cHitTest
afx_msg UINT OnNcHitTest(CPoint point);

Return Value
One of the mouse hit-test enumerated values listed below.

Parameters

Remarks

point Contains the x- and y-coordinates of the cursor. These coordinates are always
screen coordinates.

The framework calls this member function for the CWnd object that contains the
cursor (or the CWnd object that used the SetCapture member function to capture the
mouse input) every time the mouse is moved.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: CWnd::GetCapture, WM_NCHITTEST

Mouse Enumerated Values
• HTBORDER In the border of a window that does not have a sizing border.

• HTBOTTOM In the lower horizontal border of the window.

• HTBOTTOMLEFT In the lower-left corner of the window border.

• HTBOTTOMRIGHT In the lower-right corner of the window border.

CW nd: :OnN cHitTest

2203

CWnd::OnNcLButtonDbIClk

• HTCAPTION In a title-bar area.

• HTCLIENT In a client area.

• HTERROR On the screen background or on a dividing line between windows
(same as HTNOWHERE except that the DefWndProc Windows function
produces a system beep to indicate an error).

• HTGROWBOX In a size box.

• HTHSCROLL In the horizontal scroll bar.

• HTLEFT In the left border of the window.

• HTMAXBUTTON In a Maximize button.

• HTMENU In a menu area.

• HTMINBUTTON In a Minimize button.

• HTNOWHERE On the screen background or on a dividing line between
windows.

• HTREDUCE In a Minimize button.

• HTRIGHT In the right border of the window.

• HTSIZE In a size box (same as HTGROWBOX).

• HTSYSMENU In a Control menu or in a Close button in a child window.

• HTTOP In the upper horizontal border of the window.

• HTTOPLEFT In the upper-left comer of the window border.

• HTTOPRIGHT In the upper-right comer of the window border.

• HTTRANSPARENT In a window currently covered by another window.

• HTVSCROLL In the vertical scroll bar.

• HTZOOM In a Maximize button.

CWnd::OnNcLButtonDbIClk
afx_msg void OnNcLButtonDblClk(UINT nHitTest, CPoint point);

Parameters

Remarks

2204

nHitTest Specifies the hit-test code. A hit test is a test that determines the location of
the cursor.

point Specifies a CPoint object that contains the x and y screen coordinates of the
cursor position. These coordinates are always relative to the upper-left comer of
the screen.

The framework calls this member function when the user double-clicks the left mouse
button while the cursor is within a nonclient area of CWnd.

CWnd::OnNcLButtonUp

If appropriate, the WM_SYSCOMMAND message is sent.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: WM_NCLBUTTONDBLCLK, CWnd::OnNcHitTest

CWnd:: OnN cLButtonDown
afx_msg void OnNcLButtonDown(UINT nHitTest, CPoint point);

Parameters

Remarks

nHitTest Specifies the hit-test code. A hit test is a test that determines the location of
the cursor.

point Specifies a CPoint object that contains the x and y screen coordinates of the
cursor position. These coordinates are always relative to the upper-left corner of
the screen.

The framework calls this member function when the user presses the left mouse
button while the cursor is within a nonclient area of the CWnd object.

If appropriate, the WM_SYSCOMMAND is sent.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received.lf you call the base-class implementation of this
function, that implementation will use the parameters originally passed with the message and
not the parameters you supply to the function.

See Also: CWnd::OnNcHitTest, CWnd::OnNcLButtonDblClk,
CWnd::OnNcLButtonUp, CWnd::OnSysCommand,
WM_NCLBUTTONDOWN, CWnd::Default

CWnd: :OnNcLButtonUp
afx_msg void OnNcLButtonUp(UINT nHitTest, CPoint point);

Parameters
nHitTest Specifies the hit-test code. A hit test is a test that determines the location of

the cursor.

2205

CWnd: :OnNcMButtonDblClk

Remarks

point Specifies a CPoint object that contains the x and y screen coordinates of the
cursor position. These coordinates are always relative to the upper-left comer of
the screen.

The framework calls this member function when the user releases the left mouse
button while the cursor is within a nonclient area.

If appropriate, WM_SYSCOMMAND is sent.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: CWnd::OnNcHitTest, CWnd::OnNcLButtonDown,
CWnd::OnSysCommand, WM_NCLBUTTONUP

CWnd::OnNcMButtonDbIClk
afx_msg void OnNcMButtonDblClk(UINT nHitTest, CPoint point);

Parameters

Remarks

2206

nHitTest Specifies the hit-test code. A hit test is a test that determines the location of
the cursor.

point Specifies a CPoint object that contains the x and y screen coordinates of the
cursor position. These coordinates are always relative to the upper-left comer of
the screen.

The framework calls this member function when the user double-clicks the middle
mouse button while the cursor is within a nonclient area.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: CWnd::OnNcHitTest, CWnd::OnNcMButtonDown,
CWnd::OnNcMButtonUp, WM_NCMBUTTONDBLCLK

CWnd::OnNcMButtonUp

CWnd: :OnN cMButtonDown
afx_msg void OnNcMButtonDown(UINT nHitTest, CPoint point);

Parameters

Remarks

nHitTest Specifies the hit-test code. A hit test is a test that determines the location of
the cursor.

point Specifies a CPoint object that contains the x and y screen coordinates of the
cursor position. These coordinates are always relative to the upper-left corner of
the screen.

The framework calls this member function when the user presses the middle mouse
button while the cursor is within a nonc1ient area.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: CWnd::OnNcHitTest, CWnd::OnNcMButtonDblClk,
CWnd::OnNcMButtonUp, WM_NCMBUTTONDOWN

CWnd: :OnNcMButtonUp
afx_msg void OnNcMButtonUp(UINT nHitTest, CPoint point);

Parameters

Remarks

nHitTest Specifies the hit-test code. A hit test is a test that determines the location
of the cursor.

point Specifies a CPoint object that contains the x and y screen coordinates of the
cursor position. These coordinates are always relative to the upper-left corner of
the screen.

The framework calls this member function when the user releases the middle mouse
button while the cursor is within a nonc1ient area.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

2207

CWnd::OnNcMouseMove

See Also: CWnd::OnNcHitTest, CWnd::OnNcMButtonDbIClk,
CWnd::OnNcMButtonDown, WM_NCMBUTTONUP

CW nd: :OnN cMouseMove
afx_msg void OnNcMouseMove(UINT nHitTest, CPoint point);

Parameters

Remarks

nHitTest Specifies the hit-test code. A hit test is a test that determines the
location of the cursor.

point Specifies a CPoint object that contains the x and y screen coordinates
of the cursor position. These coordinates are always relative to the
upper-left corner of the screen.

The framework calls this member function when the cursor is moved within
a nonclient area. If appropriate, the WM_SYSCOMMAND message is
sent.

Note This member function is called by the framework to allow your application to
handle a Windows message. The parameters passed to your function reflect the
parameters received by the framework when the message was received. If you call
the base-class implementation of this function, that implementation will use the
parameters originally passed with the message and not the parameters you supply to
the function.

See Also: CWnd: :OnNcHitTest, CWnd: :OnSysCommand,
WM_NCMOUSEMOVE

CWnd::OnNcPaint

Remarks

2208

afx_msg void OnNcPaint();

The framework calls this member function when the non client area needs
to be painted. The default implementation paints the window frame.

An application can override this call and paint its own custom window frame.
The clipping region is always rectangular, even if the shape of the frame is
altered.

See Also: WM_NCPAINT

CWnd::OnNcRButtonDown

CWnd::OnNcRButtonDbIClk
afx_msg void OnNcRButtonDblClk(UINT nHitTest, CPoint point);

Parameters

Remarks

nHitTest Specifies the hit-test code. A hit test is a test that determines the location
of the cursor.

point Specifies a CPoint object that contains the x and y screen coordinates of the
cursor position. These coordinates are always relative to the upper-left corner of
the screen.

The framework calls this member function when the user double-clicks the right
mouse button while the cursor is within a nonclient area of CWnd.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: CWnd::OnNcHitTest, CWnd::OnNcRButtonDown,
CWnd::OnNcRButtonUp, WM_NCRBUTTONDBLCLK

CWnd: :OnNcRButtonDown
afx_msg void OnNcRButtonDown(UINT nHitTest, CPoint point);

Parameters

Remarks

nHitTest Specifies the hit-test code. A hit test is a test that determines the location
of the cursor.

point Specifies a CPoint object that contains the x and y screen coordinates of the
cursor position. These coordinates are always relative to the upper-left corner of
the screen.

The framework calls this member function when the user presses the right mouse
button while the cursor is within a nonclient area.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

2209

CWnd::OnNcRButtonUp

See Also: CWnd::OnNcHitTest, CWnd::OnNcRButtonDbIClk,
CWnd: :OnNcRButtonUp

CWnd: :OnNcRButtonUp
afx_msg void OnNcRButtonUp(UINT nHitTest, CPoint point);

Parameters

Remarks

nHitTest Specifies the hit-test code. A hit test is a test that determines the location
of the cursor.

point Specifies a CPoint object that contains the x and y screen coordinates of the
cursor position. These coordinates are always relative to the upper-left comer of
the screen.

The framework calls this member function when the user releases the right mouse
button while the cursor is within a nonc1ient area.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: CWnd::OnNcHitTest, CWnd::OnNcRButtonDbIClk,
CWnd::OnNcRButtonDown, WM_NCRBUTTONUP

CWnd::OnNotify
virtual BOOL CWnd::OnNotify(WPARAM wParam, LPARAM IParam,

~ LRESULT* pResult);

Return Value
An application returns nonzero if it processes this message; otherwise O.

Parameters

2210

wParam Identifies the control that sends the message if the message is from a
control. Otherwise, wParam is O.

IParam Pointer to a notification message (NMHDR) structure that contains the
notification code and additional information. For some notification messages, this
parameter points to a larger structure that has the NMHDR structure as its first
member.

pResult Pointer to an LRESULT variable in which to store the result code if the
message is handled.

Remarks
The framework calls this member function to inform the parent window of a control
that an event has occurred in the control or that the control requires some kind of
information.

OnNotify processes the message map for control notification.

Override this member function in your derived class to handle the WM_NOTIFY
message. An override will not process the message map unless the base class
OnNotify is called.

For more information on the WM_NOTIFY message, see Technical Note 61 (TN061)
online, "ON_NOTIFY and WM_NOTIFY messages." You may also be interested the
related topics described in TN060 online, "The New Windows Common Controls,"
and TN062 online, "Message Reflection for Windows Controls."

CWnd::OnPaint

Remarks

afx_msg void OnPaint();

The framework calls this member function when Windows or an application makes a
request to repaint a portion of an application's window. The WM_PAINT message is
sent when the UpdateWindow or RedrawWindow member function is called.

A window may receive internal paint messages as a result of calling the
RedrawWindow member function with the RDW _INTERNALPAINT flag set. In
this case, the window may not have an update region. An application should call the
GetUpdateRect member function to determine whether the window has an update
region. If GetUpdateRect returns 0, the application should not call the BeginPaint
and EndPaint member functions.

It is an application's responsibility to check for any necessary internal repainting or
updating by looking at its internal data structures for each WM_PAINT message
because a WM_PAINT message may have been caused by both an invalid area and a
call to the RedrawWindow member function with the RDW _INTERNALPAINT
flag set.

An internal WM_PAINT message is sent only once by Windows. After an internal
WM_PAINT message is sent to a window by the UpdateWindow member function,
no further WM_PAINT messages will be sent or posted until the window is
invalidated or until the RedrawWindow member function is called again with
the RDW _INTERNALPAINT flag set.

For information on rendering an image in document/view applications, see
CView: :OnDraw.

For more information about using WM_Paint, see the following topics in the Win32
SDK Programmer's Reference:

CWnd::OnPaint

2211

CW nd: :OnPaintClipboard

• "The WM_PAINT Message"

• "Using the WM_PAINT Message"

See Also: CWnd::BeginPaint, CWnd::EndPaint, CWnd::RedrawWindow,
CPaintDC, CView::OnDraw

CWnd: :OnPaintClipboard
afx_msg void OnPaintCIipboard(CWnd* pClipAppWnd, HGLOBAL hPaintStruct);

Parameters

Remarks

pClipApp Wnd Specifies a pointer to the Clipboard-application window. The pointer
may be temporary and should not be stored for later use.

hPaintStruct Identifies a PAINTSTRUCT data structure that defines what part of
the client area to paint.

A Clipboard owner's OnPaintClipboard member function is called by a Clipboard
viewer when the Clipboard owner has placed data on the Clipboard in the
CF _OWNERDISPLAY format and the Clipboard viewer's client area needs
repainting.

To determine whether the entire client area or just a portion of it needs repainting,
the Clipboard owner must compare the dimensions of the drawing area given in the
repaint member of the PAINTSTRUCT structure to the dimensions given in the
most recent OnSizeClipboard member function call.

OnPaintClipboard should use the GlobalLoek Windows function to lock the
memory that contains the PAINTSTRUCT data structure and unlock that memory
with the GlobalUnloek Windows function before it exits.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: : :GlobaILoek, : :GlobaIUnloek, CWnd: :OnSizeClipboard,
WM_PAINTCLIPBOARD

CW nd: : OnPaletteChanged
afx_msg void OnPaletteChanged(CWnd* pFocusWnd);

Parameters

2212

pFocusWnd Specifies a pointer to the window that caused the system palette to
change. The pointer may be temporary and should not be stored.

CWnd: :OnPaletteIsChanging

Remarks
The framework calls this member function for all top-level windows after the window
with input focus has realized its logical palette, thereby changing the system palette.
This call allows a window without the input focus that uses a color palette to realize
its logical palettes and update its client area.

The OnPaletteChanged member function is called for all top-level and overlapped
windows, including the one that changed the system palette and caused the
WM_PALETTECHANGED message to be sent. If any child window uses a
color palette, this message must be passed on to it.

To avoid an infinite loop, the window shouldn't realize its palette unless it determines
that pFocusWnd does not contain a pointer to itself.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: ::RealizePalette, WM_PALETTECHANGED,
CWnd: :OnPaletteIsChanging, CWnd: :OnQueryNewPalette

CW nd: : OnPaletteIsChanging
afx_msg void OnPaletteIsChanging(CWnd* pRealizeWnd);

Parameters

Remarks

pRealizeWnd Specifies the window that is about to realize its logical palette.

The framework calls this member function to inform applications that an application
is going to realize its logical palette.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: CWnd::OnPaletteChanged, CWnd::OnQueryNewPalette,
WM_PALETTEISCHANGING

2213

CWnd::OnParentNotify

CW nd: : OnParentN otify
afx_msg void OnParentNotify(UINT message, LPARAM IParam);

Parameters

Remarks

2214

message Specifies the event for which the parent is being notified and the identifier
of the child window. The event is the low-order word of message. If the event
is WM_CREATE or WM_DESTROY, the high-order word of message is the
identifier of the child window; otherwise, the high-order word is undefined. The
event (low-order word of message) can be any of these values:

• WM_ CREATE The child window is being created.

• WM_DESTROY The child window is being destroyed.

• WM_LBUTTONDOWN The user has placed the mouse cursor over the
child window and clicked the left mouse button.

• WM_MBUTTONDOWN The user has placed the mouse cursor over the
child window and clicked the middle mouse button.

• WM_RBUTTONDOWN The user has placed the mouse cursor over the
child window and clicked the right mouse button.

IParam If the event (low-order word) of message is WM_CREATE or
WM_DESTROY, IParam specifies the window handle of the child window;
otherwise IParam contains the x and y coordinates of the cursor. The x coordinate
is in the low-order word and the y coordinate is in the high-order word.

A parent's OnParentNotify member function is called by the framework when its
child window is created or destroyed, or when the user clicks a mouse button while
the cursor is over the child window. When the child window is being created, the
system calls OnParentNotify just before the Create member function that creates
the window returns. When the child window is being destroyed, the system calls
OnParentN otify before any processing takes place to destroy the window.

OnParentNotify is called for all ancestor windows of the child window, including
the top-level window.

All child windows except those that have the WS_EX_NOPARENTNOTIFY style
send this message to their parent windows. By default, child windows in a dialog box
have the WS_EX_NOPARENTNOTIFY style unless the child window was created
without this style by calling the CreateEx member function.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

CWnd::OnQueryEndSession

See Also: CWnd::OnCreate, CWnd::OnDestroy, CWnd::OnLButtonDown,
CWnd: :OnMButtonDown, CWnd: :OnRButtonDown, WM_PARENTNOTIFY

CWnd: :OnQueryDragIcon
afx_msg HCURSOR OnQueryDraglcon();

Return Value

Remarks

A doubleword value that contains a cursor or icon handle in the low-order word.
The cursor or icon must be compatible with the display driver's resolution. If the
application returns NULL, the system displays the default cursor. The default return
value is NULL.

The framework calls this member function by a minimized (iconic) window that does
not have an icon defined for its class. The system makes this call to obtain the cursor
to display while the user drags the minimized window.

If an application returns the handle of an icon or cursor, the system converts it to
black-and-white.

If an application returns a handle, the handle must identify a monochrome cursor
or icon compatible with the display driver's resolution. The application can call the
CWinApp::LoadCursor or CWinApp::Loadlcon member functions to load a
cursor or icon from the resources in its executable file and to obtain this handle.

See Also: CWinApp::LoadCursor, CWinApp::Loadlcon,
WM_QUERYDRAGICON

CWnd: :OnQueryEndSession
afx_msg BOOL OnQueryEndSession();

Return Value

Remarks

Nonzero if an application can be conveniently shut down; otherwise 0.

The framework calls this member function when the user chooses to end the
Windows session or when an application calls the ExitWindows Windows function.
If any application returns 0, the Windows session is not ended. Windows stops
calling OnQueryEndSession as soon as one application returns ° and sends the
WM_ENDSESSION message with a parameter value of FALSE for any application
that has already returned nonzero.

See Also: ::ExitWindows, CWnd::OnEndSession, WM_QUERYENDSESSION

2215

CWnd: :OnQueryNewPalette

CWnd::OnQueryNewPalette
afx_msg BOOL OnQueryNewPalette();

Return Value

Remarks

Nonzero if the CWnd realizes its logical palette; otherwise O.

The framework calls this member function when the CWnd object is about to receive
the input focus, giving the CWnd an opportunity to realize its logical palette when it
receives the focus.

See Also: CWnd: :Default, CWnd: : OnPaletteChanged ,
WM_QUERYNEWPALETTE

CWnd:: OnQueryOpen
afx_msg BOOL OnQueryOpen();

Return Value

Remarks

Nonzero if the icon can be opened, or 0 to prevent the icon from being opened.

The framework calls this member function when the CWnd object is minimized and
the user requests that the CWnd be restored to its preminimized size and position.

While in OnQueryOpen, CWnd should not perform any action that would cause an
activation or focus change (for example, creating a dialog box).

See Also: WM_QUERYOPEN

CWnd: :OnRButtonDblClk
afx_msg void OnRButtonDblClk(UINT nFlags, CPoint point);

Parameters

2216

nFlags Indicates whether various virtual keys are down. This parameter can be any
combination of the following values:

• MK_ CONTROL Set if CTRL key is down.

• MK_LBUTTON Set if left mouse button is down.

• MK_MBUTTON Set if middle mouse button is down.

• MK_RBUTTON Set if right mouse button is down.

• MK_SHIFT Set if SHIFf key is down.

CWnd::OnRButtonDown

Remarks

point Specifies the x and y coordinates of the cursor. These coordinates are
always relative to the upper-left corner of the window.

The framework calls this member function when the user double-clicks the right
mouse button.

Only windows that have the CS_DBLCLKS WNDCLASS style can receive
OnRButtonDblClk calls. This is the default for windows within the Microsoft
Foundation Class Library. Windows calls OnRButtonDblClk when the user
presses, releases, and then again presses the right mouse button within the system's
double-click time limit. Double-clicking the right mouse button actually generates
four events: WM_RBUTTONDOWN and WM_RBUTTONUP messages, the
OnRButtonDblClk call, and another WM_RBUTTONUP message when the
button is released.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: CWnd::OnRButtonDown, CWnd::OnRButtonUp,
WM_RBUTTONDBLCLK

CWnd: : OnRB uttonD own
afx_msg void OnRButtonDown(UINT nFlags, CPoint point);

Parameters

Remarks

nFlags Indicates whether various virtual keys are down. This parameter can be any
combination of the following values:

• MK_CONTROL Set if CTRL key is down.

• MK_LBUTTON Set if left mouse button is down.

• MK_MBUTTON Set if middle mouse button is down.

• MK_RBUTTON Set if right mouse button is down.

• MK_SHIFT Set if SHIff key is down.

point Specifies the x and y coordinates of the cursor. These coordinates are always
relative to the upper-left corner of the window.

The framework calls this member function when the user presses the right mouse
button.

2217

CWnd::OnRButtonUp

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: CWnd::OnRButtonDbICIk, CWnd::OnRButtonUp,
WM_RBUTTONDOWN

CWnd::OnRButtonUp
afx_msg void OnRButtonUp(UINT nFlags, CPoint point);

Parameters

Remarks

nFlags Indicates whether various virtual keys are down. This parameter can be any
combination of the following values:

• MK_CONTROL Set ifCTRL key is down.

• MK_LBUTTON Set if left mouse button is down.

• MK_MBUTTON Set if middle mouse button is down.

• MK_SHIFT Set if SHIFT key is down.

point Specifies the x and y coordinates of the cursor. These coordinates are always
relative to the upper-left comer of the window.

The framework calls this member function when the user releases the right mouse
button.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: CWnd::OnRButtonDbICIk, CWnd::OnRButtonDown,
WM_RBUTTONUP

CW nd: : OnRegisteredMouse Wheel
afx_msg LRESULT OnRegisteredMouseWheeI(WPARAM wParam,

... LPARAM IParam);

Return Value
Insignificant at this time. Always zero.

2218

CW nd: :OnRenderFormat

Parameters

Remarks

wParam Horizontal position of the pointer.

IParam Vertical position of the pointer.

The framework calls this member function as a user rotates the mouse wheel and
encounters the wheel's next notch. Unless overridden, OnRegisteredMouseWheel
registers the Windows message, routes the message to the appropriate window, and
calls the WM_MOUSEWHEEL handler for that window.

Override this member function to provide your own message routing or to alter the
mouse-wheel scrolling behavior.

Note OnRegisteredMouseWheel handles messages for Windows 95 and Windows NT 3.51.
For Windows NT 4.0 message handling, use OnMouseWheel.

See Also: RegisterWindowMessage

CWnd::OnRenderAIIFormats

Remarks

afx_msg void OnRenderAllFormats();

The Clipboard owner's OnRenderAllFormats member function is called by the
framework when the owner application is being destroyed.

The Clipboard owner should render the data in all the formats it is capable of
generating and pass a data handle for each format to the Clipboard by calling the
SetClipboardData Windows function. This ensures that the Clipboard contains
valid data even though the application that rendered the data is destroyed. The
application should call the OpenClipboard member function before calling the
SetClipboardData Windows function and call the CloseClipboard Windows
function afterward.

See Also: ::CloseClipboard, CWnd::OpenClipboard, ::SetClipboardData,
CWnd::OnRenderFormat, WM_RENDERALLFORMATS

CWnd: :OnRenderFormat
afx_msg void OnRenderFormat(UINT nFormat);

Parameters

Remarks

nFormat Specifies the Clipboard format.

The Clipboard owner's OnRenderFormat member function is called by the
framework when a particular format with delayed rendering needs to be rendered.

2219

CWnd: :OnSetCursor

The receiver should render the data in that format and pass it to the Clipboard by
calling the SetClipboardData Windows function.

Do not call the Open Clipboard member function or the Close Clipboard Windows
function from within OnRenderFormat.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: ::CloseClipboard, CWnd::OpenClipboard, ::SetClipboardData,
WM_RENDERFORMAT

CWnd: :OnSetCursor
afx_msg BOOL OnSetCursor(CWnd* pWnd, UINT nHitTest, UINT message);

Return Value
Nonzero to halt further processing, or 0 to continue.

Parameters

Remarks

2220

p Wnd Specifies a pointer to the window that contains the cursor. The pointer may be
temporary and should not be stored for later use.

nHitTest Specifies the hit-test area code. The hit test determines the cursor's location.

message Specifies the mouse message number.

The framework calls this member function if mouse input is not captured and the
mouse causes cursor movement within the CWnd object.

The default implementation calls the parent window's OnSetCursor before
processing. If the parent window returns TRUE, further processing is halted. Calling
the parent window gives the parent window control over the cursor's setting in a child
window.

The default implementation sets the cursor to an arrow if it is not in the client area or
to the registered-class cursor if it is.

If nHitTest is HTERROR and message is a mouse button-down message, the
MessageBeep member function is called.

The message parameter is 0 when CWnd enters menu mode.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of

CWnd::OnShowWindow

this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: CWnd::OnNcHitTest, WM_SETCURSOR

CWnd: :OnSetFocus
afx_IDsg void OnSetFocus(CWnd* pOldWnd);

Parameters

Remarks

pOldWnd Contains the CWnd object that loses the input focus (may be NULL).
The pointer may be temporary and should not be stored for later use.

The framework calls this member function after gaining the input focus. To display
a caret, CWnd should call the appropriate caret functions at this point.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: WM_SETFOCUS

CWnd:: OnShowWindow
afx_IDsg void OnShowWindow(BOOL bShow, UINT nStatus);

Parameters

Remarks

bShow Specifies whether a window is being shown. It is TRUE if the window is
being shown; it is FALSE if the window is being hidden.

nStatus Specifies the status of the window being shown. It is 0 if the message is sent
because of a ShowWindow member function call; otherwise nStatus is one of the
following:

• SW _PARENTCLOSING Parent window is closing (being made iconic) or a
pop-up window is being hidden.

• SW _PARENTOPENING Parent window is opening (being displayed) or a
pop-up window is being shown.

The framework calls this member function when the CWnd object is about to be
hidden or shown. A window is hidden or shown when the ShowWindow member
function is called, when an overlapped window is maximized or restored, or when

2221

CWnd::OnSize

an overlapped or pop-up window is closed (made iconic) or opened (displayed on
the screen). When an overlapped window is closed, all pop-up windows associated
with that window are hidden.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: WM_SHOWWINDOW

CWnd::OnSize
afx_msg void OnSize(UINT nType, int ex, int ey);

Parameters

Remarks

2222

nType Specifies the type of resizing requested. This parameter can be one of the
following values:

• SIZE_MAXIMIZED Window has been maximized.

• SIZE_MINIMIZED Window has been minimized.

• SIZE_RESTORED Window has been resized, but neither
SIZE_MINIMIZED nor SIZE_MAXIMIZED applies.

• SIZE_MAXHIDE Message is sent to all pop-up windows when some other
window is maximized.

• SIZE_MAXSHOW Message is sent to all pop-up windows when some other
window has been restored to its former size.

ex Specifies the new width of the client area.

ey Specifies the new height of the client area.

The framework calls this member function after the window's size has changed.

If the SetScrollPos or Move Window member function is called for a child window
from OnSize, the bRedraw parameter of SetScrollPos or MoveWindow should be
nonzero to cause the CWnd to be repainted.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with·the message
and not the parameters you supply to the function.

See Also: CWnd::MoveWindow, CWnd::SetScrollPos, WM_SIZE

CWnd: :OnSizeClipboard
afx_msg void OnSizeClipboard(CWnd* pClipAppWnd, HGLOBAL hRect);

Parameters

Remarks

pC/ipApp Wnd Identifies the Clipboard-application window. The pointer may be
temporary and should not be stored.

hRect Identifies a global memory object. The memory object contains a RECT data
structure that specifies the area for the Clipboard owner to paint.

The Clipboard owner's OnSizeClipboard member function is called by the Clipboard
viewer when the Clipboard contains data with the CF _OWNERDISPLAY attribute
and the size of the client area of the Clipboard-viewer window has changed.

The OnSizeClipboard member function is called with a null rectangle (0,0,0,0) as the
new size when the Clipboard application is about to be destroyed or minimized. This
permits the Clipboard owner to free its display resources.

Within OnSizeClipboard, an application must use the GlobalLock Windows
function to lock the memory that contains the RECT data structure. Have the
application unlock that memory with the GlobalUnlock Windows function before it
yields or returns control.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: ::GlobaILock, ::GlobaIUnlock, ::SetClipboardData,
CWnd: :SetClipboardViewer, WM_SIZECLIPBOARD

CWnd::OnSizing
afx_msg void OnSizing(UINT nSide, LPRECT lpRect);

Parameters

Remarks

nSide The edge of window to be moved.

lpRect Address of the CRect or RECT structure that will contain the item's
coordinates.

The framework calls this member function to indicate that the user is resizing the
rectangle. By processing this message, an application can monitor the size and
position of the drag rectangle and, if needed, change its size or position.

CWnd::OnSizing

2223

CWnd::OnSpoolerStatus

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

CW nd: : OnSpoolerStatus
afx_msg void OnSpoolerStatus(UINT nStatus, UINT nJobs);

Parameters

Remarks

nStatus Specifies the SP _JOBSTATUS flag.

nJobs Specifies the number of jobs remaining in the Print Manager queue.

The framework calls this member function from Print Manager whenever a job is
added to or removed from the Print Manager queue.

This call is for informational purposes only.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: WM_SPOOLERSTATUS

CWnd: :OnStyleChanged
afx_msg void OnStyleChanged(int nStyleType, LPSTYLESTRUCT lpStyleStruct);

Parameters

Remarks

2224

nStyleType Specifies whether the window's extended or nonextended styles have
changed. This parameter can be a combination of the following values:

• GWL_EXSTYLE The window's extended styles have changed .

• GWL_STYLE The window's nonextended styles have changed.

lpStyleStruct Points to a STYLESTRUCT structure that contains the new styles for
the window. An application can examine the styles, but it can not change them.

The framework calls this member function after the ::SetWindowLong function has
changed one or more of the window's styles.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: WM_STYLECHANGED

CW nd: : OnSty leChanging
afx_msg void OnStyleChanging(int nStyleType,

... LPSTYLESTRUCT lpStyleStruct);

Parameters

Remarks

nStyleType Specifies whether the window's extended or nonextended
styles have changed. This parameter can be a combination of the
following values:

• GWL_EXSTYLE The window's extended styles have changed .

• GWL_STYLE The window's non extended styles have changed.

lpStyleStruct Points to a STYLESTRUCT structure that contains the new styles
for the window. An application can examine the styles and change them.

The framework calls this member function when the ::SetWindowLong function is
about to change one or more of the window's styles.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

CW nd: : OnSysChar
afx_msg void OnSysChar(UINT nChar, UINT nRepCnt, UINT nFlags);

Parameters
nChar Specifies the ASCII-character key code of a Control-menu key.

nRepCnt Specifies the repeat count (the number of times the keystroke is repeated as
a result of the user holding down the key).

CWnd::OnSysChar

2225

CWnd::OnSysChar

Remarks

2226

nFlags The nFlags parameter can have these values:

Value Meaning

0-15 Specifies the repeat count. The value is the number of times the keystroke is
repeated as a result of the user holding down the key ..

16-23 Specifies the scan code. The value depends on the original equipment
manufacturer (OEM)

24 Specifies whether the key is an extended key, such as the right-hand ALT
and CTRL keys that appear on an enhanced 101- or 102-key keyboard.
The value is 1 if it is an extended key; otherwise, it is O.

25-28 Used internally by Windows.

29 Specifies the context code. The value is 1 if the AL T key is held down while
the key is pressed; otherwise, the value is o.

30 Specifies the previous key state. The value is 1 if the key is down before the
message is sent, or it is 0 if the key is up.

31 Specifies the transition state. The value is 1 if the key is being released, or it
is 0 if the key is being pressed.

The framework calls this member function if CWnd has the input focus and the
WM_SYSKEYUP and WM_SYSKEYDOWN messages are translated. It specifies
the virtual-key code of the Control-menu key.

When the context code is 0, WM_SYSCHAR can pass the WM_SYSCHAR
message to the TranslateAccelerator Windows function, which will handle it as
though it were a normal key message instead of a system character-key. This allows
accelerator keys to be used with the active window even if the active window does
not have the input focus.

For IBM Enhanced 101- and 102-key keyboards, enhanced keys are the right ALT
and the right CTRL keys on the main section of the keyboard; the INS, DEL, HOME,
END, PAGE UP, PAGE DOWN, and arrow keys in the clusters to the left of the
numeric keypad; and the slash (/) and ENTER keys in the numeric keypad. Some
other keyboards may support the extended-key bit in nFlags.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: ::TranslateAccelerator, WM_SYSKEYDOWN, WM_SYSKEYUP,
WM_SYSCHAR

CWnd: :OnSysCommand

CW nd: : OnSysColorChange
afx_msg void OnSysColorChange();

Remarks
The framework calls this member function for all top-level windows when a change is
made in the system color setting.

Windows calls OnSysColorChange for any window that is affected by a system color
change.

Applications that have brushes that use the existing system colors should delete those
brushes and re-create them with the new system colors.

See Also: ::SetSysColors, WM_SYSCOLORCHANGE

CW nd: :OnSysCommand
afx_msg void OnSysCommand(UINT nID, LPARAM IParam);

Parameters
nID Specifies the type of system command requested. This parameter can be any

one of the following values:

• SC_CLOSE Close the CWnd object.

• SC_HOTKEY Activate the CWnd object associated with the application
specified hot key. The low-order word of IParam identifies the HWND of the
window to activate.

• SC_HSCROLL Scroll horizontally.

• SC_KEYMENU Retrieve a menu through a keystroke.

• SC_MAXIMIZE (or SC_ZOOM) Maximize the CWnd object.

• SC_MINIMIZE (or SC_ICON) Minimize the CWnd object.

• SC_MOUSEMENU Retrieve a menu through a mouse click.

• SC_MOVE Move the CWnd object.

• SC_NEXTWINDOW Move to the next window.

• SC_PREVWINDOW Move to the previous window.

• SC_RESTORE Restore window to normal position and size.

• SC_SCREENSAVE Executes the screen-saver application specified in the
[boot] section of the SYSTEM.INI file.

• SC_SIZE Size the CWnd object.

2227

CWnd: :OnSysCommand

Remarks

2228

• SC_TASKLIST Execute or activate the Windows Task Manager application.

• SC_ VSCROLL Scroll vertically.

IParam If a Control-menu command is chosen with the mouse, IParam contains
the cursor coordinates. The low-order word contains the x coordinate, and the
high-order word contains the y coordinate. Otherwise this parameter is not used.

• SC_HOTKEY Activate the window associated with the application-specified
hot key. The low-order word of IParam identifies the window to activate.

• SC_SCREENSAVE Execute the screen-save application specified in the
Desktop section of Control Panel.

The framework calls this member function when the user selects a command from the
Control menu, or when the user selects the Maximize or the Minimize button.

By default, OnSysCommand carries out the Control-menu request for the predefined
actions specified in the preceding table.

In WM_SYSCOMMAND messages, the four low-order bits of the nID parameter
are used internally by Windows. When an application tests the value of nID, it must
combine the value OxFFFO with the nID value by using the bitwise-AND operator to
obtain the correct result.

The menu items in a Control menu can be modified with the GetSystemMenu,
AppendMenu, InsertMenu, and ModifyMenu member functions. Applications that
modify the Control menu must process WM_SYSCOMMAND messages, and any
WM_SYSCOMMAND messages not handled by the application must be passed
on to OnSysCommand. Any command values added by an application must be
processed by the application and cannot be passed to OnSysCommand.

An application can carry out any system command at any time by passing a
WM_SYSCOMMAND message to OnSysCommand.

Accelerator (shortcut) keystrokes that are defined to select items from the Control
menu are translated into OnSysCommand calls; all other accelerator keystrokes are
translated into WM_COMMAND messages.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: WM_SYSCOMMAND

CWnd::OnSysKeyDown

CW nd: : OnSysDeadChar
afx_msg void OnSysDeadChar(UINT nChar, UINT nRepCnt, UINT nFlags);

Parameters

Remarks

nChar Specifies the dead-key character value.

nRepCnt Specifies the repeat count.

nFlags Specifies the scan code, key-transition code, previous key state, and context
code, as shown in the following list:

Value Meaning

0-7 Scan code (OEM-dependent value). Low byte of high-order word.

8 Extended key, such as a function key or a key on the numeric keypad
(1 if it is an extended key; otherwise 0).

9-10 Not used.

11-12 Used internally by Windows.

13 Context code (1 if the AL T key is held down while the key is pressed;
otherwise 0).

14 Previous key state (1 if the key is down before the call, 0 if the key is up).

15 Transition state (1 if the key is being released, 0 if the key is being pressed).

The framework calls this member function if the CWnd object has the input focus
when the OnSysKeyUp or OnSysKeyDown member function is called. It specifies
the character value of a dead key.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: CWnd::OnSysKeyDown, CWnd::OnSysKeyUp,
WM_SYSDEADCHAR, CWnd::OnDeadChar

CWnd: :OnSysKeyDown
afx_msg void OnSysKeyDown(UINT nChar, UINT nRepCnt, UINT nFlags);

Parameters
nChar Specifies the virtual-key code of the key being pressed.

nRepCnt Specifies the repeat count.

nFlags Specifies the scan code, key-transition code, previous key state, and context
code, as shown in the following list:

2229

CWnd::OnSysKeyDown

Remarks

2230

Value Meaning

0-7 Scan code (OEM-dependent value). Low byte of high-order word.

8 Extended key, such as a function key or a key on the numeric keypad
(1 if it is an extended key; otherwise 0).

9-10 Not used.

11-12 Used internally by Windows.

13 Context code (1 if the ALT key is held down while the key is pressed, 0
otherwise).

14 Previous key state (1 if the key is down before the message is sent, 0 if the
key is up).

15 Transition state (1 if the key is being released, 0 if the key is being pressed).

For OnSysKeyDown calls, the key-transition bit (bit 15) is O. The context-code bit
(bit 13) is 1 if the ALT key is down while the key is pressed; it is 0 if the message
is sent to the active window because no window has the input focus.

If the CWnd object has the input focus, the OnSysKeyDown member function is
called by the framework when the user holds down the ALT key and then presses
another key. If no window currently has the input focus, the active window's
OnSysKeyDown member function is called. The CWnd object that receives the
message can distinguish between these two contexts by checking the context code
in nFlags.

When the context code is 0, the WM_SYSKEYDOWN message received by
OnSysKeyDown can be passed to the TranslateAccelerator Windows function,
which will handle it as though it were a normal key message instead of a system-key
message. This allows accelerator keys to be used with the active window even if the
active window does not have the input focus.

Because of auto-repeat, more than one OnSysKeyDown call may occur before the
WM_SYSKEYUP message is received. The previous key state (bit 14) can be used
to determine whether the OnSysKeyDown call indicates the first down transition or
a repeated down transition.

For IBM Enhanced 101- and 102-key keyboards, enhanced keys are the right ALT
and the right CTRL keys on the main section of the keyboard; the INS, DEL, HOME,
END, PAGE UP, PAGE DOWN, and arrow keys in the clusters to the left of the
numeric keypad; and the slash (I) and ENTER keys in the numeric keypad. Some
other keyboards may support the extended-key bit in nFlags.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

CWnd::OnSysKeyUp

See Also: : :TranslateAccelerator, WM_SYSKEYUP, WM_SYSKEYDOWN

CWnd: :OnSysKeyUp
afx_msg void OnSysKeyUp(UINT nChar, UINT nRepCnt, UINT nFlags);

Parameters

Remarks

nChar Specifies the virtual-key code of the key being pressed.

nRepCnt Specifies the repeat count.

nFlags Specifies the scan code, key-transition code, previous key state, and context
code, as shown in the following list:

Value Meaning

0-7 Scan code (OEM-dependent value). Low byte of high-order word.

8 Extended key, such as a function key or a key on the numeric keypad
(l if it is an extended key; otherwise 0).

9-10 Not used.

11-12 Used internally by Windows.

13 Context code (1 if the AL T key is held down while the key is pressed, 0
otherwise).

14 Previous key state (l if the key is down before the message is sent, 0 if the
key is up).

15 Transition state (l if the key is being released, 0 if the key is being pressed).

For OnSysKeyUp calls, the key-transition bit (bit 15) is 1. The context-code bit
(bit 13) is 1 if the ALT key is down while the key is pressed; it is 0 if the message
is sent to the active window because no window has the input focus.

If the CWnd object has the focus, the OnSysKeyUp member function is called by the
framework when the user releases a key that was pressed while the ALT key was held
down. If no window currently has the input focus, the active window's OnSysKeyUp
member function is called. The CWnd object that receives the call can distinguish
between these two contexts by checking the context code in nFlags.

When the context code is 0, the WM_SYSKEYUP message received by
OnSysKeyUp can be passed to the TranslateAccelerator Windows function, which
will handle it as though it were a normal key message instead of a system-key
message. This allows accelerator (shortcut) keys to be used with the active window
even if the active window does not have the input focus.

For IBM Enhanced 101- and 102-key keyboards, enhanced keys are the right ALT
and the right CTRL keys on the main section of the keyboard; the INS, DEL, HOME,
END, PAGE UP, PAGE DOWN, and arrow keys in the clusters to the left of the

2231

CWnd: :OnTCard

numeric keypad; and the slash (/) and ENTER keys in the numeric keypad. Some
other keyboards may support the extended-key bit in nFZags.

For non-U.S. Enhanced l02-key keyboards, the right ALT key is handled as the
CTRL+ALT key combination. The following shows the sequence of messages and
calls that result when the user presses and releases this key:

Sequence Function Accessed Message Passed

1. WM_KEYDOWN VK_CONTROL

2. WM_KEYDOWN VK_MENU

3. WM_KEYUP VK_CONTROL

4. WM_SYSKEYUP VK_MENU

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: ::TranslateAccelerator, WM_SYSKEYDOWN, WM_SYSKEYUP

CWnd::OnTCard
afx_msg void OnTCard(UINT idAction, DWORD dwActionData);

Parameters

2232

idAction Indicates the action the user has taken. This parameter can be one of these
values:

• IDABORT The user clicked an authorable Abort button.

• IDCANCEL The user clicked an authorable Cancel button.

• IDCLOSE The user closed the training card.

• IDHELP The user clicked an authorable Windows Help button.

• IDIGNORE The user clicked an authorable Ignore button.

• IDOK The user clicked an authorable OK button.

• IDNO The user clicked an authorable No button.

• IDRETRY The user clicked an authorable Retry button.

• HELP _TCARD_DATA The user clicked an authorable button. The
dwActionData parameter contains a long integer specified by the help author.

• HELP _TCARD_NEXT The user clicked an authorable Next button.

Remarks

• HELP _ TCARD _ OTHER_ CALLER Another application has requested
training cards.

• IDYES The user clicked an authorable Yes button.

dwActionData If idAction specifies HELP _TCARD_DATA, this parameter is a long
integer specified by the help author. Otherwise, this parameter is zero.

The framework calls this member function when the user clicks an authorable button.
This function is called only when an application has initiated a training card with
Windows Help. An application initiates a training card by specifying the
HELP _TCARD command in a call to the WinHelp function.

See Also: ::WinHelp, CWinApp::WinHelp

CW nd: :OnTimeChange

Remarks

afx_msg void OnTimeChange();

The framework calls this member function after the system time is changed.

Have any application that changes the system time send this message to all top-level
windows. To send the WM_TIMECHANGE message to all top-level windows, an
application can use the SendMessage Windows function with its hwnd parameter set
to HWND_BROADCAST.

See Also: ::SendMessage, WM_TIMECHANGE

CWnd::OnTimer
afx_msg void OnTimer(UINT nIDEvent);

Parameters

Remarks

nIDEvent Specifies the identifier of the timer.

The framework calls this member function after each interval specified in the
SetTimer member function used to install a timer.

The DispatchMessage Windows function sends a WM_TIMER message when no
other messages are in the application's message queue.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of

CWnd::OnTimer

2233

CWnd::OnToolHitTest

this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: CWnd::SetTimer, WM_TIMER

CWnd: :OnToolHitTest
virtual int CWnd::OnTooIHitTest(CPoint point, TOOLINFO* pTI) const;

Return Value
If 1, the tooltip control was found; If -1, the tooltip control was not found.

Parameters

Remarks

point Specifies the x- and y-coordinate of the cursor. These coordinates are always
relative to the upper-left corner of the window

pTI A pointer to a TOOLINFO structure. The following structure values are set by
default:

• hwnd = m_h Wnd Handle to a window

• uld = (UINT)hWndChild Handle to a child window

• uFlags 1= TTF _IDISHWND Handle of the tool

• IpszText = LPSTR_TEXTCALLBACK Pointer to the string that is to be
displayed in the specified window

The framework calls this member function to detemine whether a point is in the
bounding rectangle of the specified tool. If the point is in the rectangle, it retrieves
information about the tool.

If the area with which the tool tip is associated is not a button, OnToolHitTest sets the
structure flags to TTF_NOTBUTTON and TTF_CENTERTIP.

Override OnToolHitTest to provide different information than the default provides.

See TOOLINFO, in the Win32 SDK Programmer's Reference, for more information
about the structure.

See Also: TOOLINFO, CWnd::FilterTooltipMessage

CWnd: :On VKeyToItem
protafx_msg int On VKeyToltem(UINT nKey, CListBox* pListBox, UINT nlndex);

Return Value

2234

Specifies the action that the application performed in response to the message. A
return value of -2 indicates that the application handled all aspects of selecting the

item and requires no further action by the list box. A return value of -1 indicates that
the list box should perform the default action in response to the keystroke. A return
value of 0 or greater specifies the zero-based index of an item in the list box and
indicates that the list box should perform the default action for the keystroke on the
given item.

Parameters

Remarks

nKey Specifies the virtual-key code of the key that the user pressed.

pListBox Specifies a pointer to the list box. The pointer may be temporary and
should not be stored for later use.

nlndex Specifies the current caret position.

If the CWnd object owns a list box with the LBS_ WANTKEYBOARDINPUT
style, the list box will send the WM_ VKEYTOITEM message in response to a
WM_KEYDOWN message.

This member function is called by the framework only for list boxes that have the
LBS_HASSTRINGS style.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: WM_KEYDOWN, WM_ VKEYTOITEM

CWnd::OnVScroll
afx_illsg void On VScroll(UINT nSBCode, UINT nPos, CScrollBar* pScrollBar);

Parameters
nSBCode Specifies a scroll-bar code that indicates the user's scrolling request. This

parameter can be one of the following:

• SB_BOTTOM Scroll to bottom.

• SB_ENDSCROLL End scroll.

• SB_LINEDOWN Scroll one line down.

• SB_LINEUP Scroll one line up.

• SB_PAGEDOWN Scroll one page down.

• SB_PAGEUP Scroll one page up.

• SB_THUMBPOSITION Scroll to the absolute position. The current position
is provided in nPos.

CWnd::OnVScroll

2235

CWnd: :On VScrollClipboard

Remarks

• SB_THUMBTRACK Drag scroll box to specified position. The current
position is provided in nPos.

• SB_TOP Scroll to top.

nPos Contains the current scroll-box position if the scroll-bar code is
SB_THUMBPOSITION or SB_THUMBTRACK; otherwise not used.
Depending on the initial scroll range, nPos may be negative and should be cast
to an int if necessary.

pScrollBar If the scroll message came from a scroll-bar control, contains a pointer
to the control. If the user clicked a window's scroll bar, this parameter is NULL.
The pointer may be temporary and should not be stored for later use.

The framework calls this member function when the user clicks the window's vertical
scroll bar.

On VScroll typically is used by applications that give some feedback while the scroll
box is being dragged.

If On VScroll scrolls the contents of the CWnd object, it must also reset the position
of the scroll box with the SetScrollPos member function.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: CWnd: :SetScrollPos, CWnd: :OnHScroll, WM_ VSCROLL

CWnd: :On VScrollClipboard
afx_msg void OnVScrollClipboard(CWnd* pClipAppWnd, UINT nSBCode, UINT nPos);

Parameters

2236

pClipAppWnd Specifies a pointer to a Clipboard-viewer window. The pointer may be
temporary and should not be stored for later use.

nSBCode Specifies one of the following scroll-bar values:

• SB_BOTTOM Scroll to bottom.

• SB_ENDSCROLL End scroll.

• SB_LINEDOWN Scroll one line down.

• SB_LINEUP Scroll one line up.

• SB_PAGEDOWN Scroll one page down.

CWnd: :On Window PosChanged

Remarks

• SB_PAGEUP Scroll one page up.

• SB_THUMBPOSITION Scroll to the absolute position. The current position
is provided in nPos.

• SB_TOP Scroll to top.

nPos Contains the scroll-box position if the scroll-bar code is
SB_THUMBPOSITION; otherwise nPos is not used.

The Clipboard owner's OnVScrollClipboard member function is called by the
Clipboard viewer when the Clipboard data has the CF _OWNERDISPLAY format
and there is an event in the Clipboard viewer's vertical scroll bar. The owner should
scroll the Clipboard image, invalidate the appropriate section, and update the
scroll-bar values.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: CWnd::lnvalidate, CWnd::OnHScrollClipboard,
CWnd: : InvalidateRect, WM_ VSCROLLCLIPBOARD, CWnd: : Default

CW nd: :On WindowPosChanged
afx_msg void On WindowPosChanged(WINDOWPOS* lpwndpos);

Parameters

Remarks

lpwndpos Points to a WINDOWPOS data structure that contains information about
the window's new size and position.

The framework calls this member function when the size, position, or Z-order has
changed as a result of a call to the SetWindowPos member function or another
window-management function.

The default implementation sends the WM_SIZE and WM_MOVE messages to the
window. These messages are not sent if an application handles the
On WindowPosChanged call without calling its base class. It is more efficient to
perform any move or size change processing during the call to
On WindowPosChanged without calling its base class.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of

2237

CWnd: :On WindowPosChanging

this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: WM_ WlNDOWPOSCHANGED

CWnd: :On WindowPosChanging
afx_msg void OnWindowPosChanging(WINDOWPOS* Ipwndpos);

Parameters

Remarks

Ipwndpos Points to a WINDOWPOS data structure that contains information about
the window's new size and position.

The framework calls this member function when the size, position, or Z-order is
about to change as a result of a call to the SetWindowPos member function or another
window-management function.

An application can prevent changes to the window by setting or clearing the
appropriate bits in the flags member of the WINDOWPOS structure.

For a window with the WS_OVERLAPPED or WS_THICKFRAME style, the
default implementation sends a WM_GETMINMAXINFO message to the window.
This is done to validate the new size and position of the window and to enforce the
CS_BYTEALIGNCLIENT and CS_BYTEALIGN client styles. An application
can override this functionality by not calling its base class.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: CWnd::OnWindowPosChanged, WM_ WINDOWPOSCHANGING

CWnd: :On WinIniChange
afx_msg void On WinlniChange(LPCTSTR IpszSection);

Parameters

Remarks

2238

IpszSection Points to a string that specifies the name of the section that has changed.
(The string does not include the square brackets that enclose the section name.)

The framework calls this member function after a change has been made to the
Windows initialization file, WIN.INI.

The SystemParametersInfo Windows function calls On WinIniChange after an
application uses the function to change a setting in the WIN .INI file.

To send the WM_ WININICHANGE message to all top-level windows, an
application can use the SendMessage Windows function with its hwnd parameter
set to HWND_BROADCAST.

If an application changes many different sections in WIN.INI at the same time, the
application should send one WM_ WININICHANGE message with lpszSection set
to NULL. Otherwise, an application should send WM_ WININICHANGE each time
it makes a change to WIN.INI.

If an application receives an OnWinIniChange call with lpszSection set to NULL,
the application should check all sections in WIN.INI that affect the application.

Note This member function is called by the framework to allow your application to handle a
Windows message. The parameters passed to your function reflect the parameters received by
the framework when the message was received. If you call the base-class implementation of
this function, that implementation will use the parameters originally passed with the message
and not the parameters you supply to the function.

See Also: ::SendMessage, ::SystemParametersInfo, WM_ WININICHANGE

CWnd::OnWndMsg
virtual BOOL OnWndMsg(UINT message, WPARAM wParam,

... LPARAM lParam, LRESULT* pResult);

Return Value
Nonzero if message was handled; otherwise O.

Parameters

Remarks

message Specifies the message to be sent.

wParam Specifies additional message-dependent information.

lParam Specifies additional message-dependent information.

pResult The return value of WindowProc. Depends on the message; may be NULL.

This member function is called by WindowProc, or is called during message
reflection.

For more information about message reflection, see "Handling Reflected Messages"
in the Visual C++ Programmer's Guide online.

See Also: CWnd::OnChildNotify, CWnd::SendChildNotifyLastMsg,
CWnd: : ReflectChildNotify , CCmdTarget: :OnCmdMsg, CWnd: : ReflectLastMsg

CWnd::OnWndMsg

2239

CWnd::OpenClipboard

CWnd: :OpenClipboard
BOOL OpenClipboard();

Return Value

Remarks

Nonzero if the Clipboard is opened via CWnd, or 0 if another application or window
has the Clipboard open.

Opens the Clipboard. Other applications will not be able to modify the Clipboard until
the CloseClipboard Windows function is called.

The current CWnd object will not become the owner of the Clipboard until the
EmptyClipboard Windows function is called.

See Also: ::CloseClipboard, ::EmptyClipboard, ::OpenClipboard

CW nd: :PostMessage
BOOL PostMessage(UINT message, WPARAM wParam = 0, LPARAM IParam = 0);

Return Value
Nonzero if the message is posted; otherwise O.

Parameters

Remarks

2240

message Specifies the message to be posted.

wParam Specifies additional message information. The content of this parameter
depends on the message being posted.

IParam Specifies additional message information. The content of this parameter
depends on the message being posted.

Places a message in the window's message queue and then returns without waiting for
the corresponding window to process the message. Messages in a message queue are
retrieved by calls to the GetMessage or PeekMessage Windows function.

The Windows PostMessage function can be used to access another application.

See Also: : : GetMessage, : :PeekMessage, : :PostMessage, : :PostAppMessage,
CWnd: :SendMessage

CW nd: :PreCreate Window

CW nd: : PostN cDestroy

Remarks

virtual void PostNcDestroy();

Called by the default OnNcDestroy member function after the window has been
destroyed. Derived classes can use this function for custom cleanup such as the
deletion of the this pointer.

See Also: CWnd::OnNcDestroy

CW nd: :PreCreate Window
virtual BOOL PreCreateWindow(CREATESTRUCT& cs);

Return Value
Nonzero if the window creation should continue; 0 to indicate creation failure.

Parameters

Remarks

cs A CREATESTRUCT structure.

Called by the framework before the creation of the Windows window attached to this
CWnd object.

Never call this function directly.

The default implementation of this function checks for a NULL window class name
and substitutes an appropriate default. Override this member function to modify the
CREATESTRUCT structure before the window is created.

Each class derived from CWnd adds its own functionality to its override of
PreCreateWindow. By design, these derivations of PreCreateWindow are not
documented. To determine the styles appropriate to each class and the interdependencies
between the styles, you can examine the MFC source code for your application's base
class. If you choose to override PreCreateWindow, you can determine whether the
styles used in your application's base class provide the functionality you need by using
information gathered from the MFC source code.

For more information on changing window styles, see "Changing the Styles of a
Window Created by MFC" in Visual C++ Programmer's Guide online.

See Also: CWnd::Create, CWnd::CreateEx, CREATESTRUCT

2241

CWnd: :PreSubclassWindow

CWnd: :PreSubclass Window

Remarks

virtual void PreSubclassWindow();

This member function is called by the framework to allow other necessary subclassing
to occur before the window is subclassed. Overriding this member function allows for
dynamic subclassing of controls. It is an advanced overridable.

See Also: CWnd::SubclassWindow, CWnd::UnsubclassWindow,
CWnd: : GetSuperWndProcAddr, CWnd: :DetWindowProc,
CWnd: :SubclassDIgltem, CWnd: :Attach, CWnd: :PreCreate Window

CW nd: : PreTranslateMes sage
virtual BOOL PreTranslateMessage(MSG* pMsg);

Return Value
Nonzero if the message was translated and should not be dispatched; 0 if the message
was not translated and should be dispatched.

Parameters

Remarks

pMsg Points to a MSG structure that contains the message to process.

U sed by class CWinApp to translate window messages before they are dispatched to
the TranslateMessage and DispatchMessage Windows functions.

See Also: : :TranslateMessage, : :IsDialogMessage,
CWinApp: :PreTranslateMessage

CWnd::Print
void Print(CDC* pDC, DWORD dwFlags) const;

Parameters

2242

pDC A pointer to a device context.

dwFlags Specifies the drawing options. This parameter can be one or more of these
flags:

• PRF _CHECKVISIBLE Draw the window only if it is visible.

• PRF _CHILDREN Draw all visible children windows.

• PRF _CLIENT Draw the client area of the window.

• PRF _ERASEBKGND Erase the background before drawing the window.

Remarks

• PRF _NON CLIENT Draw the non client area of the window.

• PRF_OWNED Draw all owned windows.

Call this member function to draw the current window in the specified device context,
which is most commonly in a printer device context.

CWnd::DefWindowProc function processes this message based on which drawing
option is specified:

• If PRF _ CHECKVISIBLE is specified and the window is not visible, do nothing.

• If PRF _NON CLIENT is specified, draw the nonclient area in the given device
context.

• If PRF _ERASEBKGND is specified, send the window a WM_ERASEBKGND
message.

• If PRF _PRINT CLIENT is specified, send the window a WM_PRINTCLIENT
message.

• If PRF _PRINT CHILDREN is set, send each visible child window a
WM_PRINT message.

• If PRF _OWNED is set, send each visible owned window a WM_PRINT
message.

CW nd: :PrintClient
void PrintClient(CDC* pDC, DWORD dwFlags) const;

Parameters
pDC A pointer to a device context.

dwFlags Specifies drawing options. This parameter can be one or more of these
flags:

• PRF _CHECKVISIBLE Draw the window only if it is visible.

• PRF _CHILDREN Draw all visible children windows.

• PRF _CLIENT Draw the client area of the window.

• PRF _ERASEBKGND Erase the background before drawing the window.

• PRF _NON CLIENT Draw the non client area of the window.

• PRF _OWNED Draw all owned windows.

CWnd::PrintClient

2243

CWnd: :RedrawWindow

Remarks
Call this member function to draw any window in the specified device context
(usually a printer device context).

See Also: WM_PRINTCLIENT

CWnd: : RedrawWindow
BOOL RedrawWindow(LPCRECT IpRectUpdate = NULL, CRgn* prgnUpdate = NULL,

... UINT flags = RDW _INVALIDATE I RDW _UPDATENOW I RDW _ERASE);

Return Value
Nonzero if the window was redrawn successfully; otherwise O.

Parameters

2244

IpRectUpdate Points to a RECT structure containing the coordinates of the update
rectangle. This parameter is ignored if prgnUpdate contains a valid region handle.

prgnUpdate Identifies the update region. If both prgnUpdate and IpRectUpdate are
NULL, the entire client area is added to the update region.

flags The following flags are used to invalidate the window:

• RDW _ERASE Causes the window to receive a WM_ERASEBKGND
message when the window is repainted. The RDW _INVALIDATE flag must
also be specified; otherwise RDW _ERASE has no effect.

• RDW _FRAME Causes any part of the nonclient area of the window that
intersects the update region to receive a WM_NCPAINT message. The
RDW _INVALIDATE flag must also be specified; otherwise RDW _FRAME
has no effect.

• RDW _INTERNALPAINT Causes a WM_PAINT message to be posted to
the window regardless of whether the window contains an invalid region.

• RDW _INVALIDATE Invalidate IpRectUpdate or prgnUpdate (only one may
be not NULL). If both are NULL, the entire window is invalidated.

The following flags are used to validate the window:

• RDW _NOERASE Suppresses any pending WM_ERASEBKGND messages.

• RDW _NO FRAME Suppresses any pending WM_NCPAINT messages. This
flag must be used with RDW _VALIDATE and is typically used with
RDW _NOCHILDREN. This option should be used with care, as it could
prevent parts of a window from painting properly.

• RDW _NOINTERNALPAINT Suppresses any pending internal WM_PAINT
messages. This flag does not affect WM_PAINT messages reSUlting from
invalid areas.

CW nd:: ReflectChildN otify

Remarks

• RDW _VALIDATE Validates lpRectUpdate or prgnUpdate (only one may be
not NULL). If both are NULL, the entire window is validated. This flag does
not affect internal WM_PAINT messages.

The following flags control when repainting occurs. Painting is not performed by
the RedrawWindow function unless one of these bits is specified.

• RDW _ERASENOW Causes the affected windows (as specified by the
RDW _ALL CHILDREN and RDW _NOCHILDREN flags) to receive
WM_NCPAINT and WM_ERASEBKGND messages, if necessary, before
the function returns. WM_PAINT messages are deferred.

• RDW _UPDATENOW Causes the affected windows (as specified by the
RDW_ALLCHILDREN and RDW_NOCHILDREN flags) to receive
WM_NCPAINT, WM_ERASEBKGND, and WM_PAINT messages, if
necessary, before the function returns.

By default, the windows affected by the RedrawWindow function depend on
whether the specified window has the WS_CLIPCHILDREN style. The child
windows ofWS_CLIPCHILDREN windows are not affected. However, those
windows that are not WS_CLIPCHILDREN windows are recursively validated or
invalidated until a WS_CLIPCHILDREN window is encountered. The following
flags control which windows are affected by the RedrawWindow function:

• RDW _ALL CHILDREN Includes child windows, if any, in the repainting
operation.

• RDW _NO CHILDREN Excludes child windows, if any, from the repainting
operation.

Updates the specified rectangle or region in the given window's client area.

When the RedrawWindow member function is used to invalidate part of the desktop
window, that window does not receive a WM_PAINT message. To repaint the
desktop, an application should use CWnd::ValidateRgn, CWnd::InvalidateRgn,
CWnd::UpdateWindow, or ::RedrawWindow

CW nd: : ReflectChildN otify
BOOL ReflectChiidNotify(UINT message, WPARAM wParam, LPARAM lParam,

... LRESULT* pResult);

Return Value
TRUE if message was reflected; otherwise FALSE.

Parameters
message Specifies the message to be reflected.

2245

CW nd: :ReflectLastMsg

Remarks

wParam Specifies additional message-dependent information.

IParam Specifies additional message-dependent information.

pResult The result generated by the child window to be returned by the parent
window. Can be NULL.

This message function is called by the framework from OnChildNotify. It is a helper
function which reflects message to its source.

Reflected messages are sent directly to CWnd::OnWndMsg or
CCmdTarget: :OnCmdMsg.

For more information about message reflection, see "Handling Reflected Messages"
in the Visual c++ Programmer's Guide online.

See Also: CWnd::OnChildNotify, CWnd::SendChildNotifyLastMsg,
CWnd::On WndMsg, CCmdTarget: :OnCmdMsg,
CWnd: : ReflectLastMsg

CWnd: : ReflectLastMsg
static BOOL PASCAL ReflectLastMsg(HWND h WndChild,

.. LRESULT* pResult = NULL);

Return Value
Nonzero if the message was handled; otherwise O.

Parameters

Remarks

2246

h WndChild A handle to a child window.

pResult The result generated by the child window to be returned by the parent
window. Can be NULL.

This member function is called by the framework to reflect the last message to the
child window.

This member function calls SendChildNotifyLastMsg if the window identified by
h WndChild is an OLE control or a window in the permanent map.

For more information about message reflection, see "Handling Reflected Messages"
in the Visual c++ Programmer's Guide online.

See Also: CWnd::OnChildNotify, CWnd::SendChildNotifyLastMsg,
CWnd: : ReflectChildNotify , CCmdTarget: :OnCmdMsg

CWnd::ReleaseDC
int ReleaseDC(CDC* pDC);

Return Value
Nonzero if successful; otherwise O.

Parameters

Remarks

pDC Identifies the device context to be released.

Releases a device context, freeing it for use by other applications. The effect of the
ReleaseDC member function depends on the device-context type.

The application must call the ReleaseDC member function for each call to the
GetWindowDC member function and for each call to the GetDC member function.

See Also: CWnd::GetDC, CWnd::GetWindowDC, ::ReleaseDC

CWnd: :RepositionBars
void RepositionBars(UINT nIDFirst, UINT nIDLast, UINT nIDLeftOver,

Parameters

... UINT nFlag = CWnd::reposDefault, LPRECT lpRectParam = NULL,

... LPCRECT lpRectClient = NULL);

nIDFirst The ID of the first in a range of control bars to reposition and resize.

nIDLast The ID of the last in a range of control bars to reposition and resize.

nIDLeftOver Specifies ID of pane that fills the rest of the client area.

nFlag Can have one of the following values:

• CWnd::reposDefault Performs the layout of the control bars. lpRectParam
is not used and can be NULL.

• CWnd::reposQuery The layout of the control bars is not done; instead
lpRectParam is initialized with the size of the client area, as if the layout had
actually been done.

• CWnd::reposExtra Adds the values of lpRectParam to the client area of
nIDLast and also performs the layout.

lpRectParam Points to a RECT structure; the usage of which depends on the value
of nFlag.

lpRectClient Points to a RECT structure containing the available client area. If
NULL, the window's client area will be used.

CWnd::RepositionBars

2247

CWnd::RunModaILoop

Remarks
Called to reposition and resize control bars in the client area of a window. The
nIDFirst and nIDLast parameters define a range of control-bar IDs to be repositioned
in the client area. The nIDLeftOver parameter specifies the ID of the child window
(normally the view) which is repositioned and resized to fill the rest of the client area
not filled by control bars.

See Also: CFrame Wnd: : RecalcLayout

CW nd: : RunModalLoop
int RunModalLoop(DWORD dwFlags);

Return Value
Specifies the value of the nResult parameter passed to the EndModalLoop member
function, which is then used to end the modal loop.

Parameters

Remarks

dwFlags Specifies the Windows message to be sent. Can be one of the following
values:

• MLF _NOIDLEMSG Don't send WM_ENTERIDLE messages to the parent.

• MLF _NOKICKIDLE Don't send WM_KICKIDLE messages to the
window.

• MLF _SHOWONIDLE Show the window when message queue goes idle.

Call this member function to retrieve, translate, or dispatch messages until
ContinueModal returns FALSE. By default, ContinueModal returns FALSE after
EndModalLoop is called. Returns the value provided as nResult to EndModalLoop.

See Also: EndModalLoop, WM_ENTERIDLE

CWnd: :ScreenToClient
void ScreenToClient(LPPOINT IpPoint) const;
void ScreenToClient(LPRECT IpRect) const;

Parameters

2248

IpPoint Points to a CPoint object or POINT structure that contains the screen
coordinates to be converted.

IpRect Points to a CRect object or RECT structure that contains the screen
coordinates to be converted.

Remarks
Converts the screen coordinates of a given point or rectangle on the display to client
coordinates.

The ScreenToClient member function replaces the screen coordinates given in
lpPoint or lpRect with client coordinates. The new coordinates are relative to the
upper-left comer of the CWnd client area.

See Also: CWnd::ClientToScreen, ::ScreenToClient

CWnd: :ScrollWindow
void ScrollWindow(int xAmount, int yAmount, LPCRECT lpRect = NULL,

... LPCRECT lpClipRect = NULL);

Parameters

Remarks

xAmount Specifies the amount, in device units, of horizontal scrolling. This
parameter must be a negative value to scroll to the left.

yAmount Specifies the amount, in device units, of vertical scrolling. This parameter
must be a negative value to scroll up.

lpRect Points to a CRect object or RECT structure that specifies the portion of the
client area to be scrolled. If lpRect is NULL, the entire client area is scrolled. The
caret is repositioned if the cursor rectangle intersects the scroll rectangle.

lpClipRect Points to a CRect object or RECT structure that specifies the clipping
rectangle to scroll. Only bits inside this rectangle are scrolled. Bits outside this
rectangle are not affected even if they are in the lpRect rectangle. If lpClipRect is
NULL, no clipping is performed on the scroll rectangle.

Scrolls the contents of the client area of the current CWnd object.

If the caret is in the CWnd being scrolled, ScrollWindow automatically hides the
caret to prevent it from being erased and then restores the caret after the scroll is
finished. The caret position is adjusted accordingly.

The area uncovered by the ScrollWindow member function is not repainted but
is combined into the current CWnd object's update region. The application will
eventually receive a WM_PAINT message notifying it that the region needs
repainting. To repaint the uncovered area at the same time the scrolling is done, call
the UpdateWindow member function immediately after calling ScrollWindow.

If lpRect is NULL, the positions of any child windows in the window are offset by
the amount specified by xAmount and yAmount, and any invalid (unpainted) areas
in the CWnd are also offset. ScrollWindow is faster when lpRect is NULL.

If lpRect is not NULL, the positions of child windows are not changed, and invalid
areas in CWnd are not offset. To prevent updating problems when lpRect is not

CWnd: :ScrollWindow

2249

CWnd: :ScrollWindowEx

NULL, call the UpdateWindow member function to repaint CWnd before calling
ScrolIWindow.

See Also: CWnd:: Update Window, : :ScrolIWindow

CWnd::ScroIIWindowEx
int ScrolIWindowEx(int dx, int dy, LPCRECT IpRectScroll, LPCRECT IpRectClip,

... CRgn* prgnUpdate, LPRECT IpRectUpdate, UINT flags);

Return Value
The return value is SIMPLEREGION (rectangular invalidated region),
COMPLEXREGION (nonrectangular invalidated region; overlapping rectangles),
or NULLREGION (no invalidated region), if the function is successful; otherwise
the return value is ERROR.

Parameters

2250

dx Specifies the amount, in device units, of horizontal scrolling. This parameter must
have a negative value to scroll to the left.

dy Specifies the amount, in device units, of vertical scrolling. This parameter must
have a negative value to scroll up.

IpRectScroll Points to a RECT structure that specifies the portion of the client area
to be scrolled. If this parameter is NULL, the entire client area is scrolled.

IpRectClip Points to a RECT structure that specifies the clipping rectangle to scroll.
This structure takes precedence over the rectangle pointed to by IpRectScroll. Only
bits inside this rectangle are scrolled. Bits outside this rectangle are not affected
even if they are in the IpRectScroll rectangle. If this parameter is NULL, no
clipping is performed on the scroll rectangle.

prgnUpdate Identifies the region that is modified to hold the region invalidated by
scrolling. This parameter may be NULL.

IpRectUpdate Points to a RECT structure that will receive the boundaries of the
rectangle invalidated by scrolling. This parameter may be NULL.

flags Can have one of the following values:

• SW _ERASE When specified with SW _INVALIDATE, erases the newly
invalidated region by sending a WM_ERASEBKGND message to the window.

• SW _INVALIDATE Invalidates the region identified by prgnUpdate after
scrolling.

• SW _SCROLLCHILDREN Scrolls all child windows that intersect the
rectangle pointed to by IpRectScroll by the number of pixels specified in dx and
dy. Windows sends a WM_MOVE message to all child windows that intersect
IpRectScroll, even if they do not move. The caret is repositioned when a child
window is scrolled and the cursor rectangle intersects the scroll rectangle.

CWnd::SendChildNotifyLastMsg

Remarks
Scrolls the contents of a window's client area. This function is similar to the
ScrollWindow function, with some additional features.

If SW _INVALIDATE and SW _ERASE are not specified, the ScrollWindowEx
member function does not invalidate the area that is scrolled away from. If either of
these flags is set, ScrollWindowEx invalidates this area. The area is not updated until
the application calls the UpdateWindow member function, calls the RedrawWindow
member function (specifying RDW _UPDATENOW or RDW _ERASENOW), or
retrieves the WM_PAINT message from the application queue.

If the window has the WS_CLIPCHILDREN style, the returned areas specified by
prgnUpdate and IpRectUpdate represent the total area of the scrolled window that
must be updated, including any areas in child windows that need updating.

If the SW _SCROLLCHILDREN flag is specified, Windows will not properly
update the screen if part of a child window is scrolled. The part of the scrolled child
window that lies outside the source rectangle will not be erased and will not be
redrawn properly in its new destination. Use the DeferWindowPos Windows function
to move child windows that do not lie completely within the IpRectScroll rectangle.
The cursor is repositioned if the SW _SCROLLCHILDREN flag is set and the caret
rectangle intersects the scroll rectangle.

All input and output coordinates (for IpRectScroll, IpRectClip, IpRectUpdate, and
prgnUpdate) are assumed to be in client coordinates, regardless of whether the
window has the CS_OWNDC or CS_CLASSDC class style. Use the LPtoDP and
DPtoLP Windows functions to convert to and from logical coordinates, if necessary.

See Also: CWnd::RedrawWindow, CDC::ScrollDC, CWnd::ScrollWindow,
CWnd::UpdateWindow, ::DeferWindowPos, ::ScrollWindowEx

CW nd: : SendChildN otify LastMs g
BOOL SendChildNotifyLastMsg(LRESULT* pResult = NULL);

Return Value
Nonzero if the child window has handled the message sent to its parent; otherwise O.

Parameters

Remarks

pResult The result generated by the child window to be returned by the parent
window.

This member function is called by the framework to provide a notification message to
a child window, from the parent window, so the child window can handle a task.

SendChildNotifyLastMsg send the current message to the source if it is a message
that is reflected.

2251

CWnd: :SendDIgltemMessage

For more information about message reflection, see "Handling Reflected Messages"
in the Visual C++ Programmer's Guide online.

See Also: CWnd::OnChiidNotify

CW nd: : SendD IgItemMessage
LRESULT SendDlgItemMessage(int nID, UINT message, WPARAM wParam = 0,

10+ LPARAM lParam = 0);

Return Value
Specifies the value returned by the control's window procedure, or 0 if the control was
not found.

Parameters

Remarks

nID Specifies the identifier of the dialog control that will receive the message.

message Specifies the message to be sent.

wParam Specifies additional message-dependent information.

lParam Specifies additional message-dependent information.

Sends a message to a control.

The SendDlgItemMessage member function does not return until the message has
been processed.

Using SendDlgItemMessage is identical to obtaining a CWnd* to the given control
and calling the SendMessage member function.

See Also: CWnd: :SendMessage, : :SendDlgItemMessage

CW nd: : SendMessage
LRESULT SendMessage(UINT message, WPARAM wParam = 0,

10+ LPARAM lParam = 0);

Return Value
The result of the message processing; its value depends on the message sent.

Parameters

2252

message Specifies the message to be sent.

wParam Specifies additional message-dependent information.

lParam Specifies additional message-dependent information.

CW nd: :SendMessageToDescendants

Remarks
Sends the specified message to this window. The SendMessage member function
calls the window procedure directly and does not return until that window
procedure has processed the message. This is in contrast to the PostMessage
member function, which places the message into the window's message queue
and returns immediately.

See Also: : :InSendMessage, CWnd: :PostMessage,
CWnd: :SendDlgItemMessage, : :SendMessage

CW nd: : SendMessageToDescendants
void SendMessageToDescendants(UINT message, WPARAM wParam = 0,

.. LPARAM IParam = 0, BOOL bDeep = TRUE, BOOL bOnlyPerm = FALSE);

Parameters

Remarks

message Specifies the message to be sent.

wParam Specifies additional message-dependent information.

IParam Specifies additional message-dependent information.

bDeep Specifies the level to which to search. If TRUE, recursively search all
children; if FALSE, search only immediate children.

bOnlyPerm Specifies whether the message will be received by temporary windows.
If TRUE, temporary windows can receive the message; if FALSE, only permanent
windows receive the message. For more information on temporary windows see
Technical Note 3 online.

Call this member function to send the specified Windows message to all descendant
windows.

If bDeep is FALSE, the message is sent just to the immediate children of the window;
otherwise the message is sent to all descendant windows.

If bDeep and bOnlyPerm are TRUE, the search continues below temporary windows.
In this case, only permanent windows encountered during the search receive the
message. If bDeep is FALSE, the message is sent only to the immediate children of
the window.

See Also: CWnd: :SendMessage, CWnd: : FromHandlePermanent,
CWnd: :FromHandle

2253

CW nd: :SendN otify Message

CW nd: : SendN otify Message
BOOL SendNotifyMessage(UINT message, WPARAM wParam,

.. LPARAM lParam);

Return Value
Nonzero if the function is successful; otherwise O.

Parameters

Remarks

message Specifies the message to be sent.

wParam Specifies additional message-dependent information.

lParam Specifies additional message-dependent information.

Sends the specified message to the window. If the window was created by the calling
thread, SendNotifyMessage calls the window procedure for the window and does
not return until the window procedure has processed the message. If the window was
created by a different thread, SendNotifyMessage passes the message to the window
procedure and returns immediately; it does not wait for the window procedure to
finish processing the message.

See Also: CWnd::SendMessage, ::SendNotifyMessage

CW nd: : SetActi ve Window
CWnd* SetActiveWindow();

Return Value

Remarks

2254

The window that was previously active.

The returned pointer may be temporary and should not be stored for
later use.

Makes CWnd the active window.

The SetActiveWindow member function should be used with care since it allows
an application to arbitrarily take over the active window and input focus. Normally,
Windows takes care of all activation.

See Also: ::SetActiveWindow, CWnd::GetActiveWindow

CWnd::SetClipboardViewer

CWnd::SetCapture
CWnd* SetCapture();

Return Value

Remarks

A pointer to the window object that previously received all mouse input. It is NULL
if there is no such window. The returned pointer may be temporary and should not be
stored for later use.

Causes all subsequent mouse input to be sent to the current CWnd object regardless
of the position of the cursor.

When CWnd no longer requires all mouse input, the application should call the
ReleaseCapture function so that other windows can receive mouse input.

See Also: ::ReleaseCapture, ::SetCapture, CWnd::GetCapture

CWnd: :SetCaretPos
static void PASCAL SetCaretPos(POINT point);

Parameters

Remarks

point Specifies the new x and y coordinates (in client coordinates) of the caret.

Sets the position of the caret.

The SetCaretPos member function moves the caret only if it is owned by a window in
the current task. SetCaretPos moves the caret whether or not the caret is hidden.

The caret is a shared resource. A window should not move the caret if it does not own
the caret.

See Also: CWnd: : GetCaretPos, : :SetCaretPos

CW nd: : SetClipboardViewer
HWND SetClipboardViewer();

Return Value
A handle to the next window in the Clipboard-viewer chain if successful. Applications
should save this handle (it can be stored as a member variable) and use it when
responding to Clipboard-viewer chain messages.

2255

CWnd::SetDIgCtrlID

Remarks
Adds this window to the chain of windows that are notified (by means of the
WM_DRAWCLIPBOARD message) whenever the content of the Clipboard is
changed.

A window that is part of the Clipboard-viewer chain must respond to
WM_DRAWCLIPBOARD, WM_CHANGECBCHAIN, and WM_DESTROY
messages and pass the message to the next window in the chain.

This member function sends a WM_DRA WCLIPBOARD message to the window.
Since the handle to the next window in the Clipboard-viewer chain has not yet been
returned, the application should not pass on the WM_DRAWCLIPBOARD message
that it receives during the call to SetClipboardViewer.

To remove itself from the Clipboard-viewer chain, an application must call the
ChangeClipboardChain member function.

See Also: CWnd::ChangeClipboardChain, ::SetClipboardViewer

CWnd: :SetDIgCtrIID
int SetDlgCtrlID(int nID);

Return Value
The previous identifier of the window, if successful; otherwise O.

Parameters

Remarks

nID The new value to set for the control's identifier.

Sets the window ID or control ID for the window to a new value. The window can
be any child window, not only a control in a dialog box. The window cannot be a
top-level window.

See Also: CWnd::GetDlgCtrlID, CWnd::Create, CWnd::CreateEx,
CWnd: : GetDlgItem

CWnd: :SetDlgItemInt
void SetDlgItemInt(int nID, UINT n Value, BOOL bSigned = TRUE);

Parameters
nID Specifies the integer ID of the control to be changed.

n Value Specifies the integer value used to generate the item text.

2256

CWnd::SetForegroundWindow

Remarks

bSigned Specifies whether the integer value is signed or unsigned. If this parameter
is TRUE, n Value is signed. If this parameter is TRUE and n Value is less than 0, a
minus sign is placed before the first digit in the string. If this parameter is FALSE,
n Value is unsigned.

Sets the text of a given control in a dialog box to the string representation of a
specified integer value.

SetDIgltemlnt sends a WM_SETTEXT message to the given control.

See Also: CWnd: : GetDIgltemlnt, : :SetDIgltemlnt, WM_SETTEXT

CWnd::SetDlgItemText
void SetDIgltemText(int nID, LPCTSTR IpszString);

Parameters

Remarks

nID Identifies the control whose text is to be set.

IpszString Points to a CString object or null-terminated string that contains the text
to be copied to the control.

Sets the caption or text of a control owned by a window or dialog box.

SetDIgltemText sends a WM_SETTEXT message to the given control.

See Also: ::SetDIgltemText, WM_SETTEXT, CWnd::GetDIgltemText

CW nd: : SetForegroundWindow
BOOL SetForegroundWindow();

Return Value

Remarks

Nonzero if the function is successful; otherwise 0.

Puts the thread that created the window into the foreground and activates the window.
Keyboard input is directed to the window, and various visual cues are changed for the
user. The foreground window is the window with which the user is currently working.
The foreground window applies only to top-level windows (frame windows or dialogs
boxes).

See Also: CWnd::GetForegroundWindow

2257

CWnd::SetFocus

CWnd: :SetFocus
CWnd* SetFocus();

Return Value

Remarks

A pointer to the window object that previously had the input focus. It is NULL if
there is no such window. The returned pointer may be temporary and should not be
stored.

Claims the input focus. The input focus directs all subsequent keyboard input to this
window. Any window that previously had the input focus loses it.

The SetFocus member function sends a WM_KILLFOCUS message to the window
that loses the input focus and a WM_SETFOCUS message to the window that
receives the input focus. It also activates either the window or its parent.

If the current window is active but does not have the focus (that is, no window has the
focus), any key pressed will produce the messages WM_SYSCHAR,
WM_SYSKEYDOWN, or WM_SYSKEYUP.

See Also: ::SetFocus, CWnd::GetFocus

CWnd: :SetFont
void SetFont(CFont* pFont, BOOL bRedraw = TRUE);

Parameters

Remarks

pFont Specifies the new font.

bRedraw If TRUE, redraw the CWnd object.

Sets the window's current font to the specified font. If bRedraw is TRUE, the window
will also be redrawn.

See Also: CWnd::GetFont, WM_SETFONT

CW nd: : SetIcon
HICON SetIcon(HICON hIcon, BOOL bBig/con);

Return Value
A handle to an icon.

Parameters
hIcon A handle to a previous icon.

2258

Remarks

bBig/con Specifies a 32 pixel by 32 pixel icon if TRUE; specifies a 16 pixel by
16 pixel icon if FALSE.

Call this member function to set the handle to a specific icon, as identified by hIcon.
When the window class is registered, it selects an icon.

See Also: GetIcon

CWnd::SetMenu
BOOL SetMenu(CMenu* pMenu);

Return Value
Nonzero if the menu is changed; otherwise O.

Parameters

Remarks

pMenu Identifies the new menu. If this parameter is NULL, the current menu is
removed.

Sets the current menu to the specified menu. Causes the window to be redrawn to
reflect the menu change.

SetMenu will not destroy a previous menu. An application should call the
CMenu::DestroyMenu member function to accomplish this task.

See Also: CMenu::DestroyMenu, CMenu::LoadMenu, ::SetMenu,
CWnd::GetMenu

CWnd::SetOwner
void SetOwner(CWnd* pOwnerWnd);

Parameters

Remarks

pOwnerWnd Identifies the new owner of the window object. If this parameter is
NULL, the window object has no owner.

Sets the current window's owner to the specified window object. This owner can then
receive command messages from the current window object. By default, the varent of
the current window is its owner.

It is often useful to establish connections between window objects that are unrelated
to the window hierarchy. For example, CToolBar sends notifications to its owner
instead of to its parent. This allows the toolbar to become the child of one window
(such as an OLE container application window) while sending notifications to another
window (such as the in-place frame window). Furthermore, when a server window is

CWnd::SetOwner

2259

CWnd::SetParent

deactivated or activated during in-place editing, any window owned by the frame
window is hidden or shown. This ownership is explicitly set with a call to SetOwner.

The ownership concept of this function is different from the ownership concept of
GetWindow.

See Also: CWnd::GetOwner, CToolBar

CWnd::SetParent
CWnd* SetParent(CWnd* p WndNewParent);

Return Value
A pointer to the previous parent window object if successful. The returned pointer
may be temporary and should not be stored for later use.

Parameters

Remarks

p WndNewPa rent Identifies the new parent window.

Changes the parent window of a child window.

If the child window is visible, Windows performs the appropriate redrawing and
repainting.

See Also: : :SetParent, CWnd: : GetParent

CW nd: : SetProperty
void SetProperty(DISPID dwDispID, VARTYPE vtProp, ...);

Parameters

Remarks

2260

dwDispID Identifies the property to be set. This value is usually supplied by
Component Gallery.

vtProp Specifies the type of the property to be set. For possible values, see the
Remarks section for COleDispatchDriver: :InvokeHelper.

A single parameter of the type specified by vtProp.

Call this member function to set the OLE control property specified by dwDispID.

Note This function should be called only on a CWnd object that represents an OLE control.

For more information about using this member function with OLE Control
Containers, see the article "ActiveX Control Containers: Programming ActiveX
Controls in an ActiveX Control Container" in Visual C++ Programmer's Guide
online.

See Also: CWnd::InvokeHelper, COleDispatchDriver, CWnd::CreateControl

CWnd::SetRedraw
void SetRedraw(BOOL bRedraw = TRUE);

Parameters

Remarks

bRedraw Specifies the state of the redraw flag. If this parameter is TRUE, the
redraw flag is set; if FALSE, the flag is cleared.

An application calls SetRedraw to allow changes to be redrawn or to prevent changes
from being redrawn.

This member function sets or clears the redraw flag. While the redraw flag is cleared,
the contents will not be updated after each change and will not be repainted until the
redraw flag is set. For example, an application that needs to add several items to a list
box can clear the redraw flag, add the items, and then set the redraw flag. Finally, the
application can call the Invalidate or InvalidateRect member function to cause the
list box to be repainted.

See Also: WM_SETREDRAW

CWnd: :SetScrollInfo
BOOL SetScrollInfo(int nBar, LPSCROLLINFO lpScrolllnfo,

... BOOL bRedraw = TRUE);

Return Value
If successful, the return is TRUE. Otherwise, it is FALSE.

Parameters
nBar Specifies whether the scroll bar is a control or part of a window's nonclient

area. If it is part of the nonclient area, nBar also indicates whether the scroll bar
is positioned horizontally, vertically, or both. It must be one of the following:

• SB_BOTH Specifies the horizontal and vertical scroll bars of the window.

• SB_HORZ Specifies that the window is a horizontal scroll bar.

• SB_ VERT Specifies that the window is a vertical scroll bar.

lpScrolllnfo A pointer to a SCROLLINFO structure. See the Win32 SDK
Programmer's Reference for more information about this structure.

bRedraw Specifies whether the scroll bar should be redrawn to reflect the new
position. If bRedraw is TRUE, the scroll bar is redrawn. If it is FALSE, it is not
redrawn. The scroll bar is redrawn by default.

CWnd: :SetScrollInfo

2261

CWnd: :SetScrollPos

Remarks
Call this member function to set the information that the SCROLLINFO structure
maintains about a scroll bar.

The SCROLLINFO structure contains information about a scroll bar, including the
minimum and maximum scrolling positions, the page size, and the position of the
scroll box (the thumb). See the SCROLLINFO structure topic in the Win32 SDK
Programmer's Reference for more information about changing the structure defaults.

The MFC Windows message handlers that indicate scroll-bar position,
CWnd: :OnHScroll and CWnd: :On VScroll, provide only 16 bits of position data.
GetScrollInfo and SetScrolllnfo provide 32 bits of scroll-bar position data. Thus,
an application can call GetScrolllnfo while processing either CWnd: :OnHScroll
or CWnd: :On VScroll to obtain 32-bit scroll-bar position data.

Note CWnd::GetScrolllnfo enables applications to use 32-bit scroll-bar positions.

See Also: CWnd: : GetS crolllnfo , CWnd: :SetScrollPos, CWnd: :On VScroll,
CWnd::OnHScroll, SCROLLINFO

CW nd: : SetScrollPos
int SetScrollPos(int nBar, int nPos, BOOL bRedraw = TRUE);

Return Value
The previous position of the scroll box.

Parameters

Remarks

2262

nBar Specifies the scroll bar to be set. This parameter can be either of the following:

• SB_HORZ Sets the position of the scroll box in the horizontal scroll bar of the
window.

• SB_ VERT Sets the position of the scroll box in the vertical scroll bar of the
window.

nPos Specifies the new position of the scroll box. It must be within the scrolling
range.

bRedraw Specifies whether the scroll bar should be repainted to reflect the new
scroll-box position. If this parameter is TRUE, the scroll bar is repainted; if
FALSE, the scroll bar is not repainted.

Sets the current position of a scroll box and, if requested, redraws the scroll bar to
reflect the new position of the scroll box.

Setting bRedraw to FALSE is useful whenever the scroll bar will be redrawn by a
subsequent call to another function.

See Also: ::SetScrollPos, CWnd::GetScrollPos, CScrollBar::SetScrollPos

CW nd: : SetScrollRange
void SetScrollRange(int nBar, int nMinPos, int nMaxPos, BOOL bRedraw = TRUE);

Parameters

Remarks

nBar Specifies the scroll bar to be set. This parameter can be either of the following
values:

• SB_HORZ Sets the range of the horizontal scroll bar of the window.

• SB_ VERT Sets the range of the vertical scroll bar of the window.

nMinPos Specifies the minimum scrolling position.

nMaxPos Specifies the maximum scrolling position.

bRedraw Specifies whether the scroll bar should be redrawn to reflect the change.
If bRedraw is TRUE, the scroll bar is redrawn; if FALSE, the scroll bar is not
redrawn.

Sets minimum and maximum position values for the given scroll bar. It can also be
used to hide or show standard scroll bars.

An application should not call this function to hide a scroll bar while processing a
scroll-bar notification message.

If the call to SetScrollRange immediately follows a call to the SetScrollPos member
function, the bRedraw parameter in the SetScrollPos member function should be 0 to
prevent the scroll bar from being drawn twice.

The default range for a standard scroll bar is 0 through 100. The default range for
a scroll bar control is empty (both the nMinPos and nMaxPos values are 0). The
difference between the values specified by nMinPos and nMaxPos must not be
greater than INT _MAX.

See Also: CWnd::SetScrollPos, ::SetScrollRange, CWnd::GetScrollRange

CWnd::SetTimer
UINT SetTimer(UINT nIDEvent, UINT nEZapse,

-. void (CALLBACK EXPORT* ZpjhTimer)(HWND, UINT, UINT, DWORD));

Return Value
The timer identifier of the new timer if the function is successful. An application
passes this value to the KillTimer member function to kill the timer. Nonzero if
successful; otherwise O.

CWnd::SetTimer

2263

CWnd: :SetWindowContextHelpld

Parameters

Remarks

nIDEvent Specifies a nonzero timer identifier.

nElapse Specifies the time-out value, in milliseconds.

lpfnTimer Specifies the address of the application-supplied Ti merProc callback
function that processes the WM_ TIMER messages. If this parameter is NULL,
the WM_ TIMER messages are placed in the application's message queue and
handled by the CWnd object.

Installs a system timer. A time-out value is specified, and every time a time-out
occurs, the system posts a WM_TIMER message to the installing application's
message queue or passes the message to an application-defined TimerProc callback
function.

The lpfnTimer callback function need not be named TimerProc, but it must be
defined as follows:

EXPORT TimerProc(void CALLBACK
HWND hWnd,
UINT nMsg,
UINT nIDEvent
DWORD dwTime

) :

II handle of CWnd that called SetTimer
I I WM_TIMER
II timer identification
II system time

Timers are a limited global resource; therefore it is important that an application check
the value returned by the SetTimer member function to verify that a timer is actually
available.

See Also: WM_TIMER, CWnd::KillTimer, ::SetTimer

CW nd: : Set WindowContextHelpId
BOOL SetWindowContextHelpId(DWORD dwContextHelpld);

Return Value
Nonzero if the function is successful; otherwise O.

Parameters

Remarks

2264

dwContextHelpld The help context identifier.

Call this member function to associate a help context identifier with the specified
window.

If a child window does not have a help context identifier, it inherits the identifier of its
parent window. Likewise, if an owned window does not have a help context identifier,
it inherits the identifier of its owner window. This inheritance of help context
identifiers allows an application to set just one identifier for a dialog box and all
of its controls.

CWnd: :SetWindowPos

See Also: CWnd::GetWindowContextHelpId

CW nd: : Set Window Placement
BOOL SetWindowPlacement(const WINDOWPLACEMENT*lpwndpl);

Return Value
Nonzero if the function is successful; otherwise O.

Parameters

Remarks

lpwndpl Points to a WINDOWPLACEMENT structure that specifies the new show
state and positions.

Sets the show state and the normal (restored), minimized, and maximized positions for
a window.

See Also: CWnd::GetWindowPlacement, ::SetWindowPlacement

CW nd: : Set Window Pos
BOOL SetWindowPos(const CWnd* p WndlnsertAfter, int x, int y, int ex, int ey,

... UINT IlFlags);

Return Value
Nonzero if the function is successful; otherwise O.

Parameters
p WlldlnsertAfter Identifies the CWnd object that will precede this CWnd object in

the Z-order. This parameter can be a pointer to a CWnd or a Pointer to one of the
following values:

• wndBottom Places the window at the bottom of the Z-order. If this CWnd is
a topmost window, the window loses its topmost status; the system places the
window at the bottom of all other windows.

• wndTop Places the window at the top of the Z-order.

• wndTopMost Places the window above all nontopmost windows. The window
maintains its topmost position even when it is deactivated.

• wndNoTopMost Repositions the window to the top of all nontopmost
windows (that is, behind all topmost windows). This flag has no effect if the
window is already a nontopmost window.

See the "Remarks" section for this function for rules about how this parameter is
used.

x Specifies the new position of the left side of the window.

2265

CWnd::SetWindowPos

Remarks

2266

y Specifies the new position of the top of the window.

ex Specifies the new width of the window.

ey Specifies the new height of the window.

nFlags Specifies sizing and positioning options. This parameter can be a
combination of the following:

• SWP _DRAWFRAME Draws a frame (defined when the window was created)
around the window.

• SWP _FRAMECHANGED Sends a WM_NCCALCSIZE message to the
window, even if the window's size is not being changed. If this flag is not
specified, WM_NCCALCSIZE is sent only when the window's size is being
changed.

• SWP _HIDEWINDOW Hides the window.

• SWP _NOACTIVATE Does not activate the window. If this flag is not set,
the window is activated and moved to the top of either the topmost or the
nontopmost group (depending on the setting of the pWndlnsertAfter parameter).

• SWP _NOCOPYBITS Discards the entire contents of the client area. If this
flag is not specified, the valid contents of the client area are saved and copied
back into the client area after the window is sized or repositioned.

• SWP _NOMOVE Retains current position (ignores the x and y parameters).

• SWP _NOOWNERZORDER Does not change the owner window's position
in the Z-order.

• SWP _NOREDRAW Does not redraw changes. If this flag is set, no repainting
of any kind occurs. This applies to the client area, the nonclient area (including
the title and scroll bars), and any part of the parent window uncovered as a
result of the moved window. When this flag is set, the application must
explicitly invalidate or redraw any parts of the window and parent window
that must be redrawn.

• SWP _NOREPOSITION Same as SWP _NOOWNERZORDER.

• SWP _NOSENDCHANGING Prevents the window from receiving the
WM_ WINDOWPOSCHANGING message.

• SWP _NOSIZE Retains current size (ignores the ex and ey parameters).

• SWP _NOZORDER Retains current ordering (ignores p WndlnsertAfter).

• SWP _SHOWWINDOW Displays the window.

Call this member function to change the size, position, and Z-order of child, pop-up,
and top-level windows.

CWnd::SetWindowPos

Windows are ordered on the screen according to their Z-order; the window at the top
of the Z-order appears on top of all other windows in the order.

All coordinates for child windows are client coordinates (relative to the upper-left
corner of the parent window's client area).

A window can be moved to the top of the Z-order either by setting the
p WndlnsertAfter parameter to &wndTopMost and ensuring that the
SWP _NOZORDER flag is not set or by setting a window's Z-order so that it is
above any existing topmost windows. When a nontopmost window is made topmost,
its owned windows are also made topmost. Its owners are not changed.

A topmost window is no longer topmost if it is repositioned to the bottom
(&wndBottom) of the Z-order or after any nontopmost window. When a topmost
window is made nontopmost, all of its owners and its owned windows are also made
nontopmost windows.

If neither SWP _NOACTIVATE nor SWP _NOZORDER is specified (that is, when
the application requests that a window be simultaneously activated and placed in the
specified Z-order), the value specified in p WndlnsertAfter is used only in the
following circumstances:

• Neither &wndTopMost nor &wndNoTopMost is specified in the p WndlnsertAfter
parameter.

• This window is not the active window.

An application cannot activate an inactive window without also bringing it to the top
of the Z-order. Applications can change the Z-order of an activated window without
restrictions.

A nontopmost window may own a topmost window, but not vice versa. Any window
(for example, a dialog box) owned by a topmost window is itself made a topmost
window to ensure that all owned windows stay above their owner.

With Windows versions 3.1 and later, windows can be moved to the top of the Z-order
and locked there by setting their WS_EX_TOPMOST styles. Such a topmost
window maintains its topmost position even when deactivated. For example, selecting
the WinHelp Always On Top command makes the Help window topmost, and it then
remains visible when you return to your application.

To create a topmost window, call SetWindowPos with the p WndlnsertAfter parameter
equal to &wndTopMost, or set the WS_EX_TOPMOST style when you create the
window.

If the Z-order contains any windows with the WS_EX_TOPMOST style, a window
moved with the &wndTopMost value is placed at the top of all nontopmost windows,
but below any topmost windows. When an application activates an inactive window
without the WS_EX_ TOPMOST bit, the window is moved above all nontopmost
windows but below any topmost windows.

2267

CWnd::SetWindowRgn

If SetWindowPos is called when the p WndlnsertAfter parameter is &wndBottom
and CWnd is a topmost window, the window loses its topmost status
(WS_EX_TOPMOST is cleared), and the system places the window at the bottom
of the Z-order.

See Also: ::DeferWindowPos, ::SetWindowPos

CWnd: :SetWindowRgn
int SetWindowRgn(HRGN hRgn, BOOL bRedraw);

Return Value
If the function succeeds, the return value is nonzero. If the function fails, the return
value is zero.

Parameters

Remarks

hRgn A handle to a region.

bRedraw If TRUE, the operating system redraws the window after setting the
region; otherwise, it does not. Typically, set bRedraw to TRUE if the window is
visible. If set to TRUE, the system sends the WM_ WINDOWPOSCHANGING
and WM_ WINDOWPOSCHANGED messages to the window.

Call this member function to set a window's region.

The coordinates of a window's window region are relative to the upper-left corner of
the window, not the client area of the window.

After a successful call to SetWindowRgn, the operating system owns the region
specified by the region handle hRgn. The operating system does not make a copy of
the region, so do not make any further function calls with this region handle, and do
not close this region handle.

See Also: ::SetWindowRgn, CWnd::GetWindowRgn

CW nd: : Set WindowText
void SetWindowText(LPCTSTR IpszString);

Parameters

Remarks

2268

IpszString Points to a CString object or null-terminated string to be used as the new
title or control text.

Sets the window's title to the specified text. If the window is a control, the text within
the control is set.

This function causes a WM_SETTEXT message to be sent to this window.

CWnd::ShowScrollBar

See Also: CWnd: : GetWindowText, : :SetWindowText

CWnd::ShowCaret

Remarks

void ShowCaret();

Shows the caret on the screen at the caret's current position. Once shown, the caret
begins flashing automatically.

The ShowCaret member function shows the caret only if it has a current shape and
has not been hidden two or more times consecutively. If the caret is not owned by this
window, the caret is not shown.

Hiding the caret is cumulative. If the HideCaret member function has been called five
times consecutively, ShowCaret must be called five times to show the caret.

The caret is a shared resource. The window should show the caret only when it has the
input focus or is active.

See Also: CWnd::HideCaret, ::ShowCaret

CWnd:: ShowOwnedPopups
void ShowOwnedPopups(BOOL bShow = TRUE);

Parameters

Remarks

bShow Specifies whether pop-up windows are to be shown or hidden. If this
parameter is TRUE, all hidden pop-up windows are shown. If this parameter is
FALSE, all visible pop-up windows are hidden.

Shows or hides all pop-up windows owned by this window.

See Also: : :ShowOwnedPopups

CWnd: : ShowS crollBar
void ShowScrollBar(UINT nBar, BOOL bShow = TRUE);

Parameters
nBar Specifies whether the scroll bar is a control or part of a window's nonclient

area. If it is part of the nonclient area, nBar also indicates whether the scroll bar is
positioned horizontally, vertically, or both. It must be one of the following:

• SB_BOTH Specifies the horizontal and vertical scroll bars of the window.

• SB_HORZ Specifies that the window is a horizontal scroll bar.

2269

CWnd::ShowWindow

Remarks

• SB_ VERT Specifies that the window is a vertical scroll bar.

bShow Specifies whether Windows shows or hides the scroll bar. If this parameter is
TRUE, the scroll bar is shown; otherwise the scroll bar is hidden.

Shows or hides a scroll bar.

An application should not call ShowScrollBar to hide a scroll bar while processing a
scroll-bar notification message.

See Also: ::ShowScrollBar, CScrollBar::ShowScrollBar

CWnd: :ShowWindow
BOOL ShowWindow(int nCmdShow);

Return Value
Nonzero if the window was previously visible; 0 if the CWnd was previously hidden.

Parameters

2270

nCmdShow Specifies how the CWnd is to be shown. It must be one of the following
values:

• SW _HIDE Hides this window and passes activation to another window.

• SW _MINIMIZE Minimizes the window and activates the top-level window
in the system's list.

• SW _RESTORE Activates and displays the window. If the window is
minimized or maximized, Windows restores it to its original size and position.

• SW _SHOW Activates the window and displays it in its current size and
position.

• SW _SHOWMAXIMIZED Activates the window and displays it as a
maximized window.

• SW _SHOWMINIMIZED Activates the window and displays it as an icon.

• SW _SHOWMINNOACTIVE Displays the window as an icon. The window
that is currently active remains active.

• SW _SHOWNA Displays the window in its current state. The window that is
currently active remains active.

• SW _SHOWNOACTIVATE Displays the window in its most recent size and
position. The window that is currently active remains active.

• SW _SHOWNORMAL Activates and displays the window. If the window is
minimized or maximized, Windows restores it to its original size and position.

CWnd::SubclassWindow

Remarks
Sets the visibility state of the window.

ShowWindow must be called only once per application for the main window with
CWinApp::m_nCmdShow. Subsequent calls to ShowWindow must use one of the
values listed above instead of the one specified by CWinApp::m_nCmdShow.

See Also: ::ShowWindow, CWnd::OnShowWindow,
CWnd: :ShowOwnedPopups

CW nd: : SubclassD IgItem
BOOL SubclassDIgUem(UINT nID, CWnd* pParent);

Return Value
Nonzero if the function is successful; otherwise O.

Parameters

Remarks

nID The control's ID.

pParent The control's parent (usually a dialog box).

Call this member function to "dynamically subclass" a control created from a dialog
template and attach it to this CWnd object. When a control is dynamically subclassed,
windows messages will route through the CWnd's message map and call message
handlers in the CWnd's class first. Messages that are passed to the base class will be
passed to the default message handler in the control.

This member function attaches the Windows control to a CWnd object and replaces
the control's WndProc and AfxWndProc functions. The function stores the old
WndProc in the location returned by the GetSuperWndProcAddr member function.

See Also: CWnd::GetSuperWndProcAddr, CWnd::DefWindowProc,
CWnd::SubclassWindow, CWnd::Attach

CW nd:: Subclass Window
BOOL SubclassWindow(HWND h Wnd);

Return Value
Nonzero if the function is successful; otherwise O.

Parameters

Remarks

h Wnd A handle to the window.

Call this member function to "dynamically subclass" a window and attach it to this
CWnd object. When a window is dynamically subclassed, windows messages will

2271

CWnd::UnlockWindowUpdate

route through the CWnd's message map and call message handlers in the CWnd's
class first. Messages that are passed to the base class will be passed to the default
message handler in the window.

This member function attaches the Windows control to a CWnd object and replaces
the window's WndProc and AfxWndProc functions. The function stores the old
WndProc in the location returned by the GetSuperWndProcAddr member function.
You must override the GetSuperWndProcAddr member function for every unique
window class to provide a place to store the old WndProc.

See Also: CWnd::GetSuperWndProcAddr, CWnd::DefWindowProc,
CWnd: :SubclassDIgltem, CWnd: :Attach, CWnd: :PreSubclassWindow,
CWnd:: UnsubclassWindow

CWnd:: UnlockWindowUpdate

Remarks

void CWnd::UnlockWindowUpdateO;

Call this member function to unlock a window that was locked with
CWnd::LockWindowUpdate.

Only one window at a time can be locked using LockWindowUpdate. See
CWnd::LockWindowUpdate or the Win32 function LockWindowUpdate
for more information on locking windows.

CW nd: : U nsubclass Window
HWND UnsubclassWindow();

Return Value

Remarks

2272

A handle to the unsubclassed window.

Call this member function to set WndProc back to its original value and detach
the window identified by HWND from the CWnd object.

See Also: CWnd::SubclassWindow, CWnd::PreSubclassWindow,
CWnd::GetSuperWndProcAddr, CWnd::DefWindowProc,
CWnd: :SubclassDIgItem, CWnd: :Attach

CWnd:: UpdateDialogControls

CW nd: : U pdateData
BOOL UpdateData(BOOL bSaveAndValidate = TRUE);

Return Value
Nonzero if the operation is successful; otherwise O. If bSaveAndValidate is TRUE,
then a return value of nonzero means that the data is successfully validated.

Parameters

Remarks

bSaveAndValidate Flag that indicates whether dialog box is being initialized
(FALSE) or data is being retrieved (TRUE).

Call this member function to initialize data in a dialog box, or to retrieve and
validate dialog data.

The framework automatically calls UpdateData with bSaveAndValidate set to
FALSE when a modal dialog box is created in the default implementation of
CDialog::OnlnitDialog. The call occurs before the dialog box is visible. The
default implementation of CDialog::OnOK calls this member function with
bSaveAndValidate set to TRUE to retrieve the data, and if successful, will close
the dialog box. (If the Cancel button is clicked in the dialog box, the dialog box
is closed without the data being retrieved.)

See Also: CWnd: :DoDataExchange

CW nd: : U pdateDialogControls
void UpdateDialogControls(CCmdTarget* pTarget, BOOL bDisablelfNoHndler);

Parameters

Remarks

pTarget Points to the main frame window of the application, and is used for routing
update messages.

bDisableIjNoHndler Flag that indicates whether a control that has no update handler
should be automatically displayed as disabled.

Call this member function to update the state of dialog buttons and other controls in a
dialog box or window that uses the ON_UPDATE_COMMAND_UI callback
mechanism.

If a child control does not have a handler and bDisablelfNoHndler is TRUE, then the
child control will be disabled.

The framework calls this member function for controls in dialog bars or toolbars as
part of the application's idle processing.

See Also: CFrame Wnd: :m_bAutoMenuEnable

2273

CWnd::UpdateWindow

CWnd:: Update Window
void Update Window();

Remarks
Updates the client area by sending a WM_PAINT message if the update region is not
empty. The UpdateWindow member function sends a WM_PAINT message directly,
bypassing the application queue. If the update region is empty, WM_PAINT is not sent.

See Also: ::UpdateWindow, CWnd::RedrawWindow

CW nd: : ValidateRect
void ValidateRect(LPCRECT IpRect);

Parameters

Remarks

IpRect Points to a CRect object or RECT structure that contains client coordinates
of the rectangle to be removed from the update region. If IpRect is NULL, the
entire window is validated.

Validates the client area within the given rectangle by removing the rectangle from the
update region of the window. The BeginPaint member function automatically validates
the entire client area. Neither the ValidateRect nor the ValidateRgn member function
should be called if a portion of the update region needs to be validated before
WM_PAINT is next generated.

Windows continues to generate WM_PAINT messages until the current update region
is validated.

See Also: CWnd: :BeginPaint, :: VaiidateRect, CWnd:: VaiidateRgn

CW nd: : ValidateRgn
void VaiidateRgn(CRgn* pRgn);

Parameters

Remarks

2274

pRgn A pointer to a CRgn object that identifies a region that defines the area to be
removed from the update region. If this parameter is NULL, the entire client area
is removed.

Validates the client area within the given region by removing the region from the current
update region of the window. The given region must have been created previously by a
region function. The region coordinates are assumed to be client coordinates.

CWnd::WindowProc

The BeginPaint member function automatically validates the entire client area. Neither
the ValidateRect nor the ValidateRgn member function should be called if a portion of
the update region must be validated before the next WM_PAINT message is generated.

See Also: ::ValidateRgn, CWnd::ValidateRect

CW nd:: WindowFromPoint
static CWnd* PASCAL WindowFromPoint(POINT point);

Return Value
A pointer to the window object in which the point lies. It is NULL if no window
exists at the given point. The returned pointer may be temporary and should not be
stored for later use.

Parameters

Remarks

point Specifies a CPoint object or POINT data structure that defines the point to be
checked.

Retrieves the window that contains the specified point; point must specify the screen
coordinates of a point on the screen.

WindowFromPoint does not retrieve a hidden, disabled, or transparent window, even if
the point is within the window. An application should use the ChildWindowFromPoint
member function for a nonrestrictive search.

See Also: ::WindowFromPoint, CWnd::ChildWindowFromPoint

CWnd::WindowProc
virtual LRESULT WindowProc(UINT message, WPARAM wParam,

10+ LPARAM IParam);

Return Value
The return value depends on the message.

Parameters

Remarks

message Specifies the Windows message to be processed.

wParam Provides additional information used in processing the message. The
parameter value depends on the message.

IParam Provides additional information used in processing the message. The
parameter value depends on the message.

Provides a Windows procedure (WindowProc) for a CWnd object. It dispatches
messages through the window's message map.

2275

Data Members
CWnd::m_hWnd
Remarks

2276

The handle of the Windows window attached to this CWnd. The m_h Wnd data
member is a public variable of type HWND.

See Also: CWnd::Attach, CWnd::Detach, CWnd::FromHandle

CWordArray

The CWordArray class supports arrays of 16-bit words.

The member functions of CWordArray are similar to the member functions of
class CObArray. Because of this similarity, you can use the CObArray reference
documentation for member function specifics. Wherever you see a CObject pointer
as a function parameter or return value, substitute a WORD.

CObject* CObArray::GetAt(int <nlndex>) canst;

for example, translates to

WORD CWardArray::GetAt(int <nlndex>) canst;

CWordArray incorporates the IMPLEMENT_SERIAL macro to support serialization
and dumping of its elements. If an array of words is stored to an archive, either with an
overloaded insertion operator or with the CObject::Serialize member function, each
element is, in tum, serialized.

Note Before using an array, use SetSize to establish its size and allocate memory for it. If you
do not use SetSize, adding elements to your array causes it to be frequently reallocated and
copied. Frequent reallocation and copying are inefficient and can fragment memory.

If you need a dump of individual elements in the array, you must set the depth of the
dump context to 1 or greater.

For more information on using CWordArray, see the article "Collections" in
Visual C++ Programmer's Guide online.

#include <afxcoll.h>

CWordArray Class Members
Construction

CWordArray

Bounds

GetSize

GetUpperBound

SetSize

Constructs an empty array for words.

Gets number of elements in this array.

Returns the largest valid index.

Sets the number of elements to be contained in this array.

CWardArray

2277

CWordArray

2278

Operations

FreeExtra

RemoveAII

Element Access

GetAt

SetAt

ElementAt

GetData

Growing the Array

SetAtGrow

Add

Append

Copy

Insertion/Removal

InsertAt

RemoveAt

Operators

operator []

Frees all unused memory above the current upper bound.

Removes all the elements from this array.

Returns the value at a given index.

Sets the value for a given index; array is not allowed to grow.

Returns a temporary reference to the element pointer within the array.

Allows access to elements in the array. Can be NULL.

Sets the value for a given index; grows the array if necessary.

Adds an element to the end of the array; grows the array if necessary.

Appends another array to the array; grows the array if necessary.

Copies another array to the array; grows the array if necessary.

Inserts an element (or all the elements in another array) at a
specified index.

Removes an element at a specific index.

Sets or gets the element at the specified index.

MFC Macros and Globals

MFC Macros and Globals
The Microsoft Foundation Class Library can be divided into two major sections:
(1) the MFC classes and (2) macros and globals. If a function or variable is not a
member of a class, it is a global function or variable.

The MFC library and the ActiveX Template library (ATL) share string conversion
macros. See "String Conversion Macros" in the ATL documentation online for a
discussion of these macros.

The MFC macros and globals offer functionality in the following categories:

General MFC

Database

Internet

• Data types

• Type Casting of MFC Class Objects

• Run-time object model services

• Diagnostic services

• Exception processing

• CString formatting and message-box display

• Message maps

• Application information and management

• Standard command and window IDs

• Collection class helpers

• ClassWizard comment delimiters

o Record Field Exchange (RFX) functions and Bulk Record Field Exchange
(Bulk RFX) functions for the MFC ODBC classes

• Record Field Exchange (DFX) functions for the MFC DAO classes

• Dialog Data Exchange (DDX) functions for CRecordView and CDaoRecordView
(MFC ODBC and DAO classes)

• Dialog Data Exchange (DDX) functions for OLE controls

• Macros to aid in calling Open Database Connectivity (ODBC) API functions
directly

• DAO Database Engine Initialization and Termination

• Internet Server API (IS API) Parse Maps

• Internet Server API (IS API) Diagnostic Macros

2279

MFC Macros and Globals

OLE
• OLE initialization

• Application control

• Dispatch maps

In addition, MFC provides a function, called AfxEnableControlContainer, that
enables any OLE container, developed with MFC 4.0, to fully support embedded
OLE controls.

OLE Controls

2280

• Variant parameter type constants

• Type library access

• Property pages

• Event maps

• Event sink maps

• Connection maps

• Registering OLE controls

• Class factories and licensing

• Persistence of OLE controls

The first part of this section briefly discusses each of the above categories and lists
each global and macro in the category, along with a brief description of what it does.
Following this-in alphabetical order-are complete descriptions of the global
functions, global variables, and macros in the MFC library.

The main supporting reference for the MFC Macros and Globals section is
Visual c++ Programmer's Guide online. This is usually the first place you should
look to find more information on macros and globals. When necessary, the appropriate
article in Visual C++ Programmer's Guide online is mentioned with the function or
macro description.

Note Many global functions start with the prefix "Afx" -but some, such as the dialog data
exchange (DDX) functions and many of the database functions, deviate from this convention.
All global variables start with "afx" as a prefix. Macros do not start with any particular prefix, but
they are written all in uppercase.

MFC Macros and Globals

Data Types
This topic lists the data types most commonly used in the Microsoft Foundation Class
Library. Most of the data types are exactly the same as those in the Windows Software
Development Kit (SDK), while others are unique to MFC.

Commonly used Windows SDK and MFC data types are as follows:

• BOOL A Boolean value.

• BSTR A 32-bit character pointer.

• BYTE An 8-bit integer that is not signed.

• COLORREF A 32-bit value used as a color value.

• DWORD A 32-bit unsigned integer or the address of a segment and its associated
offset.

• LONG A 32-bit signed integer.

• LPARAM A 32-bit value passed as a parameter to a window procedure or
callback function.

• LPCSTR A 32-bit pointer to a constant character string.

• LPSTR A 32-bit pointer to a character string.

• LPCTSTR A 32-bit pointer to a constant character string that is portable for
Unicode and DBCS.

• LPTSTR A 32-bit pointer to a character string that is portable for Unicode
and DBCS.

• LPVOID A 32-bit pointer to an unspecified type.

• LRESULT A 32-bit value returned from a window procedure or callback
function.

• UINT A 16-bit unsigned integer on Windows versions 3.0 and 3.1; a 32-bit
unsigned integer on Win32.

• WNDPROC A 32-bit pointer to a window procedure.

• WORD A 16-bit unsigned integer.

• WPARAM A value passed as a parameter to a window procedure or callback
function: 16 bits on Windows versions 3.0 and 3.1; 32 bits on Win32.

Data types unique to the Microsoft Foundation Class Library include the following:

• POSITION A value used to denote the position of an element in a collection;
used by MFC collection classes.

• LPCRECT A 32-bit pointer to a constant (nonmodifiable) RECT structure.

For a list of the less common data types, see the "Data Types" section of the Win32
SDK Programmer's Reference.

2281

MFC Macros and Globals

Type Casting of MFC Class Objects
Type casting macros provide a way to cast a given pointer to a pointer that
points to an object of specific class, with or without checking that the cast
is legal.

The following table lists the MFC type casting macros.

Macros that Cast Pointers to MFC Class Objects

DYNAMIC_DOWNCAST

STATIC_DOWNCAST

Casts a pointer to a pointer to a class object while
checking to see if the cast is legal.

Casts a pointer to an object from one class to a pointer
of a related type. In a debug build, causes an ASSERT
if the object is not a "kind of' the target type.

Run-Time Object Model Services

2282

The classes CObject and CRuntimeClass encapsulate several object
services, including access to run-time class information, serialization,
and dynamic object creation. All classes derived from CObject inherit this
functionality.

Access to run-time class information enables you to determine information
about an object's class at run time. The ability to determine the class of an
object at run time is useful when you need extra type-checking of function
arguments and when you must write special-purpose code based on the class
of an object. Run-time class information is not supported directly by the
C++ language.

Serialization is the process of writing or reading an object's contents to or from
a file. You can use serialization to store an object's contents even after the
application exits. The object can then be read from the file when the application
is restarted. Such data objects are said to be "persistent."

Dynamic object creation enables you to create an object of a specified class
at run time. For example, document, view, and frame objects must support
dynamic creation because the framework needs to create them dynamically.

The following table lists the MFC macros that support run-time class
information, serialization, and dynamic creation.

For more information on these run-time object services and serialization,
see the article "CObject Class: Accessing Run-Time Class Information" in
Visual C++ Programmer's Guide online.

MFC Macros and Globals

Run-Time Object Model Services Macros

DECLARE_DYNAMIC Enables access to run-time class information (must be used
in the class declaration).

DECLARE_DYNCREATE Enables dynamic creation and access to run-time class
information (must be used in the class declaration).

DECLARE_SERIAL Enables serialization and access to run-time class
information (must be used in the class declaration).

IMPLEMENT_DYNAMIC Enables access to run-time class information (must be used
in the class implementation).

IMPLEMENT_DYNCREATE Enables dynamic creation and access to run-time
information (must be used in the class implementation).

IMPLEMENT_SERIAL Permits serialization and access to run-time class
information (must be used in the class implementation).

RUNTIME_CLASS Returns the CRuntimeClass structure that corresponds to
the named class.

OLE frequently requires the dynamic creation of objects at run time. For example, an
OLE server application must be able to create OLE items dynamically in response to a
request from a client. Similarly, an automation server must be able to create items in
response to requests from automation clients.

The Microsoft Foundation Class Library provides two macros specific to OLE.

Dynamic Creation of OLE Objects

DECLARE_OLE CREATE Enables objects to be created through OLE automation.

IMPLEMENT_OLE CREATE Enables objects to be created by the OLE system.

Diagnostic Services
The Microsoft Foundation Class Library supplies many diagnostic services that make
debugging your programs easier. These diagnostic services include macros and global
functions that allow you to track your program's memory allocations, dump the
contents of objects during run time, and print debugging messages during run time.
The macros and global functions for diagnostic services are grouped into the
following categories:

• General diagnostic macros

• General diagnostic functions and variables

• Object diagnostic functions

These macros and functions are available for all classes derived from CObject in the
Debug and Release versions of MFC. However, all except DEBUG_NEW and
VERIFY do nothing in the Release version.

2283

MFC Macros and Globals

2284

In the Debug library, all allocated memory blocks are bracketed with a series of
"guard bytes." If these bytes are disturbed by an errant memory write, then the
diagnostic routines can report a problem. If you include the line

#define new DEBUG_NEW

in your implementation file, all calls to new will store the filename and line number
where the memory allocation took place. The function
CMemoryState: :DumpAllObjectsSince will display this extra information, allowing
you to identify memory leaks. Refer also to the class CDumpContext for additional
information on diagnostic output.

In addition, the C run-time library also supports a set of diagnostic functions you can
use to debug your applications. For more information, see "Debug Routines" in the
Run-Time Library Reference.

MFC General Diagnostic Macros

ASSERT

ASSERT _KINDOF

TRACE

TRACEO

TRACEl

TRACE2

TRACE3

VERIFY

Prints a message and then aborts the program if the specified
expression evaluates to FALSE in the Debug version of the
library.

Tests that an object is an object of the specified class or of a
class derived from the specified class.

Tests the internal validity of an object by calling its
AssertValid member function; typically overridden from
CObject.

Supplies a filename and line number for all object allocations
in Debug mode to help find memory leaks.

Provides printf-like capability in the Debug version of the
library.

Similar to TRACE but takes a format string with no
arguments.

Similar to TRACE but takes a format string with a single
argument.

Similar to TRACE but takes a format string with two
arguments.

Similar to TRACE but takes a format string with three
arguments.

Similar to ASSERT but evaluates the expression in the
Release version of the library as well as in the Debug
version.

MFC General Diagnostic Variables and Functions

afxDump

afxMemDF

Global variable that sends CDumpContext information to
the debugger output window or to the debug terminal.

Global variable that controls the behavior of the debugging
memory allocator.

MFC Macros and Globals

MFC General Diagnostic Variables and Functions (continued)

afxTraceEnabled

afxTraceFlags

AfxCheckMemory

AfxDump

AfxEnableMemoryTracking

AfxIsMemoryBlock

AfxIsValidAddress

AfxIs ValidString

AfxSetAllocHook

MFC Object Diagnostic Functions

AfxDoForAllClasses

AfxDoFor AllObjects

Global variable used to enable or disable output from the
TRACE macro.

Global variable used to tum on the built-in reporting features
ofMFC.

Checks the integrity of all currently allocated memory.

If called while in the debugger, dumps the state of an object
while debugging.

Turns memory tracking on and off.

Verifies that a memory block has been properly allocated.

Verifies that a memory address range is within the program's
bounds.

Determines whether a pointer to a string is valid.

Enables the calling of a function on each memory allocation.

Performs a specified function on all CObject-derived classes
that support run-time type checking.

Performs a specified function on all CObject-derived objects
that were allocated with new.

Exception Processing
When a program 'executes, a number of abnormal conditions and errors called
"exceptions" can occur. These may include running out of memory, resource
allocation errors, and failure to find files.

The Microsoft Foundation Class Library uses an exception-handling scheme that is
modeled closely after the one proposed by the ANSI standards committee for C++. An
exception handler must be set up before calling a function that may encounter an
abnormal situation. If the function encounters an abnormal condition, it throws an
exception and control is passed to the exception handler.

Several macros included with the Microsoft Foundation Class Library will set up
exception handlers. A number of other global functions help to throw specialized
exceptions and terminate programs, if necessary. These macros and global functions
fall into the following categories:

• Exception macros, which structure your exception handler

• Exception-throwing functions, which generate exceptions of
specific types

• Termination functions, which cause program termination

2285

MFC Macros and Globals

2286

For examples and more details, see the article "Exceptions" in Visual C++
Programmers Guide online.

Exception Macros

TRY

CATCH

AND_CATCH

END_CATCH

END_CATCH_ALL

THROW

THROW_LAST

Exception-Throwing Functions

AfxThrow ArchiveException

AfxThrowFileException

AfxThrowMemoryException

AfxThrowNotSupportedException

AfxThrowResourceException

AfxThrowUserException

Designates a block of code for exception processing.

Designates a block of code for catching an exception
from the preceding TRY block.

Designates a block of code for catching all exceptions
from the preceding TRY block.

Designates a block of code for catching additional
exception types from the preceding TRY block.

Designates a block of code for catching all other
additional exception types thrown in a preceding
TRY block.

Ends the last CATCH or AND_CATCH code block.

Ends the last CATCH_ALL code block.

Throws a specified exception.

Throws the currently handled exception to the next
outer handler.

Throws an archive exception.

Throws a file exception.

Throws a memory exception.

Throws a not-supported exception.

Throws a Windows resource-nat-found exception.

Throws an exception in a user-initiated program
action.

MFC provides two exception-throwing functions specifically for OLE exceptions:

OLE Exception Functions

AfxThrowOleDispatchException

AfxThrowOleException

Throws an exception within an OLE automation
function.

Throws an OLE exception.

To support database exceptions, the database classes provide two exception classes,
CDBException and CDaoException, and global functions to support the exception
types:

DAO Exception Functions

AfxThrowDAOException

AfxThrowDBException

Throws a CDaoException from your own code.

Throws a CDBException from your own code.

MFC Macros and Globals

MFC provides the following termination function:

Termination Functions

AfxAbort Called to terminate an application when a fatal error occurs.

See Also: CException

CString Formatting and Message-Box
Display

A number of functions are provided to format and parse CString objects. You can use
these functions whenever you have to manipulate CString objects, but they are
particularly useful for formatting strings that will appear in message-box text.

This group of functions also includes a global routine for displaying a message box.

CString Functions

AfxFormatStringl

AfxFormatString2

AfxMessageBox

See Also: CString

Substitutes a given string for the format characters "% 1" in a
string contained in the string table.

Substitutes two strings for the format characters "% 1" and
"%2" in a string contained in the string table.

Displays a message box.

Application Information and Management
When you write an application, you create a single CWinApp-derived object.
At times, you may wish to get information about this object from outside the
CWinApp-derived object.

The Microsoft Foundation Class Library provides the following global functions
to help you accomplish these tasks:

Application Information and Management Functions

AfxFreeLibrary

AfxGetApp

AfxGetAppName

Decrements the reference count of the loaded dynamic-link
library (DLL) module; when the reference count reaches zero,
the module is unmapped.

Returns a pointer to the application's single CWinApp object.

Returns a string containing the application's name.

(continued)

2287

MFC Macros and Globals

Application Information and Management Functions (continued)

AfxGetInstanceHandle

AfxGetMain Wnd

AfxGetResourceHandle

AfxInitRichEdit

AfxLoadLibrary

AfxRegisterWndClass

AfxSocketInit

AfxSetResourceHandle

AfxRegisterClass

AfxBeginThread

AfxEndThread

AfxGetThread

AfxWinInit

See Also: CWinApp

Returns an HINSTANCE representing this instance of the
application.

Returns a pointer to the current "main" window of a non-OLE
application, or the in-place frame window of a server
application.

Returns an HINSTANCE to the source of the application's
default resources. Use this to access the application's resources
directly.

Initializes the rich edit control for the application and initializes
the common controls library, if the library hasn't already been
initialized for the process.

Maps a DLL module and returns a handle that can be used to
get the address of a DLL function.

Registers a Windows window class to supplement those
registered automatically by MFC.

Called in a CWinApp::InitInstance override to initialize
Windows Sockets.

Sets the HINSTANCE handle where the default resources of
the application are loaded.

Registers a window class in a DLL that uses MFC.

Creates a new thread.

Terminates the current thread.

Retrieves a pointer to the current CWinThread object.

Called by the MFC-supplied WinMain function, as part of the
CWinApp initialization of a GUI-based application, to
initialize MFC. Must be called directly for console applications
using MFC.

Standard Command and Window IDs

2288

The Microsoft Foundation Class Library defines a number of standard command
and window IDs in AFXRES.H. These IDs are most commonly used within the
resource editors and Class Wizard to map messages to your handler functions. All
standard commands have an ID _ prefix. For example, when you use the menu editor,
you normally bind the File Open menu item to the standard ID_FILE_OPEN
command ID.

For most standard commands, application code does not need to refer to the command
ID, because the framework itself handles the commands through message maps in its

MFC Macros and Globals

primary framework classes (CWinThread, CWinApp, CView, CDocument, and
so forth).

In addition to standard command IDs, a number of other standard IDs are defined
which have a prefix of AFX_ID. These IDs include standard window IDs (prefix
AFX_IDW _), string IDs (prefix AFX_IDS_), and several other types.

IDs that begin with the AFX_ID prefix are rarely used by programmers, but you
might need to refer to these IDs when overriding framework functions which also
refer to the AFX_IDs.

IDs are not individually documented in this reference. You can find more information
on them in "Technical Notes 20, 21, and 22" online.

Note The header file AFXRES.H is indirectly included in AFXWIN.H. You must explicitly
include the statement
#include afxres.h

in your application's resource script (.Re) file.

Collection Class Helpers
The collection classes CMap, CList, and CArray use templated global helper
functions for such purposes as constructing, destroying, and serializing elements. As
part of your implementation of classes based on CMap, CList, and CArray, you
must override these functions as necessary with versions tailored to the type of data
stored in your map, list, or array. For information on overriding ConstructElements,
DestructElements, and SerializeElements, see the article "Collections: How to Make
a Type-Safe Collection" in Visual C++ Programmer's Guide online.

The Microsoft Foundation Class Library provides the following global functions to
help you customize your collection classes:

Collection Class Helpers

CompareElements

ConstructElements

Copy Elements

DestructElements

DumpElements

HashKey

SerializeElements

Indicates whether elements are the same.

Performs any action necessary when an element is constructed.

Copies elements from one array to another.

Performs any action necessary when an element is destroyed.

Provides stream-oriented diagnostic output.

Calculates a hash key.

Stores or retrieves elements to or from an archive.

See Also: CMap, CList, CArray

2289

MFC Macros and Globals

Record Field Exchange Functions

2290

This topic lists the Record Field Exchange (RFX, Bulk RFX, and DFX) functions
used to automate the transfer of data between a recordset object and its data source
and to perform other operations on the data.

If you are using the ODBC-based classes and you have implemented bulk row
fetching, you must manually override the DoBulkFieldExchange member function of
CRecordset by calling the Bulk RFX functions for each data member corresponding
to a data source column.

If you have not implemented bulk row fetching in the ODBC-based classes, or if
you are using the DAO-based classes, then ClassWizard will override the
DoFieldExchange member function of CRecordset or CDaoRecordset by calling
the RFX functions (for ODBC classes) or the DFX functions (for DAO classes) for
each field data member in your recordset.

The record field exchange functions transfer data each time the framework calls
DoFieldExchange or DoBulkFieldExchange. Each function transfers a specific
data type.

For more information about how these functions are used, see the articles "Record
Field Exchange: How RFX Works (ODBC)" and "DAO Record Field Exchange:
How DFX Works." For more information about bulk row fetching, see the article
"Recordset: Fetching Records in Bulk (ODBC)." The articles are found in Visual C++
Programmer's Guide online.

For columns of data that you bind dynamically, you can also call the RFX or DFX
functions yourself, rather than using Class Wizard, as explained in the articles
"Recordset: Dynamically Binding Data Columns (ODBC)" and "DAO: Binding
Records Dynamically." The articles are found in Visual C++ Programmers Guide
online. Note that dynamic binding in DAO is different from dynamic binding in
ODBC. Additionally, you can write your own custom RFX or DFX routines, as
explained in "Technical Note 43" (for ODBC) online and "Technical Note 53"
(for DAO) online.

For an example of RFX and Bulk RFX functions as they appear in the
DoFieldExchange and DoBulkFieldExchange functions, see RFX_Text and
RFX_Text_Bulk. DFX functions are very similar to the RFX functions.

RFX Functions (OOSe)

RFX_Binary

RFX_Bool

RFX_Byte

RFX_Date

Transfers arrays of bytes of type CByteArray.

Transfers Boolean data.

Transfers a single byte of data.

Transfers time and date data using CTime or
TIMESTAMP _STRUCT.

MFC Macros and Globals

RFX Functions (ODBC) (continued)

RFX_Double

RFX_Int

RFX_Long

RFX_LongBinary

RFX_Single

RFX_Text

Bulk RFX Functions (ODBC)

RFX_Binary _Bulk

RFX_Bool_Bulk

RFX_Byte_Bulk

RFX_Date_Bulk

RFX_InCBulk

RFX_Lon~Bulk

RFX_Single_Bulk

RFX_TexCBulk

DFX Functions (DAO)

DFX_Binary

DFX_Bool

DFX_Byte

DFX_ Currency

DFX_DateTime

DFX_Double

DFX_Long

DFX_LongBinary

DFX_Short

DFX_Single

DFX_Text

Transfers double-precision float data.

Transfers integer data.

Transfers long integer data.

Transfers binary large object (BLOB) data
via an object of the CLongBinary class.

Transfers float data.

Transfers string data.

Transfers arrays of byte data.

Transfers arrays of Boolean data.

Transfers arrays of single bytes.

Transfers arrays of data of type
TIMESTAMP _STRUCT.

Transfers arrays of double-precision
floating-point data.

Transfers arrays of integer data.

Transfers arrays of long integer data.

Transfers arrays of floating-point data.

Transfers arrays of data of type LPSTR.

Transfers arrays of bytes of type CByteArray.

Transfers Boolean data.

Transfers a single byte of data.

Transfers currency data, of type COleCurrency.

Transfers time and date data, of type COleDateTime.

Transfers double-precision float data.

Transfers long integer data.

Transfers binary-large object (BLOB) data via an
object of the CLongBinary class. For DAO, it is
recommended that you use DFX_Binary instead.

Transfers short integer data.

Transfers float data.

Transfers string data.

See Also: CRecordset: :DoFieldExchange, CRecordset: :DoBulkFieldExchange,
CDaoRecordset: :DoFieldExchange

2291

MFC Macros and Globals

Dialog Data Exchange Functions for
CRecordView and CDaoRecordView

2292

This topic lists the DDX_Field functions used to exchange data between a
CRecordset and a CRecordView form or a CDaoRecordset and a
CDaoRecordView form.

Important DDX_Field functions are like DDX functions in that they exchange data with
controls in a form. But unlike DDX, they exchange data with the fields of the view's associated
recordset object rather than with fields of the record view itself. For more information, see
classes CRecordView and CDaoRecordView and the article "ClassWizard: Mapping Form
Controls to Recordset Fields" in Visual C++ Programmer's Guide online.

DDX_Field Functions

DDX_FieldCBlndex

DDX_FieldCBString

DDX_FieldCBStringExact

DDX_FieldCheck

DDX_FieldLBlndex

DDX_FieldLBString

DDX_FieldLBStringExact

Transfers integer data between a recordset field data member
and the index of the current selection in a combo box in a
CRecordView or CDaoRecordView.

Transfers CString data between a recordset field data
member and the edit control of a combo box in a
CRecordViewor CDaoRecordView. When moving data
from the record set to the control, this function selects the
item in the combo box that begins with the characters in the
specified string.

Transfers CString data between a record set field data
member and the edit control of a combo box in a
CRecordView or CDaoRecordView. When moving data
from the recordset to the control, this function selects the
item in the combo box that exactly matches the specified
string.

Transfers Boolean data between a record set field data
member and a check box in a CRecordView or
CDaoRecordView.

Transfers integer data between a recordset field data member
and the index of the current selection in a list box in a
CRecordView or CDaoRecordView.

Manages the transfer of CString data between a list-box
control and the field data members of a recordset. When
moving data from the recordset to the control, this function
selects the item in the list box that begins with the characters
in the specified string.

Manages the transfer of CString data between a list-box
control and the field data members of a record set. When
moving data from the recordset to the control, this function
selects the first item that exactly matches the specified string.

MFC Macros and Globals

DDX_Field Functions (continued)

DDX_FieldRadio

DDX_FieldScroll

DDX_FieldText

Transfers integer data between a recordset field data member
and a group of radio buttons in a CRecordView or
CDaoRecordView.

Sets or gets the scroll position of a scroll bar control in a
CRecordView or CDaoRecordView. Call from your
DoFieldExchange function.

Overloaded versions are available for transferring int, UINT,
long, DWORD, CString, float, double, short,
COleDateTime, and COleCurrency data between a
recordset field data member and an edit box in a
CRecordView or CDaoRecordView.

Dialog Data Exchange Functions for
OLE Controls

This topic lists the DDX_OC functions used to exchange data between a property of
an OLE control in a dialog box, form view, or control view object and a data member
of the dialog box, form view, or control view object.

DDX_OC Functions

DDX_OCBool

DDX_OCBooIRO

DDX_OCColor

DDX_OCColorRO

DDX_OCFloatRO

Manages the transfer of BOOL data between a property of
an OLE control and a BOOL data member.

Manages the transfer of BOOL data between a read-only
property of an OLE control and a BOOL data member.

Manages the transfer of OLE_COLOR data between a
property of an OLE control and an OLE_COLOR data
member.

Manages the transfer of OLE_COLOR data between a
read-only property of an OLE control and an OLE_COLOR
data member.

Manages the transfer of float (or double) data between a
property of an OLE control and a float (or double) data
member.

Manages the transfer of float (or double) data between a
read-only property of an OLE control and a float (or double)
data member.

(continued)

2293

MFC Macros and Globals

DDX_OC Functions (continued)

DDX_OCShort

DDX_OCShortRO

Manages the transfer of int (or long) data between a property
of an OLE control and an int (or long) data member.

Manages the transfer of int (or long) data between a
read-only property of an OLE control and an int (or long)
data member.

Manages the transfer of short data between a property of an
OLE control and a short data member.

Manages the transfer of short data between a read-only
property of an OLE control and a short data member.

Manages the transfer of CString data between a property of
an OLE control and a CString data member.

Manages the transfer of CString data between a read-only
property of an OLE control and a CString data member.

Database Macros

2294

The macros listed below apply to ODBC-based database applications. They are not
used with DAO-based applications.

Prior to MFC 4.2, the macros AFX_SQL_ASYNC and AFX_SQL_SYNC gave
asynchronous operations an opportunity to yield time to other processes. Beginning
with MFC 4.2, the implementation of these macros has changed because the MFC
ODBC classes now use only synchronous operations. The macro
AFX_ODBC_CALL is new to MFC 4.2.

Database Macros

AFX_SQL_ASYNC

AFX_SQL_SYNC

Use this macro to call an ODBC API function that returns
SQL_STILL_EXECUTING. AFX_ODBC_CALL will
repeatedly call the function until it no longer returns
SQL_STILL_EXECUTING.

Simply calls AFX_ODBC_CALL.

Use this macro to calls an ODBC API function that does not
return SQL_STILL_EXECUTING.

MFC Macros and Globals

DAO Database Engine Initialization
and Termination

When using MFC DAO objects, the DAO database engine must first be initialized and
then terminated before your application or DLL quits. Two functions, AfxDaoInit and
AfxDaoTerm, perform these tasks.

DAO Database Engine Initialization and Termination

AfxDaoInit

AfxDaoTerm

Initializes the DAO database engine.

Terminates the DAO database engine.

OLE Initialization
Before an application can use OLE system services, it must initialize the OLE system
DLLs and verify that the DLLs are the correct version. The AfxOleInit function
initializes the OLE system DLLs.

OLE Initialization

AfxOleInit Initializes the OLE libraries.

Application Control
OLE requires substantial control over applications and their objects. The OLE system
DLLs must be able to launch and release applications automatically, coordinate their
production and modification of objects, and so on. The functions in this topic meet
those requirements. In addition to being called by the OLE system DLLs, these
functions must sometimes be called by applications as well.

Application Control

AfxOleCanExitApp

AfxOleGetMessageFilter

AfxOleGetUserCtrl

AfxOleSetUserCtrl

AfxOleLockApp

AfxOleUnlockApp

AfxOleRegisterServerClass

AfxOleSetEditMenu

Indicates whether the application can terminate.

Retrieves the application's current message filter.

Retrieves the current user-control flag.

Sets or clears the user-control flag.

Increments the framework's global count of the number of
active objects in an application.

Decrements the framework's count of the number of active
objects in an application.

Registers a server in the OLE system registry.

Implements the user interface for the typename Object
command.

2295

MFC Macros and Globals

Dispatch Maps
OLE Automation provides ways to call methods and to access properties across
applications. The mechanism supplied by the Microsoft Foundation Class Library for
dispatching these requests is the "dispatch map," which designates the internal and
external names of object functions and properties, as well as the data types of the
properties themselves and offunction arguments.

Dispatch Maps

BEGIN_DISPATCH_MAP

END_DISPATCH_MAP

DISP _FUNCTION

DISP _PROPERTY

DISP _PROPERTY_EX

DISP _PROPERTY_NOTIFY

DISP _PROPERTY_PARAM

DISP _DEFV ALUE

Declares that a dispatch map will be used to expose a
class's methods and properties (must be used in the class
declaration).

Starts the definition of a dispatch map.

Ends the definition of a dispatch map.

Used in a dispatch map to define an OLE automation
function.

Defines an OLE automation property.

Defines an OLE automation property and names the
"get" and "set" functions.

Defines an OLE automation property with notification.

Defines an OLE automation property that takes
parameters and names the "get" and "set" functions.

Makes an existing property the default value of an object.

Variant Parameter Type Constants

2296

This topic lists new constants that indicate variant parameter types designed for use
with the OLE control classes of the Microsoft Foundation Class Library.

The following is a list of class constants:

Variant Data Constants
• VTS_ COLOR A 32-bit integer used to represent a ROB color value.

• VTS_FONT A pointer to the IFontDisp interface of an OLE font object.

• VTS_HANDLE A Windows handle value.

• VTS_PICTURE A pointer to the IPictureDisp interface of an OLE picture
object.

• VTS_OPTEXCLUSIVE A 16-bit value used for a control intended to be used
in a group of controls, such as radio buttons. This type tells the container that if one
control in a group has a TRUE value, all others must be FALSE.

MFC Macros and Globals

• VTS_ TRISTATE A 16-bit signed integer used for properties that can have one
of three possible values (checked, unchecked, gray), for example, a check box.

• VTS_XPOS_HIMETRIC A 32-bit unsigned integer used to represent a position
along the x-axis in HIMETRIC units.

• VTS_ YPOS_HIMETRIC A 32-bit unsigned integer used to represent a position
along the y-axis in HIMETRIC units.

• VTS_XPOS_PIXELS A 32-bit unsigned integer used to represent a position
along the x-axis in pixels.

• VTS_ YPOS_PIXELS A 32-bit unsigned integer used to represent a position
along the y-axis in pixels.

• VTS_XSIZE_PIXELS A 32-bit unsigned integer used to represent the width of a
screen object in pixels.

• VTS_ YSIZE_PIXELS A 32-bit unsigned integer used to represent the height of
a screen object in pixels.

• VTS_XSIZE_HIMETRIC A 32-bit unsigned integer used to represent the width
of a screen object in HIMETRIC units.

• VTS_ YSIZE_HIMETRIC A 32-bit unsigned integer used to represent the height
of a screen object in HIMETRIC units.

Note Additional variant constants have been defined for all variant types, with the exception of
VTS_FONT and VTS_PICTURE, that provide a pointer to the variant data constant. These
constants are named using the VTS_Pconstantname convention. For example, VTS_PCOLOR
is a pointer to a VTS_COLOR constant.

Type Library Access
Type libraries expose the interfaces of an OLE control to other OLE-aware
applications. Each OLE control must have a type library if one or more interfaces are
to be exposed.

The following macros allow an OLE control to provide access to its own type library:

Type Library Access

DECLARE_OLETYPELIB Declares a GetTypeLib member function of an OLE
control (must be used in the class declaration).

IMPLEMENT_OLETYPELIB Implements a GetTypeLib member function of an OLE
control (must be used in the class implementation).

2297

MFC Macros and Globals

Property Pages

2298

Property pages display the current values of specific OLE control properties in a
customizable, graphical interface for viewing and editing by supporting a
data-mapping mechanism based on dialog data exchange (DDX).

This data-mapping mechanism maps property page controls to the individual
properties of the OLE control. The value of the control property reflects the status
or content of the property page control. The mapping between property page
controls and properties is specified by DDP _ function calls in the property page's
DoDataExchange member function. The following is a list of DDP _ functions that
exchange data entered using the property page of your control:

Property Page Data Transfer

DDP _ CBString

DDP _ CBStringExact

DDP _LBStringExact

Use this function to link the selected string's index in a combo
box with a control's property.

Use this function to link the selected string in a combo box with
a control's property. The selected string can begin with the same
letters as the property's value but need not match it fully.

Use this function to link the selected string in a combo box with
a control's property. The selected string and the property's string
value must match exactly.

Use this function to link a check box in the control's property
page with a control's property.

Use this function to link the selected string's index in a list box
with a control's property.

Use this function to link the selected string in a list box with a
control's property. The selected string can begin with the same
letters as the property's value but need not match it fully.

Use this function to link the selected string in a list box with a
control's property. The selected string and the property's string
value must match exactly.

Use this function to finish the transfer of property values from
your control.

Use this function to link a radio button group in the control's
property page with a control's property.

Use this function to link a control in the control's property page
with a control's property. This function handles several different
types of properties, such as double, short, BSTR, and long.

For more information about the DoDataExchange function and property pages, see the
article "ActiveX Controls: Property Pages" in Visual C++ Programmer's Guide
online.

MFC Macros and Globals

The following is a list of macros used to create and manage property pages for an
OLE control:

Property Pages

BEGIN_PROPPAGEIDS Begins the list of property page IDs.

END_PROPPAGEIDS Ends the list of property page IDs.

PROPPAGEID Declares a property page of the control class.

EventMaps
Whenever a control wishes to notify its container that some action (determined by the
control developer) has happened (such as a keystroke, mouse click, or a change to the
control's state) it calls an event-firing function. This function notifies the control
container that some important action has occurred by firing the related event.

The Microsoft Foundation Class Library offers a programming model optimized for
firing events. In this model, "event maps" are used to designate which functions fire
which events for a particular control. Event maps contain one macro for each event.
For example, an event map that fires a stock Click event might look like this:

BEGIN_EVENT_MAP(CSampleCtrl. COleControl)
//({AFX_EVENT_MAP(CSampleCtrl)
EVENT_STOCK_CLICK()
//JJAFX_EVENT_MAP

END_EVENT_MAP()

The EVENT_STOCK_CLICK macro indicates that the control will fire a stock
Click event every time it detects a mouse click. For a more detailed listing of other
stock events, see the article "ActiveX Controls: Events" in Visual C++ Programmer's
Guide online. Macros are also available to indicate custom events.

Although event-map macros are important, you generally don't insert them directly.
This is because ClassWizard automatically creates event-map entries in your source
files when you use it to associate event-firing functions with events. Any time you
want to edit or add an event-map entry, you can use ClassWizard.

To support event maps, MFC provides the following macros:

Event Map Declaration and Demarcation

Declares that an event map will be used in a class to map
events to event-firing functions (must be used in the
class declaration).

Begins the definition of an event map (must be used in
the class implementation).

Ends the definition of an event map (must be used in the
class implementation).

2299

MFC Macros and Globals

Event Mapping Macros

EVENT_CUSTOM

Message Mapping Macros

ON_OLE VERB

ON_STDOLEVERB

Indicates which event-firing function will fire the
specified event.

Indicates which event-firing function will fire the
specified event, with a designated dispatch ID.

Indicates a custom verb handled by the OLE control.

Overrides a standard verb mapping of the OLE control.

Event Sink Maps
When an embedded OLE control fires an event, the control's container receives the
event using a mechanism, called an "event sink map," supplied by MFC. This event
sink map designates handler functions for each specific event, as well as parameters of
those events. For more information on event sink maps, see the article "ActiveX
Control Containers" in Visual C++ Programmer's Guide online.

Event Sink Maps

BEGIN_EVENTSINK_MAP

DECLARE_EVENTSINK_MAP

END_EVENTSINK_MAP

ON_EVENT

ON_EVENT_RANGE

ON_PROPNOTIFY _REFLECT

Starts the definition of an event sink map.

Declares an event sink map.

Ends the definition of an event sink map.

Defines an event handler for a specific event.

Defines an event handler for a specific event fired from a
set of OLE controls.

Receives events fired by the control before they are
handled by the control's container.

Defines a handler for handling property notifications
from an OLE control.

Defines a handler for handling property notifications
from a set of OLE controls.

Receives property notifications sent by the control
before they are handled by the control's container.

Connection Maps

2300

OLE controls are able to expose interfaces to other applications. These interfaces only
allow access from a container into that control. If an OLE control wants to access
external interfaces of other OLE objects, a connection point must be established. This
connection point allows a control outgoing access to external dispatch maps, such as
event maps or notification functions.

MFC Macros and Globals

The Microsoft Foundation Class Library offers a programming model that supports
connection points. In this model, "connection maps" are used to designate interfaces
(or connection points) for the OLE control. Connection maps contain one macro for
each connection point. For more information on connection maps, see the
CConnectionPoint class.

Typically, a control will support just two connection points: one for events and one for
property notifications. These are implemented by the COleControl base class and
require no additional work by the control writer. Any additional connection points you
wish to implement in your class must be added by hand. To support connection maps
and points, MFC provides the following macros:

Connection Map Declaration and Demarcation

BEGIN_CONNECTION_PART

END_CONNECTION_PART

CONNECTION_lID

DECLARE_CONNECTION_MAP

BEGIN_CONNECTION_MAP

CONNECTION_PART

Declares an embedded class that implements an
additional connection point (must be used in the
class declaration).

Ends the declaration of a connection point (must be
used in the class declaration).

Specifies the interface ID of the control's connection
point.

Declares that a connection map will be used in a
class (must be used in the class declaration).

Begins the definition of a connection map (must be
used in the class implementation).

Ends the definition of a connection map (must be
used in the class implementation).

Specifies a connection point in the control's
connection map.

The following functions assist a sink in establishing and disconnecting a connection
using connection points:

InitializationfTermination of Connection Points

AfxConnectionAdvise

AfxConnectionUnadvise

Establishes a connection between a source
and a sink.

Breaks a connection between a source and a sink.

Registering OLE Controls
OLE controls, like other OLE server objects, can be accessed by other OLE-aware
applications. This is achieved by registering the control's type library and class.

The following functions allow you to add and remove the control's class, property
pages, and type library in the Windows registration database:

2301

MFC Macros and Globals

Registering OLE Controls

AfxOleRegisterControlClass

AfxOleRegisterPropertyPageClass

AfxOleRegisterTypeLib

AfxOle U nregisterClass

AfxOleUnregisterTypeLib

Adds the control's class to the registration database.

Adds a control property page to the registration
database.

Adds the control's type library to the registration
database.

Removes a control class or a property page class
from the registration database.

Removes the control's type library from the
registration database.

AfxOleRegisterTypeLib is typically called in a control DLL's implementation of
011 Regi sterServer. Similarly, AfxOleUnregisterTypeLib is called by
011 Unregi sterServer. AfxOleRegisterControIClass,
AfxOleRegisterPropertyPageClass, and AfxOleUnregisterClass are typically called
by the UpdateRegi stry member function of a control's class factory or property page.

Class Factories and Licensing

2302

To create an instance of your OLE control, a container application calls a member
function of the control's class factory. Because your control is an actual OLE object,
the class factory is responsible for creating instances of your control. Every OLE
control class must have a class factory.

Another important feature of OLE controls is their ability to enforce a license.
ControlWizard allows you to incorporate licensing during the creation of your control
project. For more information on control licensing, see the article "ActiveX Controls:
Licensing An ActiveX Control" in Visual C++ Programmer's Guide online.

The following table lists several macros and functions used to declare and implement
your control's class factory and for licensing of your control.

Class Factories and Licensing

BEGIN_OLEFACTORY

END_OLEFACTORY

Afx Verify LicFile

Declares the class factory for an OLE control or
property page.

Implements the control's GetClassID function and
declares an instance of the class factory.

Begins the declaration of any licensing functions.

Ends the declaration of any licensing functions.

Verifies whether a control is licensed for use on a
particular computer.

MFC Macros and Globals

Persistence of OLE Controls
One capability of OLE controls is property persistence (or serialization), which allows
the OLE control to read or write property values to and from a file or stream. A
container application can use serialization to store a control's property values even
after the application has destroyed the control. The property values of the OLE control
can then be read from the file or stream when a new instance of the control is created
at a later time.

Persistence of OLE Controls

PX_Bool

PX_Color

PX_ Currency

PX_DataPath

PX_Double

PX_Font

PX_Float

PX_IUnknown

PX_Long

PX_Picture

PX_Short

PX_ULong

PX_UShort

PX_String

PX_ VBXFontConvert

Exchanges a control property that stores binary-large object
(BLOB) data.

Exchanges a control property of type BOOL.

Exchanges a color property of a control.

Exchanges a control property of type CY.

Exchanges a control property of type CDataPathProperty.

Exchanges a control property of type double.

Exchanges a font property of a control.

Exchanges a control property of type float.

Exchanges a control property of undefined type.

Exchanges a control property of type long.

Exchanges a picture property of a control.

Exchanges a control property of type short.

Exchanges a control property of type ULONG.

Exchanges a control property of type USHORT.

Exchanges a character string control property.

Exchanges a VBX control's font-related properties into
an OLE control font property.

In addition, the AfxOleTypeMatchGuid global function is provided to test for a
match between a TYPEDESC and a given GUID.

Internet Server API (lSAPI) Parse Maps
The Internet Server API, an extended open API set, provides you with the ability to
create add-ons for, and run internet server applications on, your Microsoft Internet
Information Server. When a client sends a query to the internet server, the server
processes the query by sending it through a series of parsing macros in the "parse
map." The parse map maps the client queries to a CHttpServer-derived class's
functions and parameters.

2303

MFC Macros and Globals

ISAPI Parse Maps

BEGIN_PARSE_MAP

ON_PARSE_COMMAND

ON_PARSE_ COMMAND _PARAMS

DEFAULT_PARSE_COMMAND

Starts the definition of a parse map.

Parses the client's command

Defines a command to an CHttpServer object
from a client.

Calls the default page that's identified by the
FnName parameter.

Ends the definition of a parse map.

Internet Server API (ISAPI)
Diagnostic Macros

The Microsoft Internet Information Server requires the same diagnostic services that
MFC programs need; however, the programs written for the Internet Server don't
require MFC. The ISAPI macros described below provide the same level of
debugging functionality for both MFC programs and programs not written with MFC.

ISAPI Diagnostic Macros

ISAPIASSERT

ISAPITRACE

ISAPITRACEO

ISAPITRACEl

ISAPITRACE2

ISAPITRACE3

ISAPIVERIFY

Provides ASSERT functionality.

Provides TRACE functionality.

Provides TRACEO functionality.

Provides TRACEl functionality.

Provides TRACE2 functionality.

Provides TRACE3 functionality.

Provides VERIFY functionality.

Macros, Global Functions, and
Global Variables

2304

The topics in this section provide descriptions of the global functions, global
variables, and macros in the MFC library.

Note Many global functions start with the prefix "Afx"-but some, such as the dialog data
exchange (OOX) functions and many of the database functions, deviate from this convention.
All global variables start with the prefix "afx." Macros do not start with any particular prefix,
but they are written all in uppercase.

The MFC library and the Active Template library (ATL) share string conversion
macros. See "String Conversion Macros" in the ATL documentation online for a
discussion of these macros.

For information on the debug version of the C run-time library and diagnostic
functions, see "Debug Routines," in the Run-Time Library Reference.

AfxAbort

Remarks

void AfxAbort();

The default termination function supplied by MFC. AfxAbort is called internally by
MFC member functions when there is a fatal error, such as an uncaught exception that
cannot be handled. You can call AfxAbort in the rare case when you encounter a
catastrophic error from which you cannot recover.

AfxBeginThread
CWinThread* AfxBeginThread(AFX_THREADPROC pfnThreadProc,

... LPVOID pParam, int nPriority = THREAD_PRIORITY_NORMAL,

... UINT nStackSize = 0, DWORD dwCreateFlags = 0,

... LPSECURITY _ATTRIBUTES lpSecurityAttrs = NULL);
CWinThread* AfxBeginThread(CRuntimeClass* pThreadClass,

Return Value

... int nPriority = THREAD_PRIORITY_NORMAL, UINT nStackSize = 0,

... DWORD dwCreateFlags = 0,

... LPSECURITY _ATTRIBUTES lpSecurityAttrs = NULL);

Pointer to the newly created thread object.

Parameters
pfnThreadProc Points to the controlling function for the worker thread. Cannot be

NULL. This function must be declared as follows:

UINT MyControllingFunction(LPVOID pParam);

pThreadClass The RUNTIME_CLASS of an object derived from

CWinThread.

pParam Parameter to be passed to the controlling function as shown in the parameter
to the function declaration in pfnThreadProc.

nPriority The desired priority of the thread. If 0, the same priority as the creating
thread will be used. For a full list and description of the available priorities, see
SetThreadPriority in the Win32 Programmer's Reference.

AfxBeginThread

2305

AfxCheckMemory

Remarks

nStackSize Specifies the size in bytes of the stack for the new thread. If 0, the stack
size defaults to the same size stack as the creating thread.

dwCreateFlags Specifies an additional flag that controls the creation of the thread.
This flag can contain one of two values:

• CREATE_SUSPENDED Start the thread with a suspend count of one. The
thread will not execute until ResumeThread is called.

• 0 Start the thread immediately after creation.

IpSecurityAttrs Points to a SECURITY_ATTRIBUTES structure that specifies the
security attributes for the thread. If NULL, the same security attributes as the
creating thread will be used. For more information on this structure, see the Win32
Programmer's Reference.

Call this function to create a new thread. The first form of AfxBeginThread creates a
worker thread. The second form creates a user-interface thread.

AfxBeginThread creates a new CWinThread object, calls its Create Thread
function to start executing the thread, and returns a pointer to the thread.
Checks are made throughout the procedure to make sure all objects are
deallocated properly should any part of the creation fail. To end the thread, call
AfxEndThread from within the thread, or return from the controlling function
of the worker thread.

For more information on AfxBeginThread, see the articles "Multithreading:
Creating Worker Threads" and "Multithreading: Creating User-Interface
Threads" in Visual C++ Programmer's Guide online.

See Also: AfxGetThread

AfxCheckMemory
BOOL AfxCheckMemory();

Return Value

Remarks

2306

Nonzero if no memory errors; otherwise 0.

This function validates the free memory pool and prints error messages as
required. If the function detects no memory corruption, it prints nothing.

All memory blocks currently allocated on the heap are checked, including
those allocated by new but not those allocated by direct calls to underlying
memory allocators, such as the malloc function or the GlobalAlIoc Windows
function. If any block is found to be corrupted, a message is printed to the
debugger output.

Example

If you include the line

#define new DEBUG_NEW

in a program module, then subsequent calls to AfxCheckMemory show the filename
and line number where the memory was allocated.

Note If your module contains one or more implementations of serializable classes, then you
must put the 4tdefi ne line after the last IMPLEMENT_SERIAL macro call.

This function works only in the Debug version of MFC.

II example for AfxCheckMemory
CAge* pcage - new CAge(21);
Age* page - new Age(22);
«(char) pcage) - 1) - 99;
«(char) page) - 1) - 99;
AfxCheckMemory();

II CAge is derived from CObject.
II Age is NOT derived from CObject.
II Corrupt preceding guard byte
II Corrupt preceding guard byte

The results from the program are as follows:

memory check error at $0067495F = $63. should be $FD
DAMAGE: before Non-Object block at $00674960
Non-Object allocated at file test02.cxx(48)
Non-Object located at $00674960 is 2 bytes long
memory check error at $00674905 = $63. should be $FD
DAMAGE: before Object block at $00674906
Object allocated at file test02.cxx(47)
Object located at $00674906 is 6 bytes long

AfxConnectionAdvise
BOOL AFXAPI AfxConnectionAdvise(LPUNKNOWN pUnkSrc, REFIID iid,

... LPUNKNOWN pUnkSink, BOOL bRefCount, DWORD FAR* pdwCookie);

Return Value
Nonzero if a connection was established; otherwise O.

Parameters
pUnkSrc A pointer to the object that calls the interface.

pUnkSink A pointer to the object that implements the interface.

iid The interface ID of the connection.

bRefCount TRUE indicates that creating the connection should cause the reference
count of pUnkSink to be incremented. FALSE indicates that the reference count
should not be incremented.

pdwCookie A pointer to a DWORD where a connection identifier is returned. This
value should be passed as the dwCookie parameter to AfxConnectionUnadvise
when disconnecting the connection.

AfxConnectionAdvise

2307

AfxConnectionUnadvise

Remarks
Call this function to establish a connection between a source, specified by pUnkSrc,
and a sink, specified by pUnkSink.

See Also: AfxConnectionUnadvise

AfxConnection U nadvise
BOOL AFXAPI AfxConnectionUnadvise(LPUNKNOWN pUnkSrc, REFIID iid,

... LPUNKNOWN pUnkSink, BOOL bRefCount, DWORD dwCookie);

Return Value
Nonzero if a connection was disconnected; otherwise O.

Parameters

Remarks

pUnkSrc A pointer to the object that calls the interface.

pUnkSink A pointer to the object that implements the interface.

iid The interface ID of the connection point interface.

bRefCount TRUE indicates that disconnecting the connection should cause the
reference count of pUnkSink to be decremented. FALSE indicates that the
reference count should not be decremented.

dwCookie The connection identifier returned by AfxConnectionAdvise.

Call this function to disconnect a connection between a source, specified by pUnkSrc,
and a sink, specified by pUnkSink.

See Also: AfxConnectionAdvise

AfxDaoInit

Remarks

2308

void AfxDaolnit();

This function initializes the DAO database engine. In most cases, you don't
need to call AfxDaolnit because the application automatically calls it when
it is needed.

For related information, and for an example of calling AfxDaolnit, see Technical
Note 54 online.

See Also: AfxDaoTerm

AfxDaoTerm

Remarks

void AfxDaoTerm();

This function terminates the DAO database engine. Typically, you only need to call
this function in a regular DLL; an application will automatically call AfxDaoTerm
when it is needed.

In regular DLLs, call AfxDaoTerm before the ExitInstance function, but after all
MFC DAO objects have been destroyed.

For more information about calling AfxDaoTerm, see the article "DAO: Using DAO
in DLLs" in Visual C++ Programmer's Guide online. For related information, see
Technical Note 54 online.

See Also: AfxDaolnit

AfxDbInitModule
void AFXAPI AfxDblnitModule();

#inciude <afxdll.h>

For MFC database (or DAO) support from a regular DLL that is dynamically linked to
MFC, add a call to this function in your regular DLL's CWinApp::lnitInstance
function to initialize the MFC database DLL. Make sure this call occurs before any
base-class call or any added code which accesses the MFC database DLL.The MFC
database DLL is an extension DLL; in order for an extension DLL to get wired into a
CDynLinkLibrary chain, it must create a CDynLinkLibrary object in the context of
every module that will be using it. AfxDblnitModule creates the CDynLinkLibrary
object in your regular DLL's context so that it gets wired into the CDynLinkLibrary
object chain of the regular DLL.

AfxDoForAllClasses
void AFXAPI AfxDoForAIIClasses(void (*pfo)(const CRuntimeClass* pClass,

.. void* pContext), void* pContext);

Parameters
pfo Points to an iteration function to be called for each class. The function arguments

are a pointer to a CRuntimeClass object and a void pointer to extra data that the
caller supplies to the function.

pContext Points to optional data that the caller can supply to the iteration function.
This pointer can be NULL.

AfxDoForAllClasses

2309

AfxDoForAllObjects

Remarks
Calls the specified iteration function for all serializable CObject-derived classes in
the application's memory space. Serializable CObject-derived classes are classes
derived using the DECLARE_SERIAL macro. The pointer that is passed to
AfxDoForAllClasses in pContext is passed to the specified iteration function each
time it is called.

Note This function works only in the Debug version of MFC.

See Also: DECLARE_SERIAL

AfxDoForAllObjects
void AfxDoForAllObjects(void (*pjh)(CObject* pObject,

.. void* pContext), void* pContext);

Parameters

Remarks

pjh Points to an iteration function to execute for each object. The function arguments
are a pointer to a CObject and a void pointer to extra data that the caller supplies
to the function.

pContext Points to optional data that the caller can supply to the iteration function.
This pointer can be NULL.

Executes the specified iteration function for all objects derived from CObject that
have been allocated with new. Stack, global, or embedded objects are not enumerated.
The pointer passed to AfxDoForAllObjects in pContext is passed to the specified
iteration function each time it is called.

Note This function works only in the Debug version of MFC.

afxDurnp

Remarks

2310

CDumpContext afxDump;

Use this variable to provide basic object-dumping capability in your application.
afxDump is a predefined CDumpContext object that allows you to send
CDumpContext information to the debugger output window or to a debug terminal.
Typically, you supply afxDump as a parameter to CObject::Dump.

Under Windows NT and Windows 95 (and earlier versions of Windows), afxDump
output is sent to the Output-Debug window of Visual C++ when you debug your
application. In Console applications, afxDump output is sent to stderr.

AfxEnableControlContainer

Example

This variable is defined only in the Debug version of MFC. For more information on
afxDump, see "MFC Debugging Support" in Visual C++ Programmer's Guide
online. Technical Note 7 online and Technical Note 12 online contain additional
information.

Note This function works only in the Debug version of MFC.

II example for afxDump
CPerson myPerson - new CPerson;
II set some fields of the CPerson object ...
II ..
II now dump the contents
#ifdef _DEBUG
afxDump « "Dumping myPerson:\n";
myPerson->Dump(afxDump);
afxDump « "\n";
#endif

See Also: CObject: :Dump, AfxDump

AfxDump
void AfxDump(const CObject* pOb);

Parameters

Remarks

pOb A pointer to an object of a class derived from CObject.

Call this function while in the debugger to dump the state of an object while
debugging. AfxDump calls an object's Dump member function and sends the
information to the location specified by the afxDump variable. AfxDump is available
only in the Debug version of MFC.

Your program code should not call AfxDump, but should instead call the Dump
member function of the appropriate object.

See Also: CObject::Dump, afxDump

AfxEnableControlContainer

Remarks

void AfxEnableControIContainer();

Call this function in your application object's Initlnstance function to enable support
for containment of OLE controls.

For more information about OLE controls (now called ActiveX controls), see
"ActiveX Control Topics" in the Visual C++ Programmer's Guide online.

2311

AfxEnableMemoryTracking

AfxEnableMemoryTracking
BOOL AfxEnableMemoryTracking(BOOL bTrack);

Return Value
The previous setting of the tracking-enable flag.

Parameters

Remarks

bTrack Setting this value to TRUE turns on memory tracking; FALSE
turns it off.

Diagnostic memory tracking is normally enabled in the Debug version of MFC. Use
this function to disable tracking on sections of your code that you know are allocating
blocks correctly.

For more information on AfxEnableMemoryTracking, see "MFC Debugging
Support" in Visual C++ Programmer's Guide online.

Note This function works only in the Debug version of MFC.

AfxEndThread
void AfxEndThread(UINT nExitCode);

Parameters

Remarks

nExitCode Specifies the exit code of the thread.

Call this function to terminate the currently executing thread. Must be called from
within the thread to be terminated.

For more information on AfxEndThread, see the article "Multithreading:
Terminating Threads" in Visual C++ Programmer's Guide online.

See Also: AfxBeginThread

AFX_EXT_CLASS
Remarks

2312

Extension DLLs use the macro AFX_EXT_CLASS to export classes; the
executables that link to the extension DLL use the macro to import classes. With the
AFX_EXT_CLASS macro, the same header file(s) used to build the extension DLL
can be used with the executables that link to the DLL.

In the header file for your DLL, add the AFX_EXT_CLASS keyword to the
declaration of your class as follows:

class AFX_EXT_CLASS CMyClass public CDocument
{

II <body of class>
} :

For more information, see "Export and Import Using AFX_EXT_CLASS" online.

AfxFormatString 1
void AfxFormatStringl(CString& rString, UINT nIDS, LPCTSTR /pszl);

Parameters

Remarks

rString A reference to a CString object that will contain the resultant string after the
substitution is performed.

nIDS The resource ID of the template string on which the substitution will be
performed.

/pszl A string that will replace the format characters "% 1" in the template string.

Loads the specified string resource and substitutes the characters "% 1" for the string
pointed to by /pszl. The newly formed string is stored in rString. For example, if the
string in the string table is "File %1 not found", and /pszl is equal to
"C:\MYFILE.TXT", then rString will contain the string "File C:\MYFILE.TXT not
found." This function is useful for formatting strings sent to message boxes and other
windows.

If the format characters "% 1" appear in the string more than once, multiple
substitutions will be made.

See Also: AfxFormatString2

AfxFormatString2
void AfxFormatString2(CString& rString, UINT nIDS,

... LPCTSTR /pszl, LPCTSTR /psz2);

Parameters
rString A reference to the CString that will contain the resultant string after the

substitution is performed.

nIDS The string table ID of the template string on which the substitution will be
performed.

lpszl A string that will replace the format characters "% 1" in the template string.

/psz2 A string that will replace the format characters "%2" in the template string.

AfxFormatString2

2313

AfxFreeLibrary

Remarks
Loads the specified string resource and substitutes the characters "%1" and "%2" for
the strings pointed to by lpszl and Ipsz2. The newly formed string is stored in rString.
For example, if the string in the string table is "File % 1 not found in directory %2",
lpszl points to "MYFILE.TXT," and lpsz2 points to "C:\MYDIR," then rString will
contain the string "File MYFILE. TXT not found in directory C:\MYDIR."

If the format characters "% 1" or "%2" appear in the string more than once, multiple
substitutions will be made. They do not have to be in numerical order.

See Also: AfxFormatStringl

AfxFreeLibrary
BOOL AFXAPI AfxFreeLibrary(HINSTANCE hlnstLib);

Return Value
TRUE if the function succeeds; otherwise, FALSE.

Parameters

Remarks

2314

hlnstLib A handle of the loaded library module. AfxLoadLibrary returns this
handle.

Both AfxFreeLibrary and AfxLoadLibrary maintain a reference count for each
loaded library module. AfxFreeLibrary decrements the reference count of the loaded
dynamic-link library (DLL) module. When the reference count reaches zero, the
module is unmapped from the address space of the calling process and the handle is
no longer valid. This reference count is incremented each time AfxLoadLibrary is
called.

Before unmapping a library module, the system enables the DLL to detach from the
processes using it. Doing so gives the DLL an opportunity to clean up resources
allocated on behalf of the current process. After the entry-point function returns, the
library module is removed from the address space of the current process.

Use AfxLoadLibrary to map a DLL module.

Be sure to use AfxFreeLibrary and AfxLoadLibrary (instead of the Win32
functions FreeLibrary and LoadLibrary) if your application uses multiple threads.
Using AfxLoadLibrary and AfxFreeLibrary ensures that the startup and shutdown
code that executes when the extension DLL is loaded and unloaded does not corrupt
the global MFC state.

See Also: AfxLoadLibrary

AfxGetApp
CWinApp* AfxGetApp();

Return Value

Remarks

A pointer to the single CWinApp object for the application.

The pointer returned by this function can be used to access application
information such as the main message-dispatch code or the topmost

window.

AfxGetAppN arne
LPCTSTR AfxGetAppName();

Return Value

Remarks

A null-terminated string containing the application's name.

The string returned by this function can be used for diagnostic messages or as a root
for temporary string names.

AfxGetlnstanceHandle
HINSTANCE AfxGetInstanceHandle();

Return Value

Remarks

An HINSTANCE to the current instance of the application. If called from
within a DLL linked with the USRDLL version of MFC, an HINSTANCE
to the DLL is returned.

This function allows you to retrieve the instance handle of the current
application. AfxGetInstanceHandle always returns the HINSTANCE
of your executable file (.EXE) unless it is called from within a DLL
linked with the USRDLL version of MFC. In this case, it returns an
HINSTANCE to the DLL.

See Also: AfxGetResourceHandle, AfxSetResourceHandle

AfxGetInstanceHandle

2315

AfxGetInternetHandleType

AfxGetlnternetHandleType
DWORD AFXAPI AfxGetInternetHandleType(HINTERNET hQuery);

Return Value
Any of the Internet service types defined by WININET.H. See the Remarks section
for a list of these Internet services. If the handle is NULL or not recognized, the
function returns AFX_INET _SERVICE_ UNK.

Parameters

Remarks

hQuery A handle to an Internet query.

Use this global function to determine the type of an Internet handle.

The following list includes possible Internet types returned by
AfxGetInternetHandleType.

• INTERNET_HANDLE_ TYPE_INTERNET

• INTERNET_HANDLE_ TYPE_CONNECT_FTP

• INTERNET_HANDLE_TYPE_CONNECT_GOPHER

• INTERNET _HANDLE_TYPE_CONNECT_HTTP

• INTERNET_HANDLE_TYPE_FTP _FIND

• INTERNET_HANDLE_TYPE_FTP _FIND _HTML

• INTERNET_HANDLE_TYPE_FTP _FILE

• INTERNET_HANDLE_TYPE_FTP _FILE_HTML

• INTERNET _HANDLE_ TYPE_GOPHER_FIND

• INTERNET _HANDLE_ TYPE_GOPHER_FIND _HTML

• INTERNET _HANDLE_TYPE_GOPHER_FILE

• INTERNET _HANDLE_TYPE_GOPHER_FILE_HTML

• INTERNET _HANDLE_TYPE_HTTP _REQUEST

See Also: AfxParseURL

AfxGetMain Wnd
CWnd* AfxGetMainWnd();

Return Value

2316

If the server has an object that is in-place active inside a container, and this container
is active, this function returns a pointer to the frame window object that contains the
in-place active document.

AfxGetStaticModuleState

Remarks

If there is no object that is in-place active within a container, or your application is not
an OLE server, this function simply returns the m_pMain Wnd of your application
object.

If your application is an OLE server, call this function to retrieve a pointer to the
active main window of the application instead of directly referring to the
m_pMain Wnd member of the application object.

If your application is not an OLE server, then calling this function is equivalent to
directly referring to the m_pMainWnd member of your application object.

See Also: CWinThread: :m_pMain Wnd

AfxGetResourceHandle
HINSTANCE AfxGetResourceHandle();

Return Value

Remarks

An HINSTANCE handle where the default resources of the application are loaded.

Use the HINSTANCE handle returned by this function to access the application's
resources directly, for example, in calls to the Windows function FindResource.

See Also: AfxGetInstanceHandle, AfxSetResourceHandle

AfxGetStaticModuleState
AFX_MODULE_STATE* AFXAPI AfxGetStaticModuleState();

Return Value

Remarks

A pointer to an AFX_MODULE_STATE structure.

Call this function to set the module state before initialization and/or to restore the
previous module state after cleanup. The AFX_MODULE_STATE structure contains
global data for the module, that is, the portion of the module state that is pushed or
popped.

By default, MFC uses the resource handle of the main application to load the resource
template. If you have an exported function in a DLL, such as one that launches a
dialog box in the DLL, this template is actually stored in the DLL module. You need
to switch the module state for the correct handle to be used. You can do this by adding
the following code to the beginning of the function:

AFX_MANAGE_STATE(AfxGetStaticModuleState());

2317

AfxGetThread

This swaps the current module state with the state returned from
AfxGetStaticModuleState until the end of the current scope.

For more information on module states and MFC, see "Managing the State Data of
MFC Modules" in "Creating New Documents, Windows, and Views" in Visual C++
Programmer's Guide online and Technical Note 58 online.

AfxGetThread
CWinThread* AfxGetThread();

Return Value

Remarks

Pointer to the currently executing thread.

Call this function to get a pointer to the CWinThread object representing
the currently executing thread. Must be called from within the desired
thread.

See Also: AfxBeginThread

AfxInitExtensionModule
BOOL AFXAPI AfxlnitExtensionModule(AFX_EXTENSION_MODULE& state,

... HMODULE hModule);

Return Value
TRUE if the extension DLL is successfully initialized; otherwise, FALSE.

Parameters

Remarks

2318

state A reference to the AFX_EXTENSION_MODULE structure that will
contain the state of extension DLL module after the initialization. The state
includes a copy of the runtime class objects that have been initialized by the
extension DLL as part of normal static object construction executed before
DllMain is entered.

hModule A handle of the extension DLL module.

Call this function in an extension DLL's DllMain to initialize the DLL. For example:

static AFX_EXTENSION_MODULE extensionDLL;
extern "C" int API ENTRY
DllMain(HINSTANCE hInstance, DWORD dwReason, LPVOID)
{

if (dwReason == DLL_PROCESS_ATTACH)
{

II Extension DLL one-time initialization
if (!AfxlnitExtensionModule(extensionDLL, hlnstance»

return 0;

AfxInitExtensionModule makes a copy of the DLL's HMODULE and captures the
DLL's runtime-classes (CRuntimeClass structures) as well as its object factories
(COleObjectFactory objects) for use later when the CDynLinkLibrary object is
created.

MFC extension DLLs need to do two things in their DllMain function:

• Call AfxInitExtensionModule and check the return value.

• Create a CDynLinkLibrary object if the DLL will be exporting CRuntimeClass
objects or has its own custom resources.

You can call AfxTermExtensionModule to clean up the extension DLL when each
process detaches from the extension DLL (which happens when the process exits, or
when the DLL is unloaded as a result of an AfxFreeLibrary call).

See Also: AfxTermExtensionModule

AfxInitRichEdit

Remarks

BOOL AFXAPI AfxInitRichEdit();

Call this function to initialize the rich edit control for the application. It will also
initialize the common controls library, if the library hasn't already been initialized for
the process. If you use the rich edit control directly from your MFC application, you
should call this function to assure that MFC has properly initialized the rich edit
control runtime. If you use rich edit via CRichEditCtrl, CRichEditView, or
CRichEditDoc, you don't need to call this function.

AfxIsMemory Block
BOOL AfxIsMemoryBlock(const void* p, UINT nBytes,

... LONG* plRequestNumber = NULL);

Return Value
Nonzero if the memory block is currently allocated and the length is correct;
otherwise O.

Parameters
p Points to the block of memory to be tested.

nBytes Contains the length of the memory block in bytes.

AfxIsMemoryBlock

2319

AfxIs ValidAddress

Remarks

Example

plRequestNumber Points to a long integer that will be filled in with the memory
block's allocation sequence number. The variable pointed to by plRequestNumber
will only be filled in if AfxIsMemoryBlock returns nonzero.

Tests a memory address to make sure it represents a currently active memory block
that was allocated by the diagnostic version of new. It also checks the specified size
against the original allocated size. If the function returns nonzero, the allocation
sequence number is returned in plRequestNumber. This number represents the order in
which the block was allocated relative to all other new allocations.

II example for AfxIsMemoryBlock
CAge* pcage = new CAge(21); II CAge is derived from CObject.
ASSERT(AfxIsMemoryBlock(pcage, sizeof(CAge)))

See Also: AfxIs ValidAddress

AfxIs ValidAddress
BOOL AfxIsValidAddress(const void* lp, UINT nBytes, BOOL bReadWrite = TRUE);

Return Value
Nonzero if the specified memory block is contained entirely within the program's
memory space; otherwise o.

Parameters

Remarks

lp Points to the memory address to be tested.

nBytes Contains the number of bytes of memory to be tested.

bReadWrite Specifies whether the memory is both for reading and writing (TRUE)
or just reading (FALSE).

Tests any memory address to ensure that it is contained entirely within the program's
memory space. The address is not restricted to blocks allocated by new.

See Also: AfxIsMemoryBlock, AfxIsValidString

AfxIs ValidString
BOOL AfxIsValidString(LPCSTR lpsz, int nLength = -1);

Return Value
Nonzero if the specified pointer points to a string of the specified size; otherwise O.

Parameters
lpsz The pointer to test.

2320

Remarks

nLength Specifies the length of the string to be tested, in bytes. A value of -1
indicates that the string will be null-terminated.

Use this function to determine whether a pointer to a string is valid.

See Also: AfxIsMemoryBlock, AfxIsValidAddress

AfxLoadLibrary
HINSTANCE AFXAPI AfxLoadLibrary(LPCTSTR lpszModuleName);

Return Value
If the function succeeds, the return value is a handle to the module. If the function
fails, the return value is NULL.

Parameters

Remarks

lpszModuleName Points to a null-terminated string that contains the name of the
module (either a .DLL or .EXE file). The name specified is the filename of the
module.

If the string specifies a path but the file does not exist in the specified directory, the
function fails.

If a path is not specified and the filename extension is omitted, the default
extension .DLL is appended. However, the filename string can include a
trailing point character (.) to indicate that the module name has no extension.
When no path is specified, the function searches for the file in the following
sequence:

• The directory from which the application loaded.

• The current directory.

• Windows 95: The Windows system directory. Windows NT: The 32-bit
Windows system directory. The name of this directory is SYSTEM32.

• Windows NT only: The l6-bit Windows system directory. There is no Win32
function that obtains the path of this directory, but it is searched. The name of
this directory is SYSTEM.

• The Windows directory.

• The directories that are listed in the PATH environment variable.

Use AfxLoadLibrary to map a DLL module. It returns a handle that can be used in
GetProcAddress to get the address of a DLL function. AfxLoadLibrary can also be
used to map other executable modules.

AfxLoadLibrary

2321

Each process maintains a reference count for each loaded library module. This
reference count is incremented each time AfxLoadLibrary is called and is
decremented each time AfxFreeLibrary is called. When the reference count reaches
zero, the module is unmapped from the address space of the calling process and the
handle is no longer valid.

Be sure to use AfxLoadLibrary and AfxFreeLibrary (instead of the Win32
functions LoadLibrary and FreeLibrary) if your application uses multiple threads.
Using AfxLoadLibrary and AfxFreeLibrary insures that the startup and shutdown
code that executes when the extension DLL is loaded and unloaded does not corrupt
the global MFC state.

See Also: AfxFreeLibrary

AFX_MANAGE_STATE(AFX_MODULE_STATE* pModuleState)

Parameters

Remarks

2322

pModuleState A pointer to an AFX_MODULE_STATE structure.

Call this macro to protect an exported function in a DLL. When this macro is invoked,
pModuleState is the effective module state for the remainder of the immediate
containing scope. Upon leaving the scope, the previous effective module state will be
automatically restored.

The AFX_MODULE_STATE structure contains global data for the module, that is,
the portion of the module state that is pushed or popped.

By default, MFC uses the resource handle of the main application to load the resource
template. If you have an exported function in a DLL, such as one that launches a
dialog box in the DLL, this template is actually stored in the DLL module. You need
to switch the module state for the correct handle to be used. You can do this by adding
the following code to the beginning of the function:

AFX_MANAGE_STATE(AfxGetStaticModuleState());

This swaps the current moudle state with the state returned from
AfxGetStaticModuleState until the end of the current scope.

For more information on module states and MFC, see "Managing the State Data of
MFC Modules" in "Creating New Documents, Windows, and Views" in Visual C++
Programmer's Guide online and Technical Note 58 online.

See Also: AfxGetStaticModuleState

afxMemDF
int afxMemDF;

Remarks

Example

This variable is accessible from a debugger or your program and allows you to tune
allocation diagnostics. It can have the following values as specified by the
enumeration afxMemDF:

• allocMemDF Turns on debugging allocator (default setting in Debug library).

• delayFreeMemDF Delays freeing memory. While your program frees a memory
block, the allocator does not return that memory to the underlying operating
system. This will place maximum memory stress on your program.

• checkAlwaysMemDF Calls AfxCheckMemory every time memory is allocated
or freed. This will significantly slow memory allocations and deallocations.

II example for afxMemDF
afxMemDF = allocMemDF I checkAlwaysMemDF;

AfxMessageBox
int AfxMessageBox(LPCTSTR IpszText, UINT nType = MB_OK,

1+ UINT nIDHelp = 0);
int AFXAPI AfxMessageBox(UINT nIDPrompt, UINT nType = MB_OK,

1+ UINT nIDHelp = (UINT) -1);

Return Value
Zero if there is not enough memory to display the message box; otherwise one of
the following values is returned:

• IDABORT The Abort button was selected.

• IDCANCEL The Cancel button was selected.

• IDIGNORE The Ignore button was selected.

• IDNO The No button was selected.

• IDOK The OK button was selected.

• IDRETRY The Retry button was selected.

• IDYES The Yes button was selected.

If a message box has a Cancel button, the IDCANCEL value will be returned if either
the ESC key is pressed or the Cancel button is selected. If the message box has no
Cancel button, pressing the ESC key has no effect.

AfxMessageBox

2323

AfxN etlnitModule

The functions AfxFormatStringl and AfxFormatString2 can be useful in formatting
text that appears in a message box.

Parameters

Remarks

IpszText Points to a CString object or null-terminated string containing the
message to be displayed in the message box.

nType The style of the message box. Apply any of the message-box styles to
the box.

nIDHelp The Help-context ID for the message; 0 indicates the application's
default Help context will be used.

nIDPrompt A unique ID used to reference a string in the string table.

Displays a message box on the screen. The first form of this overloaded function
displays a text string pointed to by IpszText in the message box and uses nIDHelp to
describe a Help context. The Help context is used to jump to an associated Help topic
when the user presses the Help key (typically FI).

The second form of the function uses the string resource with the ID nIDPrompt to
display a message in the message box. The associated Help page is found through the
value of nIDHelp. If the default value of nIDHelp is used (-1), the string resource ID,
nIDPrompt, is used for the Help context. For more information about defining Help
contexts, see the article "Help Topics" in Visual C++ Programmer's Guide online
and "Technical Note 28" online.

See Also: CWnd::MessageBox

AfxN etInitModule

Remarks

2324

void AFXAPI AfxNetInitModule();

#include <afxdII.h>

For MFC Sockets support from a regular DLL that is dynamically linked to MFC,
add a call to this function in your regular DLL's CWinApp: : InitInstance function
to initialize the MFC Sockets DLL. The MFC Sockets DLL is an extension DLL; in
order for an extension DLL to get wired into a CDynLinkLibrary chain, it must
create a CDynLinkLibrary object in the context of every module that will be using
it. AfxNetInitModule creates the CDynLinkLibrary object in your regular DLL's
context so that it gets wired into the CDynLinkLibrary object chain of the
regular DLL.

AFX_ODBC_CALL
AFX_ODBC_CALL(SQLFunc)

Parameters

Remarks

Example

SQLFunc An ODBC API function. For more information about ODBC API
functions, see the ODBC SDK Programmer's Reference.

Use this macro to call any ODBC API function that may return
SQL_STILL_EXECUTING. AFX_ODBC_CALL repeatedly calls the function
until it no longer returns SQL_STILL_EXECUTING.

Before invoking AFX_ODBC_CALL, you must declare a variable, nRetCode, of type
RETCODE. You can use CRecordset::Check to check the value of nRetCode after
the macro call.

Note that the MFC ODBC classes now use only synchronous processing. In order
to perform an asynchronous operation, you must call the ODBC API function
SQLSetConnectOption. For more information, see the topic "Executing Functions
Asynchronously" in the ODBC SDK Programmer's Reference.

This example uses AFX_ODBC_CALL to call the SQLColumns ODBC API
function, which returns a list of the columns in the table named by s t r Tab 1 eN a me.
Note the declaration of nRetCode and the use of record set data members to pass
parameters to the function. The example also illustrates checking the results of the
call with Check, a member function of class CRecordset. The variable p r s is a
pointer to a CRecordset object, declared elsewhere.

II example for AFX_ODBC_CALL

RETCODE nRetCode;

AFX_ODBC_CALL(::SOLColumns(prs->m_hstmt.
(UCHAR *)NULL. SOL_NTS. (UCHAR *)NULL.
SOL_NTS. (UCHAR *)(constchar*)strTableName.
SOL_NTS. (UCHAR *)NULL. SOL_NTS));

if !prs->Check(nRetCode))
{

AfxThrowDBException(nRetCode. prs->m_pdb.
prs->m_hstmt);

TRACE("SOLColumns failed\n");

2325

AfxOleCanExitApp

AfxOleCanExitApp
BOOL AFXAPI AfxOleCanExitApp();

#include <afxdisp.h>

Return Value

Remarks

Nonzero if the application can exit; otherwise O.

Indicates whether the application can terminate. An application should not
terminate if there are outstanding references to its objects. The global functions
AfxOleLockApp and AfxOleUnlockApp increment and decrement, respectively,
a counter of references to the application's objects. The application should not
terminate when this counter is nonzero. If the counter is nonzero, the application's
main window is hidden (not destroyed) when the user chooses Close from the
system menu or Exit from the File menu. The framework calls this function in
CFrame Wnd: :OnClose.

See Also: AfxOleLockApp, AfxOleUnlockApp

AfxOleGetMessageFilter
COleMessageFilter* AFXAPI AfxOleGetMessageFilter();

#include <afxwin.h>

Return Value

Remarks

Example

2326

A pointer to the current message filter.

Retrieves the application's current message filter. Call this function to access
the current COleMessageFilter-derived object, just as you would call AfxGetApp
to access the current application object.

COleMessageFilter* pFilter = AfxOleGetMessageFilter();
ASSERT_VALID(pFilter);
pFilter->BeginBusyState();
II do things requiring a busy state
pFilter->EndBusyState();

See Also: COleMessageFilter, AfxGetApp

AfxOleGetU serCtrl
BOOL AFXAPI AfxOleGetUserCtrl();

#inc1ude <afxdisp.h>

Return Value

Remarks

Nonzero if the user is in control of the application; otherwise O.

Retrieves the current user-control flag. The user is "in control" of the application
when the user has explicitly opened or created a new document. The user is also in
control if the application was not launched by the OLE system DLLs-in other
words, if the user launched the application with the system shell.

See Also: AfxOleSetUserCtrl

AfxOleInit
BOOL AFXAPI AfxOlelnit();

#inc1ude <afxdisp.h>

Return Value

Remarks

Nonzero if successful; 0 if initialization fails, possibly because incorrect versions of
the OLE system DLLs are installed.

Initializes the OLE DLLs.

AfxOleInitModule

Remarks

void AFXAPI AfxOlelnitModule();

#inc1ude <afxdll.h>

For OLE support from a regular DLL that is dynamically linked to MFC, call
this function in your regular DLL's CWinApp::lnitInstance function to initialize
the MFC OLE DLL. The MFC OLE DLL is an extension DLL; in order for an
extension DLL to get wired into a CDynLinkLibrary chain, it must create a
CDynLinkLibrary object in the context of every module that will be using it.
AfxOlelnitModule creates the CDynLinkLibrary object in your regular DLL's
context so that it gets wired into the CDynLinkLibrary object chain of the
regular DLL.

AfxOleInitModule

2327

AfxOleLockApp

If you are building an OLE control and are using COleControlModule, you
should not call AfxOleInitModule because the InitInstance member function
for COleControlModule calls AfxOleInitModule.

AfxOleLockApp

Remarks

void AFXAPI AfxOleLockApp();

#include <afxdisp.h>

Increments the framework's global count of the number of active objects in the
application.

The framework keeps a count of the number of objects active in an application.
The AfxOleLockApp and AfxOleUnlockApp functions, respectively, increment
and decrement this count.

When the user attempts to close an application that has active objects-an
application for which the count of active objects is nonzero-the framework
hides the application from the user's view instead of completely shutting it
down. The AfxOleCanExitApp function indicates whether the application can
terminate.

Call AfxOleLockApp from any object that exposes OLE interfaces, if it would be
undesirable for that object to be destroyed while still being used by a client
application. Also call AfxOleUnlockApp in the destructor of any object that calls
AfxOleLockApp in the constructor. By default, COleDocument (and derived
classes) automatically lock and unlock the application.

See Also: AfxOleUnlockApp, AfxOleCanExitApp, COleDocument

AfxOleLockControl
BOOL AFXAPI AfxOleLockControl(REFCLSID clsid);
BOOL AFXAPI AfxOleLockControl(LPCTSTR IpszProgID);

#include <afxwin.h>

Return Value
Nonzero if the class factory of the control was successfully locked; otherwise O.

Parameters
clsid The unique class ID of the control.

IpszProgID The unique program ID of the control.

2328

AfxOleRegisterControlClass

Remarks
Locks the class factory of the specified control so that dynamically created data
associated with the control remains in memory. This can significantly speed up display
of the controls. For example, once you create a control in a dialog box and lock the
control with AfxOleLockControl, you do not need to create and kill it again every
time the dialog is shown or destroyed. If the user opens and closes a dialog box
repeatedly, locking your controls can significantly enhance performance. When you
are ready to destroy the control, call AfxOleUnlockControl.

See Also: AfxOleUnlockControl

AfxOleRegisterControlClass
BOOL AFXAPI AfxOleRegisterControlClass(HINSTANCE hlnstance,

... REFCLSID clsid, LPCTSTR pszProgID, UINT idTypeName,

... UINT idBitmap, int nRegFlags, DWORD dwMiscStatus, REFGUID tlid,

... WORD wVerMajor, WORD wVerMinor);

#include <afxctl.h>

Return Value
Nonzero if the control class was registered; otherwise O.

Parameters
hlnstance The instance handle of the module associated with the control class.

clsid The unique class ID of the control.

pszProgID The unique program ID of the control.

idTypeName The resource ID of the string that contains a user-readable type name
for the control.

idBitmap The resource ID of the bitmap used to represent the OLE control in a
toolbar or palette.

nRegFlags Contains one or more of the following flags:

• afxRegInsertable Allows the control to appear in the Insert Object dialog box
for OLE objects.

• afxRegApartmentThreading Sets the threading model in the registry to
ThreadingModel=Apartment.

Note In MFC versions prior to MFC 4.2, the int nRegFlags parameter was a BOOl
parameter, blnsertable, that allowed or disallowed the control to be inserted from the Insert
Object dialog box.

dwMiscStatus Contains one or more of the following status flags (for a description of
the flags, see OLEMISC enumeration in the OLE Programmer's Reference):

• OLEMISC_RECOMPOSEONRESIZE

2329

AfxOleRegisterControlClass

Remarks

Example

2330

• OLEMISC_ONLYICONIC

• OLEMISC_INSERTNOTREPLACE

• OLEMISC_STATIC

• OLEMISC_CANTLINKINSIDE

• OLEMISC_CANLINKBYOLEI

• OLEMISC_ISLINKOBJECT

• OLEMISC_INSIDEOUT

• OLEMISC_ACTIVATEWHENVISIBLE

• OLEMISC_RENDERINGISDEVICEINDEPENDENT

• OLEMISC_INVISIBLEATRUNTIME

• OLEMISC_ALWAYSRUN

• OLEMISC_ACTSLIKEBUTTON

• OLEMISC_ACTSLIKELABEL

• OLEMISC_NOUIACTIVATE

• OLEMISC_ALIGNABLE

• OLEMISC_IMEMODE

• OLEMISC_SIMPLEFRAME

• OLEMISC_SETCLIENTSITEFIRST

tlid The unique ID of the control class.

wVerMajor The major version number of the control class.

wVerMinor The minor version number of the control class.

Registers the control class with the Windows registration database. This allows the
control to be used by containers that are OLE-control aware.
AfxOleRegisterControlClass updates the registry with the control's name and
location on the system and also sets the threading model that the control supports in
the registry. For more information, see "Technical Note 64" online,
"Apartment-Model Threading in OLE Controls," and "About Processes and Threads"
in the Win32 SDK.

II Member function implementation of class COleObjectFactory::UpdateRegistry
II
BOOl CMyApartmentAwareCtrl ::CApartmentCtrlFactory::UpdateRegistry(BOOl bRegister)
{

AfxOleRegisterPropertyPageClass

II TODO: Verify that your control follows
II apartment-model threading rules.
II Refer to MFC TechNote 64 for more information.
II If your control does not conform to the
II apartment-model rules. then you must modify the
II code below. changing the 6th parameter from
II afxRegInsertable I afxRegApartmentThreading to
II afxRegInsertable.

if (bRegister)
return AfxOleRegisterControlClass()
AfxGetInstanceHandle().
m_clsid.
m_lpszProgID.
IDS_APARTMENT.
lOB_APARTMENT.
afxRegInsertable I afxRegApartmentThreading.
_dwApartmentOleMisc.
_tlid.
_wVerMajor.
_wVerMinor);

else
return AfxOleUnregisterClass(m_clsid. m_lpszProgID);

The above example demonstrates how AfxOleRegisterControlClass is called with
the flag for insertable and the flag for apartment model ORed together to create the
sixth parameter:

afxRegInsertable I afxRegApartmentThreading.

The control will show up in the Insert Object dialog box for enabled containers, and it
will be apartment model-aware. Apartment model-aware controls must ensure that
static class data is protected by locks, so that while a control in one apartment is
accessing the static data, it isn't disabled by the scheduler before it is finished, and
another instance of the same class starts using the same static data. Any accesses to
the static data will be surrounded by critical section code.

See Also: AfxOleRegisterPropertyPageClass, AfxOleRegisterTypeLib,
AfxOleUnregisterClass, AfxOleUnregisterTypeLib

AfxOleRegisterPropertyPageClass
BOOL AFXAPI AfxOleRegisterPropertyPageClass(HINSTANCE hlnstance,

... REFCLSID clsid, UINT idTypeName, int nRegFlags)

#include <afxctl.h>

Return value
Nonzero if the control class was registered; otherwise O.

2331

AfxOleRegisterServerClass

Parameters

Remarks

hlnstance The instance handle of the module associated with the property page class.

clsid The unique class ID of the property page.

idTypeName The resource ID of the string that contains a user-readable name for the
property page.

nRegFlags May contain the flag

• afxRegApartmentThreading Sets the threading model in the registry to
ThreadingModel = Apartment.

Note: In MFC versions prior to MFC 4.2, the int nRegFlags parameter was not available.
Note also that the afxReglnsertable flag is not a valid option for property pages and will
cause an ASSERT in MFC if it is set

Registers the property page class with the Windows registration database. This
allows the property page to be used by containers that are OLE-control aware.
AfxOleRegisterPropertyPageClass updates the registry with the property page
name and its location on the system and also sets the threading model that the control
supports in the registry. For more information, see "Technical Note 64" online,
"Apartment-Model Threading in OLE Controls," and "About Processes and Threads"
in the Win32 SDK.

See Also: AfxOleRegisterControlClass, AfxOleRegisterTypeLib

AfxOleRegisterServerClass
BOOL AFXAPI AfxOleRegisterServerClass(REFCLSID clsid,

.. LPCTSTR IpszClassName, LPCTSTR IpszShortTypeName,

.. LPCTSTR IpszLongTypeName, OLE_APPTYPE nAppType = OAT_SERVER,

.. LPCTSTR* rglpszRegister = NULL, LPCTSTR* rglpszOverwrite = NULL);

#include <afxdisp.h>

Return Value
Nonzero if the server class is successfully registered; otherwise O.

Parameters

2332

clsid Reference to the server's OLE class ID.

IpszClassName Pointer to a string containing the class name of the server's objects.

IpszShortTypeName Pointer to a string containing the short name of the server's
object type, such as "Chart."

IpszLongTypeName Pointer to a string containing the long name of the server's
object type, such as "Microsoft Excel 5.0 Chart."

AfxOleRegisterTypeLib

Remarks

nAppType A value, taken from the OLE_APPTYPE enumeration, specifying the
type of OLE application. Possible values are the following:

• OAT_INPLACE_SERVER Server has full server user-interface.

• OAT_SERVER Server supports only embedding.

• OAT_CONTAINER Container supports links to embeddings.

• OAT_DISPATCH_OBJECT IDispatch-capable object.

rglpszRegister Array of pointers to strings representing the keys and values to be
added to the OLE system registry if no existing values for the keys are found.

rglpszOverwrite Array of pointers to strings representing the keys and values to be
added to the OLE system registry if the registry contains existing values for the
given keys.

This function allows you to register your server in the OLE system registry. Most
applications can use COleTemplateServer::Register to register the application's
document types. If your application's system-registry format does not fit the typical
pattern, you can use AfxOleRegisterServerClass for more control.

The registry consists of a set of keys and values. The rglpszRegister and
rglpszOverwrite arguments are arrays of pointers to strings, each consisting of a key
and a value separated by a NULL character (, \ 0 '). Each of these strings can have
replaceable parameters whose places are marked by the character sequences %1

through %5.

The symbols are filled in as follows:

Symbol Value

%1 Class ID, formatted as a string

%2 Class name

%3 Path to executable file

%4 Short type name

%5 Long type name

See Also: COleTemplateServer::UpdateRegistry

AfxOleRegisterTypeLib
BOOL AfxOleRegisterTypeLib(HINSTANCE hlnstance, REFGUID tlid,

.. LPCTSTR pszFileName = NULL, LPCTSTR pszHelpDir = NULL);

Return Value
Nonzero if the type library was registered; otherwise O.

2333

AfxOleSetEditMenu

Parameters

Remarks

hlnstance The instance handle of the application associated with the type library.

tlid The unique ID of the type library.

pszFileName Points to the optional filename of a localized type library (.TLB) file
for the control.

pszHe/pDir The name of the directory where the help file for the type library can be
found. If NULL, the help file is assumed to be in the same directory as the type
library itself.

Registers the type library with the Windows registration database and allows the type
library to be used by other containers that are OLE-control aware. This function
updates the registry with the type library name and its location on the system.

See Also: AfxOleUnregisterTypeLib, AfxOleRegisterControlClass,
AfxOleUnregisterClass

AfxOleSetEditMenu
void AFXAPI AfxOleSetEditMenu(COleClientltem* pClient,

... CMenu* pMenu, UINT iMenultem, UINT nIDVerbMin,

... UINT nIDVerbMax = 0, UINT nIDConvert = 0);

#include <afxole.h>

Parameters

Remarks

2334

pClient A pointer to the client OLE item.

pMenu A pointer to the menu object to be updated.

iMenultem The index of the menu item to be updated.

nIDVerbMin The command ID that corresponds to the primary verb.

nIDVerbMax The command ID that corresponds to the last verb.

nIDConvert ID for the Convert menu item.

Implements the user interface for the typename Object command. If the server
recognizes only a primary verb, the menu item becomes "verb typename Object" and
the nIDVerbMin command is sent when the user chooses the command. If the server
recognizes several verbs, then the menu item becomes "typename Object" and a
submenu listing all the verbs appears when the user chooses the command. When the
user chooses a verb from the submenu, nIDVerbMin is sent if the first verb is chosen,
nIDVerbMin + 1 is sent if the second verb is chosen, and so forth. The default
COleDocument implementation automatically handles this feature.

AfxOleTypeMatchGuid

You must have the following statement in your client's application resource script
(.RC) file:

#include <afxolecl.rc>

See Also: COleDocument

AfxOleSetU serCtrl
void AFXAPI AfxOleSetUserCtrl(BOOL bUserCtrl);

#include <afxdisp.h>

Parameters

Remarks

bUserCtrl Specifies whether the user-control flag is to be set or cleared.

Sets or clears the user-control flag, which is explained in the reference for
AfxOleGetUserCtrl. The framework calls this function when the user creates or
loads a document, but not when a document is loaded or created through an indirect
action such as loading an embedded object from a container application.

Call this function if other actions in your application should put the user in control of
the application.

See Also: AfxOleGetUserCtrl

AfxOleTypeMatchGuid
BOOL AfxOleTypeMatchGuid(LPTYPEINFO pTypelnJo,

... TYPEDESC FAR* pTypeDesc, REFGUID guidType,

... ULONG cIndirectionLevels);

Return Value
Nonzero if the match was successful; otherwise O.

Parameters

Remarks

pTypelnJo Pointer to the type info object from which pTypeDesc was obtained.

pTypeDesc Pointer to a TYPEDESC structure.

guidType The unique ID of the type.

cIndirectionLevels The number of indirection levels.

Call this function to determine whether a type descriptor (obtained from the type info)
describes the type indicated by guidType with the given number of levels of
indirection.

2335

AfxOleUnlockApp

Example
To check whether typedesc refers to a pointer to a IFontDisp:

AfxOleTypeMatchGuid(ptypeinfo, &typedesc, 1lD_1FontDisp, 1);

where I I D_1 FontDi sp refers to the type and the number of indirection levels is 1
(because the sample is checking for a simple pointer).

AfxOleUnlockApp

Remarks

void AFXAPI AfxOleUnlockApp();

#include <afxdisp.h>

Decrements the framework's count of active objects in the application. See
AfxOleLockApp for further information.

When the number of active objects reaches zero, AfxOleOnReleaseAlIObjects
is called.

See Also: AfxOleLockApp, CCmdTarget::OnFinaIRelease

AfxOleUnlockControl
BOOL AFXAPI AfxOleUnlockControl(REFCLSID clsid);
BOOL AFXAPI AfxOleUnlockControl(LPCTSTR lpszProgID);

#include <afxwin.h>

Return Value
Nonzero if the class factory of the control was successfully unlocked; otherwise O.

Parameters

Remarks

2336

clsid The unique class ID of the control.

lpszProgID The unique program ID of the control.

Unlocks the class factory of the specified control. A control is locked with
AfxOleLockControl, so that dynamically created data associated with the control
remains in memory. This can significantly speed up display of the control because the
control need not be created and destroyed every time it is displayed. When you are
ready to destroy the control, call AfxOleUnlockControl.

See Also: AfxOleLockControl

AfxOleUnregisterClass
BOOL AFXAPI AfxOleUnregisterClass(REFCLSID clsID, LPCSTR pszProgID);

Return Value
Nonzero if the control or property page class was successfully unregistered;
otherwise O.

Parameters

Remarks

clsID The unique class ID of the control or property page.

pszProgID The unique program ID of the control or property page.

Removes the control or property page class entry from the Windows registration
database.

See Also: AfxOleRegisterPropertyPageClass, AfxOleRegisterControlClass,
AfxOleRegisterTypeLib

AfxOleUnregisterTypeLib
BOOL AFXAPI AfxOleUnregisterTypeLib(REFGUID tlID);

Return Value
Nonzero if the type library was successfully unregistered; otherwise O.

Parameters

Remarks

tlID The unique ID of the type library.

Call this function to remove the type library entry from the Windows registration
database.

See Also: AfxOleUnregisterClass, AfxOleRegisterTypeLib

AfxParse URL
BOOL AFXAPI AfxParseURL(LPCTSTR pstrURL, DWORD& dwServiceType,
1+ CString& strServer, CString& strObject, INTERNET_PORT& nPort);

Return Value
Nonzero if the URL was successfully parsed; otherwise, 0 if it is empty or does not
contain a known Internet service type.

Parameters
pstrURL A pointer to a string containing the URL to be parsed.

AfxParseURL

2337

AfxParseURL

Remarks

2338

dwServiceType Indicates the type of Internet service. Possible values are as follows:

AFX_INET_SERVICE_FTP

AFX_INET _SERVICE_HTTP

AFX_INET _SERVICE_GOPHER

AFX_INET_SERVICE_FILE

AFX_INET _SERVICE_MAIL TO

AFX_INET _SERVICE_NEWS

AFX_INET _SERVICE_NNTP

AFX_INET _SERVICE_TELNET

AFX_INET_SERVICE_ WAIS

AFX_INET_SERVICE_MID

AFX_INET_SERVICE_CID

AFX_INET_SERVICE_PROSPERO

AFX_INET_SERVICE_AFS

AFX_INET_SERVICE_UNK

strServer The first segment of the URL following the service type.

strObject An object that URL refers to (may be empty).

nPort Ferreted out from either the Server or Object portions of the URL, if either
exist.

This global is used in CInternetSession::OpenURL. It parses a URL string and
returns the type of service and its components.

For example, AfxParseURL parses URLs of the form
service:/Iserver/dir/dir/object.ext:port and returns its components stored as follows:

strServer == "server"

strObject == "/dir/dir/object/object.ext"

nPort == #port

dwServiceType == #service

See Also: AfxGetInternetHandleType

AfxRegisterClass
BOOL AFXAPI AfxRegisterClass(WNDCLASS* lp WndClass);

Return Value
TRUE if the class is successfully registered; otherwise FALSE.

Parameters

Remarks

lp WndClass Pointer to a WNDCLASS structure containing information about the
window class to be registered. For more information on this structure, see the
Win32 SDK documentation.

Use this function to register window classes in a DLL that uses MFC. If you use this
function, the class is automatically unregistered when the DLL is unloaded.

In non-DLL builds, the AfxRegisterClass identifier is defined as a macro that maps
to the Windows function RegisterClass, since classes registered in an application are
automatically unregistered. If you use AfxRegisterClass instead of RegisterClass,
your code can be used without change both in an application and in a DLL.

AfxRegisterWndClass
LPCTSTR AFXAPI AfxRegisterWndClass(UINT nClassStyle,

... HCURSOR hCursor = 0, HBRUSH hbrBackground = 0, HICON hlcon = 0);

Return Value
A null-terminated string containing the class name. You can pass this class name to
the Create member function in CWnd or other CWnd-derived classes to create a
window. The name is generated by the Microsoft Foundation Class Library.

Note The return value is a pOinter to a static buffer. To save this string, assign it to a CString
variable.

Parameters
nClassStyle Specifies the Windows class style or combination of styles, created by

using the bitwise-OR (I) operator, for the window class. For a list of class styles,
see the WNDCLASS structure in the Win32 SDK documentation.

hCursor Specifies a handle to the cursor resource to be installed in each window
created from the window class.

hbrBackground Specifies a handle to the brush resource to be installed in each
window created from the window class.

hlcon Specifies a handle to the icon resource to be installed in each window created
from the window class.

AfxRegisterWndClass

2339

AfxSetAllocHook

Remarks
The Microsoft Foundation Class Library automatically registers several standard
window classes for you. Call this function if you want to register your own window
classes.

The name registered for a class by AfxRegisterWndClass depends solely on the
parameters. If you call AfxRegisterWndClass multiple times with identical
parameters, it only registers a class on the first call. Subsequent calls to
AfxRegisterWndClass with identical parameters simply return the already-registered
classname.

If you call AfxRegisterWndClass for multiple CWnd-derived classes with identical
parameters, instead of getting a separate window class for each class, each class shares
the same window class. This can cause problems if the CS_CLASSDC class style is
used. Instead of multiple CS_CLASSDC window classes, you end up with one
CS_CLASSDC window class, and all C++ windows that use that class share the same
DC. To avoid this problem, call AfxRegisterClass to register the class.

See Also: CWnd::Create, CWnd::PreCreateWindow, WNDCLASS
AfxRegisterClass

AfxSetAllocHook
AFX_ALLOC_HOOK AfxSetAllocHook(AFX_ALLOC_HOOK pfnAllocHook);

Return Value
Nonzero if you want to permit the allocation; otherwise O.

Parameters

Remarks

2340

pfnAllocHook Specifies the name of the function to call. See the Remarks for the
prototype of an allocation function.

Sets a hook that enables calling of the specified function before each memory block is
allocated. The Microsoft Foundation Class Library debug-memory allocator can call a
user-defined hook function to allow the user to monitor a memory allocation and to
control whether the allocation is permitted. Allocation hook functions are prototyped
as follows:

BOOL AFXAPI AllocHook(size_t nSize, BOOL bObject,
... LONG lRequestNumber);

nSize The size of the proposed memory allocation.

bObject TRUE if the allocation is for a CObject-derived object; otherwise FALSE.

lRequestNumber The memory allocation's sequence number.

Note that the AFXAPI calling convention implies that the callee must remove the
parameters from the stack.

AfxSetResourceHandle
void AfxSetResourceHandle(HINSTANCE hlnstResource);

Parameters

Remarks

hlnstResource The instance or module handle to an .EXE or DLL file from which the
application's resources are loaded.

Use this function to set the HINSTANCE handle that determines where the default
resources of the application are loaded.

See Also: AfxGetInstanceHandle, AfxGetResourceHandle

AfxSocketInit
BOOL AfxSocketInit(WSADATA * lpwsaData = NULL);

Return Value
Nonzero if the function is successful; otherwise O.

Parameters

Remarks

lpwsaData A pointer to a WSADATA structure. If lpwsaData is not equal to NULL,
then the address of the WSADATA structure is filled by the call to ::WSAStartup.
This function also ensures that ::WSACleanup is called for you before the
application terminates.

Call this function in your CWinApp::lnitInstance override to initialize Windows
Sockets.

See Also: CWinApp: : InitInstance

AFX_SQL_ASYNC(prs, SQLFunc)

Parameters

Remarks

prs A pointer to a CRecordset object or a CDatabase object. Beginning with MFC
4.2, this parameter value is ignored.

SQLFunc An ODBC API function. For more information about ODBC API
functions, see the ODBC SDK Programmer's Reference.

The implementation of this macro has changed in MFC 4.2. AFX_SQL_ASYNC now
simply calls the macro AFX_ODBC_CALL and ignores the prs parameter. In

2341

AFX_SQL_SYNC

previous versions of MFC, AFX_SQL_ASYNC was used to call ODBC API
functions that might return SQL_STILL_EXECUTING. If an ODBC API function
did return SQL_STILL_EXECUTING, then AFX_SQL_ASYNC would call
prs-)OnWaitForDataSource.

Note The MFC DDSC classes now use only synchronous processing. In order to perform an
asynchronous operation, you must call the ODSC API function SQLSetConnectOption. For
more information, see the topic "Executing Functions Asynchronously" in the ODBC SDK
Programmer's Reference.

AFX_SQL_SYNC(SQLFunc)

Parameters

Remarks

SQLFunc An ODBC API function. For more information about these functions, see
the ODBC SDK Programmer's Reference.

The AFX_SQL_SYNC macro simply calls the function SQLFunc. Use this macro to
call ODBC API functions that will not return SQL_STILL_EXECUTING.

Before calling AFX_SQL_SYNC, you must declare a variable, n RetCode, of type
RETCODE. You can check the value of nRetCode after the macro call.

Note that the implementation of AFX_SQL_SYNC has changed in MFC 4.2. Because
checking the server status is no longer required, AFX_SQL_SYNC simply assigns a
value to n RetCode. For example, instead of making the call

AFX_SOL_SYNC(: :SOLGetlnfo(..))

you can simply make the assignment

nRetCode"" ::SOLGetlnfo(••);

AfxTermExtensionModule
void AFXAPI AfxTermExtensionModule(AFX_EXTENSION_MODULE& state,

-.. BOOL bAll = FALSE);

Parameters

2342

state A reference to the AFX_EXTENSION_MODULE structure that contains the
state of extension DLL module.

AfxThrow Archi veException

Remarks

bAll If TRUE, cleanup all extension DLL modules. Otherwise, cleanup only the
current DLL module.

Call this function to allow MFC to cleanup the extension DLL when each process
detaches from the DLL (which happens when the process exits, or when the DLL is
unloaded as a result of a AfxFreeLibrary call). AfxTermExtensionModule will
delete any local storage attached to the module and remove any entries from the
message map cache. For example:

static AFX_EXTENSION_MOOULE extensionOLL;
extern "c" int APIENTRY
OllMain(HINSTANCE hlnstance. OWORO dwReason. LPVOIO)
{

if (dwReason =~ OLL_PROCESS_ATTACH)
{

II Extension OLL one-time initialization
if (!AfxlnitExtensionModule(extensionOLL. hlnstance»
return 0;
II TOOO: perform other initialization tasks here

else if (dwReason == OLL_PROCESS_OETACH)
{

II Extension OLL per-process termination
AfxTermExtensionModule(extensionOLL);

II TOOO: perform other cleanup tasks here
}

return 1; II ok

If your application loads and frees extension DLLs dynamically, be sure to call
AfxTermExtensionModule. Since most extension DLLs are not dynamically loaded
(usually, they are linked via their import libraries), the call to
AfxTermExtensionModule is usually not necessary.

MFC extension DLLs need to call AfxlnitExtensionModule in their DIIMain. If the
DLL will be exporting CRuntimeClass objects or has its own custom resources, you
also need to create a CDynLinkLibrary object in DIIMain.

See Also: AfxlnitExtensionModule

AfxThrow Archi veException
void AfxThrowArchiveException(int cause, LPCTSTR IpszArchiveName);

Parameters
cause Specifies an integer that indicates the reason for the exception. For a list of the

possible values, see CArchiveException::m_cause.

IpszArchiveName Points to a string containing the name of the CArchive object that
caused the exception (if available).

2343

AfxThrowDaoException

Remarks
Throws an archive exception.

See Also: CArchiveException, THROW

AfxThrow DaoException
void AFXAPI AfxThrowDaoException(int nAfxDaoError =

... NO_AFX_DAO_ERROR, SCODE scode = S_OK);

Parameters

Remarks

nAfxDaoError An integer value representing a DAO extended error code, which can
be one of the values listed under CDaoException::m_nAfxDaoError.

scode An OLE error code from DAO, of type SCODE. For information, see
CDaoException: :m_scode.

Call this function to throw an exception of type CDaoException from your own code.
The framework also calls AfxThrowDaoException. In your call, you can pass one of
the parameters or both. For example, if you want to raise one of the errors defined in
CDaoException::nAfxDaoError but you do not care about the scode parameter, pass
a valid code in the nAfxDaoError parameter and accept the default value for scode.

For information about exceptions related to the MFC DAO classes, see class
CDaoException in this book and the article "Exceptions: Database Exceptions" in
Visual C++ Programmer's Guide online.

See Also: CException

AfxThrowDBException
void AfxThrowDBException(RETCODE nRetCode, CDatabase* pdb,

... HSTMT hstmt);

Parameters

Remarks

2344

nRetCode A value of type RETCODE, defining the type of error that caused the
exception to be thrown.

pdb A pointer to the CDatabase object that represents the data source connection
with which the exception is associated.

hstmt An ODBC HSTMT handle that specifies the statement handle with which the
exception is associated.

Call this function to throw an exception of type CDBException from your own code.
The framework calls AfxThrowDBException when it receives an ODBC

AfxThrow InternetException

RETCODE from a call to an ODBC API function and interprets the RETCODE as
an exceptional condition rather than an expectable error. For example, a data access
operation might fail because of a disk read error.

For information about the RETCODE values defined by ODBC, see Chapter 8,
"Retrieving Status and Error Information," in the ODBC SDK Programmer's
Reference. For information about MFC extensions to these codes, see class
CDBException.

See Also: CDBException: :m_nRetCode

AfxThrow FileException
void AfxThrowFileException(int cause, LONG IOsError = -1,

.. LPCTSTR IpszFileName = NULL);

Parameters

Remarks

cause Specifies an integer that indicates the reason for the exception. For a list of the
possible values, see CFileException: :m_cause.

IOsError Contains the operating-system error number (if available) that states the
reason for the exception. See your operating-system manual for a listing of error
codes.

IpszFileName Points to a string containing the name of the file that caused the
exception (if available).

Throws a file exception. You are responsible for determining the cause based on the
operating-system error code.

See Also: CFileException::ThrowOsError, THROW

AfxThrow InternetException
void AFXAPI AfxThrowlnternetException(DWORD dwContext,

.. DWORD dwError = 0);

Parameters
dw Con text The context identifier for the operation that caused the error. The

default value of dwContext is specified originally in ClnternetSession and is
passed to ClnternetConnection- and ClnternetFile-derived classes. For
specific operations performed on a connection or a file, you usually override
the default with a dwContext of your own. This value then is returned to
ClnternetSession::OnStatusCallback to identify the specific operation's status.
For more information on context identifiers, see the article "Internet First Steps:
WinInet" online.

2345

AfxThrow MemoryException

Remarks

dwError The error that caused the exception.

Throws an Internet exception. You are responsible for detennining the cause based on
the operating-system error code.

See Also: CInternetException, THROW

AfxThrow MemoryException

Remarks

void AfxThrowMemoryException();

Throws a memory exception. Call this function if calls to underlying system memory
allocators (such as malloc and the GlobalAlloc Windows function) fail. You do not
need to call it for new because new will throw a memory exception automatically if
the memory allocation fails.

See Also: CMemoryException, THROW

AfxThrow N otSupportedException

Remarks

void AfxThrowNotSupportedException();

Throws an exception that is the result of a request for an unsupported feature.

See Also: CNotSupportedException, THROW

AfxThrowOleDispatchException
void AFXAPI AfxThrowOleDispatchException(WORD wCode,

... LPCSTR lpszDescription, DINT nHeipID = 0);
void AFXAPI AfxThrowOleDispatchException(WORD wCode,

... DINT nDescriptionID, DINT nHelpID = -1);

#include <afxdisp.h>

Parameters

2346

wCode An error code specific to your application.

lpszDescription Verbal description of the error.

nDescriptionID Resource ID for the verbal error description.

nHeipID A help context for your application's help (.HLP) file.

AfxThrow U serException

Remarks
Use this function to throw an exception within an OLE automation function. The
information provided to this function can be displayed by the driving application
(Microsoft Visual Basic or another OLE automation client application).

See Also: COleException

AfxThrowOleException
void AFXAPI AfxThrowOleException(SCODE sc);
void AFXAPI AfxThrowOleException(HRESULT hr);

#include <afxdisp.h>

Parameters

Remarks

sc An OLE status code that indicates the reason for the exception.

hr Handle to a result code that indicates the reason for the exception.

Creates an object of type COleException and throws an exception. The version that
takes an HRESULT as an argument converts that result code into the corresponding
SCODE. For more information on HRESULT and SCODE, see "Structure of OLE
Error Codes" in the OLE documentation.

See Also: COleException, THROW

AfxThrow ResourceException

Remarks

void AfxThrowResourceException();

Throws a resource exception. This function is normally called when a Windows
resource cannot be loaded.

See Also: CResourceException, THROW

AfxThrow U serException

Remarks

void AfxThrowUserException();

Throws an exception to stop an end-user operation. This function is normally called
immediately after AfxMessageBox has reported an error to the user.

See Also: CUserException, THROW, AfxMessageBox

2347

afxTraceEnabled

afxTraceEnabled

Remarks

BOOL afxTraceEnabled;

A global variable used to enable or disable output from the TRACE macro.

By default, output from the TRACE macro is disabled. Set afxTraceEnabled to
a nonzero value if you want TRACE macros in your program to produce output.
Set it to 0 if you don't want TRACE macros in your program to produce output.

Usually, the value of afxTraceEnabled is set in your AFX.INI file. Alternately,
you can set the value of afxTraceEnabled with the TRACER.EXE utility. For
more information on afxTraceEnabled, see Technical Note 7 online.

See Also: afxTraceFlags, TRACE

afxTraceFlags

Remarks

2348

int afxTraceFlags;

Used to tum on the built-in reporting features of the Microsoft Foundation Class
Library.

This variable can be set under program control or while using the debugger. Each bit
of afxTraceFlags selects a trace reporting option. You can turn anyone of these bits
on or off as desired using TRACER.EXE. There is never a need to set these flags
manually.

The following is a list of the bit patterns and the resulting trace report option:

• OxOl Multiapplication debugging. This will prefix each TRACE output with the
name of the application and affects both the explicit TRACE output of your
program as well as the additional report options described below.

• Ox02 Main message pump. Reports each message received in the main CWinApp
message-handling mechanism. Lists the window handle, the message name or
number, wParam, and IParam.

The report is made after the Windows GetMessage call but before any message
translation or dispatch occurs.

Dynamic data exchange (DDE) messages will display additional data that can be
used for some debugging scenarios in OLE.

This flag displays only messages that are posted, not those that are sent.

• Ox04 Main message dispatch. Like option Ox02 above but applies to messages
dispatched in CWnd:: WindowProc, and therefore handles both posted and sent
messages that are about to be dispatched.

• Ox08 WM_ COMMAND dispatch. A special case used for extended
WM_COMMAND/OnCommand handling to report progress of the
command-routing mechanism.

Also reports which class receives the command (when there is a matching
message-map entry), and when classes do not receive a command (when there is no
matching message map entry). This report is especially useful to track the flow of
command messages in mUltiple document interface (MDI) applications.

• OxlO OLE tracing. Reports significant OLE notifications or requests.

Tum this option on for an OLE client or server to track communication between
the OLE DLLs and an OLE application.

• Ox20 Database tracing. Reports warnings for both ODBC and DAO classes, plus
additional information for DAO. Tum this option on if you want tracing for either
the MFC ODBC classes or the MFC DAO classes. For ODBC, you get only
warnings, such as type mismatches in your DFX calls. For DAO, you get
information for all exceptions, including the line and function in DAO or in the
MFC DAO classes where a failure occurred.

For more information, see Technical Note 7 online.

See Also: afxTraceEnabled, TRACE

Afx Verify LicFile
BOOL AFXAPI AfxVerifyLicFile(HINSTANCE hlnstance, LPCTSTR

... pszLicFileName, LPOLESTRpszLicFileContents, UINT cch = -1);

Return Value
Nonzero if the license file exists and begins with the character sequence in
pszLicFileContents; otherwise O.

Parameters

Remarks

hlnstance The instance handle of the DLL associated with the licensed control.

pszLicFileName Points to a null-terminated character string containing the license
filename.

pszLicFileContents Points to a byte sequence that must match the sequence found at
the beginning of the license file.

cch Number of characters in pszLicFileContents.

Call this function to verify that the license file named by pszLicFileName is valid for
the OLE control. If cch is-I, this function uses:

_tcslen(pszLicFileContents)

See Also: COleObjectFactory::VerifyUserLicense

Afx Verify LicFile

2349

AfxWinInit

AfxWinlnit
BOOL AFXAPI AfxWinInit(HINSTANCE hlnstance,

... HINSTANCE hPrevlnstance, LPTSTR IpCmdLine, int nCmdShow)

Parameters

Remarks

Example

2350

hlnstance The handle of the currently running module.

hPrevlnstance A handle to a previous instance of the application. For a
Win32-based application, this parameter is always NULL.

IpCmdLine Points to a null-terminated string specifying the command line for the
application.

nCmdShow Specifies how the main window of a aUI application would be shown.

This function is called by the MFC-supplied WinMain function, as part of the
CWinApp initialization of a aUI-based application, to initialize MFC. For a console
application, which does not use the MFC-supplied WinMain function, you must call
AfxWinInit directly to initialize MFC.

If you call AfxWinlnit yourself, you should declare an instance of a CWinApp class.
For a console application, you might choose not to derive your own class from
CWinApp and instead use an instance of CWinApp directly. This technique is
appropriate if you decide to leave all functionality for your application in your
implementation of main.

The TEAR sample shows how to make a console application using MFC.

II this file must be compiled with the IGX and IMT options:
1/ cl IGX IMT thisfile.cpp

#include <afx.h>
#include <afxdb.h>
#include <iostream.h>

int maine)
{

II try to initialize MFC

if (!AfxWinlnit(::GetModuleHandle(NULL). NULL. ::GetCommandLine(). 0))
{

cerr« "MFC failed to initialize!"« endl;
return 1;

}

II try to connect to an DOBC database that doesn't exist
II (this wouldn't work at all without initializing MFC)

CDatabase db;
try
{

db.Open("This Databsae Doesn't Exist");

II we shouldn't realistically get here

cout « "Successful!" « endl;
cout « "Cl os i ng ... ";
db.Close();
cout « "Closed!" « endl:

catch (CDBException* pEx)
{

II we got an exception! print an error message
II (this wouldn't work without initializing MFC)

char sz[1024]:

cout « "Error: ";
if (pEx->GetErrorMessage(sz. 1024))

cout « sz;
else

cout « "No error message was available";
cout « endl:

pEx->Delete();
return 1;

return 0;

See Also: CWinApp, "CWinApp: The Application Class" online, main, WinMain

AND_CATCH
AND_CATCH(exception_class, exception_object....[Jointer _name)

Parameters

Remarks

exception_class Specifies the exception type to test fOf. For a list of standard
exception classes, see class CException.

exception_object....[Jointer _name A name for an exception-object pointer that will be
created by the macro. You can use the pointer name to access the exception object
within the AND_CATCH block. This variable is declared for you.

Defines a block of code fOf catching additional exception types thrown in a preceding
TRY block. Use the CATCH macro to catch one exception type, then the

AND_CATCH

2351

AND_CATCH macro to catch each subsequent type. End the TRY block with an
END_CATCH macro.

The exception-processing code can interrogate the exception object, if appropriate, to
get more information about the specific cause of the exception. Call the
THROW_LAST macro within the AND_CATCH block to shift processing to the
next outer exception frame. AND_CATCH marks the end of the preceding CATCH
or AND_CATCH block.

Note The AND_CATCH block is defined as a C++ scope (delineated by curly braces). If you
declare variables in this scope, remember that they are accessible only within that scope. This
also applies to the exception_objecLpointer_name variable.

See Also: TRY, CATCH, END_CATCH, THROW, THROW_LAST,
AND_ CATCH_ALL, CException

AND _CATCH_ALL
AND_CATCH_ALL(exception_object....jJointer _name)

Parameters

Remarks

2352

exception_object....jJointer _name A name for an exception-object pointer that will be
created by the macro. You can use the pointer name to access the exception object
within the AND_CATCH_ALL block. This variable is declared for you.

Defines a block of code for catching additional exception types thrown in a preceding
TRY block. Use the CATCH macro to catch one exception type, then the
AND_CATCH_ALL macro to catch all other subsequent types. If you use
AND_CATCH_ALL, end the TRY block with an END_CATCH_ALL macro.

The exception-processing code can interrogate the exception object, if appropriate,
to get more information about the specific cause of the exception. Call the
THROW_LAST macro within the AND_CATCH_ALL block to shift processing
to the next outer exception frame. AND_CATCH_ALL marks the end of the
preceding CATCH or AND_CATCH_ALL block.

Note The AND_CATCH_ALL block is defined as a C++ scope (delineated by curly braces).
If you declare variables in this scope, remember that they are accessible only within that
scope.

See Also: TRY, CATCH_ALL, END_CATCH_ALL, THROW, THROW_LAST,
AND_CATCH, CException

ASSERT
ASSERT(booleanExpression)

Parameters

Remarks

Example

booleanExpression Specifies an expression (including pointer values) that evaluates
to nonzero or 0.

Evaluates its argument. If the result is 0, the macro prints a diagnostic message and
aborts the program. If the condition is nonzero, it does nothing.

The diagnostic message has the form

assertion failed in file <name> in line <num>

where name is the name of the source file, and num is the line number of the assertion
that failed in the source file.

In the Release version of MFC, ASSERT does not evaluate the expression and thus
will not interrupt the program. If the expression must be evaluated regardless of
environment, use the VERIFY macro in place of ASSERT.

Note This function is available only in the Debug version of MFC.

II example for ASSERT
CAge* pcage = new CAge(21); II CAge is derived from CObject.
ASSERT(pcage!= NULL)
ASSERT(pcage->IsKindOf(RUNTIME_CLASS(CAge)))
II Terminates program only if pcage is NOT a CAge*.

See Also: VERIFY

ASSERT_KINDOF
ASSERT_KINDOF(classname, pobject)

Parameters

Remarks

classname The name of a CObject-derived class.

pobject A pointer to a class object.

This macro asserts that the object pointed to is an object of the specified class, or is an
object of a class derived from the specified class. The pobject parameter should be a
pointer to an object and can be const. The object pointed to and the class must support
CObject run-time class information. As an example, to ensure that pDocument is a
pointer to an object of the CMyDocument class, or any of its derivatives, you could
code:

2353

ASSERT_VALID

ASSERT_KINDOF(CMyDocument. pDocument)

Using the ASSERT_KINDOF macro is exactly the same as coding:

ASSERT(pobject-)IsKindOf(RUNTIME_CLASS(classname»);

This function works only for classes declared with the DECLARE_DYNAMIC or
DECLARE_SERIAL macro.

Note This function is available only in the Debug version of MFC.

See Also: ASSERT

ASSERT_ VALID
ASSERT_ VALID(pObject)

Parameters

Remarks

pObject Specifies an object of a class derived from CObject that has an overriding
version of the AssertValid member function.

Use to test your assumptions about the validity of an object's internal state.
ASSERT_VALID calls the AssertValid member function of the object passed as its
argument.

In the Release version of MFC, ASSERT_VALID does nothing. In the Debug
version, it validates the pointer, checks against NULL, and calls the object's own
AssertValid member functions. If any of these tests fails, this displays an alert
message in the same manner as ASSERT.

Note This function is available only in the Debug version of MFC.

For more information and examples, see "MFC Debugging Support" in Visual C++
Programmer's Guide online.

See Also: ASSERT, VERIFY, CObject, CObject::AssertValid

BASED_CODE
Remarks

2354

Under Win32, this macro expands to nothing and is provided for backward
compatibility. Under 16-bit MFC, the macro ensures that data will be placed in the
code segment rather than in the data segment. The result is less impact on your data
segment.

BEGIN_CONNECTION_MAP
BEGIN_CONNECTION_MAP(theClass, theBase)

Parameters

Remarks

theClass Specifies the name of the control class whose connection
map this is.

theBase Specifies the name of the base class of theClass.

Each COleControl-derived class in your program can provide a connection map to
specify connection points that your control will support. In the implementation (.CPP)
file that defines the member functions for your class, start the connection map with the
BEGIN_CONNECTION_MAP macro, then add macro entries for each of your
connection points using the CONNECTION_PART macro. Finally, complete the
connection map with the END_CONNECTION_MAP macro.

See Also: BEGIN_CONNECTION_PART, DECLARE_CONNECTION_MAP

BEGIN_CONNECTION_PART
BEGIN_CONNECTION_PART(theClass, local Class)

Parameters

Remarks

the Class Specifies the name of the control class whose connection
point this is.

localClass Specifies the name of the local class that implements
the connection point.

Use the BEGIN_CONNECTION_PART macro to begin the definition of
additional connection points beyond the event and property notification
connection points.

In the declaration (.R) file that defines the member functions for your class, start the
connection point with the BEGIN_CONNECTION_PART macro, then add the
CONNECTION_lID macro and any other member functions you wish to implement,
and complete the connection point map with the END_CONNECTION_PART
macro.

See Also: BEGIN_CONNECTION_MAP, END_CONNECTION_PART,
DECLARE_CONNECTION_MAP

2355

BEGIN_DISPATCH_MAP
BEGIN_DISPATCH_MAP(theClass, base Class)

#include <afxdisp.h>

Parameters

Remarks

theClass Specifies the name of the class that owns this dispatch map.

base Class Specifies the base class name of theClass.

Use the BEGIN_DISPATCH_MAP macro to declare the definition of your dispatch
map.

In the implementation (.CPP) file that defines the member functions for your class,
start the dispatch map with the BEGIN_DISPATCH_MAP macro, add macro entries
for each of your dispatch functions and properties, and complete the dispatch map
with the END_DISPATCH_MAP macro.

See Also: DECLARE_DISPATCH_MAP, END_DISPATCH_MAP,
DISP _FUNCTION, DISP _PROPERTY, DISP _PROPERTY_EX,
DISP _DEFVALUE

BEGIN_EVENT_MAP(theClass, base Class)

Parameters

Remarks

2356

the Class Specifies the name of the control class whose event map this is.

baseClass Specifies the name of the base class of the Class .

Use the BEGIN_EVENT_MAP macro to begin the definition of your event map.

In the implementation (.CPP) file that defines the member functions for your class,
start the event map with the BEGIN_EVENT_MAP macro, then add macro entries
for each of your events, and complete the event map with the END _EVENT_MAP
macro.

For more information on event maps and the BEGIN_EVENT_MAP macro,
see the article "ActiveX Controls: Events" in Visual C++ Programmer's Guide
online.

See Also: DECLARE_EVENT_MAP, END_EVENT_MAP

BEGIN_EVENTSINK_MAP
BEGIN_EVENTSINK_MAP(theClass, baseClass)

Parameters

Remarks

the Class Specifies the name of the control class whose event sink map this is.

baseClass Specifies the name of the base class of theClass.

Use the BEGIN_EVENTS INK_MAP macro to begin the definition of your event
sink map.

In the implementation (.CPP) file that defines the member functions for your class,
start the event sink map with the BEGIN_EVENTSINK_MAP macro, then add
macro entries for each event to be notified of, and complete the event sink map with
the END _EVENTSINK_MAP macro.

For more information on event sink maps and OLE control containers, see the article
"ActiveX Control Containers" in Visual C++ Programmer's Guide online.

See Also: DECLARE_EVENTSINK_MAP, END _EVENTSINK_MAP

BEGIN_MESSAGE_MAP(the Class, base Class)

Parameters

Remarks

Example

the Class Specifies the name of the class whose message map this is.

base Class Specifies the name of the base class of theClass.

Use the BEGIN_MESSAGE_MAP macro to begin the definition of your message
map.

In the implementation (.CPP) file that defines the member functions for your class,
start the message map with the BEGIN_MESSAGE_MAP macro, then add macro
entries for each of your message-handler functions, and complete the message map
with the END_MESSAGE_MAP macro.

For more information on message maps and the BEGIN_MESSAGE_MAP macro,
see "Adding a Dialog Box" in Visual C++ Tutorials online.

II example for BEG1N_MESSAGE_MAP
BEG1N_MESSAGE_MAP(CMyWindow. CFrameWnd

II{{AFX_MSG_MAP(CMyWindow)
ON_WM_PA1 NT()
ON_COMMANO(10M_ABOUT. OnAbout)
I/} JAFX_MSG_MAP

ENO_MESSAGE_MAP()

2357

BEGIN_OLEFACTORY

BEGIN_OLEFACTORY
BEGIN_OLEFACTORY(class_name)

Parameters

Remarks

class_name Specifies the name of the control class whose class factory this is.

In the header file of your control class, use the BEGIN_OLEFACTORY macro to
begin the declaration of your class factory. Declarations of class factory licensing
functions should begin immediately after BEGIN_OLEFACTORY.

See Also: END_OLEFACTORY, DECLARE_OLE CREATE_EX

BEGIN_PARSE_MAP(theClass, base Class)

Parameters

Remarks

2358

theClass Specifies the name of the class that owns this parse map.

base Class Specifies the base class name of theClass. Must be a class derived from
CHttpServer.

Use the BEGIN_PARSE_MAP macro to begin the definition of your parse map.

When a client command is received by a CHttpServer object, the parse maps
associate the command to its class member function and parameters. Only one parse
map is created per CHttpServer object.

In the implementation (.CPP) file that defines the member functions for your class,
start the parse map with the BEGIN_PARSE_MAP macro, add macro entries for
each of your parse functions and properties, and complete the parse map with the
END _PARSE_MAP macro.

See ON_PARSE_COMMAND for a parse map example.

See Also: ON_PARSE_ COMMAND, ON_PARSE_ COMMAND _PARAMS,
DEFAULT_PARSE_COMMAND, END_PARSE_MAP, CHttpServer

BEGIN_PROPPAGEIDS(class_name, count)

Parameters

Remarks

class_name The name of the control class for which property pages are being
specified.

count The number of property pages used by the control class.

Use the BEGIN_PROPPAGEIDS macro to begin the definition of your control's list
of property page IDs.

In the implementation (.CPP) file that defines the member functions for your class,
start the property page list with the BEGIN_PROPPAGEIDS macro, then add macro
entries for each of your property pages, and complete the property page list with the
END_PROPPAGEIDS macro.

For more information on property pages, see the article "ActiveX Controls: Property
Pages" in Visual c++ Programmer's Guide online.

See Also: END_PROPPAGEIDS, DECLARE_PROPPAGEIDS, PROPPAGEID

CATCH
CATCH(exception_class, exception_objectyointer _name)

Parameters

Remarks

exception_class Specifies the exception type to test for. For a list of standard
exception classes, see class CException.

exception_objectyointer _name Specifies a name for an exception-object pointer
that will be created by the macro. You can use the pointer name to access the
exception object within the CATCH block. This variable is declared for you.

Use this macro to define a block of code that catches the first exception type thrown
in the preceding TRY block. The exception-processing code can interrogate the
exception object, if appropriate, to get more information about the specific cause of
the exception. Invoke the THROW _LAST macro to shift processing to the next outer
exception frame. End the TRY block with an END_CATCH macro.

If exception_class is the class CException, then all exception types will be caught.
You can use the CObject::IsKindOfmember function to determine which specific

CATCH

2359

exception was thrown. A better way to catch several kinds of exceptions is to use
sequential AND_CATCH statements, each with a different exception type.

The exception object pointer is created by the macro. You do not need to declare it
yourself.

Note The CATCH block is defined as a C++ scope (delineated by curly braces). If you declare
variables in this scope, remember that they are accessible only within that scope. This also
applies to excepfion_objecLpoinfecname.

For more information on exceptions and the CATCH macro, see the article
"Exceptions" in Visual C++ Programmer's Guide online.

See Also: TRY, AND_CATCH, END_CATCH, THROW, THROW_LAST,
CATCH_ALL, CException

CATCH_ALL(exception_object-pointer _name)

Parameters

Remarks

2360

exception_object-pointer _name Specifies a name for an exception-object
pointer that will be created by the macro. You can use the pointer name to
access the exception object within the CATCH_ALL block. This variable
is declared for you.

Use this macro to define a block of code that catches all exception types thrown
in the preceding TRY block. The exception-processing code can interrogate the
exception object, if appropriate, to get more information about the specific cause
of the exception. Invoke the THROW_LAST macro to shift processing to the
next outer exception frame. If you use CATCH_ALL, end the TRY block with
an END_CATCH_ALL macro.

Note The CATCH_ALL block is defined as a C++ scope (delineated by curly braces).
If you declare variables in this scope, remember that they are accessible only within
that scope.

For more information on exceptions, see the article "Exceptions" in Visual C++
Programmer's Guide online.

See Also: TRY, AND_CATCH_ALL, END_CATCH_ALL, THROW,
THROW_LAST, CATCH, CException

CompareElements
template< class TYPE, class ARG_TYPE >

~ BOOL AFXAPI CompareElements(const TYPE* pElementl,
~ const ARG_TYPE* pElement2);

Return Value
Nonzero if the object pointed to by pElementl is equal to the object pointed to by
pElement2; otherwise O.

Parameters

Remarks

TYPE The type of the first element to be compared.

pElementl Pointer to the first element to be compared.

ARG_TYPE The type of the second element to be compared.

pElement2 Pointer to the second element to be compared.

This function is called directly by CList: :Find and indirectly by CMap: :Lookup and
CMap::operator []. The CMap calls use the CMap template parameters KEY and
ARG_KEY.

The default implementation returns the result of the comparison of *pElementl and
*pElement2. Override this function so that it compares the elements in a way that is
appropriate for your application.

The C++ language defines the comparison operator (==) for simple types (char, int,
float, and so on) but does not define a comparison operator for classes and structures.
If you want to use CompareElements or to instantiate one of the collection classes
that uses it, you must either define the comparison operator or overload
CompareElements with a version that returns appropriate values.

See Also: CList, Cmap

ConstructElements
template< class TYPE>

void AFXAPI ConstructElements(TYPE* pElements, int nCount);

Parameters

Remarks

TYPE Template parameter specifying the type of the elements to be constructed.

pElements Pointer to the elements.

nCount Number of elements to be constructed.

This function is called when new array, list, and map elements are constructed. The
default version initializes all bits of the new elements to O.

ConstructElements

2361

CopyElements

For information on implementing this and other helper functions, see the article
"Collections: How to Make a Type-Safe Collection" in Visual C++ Programmer's
Guide online.

See Also: CArray, CList, CMap

CopyElements
template< class TYPE> void AFXAPI CopyElements (TYPE* pDest,

"+ const TYPE* pSrc, int nCount);

Parameters

Remarks

TYPE Template parameter specifying the type of elements to be copied.

pDest Pointer to the destination where the elements will be copied.

pSrc Pointer to the source of the elements to be copied.

nCount Number of elements to be copied.

This function is called directly by CArray::Append and CArray::Copy. The default
implementation performs a bit-wise copy.

For information on implementing this and other helper functions, see the article
"Collections: How to Make a Type-Safe Collection" in Visual C++ Programmer's
Guide online.

See Also: CArray

CONNECTION_lID
CONNECTION_IID(iid)

Parameters

Remarks

2362

iid The interface ID of the interface called by the connection point.

Use the CONNECTION_liD macro between the BEGIN_CONNECTION_PART
and END _ CONNECTION_PART macros to define an interface ID for a connection
point supported by your OLE control.

The iid argument is an interface ID used to identify the interface that the connection
point will call on its connected sinks. For example:

CONNECTION_IID(IID_ISinklnterface)

specifies a connection point that calls the lSi n kI nterfa ce interface.

See Also: BEGIN_CONNECTION_PART, DECLARE_CONNECTION_MAP,
END_CONNECTION_PART

CONNECTION_PART(theClass, iid, localClass)

Parameters

Remarks

theClass Specifies the name of the control class whose connection point this is.

iid The interface ID of the interface called by the connection point.

localClass Specifies the name of the local class that implements the connection
point.

Use the CONNECTION_PART macro to map a connection point for your OLE
control to a specific interface ID.

For example:

BEGIN_CONNECTION_MAP(CSampleCtrl, COleControl)
CONNECTION_PART(CSampleCtrl, IID_ISinkInterface, MyConnPt)

END_CONNECTION_MAP()

implements a connection map, with a connection point, that calls the
I 10_1 Si n k I nte rface interface.

See Also: BEGIN_CONNECTION_PART, DECLARE_CONNECTION_MAP,
BEGIN_CONNECTION_MAP, CONNECTION_lID

DDP _CBIndex
void AFXAPI DDP _CBlndex(CDataExchange* pDX, int id,

... int& member, LPCTSTR pszPropName);

Parameters

Remarks

pDX Pointer to a CDataExchange object. The framework supplies this object to
establish the context of the data exchange, including its direction.

id The resource ID of the combo box control associated with the control property
specified by pszPropName.

member The member variable associated with the property page control specified by
id and the property specified by pszPropName.

pszPropName The property name of the control property to be exchanged with the
combo box control specified by id.

Call this function in your property page's DoDataExchange function to synchronize the
value of an integer property with the index of the current selection in a combo box on
the property page. This function should be called before the corresponding
DDX_ CBlndex function call.

2363

See Also: DDP _CBString, DDP _Text, COleControl::DoPropExchange,
DDX_ CBIndex

DDP _CBString
void AFXAPI DDP _ CBString(CDataExchange* pDX, int id, CString& member,

.. LPCTSTR pszPropName);

Parameters

Remarks

pDX Pointer to a CDataExchange object. The framework supplies this object to
establish the context of the data exchange, including its direction.

id The resource ID of the combo box control associated with the control property
specified by pszPropName.

member The member variable associated with the property page control specified by
id and the property specified by pszPropName.

pszPropName The property name of the control property to be exchanged with the
combo box string specified by id.

Call this function in your property page's DoD a t a Ex c han 9 e function to synchronize the
value of a string property with the current selection in a combo box on the property
page. This function should be called before the corresponding DDX_CBString
function call.

See Also: DDP _CBStringExact, DDP _CBIndex,
COleControl: :DoPropExchange, DDX_ CBString

DDP _CBStringExact
void AFXAPI DDP _ CBStringExact(CDataExchange* pDX, int id,

.. CString& member, LPCTSTR pszPropName);

Parameters

2364

pDX Pointer to a CDataExchange object. The framework supplies this object to
establish the context of the data exchange, including its direction.

id The resource ID of the combo box control associated with the control property
specified by pszPropName.

member The member variable associated with the property page control specified by
id and the property specified by pszPropName.

pszPropName The property name of the control property to be exchanged with the
combo box string specified by id.

Remarks
Call this function in your property page's DoDataExchange function to synchronize the
value of a string property that exactly matches the current selection in a combo box on
the property page. This function should be called before the corresponding
DDX_ CBStringExact function call.

See Also: DDP _CBString, DDP _CBlndex, COleControl::DoPropExchange,
DDX_ CBStringExact

DDP_Check
void AFXAPI DDP _ Check(CDataExchange*pDX, int id, int &member,

10+ LPCSTR pszPropName);

Parameters

Remarks

pDX Pointer to a CDataExchange object. The framework supplies this object to
establish the context of the data exchange, including its direction.

id The resource ID of the check box control associated with the control property
specified by pszPropName.

member The member variable associated with the property page control specified by
id and the property specified by pszPropName.

pszPropName The property name of the control property to be exchanged with the
check box control specified by id.

Call this function in your property page's DoD a t a Ex c han 9 e function to synchronize the
value of the property with the associated property page check box control. This
function should be called before the corresponding DDX_ Check function call.

See Also: DDP _Radio, DDP _Text, COleControl::DoPropExchange, DDX_Check

DDP _LBIndex
void AFXAPI DDP _LBlndex(CDataExchange* pDX, int id, int& member,

10+ LPCTSTR pszPropName);

Parameters
pDX Pointer to a CDataExchange object. The framework supplies this object to

establish the context of the data exchange, including its direction.

id The resource ID of the list box control associated with the control property
specified by pszPropName.

member The member variable associated with the property page control specified by
id and the property specified by pszPropName.

2365

Remarks

pszPropName The property name of the control property to be exchanged with the
list box string specified by id.

Call this function in your property page's DoDataExchange function to synchronize the
value of an integer property with the index of the current selection in a list box on the
property page. This function should be called before the corresponding
DDX_LBIndex function call.

See Also: DDP _LBString, DDP _CBIndex, COleControl::DoPropExchange,
DDX_LBIndex

DDP _LBString
void AFXAPI DDP _LBString(CDataExchange* pDX, int id,

... CString& member, LPCTSTR pszPropName);

Parameters

Remarks

pDX Pointer to a CDataExchange object. The framework supplies this object to
establish the context of the data exchange, including its direction.

id The resource ID of the list box control associated with the control property
specified by pszPropName.

member The member variable associated with the property page control specified by
id and the property specified by pszPropName.

pszPropName The property name of the control property to be exchanged with the
list box string specified by id.

Call this function in your property page's DoDataExchange function to synchronize the
value of a string property with the current selection in a list box on the property page.
This function should be called before the corresponding DDX_LBString function
call.

See Also: DDP _LBStringExact, DDP _LBIndex,
COleControl: :DoPropExchange, DDX_LBString

DDP _LBStringExact
void AFXAPI DDP _LBStringExact(CDataExchange* pDX, int id,

... CString& member, LPCTSTR pszPropName);

Parameters

2366

pDX Pointer to a CDataExchange object. The framework supplies this object to
establish the context of the data exchange, including its direction.

Remarks

id The resource ID of the list box control associated with the control property
specified by pszPropName.

member The member variable associated with the property page control specified by
id and the property specified by pszPropName.

pszPropName The property name of the control property to be exchanged with the
list box string specified by id.

Call this function in your property page's DoData Exchange function to synchronize the
value of a string property that exactly matches the current selection in a list box on the
property page. This function should be called before the corresponding
DDX_LBStringExact function call.

See Also: DDP _LBString, DDP _LBlndex, COleControl::DoPropExchange,
DDX_LBStringExact

DDP _PostProcessing
void AFXAPI DDP _PostProcessing(CDataExchange *pDX);

Parameters

Remarks

pDX Pointer to a CDataExchange object. The framework supplies this object to
establish the context of the data exchange, including its direction.

Call this function in your property page's DoDataExchange function, to finish the
transfer of property values from the property page to your control when property
values are being saved.

This function should be called after all data exchange functions are completed. For
example:

void CSamplePage::DoDataExchange(CDataExchange* pDX)
(

//({AFX_DATA_MAP(CSpindialPropPage)
DDP_Text(pDX. IDC_POSITIONEDIT. m_NeedlePosition,

_T("NeedlePosition"));
DDX_Text(pDX, IDC_POSITIONEDIT. m_NeedlePosition);
DDV_MinMaxlnt(pDX, m_NeedlePosition, 0, 3);
//}}AFX_DATA_MAP
DDP_PostProcessing(pDX);

See Also: COleControl: :DoPropExchange

DDP _PostProcessing

2367

DDP_Radio
void AFXAPI DDP _Radio(CDataExchange*pDX, int id, int &member,

.. LPCTSTRpszPropName);

Parameters

Remarks

pDX Pointer to a CDataExchange object. The framework supplies this object to
establish the context of the data exchange, including its direction.

id The resource ID of the radio button control associated with the control property
specified by pszPropName.

member The member variable associated with the property page control specified by
id and the property specified by pszPropName.

pszPropName The property name of the control property to be exchanged with the
radio button control specified by id.

Call this function in your control's DoPropExchange function to synchronize the value
of the property with the associated property page radio button control. This function
should be called before the corresponding DDX_Radio function call.

See Also: DDP _Check, DDP _Text, COleControl::DoPropExchange, DDX_Radio

DDP _Text
void AFXAPI DDP _Text(CDataExchange*pDX, int id, BYTE &member,

.. LPCTSTR pszPropName);
void AFXAPI DDP _ Text(CDataExchange*pDX, int id, int &member,

.. LPCTSTR pszPropName);
void AFXAPI DDP _Text(CDataExchange*pDX, int id, UINT &member,

.. LPCTSTR pszPropName);
void AFXAPI DDP _Text(CDataExchange*pDX, int id, long &member,

.. LPCTSTR pszPropName);
void AFXAPI DDP _ Text(CDataExchange*pDX, int id, DWORD &member,

.. LPCTSTR pszPropName);
void AFXAPI DDP _Text(CDataExchange*pDX, int id, float &member,

.. LPCTSTR pszPropName);
void AFXAPI DDP _ Text(CDataExchange*pDX, int id, double &member,

.. LPCTSTR pszPropName);
void AFXAPI DDP _Text(CDataExchange*pDX, int id, CString &member,

.. LPCTSTR pszPropName);

Parameters

2368

pDX Pointer to a CDataExchange object. The framework supplies this object to
establish the context of the data exchange, including its direction.

Remarks

id The resource ID of the control associated with the control property specified by
pszPropName.

member The member variable associated with the property page control specified by
id and the property specified by pszPropName.

pszPropName The property name of the control property to be exchanged with the
control specified by id.

Call this function in your control's DoData Exchange function to synchronize the value
of the property with the associated property page control. This function should be
called before the corresponding DDX_ Text function call.

See Also: DDP _Check, DDP _Radio, COleControl::DoPropExchange, DDX_Text

DDV _MaxChars
void AFXAPI DDV _MaxChars(CDataExchange* pDX, CString

"+ const& value, int nChars);

Parameters

Remarks

pDX A pointer to a CDataExchange object. The framework supplies this object to
establish the context of the data exchange, including its direction.

value A reference to a member variable of the dialog box, form view, or control view
object with which data is validated.

nChars Maximum number of characters allowed.

Call DDV _MaxChars to verify that the amount of characters in the control associated
with value does not exceed nChars.

For more information about DDV, see "Adding a Dialog Box" in Visual C++
Tutorials online and "Dialog Data Exchange and Validation" in Visual C++
Programmer's Guide online.

DDV _MinMaxByte
void AFXAPI DDV _MinMaxByte(CDataExchange* pDX, BYTE value,

"+ BYTE min Val, BYTE maxVal);

Parameters
pDX A pointer to a CDataExchange object. The framework supplies this object to

establish the context of the data exchange, including its direction.

value A reference to a member variable of the dialog box, form view, or control view
object with which data is validated.

DDV _MinMaxByte

2369

DDV _MinMaxDouble

Remarks

min Val Minimum value (of type BYTE) allowed.

maxVal Maximum value (of type BYTE) allowed.

Call DDV _MinMaxByte to verify that the value in the control associated with value
falls between min Val and maxVal.

For more information about DDV, see "Adding a Dialog Box" in Visual C++
Tutorials online and "Dialog Data Exchange and Validation" in Visual C++
Programmers Guide online.

DDV _MinMaxDouble
void AFXAPI DDV _MinMaxDouble(CDataExchange* pDX,

... double const& value, double min Val, double maxVal);

Parameters

Remarks

pDX A pointer to a CDataExchange object. The framework supplies this object to
establish the context of the data exchange, including its direction.

value A reference to a member variable of the dialog box, form view, or control view
object with which data is validated.

min Val Minimum value (of type double) allowed.

max Val Maximum value (of type double) allowed.

Call DDV _MinMaxDouble to verify that the value in the control associated with
value falls between min Val and max Val.

For more information about DDV, see "Adding a Dialog Box" in Visual C++
Tutorials online and "Dialog Data Exchange and Validation" in Visual C++
Programmers Guide online.

DDV _MinMaxDWord
void AFXAPI DDV _MinMaxDWord(CDataExchange* pDX,

... DWORD const& value, DWORD min Val, DWORD maxVal);

Parameters

2370

pDX A pointer to a CDataExchange object. The framework supplies this object to
establish the context of the data exchange, including its direction.

value A reference to a member variable of the dialog box, form view, or control view
object with which data is validated.

minVal Minimum value (of type DWORD) allowed.

maxVal Maximum value (of type DWORD) allowed.

Remarks
Call DDV _MinMaxDWord to verify that the value in the control associated with
value falls between min Val and maxVal.

For more information about DDV, see "Adding a Dialog Box" in Visual c++
Tutorials online and "Dialog Data Exchange and Validation" in Visual C++
Programmer s Guide online.

DDV _MinMaxFloat
void AFXAPI DDV _MinMaxFloat(CDataExchange* pDX, float value,

... float min Val, float maxVal);

Parameters

Remarks

pDX A pointer to a CDataExchange object. The framework supplies this object to
establish the context of the data exchange, including its direction.

value A reference to a member variable of the dialog box, form view, or control view
object with which data is validated.

min Val Minimum value (of type float) allowed.

maxVal Maximum value (of type float) allowed.

Call DDV _MinMaxFloat to verify that the value in the control associated with value
falls between min Val and maxVal.

For more information about DDV, see "Adding a Dialog Box" in Visual C++
Tutorials online and "Dialog Data Exchange and Validation" in Visual C++
Programmer's Guide online.

DDV _MinMaxInt
void AFXAPI DDV _MinMaxlnt(CDataExchange* pDX, int value,

... int min Val, int maxVal);

Parameters
pDX A pointer to a CDataExchange object. The framework supplies this object to

establish the context of the data exchange, including its direction.

value A reference to a member variable of the dialog box, form view, or control view
object with which data is validated.

min Val Minimum value (of type int) allowed.

maxVal Maximum value (of type int) allowed.

DDV _MinMaxlnt

2371

DDV _MinMaxLong

Remarks
Call DDV _MinMaxInt to verify that the value in the control associated with value
falls between min Val and maxVal.

For more information about DDV, see "Adding a Dialog Box" in Visual C++
Tutorials online and "Dialog Data Exchange and Validation" in Visual C++
Programmer's Guide online.

DDV _MinMaxLong
void AFXAPI DDV _MinMaxLong(CDataExchange* pDX, long value,

.. long min Val, long maxVal);

Parameters

Remarks

pDX A pointer to a CDataExchange object. The framework supplies this object to
establish the context of the data exchange, including its direction.

value A reference to a member variable of the dialog box, form view, or control view
object with which data is validated.

min Val Minimum value (of type long) allowed.

maxVal Maximum value (of type long) allowed.

Call DDV _MinMaxLong to verify that the value in the control associated with value
falls between min Val and max Val.

For more information about DDV, see "Adding a Dialog Box" in Visual C++
Tutorials online and "Dialog Data Exchange and Validation" in Visual C++
Programmer's Guide online.

DDV _MinMaxUnsigned
void AFXAPI DDV _MinMaxUnsigned(CDataExchange* pDX,

.. unsigned value, unsigned min Val, unsigned maxVal);

Parameters

2372

pDX A pointer to a CDataExchange object. The framework supplies this object to
establish the context of the data exchange, including its direction.

value A reference to a member variable of the dialog box, form view, or control view
object with which data is validated.

min Val Minimum value (of type unsigned) allowed.

maxVal Maximum value (of type unsigned) allowed.

Remarks
Call DDV _MinMaxUnsigned to verify that the value in the control associated with
value falls between min Val and maxVal.

For more information about DDV, see "Adding a Dialog Box" in Visual c++
Tutorials online and "Dialog Data Exchange and Validation" in Visual c++
Programmer's Guide online.

DDX_CBIndex
void AFXAPI DDX_CBlndex(CDataExchange* pDX, int nIDC, int& index);

Parameters

Remarks

pDX A pointer to a CDataExchange object. The framework supplies this object to
establish the context of the data exchange, including its direction.

nIDC The resource ID of the combo box control associated with the control property.

index A reference to a member variable of the dialog box, form view, or control view
object with which data is exchanged.

The DDX_CBlndex function manages the transfer of int data between a combo box
control in a dialog box, form view, or control view object and a int data member of
the dialog box, form view, or control view object.

When DDX_CBlndex is called, index is set to the index of the current combo box
selection. If no item is selected, index is set to O.

For more information about DDX, see "Adding a Dialog Box" in Visual C++
Tutorials online and "Dialog Data Exchange and Validation" in Visual C++
Programmer's Guide online.

See Also: DDP _CBlndex

void AFXAPI DDX_CBString(CDataExchange* pDX, int nIDC, CString& value);

Parameters
pDX A pointer to a CDataExchange object. The framework supplies this object to

establish the context of the data exchange, including its direction.

nIDC The resource ID of the combo box control associated with the control property.

value A reference to a member variable of the dialog box, form view, or control view
object with which data is exchanged.

2373

DDX_CBStringExact

Remarks
The DDX_CBString function manages the transfer of CString data between the edit
control of a combo box control in a dialog box, form view, or control view object and
a CString data member of the dialog box, form view, or control view object.

When DDX_CBString is called, value is set to the current combo box selection. If no
item is selected, value is set to a string of zero length.

Note If the combo box is a drop-down list box, the value exchanged is limited to 255
characters.

For more information about DDX, see "Adding a Dialog Box" in Visual C++
Tutorials online and "Dialog Data Exchange and Validation" in Visual C++
Programmer's Guide online.

See Also: DDP _CBString

DDX_CBStringExact
void AFXAPI DDX_CBStringExact(CDataExchange* pDX, int nIDC,

.. CString& value);

Parameters

Remarks

2374

pDX A pointer to a CDataExchange object. The framework supplies this object to
establish the context of the data exchange, including its direction.

nIDC The resource ID of the combo box control associated with the control property.

value A reference to a member variable of the dialog box, form view, or control view
object with which data is exchanged.

The DDX_CBStringExact function manages the transfer of CString data between
the edit control of a combo box control in a dialog box, form view, or control view
object and a CString data member of the dialog box, form view, or control view
object.

When DDX_ CBStringExact is called, value is set to the current combo box selection.
If no item is selected, value is set to a string of zero length.

Note If the combo box is a drop-down list box, the value exchanged is limited to 255
characters.

For more information about DDX, see "Adding a Dialog Box" in Visual C++
Tutorials online and "Dialog Data Exchange and Validation" in Visual C++
Programmer's Guide online.

See Also: DDP _ CBStringExact

void AFXAPI DDX_Check(CDataExchange* pDX, int nIDC, int& value);

Parameters

Remarks

pDX A pointer to a CDataExchange object. The framework supplies this object to
establish the context of the data exchange, including its direction.

nIDC The resource ID of the check box control associated with the control property.

value A reference to a member variable of the dialog box, form view, or control view
object with which data is exchanged.

The DDX_ Check function manages the transfer of int data between a check box
control in a dialog box, form view, or control view object and a int data member of
the dialog box, form view, or control view object.

When DDX_Check is called, value is set to the current state of the check box control.

For more information about DDX, see "Adding a Dialog Box" in Visual C++
Tutorials online and "Dialog Data Exchange and Validation" in Visual C++
Programmer's Guide online.

See Also: DDP _Check

DDX_Control
void AFXAPI DDX_Control(CDataExchange* pDX, int nIDC, CWnd& rControl);

Parameters

Remarks

pDX A pointer to a CDataExchange object. The framework supplies this object to
establish the context of the data exchange, including its direction.

nIDC The resource ID of the subclassed control associated with the control property.

rControl A reference to a member variable of the dialog box, form view, or control
view object with which data is exchanged.

The DDX_Control function manages the transfer of data between a subclassed
control in a dialog box, form view, or control view object and a CWnd data member
of the dialog box, form view, or control view object.

For more information about DDX, see "Adding a Dialog Box" in Visual C++
Tutorials online and "Dialog Data Exchange and Validation" in Visual C++
Programmer's Guide online.

DDX_Control

2375

DDX_FieldCBlndex

DDX_FieldCBIndex
void AFXAPI DDX_FieldCBIndex(CDataExchange* pDX, int nIDC,

~ int& index, CRecordset* pRecordset);
void AFXAPI DDX_FieldCBIndex(CDataExchange* pDX, int nIDC,

~ int& index, CDaoRecordset* pRecordset);

Parameters

Remarks

Example

2376

pDX A pointer to a CDataExchange object. The framework supplies this object to
establish the context of the data exchange, including its direction.

nIDC The ID of a control in the CRecordView or CDaoRecordView object.

index A reference to a field data member in the associated CRecordset or
CDaoRecordset object.

pRecordset A pointer to the CRecordset or CDaoRecordset object with which data
is exchanged.

The DDX_FieldCBIndex function synchronizes the index of the selected item in the
list box control of a combo box control in a record view and an int field data member
of a recordset associated with the record view. When moving data from the recordset
to the control, this function sets the selection in the control based on the value
specified in index. On a transfer from the recordset to the control, if the recordset field
is Null, MFC sets the value of the index to O. On a transfer from control to recordset,
if the control is empty or if no item is selected, the recordset field is set to O.

Use the first version if you are working with the ODBC-based classes. Use the second
version if you are working with the DAO-based classes.

For more information about DDX, see "Adding a Dialog Box" in Visual C++
Tutorials online and "Dialog Data Exchange and Validation" in Visual C++
Programmer's Guide online. For examples and more information about DDX for
CRecordView and CDaoRecordView fields, see the article "Record Views" in
Visual C++ Programmer's Guide online.

See DDX_FieldText for a general DDX_Field example. The example would be
similar for DDX_FieldCBIndex.

See Also: DDX_FieldText, DDX_FieldRadio, DDX_FieldLBString,
DDX_FieldLBStringExact, DDX_FieldCBStringExact, DDX_FieldLBIndex,
DDX_FieldScroll, DDX_CBIndex

DDX_FieldCBString
void AFXAPI DDX_FieldCBString(CDataExchange* pDX, int nIDe,

.. CString& value, CRecordset* pRecordset);
void AFXAPI DDX_FieldCBString(CDataExchange* pDX, int nIDC,

.. CString& value, CDaoRecordset* pRecordset);

Parameters

Remarks

Example

pDX A pointer to a CDataExchange object. The framework supplies this object to
establish the context of the data exchange, including its direction.

nIDC The ID of a control in the CRecordView or CDaoRecordView object.

value A reference to a field data member in the associated CRecordset or
CDaoRecordset object.

pRecordset A pointer to the CRecordset or CDaoRecordset object with which data
is exchanged.

The DDX_FieldCBString function manages the transfer of CString data between the
edit control of a combo box control in a record view and a CString field data member
of a recordset associated with the record view. When moving data from the recordset
to the control, this function sets the current selection in the combo box to the first row
that begins with the characters in the string specified in value. On a transfer from the
recordset to the control, if the recordset field is Null, any selection is removed from
the combo box and the edit control of the combo box is set to empty. On a transfer
from control to recordset, if the control is empty, the recordset field is set to Null if
the field permits.

Use the first version if you are working with the ODBC-based classes. Use the
second version if you are working with the DAO-based classes.

For more information about DDX, see "Adding a Dialog Box" in Visual C++
Tutorials online and "Dialog Data Exchange and Validation" in Visual C++
Programmer's Guide online. For examples and more information about DDX for
CRecordView and CDaoRecordView fields, see the article "Record Views" in
Visual C++ Programmer's Guide online.

See DDX_FieldText for a general DDX_Field example. The example includes a call
to DDX_FieldCBString.

See Also: DDX_FieldText, DDX_FieldRadio, DDX_FieldLBString,
DDX_FieldLBStringExact, DDX_FieldCBStringExact

DDX_FieldCBString

2377

DDX_FieldCBStringExact

DDX_FieldCBStringExact
void AFXAPI DDX_FieldCBStringExact(CDataExchange* pDX, int nIDC,

.. CString& value, CRecordset* pRecordset);
void AFXAPI DDX_FieldCBStringExact(CDataExchange* pDX, int nIDC,

.. CString& value, CDaoRecordset* pRecordset);

Parameters

Remarks

Example

2378

pDX A pointer to a CDataExchange object. The framework supplies this object to
establish the context of the data exchange, including its direction.

nlDC The ID of a control in the CRecordView or CDaoRecordView object.

value A reference to a field data member in the associated CRecordset or
CDaoRecordset object.

pRecordset A pointer to the CRecordset or CDaoRecordset object with which data
is exchanged.

The DDX_FieldCBStringExact function manages the transfer of CString data
between the edit control of a combo box control in a record view and a CString field
data member of a record set associated with the record view. When moving data from
the recordset to the control, this function sets the current selection in the combo box to
the first row that exactly matches the string specified in value. On a transfer from the
recordset to the control, if the recordset field is Null, any selection is removed from
the combo box and the edit box of the combo box is set to empty. On a transfer from
control to recordset, if the control is empty, the record set field is set to Null.

Use the first version if you are working with the ODBC-based classes. Use the second
version if you are working with the DAO-based classes.

For more information about DDX, see "Adding a Dialog Box" in Visual c++
Tutorials online and "Dialog Data Exchange and Validation" in Visual c++
Programmer's Guide online. For examples and more information about DDX for
CRecordView and CDaoRecordView fields, see the article "Record Views" in
Visual c++ Programmer's Guide online.

See DDX_FieldText for a general DDX_Field example. Calls to
DDX_FieldCBStringExact would be similar.

See Also: DDX_FieldText, DDX_FieldRadio, DDX_FieldLBString,
DDX_FieldLBStringExact, DDX_FieldCBString

DDX_FieldCheck
void AFXAPI DDX_FieldCheck(CDataExchange* pDX, int nIDC, int& value,

... CRecordset* pRecordset);
void AFXAPI DDX_FieldCheck(CDataExchange* pDX, int nIDC, int& value,

... CDaoRecordset* pRecordset);

Parameters

Remarks

pDX A pointer to a CDataExchange object. The framework supplies this object to
establish the context of the data exchange, including its direction.

nIDC The resource ID of the check box control associated with the control property.

value A reference to a member variable of the dialog box, form view, or control view
object with which data is exchanged.

pRecordset A pointer to the CRecordset or CDaoRecordset object with which data
is exchanged.

The DDX_FieldCheck function manages the transfer of int data between a check box
control in a dialog box, form view, or control view object and an int data member of
the dialog box, form view, or control view object.

When DDX_FieldCheck is called, value is set to the current state of the check box
control, or the control's state is set to value, depending on the direction of transfer.

For more information about DDX, see "Adding a Dialog Box" in Visual C++
Tutorials online and "Dialog Data Exchange and Validation" in Visual C++
Programmer's Guide online.

See Also: DDX_FieldText, DDX_FieldRadio, DDX_FieldLBString,
DDX_FieldLBStringExact, DDX_FieldCBString

DDX_FieldLBlndex
void AFXAPI DDX_FieldLBlndex(CDataExchange* pDX, int nIDC, int& index,

... CRecordset* pRecordset);
void AFXAPI DDX_FieldLBlndex(CDataExchange* pDX, int nIDC, int& index,

... CDaoRecordset* pRecordset);

Parameters
pDX A pointer to a CDataExchange object. The framework supplies this object to

establish the context of the data exchange, including its direction.

nIDC The ID of a control in the CRecordView or CDaoRecordView object.

index A reference to a field data member in the associated CRecordset or
CDaoRecordset object.

DDX_FieldLBIndex

2379

DDX_FieldLBString

Remarks

Example

pRecordset A pointer to the CRecordset or CDaoRecordset object with which data
is exchanged.

The DDX_FieldLBIndex function synchronizes the index of the selected item in a list
box control in a record view and an int field data member of a recordset associated
with the record view. When moving data from the recordset to the control, this
function sets the selection in the control based on the value specified in index. On a
transfer from the recordset to the control, if the recordset field is Null, MFC sets the
value of the index to O. On a transfer from control to recordset, if the control is empty,
the recordset field is set to O.

Use the first version if you are working with the ODBC-based classes. Use the second
version if you are working with the DAO-based classes.

For more information about DDX, see "Adding a Dialog Box" in Visual C++
Tutorials online and "Dialog Data Exchange and Validation" in Visual C++
Programmer's Guide online. For examples and more information about DDX for
CRecordView and CDaoRecordView fields, see the article "Record Views" in
Visual C++ Programmer's Guide online.

See DDX_FieldText for a general DDX_Field example.

See Also: DDX_FieldText, DDX_FieldRadio, DDX_FieldLBString,
DDX_FieldLBStringExact, DDX_FieldCBStringExact, DDX_FieldCBIndex,
DDX_FieldScroll, DDX_LBIndex

DDX_FieldLBString
void AFXAPI DDX_FieldLBString(CDataExchange* pDX, int nIDC,

.. CString& value, CRecordset* pRecordset);
void AFXAPI DDX_FieldLBString(CDataExchange* pDX, int nIDC,

.. CString& value, CDaoRecordset* pRecordset);

Parameters

2380

pDX A pointer to a CDataExchange object. The framework supplies this object to
establish the context of the data exchange, including its direction.

nIDC The ID of a control in the CRecordView or CDaoRecordView object.

value A reference to a field data member in the associated CRecordset or
CDaoRecordset object.

pRecordset A pointer to the CRecordset or CDaoRecordset object with which data
is exchanged.

DDX_Fie1dLBStringExact

Remarks

Example

The DDX_FieldLBString copies the current selection of a list box control in a record
view to a CString field data member of a recordset associated with the record view. In
the reverse direction, this function sets the current selection in the list box to the first
row that begins with the characters in the string specified by value. On a transfer from
the recordset to the control, if the recordset field is Null, any selection is removed
from the list box. On a transfer from control to recordset, if the control is empty, the
recordset field is set to Null.

Use the first version if you are working with the ODBC-based classes. Use the second
version if you are working with the DAO-based classes.

For more information about DDX, see "Adding a Dialog Box" in Visual C++
Tutorials online and "Dialog Data Exchange and Validation" in Visual C++
Programmer's Guide online. For examples and more information about DDX for
CRecordView and CDaoRecordView fields, see the article "Record Views" in
Visual C++ Programmer's Guide online.

See DDX_FieldText for a general DDX_Field example. Calls to
DDX_FieldLBString would be similar.

See Also: DDX_FieldText, DDX_FieldRadio, DDX_FieldLBStringExact,
DDX_FieldCBString, DDX_FieldCBStringExact, DDX_FieldCBIndex,
DDX_FieldLBIndex, DDX_FieldScroll

D D X_FieldLB StringExact
void AFXAPI DDX_FieldLBStringExact(CDataExchange* pDX, int nIDC,

"+ CString& value, CRecordset* pRecordset);
void AFXAPI DDX_FieldLBStringExact(CDataExchange* pDX, int nIDC,

"+ CString& value, CDaoRecordset* pRecordset);

Parameters

Remarks

pDX A pointer to a CDataExchange object. The framework supplies this object to
establish the context of the data exchange, including its direction.

nIDC The ID of a control in the CRecordView or CDaoRecordView object.

value A reference to a field data member in the associated CRecordset or
CDaoRecordset object.

pRecordset A pointer to the CRecordset or CDaoRecordset object with which data
is exchanged.

The DDX_FieldLBStringExact function copies the current selection of a list box
control in a record view to a CString field data member of a recordset associated with
the record view. In the reverse direction, this function sets the current selection in the

2381

DDX_FieldRadio

Example

list box to the first row that exactly matches the string specified in value. On a transfer
from the recordset to the control, if the recordset field is Null, any selection is
removed from the list box. On a transfer from control to recordset, if the control is
empty, the recordset field is set to Null.

Use the first version if you are working with the ODBC-based classes. Use the second
version if you are working with the DAO-based classes.

For more information about DDX, see "Adding a Dialog Box" in Visual C++
Tutorials online and "Dialog Data Exchange and Validation" in Visual C++
Programmer s Guide online. For examples and more information about DDX for
CRecordView and CDaoRecordView fields, see the article "Record Views" in
Visual C++ Programmer's Guide online.

See DDX_FieldText for a general DDX_Field example. Calls to
DDX_FieldLBStringExact would be similar.

See Also: DDX_FieldText, DDX_FieldRadio, DDX_FieldLBString,
DDX_FieldCBString, DDX_FieldCBStringExact, DDX_FieldCBlndex,
DDX_FieldLBlndex, DDX_FieldScroll

DDX_FieldRadio
void AFXAPI DDX_FieldRadio(CDataExchange* pDX, int nIDC, int& value,

... CRecordset* pRecordset);
void AFXAPI DDX_FieldRadio(CDataExchange* pDX, int nIDC, int& value,

... CDaoRecordset* pRecordset);

Parameters

Remarks

2382

pDX A pointer to a CDataExchange object. The framework supplies this object to
establish the context of the data exchange, including its direction.

nIDC The ID of the first in a group (with style WS_GROUP) of adjacent radio
button controls in the CRecordView or CDaoRecordView object.

value A reference to a field data member in the associated CRecordset or
CDaoRecordset object.

pRecordset A pointer to the CRecordset or CDaoRecordset object with which data
is exchanged.

The DDX_FieldRadio function associates a zero-based int member variable of a
record view's recordset with the currently selected radio button in a group of radio
buttons in the record view. When transferring from the recordset field to the view, this
function turns on the nth radio button (zero-based) and turns off the other buttons. In
the reverse direction, this function sets the recordset field to the ordinal number of the
radio button that is currently on (checked). On a transfer from the recordset to the

Example

control, if the recordset field is Null, no button is selected. On a transfer from control
to recordset, if no control is selected, the recordset field is set to Null if the field
permits that.

Use the first version if you are working with the ODBC-based classes. Use the second
version if you are working with the DAO-based classes.

For more information about DDX, see "Adding a Dialog Box" in Visual C++
Tutorials online and "Dialog Data Exchange and Validation" in Visual C++
Programmer's Guide online. For examples and more information about DDX for
CRecordView and CDaoRecordView fields, see the article "Record Views" in
Visual C++ Programmer's Guide online.

See DDX_FieldText for a general DDX_Field example. Calls to DDX_FieldRadio
would be similar.

See Also: DDX_FieldText, DDX_FieldLBString, DDX_FieldLBStringExact,
DDX_FieldCBString, DDX_FieldCBStringExact, DDX_FieldCBlndex,
DDX_FieldLBlndex, DDX_FieldScroll

D D X_FieldS croll
void AFXAPI DDX_FieldScroll(CDataExchange* pDX, int nIDC, int& value,

... CRecordset* pRecordset);
void AFXAPI DDX_FieldScroll(CDataExchange* pDX, int nIDC, int& value,

... CDaoRecordset* pRecordset);

Parameters

Remarks

pDX A pointer to a CDataExchange object. The framework supplies this object to
establish the context of the data exchange, including its direction.

nIDC The ID of the first in a group (with style WS_GROUP) of adjacent radio
button controls in the CRecordView or CDaoRecordView object.

value A reference to a field data member in the associated CRecordset or
CDaoRecordset object.

pRecordset A pointer to the CRecordset or CDaoRecordset object with which data
is exchanged.

The DDX_FieldScroll function synchronizes the scroll position of a scroll bar control
in a record view and an int field data member of a recordset associated with the record
view (or with whatever integer variable you choose to map it to). When moving data
from the recordset to the control, this function sets the scroll position of the scroll bar
control to the value specified in value. On a transfer from the recordset to the control,
if the recordset field is Null, the scroll bar control is set to O. On a transfer from
control to recordset, if the control is empty, the value of the recordset field is O.

DDX_FieldScroll

2383

DDX_FieldText

Example

Use the first version if you are working with the ODBC-based classes. Use the second
version if you are working with the DAO-based classes.

For more information about DDX, see "Adding a Dialog Box" in Visual C++
Tutorials online and "Dialog Data Exchange and Validation" in Visual C++
Programmer's Guide online. For examples and more information about DDX for
CRecordView and CDaoRecordView fields, see the article "Record Views" in
Visual C++ Programmer's Guide online.

See DDX_FieldText for a general DDX_Field example. Calls to DDX_FieldScrolI
would be similar.

See Also: DDX_FieldText, DDX_FieldLBString, DDX_FieldLBStringExact,
DDX_FieldCBString, DDX_FieldCBStringExact, DDX_FieldCBIndex,
DDX_FieldLBIndex, DDX_Scroll

DDX_FieldText

2384

void AFXAPI DDX_FieldText(CDataExchange* pDX, int nIDC, BYTE& value,
"+ CRecordset* pRecordset);

void AFXAPI DDX_FieldText(CDataExchange* pDX, int nIDC, int& value,
"+ CRecordset* pRecordset);

void AFXAPI DDX_FieldText(CDataExchange* pDX, int nIDC, UINT & value,
"+ CRecordset* pRecordset);

void AFXAPI DDX_FieldText(CDataExchange* pDX, int nIDC, long& value,
"+ CRecordset* pRecordset);

void AFXAPI DDX_FieldText(CDataExchange* pDX, int nIDC, DWORD& value,
"+ CRecordset* pRecordset);

void AFXAPI DDX_FieldText(CDataExchange* pDX, int nIDC, CString& value,
"+ CRecordset* pRecordset);

void AFXAPI DDX_FieldText(CDataExchange* pDX, int nIDC, float& value,
"+ CRecordset* pRecordset);

void AFXAPI DDX_FieldText(CDataExchange* pDX, int nIDC, double& value,
"+ CRecordset* pRecordset);

void AFXAPI DDX_FieldText(CDataExchange* pDX, int nIDC, short& value,
"+ CDaoRecordset* pRecordset);

void AFXAPI DDX_FieldText(CDataExchange* pDX, int nIDC, BOOL& value,
"+ CDaoRecordset* pRecordset);

void AFXAPI DDX_FieldText(CDataExchange* pDX, int nIDC, BYTE& value,
"+ CDaoRecordset* pRecordset);

void AFXAPI DDX_FieldText(CDataExchange* pDX, int nIDC, long& value,
"+ CDaoRecordset* pRecordset);

void AFXAPI DDX_FieldText(CDataExchange* pDX, int nIDC, DWORD& value,
"+ CDaoRecordset* pRecordset);

void AFXAPI DDX_FieldText(CDataExchange* pDX, int nIDC, CString& value,
... CDaoRecordset* pRecordset);

void AFXAPI DDX_FieldText(CDataExchange* pDX, int nIDC, float& value,
... CDaoRecordset* pRecordset);

void AFXAPI DDX_FieldText(CDataExchange* pDX, int nIDC, double& value,
... CDaoRecordset* pRecordset);

void AFXAPI DDX_FieldText(CDataExchange* pDX, int nIDC,
... COleDateTime& value, CDaoRecordset* pRecordset);

void AFXAPI DDX_FieldText(CDataExchange* pDX, int nIDC,
... COleCurrency& value, CDaoRecordset* pRecordset);

Parameters

Remarks

Example

pDX A pointer to a CDataExchange object. The framework supplies this object to
establish the context of the data exchange, including its direction.

nIDC The ID of a control in the CRecordView or CDaoRecordView object.

value A reference to a field data member in the associated CRecordset or
CDaoRecordset object. The data type of value depends on which of the
overloaded versions of DDX_FieldText you use.

pRecordset A pointer to the CRecordset or CDaoRecordset object with which data
is exchanged. This pointer enables DDX_FieldText to detect and set Null values.

The DDX_FieldText function manages the transfer of int, short, long, DWORD,
CString, float, double, BOOL, or BYTE data between an edit box control and the
field data members of a recordset. For CDaoRecordset objects, DDX_FieldText also
manages transferring COleDateTime, and COleCurrency values. An empty edit box
control indicates a Null value. On a transfer from the recordset to the control, if the
recordset field is Null, the edit box is set to empty. On a transfer from control to
recordset, if the control is empty, the recordset field is set to Null.

Use the versions with CRecordset parameters if you are working with the
ODBC-based classes. Use the versions with CDaoRecordset parameters if you are
working with the DAO-based classes.

For more information about DDX, see "Adding a Dialog Box" in Visual C++
Tutorials online and "Dialog Data Exchange and Validation" in Visual C++
Programmer's Guide online. For examples and more information about DDX for
CRecordView and CDaoRecordView fields, see the article "Record Views" in
Visual C++ Programmer's Guide online.

The following DoDataExchange function for a CRecordView contains
DDX_FieldText function calls for three data types: IDC_COURSELIST is a combo box;
the other two controls are edit boxes. For DAO programming, the mySet parameter is
a pointer to a CRecordset or CDaoRecordset.

DDX_FieldText

2385

//Example for OOX_FieldText
void CSectionForm::OoOataExchange(COataExchange* pOX)
{

CRecordView::OoOataExchange(pOX);
//{{AFX_OATA_MAP(CSectionForm)
OOX_FieldCBString(pOX. IOC_COURSELIST.

m_pSet->m_strCourseIO. m_pSet);
OOX_FieldText(pOX. IOC_ROOM. m_pSet->m_nRoomNo.

m_pSet);
OOX_FieldText(pOX. IOC_TUITION.

m_pSet->m_dwTuition. m_pSet);
//}}AFX_OATA_MAP

See Also: DDX_FieldRadio, DDX_FieldLBString, DDX_FieldLBStringExact,
DDX_FieldCBString, DDX_FieldCBStringExact, DDX_FieldCBlndex,
DDX_FieldLBlndex, DDX_FieldScroll

void AFXAPI DDX_LBlndex(CDataExchange* pDX, int nIDC, int& index);

Parameters

Remarks

2386

pDX A pointer to a CDataExchange object. The framework supplies this
object to establish the context of the data exchange, including its
direction.

nIDC The resource ID of the list box control associated with the control
property.

index A reference to a member variable of the dialog box, form view, or
control view object with which data is exchanged.

The DDX_LBlndex function manages the transfer of int data between a list box
control iii a dialog box, form view, or control view object and an int data member
of the dialog box, form view, or control view object.

When DDX_LBlndex is called, index is set to the index of the current list box
selection. If no item is selected, index is set to O.

For more information about DDX, see "Adding a Dialog Box" in Visual C++
Tutorials online and "Dialog Data Exchange and Validation" in Visual C++
Programmer's Guide online.

See Also: DDP _LBlndex

DD X_LBS tringExact

DDX_LBString
void AFXAPI DDX_LBString(CDataExchange* pDX, int nIDC, CString& value);

Parameters

Remarks

pDX A pointer to a CDataExchange object. The framework supplies this object to
establish the context of the data exchange, including its direction.

nIDC The resource ID of the list box control associated with the control property.

value A reference to a member variable of the dialog box, form view, or control view
object with which data is exchanged.

The DDX_LBString function manages the transfer of CString data between the edit
control of a list box control in a dialog box, form view, or control view object and a
CString data member of the dialog box, form view, or control view object.

When DDX_LBString is called, value is set to the current list box selection. If no
item is selected, value is set to a string of zero length.

Note If the list box is a drop-down list box, the value exchanged is limited to 255 characters.

For more information about DDX, see "Adding a Dialog Box" in Visual C++
Tutorials online and "Dialog Data Exchange and Validation" in Visual C++
Programmers Guide online.

See Also: DDP _LBString

DDX_LBStringExact
void AFXAPI DDX_LBStringExact(CDataExchange* pDX, int nIDC,

... CString& value);

Parameters

Remarks

pDX A pointer to a CDataExchange object. The framework supplies this object to
establish the context of the data exchange, including its direction.

nIDC The resource ID of the list box control associated with the control property.

value A reference to a member variable of the dialog box, form view, or control view
object with which data is exchanged.

The DDX_CBStringExact function manages the transfer of CString data between
the edit control of a list box control in a dialog box, form view, or control view object
and a CString data member of the dialog box, form view, or control view object.

When DDX_CBStringExact is called, value is set to the current list box selection. If
no item is selected, value is set to a string of zero length.

2387

Note If the list box is a drop-down list box, the value exchanged is limited to 255 characters.

For more information about DDX, see "Adding a Dialog Box" in Visual C++
Tutorials online and "Dialog Data Exchange and Validation" in Visual C++
Programmer s Guide online.

DDX_OCBool
void AFXAPI DDX_ OCBool(CDataExchange* pDX, int nIDC, DISPID dispid,

1+ BOOL& value);

Parameters

Remarks

pDX A pointer to a CDataExchange object. The framework supplies this object to
establish the context of the data exchange, including its direction.

nIDC The ID of an OLE control in the dialog box, form view, or control view object.

dispid The dispatch ID of a property of the control.

value A reference to a member variable of the dialog box, form view or control view
object with which data is exchanged.

The DDX_OCBool function manages the transfer of BOOL data between a property
of an OLE control in a dialog box, form view, or control view object and a BOOL
data member of the dialog box, form view, or control view object.

For more information about DDX, see "Adding a Dialog Box" in Visual C++
Tutorials online and "Dialog Data Exchange and Validation" in Visual C++
Programmer s Guide online.

See Also: DDX_OCBooIRO

DDX_ OCBoolRO
void AFXAPI DDX_ OCBoolRO(CDataExchange* pDX, int nIDC, DISPID dispid,

1+ BOOL& value);

Parameters

2388

pDX A pointer to a CDataExchange object. The framework supplies this object to
establish the context of the data exchange, including its direction.

nIDC The ID of an OLE control in the dialog box, form view, or control view object.

dispid The dispatch ID of a property of the control.

value A reference to a member variable of the dialog box, form view or control view
object with which data is exchanged.

Remarks
The DDX_OCBooIRO function manages the transfer of BOOL data between a
read-only property of an OLE control in a dialog box, form view, or control view
object and a BOOL data member of the dialog box, form view, or control view object.

For more information about DDX, see "Adding a Dialog Box" in Visual C++
Tutorials online and "Dialog Data Exchange and Validation" in Visual C++
Programmer's Guide online.

See Also: DDX_OCBool

DDX_OCColor
void AFXAPI DDX_OCColor(CDataExchange* pDX, int nIDC, DISPID dispid,

... OLE_COLOR& value);

Parameters

Remarks

pDX A pointer to a CDataExchange object. The framework supplies this object to
establish the context of the data exchange, including its direction.

nIDC The ID of an OLE control in the dialog box, form view, or control view object.

dispid The dispatch ID of a property of the control.

value A reference to a member variable of the dialog box, form view or control view
object with which data is exchanged.

The DDX_OCColor function manages the transfer of OLE_COLOR data between a
property of an OLE control in a dialog box, form view, or control view object and a
OLE_COLOR data member of the dialog box, form view, or control view object.

For more information about DDX, see "Adding a Dialog Box" in Visual C++
Tutorials online and "Dialog Data Exchange and Validation" in Visual C++
Programmer's Guide online.

See Also: DDX_ OCColorRO

DDX_OCColorRO
void AFXAPI DDX_OCColorRO(CDataExchange* pDX, int nIDC,

... DISPID dispid, OLE_COLOR & value);

Parameters
pDX A pointer to a CDataExchange object. The framework supplies this object to

establish the context of the data exchange, including its direction.

nIDC The ID of an OLE control in the dialog box, form view, or control view object.

dispid The dispatch ID of a property of the control.

DDX_ OCColorRO

2389

Remarks

value A reference to a member variable of the dialog box, form view or control view
object with which data is exchanged.

The DDX_OCColorRO function manages the transfer of OLE_COLOR data
between a read-only property of an OLE control in a dialog box, form view, or
control view object and a OLE_COLOR data member of the dialog box, form
view, or control view object.

For more information about DDX, see "Adding a Dialog Box" in Visual C++
Tutorials online and "Dialog Data Exchange and Validation" in Visual C++
Programmer's Guide online.

See Also: DDX_OCColor

DDX_OCFloat
void AFXAPI DDX_ OCFloat(CDataExchange* pDX, int nIDC,

.. DISPID dispid, float& value);
void AFXAPI DDX_ OCFloat(CDataExchange* pDX, int nIDC,

.. DISPID dispid, double& value);

Parameters

Remarks

2390

pDX A pointer to a CDataExchange object. The framework supplies this object to
establish the context of the data exchange, including its direction.

nIDC The ID of an OLE control in the dialog box, form view, or control view
object.

dispid The dispatch ID of a property of the control.

value A reference to a member variable of the dialog box, form view or control view
object with which data is exchanged.

The DDX_OCFloat function manages the transfer of float (or double) data between
a property of an OLE control in a dialog box, form view, or control view object and a
float (or double) data member of the dialog box, form view, or control view object.

For more information about DDX, see "Adding a Dialog Box" in Visual C++
Tutorials online and "Dialog Data Exchange and Validation" in Visual C++
Programmer's Guide online.

See Also: DDX_OCFloatRO

DDX_OCFloatRO
void AFXAPI DDX_OCFloatRO(CDataExchange* pDX, int nIDC,

10+ DISPID dispid, float& value);
void AFXAPI DDX_OCFloatRO(CDataExchange* pDX, int nIDC,

10+ DISPID dispid, double& value);

Parameters

Remarks

pDX A pointer to a CDataExchange object. The framework supplies this object to
establish the context of the data exchange, including its direction.

nIDC The ID of an OLE control in the dialog box, form view, or control view object.

dispid The dispatch ID of a property of the control.

value A reference to a member variable of the dialog box, form view or control view
object with which data is exchanged.

The DDX_OCFloatRO function manages the transfer of float (or double) data
between a read-only property of an OLE control in a dialog box, form view, or control
view object and a float (or double) data member of the dialog box, form view, or
control view object.

For more information about DDX, see "Adding a Dialog Box" in Visual C++
Tutorials online and "Dialog Data Exchange and Validation" in Visual C++
Programmer's Guide online.

See Also: DDX_OCFloat

DDX_OClnt
void AFXAPI DDX_OClnt(CDataExchange* pDX, int nIDC, DISPID dispid,

10+ int& value);
void AFXAPI DDX_OClnt(CDataExchange* pDX, int nIDC, DISPID dispid,

10+ long& value);

Parameters
pDX A pointer to a CDataExchange object. The framework supplies this object to

establish the context of the data exchange, including its direction.

nIDC The ID of an OLE control in the dialog box, form view, or control view object.

dispid The dispatch ID of a property of the control.

value A reference to a member variable of the dialog box, form view or control view
object with which data is exchanged.

2391

Remarks
The DDX_ OCInt function manages the transfer of int (or long) data between a
property of an OLE control in a dialog box, form view, or control view object and a
int (or long) data member of the dialog box, form view, or control view object.

For more information about DDX, see "Adding a Dialog Box" in Visual C++
Tutorials online and "Dialog Data Exchange and Validation" in Visual C++
Programmer's Guide online.

See Also: DDX_OCIntRO

DDX_OCIntRO
void AFXAPI DDX_ OCIntRO(CDataExchange* pDX, int nIDC,

... DISPID dispid, int& value);
void AFXAPI DDX_OCIntRO(CDataExchange* pDX, int nIDC,

... DISPID dispid, long& value);

Parameters

Remarks

pDX A pointer to a CDataExchange object. The framework supplies this object to
establish the context of the data exchange, induding its direction.

nIDC The ID of an OLE control in the dialog box, form view, or control view object.

dispid The dispatch ID of a property of the control.

value A reference to a member variable of the dialog box, form view or control view
object with which data is exchanged.

The DDX_OCIntRO function manages the transfer of int (or long) data between a
read-only property of an OLE control in a dialog box, form view, or control view
object and a int (or long) data member of the dialog box, form view, or control view
object.

For more information about DDX, see "Adding a Dialog Box" in Visual C++
Tutorials online and "Dialog Data Exchange and Validation" in Visual C++
Programmer's Guide online.

See Also: DDX_OCInt

void AFXAPI DDX_ OCShort(CDataExchange* pDX, int nIDC,
... DISPID dispid, short& value);

Parameters

2392

pDX A pointer to a CDataExchange object. The framework supplies this object to
establish the context of the data exchange, induding its direction.

Remarks

nIDC The ID of an OLE control in the dialog box, form view, or control view object.

dispid The dispatch ID of a property of the control.

value A reference to a member variable of the dialog box, form view or control view
object with which data is exchanged.

The DDX_OCShort function manages the transfer of short data between a property
of an OLE control in a dialog box, form view, or control view object and a short data
member of the dialog box, form view, or control view object.

For more information about DDX, see "Adding a Dialog Box" in Visual C++
Tutorials online and "Dialog Data Exchange and Validation" in Visual C++
Programmer's Guide online.

See Also: DDX_ OCShortRO

DDX_ OCShortRO
void AFXAPI DDX_OCShortRO(CDataExchange* pDX, int nIDC,

... DISPID dispid, short& value);

Parameters

Remarks

pDX A pointer to a CDataExchange object. The framework supplies this object
to establish the context of the data exchange, including its direction.

nIDC The ID of an OLE control in the dialog box, form view, or control
view object.

dispid The dispatch ID of a property of the control.

value A reference to a member variable of the dialog box, form view or control
view object with which data is exchanged.

The DDX_OCShortRO function manages the transfer of short data between
a read-only property of an OLE control in a dialog box, form view, or control
view object and a short data member of the dialog box, form view, or control
view object.

For more information about DDX, see "Adding a Dialog Box" in Visual C++
Tutorials online and "Dialog Data Exchange and Validation" in Visual C++
Programmer's Guide online.

See Also: DDX_OCShort

2393

DDX OCText
void AFXAPI DDX_OCText(CDataExchange* pDX, int nIDC,

... DISPID dispid, CString& value);

Parameters

Remarks

pDX A pointer to a CDataExchange object. The framework supplies this object to
establish the context of the data exchange, including its direction.

nIDC The ID of an OLE control in the dialog box, form view, or control view object.

dispid The dispatch ID of a property of the control.

value A reference to a member variable of the dialog box, form view or control view
object with which data is exchanged.

The DDX_ OCText function manages the transfer of CString data between a property
of an OLE control in a dialog box, form view, or control view object and a CString
data member of the dialog box, form view, or control view object.

For more information about DDX, see "Adding a Dialog Box" in Visual C++
Tutorials online and "Dialog Data Exchange and Validation" in Visual C++
Programmer's Guide online.

See Also: DDX_OCTextRO

DDX_ OCTextRO
void AFXAPI DDX_OCTextRO(CDataExchange* pDX, int nIDC,

... DISPID dispid, CString& value);

Parameters

Remarks

2394

pDX A pointer to a CDataExchange object. The framework supplies this object to
establish the context of the data exchange, including its direction.

nIDC The ID of an OLE control in the dialog box, form view, or control view object.

dispid The dispatch ID of a property of the control.

value A reference to a member variable of the dialog box, form view or control view
object with which data is exchanged.

The DDX_OCTextRO function manages the transfer of CString data between a
read-only property of an OLE control in a dialog box, form view, or control view
object and a CString data member of the dialog box, form view, or control view
object.

For more information about DDX, see "Adding a Dialog Box" in Visual C++
Tutorials online and "Dialog Data Exchange and Validation" in Visual C++
Programmer s Guide online.

See Also: DDX_OCText

void AFXAPI DDX_Radio(CDataExchange* pDX, int nIDC, int& value);

Parameters

Remarks

pDX A pointer to a CDataExchange object. The framework supplies this object to
establish the context of the data exchange, including its direction.

nIDC The resource ID of the radio control associated with the control property.

value A reference to a member variable of the dialog box, form view, or control view
object with which data is exchanged.

The DDX_Radio function manages the transfer of int data between a radio control
group in a dialog box, form view, or control view object and a int data member of the
dialog box, form view, or control view object.

When DDX_Radio is called, value is set to the current state of the radio control
group.

For more information about DDX, see "Adding a Dialog Box" in Visual C++
Tutorials online and "Dialog Data Exchange and Validation" in Visual C++
Programmer s Guide online.

void AFXAPI DDX_Scroll(CDataExchange* pDX, int nIDC, int& value);

Parameters

Remarks

pDX A pointer to a CDataExchange object. The framework supplies this object to
establish the context of the data exchange, including its direction.

nIDC The resource ID of the scroll-bar control associated with the control property.

value A reference to a member variable of the dialog box, form view or control view
object with which data is exchanged.

The DDX_Scroll function manages the transfer of int data between a scroll-bar
control in a dialog box, form view, or control view object and an int data member of
the dialog box, form view, or control view object.

2395

When DDX_Scroll is called, value is set to the current position of the control's
thumb.

For more information about DDX, see "Adding a Dialog Box" in Visual C++
Tutorials online and "Dialog Data Exchange and Validation" in Visual C++
Programmer's Guide online.

void AFXAPI DDX_Text(CDataExchange* pDX, int nIDC, BYTE& value);
void AFXAPI DDX_Text(CDataExchange* pDX, int nIDC, short& value);
void AFXAPI DDX_Text(CDataExchange* pDX, int nIDC, int& value);
void AFXAPI DDX_Text(CDataExchange* pDX, int nIDC, UINT& value);
void AFXAPI DDX_Text(CDataExchange* pDX, int nIDC, long& value);
void AFXAPI DDX_Text(CDataExchange* pDX, int nIDC, DWORD& value);
void AFXAPI DDX_Text(CDataExchange* pDX, int nIDC, CString& value);
void AFXAPI DDX_Text(CDataExchange* pDX, int nIDC, float& value);
void AFXAPI DDX_Text(CDataExchange* pDX, int nIDC, double& value);
void AFXAPI DDX_Text(CDataExchange* pDX, int nIDC, COleCurrency& value);
void AFXAPI DDX_Text(CDataExchange* pDX, int nIDC, COleDateTime& value);

Parameters

Remarks

2396

pDX A pointer to a CDataExchange object. The framework supplies this object to
establish the context of the data exchange, including its direction.

nIDC The ID of an edit control in the dialog box, form view, or control view object.

value A reference to a data member in the dialog box, form view, or control view
object. The data type of value depends on which of the overloaded versions of
DDX_Text you use.

The DDX_Text function manages the transfer of int, UINT, long, DWORD,
CString, float, or double data between an edit control in a dialog box, form view, or
control view and a CString data member of the dialog box, form view, or control
view object.

For more information about DDX, see "Adding a Dialog Box" in Visual C++
Tutorials online and "Dialog Data Exchange and Validation" in Visual C++
Programmer's Guide online.

DECLARE_CONNECTION_MAP

Remarks

#define new DEBUG_NEW

Assists in finding memory leaks. You can use DEBUG_NEW everywhere in your
program that you would ordinarily use the new operator to allocate heap storage.

In debug mode (when the _DEBUG symbol is defined), DEBUG_NEW keeps track
of the filename and line number for each object that it allocates. Then, when you use
the CMemoryState: :DumpAllObjectsSince member function, each object allocated
with DEBUG_NEW is shown with the filename and line number where it was
allocated.

To use DEBUG_NEW, insert the following directive into your source files:

#define new DEBUG_NEW

Once you insert this directive, the preprocessor will insert DEBUG_NEW wherever
you use new, and MFC does the rest. When you compile a release version of your
program, DEBUG_NEW resolves to a simple new operation, and the filename and
line number information is not generated.

Note In previous versions of MFC (4.1 and earlier) you needed to put the #define statement
after all statements that called the IMPLEMENT_DYNCREATE or IMPLEMENT_SERIAL
macros. This is no longer necessary.

For more information on the DEBUG_NEW macro, see "MFC Debugging Support"
in Visual C++ Programmer's Guide online.

DECLARE_CONNECTION_MAP

Remarks

DECLARE_CONNECTION_MAP()

Each COle Control-derived class in your program can provide a connection map to
specify additional connection points that your control supports.

If your control supports additional points, use the
DECLARE_CONNECTION_MAP macro at the end of your class declaration.
Then, in the .CPP file that defines the member functions for the class, use the
BEGIN_CONNECTION_MAP macro, CONNECTION_PART macros for each
of the control's connection points, and the END_CONNECTION_MAP macro to
declare the end of the connection map.

See Also: BEGIN_CONNECTION_PART, BEGIN_CONNECTION_MAP,
CONNECTION_lID

2397

Remarks

Example

If a CCmdTarget-derived class in your program supports OLE Automation, that
class must provide a dispatch map to expose its methods and properties. Use the
DECLARE_DISPATCH_MAP macro at the end of your class declaration. Then,
in the .CPP file that defines the member functions for the class, use the
BEGIN_DISPATCH_MAP macro. Then include macro entries for each of your
class's exposed methods and properties (DISP _FUNCTION, DISP _PROPERTY,
and so on). Finally, use the END_DISPATCH_MAP macro.

Note If you declare any members after DECLARE_DISPATCH_MAP, you must specify a new
access type (public, private, or protected) for them.

AppWizard and ClassWizard assist in creating Automation classes and in maintaining
dispatch maps: see the articles on "AppWizard" and "ClassWizard: Automation
Support." For more information on dispatch maps, see "Automation Servers." All of
these articles are in Visual C++ Programmer's Guide online.

II example for DECLARE_DISPATCH_MAP
class CMyDoc : public CDocument
{

II Member declarations

} ;

See Also: Dispatch Maps, BEGIN_DISPATCH_MAP, END_DISPATCH_MAP,
DISP _FUNCTION, DISP _PROPERTY, DISP _PROPERTY_EX,
DISP _DEFVALUE

DECLARE_DYNAMIC
DECLARE_DYNAMIC(class_name)

Parameters

Remarks

2398

class_name The actual name of the class (not enclosed in quotation marks).

When deriving a class from CObject, this macro adds the ability to access run-time
information about an object's class.

Add the DECLARE_DYNAMIC macro to the header (.H) module for the class, then
include that module in all .CPP modules that need access to objects of this class.

If you use the DECLARE_DYNAMIC and IMPLEMENT_DYNAMIC macros as
described, you can then use the RUNTIME_CLASS macro and the
CObject::IsKindOf function to determine the class of your objects at run time.

If DECLARE_DYNAMIC is included in the class declaration, then
IMPLEMENT_DYNAMIC must be included in the class implementation.

For more information on the DECLARE_DYNAMIC macro, see "CObject Class
Topics" in Visual C++ Programmer's Guide online.

See Also: IMPLEMENT_DYNAMIC, DECLARE_DYNCREATE,
DECLARE_SERIAL, RUNTIME_CLASS, CObject: :IsKindOf

DECLARE_DYNCREATE
DECLARE_DYNCREATE(class_name)

Parameters

Remarks

Remarks

class_name The actual name of the class (not enclosed in quotation marks).

Use the DECLARE_DYNCREATE macro to enable objects of CObject-derived
classes to be created dynamically at run time. The framework uses this ability to create
new objects dynamically, for example, when it reads an object from disk during
serialization. Document, view, and frame classes should support dynamic creation
because the framework needs to create them dynamically.

Add the DECLARE_DYNCREATE macro in the .R module for the class, then
include that module in all .CPP modules that need access to objects of this class.

If DECLARE_DYNCREATE is included in the class declaration, then
IMPLEMENT_DYNCREATE must be included in the class implementation.

For more information on the DECLARE_DYNCREATE macro, see "CObject Class
Topics" in Visual C++ Programmer's Guide online.

See Also: DECLARE_DYNAMIC, IMPLEMENT_DYNAMIC,
IMPLEMENT_DYNCREATE, RUNTIME_CLASS, CObject::IsKindOf

Each COleControl-derived class in your program can provide an event map to
specify the events your control will fire. Use the DECLARE_EVENT_MAP macro
at the end of your class declaration. Then, in the .CPP file that defines the member
functions for the class, use the BEGIN_EVENT_MAP macro, macro entries for each

2399

DECLARE_EVENTS INK_MAP

of the control's events, and the END_EVENT_MAP macro to declare the end of the
event list.

For more information on event maps, see the article "ActiveX Controls: Events" in
Visual C++ Programmer's Guide online.

See Also: BEGIN_EVENT_MAP, END_EVENT_MAP, EVENT_CUSTOM,
EVENT_CUSTOM_ID

DECLARE_EVENTS INK_MAP

Remarks
An OLE container can provide an event sink map to specify the events your container
will be notified of. Use the DECLARE_EVENTSINK_MAP macro at the end of
your class declaration. Then, in the .CPP file that defines the member functions for the
class, use the BEGIN_EVENTS INK_MAP macro, macro entries for each of the
events to be notified of, and the END _EVENTS INK_MAP macro to declare the end
of the event sink list.

For more information on event sink maps, see the article "ActiveX Control
Containers" in Visual C++ Programmer's Guide online.

See Also: BEGIN_EVENTSINK_MAP, END_EVENTSINK_MAP,
ON_EVENT, ON_PROPNOTIFY

DECLARE_MESSAGE_MAP

Remarks

2400

Each CCmdTarget-derived class in your program must provide a message
map to handle messages. Use the DECLARE_MESSAGE_MAP macro at
the end of your class declaration. Then, in the .CPP file that defines the member
functions for the class, use the BEGIN_MESSAGE_MAP macro, macro
entries for each of your message-handler functions, and the END_MESSAGE_MAP
macro.

Note If you declare any member after DECLARE_MESSAGE_MAP, you must specify a new
access type (public, private, or protected) for them.

For more information on message maps and the DECLARE_MESSAGE_MAP
macro, see "Message Handling and Mapping Topics" in Visual C++ Programmer's
Guide online.

Example
II example for DECLARE_MESSAGE_MAP
class CMyWnd : public CFrameWnd
{

II Member declarations

} :

See Also: BEGIN_MESSAGE_MAP, END_MESSAGE_MAP

DECLARE_OLECREATE
DECLARE_OLECREATE(class_name)

#include <afxdisp.h>

Parameters

Remarks

class_name The actual name of the class (not enclosed in quotation marks).

Use the DECLARE_OLE CREATE macro to enable objects of
CCmdTarget-derived classes to be created through OLE automation. This macro
enables other OLE-enabled applications to create objects of this type.

Add the DECLARE_OLE CREATE macro in the.H module for the class, then
include that module in all .CPP modules that need access to objects of this class.

If DECLARE_OLE CREATE is included in the class declaration, then
IMPLEMENT_OLE CREATE must be included in the class implementation. A class
declaration using DECLARE_OLECREATE must also use
DECLARE_DYNCREATE or DECLARE_SERIAL.

See Also: IMPLEMENT_OLE CREATE, DECLARE_DYNCREATE,
DECLARE_SERIAL

DECLARE_OLECREATE_EX(class_name)

Parameters

Remarks

class_name The name of the control class.

Declares a class factory and the GetClassID member function of your control class.
Use this macro in the control class header file for a control that does not support
licensing.

2401

DECLARE_OLETYPELIB

Note that this macro serves the same purpose as the following code sample:

BEGIN_OLEFACTORY(CSampleCtrl)
END_OLEFACTORY(CSampleCtrl)

See Also: BEGIN_OLEFACTORY, END_OLEFACTORY

DECLARE_ OLETYPELIB
DECLARE_OLETYPELIB(class_name)

Parameters

Remarks

class_name The name of the control class related to the type library.

Declares the GetTypeLih member function of your control class. Use this macro in
the control class header file.

See Also: IMPLEMENT_OLETYPELIB

DECLARE_PROPPAGEIDS
DECLARE_PROPPAGEIDS(class_name)

Parameters

Remarks

class_name The name of the control class that owns the property pages.

An OLE control can provide a list of property pages to display its properties. Use the
DECLARE_PROPPAGEIDS macro at the end of your class declaration. Then, in
the .CPP file that defines the member functions for the class, use the
BEGIN_PROPPAGEIDS macro, macro entries for each of your control's property
pages, and the END_PROPPAGEIDS macro to declare the end of the property page
list.

For more information on property pages, see the article "ActiveX Controls: Property
Pages" in Visual C++ Programmer's Guide online.

See Also: BEGIN_PROPPAGEIDS, END_PROPPAGEIDS

DECLARE_SERIAL
DECLARE_SERIAL(class_name)

Parameters
class_name The actual name of the class (not enclosed in quotation marks).

2402

Remarks
DECLARE_SERIAL generates the C++ header code necessary for a
CObject-derived class that can be serialized. Serialization is the process of writing or
reading the contents of an object to and from a file.

Use the DECLARE_SERIAL macro in a.H module, then include that module in all
.CPP modules that need access to objects of this class.

If DECLARE_SERIAL is included in the class declaration, then
IMPLEMENT_SERIAL must be included in the class implementation.

The DECLARE_SERIAL macro includes all the functionality of
DECLARE_DYNAMIC and DECLARE_DYNCREATE.

For more information on the DECLARE_SERIAL macro, see "CObject Class
Topics" in Visual C++ Programmer's Guide online.

See Also: DECLARE_DYNAMIC, IMPLEMENT_SERIAL,
RUNTIME_CLASS, CObject: :IsKindOf

DEFAULT_PARSE_COMMAND
DEFAULT_PARSE_COMMAND(FnName, map Class)

Parameters

Remarks

FnName The name of the member function. Also the name of the command.

map Class The class name to map the function to.

If the request from a client to the CHttpServer object does not contain a command,
the DEFAULT_PARSE_COMMAND macro directs the framework to call the
default page that's identified by the FnName parameter.

The DEFAULT_PARSE_COMMAND macro can appear anywhere in the
parse map.

See ON_PARSE_COMMAND for a parse map example.

See Also: BEGIN_PARSE_MAP,ON_PARSE_COMMAND,
ON_PARSE_COMMAND_PARAMS, END_PARSE_MAP, CHttpServer

DestructElements
template< class TYPE>

... void AFXAPI DestructElements(TYPE* pElements, int nCount);

Parameters
TYPE Template parameter specifying the type of the elements to be destroyed.

DestructElements

2403

Remarks

pElements Pointer to the elements.

nCount Number of elements to be destroyed.

The CArray, CList, and CMap class members call this function when elements are
destroyed.

The default implementation does nothing. For information on implementing this and
other helper functions, see the article "Collections: How to Make a Type-Safe
Collection" in Visual C++ Programmer's Guide online.

See Also: CArray, CList, CMap

void AFXAPI DFX_Binary(CDaoFieldExchange* pFX, LPCTSTR szName,
... CByteArray& value, int nPreAllocSize = AFX_DAO_BINARY_DEFAULT_SIZE,
... DWORD dwBindOptions = 0);

Parameters

2404

pFX A pointer to an object of class CDaoFieldExchange. This object contains
information to define the context for each call of the function. For additional
information about the operations a CDaoFieldExchange object can specify, see the
article "DAO Record Field Exchange: How DFX Works" in Visual C++
Programmer's Guide online.

szName The name of a data column.

value The value stored in the indicated data member-the value to be transferred.
For a transfer from recordset to data source, the value, of type CByteArray, is
taken from the specified data member. For a transfer from data source to recordset,
the value is stored in the specified data member.

nPreAllocSize The framework preallocates this amount of memory. If your data is
larger, the framework will allocated more space as needed. For better performance,
set this size to a value large enough to prevent reallocations. The default size is
defined in the AFXDAO.H file as AFX_DAO_BINARY_DEFAULT_SIZE.

dwBindOptions An option that lets you take advantage of MFC's double buffering
mechanism for detecting recordset fields that have changed. The default,
AFX_DAO_DISABLE_FIELD_CACHE, does not use double buffering and you
must call SetFieldDirty and SetFieldNull yourself. The other possible value,
AFX_DAO_ENABLE_FIELD_CACHE, uses double buffering, and you do not
have to do extra work to mark fields dirty or Null. For performance and memory
reasons, avoid this value unless your binary data is relatively small.

These options are explained further in the article "DAO Record Field Exchange:
Double Buffering Records" in Visual C++ Programmer's Guide online.

Remarks

Example

Note You can control whether data is double buffered for all fields by default by setting
CDaoRecordset::m_bCheckCacheForDirtyFields.

The DFX_Binary function transfers arrays of bytes between the field data members
of a CDaoRecordset object and the columns of a record on the data source. Data is
mapped between type DAO_BYTES in DAO and type CByteArray in the recordset.

See DFX_Text.

See Also: DFX_Text, DFX_Bool, DFX_Currency, DFX_Long, DFX_Short,
DFX_Single, DFX_Douhle, DFX_DateTime, DFX_Byte, DFX_LongBinary,
CDaoFieldExchange: :SetFieldType

void AFXAPI DFX_Bool(CDaoFieldExchange* pFX, LPCTSTR szName,
.. BOOL& value, DWORD dwBindOptions =
.. AFX_DAO_ENABLE_FIELD_CACHE);

Parameters
pFX A pointer to an object of class CDaoFieldExchange. This object contains

information to define the context for each call of the function. For additional
information about the operations a CDaoFieldExchange object can specify, see
the article "DAO Record Field Exchange: How DFX Works" in Visual C++
Programmer's Guide online.

szName The name of a data column.

value The value stored in the indicated data member -the value to be transferred.
For a transfer from recordset to data source, the value, of type BOOL, is taken
from the specified data member. For a transfer from data source to recordset, the
value is stored in the specified data member.

dwBindOptions An option that lets you take advantage of MFC's double buffering
mechanism for detecting recordset fields that have changed. The default,
AFX_DAO_ENABLE_FIELD_CACHE, uses double buffering. The other
possible value is AFX_DAO_DISABLE_FIELD_CACHE. If you specify this
value, MFC does no checking on this field. You must call SetFieldDirty and
SetFieldNull yourself.

These options are explained further in the article "DAO Recordset: Binding
Records Dynamically" in Visual C++ Programmer's Guide online.

Note You can control whether data is double buffered by default by setting
CDaoRecordset:: m_bCheckCacheForDirtyFields.

2405

Remarks

Example

The DFX_BOOL function transfers Boolean data between the field data members of
a CDaoRecordset object and the columns of a record on the data source. Data is
mapped between type DAO_BOOL in DAO and type BOOL in the recordset.

See DFX_Text.

See Also: DFX_Text, DFX_Long, DFX_Currency, DFX_Short, DFX_Single,
DFX_Douhle, DFX_DateTime, DFX_Byte, DFX_Binary, DFX_LongBinary,
CDaoFieldExchange: :SetFieldType

void AFXAPI DFX_Byte(CDaoFieldExchange* pFX, LPCTSTR szName,
.. BYTE& value, DWORD dwBindOptions =
.. AFX_DAO_ENABLE_FIELD_CACHE);

Parameters

Remarks

2406

pFX A pointer to an object of class CDaoFieldExchange. This object contains
infonnation to define the context for each call of the function. For more
infonnation about the operations a CDaoFieldExchange object can specify, see the
article "DAO Record Field Exchange: How DFX Works" in Visual C++
Programmer's Guide online.

szName The name of a data column.

value The value stored in the indicated data member-the value to be transferred.
For a transfer from recordset to data source, the value, of type BYTE, is taken from
the specified data member. For a transfer from data source to recordset, the value is
stored in the specified data member.

dwBindOptions An option that lets you take advantage of MFC's double buffering
mechanism for detecting recordset fields that have changed. The default,
AFX_DAO_ENABLE_FIELD_CACHE, uses double buffering. The other
possible value is AFX_DAO_DISABLE_FIELD_CACHE. If you specify this
value, MFC does no checking on this field. You must call SetFieldDirty and
SetFieldNull yourself.

These options are explained further in the article "DAO Recordset: Binding
Records Dynamically" in Visual C++ Programmer's Guide online.

Note You can control whether data is double buffered by default by setting
CDaoRecordset: :m_bCheckCacheForDirtyFields.

The DFX_Byte function transfers single bytes between the field data members of a
CDaoRecordset object and the columns of a record on the data source. Data is
mapped between type DAO_BYTES in DAO and type BYTE in the recordset.

Example
See DFX_Text.

See Also: DFX_Text, DFX_Bool, DFX_Currency, DFX_Long, DFX_Short,
DFX_Single, DFX_Double, DFX_DateTime, DFX_Binary, DFX_LongBinary,
CDaoFieldExchange: :SetFieldType

DFX_ Currency
void AFXAPI DFX_Currency(CDaoFieldExchange* pFX, LPCTSTR szName,

.. COleCurrency& value, DWORD dwBindOptions =

.. AFX_DAO_ENABLE_FIELD_CACHE);

Parameters

Remarks

pFX A pointer to an object of class CDaoFieldExchange. This object contains
information to define the context for each call of the function. For more
information about the operations a CDaoFieldExchange object can specify, see the
article "DAO Record Field Exchange: How DFX Works" in Visual C++
Programmer's Guide online.

szName The name of a data column.

value The value stored in the indicated data member -the value to be transferred.
For a transfer from recordset to data source, this value is taken from the specified
data member, of type COleCurrency. For a transfer from data source to recordset,
the value is stored in the specified data member.

dwBindOptions An option that lets you take advantage of MFC's double buffering
mechanism for detecting recordset fields that have changed. The default,
AFX_DAO_ENABLE_FIELD_CACHE, uses double buffering. The other
possible value is AFX_DAO_DISABLE_FIELD_CACHE. If you specify this
value, MFC does no checking on this field. You must call SetFieldDirty and
SetFieldNull yourself.

These options are explained further in the article "DAO Recordset: Binding
Records Dynamically" in Visual C++ Programmer's Guide online.

Note You can control whether data is double buffered by default by setting
CDaoRecordset::m_bCheckCacheForDirtyFields.

The DFX_Currency function transfers currency data between the field data members
of a CDaoRecordset object and the columns of a record on the data source. Data is
mapped between type DAO_CURRENCY in DAO and type COleCurrency in the
recordset.

2407

Example
See DFX_Text.

See Also: DFX_Text, DFX_Bool, DFX_DateTime, DFX_Long, DFX_Short,
DFX_Single, DFX_Double, DFX_Byte, DFX_Binary, DFX_LongBinary,
CDaoFieldExchange: :SetFieldType

void AFXAPI DFX_DateTime(CDaoFieldExchange* pFX, LPCTSTR szName,
-. COleDateTime& value, DWORD dwBindOptions =
-. AFX_DAO_ENABLE_FIELD_CACHE);

Parameters

Remarks

2408

pFX A pointer to an object of class CDaoFieldExchange. This object contains
information to define the context for each call of the function. For more
information about the operations a CDaoFieldExchange object can specify, see the
article "DAO Record Field Exchange: How DFX Works" in Visual C++
Programmer s Guide online.

szName The name of a data column.

value The value stored in the indicated data member-the value to be transferred.
The function takes a reference to a COleDateTime object. For a transfer from
recordset to data source, this value is taken from the specified data member. For a
transfer from data source to recordset, the value is stored in the specified data
member.

dwBindOptions An option that lets you take advantage of MFC's double buffering
mechanism for detecting recordset fields that have changed. The default,
AFX_DAO_ENABLE_FIELD_CACHE, uses double buffering. The other
possible value is AFX_DAO_DISABLE_FIELD_CACHE. If you specify this
value, MFC does no checking on this field. You must call SetFieldDirty and
SetFieldNull yourself.

These options are explained further in the article "DAO Recordset: Binding
Records Dynamically" in Visual C++ Programmers Guide online.

Note You can control whether data is double buffered by default by setting
CDaoRecordset::m_bCheckCacheForDirtyFields.

The DFX_DateTime function transfers time and date data between the field data
members of a CDaoRecordset object and the columns of a record on the data source.
Data is mapped between type DAO_DATE in DAO and type COleDateTime in the
recordset.

Example

Note COleDateTime replaces CTime and TIMESTAMP _STRUCT for this purpose in the DAD
classes. CTime and TIMESTAMP _STRUCT are still used for the DOSe-based data access
classes.

See DFX_Text.

See Also: DFX_Text, DFX_Bool, DFX_Currency, DFX_Long, DFX_Short,
DFX_Single, DFX_Double, DFX_Byte, DFX_Binary, DFX_LongBinary,
CDaoFieldExchange:: SetFieldType

void AFXAPI DFX_Double(CDaoFieldExchange* pFX, LPCTSTR szName,
... double& value, DWORD dwBindOptions = AFX_DAO_ENABLE_FIELD_CACHE);

Parameters

Remarks

pFX A pointer to an object of class CDaoFieldExchange. This object contains
information to define the context for each call of the function. For more
information about the operations a CDaoFieldExchange object can specify, see
the article "DAO Record Field Exchange: How DFX Works" in Visual C++
Programmer's Guide online.

szName The name of a data column.

value The value stored in the indicated data member -the value to be transferred.
For a transfer from recordset to data source, the value, of type double, is taken
from the specified data member. For a transfer from data source to recordset, the
value is stored in the specified data member.

dwBindOptions An option that lets you take advantage of MFC's double buffering
mechanism for detecting recordset fields that have changed. The default,
AFX_DAO_ENABLE_FIELD_CACHE, uses double buffering. The other
possible value is AFX_DAO_DISABLE_FIELD_CACHE. If you specify this
value, MFC does no checking on this field. You must call SetFieldDirty and
SetFieldNull yourself.

These options are explained further in the article "DAO Recordset: Binding
Records Dynamically" in Visual C++ Programmer's Guide online.

Note You can control whether data is double buffered by default by setting
CDaoRecordset: :m_bCheckCache ForDirtyFields.

The DFX_Double function transfers double float data between the field data
members of a CDaoRecordset object and the columns of a record on the data source.
Data is mapped between type DAO_R8 in DAO and type double float in the
recordset.

2409

Example
See DFX_Text.

See Also: DFX_Text, DFX_Bool, DFX_Currency, DFX_Long, DFX_Short,
DFX_Single, DFX_DateTime, DFX_Byte, DFX_Binary, DFX_LongBinary,
CDaoFieldExchange: :SetFieldType

void AFXAPI DFX_Long(CDaoFieldExchange* pFX, LPCTSTR szName,
1+ long& value, DWORD dwBindOptions = AFX_DAO_ENABLE_FIELD_CACHE);

Parameters

Remarks

Example

2410

pFX A pointer to an object of class CDaoFieldExchange. This object contains
infonnation to define the context for each call of the function. For more
infonnation about the operations a CDaoFieldExchange object can specify, see the
article "DAO Record Field Exchange: How DFX Works" in Visual C++
Programmer's Guide online.

szName The name of a data column.

value The value stored in the indicated data member -the value to be transferred.
For a transfer from recordset to data source, the value, of type long, is taken from
the specified data member. For a transfer from data source to recordset, the value is
stored in the specified data member.

dwBindOptions An option that lets you take advantage of MFC's double buffering
mechanism for detecting record set fields that have changed. The default,
AFX_DAO_ENABLE_FIELD_CACHE, uses double buffering. The other
possible value is AFX_DAO_DISABLE_FIELD_CACHE. If you specify this
value, MFC does no checking on this field. You must call SetFieldDirty and
SetFieldNuII yourself.

These options are explained further in the article "DAO Recordset: Binding
Records Dynamically" in Visual C++ Programmer's Guide online.

Note You can control whether data is double buffered by default by setting
CDaoRecordset: :m_bCheckCacheForDirtyFields.

The DFX_Long function transfers long integer data between the field data members
of a CDaoRecordset object and the columns of a record on the data source. Data is
mapped between type DAO_I4 in DAO and type long in the recordset.

See DFX_Text.

See Also: DFX_ Text, DFX_Bool, DFX_ Currency, DFX_Short, DFX_Single,
DFX_Double, DFX_DateTime, DFX_Byte, DFX_Binary, DFX_LongBinary,
CDaoFieldExchange: :SetFieldType

DFX_LongBinary
void AFXAPI DFX_LongBinary(CDaoFieldExchange* pFX, LPCTSTR szName,

~ CLongBinary& value, DWORD dwPreAllocLength =
~ AFX_DAO_LONGBINARY_DEFAULT_SIZE, DWORD dwBindOptions = 0);

Parameters

Remarks

Example

pFX A pointer to an object of class CDaoFieldExchange. This object contains
information to define the context for each call of the function. For more
information about the operations a CDaoFieldExchange object can specify, see
the article "DAO Record Field Exchange: How DFX Works" in Visual C++
Programmer's Guide online.

szName The name of a data column.

value The value stored in the indicated data member -the value to be transferred.
For a transfer from recordset to data source, the value, of type CLongBinary, is
taken from the specified data member. For a transfer from data source to recordset,
the value is stored in the specified data member.

nPreAllocSize The framework preallocates this amount of memory. If your data is
larger, the framework will allocated more space as needed. For better performance,
set this size to a value large enough to prevent reallocations.

dwBindOptions An option that lets you take advantage of MFC's double buffering
mechanism for detecting recordset fields that have changed. The default,
AFX_DISABLE_FIELD_CACHE, does not use double buffering. The other
possible value is AFX_DAO_ENABLE_FIELD_CACHE. Uses double
buffering, and you do not have to do extra work to mark fields dirty or Null. For
performance and memory reasons, avoid this value unless your binary data is
relatively small.

These options are explained further in the article "DAO Recordset: Binding
Records Dynamically" in Visual C++ Programmer's Guide online.

Note You can control whether data is double buffered by default by setting
CDaoRecordset:: m_bCheckCacheForDirtyFields.

Important It is recommended that you use DFX_Binary instead of this function.
DFX_LongBinary is provided for compatibility with the MFC OOSC classes.

The DFX_LongBinary function transfers binary large object (BLOB) data using class
CLongBinary between the field data members of a CDaoRecordset object and the
columns of a record on the data source. Data is mapped between type DAO_BYTES
in DAO and type CLongBinary in the recordset.

See DFX_ Text.

DFX_LongBinary

2411

See Also: DFX_ Text, DFX_Bool, DFX_ Currency, DFX_Long, DFX_Short,
DFX_Single, DFX_Double, DFX_DateTime, DFX_Byte,
CDaoFieldExchange: :SetFieldType, CLongBinary

void AFXAPI DFX_Short(CDaoFieldExchange* pFX, LPCTSTR szName,
~ short& value, DWORD dwBindOptions = AFX_DAO_ENABLE_FIELD_CACHE);

Parameters

Remarks

Example

2412

pFX A pointer to an object of class CDaoFieldExchange. This object contains
information to define the context for each call of the function. For more
information about the operations a CDaoFieldExchange object can specify, see
the article "DAO Record Field Exchange: How DFX Works" in Visual C++
Programmer's Guide online.

szName The name of a data column.

value The value stored in the indicated data member-the value to be transferred.
For a transfer from recordset to data source, the value, of type short, is taken from
the specified data member. For a transfer from data source to recordset, the value is
stored in the specified data member.

dwBindOptions An option that lets you take advantage of MFC's double buffering
mechanism for detecting recordset fields that have changed. The default,
AFX_DAO_ENABLE_FIELD_CACHE, uses double buffering. The other
possible value is AFX_DAO_DISABLE_FIELD_CACHE. If you specify this
value, MFC does no checking on this field. You must call SetFieldDirty and
SetFieldNull yourself.

These options are explained further in the article "DAO Recordset: Binding
Records Dynamically" in Visual C++ Programmer's Guide online.

Note You can control whether data is double buffered by default by setting
CDaoRecordset:: m_bCheckCacheForDirtyFields.

The DFX_Short function transfers short integer data between the field data members
of a CDaoRecordset object and the columns of a record on the data source. Data is
mapped between type DAO_I2 in DAO and type short in the recordset.

Note DFX_Short is equivalent to RFX-'nt for the DO Be-based classes.

See DFX_Text.

See Also: DFX_Text, DFX_Bool, DFX_Currency, DFX_Long, DFX_Single,
DFX_Double, DFX_DateTime, DFX_Byte, DFX_Binary, DFX_LongBinary,
CDaoFieldExchange: :SetFieldType

void AFXAPI DFX_Single(CDaoFieldExchange* pFX, LPCTSTR szName,
... float& value, DWORD dwBindOptions =
... AFX_DAO_ENABLE_FIELD_CACHE);

Parameters

Remarks

Example

pFX A pointer to an object of class CDaoFieldExchange. This object contains
information to define the context for each call of the function. For more
information about the operations a CDaoFieldExchange object can specify, see
the article "DAO Record Field Exchange: How DFX Works" in Visual C++
Programmer's Guide online.

szName The name of a data column.

value The value stored in the indicated data member -the value to be transferred.
For a transfer from record set to data source, the value, of type float, is taken from
the specified data member. For a transfer from data source to recordset, the value is
stored in the specified data member.

dwBindOptions An option that lets you take advantage of MFC's double buffering
mechanism for detecting recordset fields that have changed. The default,
AFX_DAO_ENABLE_FIELD_CACHE, uses double buffering. The other
possible value is AFX_DAO_DISABLE_FIELD_CACHE. If you specify this
value, MFC does no checking on this field. You must call SetFieldDirty and
SetFieldNull yourself.

These options are explained further in the article "DAO Recordset: Binding
Records Dynamically" in Visual C++ Programmer's Guide online.

Note You can control whether data is double buffered by default by setting
CDaoRecordset::m_bCheckCacheForDirtyFields.

The DFX_Single function transfers floating point data between the field
data members of a CDaoRecordset object and the columns of a record on
the data source. Data is mapped between type DAO_R4 in DAO and type
float in the recordset.

See DFX_Text.

See Also: DFX_Text, DFX_Bool, DFX_Currency, DFX_Long, DFX_Short,
DFX_Double, DFX_DateTime, DFX_Byte, DFX_Binary, DFX_LongBinary,
CDaoFieldExchange: :SetFieldType

2413

DFX_Text
void AFXAPI DFX_Text(CDaoFieldExchange* pFX, LPCTSTR szName,

... CString& value, int nPreAllocLength = AFX_DAO_TEXT_DEFAULT_SIZE,

... DWORD dwBindOptions = AFX_DAO_ENABLE_FIELD_CACHE);

Parameters

Remarks

Example

2414

pFX A pointer to an object of class CDaoFieldExchange. This object contains
information to define the context for each call of the function. For more
information about the operations a CDaoFieldExchange object can specify, see
the article "DAO Record Field Exchange: How DFX Works" in Visual C++
Programmer s Guide online.

szName The name of a data column.

value The value stored in the indicated data member -the value to be transferred.
For a transfer from recordset to data source, the value, of type CString, is taken
from the specified data member. For a transfer from data source to recordset, the
value is stored in the specified data member.

nPreAllocSize The framework pre allocates this amount of memory. If your data is
larger, the framework will allocated more space as needed. For better performance,
set this size to a value large enough to prevent reallocations.

dwBindOptions An option that lets you take advantage of MFC's double buffering
mechanism for detecting recordset fields that have changed. The default,
AFX_DAO_ENABLE_FIELD_CACHE, uses double buffering. The other
possible value is AFX_DAO_DISABLE_FIELD_CACHE. If you specify this
value, MFC does no checking on this field. You must call SetFieldDirty and
SetFieldNuII yourself.

These options are explained further in the article "DAO Record Field Exchange:
Double Buffering Records" in Visual C++ Programmer's Guide online.

Note You can control whether data is double buffered by default by setting
CDaoRecordset:: m_bCheckCacheForDirtyFields.

The DFX_Text function transfers CString data between the field data members of a
CDaoRecordset object and columns of a record on the data source. Data is mapped
between type DAO_CHAR in DAO (or, if the symbol_UNICODE is defined,
DAO_ WCHAR) and type CString in the recordset.

This example shows several calls to DFX_Text. Notice also the two calls to
CDaoFieldExchange::SetFieldType. ClassWizard normally writes the second call to
SetFieldType and its associated DFX calls. You must write the first call and its DFX
call. It is recommended that you put any parameter items before the
"/!{ {AFX_FIELD_MAP" comment. You must put parameters outside the comments.

//Example for DFX_Text
void CSections::DoFieldExchange(CDaoFieldExchange* pFX)
{

pFX-)SetFieldType(CDaoFieldExchange::param);
DFX_Text(pFX, "Name", m_strNameParam);
//{{AFX_FIELD_MAP(CSections)
pFX-)SetFieldType(CDaoFieldExchange::outputColumn);
DFX_Text(pFX, "CourseID", m_strCourseID);
DFX_Text(pFX, "InstructorID", m_strInstructorID);
DFX_Short (pFX, "Lab Fee", m_n RoomNo) ;
DFX_Text(pFX, "LabFee", m_strSchedule);
DFX_Short(pFX, "SectionNo", m_nSectionNo);
DFX_Currency(pFX, "LabFee", m_currLabFee);
//}}AFX_FIELD_MAP

See Also: DFX_Bool, DFX_Long, DFX_ Currency, DFX_Short, DFX_Single,
DFX_Double, DFX_DateTime, DFX_Byte, DFX_Binary, DFX_LongBinary,
CDaoFieldExchange: :SetFieldType

DISP_DEFVALUE
DISP _DEFVALUE(the Class, pszName)

#include <afxdisp.h>

Parameters

Remarks

theClass Name of the class.

pszName External name of the property that represents the "value" of the
object.

This macro makes an existing property the default value of an object. Using
a default value can make programming your automation object simpler for
Visual Basic applications.

The "default value" of your object is the property that is retrieved or set
when a reference to an object does not specify a property or member
function.

See Also: "Dispatch Maps," DECLARE_DISPATCH_MAP,
DISP _PROPERTY _EX, DISP _FUNCTION, BEGIN_DISPATCH_MAP,
END_DISPATCH_MAP

DISP _DEFV ALUE

2415

DISP _FUNCTION
DISP _FUNCTION(theClass,pszName,pfnMember, vtRetVal, vtsParams)

#include <afxdisp.h>

Parameters

Remarks

2416

theClass Name of the class.

pszName External name of the function.

pfnMember Name of the member function.

vtRetVal A value specifying the function's return type.

vtsParams A space-separated list of one or more constants specifying the function's
parameter list.

The DISP _FUNCTION macro is used in a dispatch map to define an OLE
automation function.

The vtRetVal argument is of type VARTYPE. Possible values for this argument are
taken from the VARENUM enumeration. They are as follows:

Symbol Return Type

VT_EMPTY void

VT_I2 short

VT_I4 long

VT_R4 float

VT_RS double

VT_CY CY

VT_DATE DATE

VT_BSTR BSTR

VT_DISPATCH LPDISPATCH

VT_ERROR SCODE

VT_BOOL BOOL

VT_VARIANT VARIANT

VT_UNKNOWN LPUNKNOWN

The vtsParams argument is a space-separated list of values from the VTS_ constants.
One or more of these values separated by spaces (not commas) specifies the function's
parameter list. For example,

VTS_I2 VTS_PI2

specifies a list containing a short integer followed by a pointer to a short integer.

The VTS_ constants and their meanings are as follows:

Symbol Parameter Type

VTS_I2 short

VTS_I4 long

VTS_R4 float

VTS_RS double

VTS_CY const CY or CY*

VTS_DATE DATE

VTS_BSTR LPCSTR

VTS_DISPATCH LPDISPATCH

VTS_SCODE SCODE

VTS_BOOL BOOL

VTS_ VARIANT const V ARIANT* or VARIANT &

VTS_UNKNOWN LPUNKNOWN

VTS_PI2 short*

VTS_PI4 long*

VTS_PR4 float*

VTS_PRS double*

VTS_PCY Cy*

VTS_PDATE DATE*

VTS_PBSTR BSTR*

VTS_PDISPATCH LPDISPATCH*

VTS_PSCODE SCODE*

VTS_PBOOL BOOL*

VTS_PV ARIANT VARIANT*

VTS_PUNKNOWN LPUNKNOWN*

See Also: "Dispatch Maps," DECLARE_DISPATCH_MAP, DISP _PROPERTY,
DISP _PROPERTY_EX, BEGIN_DISPATCH_MAP, END_DISPATCH_MAP

DISP _PROPERTY
DISP _PROPERTY(the Class, pszName, memberName, vtPropType)

#include <afxdisp.h>

Parameters
theClass Name of the class.

pszName External name of the property.

memberName Name of the member variable in which the property is stored.

vtPropType A value specifying the property's type.

DISP _PROPERTY

2417

Remarks
The DISP _PROPERTY macro is used in a dispatch map to define an OLE
automation property.

The vtPropType argument is of type VARTYPE. Possible values for this argument are
taken from the VARENUM enumeration:

Symbol Property Type

VT_I2 short

VT_I4 long

VT_R4 float

VT_RS double

VT_CY CY

VT_DATE DATE

VT_BSTR CString

VT_DISPATCH LPDISPATCH

VT_ERROR SCODE

VT_BOOL BOOL

VT_VARIANT VARIANT

VT_UNKNOWN LPUNKNOWN

When an external client changes the property, the value of the member variable
specified by memberName changes; there is no notification of the change.

See Also: "Dispatch Maps," DECLARE_DISPATCH_MAP,
DISP _PROPERTY_EX, DISP _FUNCTION, BEGIN_DISPATCH_MAP,
END_DISPATCH_MAP

DISP _PROPERTY _EX(the Class, pszName, memberGet, memberSet, vtPropType)

#include <afxdisp.h>

Parameters

Remarks

theClass Name of the class.

pszName External name of the property.

memberGet Name of the member function used to get the property.

memberSet Name of the member function used to set the property.

vtPropType A value specifying the property's type.

The DISP_PROPERTY_EX macro is used in a dispatch map to define an OLE
automation property and name the functions used to get and set the property's value.

The memberGet and memberSet functions have signatures determined by the
vtPropType argument. The memberGet function takes no arguments and returns a
value of the type specified by vtPropType. The memberSet function takes an argument
of the type specified by vtPropType and returns nothing.

The vtPropType argument is of type VARTYPE. Possible values for this argument are
taken from the the VARENUM enumeration. For a list of these values, see the
Remarks for the vtRetVal parameter in DISP _FUNCTION. Note that VT_EMPTY,
listed in the DISP _FUNCTION remarks, is not permitted as a property data type.

See Also: "Dispatch Maps," DECLARE_DISPATCH_MAP, DISP _PROPERTY,
DISP _FUNCTION, BEGIN_DISPATCH_MAP, END_DISPATCH_MAP

DISP _PROPERTY _NOTIFY
DISP _PROPERTY _NOTIFY(theClass, szExternalName, memberName, pfnAfterSet,

.. vtPropType)

#include <afxdisp.h>

Parameters

Remarks

the Class Name of the class.

szExternalName External name of the property.

memberName Name of the member variable in which the property is stored.

pfnAfterSet Name of the notification function for szExternalName.

vtPropType A value specifying the property's type.

The DISP _PROPERTY _NOTIFY macro is used in a dispatch map to define an OLE
automation property with notification. Unlike properties defined with
DISP _PROPERTY, a property defined with DISP _PROPERTY_NOTIFY will
automatically call the function specified by pfnAfterSet when the property is changed.

The vtPropType argument is of type VARTYPE. Possible values for this argument are
taken from the VARENUM enumeration:

Symbol Property Type

VT_I2 short

VT_I4 long

VT_R4 float

VT_RS double

VT_CY CY

VT_DATE DATE

(continued)

2419

(continued)

Symbol

VT_BSTR

VT_DISPATCH

VT_ERROR

VT_BOOL

VT_VARIANT

VT_UNKNOWN

Property Type

CString

LPDISPATCH

SCODE

BOOL

VARIANT

LPUNKNOWN

See Also: "Dispatch Maps," DISP _PROPERTY, DISP _FUNCTION

DISP _PROPERTY_NOTIFY (theClass, pszExternalName, pfnGet, pfnSet,
... vtPropType, vtsParams)

#include <afxdisp.h>

Parameters

Remarks

2420

theClass Name of the class.

pszExternalName External name of the property.

pfnGet Name of the member function used to get the property.

pfnSet Name of the member function used to set the property.

vtPropType A value specifying the property's type.

vtsParams A string of space-separated VTS_ variant parameter types, one for each
parameter.

This macro defines a property accessed with separate Get and Set member functions.
Unlike the DISP _PROPERTY _EX macro, this macro allows you to specify a
parameter list for the property. This is useful for implementing properties which are
indexed or parameterized.

For example, consider the following declaration of get and set member functions that
allow the user to request a specific row and column when accessing the property:

afx_msg short GetArray(short row. short column);
afx_msg short SetArray(short row. short column. short nNewValue);

These correspond to the following DISP _PROPERTY _PARAM macro in the
control dispatch map:

DISP_PROPERTY_PARAM(CMyCtrl. "Array". GetArray. SetArray. VT-12. VTS 12 VTS_12)

As another example, consider the following get and set member functions:

DYNAMIC_DOWNCAST

LPDISPATCH CMyObject::Getltem(short index!. short index2. short index3);
void CMyObject::Setltem(short index!. short index2. short index3.
~ LPDISPATCH newValue);

These correspond to the following DISP_PROPERTY_PARAM macro in the
control dispatch map:

DISP_PROPERTY_PARAM(CMyObject. "item". Getltem. Setltem. VT_DISPATCH.
~ VTS_I2 VTS_I2 VTS_I2)

See Also: "Dispatch Maps," DISP _PROPERTY_EX

DumpElements
template< class TYPE >void AFXAPI DumpElements(CDumpContext& de,

... const TYPE* pElements, int nCount);

Parameters

Remarks

de Dump context for dumping elements.

TYPE Template parameter specifying the type of the elements.

pElements Pointer to the elements to be dumped.

nCount Number of elements to be dumped.

Override this function to provide stream-oriented diagnostic output in text form
for the elements of your collection. The CArray: :Dump, CList: :Dump, and
CMap: :Dump functions call this if the depth of the dump is greater than O.

The default implementation does nothing. If the elements of your collection are
derived from CObject, your override will typically iterate through the collection's
elements, calling Dump for each element in turn.

For information on diagnostics and on the Dump function, see "MFC Debugging
Support" in Visual C++ Programmer's Guide online.

See Also: CDumpContext::SetDepth, CObject::Dump, CArray, CList, CMap

DYNAMIC_DOWNCAST
DYNAMIC_DOWNCAST(class, pointer)

Parameters
class The name of a class.

pointer A pointer to be cast to a pointer to a object of type class.

2421

END_CATCH

Remarks
The DYNAMIC_DOWNCAST macro provides a handy way to cast a
pointer to a pointer to a class object while checking to see if the cast is legal.
The macro will cast the pointer parameter to a pointer to an object of the class
parameter's type.

If the object referenced by the pointer is a "kind of' the identified class, the macro
returns the appropriate pointer. If it isn't a legal cast the macro returns NULL.

See Also: STATIC_DOWNCAST

END_CATCH

Remarks

END_CATCH

Marks the end of the last CATCH or AND_CATCH block.

For more information on the END_CATCH macro, see the article "Exceptions"
in Visual c++ Programmer's Guide online.

See Also: TRY, CATCH, AND_CATCH, THROW,
THROW_LAST

END _CATCH_ALL

Remarks

END _CATCH_ALL

Marks the end of the last CATCH_ALL or AND_CATCH_ALL block.

See Also: TRY, CATCH_ALL, AND_CATCH_ALL, THROW,
THROW_LAST

END _CONNECTION_MAP

Remarks

2422

END_CONNECTION_MAP()

Use the END_CONNECTION_MAP macro to end the definition of your
connection map.

END _CONNECTION_PART
END_CONNECTION_PART(loealClass)

Parameters

Remarks

Remarks

loealClass Specifies the name of the local class that implements the connection
point.

Use the END_CONNECTION_PART macro to end the declaration of your
connection point.

#include <afxdisp.h>

Use the END_DISPATCH_MAP macro to end definition of your dispatch map. It
must be used in conjunction with BEGIN_DISPATCH_MAP.

See Also: "Dispatch Maps," DECLARE_DISPATCH_MAP,
BEGIN_DISPATCH_MAP, DISP _FUNCTION, DISP _PROPERTY,
DISP _PROPERTY _EX, DISP _DEFVALUE

END _EVENT _MAP

Remarks

Remarks

Use the END_EVENT_MAP macro to end the definition of your event map.

See Also: DECLARE_EVENT_MAP, BEGIN_EVENT_MAP

END_EVENTSINK_MAP()

Use the END _EVENTS INK_MAP macro to end the definition of your event sink
map.

See Also: DECLARE_EVENTSINK_MAP, BEGIN_EVENTSINK_MAP

2423

Remarks
Use the END_MESSAGE_MAP macro to end the definition of your message map.

For more information on message maps and the END_MESSAGE_MAP macro,
see "Message Handling and Mapping Topics" in Visual c++ Programmer's Guide
online.

See Also: DECLARE_MESSAGE_MAP, BEGIN_MESSAGE_MAP, Message
Map Function Categories

END _OLEFACTORY
END_OLEFACTORY(class_name)

Parameters

Remarks

class_name The name of the control class whose class factory this is.

Use the END_OLEFACTORY macro to end the declaration of your control's class
factory.

See Also: BEGIN_OLEFACTORY, DECLARE_OLECREATE_EX

END_PARSE_MAP(the Class)

Parameters

Remarks

2424

the Class Specifies the name of the class that owns this parse map.

Use the END_PARSE_MAP macro to end the definition of your parse map.
It must be used in conjunction with BEGIN_PARSE_MAP.

See ON_PARSE_ COMMAND for a parse map example.

See Also: BEGIN_PARSE_MAP,ON_PARSE_COMMAND,
ON_PARSE_COMMAND_PARAMS, DEFAULT_PARSE_COMMAND,
CHttpServer

END_PROPPAGEIDS
END_PROPPAGEIDS(class_name)

Parameters

Remarks

class_name The name of the control class that owns the property page.

Use the END_PROPPAGEIDS macro to end the definition of your property
page ID list.

See Also: DECLARE_PROPPAGEIDS, BEGIN_PROPPAGEIDS

EVENT_CUSTOM
EVENT_CUSTOM(pszName, pfnFire, vtsParams)

Parameters

Remarks

pszName The name of the event.

pfnFire The name of the event firing function.

vtsParams A space-separated list of one or more constants specifying the function's
parameter list.

Use the EVENT_CUSTOM macro to define an event-map entry for a custom event.

The vtsParams parameter is a space-separated list of values from the VTS_ constants.
One or more of these values separated by spaces (not commas) specifies the function's
parameter list. For example:

VTS_COLOR VTS_FONT

specifies a list containing a short integer followed by a BOOL.

The VTS_ constants and their meanings are as follows:

Symbol Parameter Type

VTS_I2 short

VTS_I4 long

VTS_R4 float

VTS_RS double

VTS_COLOR OLE_COLOR

VTS_CY CURRENCY

VTS_DATE DATE

VTS_BSTR const char*

(continued)

EVENT_CUSTOM

2425

(continued)

Symbol

VTS_DISPATCH

VTS_FONT

VTS_HANDLE

VTS_SCODE

VTS_BOOL

VTS_ VARIANT

VTS_PVARIANT

VTS_UNKNOWN

VTS_OPTEXCLUSIVE

VTS_PICTURE

VTS_TRISTATE

VTS_XPOS_PIXELS

VTS_ YPOS_PIXELS

VTS_XSIZE_PIXELS

VTS_ YSIZE_PIXELS

VTS_XPOS_HIMETRIC

VTS_ YPOS_HIMETRIC

VTS_XSIZE_HIMETRIC

VTS_ YSIZE_HIMETRIC

Parameter Type

LPDISPATCH

IFontDispatch*

HANDLE

SCODE

BOOL

const V ARIANT*

VARIANT*

LPUNKNOWN

OLE_OPTEXCLUSIVE

IPictureDisp*

OLE_TRISTATE

OLE_XPOS_PIXELS

OLE_ YPOS_PIXELS

OLE_XSIZE_PIXELS

OLE_ YSIZE_PIXELS

OLE_XPOS_HIMETRIC

OLE_ YPOS_HIMETRIC

OLE_XSIZE_HIMETRIC

OLE_ YSIZE_HIMETRIC

Note Additional variant constants have been defined for all variant types, with the exception of
VTS_FONT and VTS_PICTURE, that provide a pointer to the variant data constant. These
constants are named using the VTS_Pconstantname convention. For example, VTS_PCOLOR
is a pointer to a VTS_COLOR constant.

EVENT_CUSTOM_ID
EVENT_CUSTOM_ID(pszName, dispid, pjnFire, vtsParams)

Parameters

2426

pszName The name of the event.

dispid The dispatch ID used by the control when firing the event.

pfnFire The name of the event firing function.

vtsParams A variable list of parameters passed to the control container when the
event is fired.

IMPLEMENT_DYNAMIC

Remarks
Use the EVENT_CUSTOM_ID macro to define an event firing function for a custom
event belonging to the dispatch ID specified by dispid.

The vtsParams argument is a space-separated list of values from the VTS_ constants.
One or more of these values separated by spaces (not commas) specifies the function's
parameter list. For example:

VTS_COLOR VTS_FONT

specifies a list containing a short integer followed by a BOOL.

For a list of the VTS_ constants, see EVENT_CUSTOM.

See Also: EVENT_CUSTOM

HashKey
template< class ARG_KEY > UINT AFXAPI HashKey(ARG_KEY key);

Return Value
The key's hash value.

Parameters

Remarks

ARG_KEY Template parameter specifying the data type used to access map keys.

key The key whose hash value is to be calculated.

Calculates a hash value for the given key.

This function is called directly by CMap: : RemoveKey and indirectly by
CMap::Lookup and CMap::Operator [].

The default implementation creates a hash value by shifting key rightward by four
positions. Override this function so that it returns hash values appropriate for your
application.

See Also: CMap

IMPLEMENT_DYNAMIC
IMPLEMENT_DYNAMIC(class_name, base_class_name)

Parameters
class_name The actual name of the class (not enclosed in quotation marks).

base_class_name The name of the base class (not enclosed in quotation marks).

2427

IMPLEMENT_DYNCREATE

Remarks
Generates the C++ code necessary for a dynamic CObject-derived class with run-time
access to the class name and position within the hierarchy. Use the
IMPLEMENT_DYNAMIC macro in a .CPP module, then link the resulting object
code only once.

For more information, see "CObject Class Topics" in Visual C++ Programmer's
Guide online.

See Also: DECLARE_DYNAMIC, RUNTIME_CLASS, CObject::IsKindOf

IMPLEMENT_DYNCREATE
IMPLEMENT_DYNCREATE(class_name, base_class_name)

Parameters

Remarks

class_name The actual name of the class (not enclosed in quotation marks).

base_class_name The actual name of the base class (not enclosed in quotation
marks).

Use the IMPLEMENT_DYNCREATE macro with the DECLARE_DYNCREATE
macro to enable objects of CObject-derived classes to be created dynamically at run
time. The framework uses this ability to create new objects dynamically, for example,
when it reads an object from disk during serialization. Add the
IMPLEMENT_DYNCREATE macro in the class implementation file. For more
information, see "CObject Class Topics" in Visual C++ Programmer's Guide online.

If you use the DECLARE_DYNCREATE and IMPLEMENT_DYNCREATE
macros, you can then use the RUNTIME_CLASS macro and the
CObject::IsKindOf member function to determine the class of your objects at run
time.

If DECLARE_DYNCREATE is included in the class declaration, then
IMPLEMENT_DYNCREATE must be included in the class implementation.

See Also: DECLARE_DYNCREATE, RUNTIME_CLASS, CObject::IsKindOf

IMPLEMENT_OLECREATE
IMPLEMENT_OLECREATE(class_name, externaCname, I, wi, w2, bi, b2, b3,

.. b4, b5, b6, b7, b8)

#include <afxdisp.h>

Parameters
class_name The actual name of the class (not enclosed in quotation marks).

2428

Remarks

IMPLEMENT _OLECREATE_EX

externaCname The object name exposed to other applications (enclosed in quotation
marks).

I, wi, w2, bi, b2, b3, b4, b5, b6, b7, b8 Components of the class's CLSID.

This macro must appear in the implementation file for any class that uses
DECLARE_OLECREATE.

The external name is the identifier exposed to other applications. Client
applications use the external name to request an object of this class from an
automation server.

The OLE class ID is a unique 128-bit identifier for the object. It consists of one long,
two WORDs, and eight BYTEs, as represented by I, wi, w2, and bi through b8 in the
syntax description. ClassWizard and AppWizard create unique OLE class IDs for you
as required.

See Also: DECLARE_OLECREATE, CLSID Key.

IMPLEMENT_OLECREATE_EX(class_name, externaCname, I, wi, w2, bi, b2,
... b3, b4, b5, b6, b7, b8)

Parameters

Remarks

class_name The name of the control property page class.

externaCname The object name exposed to applications.

I, wi, w2, bi, b2, b3, b4, b5, b6, b7, b8 Components of the class's CLSID. For more
information on these parameters, see the Remarks for
IMPLEMENT_OLE CREATE.

Implements your control's class factory and the GetClassID member function of your
control class. This macro must appear in the implementation file for any control class
that uses the DECLARE_OLE CREATE_EX macro or the
BEGIN_OLEFACTORY and END_OLEFACTORY macros. The external name is
the identifier of the OLE control that is exposed to other applications. Containers use
this name to request an object of this control class.

See Also: DECLARE_OLECREATE_EX, BEGIN_OLEFACTORY,
END_OLEFACTORY, IMPLEMENT_OLE CREATE

2429

IMPLEMENT _OLETYPELIB

IMPLEMENT _ OLETYPELIB
IMPLEMENT_OLETYPELIB(class_name, tlid, wVerMajor, wVerMinor)

Parameters

Remarks

class_name The name of the control class related to the
type library.

tlid The ID number of the type library.

wVerMajor The type library major version number.

w VerMinor The type library minor version number.

Implements the control's GetTypeLib member function. This macro must appear in
the implementation file for any control class that uses the
DECLARE_OLETYPELIB macro.

See Also: DECLARE_OLETYPELIB

IMPLEMENT_SERIAL
IMPLEMENT_SERIAL(class_name, base_class_name, wSchema)

Parameters

Remarks

2430

class_name The actual name of the class (not enclosed in quotation marks).

base_class_name The name of the base class (not enclosed in quotation marks).

wSchema A UINT "version number" that will be encoded in the archive to enable a
deserializing program to identify and handle data created by earlier program
versions. The class schema number must not be -1.

Generates the C++ code necessary for a dynamic CObject-derived class with run-time
access to the class name and position within the hierarchy. Use the
IMPLEMENT_SERIAL macro in a .CPP module; then link the resulting object code
only once.

For more information, see the "CObject Class Topics" in Visual C++ Programmer's
Guide online.

See Also: DECLARE_SERIAL, RUNTIME_CLASS, CObject::IsKindOf

ISAPIASSERT
ISAPIASSERT(booleanExpression)

Parameters

Remarks

booleanExpression Specifies an expression (including pointer values) that evaluates
to nonzero or O.

Works exactly like the MFC macro ASSERT. Evaluates its argument. If the result is
0, the macro prints a diagnostic message and aborts the program. If the condition is
nonzero, it does nothing.

The diagnostic message has the form

assertion failed in file <name> in line <num>

where name is the name of the source file, and num is the line number of the assertion
that failed in the source file.

In the release version of your application, ISAPIASSERT does not evaluate the
expression and thus will not interrupt the program. If the expression must be evaluated
regardless of environment, use the ISAPIVERIFY macro in place of
ISAPIASSERT. ISAPIASSERT is available only in the debug version of your
application.

ISAPI applications do not have to use MFC. If MFC is not linked to your application,
ISAPIASSERT provides the same ASSERT functionality. If your application is
linked to the MFC, ISAPIASSERT simply calls MFC's ASSERT.

See Also: ISAPITRACE, ISAPITRACEO, ISAPITRACE1, ISAPITRACE2,
ISAPITRACE3,ISAPIVERIFY

ISAPITRACE
ISAPITRACE(exp)

Parameters

Remarks

exp Specifies a variable number of arguments that are used in exactly the same way
that a variable number of arguments are used in the run-time function printf.

Works exactly like the MFC macro TRACE, which itself provides functionality
similar to the printf function by sending a formatted string to a dump device such as
debug monitor. Like printffor C programs under MS-DOS, the ISAPITRACE
macro is a convenient way to track the value of variables as your program executes. In
the Debug environment, the ISAPITRACE macro output goes to the Debug window
of Visual C++. In the Release environment, it does nothing.

ISAPITRACE

2431

ISAPITRACEO

IS API applications do not have to use MFC. If MFC is not linked to your application,
ISAPITRACE provides the same TRACE functionality. If your application is linked
to the MFC, ISAPITRACE simply calls MFC's TRACE.

See Also: ISAPIASSERT, ISAPITRACEO, ISAPITRACEl, ISAPITRACE2,
ISAPITRACE3, ISAPIVERIFY

ISAPITRACEO
ISAPITRA CEO(exp)

Parameters

Remarks

exp A format string as used in the run-time function printf.

ISAPITRACEO is one variant of a group of trace macros that you can use for debug
output. This group includes ISAPITRACEO, ISAPITRACEl, ISAPITRACE2, and
ISAPITRACE3. The difference between these macros is the number of parameters
taken. ISAPITRACEO only takes a format string and can be used for simple text
messages. ISAPITRACEl takes a format string plus one argument-a variable to
be dumped. Likewise, ISAPITRA CE2 and ISAPITRA CE3 take two and three
parameters after the format string, respectively.

ISAPITRACEO does nothing if you have compiled a release version of your
application. As with ISAPITRACE, it only dumps data to the debug output device if
you have compiled a debug version of your application.

ISAPITRACEO works exactly like the MFC macro TRACEO. IS API applications do
not have to use MFC. If MFC is not linked to your application, ISAPITRACEO
provides the same TRACEO functionality. If your application is linked to the MFC,
ISAPITRACEO simply calls MFC's TRACEO.

See Also: ISAPIASSERT, ISAPITRACE, ISAPITRACEl, ISAPITRACE2,
ISAPITRACE3, ISAPIVERIFY

IS APITRACE1
ISAPITRACEl(exp, paraml)

Parameters

Remarks

2432

exp A format string as used in the run-time function printf.

paraml The name of the variable whose value should be dumped.

Works exactly like the MFC macro TRACEl. See ISAPITRACEO for a description
of ISAPITRACEl.

ISAPI applications do not have to use MFC. If MFC is not linked to your application,
ISAPITRACEl provides the same TRACEl functionality. If your application is
linked to the MFC, ISAPITRACEl simply calls MFC's TRACEl.

See Also: ISAPIASSERT, ISAPITRACE, ISAPITRACEO, ISAPITRACE2,
ISAPITRACE3, ISAPIVERIFY

ISAPITRACE2
ISAPITRACE2(exp, paraml, param2)

Parameters

Remarks

exp A format string as used in the run-time function printf.

paraml, param2 The name of the variable whose value should be dumped.

Works exactly like the MFC macro TRACE2. See ISAPITRACEO for a description
of ISAPITRACE2.

ISAPI applications do not have to use MFC. If MFC is not linked to your application,
ISAPITRACE2 provides the same TRACE2 functionality. If your application is
linked to the MFC, ISAPITRACE2 simply calls MFC's TRACE2.

See Also: ISAPIASSERT, ISAPITRACE, ISAPITRACEO, ISAPITRACEl,
ISAPITRACE3, ISAPIVERIFY

ISAPITRACE3
ISAPITRACE3(exp, paraml ,param2, param3)

Parameters

Remarks

exp A format string as used in the run-time function printf.

paraml, param2, param3 The name of the variable whose value should be dumped.

Works exactly like the MFC macro TRACE3. See ISAPITRACEO for a description
of ISAPITRACE3.

ISAPI applications do not have to use MFC. If MFC is not linked to your application,
ISAPITRACE3 provides the same TRACE3 functionality. If your application is
linked to the MFC, ISAPITRACE3 simply calls MFC's TRACE3.

See Also: ISAPIASSERT, ISAPITRACE, ISAPITRACEO, ISAPITRACEl,
ISAPITRACE2, ISAPIVERIFY

ISAPITRACE3

2433

ISAPIVERIFY

IS APIVERIFY
ISAPIVERIFY(booleanExpression)

Parameters

Remarks

booleanExpression Specifies an expression (including pointer values) that evaluates
to nonzero or O.

Works exactly like the MFC macro VERIFY. In the debug version of your
application, the ISAPIVERIFY macro evaluates its argument. If the result is 0, the
macro prints a diagnostic message and halts the program. If the condition is nonzero,
it does nothing.

The diagnostic message has the form

assertion failed in file <name> in line <num>

where name is the name of the source file and num is the line number of the assertion
that failed in the source file.

In the release version of your application, ISAPIVERIFY evaluates the expression
but does not print or interrupt the program. For example, if the expression is a
function call, the call will be made.

IS API applications do not have to use MFC. If MFC is not linked to your application,
IS API VERIFY provides the same VERIFY functionality. If your application is
linked to the MFC, ISAPIVERIFY simply calls MFC's VERIFY.

See Also: ISAPIASSERT, ISAPITRACE, ISAPITRACEO, ISAPITRACEl,
ISAPITRACE2, ISAPITRACE3

METHOD _PROLOGUE
METHOD_PROLOGUE(theClass, localClass)

Parameters

Remarks

2434

theClass Specifies the name of the class whose interface map is being implemented.

localClass Specifies the name of the local class that implements the interface map.

Use the METHOD_PROLOGUE macro to maintain the proper global state when
calling methods of an exported interface.

Typically, member functions of interfaces implemented by CCmdTarget-derived
objects already use this macro to provide automatic initialization of the pThis pointer.
For example:

class CInnerUnknown : public IUnknown

CInnerUnknown InnerUnknown;

II Inner IUnknown implementation

STDMETHODIMP_(ULONG) CInnerUnknown::AddRef()
{

METHOD_PROLOGUE(CCmdTarget. InnerUnknown)
return pThis->InternalAddRef();
}

For additional information, see Technical Note 38 online and "Managing the State
Data of MFC Modules" in "Creating New Documents, Windows, and Views," which
is in Visual C++ Programmer's Guide online.

ON_COMMAND
ON_COMMAND(id, memberFxn)

Parameters

Remarks

Example

id The command ID.

memberFxn The name of the message-handler function to which the command is
mapped.

This macro is usually inserted in a message map by ClassWizard or manually. It
indicates which function will handle a command message from a command
user-interface object such as a menu item or toolbar button.

When a command-target object receives a Windows WM_ COMMAND message
with the specified ID, ON_COMMAND will call the member function memberFxn to
handle the message.

Use ON_COMMAND to map a single command to a member function. Use
ON_COMMAND_RANGE to map a range of command ids to one member function.
Only one message-map entry can match a given command id. That is, you can't map a
command to more than one handler. For more information and examples, see
"Message Handling and Mapping Topics" in Visual C++ Programmer's Guide online.

II example for ON_COMMAND
BEGIN_MESSAGE_MAP(CMyDoc. CDocument

II{{AFX_MSG_MAP(CMyDoc)
ON_COMMAND(ID_MYCMD. OnMyCommand
II ... More entries to handle additional commands
I/} }AFX_MSG_MAP

END_MESSAGE_MAP()

See Also: ON_UPDATE_COMMAND_UI

ON_COMMAND

2435

ON_COMMAND_RANGE

ON_COMMAND _RANGE
ON_COMMAND_RANGE(idl, id2, memberFxn)

Parameters

Remarks

idl Command ID at the beginning of a contiguous range of command IDs.

id2 Command ID at the end of a contiguous range of command IDs.

memberFxn The name of the message-handler function to which the commands
are mapped.

Use this macro to map a contiguous range of command IDs to a single message
handler function. The range of IDs starts with idl and ends with id2.

Use ON_COMMAND_RANGE to map a range of command IDs to one member
function. Use ON_COMMAND to map a single command to a member function.
Only one message-map entry can match a given command ID. That is, you can't map
a command to more than one handler. For more information on mapping message
ranges, see "Handlers for Message-Map Ranges" in Visual C++ Programmers Guide
online.

Class Wizard does not support message map ranges, so you must place the macro
yourself. Be sure to put it outside the message map / / {{AFX_MSG_MAP delimiters.

See Also: ON_ VPDATE_ COMMAND_VI_RANGE, ON_ CONTROL_RANGE,
ON_COMMAND

ON_CONTROL
ON_CONTROL(wNotifyCode, id, memberFxn)

Parameters

Remarks

2436

wNotifyCode The notification code of the control.

id The command ID.

memberFxn The name of the message-handler function to which the command is
mapped.

Indicates which function will handle a custom-control notification message. Control
notification messages are those sent from a control to its parent window.

There should be exactly one ON_CONTROL macro statement in your message map
for every control notification message that must be mapped to a message-handler
function.

For more information and examples, see "Message Handling and Mapping Topics"
in Visual C++ Programmer's Guide online.

See Also: ON_MESSAGE, ON_REGISTERED_MESSAGE

ON_CONTROL_RANGE(wNotifyCode, idl, id2, memberFxn)

Parameters

Remarks

wNotifyCode The notification code to which your handler is responding.

idl Command ID at the beginning of a contiguous range of control IDs.

id2 Command ID at the end of a contiguous range of control IDs.

memberFxn The name of the message-handler function to which the controls are
mapped.

Use this macro to map a contiguous range of control IDs to a single message handler
function for a specified Windows notification message, such as BN_CLICKED. The
range of IDs starts with idl and ends with id2. The handler is called for the specified
notification coming from any of the mapped controls.

Class Wizard does not support message map ranges, so you must place the macro
yourself. Be sure to put it outside the message map / / {{AFX_MSG_MAP delimiters.

See Also: ON_UPDATE_COMMAND_UI_RANGE,ON_COMMAND_RANGE

ON_EVENT(theClass, id, dispid, pfnHandler, vtsParams)

Parameters
theClass The class to which this event sink map belongs.

id The control ID of the OLE control.

dispid The dispatch ID of the event fired by the control.

pfnHandler Pointer to a member function that handles the event. This function
should have a BOOL return type, and parameter types that match the event's
parameters (see vtsParams). The function should return TRUE to indicate the
event was handled; otherwise FALSE.

vtsParams A sequence of VTS_ constants that specifies the types of the parameters
for the event. These are the same constants that are used in dispatch map entries
such as DISP _FUNCTION.

2437

Remarks
Use the ON_EVENT macro to define an event handler function for an event fired by
an OLE control.

The vtsParams argument is a space-separated list of values from the VTS_ constants.
One or more of these values separated by spaces (not commas) specifies the function's
parameter list. For example:

VTS_I2 VTS_BOOL

specifies a list containing a short integer followed by a BOOL.

For a list of the VTS_ constants, see EVENT_CUSTOM.

See Also: ON_EVENT_RANGE, ON_PROPNOTIFY,
ON_PROPNOTIFY _RANGE

ON_EVENT_RANGE(theClass, idFirst, idLast, dispid,pfnHandler, vtsParams)

Parameters

Remarks

2438

theClass The class to which this event sink map belongs.

idFirst The control ID of the first OLE control in the range.

idLast The control ID of the last OLE control in the range.

dispid The dispatch ID of the event fired by the control.

pfnHandler Pointer to a member function that handles the event. This function
should have a BOOL return type, a first parameter of type UINT (for the control
ID), and additional parameter types that match the event's parameters (see
vtsParams). The function should return TRUE to indicate the event was handled;
otherwise FALSE.

vtsParams A sequence of VTS_ constants that specifies the types of the parameters
for the event. The first constant should be of type VTS_I4, for the control ID.
These are the same constants that are used in dispatch map entries such as
DISP _FUNCTION.

Use the ON_EVENT_RANGE macro to define an event handler function for an
event fired by any OLE control having a control ID within a contiguous range of IDs.

The vtsParams argument is a space-separated list of values from the VTS_ constants.
One or more of these values separated by spaces (not commas) specifies the function's
parameter list. For example:

VTS_I2 VTS_BOOL

specifies a list containing a short integer followed by a BOOL.

For a list of the VTS_ constants, see EVENT_CUSTOM.

See Also: ON_EVENT, ON_PROPNOTIFY, ON_PROPNOTIFY_RANGE

ON_EVENT_REFLECT(theClass, dispid, pfnHandler, vtsParams)

Parameters

Remarks

theClass The class to which this event sink map belongs.

dispid The dispatch ID of the event fired by the control.

pfnHandler Pointer to a member function that handles the event. This function
should have a BOOL return type and parameter types that match the event's
parameters (see vtsParams). The function should return TRUE to indicate the
event was handled; otherwise FALSE.

vtsParams A sequence of VTS_ constants that specifies the types of the parameters
for the event. These are the same constants that are used in dispatch map entries
such as DISP _FUNCTION.

The ON_EVENT_REFLECT macro, when used in the event sink map of an OLE
control's wrapper class, receives events fired by the control before they are handled by
the control's container.

The vtsParams argument is a space-separated list of values from the VTS_ constants.

One or more of these values separated by spaces (not commas) specifies the function's
parameter list. For example:

VTS_I2 VTS_BOOL

specifies a list containing a short integer followed by a BOOL.

For a list of the VTS_ constants, see EVENT_CUSTOM.

See Also: ON_EVENT, ON_PROPNOTIFY, ON_PROPNOTIFY_REFLECT

ON_MESSAGE(message, memberFxn)

Parameters
message The message rD.
memberFxn The name of the message-handler function to which the message is

mapped.

2439

Remarks

Example

Indicates which function will handle a user-defined message. User-defined messages
are usually defined in the range WM_USER to Ox7FFF. User-defined messages are
any messages that are not standard Windows WM_MESSAGE messages. There
should be exactly one ON_MESSAGE macro statement in your message map for
every user-defined message that must be mapped to a message-handler function.

For more information and examples, see "Message Handling and Mapping Topics" in
Visual C++ Programmer's Guide online.

II example for ON_MESSAGE
#define WM_MYMESSAGE (WM_USER + 1)
BEGIN_MESSAGE_MAP(CMyWnd, CMyParentWndClass

II{{AFX_MSG_MAP(CMyWnd
ON_MESSAGE(WM_MYMESSAGE, OnMyMessage)
II ... Possibly more entries to handle additional messages
I/} JAFX_MSG_MAP

END_MESSAGE_MAP()

See Also: ON_UPDATE_COMMAND_UI, ON_CONTROL,
ON_REGISTERED_MESSAGE, ON_COMMAND, "User-Defined Handlers"

ON_OLECMD(pguid, olecmdid, id)

Parameters

Remarks

2440

pguid Identifier of the command group to which the command belongs. Use NULL
for the standard group.

olecmdid The identifier of the OLE command.

id The menu ID, toolbar ID, button ID, or other ID of the resource or object issuing
the command.

Routes commands through the command dispatch interface IOleCommandTarget.
IOleCommandTarget allows a container to receive commands that originate in a
DocObject's user interface, and allows the container to send the same commands
(such as New, Open, SaveAs, and Print on the File menu; and Copy, Paste, Undo,
and so forth on the Edit menu) to a DocObject.

IOleCommandTarget is simpler than OLE Automation's IDispatch.
IOleCommandTarget relies entirely on a standard set of commands that rarely
have arguments, and no type information is involved (type safety is diminished for
command arguments as well). If you do need to dispatch commands with arguments,
use COleServerDoc: :OnExecOleCmd.

The IOleCommandTarget standard menu commands have been implemented by
MFC in the following macros:

ON_OLECMD_CLEARSELECTION()
Dispatches the Edit Clear command. Implemented as:
ON_OLECMD(NULL. OLECMDID_CLEARSELECTION. ID_EDIT_CLEAR)

ON_OLECMD_COPY()
Dispatches the Edit Copy command. Implemented as:
ON_OLECMD(NULL. OLECMDID_COPY. ID_EDIT_COPY)

ON_OLECMD_CUT()
Dispatches the Edit Cut command. Implemented as:
ON_OLECMD(NULL. OLECMDID_CUT. ID_EDIT_CUT)

ON_OLECMD_NEW()
Dispatches the File New command. Implemented as:
ON_OLECMD(NULL. OLECMDID_NEW. ID_FILE_NEW)

ON_OLECMD_OPEN()
Dispatches the File Open command. Implemented as:
ON_OLECMD(NULL. OLECMDID_OPEN. ID_FILE_OPEN)

ON_OLECMD_PAGESETUP()
Dispatches the File Page Setup command. Implemented as:
ON_OLECMD(NULL. OLECMDID_PAGESETUP. ID_FILE_PAGE_SETUP)

ON_OLECMD_PASTE()
Dispatches the Edit Paste command. Implemented as:
ON_OLECMD(NULL. OLECMDID_PASTE. ID_EDIT_PASTE)

ON_OLECMD_PASTESPECIAL()
Dispatches the Edit Paste Special command. Implemented as:
ON_OLECMD(NULL. OLECMDID_PASTESPECIAL. ID_EDIT_PASTE_SPECIAL)

ON_OLECMD_PRINT()
Dispatches the File Print command. Implemented as:
ON_OLECMD(NULL. OLECMDID_PRINT. ID_FILE_PRINT)

ON_OLECMD_PRINTPREVIEW()
Dispatches the File Print Preview command. Implemented as:
ON_OLECMD(NULL. OLECMDID_PRINTPREVIEW. ID_FILE_PRINT_PREVIEW)

ON_OLECMD_REDO()
Dispatches the Edit Redo command. Implemented as:
ON_OLECMD(NULL. OLECMDID_REDO. ID_EDIT_REDO)

ON_OLECMD_SAVE()
Dispatches the File Save command. Implemented as:
ON_OLECMD(NULL. OLECMDID_SAVE. ID_FILE_SAVE)

2441

ON_OLECMD_SAVE_AS()
Dispatches the File Save As command. Implemented as:
ON_OLECMD(NULL. OLECMDID_SAVEAS. ID_FILE_SAVE_AS)

ON_OLECMD_SAVE_COPY_AS()
Dispatches the File Save Copy As command. Implemented as:
ON_OLECMD(NULL. OLECMDID_SAVECOPYAS. ID_FILE_SAVE_COPY_AS)

ON_OLECMD_SELECTALL()
Dispatches the Edit Select All command. Implemented as:
ON_OLECMD(NULL. OLECMDID_SELECTALL. ID_EDIT_SELECT_ALL)

ON_OLECMD_UNDO()
Dispatches the Edit Undo command. Implemented as:
ON_OLECMD(NULL. OLECMDID_UNDO. ID_EDIT_UNDO)

See Also: COleCmdUI, COleServerDoc: :OnExecOleCmd

ON_OLEVERB
ON_OLEVERB(idsVerbName, memberFxn)

Parameters

Remarks

idsVerbName The string resource ID of the verb's name.

memberFxn The function called by the framework when the verb is invoked.

This macro defines a message map entry that maps a custom verb to a specific
member function of your control.

The resource editor can be used to create custom verb names that are added to your
string table.

The function prototype for memberFxn is:

BOOL memberFxn(LPMSG IpMsg, HWND h WndParent, LPCRECT IpRect);

The values of the IpMsg, h WndParent, and IpRect parameters are taken from the
corresponding parameters of the IOIeObject: :Do Verb member function.

See Also: ON_STDOLEVERB

ON_PARSE_COMMAND(FnName, mapClass, Args)

Parameters
FnName The name of the member function. Also the name of the command.

2442

Remarks

Example

map Class The class name to map the function to.

Args The arguments that map to the parameter's FnName. See Remarks for a list of
symbols.

The ON_PARSE_COMMAND macro is used in a parse map to define a command to
a CHttpServer object from a client.

The member function identified by FnName must take a pointer to the
CHttpServerContext as its first parameter. FnName is of the type LPSTR, and is
identified by the symbol ITS_LPSTR in the parse map; that is, FnName points to a
string containing the member function in class mapClass.

The parameter Args can take one of the following values:

Symbol

ITS_EMPTY

ITS_PSTR

ITS_I2

ITS_I4

ITS_R4

ITS_R8

Type or Comment

Args cannot be blank. Use ITS_EMPTY if you have no arguments.

A pointer to a string.

a short

along

a float

a double

BEGIN_PARSE_MAP(CDerivedClass, CHttpServer)
DEFAULT_PARSE_COMMAND(Myfunc, CDerivedClass)
ON_PARSE_COMMAND(Myfunc, CDerivedClass, ITS_PSTR

ITS_I2)
ON_PARSE_COMMAND_PARAMS("string integer=42")
ON_PARSE_COMMAND(Myfunc2, CDerivedClass, ITS_PSTR

ITS_I2 ITS_PSTR)
ON_PARSE_COMMAND_PARAMS("string integer

stri ng2=' Defaul t va 1 ue tt.)

END_PARSE_MAP(CDerivedClass)

Note Use single quotes if you incorporate spaces into the default values for optional
ITS_PSTRs.

void Myfunc(CHttpServerContext* pCtxt, LPTSTR pszName, int nNumber);
void Myfunc2(CHttpServerContext* pCtxt, LPTSTR pszName, int nNumber,

pszTitle);

Note The handlers for a parse map command must take a pointer to a CHttpServerContext
as the first parameter, and the parameters must be declared in the same order in which they're
defined in ON_PARSE_COMMAND.

See Also: BEGIN_PARSE_MAP, END_PARSE_MAP,
ON_PARSE_COMMAND_PARAMS, DEFAULT_PARSE_COMMAND,
CHttpServer

2443

ON_PARS E_C OMMAND_PARAMS
ON_PARSE_COMMAND_PARAMS(Params)

Parameters

Remarks

Params The parameters, mapped to the Args parameter and associated with the
function identified by FnName, in the macro ON_PARSE_COMMAND
immediately preceding ON_PARSE_ COMMAND _PARAMS.

The macro ON_PARSE_COMMAND_PARAMS identifies and specifies defaults
for the parameters associated with the function that is mapped to a command to a
CHttpServer object by a client. The macro ON_PARSE_COMMAND_PARAMS
must immediately follow the ON_PARSE_ COMMAND macro with which it is
associated.

If a parameter is named, the client must supply the parameter name in the query.
For example, if your parameters are as follows:

ON_PARSE_COMMAND_PARAMS("string int=42")

then the parameter string must be supplied by the client, or the query will fail.

If the parameter is optional, the client need not supply it, and the parse map will
supply the default value. For example, if your parameters are as follows:

ON_PARSE_COMMAND_PARAMS("string=default int=42")

then neither parameter must be defined in the client's query, and the parameter string
is by default an empty string.

See ON_PARSE_COMMAND for a parse map example.

See Also: BEGIN_PARSE_MAP, END_PARSE_MAP,
ON_PARSE_COMMAND, DEFAULT_PARSE_COMMAND, CHttpServer

ON_PROPNOTIFY
ON_PROPNOTIFY(theClass, id, dispid, pfnRequest, pfnChanged)

Parameters

2444

the Class The class to which this event sink map belongs.

id The control ID of the OLE control.

dispid The dispatch ID of the property involved in the notification.

pfnRequest Pointer to a member function that handles the OnRequestEdit
notification for this property. This function should have a BOOL return type and a

Remarks

BOOL* parameter. This function should set the parameter to TRUE to allow the
property to change and FALSE to disallow. The function should return TRUE to
indicate the notification was handled; otherwise FALSE.

pfnChanged Pointer to a member function that handles the OnChanged notification
for this property. The function should have a BOOL return type and a UINT
parameter. The function should return TRUE to indicate that notification was
handled; otherwise FALSE.

Use the ON_PROPNOTIFY macro to define an event sink map entry for handling
property notifications from an OLE control.

The vtsParams argument is a space-separated list of values from the VTS_ constants.
One or more of these values separated by spaces (not commas) specifies the function's
parameter list. For example:

VTS_I2 VTS_BOOL

specifies a list containing a short integer followed by a BOOL.

For a list of the VTS_ constants, see EVENT_CUSTOM.

See Also: ON_EVENT_RANGE,ON_PROPNOTIFY_RANGE

ON_PROPNOTIFY _RANGE
ON_PROPNOTIFY _RANGE(theClass, idFirst, idLast, dispid, pfnRequest, pfnChanged)

Parameters
theClass The class to which this event sink map belongs.

idFirst The control ID of the first OLE control in the range.

idLast The control ID of the last OLE control in the range.

dispid The dispatch ID of the property involved in the notification.

pfnRequest Pointer to a member function that handles the OnRequestEdit
notification for this property. This function should have a BOOL return type and
UINT and BOOL* parameters. The function should set the parameter to TRUE to
allow the property to change and FALSE to disallow. The function should return
TRUE to indicate that notification was handled; otherwise FALSE.

pfnChanged Pointer to a member function that handles the On Changed notification
for this property. The function should have a BOOL return type and a UINT
parameter. The function should return TRUE to indicate that notification was
handled; otherwise FALSE.

2445

Remarks
Use the ON_PROPNOTIFY_RANGE macro to define an event sink map entry for
handling property notifications from any OLE control having a control ID within a
contiguous range of IDs.

See Also: ON_EVENT_RANGE, ON_PROPNOTIFY, ON_EVENT

ON_PROPNOTIFY _REFLECT
ON_PROPNOTIFY _REFLECT(the Class, dispid, pfnRequest, pfnChanged)

Parameters

Remarks

theClass The class to which this event sink map belongs.

dispid The dispatch ID of the property involved in the notification.

pfnRequest Pointer to a member function that handles the OnRequestEdit
notification for this property. This function should have a BOOL return type and a
BOOL* parameter. This function should set the parameter to TRUE to allow the
property to change and FALSE to disallow. The function should return TRUE to
indicate the notification was handled; otherwise FALSE.

pfnChanged Pointer to a member function that handles the OnChanged notification
for this property. The function should have a BOOL return type and no parameters.
The function should return TRUE to indicate the notification was handled;
otherwise FALSE.

The ON_PROPNOTIFY _REFLECT macro, when used in the event sink map of an
OLE control's wrapper class, receives property notifications sent by the control before
they are handled by the control's container.

See Also: ON_EVENT_REFLECT, ON_PROPNOTIFY

ON_REGISTERED _MESSAGE
ON_REGISTERED_MESSAGE(nMessageVariable, memberFxn)

Parameters

Remarks

2446

nMessageVariable The registered window-message ID variable.

memberFxn The name of the message-handler function to which the message is
mapped.

The Windows RegisterWindowMessage function is used to define a new window
message that is guaranteed to be unique throughout the system. This macro indicates
which function will handle the registered message.

Example

For more information and examples, see "Message Handling and Mapping Topics"
in Visual C++ Programmer's Guide online.

II example for ON_REGISTERED_MESSAGE
const UINT wm_Find - RegisterWindowMessage(FINDMSGSTRING
BEGIN_MESSAGE_MAP(CMyWnd. CMyParentWndClass)

II{{AFX_MSG_MAP(CMyWnd)
ON_REGISTERED_MESSAGE(wm_Find. OnFind
II ... Possibly more entries to handle additional messages
I/}} AFX_MSG_MAP

END_MESSAGE_MAP()

See Also: ON_MESSAGE, ON_UPDATE_COMMAND_UI, ON_CONTROL,
ON_COMMAND, ::RegisterWindowMessage, "User-Defined Handlers"

ON_REGISTERED _THREAD _MESSAGE
ON_REGISTERED_THREAD_MESSAGE(nMessageVariable, memberFxn)

Parameters

Remarks

nMessageVariable The registered window-message ID variable.

memberFxn The name of the CWinThread-message-handler function to which the
message is mapped.

Indicates which function will handle the message registered by the Windows
RegisterWindowMessage function. RegisterWindowMessage is used to define a
new window message that is guaranteed to be unique throughout the system.
ON_REGISTERED_THREAD_MESSAGE must be used instead of
ON_REGISTERED_MESSAGE when you have a CWinThread class.

See Also: ON_REGISTERED_MESSAGE,ON_THREAD_MESSAGE,
::RegisterWindowMessage, CWinThread

ON_STDOLEVERB
ON_STDOLEVERB(iVerb, memberFxn)

Parameters
iVerb The standard verb index for the verb being overridden.

memberFxn The function called by the framework when the verb is invoked.

Remarks
Use this macro to override the default behavior of a standard verb.

2447

ON_THREAD_MESSAGE

The standard verb index is of the form OLEIVERB_, followed by an action.
OLEIVERB_SHOW, OLEIVERB_HIDE, and OLEIVERB_UIACTIVATE are
some examples of standard verbs.

See ON_OLEVERB for a description of the function prototype to be used as the
memberFxn parameter.

See Also: ON_OLEVERB

ON_THREAD_MESSAGE(message, memberFxn)

Parameters

Remarks

message The message ID.

memberFxn The name of the CWinThread-message-handler function to which the
message is mapped.

Indicates which function will handle a user-defined message.
ON_THREAD_MESSAGE must be used instead of ON_MESSAGE when you
have a CWinThread class. User-defined messages are any messages that are not
standard Windows WM_MESSAGE messages. There should be exactly one
ON_THREAD_MESSAGE macro statement in your message map for every
user-defined message that must be mapped to a message-handler function.

See Also: ON_MESSAGE, ON_REGISTERED_THREAD_MESSAGE,
CWinThread

ON_VPDATE_COMMAND_VI
ON_UPDATE_COMMAND_VI(id, memberFxn)

Parameters

Remarks

2448

id The message ID.

memberFxn The name of the message-handler function to which the message is
mapped.

This macro is usually inserted in a message map by ClassWizard to indicate which
function will handle a user-interface update command message.

There should be exactly one ON_VPDATE_COMMAND_UI macro statement in
your message map for every user-interface update command that must be mapped to a
message-handler function.

For more information and examples, see "Message Handling and Mapping Topics" in
Visual C++ Programmer's Guide online.

See Also: ON_MESSAGE, ON_REGISTERED_MESSAGE, ON_CONTROL,
ON_COMMAND, CCmdUI

ON_UPDATE_COMMAND_UI_RANGE
ON_UPDATE_COMMAND_UI_RANGE(idl, id2, memberFxn)

Parameters

Remarks

idl Command ID at the beginning of a contiguous range of command IDs.

id2 Command ID at the end of a contiguous range of command IDs.

memberFxn The name of the update message-handler function to which the
commands are mapped.

Use this macro to map a contiguous range of command IDs to a single update message
handler function. Update message handlers update the state of menu items and toolbar
buttons associated with the command. The range of IDs starts with idl and ends with
id2.

ClassWizard does not support message map ranges, so you must place the macro
yourself. Be sure to put it outside the message map / / {{AFX_MSG_MAP delimiters.

See Also: ON_COMMAND_RANGE,ON_CONTROL_RANGE

PROPPAGEID
PROPPAGEID(clsid)

Parameters

Remarks

clsid The unique class ID of a property page.

Use this macro to add a property page for use by your OLE control.
All PROPPAGEID macros must be placed between the
BEGIN_PROPPAGEIDS and END_PROPPAGEIDS macros in your
control's implementation file.

See Also: BEGIN_PROPPAGEIDS, END_PROPPAGEIDS

PROPPAGEID

2449

BOOL PX_Blob(CPropExchange* pPX, LPCTSTR pszPropName,
.. HGLOBAL& hBlob, HGLOBAL hBlobDefault = NULL);

Return Value
Nonzero if the exchange was successful; 0 if unsuccessful.

Parameters

Remarks

2450

pPX Pointer to the CPropExchange object (typically passed as a parameter to
DoPropExchange).

pszPropName The name of the property being exchanged.

hBlob Reference to the variable where the property is stored (typically a member
variable of your class).

hBlobDefault Default value for the property.

Call this function within your control's DoPropExchange member function to serialize
or initialize a property that stores binary large object (BLOB) data. The property's
value will be read from or written to the variable referenced by hBlob, as appropriate.
This variable should be initialized to NULL before initially calling PX_Blob for the
first time (typically, this can be done in the control's constructor). If hBlobDefault is
specified, it will be used as the property's default value. This value is used if, for any
reason, the control's initialization or serialization process fails.

The handles hBlob and hBlobDefault refer to a block of memory which contains the
following:

• A DWORD which contains the length, in bytes, of the binary data that follows,
followed immediately by

• A block of memory containing the actual binary data.

Note that PX_Blob will allocate memory, using the Windows GlobalAlloc
API, when loading BLOB-type properties. You are responsible for freeing
this memory. Therefore, the destructor of your control should call GlobalFree
on any BLOB-type property handles to free up any memory allocated to
your control.

See Also: COleControl::DoPropExchange

BOOL PX_Bool(CPropExchange* pPX, LPCTSTR pszPropName,
... BOOL& bValue);

BOOL PX_Bool(CPropExchange* pPX, LPCTSTR pszPropName,
... BOOL& b Value, BOOL bDefault);

Return Value
Nonzero if the exchange was successful; 0 if unsuccessful.

Parameters

Remarks

pPX Pointer to the CPropExchange object (typically passed as a parameter to
DoPropExchange).

pszPropName The name of the property being exchanged.

bValue Reference to the variable where the property is stored (typically a member
variable of your class).

bDefault Default value for the property.

Call this function within your control's DoPropExchange member function to serialize
or initialize a property of type BOOL. The property's value will be read from or
written to the variable referenced by bValue, as appropriate. If bDefault is specified, it
will be used as the property's default value. This value is used if, for any reason, the
control's serialization process fails.

See Also: COleControl::DoPropExchange

PX_Color
BOOL PX_Color(CPropExchange* pPX, LPCTSTR pszPropName,

... OLE_COLOR& clrValue);
BOOL PX_Color(CPropExchange* pPX, LPCTSTR pszPropName,

... OLE_COLOR& clrValue, OLE_COLOR clrDefault);

Return Value
Nonzero if the exchange was successful; 0 if unsuccessful.

Parameters
pPX Pointer to the CPropExchange object (typically passed as a parameter to

DoPropExchange).

pszPropName The name of the property being exchanged.

clrValue Reference to the variable where the property is stored (typically a member
variable of your class).

clrDefault Default value for the property, as defined by the control developer.

2451

PX_ Currency

Remarks
Call this function within your control's DoPropExchange member function to serialize
or initialize a property of type OLE_COLOR. The property's value will be read from
or written to the variable referenced by clrValue, as appropriate. If clrDefault is
specified, it will be used as the property's default value. This value is used if, for any
reason, the control's serialization process fails.

See Also: COleControl::DoPropExchange

PX_ Currency
BOOL PX_ Currency(CPropExchange* pPX, LPCTSTR pszPropName,

"+ CY& cyValue);
BOOL PX_ Currency(CPropExchange* pPX, LPCTSTR pszPropName,

"+ CY & cyValue, CY cyDefault);

Return Value
Nonzero if the exchange was successful; 0 if unsuccessful.

Parameters

Remarks

pPX Pointer to the CPropExchange object (typically passed as a parameter to
DoPropExchange).

pszPropName The name of the property being exchanged.

cyValue Reference to the variable where the property is stored (typically a member
variable of your class).

cyDefault Default value for the property.

Call this function within your control's DoPropExchange member function to serialize
or initialize a property of type currency. The property's value will be read from or
written to the variable referenced by cyValue, as appropriate. If cyDefault is specified,
it will be used as the property's default value. This value is used if, for any reason, the
control's serialization process fails.

See Also: COleControl::DoPropExchange

BOOL PX_DataPath(CPropExchange* pPX, LPCTSTR pszPropName,
"+ CDataPathProperty& dataPathProperty);

BOOL PX_DataPath(CPropExchange* pPXe,
"+ CDataPathProperty& dataPathProperty);

Return Value
Nonzero if the exchange was successful; 0 if unsuccessful.

2452

Parameters

Remarks

pPX Pointer to the CPropExchange object (typically passed as a parameter to
DoPropExchange).

pszPropName The name of the property being exchanged.

dataPathProperty Reference to the variable where the property is stored (typically a
member variable of your class).

Call this function within your control's DoPropExchange member function to serialize
or initialize a data path property of type CDataPathProperty. Data path properties
implement asynchronous control properties. The property's value will be read from or
written to the variable referenced by dataPathProperty, as appropriate.

See Also: COleControl: :DoPropExchange, CDataPathProperty

BOOL PX_Double(CPropExchange* pPX, LPCTSTR pszPropName,
... double& doubleValue);

BOOL PX_Double(CPropExchange* pPX, LPCTSTR pszPropName,
... double& doubleValue, double doubleDefault);

Return Value
Nonzero if the exchange was successful; 0 if unsuccessful.

Parameters

Remarks

pPX Pointer to the CPropExchange object (typically passed as a parameter to
DoPropExchange).

pszPropName The name of the property being exchanged.

double Value Reference to the variable where the property is stored (typically a
member variable of your class).

doubleDefault Default value for the property.

Call this function within your control's DoPropExchange member function to serialize
or initialize a property of type double. The property's value is read from or written to
the variable referenced by double Value, as appropriate. If doubleDefault is specified,
it will be used as the property's default value. This value is used if, for any reason, the
control's serialization process fails.

See Also: COleControl: :DoPropExchange, PX_Float, PX_Short

2453

BOOL PX_Float(CPropExchange* pPX, LPCTSTR pszPropName, float& floatValue);
BOOL PX_Float(CPropExchange* pPX, LPCTSTR pszPropName, float& floatValue,

... floatfloatDefault);

Return Value
Nonzero if the exchange was successful; 0 if unsuccessful.

Parameters

Remarks

pPX Pointer to the CPropExchange object (typically passed as a parameter to
DoPropExchange).

pszPropName The name of the property being exchanged.

floatValue Reference to the variable where the property is stored (typically a member
variable of your class).

floatDefault Default value for the property.

Call this function within your control's DoPropExchange member function to serialize
or initialize a property of type float. The property's value is read from or written to
the variable referenced by floatValue, as appropriate. IffloatDefault is specified, it
will be used as the property's default value. This value is used if, for any reason, the
control's serialization process fails.

See Also: COleControl::DoPropExchange, PX_Double, PX_String

BOOL PX_Font(CPropExchange* pPX, LPCTSTR pszPropName,
... CFontHolder&font, const FONTDESC FAR* pFontDesc = NULL,
... LPFONTDISP pFontDispAmbient = NULL);

Return Value
Nonzero if the exchange was successful; 0 if unsuccessful.

Parameters

2454

pPX Pointer to the CPropExchange object (typically passed as a parameter to
DoPropExchange).

pszPropName The name of the property being exchanged.

font A reference to a CFontHolder object that contains the font property.

pFontDesc A pointer to a FONTDESC structure containing the values to use in
initializing the default state of the font property, in the case where
pFontDispAmbient is NULL.

Remarks

pFontDispAmbient A pointer to the IFontDisp interface of a font to use in
initializing the default state of the font property.

Call this function within your control's DoPropExchange member function to
serialize or initialize a property of type font. The property's value is read from or
written to font, a CFontHolder reference, when appropriate. If pFontDesc and
pFontDispAmbient are specified, they are used for initializing the property's
default value, when needed. These values are used if, for any reason, the control's
serialization process fails. Typically, you pass NULL for pFontDesc and the ambient
value returned by COleControl::AmbientFont for pFontDispAmbient. Note that the
font object returned by COleControl::AmbientFont must be released by a call to the
IFontDisp: :Release member function.

See Also: COleControl: :DoPropExchange, COleControl: : AmbientFont

BOOL PX_IUnknown(CPropExchange* pPX, LPCTSTR pszPropName,
.. LPUNKNOWN& pUnk, REFIID iid, LPUNKNOWN pUnkDefault = NULL);

Return Value
Nonzero if the exchange was successful; 0 if unsuccessful.

Parameters

Remarks

pPX Pointer to the CPropExchange object (typically passed as a parameter to
DoPropExchange).

pszPropName The name of the property being exchanged.

pUnk Reference to a variable containing the interface of the object that represents the
value of the property.

iid An interface ID indicating which interface of the property object is used by the
control.

pUnkDefault Default value for the property.

Call this function within your control's DoPropExchange member function to serialize
or initialize a property represented by an object having an IUnknown-derived
interface. The property's value is read from or written to the variable referenced by
pUnk, as appropriate. If pUnkDefault is specified, it will be used as the property's
default value. This value is used if, for any reason, the control's serialization process
fails.

See Also: COleControl::DoPropExchange

2455

BOOL PX_Long(CPropExchange* pPX, LPCTSTR pszPropName, long& IValue);
BOOL PX_Long(CPropExchange* pPX, LPCTSTR pszPropName, long& IValue,

... long IDefault);

Return Value
Nonzero if the exchange was successful; 0 if unsuccessful.

Parameters

Remarks

pPX Pointer to the CPropExchange object (typically passed as a parameter to
DoPropExchange).

pszPropName The name of the property being exchanged.

IValue Reference to the variable where the property is stored (typically a member
variable of your class).

IDefault Default value for the property.

Call this function within your control's DoPropExchange member function to serialize
or initialize a property of type long. The property's value is read from or written to the
variable referenced by IValue, as appropriate. If IDefault is specified, it will be used as
the property's default value. This value is used if, for any reason, the control's
serialization process fails.

See Also: COleControl::DoPropExchange

BOOL PX_Picture(CPropExchange* pPX, LPCTSTR pszPropName,
... CPictureHolder& pict);

BOOL PX_Picture(CPropExchange* pPX, LPCTSTR pszPropName,
... CPictureHolder& pict, CPictureHolder& pictDefault);

Return Value
Nonzero if the exchange was successful; 0 if unsuccessful.

Parameters

2456

pPX Pointer to the CPropExchange object (typically passed as a parameter to
DoPropExchange).

pszPropName The name of the property being exchanged.

pict Reference to a CPictureHolder object where the property is stored (typically a
member variable of your class).

pictDefault Default value for the property.

Remarks
Call this function within your control's DoPropExchange member function to serialize
or initialize a picture property of your control. The property's value is read from or
written to the variable referenced by pict, as appropriate. If pictDefault is specified, it
will be used as the property's default value. This value is used if, for any reason, the
control's serialization process fails.

See Also: COleControl: : DoPropExchange

BOOL PX_Short(CPropExchange* pPX, LPCTSTRpszPropName, short& sValue);
BOOL PX_Short(CPropExchange* pPX, LPCTSTRpszPropName, short& sValue,

... short sDefault);

Return Value
Nonzero if the exchange was successful; 0 if unsuccessful.

Parameters

Remarks

pPX Pointer to the CPropExchange object (typically passed as a parameter to
DoPropExchange).

pszPropName The name of the property being exchanged.

sValue Reference to the variable where the property is stored (typically a member
variable of your class).

sDefault Default value for the property.

Call this function within your control's DoPropExchange member function to serialize
or initialize a property of type short. The property's value is read from or written to
the variable referenced by sValue, as appropriate. If sDefault is specified, it will be
used as the property's default value. This value is used if, for any reason, the control's
serialization process fails.

See Also: COleControl: : DoPropExchange

BOOL PX_String(CPropExchange* pPX, LPCTSTR pszPropName,
... CString& strValue);

BOOL PX_String(CPropExchange* pPX, LPCTSTR pszPropName,
... CString& strValue, CString strDefault);

Return Value
Nonzero if the exchange was successful; 0 if unsuccessful.

2457

PX_ULong

Parameters

Remarks

pPX Pointer to the CPropExchange object (typically passed as a parameter to
DoPropExchange).

pszPropName The name of the property being exchanged.

strValue Reference to the variable where the property is stored (typically a member
variable of your class).

strDefault Default value for the property.

Call this function within your control's DoPropExchange member function to serialize
or initialize a character string property. The property's value is read from or written to
the variable referenced by strValue, as appropriate. If strDefault is specified, it will be
used as the property's default value. This value is used if, for any reason, the control's
serialization process fails.

See Also: COleControl::DoPropExchange, CString

PX_ULong
BOOL PX_ULong(CPropExchange* pPX, LPCTSTR pszPropName,

... ULONG& ulValue);
BOOL PX_ULong(CPropExchange* pPX, LPCTSTR pszPropName,

... ULONG& ulValue, long uIDefault);

Return Value
Nonzero if the exchange was successful; 0 if unsuccessful.

Parameters

Remarks

2458

pPX Pointer to the CPropExchange object (typically passed as a parameter to
DoPropExchange).

pszPropName Name of the property being exchanged.

ulValue Reference to the variable where the property is stored (typically a member
variable of your class).

ulDefault Default value for the property.

Call this function within your control's DoPropExchange member function to serialize
or initialize a property of type ULONG. The property's value is read from or written
to the variable referenced by ulValue, as appropriate. If ulDefault is specified, it will
be used as the property's default value. This value is used if, for any reason, the
control's serialization process fails.

See Also: COleControl: :DoPropExchange

PX_ VBXFontConvert

BOOL PX_UShort(CPropExchange* pPX, LPCTSTR pszPropName,
... USHORT& usValue);

BOOL PX_UShort(CPropExchange* pPX, LPCTSTR pszPropName,
... USHORT& usValue, USHORT usDefault);

Return Value
Nonzero if the exchange was successful; 0 if unsuccessful.

Parameters

Remarks

pPX Pointer to the CPropExchange object (typically passed as a parameter to
DoPropExchange).

pszPropName Name of the property being exchanged.

usValue Reference to the variable where the property is stored (typically a member
variable of your class).

usDefault Default value for the property.

Call this function within your control's DoPropExchange member function to serialize
or initialize a property of type unsigned short. The property's value is read from or
written to the variable referenced by usValue, as appropriate. If usDefault is specified,
it will be used as the property's default value. This value is used if, for any reason, the
control's serialization process fails.

See Also: COleControl: :DoPropExchange

PX_ VBXFontConvert
BOOL PX_ VBXFontConvert(CPropExchange* pPX, CFontHolder& font);

Return Value
Nonzero if the exchange was successful; 0 if unsuccessful.

Parameters

Remarks

pPX Pointer to the CPropExchange object (typically passed as a parameter to
DoPropExchange).

font The font property of the OLE control that will contain the converted VBX
font-related properties.

Call this function within your control's DoPropExchange member function to initialize
a font property by converting a VBX control's font-related properties.

This function should be used only by an OLE control that is designed as a direct

2459

replacement for a VBX control. When the Visual Basic development environment
converts a form containing a VBX control to use the corresponding replacement OLE
control, it will call the control's IDataObject::SetData function, passing in a
property set that contains the VBX control's property data. This operation, in turn,
causes the control's DoPropExchange function to be invoked. DoPropExchange can
call PX_ VBXFontConvert to convert the VBX control's font-related properties (for
example, "FontName," "FontSize," and so on) into the corresponding components of
the OLE control's font property.

PX_ VBXFontConvert should only be called when the control is actually being
converted from a VBX form application. For example:

void CSampleCtrl ::DoPropExchange(CPropExchange* pPX)
{

}

ExchangeVersion(pPX, MAKELONG(_wVerMinor, _wVerMajor));
COl eControl : : DoPropExchange(pPX);

if (IsConvertingVBX())
PX_VBXFontConvert(pPX, InternalGetFont());

See Also: COleControl: :DoPropExchange, COleControl: :AmbientFont,
PX_Font

void RFX_Binary(CFieldExchange* pFX, const char* szName,
... CByteArray& value, int nMaxLength = 255);

Parameters

2460

pFX A pointer to an object of class CFieldExchange. This ~bject contains
information to define the context for each call of the function. For more
information about the operations a CFieldExchange object can specify, see the
article "Record Field Exchange: How RFX Works" in Visual C++ Programmer's
Guide online.

szName The name of a data column.

value The value stored in the indicated data member-the value to be transferred.
For a transfer from recordset to data source, the value, of type CByteArray, is
taken from the specified data member. For a transfer from data source to recordset,
the value is stored in the specified data member.

nMaxLength The maximum allowed length of the string or array being transferred.
The default value of nMaxLength is 255. Legal values are 1 to INT_MAX. The
framework allocates this amount of space for the data. For best performance, pass a
value large enough to accommodate the largest data item you expect.

Remarks

Example

The RFX_Binary function transfers arrays of bytes between the field data members
of a CRecordset object and the columns of a record on the data source of ODBC type
SQL_BINARY, SQL_ VARBINARY, or SQL_LONGVARBINARY. Data in the
data source of these types is mapped to and from type CByteArray in the recordset.

See RFX_ Text.

See Also: RFX_ Text, RFX_Bool, RFX_Long, RFX_Int, RFX_Single,
RFX_Double, RFX_Date, RFX_Byte, RFX_LongBinary,
CFieldExchange: :SetFieldType

void RFX_Binary _Bulk(CFieldExchange* pFX, LPCTSTR szName,
.. BYTE** prgByteVals, long** prgLengths, int nMaxLength);

Parameters

Remarks

pFX A pointer to a CFieldExchange object. This object contains information to
define the context for each call of the function. For more information, see the
article "Record Field Exchange: How RFX Works" in Visual c++ Programmer's
Guide online.

szName The name of a data column.

prgByte Vals A pointer to an array of BYTE values. This array will store the data to
be transferred from the data source to the recordset.

prgLengths A pointer to an array of long integers. This array will store the length in
bytes of each value in the array pointed to by prgByteVals. Note that the value
SQL_NULL_DATA will be stored if the corresponding data item contains a Null
value. For more details, see the ODBC API function SQLBindCol in the ODBC
SDK Programmer's Reference.

nMaxLength The maximum allowed length of the values stored in the array pointed
to by prgByteVa ls. To ensure that data will not be truncated, pass a value large
enough to accommodate the largest data item you expect.

The RFX_Binary _Bulk function transfers multiple rows of byte data from a column
of an ODBC data source to a corresponding array in a CRecordset-derived object.
The data source column can have an ODBC type of SQL_BINARY,
SQL_ VARBINARY, or SQL_LONGVARBINARY. The recordset must define a
field data member of type pointer to BYTE.

If you initialize prgByte Va Is and prgLengths to NULL, then the arrays they point to
will be allocated automatically, with sizes equal to the rowset size.

2461

Example

Note Bulk record field exchange only transfers data from the data source to the recordset
object. In order to make your recordset updatable, you must use the OOBC API function
SQLSetPos. For an example of how to do this, see the sample OBFETCH.

For more information, see the articles "Recordset: Fetching Records in Bulk
(ODBC)" and "Record Field Exchange (RFX)" in Visual C++ Programmer's
Guide online.

See RFX_Text_Bulk.

See Also: RFX_BooCBulk, RFX_Byte_Bulk, RFX_Date_Bulk,
RFX_Double_Bulk, RFX_Int_Bulk, RFX_Lon~Bulk, RFX_Single_Bulk,
RFX_ TexCBulk, CFieldExchange: :SetFieldType

void RFX_Bool(CFieldExchange* pFX, const char* szName, BOOL& value);

Parameters

Remarks

Example

2462

pFX A pointer to an object of class CFieldExchange. This object contains
information to define the context for each call of the function. For more
information about the operations a CFieldExchange object can specify, see the
article "Record Field Exchange: How RFX Works" in Visual C++ Programmer's
Guide online.

szName The name of a data column.

value The value stored in the indicated data member-the value to be transferred.
For a transfer from recordset to data source, the value, of type BOOL, is taken
from the specified data member. For a transfer from data source to record set, the
value is stored in the specified data member.

The RFX_BOOL function transfers Boolean data between the field data members of
a CRecordset object and the columns of a record on the data source of ODBC type
SQL_BIT.

See RFX_Text.

See Also: RFX_Text, RFX_Long, RFX_Int, RFX_Single, RFX_Double,
RFX_Date, RFX_Byte, RFX_Binary, RFX_LongBinary,
CFieldExchange: :SetFieldType

void RFX_Bool_Bulk(CFieldExchange* pFX, LPCTSTR szName,
"+ BOOL** prgBoolVals, long** prgLengths);

Parameters

Remarks

Example

pFX A pointer to a CFieldExchange object. This object contains information to
define the context for each call of the function. For more information, see the
article "Record Field Exchange: How RFX Works" in Visual C++ Programmer's
Guide online.

szName The name of a data column.

prgBoolVals A pointer to an array of BOOL values. This array will store the data to
be transferred from the data source to the recordset.

prgLengths A pointer to an array of long integers. This array will store the length in
bytes of each value in the array pointed to by prgBoolVals. Note that the value
SQL_NULL_DATA will be stored if the corresponding data item contains a Null
value. For more details, see the ODBC API function SQLBindCol in the ODBC
SDK Programmer's Reference.

The RFX_Bool_Bulk function transfers multiple rows of Boolean data from a column
of an ODBC data source to a corresponding array in a CRecordset-derived object.
The data source column must have an ODBC type of SQL_BIT. The recordset must
define a field data member of type pointer to BOOL.

If you initialize prgBoolVals and prgLengths to NULL, then the arrays they point to
will be allocated automatically, with sizes equal to the row set size.

Note Bulk record field exchange only transfers data from the data source to the
recordset object. In order to make your recordset updatable, you must use the ODBC
API function SQLSetPos. For an example of how to do this, see the sample
DBFETCH online.

For more information, see the articles "Recordset: Fetching Records in Bulk
(ODBC)" and "Record Field Exchange (RFX)" in Visual C++ Programmer's
Guide online.

See RFX_ Text_Bulk.

See Also: RFX_Binary _Bulk, RFX_Byte_Bulk, RFX_Date_Bulk,
RFX_Double_Bulk, RFX_InCBulk, RFX_Lon~Bulk, RFX_Single_Bulk,
RFX_ Text_Bulk, CFieldExchange: :SetFieldType

2463

void RFX_Byte(CFieldExchange* pFX, const char* szName, BYTE& value);

Parameters

Remarks

Example

pFX A pointer to an object of class CFieldExchange. This object contains
information to define the context for each call of the function. For more
information about the operations a CFieldExchange object can specify, see the
article "Record Field Exchange: How RFX Works" in Visual C++ Programmer's
Guide online.

szName The name of a data column.

value The value stored in the indicated data member-the value to be transferred.
For a transfer from recordset to data source, the value, of type BYTE, is taken from
the specified data member. For a transfer from data source to recordset, the value is
stored in the specified data member.

The RFX_Byte function transfers single bytes between the field data members of a
CRecordset object and the columns of a record on the data source of ODBC type
SQL_TINYINT.

See RFX_Text.

See Also: RFX_ Text, RFX_Bool, RFX_Long, RFX_Int, RFX_Single,
RFX_Double, RFX_Date, RFX_Binary, RFX_LongBinary,
CFieldExchange: :SetFieldType

void RFX_Byte_Bulk(CFieldExchange* pFX, LPCTSTR szName,
.. BYTE** prgByteVals, long** prgLengths);

Parameters

2464

pFX A pointer to a CFieldExchange object. This object contains information to
define the context for each call of the function. For more information, see the
article "Record Field Exchange: How RFX Works" in Visual C++ Programmer's
Guide online.

szName The name of a data column.

prgByte Vals A pointer to an array of BYTE values. This array will store the data to
be transferred from the data source to the recordset.

prgLengths A pointer to an array of long integers. This array will store the length in
bytes of each value in the array pointed to by prgByteVals. Note that the value
SQL_NULL_DATA will be stored if the corresponding data item contains a Null

Remarks

Example

value. For more details, see the ODBC API function SQLBindCol in the ODBC
SDK Programmer's Reference.

The RFX_Byte_Bulk function transfers multiple rows of single bytes from a column
of an ODBC data source to a corresponding array in a CRecordset-derived object.
The data source column must have an ODBC type of SQL_TINYINT. The recordset
must define a field data member of type pointer to BYTE.

If you initialize prgByteVals and prgLengths to NULL, then the arrays they point to
will be allocated automatically, with sizes equal to the row set size.

Note Bulk record field exchange only transfers data from the data source to the recordset
object. In order to make your recordset updatable, you must use the OOBC API function
SQLSetPos. For an example of how to do this, see the sample OBFETCH online.

For more information, see the articles "Recordset: Fetching Records in Bulk (ODBC)"
and "Record Field Exchange (RFX)" in Visual C++ Programmer's Guide online.

See RFX_TexCBulk.

See Also: RFX_Binary _Bulk, RFX_Bool_Bulk, RFX_Date_Bulk,
RFX_Double_Bulk, RFX_Int_Bulk, RFX_Lon~Bulk, RFX_Single_Bulk,
RFX_ TexCBulk, CFieldExchange: :SetFieldType

void RFX_Date(CFieldExchange* pFX, const char* szName, CTime& value);
void RFX_Date(CFieldExchange* pFX, const char* szName,

... TIMESTAMP _STRUCT& value);

Parameters
pFX A pointer to an object of class CFieldExchange. This object contains

information to define the context for each call of the function. For more
information about the operations a CFieldExchange object can specify, see the
article "Record Field Exchange: How RFX Works" in Visual C++ Programmer's
Guide online.

szName The name of a data column.

value The value stored in the indicated data member-the value to be transferred.
The two versions of the function take different data types for value. The first
version of the function takes a reference to a CTime object. For a transfer from
recordset to data source, this value is taken from the specified data member. For a
transfer from data source to recordset, the value is stored in the specified data
member. The second version of the function takes a reference to a
TIMESTAMP _STRUCT. You must set up this structure yourself prior to the call.

2465

Remarks

Example

Neither dialog data exchange (DDX) support nor ClassWizard support is available
for this version. In your field map, place your call to the second version of
RFX_Date outside the Class Wizard comment delimiters.

The RFX_Date function transfers CTime or TIMESTAMP _STRUCT data between
the field data members of a CRecordset object and the columns of a record on the
data source of ODBC type SQL_DATE, SQL_TIME, or SQL_TIMESTAMP.

The CTime version of the function imposes the overhead of some intermediate
processing and has a somewhat limited range. If you find either of these factors too
limiting, use the second version of the function. But note its lack of Class Wizard and
DDX support and the requirement that you set up the structure yourself.

See RFX_ Text.

See Also: RFX_ Text, RFX_Bool, RFX_Long, RFX_Int, RFX_Single,
RFX_Douhle, RFX_Byte, RFX_Binary, RFX_LongBinary,
CFieldExchange::SetFieldType

void RFX_Date_Bulk(CFieldExchange* pFX, LPCTSTR szName,
.. TIMESTAMP _STRUCT** prgTSVals, long** prgLengths);

Parameters

Remarks

2466

pFX A pointer to a CFieldExchange object. This object contains information to
define the context for each call of the function. For more information, see the
article "Record Field Exchange: How RFX Works" in Visual C++ Programmer's
Guide online.

szName The name of a data column.

prgTSVals A pointer to an array of TIMESTAMP _STRUCT values. This array will
store the data to be transferred from the data source to the recordset. For more
information about the TIMESTAMP _STRUCT data type, see the topic "C Data
Types" in Appendix D of the ODBC SDK Programmer's Reference.

prgLengths A pointer to an array of long integers. This array will store the length in
bytes of each value in the array pointed to by prgTSVals. Note that the value
SQL_NULL_DATA will be stored if the corresponding data item contains a Null
value. For more details, see the ODBC API function SQLBindCol in the ODBC
SDK Programmer's Reference.

The RFX_Date_Bulk function transfers multiple rows of TIMESTAMP _STRUCT
data from a column of an ODBC data source to a corresponding array in a
CRecordset-derived object. The data source column can have an ODBC type of

Example

SQL_DATE, SQL_TIME, or SQL_TIMESTAMP. The recordset must define a
field data member of type pointer to TIMESTAMP _STRUCT.

If you initialize prgTSVals and prgLengths to NULL, then the arrays they point to will
be allocated automatically, with sizes equal to the row set size.

Note Bulk record field exchange only transfers data from the data source to the recordset
object. In order to make your recordset updatable, you must use the ODBC API function
SQLSetPos. For an example of how to do this, see the sample DBFETCH online.

For more information, see the articles "Recordset: Fetching Records in Bulk (ODBC)"
and "Record Field Exchange (RFX)" in Visual C++ Programmer's Guide online.

See RFX_ TexCBulk.

See Also: RFX_Binary _Bulk, RFX_Bool_Bulk, RFX_Byte_Bulk,
RFX_Double_Bulk, RFX_InCBulk, RFX_Lon~Bulk, RFX_Single_Bulk,
RFX_ TexCBulk, CFieldExchange: :SetFieldType

void RFX_Double(CFieldExchange* pFX, const char* szName, double& value);

Parameters

Remarks

Example

pFX A pointer to an object of class CFieldExchange. This object contains
information to define the context for each call of the function. For more
information about the operations a CFieldExchange object can specify, see the
article "Record Field Exchange: How RFX Works" in Visual C++ Programmers
Guide online.

szName The name of a data column.

value The value stored in the indicated data member -the value to be transferred.
For a transfer from recordset to data source, the value, of type double, is taken
from the specified data member. For a transfer from data source to recordset, the
value is stored in the specified data member.

The RFX_Double function transfers double float data between the field data
members of a CRecordset object and the columns of a record on the data source of
ODBC type SQL_DOUBLE.

See RFX_ Text.

See Also: RFX_ Text, RFX_Bool, RFX_Long, RFX_Int, RFX_Single, RFX_Date,
RFX_Byte, RFX_Binary, RFX_LongBinary, CFieldExchange: :SetFieldType

2467

void RFX_Double_Bulk(CFieldExchange* pFX, LPCTSTR szName,
.. double** prgDblVals, long** prgLengths);

Parameters

Remarks

Example

2468

pFX A pointer to a CFieldExchange object. This object contains information to
define the context for each call of the function. For more information, see the
article "Record Field Exchange: How RFX Works" in Visual c++ Programmer's
Guide online.

szName The name of a data column.

prgDblVals A pointer to an array of double values. This array will store the data to
be transferred from the data source to the recordset.

prgLengths A pointer to an array of long integers. This array will store the length in
bytes of each value in the array pointed to by prgDblVals. Note that the value
SQL_NULL_DATA will be stored if the corresponding data item contains a Null
value. For more details, see the ODBC API function SQLBindCol in the ODBC
SDK Programmer's Reference.

The RFX_Double_Bulk function transfers multiple rows of double-precision
floating-point data from a column of an ODBC data source to a corresponding array in
a CRecordset-derived object. The data source column must have an ODBC type of
SQL_DOUBLE. The recordset must define a field data member of type pointer to
double.

If you initialize prgDblVals and prgLengths to NULL, then the arrays they point to
will be allocated automatically, with sizes equal to the rowset size.

Note Bulk record field exchange only transfers data from the data source to the recordset
object. In order to make your recordset updatable, you must use the OOBC API function
SQLSetPos. For an example of how to do this, see the sample OBFETCH online.

For more information, see the articles "Recordset: Fetching Records in Bulk
(ODBC)" and "Record Field Exchange (RFX)" in Visual C++ Programmer's
Guide online.

See RFX_ TexCBulk.

See Also: RFX_Binary _Bulk, RFX_BooCBulk, RFX_Byte_Bulk,
RFX_Date_Bulk, RFX_InCBulk, RFX_Lon~Bulk, RFX_Single_Bulk,
RFX_ Text_Bulk, CFieldExchange: :SetFieldType

void RFX_Int(CFieldExchange* pFX, const char*szName, int& value);

Parameters

Remarks

Example

pFX A pointer to an object of class CFieldExchange. This object contains
information to define the context for each call of the function. For more
information about the operations a CFieldExchange object can specify, see the
article "Record Field Exchange: How RFX Works" in Visual C++ Programmer's
Guide online.

szName The name of a data column.

value The value stored in the indicated data member-the value to be transferred.
For a transfer from recordset to data source, the value, of type int, is taken from the
specified data member. For a transfer from data source to recordset, the value is
stored in the specified data member.

The RFX_Int function transfers integer data between the field data members of a
CRecordset object and the columns of a record on the data source of ODBC type
SQL_SMALLINT.

See RFX_Text.

See Also: RFX_ Text, RFX_Bool, RFX_Long, RFX_Single, RFX_Double,
RFX_Date, RFX_Byte, RFX_Binary, RFX_LongBinary,
CFieldExchange::SetFieldType

void RFX_Int_Bulk(CFieldExchange* pFX, LPCTSTR szName, int** prglntVals,
"+ long** prgLengths);

Parameters
pFX A pointer to a CFieldExchange object. This object contains information to

define the context for each call of the function. For more information, see the
article "Record Field Exchange: How RFX Works" in Visual C++ Programmer's
Guide online.

szName The name of a data column.

prglntVals A pointer to an array of integers. This array will store the data to be
transferred from the data source to the recordset.

prgLengths A pointer to an array of long integers. This array will store the length in
bytes of each value in the array pointed to by prglntVals. Note that the value
SQL_NULL_DATA will be stored if the corresponding data item contains a Null

2469

Remarks

Example

value. For more details, see the ODBC API function SQLBindCol in the ODBC
SDK Programmer's Reference.

The RFX_Int_Bulk function transfers multiple rows of integer data from a column of
an ODBC data source to a corresponding array in a CRecordset-derived object. The
data source column must have an ODBC type of SQL_SMALLINT. The recordset
must define a field data member of type pointer to int.

If you initialize prglntVals and prgLengths to NULL, then the arrays they point to will
be allocated automatically, with sizes equal to the rowset size.

Note Bulk record field exchange only transfers data from the data source to the recordset
object. In order to make your recordset updatable, you must use the ODBC API function
SQLSetPos. For an example of how to do this, see the sample DBFETCH online.

For more information, see the articles "Recordset: Fetching Records in Bulk (ODBC)"
and "Record Field Exchange (RFX)" in Visual C++ Programmer's Guide online.

See RFX_Text_Bulk.

See Also: RFX_Binary _Bulk, RFX_BooCBulk, RFX_Byte_Bulk,
RFX_Date_Bulk, RFX_Double_Bulk, RFX_Lon~Bulk, RFX_Single_Bulk,
RFX_Text_Bulk, CFieldExchange: :SetFieldType

void RFX_Long(CFieldExchange* pFX, const char* szName,
... LONG& value);

Parameters

Remarks

2470

pFX A pointer to an object of class CFieldExchange. This object contains
information to define the context for each call of the function. For more
information about the operations a CFieldExchange object can specify, see the
article "Record Field Exchange: How RFX Works" in Visual C++ Programmer's
Guide online.

szName The name of a data column.

value The value stored in the indicated data member-the value to be transferred.
For a transfer from recordset to data source, the value, of type long, is taken from
the specified data member. For a transfer from data source to recordset, the value is
stored in the specified data member.

The RFX_Long function transfers long integer data between the field data members
of a CRecordset object and the columns of a record on the data source of ODBC type
SQL_INTEGER.

Example
See RFX_ Text.

See Also: RFX_ Text, RFX_Bool, RFX_Int, RFX_Single, RFX_Double,
RFX_Date, RFX_Byte, RFX_Binary, RFX_LongBinary,
CFieldExchange::SetFieldType

void RFX_Long_Bulk(CFieldExchange* pFX, LPCTSTR szName,
10+ long** prgLongVals, long** prgLengths);

Parameters

Remarks

Example

pFX A pointer to a CFieldExchange object. This object contains information to
define the context for each call of the function. For more information, see the
article "Record Field Exchange: How RFX Works" in Visual C++ Programmer's
Guide online.

szName The name of a data column.

prgLong Va Is A pointer to an array of long integers. This array will store the data to
be transferred from the data source to the recordset.

prgLengths A pointer to an array of long integers. This array will store the length in
bytes of each value in the array pointed to by prgLongVals. Note that the value
SQL_NULL_DATA will be stored if the corresponding data item contains a Null
value. For more details, see the ODBC API function SQLBindCol in the ODBC
SDK Programmer's Reference.

The RFX_Lon~Bulk function transfers multiple rows of long integer data from a
column of an ODBC data source to a corresponding array in a CRecordset-derived
object. The data source column must have an ODBC type of SQL_INTEGER. The
recordset must define a field data member of type pointer to long.

If you initialize prgLong Vals and prgLengths to NULL, then the arrays they point to
will be allocated automatically, with sizes equal to the rowset size.

Note Bulk record field exchange only transfers data from the data source to the recordset
object. In order to make your recordset updatable, you must use the DOBC API function
SQLSetPos. For an example of how to do this, see the sample OBFETCH online.

For more information, see the articles "Recordset: Fetching Records in Bulk (ODBC)"
and "Record Field Exchange (RFX)" in Visual C++ Programmer's Guide online.

See RFX_ TexCBulk.

2471

See Also: RFX_Binary _Bulk, RFX_Bool_Bulk, RFX_Byte_Bulk,
RFX_Date_Bulk, RFX_Double_Bulk, RFX_InCBulk, RFX_Single_Bulk,
RFX_ Text_Bulk, CFieldExchange: :SetFieldType

RFX_LongBinary
void RFX_LongBinary(CFieldExchange* pFX, const char* szName,

10+ CLongBinary& value);

Parameters

Remarks

Example

pFX A pointer to an object of class CFieldExchange. This object contains
information to define the context for each call of the function. For more
information about the operations a CFieldExchange object can specify, see the
article "Record Field Exchange: How RFX Works" in Visual C++ Programmer's
Guide online.

szName The name of a data column.

value The value stored in the indicated data member-the value to be transferred.
For a transfer from recordset to data source, the value, of type CLongBinary, is
taken from the specified data member. For a transfer from data source to recordset,
the value is stored in the specified data member.

The RFX_LongBinary function transfers binary large object (BLOB) data using class
CLongBinary between the field data members of a CRecordset object and the
columns of a record on the data source of ODBC type SQL_LONGVARBINARY or
SQL_LONGVARCHAR.

See RFX_Text.

See Also: RFX_ Text, RFX_Bool, RFX_Long, RFX_Int, RFX_Single,
RFX_Double, RFX_Date, RFX_Byte, RFX_Binary,
CFieldExchange: :SetFieldType, CLongBinary

void RFX_Single(CFieldExchange* pFX, const char* szName, float& value);

Parameters

2472

pFX A pointer to an object of class CFieldExchange. This object contains
information to define the context for each call of the function. For more
information about the operations a CFieldExchange object can specify, see the
article "Record Field Exchange: How RFX Works" in Visual C++ Programmer's
Guide online.

szName The name of a data column.

Remarks

Example

value The value stored in the indicated data member -the value to be transferred.
For a transfer from recordset to data source, the value, of type float, is taken from
the specified data member. For a transfer from data source to recordset, the value is
stored in the specified data member.

The RFX_Single function transfers floating-point data between the field data
members of a CRecordset object and the columns of a record on the data source of
ODBC type SQL_REAL.

See RFX_ Text.

See Also: RFX_Text, RFX_Bool, RFX_Long, RFX_Int, RFX_Double,
RFX_Date, RFX_Byte, RFX_Binary, RFX_LongBinary,
CFieldExchange::SetFieldType

void RFX_Single_Bulk(CFieldExchange* pFX, LPCTSTR szName,
... float** prgFltVals, long** prgLengths);

Parameters

Remarks

pFX A pointer to a CFieldExchange object. This object contains information to
define the context for each call of the function. For more information, see the
article "Record Field Exchange: How RFX Works" in Visual C++ Programmer's
Guide online.

szName The name of a data column.

prgFltVals A pointer to an array of float values. This array will store the data to be
transferred from the data source to the recordset.

prgLengths A pointer to an array of long integers. This array will store the length in
bytes of each value in the array pointed to by prgFltVals. Note that the value
SQL_NULL_DATA will be stored if the corresponding data item contains a Null
value. For more details, see the ODBC API function SQLBindCol in the ODBC
SDK Programmer's Reference.

The RFX_Single_Bulk function transfers multiple rows of floating-point data from a
column of an ODBC data source to a corresponding array in a CRecordset-derived
object. The data source column must have an ODBC type of SQL_REAL. The
recordset must define a field data member of type pointer to float.

If you initialize prgFltVals and prgLengths to NULL, then the arrays they point to will
be allocated automatically, with sizes equal to the rowset size.

2473

RFX_Text

Example

Note Bulk record field exchange only transfers data from the data source to the recordset
object. In order to make your recordset updatable, you must use the OOBC API function
SQLSetPos. For an example of how to do this, see the sample DBFETCH online.

For more information, see the articles "Recordset: Fetching Records in Bulk (ODBC)"
and "Record Field Exchange (RFX)" in Visual C++ Programmers Guide online.

See RFX_ TexCBulk.

See Also: RFX_Binary _Bulk, RFX_BooCBulk, RFX_Byte_Bulk,
RFX_Date_Bulk, RFX_Double_Bulk, RFX_InCBulk, RFX_Lon~Bulk,
RFX_ Text_Bulk, CFieldExchange: :SetFieldType

RFX_Text
void RFX_Text(CFieldExchange* pFX, const char* szName, CString& value,

.. int nMaxLength = 255, int nColumnType = SQL_ VARCHAR, short nScale = 0);

Parameters

Remarks

2474

pFX A pointer to an object of class CFieldExchange. This object contains
information to define the context for each call of the function. For more
information about the operations a CFieldExchange object can specify, see the
article "Record Field Exchange: How RFX Works" in Visual C++ Programmer's
Guide online.

szName The name of a data column.

value The value stored in the indicated data member-the value to be transferred.
For a transfer from recordset to data source, the value, of type CString, is taken
from the specified data member. For a transfer from data source to record set, the
value is stored in the specified data member.

nMaxLength The maximum allowed length of the string or array being transferred.
The default value of nMaxLength is 255. Legal values are 1 to INT_MAX. The
framework allocates this amount of space for the data. For best performance, pass
a value large enough to accommodate the largest data item you expect.

nColumnType Used mainly for parameters. An integer indicating the data type of the
parameter. The type is an ODBC data type of the form SQL_XXX.

nScale Specifies the scale for values of ODBC type SQL_DECIMAL or
SQL_NUMERIC. nScale is only useful when setting parameter values. For more
information, see the topic "Precision, Scale, Length, and Display Size" in
Appendix D of the ODBC SDK Programmer's Reference.

The RFX_Text function transfers CString data between the field data members of a
CRecordset object and columns of a record on the data source of ODBC type

Example

SQL_LONGVARCHAR, SQL_CHAR, SQL_ VARCHAR, SQL_DECIMAL, or
SQL_NUMERIC. Data in the data source of all of these types is mapped to and from
CString in the recordset.

This example shows several calls to RFX_Text. Notice also the two calls to
CFieldExchange::SetFieldType. ClassWizard normally writes the second call
to SetFieldType and its associated RFX calls. You must write the first call and
its RFX call. It is recommended that you put any parameter items before the
"//{ {AFX_FIELD_MAP" comment. You must put parameters outside the comments.

//Example for RFX_Text
void CSections::DoFieldExchange(CFieldExchange* pFX)
{

pFX->SetFieldType(CFieldExchange::inputParam);
RFX_Text(pFX, "Name", m_strNameParam);

//{{AFX_FIELD_MAP(CSections)
pFX->SetFieldType(CFieldExchange::outputColumn);
RFX_Text(pFX, "CourseID", m_strCourseID);
RFX_Text(pFX, "InstructorID", m_strlnstructorID);
RFX_Int(pFX, "RoomNo", m_nRoomNo);
RFX_Text(pFX, "Schedule", m_strSchedule);
RFX_Int(pFX, "SectionNo", m_nSectionNo);
RFX_Single(pFX, "LabFee", m_flLabFee);
//}}AFX_FIELD_MAP

See Also: RFX_Bool, RFX_Long, RFX_Int, RFX_Single, RFX_Double,
RFX_Date, RFX_Byte, RFX_Binary, RFX_LongBinary,
CFieldExchange: :SetFieldType

void RFX_TexCBulk(CFieldExchange* pFX, LPCTSTR szName,
.. LPSTR* prgStrVals, long** prgLengths, int nMaxLength);

Parameters
pFX A pointer to a CFieldExchange object. This object contains information to

define the context for each call of the function. For more information, see the
article "Record Field Exchange: How RFX Works" in Visual C++ Programmer's
Guide online.

szName The name of a data column.

prgStrVals A pointer to an array of LPSTR values. This array will store the data to
be transferred from the data source to the recordset. Note that with the current
version of ODBC, these values cannot be Unicode.

prgLengths A pointer to an array of long integers. This array will store the length in
bytes of each value in the array pointed to by prgStrVals. This length excludes the

2475

Remarks

Example

2476

null termination character. Note that the value SQL_NULL_DATA will be stored
if the corresponding data item contains a Null value. For more details, see the
ODBC API function SQLBindCol in the ODBC SDK Programmer's Reference.

nMaxLength The maximum allowed length of the values stored in the array pointed
to by prgStrVals, including the null termination character. To ensure that data will
not be truncated, pass a value large enough to accommodate the largest data item
you expect.

The RFX_Text_Bulk function transfers multiple rows of character data from a
column of an ODBC data source to a corresponding array in a CRecordset-derived
object. The data source column can have an ODBC type of SQL_LONGVARCHAR,
SQL_CHAR, SQL_ VARCHAR, SQL_DECIMAL, or SQL_NUMERIC. The
recordset must define a field data member of type LPSTR.

If you initialize prgStrVals and prgLengths to NULL, then the arrays they point to will
be allocated automatically, with sizes equal to the rowset size.

Note Bulk record field exchange only transfers data from the data source to the recordset
object. In order to make your recordset updatable, you must use the DOBC API function
SQLSetPos. For an example of how to do this, see the sample OBFETCH online.

For more information, see the articles "Record set: Fetching Records in Bulk (ODBC)"
and "Record Field Exchange (RFX)" in Visual C++ Programmer's Guide online.

ClassWizard does not support the Bulk RFX functions, so you must manually write
calls in your DoBulkFieldExchange override. This example shows a call to
RFX_ TexCBulk, as well as a call to RFX_Lon~Bulk, for data transfer. These calls
are preceded by a call to CFieldExchange: :SetFieldType. Note that for parameters,
you must call the RFX functions instead of the Bulk RFX functions.

void MultiRowSet::DoBulkFieldExchange(CFieldExchange* pFX)
{

pFX->SetFieldType(CFieldExchange::outputColumn);
RFX_Long_Bulk(pFX. _T("[colRecID]").

&m_rgID. &m_rgIDLenghts);
RFX_Text_Bulk(pFX. _T("[colName]").

&m_rgName. &m_rgNameLengths. 30);

pFX->SetFieldType(CFieldExchange::inputParam);
RFX_Text(pFX. "NameParam". m_strNameParam);

See Also: RFX_Binary _Bulk, RFX_BooCBulk, RFX_Byte_Bulk,
RFX_Date_Bulk, RFX_Double_Bulk, RFX_InCBulk, RFX_Lon~Bulk,
RFX_Single_Bulk, CFieldExchange: :SetFieldType

RUNTIME_CLASS(class_name)

Parameters

Remarks

Example

class_name The actual name of the class (not enclosed in quotation marks).

Use this macro to get the run-time class structure from the name of a c++ class.

RUNTIME_CLASS returns a pointer to a CRuntimeClass structure for the class
specified by class_name. Only CObject-derived classes declared with
DECLARE_DYNAMIC, DECLARE_DYNCREATE, or DECLARE_SERIAL
will return pointers to a CRuntimeClass structure.

For more information, see "CObject Class Topics" in Visual C++ Programmer's
Guide online.

II example for RUNTIME_CLASS
CRuntimeClass* prt - RUNTIME_CLASS(CAge);
ASSERT(lstrcmp(prt->m_lpszClassName. "CAge") -== 0);

See Also: DECLARE_DYNAMIC, DECLARE_DYNCREATE,
DECLARE_SERIAL, CObject::GetRuntimeClass, CRuntimeClass

SerializeElements
template< class TYPE> void AFXAPI SerializeElements

... (CArchive& ar, TYPE* pElements, int nCount);

Parameters

Remarks

TYPE Template parameter specifying the type of the elements.

ar An archive object to archive to or from.

pElements Pointer to the elements being archived.

nCount Number of elements being archived

CArray, CList, and CMap call this function to serialize elements. The default
implementation does a bit-wise read or write.

For information on implementing this and other helper functions, see the article
"Collections: How to Make a Type-Safe Collection" in Visual C++ Programmer's
Guide online.

See Also: CArchive

SerializeElements

2477

STATIC_DOWNCAST

STATIC_DOWNCAST
STATIC_DOWNCAST(class_name, pobject)

Parameters

Remarks

class_name The name of a class.

pobject A pointer to be cast to a pointer to a object of type class_name.

In builds of your application with the _DEBUG preprocessor symbol defined, this
macro will cast a pointer to an object from one class to a pointer of a related type. The
macro will ASSERT if the pointer is not NULL and points to an object that is not a
"kind of' the target type.

In non-_DEBUG builds, the macro performs the cast without any checking.

The target type is specified by the class_name parameter, while the pobject parameter
identifies the pointer. You might, for example, cast a pointer to CYou rDocument
called pYourDoc to a pointer to CDocument using this expression:

CDocument* pDoc = STATIC_DOWNCAST(CDocument, pYourDoc);

If pYourDoc does not point to a CDocument object, the macro will ASSERT.

See Also: DYNAMIC_DOWNCAST

THIS_FILE
Remarks

This macro expands to the name of the file that is being compiled. The information is
used by the ASSERT and VERIFY macros. App Wizard and Class Wizard place the
macro in source code files they create.

See Also: ASSERT, VERIFY

THROW
THROW(exception_objectJJointer)

Parameters

Remarks

2478

exception_objectJJointer Points to an exception object derived from CException.

Throws the specified exception. THROW interrupts program execution, passing
control to the associated CATCH block in your program. If you have not provided the
CATCH block, then control is passed to a Microsoft Foundation Class Library
module that prints an error message and exits.

For more information, see the article "Exceptions" in Visual C++ Programmers
Guide online.

See Also: THROW_LAST, TRY, CATCH, AND_CATCH, END_CATCH,
CATCH_ALL, AND_CATCH_ALL, END_CATCH_ALL,
AfxThrow ArchiveException, AfxThrow FileException,
AfxThrowMemoryException, AfxThrowNotSupportedException,
AfxThrowResourceException, AfxThrowUserException

THROW_LAST

Remarks
Throws the exception back to the next outer CATCH block.

This macro allows you to throw a locally created exception. If you try to throw an
exception that you have just caught, it will normally go out of scope and be deleted.
With THROW_LAST, the exception is passed correctly to the next CATCH handler.

For more information, see the article "Exceptions" in Visual C++ Programmers
Guide online.

See Also: THROW, TRY, CATCH, AND_CATCH, END_CATCH,
CATCH_ALL,AND_CATCH_ALL,END_CATCH_ALL

TRACE
TRACE(exp)

Parameters

Remarks

exp Specifies a variable number of arguments that are used in exactly the same way
that a variable number of arguments are used in the run-time function printf.

Provides similar functionality to the printf function by sending a formatted string to a
dump device such as a file or debug monitor. Like printf for C programs under
MS-DOS, the TRACE macro is a convenient way to track the value of variables as
your program executes. In the Debug environment, the TRACE macro output goes to
afxDump. In the Release environment, it does nothing.

TRACE is limited to sending a total of 512 characters at a time. If you call TRACE
with formatting commands, the total string length after the formatting commands have
been expanded cannot be more than 512 characters, including the terminating NULL.
Exceeding this limit causes an ASSERT.

Note This macro is available only in the debug version of MFC.

TRACE

2479

TRACED

Example

For more information, see "MFC Debugging Support" in Visual C++ Programmer's
Guide online.

II example for TRACE
int i == 1;
char sz[] = "one";
TRACE("Integer'" %d. String'" %s\n". i. sz);
II Output: 'Integer'" 1. String'" one'

See Also: TRACEO, TRACE!, TRACE2, TRACE3, AfxDump,
afxTraceEnabled

TRACEO
TRA CEO(exp)

Parameters

Remarks

Example

2480

exp A format string as used in the run-time function printf.

TRACEO is similar to TRACE, and is one variant of a group of trace macros that you
can use for debug output. The group includes:

• TRACEO - Takes a format string (Only) and can be used for simple text messages
which are dumped to afxDump

• TRACE! - Takes a format string plus one argument (one variable which is dumped
to afxDump)

• TRACE2 - Takes a format string plus two arguments (two variables which are
dumped to afxDump)

• TRACE3 - Takes a format string plus three arguments (three variables which are
dumped to afxDump)

TRACEO does nothing if you have compiled a release version of your application. As
with TRACE, it only dumps data to afxDump if you have compiled a debug version
of your application.

Note This macro is available only in the debug version of MFC.

II example for TRACE0
TRACE0("Start Dump of MyClass members:");

See Also: TRACE, TRACE!, TRACE2, TRACE3

TRACEl
TRACEl(exp, paraml)

Parameters

Remarks

Example

exp A format string as used in the run-time function printf.

paraml The name of the variable whose value should be dumped.

See TRACEO for a description of the TRACEl macro.

II example for TRACE1
int i-I;
T RA C E l("I n t e g e r .". % d \ n" ,) ;
I I Output: 'Integer"" l'

TRACE2
TRACE2(exp, paraml, param2)

Parameters

Remarks

Example

exp A format string as used in the run-time function printf.

paraml The name of the variable whose value should be dumped.

param2 The name of the variable whose value should be dumped.

See TRACEO for a description of the TRACE2 macro.

II example for TRACE2
int i = I;
cha r sz [] = "one";
TRACE2("Integer = %d, String - %s\n", ;, sz);
I I Output: 'Integer = I, Stri ng = one'

TRACE3
TRACE3(exp, paraml, param2, param3)

Parameters
exp A format string as used in the run-time function printf.

paraml The name of the variable whose value should be dumped.

param2 The name of the variable whose value should be dumped.

param3 The name of the variable whose value should be dumped.

TRACE3

2481

TRY

Remarks

TRY

Remarks

See TRACEO for a description of the TRACE3 macro.

TRY

Use this macro to set up a TRY block. A TRY block identifies a block of code that
might throw exceptions. Those exceptions are handled in the following CATCH and
AND_CATCH blocks. Recursion is allowed: exceptions may be passed to an outer
TRY block, either by ignoring them or by using the THROW_LAST macro. End the
TRY block with an END_CATCH or END_CATCH_ALL macro.

For more information, see the article "Exceptions" in Visual C++ Programmer's
Guide online.

See Also: CATCH, AND_CATCH, END_CATCH, CATCH_ALL,
AND_CATCH_ALL, END_CATCH_ALL, THROW, THROW_LAST

VERIFY
VERIFY(booleanExpression)

Parameters

Remarks

2482

booleanExpression Specifies an expression (including pointer values) that evaluates
to nonzero or 0.

In the debug version of MFC, the VERIFY macro evaluates its argument. If the result
is 0, the macro prints a diagnostic message and halts the program. If the condition is
nonzero, it does nothing.

The diagnostic message has the form

assertion failed in file <name> in line <num>

where name is the name of the source file and num is the line number of the assertion
that failed in the source file.

In the release version of MFC, VERIFY evaluates the expression but does not print
or interrupt the program. For example, if the expression is a function call, the call will
be made.

See Also: ASSERT

ClassWizard Comment Delimiters

Class Wizard Comment Delimiters
In order for Class Wizard to distinguish between code entered by the user and code
created by ClassWizard, several types of special delimiters are used. These delimiters
are formatted to appear as comments in the code. Therefore they are never compiled
or modified by anything except ClassWizard.

The following is a list of the Class Wizard comment delimiters. For more information,
see the topics in this section.

Comment Delimiters
AFX_DATA Marks the beginning and end of member variable declarations in a

header file (.H) used for dialog data exchange (DDX).

AFX_DATA_INIT Marks the beginning and end of dialog data exchange (DDX)
member variable initializations in a dialog class's constructor.

AFX_DATA_MAP Marks the beginning and end of dialog data exchange (DDX)
function calls in a dialog class's DoDataExchange member function.

AFX_DISP Marks the beginning and end of OLE Automation declarations in a
class's header (.H) file.

AFX_DISP _MAP Marks the beginning and end of OLE Automation mapping in a
class's implementation (.CPP) file.

AFX_EVENT Marks the beginning and end of OLE event declarations in a class's
header (.H) file.

AFX_EVENT_MAP Marks the beginning and end of OLE events in a class's
implementation (.CPP) file.

AFX_FIELD Marks the beginning and end of member variable declarations in a
header file (.H) used for database record field exchange (RFX).

AFX_FIELD _INIT Marks the beginning and end of record field exchange (RFX)
member variable initializations in a recordset class's constructor.

AFX_FIELD _MAP Marks the beginning and end of record field exchange function
calls in a recordset class's DoFieldExchange member function.

AFX_MSG Marks the beginning and end of Class Wizard entries in a header file
(.H) related to message maps.

AFX_MSG_MAP Marks the beginning and end of message map entries in a class's
message map (in the .CPP file).

AFX_ VIRTUAL Marks the beginning and end of virtual function override
declarations in a class's header (.R) file.

2483

Remarks

Remarks

ClassWizard and AppWizard insert specially formatted comment delimiters in your
source code files to mark the places in your files that ClassWizard can write to.
AFX_DATA is used to mark the beginning and end of member variable declarations
in your header file (.H) used for dialog data exchange (DDX):

//{{AFX_DATA(classname)

/ /} JAFX_DATA

For more information, see AFX_DATA_MAP and AFX_DATA_INIT.

ClassWizard and AppWizard insert specially formatted comment delimiters in your
source code files to mark the places in your files that Class Wizard can write to.
AFX_DATA_INIT is used to mark the beginning and end of dialog data exchange
(DDX) member variable initializations in a dialog class's constructor:

//{{AFX_DATA_INIT(classname)

//JJAFX_DATA_INIT

For more information, see AFX_DATA_MAP and AFX_DATA.

AFX_DATA_MAP
Remarks

2484

ClassWizard and AppWizard insert specially formatted comment delimiters in your
source code files to mark the places in your files that Class Wizard can write to.
AFX_DATA_MAP is used to mark the beginning and end of dialog data exchange
(DDX) function calls in a dialog class's DoDataExchange member function:

//{{AFX_DATA_MAP(classname)

//JJAFX_DATA_MAP

For more information, see AFX_DATA_INIT and AFX_DATA.

Remarks

Remarks

Remarks

ClassWizard and AppWizard insert specially formatted comment delimiters in your
source code files to mark the places in your files that ClassWizard can write to.
AFX_DISP is used to mark the beginning and end of OLE Automation declarations
in a class's header (.H) file:

//{{AFX_DISP(classname)

/ /} JAFX_DISP

For more information, see AFX_DISP _MAP.

Class Wizard and App Wizard insert specially formatted comment delimiters in your
source code files to mark the places in your files that ClassWizard can write to.
AFX_DISP _MAP is used to mark the beginning and end of OLE Automation
mapping in a class's implementation (.CPP) file:

//{{AFX_DISP_MAP(classname)

//JJAFX_DISP_MAP

For more information, see AFX_DISP.

ClassWizard and AppWizard insert specially formatted comment delimiters in your
source code files to mark the places in your files that ClassWizard can write to.
AFX_EVENT is used to mark the beginning and end of OLE event declarations in a
class's header (.H) file:

//{{AFX_EVENT(classname)

/ /} JAFX_EVENT

For more information, see AFX_EVENT_MAP.

2485

Remarks

Remarks

Remarks

2486

ClassWizard and AppWizard insert specially formatted comment delimiters in your
source code files to mark the places in your files that Class Wizard can write to.
AFX_EVENT_MAP is used to mark the beginning and end of OLE events in a
class's implementation (.CPP) file:

//{{AFX_EVENT_MAP(classname)

//JJAFX_EVENT_MAP

For more information, see AFX_EVENT.

ClassWizard and AppWizard insert specially formatted comment delimiters in your
source code files to mark the places in your files that ClassWizard can write to.
AFX_FIELD is used to mark the beginning and end of member variable declarations
in your header file (.H) used for database record field exchange (RFX):

//{{AFX_FIELD(classname)

/ /} JAFX_FIELD

For more information, see AFX_FIELD _MAP and AFX_FIELD _INIT.

ClassWizard and AppWizard insert specially formatted comment delimiters in your
source code files to mark the places in your files that Class Wizard can write to.
AFX_FIELD _INIT is used in MFC database applications to mark the beginning and
end of record field exchange (RFX) member variable initializations in a recordset
class's constructor:

//{{AFX_DATA_FIELD(classname)

//JJAFX_DATA_FIELD

For more information, see AFX_FIELD _MAP and AFX_FIELD.

Remarks

Remarks

Remarks

ClassWizard and AppWizard insert specially formatted comment delimiters in your
source code files to mark the places in your files that Class Wizard can write to.
AFX_FIELD _MAP is used in MFC database applications to mark the beginning and
end of record field exchange function calls in a recordset class's DoFieldExchange
member function:

//{{AFX_FIELD_MAP(classname)

//}}AFX_FIELD_MAP

For more information, see AFX_FIELD_INIT and AFX_FIELD.

ClassWizard and AppWizard insert specially formatted comment delimiters in your
source code files to mark the places in your files that Class Wizard can write to.
AFX_MSG is used to mark the beginning and end of Class Wizard entries in your
header file (.H) related to message maps:

//{{AFX_MSG(classname)

/ /} }AFX_MSG

For more information, see AFX_MSG_MAP.

ClassWizard and AppWizard insert specially formatted comment delimiters in your
source code files to mark the places in your files that Class Wizard can write to.
AFX_MSG_MAP is used to mark the beginning and end of message map entries in a
class's message map (in the .CPP file):

//{{AFX_MSG_MAP(classname)

/ /} }AFX_MSG_MAP

For more information, see AFX_MSG.

2487

AFX_ VIRTUAL

AFX_ VIRTUAL
Remarks

2488

ClassWizard and AppWizard insert specially formatted comment delimiters in your
source code files to mark the places in your files that ClassWizard can write to.
AFX_ VIRTUAL is used to mark the beginning and end of virtual function override
declarations in a class's header (.H) file:

11{{AFX_VIRTUAL(classname)

There is no corresponding Class Wizard section in the .CPP file.

Structures Used by MFC

Structures, Styles, and Callback Functions
This section documents the structures, styles, and callback functions used by the
Microsoft Foundation Class Library.

Structures U sed by MFC
A description of structures that are called from various member functions follows this
topic. For further information on individual structure usage, refer to the classes and
member functions noted in the See Also list for each structure.

ABC Structure

Members

The ABC structure has the following form:

typedef struct _ABC { /* abc */
int abcA;
UINT abcB;
int abcC;

ABC;

The ABC structure contains the width of a character in a TrueType® font.

abcA Specifies the A spacing of the character. The A spacing is the distance to add
to the current position before drawing the character glyph.

abcB Specifies the B spacing of the character. The B spacing is the width of the
drawn portion of the character glyph.

abcC Specifies the C spacing of the character. The C spacing is the distance to add
to the current position to provide white space to the right of the character glyph.

Comments
The total width of a character is the summation of the A, B, and C spaces. Either the
A or the C space can be negative to indicate underhangs or overhangs.

See Also: CDC::GetCharABCWidths

ABCFLOAT Structure
The ABCFLOAT structure has the following form:

typedef struct _ABCFLOAT { 1* abcf *1
FLOAT abcfA;
FLOAT abcfB;
FLOAT abcfC;

ABCFLOAT;

2489

AFX_EXTENSION_MODULE Structure

Members

The ABCFLOAT structure contains the A, B, and C widths of a font character.

abefA Specifies the A spacing of the character. The A spacing is the distance to add
to the current position before drawing the character glyph.

abem Specifies the B spacing of the character. The B spacing is the width of the
drawn portion of the character glyph.

abefC Specifies the C spacing of the character. The C spacing is the distance to add
to the current position to provide white space to the right of the character glyph.

Comments
The A, B, and C widths are measured along the base line of the font. The
character increment (total width) of a character is the sum of the A, B, and C
spaces. Either the A or the C space can be negative to indicate underhangs or
overhangs.

See Also: CDC::Get CharABCWidths

AFX_EXTENSION_MODULE Structure

Members

2490

The AFX_EXTENSION_MODULE structure has the following form:

struct AFX_EXTENSION_MODUlE
{

} ;

BOOl blnitialized;
HMODUlE hModule;
HMODUlE hResource;
CRuntimeClass* pFirstSharedClass;
COleObjectFactory* pFirstSharedFactory;

The AFX_EXTENSION_MODULE is used during initialization of MFC extension
DLLs to hold the state of extension DLL module.

blnitialized TRUE if the DLL module has been initialized with
AfxlnitExtensionModule.

hModule Specifies the handle of the DLL module.

hResource Specifies the handle of the DLL custom resource module.

pFirstSharedClass A pointer to information (the CRuntimeClass structure) about
the DLL module's first runtime class. Used to provide the start of the runtime class
list.

pFirstSharedFaetory A pointer to the DLL module's first object factory
(a COleObjectFactory object). Used to provide the start of the class factory
list.

AFX_EXTENSION_MODULE Structure

Comments
MFC extension DLLs need to do two things in their DllMain
function:

• Call AfxlnitExtensionModule and check the return value.

• Create a CDynLinkLibrary object if the DLL will be exporting
CRuntimeClass objects or has its own custom resources.

The AFX_EXTENSION_MODULE structure is used to hold a copy of the
extension DLL module state, including a copy of the runtime class objects
that have been initialized by the extension DLL as part of normal static object
construction executed before DllMain is entered.
For example:

static AFX_EXTENSION_MODULE extensionDLL;
extern "c" int APIENTRY
DllMain(HINSTANCE hlnstance. DWORD dwReason. LPVOID)
{

II initialize this DLL's extension module
VERIFY(AfxlnitExtensionModule(extensionDLL. hlnstance));

The module information stored in the AFX_EXTENSION_MODULE
structure can be copied into the CDynLinkLibrary object.
For example:

II CDynLinkLibrary class
IMPLEMENT_DYNAMIC(CDynLinkLibrary. CCmdTarget)
II Constructor
CDynLinkLibrary::CDynLinkLibrary(AFX_EXTENSION_MODULE& state. BOOL bSystem)
{

#ifndef _AFX_NO_OLE_SUPPORT
m_factoryList.Construct(offsetof(COleObjectFactory. m_pNextFactory));

flendif
m_classList.Construct(offsetof(CRuntimeClass. m_pNextClass));

II copy info from AFX_EXTENSION_MODULE struct
ASSERT(state.hModule != NULL);
m_hModule = state.hModule;
m_hResource = state.hResource;
m_classList.m_pHead = state.pFirstSharedClass;

#ifndef _AFX_NO_OLE_SUPPORT
m_factoryList.m_pHead = state.pFirstSharedFactory;

fiend; f
m_bSystem = bSystem;

See Also: AfxlnitExtensionModule, AfxTermExtensionModule

2491

BITMAP Structure

BITMAP Structure

Members

The BITMAP structure has the following form:

typedef
int
int
int

struct tagBITMAP
bmType;
bmWidth;
bmHeight;
bmWidthBytes;
bmPlanes;

int
BYTE
BYTE
LPVOID

bmBitsPi xel ;
bmBits;

BITMAP;

/* bm */

The BITMAP structure defines the height, width, color format, and bit values of a
logical bitmap.

bmType Specifies the bitmap type. For logical bitmaps, this member must be O.

bm Width Specifies the width of the bitmap in pixels. The width must be greater
than o.

bmHeight Specifies the height of the bitmap in raster lines. The height must be
greater than O.

bm WidthBytes Specifies the number of bytes in each raster line. This value must
be an even number since the graphics device interface (ODI) assumes that the
bit values of a bitmap form an array of integer (2-byte) values. In other words,
bm WidthBytes * 8 must be the next multiple of 16 greater than or equal to the
value obtained when the bm Width member is multiplied by the bmBitsPixel
member.

bmPlanes Specifies the number of color planes in the bitmap.

bmBitsPixel Specifies the number of adjacent color bits on each plane needed to
define a pixel.

bmBits Points to the location of the bit values for the bitmap. The bmBits member
must be a long pointer to an array of I-byte values.

Comments

2492

The currently used bitmap formats are monochrome and color. The monochrome
bitmap uses a I-bit, I-plane format. Each scan is a multiple of 16 bits.

Scans are organized as follows for a monochrome bitmap of height n:

Scan 0
Scan 1

Scan n-2
Scan n-l

BITMAPINFO Structure

The pixels on a monochrome device are either black or white. If the corresponding bit
in the bitmap is 1, the pixel is turned on (white). If the corresponding bit in the bitmap
is 0, the pixel is turned off (black).

All devices support bitmaps that have the RC_BITBLT bit set in the RASTERCAPS
index of the CDC::GetDeviceCaps member function.

Each device has its own unique color format. In order to transfer a bitmap from one
device to another, use the GetDIBits and SetDIBits Windows functions.

See Also: CBitmap::CreateBitmaplndirect

BITMAPINFO Structure

Members

The BITMAPINFO structure has the following form:

typedef struct tagBITMAPINFO {
BITMAPINFOHEADER bmiHeader;
RGBQUAD bmiColors[l];

} BITMAPINFO;

The BITMAPINFO structure defines the dimensions and color information for a
Windows device-independent bitmap (DIB).

bmiHeader Specifies a BITMAPINFOHEADER structure that contains
information about the dimensions and color format of a device-independent
bitmap.

bmiColors Specifies an array of RGBQUAD or DWORD data types that define the
colors in the bitmap.

Comments
A device-independent bitmap consists of two distinct parts: a BITMAPINFO
structure describing the dimensions and colors of the bitmap, and an array of bytes
defining the pixels of the bitmap. The bits in the array are packed together, but each
scan line must be padded with zeroes to end on a LONG boundary. If the height is
positive, the origin of the bitmap is the lower-left comer. If the height is negative,
the origin is the upper-left comer.

The biBitCount member of the BITMAPINFOHEADER structure determines the
number of bits that define each pixel and the maximum number of colors in the
bitmap. This member can be one of the following values:

• The bitmap is monochrome, and the bmiColors member contains two entries. Each
bit in the bitmap array represents a pixel. If the bit is clear, the pixel is displayed
with the color of the first entry in the bmiColors table; if the bit is set, the pixel has
the color of the second entry in the table.

2493

BITMAPINFO Structure

2494

• The bitmap has a maximum of 16 colors, and the bmiColors member contains up
to 16 entries. Each pixel in the bitmap is represented by a 4-bit index into the color
table. For example, if the first byte in the bitmap is Ox1F, the byte represents two
pixels. The first pixel contains the color in the second table entry, and the second
pixel contains the color in the sixteenth table entry.

• The bitmap has a maximum of 256 colors, and the bmiColors member contains up
to 256 entries. In this case, each byte in the array represents a single pixel.

• The bitmap has a maximum of 216 colors. The biCompression member of the
BITMAPINFOHEADER must be BI_BITFIELDS. The bmiColors member
contains 3 DWORD color masks which specify the red, green, and blue
components, respectively, of each pixel. Bits set in the DWORD mask must be
contiguous and should not overlap the bits of another mask. All the bits in the pixel
do not have to be used. Each WORD in the array represents a single pixel.

• The bitmap has a maximum of 224 colors, and the bmiColors member is NULL.
Each 3-byte triplet in the bitmap array represents the relative intensities of blue,
green, and red, respectively, of a pixel.

• The bitmap has a maximum of 232 colors. The biCompression member of the
BITMAPINFOHEADER must be BI_BITFIELDS. The bmiColors member
contains three DWORD color masks which specify the red, green, and blue
components, respectively, of each pixel. Bits set in the DWORD mask must be
contiguous and should not overlap the bits of another mask. All the bits in the pixel
do not have to be used. Each DWORD in the array represents a single pixel.

The biClrUsed member of the BITMAPINFOHEADER structure specifies the
number of color indices in the color table that are actually used by the bitmap. If the
biClrUsed member is set to zero, the bitmap uses the maximum number of colors
corresponding to the value of the biBitCount member.

The colors in the bmiColors table should appear in order of importance.
Alternatively, for functions that use DIBs, the bmiColors member can be an array of
16-bit unsigned integers that specify indices into the currently realized logical palette,
instead of explicit RGB values. In this case, an application using the bitmap must call
the Windows DIB functions (CreateDIBitmap, CreateDIBPatternBrush, and
CreateDIBSection) with the iUsage parameter set to DIB_PAL_COLORS.

If the bitmap is a packed bitmap (that is, a bitmap in which the bitmap array
immediately follows the BITMAPINFO header and which is referenced by a single
pointer), the biClrUsed member must be set to an even number when using the
DIB_PAL_COLORS mode so the DIB bitmap array starts on a DWORD boundary.

Note The bmiColors member should not contain palette indices if the bitmap is to be stored in
a file or transferred to another application. Unless the application has exclusive use and control
of the bitmap, the bitmap color table should contain explicit RGB values.

See Also: CBrush::CreateDIBPatternBrush

CDaoDatabaseInfo Structure

CDaoDatabaseInfo Structure

Members

The CDaoDatabaselnfo structure has the following form:

struct CDaoDatabaseInfo
{

} ;

CString m_strName;
BOOl m_bUpdatable;
BOOl m_bTransactions;
CString m_strVersion;
long m_1CollatingOrder;
short m_nQueryTimeout;
CString m_strConnect;

II Primary
II Primary
II Primary
II Secondary
II Secondary
II Secondary
I I All

The CDaoDatabaselnfo structure contains information about a database object
defined for data access objects (DAO). The database is a DAO object underlying' an
MFC object of class CDaoDatabase. The references to Primary, Secondary, and All
above indicate how the information is returned by the
CDao Workspace: : GetDatabaselnfo member function.

m_strName Uniquely names the database object. To directly retrieve this property,
call CDaoDatabase::GetName. For details, see the topic "Name Property" in
DAO Help.

m_bUpdatable Indicates whether changes can be made to the database. To directly
retrieve this property, call CDaoDatabase::CanUpdate. For details, see the topic
"Up datable Property" in DAO Help.

m_bTransactions Indicates whether a data source supports transactions-the
recording of a series of changes that can later be rolled back (canceled) or
committed (saved). If a database is based on the Microsoft Jet database engine,
the Transactions property is nonzero and you can use transactions. Other database
engines may not support transactions. To directly retrieve this property, call
CDaoDatabase::CanTransact. For details, see the topic "Transactions Property"
in DAO Help.

m_strVersion Indicates the version of the Microsoft Jet database engine. To retrieve
the value of this property directly, call the database object's GetVersion member
function. For details, see the topic "Version Property" in DAO Help.

m_lCollatingOrder Specifies the sequence of the sort order in text for string
comparison or sorting. Possible values include:

• dbSortGeneral Use the General (English, French, German, Portuguese,
Italian, and Modem Spanish) sort order.

• dbSortArabic Use the Arabic sort order.

• dbSortCyrillic Use the Russian sort order.

2495

CDaoDatabaseInfo Structure

• dbSortCzech Use the Czech sort order.

• dbSortDutch Use the Dutch sort order.

• dbSortGreek Use the Greek sort order.

• dbSortHebrew Use the Hebrew sort order.

• dbSortHungarian Use the Hungarian sort order.

• dbSortIcelandic Use the Icelandic sort order.

• dbSortNorwdan Use the Norwegian or Danish sort order.

• dbSortPDXIntl Use the Paradox International sort order.

• dbSortPDXNor Use the Paradox Norwegian or Danish sort order.

• dbSortPDXSwe Use the Paradox Swedish or Finnish sort order.

• dbSortPolish Use the Polish sort order.

• dbSortSpanish Use the Spanish sort order.

• dbSortSwedFin Use the Swedish or Finnish sort order.

• dbSortTurkish Use the Turkish sort order.

• dbSortUndefined The sort order is undefined or unknown.

For more information, see the topic "Customizing Windows Registry Settings for
Data Access" in DAO Help.

m_nQueryTimeout The number of seconds the Microsoft Jet database engine waits
before a timeout error occurs when a query is run on an ODBC database. The
default timeout value is 60 seconds. When QueryTimeout is set to 0, no timeout
occurs; this can cause the program to hang. To retrieve the value of this property
directly, call the database object's GetQueryTimeout member function. For
details, see the topic "QueryTimeout Property" in DAO Help.

m_strConnect Provides information about the source of an open database. For
information about connect strings, and for information about retrieving the value
of this property directly, see the CDaoDatabase::GetConnect member function.
For more information, see the topic "Connect Property" in DAO Help.

Comments

2496

Information retrieved by the CDao Workspace: : GetDatabaseInfo member
function is stored in a CDaoDatabaseInfo structure. Call GetDatabaseInfo for the
CDao Workspace object in whose Databases collection the database object is stored.
CDaoDatabaseInfo also defines a Dump member function in debug builds. You can
use Dump to dump the contents of a CDaoDatabaseInfo object.

For information on using this and other MFC DAO Info structures, see the article
"DAO Collections: Obtaining Information About DAO Objects" in Visual C++
Programmer s Guide online.

CDaoErrorInfo Structure

See Also: CDao Workspace, CDaoDatabase, CDao Workspace: :GetDatabaseCount

CDaoErrorInfo Structure

Members

The CDaoErrorlnfo structure has the following form:

struct CDaoErrorlnfo
{

} ;

long m_1ErrorCode:
CString m_strSource:
CString m_strDescription:
CString m_strHelpFile:
long m_1HelpContext:

The CDaoErrorlnfo structure contains information about an error object defined for
data access objects (DAO). MFC does not encapsulate DAO error objects in a class.
Instead, the CDaoException class supplies an interface for accessing the Errors
collection contained in the DAO DBEngine object, the object that also contains all
workspaces. When an MFC DAO operation throws a CDaoException object that you
catch, MFC fills a CDaoErrorlnfo structure and stores it in the exception object's
m_pErrorInfo member. (If you choose to call DAO directly, you must call the
exception object's GetErrorlnfo member function yourself to fill m_pErrorlnfo.)

For more information about handling DAO errors, see the article "Exceptions:
Database Exceptions" in Visual C++ Programmer's Guide online. For related
information, see the topic "Error Object" in DAO Help.

m_IErrorCode A numeric DAO error code. See the topic "Trapp able Data Access
Errors" in DAO Help.

m_strSource The name of the object or application that originally generated the
error. The Source property specifies a string expression representing the object
that originally generated the error; the expression is usually the object's class
name. For details, see the topic "Source Property" in DAO Help.

m_strDescription A descriptive string associated with an error. For details, see the
topic "Description Property" in DAO Help.

m_strHelpFile A fully qualified path to a Microsoft Windows Help file. For details,
see the topic "Help Context, HelpFile Properties" in DAO Help.

m_IHelpContext A context ID for a topic in a Microsoft Windows Help file.
For details, see the topic "HelpContext, HelpFile Properties" in DAO Help.

Comments
Information retrieved by the CDaoException: :GetError Info member function is
stored in a CDaoErrorlnfo structure. Examine the m_pErrorlnfo data member from
a CDaoException object that you catch in an exception handler, or call GetErrorlnfo

2497

CDaoFieldlnfo Structure

from a CDaoException object that you create explicitly in order to check errors that
might have occurred during a direct call to the DAO interfaces. CDaoErrorlnfo also
defines a Dump member function in debug builds. You can use Dump to dump the
contents of a CDaoErrorlnfo object.

For information on using this and other MFC DAO Info structures, see the article
"DAO Collections: Obtaining Information About DAO Objects" in Visual C++
Programmer's Guide online.

See Also: CDaoException

CDaoFieldInfo Structure

2498

The CDaoFieldlnfo structure has the following form:

struct CDaoFieldlnfo
{

} ;

CString m_strName; II Primary
short m_nType; II Primary
long m_1Size; II Primary
long m_1Attributes; II Primary
short m_nOrdinalPosition; II Secondary
BOOl m_bRequired; II Secondary
BOOl m_bAllowZerolength; II Secondary
long m_1CollatingOrder; II Secondary
CString m_strForeignName; II Secondary
CString m_strSourceField; II Secondary
CString m_strSourceTable; II Secondary
CString m_strValidationRule; II All
CString m_strValidationText; II All
CString m_strDefaultValue; II All

The CDaoFieldlnfo structure contains information about a field object defined for
data access objects (DAO). The references to Primary, Secondary, and All above
indicate how the information is returned by the GetFieldlnfo member function in
classes CDaoTableDef, CDaoQueryDef, and CDaoRecordset.

Field objects are not represented by an MFC class. Instead, the DAO objects
underlying MFC objects of the following classes contain collections of field objects:
CDaoTableDef, CDaoRecordset, and CDaoQueryDef. These classes supply
member functions to access some individual items of field information, or you can
access them all at once with a CDaoFieldlnfo object by calling the GetFieldlnfo
member function of the containing object.

Besides its use for examining object properties, you can also use CDaoFieldlnfo to
construct an input parameter for creating new fields in a tabledef. Simpler options are
available for this task, but if you want finer control, you can use the version of
CDaoTableDef::CreateField that takes a CDaoFieldlnfo parameter.

Members

CDaoFieldlnfo Structure

m_strName Uniquely names the field object. For details, see the topic "Name
Property" in DAO Help.

m_nType A value that indicates the data type of the field. For details, see the topic
"Type Property" in DAO Help. The value of this property can be one of the
following:

• dbBoolean Yes/No, same as TRUEIFALSE

• dbByte Byte

• dblnteger Short

• dbLong Long

• db Currency Currency; see MFC class COleCurrency

• db Single Single

• dbDouble Double

o dbDate DatefTime; see MFC class COleDateTime

• db Text Text; see MFC class CString

• dbLongBinary Long Binary (OLE Object); you might want to use MFC class
CByteArray instead of class CLongBinary as CByteArray is richer and easier
to use.

• dbMemo Memo; see MFC class CString

• dbGUID A Globally Unique Identifier/Universally Unique Identifier used
with remote procedure calls. For more information, see the topic "Type
Property" in DAO Help.

Note Do not use string data types for binary data. This causes your data to pass through
the Unicode/ANSI translation layer, resulting in increased overhead and possibly unexpected
translation.

m_ISize A value that indicates the maximum size, in bytes, of a DAO field object
that contains text or the fixed size of a field object that contains text or numeric
values. For details, see the topic "Size Property" in DAO Help. Sizes can be one
of the following values:

Type Size (Bytes) Description

dbBoolean 1 byte YeslNo (same as TruelFalse)

dbByte 1 Byte

dblnteger 2 Integer

dbLong 4 Long

db Currency 8 Currency (COleCurrency)

(continued)

2499

CDaoFieldInfo Structure

2500

(continued)

Type

dbSingle

dbDouble

dbDate

dbText

dbLongBinary

dbMemo

dbGUID

Size (Bytes)

4

8

8

1-255

0

0

16

Description

Single

Double

Daterrime (COleDateTime)

Text (CString)

Long Binary (OLE Object; CByteArray; use
instead of CLongBinary)

Memo (CString)

A Globally Unique IdentifierlUniversally Unique
Identifier used with remote procedure calls.

m_lAttributes Specifies characteristics of a field object contained by a tabledef,
recordset, querydef, or index object. The value returned can be a sum of these
constants, created with the C++ bitwise-OR (I) operator:

• dbFixedField The field size is fixed (default for Numeric fields).

• db VariableField The field size is variable (Text fields only).

• dbAutolncrField The field value for new records is automatically
incremented to a unique long integer that cannot be changed. Only supported
for Microsoft Jet database tables.

• dbUpdatableField The field value can be changed.

• dbDescending The field is sorted in descending (Z-A or 100-0) order (applies
only to a field object in a Fields collection of an index object; in MFC, index
objects are themselves contained in tabledef objects). If you omit this constant,
the field is sorted in ascending (A-Z or 0-100) order (default).

When checking the setting of this property, you can use the C++ bitwise-AND
operator (&) to test for a specific attribute. When setting multiple attributes, you
can combine them by combining the appropriate constants with the bitwise-OR (I)
operator. For details, see the topic "Attributes Property" in DAO Help.

m_nOrdinalPosition A value that specifies the numeric order in which you want a
field represented by a DAO field object to be displayed relative to other fields. You
can set this property with CDaoTableDef::CreateField. For details, see the topic
"OrdinalPosition Property" in DAO Help.

m_bRequired Indicates whether a DAO field object requires a non-Null value. If
this property is TRUE, the field does not allow a Null value. If Required is set to
FALSE, the field can contain Null values as well as values that meet the conditions
specified by the AllowZeroLength and ValidationRule property settings. For
details, see the topic "Required Property" in DAO Help. You can set this property
for a tabledef with CDaoTableDef::CreateField.

CDaoFieldlnfo Structure

m_bAllowZeroLength Indicates whether an empty string ("") is a valid value of
a DAO field object with a Text or Memo data type. If this property is TRUE, an
empty string is a valid value. You can set this property to FALSE to ensure that
you cannot use an empty string to set the value of a field. For details, see the topic
"AllowZeroLength Property" in DAO Help. You can set this property for a
tabledef with CDaoTableDef::CreateField.

m_ICollatingOrder Specifies the sequence of the sort order in text for string
comparison or sorting. For details, see the topic "Customizing Windows Registry
Settings for Data Access" in DAO Help. For a list of the possible values returned,
see the m_ICollatingOrder member of the CDaoDatabaselnfo structure. You can
set this property for a tabledef with CDaoTableDef::CreateField.

m_strForeignName A value that, in a relation, specifies the name of the DAO field
object in a foreign table that corresponds to a field in a primary table. For details,
see the topic "ForeignName Property" in DAO Help.

m_strSourceField Indicates the name of the field that is the original source of the
data for a DAO field object contained by a tabledef, recordset, or querydef object.
This property indicates the original field name associated with a field object. For
example, you could use this property to determine the original source of the data
in a query field whose name is unrelated to the name of the field in the underlying
table. For details, see the topic "SourceField, SourceTable Properties" in DAO
Help. You can set this property for a tabledef with CDaoTableDef::CreateField.

m_strSourceTable Indicates the name of the table that is the original source of the
data for a DAO field object contained by a tabledef, recordset, or querydef object.
This property indicates the original table name associated with a field object. For
example, you could use this property to determine the original source of the data
in a query field whose name is unrelated to the name of the field in the underlying
table. For details, see the topic "SourceField, SourceTable Properties" in DAO
Help. You can set this property for a tabledef with CDaoTableDef::CreateField.

m_strValidationRule A value that validates the data in a field as it is changed or
added to a table. For details, see the topic "ValidationRule Property" in DAO Help.
You can set this property for a tabledef with CDaoTableDef::CreateField.

For related information about tabledefs, see the m_strValidationRule member of
the CDaoTableDefinfo structure.

m_strValidationText A value that specifies the text of the message that your
application displays if the value of a DAO field object does not satisfy the
validation rule specified by the ValidationRule property setting. For details, see
the topic "ValidationText Property" in DAO Help. You can set this property for a
tabledef with CDaoTableDef::CreateField.

m_strDefaultValue The default value of a DAO field object. When a new record is
created, the DefaultValue property setting is automatically entered as the value for
the field. For details, see the topic "DefaultValue Property" in DAO Help. You can
set this property for a tabledef with CDaoTableDef::CreateField.

2501

CDaolndexlnfo Structure

Comments
Information retrieved by the GetFieldInfo member function (of the class that contains
the field) is stored in a CDaoFieldInfo structure. Call the GetFieldInfo member
function of the containing object in whose Fields collection the field object is stored.
CDaoFieldInfo also defines a Dump member function in debug builds. You can use
Dump to dump the contents of a CDaoFieldInfo object.

For information on using this and other MFC DAO Info structures, see the article
"DAO Collections: Obtaining Information About DAO Objects" in Visual C++
Programmer's Guide online.

See Also: CDaoTableDef::GetFieldInfo, CDaoRecordset::GetFieldInfo,
CDaoQuery Def: : GetFieldInfo

CDaoIndexInfo Structure

2502

The CDaoIndexInfo structure has the following form:

struct CDaoIndexInfo

} ;

CDaoIndexInfo();

CString m_strName;
CDaoIndexFieldInfo* m_pFieldInfos;
short m_nFields;
BOOl m_bPrimary;
BOOl m_bUnique;
BOOl m_bClustered;
BOOl m_bIgnoreNulls;
BOOl m_bRequired;
BOOl m_bForeign;
long m_1DistinctCount;

II Constructor

II Primary
II Primary
II Primary
II Secondary
II Secondary
II Secondary
II Secondary
II Secondary
II Secondary
I I A 11

II Below the II Implementation comment:
II Destructor, not otherwise documented

The CDaoIndexInfo structure contains information about an index object defined
for data access objects (DAO). The references to Primary, Secondary, and All above
indicate how the information is returned by the GetlndexInfo member function in
classes CDaoTableDef and CDaoRecordset.

Index objects are not represented by an MFC class. Instead, DAO objects underlying
MFC objects of class CDaoTableDef or CDaoRecordset contain a collection of
index objects, called the Indexes collection. These classes supply member functions
to access individual items of index information, or you can access them all at once
with a CDaoIndexInfo object by calling the GetlndexInfo member function of the
containing object.

CDaoIndexInfo has a constructor and a destructor in order to properly allocate and
deallocate the index field information in m_pFieldInfos.

Members

CDaolndexlnfo Structure

m_strName Uniquely names the field object. For details, see the topic "Name
Property" in DAD Help.

m_pFieldlnfos A pointer to an array of CDaolndexFieldlnfo objects indicating
which tabledef or recordset fields are key fields in an index. Each object identifies
one field in the index. The default index ordering is ascending. An index object
can have one or more fields representing index keys for each record. These can
be ascending, descending, or a combination.

m_nFields The number of fields stored in m_pFieldlnfos.

m_bPrimary If the Primary property is TRUE, the index object represents a
primary index. A primary index consists of one or more fields that uniquely
identify all records in a table in a predefined order. Because the index field must
be unique, the Unique property of the Index object is also set to TRUE in DAD. If
the primary index consists of more than one field, each field can contain duplicate
values, but each combination of values from all the indexed fields must be unique.
A primary index consists of a key for the table and usually contains the same fields
as the primary key.

When you set a primary key for a table, the primary key is automatically defined
as the primary index for the table. For more information, see the topics "Primary
Property" and "Unique Property" in DAD Help.

Note There can be, at most, one primary index on a table.

m_bUnique Indicates whether an index object represents a unique index for a table.
If this property is TRUE, the index object represents an index that is unique. A
unique index consists of one or more fields that logically arrange all records in a
table in a unique, predefined order. If the index consists of one field, values in that
field must be unique for the entire table. If the index consists of more than one
field, each field can contain duplicate values, but each combination of values from
all the indexed fields must be unique.

If both the Unique and Primary properties of an index object are set to TRUE,
the index is unique and primary: It uniquely identifies all records in the table in
a predefined, logical order. If the Primary property is set to FALSE, the index is
a secondary index. Secondary indexes (both key and nonkey) logically arrange
records in a predefined order without serving as an identifier for records in the
table.

For more information, see the topics "Primary Property" and "Unique Property"
in DAD Help.

m_bClustered Indicates whether an index object represents a clustered index for a
table. If this property is TRUE, the index object represents a clustered index;
otherwise, it does not. A clustered index consists of one or more nonkey fields that,
taken together, arrange all records in a table in a predefined order. With a clustered
index, the data in the table is literally stored in the order specified by the clustered

2503

CDaolndexlnfo Structure

2504

index. A clustered index provides efficient access to records in a table. For more
information, see the topic "Clustered Property" in DAO Help.

Note The Clustered property is ignored for databases that use the Microsoft Jet database
engine because the Jet database engine does not support clustered indexes.

m_bIgnoreNuIls Indicates whether there are index entries for records that have Null
values in their index fields. If this property is TRUE, fields with Null values do
not have an index entry. To make searching for records using a field faster, you
can define an index for the field. If you allow Null entries in an indexed field and
expect many of the entries to be Null, you can set the IgnoreNulls property for the
index object to TRUE to reduce the amount of storage space that the index uses.
The IgnoreNulls property setting and the Required property setting together
determine whether a record with a Null index value has an index entry, as the
following table shows.

IgnoreNulls Required Null in index field

True

False

True or False

False

False

True

Null value allowed; no index entry added.

Null value allowed; index entry added.

Null value not allowed; no index entry added.

For more information, see the topic "IgnoreNulls Property" in DAO Help.

m_bRequired Indicates whether a DAO index object requires a non-Null value.
If this property is TRUE, the index object does not allow a Null value. For more
information, see the topic "Required Property" in DAO Help.

Tip When you can set this property for either a DAD index object or a field object
(contained by a tabledef, recordset, or querydef object), set it for the field object. The validity
of the property setting for a field object is checked before that of an index object.

m_bForeign Indicates whether an index object represents a foreign key in a table.
If this property is TRUE, the index represents a foreign key in a table. A foreign
key consists of one or more fields in a foreign table that uniquely identify a row in
a primary table. The Microsoft Jet database engine creates an index object for the
foreign table and sets the Foreign property when you create a relationship that
enforces referential integrity. For more information, see the topic "Foreign
Property" in DAO Help.

m_lDistinctCount Indicates the number of unique values for the index object that
are included in the associated table. Check the DistinctCount property to determine
the number of unique values, or keys, in an index. Any key is counted only once,
even though there may be multiple occurrences of that value if the index permits
duplicate values. This information is useful in applications that attempt to optimize
data access by evaluating index information. The number of unique values is also
known as the cardinality of an index object. The DistinctCount property will not
always reflect the actual number of keys at a particular time. For example, a change
caused by a transaction rollback will not be reflected immediately in the

CDaoIndexFieldInfo Structure

DistinctCount property. For more information, see the topic "DistinctCount
Property" in DAO Help.

Important Obtaining this information can be time-consuming.

Comments
Information retrieved by the GetIndexlnfo member function of a tabledef object is
stored in a CDaolndexlnfo structure. Call the Getlndexlnfo member function of
the containing tabledef object in whose Indexes collection the index object is stored.
CDaolndexlnfo also defines a Dump member function in debug builds. You can use
Dump to dump the contents of a CDaolndexlnfo object.

For information on using this and other MFC DAO Info structures, see the article
"DAO Collections: Obtaining Information About DAO Objects" in Visual C++
Programmer's Guide online.

See Also: CDaoTableDef:: GetIndexlnfo

CDaoIndexFieldInfo Structure

Members

The CDaolndexFieldlnfo structure has the following form:

struct CDaolndexFieldlnfo
{

} ;

CString m_strName;
BOOl m_bDescending;

II Primary
II Primary

The CDaolndexFieldlnfo structure contains information about an index field object
defined for data access objects (DAO). An index object can have a number of fields,
indicating which fields a tabledef (or a recordset based on a table) is indexed on.
The references to Primary above indicate how the information is returned in the
m_pFieldlnfos member of a CDaolndexlnfo object obtained by calling the
Getlndexlnfo member function of class CDaoTableDef or CDaoRecordset.

Index objects and index field objects are not represented by an MFC class. Instead, the
DAO objects underlying MFC objects of class CDaoTableDef or CDaoRecordset
contain a collection of index objects, called the Indexes collection. Each index object,
in turn, contains a collection of field objects. These classes supply member functions
to access individual items of index information, or you can access them all at once
with a CDaolndexlnfo object by calling the Getlndexlnfo member function of
the containing object. The CDaolndexlnfo object, then, has a data member,
m_pFieldlnfos, that points to an array of CDaolndexFieldlnfo objects.

m_strName Uniquely names the index field object. For details, see the topic "Name
Property" in DAO Help.

m_bDescending Indicates the index ordering defined by the index object. TRUE if
the order is descending.

2505

CDaoParameterInfo Structure

Comments
Call the GetlndexInfo member function of the containing tabledef or recordset object
in whose Indexes collection is stored the index object you are interested in. Then
access the m_pFieldInfos member of the CDaoIndexInfo object. The length of the
m_pFieldInfos array is stored in m_nFields. CDaoIndexFieldInfo also defines a
Dump member function in debug builds. You can use Dump to dump the contents
of a CDaoIndexFieldInfo object.

For information on using this and other MFC DAO Info structures, see the article
"DAO Collections: Obtaining Information About DAO Objects" in Visual C++
Programmer's Guide online.

See Also: CDaoTableDef: : GetlndexInfo, CDaoRecordset: : GetlndexInfo

CDaoParameterInfo Structure

Members

2506

The CDaoParameterInfo structure has the following form:

struct CDaoParameterlnfo
{

} ;

CString m_strName;
short m_nType;
ColeVariant m_varValue;

II Primary
II Primary
II Secondary

The CDaoParameterInfo structure contains information about a parameter object
defined for data access objects (DAO). The references to Primary and Secondary
above indicate how the information is returned by the GetParameterInfo member
function in class CDaoQueryDef.

MFC does not encapsulate DAO parameter objects in a class. DAO querydef
objects underlying MFC CDaoQueryDef objects store parameters in their
Parameters collections. To access the parameter objects in a CDaoQueryDef object,
call the querydef object's GetParameterInfo member function for a particular
parameter name or an index into the Parameters collection. You can use the
CDaoQueryDef::GetParameterCount member function in conjunction with
GetParameterInfo to loop through the Parameters collection.

m_strName Uniquely names the parameter object. For more information, see the
topic "Name Property" in DAO Help.

m_nType A value that indicates the data type of a parameter object. For a list of the
possible values, see the m_nType member of the CDaoFieldInfo structure. For
more information, see the topic "Type Property" in DAO Help.

m_ varValue The value of the parameter, stored in a COle Variant object.

CDaoQuery DefInfo Structure

Comments
Information retrieved by the CDaoQueryDef::GetParameterlnfo member function
is stored in a CDaoParameterlnfo structure. Call GetParameterlnfo for the
querydef object in whose Parameters collection the parameter object is stored.

Note If you want to get or set only the value of a parameter, use the GetParamValue and
SetParamValue member functions of class CDaoRecordset.

CDaoParameterlnfo also defines a Dump member function in debug builds. You can
use Dump to dump the contents of a CDaoParameterlnfo object. For information on
using this and other MFC DAO Info structures, see the article "DAO Collections:
Obtaining Information About DAO Objects" in Visual C++ Programmer's Guide
online.

See Also: CDaoQueryDef

CDaoQueryDefinfo Structure

Members

The CDaoQueryDefinfo structure has the following form:

struct CDaoOueryDeflnfo
{

} ;

CString m_strName;
short m_nType;
COleDateTime m_dateCreated;
COleDateTime m_datelastUpdated;
BOOl m_bUpdatable;
BOOl m_bReturnsRecords;
CString m_strSOl:
CString m_strConnect;
short m_nODBCTimeout;

II Primary
II Primary
II Secondary
II Secondary
II Secondary
II Secondary
1/ All
1/ All
1/ All

The CDaoQueryDefinfo structure contains information about a querydef object
defined for data access objects (DAO). The querydef is an object of class
CDaoQueryDef. The references to Primary, Secondary, and All above indicate
how the information is returned by the GetQueryDefinfo member function in
class CDaoDatabase.

m_strName Uniquely names the querydef object. For more information, see the
topic "Name Property" in DAO Help. Call CDaoQueryDef::GetName to retrieve
this property directly.

m_nType A value that indicates the operational type of a querydef object. The value
can be one of the following:

• dbQSelect Select-the query selects records .

• dbQAction Action-the query moves or changes data but does not return
records.

2507

CDaoQueryDefInfo Structure

2508

• dbQCrosstab Crosstab-the query returns data in a spreadsheet-like format.

• dbQDelete Delete-the query deletes a set of specified rows.

• dbQUpdate Update-the query changes a set of records.

• dbQAppend Append-the query adds new records to the end of a table or
query.

• dbQMakeTable Make-table-the query creates a new table from a recordset.

• dbQDDL Data-definition-the query affects the structure of tables or their
parts.

• dbQSQLPassThrough Pass-through-the SQL statement is passed directly to
the database backend, without intermediate processing.

• dbQSetOperation Union-the query creates a snapshot-type recordset object
containing data from all specified records in two or more tables with any
duplicate records removed. To include the duplicates, add the keyword ALL in
the querydef's SQL statement.

• dbQSPTBulk Used with dbQSQLPassThrough to specify a query that does
not return records.

Note To create an Sal pass-through query, you do not set the dbQSQLPassThrough
constant. This is set automatically by the Microsoft Jet database engine when you create a
querydef object and set the Connect property.

For more information, see the topic "Type Property" in DAO Help.

m_dateCreated The date and time the querydef was created. To directly retrieve the
date the querydef was created, call the GetDateCreated member function of the
CDaoTableDef object associated with the table. See Comments below for more
information. Also see the topic "DateCreated, LastUpdated Properties" in DAO
Help.

m_dateLastUpdated The date and time of the most recent change made to the
querydef. To directly retrieve the date the table was last updated, call the
GetDateLastUpdated member function of the querydef. See Comments below
for more information. And see the topic "DateCreated, LastUpdated Properties"
in DAO Help.

m_bUpdatable Indicates whether changes can be made to a querydef object. If this
property is TRUE, the querydef is updatable; otherwise, it is not. Up datable means
the querydef object's query definition can be changed. The Updatable property of
a querydef object is set to TRUE if the query definition can be updated, even if
the resulting recordset is not updatable. To retrieve this property directly, call the
querydef's CanUpdate member function. For more information, see the topic
"Updatable Property" in DAO Help.

CDaoQueryDefinfo Structure

m_bReturnsRecords Indicates whether an SQL pass-through query to an external
database returns records. If this property is TRUE, the query returns records. To
directly retrieve this property, call CDaoQueryDef::GetReturnsRecords. Not all
SQL pass-through queries to external databases return records. For example, an
SQL UPDATE statement updates records without returning records, while an
SQL SELECT statement does return records. For more information, see the topic
"ReturnsRecords Property" in DAO Help.

m_strSQL The SQL statement that defines the query executed by a querydef object.
The SQL property contains the SQL statement that determines how records are
selected, grouped, and ordered when you execute the query. You can use the query
to select records to include in a dynaset- or snapshot-type recordset object. You can
also define bulk queries to modify data without returning records. You can retrieve
the value of this property directly by calling the querydef's GetSQL member
function. For more information, see the article "DAO Queries" in Visual C++
Programmer S Guide online and the topic "SQL Property" in DAO Help.

m_strConnect Provides information about the source of a database used in a
pass-through query. This information takes the form of a connect string. For more
information about connect strings, and for information about retrieving the value
of this property directly, see the CDaoDatabase: :GetConnect member function.

m_nODBCTimeout The number of seconds the Microsoft Jet database engine
waits before a timeout error occurs when a query is run on an ODBC database.
When you're using an ODBC database, such as Microsoft SQL Server, there
may be delays because of network traffic or heavy use of the ODBC server.
Rather than waiting indefinitely, you can specify how long the Microsoft Jet
engine waits before it produces an error. The default timeout value is 60 seconds.
You can retrieve the value of this property directly by calling the querydef's
GetODBCTimeout member function. For more information, see the topic
"ODBCTimeout Property" in DAO Help.

Comments
Information retrieved by the CDaoDatabase::GetQueryDeflnfo member
function is stored in a CDaoQueryDeflnfo structure. Call GetQueryDeflnfo
for the database object in whose QueryDefs collection the querydef object is stored.
CDaoQueryDeflnfo also defines a Dump member function in debug builds.
You can use Dump to dump the contents of a CDaoQueryDeflnfo object. Class
CDaoDatabase also supplies member functions for directly accessing all of the
properties returned in a CDaoQueryDeflnfo object, so you will probably seldom
need to call GetQueryDeflnfo.

When you append a new field or parameter object to the Fields or Parameters
collection of a querydef object, an exception is thrown if the underlying database
does not support the data type specified for the new object.

The date and time settings are derived from the computer on which the querydef was
created or last updated. In a multiuser environment, users should get these settings

2509

CDaoRelationInfo Structure

directly from the file server using the net time command to avoid discrepancies in
the DateCreated and LastUpdated property settings. For information on using this
and other MFC DAO Info structures, see the article "DAO Collections: Obtaining
Information About DAO Objects" in Visual c++ Programmers Guide online.

See Also: CDaoQueryDef, CDaoDatabase

CDaoRelationInfo Structure

Members

2510

The CDaoRelationInfo structure has the following form:

struct CDaoRelationInfo
{

} ;

CDaoRelationInfo();

CString m_strName;
CString m_strTable;
CString m_strForeignTable;
long m_1Attributes;
CDaoRelationFieldlnfo* m_pFieldInfos;
short m_nFields;

II Below the II Implementation comment:
II Destructor. not otherwise documented

II Constructor

II Primary
II Pri rna ry
II Pri rna ry
II Secondary
II Secondary
II Secondary

The CDaoRelationInfo structure contains information about a relation defined
between fields of two tables in a CDaoDatabase object. The references to
Primary and Secondary above indicate how the information is returned by the
GetRelationInfo member function in class CDaoDatabase.

Relation objects are not represented by an MFC class. Instead, the DAO object
underlying an MFC object of the CDaoDatabase class maintains a collection
of relation objects: CDaoDatabase supplies member functions to access some
individual items of relation information, or you can access them all at once with
a CDaoRelationInfo object by calling the GetRelationInfo member function of
the containing database object.

m_strName Uniquely names the relation object. For more information, see the
topic "Name Property" in DAO Help.

m_strTable Names the primary table in the relation.

m_strForeignTable Names the foreign table in the relation. A foreign table is a
table used to contain foreign keys. Generally, you use a foreign table to establish
or enforce referential integrity. The foreign table is usually on the many side of a
one-to-many relationship. Examples of foreign tables include tables containing
codes for the American states or Canadian provinces or customer orders.

CDaoRelationFieldlnfo Structure

m_lAttributes Contains information about the relation type. The value of this
member can be any of the following:

• dbRelationUnique Relationship is one-to-one.

• dbRelationDontEnforce Relationship is not enforced (no referential
integrity).

• dbRelationlnherited Relationship exists in a noncurrent database that
contains the two attached tables.

• dbRelationLeft The relationship is a left join. A left outer join includes all of
the records from the first (left-hand) of two tables, even if there are no matching
values for records in the second (right-hand) table.

• dbRelationRight The relationship is a right join. A right outer join includes all
of the records from the second (right-hand) of two tables, even if there are no
matching values for records in the first (left-hand) table.

• dbRelationUpdateCascade Updates will cascade.

• dbRelationDeleteCascade Deletions will cascade.

m_pFieldlnfos A pointer to an array of CDaoRelationFieldlnfo structures. The
array contains one object for each field in the relation. The m_nFields data
member gives a count of the array elements.

m_nFields The number of CDaoRelationFieldlnfo objects in the m_pFieldlnfos
data member.

Comments
Information retrieved by the CDaoDatabase::GetRelationlnfo member function is
stored in a CDaoRelationlnfo structure. CDaoRelationlnfo also defines a Dump
member function in debug builds. You can use Dump to dump the contents of a
CDaoRelationlnfo object. For information on using this and other MFC DAO Info
structures, see the article "DAO Collections: Obtaining Information About DAO
Objects" in Visual c++ Programmer's Guide online.

See Also: CDaoRelationFieldlnfo

CDaoRelationFieldInfo Structure
The CDaoRelationFieldlnfo structure has the following form:

struct CDaoRelationFieldlnfo
{

} ;

CString m_strName;
CString m_strForeignName;

II Primary
II Primary

2511

CDaoTableDeflnfo Structure

Members

The CDaoRelationFieldlnfo structure contains information about a field in a relation
defined for data access objects (DAO). A DAO relation object specifies the fields in a
primary table and the fields in a foreign table that define the relation. The references
to Primary in the structure definition above indicate how the information is returned in
the m_pFieldlnfos member of a CDaoRelationlnfo object obtained by calling the
GetRelationlnfo member function of class CDaoDatabase.

Relation objects and relation field objects are not represented by an MFC class.
Instead, the DAO objects underlying MFC objects of class CDaoDatabase contain a
collection of relation objects, called the Relations collection. Each relation object, in
turn, contains a collection of relation field objects. Each relation field object correlates
a field in the primary table with a field in the foreign table. Taken together, the
relation field objects define a group of fields in each table, which together define the
relation. CDaoDatabase lets you access relation objects with a CDaoRelationlnfo
object by calling the GetRelationlnfo member function. The CDaoRelationlnfo
object, then, has a data member, m_pFieldlnfos, that points to an array of
CDaoRelationFieldlnfo objects.

m_strName The name of the field in the primary table of the relation.

m_strForeignName The name of the field in the foreign table of the relation.

Comments
Call the GetRelationlnfo member function of the containing CDaoDatabase object
in whose Relations collection is stored the relation object you are interested in.
Then access the m_pFieldlnfos member of the CDaoRelationlnfo object.
CDaoRelationFieldlnfo also defines a Dump member function in debug builds.
You can use Dump to dump the contents of a CDaoRelationFieldlnfo object.

For information on using this and other MFC DAO Info structures, see the article
"DAO Collections: Obtaining Information About DAO Objects" in Visual C++
Programmer's Guide online.

See Also: CDaoRelationlnfo

CDaoTableDefinfo Structure

2512

The CDaoTableDeflnfo structure has the following form:

struct CDaoTableDeflnfo
{

CString m_strName;
BOOl m_bUpdatable;
long m_1Attributes;
COleDateTime m_dateCreated;
COleDateTime m_datelastUpdated;
CString m_strSrcTableName;
CString m_strConnect;

II Primary
II Primary
II Primary
II Secondary
II Secondary
II Secondary
II Secondary

Members

CDaoTableDefinfo Structure

} ;

CString m_strValidationRule;
CString m_strValidationText;
long m_1RecordCount;

II All
II All
II All

The CDaoTableDefinfo structure contains information about a tabledef object
defined for data access objects (DAO). The tabledef is an object of class
CDaoTableDef. The references to Primary, Secondary, and All above indicate
how the information is returned by the GetTableDefinfo member function in class
CDaoDatabase.

m_strName Uniquely names the tabledef object. To retrieve the value of this
property directly, call the tabledef object's GetName member function. For more
information, see the topic "Name Property" in DAO Help.

m_bUpdatable Indicates whether changes can be made to the table. The quick way
to determine whether a table is updatable is to open a CDaoTableDef object for
the table and call the object's CanUpdate member function. CanUpdate always
returns nonzero (TRUE) for a newly created tabledef object and 0 (FALSE) for an
attached tabledef object. A new tabledef object can be appended only to a database
for which the current user has write permission. If the table contains only
nonupdatable fields, CanUpdate returns O. When one or more fields are updatable,
CanUpdate returns nonzero. You can edit only the updatable fields. For more
information, see the topic "Up datable Property" in DAO Help.

m_IAttributes Specifies characteristics of the table represented by the tabledef
object. To retrieve the current attributes of a tabledef, call its GetAttributes
member function. The value returned can be a combination of these long constants
(using the bitwise-OR (I) operator):

• dbAttachExclusive For databases that use the Microsoft Jet database engine,
indicates the table is an attached table opened for exclusive use.

• dbAttachSavePWD For databases that use the Microsoft Jet database engine,
indicates that the user ID and password for the attached table are saved with the
connection information.

• dbSystemObject Indicates the table is a system table provided by the
Microsoft Jet database engine. (Read-only.)

• dbHiddenObject Indicates the table is a hidden table provided by the
Microsoft Jet database engine (for temporary use). (Read-only.)

• dbAttachedTable Indicates the table is an attached table from a non-ODBC
database, such as a Paradox database.

• dbAttachedODBC Indicates the table is an attached table from an ODBC
database, such as Microsoft SQL Server.

2513

CDaoTableDefinfo Structure

m_dateCreated The date and time the table was created. To directly retrieve the
date the table was created, call the GetDateCreated member function of the
CDaoTableDef object associated with the table. See Comments below for more
information. For related information, see the topic "DateCreated, LastUpdated
Properties" in DAD Help.

m_dateLastUpdated The date and time of the most recent change made to the
design of the table. To directly retrieve the date the table was last updated, call the
GetDateLastUpdated member function of the CDaoTableDef object associated
with the table. See Comments below for more information. For related information,
see the topic "DateCreated, LastUpdated Properties" in DAD Help.

m_strSrcTableName Specifies the name of an attached table if any. To directly
retrieve the source table name, call the GetSourceTableName member function
of the CDaoTableDef object associated with the table.

m_strConnect Provides information about the source of an open database. You
can check this property by calling the GetConnect member function of your
CDaoTableDef object. For more information about connect strings, see
GetConnect.

m_strValidationRule A value that validates the data in tabledef fields as they are
changed or added to a table. Validation is supported only for databases that use
the Microsoft Jet database engine. To directly retrieve the validation rule, call the
GetValidationRule member function of the CDaoTableDef object associated
with the table. For related information, see the topic "ValidationRule Property"
in DAD Help.

m_strValidationText A value that specifies the text of the message that your
application should display if the validation rule specified by the ValidationRule
property is not satisfied. For related information, see the topic "ValidationText
Property" in DAD Help.

m_IRecordCount The number of records accessed in a tabledef object. This
property setting is read-only. To directly retrieve the record count, call the
GetRecordCount member function of the CDaoTableDef object. The
documentation for GetRecordCount describes the record count further.
Note that retrieving this count can be a time-consuming operation if the table
contains many records.

Comments

2514

Information retrieved by the CDaoDatabase::GetTableDefinfo member function
is stored in a CDaoTableDefinfo structure. Call the GetTableDefinfo member
function of the CDaoDatabase object in whose TableDefs collection the tabledef
object is stored. CDaoTableDefinfo also defines a Dump member function in
debug builds. You can use Dump to dump the contents of a CDaoTableDefinfo
object.

CDao Workspacelnfo Structure

The date and time settings are derived from the computer on which the base table
was created or last updated. In a multiuser environment, users should get these
settings directly from the file server to avoid discrepancies in the DateCreated
and LastUpdated property settings.

For information on using this and other MFC DAO Info structures, see the article
"DAO Collections: Obtaining Information About DAO Objects" in Visual C++
Programmer's Guide online.

See Also: CDaoTableDef, CDaoDatabase, CDaoTableDef::CanUpdate,
CDaoTableDef: : GetAttributes, CDaoTableDef: :GetDateCreated,
CDaoTableDef: :GetDateLastUpdated, CDaoTableDef: :GetRecordCount,
CDaoTableDef::GetSourceTableName, CDaoTableDef::GetValidationRule,
CDaoTableDef: :Get Validation Text

CDao WorkspaceInfo Structure

Members

The CDao WorkspaceInfo structure has the following form:

struct CDaoWorkspacelnfo
{

} ;

CString m_strName;
CString m_strUserName;
BOOl m_bIsolateODBCTrans;

II Primary
II Secondary
/I All

The CDaoWorkspaceInfo structure contains information about a workspace defined
for data access objects (DAO) database access. The workspace is an object of class
CDao Workspace. The references to Primary, Secondary, and All above indicate how
the information is returned by the GetWorkspaceInfo member function in class
CDao Workspace.

m_strName Uniquely names the workspace object. To retrieve the value of
this property directly, call the querydef object's GetName member function.
For more information, see the topic "Name Property" in DAO Help.

m_strUserName A value that represents the owner of a workspace object.
For :elated information, see the topic "UserName Property" in DAO Help.

m_bIsolateODBCTrans A value that indicates whether multiple transactions
that involve the same ODBC database are isolated. For more information,
see CDaoWorkspace::SetIsolateODBCTrans. For related information,
see the topic "IsolateODBCTrans Property" in DAO Help.

2515

CODBCFieldlnfo Structure

Comments
Information retrieved by the CDaoWorkspace::GetWorkspaceInfo member function
is stored in a CDao WorkspaceInfo structure. CDao WorkspaceInfo also defines a
Dump member function in debug builds. You can use Dump to dump the contents of
a CDao WorkspaceInfo object. For information on using this and other MFC DAO
Info structures, see the article "DAO Collections: Obtaining Information About DAO
Objects" in Visual C++ Programmer's Guide online.

See Also: CDao Workspace

CODBCFieldInfo Structure

Members

2516

The CODBCFieldInfo structure has the following form:

struct CODBCFieldlnfo
{

} ;

CString m_strName;
SWORD m_nSQLType;
UDWORD m_nPrecision;
SWORD m_nScale;
SWORD m_nNullability;

The CODBCFieldInfo structure contains information about the fields in an ODBC
data source. To retrieve this information, call CRecordset::GetODBCFieldInfo.

m_strName The name of the field.

m_nSQLType The SQL data type of the field. This can be an ODBC SQL data type
or a driver-specific SQL data type. For a list of valid ODBC SQL data types, see
"SQL Data Types" in Appendix D of the ODBC SDK Programmer's Reference.
For information about driver-specific SQL data types, see the driver's
documentation.

m_nPrecision The maximum precision of the field. For details, see "Precision,
Scale, Length, and Display Size" in Appendix D of the ODBC SDK Programmer's
Reference.

m_nScale The scale of the field. For details, see "Precision, Scale, Length, and
Display Size" in Appendix D of the ODBC SDK Programmer's Reference.

m_nNullability Whether the field accepts a Null value. This can be one of two
values: SQL_NULLABLE if the field accepts Null values, or SQL_NO_NULLS
if the field does not accept Null values.

See Also: CRecordset: :GetODBCFieldInfo, CRecordset: : GetFieldValue

COLORADJUSTMENT Structure

COLORADJUSTMENT Structure

Members

The COLORADJUSTMENT structure has the following form:

typedef struct tagCOLORADJUSTMENT
WORD caSize;
WORD caFlags;
WORD call1uminantlndex;
WORD caRedGamma;
WORD caGreenGamma;
WORD caBlueGamma;
WORD caReferenceBlack;
WORD caReferenceWhite;
SHORT caContrast;
SHORT caBrightness;
SHORT caColorfulness;
SHORT caRedGreenTint;

COLORADJUSTMENT;

1* ca *1

The COLORADJUSTMENT structure defines the color adjustment values used by
the Windows StretchBlt and StretchDIBits functions when the StretchBlt mode is
HALFTONE.

caSize Specifies the size of the structure in bytes.

caFlags Specifies how the output image should be prepared. This member can be set
to NULL or any combination of the following values:

• CA_NEGATIVE Specifies that the negative of the original image should be
displayed.

• CA_LOG_FILTER Specifies that a logarithmic function should be applied to
the final density of the output colors. This will increase the color contrast when
the luminance is low.

call1uminantlndex Specifies the luminance of the light source under which the
image object is viewed. This member can be set to one of the following values:

• ILLUMINANT_EQUAL_ENERGY

• ILLUMINANT_A

• ILLUMINANT_B

• ILLUMINANT_C

• ILLUMINANT_D50

• ILLUMINANT_D55

• ILLUMINANT_D65

• ILLUMINANT_D75

2517

COLORADJUSTMENT Structure

2518

• ILLUMINANT_F2

• ILLUMINANT_TURNGSTEN

• ILLUMINANT_DAYLIGHT

• ILLUMINANT_FLUORESCENT

• ILLUMINANT_NTSC

caRed Gamma Specifies the n-th power gamma-correction value for the red primary
of the source colors. The value must be in the range from 2,500 to 65,000. A value
of 10,000 means no gamma-correction.

caGreenGamma Specifies the n-th power gamma-correction value for the green
primary of the source colors. The value must be in the range from 2,500 to 65,000.
A value of 10,000 means no gamma-correction.

caBlueGamma Specifies the n-th power gamma-correction value for the blue
primary of the source colors. The value must be in the range from 2,500 to 65,000.
A value of 10,000 means no gamma-correction.

caReferenceBlack Specifies the black reference for the source colors. Any colors
that are darker than this are treated as black. The value must be in the range from ° to 4,000.

caReferenceWhite Specifies the white reference for the source colors. Any colors
that are lighter than this are treated as white. The value must be in the range from
6,000 to 10,000.

caContrast Specifies the amount of contrast to be applied to the source object. The
value must be in the range from -100 to 100. A value of ° means no contrast
adjustment.

caB rightness Specifies the amount of brightness to be applied to the source object.
The value must be in the range from -100 to 100. A value of ° means no brightness
adjustment.

caColorfulness Specifies the amount of colorfulness to be applied to the source
object. The value must be in the range from -100 to 100. A value of ° means no
colorfulness adjustment.

caRedGreenTint Specifies the amount of red or green tint adjustment to be applied
to the source object. The value must be in the range from -100 to 100. Positive
numbers would adjust towards red and negative numbers adjust towards green.
A ° means no tint adjustment.

See Also: CDC: :GetColor Adjustment

COMPAREITEMSTRUCT Structure

COMPAREITEMSTRUCT Structure

Members

The COMPAREITEMSTRUCT data structure has this form:

typedef struct tagCOMPAREITEMSTRUCT
UINT CtlType;
UINT CtlID;
HWND hwndltem;
UINT itemIDl;
DWORD itemDatal;
UINT itemID2;
DWORD itemData2;

COMPAREITEMSTRUCT;

The COMPAREITEMSTRUCT structure supplies the identifiers and
application-supplied data for two items in a sorted, owner-drawn list box or
combo box. Whenever an application adds a new item to an owner-drawn list
box or combo box created with the CBS_SORT or LBS_SORT style, Windows
sends the owner a WM_COMPAREITEM message. The lParam parameter of
the message contains a long pointer to a COMPAREITEMSTRUCT structure.
Upon receiving the message, the owner compares the two items and returns a
value indicating which item sorts before the other.

CtlType ODT_LISTBOX (which specifies an owner-draw list box) or
ODT_COMBOBOX (which specifies an owner-draw combo box).

CtllD The control ID for the list box or combo box.

hwndltem The window handle of the control.

itemlDl The index of the first item in the list box or combo box being
compared.

itemDatal Application-supplied data for the first item being compared.
This value was passed in the call that added the item to the combo or
list box.

itemlD2 Index of the second item in the list box or combo box being
compared.

itemData2 Application-supplied data for the second item being compared.
This value was passed in the call that added the item to the combo or
list box.

See Also: CWnd::OnCompareltem

2519

CREATESTRUCT Structure

CREATESTRUCT Structure

Members

2520

The CREATESTRUCT structure has the following fonn:

typedef struet tagCREATESTRUCT
LPVOID lpCreateParams;
HANDLE hlnstanee;
HMENU hMenu;
HWND hwndParent;
i nt ey;
int ex;
int y;
i nt x;
LONG style;
LPCSTR lpszName;
LPCSTR lpszClass;
DWORD dwExStyle;

CREATESTRUCT;

The CREATESTRUCT structure defines the initialization parameters passed to the
window procedure of an application.

IpCreateParams Points to data to be used to create the window.

hlnstance Identifies the module-instance handle of the module that owns the new
window.

hMenu Identifies the menu to be used by the new window. If a child window,
contains the integer ID.

hwndParent Identifies the window that owns the new window. This member is
NULL if the new window is a top-level window.

ey Specifies the height of the new window.

ex Specifies the width of the new window.

y Specifies the y-coordinate of the upper-left corner of the new window. Coordinates
are relative to the parent window if the new window is a child window; otherwise
coordinates are relative to the screen origin.

x Specifies the x-coordinate of the upper-left corner of the new window. Coordinates
are relative to the parent window if the new window is a child window; otherwise
coordinates are relative to the screen origin.

style Specifies the new window's style.

IpszName Points to a null-terminated string that specifies the new window's name.

IpszClass Points to a null-terminated string that specifies the new window's
Windows class name (a WNDCLASS structure; for more infonnation, see the
Win32 SDK documentation).

dwExStyle Specifies the extended style for the new window.

See Also: CWnd::OnCreate

DEVMODE Structure

DELETEITEMSTRUCT Structure

Members

The DELETEITEMSTRUCT structure has the following form:

typedef struct tagDELETEITEMSTRUCT { /* ditms */
UINT CtlType;
UINT CtlID:
UINT itemID;
HWND hwndItem:
UINT itemData:

DELETEITEMSTRUCT;

The DELETEITEMSTRUCT structure describes a deleted owner-drawn list-box or
combo-box item. When an item is removed from the list box or combo box or when
the list box or combo box is destroyed, Windows sends the WM_DELETEITEM
message to the owner for each deleted item. The IParam parameter of the message
contains a pointer to this structure.

CtlType Specifies ODT_LISTBOX (an owner-drawn list box) or
ODT_COMBOBOX (an owner-drawn combo box).

CtlID Specifies the identifier of the list box or combo box.

itemID Specifies index of the item in the list box or combo box being removed.

hwndItem Identifies the control.

itemData Specifies application-defined data for the item. This value is passed to the
control in the IParam parameter of the message that adds the item to the list box or
combo box.

See Also: CWnd: :OnDeleteItem

DEVMODE Structure
The DEVMODE structure has the following form:

typedef struct _devicemode {
TCHAR dmDeviceName[32]:
WORD dmSpecVersion;
WORD dmDriverVersion;
WORD dmSize:
WORD dmDriverExtra;
DWORD dmFields;
short dmOrientation:
short dmPaperSize;
short dmPaperLength;
short dmPaperWidth;
short dmScale;
short dmCopies;
short dmDefaultSource;

/* dvmd */

2521

DEVMODE Structure

Members

2522

short dmPrintQuality;
short dmColor;
short dmDuplex;
short dmYResolution;
short dmTTOption;
short dmCollate;
TCHAR dmFormName[32];
WORD dmUnusedPadding;
USHORT dmBitsPerPel;
DWORD dmPelsWidth;
DWORD dmPelsHeight;
DWORD dmDisplayFlags;
DWORD dmDisplayFrequency;

DEVMODE;

The DEVMODE data structure contains information about the device initialization
and environment of a printer.

dmDeviceName Specifies the name of the device the driver supports; for example,
PCLIHP LaserJet in the case of PCLIHP LaserJet®. This string is unique among
device drivers.

dmSpecVersion Specifies the version number of the initialization data specification
on which the structure is based.

dmDriverVersion Specifies the printer driver version number assigned by the
printer driver developer.

dmSize Specifies the size, in bytes, of the DEVMODE structure except the
dmDriverData (device-specific) member. If an application manipulates only the
driver-independent portion of the data, it can use this member to determine the
length of the structure without having to account for different versions.

dmDriverExtra Contains the number of bytes of private driver-data that follow
this structure. If a device driver does not use device-specific information, set
this member to zero.

dmFields Specifies which of the remaining members in the DEVMODE structure
have been initialized. Bit 0 (defined as DM_ORIENTATION) corresponds to
dmOrientation; bit 1 (defined as DM_PAPERSIZE) specifies dmPaperSize,
and so on. A printer driver supports only those members that are appropriate for
the printer technology.

dmOrientation Selects the orientation of the paper. This member can be either
DMORIENT_PORTRAIT (1) or DMORIENT_LANDSCAPE (2).

dmPaperSize Selects the size of the paper to print on. This member can be set to
zero if the length and width of the paper are both set by the dmPaperLength and
dmPaperWidth members. Otherwise, the dmPaperSize member can be set to one
of the following predefined values:

DEVMODE Structure

• DMPAPER_LETTER Letter, 8 112 by 11 inches

• MPAPER_LEGAL Legal,8 112 by 14 inches

• DMPAPER_A4 A4 Sheet, 210 by 297 millimeters

• DMPAPER_CSHEET C Sheet, 17 by 22 inches

• DMPAPER_DSHEET D Sheet, 22 by 34 inches

• DMPAPER_ESHEET E Sheet, 34 by 44 inches

• DMPAPER_LETTERSMALL Letter Small, 8 112 by 11 inches

• DMPAPER_TABLOID Tabloid, 11 by 17 inches

• DMPAPER_LEDGER Ledger, 17 by 11 inches

• DMPAPER_STATEMENT Statement, 5 112 by 8 112 inches

• DMPAPER_EXECUTIVE Executive, 7 114 by 10 112 inches

• DMPAPER_A3 A3 sheet, 297 by 420 millimeters

• DMPAPER_A4SMALL A4 small sheet, 210 by 297 millimeters

• DMPAPER_A5 A5 sheet, 148 by 210 millimeters

• DMPAPER_B4 B4 sheet, 250 by 354 millimeters

• DMPAPER_B5 B5 sheet, 182-by-257-millimeter paper

• DMPAPER_FOLIO Folio, 8-112-by-13-inch paper

• DMPAPER_QUARTO Quarto, 215-by-275-millimeter paper

• DMPAPER_I0XI4 10-by-14-inch sheet

• DMPAPER_IIXI7 11-by-17-inch sheet

• DMPAPER_NOTE Note, 8 112 by 11 inches

• DMPAPER_ENV _9 #9 Envelope, 3 7/8 by 8 7/8 inches

• DMPAPER_ENV _10 #10 Envelope, 4 118 by 9 112 inches

• DMPAPER_ENV _11 #11 Envelope, 4 112 by 103/8 inches

• DMPAPER_ENV _12 #12 Envelope, 4 3/4 by 11 inches

• DMPAPER_ENV _14 #14 Envelope, 5 by 11112 inches

• DMPAPER_ENV _DL DL Envelope, 110 by 220 millimeters

• DMPAPER_ENV _C5 C5 Envelope, 162 by 229 millimeters

• DMPAPER_ENV _C3 C3 Envelope, 324 by 458 millimeters

• DMPAPER_ENV _C4 C4 Envelope, 229 by 324 millimeters

2523

DEVMODE Structure

2524

• DMPAPER_ENV _C6 C6 Envelope, 114 by 162 millimeters

• DMPAPER_ENV _ C65 C65 Envelope, 114 by 229 millimeters

• DMPAPER_ENV _B4 B4 Envelope, 250 by 353 millimeters

• DMPAPER_ENV _B5 B5 Envelope, 176 by 250 millimeters

• DMPAPER_ENV _B6 B6 Envelope, 176 by 125 millimeters

• DMPAPER_ENV _ITALY Italy Envelope, 110 by 230 millimeters

• DMPAPER_ENV _MONARCH Monarch Envelope, 3 7/8 by 7 112 inches

• DMPAPER_ENV _PERSONAL 6 3/4 Envelope, 3 5/8 by 6 112 inches

• DMPAPER_FANFOLD_US US Std Fanfold, 147/8 by 11 inches

• DMPAPER_FANFOLD_STD_GERMAN German Std Fanfold, 8 112 by 12
inches

• DMPA PER_FANFOLD_LGL_GERMAN German Legal Fanfold, 8 112 by
13 inches

dmPaperLength Overrides the length of the paper specified by the dmPaperSize
member, either for custom paper sizes or for devices such as dot-matrix printers,
which can print on a page of arbitrary length. These values, along with all other
values in this structure that specify a physical length, are in tenths of a millimeter.

dmPaperWidth Overrides the width of the paper specified by the dmPaperSize
member.

dmScale Specifies the factor by which the printed output is to be scaled. The
apparent page size is scaled from the physical page size by a factor of
dmScalell 00. For example, a letter-sized page with a dmScale value of 50
would contain as much data as a page of 17 by 22 inches because the output text
and graphics would be half their original height and width.

dmCopies Selects the number of copies printed if the device supports multiple-page
copies.

dmDefaultSource Reserved; must be zero.

dmPrintQuality Specifies the printer resolution. There are four predefined
device-independent values:

• DMRES_HIGH

• DMRES_MEDIUM

• DMRES_LOW

• DMRES_DRAFT

If a positive value is given, it specifies the number of dots per inch (DPI) and is
therefore device dependent.

DEVMODE Structure

dmColor Switches between color and monochrome on color printers. Following are
the possible values:

• DMCOLOR_COLOR

• DMCOLOR_MONOCHROME

dmDuplex Selects duplex or double-sided printing for printers capable of duplex
printing. Following are the possible values:

• DMDUP _SIMPLEX

• DMDUP _HORIZONTAL

• DMDUP _ VERTICAL

dm YResolution Specifies the y-resolution, in dots per inch, of the printer. If the
printer initializes this member, the dmPrintQuality member specifies the
x-resolution, in dots per inch, of the printer.

dmTTOption Specifies how TrueType® fonts should be printed. This member can
be one of the following values:

• DMTT_BITMAP Prints TrueType fonts as graphics. This is the default action
for dot-matrix printers.

• DMTT_DOWNLOAD Downloads TrueType fonts as soft fonts. This is the
default action for Hewlett-Packard printers that use Printer Control Language
(PCL).

• DMTT_SUBDEV Substitute device fonts for TrueType fonts. This is the
default action for PostScript® printers.

dmCollate Specifies whether collation should be used when printing multiple
copies. Using DMCOLLATE_FALSE provides faster, more efficient output,
since the data is sent to a page printer just once, no matter how many copies are
required. The printer is told to simply print the page again. This member can be
one of the following values:

• DMCOLLATE_TRUE Collate when printing multiple copies.

• DMCOLLATE_FALSE Do NOT collate when printing multiple copies.

dmFormName Specifies the name of the form to use; for example, Letter or Legal.
A complete set of names can be retrieved through the Windows EnumForms
function.

dmUnusedPadding Used to align the structure to a DWORD boundary. This should
not be used or referenced. Its name and usage is reserved, and can change in future
releases.

dmBitsPerPel Specifies in bits per pixel the color resolution of the display device.
For example: 4 bits for 16 colors, 8 bits for 256 colors, or 16 bits for 65,536 colors.

dmPelsWidth Specifies the width, in pixels, of the visible device surface.

2525

DEVNAMES Structure

dmPelsHeight Specifies the height, in pixels, of the visible device surface.

dmDisplayFlags Specifies the device's display mode. The following are valid flags:

• DM_GRAYSCALE Specifies that the display is a non-color device. If this
flag is not set, color is assumed.

• DM_INTERLACED Specifies that the display mode is interlaced. If the flag
is not set, non-interlaced is assumed.

dmDisplayFrequency Specifies the frequency, in hertz (cycles per second), of the
display device in a particular mode.

Comments
A device driver's private data will follow the dmDisplayMode member. The number
of bytes of private data is specified by the dmDriverExtra member.

See Also: CDC::ResetDC, CPrintDialog::GetDevMode

DEVNAMES Structure

Members

2526

The DEVNAMES structure has the following form:

typedef struct tagDEVNAMES { /* dvnm */
WORD wDriverOffset;
WORD wDeviceOffset;
WORD wOutputOffset;
WORD wDefault;
/* driver, device, and port-name strings follow wDefault */

DEVNAMES;

The DEVNAMES structure contains strings that identify the driver, device, and
output-port names for a printer. The PrintDIg function uses these strings to initialize
members in the system-defined Print dialog box. When the user closes the dialog box,
information about the selected printer is returned in this structure.

wDriverOffset (Input/Output) Specifies the offset to a null-terminated string that
contains the filename (without the extension) of the device driver. On input, this
string is used to determine the printer to display initially in the dialog box.

wDeviceOffset (Input/Output) Specifies the offset to the null-terminated string
(maximum of 32 bytes including the null) that contains the name of the device.
This string must be identical to the dmDeviceName member of the DEVMODE
structure.

wOutputOffset (Input/Output) Specifies the offset to the null-terminated string that
contains the DOS device name for the physical output medium (output port).

wDefault Specifies whether the strings contained in the DEVNAMES structure
identify the default printer. This string is used to verify that the default printer has
not changed since the last print operation. On input, if the DN_DEFAULTPRN

DRA WITEMSTRUCT Structure

flag is set, the other values in the DEVNAMES structure are checked against the
current default printer. If any of the strings do not match, a warning message is
displayed informing the user that the document may need to be reformatted. On
output, the wDefault member is changed only if the Print Setup dialog box was
displayed and the user chose the OK button. The DN_DEFAULTPRN flag is set
if the default printer was selected. If a specific printer is selected, the flag is not set.
All other bits in this member are reserved for internal use by the Print Dialog box
procedure.

See Also: CPrintDialog::CreatePrinterDC

DOCINFO Structure

Members

The DOCINFO structure has the following form:·

typedef struct { /* di */
int cbSize;
LPCSTR lpszOocName;
LPCSTR lpszOutput;

OOCINFO;

The DOCINFO structure contains the input and output filenames used by the
CDC::StartDoc function.

cbSize Specifies the size of the structure, in bytes.

IpszDocName Points to a null-terminated string specifying the name of the
document. This string must not be longer than 32 characters, including the null
terminating character.

IpszOutput Points to a null-terminated string specifying the name of an output file.
This allows a print job to be redirected to a file. If this value is NULL, output goes
to the device for the specified device context.

See Also: CDC::StartDoc

DRAWITEMSTRUCT Structure
The DRAWITEMSTRUCT structure has the following form:
typedef struct tagORAWITEMSTRUCT {

UINT CtlType;
UINT CtlIO;
UINT itemIO;
UINT itemAction;
UINT itemState;
HWNO hwndltem;
HOC hOC;
RECT rcltem;
OWORO itemOata;

DRAW ITEMSTRUCT;

2527

DRA WITEMSTRUCT Structure

Members

2528

The DRAWITEMSTRUCT structure provides information the owner window must
have to determine how to paint an owner-drawn control or menu item. The owner
window of the owner-drawn control or menu item receives a pointer to this structure
as the IParam parameter of the WM_DRA WITEM message.

CtlType The control type. The values for control types are as follows:

e ODT_BUTTON Owner-drawn button

• ODT_COMBOBOX Owner-drawn combo box

• ODT_LISTBOX Owner-drawn list box

• ODT_MENU Owner-drawn menu

• ODT_LISTVIEW List view control

• ODT_STATIC Owner-drawn static control

• ODT_TAB Tab control

CtlID The control ID for a combo box, list box, or button. This member is not used
for a menu.

itemID The menu-item ID for a menu or the index of the item in a list box or combo
box. For an empty list box or combo box, this member is a negative value, which
allows the application to draw only the focus rectangle at the coordinates specified
by the rcItem member even though there are no items in the control. The user can
thus be shown whether the list box or combo box has the input focus. The setting
of the bits in the itemAction member determines whether the rectangle is to be
drawn as though the list box or combo box has input focus.

itemAction Defines the drawing action required. This will be one or more of the
following bits:

• ODA_DRA WENTIRE This bit is set when the entire control needs to be
drawn.

• ODA_FOCUS This bit is set when the control gains or loses input focus. The
itemState member should be checked to determine whether the control has
focus.

• ODA_SELECT This bit is set when only the selection status has changed. The
itemS tate member should be checked to determine the new selection state.

itemS tate Specifies the visual state of the item after the current drawing action takes
place. That is, if a menu item is to be dimmed, the state flag ODS_GRAYED will
be set. The state flags are as follows:

• ODS_CHECKED This bit is set if the menu item is to be checked. This bit is
used only in a menu.

• ODS_DISABLED This bit is set if the item is to be drawn as disabled.

DRA WITEMSTRUCT Structure

• ODS_FOCUS This bit is set if the item has input focus.

• ODS_GRAYED This bit is set if the item is to be dimmed. This bit is used
only in a menu.

• ODS_SELECTED This bit is set if the item's status is selected.

• ODS_ COMBOBOXEDIT The drawing takes place in the selection field
(edit control) of an ownerdrawn combo box.

• ODS_DEFAULT The item is the default item.

hwndItem Specifies the window handle of the control for combo boxes, list boxes,
and buttons. Specifies the handle of the menu (HMENU) that contains the item for
menus.

hDC Identifies a device context. This device context must be used when performing
drawing operations on the control.

rcItem A rectangle in the device context specified by the hDC member that
defines the boundaries of the control to be drawn. Windows automatically clips
anything the owner draws in the device context for combo boxes, list boxes, and
buttons, but it does not clip menu items. When drawing menu items, the owner
must not draw outside the boundaries of the rectangle defined by the rcItem
member.

itemData For a combo box or list box, this member contains the value that was
passed to the list box by one of the following:

• CComboBox: :AddString

• CComboBox::lnsertString

• CListBox: :AddString

• CListBox::lnsertString

For a menu, this member contains the value that was passed to the menu by one
of the following:

• CMenu::AppendMenu

• CMenu::lnsertMenu

• CMenu::ModifyMenu

See Also: CWnd::OnDrawItem

2529

EXTENSION_ CONTROL_BLOCK Structure

EXTENSION_ CONTROL_BLOCK Structure

2530

The EXTENSION_ CONTROL_BLOCK structure has the following form:

typedef struct _EXTENSION_CONTROL_BLOCK {

DWORD
DWORD
HCONN
DWORD
CHAR
LPSTR
LPSTR
LPSTR
LPSTR
DWORD
DWORD
LPBYTE
LPSTR

cbSize;
dwVersion
ConnID;
dwHttpStatusCode;
lpszLogData[HSE_LOG_BUFFER_LEN];
lpszMethod;
lpszQueryString;
lpszPathInfo;
lpszPathTranslated;
cbTotalBytes;
cbAvailable;
1 pbData;
lpszContentType;

BOOL (WINAPI
(HCONN
LPSTR
LPVOID
LPDWORD

BOOL (WINAPI
(HCONN
LPVOID
LPDWORD
DWORD

* GetServerVariable
hConn.

lpszVariableName.
lpvBuffer.
lpdwSize);

* WriteClient
ConnID.

Buffer.
lpdwBytes.
dwReserved);

BOOL (WINAPI * ReadClient
(HCONN ConnID.
LPVOID lpvBuffer.
LPDWORD lpdwSize);

BOOL (WINAPI
(HCONN
DWORD
LPVOID
LPDWORD
LPDWORD

* ServerSupportFunction
hConn.

dwHSERRequest.
1 pvBuffer.
lpdwSize.
lpdwDataType);

I/IN
I/IN
I/IN

IIOUT
IIOUT
I/IN
I/IN
I/IN
I/IN
I/IN
I/IN
I/IN
I/IN

EXTENSION_CONTROL_BLOCK. *LPEXTENSION_CONTROL_BLOCK;

The server communicates with the ISA via the EXTENSION_ CONTROL_BLOCK.

The references to IN and OUT above indicates whether the member applies to
messages to the extension (IN) or from the extension (OUT).

Members

EXTENSION_ CONTROL_BLOCK Structure

The EXTENSION_ CONTROL_BLOCK structure contains the following fields:

cbSize The size of this structure.

dwVersion The version information of HTTP_FILTER_REVISION. The
HIWORD has the major version number and the LOWORD has the minor
version number.

ConnID A unique number assigned by the HTTP server. It must not be modified.

dwHttpStatusCode The status of the current transaction when the request is
completed. Can be one of the following:

• HTTP_STATUS_BAD_REQUEST

• HTTP_STATUS_AUTH_REQUIRED

• HTTP_STATUS_FORBIDDEN

• HTTP_STATUS_NOT_FOUND

• HTTP_STATUS_SERVER_ERROR

• HTTP_STATUS_NOT_IMPLEMENTED

IpszLogData Buffer of size HSE_LOG_BUFFER_LEN. Contains a
null-terminated log information string, specific to the ISA, of the current
transaction. This log information will be entered in the HTTP server log.
Maintaining a single log file with both HTTP server and ISA transactions is very
useful for administration purposes.

IpszMethod The method with which the request was made. This is equivalent to the
CGI variable REQUEST_METHOD.

IpszQueryString Null-terminated string containing the query information. This is
equivalent to the CGI variable QUERY_STRING.

IpszPathInfo Null-terminated string containing extra path information given by the
client. This is equivalent to the CGI variable PATH_INFO.

IpszPathTranslated Null-terminated string containing the translated path. This is
equivalent to the CGI variable PATH_TRANSLATED.

cbTotalBytes The total number of bytes to be received from the client. This is
equivalent to the CGI variable CONTENT_LENGTH. If this value is Oxffffffff,
then there are four gigabytes or more of available data. In this case,
CHttpServerContext::ReadClient should be called until no more data is
returned.

cbAvailable The available number of bytes (out of a total of cbTotalBytes) in the
buffer pointed to by IpbData. If cbTotalBytes is the same as cbAvailable the
variable IpbData will point to a buffer which contains all the data sent by the
client. Otherwise cbTotalBytes will contain the total number of bytes of data
received. The ISA will then need to use the callback function

2531

EXTENSION_ CONTROL_BLOCK Structure

2532

CHttpServerContext::ReadClient to read the rest of the data (starting from an
offset of cbAvailable).

IpbData Points to a buffer of size cbAvailable that has the data sent by the client.

IpszContentType Null-terminated string containing the content type of the data sent
by the client. This is equivalent to the cor variable CONTENT_TYPE.

GetServerVariable This function copies information (including cor variables)
relating to an HTTP connection, or to the server itself, into a buffer.
GetServerVariable takes the following parameters:

• hConn A handle to a connection.

• IpszVariableName Null-terminated string indicating which variable is being
requested. Variable names are:

Variable Name

AUTH_TYPE

CONTENT_LENGTH

GATEWA Y _INTERFACE

Description

All HTTP headers that were not already parsed into
one of the above variables. These variables are of the
form HTTP_<header field name>.

This will retrieve the password corresponding to
REMOTE_USER as supplied by the client. It will
be a null-terminated string.

Contains the type of authentication used. For
example, if Basic authentication is used, the string
will be "Basic". For Windows NT
Challenge-response, it will be "NTLM". Other
authentication schemes will have other strings.
Because new authentication types can be added to
Internet Server, it is not possible to list all possible
strings. If the string is empty then no authentication
is used.

The number of bytes which the script can expect to
receive from the client.

The content type of the information supplied in the
body of a POST request.

The revision of the CGI specification to which this
server complies. The current version is CGVl.l.

Special case HTTP header. Values of the Accept:
fields are concatenated, separated by ",". For
example, if the following lines are part of the
HTTP header:

accept: *1*: q=0.1
accept: text/html
accept: image/jpeg
then the HTTP_ACCEPT variable will have a
value of:

/; q=O.l, textlhtml, image/jpeg

EXTENSION_CONTROL_BLOCK Structure

(continued)

Variable Name

PATH_TRANSLATED

REMOTE_ADDR

REMOTE_HOST

REMOTE_USER

REQUEST_METHOD

SCRIPT_NAME

SERVER_NAME

SERVER_PORT

SERVER_PROTOCOL

SERVER_SOFTWARE

Description

Additional path information, as given by the client.
This comprises the trailing part of the URL after the
script name but before the query string (if any).

This is the value of PATH_INFO, but with any
virtual path name expanded into a directory
specification.

The information which follows the? in the URL that
referenced this script.

The IP address of the client.

The hostname of the client.

This contains the usemame supplied by the client and
authenticated by the server.

The HTTP request method.

The name of the script program being executed.

The server's hostname (or IP address) as it should
appear in self-referencing URLs.

The TCP/IP port on which the request was received.

The name and version of the information retrieval
protocol relating to this request. Normally HTTP/1.0.

The name and version of the web server under which
the CGI program is running.

• IpvBuffer Pointer to buffer to receive the requested information.

• IpdwSize Pointer to DWORD indicating the number of bytes available in the
buffer. On successful completion the DWORD contains the number of bytes
transferred into the buffer (including the null terminating byte).

Write Client Sends information to the client from the indicated buffer. WriteClient
takes the following parameters:

• ConnID A unique connection number assigned by the HTTP server.

• Buffer Pointer to the buffer where the data is to be written.

• IpdwBytes Pointer to the data to be written.

• dwReserved Reserved for future use.

ReadClient Reads information from the body of the Web client's HTTP request into
the buffer supplied by the caller. ReadClient takes the following parameters:

• ConnID A unique connection number assigned by the HTTP server.

• IpvBuffer Pointer to the buffer area to receive the requested information.

2533

EXTENSION_CONTROL_BLOCK Structure

• IpdwSize Pointer to DWORD indicating the number of bytes available in the
buffer. On return *lpdwSize will contain the number of bytes actually transferred
into the buffer.

ServerSupportFunction Provide the IS As with some general-purpose
functions as well as functions that are specific to HTTP server
implementation. ServerSupportFunction takes the following
parameters:

• hConn A handle to a connection.

• dwHSERRequest An HTTP Server Extension value. See
CHttpServerContext::ServerSupportFunction for a list of possible values
and related parameters.

• IpvBuffer When used with HSE_REQ_SEND _RESPONSE_HEADER, it
points to a null-terminated optional status string (i.e., "401 Access Denied"). If
this buffer is null, a default response of "200 Ok" will be sent by this function.
When used with HSE_REQ_DONE_ WITH_SESSION, it points to a
DWORD indicating the status code of the request.

• IpdwSize When used with HSE_REQ_SEND_RESPONSE_HEADER, it
points to the size of the buffer IpdwDataType.

• IpdwDataType A null-terminated string pointing to optional headers or data to
be appended and sent with the header. If NULL, the header will be terminated
by a "\r\n" pair.

Comments

2534

A server identifies files with the extensions .EXE and .BAT as CGI (Common
Gateway Interface) executables. In addition, a server will identify a file with a DLL
extension as a script to execute.

When the server loads the DLL, it calls the DLL at the entry point
CHttpServer::GetExtensionVersion to get the version number of the
HTTP_FILTER_REVISION the ISA is based on and a short text description for
server administrators. For every client request, the
CHttpServer::HttpExtensionProc entry point is called. The extension receives
the commonly-needed information such as the query string, path info, method name,
and the translated path.

See Also: CHttpServerContext::ReadClient,
CHttpServer::GetExtensionVersion, CHttpServer::HttpExtensionProc

FILETIME Structure

Members

The FILE TIME structure has the following form:

typedef struct _FILETIME
DWORD dwLowDateTime; /* low 32 bits */
DWORD dwHighDateTime; /* high 32 bits */

FILETIME. *PFILETIME. *LPFILETIME;

The FILETIME structure is a 64-bit value representing the number of
100-nanosecond intervals since January 1, 1601.

dwLowDateTime Specifies the low 32 bits of the file time.

dwHighDateTime Specifies the high 32 bits of the file time.

See Also: CTime::CTime

HSE_ VERSION_INFO Structure

Members

The HSE_ VERSION_INFO structure has the following form:

typedef struct

DWORD dwExtensionVersion;
CHAR lpszExtensionDesc[HSE_MAX_EXT_DLL_NAME_LENJ;

HSE_VERSION_INFO. *LPHSE_VERSION_INFO;

This structure is pointed to by the p Ver parameter in the
CHttpServer::GetExtensionVersion member function. It provides the
ISA version number and a text description of the ISA.

dwExtension Version The version number of the ISA.

IpszExtensionDesc The text description of the ISA. The default implementation
provides placeholder text; override CHttpServer::GetExtensionVersion
to provide your own description.

See Also: CHttpServer::GetExtensionVersion

2535

HTTP_FILTER_AUTHENT Structure

Members

The HTTP_FILTER_AUTHENT structure has the following form:

typedef struct _HTTP_FIlTER_AUTHENT{

CHAR* pszUser: I II N/OUT
DWORD cbUserBuff: I II N
CHAR* pszPassword: IIIN/OUT
DWORD cbPasswordBuff: IIIN
} HTTP_FIlTER_AUTHENT. *PHTTP_FIlTER_AUTHENT:

This structure is pointed to by the pvNotification in the CHttpFilter::HttpFilterProc
when NotificationType is SF _NOTIFY _AUTHENTICATION, which indicates
when the server is about to authenticate the client. This structure can be used to
implement a different authentication scheme by overriding
CHttpFilter::OnAuthentication.

The references to IN or IN/OUT above indicate whether the member applies to
messages to the filter (IN) or both to and from the filter (IN/OUT).

pszUser Pointer to a string containing the usemame for this request. An empty
string indicates an anonymous user.

cbUserBuff Size of the buffer pointed to by pszUser. This is guaranteed to be at
least SF _MAX_USERNAME.

pszPassword Pointer to a string containing the password for this request.

cbPasswordBuff Size of the buffer pointed to by pszPassword. This is guaranteed
to be at least SF _MAX_PASSWORD.

See Also: CHttpFilter::HttpFilterProc, CHttpFilter::OnAuthentication

HTTP_FILTER_CONTEXT Structure

2536

The HTTP_FILTER_CONTEXT structure has the following form:

typedef struct _HTTP_FIlTER_CONTEXT
{

DWORD
DWORD
PVOID
DWORD
BOOl
PVOID

cbSize:
Revision:
ServerContext:
ulReserved:
fI sSecurePort:
pFilterContext:

BOOl (WINAPI * GetServerVariable) (
struct _HTTP_FIlTER_CONTEXT * pfc.
lPSTR lpszVariableName.

IIIN
IIIN
I lIN
IIIN
IIIN

I IIN/OUT

Members

HTfP _FILTER_CONTEXT Structure

LPVOID
LPDWORD
) :

lpvBuffer,
lpdwSize

BOOL (WINAPI * AddResponseHeaders) (
struct _HTTP_FILTER_CONTEXT * pfc,
LPSTR lpszHeaders,
DWORD dwReserved
) :

BOOL (WINAPI * WriteClient)
struct _HTTP_FILTER_CONTEXT * pfc,
LPVOID Buffer,
LPDWORD 1 pdwBytes,
DWORD dwReserved
) :

VOID * (WINAPI * AllocMem)
struct _HTTP_FILTER_CONTEXT * pfc,
DWORD cbSize,
DWORD dwReserved
) :

BOOL (WINAPI * ServerSupportFunction)
struct _HTTP_FILTER_CONTEXT * pfc,
enum SF_REO_TYPE sfReq,
PVOID pData,
DWORD ull,
DWORD u12
) :

HTTP_FILTER_CONTEXT, *PHTTP_FILTER_CONTEXT;

The references to IN or IN/OUT above indicate whether the member applies to
messages to the. filter (IN) or both to and from the filter (IN/OUT).

cbSize Size of this structure, in bytes.

Revision Revision level of this structure. Less than or equal to the version of the
HTTP_FILTER_REVISION.

Server Context Reserved for server use.

ulReserved Reserved for server use.

fIsSecurePort TRUE indicates that this event is occurring over a secure port.

pFilterContext A pointer to be used by the filter for any context information that the
filter wants to associate with this request. Any memory associated with this request
can be safely freed during theSF_NOTIFY_END_OF_NET_SESSION
notification.

2537

2538

GetServerVariable Pointer to a function to retrieve information about the server
and this connection. See CHttpServerContext::GetServerVariable for details.
GetServerVariable takes the following parameters:

• pic Pointer to a filter context passed to CHttpFilter::HttpFilterProc.

• lpsz VariableName Server variable to retrieve.

• IpvBuffer Buffer to store value of variable.

• IpdwSize Size of buffer IpvBuffer.

AddResponseHeaders Pointer to a function that adds a header to the HTTP
response. See the description of HSE_REQ_SEND_RESPONSE_HEADER
at CHttpServerContext::ServerSupportFunction for details.
AddResponseHeaders takes the following parameters:

• pic Pointer to a filter context passed to CHttpFilter::HttpFilterProc.

• IpszHeaders Pointer string containing headers to add.

• dwReserved Reserved for future use. Must be O.

Write Client Pointer to a function that sends raw data back to the client. See
CHttpFilterContext::WriteClient for details. WriteClient takes the following
parameters:

• pic Pointer passed to CHttpFilter::HttpFilterProc.

• Buffer Buffer containing data to send to the client.

• IpdwBytes Size of the buffer pointed to by Buffer.

• dwReserved Reserved for future use.

AllocMem Pointer to a function used to allocate memory. Any memory allocated
with this function will automatically be freed when the request is completed.
AllocMem takes the following parameters:

• pfc Pointer passed to CHttpFilter::HttpFilterProc.

• cbSize Size of the buffer to allocate.

• dwReserved Reserved for future use.

ServerSupportFunction Pointer to a function used to extend the IS API filter APIs.
Parameters, listed below, are specific to the ISA used.

• pic Pointer to a function used to extend the ISAPI filter APIs.

• sfReq Server function notification. Possible values:

SF _REQ_SEND_RESPONSE_HEADER Sends a complete HTTP server
response header including the status, server version, message time and MIME

HTTP_FILTER_CONTEXT Structure

Comments

version. Server extensions should append other information at the end, such
as Content-type, Content-length, and so forth, followed by an extra '\r\n'.

SF _REQ_ADD_HEADERS_ON_DENIAL If the server denies the HTTP
request, add the specified headers to the server error response. This allows an
authentication filter to advertise its services without filtering every request.
Generally the headers will be WWW-Authenticate headers with custom
authentication schemes, but no restriction is placed on what headers may be
specified.

SF _REQ_SET_NEXT_READ_SIZE Only used by raw data filters that
return SF _STATUS_READ_NEXT .

• pData Pointer to a string. Specific to the ISA. See the table under the
Comments section for the appropriate values for each sffieq value.

• ull, ul2 Specific to the ISA. See the table under the Comments section
for the appropriate values for each sffieq value.

Below are the corresponding possible values for the ServerSupportFunction
parameters:

sfReq pData

Zero-terminated string
pointing to optional
status string (i.e., "401
Access Denied") or
NULL for the default
response of "200 OK".

Zero-terminated string
pointing to one or more
header lines with
terminating '\r\n'.

See Also: CHttpFilter::HttpFilterProc, CHttpFilter::OnLog,
CHttpServerContext, CHttpServerContext::GetServerVariable,
CHttpServerContext::ServerSupportFunction,
CHttpServerContext::WriteClient

ul1, ul2

Zero-terminated
string pointing to
optional data to be
appended and set
with the header. If
NULL, the header
will be terminated
with an empty
line.

Size in bytes for
the next read.

2539

HTTP_FILTER_LOG Structure

Members

2540

The HTTP_FILTER_LOG structure has the following form:

typedef struct _HTTP_FILTER_LOG

canst CHAR *
canst CHAR *
canst CHAR *
canst CHAR *
canst CHAR *
canst CHAR *
DWORD
DWORD

pszClientHastName;
pszClientUserName;
pszServerName;
pszOperatian;
pszTarget;
pszParameters;

dwHttpStatus;
dwWin32Status;

} HTTP_FILTER_LOG. *PHTTP_FILTER_LOG;

IIIN/OUT
IIIN/OUT
IIIN/OUT
IIIN/OUT
IIIN/OUT
IIIN/OUT
IIIN/OUT
IIIN/OUT

This structure is pointed to by the pvNotification in the
CHttpFilter::HttpFilterProc when NotificationType is SF_NOTIFY_LOG,
which indicates that the server is about to log information to the server log file.
The strings cannot be changed but pointers can be replaced. If the string
pointers are changed, the memory they point to must remain valid until the
next notification.

The references to IN/OUT above indicate that the member applies to messages
to (IN) and from (OUT) the filter.

pszCIientHostName Client's host name.

pszCIientUserName Client's user name.

pszServerName Name of the server the client connected to.

pszOperation HTTP command.

pszTarget Target of the HTTP command.

pszParameters Parameters passed to the HTTP command.

dwHttpStatus HTTP return status.

dwWin32Status Win32 error code.

See Also: CHttpFilter::HttpFilterProc, CHttpFilter::OnLog

HTTP_FILTER_PREPROC_HEADERS Structure

Members

The HTTP_FILTER_PREPROC_HEADERS structure has the following form:

typedef struct _HTTP_FILTER_PREPROC_HEADERS

{

BOOL (WINAPI * GetHeader) (
struct _HTTP_FILTER_CONTEXT * pfc.
LPSTR lpszName.
LPVOID lpvBuffer.
LPDWORD lpdwSize
) :

BOOL (WINAPI * SetHeader) (
struct _HTTP_FILTER_CONTEXT * pfc.
LPSTR lpszName.
LPSTR lpszValue
) :

BOOL (WINAPI * AddHeader) (
struct _HTTP_FILTER_CONTEXT * pfc.
LPSTR lpszName.
LPSTR lpszValue
) :

DWORD dwReserved;

} HTTP_FILTER_PREPROC_HEADERS. *PHTTP_FILTER_PREPROC_HEADERS:

This structure is pointed to by the pvNotijication in CHttpFilter::HttpFilterProc
when NotijicationType is SF _NOTIFY_PREPROC_HEADERS, which indicates
when the server is about to process the client headers.

GetHeader Pointer to a function that retrieves the specified header value. Header
names should include the trailing colon (":"). The special values "method", "url"
and "version" can be used to retrieve the individual portions of the request line.
GetHeader takes the following parameters:

• pfc Filter context for this request from the pointer to the filter context passed
to the CHttpFilter::HttpFilterProc.

• lpszName The name of the header to retrieve.

• lpvBuffer Pointer to a buffer of size lpdwSize where the value of the header
will be stored.

• lpdwSize Size of the buffer pointed to by lpvBuffer.

SetHeader Pointer to a function used to change or delete the value of a header.
SetHeader takes the following parameters:

• pfc Filter context for this request from the pointer to the filter context passed
to the CHttpFilter::HttpFilterProc.

2541

Members

2542

• IpszName Pointer to the name of the header to change or delete.

• IpszValue Pointer to the string to change the header to, or a pointer to "\0" to
delete the header.

AddHeader Pointer to a function to add a header. AddHeader takes the following
parameters:

• pfc Filter context for this request from the pointer to the filter context passed
to the CHttpFilter::HttpFilterProc.

• IpszName Pointer to the name of the header to change or delete.

• IpszValue Pointer to the string to change the header to, or a pointer to "\0" to
delete the header.

See Also: CHttpFiIter::HttpFilterProc, CHttpFilter::OnPreprocHeaders

The HTTP_FILTER_RAW_DATA structure has the following form:

typedef struct _HTTP_FILTER_RAW_DATA
{

PVOID pvlnData; IIIN
DWORD cblnData; IIIN
DWORD cbI nBuffer; I lIN
DWORD dwReserved; I II N
} HTTP_FILTER_RAW_DATA. *PHTTP_FILTER_RAW_DATA;

This structure is passed to the SF _NOTIFY_READ_RAW _DATA and
SF_NOTIFY _SEND _RAW_DATA notification types for
CHttpFilter::HttpFilterProc.

The references to IN above indicate that the message being processed is going
to the filter.

pvInData Pointer to the data buffer (input or output).

cbInData Amount of data in the buffer pointed to by pvInData.

cbInBuffer Size of the buffer pointed to by pvInData.

dwReserved Reserved for future use.

See Also: CHttpFilter::HttpFilterProc, CHttpFilter: :OnReadRawData,
CHttpFilter::OnSendRawData

HTTP_FILTER_VERSION Structure

HTTP_FILTER_URL_MAP Structure

Members

The HTTP_FILTER_URL_MAP structure has the following form:

typedef struct _HTTP_FILTER_URL_MAP

const CHAR * pszURL;
CHAR * pszPhysicalPath;
DWORD cbPathBuff;
} HTTP_FILTER_URL_MAP, *PHTTP_FILTER_URL_MAP;

III,N
IIIN/OUT

IIIN

This structure is pointed to by the pvNotification in the
CHttpFilter::HttpFilterProc when the NotificationType is
SF _NOTIFY_URL_MAP, which indicates when the server is about
to map the specified URL to a physical path. Filters can modify the
physical path in place.

The references to IN or IN/OUT above indicate whether the member applies
to messages to the filter (IN) or to and from the filter (IN/OUT).

pszURL Pointer to the URL that is being mapped to a physical path.

pszPhysicalPath Pointer to the buffer where the physical path is stored.

cbPathBuff Size of the buffer pointed to by pszPhysicalPath.

See Also: CHttpFilter::HttpFilterProc, CHttpFilter::OnUrIMap

HTTP_FILTER_VERSION Structure
The HTTP_FILTER_VERSION structure has the following form:

typedef struct _HTTP_FILTER_VERSION

{

DWORD dwServerFilterVersion; IIIN
DWORD dwFilterVersion; IIOUT
CHAR lpszFilterDesc[SF_MAX_FILTER_DESC_LEN+l]; IIOUT
DWORD dwFlags; IIOUT
} HTTP_FILTER_VERSION, *PHTTP_FILTER_VERSION;

This structure is passed to the application's CHttpFilter::HttpFilterProc
entrypoint by the server to associate any context information with the HTTP
request.

The references to IN or OUT above indicate whether the member applies
to messages to the filter (IN) or from the filter (OUT).

2543

LINGER Structure

Members
dwServerFilterVersion Version of the header used by the filter. The version of

the current header file is HTTP_FILTER_REVISION.

dwFiIterVersion Version of HTTP_FILTER_REVISION.

IpszFilterDesc Location to store a short string description of the ISAPI filter
application.

dwFlags Combination of SF -':NOTIFY _ * flags to specify what events this
application needs, and at what priority the filter is loaded. See
CHttpFilter::GetFilterVersion and CHttpFilter::HttpFilterProc for lists
of valid flags.

See Also: CHttpFilter::HttpFilterProc, CHttpFilter::GetFilterVersion

LINGER Structure
The LINGER structure has the following form:

struct linger {
u_short l_onoff;
u_short l_linger;

} ;

II option onloff
II linger time

The LINGER structure is used for manipulating the SO_LINGER and
SO_DONTLINGER options of CAsyncSocket::GetSockOpt.

Comments
Setting the SO_DONTLINGER option prevents blocking on member function Close
while waiting for unsent data to be sent. Setting this option is equivalent to setting
SO_LINGER with Conoffset to O.

See Also: CAsyncSocket: :GetSockOpt, CAsyncSocket: :SetSockOpt

LOGBRUSH Structure

Members

2544

The LOGBRUSH structure has the following form:

typedef struct tag LOGBRUSH { 1* lb */
UINT lbStyle;
COLORREF lbColor;
LONG lbHatch;

LOGBRUSH;

The LOGBRUSH structure defines the style, color, and pattern of a physical brush.
It is used by the Windows CreateBrushIndirect and ExtCreatePen functions.

IbStyle Specifies the brush style. The IbStyle member must be one of the following
styles:

LOGBRUSH Structure

• BS_DIBPATTERN A pattern brush defined by a device-independent bitmap
(DIB) specification. If IbStyle is BS_DIBPATTERN, the IbHatch member
contains a handle to a packed DIB.

• BS_DIBPATTERNPT A pattern brush defined by a device-independent
bitmap (DIB) specification. If IbStyle is BS_DIBPATTERNPT, the IbHatch
member contains a pointer to a packed DIB.

• BS_HATCHED Hatched brush.

• BS_HOLLOW Hollow brush.

• BS_NULL Same as BS_HOLLOW.

• BS_PATTERN Pattern brush defined by a memory bitmap.

• BS_SOLID Solid brush.

IbColor Specifies the color in which the brush is to be drawn. If IbStyle is the
BS_HOLLOW or BS_PATTERN style, IbColor is ignored. If IbStyle is
BS_DIBPATTERN or BS_DIBPATTERNBT, the low-order word of IbColor
specifies whether the bmiColors members of the BITMAPINFO structure contain
explicit red, green, blue (ROB) values or indices into the currently realized logical
palette. The IbColor member must be one of the following values:

• DIB_PAL_COLORS The color table consists of an array of 16-bit indices
into the currently realized logical palette.

• DIB_RGB_COLORS The color table contains literal ROB values.

IbHatch Specifies a hatch style. The meaning depends on the brush style defined by
IbStyle. If IbStyle is BS_DIBPATTERN, the IbHatch member contains a handle
to a packed DIB. If IbStyle is BS_DIBPATTERNPT, the IbHatch member
contains a pointer to a packed DIB. If IbStyle is BS_HATCHED, the IbHatch
member specifies the orientation of the lines used to create the hatch. It can be
one of the following values:

• HS_BDIAGONAL A 45-degree upward, left-to-right hatch

• HS_CROSS Horizontal and vertical crosshatch

• HS_DIAGCROSS 45-degree crosshatch

• HS_FDIAGONAL A 45-degree downward, left-to-right hatch

• HS_HORIZONTAL Horizontal hatch

• HS_ VERTICAL Vertical hatch

If IbStyle is BS_PATTERN, IbHatch is a handle to the bitmap that defines the
pattern. If IbStyle is BS_SOLID or BS_HOLLOW, IbHatch is ignored.

2545

LOG FONT Structure

Comments
Although IbColor controls the foreground color of a hatch brush, the
CDC::SetBkMode and CDC::SetBkColor functions control the background color.

See Also: CDC: :GetChar ABCWidths

LOGFONT Structure

Members

2546

The LOGFONT structure has the following form:

typedef struct tagLOGFONT { /* If */
LONG lfHeight;
LONG lfWidth;
LONG lfEscapement;
LONG lfOrientation;
LONG lfWeight;
BYTE lfItalic;
BYTE lfUnderline;
BYT~ lfStrikeOut;
BYTE lfCharSet;
BYTE lfOutPrecision;
BYTE lfClipPrecision;
BYTE lfQua 1 ity;
BYTE lfPitchAndFamily;
CHAR lfFaceName[LF_FACESIZE];

LOGFONT;

The LOGFONT structure defines the attributes of a font.

IfHeight Specifies the height, in logical units, of the font. The font height can be
specified in one of three ways. If IfHeight is greater than zero, it is transformed
into device units and matched against the cell height of the available fonts. If it is
zero, a reasonable default size is used. If it is less than zero, it is transformed into
device units and the absolute value is matched against the character height of the
available fonts. For all height comparisons, the font mapper looks for the largest
font that does not exceed the requested size~ if there is no such font, it looks for the
smallest font available. This mapping occurs when the font is actually used for the
first time.

IfWidth Specifies the average width, in logical units, of characters in the font. If
IfWidth is zero, the aspect ratio of the device is matched against the digitization
aspect ratio of the available fonts to find the closest match, determined by the
absolute value of the difference.

IfEscapement Specifies the angle, in tenths of degrees, of each line of text written in
the font (relative to the bottom of the page).

If Orientation Specifies the angle, in tenths of degrees, of each character's base line
(relative to the bottom of the page).

LOGFONT Structure

IfWeight Specifies the weight of the font, in the range 0 through 1000 (for example,
400 is normal and 700 is bold). If IfWeight is zero, a default weight is used.

lfitalic Specifies an italic font if set to TRUE.

lfUnderline Specifies an underlined font if set to TRUE.

IfStrikeOut Specifies a strikeout font if set to TRUE.

IfCharSet Specifies the character set. The following values are predefined:

• ANSI_CHARSET

• OEM_CHARSET

• SYMBOL_CHARSET

• UNICODE_CHARSET

The OEM character set is system dependent.

Fonts with other character sets may exist in the system. If an application uses a font
with an unknown character set, it should not attempt to translate or interpret strings
that are to be rendered with that font.

lfOutPrecision Specifies the output precision. The output precision defines how
closely the output must match the requested font's height, width, character
orientation, escapement, and pitch. It can be one of the following values:

• OUT_CHARACTER_PRECIS

• OUT_DEFAULT_PRECIS

• OUT_STRING_PRECIS

• OUT_STROKE_PRECIS

IfClipPrecision Specifies the clipping precision. The clipping precision defines how
to clip characters that are partially outside the clipping region. It can be one of the
following values:

• CLIP _CHARACTER_PRECIS

• CLIP _DEFAULT_PRECIS

• CLIP _STROKE_PRECIS

IfQuality Specifies the output quality. The output quality defines how carefully the
graphics device interface (GDI) must attempt to match the logical-font attributes
to those of an actual physical font. It can be one of the following values:

• DEFAULT_QUALITY Appearance of the font does not matter.

• DRAFT_QUALITY Appearance of the font is less important than when
PROOF_QUALITY is used. For GDI fonts, scaling is enabled, which means
that more font sizes are available, but the quality may be lower. Bold, italic,
underline, and strikeout fonts are synthesized if necessary.

2547

LOGFONT Structure

2548

• PROOF_QUALITY Character quality of the font is more important than
exact matching of the logical-font attributes. For GDI fonts, scaling is disabled
and the font closest in size is chosen. Although the chosen font size may not be
mapped exactly when PROOF_QUALITY is used, the quality of the font is
high and there is no distortion of appearance. Bold, italic, underline, and
strikeout fonts are synthesized if necessary.

IfPitchAndFamily Specifies the pitch and family of the font. The two low-order bits
specify the pitch of the font and can be one of the following values:

• DEFAULT_PITCH

• FIXED_PITCH

• VARIABLE_PITCH

Bits 4 through 7 of the member specify the font family and can be one of the
following values:

• FF_DECORATIVE

• FF _DONTCARE

• FF_MODERN

• FF_ROMAN

• FF_SCRIPT

• FF_SWISS

The proper value can be obtained by using the Boolean OR operator to join one
pitch constant with one family constant. Font families describe the look of a font
in a general way. They are intended for specifying fonts when the exact typeface
desired is not available. The values for font families are as follows:

• FF _DECORATIVE Novelty fonts. Old English is an example.

• FF _DONTCARE Don't care or don't know.

• FF _MODERN Fonts with constant stroke width (fixed-pitch), with or without
serifs. Fixed-pitch fonts are usually modem. Pica, Elite, and CourierNew® are
examples.

• FF _ROMAN Fonts with variable stroke width (proportionally spaced) and
with serifs. MS Serif® is an example.

• FF _SCRIPT Fonts designed to look like handwriting. Script and Cursive are
examples.

• FF _SWISS Fonts with variable stroke width (proportionally spaced) and
without serifs. MS® Sans Serif is an example.

IfFaceName Points to a null-terminated string that specifies the typeface name of
the font. The length of this string must not exceed 32 characters. The Windows
EnumFonts function can be used to enumerate the typeface names of all currently
available fonts. If IfFaceName is NULL, GDI uses a default typeface.

See Also: CDC::GetCharABCWidths, CFontDialog::CFontDialog,
CGdiObject: :GetObject

LOGPEN Structure

Members

The LOGPEN structure has the following form:

typedef struct tagLOGPEN { 1* 19pn *1
UINT lopnStyle;
POINT lopnWidth;
COLORREF lopnColor;

LOGPEN;

The LOGPEN structure defines the style, width, and color of a pen a drawing object
used to draw lines and borders. The CPen::CreatePenlndirect function uses the
LOGPEN structure.

lopnStyle Specifies the pen type. This member can be one of the following values:

• PS_SOLID Creates a solid pen.

• PS_DASH Creates a dashed pen. (Valid only when the pen width is 1.)

• PS_DOT Creates a dotted pen. (Valid only when the pen width is 1.)

• PS_DASHDOT Creates a pen with alternating dashes and dots. (Valid only
when the pen width is 1.)

• PS_DASHDOTDOT Creates a pen with alternating dashes and double dots.
(Valid only when the pen width is 1.)

• PS_NULL Creates a null pen.

• PS_INSIDEFRAME Creates a pen that draws a line inside the frame of
closed shapes produced by GDI output functions that specify a bounding
rectangle (for example, the Ellipse Rectangle, RoundRect Pie, and Chord
member functions). When this style is used with GDI output functions that do
not specify a bounding rectangle (for example the LineTo member function),
the drawing area of the pen is not limited by a frame.

If a pen has the PS_INSIDEFRAME style and a color that does not match a
color in the logical color table, the pen is drawn with a dithered color. The
PS_SOLID pen style cannot be used to create a pen with a dithered color. The
PS_INSIDEFRAME style is identical to PS_SOLID if the pen width is less
than or equal to 1.

LOGPEN Structure

2549

MEASUREITEMSTRUCT Structure

When the PS_INSIDEFRAME style is used with GDI objects produced by
functions other than Ellipse Rectangle and RoundRect, the line may not be
completely inside the specified frame.

lopn Width Specifies the pen width in logical units. If the lopn Width member is 0,
the pen is 1 pixel wide on raster devices regardless of the current mapping mode.

lopnColor Specifies the pen color.

Comments
The y value in the POINT structure for the lopn Width member is not used.

See Also: CPen::CreatePenIndirect

MEASUREITEMSTRUCT Structure

Members

2550

The MEASUREITEMSTRUCT data structure has the following form:

typedef struct tagMEASUREITEMSTRUCT
UINT· CtlType;
UINT CtlID;
UINT itemID;
UINT itemWidth;
UINT itemHeight;
DWORD itemData

MEASUREITEMSTRUCT;

The MEASUREITEMSTRUCT structure informs Windows of the dimensions
of an owner-drawn control or menu item. This allows Windows to process user
interaction with the control correctly. Failure to fill out the proper members in the
MEASUREITEMSTRUCT structure will cause improper operation of the control.

CtlType Contains the control type. The values for control types are
as follows:

• ODT_COMBOBOX Owner-draw combo box

• ODT_LISTBOX Owner-draw list box

• ODT_MENU Owner-draw menu

CtlID Contains the control ID for a combo box, list box, or button. This member is
not used for a menu.

itemID Contains the menu-item ID for a menu or the list-box-item ID for a
variable-height combo box or list box. This member is not used for a fixed-height
combo box or list box, or for a button.

item Width Specifies the width of a menu item. The owner of the owner-draw menu
item must fill this member before it returns from the message.

MINMAXINFO Structure

itemHeight Specifies the height of an individual item in a list box or a menu.
Before it returns from the message, the owner of the owner-draw combo box,
list box, or menu item must fill out this member. The maximum height of a list
box item is 255.

itemData For a combo box or list box, this member contains the value that was
passed to the list box by one of the following:

• CComboBox: :AddString

• CComboBox::lnsertString

• CListBox: :AddString

• CListBox: :InsertString

For a menu, this member contains the value that was passed to the menu by one of
the following:

• CMenu::AppendMenu

• CMenu::lnsertMenu

• CMenu::ModifyMenu

See Also: CWnd::OnMeasureltem

MINMAXINFO Structure

Members

The MINMAXINFO structure has the following form:

typedef struct tagMINMAXINFO
POINT ptReserved;
POINT ptMaxSize;
POINT ptMaxPosition;
POINT ptMinTrackSize;
POINT ptMaxTrackSize;

MINMAXINFO;

The MINMAXINFO structure contains information about a window's maximized
size and position and its minimum and maximum tracking size.

ptReserved Reserved for internal use.

ptMaxSize Specifies the maximized width (point.x) and the maximized height
(point.y) of the window.

ptMaxPosition Specifies the position of the left side of the maximized window
(point.x) and the position of the top of the maximized window (point.y).

ptMinTrackSize Specifies the minimum tracking width (point.x) and the minimum
tracking height (point.y) of the window.

2551

MSG Structure

ptMaxTrackSize Specifies the maximum tracking width (point.x) and the maximum
tracking height (point.y) of the window.

See Also: CWnd: :OnGetMinMaxlnfo

MSG Structure

Members

The MSG structure has the following form:

typedef struct tagMSG
HWND hwnd;
UINT message;
WPARAM wParam;
LPARAM lParam;
DWORD time;
POINT pt;

MSG;

II msg

The MSG structure contains message information from a thread's message queue.

hwnd Identifies the window whose window procedure receives the message.

message Specifies the message number.

wParam Specifies additional information about the message. The exact meaning
depends on the value of the message member.

IParam Specifies additional information about the message. The exact meaning
depends on the value of the message member.

time Specifies the time at which the message was posted.

pt Specifies the cursor position, in screen coordinates, when the message was posted.

NCCALCSIZE_PARAMS Structure

Members

2552

The NCCALCSIZE_PARAMS structure has the following form:

typedef struct tagNCCALCSIZE_PARAMS
RECT rgrc[3];
PWINDOWPOS lppos;

NCCALCSIZE_PARAMS;

The NCCALCSIZE_PARAMS structure contains information that an application
can use while processing the WM_NCCALCSIZE message to calculate the size,
position, and valid contents of the client area of a window.

rgrc Specifies an array of rectangles. The first contains the new coordinates of a
window that has been moved or resized. The second contains the coordinates of

the window before it was moved or resized. The third contains the coordinates
of the client area of a window before it was moved or resized. If the window
is a child window, the coordinates are relative to the client area of the parent
window. If the window is a top-level window, the coordinates are relative to
the screen.

Ippos Points to a WINDOWPOS structure that contains the size and position
values specified in the operation that caused the window to be moved or
resized.

See Also: CWnd::OnNeCaleSize

PAINTSTRUCT Structure

Members

The PAINTSTRUCT structure has the following form:

typedef struet tagPAINTSTRUCT
HDC hde;
Baal fErase;
RECT rePaint;
Baal fRestore;
Baal flneUpdate;
BYTE rgbReserved[16];

PAINTSTRUCT;

The PAINTSTRUCT structure contains information that can be used to paint
the client area of a window.

hde Identifies the display context to be used for painting.

fErase Specifies whether the background needs to be redrawn. It is not 0 if the
application should redraw the background. The application is responsible for
drawing the background if a Windows window-class is created without a
background brush (see the description of the hbrBaekground member of
the WNDCLASS structure in the Win32 SDK documentation).

rePaint Specifies the upper-left and lower-right comers of the rectangle in
which the painting is requested.

fRestore Reserved member. It is used internally by Windows.

fIneUpdate Reserved member. It is used internally by Windows.

rgbReserved[16] Reserved member. A reserved block of memory used
internally by Windows.

See Also: CPaintDC::m_ps

PAINTSTRUCT Structure

2553

POINT Structure

POINT Structure

Members

The POINT data structure has the following form:

typedef struct tagPOINT {
LONG x;
LONG y;

} POINT;

The POINT structure defines the x- and y-coordinates of a point.

x Specifies the x -coordinate of a point.

y Specifies the y-coordinate of a point.

See Also: CPoint

RECT Structure

Members

The RECT data structure has the following form:

typedef struct tagRECT {
LONG left;
LONG top;
LONG right;
LONG bottom;

RECT;

The RECT structure defines the coordinates of the upper-left and lower-right corners
of a rectangle.

left Specifies the x-coordinate of the upper-left corner of a rectangle.

top Specifies the y-coordinate of the upper-left corner of a rectangle.

right Specifies the x-coordinate of the lower-right corner of a rectangle.

bottom Specifies the y-coordinate of the lower-right corner of a rectangle.

See Also: CRect

RGNDATA Structure

2554

The RGNDATA structure has the following form:

typedef ~truct _RGNDATA { /* rgnd */
RGNDATAHEADER rdh;
char Buffer[l];

} RGNDATA;

SOCKADDR Structure

Members

The RGNDATA structure contains a header and an array of rectangles that compose
a region. These rectangles, sorted top to bottom left to right, do not overlap.

rdh Specifies a RGNDATAHEADER structure. (For more information on this
structure, see the Win32 SDK documentation.) The members of this structure
specify the type of region (whether it is rectangular or trapezoidal), the number of
rectangles that make up the region, the size of the buffer that contains the rectangle
structures, and so on.

Buffer Specifies an arbitrary-size buffer that contains the RECT structures that
make up the region.

See Also: CRgn::CreateFromData, CRgn::GetRegionData

SIZE Structure

Members

The SIZE structure has the following form:

typedef struct tagSIZE {
int cx;
int cy;

SIZE;

The SIZE structure specifies the width and height of a rectangle.

ex Specifies the x-extent when a function returns.

ey Specifies the y-extent when a function returns.

Comments
The rectangle dimensions stored in this structure can correspond to viewport extents,
window extents, text extents, bitmap dimensions, or the aspect-ratio filter for some
extended functions.

See Also: CSize

SOCKADDR Structure
The SOCKADDR structure has the following form:

struct sockaddr {
unsigned short sa_family;
char sa_data[14];

} ;

The SOCKADDR structure is used to store an Internet Protocol (IP) address for a
machine participating in a Windows Sockets communication.

2555

SOCKADDR_IN Structure

Members
sa_family Socket address family.

sa_data Maximum size of all of the different socket address structures.

Comments
The Microsoft TCPIIP Sockets Developer's Kit only supports the Internet address
domains. To actually fill in values for each part of an address, you use the
SOCKADDR_IN data structure, which is specifically for this address format.
The SOCKADDR and the SOCKADDR_IN data structures are the same size.
You simply cast to switch between the two structure types. For more information, see
"Windows Sockets Programming Considerations" in the Win32 SDK documentation.

See Also: SOCKADDR_IN, CAsyncSocket::Create, CSocket::Create

SOCKADDR_IN Structure

Members

The SOCKADDR_IN structure has the following form:

struct sockaddr_in{
short
unsigned short
struct in_addr
char

} :

sin_family:
sin_port:
sin_addr:
sin_zero[8]:

In the Internet address family, the SOCKADDR_IN structure is used by Windows
Sockets to specify a local or remote endpoint address to which to connect a socket.
This is the form of the SOCKADDR structure specific to the Internet address family
and can be cast to SOCKADDR.

sin_family Address family (must be AF _INET).

sin_port IP port.

sin_addr IP address.

sin_zero Padding to make structure the same size as SOCKADDR.

Comments

2556

The IP address component of this structure is of type IN_ADDR. The IN_ADDR
structure is defined in Windows Sockets header file WINSOCK.H as follows:

struct in_addr
union {

struct{
unsigned char s_bl.

s_b2.
s_b3.
s_b4:

} ;

struct
unsigned short s_wl,

s_w2;
S_un_w;

unsigned long S_addr;

For more information, see "Windows Sockets Programming Considerations"
in the Win32 SDK documentation.

See Also: SOCKADDR

SYSTEMTIME Structure

Members

The SYSTEMTIME structure has the following form:

typedef struct _SYSTEMTIME
WORD wYear;
WORD wMonth;
WORD wDayOfWeek;
WORD wDay;
WORD wHour;
WORD wMinute;
WORD wSecond;
WORD wMilliseconds;

SYSTEMTIME:

The SYSTEMTIME structure represents a date and time using individual
members for the month, day, year, weekday, hour, minute, second, and
millisecond.

wYear The current year.

wMonth The current month; January is 1.

wDayOfWeek The current day of the week; Sunday is 0, Monday is 1,
and so on.

wDay The current day of the month.

wHour The current hour.

wMinute The current minute.

wSecond The current second.

wMilliseconds The current millisecond.

See Also: CTime::CTime

SYSTEMTIME Structure

2557

TEXTMETRIC Structure

TEXTMETRIC Structure
The TEXTMETRIC structure has the following form:

typedef struct tagTEXTMETRIC 1* tm *1
int tmHeight;
int tmAscent;
int tmDescent;
int tmInternalLeading;
int tmExternalLeading;
int tmAveCharWidth;
int tmMaxCharWidth;
int tmWeight;
BYTE tmItalic;
BYTE tmUnderlined;
BYTE tmStruckOut;
BYTE tmFirstChar;
BYTE tmLastChar;
BYTE tmDefaultChar;
BYTE tmBreakChar;
BYTE tmPitchAndFamily;
BYTE tmCharSet;
int tmOverhang;
int tmDigitizedAspectX;
int tmDigitizedAspectY;

TEXTMETRI C;

The TEXTMETRIC structure contains basic information about a physical font. All
sizes are given in logical units; that is, they depend on the current mapping mode of
the display context.

For more complete information about this structure, see TEXTMETRIC in the
Win32 SDK documentation.

See Also: CDC::GetTextMetrics, TEXTMETRIC

WINDOWPLACEMENT Structure

2558

The WINDOWPLACEMENT data structure has the following form:

typedef struct tagWINDOWPLACEMENT
UINT length;
UINT flags;
UINT showCmd;
POINT ptMinPosition;
POINT ptMaxPosition;
RECT rcNormalPosition;

WINDOWPLACEMENT;

1* ~ndpl *1

The WINDOWPLACEMENT structure contains information about the placement
of a window on the screen.

Members

WINDOWPLACEMENT Structure

length Specifies the length, in bytes, of the structure.

flags Specifies flags that control the position of the minimized window and the
method by which the window is restored. This member can be one or both of the
following flags:

• WPF _SETMINPOSITION Specifies that the x- and y-positions of the
minimized window can be specified. This flag must be specified if the
coordinates are set in the ptMinPosition member.

• WPF _RESTORETOMAXIMIZED Specifies that the restored window will
be maximized, regardless of whether it was maximized before it was minimized.
This setting is valid only the next time the window is restored. It does not
change the default restoration behavior. This flag is valid only when the
SW _SHOWMINIMIZED value is specified for the showCmd member.

showCmd Specifies the current show state of the window. This member can be one
of the following values:

• SW _HIDE Hides the window and passes activation to another window.

• SW _MINIMIZE Minimizes the specified window and activates the top-level
window in the system's list.

• SW _RESTORE Activates and displays a window. If the window is minimized
or maximized, Windows restores it to its original size and position (same as
SW _SHOWNORMAL).

• SW _SHOW Activates a window and displays it in its current size and
position.

• SW _SHOWMAXIMIZED Activates a window and displays it as a
maximized window.

• SW _SHOWMINIMIZED Activates a window and displays it as an icon.

• SW _SHOWMINNOACTIVE Displays a window as an icon. The window
that is currently active remains active.

• SW _SHOWNA Displays a window in its current state. The window that is
currently active remains active.

• SW _SHOWNOACTIVATE Displays a window in its most recent size and
position. The window that is currently active remains active.

• SW _SHOWNORMAL Activates and displays a window. If the window is
minimized or maximized, Windows restores it to its original size and position
(same as SW _RESTORE).

ptMinPosition Specifies the position of the window's top-left corner when the
window is minimized.

2559

WINDOWPOS Structure

ptMaxPosition Specifies the position of the window's top-left corner when the
window is maximized.

reNormalPosition Specifies the window's coordinates when the window is in the
normal (restored) position.

See Also: CWnd::SetWindowPlaeement

WINDOWPOS Structure

Members

2560

The WINDOWPOS data structure has the following form:

typedef struet tagWINDOWPOS { /* wp */
HWND hwnd;
HWND hwndlnsertAfter;
int x;
int y;
int ex;
i nt ey;
UINT flags;

WINDOWPOS;

The WINDOWPOS structure contains information about the size and position of
a window.

hwnd Identifies the window.

hwndInsertAfter Identifies the window behind which this window is placed.

x Specifies the position of the left edge of the window.

y Specifies the position of the right edge of the window.

ex Specifies the window width, in pixels.

ey Specifies the window height, in pixels.

flags Specifies window-positioning options. This member can be one of the
following values:

• SWP _DRAWFRAME Draws a frame (defined in the class description for the
window) around the window. The window receives a WM_NCCALCSIZE
message.

• SWP _FRAME CHANGED Sends a WM_NCCALCSIZE message to the
window, even if the window's size is not being changed. If this flag is not
specified, WM_NCCALCSIZE is sent only when the window's size is being
changed.

• SWP _HIDEWINDOW Hides the window.

• SWP _NOACTIVATE Does not activate the window.

WSADATA Structure

• SWP _NOCOPYBITS Discards the entire contents of the client area. If this
flag is not specified, the valid contents of the client area are saved and copied
back into the client area after the window is sized or repositioned.

• SWP _NOMOVE Retains current position (ignores the x and y members).

• SWP _NOOWNERZORDER Does not change the owner window's position
in the Z-order.

• SWP _NOSIZE Retains current size (ignores the ex and ey members).

• SWP _NORED RAW Does not redraw changes.

• SWP _NOREPOSITION Same as SWP _NOOWNERZORDER.

• SWP _NOSENDCHANGING Prevents the window from receiving the
WM_ WINDOWPOSCHANGING message.

• SWP _NOZORDER Retains current ordering (ignores the hwndlnsertAfter
member).

• SWP _SHOWWINDOW Displays the window.

See Also: CWnd: :On WindowPosChanging

WSADATA Structure

Members

The WSADATA structure has the following form:

struct WSAData

} ;

WORD
WORD
char
char
unsigned short
unsigned short
char FAR *

wVersion;
wHighVersion;
szDescription[WSADESCRIPTION_LEN+l];
szSystemStatus[WSASYSSTATUS_LEN+l];
iMaxSockets;
iMaxUdpDg;
lpVendorlnfo;

The WSADATA structure is used to store Windows Sockets initialization information
returned by a call to the AfxSoeketlnit global function.

wVersion The version of the Windows Sockets specification that the Windows
Sockets DLL expects the caller to use.

wHigh Version The highest version of the Windows Sockets specification that this
DLL can support (also encoded as above). Normally this is the same as wVersion.

szDeseription A null-terminated ASCII string into which the Windows Sockets DLL
copies a description of the Windows Sockets implementation, including vendor
identification. The text (up to 256 characters in length) can contain any characters,
but vendors are cautioned against including control and formatting characters: the

2561

WSADA TA Structure

2562

most likely use that an application will put this to is to display it (possibly
truncated) in a status message.

szSystemStatus A null-terminated ASCII string into which the Windows Sockets
DLL copies relevant status or configuration information. The Windows Sockets
DLL should use this field only if the information might be useful to the user or
support staff; it should not be considered as an extension of the szDescription
field.

iMaxSockets The maximum number of sockets which a single process can
potentially open. A Windows Sockets implementation can provide a global pool
of sockets for allocation to any process; alternatively it can allocate per-process
resources for sockets. The number can well reflect the way in which the Windows
Sockets DLL or the networking software was configured. Application writers
can use this number as a crude indication of whether the Windows Sockets
implementation is usable by the application. For example, an X Windows server
might check iMaxSockets when first started: if it is less than 8, the application
would display an error message instructing the user to reconfigure the networking
software. (This is a situation in which the szSystemStatus text might be used.)
Obviously there is no guarantee that a particular application can actually allocate
iMaxSockets sockets, since there can be other Windows Sockets applications in
use.

iMaxUdpDg The size in bytes of the largest User Datagram Protocol (UDP)
datagram that can be sent or received by a Windows Sockets application. If the
implementation imposes no limit, iMaxUdpDg is zero. In many implementations
of Berkeley sockets, there is an implicit limit of 8192 bytes on UDP datagrams
(which are fragmented if necessary). A Windows Sockets implementation can
impose a limit based, for instance, on the allocation of fragment reassembly
buffers. The minimum value of iMaxUdpDg for a compliant Windows Sockets
implementation is 512. Note that regardless of the value of iMaxUdpDg, it is
inadvisable to attempt to send a broadcast datagram which is larger than the
Maximum Transmission Unit (MTU) for the network. (The Windows Sockets
API does not provide a mechanism to discover the MTU, but it must be no less
than 512 bytes.)

Jp VendorInfo A far pointer to a vendor-specific data structure. The definition of this
structure (if supplied) is beyond the scope of the Windows Sockets specification.
For more information, see "Windows Sockets Programming Considerations" in the
Win32 SDK documentation.

Note In MFC, the WSADATA structure is returned by the AfxSocketlnit function, which you
call in your In; tInstance function. You can retrieve the structure and store it in your program
if you need to use information from it later.

See Also: AfxSocketInit

XFORM Structure
The XFORM structure has the following form:

typedef struct tagXFORM { 1* xfrm *1
FLOAT eMU;
FLOAT eM12;
FLOAT eM21;
FLOAT eM22;
FLOAT eDx;
FLOAT eDy;

XFORM;

Comments
The XFORM structure specifies a world-space to page-space transformation. The
eDx and eDy members specify the horizontal and vertical translation components,
respectively. The following table shows how the other members are used, depending
on the operation:

Operation eM11 eM12 eM21 eM22

Rotation Cosine of Sine of rotation Negative sine Cosine of
rotation angle angle of rotation rotation angle

angle

Scaling Horizontal Nothing Nothing Vertical scaling
scaling component
component

Shear Nothing Horizontal Vertical Nothing
proportionality proportionality
constant constant

Reflection Horizontal Nothing Nothing Vertical reflection
reflection component
component

See Also: CRgo: :CreateFromData

XFORM Structure

2563

Styles Used by MFC

Styles Used by MFC
The styles described in the following topics are, in most cases, specified with the
dwstyle parameter. For further information, refer to the member functions listed in
the See Also list for each style.

Button Styles

2564

• BS_AUTOCHECKBOX Same as a check box, except that a check mark appears
in the check box when the user selects the box; the check mark disappears the next
time the user selects the box.

• BS_AUTORADIOBUTTON Same as a radio button, except that when the user
selects it, the button automatically highlights itself and removes the selection from
any other radio buttons with the same style in the same group.

• BS_AUT03STATE Same as a three-state check box, except that the box changes
its state when the user selects it.

• BS_ CHECKBOX Creates a small square that has text displayed to its right
(unless this style is combined with the BS_LEFTTEXT style).

• BS_DEFPUSHBUTTON Creates a button that has a heavy black border. The
user can select this button by pressing the ENTER key. This style enables the user
to quickly select the most likely option (the default option).

• BS_GROUPBOX Creates a rectangle in which other buttons can be grouped.
Any text associated with this style is displayed in the rectangle's upper-left corner.

• BS_LEFTTEXT When combined with a radio-button or check-box style, the text
appears on the left side of the radio button or check box.

• BS_OWNERDRAW Creates an owner-drawn button. The framework calls the
Drawltem member function when a visual aspect of the button has changed. This
style must be set when using the CBitmapButton class.

• BS_PUSHBUTTON Creates a pushbutton that posts a WM_COMMAND
message to the owner window when the user selects the button.

• BS_RADIOBUTTON Creates a small circle that has text displayed to its right
(unless this style is combined with the BS_LEFTTEXT style). Radio buttons are
usually used in groups of related but mutually exclusive choices.

• BS_3STATE Same as a check box, except that the box can be dimmed as well as
checked. The dimmed state typically is used to show that a check box has been
disabled.

See Also: CButton::Create

Combo-Box Styles
• CBS_AUTOHSCROLL Automatically scrolls the text in the edit control to the

right when the user types a character at the end of the line. If this style is not set,
only text that fits within the rectangular boundary is allowed.

• CBS_DROPDOWN Similar to CBS_SIMPLE, except that the list box is not
displayed unless the user selects an icon next to the edit control.

• CBS_DROPDOWNLIST Similar to CBS_DROPDOWN, except that the edit
control is replaced by a static-text item that displays the current selection in the
list box.

• CBS_HASSTRINGS An owner-draw combo box contains items consisting
of strings. The combo box maintains the memory and pointers for the strings so
the application can use the GetText member function to retrieve the text for a
particular item.

• CBS_OEMCONVERT Text entered in the combo-box edit control is converted
from the ANSI character set to the OEM character set and then back to ANSI. This
ensures proper character conversion when the application calls the AnsiToOem
Windows function to convert an ANSI string in the combo box to OEM characters.
This style is most useful for combo boxes that contain filenames and applies only
to combo boxes created with the CBS_SIMPLE or CBS_DROPDOWN styles.

• CBS_OWNERDRAWFIXED The owner of the list box is responsible for
drawing its contents; the items in the list box are all the same height.

• CBS_OWNERDRAWVARIABLE The owner of the list box is responsible for
drawing its contents; the items in the list box are variable in height.

• CBS_SIMPLE The list box is displayed at all times. The current selection in the
list box is displayed in the edit control.

• CBS_SORT Automatically sorts strings entered into the list box.

• CBS_DISABLENOSCROLL The list box shows a disabled vertical scroll bar
when the list box does not contain enough items to scroll. Without this style, the
scroll bar is hidden when the list box does not contain enough items.

• CBS_NOINTEGRALHEIGHT Specifies that the size of the combo box is
exactly the size specified by the application when it created the combo box.
Normally, Windows sizes a combo box so that the combo box does not display
partial items.

See Also: CComboBox::Create

Combo-Box Styles

2565

Edit Styles

Edit Styles

2566

• ES_AUTOHSCROLL Automatically scroUs text to the right by 10 characters
when the user types a character at the end of the line. When the user presses the
ENTER key, the control scrolls all text back to position O.

• ES_AUTOVSCROLL Automatically scrolls text up one page when the user
presses ENTER on the last line.

• ES_CENTER Centers text in a multiline edit control.

• ES_LEFT Aligns text flush left.

• ES_LOWERCASE Converts all characters to lowercase as they are typed into
the edit control.

• ES_MULTILINE Designates a multiple-line edit control. (The default is single
line.) If the ES_AUTOVSCROLL style is specified, the edit control shows as
many lines as possible and scrolls vertically when the user presses the ENTER key.
If ES_AUTOVSCROLL is not given, the edit control shows as many lines as
possible and beeps if ENTER is pressed when no more lines can be displayed. If
the ES_AUTOHSCROLL style is specified, the multiple-line edit control
automatically scrolls horizontally when the caret goes past the right edge of the
control. To start a new line, the user must press ENTER. If ES_AUTOHSCROLL
is not given, the control automatically wraps words to the beginning of the next
line when necessary; a new line is also started if ENTER is pressed. The position of
the word wrap is determined by the window size. If the window size changes, the
wordwrap position changes and the text is redisplayed. Multiple-line edit controls
can have scroll bars. An edit control with scroll bars processes its own scroll-bar
messages. Edit controls without scroll bars scroll as described above and process
any scroll messages sent by the parent window.

• ES_NOHIDESEL Normally, an edit control hides the selection when the control
loses the input focus and inverts the selection when the control receives the input
focus. Specifying ES_NOHIDESEL deletes this default action.

• ES_OEMCONVERT Text entered in the edit control is converted from the ANSI
character set to the OEM character set and then back to ANSI. This ensures proper
character conversion when the application calls the AnsiToOem Windows function
to convert an ANSI string in the edit control to OEM characters. This style is most
useful for edit controls that contain filenames.

• ES_PASSWORD Displays all characters as an asterisk (*) as they are typed into
the edit control. An application can use the SetPasswordChar member function to
change the character that is displayed.

• ES_RIGHT Aligns text flush right in a multiline edit control.

• ES_UPPERCASE Converts all characters to uppercase as they are typed into the
edit control.

• ES_READONLY Prevents the user from entering or editing text in the edit
control.

• ES_ WANTRETURN Specifies that a carriage return be inserted when the user
presses the ENTER key while entering text into a multiple-line edit control in a
dialog box. Without this style, pressing the ENTER key has the same effect as
pressing the dialog box's default pushbutton. This style has no effect on a
single-line edit control.

See Also: CEdit::Create

Frame-Window Styles
• FWS_ADDTOTITLE Specifies information to append to the end of a frame

window title. For example, "Microsoft Draw-Drawing in Document!." You can
specify the strings displayed in the Advanced Options dialog box in App Wizard. If
you need to turn this option off, override the CWnd::PreCreateWindow member
function.

• FWS_PREFIXTITLE Shows the document name before the application name in
a frame window title. For example, "Document-WordPad." You can specify the
strings displayed in the Advanced Options dialog box in App Wizard. If you need
to turn this option off, override the CWnd::PreCreateWindow member function.

• FWS_SNAPTOBARS Controls sizing of the frame window that encloses a
control bar when it is in a floating window rather than docked to a frame window.
This style sizes the window to fit the control bar.

List-Box Styles
• LBS_EXTENDEDSEL The user can select multiple items using the SHIFf key

and the mouse or special key combinations.

• LBS_HASSTRINGS Specifies an owner-draw list box that contains items
consisting of strings. The list box maintains the memory and pointers for the strings
so the application can use the GetText member function to retrieve the text for a
particular item.

• LBS_MULTICOLUMN Specifies a multicolumn list box that is scrolled
horizontally. The SetColumn Width member function sets the width of the
columns.

• LBS_MULTIPLESEL String selection is toggled each time the user clicks or
double-clicks the string. Any number of strings can be selected.

• LBS_NOINTEGRALHEIGHT The size of the list box is exactly the size
specified by the application when it created the list box. Usually, Windows sizes
a list box so that the list box does not display partial items.

List-Box Styles

2567

Message-Box Styles

• LBS_NOREDRAW List-box display is not updated when changes are made.
This style can be changed at any time by sending a WM_SETREDRAW message.

• LBS_NOTIFY Parent window receives an input message whenever the user
clicks or double-clicks a string.

• LBS_OWNERDRAWFIXED The owner of the list box is responsible for
drawing its contents; the items in the list box are the same height.

• LBS_OWNERDRAWVARIABLE The owner of the list box is responsible for
drawing its contents; the items in the list box are variable in height.

• LBS_SORT Strings in the list box are sorted alphabetically.

• LBS_STANDARD Strings in the list box are sorted alphabetically, and the parent
window receives an input message whenever the user clicks or double-clicks a
string. The list box contains borders on all sides.

• LBS_USETABSTOPS Allows a list box to recognize and expand tab characters
when drawing its strings. The default tab positions are 32 dialog units. (A dialog unit
is a horizontal or vertical distance. One horizontal dialog unit is equal to one-fourth
of the current dialog base width unit. The dialog base units are computed based on
the height and width of the current system font. The GetDialogBaseUnits Windows
function returns the current dialog base units in pixels.)

• LBS_ WANTKEYBOARDINPUT The owner of the list box receives
WM_ VKEYTOITEM or WM_CHARTOITEM messages whenever the user
presses a key while the list box has input focus. This allows an application to
perform special processing on the keyboard input.

• LBS_DISABLENOSCROLL The list box shows a disabled vertical scroll bar
when the list box does not contain enough items to scroll. Without this style, the
scroll bar is hidden when the list box does not contain enough items.

See Also: CListBox::Create

Message-Box Styles
Message_Box Types

2568

• MB_ABORTRETRYIGNORE The message box contains three pushbuttons:
Abort, Retry, and Ignore.

• MB_OK The message box contains one pushbutton: OK.

• MB_OKCANCEL The message box contains two pushbuttons: OK and Cancel.

• MB_RETRYCANCEL The message box contains two pushbuttons: Retry and
Cancel.

• MB_YESNO The message box contains two pushbuttons: Yes and No.

• MB_YESNOCANCEL The message box contains three pushbuttons: Yes, No,
and Cancel.

Message-Box Modality
• MB_APPLMODAL The user must respond to the message box before continuing

work in the current window. However, the user can move to the windows of other
applications and work in those windows. The default is MB_APPLMODAL if
neither MB_SYSTEMMODAL nor MB_TASKMODAL is specified.

• MB_SYSTEMMODAL All applications are suspended until the user responds
to the message box. System-modal message boxes are used to notify the user of
serious, potentially damaging errors that require immediate attention and should
be used sparingly.

• MB_TASKMODAL Similar to MB_APPLMODAL, but not useful within a
Microsoft Foundation class application. This flag is reserved for a calling
application or library that does not have a window handle available.

Message-Box Icons
• MB_ICONEXCLAMATION An exclamation-point icon appears in the message

box.

• MB_ICONINFORMATION An icon consisting of an "i" in a circle appears in
the message box.

• MB_ICONQUESTION A question-mark icon appears in the message box.

• MB_ICONSTOP A stop-sign icon appears in the message box.

Message-Box Default Buttons
• MB_DEFBUTTONI The first button is the default. Note that the first button is

always the default unless MB_DEFBUTTON2 or MB_DEFBUTTON3 is specified.

• MB_DEFBUTTON2 The second button is the default.

• MB_DEFBUTTON3 The third button is the default.

See Also: AfxMessageBox

Scroll-Bar Styles
• SBS_BOTTOMALIGN Used with the SBS_HORZ style. The bottom edge of the

scroll bar is aligned with the bottom edge of the rectangle specified in the Create
member function. The scroll bar has the default height for system scroll bars.

• SBS_HORZ Designates a horizontal scroll bar. If neither the
SBS_BOTTOMALIGN nor SBS_TOPALIGN style is specified, the scroll bar
has the height, width, and position given in the Create member function.

• SBS_LEFTALIGN Used with the SBS_ VERT style. The left edge of the scroll
bar is aligned with the left edge of the rectangle specified in the Create member
function. The scroll bar has the default width for system scroll bars.

Scroll-Bar Styles

2569

Static Styles

• SBS_RIGHTALIGN Used with the SBS_ VERT style. The right edge of the
scroll bar is aligned with the right edge of the rectangle specified in the Create
member function. The scroll bar has the default width for system scroll bars.

• SBS_SIZEBOX Designates a size box. If neither the
SBS_SIZEBOXBOTTOMRIGHTALIGN nor
SBS_SIZEBOXTOPLEFTALIGN style is specified, the size box has the height,
width, and position given in the Create member function.

• SBS_SIZEBOXBOTTOMRIGHTALIGN Used with the SBS_SIZEBOX style.
The lower-right comer of the size box is aligned with the lower-right comer of the
rectangle specified in the Create member function. The size box has the default
size for system size boxes.

• SBS_SIZEBOXTOPLEFTALIGN Used with the SBS_SIZEBOX style. The
upper-left comer of the size box is aligned with the upper-left comer of the
rectangle specified in the Create member function. The size box has the default
size for system size boxes.

• SBS_TOPALIGN Used with the SBS_HORZ style. The top edge of the scroll
bar is aligned with the top edge of the rectangle specified in the Create member
function. The scroll bar has the default height for system scroll bars.

• SBS_ VERT Designates a vertical scroll bar. If neither the SBS_RIGHTALIGN
nor SBS_LEFTALIGN style is specified, the scroll bar has the height, width, and
position given in the Create member function.

See Also: CScrollBar::Create

Static Styles

2570

• SS_BLACKFRAME Specifies a box with a frame drawn with the same color as
window frames. The default is black.

• SS_BLACKRECT Specifies a rectangle filled with the color used to draw
window frames. The default is black.

• SS_CENTER Designates a simple rectangle and displays the given text centered
in the rectangle. The text is formatted before it is displayed. Words that would
extend past the end of a line are automatically wrapped to the beginning of the next
centered line.

• SS_GRAYFRAME Specifies a box with a frame drawn with the same color as
the screen background (desktop). The default is gray.

• SS_GRAYRECT Specifies a rectangle filled with the color used to fill the screen
background. The default is gray.

• SS_ICON Designates an icon displayed in the dialog box. The given text is the
name of an icon (not a filename) defined elsewhere in the resource file. The n Width
and nHeight parameters are ignored; the icon automatically sizes itself.

• SS_LEFT Designates a simple rectangle and displays the given text flush-left in
the rectangle. The text is formatted before it is displayed. Words that would extend
past the end of a line are automatically wrapped to the beginning of the next
flush-left line.

• SS_LEFTNOWORDWRAP Designates a simple rectangle and displays the
given text flush-left in the rectangle. Tabs are expanded, but words are not
wrapped. Text that extends past the end of a line is clipped.

• SS_NOPREFIX Unless this style is specified, Windows will interpret any
ampersand (&) characters in the control's text to be accelerator prefix characters.
In this case, the ampersand (&) is removed and the next character in the string is
underlined. If a static control is to contain text where this feature is not wanted,
SS_NOPREFIX may be added. This static-control style may be included with any
of the defined static controls. You can combine SS_NOPREFIX with other styles
by using the bitwise OR operator. This is most often used when filenames or other
strings that may contain an ampersand (&) need to be displayed in a static control
in a dialog box.

• SS_RIGHT Designates a simple rectangle and displays the given text flush-right
in the rectangle. The text is formatted before it is displayed. Words that would
extend past the end of a line are automatically wrapped to the beginning of the next
flush-right line.

• SS_SIMPLE Designates a simple rectangle and displays a single line of text
flush-left in the rectangle. The line of text cannot be shortened or altered in any
way. (The control's parent window or dialog box must not process the
WM_CTLCOLOR message.)

• SS_ USERITEM Specifies a user-defined item.

• SS_ WHITEFRAME Specifies a box with a frame drawn with the same color as
the window background. The default is white.

• SS_ WHITERECT Specifies a rectangle filled with the color used to fill the
window background. The default is white.

See Also: CStatic::Create

Window Styles
• WS_BORDER Creates a window that has a border.

• WS_CAPTION Creates a window that has a title bar (implies the
WS_BORDER style). Cannot be used with the WS_DLGFRAME style.

• WS_CHILD Creates a child window. Cannot be used with the WS_POPUP style.

• WS_CLIPCHILDREN Excludes the area occupied by child windows when you
draw within the parent window. Used when you create the parent window.

Window Styles

',I

2571

Window Styles

2572

• WS_ CLIPSIBLINGS Clips child windows relative to each other; that is, when a
particular child window receives a paint message, the WS_CLIPSIBLINGS style
clips all other overlapped child windows out of the region of the child window to
be updated. (If WS_CLIPSIBLINGS is not given and child windows overlap,
when you draw within the client area of a child window, it is possible to draw
within the client area of a neighboring child window.) For use with the
WS_CHILD style only.

• WS_DISABLED Creates a window that is initially disabled.

• WS_DLGFRAME Creates a window with a double border but no title.

• WS_GROUP Specifies the first control of a group of controls in which the user
can move from one control to the next with the arrow keys. All controls defined
with the WS_GROUP style FALSE after the first control belong to the same
group. The next control with the WS_GROUP style starts the next group (that is,
one group ends where the next begins).

• WS_HSCROLL Creates a window that has a horizontal scroll bar.

• WS_MAXIMIZE Creates a window of maximum size.

• WS_MAXIMIZEBOX Creates a window that has a Maximize button.

• WS_MINIMIZE Creates a window that is initially minimized. For use with the
WS_OVERLAPPED style only.

• WS_MINIMIZEBOX Creates a window that has a Minimize button.

• WS_ OVERLAPPED Creates an overlapped window. An overlapped window
usually has a caption and a border.

• WS_OVERLAPPEDWINDOW Creates an overlapped window with the
WS_OVERLAPPED, WS_CAPTION, WS_SYSMENU, WS_THICKFRAME,
WS_MINIMIZEBOX, and WS_MAXIMIZEBOX styles.

• WS_POPUP Creates a pop-up window. Cannot be used with the WS_ CHILD
style.

• WS_POPUPWINDOW Creates a pop-up window with the WS_BORDER,
WS_POPUP, and WS_SYSMENU styles. The WS_CAPTION style must be
combined with the WS_POPUPWINDOW style to make the Control menu
visible.

• WS_SYSMENU Creates a window that has a Control-menu box in its title bar.
Used only for windows with title bars.

• WS_TABSTOP Specifies one of any number of controls through which the user
can move by using the TAB key. The TAB key moves the user to the next control
specified by the WS_TABSTOP style.

• WS_THICKFRAME Creates a window with a thick frame that can be used to
size the window.

Extended Window Styles

• WS_ VISIBLE Creates a window that is initially visible.

• WS_ VSCROLL Creates a window that has a vertical scroll bar.

See Also: CWnd::Create, CWnd::CreateEx

Extended Window Styles
• WS_EX_ACCEPTFILES Specifies that a window created with this style accepts

drag-and-drop files.

• WS_EX_CLIENTEDGE Specifies that a window has a 3D look%that is, a
border with a sunken edge.

• WS_EX_CONTEXTHELP Includes a question mark in the title bar of the
window. When the user clicks the question mark, the cursor changes to a question
mark with a pointer. If the user then clicks a child window, the child receives a
WM_HELP message.

• WS_EX_CONTROLPARENT Allows the user to navigate among the child
windows of the window by using the TAB key.

• WS_EX_DLGMODALFRAME Designates a window with a double border that
may (optionally) be created with a title bar when you specify the WS_CAPTION
style flag in the dwStyle parameter.

• WS_EX_LEFT Gives window generic left-aligned properties. This is the default.

• WS_EX_LEFTSCROLLBAR Places a vertical scroll bar to the left of the client
area.

• WS_EX_LTRREADING Displays the window text using left-to-right reading
order properties. This is the default.

• WS_EX_MDICHILD Creates an MDI child window.

• WS_EX_NOPARENTNOTIFY Specifies that a child window created with this
style will not send the WM_PARENTNOTIFY message to its parent window
when the child window is created or destroyed.

• WS_EX_OVERLAPPEDWINDOW Combines the WS_EX_CLIENTEDGE
and WS_EX_ WINDOWEDGE styles.

• WS_EX_PALETTEWINDOW Combines the WS_EX_ WINDOWEDGE and
WS_EX_TOPMOST styles.

• WS_EX_RIGHT Gives a window generic right-aligned properties. This depends
on the window class.

• WS_EX_RIGHTSCROLLBAR Places a vertical scroll bar (if present) to the
right of the client area. This is the default.

• WS_EX_RTLREADING Displays the window text using right-to-Ieft reading
order properties.

2573

Extended Window Styles

2574

• WS_EX_STATICEDGE Creates a window with a three-dimensional border style
intended to be used for items that do not accept user input.

• WS_EX_TOOLWINDOW Creates a tool window, which is a window intended
to be used as a floating toolbar. A tool window has a title bar that is shorter than a
normal title bar, and the window title is drawn using a smaller font. A tool window
does not appear in the task bar or in the window that appears when the user presses
ALT+TAB.

• WS_EX_TOPMOST Specifies that a window created with this style should be
placed above all nontopmost windows and stay above them even when the window
is deactivated. An application can use the SetWindowPos member function to add
or remove this attribute.

• WS_EX_TRANSPARENT Specifies that a window created with this style is to
be transparent. That is, any windows that are beneath the window are not obscured
by the window. A window created with this style receives WM_PAINT messages
only after all sibling windows beneath it have been updated.

• WS_EX_ WINDOWEDGE Specifies that a window has a border with a raised
edge.

See Also: CWnd::CreateEx

Callback Functions Used by MFC

Callback Functions U sed by MFC
Three callback functions appear in the Microsoft Foundation Class Library.
A description of callback functions that are passed to CDC: :EnumObjects,
CDC::GrayString, and CDC::SetAbortProc follows this topic. For the general
usage of the callback functions, see the Remarks section of these member functions.
Note that all callback functions must trap MFC exceptions before returning to
Windows, since exceptions cannot be thrown across callback boundaries. For
more information about exceptions, see the article "Exceptions" in Visual C++
Programmer's Guide online.

Callback Function for CDC::EnumObjects
int CALLBACK EXPORT ObjectFunc(LPSTR lpszLogObject, LPSTR* lpData);

Parameters
lpszLogObject Points to a LOGPEN or LOGBRUSH data structure that contains

information about the logical attributes of the object.

lpData Points to the application-supplied data passed to the EnumObjects function.

Return Value

Remarks

The callback function returns an int. The value of this return is user-defined. If the
callback function returns 0, EnumObjects stops enumeration early.

The ObjectFunc name is a placeholder for the application-supplied function name.
The actual name must be exported.

See Also: CDC::EnumObjects

Callback Function for CDC::GrayString
BOOL CALLBACK EXPORT OutputFunc(HDC hDC, LPARAM lpData, int nCount);

Return Value
The callback function's return value must be TRUE to indicate success; otherwise it is
FALSE.

Parameters
hDC Identifies a memory device context with a bitmap of at least the width and

height specified by nWidth and nHeight to GrayString.

lpData Points to the character string to be drawn.

nCount Specifies the number of characters to output.

2575

Callback Function for CDC::SetAbortProc

Remarks
OutputFunc is a placeholder for the application-supplied callback function name. The
callback function (OutputFunc) must draw an image relative to the coordinates (0,0)
rather than (x, y).

See Also: CDC::GrayString

Callback Function for CDC::SetAbortProc
BOOL CALLBACK EXPORT AbortFunc(HDC hPr, int code);

Return Value
The return value of the abort-handler function is nonzero if the print job is to
continue, and ° if it is canceled.

Parameters

Remarks

2576

hPr Identifies the device context.

code Specifies whether an error has occurred. It is ° if no error has occurred. It is
SP _ OUTOFDISK if the Print Manager is currently out of disk space and more disk
space will become available if the application waits. If code is SP _OUTOFDISK,
the application does not have to abort the print job. If it does not, it must yield to
the Print Manager by calling the PeekMessage or GetMessage Windows function.

The name AbortFunc is a placeholder for the application-supplied function name.
The actual name must be exported as described in the Remarks section of
CDC: :SetAbortProc.

See Also: CDC: :SetAbortProc

A
ABC structure 2489
ABCFLOAT structure 2489
ability to transact, Recordset 1583
ability to update records, Recordset 1584
Abort member function

CHtmlStream class 815
ClntemetFile class 887
CArchive class 42
CFile class 677

AbortDoc member function, CDC class 445
aborting database transactions 414
AbortPath member function, CDC class 446
Accept member function, CAsyncSocket class 82
AccessData member function,

COleSafeArray class 1420
Action queries

defined 238
described 261
executing 238

Activate member function
COleClientItem class 1133
CToolTipCtrl class 1941

ActivateAs member function,
COleClientItem class 1134

ActivateDocObject member function,
CDocObjectServer class 583

ActivateFrame member function,
CFrameWnd class 754

ActivatelnPlace member function,
COleServerDoc class 1433

ActivateNext member function,
CSplitterWnd class 1797

Activation 1433
Add member function

CArray class 63
ClmageList class 869
CObArray class 1076
CRecentFileList class 1572

Index

AddBitmap member function,
CToolBarCtrl class 1920

AddButtons member function,
CToolBarCtrl class 1921

AddDocTemplate member function,
CWinApp class 2025

AddDocument member function,
CDocTemplate class 591

AddFormat member function,
COlePasteSpecialDialog class 1399

AddHead member function
CList class 911
CObList class 1101
CTypedPtrList class 1982

AddHeader member function,
CHttpServer class 852

Adding new records 1580
AddItem member function, COleDocument class 1346
AddMetaFileComment member function,

CDC class 446
AddNew member function

CDaoRecordset class 286
CRecordset class 1580

AddOtherClipboardData member function,
COleServerItem class 1452

AddPage member function, CPropertySheet class 1552
AddRequestHeaders member function,

CHttpFile class 826
AddResponseHeaders member function,

CHttpFilterContext class 845
AddStandardFormats member function,

COlePasteSpecialDialog class 1400
AddString member function

CComboBox class 181
CListBox class 923
CToolBarCtrl class 1923

AddTail member function
CList class 911
CObList class 1101

AddTool member function, CToolTipCtrl class 1941

Index

AddToParameterList, Record field exchange (DFX)
described 258
PARAMETERS clause, SQL 258

AddToRecentFileList member function,
CWinApp class 2025

AddToSelectList, Record field exchange (DFX)
described 258
SELECT clause, SQL 258

AddView member function, CDocument class 603
AdjustDialogPosition member function,

CRichEditView class 1716
AdjustRect member function

CRectTracker class 1658
CTabCtrl class 1871

AFX_DAO_ALL_INFO
for database objects 388
querydefs 242
tabledefs 246
workspaces 393

AFX_DAO_ERROR_DFX_BIND,
error code described 254

AFX_DAO_ERROR_ENGINE_INITIALIZATION,
error code described 254

AFX_DAO_ERROR_OBJECT_NOT_OPEN,
error code described 254

AFX_DAO_PRIMARY _INFO
for database objects 388
querydefs 242
relations 244
tabledefs 246
workspaces 393

AFX_DAO_SECONDARY _INFO
for database objects 388
querydefs 242
relations 244
tabledefs 246
workspaces 393

AFX_DATA, ClassWizard comment 2484
AFX_DATA_INIT, ClassWizard comment 2484
AFX_DATA_MAP, ClassWizard comment 2484
AFX_DISP, ClassWizard comment 2485
AFX_DISP _MAP, Class Wizard comment 2485
AFX_EVENT, ClassWizard comment 2485
AFX_EVENT_MAP, ClassWizard comment 2486
AFX_FIELD, ClassWizard comment 2486
AFX_FIELD_INIT, ClassWizard comment 2486
AFX_FIELD_MAP, ClassWizard comment 2487
AFX_MANAGE_STATE global function/macro 2322
AFX_MSG, ClassWizard comment 2487

AFX_MSG_MAP, ClassWizard comment 2487
AFX_SQL_ASYNC global function/macro 2294,2341
AFX_SQL_ERROR codes 428
AFX_SQL_SYNC global function/macro 2294, 2342
AFX_ VIRTUAL, ClassWizard comment 2488
AfxAbort global function/macro 2304
AfxBeginThread global function/macro 2305
AfxCheckMemory global function/macro 2306
AfxConnectionAdvise global function/macro 2307
AfxConnectionUnadvise global function/macro 2308
AfxDoForAlIClasses global function/macro 2308
AfxDoForAlIObjects global function/macro 2310
afxDump global function/macro 2310-2311
AfxEnableControlContainer

global function/macro 2311
AfxEnableMemoryTracking

global function/macro 2312
AfxEndThread global function/macro 2312
AfxFormatStringl global function/macro 2312
AfxFormatString2 global function/macro 2313
AfxGetApp global function/macro 2315
AfxGetAppName global function/macro 2315
AfxGetlnstanceHandle global function/macro 2315
AfxGetMainWnd global function/macro 2316
AfxGetResourceHandle global function/macro 2317
AfxGetThread global function/macro 2318
AfxIsMemoryBlock global function/macro 2319
AfxIs ValidAddress global function/macro 2320
AfxIs ValidString global function/macro 2320
afxMemDF global function/macro 2323
AfxMessageBox global function/macro 2324
AfxOleCanExitApp global function/macro 2324
AfxOleGetMessageFilter global function/macro 2326
AfxOleGetUserCtrl global function/macro 2327
AfxOleInit global function/macro 2327
AfxOleLockApp global function/macro 2327
AfxOleRegisterControlClass

global function/macro 2329
Afx OleRegisterProperty PageClass

global function/macro 2331
AfxOleRegisterServerClass

global function/macro 2332
AfxOleRegisterTypeLib global function/macro 2333
AfxOleSetEditMenu global function/macro 2334
AfxOleSetUserCtrl global function/macro 2335
AfxOleTypeMatchGuid

global function/macro 2335, 2337
AfxOleUnlockApp global function/macro 2336
AfxOleUnregisterTypeLib global function/macro 2337

AfxRegisterClass global function/macro 2337
AfxRegisterWndClass global function/macro 2339
AfxSetAllocHook global function/macro 2340
AfxSetResourceHandle global function/macro 2341
AfxSocketInit global function/macro 2341
AfxThrow ArchiveException

global function/macro 2343
AfxThrowDaoException

global function/macro 251, 2344
AfxThrowDBException global function/macro 2344
AfxThrowFileException global function/macro 2345
AfxThrowMemoryException

global function/macro 2345
AfxThrowNotSupportedException

global function/macro 2346
AfxThrowOleDispatchException

global function/macro 2346
AfxThrowOleException global function/macro 2347
AfxThrow ResourceException

global function/macro 2347
AfxThrowUserException global function/macro 2347
afxTraceEnabled global function/macro 2348
afxTraceFlags global function/macro 2348
AfxVerifyLicFile global function/macro 2349
Aggregate data

collection classes, template-based classes 61,909,
980, 1976, 1989

storing, collection classes 145,629,986,988,990,
998, 1000, 1002, 1004, 1074

Alloc member function
CHtmlStream class 815

Alloc member function, CmemFile class 1020
AllocCache, Record field exchange (DFX) 258
AllocData member function,

COleSafeArray class 1421
AllocDescriptor member function,

COleSafeArray class 1421
AllocMem member function,

CHttpFilterContext class 845
AllocSysString member function, CString class 1840
AmbientBackColor member function,

COleControl class 1184
AmbientDisplayName member function,

COleControl class 1185
AmbientFont member function,

COleControl class 1185
AmbientForeColor member function,

COleControl class 1185

AmbientLocaleID member function,
COleControl class 1186

AmbientScaleUnits member function,
COleControl class 1186

AmbientShowGrabHandles member function,
COleControl class 1186

AmbientShowHatching member function,
COleControl class 1187

AmbientTextAlign member function,
COleControl class 1187

AmbientUIDead member function,
COleControl class 1187

AmbientUserMode member function,
COleControl class 1188

Index

AND_CATCH global function/macro 2351
AND_CATCH_ALL global function/macro 2352
AngleArc member function, CDC class 446
AnimatePalette member function, CPalette class 1498
Animation control 35
AnsiToOem member function, CString class 1840
Append member function

CArray class 63
CDaoQuery Def class 263
CDaoTableDef class 357
CDaoWorkspace class 382

Append query 261
Appendability, determining recordset 1581
Appending

querydefs 263
workspaces 382

AppendMenu member function, CMenu class 1032
Application architecture classes, listed 5
Application control functions, OLE 2295
Application framework,

Microsoft Foundation Class Library 3
Application information, management 2287
Applications, management information 2287
ApplyPrintDevice member function,

COleDocument class 1346
Arc member function, CDC class 447
Archive operators

COleCurrency 1273
COleDateTime 1314
COleDateTimeSpan 1329
COleVariant 1486

ArcTo member function, CDC class 448
argv, MFC encapsulation 202
Arrange member function, CListCtrl class 949

Index

ArrangeIconicWindows member function,
CWnd class 2093

Arrays, collection classes
CArray 61
CByteArray 145
CDWordArray 629
CObArray 1074
CTypedPtrArray 1976

ASSERT global function/macro 2353
ASSERT_VALID global function/macro 2354
AssertValid member function, CObject class 1092
Assignment operator, COleVariant 1484
Asynchronous

access canceling 1582
operations, canceling 405

AsyncSelect member function, CAsyncSocket class 83
Attach member function

CAsyncSocket class 84
CDC class 449
CGdiObject class 784
CHtmlStream class 816
ClmageList class 870
CMemFile class 1021
CMenu class 1034
COleDataObject class 1276
COleSafeArray class 1421
COleStreamFile class 1471
CSocket class 1780
CWnd class 2093

AttachClipboard member function,
COleDataObject class 1276

AttachDataObject member function,
COleClientltem class 1135

AttachDispatch member function,
COleDispatchDriver class 1335

Attaching data objects to Clipboard 1276
AutoLoad member function, CBitmapButton class 125
AutoSize member function, CToolBarCtrl class 1924

B
BASED_CODE global function/macro 2354
BEGIN_CONNECTION_MAP

global function/macro 2355
BEGIN_CONNECTION_PART

global function/macro 2355
BEGIN_DISPATCH_MAP

global function/macro 2356
BEGIN_EVENT_MAP global function/macro 2356

BEGIN_EVENTS INK_MAP
global function/macro 2357

BEGIN_MESSAGE_MAP global function/macro 2357
BEGIN_OLEFACTORY global function/macro 2358
BEGIN_PROPPAGEIDS global function/macro 2359
BeginBusyState member function,

COleMessageFilter class 1385
BeginDrag member function

CDragListBox class 621
CImageList class 870

BeginEnumForrnats member function,
COleDataObject class 1277

BeginModalState member function,
CFrameWnd class 755

BeginPaint member function, CWnd class 2094
BeginPath member function, CDC class 450
BeginTrans member function

CDaoWorkspace class 382
CDatabase class 404

BeginWaitCursor member function,
CCmdTarget class 159

Binary Large Object, CLongBinary class 978
Bind member function, CAsyncSocket class 84
BindDefaultProperty member function,

CWnd class 2095,2096
BindField, Record field exchange (DFX) 258
BindParam, Record field exchange (DFX) 258
BitBlt member function, CDC class 451
BITMAP structure 2492
BITMAP TOOLTIPTEXT 1916
BITMAPINFO structure 2493
Bitmaps as data, CLongBinary class 978
BLOB, CLongBinary class 978
BOOL, DDX field exchange 2384
Boolean

DFX field exchange 2405
RFX field exchange 2461

BottomRight member function, CRect class 1641
Bound fields, Recordset 1629
BoundPropertyChanged member function,

COleControl class 1188
BoundPropertyRequestEdit member function,

COleControl class 1188
BringWindowToTop member function,

CWnd class 2094
Bulk query 261
Button styles 2564

BYTE
DDX field exchange 2384
DFX field exchange 2406
Float field exchange 2384
RFX field exchange 2463

Byte array

c

DFX field exchange 2404
RFX field exchange 2460

C language API, relationship of Microsoft Foundation
Class Library to 4

CacheData member function
COleDataSource class 1283

CacheGlobalData member function,
COleDataSource class 1284

CalcDynamicLayout member function,
CControlBar class 215

CalcFixedLayout member function,
CControlBar class 216

CalcWindowRect member function, CWnd class 2096
Callback functions for MFC member functions

CDC 2575, 2576
described 2575

CallFunction member function
CHttpServer class 852

CanActivate member function,
COleClientItem class 1135

CanActivateNext member function,
CSplitterWnd class 1797

CanAppend member function
CDaoRecordset class 287
CRecordset class 1581

CanBookmark member function,
CDaoRecordset class 288

Cancel member function
CDatabase class 405
CRecordset class 1582

CancelBlockingCall member function,
CSocket class 1781

CancelDrag member function, CDragListBox class 621
Canceling asynchronous access 1582
CancelToClose member function,

CPropertyPage class 1543
CancelToolTips member function, CWnd class 2097
CancelUpdate member function,

CDaoRecordseat class 288

CanCloseFrame member function,
CDocument class 605

CanCreateFromData member function,
COleClientItem class 1135

CanCreateLinkFromData member function,
COleClientItem class 1136

CAnimateCtrl class
described 35
member functions

CAnimateCtrl 36
Close 36
Create 37
Open 38
Play 38
Seek 39
Stop 39

CAnimateCtrl constructor 36
CAnimateCtrl member function,

CAnimateCtrl class 36
CanPaste member function

COleClientItem class 1136
CRichEditCtrl class 1686
CRichEditView class 1717

CanPasteLink member function,
COleClientItem class 1137

CanRestart member function
CDaoRecordset class 289
CRecordset class 1583

CanS croll member function
CDaoRecordset class 289
CRecordset class 1583

CanTransact member function
CDaoDatabase class 232
CDaoRecordset class 290
CDatabase class 405
CRecordset class 1583

CanUndo member function
CEdit class 634
CRichEditCtrl class 1686

CanUpdate member function
CDaoDatabase class 232
CDaoQueryDef class 263
CDaoRecordset class 290
CDaoTableDef class 357
CDatabase class 405
CRecordset class 1584

CArchive class
data members, m_pDocument 58
described 40

Index

Index

CArchive class (continued)
member functions

CArchive 42
Close 43
Flush 44
GetFile 44
GetObjectSchema 44
IsBufferEmpty 45
IsLoading 46
IsStoring 46
MapObject 47
operator« 56
operator» 57
Read 49
ReadClass 49
ReadObject 50
ReadString 51
SerializeClass 51
SetLoadParams 52
SetObjectSchema 53
SetStoreParams 53
Write 54
WriteClass 55
WriteObject 55
WriteString 56

CArchive member function, CArchive class 42
CArchiveException class

data members, m_cause 60
described 59
member functions, CArchiveException 59

CArchiveException constructor 59
CArchiveException member function,

CArchiveException class 59
CArray class

described 61
member functions

Add 63
Append 63
CArray 64
Copy 64
ElementAt 64
FreeExtra 65
GetAt 65
GetData 65
GetSize 66
GetUpperBound 66
InsertAt 66
operator [] 69
RemoveAll 67

CArray class (continued)
member functions (continued)

RemoveAt 67
SetAt 68
SetAtGrow 68
SetSize 69

CArray member function, CArray class 64
Cascades, database relation 237
CAsyncMoniker class

described 71
member functions

Close 72
CreateBindStatusCallback 72
GetBindInfo 73
GetBinding 74
GetFormatEtc 74
GetPriority 74
OnDataA vailable 75
OnLowResource 76
OnProgress 76
OnStartBinding 77
OnStopBinding 77
Open 78

CAsyncMonikerFile class
described 71
member functions, CAsyncMonikerFile 72

CAsyncSocket class
data members

described 112
m_hSocket 112

described 80
member functions 82

Accept 82
AsyncSelect 83
Attach 84
Bind 84
CAsyncSocket 85
Close 86
Connect 86
Create 88
Detach 89
FromHandle 89
GetLastError 90
GetPeerName 90
GetSockN arne 91
GetSockOpt 92
IOCtl 94
Listen 95
OnAccept 96

CAsyncSocket class (continued)
member functions 82 (continued)

OnClose 97
OnConnect 97
OnOutOfBandData 98
OnReceive 99
On Send 99
Receive 100
ReceiveFrom 102
Send 104
SendTo 105
SetSockOpt 108
ShutDown 111

members 80
CAsyncSocket member function,

CAsyncSocket class 82, 85
CATCH global function/macro 2359
CATCH macro, use in DAO 251
CATCH_ALL global function/macro 2360
Categories, macros and globals 2279
CBitmap class

described 113
member functions

CBitmap 114
CreateBitmap 114
CreateBitmaplndirect 115
CreateCompatibleBitmap 116
CreateDiscardableBitmap 116
FromHandle 117
GetBitmap 117
GetBitmapBits 118
GetBitmapDimension 118
LoadBitmap 119
LoadMappedBitmap 119
LoadOEMBitmap 120
operator HBITMAP 121
SetBitmapBits 121
SetBitmapDimension 122

CBitmap member function, CBitmap class 114
CBitmapButton class

described 123
member functions

AutoLoad 125
CBitmapButton 125
LoadBitmaps 125
SizeToContent 126

CBitmapButton member function,
CBitmapButton class 125

CBrush class
described 127
member functions

CBrush 128
CreateBrushIndirect 129
CreateDIBPattemBrush 129
CreateHatchBrush 131
CreatePattemBrush 132
CreateSolidBrush 132
CreateSysColorBrush 133
FromHandle 134
GetLogBrush 134, 135

CBrush member function, CBrush class 128
CButton class

described 136
member functions

CButton 138
Create 138
DrawItem 139
GetBitmap 139
GetButtonStyle 139
GetCheck 140
GetCursor 140
GetIcon 140
GetState 141
SetBitmap 141
SetButtonStyle 142
SetCheck 142
SetCursor 143
SetIcon 143
SetState 144

CButton member function, CButton class 138
CByteArray class 145
CCachedDataPathProperty class

described 147
data members, m_Cache 148

CCheckListBox class
described 149
member functions

CCheckListBox 150
Create 151
Enable 152
GetCheck 152
GetCheckStyle 153
IsEnabled 153
OnGetCheckPosition 154
SetCheck 155
SetCheckStyle 155

CCheckListBox constructor 150

Index

Index

CCheckListBox member function,
CCheckListBox class 150

CClientDC class
data members, m_hWnd 157
described 156
member functions, CClientDC 156

CClientDC member function, CClientDC class 156
CCmdTarget class

described 158
member functions

BeginWaitCursor 159
EnableAutomation 161
EndWaitCursor 161
FromIDispatch 162
GetIDispatch 163
IsResultExpected 163
OnCmdMsg 164
OnFinalRelease 165
RestoreWaitCursor 165

CCmdUI class
described 168
member functions

ContinueRouting 169
Enable 169
SetCheck 170
SetRadio 170
SetText 170

CColorDialog class
data members, m3C 176
described 172
member functions

CColorDialog 173
DoModal 174
GetColor 174
GetSavedCustomColors 175
OnCoiorOK 175
SetCurrentColor 176

CColorDialog member function,
CColorDialog class 173

CComboBox class
described 177
member functions

AddString 181
CComboBox 182
Clear 182
CompareItem 182
Copy 183
Create 183
Cut 184

CComboBox class (continued)
member functions (continued)

DeleteItem 184
DeleteString 185
Dir 185
DrawItem 186
FindString 186
FindStringExact 187
GetCount 188
GetCurSel 188
GetDroppedControlRect 188
GetDroppedState 188
GetDroppedWidth 189
GetEditSel 189
GetExtendedUI 189
GetHorizontalExtent 190
GetItemData 190
GetItemDataPtr 191
GetItemHeight 191
GetLBText 191
GetLBTextLen 192
GetLocale 192
GetTopIndex 193
InitStorage 193
InsertString 194
LimitText 194
MeasureItem 195
Paste 195
ResetContent 195
SelectString 196
SetCurSel 196
SetDroppedWidth 197
SetEditSel 197
SetExtendedUI 198
SetHorizontalExtent 198
SetItemData 199
SetItemDataPtr 199
SetItemHeight 200
SetLocale 200
SetTopIndex 201
ShowDropDown 201

CComboBox member function, CComboBox class 182
CCommandLineInfo class

data members
described 204
m_bRunAutomated 204
m_bRunEmbedded 205
m_bShowSplash 205
m_nShellCommand 205

CCommandLinelnfo class (continued)
data members (continued)

m_strDriverName 207
m_strFileName 206
m_strPortName 207
m_strPrinterN arne 207

member functions
CCommandLinelnfo 203
described 203
ParseParam 203

CCommandLinelnfo constructor 203
CCommandLinelnfo member function,

CCommandLinelnfo class 203
CCommonDialog class

described 208
member functions, CCommonDialog 209

CCommonDialog constructor 209
CCommonDialog member function,

CCommonDialog class 209
CConnectionPoint class

described 210
member functions

GetConnection 212
GetContainer 212
GetIID 213
GetMaxConnections 213
OnAdvise 213

CControlBar class
data members, m_bAutoDelete 221
described 214
member functions

CalcDynamicLayout 215
CalcFixedLayout 216
EnableDocking 217
GetBarStyle 218
GetCount 218
GetDockingFrame 218
IsFloating 219
OnUpdateCmdUI 219
SetBarStyle 220

CCreateContext structure, described 222
CCriticalSection class

described 224
member functions

CCriticalSection 225
Lock 225
Unlock 226

CCriticalSection constructor 225

CCriticalSection member function,
CCriticalSection class 225

CCtrlView class
data members

m_dwDefaultStyle 228
m_strClass 228

described 227
member functions, CCtrlView 227

CCtrlView constructor 227

Index

CCtrlView member function, CCtrlView class 227
CDaoDatabase class

data members
m_pDAODatabase 250
m_pWorkspace 250

described 229
member functions

CanTransact 232
CanUp date 232
CDaoDatabase 232
Close 233
Create 234
CreateRelation 235
DeleteQueryDef 237
DeleteRelation 237
DeleteTableDef 238
Execute 238
GetConnect 240
GetName 240
GetQueryDefCount 241
GetQueryDeflnfo 242
GetQueryTimeout 243
GetRecordsAffected 243
GetRelationCount 244
GetRelationlnfo 244
GetTableDefCount 245
GetTableDeflnfo 246
Get Version 247
IsOpen 247
Open 247
SetQueryTimeout 249

CDaoDatabase constructor 232
CDaoDatabase member function,

CDaoDatabase class 232
CDaoDatabaselnfo structure 388, 2495
CDaoErrorInfo structure

overview of structure members 255
use of 255,2497

Index

CDaoException class
data members

m_nAfxDaoError 254
m_pErrorInfo 255
m_scode 255

member functions
CDaoException 252
GetErrorCount 253
GetErrorInfo 253

CDaoException constructor 252
CDaoException member function,

CDaoException class 252
CDaoFieldExchange

FieldType values
outputColumn 256
param 256

operations 256
purpose of 256

CDaoFieldExchange class
data members

m_nOperation 258
m_prs 259

described 256
member functions

IsValidOperation 257
SetFieldType 258

CDaoFieldInfo structure 2498
CDaoIndexFieldInfo structure 2505
CDaoIndexInfo structure 2502
CDaoParameterInfo structure 2506
CDaoQueryDef class

data members
m_pDAOQueryDef 279
m_pDatabase 279

described 260
member functions

Append 263
CanUpdate 263
CDaoQueryDef 264
Close 265
Create 265
Execute 266
GetConnect 267
GetDateCreated 268
GetDateLastUpdated 268
GetFieldCount 268
GetFieldInfo 269
GetName 270
GetODBCTimeout 270

CDaoQueryDef class (continued)
member functions (continued)

GetParameterCount 270
GetParameterInfo 271
GetParam Value 272
GetRecordsAffected 272
GetRetumsRecords 273
GetSQL 273
GetType 274
IsOpen 274
Open 275
SetConnect 275
SetName 276
SetODBCTimeout 276
SetParam Value 277
SetRetumsRecords 278
SetSQL 278

CDaoQueryDef constructor 264
CDaoQueryDef member function,

CDaoQuery Def class 264
CDaoQueryDefinfo structure 242, 2507
CDaoRecordset

deriving classes 281
described 280
member functions

AddNew 286
CanAppend 287

using CDaoRecordset without deriving 281
CDaoRecordset class

data members
described 345
m_bCheckCacheForDirtyFields 345
m_nParams 346
m_pDAORecordset 346
m_pDatabase 346
m_strFilter 347
m_strSort 347

member functions
CanBookmark 288
CancelUpdate 288
CanRestart 289
CanS croll 289
Can Transact 290
CanUpdate 290
CDaoRecordset 291
Close 291
Delete 292
DoFieldExchange 293
Edit 294

CDaoRecordset class (continued)
member functions (continued)

FillCache 295
Find 296
FindFirst 297
FindLast 299
FindNext 300
FindPrev 301
GetAbsolutePosition 303
GetBookmark 303
GetCacheSize 304
GetCacheStart 305
GetCurrentIndex 305
GetDateCreated 306
GetDateLastUpdated 306
GetDefaultDBName 307
GetDefaultSQL 307
GetEditMode 308
GetFieldCount 308
GetFieldInfo 309
GetFieldValue 310
GetIndexCount 311
GetIndexInfo 311
GetLastModifiedBookmark 312
GetLockingMode 313
GetName 313
GetParamValue 314
GetPercentPosition 314
GetRecordCount 315
GetSQL 316
GetType 316
Get ValidationRule 317
GetValidationText 317
IsBOF 318
IsDeleted 319
IsEOF 320
IsFieldDirty 321
IsFieldNull 322
IsFieldNullable 323
IsOpen 323
Move 323
MoveFirst 324
MoveLast 325
MoveNext 326
MovePrev 327
Open 328
Requery 331
Seek 332
SetAbsolutePosition 334

CDaoRecordset class (continued)
member functions (continued)

SetBookmark 335
SetCacheSize 335, 336
SetCurrentIndex 337
SetFieldDirty 338
SetFieldNull 339
SetFieldValue 340
SetFieldValueNull 341
SetLockingMode 341
SetParam Value 342
SetParamValueNull 343
SetPercentPosition 343
Update 344

CDaoRecordset member function,
CDaoRecordset class 286, 291

CDaoRecordView
described 348
member functions, CDaoRecordView 350

CDaoRecordView class, member functions
IsOnFirstRecord 351
IsOnLastRecord 351
OnGetRecordset 352
OnMove 352

CDaoRecordView member function,
CDaoRecordView class 350

CDaoRelationFieldInfo structure 2511
CDaoRelationInfo structure 244, 2510
CDaoTableDef

described 354
member functions, Append 357

CDaoTableDef class
data members

described 377
m_DAOTableDef 377
m_pDatabase 377

member functions
CanUp date 357
CDaoTableDef 358
Close 358
Create 358
CreateField 359
CreateIndex 361
DeleteField 362
DeleteIndex 362
GetAttibutes 363
GetConnect 364
GetDateCreated 365
GetDateLastUpdated 365

Index

Index

CDaoTableDef class (continued)
member functions (continued)

GetFieldCount 366
GetFieldInfo 366
GetindexCount 367
GetIndexInfo 368
GetName 369
GetRecordCount 369
GetSourceTableName 370
GetValidationRule 370
GetValidationText 371
IsOpen 371
Open 371
RefreshLink 372
SetAttributes 372
SetConnect 373
SetName 375
SetSourceTableName 375
SetValidationRule 376
SetValidationText 376

CDaoTableDef member functions
Append 357
CDaoTableDef class 358

CDaoTableDeflnfo structure 246,2512
CDaoWorkspace class

See also Workspace
data members, m_pDAOWorkspace 401
described 378
member functions

Append 382
BeginTrans 382
CDaoWorkspace 383
Close 383
CommitTrans 384
Create 385
GetDatabaseCount 388
GetDatabaseInfo 388
GetIniPath 389
GetIsolateODBCTrans 390
GetLoginTimeout 390
GetName 391
GetUserName 391
GetVersion 392
GetWorkspaceCount 392
GetWorkspaceInfo 393
Idle 393
IsOpen 394
Open 395
Rollback 395

CDaoWorkspace class (continued)
member functions (continued)

SetDefaultPassword 397
SetDefaultUser 397
SetiniPath 398
SetIsolateODBCTrans 399
SetLoginTimeout 400

CDaoWorkspace constructor 383
CDaoWorkspace member function,

CDaoWorkspace class 383
CDaoWorkspaceInfo structure 393,2515
CDatabase class

data members, m_hdbc 418
described 402
member functions

BeginTrans 404
Cancel 405
CanTransact 405
CanUpdate 405
CDatabase 406
Close 406
CommitTrans 407
ExecuteSQL 408
GetConnect 408
GetDatabaseN arne 410
IsOpen 411
OnSetOptions 412
Open 412
Rollback 414
SetLoginTimeout 417
SetQueryTimeout 417

CDatabase constructor 406
CDatabase member function, CDatabase class 406
CDatabase object

closing 406
creating 406

CDataExchange class
described 419
Dialog data exchange CDDX) 419
member functions

described 422
Fail 420
m_bSaveAndValidate 421
PrepareCtri 420
PrepareEditCtri 421

members 419

CDataPathProperty class
described 423
member functions

CDataPathProperty 424
GetControl 424
GetPath 424
Open 425
ResetData 426
SetControl 426
SetPath 426

CDataPathProperty data member,
CDataPathProperty class 424

CDBException class
data members

m_nRetCode 428
m_strError 430
m_strStateNativeOrigin 430

described 427
CDBVariant 431
CDBVariant class

data members
m_boolVal 432
m3hVal433
m_dblVal 433
m_dwType 433
m_fltVal 434
m_iVal 434
m_IVal 434
m_pbinary 434
m_pdate 435
m_pstring 435

member functions 432
CDBVariant 432
Clear 432

CDBVariant member function, CDBVariant class 432
CDC class

data members
m_hAttribDC 562
m_hDC 562

described 436
member functions

AbortDoc 445
AbortPath 446
AddMetaFileComment 446
AngleArc 446
Arc 447
ArcTo 448
Attach 449
BeginPath 450

CDC class (continued)
member functions (continued)

BitBlt 451
CDC 453
Chord 453
CloseFigure 454
CreateCompatibleDC 455
CreateDC 455
CreateIC 456
DeleteDC 457
DeleteTempMap 457
Detach 458
DPtoHIMETRIC 458
DPtoLP 458
Draw3dRect 459
DrawDragRect 459
DrawEdge 460
DrawEscape 462
DrawFocusRect 462
DrawFrameControl 463
DrawIcon 464
DrawState 465
DrawText 467
Ellipse 469
EndDoc 469
EndPage 470
EndPath 471
EnumObjects 471
Escape 472
ExcludeClipRect 473
ExcludeUpdateRgn 474
ExtFloodFill 474
ExtTextOut 475
FillPath 477
FillRect 477
FillRgn 478
FillSolidRect 478
FlattenPath 479
FloodFill 479
FrameRect 480
FrameRgn 480
FromHandle 481
GetArcDirection 481
GetAspectRatioFilter 481
GetBkColor 482
GetBkMode 482
GetBoundsRect 482
GetBrushOrg 483
GetCharABCWidths 483

Index

Index

CDC class (continued)
member functions (continued)

GetCharWidth 484
GetClipBox 485
GetColorAdjustment 486
GetCurrentBitmap 486
GetCurrentBrush 486
GetCurrentFont 487
GetCurrentPalette 487
GetCurrentPen 487
GetCurrentPosition 487
GetDeviceCaps 488
GetFontData 492
GetGlyphOutline 493
GetHalftoneBrush 494
GetKemingPairs 495
GetMapMode 495
GetMiterLimit 496
GetNearestColor 496
GetOutlineTextMetrics 496
GetOutputCharWidth 497
GetOutputTabbedTextExtent 498
GetOutputTextExtent 499
GetOutputTextMetrics 499
GetPath 500
GetPixel 501
GetPolyFillMode 501
GetROP2 502
GetSafeHdc 502
GetStretchBltMode 502
GetTabbedTextExtent 503
GetTextAlign 504
GetTextCharacterExtra 505
GetTextColor 505
GetTextExtent 505
GetTextFace 506
GetTextMetrics 506
GetViewportExt 507
GetViewportOrg 507
GetWindow 507
GetWindowExt 508
GetWindowOrg 508
GrayString 508
HIMETRICtoDP 510
HIMETRICtoLP 510
IntersectClipRect 510
InvertRect 511
InvertRgn 511
IsPrinting 512

CDC class (continued)
member functions (continued)

LineTo 512
LPtoDP 512
LPtoHIMETRIC 513
MaskBlt 513
MoveTo 515
OffsetClipRgn 515
OffsetViewportOrg 516
OffsetWindowOrg 516
PaintRgn 517
PatBlt 517
Pie 518
PlayMetaFile 519
PIgBlt 520
PolyBezier 521
PolyBezierTo 522
Poly Draw 523
Polygon 524
Polyline 524
PolylineTo 525
PolyPolygon 525
Poly Polyline 526
PtVisible 526
Query Abort 527
RealizePalette 527
Rectangle 528
RectVisible 528
ReleaseAttribDC 529
ReleaseOutputDC 529
ResetDC 529
RestoreDC 530
RoundRect 530
SaveDC 531
Scale ViewportExt 531
ScaleWindowExt 532
ScrollDC 532
SelectClipPath 533
SelectClipRgn 534
SelectObject 535
SelectPalette 536
SelectStockObject 537
SetAbortProc 538
SetArcDirection 539
SetAttribDC 540
SetBkColor 540
SetBkMode 541
SetBoundsRect 541
SetBrushOrg 542

CDC class (continued)
member functions (continued)

SetColorAdjustment 543
SetMapMode 543
SetMapperFlags 545
SetMiterLimit 545
SetOutputDC 545
SetPixel 545
SetPixelV 546
SetPolyFillMode 547
SetROP2 547
SetStretchBltMode 548
SetTextAlign 550
SetTextCharacterExtra 551
SetTextColor 551
SetTextJustification 552
SetViewportExt 553
SetViewportOrg 553
SetWindowExt 554
SetWindowOrg 555
StartDoc 555
StartPage 556
StretchBlt 556
StrokeAndFillPath 559
StrokePath 559
TabbedTextOut 559
TextOut 560
Update Colors 561
WidenPath 561

CDC class, callback functions for See Callback
functions for MFC member functions

CDC member function, CDC class 453
CDialog class

described 563
member functions

CDialog 566
Create 566
Createlndirect 567
DoModal 568
EndDialog 569
GetDefiD 569
GotoDlgCtrl 570
InitModalIndirect 570
MapDialogRect 571
NextDIgCtrl 571
OnCancel 571
OnlnitDialog 572
OnOK 572
OnSetFont 573

CDialog class (continued)
member functions (continued)

PrevDIgCtrl 573
SetDefiD 573
SetHeipID 574

CDialog member function, CDialog class 566
CDialogBar class

described 575
member functions

CDialogBar 575
Create 576

Index

CDialogBar member function, CDialogBar class 575
CDocltem class

described 577
member functions

GetDocument 578
IsBlank 577

CDockState class
data members,

m_arrBarlnfo 581
described 579
member functions

CDockState 580
Clear 580
GetVersion 580
LoadState 581
SaveState 581

CDockState member function, CDockState class 580
CDocObjectServer class

described 582
member functions

ActivateDocObject 583
CDocObjectServer 583
OnActivateView 584
OnApplyViewState 584
OnSaveViewState 584

CDocObjectServer member function,
CDocObjectServer class 583

CDocObjectServerItem class
described 586
member functions

CDocObjectServerItem 587
OnHide 587
OnOpen 587
OnShow 588

CDocObjectServerItem member function,
CDocObjectServerItem class 587

Index

CDocTemplate class CDocument class (continued)
described 589 member functions (continued)
member functions SetModifiedFlag 617

AddDocument 591 SetPathName 618
CDocTemplate 591 SetTitle 618
CloseAllDocuments 592 UpdateAllViews 618
CreateNewDocument 593 CDocument member function, CDocument class 606
CreateNewFrame 593 CDragListBox class
CreateOleFrame 593 described 620
GetDocString 594 member functions
GetFirstDocPosition 595 BeginDrag 621
GetNextDoc 596 CancelDrag 621
InitialUpdateFrame 596 CDragListBox 622
LoadTemplate 597 Dragging 622
MatchDocType 597 DrawInsert 622
OpenDocumentFile 598 Dropped 623
RemoveDocument 598 ltemFromPt 623
SaveAllModified 599 CDragListBox member function,
SetContainerInfo 599 CDragListBox class 622
SetDefaultTitle 600 CDumpContext class
SetServerInfo 600 described 624

CDocTemplate member function, member functions
CDocTemplate class 591 CDumpContext 625

CDocument class Flush 626
described 601 GetDepth 626
member functions HexDump 626

AddView 603 operator« 627
CanCloseFrame 605 SetDepth 627
CDocument 606 CDumpContext member function,
DeleteContents 606 CDumpContext class 625
GetDocTemplate 607 CDWordArray class 629
GetFile 607 CEdit class
GetFirstViewPosition 608 member functions
GetNextView 608 CanUndo 634
GetPathName 609 CEdit 635
GetTitle 609 CharFromPos 635
IsModified 610 Clear 635
OnChangedViewList 610 Copy 636
OnCloseDocument 610 Create 636
OnFileSendMaii 611 Cut 637
OnNewDocument 611 EmptyUndoBuffer 637
OnOpenDocument 613 FmtLines 637
OnSaveDocument 614 GetFirstVisibleLine 638
OnUpdateFileSendMaiI 615 GetHandle 638
PreCloseFrame 615 GetLimitText 639
ReleaseFile 615 GetLine 639
RemoveView 616 GetLineCount 640
ReportSaveLoadException 616 GetMargins 640
SaveModified 617 GetModify 640

CEdit class (continued)
member functions (continued)

GetPasswordChar 641
GetRect 641
GetSel 642
LimitText 642
LineFromChar 643
LineIndex 643
LineLength 644
LineScroll 644
Paste 645
PosFromChar 645
ReplaceSel 645
SetHandle 646
SetLimitText 647
SetMargins 647
SetModify 648
SetPasswordChar 648
SetReadOnly 648
SetRect 649
SetRectNP 650
SetSel 650
SetTabStops 651
Undo 652

overview 631
CEdit member function, CEdit class 635
CEditView class

described 653
member functions

CEditView 655
dwStyleDefault 662
FindText 655
GetBufferLength 656
GetEditCtrl 656
GetPrinterFont 656
GetSelectedText 657
LockBuffer 657
OnFindNext 657
OnReplaceAll 658
OnReplaceSel 659
OnTextNotFound 659
PrintInsideRect 660
SerializeRaw 660
SetPrinterFont 661
SetTabStops 661
UnlockBuffer 661

CEditView member function, CEditView class 655
CenterWindow member function, CWnd class 2097

CEvent class
described 663
member functions

CEvent 664
PulseEvent 665
ResetEvent 665
SetEvent 665
Unlock 666

CEvent constructor 664
CEvent member function, CEvent class 664
CException class

described 667
member functions, GetErrorMessage 668

CFieldExchange class
described 672
member functions

IsFieldType 673
SetFieldType 673

CFile class
data members

m_hFile 693
described 676
member functions

Abort 677
CFile 678
Close 680
Duplicate 680
Flush 681
GetFileN arne 681
GetFilePath 681
GetFileTitle 682
GetLength 682
GetPosition 682
GetStatus 683
LockRange 684
Open 685
Read 686
ReadHuge 686
Remove 687
Rename 687
Seek 688
SeekToBegin 689
SeekToEnd 689
SetFilePath 689
SetLength 690
SetStatus 690
U nlockRange 691
Write 692
WriteHuge 692

Index

Index

CFile member function, CFile class 678
CFileDialog class

data members, m_ofn 703
described 694
member functions

CFileDialog 696
DoModal 697
GetFileExt 698
GetFileName 698
GetFileTitle 698
GetNextPathName 699
GetPathName 699
GetReadOnlyPref 700
GetStartPosition 700
OnFileNameOK 701
OnLBSelChangedNotify 702
OnShare Violation 702

CFileDialog member function, CFileDialog class 696
CFileException class

data members
m_cause 707
m_IOsError 708

described 704
member functions

CFileException 705
ErrnoToException 705
OsErrorToException 706
ThrowErrno 706
ThrowOsError 706

CFileException member function,
CFileException class 705

CFileFind class
described 709
member functions

CFileFind 710
Close 711
FindFile 711
FindNextFile 712
GetCreationTime 712
GetFileName 713
GetFilePath 713
GetFileTitle 714
GetFileURL 714
GetLastAccessTime 715
GetLastWriteTime 715
GetLength 716
GetRoot 716
IsArchived 717
IsCompressed 717

CFileFind class (continued)
member functions (continued)

IsDirectory 717
IsDots 718
Is Hidden 718
IsN onnal 718
IsReadOnly 719
IsSystem 719
IsTemporary 719
MatchesMask 720

CFileFind member function, CFileFind class 710
CFindReplaceDialog class

data members, m_fr 727
described 721
member functions

CFindReplaceDialog 723
Create 723
FindNext 724
GetFindString 724
GetNotifier 725
GetReplaceString 725
IsTenninating 725
MatchCase 726
MatchWholeWord 726
ReplaceAll 726
ReplaceCurrent 726
SearchDown 727

CFindReplaceDialog member function,
CFindReplaceDialog class 723

CFont class
described 728
member functions

CFont 729
CreateFont 729
CreateFontlndirect 733
CreatePointFont 734
FromHandle 735
GetLogFont 735
operator HFONT 736

CFont member function, CFont class 729
CFontDialog class

data members, m_cf 742
described 737
member functions

CFontDialog 738
DoModal 739
GetColor 739
GetCurrentFont 740
GetFaceName 740

CFontDialog class (continued)
member functions (continued)

GetSize 740
GetStyleName 741
GetWeight 741
IsBold 741
Isltalic 741
IsStrikeOut 742
IsUnderline 742

CFontDialog member function, CFontDialog class 738
CFontHolder class

data members, m_pFont 746
described 743
member functions

CFontHolder 743
GetDisplayString 744
GetFontDispatch 744
GetFontHandle 744
InitializeFont 745
ReleaseFont 745
Select 746
SetFont 746

CFontHolder member function, CFontHolder class 743
CForm View class

described 747
member functions, CFormView 750

CFormView member function, CFormView class 750
CFrameWnd class

data members, m_bAutoMenuEnable 769
described 751
member functions

ActivateFrame 754
BeginModalState 755
CFrameWnd 755
Create 755
CreateView 756
DockControlBar 757
EnableDocking 758
EndModalState 758
FloatControlBar 758
GetActiveDocument 759
GetActiveFrame 759
GetActiveView 760
GetControlBar 760
GetDockState 761
GetMessageBar 761
GetMessageString 761
InitialUpdateFrame 762
InModalState 762

CFrameWnd class (continued)
member functions (continued)

IsTracking 762
LoadAccelTable 763
LoadBarState 763
LoadFrame 764
NegotiateBorderSpace 764
OnContextHelp 765
OnCreateClient 765
OnSetPreviewMode 766
Reca1cLayout 766
rectDefault 769
SaveBarState 767
SetActiveView 767
SetDockState 767
SetMessageText 768
ShowControlBar 768
ShowOwnedWindows 768

Index

CFrameWnd member function, CFrameWnd class 755
CFtpConnection class

described 770
member functions

CFtpConnection 771
Close 771
CreateDirectory 771
GetCurrentDirectory 772
GetCurrentDirectory AsURL 772
GetFile 773
OpenFile 775
PutFile 776
Remove 777
RemoveDirectory 778
Rename 778
SetCurrentDirectory 779

CFtpConnection member function,
CFtpConnection class 771

CFtpFileFind class
described 780
member functions

CTfpFileFind 781, 782
CFtpFileFind member function,

CFtpFileFind class 781, 782
CGdiObject class

data members, m_hObject 789
described 783
member functions

Attach 784
CGdiObject 784
CreateStockObject 784

Index

CGdiObject class (continued)
member functions (continued)

DeleteObject 785
DeleteTempMap 786
Detach 786
FromHandle 786
GetObject 787
GetObjectType 788
GetSafeHandle 788
UnrealizeObject 789

CGdiObject member function, CGdiObject class 784
CGopherConnection class

described 790
member functions

CGopherConnection 791
CreateLocator 791
getAttribute 792
OpenFile 792

CGopherConnection member function,
CGopherConnection class 791

CGopherFile class
described 794
member functions

CGopherFile 795
Close 795

CGopherFile member function, CGopherFile class 795
CGopherFileFind class

described 796
member functions

CGopherFileFind 797
FileFind 797
FindNextFile 798
GetLength 798
GetLocator 799
GetScreenN arne 799

CGopherFileFind member function,
CGopherFileFind class 797

CGopherLocator class
described 800
member functions

CGopherLocator 801
GetLocatorType 801
operator LPCTSTR 802

CGopherLocator member function,
CGopherLocator class 801

Change notifications, in-place editing 1439
ChangeClipboardChain member function, CWnd

class 2097
ChangeType member function, ColeVariant class 1482

CharFromPos member function, CEdit class 635
CharToItem member function, CListBox class 924
CHeaderCtrl class

described 803
member functions

CHeaderCtrl 804
Create 804
Deleteltem 806
DrawItem 806
Getltem 806
GetItemCount 808
Insertltem 808
Layout 808
SetItem 809

CHeaderCtrl constructor 804
CHeaderCtrl member function, CHeaderCtrl class 804
CheckButton member function,

CToolBarCtrl class 1924
CheckDIgButton member function, CWnd class 2098
CheckMenuItem member function, CMenu class 1034
CheckMenuRadioltem member function,

CMenu class 1035
Checkpoint member function,

CMemoryState class 1027
CheckRadioButton member function, CWnd class 2098
ChildWindowFromPoint member function,

CWnd class 2099
Chord member function, CDC class 453
CHotKeyCtrl class

described 810
member functions

CHotKeyCtrl 811
Create 811
GetHotKey 812
SetHotKey 812
SetRules 813

CHotKeyCtrl constructor 811
CHotKeyCtrl member function, CHotKeyCtrl class 811
CHtmlStream class

data members, m_nStreamSize 821
described 814
member functions

Abort 815
Alloc 815
Attach 816
CHtmlStream 816
Close 817

CHtmlStream class (continued)
member functions (continued)

Detach 817
Free 818
GetStreamSize 818
GrowStream 818
InitStream 819
Memcpy 819
operator« 820
Realloc 819
Reset 820
Write 820

CHtmlStream member function,
CHtmlStream class 816

CHttpConnection class
described 822
member functions

CHttpConnection 822
OpenRequest 823

CHttpConnection member function,
CHttpConnection class 822

CHttpFile class
described 825
member functions

AddRequestHeaders 826
CHttpFile 827
Close 828
GetFileURL 828
GetObject 828
GetVerb 828
Querylnfo 829
QuerylnfoStatusCode 831
SendRequest 832

CHttpFile member function, CHttpFile class 827
CHttpFilter class

described 833
member functions

CHttpFilter 834
GetFilterVersion 835
HttpFilterProc 836
OnAuthentication 837
OnEndOtNetSession 838
OnLog 839
OnPreprocHeaders 840
OnReadRawData 841
OnSendRawData 842
On UrlMap 842

CHttpFilter member function, CHttpFilter class 834

CHttpFilterContext class
data members, m_pFC 849
described 844
member functions

AddResponseHeaders 845
AllocMen 845
CHttpFilterContext 846
GetServerVariable 846
ServerSupportFunction 848
WriteClient 849

CHttpFilterContext member function,
CHttpFilterContext class 846

CHttpServer class
described 850
member functions

AddHeader 852
CallFunction 852
CHttpServer 854
ConstructStream 855
EndContent 855
GetExtension Version 855
GetTile 856
HttpExtensionProc 856
InitInstance 857
OnParseError 857
StartContent 858
WriteTitle 859

Index

CHttpServer member function, CHttpServer class 854
CHttpServerContext class

data members
m_pECB 866
m_pStream 867

described 860
member functions

CHttpServerContext 861
GetServerVariable 861
operator« 866
ReadClient 863
ServerSupportFunction 864
WriteClient 865

CHttpServerContext member function,
CHttpServerContext class 861

ClmageList class
data members, m_hlmageList 880
described 868
member functions

Add 869
Attach 870
BeginDrag 870

Index

CImageList class (continued)
member functions (continued)

CImageList 871
Create 871
DeleteObject 872
Detach 872
DragEnter 873
DragLeave 873
DragMove 874
DragShowNolock 874
Draw 874
EndDrag 875
ExtractIcon 875
GetBkColor 876
GetDragImage 876
GetImageCount 876
GetImageInfo 877
GetSafeHandle 877
Read 878
Remove 878
Replace 878
SetBkColor 879
SetDragCursorImage 879
SetOverlayImage 880
Write 880

CImageList constructor 871
CImageList member function, CImageList class 871
CIntemetConnection class

described 881
member functions

CIntemetConnection 881
GetContext 882
GetServerName 883
GetSession 883
operator HINTERNET 883

CIntemetConnection member function,
CIntemetConnection class 881

CIntemetException class
data members

m_dwContext 885
m_dwError 885

described 884
member functions, CIntemetException 884

CIntemetException member function,
CIntemetException class 884

CIntemetFile class
data members, m_hFile 892
described 886

CIntemetFile class (continued)
member functions

Abort 887
CIntemetFile 887
Close 888
Flush 888
operator HINTERNET 892
Read 888
ReadString 889
Seek 889
SetReadBufferSize 890
SetWriteBufferSize 891
Write 891
WriteString 891

CIntemetFile member function, CIntemetFile class 887
CIntemetSession class

described 893
member functions

CIntemetSession 895
Close 896
EnableStatusCallback 896
GetContext 897
GetFtpConnection 898
GetGopherConnection 899
GetHttpConnection 900
OnStatusCallback 900
OpenURL 902
operator HINTERNET 908
QueryOption 904
ServiceTypeFromHandle 906
SetOption 907

CIntemetSession member function,
CIntemetSession class 895

class CLongBinary
Binary Large Object 978
BLOB 978
data handle 979
data length 979
Large data objects 978

class CRecordView
associated recordset, getting with ClassWizard 1637
dialog template resource 1635
forms, database 1633
moving through records 1637
navigating 1637
record views 1633
scrolling 1637

class CRecordView (continued)
whether on first record 1636
whether on last record 1636

Class design philosophy 3
Class factories and licensing 2302
Class Overview class 1
Classes

See also specific class
document/view, listed 7

Class Wizard comment
AFX_DATA 2484
AFX_DATA_INIT 2484
AFX_DATA_MAP 2484
AFX_DISP 2485
AFX_DISP _MAP 2485
AFX_EVENT 2485
AFX_EVENT_MAP 2486
AFX_FIELD 2486
AFX_FIELD _INIT 2486
AFX_FIELD _MAP 2487
AFX_MSG 2487
AFX_MSG_MAP 2487
AFX_ VIRTUAL 2488

ClassWizard comment delimiters 2483
Clear member function

CComboBox class 182
CDBVariant class 432
CDockState class 580
CEdit class 635
COleSafeArray class 1421
COleVariant 1482
CRichEditCtrl class 1686

ClearSel member function, CSliderCtrl class 1768
ClearTics member function, CSliderCtrl class 1769
ClientToScreen member function, CWnd class 2099
Clipboard

determining owner 1289
emptying 1288
formats 1452
providing data 1292

CList class
described 909
member functions

AddHead 911
AddTail 911
CList 912
Find 912
FindIndex 912
GetAt 913

CList class (continued)
member functions (continued)

GetCount 913
GetHead 913
GetHeadPosition 914
GetNext 914
GetPrev 915
GetTail 916
GetTailPosition 916
InsertAfter 916
InsertBefore 917
IsEmpty 917
RemoveAll 917
RemoveAt 918
RemoveHead 918
RemoveTail 918
SetAt 919

CList member function, CList class 912
CListBox class

described 920
member functions

AddString 923
CharToltem 924
CListBox 925
Compareltem 925
Create 925
Deleteltem 926
DeleteString 927
Dir 927
Drawltem 928
FindString 928
FindStringExact 929
GetAnchorlndex 929
GetCaretIndex 930
GetCount 930
GetCurSel 930
GetHorizontalExtent 931
GetItemData 931
GetItemDataPtr 931
GetItemHeight 932
GetItemRect 932
GetLocale 932
GetSel 933
GetSelCount 933
GetSelItems 933
GetText 934
GetTextLen 934
GetTopIndex 935
InitStorage 935

Index

Index

CListBox class (continued)
member functions (continued)

InsertString 936
ItemFromPoint 936
MeasureItem 936
ResetContent 937
SelectString 937
SelItemRange 938
SetAnchorIndex 938
SetCaretlndex 939
SetColumn Width 939
SetCurSel 939
SetHorizontalExtent 940
SetItemData 940
SetItemDataPtr 941
SetItemHeight 941
SetLocale 942
SetSel 942
SetTabStops 942
SetTopIndex 943
VKeyToItem 944

CListBox member function, CListBox class 925
CListCtrl class

described 945
member functions

Arrange 949
CListCtrl 950
Create 950
CreateDragImage 951
DeleteAllItems 952
DeleteColumn 952
Deleteltem 952
DrawItem 953
EditLabel 953
Ensure Visible 954
FindItem 954
GetBkColor 955
GetCallbackMask 955
GetColumn 956
GetColumn Width 957
GetCountPerPage 957
GetEditControl 957
GetlmageList 958
GetItem 958
GetItemCount 960
GetItemData 960
GetItemPosition 960
GetItemRect 961
GetItemState 961

CListCtrl class (continued)
member functions (continued)

GetltemText 962
GetN extItem 962
GetOrigin 963
GetSelectedCount 963
GetStringWidth 963
GetTextBkColor 964
GetTextColor 964
GetTopIndex 964
GetViewRect 965
HitTest 965
InsertColumn 966
InsertItem 967
RedrawItems 968
Scroll 968
SetBkColor 969
SetCallbackMask 969
SetColumn 969
SetColumn Width 970
SetlmageList 970
SetItem 971
SetltemCount 972
SetltemData 972
SetItemPosition 972
SetltemState 973
SetItemText 973
SetTextBkColor 974
SetTextColor 974
SortItems 974
Update 975

CListCtrl constructor 950
CListCtrl member function, CListCtrl class 950
CList View class

described 976
member functions

CListView 976
GetListCtrl 977

CListView constructor 976
CListView member function, CListView class 976
CLongBinary

DFX field exchange 2411
RFX field exchange 2471

CLongBinary class
data members

m_dwDataLength 979
m_hData 979

described 978
member functions, CLongBinary 979

CLongBinary constructor 979
CLongBinary member function,

CLongBinary class 979
Close member function

CAnimateCtrl class 36
CArchive class 43
CAsyncMonikerFile class 72
CAsyncSocket class 86
CDaoDatabase class 233
CDaoQueryDef class 265
CDaoRecordset class 291
CDaoTableDef class 358
CDaoWorkspace class 383
CDatabase class 406
CFile class 680
CFileFind class 711
CFtpConnection class 771
CHtmlStream class 817
CHttpFile class 828
CInternetFile class 888
CInternetSession class 896
CMetaFileDC class 1054
CMonikerFile class 1061
COleClientltem class 1137
CRecordset class 1586

Close member function, CGopherFile class 795
CloseAllDocuments member function

CDocTemplate class 592
CWinApp class 2026

CloseEnhanced member function,
CMetaFileDC class 1054

CloseFigure member function, CDC class 454
Closing

CDatabase objects 406
database objects 233
Recordset 1586
workspaces, DAO 383

CMap class
described 980
member functions

CMap 981
GetCount 981
GetHashTableSize 982
GetNextAssoc 982
GetStartPosition 983
InitHashTable 983
IsEmpty 983
Lookup 984
operator [] 985

CMap class (continued)
member functions (continued)

RemoveAll 984
RemoveKey 984
SetAt 985

CMap member function, CMap class 981
CMapPtrToPtr class 986
CMapPtrTo Word class 988
CMapStringToOb class

described 990
member functions

CMapStringToOb 991
GetCount 991
GetNextAssoc 992
GetStartPosition 993
IsEmpty 993
Lookup 994
operator [] 997
RemoveAll 994
RemoveKey 995
SetAt 996

CMapStringToOb member function,
CMapStringToOb class 991

CMapStringToPtr class 998
CMapStringToString class 1000
CMapWordToOb class 1002
CMapWordToPtr class 1004
CMDIChildWnd class

described 1006
member functions

CMDIChildWnd 1008
Create 1008
GetMDIFrame 1009
MDIActivate 1009
MDIDestroy 10 10
MDIMaximize 1010
MDIRestore 1010

CMDIChildWnd member function,
CMDIChildWnd class 1008

CMDIFrameWnd class
described 1011
member functions

CMDIFrameWnd 1013
CreateClient 1013
GetWindowMenuPopup 1014
MDIActivate 1014
MDICascade 1015
MDIGetActive 1015
MDIIconArrange 1016

Index

Index

CMDIFrameWnd class (continued)
member functions (continued)

MDIMaximize 10 16
MDINext 1016
MDIRestore 1017
MDISetMenu 1017
MDITile 1018

CMDIFrame Wnd member function,
CMDIFrameWnd class 1013

CMemFile class
described 1019
member functions

Alloc 1020
Attach 1021
CMemFile 1021
Detach 1022
Free 1022
GrowFile 1023
Memcpy 1023
Realloc 1023

CMemFile member function, CMemFile class 1021
CMemoryException class

described 1025
member functions, CMemoryException 1025

CMemoryException member function,
CMemoryException class 1025

CMemoryState class
described 1026, 1027
member functions

Checkpoint 1027
CMemoryState 1027
Difference 1028
DumpAllObjectsSince 1028
DumpStatistics 1029

CMemoryState member function,
CMemoryState class 1027

CMenu class
data members, m_hMenu 1052
described 1030
member functions

AppendMenu 1032
Attach 1034
CheckMenuItem 1034
CheckMenuRadioltem 1035
CMenu 1036
CreateMenu 1036
CreatePopupMenu 1037
DeleteMenu 1037
DeleteTempMap 1038

CMenu class (continued)
member functions (continued)

DestroyMenu 1038
Detach 1039
DrawItem 1039
EnableMenultem 1039
FromHandle 1040
GetMenuContextHelpId 1041
GetMenultemCount 1041
GetMenultemID 1041
GetMenuState 1042
GetMenuString 1043
GetSafeHmenu 1044
GetSubMenu 1044
InsertMenu 1044
LoadMenu 1046
LoadMenuIndirect 1046
MeasureItem 1047
ModifyMenu 1047
RemoveMenu 1049
SetMenuContextHelpId 1049
SetMenuItemBitmaps 1050
TrackPopupMenu 1051

CMenu member function, CMenu class 1036
CMetaFileDC class

described 1053
member functions

Close 1054
CloseEnhanced 1054
CMetaFileDC 1055
Create 1055
CreateEnhanced 1056

CMetaFileDC member function,
CMetaFileDC class 1055

CMiniFrameWnd class
described 1058
member functions

CMiniFrameWnd 1058
Create 1059

CMiniFrameWnd constructor 1058
CMiniFrameWnd member function,

CMiniFrameWnd class 1058
CMonikerFile class

described 1060
member functions

Close 1061
CMonikerFile 1061
CreateBindContext 1061
Detach 1062

CMonikerFile class (continued)
member functions (continued)

GetMoniker 1062
Open 1062

CMonikerFile member function
CMonikerFile class 1061

CMultiDocTemplate class
described 1064
member functions, CMultiDocTemplate 1065

CMultiDocTemplate member function,
CMultiDocTemplate class 1065

CMultiLock class
described 1067
member functions

CMultiLock 1068
IsLocked 1068
Lock 1068
Unlock 1070

CMultiLock constructor 1068
CMultiLock member function, CMultiLock class 1068
CMutex class

described 1071
member functions, CMutex 1072

CMutex constructor 1072
CMutex member function, CMutex class 1072
CNotSupportedException class

described 1073
member functions 1073

CNotSupportedException member function,
CNotSupportedException class 1073

CObArray class
described 1074
member functions

Add 1076
CObArray 1078
ElementAt 1079
FreeExtra 1079
GetAt 1080
GetSize 1081
GetUpperBound 1082
InsertAt 1082
operator [] 1090
RemoveAll 1084
RemoveAt 1085
SetAt 1086
SetAtGrow 1087
SetSize 1089

CObArray member function, CObArray class 1078

CObject class
described 1091
member functions

AssertValid 1092
CObject 1093
Dump 1093
GetRuntimeClass 1094
IsKindOf 1095
IsSerializable 1095
operator = 1097
operator delete 1097
operator new 1097
Serialize 1096

CObject member function, CObject class 1093
CObList class

described 1099
member functions

AddHead 1101
AddTail 1101
CObList 1102
Find 1103
Findlndex 1104
GetAt 1104
GetCount 1105
GetHead 1105
GetHeadPosition 1106
GetNext 1107
GetPrev 1108
GetTail 1109
GetTailPosition 1109
InsertAfter 1110
InsertBefore 1110
IsEmpty 1111
RemoveAll 1111
RemoveAt 1112
RemoveHead 1113
RemoveTail 1113
SetAt 1114

CObList member function, CObList class 1102
COleBusyDialog class

data members, ffi_bz 1119
described 1116, 1117
member functions

COleBusyDialog 1117
DoModal 1117
GetSelectionType 1118

COleBusyDialog constructor 1117
COleBusyDialog member function,

COleBusyDialog class 1117

Index

Index

COleChangelconDialog class
data members, m3i 1123
described 1120
member functions

COleChangelconDialog 1121
DoChangeIcon 1121
DoModal 1122
GetlconicMctafile 1122

COleChangeIconDialog constructor 1121
COleChangelconDialog member function,

COleChangelconDialog class 1121
COleChangeSourceDialog class

data members
described 1128
m_cs 1128

described 1124
member functions

COleChangeSourceDialog 1125
described 1125
DoModal 1125
GetDisplayName 1126
GetFileName 1126
GetFromPrefix 1127
GetItemName 1127
GetToPrefix 1127
IsValidSource 1128

COleChangeSourceDialog constructor 1125
COleChangeSourceDialog member function,

COleChangeSourceDialog class 1125
COleClientItem class 1431

described 1129
member functions

Activate 1133
ActivateAs 1134
AttachDataObject 1135
CanActivate 1135
CanCreateFromData 1135
CanCreateLinkFromData 1136
CanPaste 1136
CanPasteLink 1137
Close 1137
COleClientItem 1138
ConvertTo 1138
CopyToClipboard 1139
CreateCloneFrom 1139
CreateFromClipboard 1139
CreateFromData 1140
CreateFromFile 1141
CreateLinkFromClipboard 1142

COleClientItem class 1431 (continued)
member functions (continued)

CreateLinkFromData 1142
CreateLinkFromFile 1143
CreateNewItem 1144
CreateStaticFromClipboard 1145
CreateStaticFromData 1145
Deactivate 1146
DeactivateUI 1147
Delete 1147
DoDragDrop 1147
DoVerb 1148
Draw 1149
GetActiveView 1150
GetCachedExtent 1150
GetClassID 1151
GetClipboardData 1151
GetDocument 1152
GetDrawAspect 1152
GetExtent 1152
GetIconicMetafile 1153
GetInPlace Window 1153
GetItemState 1154
GetLastStatus 1154
GetLinkUpdateOptions 1154
GetType 1155
GetUserType 1155
IsInPlaceActive 1156
IsLinkUpToDate 1156
IsModified 1157
IsOpen 1157
IsRunning 1157
OnActivate 1158
OnActivateUI 1158
OnChange 1158
OnChangeItemPosition 1159
OnDeactivate 1160
OnDeactivateAndUndo 1160
OnDeactivateUI 1161
OnDiscardUndoState 1161
OnGetClipboardData 1161
OnGetClipRect 1162
OnGetItemPosition 1162
OnGetWindowContext 1163
OnInsertMenus 1163
OnRemoveMenus 1164
OnScrollBy 1165
OnSetMenu 1165
OnShowControlBars 1166

COleClientItem class 1431 (continued)
member functions (continued)

OnShowItem 1166
OnUpdateFrameTitle 1167
ReactivateAndUndo 1167
Release 1167
Reload 1168
Run 1168
SetDraw Aspect 1168
SetExtent 1169
SetHostNames 1169
SetIconicMetafile 1170
SetItemRects 1170
SetLinkUpdateOptions 1171
SetPrintDevice 1172
UpdateLink 1172

COleClientItem constructor 1138
COleClientItem member function,

COleClientItem class 1138
COleCmdUI class

described 1173
member functions

COleCmdUI 1174
Enable 1174
SetCheck 1174
SetText 1175

COleCmdUI member function, COleCmdUI class 1174
COleControl class

described 1176
member functions

AmbientBackColor 1184
AmbientDisplayName 1185
AmbientFont 1185
AmbientForeColor 1185
AmbientLocaleID 1186
AmbientScaleUnits 1186
AmbientShowGrabHandles 1186
AmbientShow Hatching 1187
AmbientTextAlign 1187
AmbientUIDead 1187
AmbientUserMode 1188
BoundPropertyChanged 1188
BoundPropertyRequestEdit 1188
COleControl 1190
ControlInfoChanged 1190
DisplayError 1190
DoClick 1191
DoPropExchange 1191

COleControl class (continued)
member functions (continued)

DoSuperClassPaint 1192
DrawContent 1192
DrawMetaFile 1192
EnableSimpleFrame 1193
ExchangeExtent 1193
ExchangeStockProps 1193
Exchange Version 1194
FireClick 1194
FireDblClick 1195
FireError 1195
FireEvent 1196
FireKeyDown 1197
FireKeyPress 1197
FireKeyUp 1198
FireMouseDown 1198
FireMouseMove 1199
FireMouseUp 1200
GetAmbientProperty 1203
GetBackColor 1204
GetBorderStyle 1204
GetClassID 1205
GetControlSize 1207
GetEnabled 1209
GetExtendedControl 1209
GetFont 1210
GetFontTextMetrics 1210
GetForeColor 1210
GetHwnd 1211
GetMessageString 1211
GetNotSupported 1211
GetRectInContainer 1212
GetStockTextMetrics 1213
GetText 1213
InitializeIIDs 1214
InternalGetFont 1214
InternalGetText 1214
InvalidateControl 1215
IsConvertingVBX 1216
IsModified 1217
IsSubclassedControl 1218
LockInPlaceActi ve 1218
OnAmbientPropertyChange 1219
OnBackColorChanged 1219
OnBorderStyleChanged 1219
OnClick 1220
OnDraw 1221
OnDrawMetafile 1222

Index

Index

COleControl class (continued)
member functions (continued)

OnEdit 1222
OnEnabledChanged 1222
OnEnumVerbs 1223
OnEventAdvise 1223
OnFontChanged 1223
OnForeColorChanged 1224
OnFreezeEvents 1224
OnGetColorSet 1224
OnGetControlInfo 1225
OnGetDisplayString 1225
OnGetInPlaceMenu 1226
OnGetPredefinedStrings 1227
OnGetPredefinedValue 1228
OnHideToolbars 1230
OnKeyDownEvent 1232
OnKeyPressEvent 1232
OnKeyUpEvent 1232
OnMapPropertyToPage 1233
OnMnemonic 1233
OnProperties 1234
OnRenderData 1235
OnRenderFileData 1236
OnRenderGlobalData 1237
OnResetState 1238
OnSetClientSite 1238
OnSetData 1238
OnSetExtent 1239
OnSetObjectRects 1239
OnShowToolbars 1240
OnTextChanged 1240
PostModalDialog 1243
PreModalDialog 1242
RecreateControlWindow 1242
Refresh 1243
SelectFontObject 1245
SelectStockFont 1246
SetBackColor 1248
SetBorderStyle 1248
SetControlSize 1249
SetEnabled 1249
SetFont 1250
SetForeColor 1250
SetInitialDataFormats 1251
SetInitialSize 1251
SetModifiedFlag 1251
SetNotPermitted 1252
SetNotSupported 1252

COleControl class (continued)
member functions (continued)

SetRectInContainer 1252
SetText 1252
ThrowError 1253
TransformCoords 1253
TranslateColor 1254
WillAmbientsBe ValidDuringLoad 1254

COleControl member function,
COleControl class 1190

COleControlModule class described 1256
COleConvertDialog class

data members, m_cv 1262
described 1257
member functions

COleConvertDialog 1258
DoConvert 1259
DoModal 1259
GetClassID 1260
GetDraw Aspect 1260
GetIconicMetafile 1261
GetSelectionType 1261

COleConvertDialog constructor 1258
COleConvertDialog member function,

COleConvertDialog class 1258
COleCurrency

data members
described 1273
m_cur 1273
m_status 1273

member functions
COleCurrency 1264
Constructor 1264
described 1264
Format 1265
GetStatus 1266
operator - 1270
operator + 1270
ParseCurrency 1267
SetCurrency 1268
SetStatus 1268

operators
Archive 1273
described 1269
Dump 1273
operator!= 1272
operator * 1271
operator *= 1271
operator / 1271

COleCurrency (continued)
operators (continued)

operator 1= 1271
operator += 1270
operator < 1272
operator« 1273
operator <= 1272
operator -= 1270
operator = 1269
operator == 1272
operator> 1272
operator >= 1272
operator» 1273
operator CURRENCY 1272
Relational 1272

COleCurrency class 1263
COleCurrency data, DFX field exchange 2407
COleCurrency member function,

COleCurrency class 1264
COleDataObject class

described 1275
member functions

Attach 1276
AttachClipboard 1276
BeginEnumFormats 1277
COleDataObject 1277
Detach 1277
GetData 1278
GetFileData 1278
GetGlobalData 1279
GetNextFormat 1280
IsDataAvailable 1280
Release 1281

COleDataObject constructor 1277
COleDataObject member function,

COleDataobject class 1277
COleDataSource class

described 1282, 1452
member functions

CacheData 1283
CacheGlobalData 1284
COleDataSource 1285
DelayRenderData 1285
DelayRenderFileData 1286
DelaySetData 1287
DoDragDrop 1287
Empty 1288
FlushClipboard 1288
GetClipboardOwner 1289

COleDataSource class (continued)
member functions (continued)

OnRenderData 1289
OnRenderFileData 1290
OnRenderGlobalData 1291
OnSetData 1292
SetClipboard 1292

COleDataSource constructor 1285
COleDataSource member function,

COleDataSource class 1285
COleDateTime

data members
described 1314
m_dt 1314
m_status 1315

member functions
COleDateTime 1295
Constructor 1295
described 1295
Format 1297
GetCurrentTime 1298
GetDay 1298
GetDayOtWeek 1299
GetDayOfY ear 1300
GetHour 1300
GetMinute 1301
GetMonth 1302
GetSecond 1302
GetStatus 1303
Get Year 1304
ParseDateTime 1305
SetDate 1306
SetDateTime 1307
SetStatus 1309
SetTime 1310

operators
Archive 1314
described 1311
Dump 1314
operator - 1312
operator!= 1313
operator + 1312
operator += 1313
operator < 1313
operator« 1314
operator <= 1313
operator -= 1313
operator = 1311
operator == 1313

Index

Index

COleDateTime (continued)
operators (continued)

operator> 1313
operator >= 1313
operator» 1314
operator DATE 1313
relational 1313

COleDateTime data, DFX field exchange 2408
COleDateTime member function,

COleDateTime class 1295
COleDateTimeSpan

data members
described 1330
m_span 1330
m_status 1330

member functions
COleDateTimeSpan 1318
Constructor 1318
described 1318
Format 1319
GetDays 1320
GetHours 1321
GetMinutes 1321
GetSeconds 1322
GetStatus 1322
GetTotalDays 1323
GetTotalHours 1324
GetTotalMinutes 1325
GetTotalSeconds 1325
SetDateTimeSpan 1326
SetStatus 1326

operators
Archive 1329
described 1327
Dump 1329
operator - 1328
operator!= 1329
operator + 1328
operator += 1328
operator < 1329
operator« 1329
operator <= 1329
operator -= 1328
operator = 1327
operator == 1329
operator> 1329
operator >= 1329
operator» 1329

COleDateTimeSpan (continued)
operators (continued)

operator double 1328
relational 1329

COleDateTimeSpan class 1317
COleDateTimeSpan member function,

COleDateTimeSpan class 1318
COleDialog class

described 1332
member functions, GetLastError 1333

COleDispatchDriver class
data members

m_bAutoRelease 1339
m_IpDispatch 1340

described 1334
member functions

AttachDispatch 1335
COleDispatchDriver 1335
CreateDispatch 1336
DetachDispatch 1336
GetProperty 1337
InvokeHelper 1337
ReleaseDispatch 1339
SetProperty 1339

COleDispatchDriver constructor 1335
COleDispatchDriver member function,

COleDispatchDriver class 1335
COleDispatchException class

data members
m_dwHelpContext 1342
m_strDescription 1342
m_strHelpFile 1342
m_strSource 1342
m_ wCode 1343

described 1341
COleDocument class

described 1344
member functions

AddItem 1346
ApplyPrintDevice 1346
COleDocument 1347
EnableCompoundFile 1347
GetInPlaceActi veltem 1348
GetNextClientItem 1348
GetNextItem 1349
GetNextServerItem 1349
GetPrimarySelectedItem 1350
GetStartPosition 1350
HasBlankItems 1351

COleDocument class (continued)
member functions (continued)

OnFileSendMail 1352
OnShowViews 1352
RemoveItem 1355
UpdateModifiedFlag 1355

COleDocument constructor 1347
COleDocument member function,

COleDocument class 1347
COleDropSource class

described 1356
member functions

COleDropSource 1357
GiveFeedback 1357
OnBeginDrag 1358
QueryContinueDrag 1358

COleDropSource constructor 1357
COleDropSource member function,

COleDropSource class 1357
COleDropTarget class

described 1359
member functions

COleDropTarget 1360
OnDragEnter 1360
OnDragLeave 1361
OnDragOver 1361
OnDragScroll 1362
OnDrop 1363
OnDropEx 1364
Register 1365
Revoke 1365

COleDropTarget constructor 1360
COleDropTarget member function,

COleDropTarget class 1360
COleException class

data members, m_sc 1367
described 1366
member functions, process 1366

COlelnsertDialog class
data members, m_io 1373
described 1368
member functions

COlelnsertDialog 1369
CreateItem 1370
DoModal 1370
GetClassID 1371
GetDrawAspect 1371
GetIconicMetafile 1372

COlelnsertDialog class (continued)
member functions (continued)

GetPathName 1372
GetSelectionType 1372

COlelnsertDialog constructor 1369
COlelnsertDialog member function,

COlelnsertDialog class 1369
COleIPFrameWnd class

described 1374
member functions

COleIPFrameWnd 1374
OnCreateControlBars 1375
RepositionFrame 1375

COleIPFrameWnd constructor 1374
COleIPFrameWnd member function,

COleIPFrameWnd class 1374
COleLinkingDoc class

described 1377
member functions

COleLinkingDoc 1379
OnFindEmbeddedItem 1379
OnGetLinkedItem 1379
Register 1380
Revoke 1380

COleLinkingDoc constructor 1379
COleLinkingDoc member function,

COleLinkingDoc class 1379
COleLinksDialog class

data members, m_el 1383
described 1381
member functions

COleLinksDialog 1382
DoModal 1382

COleLinksDialog constructor 1382
COleLinksDialog member function,

COleLinksDialog class 1382
COleMessageFilter class

described 13 84
member functions

BeginBusyState 1385
COleMessageFilter 1386
EnableBusyDialog 1386
EnableNotRespondingDialog 1386
EndBusyState 1387
OnMessagePending 1387
Register 1388
Revoke 1388
SetBusyReply 1388

Index

Index

COleMessageFilter class (continued)
member functions (continued)

SetMessagePendingDelay 1389
SetRetryReply 1389

COleMessageFilter constructor 1386
COleMessageFilter member function,

COleMessageFilter class 1386
COleObjectFactory class

described 1391
member functions

COleObjectFactory 1392
GetClassID 1393
IsRegistered 1394
OnCreateObject 1394
Register 1394
RegisterAll 1394
Revoke 1395
RevokeAll 1395
UpdateRegistry 1395
UpdateRegistryAll 1396
VerifyUserLicense 1397

COleObjectFactory constructor 1392
COleObjectFactory member function,

ColeObjectFactory class 1392
COleObjectFactoryEx class

member functions
GetLicenseKey 1393
VerifyLicenseKey 1396

COlePasteSpecialDialog class
data members, m_ps 1404
described 1398
member functions

AddFormat 1399
AddStandardFormats 1400
COlePasteSpecialDialog 1401
Create Item 1401
DoModal 1402
GetDrawAspect 1402
GetlconicMetafile 1403
GetPasteIndex 1403
GetSelectionType 1404

COlePasteSpecialDialog constructor 1401
COlePasteSpecialDialog member function,

COlePasteSpecialDialog class 1401
COlePropertiesDialog class

data members
m~p 1408
m_Ip 1408
m_op 1409

COlePropertiesDialog class (continued)
data members (continued)

m_psh 1409
m_vp 1409

described 1405
member functions

COlePropertiesDialog 1406
DoModal 1407
OnApplyScale 1407

COlePropertiesDialog member function,
COlePropertiesDialog class 1406

COlePropertyPage class
described 1410
member functions

COlePropertyPage 1411
GetControlStatus 1411
GetObjectArray 1412
GetPageSite 1412
IgnoreApply 1413
IsModified 1413
OnEditProperty 1413
OnHelp 1414
OnInitDialog 1414
OnObjectsChanged 1414
OnSetPageSite 1415
SetControlStatus 1415
SetDialogResource 1415
SetHelpInfo 1416
SetModifiedFlag 1416
SetPageName 1416

COlePropertyPage member function, COlePropertyPage
class 1411

COleResizeBar class
described 1417
member functions

COleResizeBar 1418
Create 1417

COleResizeBar constructor 1418
COleResizeBar member function,

COleResizeBar class 1418
COleSafeArray class

described 1419
member functions

AccessData 1420
AllocData 1421
AllocDescriptor 1421
Attach 1421
Clear 1421
COleSafeArray 1422

COleSafeArray class (continued)
member functions (continued)

Copy 1422
Create 1423
CreateOneDim 1423
Destroy 1424
DestroyData 1424
DestroyDescriptor 1424
Detach 1425
GetDim 1425
GetElement 1425
GetElemSize 1426
GetLBound 1426
GetOneDimSize 1426
GetUBound 1426
Lock 1427
operator LPCVARIANT 1430
operator LPVARIANT 1430
operator: 1429
operator== 1430
PtrOfindex 1427
PutElement 1427
Redim 1428
ResizeOneDim 1428
UnaccessData 1429
Unlock 1429

COleSafeArray member function,
COleSafeArray class 1422

COleServerDoc class
described 1431
member functions

ActivateInPlace 1433
COleServerDoc 1434
CreateInPlaceFrame 1435
DeactivateAndUndo 1434
DestroyInPlaceFrame 1435
DiscardUndoState 1435
GetEmbeddedltem 1436
GetItemClipRect 1437
GetItemPosition 1437
GetZoomFactor 1437
IsEmbedded 1438
IsInPlaceActive 1438
NotifyChanged 1439
NotifyClosed 1439
NotifyRename 1439
NotifySaved 1440
OnClose 1440
OnDeactivate 1441

COleServerDoc class (continued)
member functions (continued)

OnDeactivateUI 1441
OnDocWindowActivate 1441
OnFrameWindowActivate 1443
OnGetEmbeddedltem 1444
OnReactivateAndUndo 1444
OnResizeBorder 1445
OnSetHostNames 1445
OnSetltemRects 1446
OnShowControlBars 1446
OnShowDocument 1447
OnUpdateDocument 1447
RequestPositionChange 1447
SaveEmbedding 1448
ScrollContainerBy 1448
UpdateAllItems 1448

COleServerDoc constructor 1434
COleServerDoc member function,

COleServerDoc class 1434
COleServerItem class 1431

data members, m_sizeExtent 1469
described 1450
member functions

AddOtherClipboardData 1452
COleServerItem 1452
CopyToClipboard 1453
DoDragDrop 1453
GetClipboardData 1454
GetDataSource 1455
GetDocument 1455
GetEmbedSourceData 1456
GetltemName 1456
GetLinkSourceData 1456
GetObjectDescriptorData 1457
IsConnected 1457
IsLinkedltem 1458
NotifyChanged 1458
OnDo Verb 1459
OnDraw 1460
OnDrawEx 1460
OnGetClipboardData 1461
OnGetExtent 1461
OnHide 1462
OnInitFromData 1462
OnOpen 1463
OnQueryUpdateltems 1463
OnRenderData 1464
OnRenderFileData 1464

Index

Index

COleServerItem class 1431 (continued)
member functions (continued)

OnRenderGlobalData 1465
OnSetColorScheme 1466
OnSetData 1466
OnSetExtent 1467
OnShow 1468
OnUpdate 1468
OnUpdateItems 1469
SetItemN arne 1469

COleServerItem constructor 1452
COleServerItem member function,

COleServerItem class 1452
COleStreamFile class

described 1470
member functions

Attach 1471
COleStreamFile 1471
CreateMemoryStream 1471
CreateStream 1472
Detach 1472
OpenStream 1473

COleStreamFile constructor 1471
COleStreamFile member function,

COleStreamFile class 1471
COleTemplateServer class

described 1474
member functions

COleTemplateServer 1475
ConnectTemplate 1475
UpdateRegistry 1475

COleTemplateServer constructor 1475
COleTemplateServer member function,

COleTemplateServer class 1475
COleUpdateDialog class

member functions
COleUpdateDialog 1477
DoModal 1478

COleUpdateDialog constructor 1477
COleUpdateDialog member function,

COleUpdateDialog class 1477
COle Variant class

described 1479
member functions

ChangeType 1482
Clear 1482
COle Variant 1480
Constructor 1480

COle Variant class (continued)
member functions (continued)

described 1480
Detach 1483

operators
Archive 1486
Assignment 1484
described 1484
Dump 1486
operator« 1486
operator = 1484
operator == 1485
operator» 1486
operator LPCV ARIANT 1485
operator LPV ARIANT 1485

COle Variant member function, COle Variant 1480
Collate member function, CString class 1841
Collating order, specifying 234
Collection class helpers 2289
Collection classes

arrays
CByteArray 145
CDWordArray 629
CObArray 1074

CMap 980
CMapPtrToPtr 986
CMapPtrToWord 988
CMapStringToOb 990
CMapStringToPtr 998
CMapStringToString 1000
CMapWordToOb 1002
CMapWordToPtr 1004
listed 20
maps

CCMapStringToPtr 998
CMapPtrToPtr 986
CMapPtrTo Word 988
CMapStringToOb 990
CMapStringToString 1000
CMap WordToOb 1002
CMapWordToPtr 1004

storing aggregate data 145,629,986,988,990,998,
1000, 1002, 1004, 1074

template-based
CArray 61
CList 909
CTypedPtrArray 1976
CTypedPtrList 1981
CTypedPtrMap 1989

Collections (DAO)
QueryDefs 230
Recordsets 230
Relations 230
TableDefs 230
where stored in MFC 230

COLORADJUSTMENT structure 2516
CombineRgn member function, CRgn class 1668
Combo box DDX field exchange 2361,2376,2378
Combo-Box styles 2565
Command IDs 2288
Command-related classes, listed 7
CommandToIndex member function

CStatusBar class 1819
CToolBar class 1904
CToolBarCtrl class 1924

Committing
database transactions 407
transactions (DAO) 384

CommitTrans member function
CDaoWorkspace class 384
CDatabase class 407

Common controls, Windows
CAnimateCtrl 35
CHeaderCtrl 803
CHotKeyCtrl 810
CImageList 868
CListCtrl 945
CProgressCtrl 1538
CSliderCtrl 1767
CSpinButtonCtrl 1787
CStatusBarCtrl 1825
CTabCtrl 1870
CToolBarCtrl 1913
CToolTipCtrl 1940
CTreeCtrl 1948

Compacting databases 385
Compare member function, CString class 1841
CompareElements global function/macro 2361
Compareltem member function

CComboBox class 182
CListBox class 925

COMPAREITEMSTRUCT structure 2519
CompareNoCase member function, CString class 1842
Comparison operators member function

CString class 1861
CTime class 1892
CTimeSpan class 1899

Completing add, Recordsets 1628

Completing edit, Recordsets 1628
Concurrency, supprt for cursor 1614

Index

Connect member function, CAsyncSocket class 86
Connect strings

defined 240
for ISAM databases 240
for ODBC databases 240
not used for Jet databases 240
query Def 267

Connecting to databases 412
Connection handle 418
Connection maps 2300
Connection strings

database
described 412
getting 408

default
getting 1595
Recordset 1595

CONNECTION_lID global function/macro 2362
CONNECTION_PART global function/macro 2363
ConnectTemplate member function,

COleTemplateServer class 1475
Consistent updates, defined 238
Construct member function

CProperty Page class 1544
CPropertySheet class 1553

ConstructElements global function/macro 2362
Constructing

CDaoDatabase objects 232
Data Objects 1277
Recordsets 1587

Constructors
CAnimateCtrl 36
CArchiveException 59
CCheckListBox 150
CCommandLineInfo 203
CCommonDialog 209
CCriticalSection 225
CCtrlView 227
CDaoDatabase 232
CDaoException 252
CDaoQueryDef 264
CDaoWorkspace 383
CDatabase 406
CEvent 664
CHeaderCtrl 804
CHotKeyCtrl 811
CImageList 871

Index

Constructors (continued)
CListCtrl 950
CListView 976
CLongBinary 979
CMiniFrameWnd 1058
CMultiLock 1068
CMutex 1072
COleBusyDialog 1117
COleChangeIconDialog 1121
COleChangeSourceDialog 1125
COleClientltem 1138
COleConvertDialog 1258
COleDataObject 1277
COleDataSource 1285
COleDispatchDriver 1335
COleDocument 1347
COleDropSource 1357
COleDropTarget 1360
COleInsertDialog 1369
COleIPFrameWnd 1374
COleLinkingDoc 1379
COleLinksDialog 1382
COleMessageFilter 1386
COleObjectFactory 1392
COlePasteSpecialDialog 1401
COleResizeBar 1418
COleServerDoc 1434
COleServerltem 1452
COleStreamFile 1471
COleTemplateServer 1475
COleUpdateDialog 1477
CProgressCtrl 1539
CPropertyPage 1544
CPropertySheet 1553
CRecordset 1587
CRecordView 1635
CRectTracker 1659
CRichEditCntrItem 1682
CRichEditCtrl 1688
CRichEditView 1717
CSemaphore 1753
CSingleLock 1761
CSliderCtrl 1770
CSpinButtonCtrl 1789
CStatusBar<2trl 1827
CSyncObject 1867
CTabCtrl 1873
CToolBarCtrl 1926
CToolTipCtrl 1943

Constructors (continued)
CTreeCtrl 1952
CTreeView 1974
CWinThread 2068

ConstructStream member function,
CHttpServer class 855

ContinueModal member function, Cwnd class 2100
ContinueRouting member function, CCmdUI class 169
Control classes, listed 14
ControllnfoChanged member function,

COleControl class 1190
Controls

Edit 631
multi-line edit 631

ConvertTo member function,
COleClientItem class 1138

Copy member function
CArray class 64
CComboBox class 183
CEdit class 636
COleSafeArray class 1422
CRichEditCtrl class 1687

CopyRect member function, CRect class 1642
CopyRgn member function, CRgn class 1669
CopyToClipboard member function

COleClientItem class 1139
COleServerItem class 1453

Counting errors in DAO Errors collection 253
Counting fields in a querydef 268
Counting querydefs 241
Counting relations 244
Counting tabledefs 245
Counting workspaces 392
CPageSetupDialog class

data members, m_psd 1494
described 1487
member functions

CPageSetupDialog 1488
CreatePrinterDC 1490
DoModal 1490
GetDeviceN arne 1491
GetDevMode 1491
GetDriverMode 1491
GetMargins 1491
GetPaperSize 1492
GetPortName 1492
OnDrawPage 1492
PreDrawPage 1493

CPageSetupDialog member function,
CPageSetupdialog class 1488

CPaintDC class
data members

m_hWnd 1496
m_ps 1496

described 1495
member functions, CPaintDC 1495

CPaintDC member function, CPaintDC class 1495
CPalette class

described 1497
member functions

AnimatePalette 1498
CPalette 1499
CreateHalftonePalette 1499
CreatePalette 1499
FromHandle 1500
GetEntryCount 1500
GetNearestPalettelndex 1500
GetPaletteEntries 1501
operator HP ALETTE 1501
ResizePalette 1502
SetPaletteEntries 1502

CPalette member function, CPalette class 1499
CPen class

described 1503
member functions

CPen 1504
CreatePen 1506
CreatePenlndirect 1507
FromHandle 1508
GetExtLogPen 1508
GetLogPen 1509
operator HPEN 1509

CPen member function, CPen class 1504
CPictureHolder class

data members, m_pPict 1514
described 1510
member functions

CPictureHolder 1511
CreateEmpty 1511
CreateFromBitmap 1511
CreateFromIcon 1512
CreateFromMetafile 1512
GetDisplayString 1513
GetPictureDispatch 1513
GetType 1513
Render 1514
SetPictureDispatch 1514

CPictureHolder member function,
CPictureHolder class 1511

CPoint class
described 1515
member functions

CPoint 1516
Offset 1516
operator - 1519
operator!= 1517
operator + 1518
operator += 1517
operator -= 1518
operator == 1517

CPoint member function, CPoint class 1516
CPrintDialog class

data members, m_pd 1529
described 1521
member functions

CPrintDialog 1523
CreatePrinterDC 1524
DoModal 1524
GetCopies 1525
GetDefaults 1525
GetDeviceName 1525
GetDevMode 1526
GetDriverName 1526
GetFromPage 1526
GetPortName 1527
GetPrinterDC 1527
GetToPage 1527
PrintAll 1527
PrintCollate 1528
PrintRange 1528
PrintS election 1528

CPrintDialog member function,
CPrintDialog class 1523

CPrintInfo class
data members

m_bContinuePrinting 1534
m_bDirect 1534
m_bPreview 1535
m_lpUserData 1535
m_nCurPage 1535
m_nNumPreviewPages 1536
m_pPD 1536
m_rectDraw 1536
m_strPageDesc 1537

described 1530

Index

Index

CPrintInfo class (continued)
member functions

GetFromPage 1531
GetMaxPage 1532
GetMinPage 1532
GetToPage 1533
SetMaxPage 1533
SetMinPage 1533

CProgressCtrl class
described 1538
member functions

CProgressCtrl 1539
Create 1539
OffsetPos 1540
SetPos 1540
SetRange 1540
SetStep 1541
StepIt 1541

CProgressCtrl constructor 1539
CProgressCtrl member function,

CProgressCtrl class 1539
CPropertyPage class

data members, m_psp 1550
described 1542
member functions

CancelToClose 1543
CProperty Page 1544
OnApply 1545
OnCancel 1546
OnKillActive 1546
OnOK 1546
OnQueryCancel 1547
OnReset 1547
OnSetActive 1547
OnWizardBack 1548
On WizardFinish 1548
OnWizardNext 1549
QuerySiblings 1549
SetModified 1549

CPropertyPage constructor 1544
CPropertyPage member function,

CpropertyPage class 1544
CPropertySheet class

data meember, m_psh 1561
described 1551
member functions

AddPage 1552
Construct 1553
CPropertySheet 1554

CPropertySheet class (continued)
member functions (continued)

Create 1554
DoModal 1555
EndDialog 1556
GetActivelndex 1556
GetActivePage 1557
GetPage 1557
GetPageCount 1558
GetPagelndex 1557
GetTabControl 1558
PressButton 1558
RemovePage 1559
SetActivePage 1559
SetFinishText 1560
SetTitle 1560
SetWizardButtons 1560
SetWizardMode 1561

CPropertySheet constructor 1553
CPropertySheet member function,

CPropertySheet class 1554
CPropExchange class

described 1563
member functions

ExchangeBlobProp 1564
ExchangeFontProp 1564
ExchangePersistentProp 1565
ExchangeProp 1566
ExchangeVersion 1567
GetVersion 1567
IsLoading 1567

CPtrArray class
described 1568
members 1569

CPtrList class described 1570
Create member function

CAnimateCtrl class 37
CAsyncSocket 88
CButton class 138
CCheckListBox class 151
CComboBox class 183
CDaoDatabase class 234
CDaoQueryDef class 265
CDaoTableDef class 358
CDaoWorkspace class 385
CDialog class 566
CDialogBar class 576
CEdit class 636
CFindReplaceDialog class 723

Create member function (continued)
CFrameWnd class 755
CHeaderCtrl class 804
CHotKeyCtrl class 811
ClmageList class 871
CListBox class 925
CListCtrl class 950
CMDIChildWnd class 1008
CMetaFileDC class 1055
CMiniFrameWnd class 1059
COleResizeBar class 1417
COleSafeArray class 1423
CProgressCtrl class 1539
CPropertySheet class 1554
CRichEditCtrl class 1687
CScrollBar class 1738
CSliderCtrl class 1769
CSocket class 1781
CSpinButtonCtrl class 1788
CSplitterWnd class 1798
CStatic class 1813
CStatusBar class 1820
CStatusBarCtrl class 1826
CTabCtrl class 1872
CToolBar class 1904
CToolBarCtrl class 1925
CToolTipCtrl class 1942
CTreeCtrl class 1950
CWnd class 2100

CreateBindContext member function,
CMonikerFile class 1061

CreateBindStatusCallback member function,
CAsyncMonikerFile class 72

CreateBitmap member function, CBitmap class 114
CreateBitmaplndirect member function,

CBitmap class 115
CreateBrushlndirect member function,

CBrush class 129
CreateCaret member function, CWnd class 2101
CreateClient member function,

CMDIFrameWnd class 1013
CreateClientItem member function,

CRichEditDoc class 1712
CreateCloneFrom member function,

COleClientItem class 1139
CreateCompatibleBitmap member function,

CBitmap class 116
CreateCompatibleDC member function, CDC class 455

Create Control member function, Cwnd class 2101
CreateDC member function, CDC class 455
CreateDIBPatternBrush member function,

CBrush class 129
Create Directory member function

CFtpConnection class 771
CreateDiscardableBitmap member function,

CBitmap class 116
CreateDispatch member function,

COleDispatchDriver class 1336
CreateDraglmage member function

CListCtrl class 951
CTreeCtrl class 1951

Index

CreateEllipticRgn member function, CRgn class 1670
CreateEllipticRgnlndirect member function,

CRgn class 1670
Create Empty member function,

CPictureHolder class 1511
CreateEnhanced member function,

CMetaFileDC class 1056
CreateEx member function, CWnd class 2103
CreateField member function, CDaoTableDef class 359
CreateFont member function, CFont class 729
CreateFontIndirect member function, CFont class 733
CreateFromBitmap member function,

CPictureHolder class 1511
CreateFromClipboard member function,

COleClientItem class 1139
CreateFromData member function,

COleClientItem class 1140
CreateFromData member function, CRgn class 1671
CreateFromFile member function,

COleClientItem class 1141
CreateFromIcon member function,

CPictureHolder class 1512
CreateFromMetafile member function,

CPictureHolder class 1512
CreateFromPath member function, CRgn class 1671
CreateGrayCaret member function, CWnd class 2105
CreateHalftonePalette member function,

CPalette class 1499
CreateHatchBrush member function, CBrush class 131
CreateIC member function, CDC class 456
Createlndex member function,

CDaoTableDef class 361
Createlndirect member function, CDialog class 567
CreatelnPlaceFrame member function,

COleServerDoc class 1435

Index

Createltem member function
COleInsertDialog class 1370
COlePasteSpecialDialog class 1401

CreateLinkFromClipboard member function,
COleClientltem class 1142

CreateLinkFromData member function,
COleClientltem class 1142

CreateLinkFromFile member function,
COleClientltem class 1143

CreateLocator member function
CGopherConnection class 791

CreateMemoryStream member function,
COleStreamFile class 1471

CreateMenu member function, CMenu class 1036
CreateNewDocument member function,

CDocTemplate class 593
CreateNewFrame member function,

CDocTemplate class 593
CreateNewltem member function,

COleClientltem class 1144
CreateOleFrame member function,

CDocTemplate class 593
CreateOneDim member function,

COleSafeArray class 1423
CreatePalette member function, CPalette class 1499
CreatePattemBrush member function,

CBrush class 132
CreatePen member function, CPen class 1506
CreatePenIndirect member function, CPen class 1507
CreatePointFont member function, CFont class 734
CreatePolygonRgn member function, CRgn class 1672
CreatePolyPolygonRgn member function,

CRgn class 1673
CreatePopupMenu member function,

CMenu class 1037
CreatePrinterDC member function

CPageSetupDialog class 1490
CPrintDialog class 1524
CWinApp class 2026

CreateRectRgn member function, CRgn class 1674
CreateRectRgnIndirect member function,

CRgn class 1675
CreateRelation member function,

CDaoDatabase class 235
CreateRoundRectRgn member function,

CRgn class 1675
CreateScrollBarCtrl member function,

CSplitterWnd class 1799
CreateSolidBrush member function, CBrush class 132

CreateSolidCaret member function, Cwnd class 2105
CreateStatic member function,

CSplitterWnd class 1799
CreateStaticFromClipboard member function,

COleClientltem class 1145
CreateStaticFromData member function,

COleClientltem class 1145
CreateStockObject member function,

CGdiObject class 784
CreateStream member function,

COleStreamFile class 1472
CREATESTRUCT structure 2520
CreateSysColorBrush member function,

CBrush class 133
CreateThread member function,

CWinThread class 2068
Create View member function

CFrameWnd class 756
CSplitterWnd class 1800

Creating
CDatabase object 406
CStreamFile objects 1472
database objects 234
Recordset 1587
relations between tables 235
workspaces 387

CRecentFileList class
described 1572
member functions

Add 1572
CRecentFileList 1573
GetDisplayName 1573
GetSize 1574
operator [] 1575
ReadList 1574
Remove 1574
UpdateMenu 1575
WriteList 1575

CRecentFileList member function,'
CRecentFileList class 1573

CRecordset class
data members

m_hstmt 1629
m_nFields 1629
m_nParams 1630
m_pDatabase 1630
m_strFilter 1631
m_strSort 1631

described 1576

CRecordset class (continued)
member functions

AddNew 1580
CanAppend 1581
Cancel 1582
CanRestart 1583
CanScroll 1583
CanTransact 1583
CanUpdate 1584
Close 1586
CRecordset 1587
Delete 1587
DoFieldExchange 1590
Edit 1591
GetDefaultConnect 1595
GetDefaultSQL 1595
GetRecordCount 1600
GetSQL 1603
GetStatus 1602
GetTableName 1604
IsBOF 1604
IsDeleted 1605
IsEOF 1606
IsFieldDirty 1606
IsFieldNull 1607
IsFieldNullable 1608
IsOpen 1608
Move 1609
MoveFirst 1611
MoveLast 1612
MoveNext 1613
MovePrev 1614
OnSetOptions 1614
Open 1615
Requery 1621
SetFieldDirty 1623
SetFieldNull 1624
SetLockingMode 1625
Update 1628

CRecordset constructor 1587
CRecordset member function, CRecordset class 1587
CRecordView class

described 1633
member functions

CRecordView 1635
IsOnFirstRecord 1636
IsOnLastRecord 1636
OnGetRecordset 1637
OnMove 1637

CRecordView constructor 1635
CRecordView member function,

CRecordView class 1635
CRect class

described 1639
member functions

BottomRight 1641
CopyRect 1642
CRect 1642
EqualRect 1644
Height 1644
InflateRect 1644
IntersectRect 1645
IsRectEmpty 1646
IsRectNull 1646
NormalizeRect 1646
OffsetRect 1647
operator - 1655
operator!= 1652
operator & 1655
operator &= 1653
operator 1 1656
operator 1= 1654
operator + 1654
operator += 1652
operator -= 1653
operator = 1651
operator == 1651
operator LPCRECT 1651
operator LPRECT 1651
PtInRect 1647
SetRect 1648
SetRectEmpty 1648
Size 1648
SubtractRect 1649
Top Left 1649
UnionRect 1650
Width 1650

CRect member function, CRect class 1642
CRectTracker class

data members
m_nHandleSize 1665
m_nStyle 1665
m_rect 1665
m_sizeMin 1665

described 1657
member functions

AdjustRect 1658
CRectTracker 1659

Index

Index

CRectTracker class (continued)
member functions (continued)

Draw 1659
DrawTrackerRect 1660
GetHandleMask 1660
GetTrueRect 1661
HitTest 1661
NormalizeHit 1662
OnChangedRect 1663
SetCursor 1663
Track 1663
TrackRubberBand 1664

usage 1657
CRectTracker constructor 1659
CRectTracker member function,

CRectTracker class 1659
CResourceException class

described 1666
member functions, CResourceException 1666

CResourceException member function,
CResourceException class 1666

CRgn class
described 1667
member functions

CombineRgn 1668
CopyRgn 1669
CreateEllipticRgn 1670
CreateEllipticRgnIndirect 1670
CreateFromData 1671
CreateFromPath 1671
CreatePolygonRgn 1672
CreatePolyPolygonRgn 1673
CreateRectRgn 1674
CreateRectRgnIndirect 1675
CreateRoundRectRgn 1675
CRgn 1676
EqualRgn 1676
FromHandle 1676
GetRegionData 1677
GetRgnBox 1677
OffsetRgn 1678
operator HRGN 1680
PtInRegion 1679
RectInRegion 1679
SetRectRgn 1680

CRgn member function, CRgn class 1676

CRichEditCntrItem class
described 1681
member functions

CRichEditCntrItem 1682
described 1682
SyncToRichEditObject 1682

CRichEditCntrItem constructor 1682
CRichEditCntrItem member function,

CRichEditCntrlItem class 1682
CRichEditCtri class

member functions 1686
CanPaste 1686
CanUndo 1686
Clear 1686
Copy 1687
Create 1687
CRichEditCtri 1688
Cut 1688
DisplayBand 1689
EmptyUndoBuffer 1689
FindText 1689
GetCharPos 1690
GetDefaultCharFormat 1691
GetEventMask 1691
GetFirstVisibleLine 1692
GetIRichEditOle 1692
GetLimitText 1692
GetLine 1693
GetLineCount 1693
GetModify 1693
GetParaFormat 1694
GetRect 1694
GetSel 1695
GetSelectionCharFormat 1695
GetSelectionType 1696
GetSelText 1696
GetTextLength 1697
HideSelection 1697
LimitText 1698
LineFromChar 1698
LineIndex 1699
LineLength 1699
LineScroll 1700
Paste 1700
PasteSpecial 1701
ReplaceSel 1701
RequestResize 1702
SetBackgroundColor 1702
SetDefaultCharFormat 1702

CRichEditCtrl class (continued)
member functions 1686 (continued)

SetEventMask 1703
SetModify 1703
SetOLECallback 1704
SetOptions 1704
SetParaFormat 1705
SetReadOnly 1706
SetRect 1706
SetSel 1706
SetSelectionCharFormat 1707
SetTargetDevice 1708
SetWordCharFormat 1708
Streamln 1709
StreamOut 1709
Undo 1710

CRichEditCtrl constructor 1688
CRichEditCtrl member function,

CRichEditCtrl class 1688
CRichEditDoc class

data members
described 1713
m_bRTF 1713

described 1711
member functions 1712

CreateClientItem 1712
GetStreamFormat 1712
GetView 1713

CRichEditView class
data members

described 1734
m_nBulletlndent 1734
m_nWordWrap 1734

member functions
AdjustDialogPosition 1716
CanPaste 1717
CRichEditView 1717
described 1716
DoPaste 1717
FindText 1718
FindTextSimple 1718
GetCharFormatSelection 1718
GetClipboardData 1719
GetContextMenu 1720
GetDocument 1721
GetlnPlaceActiveItem 1721
GetMargins 1721
GetPageRect 1722
GetPaperSize 1722

CRichEditView class (continued)
member functions (continued)

GetParaFormatSelection 1722
GetPrintRect 1723
GetPrintWidth 1723
GetRichEditCtrl 1723
GetSelectedltem 1724
GetTextLength 1724
InsertFileAsObject 1724
Insertltem 1724
IsRichEditFormat 1725
IsSelected 1725
OnCharEffect 1726
OnFindNext 1726
OnInitialUpdate 1726
OnParaAlign 1727
OnPasteNativeObject 1727
OnPrinterChanged 1728
OnReplaceAll 1728
OnReplaceSel 1728
OnTextNotFound 1729
OnUpdateCharEffect 1729
OnUpdateParaAlign 1730
PrintlnsideRect 1730
PrintPage 1731
Query AcceptData 1731
SetCharFormat 1732
SetMargins 1732
SetPaperSize 1733
SetParaFormat 1733
Wrap Changed 1734

CRichEditView constructor 1717
CRichEditView member function,

CRichEditView class 1717
Cross-tab query 261
CRuntimeClass class, described 1735
CScrollBar class

described 1737
member functions

Create 1738
CScrollBar 1739
EnableScrollBar 1739
GetScrollInfo 1739
GetScrollLimit 1740
GetScrollPos 1740
GetScrollRange 1741
SetScrollInfo 1741
SetScrollPos 1742

Index

Index

CScrollBar class (continued)
member functions (continued)

SetScrollRange 1742
ShowScrollBar 1743

CScrollBar member function, CScrollBar class 1739
CScrollView class

member functions
CScrollView 1746
FillOutsideRect 1746
GetDeviceScrollPosition 1747
GetDeviceScrollSizes 1747
GetScrollPosition 1748
GetTotalSize 1748
ResizeParentToFit 1749
ScrollToPosition 1749
SetScaleToFitSize 1750
SetScrollSizes 1750

CScrollView member function,
CScrollView class 1746

CSemaphore class member functions,
CSemaphore 1753

CSemaphore constructor 1753
CSemaphore member function,

CSemaphore class 1753
CSharedFile class

described 1754
member functions

CSharedFile 1755
Detach 1755
SetHandle 1755

CSharedFile member function,
CSharedFile class 1755

CSingleDocTemplate class
described 1757
member functions, CSingleDocTemplate 1758

CSingleDocTemplate member function,
CSingleDocTemplate class 1758

CSingleLock class
described 1760
member functions

CSingleLock 1761
IsLocked 1761
Lock 1761
Unlock 1762

CSingleLock constructor 1761
CSingleLock member function,

CSingleLock class 1761

CSize class
described 1763
member functions

CSize 1763
operator - 1765
operator!= 1764
operator + 1765
operator += 1764
operator -= 1765
operator == 1764

CSize member function, CSize class 1763
CSliderCtrl class

described 1767
member functions

ClearSel 1768
ClearTics 1769
Create 1769
CSliderCtrl 1770
GetChannelRect 1771
GetLineSize 1771
GetNumTics 1771
GetPageSize 1772
GetPos 1772
GetRange 1772
GetRangeMax 1773
GetRangeMin 1773
GetSelection 1773
GetThumbRect 1774
GetTic 1774
GetTicArray 1774
GetTicPos 1775
SetLineSize 1775
SetPageSize 1775
SetPos 1776
SetRange 1776
SetRangeMax 1776
SetRangeMin 1777
SetSelection 1777
SetTic 1777
SetTicFreq 1778
VerifyPos 1778

CSliderCtrl constructor 1770
CSliderCtrl member function, CSliderCtrl class 1770
CSocket class

described 1779
member functions

Attach 1780
CancelBlockingCall 1781
Create 1781

CSocket class (continued)
member functions (continued)

CSocket 1782
FromHandle 1782
IsBlocking 1783
OnMessagePending 1783

members 1779
CSocket member function, CSocket class 1780, 1782
CSocketFile class

described 1785
member functions

CSocketFile 1786
described 1786

members 1785
CSocketFile member function, CSocketFile class 1786
CSpinButtonCtrl class

described 1787
member functions

Create 1788
CSpinButtonCtrl 1789
GetAccel 1789
GetBase 1790
GetBuddy 1790
GetPos 1790
GetRange 1791
SetAccel 1791
SetBase 1792
SetBuddy 1792
SetPos 1792
SetRange 1793

CSpinButtonCtrl constructor 1789
CSpinButtonCtrl member function,

CSpinButtonCtrl class 1789
CSplitterWnd class

described 1794
member functions

ActivateNext 1797
CanActivateNext 1797
Create 1798
CreateScrollBarCtrl 1799
CreateStatic 1799
CreateView 1800
CSplitterWnd 1801
DeleteColumn 1801
DeleteRow 1801
Delete View 1802
DoKeyboardSplit 1802
DoScroll 1803
DoScrollBy 1803

CSplitterWnd class (continued)
member functions (continued)

GetActivePane 1804
GetColumnCount 1804
GetColumnlnfo 1805
GetPane 1805
GetRowCount 1805
GetRowlnfo 1805
GetScrollStyle 1806
IdFromRowCol 1806
IsChildPane 1807
OnDrawSplitter 1807
OnlnvertTracker 1808
Reca1cLayout 1808
SetActivePane 1809
SetColumnlnfo 1809
SetRow Info 1809
SetScrollStyle 1810
SplitColumn 1810
SplitRow 1811

CSplitterWnd member function,
CSplitterWnd class 1801

CStatic class
described 1812
member functions

Create 1813
CStatic 1814
GetBitmap 1814
GetCursor 1814
GetEnhMetaFile 1815
GetIcon 1815
SetBitmap 1815
SetCursor 1816
SetEnhMetaFile 1816
SetIcon 1817

CStatic member function, CStatic class 1814
CStatusBar class

described 1818
member functions

CommandTolndex 1819
Create 1820
CStatusBar 1820
GetItemID 1821
GetItemRect 1821
GetPanelnfo 1821
GetPaneSty Ie 1822
GetPaneText 1822
GetStatusBarCtrl 1822
ReportError 670

Index

Index

CStatusBar class (continued)
member functions (continued)

Setlndicators 1823
SetPaneInfo 1823
SetPaneStyle 1824
SetPaneText 1824

CStatusBar member function, CStatusBar class 1820
CStatusBarCtrl class

described 1825
member functions

Create 1826
CStatusBarCtrl 1827
DrawItem 1827
GetBorders 1828
GetParts 1828
GetRect 1829
GetText 1829
GetTextLength 1830
SetMinHeight 1830
SetParts 1831
SetSimple 1831
SetText 1832

CStatusBarCtrl constructor 1827
CStatusBarCtrl member function,

CStatusBarCtrl class 1827
CStdioFile class

data members, m_pStream 1836
described 1833
member functions

CStdioFile 1834
ReadString 1835
WriteString 1836

CStdioFile member function, CStdioFile class 1834
CStreamFile objects

attaching to LPSTREAM objects 1471
creating 1472
detaching from LPSTREAM objects 1472
memory, opening 1471
opening 1473

CString
DDX field exchange 2384
DFX field exchange 2414
RFX field exchange 2473

CString class
described 1837
member functions

AllocSysString 1840
AnsiToOem 1840
Collate 1841

CString class (continued)
member functions (continued)

Compare 1841
CompareNoCase 1842
comparions operators 1861
CString 1842
Empty 1843
Find 1844
FindOneOf 1844
Format 1845
FormatMessage 1845
FreeExtra 1846
GetAt 1846
GetBuffer 1847
GetBufferSetLength 1848
GetLength 1849
IsEmpty 1849
Left 1849
LoadString 1850
LockB uffer 1851
MakeLower 1851
MakeReverse 1852
MakeUpper 1852
Mid 1852
OemToAnsi 1853
operator [] 1862
operator + 1860
operator += 1861
operator «,» 1859
operator = 1858
operator LPCTSTR () 1859
ReleaseBuffer 1853
ReverseFind 1854
Right 1854
SetAt 1855
SetSysString 1855
SpanExcluding 1856
SpanIncluding 1857
TrimLeft 1857
TrimRight 1858
UnlockBuffer 1858
usage 1837

CString member function, CString class 1842
CString objects, formatting message-box display 2287
CStringArray class, described 1863
CStringList class, described 1865

CSyncObject class
described 1867
member functions

CSyncObject 1867
Lock 1868
Unlock 1868

CSyncObject constructor 1867
CSyncObject member function,

CSyncObject class 1867
CTabCtrl class

described 1870
member functions

AdjustRect 1871
Create 1872
CTabCtrl 1873
DeleteAllItems 1874
DeleteItem 1874
DrawItem 1874
GetCurFocus 1875
GetCurSel 1875
GetImageList 1875
GetItem 1875
GetItemCount 1877
GetItemRect 1877
GetRowCount 1877
GetTooltips 1878
HitTest 1878
InsertItem 1879
RemoveImage 1879
SetCurSel 1879
SetImageList 1880
SetItem 1880
SetItemSize 1880
SetPadding 1881
SetTooltips 1881

CTabCtrl constructor 1873
CTabCtrl member function, CTabCtrl class 1873
CTime class

described 1882
member functions

comparison operators 1892
CTime 1884
Format 1886
FormatGmt 1886
GetCurrentTime 1887
GetDay 1887
GetDayOtW eek 1887
GetGmtTm 1888
GetHour 1889

CTime class (continued)
member functions (continued)

GetLocalTm 1889
GetMinute 1890
GetMonth 1890
GetSecond 1890
GetTime 1890
GetYear 1891
operator +, - 1891
operator +=, -= 1892
operator = 1891
operators «,» 1893

CTime member function, CTime class 1884
CTime, RFX field exchange 2464
CTimeSpan class

described 1894
member functions

comparison operators 1899
CTimeSpan 1895
Format 1896
GetDays 1897
GetHours 1897
GetMinutes 1897
GetSeconds 1897
GetTotalHours 1898
GetTotalMinutes 1898
GetTotalSeconds 1898
operator +, - 1899
operator +=, -= 1899
operator = 1898
operators «,» 1900

Index

CTimeSpan member function, CTimeSpan class 1895
CToolBar class

described 1901
member functions

CommandToIndex 1904
Create 1904
CToolBar 1905
GetButtonInfo 1905
GetButtonStyle 1906
GetButtonText 1906
GetItemID 1906
GetItemRect 1907
GetToolBarCtrl 1907
LoadBitmap 1908
LoadToolBar 1908
SetBitmap 1909
SetButtonInfo 1909
SetButtons 1910

Index

CToolBar class (continued)
member functions (continued)

SetButtonStyle 1910
SetButtonText 1911
SetHeight 1911
SetSizes 1912

CToolBar member function, CToolBar class 1905
CToolBarCtrl class

described 1913
member functions

AddBitmap 1920
AddButtons 1921
AddString 1923
AddStrings 1923
AutoSize 1924
CheckButton 1924
CommandToIndex 1924
Create 1925
CToolBarCtrl 1926
Customize 1927
DeleteButton 1927
EnableButton 1927
GetBitmapFlags 1928
GetButton 1928
GetButtonCount 1929
GetltemRect 1929
GetRows 1929
GetState 1930
GetToolTips 1930
HideButton 1931
Indeterminate 1931
InsertButton 1932
IsButtonChecked 1932
IsButtonEnabled 1933
IsButtonHidden 1933
IsButtonIndeterminate 1933
IsButtonPressed 1934
PressButton 1934
RestoreState 1935
SaveState 1935
SetBitmapSize 1936
SetB uttonSize 1936
SetButtonStructSize 1937
SetCmdID 1937
SetOwner 1937
SetRows 1938
SetS tate 1939
SetToolTips 1939

CToolBarCtrl constructor 1926

CToolBarCtrl member function,
CToolBarCtrl class 1926

CToolTipCtrl class
described 1940
member functions

Activate 1941
AddTool 1941
Create 1942
CToolTipCtrl 1943
DelTool 1943
GetText 1943
GetToolCount 1944
GetToolInfo 1944
HitTest 1945
RelayEvent 1946
SetDelayTime 1946
SetToolInfo 1947
SetToolRect 1947
UpdateTipText 1947

CToolTipCtrl constructor 1943
CToolTipCtrl member function,

CToolTipCtrl class 1943
CTreeCtrl class

described 1948
member functions

Create 1950
CreateDragImage 1951
CTreeCtrl 1952
DeleteAllItems 1952
Deleteltem 1952
EditLabel 1952
Ensure Visible 1953
Expand 1953
GetChildltem 1954
GetCount 1954
GetDropHilightltem 1954
GetEditControl 1954
GetFirstVisibleltem 1955
GetlmageList 1955
Getlndent 1956
Getltem 1956
GetltemData 1958
GetltemImage 1958
GetltemRect 1959
GetltemState 1959
GetltemText 1960
GetNextltem 1960
GetNextSiblingltem 1961
GetNextVisibleltem 1961

CTreeCtrl class (continued)
member functions (continued)

GetParentltem 1962
GetPrevSiblingItem 1962
GetPrevVisibleItem 1962
GetRootItem 1963
GetSelectedltem 1963
GetVisibleCount 1963
HitTest 1964
Insertltem 1965
ltemHasChildren 1966
Select 1966
SelectDropTarget 1967
SelectItem 1967
SetImageList 1968
SetIndent 1969
SetItem 1969
SetItemData 1970
SetItemImage 1970
SetltemState 1971
SetItemText 1971
SortChildren 1972
SortChildrenCB 1972

CTreeCtrl constructor 1952
CTreeCtrl member function, CTreeCtrl class 1952
CTree View class

described 1974
member functions

CTreeView 1974
GetTreeCtrl 1975

CTreeView constructor 1974
CTreeView member function, CTreeView class 1974
CTypedPtrArray class

described 1976
member functions

ElementAt 1977
GetAt 1978
operator [] 1980

CTypedPtrList class
described 1981
member functions

GetAt 1982
GetHead 1984
GetNext 1985
GetPrev 1985
GetTail 1986
RemoveHead 1987
RemoveTail 1987

CTypedPtrMap class
described 1989
member functions

GetNextAssoc 1990
Lookup 1990
operator [] 1991

CUIntArray class, described 1993
Currency

DDX field exchange 2384
DFX field exchange 2407

Cursor concurrency, Recordset 1614
Cursor, support for scrollable 1614
CU serException class, described 1995

Index

Custom DDX routines, CDataExchange 420,421
Customize member function, CToolBarCtrl class 1927
Customizing SQL, Recordset 1615
Cut member function

CComboBox class 184
CEdit class 637
CRichEditCtrl class 1688

CView class
described 1997
member functions

CView 2000
DoPreparePrinting 2000
GetDocument 2001
IsSelected 2001
OnActivateFrame 2002
OnActivateView 2002
OnBeginPrinting 2003
OnDragEnter 2004
OnDragLeave 2005
OnDragOver 2005
OnDragScroll 2006
OnDraw 2007
OnDrop 2007
OnDropEx 2008
OnEndPrinting 2009
OnEndPrintPreview 2010
OnInitialUpdate 2010
OnPrepareDC 2011
OnPreparePrinting 2012
OnPrint 2013
OnScroll 2014
OnScrollBy 2015
OnUpdate 2015

CView member function, CView class 2000

Index

CWaitCursor class
described 2017
member functions

CWaitCursor 2018
Restore 2019

CWaitCursor member function,
CWaitCursor class 2018

CWinApp class
data members

m_bHeipMode 2058
m_hlnstance 2058
m_hPrevlnstance 2059
m_IpCmdLine 2059
m_nCmdShow 2060
m_pActiveWnd 2060
m_pszAppName 2060
m_pszExeN arne 2061
m_pszHelpFilePath 2062
m_pszProfileN arne 2062
m_pszRegistry Key 2063

described 2021
member functions

AddDocTemplate 2025
AddToRecentFileList 2025
CloseAllDocuments 2026
CreatePrinterDC 2026
CWinApp 2026
DoMessageBox 2027
DoWaitCursor 2027
Enable3dControls 2028
Enable3dControlsStatic 2028
EnableShellOpen 2029
Exitlnstance 2030
GetFirstDocTemplatePosition 2030
GetNextDocTemplate 2031
GetPrinterDeviceDefaults 2031
GetProfilelnt 2032
GetProfileString 2032
HideApplication 2033
InitInstance 2033
LoadCursor 2035
LoadIcon 2035
LoadOEMCursor 2036
LoadOEMIcon 2037
LoadStandardCursor 2037
LoadStandardIcon 2038
LoadStdProfileSettings 2039
OnContextHelp 2039
OnDDECommand 2039

CWinApp class (continued)
member functions (continued)

OnFileNew 2040
OnFileOpen 2041
OnFilePrintSetup 2042
OnHelp 2043
OnHelpFinder 2044
OnHelplndex 2044
OnHelpUsing 2044
Onldle 2045
OpenDocumentFile 2047
ParseCommandLine 2048
PreTranslateMessage 2049
ProcessMessageFilter 2049
ProcessShellCommand 2050
Process W ndProcException 2051
RegisterShellFileTypes 2051
Run 2052
RunAutomated 2052
RunEmbedded 2053
SaveAllModified 2053
SelectPrinter 2053
SetDialogBkColor 2054
SetRegistry Key 2054
WinHelp 2055
WriteProfilelnt 2056
WriteProfileString 2057

CWinApp member function, CWinApp class 2026
CWindowDC class

data members, m_hWnd 2065
described 2064
member functions, CWindowDC 2064

CWindowDC member function,
CWindowDC class 2064

CWinThread class
data members

m_bAutoDelete 2076
m_hThread 2076
m_nThreadlD 2076
m_pActiveWnd 2076
m_pMain Wnd 2077

described 2066
member functions

CreateThread 2068
CWinThread 2068
Exitlnstance 2069
GetMainWnd 2069
GetThreadPriority 2070
InitInstance 2070

CWinThread class (continued)
member functions (continued)

IsldleMessage 2071
On Idle 2071
PreTranslateMessage 2072
ProcessMessageFilter 2073
ProcessWndProcException 2073
ResumeThread 2074
Run 2074
SetThreadPriority 2075
SuspendThread 2075

CWinThread constructor 2068
CWinThread member function,

CWinThread class 2068
CWnd class

data members, m_hWnd 2276
described 2078
member functions

ArrangeIconicWindows 2093
Attach 2093
BeginPaint 2094
BindDefaultProperty 2095, 2096
BringWindowToTop 2094
Calc Window Rect 2096
CancelToolTips 2097
CenterWindow 2097
ChangeClipboardChain 2097
CheckDIgButton 2098
CheckRadioButton 2098
ChildWindowFromPoint 2099
ClientToScreen 2099
ContinueModal 2100
Create 2100
Create Caret 2101
CreateControl 2101
CreateEx 2103
CreateGrayCaret 2105
CreateSolidCaret 2105
CWnd 2106
Default 2106
DefWindowProc 2107
DeleteTempMap 2107
DestroyWindow 2107
Detach 2108
DIgDirList 2108
DIgDirListComboBox 2110
DIgDirSelect 2111
DIgDirSelectComboBox 2112
DoDataExchange 2112

CWnd class (continued)
member functions (continued)

DragAcceptFiles 2114
DrawMenuBar 2114
EnableScrollBar 2114
EnableScrollBarCtrl 2115
EnableToolTips 2115
EnableWindow 2116
EndModalLoop 2117
EndPaint 2117
ExecuteDIglnit 2118
FilterToolTipMessage 2118
FindWindow 2119
Flash Window 2119
FromHandle 2120
FromHandlePermanent 2120
GetActive Window 2121
GetCapture 2121
GetCaretPos 2121
GetCheckedRadioB utton 2122
GetClientRect 2122
GetClipboardOwner 2122
GetClipboardViewer 2123
GetControlUnknown 2123
GetCurrentMessage 2123
GetDC 2124
GetDCEx 2124
GetDescendantWindow 2126
GetDesktop Window 2126
GetDIgCtrlID 2126
GetDIgltem 2127
GetDIgltemlnt 2127
GetDIgltemText 2128
GetDSCCursor 2129
GetExStyle 2128
GetFocus 2130
GetFont 2130
GetForegroundWindow 2130
GetIcon 2131
GetLastActivePopup 2131
GetMenu 2131
GetNextDlgGroupltem 2132
GetNextDlgTabltem 2132
GetNextWindow 2133
GetOpenClipboardWindow 2133
GetOwner 2134
GetParent 2134
GetParentFrame 2134
GetParentOwner 2135

Index

Index

CWnd class (continued)
member functions (continued)

GetProperty 2135
GetSafeHwnd 2136
GetSafeOwner 2136
GetScrollBarCtrl 2137
GetScrollInfo 2137
GetScrollLimit 2138
GetScrollPos 2138
GetScrollRange 2139
GetStyle 2139
GetSuperWndProcAddr 2164
GetSystemMenu 2140
GetTopLevelFrame 2140
GetTopLevelOwner 2141
GetTopLevelParent 2141
GetTopWindow 2141
GetUpdateRect 2142
GetUpdateRgn 2143
GetWindow 2143
GetWindowContextHelpId 2144
GetWindowDC 2144
GetWindowPlacement 2145
GetWindowRect 2145
GetWindowText 2146
GetWindowTextLength 2147
HideCaret 2147
HiliteMenuItem 2148
Invalidate 2148
InvalidateRect 2149
InvalidateRgn 2150
InvokeHelper 2150
IsChild 2151
IsDialogMessage 2152
IsDlgButtonChecked 2152
IsIconic 2153
IsWindowEnabled 2153
IsWindowVisible 2153
IsZoomed 2154
KillTimer 2154
LockWindowUpdate 2154
MapWindowPoints 2155
MessageBox 2156
ModifyStyle 2156
ModifyStyleEx 2157
MoveWindow 2158
OnActivate 2158
OnActivateApp 2159
OnAmbientProperty 2160

CWnd class (continued)
member functions (continued)

OnAskCbFormatName 2160
OnCancelMode 2161
OnCaptureChanged 2161
OnChangeCbChain 2162
OnChar 2162
OnCharToItem 2163
OnChildActivate 2164
OnChildNotify 2164
OnClose 2165
OnCommand 2165
OnCompacting 2166
OnCompareItem 2166
OnContextMenu 2167
OnCreate 2168
OnCtlColor 2169
OnDeadChar 2170
OnDeleteItem 2171
OnDestroy 2172
OnDestroyClipboard 2172
OnDeviceChange 2172
OnDev ModeChange 2173
OnDrawClipboard 2174
OnDrawItem 2174
OnDropFiles 2175
OnDSCNotify 2177
OnEnable 2176
OnEndSession 2178
OnEnterIdle 2178
OnEnterMenuLoop 2179
OnEraseBkgnd 2179
OnExitMenuLoop 2180
OnFontChange 2181
OnGetDlgCode 2181
OnGetMinMaxInfo 2182
OnHelpInfo 2182
OnHScroll 2183
OnHScrollClipboard 2184
OnIconEraseBkgnd 2185
OnInitMenu 2185
OnInitMenuPopup 2186
OnKeyDown 2186
OnKeyUp 2187
OnKillFocus 2188
OnLButtonDblClk 2189
OnLButtonDown 2190
OnLButtonUp 2190
OnMButtonDblClk 2191

CWnd class (continued)
member functions (continued)

OnMButtonDown 2192
OnMButtonUp 2193
OnMDIActivate 2193
OnMeasureltem 2194
OnMenuChar 2195
OnMenuSelect 2196
OnMouseActivate 2197
OnMouseMove 2198
OnMove 2200
OnMoving 2200
OnNcActivate 2201
OnNcCalcSize 2201
OnNcCreate 2202
OnNcDestroy 2203
OnNcHitTest 2203
OnNcLButtonDblClk 2204
OnNcLButtonDown 2205
OnNcLButtonUp 2205
OnNcMButtonDblClk 2206
OnNcMButtonDown 2207
OnNcMButtonUp 2207
OnNcMouseMove 2208
OnNcPaint 2208
OnNcRButtonDblClk 2209
OnNcRButtonDown 2209
OnNcRButtonUp 2210
OnPaint 2211
OnPaintClipboard 2212
OnPaletteChanged 2214
OnPaletteIsChanging 2213
OnParentNotify 2214
OnQueryDragIcon 2215
OnQueryEndSession 2215
OnQueryNewPalette 2216
OnQueryOpen 2216
OnRButtonDblClk 2216
OnRB uttonDown 2217
OnRButtonUp 2218
OnRenderAllFormats 2219
OnRenderFormat 2219
OnSetCursor 2220
OnSetFocus 2221
OnShowWindow 2221
OnSize 2222
OnSizeClipboard 2223
OnSizing 2223
OnSpoolerStatus 2224

CWnd class (continued)
member functions (continued)

OnStyleChanged 2224
OnStyleChanging 2225
OnSysChar 2225
OnSysColorChange 2227
OnSysCommand 2227
OnSysDeadChar 2229
OnSysKeyDown 2229
OnSysKeyUp 2231
OnTCard 2232
OnTimeChange 2233
OnTimer 2233
OnToolHitTest 2234
OnVKeyToltem 2234
On VScroll 2235
OnVScrollClipboard 2236
OnWindowPosChanged 2237
OnWindowPosChanging 2238
OnWinIniChange 2238
OnWndMsg 2239
OpenClipboard 2240
PostMessage 2240
PostNcDestroy 2241
Pre Create Window 2241
PreSubclassWindow 2242
PreTranslateMessage 2242
Print 2242
PrintClient 2243
RedrawWindow 2244
ReflectChildNotify 2245
ReflectLastMsg 2246
ReleaseDC 2247
RepositionBars 2247
RunModalLoop 2248
ScreenToClient 2248
ScrollWindow 2249
ScrollWindowEx 2250
SendChildNotifyLastMsg 2251
SendDIgltemMessage 2252
SendMessage 2252
SendMessageToDescendants 2253
SendNotifyMessage 2254
SetActiveWindow 2254
SetCapture 2255
SetCaretPos 2255
SetClipboardViewer 2255
SetDlgCtrlID 2256
SetDIgltemInt 2256

Index

Index

CWnd class (continued)
member functions (continued)

SetDlgItemText 2257
SetFocus 2258
SetFont 2258
SetForegroundWindow 2257
SetIcon 2258
SetMenu 2259
SetOwner 2259
SetParent 2260
SetProperty 2260
SetRedraw 2261
SetScrolllnfo 2261
SetScrollPos 2262
SetScrollRange 2263
SetTimer 2263
SetWindowContextHelpId 2264
SetWindowPlacement 2265
SetWindowPos 2265
SetWindowText 2268
ShowCaret 2269
ShowOwnedPopups 2269
ShowScrollBar 2269
ShowWindow 2270
SubclassDlgItem 2271
Subclass Window 2271
UnsubclassWindow 2272
UpdateData 2273
UpdateDialogControls 2273
UpdateWindow 2274
ValidateRect 2274
ValidateRgn 2274
WindowFromPoint 2275
WindowProc 2275

CWnd member function, CWnd class 2106
CWordArray class, described 2277

D
DAO

accessing database's workspace 250
accessing underlying DAO object workspace 401
appending a querydef 263
CDaoFieldExchange

Is Valid Operation function 257
purpose of 256

closing database objects, effect on updates 233
compacting databases 385
constructing CDaoDatabase objects 232

DAO (continued)
counting errors in DAO Errors collection 253
counting open databases 388
counting parameters in a querydef 270
counting querydef fields 268
counting querydefs 241
counting relations in a database 244
counting tabledefs 245
counting workspaces 392
creating database objects 234
creating relations between tables 235
DAO Errors collection, and ODBC 251
database formats supported 241
database objects 229
Databases collection 229
dbFreeLocks option 393
DDX_Field functions 2292
deleting querydefs 237
deleting relations 237
deleting tabledefs 238
determining causes of exceptions 251
determining if DFX operations are valid 257
determining whether databases open 247
determining whether transactions allowed 232
determining whether updates allowed 232
DFX and RFX compared 256
DFX field types, setting 258
Dialog data exchange (DDX) 2292
direct access to DAO database object 250
error codes

described 251
MFC error codes 254

error handling 251
exception handling

CATCH expression 251
CDaoErrorInfo structure 255
DAO Errors collection 251
DAO OLE error codes 255
DAOERR.H file 251
described 251
explicit CDaoException construction 252
m_pErrorInfo data member 255
MFC error codes 254
number of errors in Errors collection 253
SCODE values 255
used for all errors 251

Execute member function, records affected by 243

DAD (continued)
executing

action queries 238
SQL pass-through queries 238
SQL statements 238

getting
connect string 240
database engine version 247
querydef parameters 272

isolating ODBC transactions 390, 399
Login timeout property

described 390
setting 400

name, user-defined
database 240
workspace 391

obtaining information about
DAD errors 253
open databases 388
parameters in a querydef 271
querydef fields 269
querydefs 242
relations 244
tabledefs 246
workspaces 393

open status, obtaining workspace 394
opening

databases 247
default workspace 395
works paces 395

query timeout 243
querydefs See Querydefs
read locks 393
Record field exchange (DFX)

class CDaoFieldExchange 256
described 2290
DFX vs. RFX 256
Is ValidOperation function 257

registry key settings 398
repairing a database 395
rolling back transactions 396
See Database engine 379
setting

a default password 397
default user name 397
query timeout 249
querydef parameters 277
SQL statement of querydef 278
workspace password 387

DAD (continued)
transactions

described 379
role of database objects 230

user name, getting 391
using database objects 229
version, getting database engine 392
workspaces

appending to collection 382
beginning a transaction 382
closing a workspace 383
constructing C++ object 383
creating 387

DAD classes
DDL support 378
exceptions, throwing 2344
vs. DDBC classes 378

DAO database
Login timeout property 390
security support 378
workspace 378

DAD Errors collection 251
DAD vs. DDBC

described 229,251,256,260
role of DAD database objects 230

DADERR.H file 251
Data definition (DDL) query 261
Data members

CArchive class 58
CArchiveException class 60
CAsyncSocket class 112
CCachedDataPathProperty class 148
CClientDC class 157
CColorDialog class 176
CCommandLinelnfo class 204
CControlBar class 221
CCtrlView class 228
CDaoDatabase class 250
CDaoException class 254
CDaoFieldExchange class 258
CDaoQueryDef class 279
CDao Workspace class 401
CDatabase class 418
CDBException class 428
CDC class 562
CFile class 693
CFileDialog class 703
CFileException class 707
CFindReplaceDialog class 727

Index

Index

Data members (continued)
CFontDialog class 742
CFontHolder class 746
CFrameWnd class 769
CGdiObject class 789
CHtmlStream class 821
CHttpFilterContext class 849
CHttpServerContext class 866, 867
CImageList class 880
CIntemetException class 885
CLongBinary class 979
CMenu class 1052
COleBusyDialog class 1119
COleChangeIconDialog class 1123
COleChangeSourceDialog class 1128
COleConvertDialog class 1262
COleCurrency 1273
COleDateTime 1314
COleDateTimeSpan 1330
COleDispatchDriver class 1339, 1340
COleDispatchException class 1342
COleException class 1367
COleInsertDialog class 1373
COleLinksDialog class 1383
COlePasteSpecialDialog class 1404
COlePropertiesDialog class 1408
COleServerItem class 1469
CPageSetupDialog class 1494
CPaintDC class 1496
CPictureHolder class 1514
CPrintDialog class 1529
CPrintInfo class 1534
CPropertyPage class 1550
CRecordset class 1629
CRectTracker class 1665
CRichEditDoc class 1713
CRichEditView class 1734
CStdioFile class 1836
CWinApp class 2058
CWindowDC class 2065
CWinThread class 2076
CWnd class 2276

Data Objects
attaching to Clipboard 1276
attaching to OLE DataObjects 1276
constructing 1277
determining available formats 1277, 1280
determining whether data available 1280
enumerating available formats 1280

Data Objects (continued)
releasing 1277, 1281
retrieving data 1278-1279

Data source
determining if connected 411
determining if open 411
emptying 1288
modifying data 1287
modifying data when needed 1292
providing data when needed

file 1290
memory 1291
undetermined format 1289

providing data, delayed
file 1286
undetermined format 1285

providing data, immediate
memory 1284
undetermined format 1283

Data source connection
opening 412
setting options 412

Data structures
arrays

CByteArray 145
CDWordArray 629
CObArray 1074

maps
CMapPtrToPtr 986
CMapPtrToWord 988
CMapStringToOb 990
CMapStringToPtr 998
CMapStringToString 1000
CMapWordToOb 1002
CMapWordToPtr 1004

Data transfer, OLE 1275, 1282
Data Transfer, providing data 1282
Data types 2281
Data, deleting 1587
Database See DAO

accessing database's workspace 250
CDaoDatabase class 229
CDaoFieldExchange, purpose of 256
closing database objects 233
collections in DAO databases 230
connecting to 412
constructing CDaoDatabase objects 232
copying database files 385
counting querydefs 241

Database (continued)
counting relations in databases 244
counting tabledefs 245
creating database objects 234
creating relations between tables 235
decryption 385
deleting

a relation 237
a tabledef 238

determining
if DFX operation is valid 257
whether open 247
whether updates allowed 232

DFX and RFX compared 256
DFX field types, setting 258
Dialog data exchange (DDX) 2292
direct access to DAO object 250
encryption 385
exception handling 251
Execute member function, records affected by 243
executing

action queries 238
SQL pass-through queries 238
SQL statements 238

formats 241
Getting connect string 240
getting database engine version 247
HDBC handle 418
implicit construction of database object 233
isolating ODBC transactions 399
Login timeout property 390
name, user-defined 240
obtaining information about

open 388
querydefs 242
relations 244
tabledefs 246

opening 247,412
query timeout 243
Record field exchange (RFX and DFX)

class CDaoFieldExchange 256
described 2290
DFX vs. RFX 256

record field exchange (RFX),
IsValidOperation function 257

repairing 395

Database (continued)
setting

default password 397
default user name 397
query timeout 249

specifying
database format 234
encryption 234

storing database object in document 233
transactions, overview 230
usage tips 229

Database classes
BOOL, exchanging data (DDX) 2384
Boolean

exchanging field data (DFX) 2405
exchanging field data (RFX) 2461

Byte
exchanging data (DDX) 2384
exchanging field data (DFX) 2406
exchanging field data (RFX) 2463

Byte array
exchanging field data (DFX) 2404
exchanging field data (RFX) 2460

calling ODBC functions 2341-2342
CLongBinary

exchanging field data (DFX) 2411
exchanging field data (RFX) 2471

COleCurrency data,
exchanging field data (DFX) 2407

COleDateTime data,
exchanging field data (DFX) 2408

Combo box,
exchanging data (DDX) 2361,2376,2378

CString
exchanging field data (DDX) 2384
exchanging field data (DFX) 2414
exchanging field data (RFX) 2473

CTime, exchanging field data (RFX) 2464
Currency

exchanging data (DDX) 2384
exchanging field data (DFX) 2407

data exchange
with BOOL 2384
with BYTE 2384
with Combo box 2361,2376,2378
with CString 2384
with Currency 2384
with date/time 2384
with DWORD 2384

Index

Index

Database classes (continued)
data exchange (continued)

with Float 2384
with Integer 2384
with List box 2379,2380,2381
with Long integer 2384
with Radio button 2382
with scroll-bar conrol 2383
with UINT 2384

Date/time
exchanging field data (DDX) 2384
exchanging field data (DFX) 2408

Double
exchanging field data (DFX) 2409
exchanging field data (RFX) 2466

DWORD, exchanging field data (DDX) 2384
exceptions, throwing 2344
field data exchange

for COleCurrency data 2407
for COleDateTime data 2408
for currency data 2407
for date/time data 2408
with Boolean 2405, 2461
with Byte 2406,2463
with Byte array 2404,2460
with CLongBinary 2411,2471
with CString 2414,2473
with CTime 2464
with Double 2409,2466
with Long integer 2410, 2469
with Short integer 2412, 2468
with Single precision float 2413,2472

Float, exchanging data (DDX) 2384
Integer, exchanging field data (DDX) 2384
List box, exchanging data (DDX) 2379-2381
listed 24
Long integer

exchanging data (DDX) 2384
exchanging field data (DFX) 2410
exchanging field data (RFX) 2469

Radio button, exchanging data (DDX) 2382
Scroll-bar control, exchanging data (DDX) 2383
Short integer

exchanging field data (DFX) 2412
exchanging field data (RFX) 2468

Single precision float
exchanging field data (DFX) 2413
exchanging field data (RFX) 2472

UINT, exchanging data (DDX) 2384

Database engine
and MFC DLL 379
initialization settings 389
initializing 379
registry key settings 389
uninitializing 379
version, getting 247,392

Database format, specifying 234
Database forms, class CRecordView 1633
Database macros 2294
Database names, getting 410
Database object (DAO)

defined 229
obtaining information about 2495

Databases collection
DAO 229
workspace 378

DataMembers, CPropertySheet class 1561
Date/time

DDX field exchange 2384
DFX field exchange 2408

DDP _CBIndex global function/macro 2363
DDP _CBString global function/macro 2364
DDP _CBStringExact global function/macro 2364
DDP _Check global function/macro 2365
DDP _LBIndex global function/macro 2365
DDP _LBString global function/macro 2366
DDP _LBStringExact global function/macro 2366
DDP _PostProcessing global function/macro 2367
DDP _Radio global function/macro 2368
DDP _Text global function/macro 2368
DDV, dialog data validation 420
DDV _MaxChars global function/macro 2369
DDV _MinMaxByte global function/macro 2369
DDV _MinMaxDouble global function/macro 2370
DDV _MinMaxDWord global function/macro 2370
DDV _MinMaxFloat global function/macro 2371
DDV _MinMaxInt global function/macro 2371
DDV _MinMaxLong global function/macro 2372
DDV _MinMaxUnsigned global function/macro 2372
DDX

See also Dialog data exchange
direction of exchange, CDataExchange 421

DDX field exchange
BOOL 2384
Combo box 2361,2376,2378
CString 2384
Currency 2384
Date/time 2384

DDX field exchange (continued)
DWORD 2384
Float 2384
Integer 2384
List box 2379-2381
Long integer 2384
Radio button 2382
Scroll-bar control 2383
UINT 2384

DDX, dialog data exchange 420
DDX_CBIndex global function/macro 2373
DDX_CBString global function/macro 2373
DDX_CBStringExact global function/macro 2374
DDX_Check global function/macro 2375
DDX_Field functions, DAO and ODBC 2292
DDX_FieldCBIndex global function/macro 2376
DDX_FieldCBString global function/macro 2377
DDX_FieldCBStringExact global function/macro 2378
DDX_FieldCheck global function/macro 2379
DDX_FieldLBIndex global function/macro 2379
DDX_FieldLBString global function/macro 2380
DDX_FieldLBStringExact global function/macro 2381
DDX_FieldRadio global function/macro 2382
DDX_FieldScroll global function/macro 2383
DDX_FieldText global function/macro 2384
DDX_LBIndex global function/macro 2386
DDX_LBString global function/macro 2387
DDX_LBStringExact global function/macro 2387
DDX_Radio global function/macro 2388
DDX_Scroll global function/macro 2395
DDX_Text global function/macro 2396
Deactivate member function,

COleClientItem class 1146
DeactivateAndUndo member function,

COleServerDoc class 1434
DeactivateUI member function,

COleClientItem class 1147
DEBUG_NEW

global function/macro 2397
macro, memory leaks 1026

DECLARE_CONNECTION_MAP
global function/macro 2397

DECLARE_DISPATCH_MAP
global function/macro 2398

DECLARE_DYNAMIC
global function/macro 2398

DECLARE_DYNCREATE
global function/macro 2399

DECLARE_EVENT_MAP
global function/macro 2399

DECLARE_EVENTS INK_MAP
global function/macro 2400

DECLARE_MESSAGE_MAP
global function/macro 2400

DECLARE_OLECREATE
global function/macro 2401

DECLARE_OLECREATE_EX
global function/macro 2401

DECLARE_OLETYPELIB
global function/macro 2402

DECLARE_PROPPAGEIDS
global function/macro 2402

DECLARE_SERIAL
global function/macro 2402

Default member function, CWnd class 2106
Default password (DAO), setting 397
Default workspace, using implicitly 379

Index

DeflateRect member function, CRect class 1643
DefWindowProc member function, CWnd class 2107
DelayRenderData member function,

COleDataSource class 1285
DelayRenderFileData member function,

COleDataSource class 1286
DelaySetData member function,

COleDataSource class 1287
Delete member function

CDaoRecordset class 292
COleClientItem class 1147
CRecordset class 1587

Delete operator, memory leaks 1026
Delete query 261
DeleteAllItems member function

CListCtrl class 952
CTabCtrl class 1874
CTreeCtrl class 1952

DeleteButton member function,
CToolBarCtrl class 1927

DeleteColumn member function
CListCtrl class 952
CSplitterWnd class 1801

DeleteContents member function,
CDocument class 606

Deleted, determining whether recordsets 1605
DeleteDC member function, CDC class 457
DeleteField member function, CDaoTableDef class 362

Index

DeleteIndex member function,
CDaoTableDef class 362

DeleteItem member function
CComboBox class 184
CHeaderCtrl class 806
CListBox class 926
CListCtrl class 952
CTabCtrl class 1874
CTreeCtrl class 1952

DELETEITEMSTRUCT structure 2521
DeleteMenu member function, CMenu class 1037
DeleteObject member function

CGdiObject class 785
CImageList class 872

DeleteQueryDef member function,
CDaoDatabase class 237

DeleteRelation member function,
CDaoDatabase class 237

DeleteRow member function, CSplitterWnd class 1801
DeleteString member function

CComboBox class 185
CListBox class 927

DeleteTableDef member function,
CDaoDatabase class 238

DeleteTempMap member function
CDC class 457
CGdiObject class 786
CMenu class 1038
CWnd class 2107

Delete View member function,
CSplitterWnd class 1802

Deleting
data 1587
querydefs 237
records 1587
Recordsetrecords 1587
relations, database 237
tabledefs 238

DelTool member function, CToolTipCtrl class 1943
Destroy member function, COleSafeArray class 1424
DestroyData member function,

COleSafeArray class 1424
DestroyDescriptor member function,

COleSafeArray class 1424
DestroyInPlaceFrame member function,

COleServerDoc class 1435
DestroyMenu member function, CMenu class 1038
DestroyWindow member function, CWnd class 2107

DestructElements global function/macro 2403
Detach member function

CAsyncSocket 89
CDC class 458
CGdiObject class 786
CHtmlStream class 817
CImageList class 872
CMemFile class 1022
CMenu class 1039
CMonikerFile class 1062
COleDataObject class 1277
COleSafeArray class 1425
COleStreamFile class 1472
COleVariant 1483
CSharedFile class 1755
CWnd class 2108

DetachDispatch member function,
COleDispatchDriver class 1336

Determining
abillity to scroll Recordsets 1583
appendability of Recordsets 1581
availability of Data Objects data 1280
availability of transactions, database 1583
availability of updates, database 1584
available formats, Data Objects 1277, 1280
causes of excemptions (DAO) 251
Clipboard owner 1289
if data sources connected 411
if data sources open 411
if DFX operations are valid 257
whether

database open 247
Recordset deleted 1605
Recordset fields can be set to Null 1608
Recordset fields dirty 1606
Recordset fields Null 1607
Recordset open 1608
transactions allowed 232
updates allowed 232

Device context classes, listed 17
DEVMODE structure 2521
DEVNAMES structure 2526
DFX

See also Record Field Exchange
field types, setting 258
operations, validity of 257

DFX field exchange
Boolean 2405
Byte 2406

DFX field exchange (continued)
Byte array 2404
CLongBinary 2411
COleCurrency data 2407
COleDateTime data 2408
CString 2414
Currency data 2407
Date/time data 2408
Double 2409
Long integer 2410
Short integer 2412
Single precision float 2413

DFX vs. RFX 256
DFX_Binary global function/macro 2404
DFX_Bool global function/macro 2405
DFX_Byte global function/macro 2406
DFX_Currency global function/macro 2407
DFX_DateTime global function/macro 2408
DFX_Double global function/macro 2409
DFX_Long global function/macro 2410
DFX_LongBinary global function/macro 2411
DFX_Short global function/macro 2412
DFX_Single global function/macro 2413
DFX_Text global function/macro 2414
Diagnostic classes, listed 33
Diagnostic services 2283
Dialog box, OLE Change Source 1124
Dialog classes, listed 12
Dialog data exchange (DDX)

CDataExchange 421
CDataExchange class 419
Custom DDX routines

CDataExchange class 419
preparing controls 420
preparing edit controls 421

Data exchange object
getting dialog object 422
m_pDlgWnd member 422

functions 2292
Dialog data validation (DDV)

custom DDV routines
CDataExchange 420
CDataExchange class 419
preparing edit controls 421

dialog data exchange (DDX) 419
validation failure 420

Dialog template resource, class CRecordView 1635
Difference member function,

CMemoryState class 1028

Dir member function
CComboBox class 185
CListBox class 927

Direct access to DAO database object 250
Directly executing SQL statements 408
DiscardUndoState member function,

COleServerDoc class 1435

Index

DISP _DEFVALUE global function/macro 2415
DISP _FUNCTION global function/macro 2416
DISP _PROPERTY global function/macro 2417
DISP _PROPERTY_EX global function/macro 2418
Dispatch maps 2296
DisplayBand member function,

RichEditCtrl class 1689
DisplayError member function,

COleControl class 1190
DlgDirList member function, CWnd class 2108
DlgDirListComboBox member function,

CWnd class 2110
DlgDirSelect member function, CWnd class 2111
DlgDirSe1ectComboBox member function,

CWnd class 2112
DoChangeIcon member function,

COleChangeIconDialog class 1121
DOCINFO structure 2527
DockControlBar member function,

CFrameWnd class 757
DoClick member function, COleControl class 1191
DoConvert member function,

COleConvertDialog class 1259
DocumentlView, Rich edit 1711
Documents, mailing See MAPI
Documents, storing database objects in 233
DoDataExchange member function, Cwnd class 2112
DoDragDrop member function

COleClientItem class 1147
COleDataSource class 1287
COleServerItem class 1453

DoFieldExchange function, and
SetFieldType function 673

DoFieldExchange member function
CDaoRecordset class 293
CRecordset class 1590

DoKeyboardSplit member function,
CSplitterWnd class 1802

DoMessageBox member function,
CWinApp class 2027

Index

DoModal member function
CColorDialog class 174
CDialog class 568
CFileDialog class 697
CFontDialog class 739
COleBusyDialog class 1117
COleChangeIconDialog class 1122
COleChangeSourceDialog class 1125
COleConvertDialog class 1259
COleInsertDialog class 1370
COleLinksDialog class 1382
COlePasteSpecialDialog class 1402
COlePropertiesDialog class 1407
COleUpdateDialog class 1478
CPageSetupDialog class 1490
CPrintDialog class 1524
CPropertySheet class 1555

DoPaste member function,
CRichEditView class 1717

DoPreparePrinting member function,
CView class 2000

DoPropExchange member function,
COleControl class 1191

DoScroll member function, CSplitterWnd class 1803
DoScrollBy member function,

CSplitterWnd class 1803
DoSuperClassPaint member function,

COleControl class 1192
Double

DFX field exchange 2409
RFX field exchange 2466

Do Verb member function, COleClientItem class 1148
DoWaitCursor member function, CWinApp class 2027
DPtoHIMETRIC member function, CDC class 458
DPtoLP member function, CDC class 458
Drag and Drop

crossing target window 1361
determining when to start 1358
determining whether to continue 1358
dropping 1363, 1364
entering target window 1360
initiating 1287
leaving target window 1361
modifying cursors 1357
registering target windows 1365
revoking target windows 1365
scrolling target window 1362
User Interface Issues 1357

DragAcceptFiles member function, CWnd class 2114

DragEnter member function, CImageList class 873
Dragging member function, CDragListBox class 622
DragLeave member function, CImageList class 873
DragMove member function, CImageList class 874
DragShowNolock member function,

CImageList class 874
Draw member function

CImageList class 874
COleClientItem class 1149
CRectTracker class 1659

Draw3dRect member function, CDC class 459
DrawContent member function,

COleControl class 1192
DrawDragRect member function, CDC class 459
DrawEdge member function, CDC class 460
DrawEscape member function, CDC class 462
DrawFocusRect member function, CDC class 462
DrawFrameControl member function, CDC class 463
DrawIcon member function, CDC class 464
Drawing object classes, listed 18
DrawInsert member function, CDragListBox class 622
DrawItem member function

CButton class 139
CComboBox class 186
CHeaderCtrl class 806
CListBox class 928
CListCtrl class 953
CMenu class 1039
CStatusBarCtrl class 1827
CTabCtrl class 1874

DRA WITEMSTRUCT structure 2527
DrawMenuBar member function, CWnd class 2114
DrawMetaFile member function,

COleControl class 1192
DrawState member function, CDC class 465
DrawText member function, CDC class 467
DrawTrackerRect member function,

CRectTracker class 1660
Dropped member function, CDragListBox class 623
Dump member function, CObject class 1093
Dump operator

COleCurrency 1273
COleDateTime 1314
COleDateTimeSpan 1329
COle Variant 1486

DumpAllObjectsSince member function,
CMemoryState class 1028

DumpField, Record field exchange (DFX) 258

DumpStatistics member function,
CMemoryState class 1029

Duplicate member function, CFile class 680
DWORD, DDX field exchange 2384
dwstyle parameter, styles specified with 2564
dwStyleDefault member function,

CEditView class 662

E
Edit Control 631
Edit member function

CDaoRecordset class 294
CRecordset class 1591

Edit styles 2566
Editing

records 1591
records in Recordsets 1591

EditLabel member function
CListCtrl class 953
CTreeCtrl class 1952

ElementAt member function
CArray class 64
CObArray class 1079
CTypedPtrArray class 1977

Ellipse member function, CDC class 469
Empty member function

COleDataSource class 1288
CString class 1843

Emptying
Clipboard 1288
Data Source 1288

EmptyUndoBuffer member function
CEdit class 637
CRichEditCtrl class 1689

EnabbeScrollBar member function
CScrollBar class 1739

Enable member function
CCheckListBox class 152
CCmdUI class 169
COleCmdUI class 1174

Enable3dControis member function,
CWinApp class 2028

Enable3dControisStatic member function,
CWinApp class 2028

EnableAutomation member function,
CCmdTarget class 161

EnableBusyDialog member function,
COleMEssageFilter class 1386

EnableButton member function,
CToolBarCtrol class 1927

EnableCompoundFile member function,
COleDocument class 1347

EnableDocking member function
CControlBar class 217
CFrameWnd class 758

Index

EnableMenultem member function, CMenu class 1039
EnableNotRespondingDialog member function,

COleMessageFilter class 1386
EnableScrollBar member function

CScrollBar class 1739
CWnd class 2114

EnableScrollBarCtrl member function,
CW nd class 2115

EnableShellOpen member function,
CWinApp class 2029

EnableSimpleFrame member function,
COleControl class 1193

EnableStatusCallback member function,
ClnternetSession class 896

EnableToolTips member function, CWnd class 2115
EnableWindow member function, CWnd class 2116
Encryption

database 385
specifying 234

END_CATCH global function/macro 2422
END_CATCH_ALL, global function/macro 2422
END_CONNECTION_MAP,

global function/macro 2422
END _CONNECTION_PART,

global function/macro 2423
END_DISPATCH_MAP, global function/macro 2423
END_EVENT_MAP, global function/macro 2423
END _EVENTSINK_MAP,

global function/macro 2423
END_MESSAGE_MAP, global function/macro 2424
END_OLEFACTORY, global function/macro 2424
END_PROPP AGEIDS, global function/macro 2425
EndBusyState member function,

COleMessageFilter class 1387
EndContent member function, CHttpServer class 855
EndDialog member function

CDialog class 569
CPropertySheet class 1556

EndDoc member function, CDC class 469
EndDrag member function, ClmageList class 875
EndModalLoop member function, CWnd class 2117

Index

EndModalState member function,
CFrameWnd class 758

EndPage member function, CDC class 470
EndPaint member function, CWnd class 2117
EndPath member function, CDC class 471
EndWaitCursor member function,

CCmdTarget class 161
Engine, database See Database engine
Ensure Visible member function

CListCtrl class 954
CTreeCtrl class 1953

Enumerating available formats, Data objects 1280
EnumObjects member function, CDC class 471
EnumObjects, callback function for See Callback

functions for MFC member functions
EqualRect member function, CRect class 1644
EqualRgn member function, CRgn class 1676
ErrnoToException member function,

CFileException class 705
Error codes

DAO 251
human readable 430
ODBC

described 428
values 428

text message 430
Error object (DAO), obtaining information about 2497
Error strings

human readable 430
native

OnBC 430
SQLError function 430
SQLSTATE 430

ODBC 430
Errors collection, DAO 251
Escape member function, CDC class 472
Event Maps 2299
Event sink maps, described 2300
EVENT_CUSTOM global function/macro 2425
EVENT_CUSTOM_ID global function/macro 2426
Exception classes, listed 33
Exception handling, DAO

DAOERR.H file 251
described 251
obtaining information about 2497

Exception processing 2285
Exceptions, throwing

DAO classes 2344
Database classes 2344

ExchangeBlobProp member function,
CPropExchange class 1564

ExchangeExtent member function,
COleControl class 1193

ExchangeFontProp member function,
CPropExchange class 1564

ExchangePersistentProp member function,
CPropExchange class 1565

ExchangeProp member function,
CPropExchange class 1566

ExchangeStockProps member function,
COleControl class 1193

Exchange Version member function
COleControl class 1194
CPropExchange class 1567

Exchanging data
with data source, Recordset 1590
with recordset fields in DAO classes 256

ExcludeClipRect member function, CDC class 473
ExcludeUpdateRgn member function, CDC class 474
Execute member function

CDaoDatabase class 238
CDaoQuery Def class 266
records affected by 243

ExecuteDlgInit member function, CWnd class 2118
ExecuteSQL member function, CDatabase class 408
Exitlnstance member function

CWinApp class 2030
CWinThread class 2069

Expand member function, CTreeCtrl class 1953
Extended window styles 2573
EXTENSION_CONTROL_BLOCK structure 2530
ExtFloodFill member function, CDC class 474
ExtractIcon member function, CImageList class 875
ExtTextOut member function, CDC class 475

F
Fail member function, CDataExchange class 420
Failure, validation 420
Field exchange, records in DAO classes 256
Field object (DAO)

in indexes, obtaining information about 2505
in relations, obtaining information about 2511
obtaining information about 2498

Fields, recordset
determining whether dirty 1606
determining whether Null 1607
number of bound 1629

Fields, recordset (continued)
setting dirty 1623
setting null 1624

FieldType enum
described 672
values 672

FieldType values, CDaoFieldExchange
outputColumn 256
param 256

FileFind member function,
CGopherFileFind class 797

FILETIME structure 2535
FillCache member function, CDaoRecordset class 295
FillOutsideRect member function,

CScrollView class 1746
FillPath member function, CDC class 477
FillRect member function, CDC class 477
FillRgn member function, CDC class 478
FillSolidRect member function, CDC class 478
Filter strings, Recordset 1631
FilterToolTipMessage member function,

CWnd class 2118
Find member function

CDaoRecordset class 296
CList class 912
CObList class 1103
CString class 1844

FindFile member function
CFileFind class 711

FindFirst member function, CDaoRecordset class 297
Findlndex member function

CList class 912
CObList class 1104

FindItem member function, CListCtrl class 954
FindLast member function, CDaoRecordset class 299
FindNext member function

CDaoRecordset class 300
CFindReplaceDialog class 724

FindNextFile member function,
CGopherFileFind class 798

FindNextFile member function, CFileFind class 712
FindOneOf member function, CString class 1844
FindPrev member function, CDaoRecordset class 301
FindString member function

CComboBox class 186
CListBox class 928

FindStringExact member function
CComboBox class 187
CListBox class 929

FindText member function
CEditView class 655
CRichEditCtrl class 1689
CRichEditView class 1718

FindTextSimple member function,
CRichEditView class 1718

Index

FindWindow member function, Cwnd class 2119
FireClick member function, COleControl class 1194
FireDblClick member function,

COleControl class 1195
FireError member function, COleControl class 1195
FireEvent member function, COleControl class 1196
FireKeyDown member function,

COleControl class 1197
FireKeyPressmember function, COleControl class 1197
FireKeyUp member function, COleControl class 1198
FireMouseDown member function,

COleControl class 1198
FireMouseMove member function,

COleControl class 1199
FireMouseUp member function,

COlecontrol class 1200
Fixup, Record field exchange (DFX) 258
FlashWindow member function, CWnd class 2119
FlattenPath member function, CDC class 479
Float, DDX field exchange 2384
FloatControlBar member function,

CFrameWnd class 758
FloodFill member function, CDC class 479
Flush member function

CArchive class 44
CDumpContext class 626
CFile class 681
ClntemetFile class 888

FlushClipboard member function,
COleDataSource class 1288

FmtLines member function, CEdit class 637
Format member function

COleCurrency 1265
COleDateTime 1297
COleDateTimeSpan 1319
CString class 1845
CTime class 1886
CTimeSpan class 1896

FormatGmt member function, CTime class 1886
FormatMessage member function, CString class 1845

Index

Formats, database
supported by DAO

Btrieve 241
dBASE 241
Microsoft Excel 241
Microsoft FoxPro 241
Microsoft Jet (Access) 241
ODBC 241
Oracle (ODBC) 241
Paradox 241
SQL Server (ODBC) 241
Text format 241

Forms, class CRecordView database 1633
Foundation Class Library See Microsoft Foundation

Class Library
FrameRect member function, CDC class 480
FrameRgn member function, CDC class 480
Free member function, CHtmlStream class 818
Free member function, CMemFile class 1022
FreeCache, Record field exchange (DFX) 258
FreeExtra member function

CArray class 65
CObArray class 1079
CString class 1846

FromHandle member function
CAsyncSocket class 89
CBitmap class 117
CBrush class 134
CDC class 481
CFont class 735
CGdiObject class 786
CMenu class 1040
CPalette class 1500
CPen class 1508
CRgn class 1676
CSocket class 1782
CWnd class 2120

FromHandlePermanent member function,
CWnd class 2120

FromIDispatch member function,
CCmdTarget class 162

Functions, callback See Callback functions for
MFC member functions

G
GDI classes (list) 18
GetAbsolutePosition member function,

CDaoRecordset class 303

GetAccel member function,
CSpinButtonCtrl class 1789

GetActiveDocument member function,
CFrameWnd class 759

GetActiveFrame member function,
CFrameWnd class 759

GetActiveIndex member function,
CPropertySheet class 1556

GetActivePage member function,
CPropertySheet class 1557

GetActivePane member function,
CSplitterWnd class 1804

GetActive View member function
CFrameWnd class 760
COleClientltem class 1150

GetActiveWindow member function, CWnd class 2121
GetAmbientProperty member function,

COleControl class 1203
GetAnchorIndex member function, CListBox class 929
GetArcDirection member function, CDC class 481
GetAspectRatioFiIter member function, CDC class 481
GetAt member function

CArray class 65
CList class 913
CObArray class 1080
CObList class 1104
CString class 1846
CTypedPtrArray class 1978

GetAttribute member function,
CGopherConnection class 792

GetAttributes member function,
CDaoTableDef class 363

GetBackColor member function,
COleControl class 1204

GetBarStyle member function, CControlBar class 218
GetBase member function, CSpinButtonCtrl class 1790
GetBindInfo member function,

CAsyncMonikerFile class 73
GetBinding member function,

CAsyncMonikerFile class 74
GetBitmap member function

CBitmap class 117
CButton class 139
CStatic class 1814

GetBitmapBits member function, CBitmap class 118
GetBitmapDimension member function,

CBitmap class 118

GetBitmapFlags member function,
CToolBarCtrl class 1928

GetBkColor member function
CDC class 482
ClmageList class 876
CListCtrl class 955

GetBkMode member function, CDC class 482
GetBookmark member function,

CDaoRecordset class 303
GetBorders member function,

CStatusBarCtrl class 1828
GetBorderSty Ie member function,

COleControl class 1204
GetBoundsRect member function, CDC class 482
GetBrushOrg member function, CDC class 483
GetBuddy member function,

CSpinButtonCtrl class 1790
GetBuffer member function, CString class 1847
GetBufferLength member function,

CEditView class 656
GetBufferSetLength member function,

CString class 1848
GetButton member function, CToolBarCtrl class 1928
GetButtonCount member function,

CToolBarCtrl class 1929
GetButtonlnfo member function, CToolBar class 1905
GetButtonStyle member function

CButton class 139
CToolBar class 1906

GetButtonText member function, CToolBar class 1906
GetCachedExtent member function,

COleClientItem class 1150
GetCacheSize member function,

CDaoRecordset class 304, 305
GetCallbackMask member function,

CListCtrl class 955
GetCapture member function, CWnd class 2121
GetCaretIndex member function, CListBox class 930
GetCaretPos member function, CWnd class 2121
GetChannelRect member function,

CSliderCtrl class 1771
GetCharABCWidths member function, CDC class 483
GetCharFormatSelection member function,

CRichEditView class 1718
GetCharPos member function,

CRichEditCtrl class 1690
GetCharWidth member function, CDC class 484

GetCheck member function
CButton class 140
CCheckListBox class 152

GetCheckedRadioButton member function,
CW nd class 2122

GetCheckStyle member function,
CCheckListBox class 153

Index

GetChildItem member function, CTreeCtrl class 1954
GetClassID member function

COleClientItem class 1151
COleControl class 1205
COleConvertDialog class 1260
COlelnsertDialog class 1371
COleObjectFactory class 1393

GetClientRect member function,
CWnd class 2122

GetClipboardData member function
COleClientItem class 1151
COleServerItem class 1454
CRichEditView class 1719

GetClipboardOwner member function
COleDataSource class 1289
CW nd class 2122

GetClipboardViewer member function,
Cwnd class 2123

GetClipBox member function, CDC class 485
GetColor member function

CColorDialog class 174
CFontDialog class 739

GetColorAdjustment member function, CDC class 486
GetColumn member function, CListCtrl class 956
GetColumnCount member function,

CSplitterWnd class 1804
GetColumnlnfo member function,

CSplitterWnd class 1805
GetColumn Width member function,

CListCtrl class 957
GetConnect member function

CDaoDatabase class 240
CDaoQueryDef class 267
CDaoTableDef class 364
CDatabase class 408

GetConnection member function,
CConnectionPoint class 212

GetContainer member function,
CConnectionPoint class 212

GetContext member function
ClnternetConnection class 882
ClnternetSession class 897

Index

GetContextMenu member function,
CRichEditView class 1720

GetControl data member, CDataPathProperty class 424
GetControlBar member function,

CFrameWnd class 760
GetControlSize member fUnction,

COleControl class 1207
GetControlStatus member function,

COlePropertyPage class 1411
GetControlUnknown member function,

CWnd class 2123
GetCopies member function, CPrintDialog class 1525
GetCount member function

CComboBox class 188
CControlBar class 218
CList class 913
CListBox class 930
CMap class 981
CMapStringToOb class 991
CObList class 1105
CTreeCtrl class 1954

GetCountPerPage member function,
CListCtrl class 957

GetCreationTime member function,
CFileFind class 712

GetCurFocus member function, CTabCtrl class 1875
GetCurrentBitmap member function, CDC class 486
GetCurrentBrush member function, CDC class 486
GetCurrentDirectory member function,

CFtpConnection class 772
GetCurrentDirectory As URL member function,

CFtpConnection class 772
GetCurrentFont member function

CDC class 487
CFontDialog class 740

GetCurrentIndex member function,
CDaoRecordset class 305

GetCurrentMessage member function,
CWnd class 2123

GetCurrentPalette member function, CDC class 487
GetCurrentPen member function, CDC class 487
GetCurrentPosition member function, CDC class 487
GetCurrentTime member function

COleDateTime 1298
CTime class 1887

GetCurSel member function
CComboBox class 188
CListBox class 930
CTabCtrl class 1875

GetCursor member function, CButton class 140
GetCursor member function, CStatic class 1814
GetData member function

CArray class 65
COleDataObject class 1278

GetDatabaseCount member function,
CDaoWorkspace class 388

GetDatabaseInfo member function,
CDaoWorkspace class 388

GetDatabaseName member function,
CDatabase class 410

GetDataSource member function,
COleServerItem class 1455

GetDateCreated member function
CDaoQueryDef class 268
CDaoRecordset class 306
CDaoTableDef class 365

GetDateLastUpdated member function
CDaoQueryDef class 268
CDaoRecordset class 306
CDaoTableDef class 365

GetDay member function
COleDateTime class 1298
CTime class 1887

GetDayOfW eek member function
COleDateTime 1299
CTime class 1887

GetDayOfY ear member function,
COleDateTime class 1300

GetDays member function
COleDateTimeSpan class 1320
CTimeSpan class 1897

GetDC member function, CWnd class 2124
GetDCEx member function, Cwnd class 2124
GetDefaultCharFormat member function,

CRichEditCtrl class 1691
GetDefaultConnect member function,

CRecordset class 1595
GetDefaultDBName member function,

CDaoRecordset class 307
GetDefaults member function, CPrintDialog class 1525
GetDefaultSQL member function

CDaoRecordset class 307
CRecordset class 1595

GetDeflD member function, CDialog class 569
GetDepth member function, CDumpContext class 626
GetDescendantWindow member function,

Cwnd class 2126
GetDesktop Window member function,

CWnd class 2126
GetDeviceCaps member function, CDC class 488
GetDeviceName member function

CPageSetupDialog class 1491
CPrintDialog class 1525

GetDeviceScrollPosition member function,
CScrollView class 1747

GetDeviceScrollSizes member function,
CScrollView class 1747

GetDev Mode member function
CPageSetupDialog class 1491
CPrintDialog class 1526

GetDim member function
COleSafeArray class 1425

GetDisplayName member function
CRecentFileList class 1573

GetDisplayName member function,
COleChangeSourceDialog class 1126

GetDisplayString member function
CFontHolder class 744
CPictureHolder class 1513

GetDIgCtrlID member function, CWnd class 2126
GetDIgltem member function, CWnd class 2127
GetDIgltemInt member function, CWnd class 2127
GetDlgItemText member function, CWnd class 2128
GetDockingFrame member function,

CControlBar class 218
GetDockState member function, CFrameWnd class 761
GetDocString member function,

CDocTemplate class 594
GetDocTemplate member function,

CDocument class 607
GetDocument member function

CDocltem class 578
C01eC1ientltem class 1152
COleServerItem class 1455
CRichEditView class 1721
CView class 2001

GetDragImage member function, CImageList class 876
GetDraw Aspect member function

COleClientltem class 1152
COleConvertDialog class 1260

GetDraw Aspect member function (continued)
COleInsertDialog class 1371
COlePasteSpecialDialog class 1402

GetDriverMode member function,
CPageSetupDialog class 1491

GetDriverName member function,
CPrintDialog class 1526

GetDropHilightltem member function,
CTreeCtrl class 1954

GetDroppedControlRect member function,
CComboBox class 188

GetDroppedState member function,
CComboBox class 188

GetDroppedWidth member function,
CComboBox class 189

Index

GetDSCCursor member function, CWnd class 2129
GetEditControl member function

CListCtrl class 957
CTreeCtrl class 1954

GetEditCtrl member function, CEditView class 656
GetEditMode member function,

CDaoRecordset class 308
GetEditSel member function,

CComboBox class 189
GetE1ement member function,

COleSafeArray class 1425
GetElemSize member function,

COleSafeArray class 1426
GetEmbeddedltem member function,

COleServerDoc class 1436
GetEmbedSourceData member function,

COleServerItem class 1456
GetEnabled member function, COleControl class 1209
GetEnhMetaFile member function, CStatic class 1815
GetEntryCount member function, CPalette class 1500
GetErrorCount member function,

CDaoException class 253
GetErrorInfo member function,

CDaoException class 253
GetErrorMessage member function,

CException class 668
GetEventMask member function,

CRichEditCtrol class 1691
GetExStyle member function, CWnd class 2128
GetExtendedControl member function,

COleControl class 1209
GetExtendedUI member function,

CComboBox class 189

Index

GetExtension Version member function,
CHttpServer class 855

GetExtent member function,
COleClientItem class 1152

GetExtLogPen member function, CPen Class 1508
GetFaceName member function,

CFontDialog class 740
GetFieldCount member function

CDaoQueryDef class 268
CDaoRecordset class 308
CDaoTableDef class 366

GetFieldlndex, Record field exchange (DFX) 258
GetFieldlnfo member function

CDaoQueryDef class 269
CDaoRecordset class 309
CDaoTableDef class 366

GetFieldValue member function,
CDaoRecordset class 310

GetFile member function
CArchive class 44
CDocument class 607
CFtpConnection class 773

GetFileData member function,
COleDataObject class 1278

GetFileExt member function, CFileDialog class 698
GetFileN arne member function

CFile class 681
CFileDialog class 698
CFileFind class 713
COleChangeSourceDialog class 1126

GetFilePath member function
CFile class 681
CFileFind class 713

GetFileTitle member function
CFile class 682
CFileDialog class 698
CFileFind class 714

GetFileURL member function
CFileFind class 714
CHttpFile class 828

GetFilterVersion member function,
CHupFilter class 835

GetFindString member function,
CFindReplaceDialog class 724

GetFirstDocPosition member function,
CDocTemplate class 595

GetFirstDocTemplatePosition member function,
CWinApp class 2030

GetFirstViewPosition member function,
CDocument class 608

GetFirstVisibleItem member function,
CTreeCtrl class 1955

GetFirstVisibleLine member function,
CEdit class 638
CRichEditCtrl class 1692

GetFocus member function, Cwnd class 2130
GetFont member function

COleControl class 1210
CWnd class 2130

GetFontData member function, CDC class 492
GetFontDispatch member function,

CFontHolder class 744
GetFontHandle member function,

CFontHolder class 744
GetFontTextMetrics member function
GetForeColor member function,

COleControl class 1210
GetForegroundWindow member function,

CWnd class 2130
GetFormatEtc member function,

CAsyncMonikerFile class 74
GetFromPage member function

CPrintDialog class 1526
CPrintInfo class 1531

GetFromPrefix member function,
COleChangeSourceDialog class 1127

GetFtpConnection member function,
CIntemetSession class 898

GetGlobalData member function,
COleDataObject class 1279

GetGlyphOutline member function, CDC class 493
GetGmtTm member function, CTime class 1888
GetGopherConnection member function,

CIntemetSession class 899
GetHalftoneBrush member function, CDC class 494
GetHandle member function, CEdit class 638
GetHandleMask member function,

CRectTracker class 1660
GetHashTableSize member function, CMap class 982
GetHead member function

CList class 913
CObList class 1105
CTypedPtrList class 1984

GetHeadPosition member function
CList class 914
CObList class 1106

GetHorizontalExtent member function,
CComboBox class 190

GetHorizontalExtent member function,
CListBox class 931

GetHotKey member function, CHotKeyCtrl class 812
GetHour member function

COleDateTime 1300
CTime class 1889

GetHours member function
COleDateTimeSpan 1321
CTimeSpan class 1897

GetHttpConnection member function,
CIntemetSession class 900

GetHwnd member function, COleControl class 1211
GetIcon member function

CButton class 140
CStatic class 1815
CWnd class 2131

GetIconicMetafile member function
COleChangeIconDialog class 1122
COleClientItem class 1153
COleConvertDialog class 1261
COleInsertDialog class 1372
COlePasteSpecialDialog class 1403

GetIDispatch member function, CCmdTargct class 163
GetIID member function, CConnectionPoint class 213
GetImageCount member function,

CImageList class 876
GetImageInfo member function, CImageList class 877
GetImageList member function

CListCtrl class 958
CTabCtrl class 1875
CTreeCtrl class 1955

GetIndent member function, CTreeCtrl class 1956
GetIndexCount member function

CDaoRecordset class 311
CDaoTableDef class 367

GetIndexInfo member function
CDaoRecordset class 311
CDaoTableDef class 368

GetIniPath member function,
CDaoWorkspace class 389

GetInPlaceActiveItem member function
COleDocument class 1348
CRichEditView class 1721

GetInPlace Window member function,
COleClientItem class 1153

GetIRichEditOle member function,
CRichEditCtrl class 1692

GetIsolateODBCTrans member function,
CDao Workspace class 390

GetItem member function
CHeaderCtrl class 806
CListCtrl class 958
CTabCtrl class 1875
CTreeCtrl class 1956

GetItemClipRect member function,
COleServerDoc class 1437

GetItemCount member function
CHeaderCtrl class 808
CListCtrl class 960
CTabCtrl class 1877

GetItemData member function
CComboBox class 190
CListBox class 931
CListCtrl class 960
CTreeCtrl class 1958

GetItemDataPtr member function
CComboBox class 191
CListBox class 931

GetItemHeight member function
CComboBox class 191
CListBox class 932

GetItemID member function
CStatusBar class 1821
CToolBar class 1906

GetItemImage member function
CTreeCtrl class 1958

GetItemName member function
COleChangeSourceDialog class 1127
COleServerItem class 1456

GetItemPosition member function
CListCtrl class 960
COleServerDoc class 1437

GetItemRect member function
CListBox class 932
CListCtrl class 961
CStatusBar class 1821
CTabCtrl class 1877
CToolBar class 1907
CToolBarCtrl class 1929
CTreeCtrl class 1959

GetItemState member function
CListCtrl class 961
COleClientItem class 1154
CTreeCtrl class 1959

Index

Index

GetItemText member function
CListCtrI class 962
CTreeCtrI class 1960

GetKerningPairs member function, CDC class 495
GetLastAccessTime member function,

CFileFind class 715
GetLastActivePopup member function,

Cwnd class 2131
GetLastError member function

CAsyncSocket class 90
COleDialog class 1333

GetLastModifiedBookmark member function,
CDaoRecordset class 312

GetLastStatus member function,
COleClientItem class 1154

GetLastWriteTime member function,
CFileFind class 715

GetLBound member function,
COleSafeArray class 1426

GetLBText member function, CComboBox class 191
GetLBTextLen member function,

CComboBox class 192
GetLength member function

CFile class 682
CFileFind class 716
CGopherFileFind class 798
CString class 1849

GetLicenseKey member function,
COleObjectFactoryEx class 1393

GetLimitText member function
CEdit class 639
CRichEditCtrI class 1692

GetLine member function
CEdit class 639
CRichEditCtrI class 1693

GetLineCount member function
CEdit class 640
CRichEditCtrI class 1693

GetLineSize member function, CSliderCtrI class 1771
GetLinkSourceData member function,

COleServerItem class 1456
GetLinkUpdateOptions member function,

COleClientItem class 1154
GetListCtrI member function, CListView class 977
GetLocale member function

CComboBox class 192
CListBox class 932

GetLocalTm member function, CTime class 1889

GetLocator member function,
CGopherFileFind class 799

GetLocatorType member function,
CGopherLocator class 801

GetLockingMode member function,
CDaoRecordset class 313

GetLogBrush member function, CBrush class 134-135
GetLogFont member function, CFont class 735
GetLoginTimeout member function,

CDaoWorkspace class 390
GetLogPen member function, CPen class 1509
GetMainWnd member function,

CWinThread class 2069
GetMapMode member function, CDC class 495
GetMargins member function

CEdit class 640
CPageSetupDialog class 1491
CRichEditView class 1721

GetMaxConnections member function,
CConnectionPoint class 213

GetMaxPage member function, CPrintlnfo class 1532
GetMDIFrame member function,

CMDIChildWnd class 1009
GetMenu member function, CWnd class 2131
GetMenuContextHelpId member function,

CMenu class 1041
GetMenuItemCount member function,

CMenu class 1041
GetMenuItemID member function, CMenu class 1041
GetMenuState member function, CMenu class 1042
GetMenuString member function, CMenu class 1043
GetMessageBar member function,

CFrameWnd class 761
GetMessageString member function

CFrameWnd class 761
COleControl class 1211

GetMinPage member function, CPrintlnfo class 1532
GetMinute member function

COleDateTime 1301
CTime class 1890

GetMinutes member function
COleDateTimeSpan 1321
CTimeSpan class 1897

GetMiterLimit member function, CDC class 496
GetModify member function

CEdit class 640
CRichEditCtrI class 1693

GetMoniker member function,
CMonikerFi1e class 1062

GetMonth member function
C01eDateTime 1302
CTime class 1890

GetName member function
CDaoDatabase class 240
CDaoQueryDef class 270
CDaoRecordset class 313
CDaoTab1eDef class 369
CDao Workspace class 391

GetNearestCo1or member function, CDC class 496
GetNearestPa1ettelndex member function,

CPa1ette class 1500
GetNext member function

CList class 914
CObList class 1107
CTypedPtrList class 1985

GetNextAssoc member function
CMap class 982
CMapStringToOb class 992
CTypedPtrMap class 1990

GetNextC1ientltem member function,
C01eDocument class 1348

GetNextD1gGroupltem member function,
CWnd class 2132

GetNextD1gTabltem member function,
CWnd class 2132

GetNextDoc member function,
CDocTemp1ate class 596

GetNextDocTemp1ate member function,
CWinApp class 2031

GetNextFormat member function,
C01eDataObject class 1280

GetNextltem member function
CListCtrl class 962
C01eDocument class 1349
CTreeCtrl class 1960

GetNextPathName member function,
CFileDia10g class 699

GetNextServerItem member function,
C01eDocument class 1349

GetNextSib1ingltem member function,
CTreeCtrl class 1961

GetNextView member function, CDocument class 608
GetNextVisib1eltem member function,

CTreeCtrl class 1961
GetNextWindow member function, Cwnd class 2133

GetNotifier member function,
CFindRep1aceDia1og class 725

GetNotSupported member function,
C01eContro1 class 1211

Index

GetNumTics member function, CS1iderCtrl class 1771
GetObject member function, CHttpFile class 828
GetObject member function, CGdiObject class 787
GetObjectArray member function,

C01ePropertyPage class 1412
GetObjectDescriptorData member function,

C01eServerItem class 1457
GetObjectSchema member function, CArchive class 44
GetObjectType member function,

CGdiObject class 788
GetODBCTimeout member function,

CDaoQueryDef class 270
GetOneDimSize member function

C01eSafeArray class 1426
GetOpenC1ipboardWindow member function,

CWnd class 2133
GetOrigin member function, CListCtrl class 963
GetOutlineTextMetrics member function,

CDC class 496
GetOutputCharWidth member function, CDC class 497
GetOutputTabbedTextExtent member function,

CDC class 498
GetOutputTextExtent member function, CDC class 499
GetOutputTextMetrics member function,

CDC class 499
GetOwner member function, CWnd class 2134
GetPage member function, CPropertySheet class 1557
GetPageCount member function,

CPropertySheet class 1558
GetPagelndex member function,

CPropertySheet class 1557
GetPageRect member function,

CRichEditView class 1722
GetPageSite member function,

C01ePropertyPage class 1412
GetPageSize member function, CSliderCtrl class 1772
GetPa1etteEntries member function,

CPa1ette class 1501
GetPane member function, CSp1itterWnd class 1805
GetPanelnfo member function, CStatusBar class 1821
GetPaneSty1e member function, CStatusBar class 1822
GetPaneText member function, CStatusBar class 1822

Index

GetPaperSize member function
CPageSetupDialog class 1492
CRichEditView class 1722

GetParaFormat member function,
CRichEditCtrl class 1694

GetParaFormatSelection member function,
CRichEditView class 1722

GetParameterCount member function,
CDaoQueryDef class 270

GetParameterInfo member function,
CDaoQueryDef class 271

GetParam Value member function
CDaoQueryDef class 272
CDaoRecordset class 314

GetParent member function, CWnd class 2134
GetParentFrame member function, CWnd class 2134
GetParentItem member function, CTreeCtrl class 1962
GetParentOwner member function, CWnd class 2135
GetParts member function, CStatusBarCtrl class 1828
GetPasswordChar member function, CEdit class 641
GetPastelndex member function,

COlePasteSpecialDialog class 1403
GetPath data member, CDataPathProperty class 424
GetPath member function, CDC class 500
GetPathName member function

CDocument class 609
CFileDialog class 699
COlelnsertDialog class 1372

GetPeerName member function,
CAsyncSocket class 90

GetPercentPosition member function,
CDaoRecordset class 314

GetPictureDispatch member function,
CPictureHolder class 1513

GetPixel member function, CDC class 501
GetPolyFillMode member function, CDC class 501
GetPortName member function

CPageSetupDialog class 1492
CPrintDialog class 1527

GetPos member function
CSliderCtrl class 1772
CSpinButtonCtrl class 1790

GetPosition member function, CFile class 682
GetPrev member function

CList class 915
CObList class 1108
CTypedPtrList class 1985

GetPrevSiblingItem member function,
CTreeCtrl class 1962

GetPrevVisibleItem member function,
CTreeCtrl class 1962

GetPrimarySelectedItem member function,
COleDocument class 1350

GetPrinterDC member function,
CPrintDialog class 1527

GetPrinterDeviceDefaults member function,
CWinApp class 2031

GetPrinterFont member function, CEditView class 656
GetPrintRect member function,

CRichEditView class 1723
GetPrintWidth member function,

CRichEditView class 1723
GetPriority member function

CAsyncMonikerFile class 74
GetProfileInt member function, CWinApp class 2032
GetProfileString member function,

CWinApp class 2032
GetProperty member function

COleDispatchDriver class 1337
CWnd class 2135

GetQueryDefCount member function,
CDaoDatabase class 241

GetQueryDefInfo member function,
CDaoDatabase class 242

GetQueryTimeout member function,
CDaoDatabase class 243

GetRange member function
CSliderCtrl class 1772
CSpinButtonCtrl class 1791

GetRangeMax member function,
CSliderCtrl class 1773

GetRangeMin member function, CSliderCtrl class 1773
GetReadOnlyPref member function,

CFileDialog class 700
GetRecordCount member function

CDaoRecordset class 315
CDaoTableDef class 369
CRecordset class 1600

GetRecordsAffected member function
CDaoDatabase class 243
CDaoQueryDef class 272

GetRect member function
CEdit class 641
CRichEditCtrl class 1694
CStatusBarCtrl class 1829

GetRectInContainer member function,
COleControl class 1212

GetRegionData member function, CRgn class 1677
GetRelationCount member function,

CDaoDatabase class 244
GetRelationlnfo member function,

CDaoDatabase class 244
GetReplaceString member function,

CFindReplaceDialog class 725
GetReturnsRecords member function,

CDaoQueryDef class 273
GetRgnBox member function, CRgn class 1677
GetRichEditCtrl member function,

CRichEditView class 1723
GetRoot member function, CFileFind class 716
GetRootItem member function, CTreeCtrl class 1963
GetROP2 member function, CDC class 502
GetRowCount member function

CSplitterWnd class 1805
CTabCtrl class 1877

GetRowlnfo member function,
CSplitterWnd class 1805

GetRows member function, CToolBarCtrl class 1929
GetRuntimeClass member function,

CObject class 1094
GetSafeHandle member function

CGdiObject class 788
ClmageList class 877

GetSafeHdc member function, CDC class 502
GetSafeHmenu member function, CMenu class 1044
GetSafeHwnd member function, CWnd class 2136
GetSafeOwner member function, CWnd class 2136
GetSavedCustomColors member function,

CColorDialog class 175
GetScreenName member function,

CGopherFileFind class 799
GetScrollBarCtrl member function, CWnd class 2137
GetScrollInfo member function

CScrollBar class 1739
CWnd class 2137

GetScrollLimit member function
CScrollBar class 1740
CWnd class 2138

GetScrollPos member function
CScrollBar class 1740
CWnd class 2138

GetScrollPosition member function,
CScrollView class 1748

GetScrollRange member function,
CScrollBar class 1741

GetScrollRange member function, CWnd class 2139

GetScrollStyle member function,
CSplitterWnd class 1806

GetSecond member function
COleDateTime 1302
CTime class 1890

GetSeconds member function
COleDateTimeSpan 1322
CTimeSpan class 1897

GetSel member function
CEdit class 642
CListBox class 933
CRichEditCtrl class 1695

Index

GetSelCount member function, CListBox class 933
GetSelectedCount member function,

CListCtrl class 963
GetSelectedItem member function

CRichEditView class 1724
CTreeCtrl class 1963

GetSelectedText member function,
CEditView class 657

GetSelection member function, CSliderCtrl class 1773
GetSelectionCharFormat member function,

CRichEditCtrl class 1695
GetSelectionType member function

COleBusyDialog class 1118
COleConvertDialog class 1261
COlelnsertDialog class 1372
COlePasteSpecialDialog class 1404
CRichEditCtrl class 1696

GetSelItems member function, CListBox class 933
GetSelText member function,

CRichEditCtrl class 1696
GetServerName member function,

ClnternetConnection class 883
GetServerVariable member function

CHttpFilterContext class 846
CHttpServerContext class 861

GetSession member function,
ClnternetConnection class 883

GetSize member function
CArray class 66
CFontDialog class 740
CObArray class 1081
CRecentFileList class 1574

GetSockN arne member function,
CAsyncSocket class 91

GetSockOpt member function, CAsyncSocket class 92
GetSourceTableName member function,

CDaoTableDef class 370

Index

GetSQL member function
CDaoQueryDef class 273
CDaoRecordset class 316
CRecordset class 1603

GetStartPosition member function
CFileDialog class 700
CMap class 983
CMapStringToOb class 993
COleDocument class 1350

GetState member function
CButton class 141
CToolBarCtri class 1930

GetStatus member function
CFiIe class 683
COleCurrency 1266
COleDateTime 1303
COleDateTimeSpan 1322
CRecordset class 1602

GetStatusBarCtri member function,
CStatusBar class 1822

GetStockTextMetrics member function,
COleControl class 1213

GetStreamFormat member function,
CRichEditDoc class 1712

GetStreamSize member function,
CHtmlStream class 818

GetStretchBltMode member function, CDC class 502
GetStringWidth member function, CListCtri class 963
GetStyle member function, CWnd class 2139
GetStyleName member function,

CFontDialog class 741
GetSubMenu member function, CMenu class 1044
GetSuperWndProcAddr member function,

CWnd class 2164
GetSystemMenu member function, CWnd class 2140
GetTabbedTextExtent member function,

CDC class 503
GetTabControl member function,

CPropertySheet class 1558
GetTableDefCount member function,

CDaoDatabase class 245
GetTableDefinfo member function,

CDaoDatabase class 246
GetTableName member function,

CRecordset class 1604
GetTaiI member function

CList class 916
CObList class 1109
CTypedPtrList class 1986

GetTailPosition member function
CList class 916
CObList class 1109

GetText member function
CListBox class 934
COleControl class 1213
CStatusBarCtri class 1829
CToolTipCtri class 1943

GetTextAlign member function, CDC class 504
GetTextBkColor member function, CListCtrl class 964
GetTextCharacterExtra member function,

CDC class 505
GetTextColor member function

CDC class 505
CListCtrl class 964

GetTextExtent member function, CDC class 505
GetTextFace member function, CDC class 506
GetTextLen member function, CListBox class 934
GetTextLength member function

CRichEditCtrl class 1697
CRichEditView class 1724
CStatusBarCtri class 1830

GetTextMetrics member function, CDC class 506
GetThreadPriority member function,

CWinThread class 2070
GetThumbRect member function,

CSliderCtri class 1774
GetTic member function, CSliderCtri class 1774
GetTicArray member function, CSliderCtri class 1774
GetTicPos member function, CSliderCtri class 1775
GetTile member function, CHttpServer class 856
GetTime member function, CTime class 1890
Getting connect strings 240
GetTitle member function, CDocument class 609
GetToolBarCtri member function,

CToolBar class 1907
GetToolCount member function,

CToolTipCtri class 1944
GetToolInfo member function,

CToolTipCtri class 1944
GetTooltips member function, CTabCtri class 1878
GetToolTips member function,

CToolBarCtri class 1930
GetToPage member function

CPrintDialog class 1527
CPrintlnfo class 1533

GetTopIndex member function
CComboBox class 193
CListBox class 935
CListCtrl class 964

GetTopLevelFrame member function,
CW nd class 2140

GetTopLevelOwner member function,
CWnd class 2141

GetTopLevelParent member function,
CWnd class 2141

GetToPrefix member function,
COleChangeSourceDialog class 1127

GetTopWindow member function, CWnd class 2141
GetTotalDays member function,

COleDateTimeSpan class 1323
GetTotalHours member function,

COleDateTimeSpan class l324
GetTotalHours member function,

CTimeSpan class 1898
GetTotalMinutes member function

COleDateTimeSpan 1325
CTimeSpan class 1898

GetTotalSeconds member function
COleDateTimeSpan 1325
CTimeSpan class 1898

GetTotalSize member function,
CScrollView class 1748

GetTreeCtrl member function, CTreeView class 1975
GetTrueRect member function,

CRectTracker class 1661
GetType member function

CDaoQueryDef class 274
CDaoRecordset class 316
COleClientItem class 1155
CPictureHolder class 1513

GetUBound member function,
COleSafeArray class 1426

GetUpdateRect member function, CWnd class 2142
GetUpdateRgn member function, CWnd class 2143
GetUpperBound member function

CArray class 66
CObArray class 1082

GetUserName member function,
CDao Workspace class 391

GetUserType member function,
COleClientltem class 1155

GetValidationRule member function,
CDaoRecordset class 317
CDaoTableDef class 370

GetValidationText member function
CDaoRecordset class 317
CDaoTableDef Class 371

GetVerb member function, CHttpFile class 828
GetVersion member function

CDaoDatabase class 247
CDaoWorkspace class 392
CDockState class 580
CPropExchange class 1567

Index

GetView member function, CRichEditDoc class 1713
GetViewportExt member function, CDC class 507
GetViewportOrg member function, CDC class 507
GetViewRect member function, CListCtrl class 965
GetVisibleCount member function,

CTreeCtrl class 1963
GetWeight member function, CFontDialog class 741
GetWindow member function

CDC class 507
CWnd class 2143

GetWindowContextHelpId member function,
CWnd class 2144

GetWindowDC member function, CWnd class 2144
GetWindowExt member function, CDC class 508
GetWindowMenuPopup member function,

CMDIFrameWnd class 1014
GetWindowOrg member function, CDC class 508
GetWindowPlacement member function,

CWnd class 2145
GetWindowRect member function, CWnd class 2145
GetWindowText member function, CWnd class 2146
GetWindowTextLength member function,

CWnd class 2147
GetWorkspaceCount member function,

CDao Workspace class 392
GetWorkspaceInfo member function,

CDao Workspace class 393
GetYear member function

COleDateTime l304
CTime class 1891

GetZoomFactor member function,
COleServerDoc class 1437

GiveFeedback member function,
COleDropSource class l357

Global function/macro
AFX_MANAGE_STATE 2322
AFX_SQL_ASYNC 2341
AFX_SQL_SYNC 2342
AfxAbort 2304
AfxBeginThread 2305

Index

Global function/macro (continued)
AfxCheckMemory 2306
AfxConnectionAdvise 2307
AfxConnectionUnadvise 2308
AfxDoForAllClasses 2308
AfxDoForAllObjects 2310
afxDump 2310,2311
AfxEnableControlContainer 2311
AfxEnableMemoryTracking 2312
AfxEndThread 2312
AfxFormatString1 2312
AfxFormatString2 2313
AfxGetApp 2315
AfxGetAppName 2315
AfxGetInstanceHandle 2315
AfxGetMainWnd 2316
AfxGetResourceHandle 2317
AfxGetThread 2318
AfxlsMemoryBlock 2319
Afxls ValidAddress 2320
Afxls ValidString 2320
afxMemDF 2323
AfxMessageBox 2324
AfxOleCanExitApp 2324
AfxOleGetMessageFilter 2326
AfxOleGetUserCtrl 2327
AfxOlelnit 2327
AfxOleLockApp 2327
AfxOleRegisterControlClass 2329
AfxOleRegisterPropertyPageClass 2331
AfxOleRegisterServerClass 2332
AfxOleRegisterTypeLib 2333
AfxOleSetEditMenu 2334
AfxOleSetUserCtrl 2335
AfxOleTypeMatchGuid 2335, 2337
AfxOleUnlockApp 2336
AfxOleUnregisterTypeLib 2337
AfxRegisterClass 2337
AfxRegisterWndClass 2339
AfxSetAllocHook 2340
AfxSetResourceHandle 2341
AfxSocketlnit 2341
AfxThrowArchiveException 2343
AfxThrowDaoException 2344
AfxThrowDBException 2344
AfxThrowFileException 2345
AfxThrowMemoryException 2345
AfxThrowNotSupportedException 2346
AfxThrowOleDispatchException 2346

Global function/macro (continued)
AfxThrowOleException 2347
AfxThrowResourceException 2347
AfxThrowUserException 2347
afxTraceEnabled 2348
afxTraceFlags 2348
AfxVerifyLicFile 2349
AND_CATCH 2351
AND_CATCH_ALL 2352
ASSERT 2353
ASSERT_VALID 2354
BASED_CODE 2354
BEGIN_CONNECTION_MAP 2355
BEGIN_CONNECTION_PART 2355
BEGIN_DISPATCH_MAP 2356
BEGIN_EVENT _MAP 2356
BEGIN_EVENTS INK_MAP 2357
BEGIN_MESSAGE_MAP 2357
BEGIN_OLEFACTORY 2358
BEGIN_PROPPAGEIDS 2359
CATCH 2359
CATCH_ALL 2360
CompareElements 2361
CONNECTION_lID 2362
CONNECTION_PART 2363
ConstructElements 2362
DDP _CBlndex 2363
DDP _CBString 2364
DDP _CBStringExact 2364
DDP _Check 2365
DDP _LBlndex 2365
DDP _LBString 2366
DDP _LBStringExact 2366
DDP _PostProcessing 2367
DDP _Radio 2368
DDP _Text 2368
DDV _Max Chars 2369
DDV _MinMaxByte 2369
DDV _MinMaxDouble 2370
DDV _MinMaxDWord 2370
DDV _MinMaxFloat 2371
DDV _MinMaxlnt 2371
DDV _MinMaxLong 2372
DDV _MinMaxUnsigned 2372
DDX_CBlndex 2373
DDX_CBString 2373
DDX_CBStringExact 2374
DDX_Check 2375
DDX_FieldCBlndex 2376

Global function/macro (continued)
DDX_FieldCBString 2377
DDX_FieldCBStringExact 2378
DDX_FieldCheck 2379
DDX_FieldLBIndex 2379
DDX_FieldLBString 2380
DDX_FieldLBStringExact 2381
DDX_FieldRadio 2382
DDX_FieldScroll 2383
DDX_FieldText 2384
DDX_LBIndex 2386
DDX_LBString 2387
DDX_LBStringExact 2387
DDX_Radio 2388
DDX_Scroll 2395
DDX_Text 2396
DEBUG_NEW 2397
DECLARE_CONNECTION_MAP 2397
DECLARE_DISPATCH_MAP 2398
DECLARE_DYNAMIC 2398
DECLARE_DYNCREATE 2399
DECLARE_EVENT_MAP 2399
DECLARE_EVENTS INK_MAP 2400
DECLARE_MESS AGE_MAP 2400
DECLARE_OLECREATE 2401
DECLARE_OLE CREATE_EX 2401
DECLARE_OLETYPELIB 2402
DECLARE_PROPPAGEIDS 2402
DECLARE_SERIAL 2402
DestructElements 2403
DFX_Binary 2404
DFX_Bool 2405
DFX_Byte 2406
DFX_Currency 2407
DFX_DateTime 2408
DFX_Double 2409
DFX_Long 2410
DFX_LongBinary 2411
DFX_Short 2412
DFX_Single 2413
DFX_Text 2414
DISP_DEFVALUE 2415
DISP _FUNCTION 2416
DISP_PROPERTY 2417
DISP_PROPERTY_EX 2418
END_CATCH 2422
END_CATCH_ALL 2422
END_CONNECTION_MAP 2422
END_CONNECTION_PART 2423

Global function/macro (continued)
END_DISPATCH_MAP 2423
END_EVENT_MAP 2423
END_EVENTSINK_MAP 2423
END_MESSAGE_MAP 2424
END_OLEFACTORY 2424
END_PROPPAGEIDS 2425
EVENT_CUSTOM 2425
EVENT_CUSTOM_ID 2426
HashKey 2427
IMPLEMENT_DYNAMIC 2427
IMPLEMENT_DYNCREATE 2428
IMPLEMENT_OLECREATE 2428
IMPLEMENT_OLECREATE_EX 2429
IMPLEMENT_OLETYPELIB 2430
IMPLEMENT_SERIAL 2430
ISAPIASSERT 2431
ISAPITRACE 2431
ISAPITRACEO 2432
ISAPIVERIFY 2434
ISAPTRACEI 2432
ISAPTRACE2 2433
ISAPTRACE3 2433
ON_COMMAND 2435
ON_COMMAND_RANGE 2436
ON_CONTROL 2436
ON_CONTROL_RANGE 2437
ON_EVENT 2437
ON_EVENT_RANGE 2438
ON_MESSAGE 2439
ON_OLEVERB 2442
ON_PROPNOTIFY 2444

Index

ON_PROPNOTIFY _RANGE 2445
ON_REGISTERED _MESSAGE 2446
ON_STDOLEVERB 2447
ON_UPDATE_COMMAND_UI 2448
ON_UPDATE_COMMAND_UCRANGE 2449
PROPPAGEID 2449
PX_Blob 2450
PX_Bool 2451
PX_Color 2451
PX_Currency 2452
PX_Double 2453
PX_Float 2454
PX_Font 2454
PX_IUnknown 2455
PX_Long 2456
PX_Picture 2456
PX_Short 2457

Index

Global function/macro (continued)
PX_String 2457
PX_ULong 2458
PX_UShort 2459
PX_ VBXFontConvert 2459
RFX_Binary 2460
RFX_Bool 2461
RFX_Byte 2463
RFX_Date 2464
RFX_Double 2466
RFX_Int 2468
RFX_Long 2469
RFX_LongBinary 2471
RFX_Single 2472
RFX_Text 2473
RUNTIME_CLASS 2475
SerializeElements 2477
THIS_FILE 2478
THROW 2478
THROW_LAST 2479
TRACE 2479
TRACEO 2480
TRACEI 2481
TRACE2 2481
TRACE3 2481
TRY 2482
VERIFY 2482

GlobalAlloc, memory leaks 1026
GlobalFree, memory leaks 1026
Globals, categories listed 2279
GotoDlgCtrl member function, CDialog class 570
GrayString member function, CDC class 508
GrayString, callback function for See Callback

functions for MFC member functions
GrowFile member function, CMemFile class 1023
GrowStream member function,

CHtmlStream class 818

H
HasBlankItems member function,

COleDocument class 1351
HashKey global function/macro 2427
HD _ITEM structure 806
HD_LAYOUT structure 808
HDBC handle

Database 418
ODBC 418

Header control 803

Height member function, CRect class 1644
HexDump member function, CDumpContext class 626
HideApplication member function,

CWinApp class 2033
HideButton member function, CToolBarCtrl class 1931
HideCaret member function, CWnd class 2147
HideSelection member function,

CRichEditCtrl class 1697
HiliteMenuItem member function, CWnd class 2148
HIMETRICtoDP member function, CDC class 510
HIMETRICtoLP member function, CDC class 510
HitTest member function

CListCtrl class 965
CRectTracker class 1661
CTabCtrl class 1878
CToolTipCtrl class 1945
CTreeCtrl class 1964

Hot key control 810
HSTMT handle

ODBC 1629
Recordset 1629

HTTP_FILTER_AUTHENT structure 2535
HTTP_FILTER_CONTEXT structure 2536
HTTP_FILTER_LOG structure 2540
HTTP_FILTER_PREPROC_HEADERS

structure 2541
HTTP_FILTER_RAW_DATA structure 2542
HTTP_FILTER_URL_MAP structure 2543
HTTP_FILTER_VERSION structure 2543
HttpExtensionProc member function,

CHttpServer class 856
HttpFilterProc member function, CHttpFilter class 836

ID, standard command and window 2288
IDataObject, MFC encapsulation 1275, 1282
IdFromRowCol member function,

CSplitterWnd class 1806
Idle member function, CDaoWorkspace class 393
Idle processing, DAO 393
IgnoreApply member function,

COlePropertyPage class 1413
Image Lists 868
IMAGEINFO structure 877
IMPLEMENT_DYNAMIC

global function/macro 2427

IMPLEMENT _DYNCREATE
global function/macro 2428

IMPLEMENT_OLECREATE
global function/macro 2428

IMPLEMENT _OLECREATE_EX
global function/macro 2429

IMPLEMENT _OLETYPELIB
global function/macro 2430

IMPLEMENT_SERIAL global function/macro 2430
Implicit construction of database object 233
Inconsistent updates, defined 238
Indeterminate member function,

CToolBarCtrl class 1931
Index field object (DAO),

obtaining information about 2505
Index object (DAO), obtaining information about 2502
InflateRect member function, CRect class 1644
InitHashTable member function, CMap class 983
Initialization settings

database engine 389
workspace 398

Initialization, OLE system DLLs 2295
InitializeFont member function, CFontHolder class 745
InitializeIIDs member function,

COlcControl class 1214
InitialUpdateFrame member function

CDocTemplate class 596
CFrameWnd class 762

Initiating drag and drop 1287
InitInstance member function

CHttpServer class 857
CWinApp class 2033
CWinThread class 2070

InitModalIndirect member function, CDialog class 570
InitStorage member function

CComboBox class 193
CListBox class 935

InitStream member function, CHtmlStream class 819
InModalState member function, CFrameWnd class 762
In-place editing

activation status 1438
change notifications 1439
clipping rectangle 1437
COleServerDoc class 1435
embedded status 1438
item coordinates 1437
item zoom factor 1437

InsertAfter member function
CList class 916
CObList class 1110

InsertAt member function
CArray class 66
COb Array class 1082

InsertBefore member function
CList class 917
CObList class 1110

InsertButton member function,
CToolBarCtrl class 1932

Index

InsertColumn member function, CListCtrl class 966
InsertFileAsObject member function,

CRichEditView class 1724
InsertItem member function

CHeaderCtrl class 808
CListCtrl class 967
CRichEditView class 1724
CTabCtrl class 1879
CTreeCtrl class 1965

InsertMenu member function, CMenu class 1044
InsertString member function

CComboBox class 194
CListBox class 936

Integer, DDX field exchange 2384
InternalGetFont member function,

COleControl class 1214
InternalGetText member function,

COleControl class 1214
IntersectClipRect member function, CDC class 510
IntersectRect member function, CRect class 1645
Invalidate member function, CWnd class 2148
InvalidateControl member function,

COleControl class 1215
InvalidateRect member function, CWnd class 2149
InvalidateRgn member function, CWnd class 2150
InvertRect member function, CDC class 511
InvertRgn member function, CDC class 511
InvokeHelper member function

COleDispatchDriver class 1337
CWnd class 2150

IOCtl member function, CAsyncSocket class 94
ISAPIASSERT global function/macro 2431
ISAPITRACE global function/macro 2431
ISAPITRACEO global function/macro 2432
ISAPIVERIFY global function/macro 2434
ISAPTRACE1 global function/macro 2432
ISAPTRACE2 global function/macro 2433
ISAPTRACE3 global function/macro 2433

Index

IsArchived member function, CFileFind class 717
IsBlank member function, CDocItem class 577
IsBlocking member function, CSocket class 1783
IsBOF member function

CDaoRecordset class 318
CRecordset class 1604

IsBold member function, CFontDialog class 741
IsBufferEmpty member function, CArchive class 45
IsButtonChecked member function,

CToolBarCtrl class 1932
IsButtonEnabled member function,

CToolBarCtrl class 1933
IsButtonHidden member function,

CToolBarCtrl class 1933
IsButtonlndeterminate member function,

CToolBarCtrl class 1933
IsButtonPressed member function,

CToolBarCtrl class 1934
IsChild member function, CWnd class 2151
IsChildPane member function,

CSplitterWnd class 1807
IsCompressed member function, CFileFind class 717
IsConnected member function,

COleServerItem class 1457
IsConvertingVBX member function,

COleControl class 1216
IsDataA vailable member function,

COleDataObject class 1280
IsDeleted member function

CDaoRecordset class 319
CRecordset class 1605

IsDialogMessage member function
CWnd class 2152

IsDirectory member function, CFileFind class 717
IsDIgButtonChecked member function,

CWnd class 2152
IsDots member function, CFileFind class 718
IsEmbedded member function,

COleServerDoc class 1438
IsEmpty member function

CList class 917
CMap class 983
CMapStringToOb class 993
CObList class 1111
CString class 1849

IsEnabled member function,
CCheckListBox class 153

IsEOF member function
CDaoRecordset class 320
CRecordset class 1606

IsFieldDirty member function
CDaoRecordset class 321
CRecordset class 1606

IsFieldNull member function
CDaoRecordset class 322
CRecordset class 1607

IsFieldNullable member function
CDaoRecordset class 323
CRecordset class 1608

IsFieldType member function,
CFieldExchange class 673

IsFloating member function, CControlBar class 219
IsHidden member function, CFileFind class 718
IsIconic member function, CWnd class 2153
IsIdleMessage member function,

CWinThread class 2071
IsInPlaceActive member function

COleClientItem class 1156
COleServerDoc class 1438

IsItalic member function, CFontDialog class 741
IsKindOf member function, CObject class 1095
IsLinkedltem member function,

COleServerltem class 1458
IsLinkUpToDate member function,

COleClientItem class 1156
IsLoading member function

CArchive class 46
CPropExchange class 1567

IsLocked member function
CMultiLock class 1068
CSingleLock class 1761

IsModified member function
CDocument class 610
COleClientItem class 1157
COleControl class 1217
COlePropertyPage class 1413

Is Normal member function, CFileFind class 718
Isolating ODBC transactions 399
IsOnFirstRecord member function

CDaoRecordView class 351
CRecordView class 1636

IsOnLastRecord member function
CDaoRecordView class 351
CRecordView class 1636

IsOpen member function
CDaoDatabase class 247
CDaoQueryDef class 274
CDaoRecordset class 323
CDaoTableDef class 371
CDao Workspace class 394
CDatabase class 411
COleClientItem class 1157
CRecordset class 1608

IsPrinting member function, CDC class 512
IsReadOnly member function, CFileFind class 719
IsRectEmpty member function, CRect class 1646
IsRectNull member function, CRect class 1646
IsRegistered member function,

COleObjectFactory class 1394
IsResultExpected member function,

CCmdTarget class 163
IsRichEditFormat member function,

CRichEditView class 1725
Is Running member function,

COleClientItem class 1157
IsSelected member function

CRichEditView class 1725
CView class 2001

IsSerializable member function, CObject class 1095
IsStoring member function, CArchive class 46
IsStrikeOut member function, CFontDialog class 742
IsSubclassedControl member function,

COleControl class 1218
IsSystem member function, CFileFind class 719
IsTemporary member function, CFileFind class 719
IsTerminating member function,

CFindReplaceDialog class 725
IsTracking member function, CFrameWnd 762
IsUnderline member function, CFontDialog class 742
Is Valid Operation member function,

CDaoFieldExchange class 257
Is ValidSource member function,

COleChangeSourceDialog class 1128
IsWindowEnabled member function, CWnd class 2153
IsWindowVisible member function, CWnd class 2153
IsZoomed member function, CWnd class 2154
ItemFromPoint member function, CListBox class 936
ItemHasChildren member function,

CTreeCtrl class 1966

J
Jet database engine See Database engine

K
KillTimer member function, CWnd class 2154

L
Large data objects, CLongBinary class 978
Layout member function, CHeaderCtrl class 808
Left member function, CString class 1849
LimitText member function

CComboBox class 194
CEdit class 642
CRichEditCtrl class 1698

LineFromChar member function
CEdit class 643
CRichEditCtrl class 1698

LineIndex member function
CEdit class 643
CRichEditCtrl class 1699

LineLength member function
CEdit class 644
CRichEditCtrl class 1699

LineScroll member function
CEdit class 644
CRichEditCtrl class 1700

LineTo member function, CDC class 512
LINGER structure 2544
Linked items (OLE) 1431
List box, DDX field exchange 2379-2381
List view control 945
List-Box styles 2567
Listen member function, CAsyncSocket class 95
Lists, collection classes

CList 909
CTypedPtrList 1981

LoadAccelTable member function,
CFrameWnd class 763

Index

LoadBarState member function, CFrameWnd class 763
LoadBitmap member function

CBitmap class 119
CToolBar class 1908

LoadBitmaps member function,
CBitmapButton class 125

LoadCursor member function, CWinApp class 2035
LoadField, Record field exchange (DFX) 258
LoadFrame member function, CFrameWnd class 764
LoadIcon member function, CWinApp class 2035
LoadMappedBitmap member function,

CBitmap class 119

Index

LoadMenu member function, CMenu class 1046
LoadMenuIndirect member function,

CMenu class 1046
LoadOEMBitmap member function,

CBitmap class 120
LoadOEMCursor member function,

CWinApp class 2036
LoadOEMIcon member function, CWinApp class 2037
LoadStandardCursor member function,

CWinApp class 2037
LoadStandardIcon member function,

CWinApp class 2038
LoadState member function, CDockState class 581
LoadStdProfileSettings member function,

CWinApp class 2039
LoadString member function, CString class 1850
LoadTemplate member function,

CDocTemplate class 597
LoadToolBar member function, CToolBar class 1908
LocalAlloc, memory leaks 1026
LocalFree, memory leaks 1026
Lock member function

CCriticalSection class 225
CMultiLock class 1068
COleSafeArray class 1427
CSingleLock class 1761
CSyncObject class 1868

LockBuffer member function
CEditView class 657
CString class 1851

Locking modes, recordset
described 1625
setting 1625

LockInPlaceActive member function,
COleControl class 1218

LockRange member function, CFile class 684
LockWindowUpdate member function,

CWnd class 2154
LOGBRUSH structure 2544
LOGFONT structure 2546
Login timeout See Workspace
Login timeout property, setting 400, 417
LOGPEN structure 2549
Long integer

DDX field exchange 2384
DFX field exchange 2410
RFX field exchange 2469

Lookup member function
CMap class 984
CMapStringToOb class 994
CTypedPtrMap class 1990

LPtoDP member function, CDC class 512
LPtoHIMETRIC member function, CDC class 513
LV_COLUMN structure 956
LV _FIND INFO structure 954
LV _HITTESTINFO structure 965
LV_ITEM structure 958

M
m_arrBarInfo data member, CDockState class 581
m_bAutoDelete data member

CControlBar class 221
CWinThread class 2076

m_bAutoMenuEnable data member,
CFrameWnd class 769

m_bAutoRelease data member,
COleDisplatchDriver class 1339

m_bCheckCacheForDirtyFields data member,
CDaoRecordset class 345

m_bContinuePrinting data member,
CPrintInfo class 1534

m_bDirect data member, CPrintInfo class 1534
m_bHelpMode data member, CWinApp class 2058
m_boolVal data member, CDBVariant class 432
m_bPreview data member, CPrintInfo class 1535
m_bRTF data member, CRichEditDoc class 1713
m_bRunAutomated data member,

CCommandLineInfo class 204
m_bRunEmbedded data member,

CCommandLineInfo class 205
m_bSaveAndValidate member function,

CDataExchange class 421
m_bShowSplash data member,

CCommandLineInfo class 205
m_bz data member, COleBusyDialog class 1119
m_Cache data member,

CCachedDataPathProperty class 148
m_cause data member

CArchiveException class 60
CFileException class 707

m3C data member, CColorDialog class 176
m_cf data member

CFontDialog class 742
m3hVal data member, CDBVariant class 433

m_ci data member,
COleChangeIconDialog class 1123

m_cs data member,
COleChangeSourceDialog class 1128

m3ur data member, COleCurrency class 1273
m_cv data member, COleConvertDialog class 1262
m_DAOTableDef data member,

CDaoTableDef class 377
m_dblVal data member, CDBVariant class 433
m_dt data member, COleDateTime class 1314
m_dwContext data member,

ClnternetException class 885
m_dwDataLength data member,

CLongBinary class 979
m_dwDefaultStyle data member, CCtrlView class 228
m_dwError data member, ClnternetException class 885
m_dwHelpContext data member,

COleDisplatchException class 1342
m_dwType data member, CDBVariant class 433
m_el data member, COleLinksDialog class 1383
m_fltVal data member, CDBVariant class 434
mjr data member, CFindReplaceDiaIog class 727
m_gp data member, COlePropertiesDialog class 1408
m_hAttribDC data member, CDC class 562
m_hData data member, CLongBinary class 979
m_hdbc data member, CDatabase class 418
m_hDC data member, CDC class 562
m_hFile data members

CFile class 693
ClnternetFile class 892

m_hlmageList data member, ClmageList class 880
m_hlnstance data member, CWinApp class 2058
m_hMenu data member, CMenu class 1052
m_hObject data member, CGdiObject class 789
m_hPrevlnstance data member, CWinApp class 2059
m_hSocket data member, CAsyncSocket class 112
m_hstmt data member, CRecordset class 1629
m_hThread data member, CWinThread class 2076
m_hWnd data member

CClientDC class 157
CPaintDC class 1496
CWindowDC class 2065
CWnd class 2276

m_io data member, COlelnsertDiaIog class 1373
m_iVal data member, CDBVariant class 434
m_IOsError data member, CFileException class 708
m_Ip data member, COlePropertiesDialog class 1408
m_IpCmdLine data member, CWinApp class 2059

Index

m_IpDispatch data member,
COleDispatchDriver class 1340

m_IpUserData data member, CPrintInfo class 1535
m_IVal data member, CDBVariant class 434
m_nAfxDaoError data member,

CDaoException class 254
m_nBulletIndent data member,

CRichEditView class 1734
m_nCmdShow data member, CWinApp class 2060
m_nCurPage data member, CPrintInfo class 1535
m_nFieids data member, CRecordset class 1629
m_nHandieSize data member,

CRectTracker class 1665
m_nNumPreviewPages data member,

CPrintInfo class 1536
m_nOperation data member,

CDaoFieldExchange class 258
m_nParams data member

CDaoRecordset class 346
CRecordset class 1630

m_nRetCode data member, COB Exception class 428
m_nShellCommand data member,

CCommandLinelnfo class 205
m_nStreamSize data members, CHtmlStream class 821
m_nStyie data member, CRectTracker class 1665
m_nThreadID data member, CWinThread class 2076
m_nWordWrap data member,

CRichEditView class 1734
m_ofn data member, CFileDialog class 703
m_op data member, COlePropertiesDiaIog class 1409
m_pActiveWnd data member

CWinApp class 2060
CWinThread class 2076

m_pbinary data member, CDBVariant class 434
m_pd data member, CPrintDialog class 1529
m_pDAODatabase data member,

CDaoDatabase class 250
m_pDAOQueryDef data member,

CDaoQueryDef class 279
m_pDAORecordset data member,

CDaoRecordset class 346
m_pDAOWorkspace data member,

CDao Workspace class 401
m_pDatabase data member

CDaoQueryDef class 279
CDaoRecordset class 346
CDaoTabieDef class 377
CRecordset class 1630

Index

m_pdate data member, CDBVariant class 435
m_pDIgWnd member function,

CDataExchange class 422
m_pDocument data member, CArchive class 58
m_pECB data member, CHttpServerContext class 866
m_pErrorInfo data member, CDaoException class 255
m_pFC data member, CHttpFilterContext class 849
m_pFont data member, CFontHolder class 746
m_pMain Wnd data member, CWinThread class 2077
m_pPD data member, CPrintInfo class 1536
m_pPict data member, CPictureHolder class 1514
m_prs data member, CDaoFieldExchange class 259
m_ps data member

COlePasteSpecialDialog class 1404
CPaintDC class 1496

m_psd data member, CPageSetupDialog class 1494
m_psh data member

COlePropertiesDialog class 1409
CPropertySheet class 1561

m_psp data member, CPropertyPage class 1550
m_pStream data member,

CHttpServerContext class 867
m_pStream data member, CStdioFile class 1836
m_pstring data member, CDBVariant class 435
m_pszAppName data member, CWinApp class 2060
m_pszExeName data member, CWinApp class 2061
m_pszHelpFiIePath data member,

CWinApp class 2062
m_pszProfileName data member, CWinApp class 2062
m_pszRegistryKey data member, CWinApp class 2063
m_p Workspace data member, CDaoDatabase class 250
m_rect data member, CRectTracker class 1665
m_rectDraw data member, CPrintInfo class 1536
m_sc data member, COleException class 1367
m_scode data member, CDaoException class 255
m_sizeExtent data member, CRectTracker class 1469
m_sizeMin data member, CRectTracker class 1665
m_span data member,

COleDataTimeSpan class 1330
m_status data member

COleCurrency class 1273
COleDateTime class 1315
COleDateTimeSpan class 1330

m_strClass data member, CCtrlView class 228
m_strDescription data member,

COleDispatchException class 1342

m_strDriverName data member,
CCommandLinelnfo class 207

m_strError
and m_strStateNativeOrigin 430
example 430

m_strError data member, CDBException class 430
m_strFileName data member,

CCommandLinelnfo class 206
m_strFilter data member

CDaoRecordset class 347
CRecordset class 1631

m_strHelpFile data member,
COleDispatchException class 1342

m_strPageDesc data member, CPrintInfo class 1537
m_strPortName data member,

CCommandLinelnfo class 207
m_strPrinterName data member,

CCommandLinelnfo class 207
m_strSort data member

CDaoRecordset class 347
CRecordset class 1631

m_strSource data member,
COleDispatchException class 1342

m_strStateNativeOrigin
and m_strError 430
example 430

m_strStateNativeOrigin data member,
CDBException class 430

m_ vp data member, COlePropertiesDialog class 1409
m_ wCode data member,

COleDispatchException class 1343
Macro categories (list) 2279
Mail API See MAPI
Mailing documents See MAPI
MakeLower member function, CString class 1851
MakeReverse member function, CString class 1852
Make-table query 261
MakeUpper member function, CString class 1852
MapDialogRect member function,

CDialog class 571
MAPI

described 611,615, 1352
MFC support for 611,615, 1352

MapObject member function, CArchive class 47
Maps

CMapPtrToPtr 986
CMapPtrTo Word 988
CMapStringToOb 990
CMapStringToPtr 998

Maps (continued)
CMapS tringToS tring 1000
CMapWordToOb 1002
CMapWordToPtr 1004
collection classes, CMap 980
CTypedPtrMap 1989

MapWindowPoints member function,
CWnd class 2155

MarkForAddNew, Record field exchange (DFX) 258
MarkForEdit, Record field exchange (DFX) 258
MaskBlt member function, CDC class 513
MatchCase member function,

CFindReplaceDialog class 726
MatchDocType member function,

CDocTemplate class 597
MatchesMask member function, CFileFind class 720
Match Whole Word member function,

CFindReplaceDialog class 726
MaxDFXOperation, Record field exchange (DFX) 258
MDIActivate member function

CMDIChildWnd class 1009
CMDIFrameWnd class 1014

MDICascade member function,
CMDIFrameWnd class 1015

MDIDestroy member function,
CMDIChildWnd class 1010

MDIGetActive member function,
CMDIFrameWnd class 1015

MDIIconArrange member function,
CMDIFrameWnd class 1016

MDIMaximize member function
CMDIChildWnd class 1010
CMDIFrameWnd class 1016

MDINext member function,
CMDIFrameWnd class 1016

MDIRestore member function
CMDIChildWnd class 1010
CMDIFrameWnd class 1017

MDISetMenu member function,
CMDIFrameWnd class 1017

MDITile member function,
CMDIFrameWnd class 1018

Measureltem member function
CComboBox class 195
CListBox class 936
CMenu class 1047

MEASUREITEMSTRUCT structure 2550

Member functions
CAnimateCtrl class 36
CArchive class 42
CArchiveException class 59
CArray class 63
CAsyncMoniker class 72
CAsyncSocket class 82
CBitmap class 114
CBitmapButton class 125
CBrush class 128
CButton class 138
CCheckListBox class 150
CClientDC class 156
CCmdTarget class 159
CCmdUI class 169
CColorDialog class 173
CComboBox class 181
CCommandLineInfo class 203
CCommonDialog class 209
CConnectionPoint 212
CControlBar class 215
CCriticalSection class 225
CCtrlView class 227
CDaoDatabase class 232
CDaoException class 252
CDaoFieldExchange class 257
CDaoQueryDef class 263
CDaoRecordset class 286
CDaoRecordView class 350
CDaoTableDef class 357
CDaoWorkspace class 382
CDatabase class 404
CDataExchange class 420
CDataPathProperty class 424
CDBVariant class 432
CDC class 445, 446, 482, 513, 545
CDialog class 566
CDialogBar class 575
CDocltem class 577
CDockState class 580
CDocObjectServer class 583
CDocObjectServerItem class 587
CDocTemplate class 591
CDocument class 603
CDragListBox class 621, 622, 623
CDumpContext class 625
CEdit class 634
CEditView class 655
CEvent class 664

Index

Index

Member functions (continued)
CException class 668
CFieldExchange class 673
CFile class 677
CFileDialog class 696
CFileException class 705
CFileFind class 710
CFindReplaceDialog class 723
CFont class 729
CFontDialog class 738
CFontHolder class 743
CForm View class 750
CFrameWnd class 754,769
CFtpConnection class 771
CFtpFileFind class 781
CGdiObject class 784
CGopherConnection class 791
CGopherFile class 795
CGopherFileFind class 797
CGopherLocator class 801
CHeaderCtrl class 804
CHotKeyCtrl class 811
CHtmlStream class 815
CHttpConnection class 822
CHttpFile class 826
CHttpFilter class 834
CHttpFilterContext class 845
CHttpServer class 852
CHttpServerContext class 861
ClmageList class 869
ClnternetConnection class 881
ClnternetException class 884
ClnternetFile class 887
ClnternetSession class 895
CList class 911
CListBox class 923
CListCtrl class 949
CListView class 976
CLongBinary class 979
CMap class 981
CMapStringToOb class 991
CMDIChildWnd class 1008
CMDIFrameWnd class 1013
CMemFile class 1020
CMemoryException class 1025
CMemoryState class 1027
CMenu class 1032
CMetaFileDC class 1054
CMiniFrameWnd class 1058

Member functions (continued)
CMonikerFile class 1061
CMultiDocTemplate class 1065
CMultiLock class 1068
CMutex class 1072
CNotSupportedException class 1073
CObArray class 1076
CObject class 1092
CObList class 1101
COleBusyDialog class 1117
COleChangelconDialog class 1121
COleChangeSourceDialog class 1125
COleClientItem class 1133
COleCmdUI class 1174
COleControl class 1184
COleConvertDialog class 1258
COleCurrency 1264
COleDataObject class 1276
COleDataSource class 1283
COleDateTime 1295
COleDateTimeSpan 1318
COleDialog class 1333
COleDispatchDriver class 1335
COleDocument class 1346
COleDropSource class 1357
COleDropTarget class 1360
COlelnsertDialog class 1369
COleIPFrameWnd class 1374
COleLinkingDoc class 1379
COleLinksDialog class 1382
COleMessageFilter class 1385
COleObjectFactory class 1392
COlePasteSpecialDialog class 1399
COlePropertiesDialog class 1406
COlePropertyPage class 1411
COleResizeBar class 1417
COleSafeArray class 1420
COleServerDoc class 1433
COleServerItem class 1452
COleStreamFile class 1471
COleTemplateServer class 1475
COleUpdateDialog class 1477
COle Variant 1480
CPageSetupDialog class 1488
CPaintDC class 1495
CPalette class 1498
CPen class 1504
CPictureHolder class 1511
CPoint class 1516

Member functions (continued)
CPrintDialog class 1523
CPrintlnfo class 1531
CProgressCtrl class 1539
CPropertyPage class 1543
CPropertySheet class 1552
CPropExchange class 1564
CRecentFileList class 1572
CRecordset class 1580
CRecordView class 1635
CRect class 1641
CRectTracker class 1658
CResourceException class 1666
CRgn class 1668
CRichEditCntrItem class 1682
CRichEditCtrl 1686
CRichEditDoc class 1712
CRichEditView class 1716
CScrollBar class 1738
CScrollView class 1746
CSemaphore class 1753
CSharedFile class 1755
CSingleDocTemplate class 1758
CSingleLock class 1761
CSize class 1763
CSliderCtrl class 1768
CSpinButtonCtrl class 1788
CSplitterWnd class 1797
CStatic class 1813
CStatusBar class 1819
CStatusBarCtrl class 1826
CStdioFile class 1834
CString class 1840
CSyncObject class 1867
CTabCtrl class 1871
CTime class 1884
CTimeSpan class 1895
CToolBar class 1904
CToolBarCtrl class 1920
CToolTipCtrl class 1941
CTreeCtrl class 1950
CTreeView class 1974
CTypedPtrArray class 1977
CTypedPtrList class 1982
CTypedPtrMap class 1990
CView class 2000
CWaitCursor class 2018
CWinApp class 2025
CWindowDC class 2064

Member functions (continued)
CWinThread class 2068

Index

CWnd class 2093,2119,2140,2164,2190,2214,
2240,2274

Memcpy member function
CHtmlStream class 819
CMemFile class 1023

Memory leaks
and GlobalAlloc and GlobalFree 1026
and LocalAlloc and LocalFree 1026
and malloc and free 1026
DEBUG_NEW macro 1026
detecting 1026
new operator 1026

Menu classes (list) 11
Message-box display, CString object formatting 2287
MessageBox member function, Cwnd class 2156
Message-box styles 2568
Messaging API See MAPI
Microsoft Foundation Class Library

application framework 3
overview 1
relationship to Windows API 3, 4

Microsoft Jet database engine See Database engine
Mid member function, CString class 1852
MINMAXINFO structure 2551
Modifying data source data 1287
Modifying drag and drop cursors 1357
ModifyMenu member function, CMenu class 1047
ModifyStyle member function, Cwnd class 2156
ModifyStyleEx member function, CWnd class 2157
Move member function

CDaoRecordset class 323
CRecordset class 1609

MoveFirst member function
CDaoRecordset class 324
CRecordset class 1611

MoveLast member function
CDaoRecordset class 325
CRecordset class 1612

MoveNext member function
CDaoRecordset class 326
CRecordset class 1613

MovePrev member function
CDaoRecordset class 327
CRecordset class 1614

MoveTo member function, CDC class 515
MoveWindow member function, CWnd class 2158

Index

Moving

N

through records, CRecordView class 1637
to first Recordset record 1611
to last Recordset record 1612
to new Recordset records 1609
to next Recordset record 1613
to previous Recordset record 1614

Names
user (default), setting 397
user-defined workspace 391

Native ODBC error strings 430
Navigating

class CRecordView 1637
Recordsets 1609, 1611-1614

NCCALCSIZE_PARAMS structure 2552
NegotiateBorderSpace member function,

CFrameWnd class 764
New operator, memory leaks 1026
NextDlgCtrl member function, CDialog class 571
NMHDR structure 1916
NO_AFX_DAO_ERROR error code 254
NormalizeHit member function,

CRectTracker class 1662
NormalizeRect member function, CRect class 1646
NotifyChanged member function

COleServerDoc class 1439
COleServerItem class 1458

NotifyClosed member function,
COleServerDoc class 1439

NotifyRename member function,
COleServerDoc class 1439

NotifySaved member function,
COleServerDoc class 1440

NUll, determining whether record set fields 1607
Nullable, determining whether recordset fields 1608

o
Obtaining information

about DAO errors 253
about database relations 244
about tabledefs 246
about workspaces 393

ODBC
Dialog data exchange (DDX) 2292
error codes 428

ODBC (continued)
error string 430
functions, calling database class 2341-2342
HDBC handle 418
HSTMT handle 1629
MFC database macros 2294
Record field exchange (RFX) 2290
timeout value, in DAO 270

ODBC transactions
isolating 399
isolating with DAO 390

ODBCvs.DAO
described 229,251,260
role of DAO database objects 230

ODBC with DAO
islolating ODBC transactions 390
isolating ODBC transactions 399
Login timeout property 400

OemToAnsi member function, CString class 1853
Offset member function, CPoint class 1516
OffsetClipRgn member function, CDC class 515
OffsetPos member function, CProgressCtrl class 1540
OffsetRect member function, CRect class 1647
OffsetRgn member function, CRgn class 1678
OffsetViewportOrg member function, CDC class 516
OffsetWindowOrg member function, CDC class 516
OLE

Activation 1433
application control functions 2295
base classes (list) 27
client items, COleClientltem class 1129
compound documents 1129
Data transfer 1275, 1282
data transfer classes (list) 29
dialog box classes (list) 29
embedded items 1436
initialization 2295
In-place editing

activation 1133-1134, 1441
deactivation 1441, 1443
resizing 1445

linked items 1431
miscellaneous classes (list) 32
server documents

closure notifications 1439
notifications 1440

server items
creation 1444
described 1450

OLE (continued)
Uniform data transfer 1275, 1282
verbs 1133
visual editing

container classes listed 27
server classes described 28

OLE Automation
dispatch maps described 2296
Event sink maps described 2300
Parameter Type, MFC encapsulation 1479

OLE Change Source dialog box 1124
OLE classes

described 27
overview 27

OLE container
described 1176
Rich edit 1711
Rich edit as 1681

OLE controls extended features of 1176
OleUIChangeSource function,

MFC encapsulation 1124
OLEUICHANGESOURCE structure,

MFC encapsulation 1124
ON_COMMAND global function/macro 2435
ON_COMMAND_RANGE

global function/macro 2436
ON_CONTROL global function/macro 2436
ON_CONTROL_RANGE global function/macro 2437
ON_EVENT global function/macro 2437
ON_EVENT _RANGE global function/macro 2438
ON_MESSAGE global function/macro 2439
ON_OLEVERB global function/macro 2442
ON_PROPNOTIFY global function/macro 2444
ON_PROPNOTIFY _RANGE

global function/macro 2445
ON_REGISTERED_MESSAGE

global function/macro 2446
ON_STDOLEVERB global function/macro 2447
ON_UPDATE_COMMAND_UI

global function/macro 2448
ON_UPDATE_COMMAND_UCRANGE

global function/macro 2449
OnAccept member functionCAsyncSocket class 96
OnActivate member function

COleClientltem class 1158
CWnd class 2158

OnActivateApp member function, CWnd class 2159
OnActivateFrame member function, CView class 2002

OnActivateUI member function,
COleClientltem class 1158

OnActivateView member function
CDocObjectServer class 584

Index

OnActivate View member function, CView class 2002
OnAdvise member function,

CConnectionPoint class 213
OnAmbientProperty member function,

CWnd class 2160
OnAmbientPropertyChange member function,

COleControl class 1219
OnApply member function, CPropertyPage class 1545
OnApplyScale member function,

COlePropetiesDialog class 1407
OnApplyViewState member function,

CDocObjectServer class 584
OnAskCbFormatName member function,

CWnd class 2160
OnAuthentication member function,

CHttpFilter class 837
OnBackColorChanged member function,

COleControl class 1219
OnBeginDrag member function,

COleDropSource class 1358
OnBeginPrinting member function, CView class 2003
OnCancel member function

CDialog class 571
CPropertyPage class 1546

OnCancelMode member function, Cwnd class 2161
OnCaptureChanged member function,

CWnd class 2161
OnChange member function,

COleClientltem class 1158
OnChangeCbChain member function,

CWnd class 2162
OnChangedRect member function,

CRectTracker class 1663
OnChangedViewList member function,

CDocument class 610
OnChangeltemPosition member function,

COleClientltem class 1159
OnChar member function, CWnd class 2162
OnCharEffect member function,

CRichEditView class 1726
OnCharToltem member function, Cwnd class 2163
OnChildActivate member function, CWnd class 2164
OnChildNotify member function, CWnd class 2164
OnClick member function, COleControl class 1220

Index

OnClose member function
CAsyncSocket class 97
COleServerDoc class 1440
CW nd class 2165

OnCloseDocument member function,
CDocument class 610

OnCmdMsg member function, CCmdTarget class 164
OnColorOK member function, CColorDialog class 175
OnCommand member function, CWnd class 2165
OnCompacting member function, CWnd class 2166
OnCompareItem member function, CWnd class 2166
OnConnect member function, CAsyncSocket class 97
OnContextHelp member function

CFrameWnd class 765
CWinApp class 2039

OnContextMenut member function, CWnd class 2167
OnCreate member function, CWnd class 2168
OnCreateClient member function,

CFrame Wnd class 765
OnCreateControlBars member function,

COleIPFrameWnd class 1375
OnCreateObject member function,

COleObjectFactory class 1394
OnCtlColor member function, CWnd class 2169
OnDataA vailable member function

CAsyncMonikerFile class 75
OnDDECommand member function,

CWinApp class 2039
OnDeactivate member function

COleClientItem class 1160
COleServerDoc class 1441

OnDeactivateAndUndo member function,
COleClientItem class 1160

OnDeactivateUI member function
COleClientItem class 1161
COleServerDoc class 1441

OnDeadChar member function, CWnd class 2170
OnDeleteltem member function, CWnd class 2171
OnDestroy member function, CWnd class 2172
OnDestroyClipboard member function,

CWnd class 2172
OnDeviceChange member function, CWnd class 2172
OnDevModeChange member function,

CWnd class 2173
OnDiscardUndoState member function,

COleClientItem class 1161
OnDoc Window Activate member function,

COleServerDoc class 1441

OnDo Verb member function,
COleServerItem class 1459

OnDragEnter member function
COleDropTarget class 1360
CView class 2004

OnDragLeave member function
COleDropTarget class 1361
CView class 2005

OnDragOver member function
COleDropTarget class 1361
CView class 2005

OnDragScroll member function
COleDropTarget class 1362
CView class 2006

On Draw member function
COleControl class 1221
COleServerItem class 1460
CView class 2007

OnDrawClipboard member function, CWnd class 2174
OnDrawEx member function,

COleServerItem class 1460
OnDrawItem member function, CWnd class 2174
OnDrawMetafile member function,

COleControl class 1222
On Draw Page member function,

CPageSetupDialog class 1492
OnDrawSplitter member function,

CSplitterWnd class 1807
OnDrop member function

COleDropTarget class 1363
CView class 2007

OnDropEx member function
COleDropTarget class 1364
CView class 2008

OnDropFiles member function, CWnd class 2175
OnDSCNotify member function, CWnd class 2177
OnEdit member function, COleControl class 1222
OnEditProperty member function,

COlePropertyPage class 1413
OnEnable member function, CWnd class 2176
OnEnabledChanged member function,

COleControl class 1222
OnEndOfNetSession member function,

CHttpFilter class 838
OnEndPrinting member function, CView class 2009
OnEndPrintPreview member function,

CView class 2010
OnEndSession member function, CWnd class 2178
OnEnterIdle member function, CWnd class 2178

OnEnterMenuLoop member function,
CWnd class 2179

OnEnum Verbs member function,
COleControl class 1223

OnEraseBkgnd member function, CWnd class 2179
OnEventAdvise member function,

COleControl class 1223
OnExitMenuLoop member function, CWnd class 2180
OnFileNameOK member function,

CFileDialog class 701
OnFileNew member function, CWinApp class 2040
OnFileOpen member function, CWinApp class 2041
OnFilePrintSetup member function,

CWinApp class 2042
OnFileSendMail member function

CDocument class 611
COleDocument class 1352

OnFinalRelease member function,
CCmdTarget class 165

OnFindEmbeddedltem member function,
COleLinkingDoc class 1379

OnFindNext member function
CEditView class 657
CRichEditView class 1726

OnFontChange member function, CW nd class 2181
OnFontChanged member function,

COleControl class 1223
OnForeColorChanged member function,

COleControl class 1224
OnFrameWindowActivate member function,

COleServerDoc class 1443
OnFreezeEvents member function,

COleControl class 1224
OnGetCheckPosition member function,

CCheckListBox class 154
OnGetClipboardData member function

COleClientItem class 1161
COleServerItem class 1461

OnGetClipRect member function,
COleClientltem class 1162

OnGetColorSet member function,
COleControl class 1224

OnGetControlInfo member function,
COleControl class 1225

OnGetDisplayString member function,
COleControl class 1225

OnGetDlgCode member function, CWnd class 2181
OnGetEmbeddedltem member function,

COleServerDoc class 1444

OnGetExtent member function,
COleServerItem class 1461

OnGetInPlaceMenu member function,
COleControl class 1226

OnGetItemPosition member function,
COleClientltem class 1162

OnGetLinkedItem member function,
COleLinkingDoc class 1379

OnGetMinMaxlnfo member function,
CWnd class 2182

OnGetPredefinedStrings member function,
COleControl class 1227

OnGetPredefinedValue member function,
COleControl class 1228

OnGetRecordset member function
CDaoRecordView class 352
CRecordView class 1637

OnGetWindowContext member function,
COleClientItem class 1163

OnHelp member function
COlePropertyPage class 1414
CWinApp class 2043

Index

OnHelpFinder member function, CWinApp class 2044
OnHelplndex member function, CWinApp class 2044
OnHelplnfo member function, CWnd class 2182
OnHelpUsing member function, CWinApp class 2044
OnHide member function,

CDocObjectServerItem class 587
OnHide member function, COleServerItem class 1462
OnHideToolbars member function,

COleControl class 1230
OnHScroll member function, CWnd class 2183
OnHScrollClipboard member function,

CWnd class 2184
OnIconEraseBkgnd member function,

CW nd class 2185
Onldle member function

CWinApp class 2045
CWinThread class 2071

OnlnitDialog member function
CDialog class 572
COlePropertyPage class 1414

OnlnitFromData member function,
COleServerItem class 1462

OnInitialUpdate member function
CRichEditView class 1726
CView class 2010

OnInitMenu member function, CWnd class 2185
OnlnitMenuPopup member function, CWnd class 2186

Index

OnlnsertMenus member function,
COleClientItem class 1163

OnlnvertTracker member function,
CSplitterWnd class 1808

OnKeyDown member function, CWnd class 2186
OnKeyDownEvent member function,

COleControl class 1232
OnKeyPressEvent member function,

COleControl class 1232
OnKeyUp member function, CWnd class 2187
OnKeyUpEvent member function,

COleControl class 1232
OnKillActive member function,

CPropertuPage class 1546
OnKillFocus member function, CWnd class 2188
OnLBSelChangedNotify member function,

CFileDialog class 702
OnLButtonDblClk member function, CWnd class 2189
OnLButtonDown member function, CWnd class 2190
OnLButtonUp member function, CWnd class 2190
OnLog member function, CHttpFilter class 839
OnLowResource member function,

CAsyncMonikerFile class 76
OnMapPropertyToPage member function,

COleControl class 1233
OnMButtonDblClk member function,

CWnd class 2191
OnMButtonDown member function, CWnd class 2192
OnMButtonUp member function, CWnd class 2193
OnMDIActivate member function, CWnd class 2193
OnMeasureItem member function, CWnd class 2194
OnMenuChar member function, CWnd class 2195
OnMenuSelect member function, CWnd class 2196
OnMessagePending member function

COleMessageFilter class 1387
CSocket class 1783

OnMnemonic member function,
COleControl class 1233

OnMouseActivate member function, CWnd class 2197
OnMouseMove member function, CWnd class 2198
OnMove member function

CDaoRecordView class 352
CRecordView class 1637
CWnd class 2200

OnMoving member function, CWnd class 2200
OnNcActivate member function, CWnd class 2201
OnNcCalcSize member function, CWnd class 2201
OnNcCreate member function, CWnd class 2202
OnNcDestroy member function, CWnd class 2203

OnNcHitTest member function, CWnd class 2203
OnNcLButtonDblClk member function,

CWnd class 2204
OnNcLButtonDown member function,

CWnd class 2205
OnNcLButtonUp member function, CWnd class 2205
OnNcMButtonDblClk member function,

CWnd class 2206
OnNcMButtonDown member function,

CWnd class 2207
OnNcMButtonUp member function, CWnd class 2207
OnNcMouseMove member function, CWnd class 2208
OnNcPaint member function, CWnd class 2208
OnNcRButtonDblClk member function,

CWnd class 2209
OnNcRButtonDown member function,

CWnd class 2209
OnNcRButtonUp member function, CWnd class 2210
OnNewDocument member function,

CDocument class 611
OnObjectsChanged member function,

COlePropertyPage class 1414
OnOK member function

CDialog class 572
CPropertyPage class 1546

On Open member function
CDocObjectServerItem class 587

On Open member function, COleServerItem class 1463
OnOpenDocument member function,

CDocument class 613
OnOutOfBandData member function,

CAsyncSocket class 98
OnPaint member function, CWnd class 2211
OnPaintClipboard member function, CWnd class 2212
OnPaletteChanged member function, CWnd class 2214
OnPaletteIsChanging member function,

CWnd class 2213
OnParaAlign member function,

CRichEditView class 1727
OnParentNotify member function, CWnd class 2214
OnParseError member function,

CHttpServer class 857
OnPasteNativeObject member function,

CRichEditView class 1727
OnPrepareDC member function, CView class 2011
OnPreparePrinting member function,

CView class 2012

OnPreprocHeaders member function,
CHttpFilter class 840

OnPrint member function, CView class 2013
OnPrinterChanged member function,

CrichEditView class 1728
OnProgress member function,

CAsyncMonikerFile class 76
OnProperties member function,

COleControl class 1234
OnQueryCancel member function,

CProperty Page class 1547
OnQueryDragIcon member function, CWnd class 2215
OnQueryEndSession member function,

CWnd class 2215
OnQueryNewPalette member function,

CW nd class 2216
OnQueryOpen member function, CWnd class 2216
OnQueryUpdateItems member function,

COleServerItem class 1463
OnRButtonDblClk member function, CWnd class 2216
OnRButtonDown member function, CWnd class 2217
OnRButtonUp member function, CWnd class 2218
OnReactivateAndUndo member function,

COleServerDoc class 1444
OnReadRawData member function,

CHttpFilter class 841
OnReceive member function, CAsyncSocket class 99
OnRemoveMenus member function,

COleClientItem class 1164
OnRenderAllFormats member function,

CWnd class 2219
OnRenderData member function

COleControl class 1235
COleDataSource class 1289
COleServerItem class 1464

OnRenderFileData member function
COleControl class 1236
COleDataSource class 1290
COleServerItem class 1464

OnRenderFormat member function, CWnd class 2219
OnRenderGlobalData member function

COleControl class 1237
COleDataSource class 1291
COleServerItem class 1465

OnReplaceAll member function
CEditView class 658
CRichEditView class 1728

OnReplaceSel member function
CEditView class 659
CRichEditView class 1728

Index

OnReset member function, CPropertyPage class 1547
OnResetState member function,

COleControl class 1238
OnResizeBorder member function,

COleServerDoc class 1445
OnSaveDocument member function,

CDocument class 614
OnSave ViewState member function,

CDocObjectServer class 584
OnScroll member function, CView class 2014
OnScrollBy member function

COleClientltem class 1165
CView class 2015

OnSend member function, CAsyncSocket class 99
OnSendRawData member function,

CHttpFiIter class 842
OnSetActive member function,

CPropertyPage class 1547
OnSetClientSite member function,

COleControl class 1238
OnSetColorScheme member function,

COleServerItem class 1466
OnSetCursor member function, CWnd class 2220
OnSetData member function

COleControl class 1238
COleDataSource class 1292
COleServerItem class 1466

OnSetExtent member function
COleServerItem class 1467

OnSetExtentmember function, COleControl class 1239
OnSetFocus member function, CWnd class 2221
OnSetFont member function, CDialog class 573
OnSetHostNames member function,

COleServerDoc class 1445
OnSetItemRects member function,

COleServerDoc class 1446
OnSetMenu member function,

COleClientltem class 1165
OnSetObjectRects member function,

COleControl class 1239
OnSetOptions member function

CDatabase class 412
CRecordset class 1614

OnSetPageSite member function,
COlePropertyPage class 1415

Index

OnSetPreviewMode member function,
CFrameWnd class 766

OnShare Violation member function,
CFileDialog class 702

On Show member function,
CDocObjectServerItem class 588

OnShow member function, COleServerItem class 1468
OnShowControlBars member function

COleClientItem class 1166
COleServerDoc class 1446

OnShowDocument member function,
COleServerDoc class 1447

OnShowItem member function,
COleClientItem class 1166

OnShowToolbars member function,
COleControl class 1240

OnShowViews member function,
COleDocument class 1352

OnShowWindow member function, CWnd class 2221
OnSize member function, CWnd class 2222
OnSizeClipboard member function, CWnd class 2223
On Sizing member function, CWnd class 2223
OnSpoolerStatus member function, CWnd class 2224
OnStartBinding member function,

CAsyncMonikerFile class 77
OnStatusCallback member function,

CIntemetSession class 900
OnStopBinding member function,

CAsyncMonikerFile class 77
OnStyleChanged member function, CWnd class 2224
OnStyleChanging member function, CWnd class 2225
OnSysChar member function, CWnd class 2225
OnSysColorChange member function,

CWnd class 2227
OnSysCommand member function, CWnd class 2227
OnSysDeadChar member function, CWnd class 2229
OnSysKeyDown member function, CWnd class 2229
OnSysKeyUp member function, CWnd class 2231
OnTCard member function, CWnd class 2232
OnTextChanged member function,

COleControl class 1240
OnTextNotFound member function

CEditView class 659
CRichEditView class 1729

OnTimeChange member function, CWnd class 2233
OnTimer member function, CWnd class 2233
OnToolHitTest member function, CWnd class 2234

OnUpdate member function
COleServerItem class 1468
CView class 2015

OnUpdateCharEffect member function,
CRichEditView class 1729

OnUpdateCmdUI member function,
CControlBar class 219

OnUpdateDocument member function,
COleServerDoc class 1447

OnUpdateFileSendMail member function,
CDocument class 615

OnUpdateFrameTitle member function,
COleClientltem class 1167

OnUpdateItems member function,
COleServerItem class 1469

OnUpdateParaAlign member function,
CRichEditView class 1730

OnUrlMap member function, CHttpFilter class 842
On VKeyToItem member function, CWnd class 2234
On VScroll member function, CWnd class 2235
On VScrollClipboard member function,

CWnd class 2236
OnWindowPosChanged member function,

CWnd class 2237
OnWindowPosChanging member function,

CWnd class 2238
OnWinIniChange member function, CWnd class 2238
OnWizardBack member function,

CPropertyPage class 1548
On WizardFinish member function,

CPropertyPage class 1548
OnWizardNext member function,

CPropertyPage class 1549
OnWndMsg member function, CWnd class 2239
Open data member, CDataPathProperty class 425
Open databases (DAO)

counting 388
obtaining information about 388

Open member function
CAnimateCtrl class 38
CAsyncMonikerFile class 78
CDaoDatabase class 247
CDaoQueryDef class 275
CDaoRecordset class 328
CDaoTableDef class 371
CDaoWorkspace class 395
CDatabase class 412
CFile class 685

Open member function (continued)
CMonikerFile class 1062
CRecordset class 1615

Open status, obtaining workspace 394
OpenClipboard member function, CWnd class 2240
OpenDocumentFile member function

CDocTemplate class 598
CWinApp class 2047

OpenFile member function
CFtpConnection class 775
CGopherConnection class 792

Opening
CStreamFile objects 1473
data source connections 412
databases

described 247,412
Jet vs. ODBC 247

recordsets 1615
workspaces 395

OpenRequest member function,
CHttpConnection class 823

OpenStream member function,
COleStreamFile class 1473

OpenURL member function,
CIntemetSession class 902

Operations, validity of DFX 257
operator - member function

COleCurrency 1270
COleDateTime class 1312
COleDateTimeSpan class 1328
CPoint class 1519
CRect class 1655
CSize class 1765

operator != member function
COleCurrency 1272
COleDateTime 1313
COleDateTimeSpan 1329
CPoint class 1517
CRect class 1652
CSize class 1764

operator & member function, CRect class 1655
operator &= member function, CRect class 1653
operator *, COleCurrency class 1271
operator *=, COleCurrency class 1271
operator I, COleCurrency class 1271
operator 1=, COleCurrency class 1271
operator [] member function

CArray class 69
CMap class 985

operator [] member function (continued)
CMapStringToOb class 997
CObArray class 1090
CRecentFileList class 1575
CString class 1862
CTypedPtrArray class 1980
CTypedPtrMap class 1991

operator 1 member function, CRect class 1656
operator 1= member function, CRect class 1654
operator + member function

COleCurrency 1270
COleDateTime 1312
COleDateTimeSpan 1328
CRect class 1654
CPoint class 1518
CSize class 1765
CString class 1860

operator +, - member function
CTime class 1891
CTimeSpan class 1899

operator += member function
COleCurrency 1270
COleDateTime 1313
COleDateTimeSpan 1328
CPoint class 1517
CRect class 1652
CSize class 1764
CString class 1861

operator +=, -= member function
CTime class 1892
CTimeSpan class 1899

operator < member function
COleCurrency class 1272
COleDateTime class 1313
COleDateTimeSpan class 1329

operator « member function
CArchive class 56
CDumpContext class 627
CHtmlStream class 820
CHttpServerContext class 866
COleCurrency 1273
COleDateTime 1314
COleDateTimeSpan 1329
COleVariant 1486

operator «, » member function
CString class 1859
CTime class 1893
CTimeSpan class 1900

Index

Index

operator <= member function
COleCurrency 1272
COleDateTime 1313
COleDateTimeSpan 1329

operator = member function
CObject class 1097
COleCurrency 1269
COleDateTime 1311
COleDateTimeSpan 1327
COleSafeArray class 1429
COleVariant class 1484
CRect class 1651
CString class 1858
CTime class 1891
CTimeSpan class 1898

operator -= member function
CPoint class 1518
CRect class 1653
CSize class 1765

operator == member function
COleCurrency 1272
COleDateTime 1313
COleDateTimeSpan 1329
COleSafeArray class 1430
COleVariant class 1485
CPoint class 1517
CRect class 1651
CSize class 1764

operator> member function
COleCurrency 1272
COleDateTime 1313
COleDateTimeSpan 1329

operator >= member function
COleCurrency 1272
COleDateTime 1313
COleDateTimeSpan 1329

operator» member function
CArchive class 57
COleCurrency 1273
COleDateTime 1314
COleDateTimeSpan 1329
COleVariant 1486

operator CURRENCY, COleCurrency class 1272
operator DATE, COleDateTime class 1313
operator delete member function, CObject class 1097
operator double, COleDateTimeSpan class 1328
operator HBITMAP member function,

CBitmap class 121
operator HFONT member function, CFont class 736

operator HINTERNET member function
CIntemetConnection class 881
CIntemetFile class 892
CIntemetSession class 908

operator HP ALETTE member function,
CPalette class 1501

operator HPEN member function, CPen class 1509
operator HRGN member function, CRgn class 1680
operator LPCRECT member function,

CRect class 1651
operator LPCTSTR () member function,

CString class 1859
operator LPCTSTR member function,

CGopherLocator class 802
operator LPCV ARIANT member function,

COleSafeArray class 1430
operator LPCV ARIANTmember function,

COleVariant class 1485
operator LPRECT member function, CRect class 1651
operator LPV ARIANT member function,

COleSafeArray class 1430
operator LPV ARIANT member function,

COle Variant class 1485
operator new member function, CObject class 1097
Operators

COleCurrency 1269
COleDateTime 1311
COleDateTimeSpan 1327
COleVariant class 1484

Options, setting
data source connections 412
recordsets 1614

OsErrorToException member function,
CFileException class 706

OutputColumn, CDaoFieldExchange class 256

p
PaintRgn member function, CDC class 517
PAINTSTRUCT structure 2553
param, CDaoField Exchange class 256
Parameter object (DAO),

obtaining information about 2506
Parameters, getting querydef 272, 277
ParseCommandLine member function,

CWinApp class 2048
ParseCurrency member function,

COleCurrency class 1267

ParseDateTime member function,
COleDateTime class 1305

ParseParam member function,
CCommandLineInfo class 203

Pass-through queries
defined 238
executing 238
SAL 261
SQL 261

Passwords
setting default 397
setting for DAO workspace 387

Paste member function
CComboBox class 195
CEdit class 645
CRichEditCtrl class 1700

PasteSpecial member function,
CRichEditCtrl class 1701

PatBlt member function, CDC class 517
Persistence of OLE controls 2303
Pie member function, CDC class 518
Play member function, CAnimateCtrl class 38
PlayMetaFile member function, CDC class 519
PIgBlt member function, CDC class 520
POINT structure 2554
PolyBezier member function, CDC class 521
PolyBezierTo member function, CDC class 522
PolyDraw member function, CDC class 523
Polygon member function, CDC class 524
Polyline member function, CDC class 524
PolylineTo member function, CDC class 525
PolyPolygon member function, CDC class 525
PolyPolyline member function, CDC class 526
PosFromChar member function, CEdit class 645
PostMessage member function, CWnd class 2240
PostModalDialog member function,

COleControl class 1243
PostNcDestroy member function, CWnd class 2241
PreCloseFrame member function,

CDocument class 615
PreCreateWindow member function, CWnd class 2241
PreDrawPage member function,

CPageSetupDialog class 1493
PreModalDialog member function,

COleControl class 1242
PrepareCtrl member function,

CDataExchange class 420
PrepareEditCtrl member function,

CDataExchange class 421

PressButton member function
CPropertySheet class 1558
CToolBarCtrl class 1934

PreSubclassWindow member function,
CWnd class 2242

PreTranslateMessage member function
CWinApp class 2049
CWinThread class 2072
CWnd class 2242

PrevDIgCtrl member function, CDialog class 573
Print member function, CWnd class 2242

Index

PrintAll member function, CPrintDialog class 1527
PrintClient member function, CWnd class 2243
PrintCollate member function, CPrintDialog class 1528
PrintInsideRect member function

CEditView class 660
CRichEditView class 1730

PrintPage member function, CRichEditView class 1731
PrintRange member function, CPrintDialog class 1528
PrintS election member function,

CPrintDialog class 1528
Process member function, COleException class 1366
ProcessMessageFilter member function

CWinApp class 2049
CWinThread class 2073

Process Shell Command member function,
CWinApp class 2050

ProcessWndProcException member function
CWinApp class 2051
CWinThread class 2073

Progress bar control 1538
Property Pages 2298
Property sheet classes (list) 12
PROPPAGEID global function/macro 2449
Providing data

Clipboard 1292
data transfer 1282

PtInRect member function, CRect class 1647
PtInRegion member function, CRgn class 1679
PtrOfIndex member function,

COleSafeArray class 1427
PtVisible member function, CDC class 526
PulseEvent member function, CEvent class 665
PutElement member function,

COleSafeArray class 1427
PutFile member function, CFtpConnection class 776
PX_Blob global function/macro 2450

Index

PX_Bool global function/macro 2451
PX_Color global function/macro 2451
PX_Currency global function/macro 2452
PX_Double global function/macro 2453
PX_Float global function/macro 2454
PX_Font global function/macro 2454
PX_IUnknown global function/macro 2455
PX_Long global function/macro 2456
PX_Picture global function/macro 2456
PX_Short global function/macro 2457
PX_String global function/macro 2457
PX_ULong global function/macro 2458
PX_ UShort global function/macro 2459
PX_ VBXFontConvert global function/macro 2459

Q
Query timeouts

DAO 243
setting 249
values, setting 417

Query, database See QueryDef. See Recordsets
Query Abort member function, CDC class 527
Query AcceptData member function,

CRichEdit View class 1731
QueryContinueDrag member function,

COleDropSource class 1358
Querydef object (DAO),

obtaining information about 2507
QueryDefs

action queries 261
and recordsets 261
and SQL

described 261,265
getting SQL statement 273
setting SQL statement 278

automatic rollback on error 266
closing 265
connect string (ODBC) 267, 275
consistent updates 266
constructing 264
counting 241
counting fields in 268
counting parameters in 270
creating 265
creating with MS Access 260
creation date 268
database owned by 279
date created 268

QueryDefs (continued)
date last updated 268
defined 260
deleting 237
Execute member function 266
executing SQL directly 266
fields in 268,269
for ODBC 261
Inconsistent updates 266
m_pDAOQueryDef pointer 279
m_pDatabase pointer 279
name of 270, 276
obtaining information about 242
ODBC timeout property 270, 276
on external data sources 261
open status of 274
opening 275
options

dbConsistent 266
dbDenyWrite 266
dbFailOnError 266
dbInconsistent 266
dbSeeChanges 266
dbSQLPassThrough 266

parameters
described 270,271
getting value 272
value, setting 277

pass-through query, SQL 261
pointer to parent database 279
pointer to underlying DAO object 279
purposes 261
query type

action 261,274
append 261,274
bulk 261,274
cross-tab 261,274
data definition (DDL) 261,274
delete 261,274
make-table 261,274
pass-through, SQL 261,274
select 261,274
SQL pass-through 261,274
union 261,274
update 261,274

records affected by Execute 272
referential integrity 266
ReturnsRecords property 273,278
saved/stored queries 264

QueryDefs (continued)
setting attributes of 264
SQL pass-through query 261, 266
SQL, executing directly 266
temporary 260, 264, 265
timeout, ODBC 270, 276
type of query 274
underlying DAO object, pointer to 279
usage 260
write permission 266

QueryInfo member function, CHttpFile class 829
QueryInfoStatusCode member function,

CHttpFile class 831
QueryOption member function,

CIntemetSession class 904
QuerySiblings member function,

CPropertyPage class 1549

R
Radio button, DDX field exchange 2382
ReactivateAndUndo member function,

COleClientItem class 1167
Read locks, DAO 393
Read member function

CArchive class 49
CFile class 686
CImageList class 878
CIntemetFile class 888

ReadClass member function, CArchive class 49
ReadClient member function,

CHttpServerContext class 863
ReadHuge member function, CFile class 686
ReadList member function,

CRecentFileList class 1574
ReadObject member function, CArchieve class 50
ReadString member function

CArchive class 51
CIntemetFile class 889
CStdioFile class 1835

RealizePalette member function, CDC class 527
Realloc member function, CMemFile class 1023
Realloc member function, CHtmlStream class 819
Rebuilding recordsets 1621
Reca1cLayout member function

CFrameWnd class 766
CSplitterWnd class 1808

Receive member function, CAsyncSocket class 100

ReceiveFrom member function,
CAsyncSocket class 102

Record field exchange (DFX)
class CDaoFieldExchange 256
DoFieldExchange mechanism 1590
field exchange operations listed 258
field types, setting 258
functions 2290
IsFieldType function 673
m_prs data member 259
operations, validity of 257
PSEUDO_NULL values 258
Recordset 1590
recordset, pointer to 259
SetFieldType function 673

Record views, CRecordView class 1633
Records

adding new 1580
deleting 1587
editing 1591
updating 1591

Records affected by Execute 243
Recordsets

ability to transact 1583
ability to update records 1584
and querydefs 261
asynchronous operation, canceling 1582
beginning of, detecting 1604
bound fields 1629
closing 1586
columns selected, number 1629
completing add 1628
completing edit 1628
constructing 1587
creating 1587
cursor concurrency, support for 1614
customizing SQL 1615
default connection string 1595
deleting records 1587
determining ability to scroll 1583
determining appendability 1581
determining whether dirty 1606
determining whether field can be set Null 1608
determining whether Null 1607
determining whether open 1608
dynaset-type 280
editing records 1591
end of, detecting 1606
exchanging data with data source 1590

Index

Index

Recordsets (continued)
fields

setting dirty 1623
setting null 1624

filter string 1631
HSTMT handle 1629
locking mode, setting 1625
moving

to a new record 1609
to first record 1611
to last record 1612
to next record 1613
to previous record 1614

navigating 1609, 1611, 1612, 1613, 1614
opening 1615
operations

binding dynamically 281
differences between recordset types 281
using DoFieldExchange 281

options, setting 1614
rebuilding 1621
record field exchange 1590
refreshing 1621
requerying 1621
RFX 1590
scroll able cursors, support for 1614
setting null 1624
similarities between ODBC and DAO 280
snapshot-type 280
sort string 1631
SQL statement, getting 1603
status, getting 1602
table name, getting 1595, 1604
table-type 280
updating 1591, 1628
whether deleted, determining 1605

RecreateControlWindow member function,
COleControl class 1242

RECT structure 2554
Rectangle member function, CDC class 528
RectDefault member function, CFrameWnd class 769
RectlnRegion member function, CRgn class 1679
RectVisible member function, CDC class 528
Redim member function, COleSafeArray class 1428
Redrawltems member function, CListCtri class 968
RedrawWindow member function, CWnd class 2244
Referential integrity

described 266
enforcing database relations 235

ReflectChildNotify member function,
CWnd class 2245

RefiectLastMsg member function, CWnd class 2246
Refresh member function, COleControl class 1243
Refreshing recordsets 1621
RefreshLink member function,

CDaoTableDef class 372
Register member function

COleDropTarget class 1365
COleLinkingDoc class 1380
COleMessageFilter class 1388
COleObjectFactory class 1394

RegisterAll member function,
COleObjectFactory class 1394

Registering OLE controls 2301
RegisterShellFileTypes member function,

CWinApp class 2051
Registry key settings

database engine 389
setting 398

Relation field object (DAO),
obtaining information about 2511

Relation object (DAO),
obtaining information about 2510

Relational operators
COleCurrency 1272
COleDateTime 1313
COleDateTimeSpan 1329

Relations (database)
cascades 237
counting 244
creating 235
deleting 237
obtaining information about 244
referential integrity, enforcing 235

RelayEvent member function, CToolTipCtri class 1946
Release member function

COleClientltem class 1167
COleDataObject class 1281

ReleaseAttribDC member function, CDC class 529
ReleaseBuffer member function, CString class 1853
ReleaseDC member function, CWnd class 2247
ReleaseDispatch member function,

COleDispatchDriver class 1339
ReleaseFile member function, CDocument class 615
ReleaseFont member function, CFontHolder class 745
ReleaseOutputDC member function, CDC class 529
Releasing data objects 1277, 1281

Reload member function, COleClientItem class 1168
Remove member function

CFile class 687
CFtpConnection class 777
ClmageList class 878
CRecentFileList class 1574

RemoveAll member function
CArray class 67
CList class 917
CMap class 984
CMapStringToOb class 994
CObArray class 1084
CObList class 1111

RemoveAt member function
CArray class 67
CList class 918
CObArray class 1085
CObList class 1112

RemoveDirectory member function,
CFtpConnection class 778

RemoveDocument member function,
CDocTemplate class 598

RemoveHead member function
CList class 918
CObList class 1113
CTypedPtrList class 1987

Removelmage member function, CTabCtrl class 1879
RemoveItem member function,

COleDocument class 1355
RemoveKey member function

CMap class 984
CMapStringToOb class 995

RemoveMenu member function, CMenu class 1049
RemovePage member function,

CPropertySheet class 1559
RemoveTail member function

CList class 918
CObList class 1113
CTypedPtrList class 1987

Remove View member function, CDocument class 616
Rename member function, CFtpConnection class 778
Rename member function, CFile class 687
Render member function, CPictureHolder class 1514
Repairing databases 395
Replace member function, ClmageList class 878
ReplaceAll member function,

CFindReplacedialog class 726
ReplaceCurrent member function,

CFindReplaceDialog class 726

ReplaceSel member function
CEdit class 645
CRichEditCtrl class 1701

Index

ReportError member function, CException class 670
ReportSaveLoadException member function,

CDocument class 616
RepositionBars member function, CWnd class 2247
RepositionFrame member function,

COleIPFrameWnd class 1375
Requery member function

CDaoRecordset class 331
CRecordset class 1621

Requerying recordsets 1621
RequestPositionChange member function,

COleServerDoc class 1447
RequestResize member function,

CRichEditCtrl class 1702
Reset member function, CHtmlStream class 820
ResetContent member function

CComboBox class 195
CListBox class 937

ResetData data member, DataPathProperty class 426
ResetDC member function, CDC class 529
ResetEvent member function, CEvent class 665
ResizeOneDim member function

COleSafeArray class 1428
ResizePalette member function, CPalette class 1502
ResizeParentToFit member function,

CScrollView class 1749
Restore member function, CWaitCursor class 2019
RestoreDC member function, CDC class 530
RestoreState member function,

CToolBarCtrl class 1935
Restore WaitCursor member function,

CCmdTarget clzass 165
ResumeThread member function,

CWinThread class 2074
RETCODE

defined 428
values 428

Retrieving data from data objects 1278, 1279
Return codes, values for ODBC 428
ReverseFind member function, CString class 1854
Revoke member function

COleDropTarget class 1365
COleLinkingDoc class 1380
COleMessageFilter class 1388
COleObjectFactory class 1395

Index

RevokeAll member function,
COleObjectFactory class 1395

RFX
See also Record Field Exchange
IsFieldType function 673
Recordset 1590
SetFieldType function 673

RFX field exchange
Boolean 2461
Byte 2463
Byte array 2460
CLongBinary 2471
CString 2473
CTime 2464
Double 2466
Long integer 2469
Short integer 2468
Single precision float 2472

RFX vs. DFX 256
RFX_Binary global function/macro 2460
RFX_Bool global function/macro 2461
RFX_Byte global function/macro 2463
RFX_Date global function/macro 2464
RFX_Double global function/macro 2466
RFX_Int global function/macro 2468
RFX_Long global function/macro 2469
RFX_LongBinary global function/macro 2471
RFX_Single global function/macro 2472
RFX_ Text global function/macro 2473
RGNDATA structure 2554
Rich Edit

as OLE container 1681, 1711
DocumentlView version 1711

Right member function, CString class 1854
Rollback member function

CDaoWorkspace class 395
CDatabase class 414

Rolling back database transactions 396, 414
Root classes (list) 4
RoundRect member fUnction, CDC class 530
Run member function

COleClientltem class 1168
CWinApp class 2052
CWinThread class 2074

RunAutomated member function, CWinApp class 2052
RunEmbedded member function, CWinApp class 2053
RunModalLoop member function, CWnd class 2248

Run-time object model services 2282
RUNTIME_CLASS global function/macro 2475

s
SaveAllModified member function

CDocTemplate class 599
CWinApp class 2053

SaveBarState member function, CFrameWnd class 767
SaveDC member function, CDC class 531
SaveEmbedding member function,

COleServerDoc class 1448
SaveModified member function, CDocument class 617
SaveState member function, CDockState class 581
SaveS tate member function, CToolbarCtrl class 1935
Scale ViewportExt member function, CDC class 531
ScaleWindowExt member function, CDC class 532
SCODE, information about 255
ScreenToClient member function, CWnd class 2248
Scroll Bar styles 2569
Scroll member function, CListCtrl class 968
Scrollable cursors, recordset 1614
Scroll-bar control, DDX field exchange 2383
ScrollContainerBy member function,

COleServerDoc class 1448
ScrollDC member function, CDC class 532
Scrolling

class CRecordView 1637
determining ability to scroll 1583

ScrollToPosition member function,
CScrollView class 1749

ScrollWindow member function, CWnd class 2249
ScrollWindowEx member function, CWnd class 2250
SearchDown member function,

CFindReplaceDialog class 727
Security support, DAO database 378
Seek member function

CAnimateCtrl class 39
CDaoRecordset class 332
CFile class 688
CIntemetFile class 889

SeekToBegin member function, CFile class 689
SeekToEnd member function, CFile class 689
Select member function

CFontHolder class 746
CTreeCtrl class 1966

Select query 261
SelectClipPath member function, CDC class 533
SelectClipRgn member function, CDC class 534

SelectDropTarget member function,
CTreeCtrl class 1967

SelectFontObject member function,
COleControl class 1245

Selectltem member function, CTreeCtrl class 1967
SelectObject member function, CDC class 535
SelectPalette member function, CDC class 536
SelectPrinter member function, CWinApp class 2053
SelectStockFont member function,

COleControl class 1246
SelectStockObject member function, CDC class 537
SelectString member function

CComboBox class 196
CListBox class 937

SelItemRange member function, CListBox class 938
Send member function, CAsyncSocket class 104
SendChildNotifyLastMsg member function,

CWnd class 2251
SendDlgJtemMessage member function,

CWnd class 2252
SendMessage member function, CWnd class 2252
SendMessageToDescendants member function,

CWnd class 2253
SendNotifyMessage member function,

CW nd class 2254
SendRequest member function, CHttpFile class 832
SendTo member function, CAsyncSocket class 105
Serialize member function, CObject class 1096
SerializeClass member function, CArchive class 51
SerializeElements global function/macro 2477
SerializeRaw member function, CEditView class 660
Server documents, COleServerDoc class 1431
ServerSupportFunction member function,

CHttpFilterContext class 848
ServerSupportFunction member function,

CHttpServerContext class 864
ServiceTypeFromHandle member function,

CInternetSession class 906
SetAbortProc member function, CDC class 538
SetAbortProc, callback function for See Callback

functions for MFC member functions
SetAbsolutePosition member function,

CDaoRecordset class 334
SetAccel member function,

CSpinButtonCtrl class 1791
SetActivePage member function,

CPropertySheet class 1559
SetActivePane member function,

CSplitterwnd class 1809

Index

SetActive View member function,
CFrameWnd class 767

SetActiveWindow member function, CWnd class 2254
SetAnchorIndex member function, CListBox class 938
SetArcDirection member function, CDC class 539
SetAt member function

CArray class 68
CList class 919
CMap class 985
CMapStringToOb class 996
CObArray class 1086
CObList class 1114
CString class 1855

SetAtGrow member function
CArray class 68
CObArray class 1087

SetAttribDC member function, CDC class 540
SetAttributes member function,

CDaoTableDef class 372
SetBackColor member function,

COleControl class 1248
SetBackgroundColor member function,

CRichEditCtrl class 1702
SetBarStyle member function, CControlBar class 220
SetBasc member function, CSpinButtonCtrl class 1792
SetBitmap member function

CButton class 141
CStatic class 1815
CToolBar class 1909

SetBitmapBits member function, CBitmap class 121
SetBitmapDimension member function,

CBitmap class 122
SetBitmapSize member function,

CToolBarCtrl class 1936
SetBkColor member function

CDC class 540
CImageList class 879
CListCtrl class 969

SetBkMode member function, CDC class 541
SetBookmark member function,

CDaoRecordset class 335
SetBorderStyle member function,

COleControl class 1248
SetBoundsRect member function, CDC class 541
SetBrushOrg member function, CDC class 542
SetBuddy member function,

CSpinButtonCtrl class 1792
SetBusyReply member function,

COleMessageFilter class 1388

Index

SetButtonInfo member function, CToolBar class 1909
SetButtons member function, CToolBar class 1910
SetButtonSize member function,

CToolBarCtrl class 1936
SetButtonStructSize member function,

CToolBarCtrl class 1937
SetButtonStyle member function

CButton class 142
CToolBar class 1910

SetButtonText member function, CToolBar class 1911
SetCacheSize member function,

CDaoRecordset class 335-336
SetCallbackMask member function,

CListCtrl class 969
SetCapture member function, CWnd class 2255
SetCaretlndex member function, CListBox class 939
SetCaretPos member function, CWnd class 2255
SetCharFormat member function,

CRichEditView class 1732
SetCheck member function

CButton class 142
CCheckListBox class 155
CCmdUI class 170
COleCmdUI class 1174

SetCheckStyle member function,
CCheckListBox class 155

SetClipboard member function,
COleDataSource class 1292

SetClipboardViewer member function,
CWnd class 2255

SetCmdID member function, CToolBarCtrl class 1937
SetColorAdjustment member function, CDC class 543
SetColumn member function, CListCtrl class 969
SetColumnInfo member function,

CSplitterWnd class 1809
SetColumn Width member function

CListBox class 939
CListCtrl class 970

SetConnect member function
CDaoQueryDef class 275
CDaoTableDef class 373

SetContainerInfo member function,
CDocTemplate class 599

SetControl data member, CDataPathProperty class 426
SetControlSize member function,

COleControl class 1249
SetControlStatus member function,

COlePropertyPage class 1415
SetCurrency member function, COleCurrency 1268

SetCurrentColor member function,
CColorDialog class 176

SetCurrentDirectory member function,
CFtpConnection class 779

SetCurrentIndex member function,
CDaoRecordset class 337

SetCurSel member function
CComboBox class 196
CListBox class 939
CTabCtrl class 1879

SetCursor member function
CButton class 143
CRectTracker class 1663
CStatic class 1816

SetDate member function, COleDateTime class 1306
SetDateTime member function,

COleDateTime class 1307
SetDateTimeSpan member function,

COleDateTimeSpan class 1326
SetDefaultCharFormat member function,

CRichEditCtrl class 1702
SetDefaultPassword member function,

CDaoWorkspace class 397
SetDefaultTitle member function,

CDocTemplate class 600
SetDefaultUser member function,

CDaoWorkspace class 397
SetDefiD member function, CDialog class 573
SetDelayTime member function,

CToolTipCtrl class 1946
SetDepth member function, CDumpContext class 627
SetDialogBkColor member function,

CWinApp class 2054
SetDialogResource member function,

COlePropertyPage class 1415
SetDirtyField, Record field exchange (DFX) 258
SetDIgCtrlID member function, CWnd class 2256
SetDIgItemInt member function, CWnd class 2256
SetDIgItemText member function, CWnd class 2257
SetDockState member function, CFrameWnd class 767
SetDragCursorImage member function,

CImageList class 879
SetDraw Aspect member function,

COleClientItem class 1168
SetDroppedWidth member function,

CComboBox class 197
SetEditSel member function, CComboBox class 197
SetEnabled member function, COleConrol class 1249

SetEnhMetaFile member function, CStatic class 1816
SetEvent member function, CEvent class 665
SetEventMask member function,

CRichEditCtrl class 1703
SetExtendedUI member function,

CComboBox class 198
SetExtent member function, ColeClientltem class 1169
SetFieldDirty member function

CDaoRecordset class 338
CRecordset class 1623

SetFieldNull member function
CDaoRecordset class 339
CRecordset class 1624
Record field exchange (DFX) 258

SetFieldType function
example 673
Record Field Exchange 673

SetFieldType member function
CDaoFieldExchange class 258
CFieldExchange class 673

SetFieldValue member function,
CDaoRecordset class 340

SetFieldValueNull member function,
CDaoRecordset class 341

SetFilePath member function, CFile class 689
SetFinishText member function,

CPropertySheet class 1560
SetFocus member function, CWnd class 2258
SetFont member function

CFontHolder class 746
COleControl class 1250
CWnd class 2258

SetForeColor member function,
COleControl class 1250

SetForegroundWindow member function,
CWnd class 2257

SetHandle member function
CEdit class 646
CSharedFile class 1755

SetHeight member function, CToolBar class 1911
SetHeipID member function, CDialog class 574
SetHelpInfo member function,

COlePropertyPage class 1416
SetHorizontalExtent member function,

CComboBox class 198
SetHorizontalExtent member function,

CListBox class 940

SetHostNames member function,
COleClientltem class 1169

SetHotKey member function,
CHotKeyCtrl class 812

Setlcon member function
CButton class 143
CStatic class 1817
CWnd class 2258

SetIconicMetafile member function,
COleClientltem class 1170

SetImageList member function
CListCtrl class 970
CTabCtrl class 1880
CTreeCtrl class 1968

Index

SetIndent member function, CTreeCtrl class 1969
SetIndicators member function, CStatusBar class 1823
SetIniPath member function,

CDaoWorkspace class 398
SetInitialDataFormats member function,

COlecontrol class 1251
SetInitialSize member function,

COleControl class 1251
SetIsolateODBCTrans member function,

CDaoWorkspace class 399
SetItem member function

CHeaderCtrl class 809
CListCtrl class 971
CTabCtrl class 1880
CTreeCtrl class 1969

SetItemCount member function, CListCtrl class 972
SetltemData member function

CComboBox class 199
CListBox class 940
CListCtrl class 972
CTreeCtrl class 1970

SetItemDataPtr member function
CComboBox class 199
CListBox class 941

SetltemHeight member function
CComboBox class 200
CListBox class 941

SetltemImage member function, CTreeCtrl class 1970
SetltemN arne member function,

COleServerItem class 1469
SetltemPosition member function, CListCtrl class 972
SetltemRects member function,

COleClientItem class 1170
SetltemSize member function, CTabCtrl class 1880

Index

SetltemState member function
CListCtrl class 973
CTreeCtrl class 1971

SetItemText member function
CListCtrl class 973
CTreeCtrl class 1971

SetLength member function, CFile class 690
SetLimitText member function, CEdit class 647
SetLineSize member function, CSliderCtrl class 1775
SetLinkUpdateOptions member function,

COleClientltem class 1171
SetLoadParams member function,

CArchive class 52
SetLocale member function

CComboBox class 200
CListBox class 942

SetLockingMode member function
CDaoRecordset class 341
CRecordset class 1625

SetLoginTimeout member function
CDao Workspace class 400
CDatabase class 417

SetMapMode member function, CDC class 543
SetMapperFlags member function, CDC class 545
SetMargins member function

CEdit class 647
CRichEditView class 1732

SetMaxPage member function, CPrintlnfo class 1533
SetMenu member function, CWnd class 2259
SetMenuContextHelpld member function,

CMenu class 1049
SetMenuItemBitmaps member function,

CMenu class 1050
SetMessagePendingDelay member function,

COleMEssageFilter class 1389
SetMessageText member function,

CFrameWnd class 768
SetMinHeight member function,

CStatusBarCtrl class 1830
SetMinPage member function, CPrintlnfo class 1533
SetMiterLimit member function, CDC class 545
SetModified member function,

CPropertyPage class 1549
SetModifiedFlag member function

CDocument class 617
COleControl class 1251
COlePropertyPage class 1416

SetModify member function
CEdit class 648
CRichEditCtrl class 1703

SetName member function
CDaoQueryDef class 276
CDaoTableDef class 375

SetNotPermitted member function,
COleControl class 1252

SetNotSupported member function,
COlecontrol class 1252

SetObjectSchema member function, CArchive class 53
SetODBCTimeout member function,

CDaoQueryDef class 276
SetOLECallback member function,

CRichEditCtrl class 1704
SetOption member function,

CIntemetSession class 907
SetOptions member function, CRichEditCtrl class 1704
SetOutputDC member function, CDC class 545
SetOverlayImage member function,

ClmageList class 880
SetOwner member function

CToolBarCtrl class 1937
CWnd class 2259

SetPadding member function, CTabCtrl class 1881
SetPageName member function,

COlePropertyPage class 1416
SetPageSize member function, CSliderCtrl class 1775
SetPaletteEntries member function, CPalette class 1502
SetPaneInfo member function, CStatusBar class 1823
SetPaneStyle member function, CStatusBar class 1824
SetPaneText member function, CStatusBar class 1824
SetPaperSize member function,

CRichEditView class 1733
SetParaFormat member function

CRichEditCtrl class 1705
CRichEditView class 1733

SetParam Value member function
CDaoQueryDef class 277
CDaoRecordset class 342

SetParamValueNull member function,
CDaoRecordset class 343

SetParent member function, CWnd class 2260
SetParts member function, CStatusBarCtrl class 1831
SetPasswordChar member function, CEdit class 648
SetPath data member,

CDataPathProperty class 426

SetPathName member function, CDocument class 618
SetPercentPosition member function,

CDaoRecordset class 343
SetPictureDispatch member function,

CPictureHolder class 1514
SetPixel member function, CDC class 545
SetPixelV member function, CDC class 546
SetPolyFillMode member function, CDC class 547
SetPos member function

CProgressCtrl class 1540
CSliderCtrl class 1776
CSpinButtonCtrl class 1792

SetPrintDevice member function,
COleClientltem class 1172

SetPrinterFont member function, CEditView class 661
SetProperty member function

COleDispatchDriver class 1339
CWnd class 2260

SetQueryTimeout member function
CDaoDatabase class 249
CDatabase class 417

SetRadio member function, CCmdUI class 170
SetRange member function

CProgressCtrl class 1540
CSliderCtrl class 1776
CSpinButtonCtrl class 1793

SetRangeMax member function, CSliderCtrl class 1776
SetRangeMin member function, CSliderCtrl class 1777
SetReadBufferSize member function,

CInternetFile class 890
SetReadOnly member function

CEdit class 648
CRichEditCtrl class 1706

SetRect member function
CEdit class 649
CRect class 1648
CRichEditCtrl class 1706

SetRectEmpty member function, CRect class 1648
SetRectInContainer member function,

COleControl class 1252
SetRectNP member function, CEdit class 650
SetRectRgn member function,

CRgn class 1680
SetRedraw member function,

CW nd class 2261
SetRegistryKey member function,

CWinApp class 2054

SetRetryReply member function,
COleMessageFilter class 1389

SetReturnsRecords member function,
CDaoQueryDef class 278

SetROP2 member function, CDC class 547
SetRow Info member function,

CSplitterWnd class 1809

Index

SetRows member function, CToolBarCtrl class 1938
SetRules member function, CHotKeyCtrl class 813
SetScaleToFitSize member function,

CScrollView class 1750
SetScrollInfo member function

CScrollBar class 1741
CWnd class 2261

SetScrollPos member function
CScrollBar class 1742
CWnd class 2262

SetScrollRange member function
CScrollBar class 1742
CWnd class 2263

SetScrollSizes member function,
CScrollView class 1750

SetScrollStyle member function,
CSplitterWnd class 1810

SetSel member function
CEdit class 650
CListBox class 942
CRichEditCtrl class 1706

SetSelection member function, CSliderCtrl class 1777
SetSelectionCharFormat member function,

CRichEditCtrl class 1707
SetServerinfo member function,

CDocTemplate class 600
SetSimple member function, CStatusBarCtrl class 1831
SetSize member function

CArray class 69
CObArray class 1089

SetSizes member function, CToolBar class 1912
SetSockOpt member function, CAsyncSocket class 108
SetSourceTableName member function,

CDaoTableDef class 375
SetSQL member function, CDaoQueryDef class 278
SetState member function

CButton class 144
CToolBarCtrl class 1939

SetStatus member function
CFile class 690
COleCurrency 1268

Index

SetStatus member function (continued)
COleDateTime 1309
COleDateTimeSpan 1326

SetStep member function, CProgressCtrl class 1541
SetStoreParams member function, CArchive class 53
SetStretchBltMode member function, CDC class 548
SetSysString member function, CString class 1855
SetTabStops member function

CEdit class 651
CEditView class 661
CListBox class 942

SetTargetDevice member function,
CRichEditCtrl class 1708

SetText member function
CCmdUI class 170
COleCmdUI class 1175
COleControl class 1252
CStatusBarCtrl class 1832

SetTextAlign member function, CDC class 550
SetTextBkColor member function, CListCtrl class 974
SetTextCharacterExtra member function,

CDC class 551
SetTextColor member function

CDC class 551
CListCtrl class 974

SetTextJustification member function, CDC class 552
SetThreadPriority member function,

CWinThread class 2075
SetTic member function, CSliderCtrl class 1777
SetTicFreq member function, CSliderCtrl class 1778
SetTime member function, COleDateTime 1310
SetTimer member function, CWnd class 2263
Setting

default passwords (DAO) 397
default user names 397
DFX field types 258
login timeout values 417
null, recordset 1624
query timeout values 249,417
workspace passwords (DAO) 387
worspace user names (DAO) 387

SetTitle member function
CDocument class 618
CPropertySheet class 1560

SetToolInfo member function,
CToolTipCtrl class 1947

SetToolRect member function,
CToolTipCtrl class 1947

SetTooltips member function, CTabCtrl class 1881

SetToolTips member function,
CToolBarCtrl class 1939

SetTopIndex member function
CComboBox class 201
CListBox class 943

SetValidationRule member function,
CDaoTableDef class 376

SetViewportExt member function, CDC class 553
SetViewportOrg member function, CDC class 553
SetWindowContextHelpId member function,

CWnd class 2264
SetWindowExt member function, CDC class 554
SetWindowOrg member function, CDC class 555
SetWindowPlacement member function,

CWnd class 2265
SetWindowPos member function, CWnd class 2265
SetWindowText member function, CWnd class 2268
SetWizardButtons member function,

CPropertySheet class 1560
SetWizardMode member function,

CPropertySheet class 1561
SetWordCharFormat member function,

CRichEditCtrl class 1708
SetWriteBufferSize member function,

CInternetFile class 891
Short integer

DFX field exchange 2412
RFX field exchange 2468

ShowCaret member function, CWnd class 2269
ShowControlBar member function,

CFrameWnd class 768
ShowDropDown member function,

CComboBox class 201
ShowOwnedPopups member function,

CWnd class 2269
ShowOwnedWindows member function,

CFrameWnd class 768
ShowScrollBar member function

CScrollBar class 1743
CWnd class 2269

ShowWindow member function, CWnd class 2270
ShutDown member function, CAsyncSocket class 111
Single precision float

DFX field exchange 2413
RFX field exchange 2472

Size member function, CRect class 1648
SIZE structure 2555
SizeToContent member function,

CBitmapButton class 126

Slider control 1767
SOCKADDR structure 2555
SOCKADDR_IN structure 2556
Sort strings, recordset 1631
SortChildren member function, CTreeCtrl class 1972
SortChildrenCB member function,

CTreeCtrl class 1972
Sortltems member function, CListCtrl class 974
SpanExcluding member function, CString class 1856
SpanIncluding member function, CString class 1857
Spin button control 1787
SplitColumn member function,

CSplitterWnd class 1810
SplitRow member function, CSplitterWnd class 1811
SQL

executing SQL statements directly (DAO) 238
pass-through queries 261

defined 238
executing 238

setting SQL statement of querydef 278
statements

customizing 1615
described 261
directly executing 408
getting default 1595
getting recordset 1603
querydef, getting 273
recordset, getting 1603

SQL_ERROR codes 428
SQLError function, native error strings 430
SQLSTATE, native error strings 430
Standard cvommand, window IDs 2288
Standard OLE container 1176
StartContent member function, CHttpServer class 858
StartDoc member function, CDC class 555
StartPage member function, CDC class 556
Static control styles 2570
Status bar control 1825
Status, getting recordset 1602
StepIt member function, CProgressCtrl class 1541
Stop member function, CAnimateCtrl class 39
StoreField, Record field exchange (DFX) 258
StreamIn member function, CRichEditCtrl class 1709
StreamOut member function, CRichEditCtrl class 1709
StretchBlt member function, CDC class 556
StrokeAndFillPath member function, CDC class 559
StrokePath member function, CDC class 559
Structured storage, CFile implementation 1470

Structures, called from MFC function descriptions
ABC structure 2489
ABCFLOAT structure 2489
BITMAP structure 2492
BITMAPINFO structure 2493
CDaoDatabaseInfo structure 2495
CDaoErrorInfo structure 2497
CDaoFieldInfo structure 2498
CDaoIndexFieldInfo structure 2505
CDaoIndexInfo structure 2502
CDaoParameterInfo structure 2506
CDaoQueryDefinfo structure 2507
CDaoRe1ationFieldInfo structure 2511
CDaoRe1ationInfo structure 2510
CDaoTableDefinfo structure 2512
CDao WorkspaceInfo structure 2515
COLORADJUSTMENT structure 2516
COMPAREITEMSTRUCT structure 2519
CREATESTRUCT structure 2520
DELETEITEMSTRUCT structure 2521
described 2489
DEVMODE structure 2521
DEVNAMES structure 2526
DOCINFO structure 2527

Index

DRA WITEMSTRUCT structure 2527
EXTENSION_CONTROL_BLOCK structure 2530
FILETIME structure 2535
HD_ITEM structure 806
HD_LA YOUT structure 808
HTTP_FILTER_AUTHENT structure 2535
HTTP_FILTER_CONTEXT structure 2536
HTTP_FILTER_LOG structure 2540
HTTP_FILTER_PREPROC_HEADERS

structure 2541
HTTP_FILTER_RAW_DATA structure 2542
HTTP_FILTER_URL_MAP structure 2543
HTTP_FILTER_VERSION structure 2543
IMAGEINFO structure 877
LINGER structure 2544
LOGBRUSH structure 2544
LOGFONT structure 2546
LOGPEN structure 2549
LV_COLUMN structure 956
LV _FINDINFO structure 954
LV _HITTESTINFO structure 965
LV_ITEM structure 958
MEASUREITEMSTRUCT structure 2550
MINMAXINFO structure 2551
NCCALCSIZE_PARAMS structure 2552

Index

Structures, called from MFC function descriptions
(continued)

NMHDR structure 1916
PAINSTSTRUCT structure 2553
POINT structure 2554
RECT structure 2554
RGNDATA structure 2554
SIZE structure 2555
SOCKADDR structure 2555
SOCKADDR_IN structure 2556
SYSTEMTIME structure 2557
TBBUTTON structure 1921
TBNOTIFY structure 1916
TC_HITTESTINFO structure 1878
TC_ITEM structure 1875
TC_ITEMHEADER structure 1875
TEXTMETRIC structure 2558
TOOLINFO structure 1944
TOOL TIPTEXT structure 1916
TTHITTESTINFO structure 1945
TV _HITTESTINFO structure 1964
TV _INSERTSTRUCT structure 1965
TV_ITEM structure 1956
TV SORTCB structure 1972
WINDOWPLACEMENT structure 2558
WINDOWPOS structure 2560
WSADATA structure 2561
XFORM structure 2563

Styles
button 2564
combo-box 2565
edit 2566
list-box 2567
message-box 2568
scroll-bar 2569
specified with dwstyle parameter 2564
static control 2570
window

described 2564,2571
extended 2573

SubclassDlgItem member function, CWnd class 2271
SubclassWindow member function, CWnd class 2271
SubtractRect member function, CRect class 1649
Support classes, miscellaneous (list) 19
SuspendThread member function,

CWinThread class 2075
SyncToRichEditObject member function,

CRichEditCntrlItem class 1682
SYSTEMTIME structure 2557

T
Tab control 1870
TabbedTextOut member function, CDC class 559
Table names

getting 1595
getting Recordset 1604

Tabledef object (DAO),
obtaining information about 2512

TableDefs
counting 245
deleting 238

TBBUTTON structure 1921
TBNOTIFY structure 1916
TC_HITTESTINFO structure 1878
TC_ITEM structure 1875
TC_ITEMHEADER structure 1875
Template collection classes (list) 20
Templates, collection classes

CArray 61
CList 909
CMap 980
CTypedPtrArray 1976
CTypedPtrList 1981
CTypedPtrMap 1989

TEXTMETRIC structure 2558
TextOut member function, CDC class 560
THIS_FILE global function/macro 2478
Threading base class, listed 6
THROW global function/macro 2478
THROW_LAST global function/macro 2479
ThrowError member function

CFileException class 706
COleControl class 1253

ThrowOsError member function,
CFileException class 706

Timeouts
ODBC 270
query

described 243
setting 249

Tool tip control 1940
Toolbar control 1913
TOOLINFO structure 1944
TopLeft member function, CRect class 1649
TRACE global function/macro 2479
TRACEO global function/macro 2480
TRACEI global function/macro 2481
TRACE2 global function/macro 2481
TRACE3 global function/macro 2481

Track member function, CRectTracker class 1663
TrackPopupMenu member function,

CMenu class 1051
TrackRubberBand member function,

CRectTracker class 1664
Transaction log file 396
Transactions

beginning 382
CanTransact member function (DAO) 232
committing 384
DAO support 379
database

beginning, described 404
committing 407
determining whether allowed 405
determining whether available 1583
rolling back 414

determining whether allowed 232
isolating ODBC 390, 399
role of DAO database objects 230
rolling back 396
separate 379

TransformCoords member function,
COleControl class 1253

TranslateColor member function,
COleControl class 1254

Tree view control 1948
TrimLeft member function, CString class 1857
TrimRight member function, CString class 1858
TRY global function/macro 2482
TTHITTESTINFO structure 1945
TV _HITTESTINFO structure 1964
TV _INSERTSTRUCT structure 1965
TV_ITEM structure 1956
TV _SORTCB structure 1972
Type library access 2297

u
UINT, DDX field exchange 2384
UnaccessData member function,

COleSafeArray class 1429
Undo member function

CEdit class 652
CRichEditCtrl class 1710

Undo support, COleServerDoc class 1434
Uniform data transfer, OLE 1275, 1282
Union queries 261
UnionRect member function, CRect class 1650

Unlock member function
CCriticalSection class 226
CEvent class 666
CMultiLock class 1070
COleSafeArray class 1429
CSingleLock class 1762
CSyncObject class 1868

UnlockBuffer member function
CEditView class 661
CString class 1858

UnlockRange member function, CFile class 691
UnrealizeObject member function,

CGdiObject class 789
UnsubclassWindow member function,

CWnd class 2272
Update member function

CDaoRecordset class 344
CListCtrl class 975
CRecordset class 1628

Update queries 261
UpdateAllItems member function,

COleServerDoc class 1448
UpdateAllViews member function,

CDocument class 618
UpdateColors member function, CDC class 561
UpdateData member function, CWnd class 2273
UpdateDialogControls member function,

CWnd class 2273
UpdateLink member function,

COleClientItem class 1172
UpdateMenu member function,

CRecentFileList class 1575
UpdateModifiedFlag member function,

COleDocument class 1355
UpdateRegistry member function

COleObjectFactory class 1395
COleTemplateServer class 1475

UpdateRegistry All member function,
COleObjectFactory class 1396

Updates, database
determining whether allowed 232, 405
determining whether available 1584

UpdateTipText member function,
CToolTipCtrl class 1947

Update Window member function,
CWnd class 2274

Updating
records 1591
Recordsets 1591, 1628

Index

Index

User Interface Issues, Drag and Drop 1357
User names

setting default (DAO) 397
setting for DAO workspace 387
workspace 391

Using database objects 229

v
ValidateRect member function, CWnd class 2274
ValidateRgn member function, CWnd class 2274
Validation failures, dealing with 420
Variant parameter type constants 2296
VARIANT, MFC encapsulation 1479
VERIFY global function/macro 2482
VerifyLicenseKeymember function,

COleObjectFactoryEx class 1396
Verify Pos member function, CSliderCtrl class 1778
VerifyUserLicense member function,

COleObjectFactory class 1397
Version, getting database engine 247,392
View classes (list) 11
VKeyToItem member function

CListBox class 944

w
WidenPath member function, CDC class 561
Width member function, CRect class 1650
WillAmbientsBe ValidDuringLoad member function,

COleControl class 1254
Window application classes (list) 6
Window IDs described 2288
Window styles

described 2571
extended 2573

WindowFromPoint member function, CWnd class 2275
WINDOWPLACEMENT structure 2558
WINDOWPOS structure 2560
WindowProc member function, CWnd class 2275
Windows Common controls

CAnimateCtrl 35
CHeaderCtrl 803
CHotKeyCtrl 810
CImageList 868
CListCtrl 945
CProgressCtrl 1538
CSliderCtrl 1767

Windows Common controls (continued)
CSpinButtonCtrl 1787
CStatusBarCtrl 1825
CTabCtrl 1870
CToolBarCtrl 1913
CToolTipCtrl 1940
CTreeCtrl 1948

WinHelp member function, CWinApp class 2055
Workspace

accessing database's workspace 250
accessing underlying DAO object 401
callable functions before Open 395
capabilities of

access to Databases collection 378
access to default workspace 378
access to Workspaces collection 378
database engine properties 378
transaction management 378

closing, consequences of 383
compacting databases 385

database engine version options 385
dbLangGeneral option 385
language options 385

constructing C++ object 383
creating 379, 387
DAO database 378
database engine properties 395
database engine version, getting 392
database sessions 378
Databases collection 378
defined 378
getting number of databases open 388
initialization settings 398
isolating ODBC transactions 390; 399
Login timeout property, setting 400
multiple, need for 378
name, user-defined 391
obtaining information about open databases 388
obtaining information about workspaces 393
open databases, counting 388
open status, obtaining 394
opening 395
password, setting 387
persistence 379, 383
registry key settings 398
repairing a database 395
rolling back transactions 396

Workspace (continued)
setting

default password 397
default user name 397
user name 387

static member functions 395
transaction log file 396
transaction manager 378
transaction space 378
usage tips

creating new workspaces 379
explicitly opening default workspace 379
opening existing workspaces 379

user name 391
W orkspaces collection

appending to 382
works paces in 392

Workspace count, getting 392
Workspace object (DAO),

obtaining information about 2515
Workspace, using default implicitly 379
WrapChanged member function,

CRichEditView class 1734
Write member function

CArchive class 54
CFile class 692
CHtmlStream class 820
CImageList class 880
CInternetFile class 891

WriteClass member function, CArchive class 55
WriteClient member function,

CHttpFilterContext class 849
WriteClient member function,

CHttpServerContext class 865
WriteHuge member function, CFile class 692
WriteList member function,

CRecentFileList class 1575
WriteObject member function, CArchive class 55
WriteProfileInt member function, CWinApp class 2056
WriteProfileString member function,

CWinApp class 2057
WriteString member function

CArchive class 56
CInternetFile class 891
CStdioFile class 1836

WriteTitle member function,
CHttpServer class 859

WSADATA structure 2561

Index

x
XFORM structure 2563

Contributors to MFC Reference

Nancy Avinger, Writer

Walden Barcus, Writer

David Adam Edelstein, Art Director

Roger Haight, Editor

Lisa Hedley, Writer

Dan Jinguji, Writer

Nancy Rager, Writer

Robert Reynolds, Illustrator

Arlene Roth, Copy Editor

Kathleen Thompson, Writer

Qian Wen, Writer

Rod Wilkinson, Editor

WASSERStudios, Production

Microsoft the wer of
Visual C++

in both hands.
This four-volume collection is the complete printed product documentation for Microsoft Visual C++

version 5.0, the development system for Win32®. In book form, this information is portable, easy to access
and browse, and a comprehensive alternative to the substantial online help system in Visual C++. The
volumes are numbered as a set-but you can buy any or all of the volumes, any time you need them. So
take hold of all the power. Get the MICROSOFT VISUAL C++ 5.0 PROGRAMMER'S REFERENCE SET.

Volume 1 of the 4-volume
VIsual C++ 5.0 Programmer"s

~~c·····
++

Mlcrosoftill> Visual C++iII> MFC
Library Reference, Part 1
U.S.A. $39.99
U.K. £36.99
Canada $53.99
ISBN 1-57231-518-0

Volume 2 of the 4-volume
Visual C++ 5.0 Programmer's
Reference Set

11fSUaIC++

M.FC ... U .. ·,b.ra .. ryRefe .. re .. n.c.e." ..•... :. Part2.
. . .,IW'J .~'

Microsoftill> Visual C++® MFC
Library Reference, Part 2
U.S.A. $39.99
U.K. £36.99
Canada $53.99
ISBN 1-57231-519-9

Volume 3 of the 4-volume
Visual C++ 5.0 Programmer"s
Reference Set

V_I C++ !
Run-lime Ubrary Refererlre r

'~iI.litp
Microsoftil!l Visual C++®
Run-Time Library Reference
U.S.A. $39.99
U.K. £36.99
Canada $53.99
ISBN 1-57231-520-2

f\.1ic,r,psoft"
VISUBIC++
language Reference

"",~~~~;;lill'f:' c-1.tilUIIi:·
Microsoft® Visual C++®
Language Reference
U.S.A. $29.99
U.K. £27.49
Canada $39.99
ISBN 1-57231-521-0

Microsoft Pressil!> products are available worldwide wherever quality computer books are sold. For more information, contact your book retailer, computer
reseller, or local Microsoft Sales Office.

To locate your nearest source for Microsoft Press products, reach us at www.microsoft.com/msoress/. or call 1-800-MSPRESS in the U.S.
(in Canada: 1-800-667-1115 or 416-293-8464).

To order Microsoft Press products, call1-800-MSPRESS in the U.S. (in Canada: 1-800-667-1115 or 416-293-8464).

Prices and availability dates are subject to change.

I'4.i c.wsoft®

VISIi8IC+T
MFC Library Reference,
Part 2

This four-volume collection is the complete printed product documentation for Microsoft
Visual C++ version 5, the development system for Win32~ In book form, this information
is portable .and easy to access and browse, a comprehensive alternative to the
substantial online help system in Visual C++. The volumes are numbered as a set,
but you can buy only the volumes you need, when you need them.

~-. I-_oo._y

7 90145 15199 5

Volume 1: MICROSOFT VISUAL C++ MFC LIBRARY REFERENCE, PART 1
Volume 2: MICROSOFT VISUAL C++ MFC LIBRARY REFERENCE, PART 2
This two-volume reference thoroughly documents the Microsoft Foundation Class (MFC)

libr~ry, providing a class library overview, an alphabetical listing of MFC classes, and a section . "

on the library's macros and globals. In-depth class descriptions summarize members by

category and list member functions, operators, and data members. Entries for member

functions include return values, parameters, related classes, important comments, and

source code examples.

Volume 3: MICROSOFT VISUAL C++ RUN-TIME LIBRARY REFERENCE
Combining the information of three books, this volume contains complete descriptions

and alphabetical listings of all the functions and parameters in the iostream class library,
ActiveX"" Template Library (ATl), and run-time library. Entries include helpful source code

examples.

Volume 4: MICROSOFT VISUAL C++ LANGUAGE REFERENCE
Three books in one, the C and C++ references in this volume guide you through the two

languages: terminology and concepts, programming structures, functions, declarations, and

expressions. The C++ section also covers Run-Time Type Information (RTII) and Namespaces. ,

The final section of this valuable resource discusses the preprocessor and translation phases,

integral to C and C++ programming, and includes an alphabetical listing of preprocessor

directives.

U.S.A. $39.99 Programming/Microsoft Visual C++

U.K. £36.99
Canada $53.99 ISBN 1-57231-519-9

JS1572 31Ls Tr
[Recommended]

Microsoft Press

Microsoft·
WindowsNr
Windows·95

VOLUME

2
OF FOUR

Microsoft ---
PRESS

